## MAA Student Chapters

The MAA Student Chapters program was launched in January 1989 to encourage students to continue study in the mathematical sciences, provide opportunities to meet with other students interested in mathematics at national meetings, and provide career information in the mathematical sciences. The primary criterion for membership in an MAA Student Chapter is "interest in the mathematical sciences." Thus, the Student Chapter program supplements, but does not compete with, the chapters of Pi Mu Epsilon. Currently there are approximately $225 \mathrm{ac}-$ tive Student Chapters on college and university campuses nationwide. Students are also members of the MAA Sections in their geographic region. Many of the MAA Sections provide special activities for students at their regularly scheduled meetings.

## Pi Mu Epsilon

Pi Mu Epsilon is a national mathematics honor society with over 300 chapters throughout the nation. Established in 1914, Pi Mu Epsilon is a non-secret organization whose purpose is the promotion of scholarly activity in mathematics among students in academic institutions and among staffs of qualified non-academic institutions. It seeks to do this by electing members on an honorary basis according to their proficiency in mathematics and by engaging in activities designed to provide for the mathematical and scholarly development of its members.

Pi Mu Epsilon regularly engages students in scholarly activity through its Journal which has published student and faculty articles since 1949. In addition, the society awards monetary prizes for mathematics contests and awards established by chapters.

Since 1952, Pi Mu Epsilon has been holding its annual National Meeting in conjunction with the summer meetings of the Mathematical Association of America (MAA).

## Student Activities

Schedule of Events

## All events will be held in the Albuquerque Convention Center Wednesday, August 3

5:30 pm-6:30 pm MAA/PME Student Reception

## LOCATION

Thursday, August 4

| 8:00 am $-11: 30 \mathrm{am}$ | PME Council Meeting |
| :--- | :--- |
| $9: 00 \mathrm{am}-5: 00 \mathrm{pm}$ | Student Hospitality Center |
| $1: 00 \mathrm{pm}-2: 55 \mathrm{pm}$ | MAA Session \#1 |
| $1: 00 \mathrm{pm}-2: 55 \mathrm{pm}$ | PME Session \#1 |
| $1: 00 \mathrm{pm}-2: 55 \mathrm{pm}$ | MAA Session \#2 |
| $1: 00 \mathrm{pm}-2: 55 \mathrm{pm}$ | PME Session \#2 |
| $3: 00 \mathrm{pm}-4: 55 \mathrm{pm}$ | MAA Session \#3 |
| $3: 00 \mathrm{pm}-4: 55 \mathrm{pm}$ | PME Session \#3 |
| $3: 00 \mathrm{pm}-4: 55 \mathrm{pm}$ | MAA Session \#4 |
| 3:00 pm - 4:55 pm | PME Session \#4 |
| 5:00 pm - 5:45 pm | MAA Special Session on Math Horizons |
|  | Arthur T. Benjamin, Harvey Mudd College |
|  | Jennifer J. Quinn, Occidental College |

Friday, August 5
8:00 am-11:30 am
9:00 am - 5:00 pm
PME Council Meeting
Student Hospitality Center
1:00 pm-2:55 pm
MAA Session \#5
1:00 pm - $2: 55 \mathrm{pm}$
PME Session \#5
1:00 pm - $2: 55 \mathrm{pm}$
MAA Session \#6
$1: 00 \mathrm{pm}-2: 55 \mathrm{pm}$
PME Session \#6
3:00 pm - 5:35 pm
MAA Session \#7
3:00 pm - 4:55 pm
PME Session \#7
3:00 pm - 5:35 pm
MAA Session \#8
3:00 pm - 4:55 pm
PME Session \#8
6:00 pm - 7:45 pm
PME Banquet
8:00 pm - 9:00 pm
J. Suthlerland Frame Lecture

Arthur T. Benjamin, Harvey Mudd College
Proofs that Really Count:
The Art of Combinatorial Proof

## LOCATION LOCATION <br> Taos Room

Picuris Room
Cochiti Room
Santa Ana Room
Taos Room
Picuris Room
Cochiti Room
Santa Ana Room
LOCATION
LOCATION

## Saturday, August 6

# MAA Student Lecture 

Saturday, August 6, 2005<br>3:00-3:50 pm<br>LOCATION

Lights, Camera, Freeze!
Annalisa Crannell
Franklin \& Marshall College
Marc Frantz
Indiana University

Director/Producer Stephen "Marc" Frantzberg teams up with the world-famous actress Annalisa Monalisa Cranberry to bring you the new blockbuster hit, Projection. Spanning the centuries between Renaissance perspective painting and modern cinematic special effects, Projection reveals the true secrets behind projecting a 3-dimensional world onto a 2-dimensional canvas (or movie screen). You'll laugh; you'll yawn; you'll cry; you'll reach the vanishing point. The movie includes a cast of thousands (or dozens, depending on how many people are in the audience).

# J. Sutherland Frame Lecture 

Friday, August 5, 2005<br>8:00-9:00 pm<br>LOCATION

Proofs that Really Count: The Art of Combinatorial Proof<br>Arthur T. Benjamin<br>Harvey Mudd College

Mathematics is the science of patterns, and mathematicians attempt to understand these patterns and discover new ones using various tools. In this talk, we demonstrate that many number patterns, even very complex ones, can be understood by simple counting arguments. You will enjoy the magic of Fibonacci numbers, Lucas numbers, continued fractions, and more. You can count on it! This talk is based on research with Professor Jennifer Quinn and many, many undergraduates.

The J. Sutherland Frame Lecture is named in honor of the ninth President of Pi Mu Epsilon, who served from 1957 to 1966 and passed away on February 27, 1997. In 1952, Sud Frame initiated the student paper sessions at the annual Pi Mu Epsilon meeting, which is held at the Summer Mathfests. He continually offered insight and inspiration to student mathematicians at these summer meetings.

## MAA Student Speakers

## Speakers

| $\quad$ Name | MAA Session | Name | MAA Session |
| :--- | :---: | :---: | :---: |
| LastName FirstName | 1 | name | 1 |
| Askew Ashley | 1 | name | 1 |
| Croll Nicholas | 1 | name | 1 |
| Eisemann Elizabeth | 1 | name | 1 |
| Fritsch Sarah | 1 | name | 1 |
| Gemmer John | 1 | name | 1 |
| Goodpaster Sarah | 1 | name | 1 |
| Johnson Nicholas | 1 | name | 1 |
| Mauck Melissa | 1 | name | 1 |
| Mitchell Benjamin | 1 | name | 1 |
| O'Connell Nicole | 1 | name | 1 |
| Oparanozie Nnamdi | 1 | name | 1 |
| Otten Samuel | 1 | name | 1 |
| Paquette Ammon | 1 | name | 1 |
| Rivas Mauricio | 1 | name | 1 |
| Smith Chris | 1 | name | 1 |
| Toombs Nicholas | 1 | name | 1 |

## Pi Mu Epsilon Delegates

## Speakers

| Name | School | Chapter |
| :--- | :--- | :--- | :--- | PME Session

## Additional Delegates

| Michele J. Kneale | University of Akron | Ohio Nu |
| :--- | :--- | :--- |
| Doyle G. LaCroix, Jr. | Southeastern Louisiana University | Louisiana Delta |
| Margaret Smoot | Texas A\&M University | Texas Eta |
| Dillon McTernan | Southeastern Louisiana University | Louisiana Delta |
| William Paul | University of North Carolina at Charlotte | North Carolina Theta |
| Darshit J. Patel | University of South Florida | Florida Epsilon |

## PME Session \#1

Picuris Room
1:00P.M. - 2:55P.M.
1:00-1:15
A Generalization of the Chromatic Polynomial of a Cycle

Julian Apelete Allagan<br>Troy University, Alabama Eta

We prove that if an edge of a cycle on $n$ vertices is extended by adding $k$ vertices, then the chromatic polynomial of such generalized cycle is:

$$
P\left(H_{k}, \lambda\right)=(\lambda-1)^{n} \sum_{i=0}^{k} \lambda^{i}+(-1)^{n}(\lambda-1)
$$

## 1:20-1:35

## Finite and Infinite Configurations in the Hausdorff Metric Geometry

Chantel C. Blackburn
Andrews University, Michigan Gamma
The Hausdorff metric provides a way to measure distance between any two nonempty compact subsets of $n$-dimensional Euclidean space. A configuration in this space defines two compact sets and the number of sets at each location between the sets. We will focus on finite and infinite configurations and how a small change to a configuration can lead to a drastically different result in the number of sets at each location between sets.

$$
1: 40-1: 55
$$

## Impossible Paths in Langton's Ant Dakota Blair

Texas A\&M University, Texas Eta
A new characterization of a path (as a word) provides insight into the study of paths produced by many ant-like automata. Impossible words and the construction of a possibility testing algorithm are presented. Additionally, for possible words, this algorithm provides the conditions required for the ant to produce this path.

$$
2: 00-2: 15
$$

## Let Me Do a Little Number

Jason Brinker<br>St. Norbert College, Wisconsin Delta

The interconnectedness of mathematics and music has long been discussed by professionals in both fields. In the analysis and composition of music, mathematics is used constantly. In fact, in the 20th century, musical set theory and the Twelve-Tone movement utilized mathematics as a foundation. We will examine these two movements as well as discuss a method of composition developed by the speaker himself.

2:20-2:35

## Which Mathematical Knots Are Celtic? <br> Angela Brown <br> Sam Houston State University, Texas Epsilon

Using a mathematical definition of a Celtic knot, we will attempt to show which knots are indeed Celtic. Celtic knots are obtained from an alternating rectangular grid pattern by changing crossings to vertical or horizontal uncrossings. The existence of identifying characteristics to distinguish Celtic and non-Celtic knots will be explored.

## MAA Session \#1

Taos Room
1:00P.M. - 2:55P.M.
1:00-1:15

Drawing Graphs ... Algorithms<br>Brian Black<br>Providence College - Rhode Island Gamma

We describe ... logic humans use to draw graphs.
1:20-1:35

> Drawing Graphs ... Algorithms
> Brian Black
> Providence College - Rhode Island Gamma

We describe ... logic humans use to draw graphs.
1:40-1:55

> Drawing Graphs ... Algorithms
> Brian Black
> Providence College - Rhode Island Gamma

We describe ... logic humans use to draw graphs.
2:00-2:15

> Drawing Graphs ... Algorithms
> Brian Black
> Providence College - Rhode Island Gamma

We describe ... logic humans use to draw graphs.
2:20-2:35

> Drawing Graphs ... Algorithms
> Brian Black
> Providence College - Rhode Island Gamma

We describe ... logic humans use to draw graphs.

PME Session \#2
Santa Ana Room
1:00P.M. - 2:55P.M. 1:00-1:15

# Can You or Can't You Count Cantor? 

Jennifer L. Carmichael
Western Oregon University, Oregon Delta
One of the most counterintuitive mathematical objects, the Cantor set, seems riddled with contradictions. This introduction to the Cantor set (a subset of the open interval from 0 to 1 ) will discuss some of these contradictions, including the ternary-expansion proof that answers whether we can count this elusive set.

1:20-1:35<br>Intrinsically Linked, Outerplanar, and Outerflat Graphs<br>Christopher Cicotta<br>Clarkson University, New York Omicron<br>A graph $G$ is outerflat if it can be embedded in a 3-ball, such that every vertex of $G$ lies on the boundary of the 3-ball, and such that every cycle of $G$ bounds a disk in the 3-ball disjoint from $G$. We will discuss the classification of all outerflat graphs.

Math with Muscle
Tom Cochran
Youngstown State University, Ohio Xi
Smooth muscles are found throughout our bodies and are extremely important in regulating blood flow in arteries and veins. This talk will touch upon some of the mathematics discovered in experimental data acquired through a bio-mathematics project dealing with the relaxation of smooth muscles at Youngstown State University.

$$
2: 00-2: 15
$$

Key Generation of a Group-Oriented, Threshold Cryptosystem
Stephanie Deacon
University of Texas at San Antonio, Texas Omicron
In a $(k, n)$-threshold public key cryptosystem the group members choose their private key such that no member has knowledge of the private key. However, $k$ members can recover this private key. This scheme will be implemented in the field of integers modulo a prime, $p$, and generalized for any finite field.

In recent years, increased attention has been given to the topic of obtaining exact solutions to disease models using the graph of contacts between people. This presentation will focus on using the known transmission and infection characteristics of certain STDs to predict transmission patterns within specified populations.

## MAA Session \#2

Cochiti Room
1:00P.M. - 2:55P.M. 1:00-1:15

Drawing Graphs ... Algorithms<br>Brian Black<br>Providence College - Rhode Island Gamma

We describe ... logic humans use to draw graphs.
1:20-1:35

> Drawing Graphs ... Algorithms
> Brian Black
> Providence College - Rhode Island Gamma

We describe ... logic humans use to draw graphs.
1:40-1:55

> Drawing Graphs ... Algorithms
> Brian Black
> Providence College - Rhode Island Gamma

We describe ... logic humans use to draw graphs.
2:00-2:15

> Drawing Graphs ... Algorithms
> Brian Black
> Providence College - Rhode Island Gamma

We describe ... logic humans use to draw graphs.
2:20-2:35

> Drawing Graphs ... Algorithms
> Brian Black
> Providence College - Rhode Island Gamma

We describe ... logic humans use to draw graphs.

## PME Session \#3

Picuris Room
3:00P.M. - 4:55P.M. 3:00-3:15

Modeling Bacterial Growth in the Presence of Toxins
David Gohlke
Youngstown State University, Ohio Xi
Environmental factors such as the amount of available nutrients of the presence of toxins play a large role in bacterial growth. Some strains of bacteria have the ability to survive in environments in which other strains would not. This presentation will focus on modeling growth curves of bacteria in different situations, with the intent of finding accurate mathematical models. This research was undertaken in the SURE program at Youngstown State University, sponsored by the National Science Foundation.

3:20-3:35

## Convergence Properties of the Riemann Integral

Jeff Goldsmith
Dickinson College, Pennsylvania Rho
We will begin by examining sequences of real numbers and look at what it means for a sequence to converge. This will lead us naturally to a discussion about sequences of functions, and two ways to define convergence for sequences of functions. Because no one can resist integrating a function, we will conclude with the Riemann Integral for the limit of sequences.

3:40-3:55
Applications of Lie Symmetry Groups to Minimal Surfaces
Angela Hicks
Furman University, South Carolina Delta
A system of differential equations can be represented as an $n$-dimensional Lie group which is a smooth $n$-manifold that is also an algebraic group. By computing the symmetries of this Lie group, we are able to find a continuous family of solutions to the original system of differential equations. We apply this method to the study of minimal surfaces which are surfaces whose mean curvature is zero and which can be represented by differential equations. This provides us with examples of families of surfaces that smoothly flow from one minimal surface to another.

## It's More Than Nothing

Amanda Hoffman
Sam Houston State University, Texas Epsilon
It was many centuries after the development of natural numbers before any culture saw the need for zero and began to use it as a placeholder and as a number. We will look at the development and acceptance of zero throughout history.
$4: 20-4: 35$
Selecting Small Groups in College Courses
Alaina Houmard
Mount Union College, Ohio Omicron
Conflicting schedules, ability, and interest among group members can affect the overall performance of a group. I will discuss how Multidimensional Scaling can be used to obtain optimal groups.

## MAA Session \#3

Taos Room
3:00P.M. - 4:55P.M.
3:00-3:15

Drawing Graphs ... Algorithms<br>Brian Black<br>Providence College - Rhode Island Gamma

We describe ... logic humans use to draw graphs.
3:20-3:35

> Drawing Graphs ... Algorithms
> Brian Black
> Providence College - Rhode Island Gamma

We describe ... logic humans use to draw graphs.
3:40-3:55

> Drawing Graphs ... Algorithms
> Brian Black
> Providence College - Rhode Island Gamma

We describe ... logic humans use to draw graphs. 4:00-4:15

Drawing Graphs ... Algorithms<br>Brian Black<br>Providence College - Rhode Island Gamma

We describe ... logic humans use to draw graphs.
4:20-4:35

> Drawing Graphs ... Algorithms
> Brian Black
> Providence College - Rhode Island Gamma

We describe ... logic humans use to draw graphs.
4:40-4:55

> Drawing Graphs ... Algorithms
> Brian Black
> Providence College - Rhode Island Gamma

We describe ... logic humans use to draw graphs.

## PME Session \#4

Santa Ana Room
3:00P.M. - 4:55P.M. 3:00-3:15

A New Approach to Multiple Bubble Problems<br>Colleen Hughes<br>Denison University, Ohio Iota

It has long been known that a circular fence is the most efficient enclosure of a single quantity of area, and that a spherical bubble has the least surface area among all shapes of a given volume. In the early 1990's, proofs were developed for double or triple bubbles in the plane, three-space, and in other spaces. Here we present research from our REU group which extends this work on multiple bubble problems.

## 3:20-3:35

## Independence Models, Likelihood Ratio Tests, and a Side of Bacon <br> Aubrey Komorowski <br> Duquesne University, Pennsylvania Upsilon

The game PASS THE PIGS requires a player to roll a pair of pig-shaped dice. The configuration of the rolled pigs determines points earned. Data collected from thousands of such rolls from different heights are used in conjunction with multinomial independence models to examine height effect. Likelihood ratio tests are used to compare competing independence models and reveal the most plausible dependence relations.

3:40-3:55

## An Introduction to Franklin Squares

Mark Lane
Sam Houston State University, Texas Epsilon
This talk will give an introduction to Franklin Squares. We will determine algebraic relationships that exist among the properties that define a Franklin Square. Finally, we will describe all known symmetry operations on Franklin Squares.

4:00-4:15
An Alternate Demonstration of Euler's Formula
David Martin
Youngstown State University, Ohio Xi
Euler's formula, one of the most intriguing discoveries in the history of mathemat-
ics, shows that the exponential and seemingly unrelated sine and cosine functions are indeed fundamentally linked. One popular method of proving the formula involves power series representations. Another involves differential equations. This presentation will include an alternate demonstration requiring only an understanding of calculus.

## 4:20-4:35 <br> Symmetry in a Modular Generalization of Schur's Problem

 Andrew Matteson Texas A\&M University, Texas EtaWe consider Schur's well-known open problem of sum-free sets. Some relations to classical results, applications to Ramsey theory, backtrack programming, and generalizations of the problem are presented. Primarily, we focus on the ideas of symmetry and anti-symmetry and their applications to modular sum-free partitions.

## MAA Session \#4

Cochiti Room
3:00P.M. - 4:55P.M. 3:00-3:15

Drawing Graphs ... Algorithms<br>Brian Black<br>Providence College - Rhode Island Gamma

We describe ... logic humans use to draw graphs.
3:20-3:35

> Drawing Graphs ... Algorithms
> Brian Black
> Providence College - Rhode Island Gamma

We describe ... logic humans use to draw graphs.
3:40-3:55

> Drawing Graphs ... Algorithms
> Brian Black
> Providence College - Rhode Island Gamma

We describe ... logic humans use to draw graphs. 4:00-4:15

Drawing Graphs ... Algorithms<br>Brian Black<br>Providence College - Rhode Island Gamma

We describe ... logic humans use to draw graphs.
4:20-4:35

> Drawing Graphs ... Algorithms
> Brian Black
> Providence College - Rhode Island Gamma

We describe ... logic humans use to draw graphs.
4:40-4:55

> Drawing Graphs ... Algorithms
> Brian Black
> Providence College - Rhode Island Gamma

We describe ... logic humans use to draw graphs.

Friday
August 5, 2005

## PME Session \#5

Picuris Room
1:00P.M. - 2:55P.M.
1:00-1:15

## Exploring Groups with Perfect Order Subsets (POS)

Tina Smith Mote
McNeese State University, Louisiana Epsilon
The order subset of an element $x$ in a group $G$ is defined to be the set of all elements in $G$ with the same order as $x$. A finite group is said to have POS if the cardinality of each order subset divides the order of the group. Previously established results regarding groups with POS will be discussed and illustrated by examples. In addition, special classes of groups with POS will be characterized.

1:20-1:35
"The Kingdom Lost For A Smile" from a Theoretical Perspective
Phuong Minh Thi Nguyen
Occidental College, California Theta
This paper studies an intersection between game theory and history to illustrate the wide range of applications of game theory. Despite the tendency to take history for granted, this research illuminates one specific ancient Chinese historical event to emphasize the main factors leading to a turning point in early Chinese history. Moreover, it presents some elements that could turn the outcome of the event and therefore Chinese history the other way and a useful lesson for leadership.

1:40-1:55
Sumthing Special: The N Festivals of Whatever
Jackie Van Ryzin
St. Norbert College, Wisconsin Delta
We're all familiar with the song about the Twelve Days of Christmas. We will discuss some efficient ways of determining the total number of gifts given and then generalize to a much wider variety of festive occasions and levels of festivities.

2:00-2:15

An Introduction to Knot Theory Maria Salcedo<br>Youngstown State University, Ohio Xi

This talk will be a concise introduction to general concepts in knot theory. Math-
ematical research of knotted ribbons will also be discussed.

## MAA Session \#5

Taos Room
1:00P.M. - 2:55P.M. 1:00-1:15

Drawing Graphs ... Algorithms<br>Brian Black<br>Providence College - Rhode Island Gamma

We describe ... logic humans use to draw graphs.
1:20-1:35

> Drawing Graphs ... Algorithms
> Brian Black
> Providence College - Rhode Island Gamma

We describe ... logic humans use to draw graphs.
1:40-1:55

> Drawing Graphs ... Algorithms
> Brian Black
> Providence College - Rhode Island Gamma

We describe ... logic humans use to draw graphs.
2:00-2:15

> Drawing Graphs ... Algorithms
> Brian Black
> Providence College - Rhode Island Gamma

We describe ... logic humans use to draw graphs.
2:20-2:35

> Drawing Graphs ... Algorithms
> Brian Black
> Providence College - Rhode Island Gamma

We describe ... logic humans use to draw graphs.

## Friday

August 5, 2005
PME Session \#6
Santa Ana Room
1:00P.M. - 2:55P.M.
1:00-1:15

An Analytical Anomaly<br>Ted Stadnik<br>Youngstown State University, Ohio Xi

Continued fractions can be used to create sequences of continuous functions that converge pointwise to a function with a countably infinite number of discontinuities. Variations of this problem and open questions will be considered.

1:20-1:35

## The Bus Driver's Sanity Problem <br> Jennifer Swank <br> Denison University, Ohio Iota

The Bus Driver's Sanity Problem, introduced by Will (1999), is to determine the best route for the drop off of kids so as to minimize exposure to the children, measured in kid-minutes. Will's solution approach, along with two possible heuristic approaches and continuing research will be presented.

1:40-1:55

## An Analysis of Mathematical Models for Image Inpainting

Carrie Swauger
Duquesne University, Pennsylvania Upsilon
Modern technology has created a fundamental need to accurately and efficiently obtain, store, transmit, and recover data. However, these processes often result in the loss of critical information. Digital image inpainting is becoming an increasingly popular technique for automatically filling in lost information in images. In this talk we analyze and compare fundamental properties of several inpainting models based on partial differential equations.

2:00-2:15

## A Price Prediction Model for Building Blocks <br> Elizabeth Ann Tiedeman <br> Duquesne University, Pennsylvania Upsilon

Accompanying the prices of LEGO sets displayed in the online and paper catalogs are the number of corresponding pieces in each set. Using catalog data, we implement a least-squares regression model to predict the price of a LEGO set as
a function of its piece count and estimate price-per-piece. Additional predictors, such as genre, are included to enhance predictive ability and better understand pricing strategy.

MAA Session \#6
Cochiti Room
1:00P.M. - 2:55P.M.
1:00-1:15

Drawing Graphs ... Algorithms<br>Brian Black<br>Providence College - Rhode Island Gamma

We describe ... logic humans use to draw graphs.
1:20-1:35

> Drawing Graphs ... Algorithms
> Brian Black
> Providence College - Rhode Island Gamma

We describe ... logic humans use to draw graphs.
1:40-1:55

> Drawing Graphs ... Algorithms
> Brian Black
> Providence College - Rhode Island Gamma

We describe ... logic humans use to draw graphs.
2:00-2:15

> Drawing Graphs ... Algorithms
> Brian Black
> Providence College - Rhode Island Gamma

We describe ... logic humans use to draw graphs.
2:20-2:35

> Drawing Graphs ... Algorithms
> Brian Black
> Providence College - Rhode Island Gamma

We describe ... logic humans use to draw graphs.

## PME Session \#7

Picuris Room

# Drawing Graphs ... Algorithms <br> Brian Black <br> Providence College - Rhode Island Gamma 

We describe ... logic humans use to draw graphs.
3:20-3:35

> Drawing Graphs ... Algorithms
> Brian Black
> Providence College - Rhode Island Gamma

We describe ... logic humans use to draw graphs.
3:40-3:55

> Drawing Graphs ... Algorithms
> Brian Black
> Providence College - Rhode Island Gamma

We describe ... logic humans use to draw graphs. 4:00-4:15

Drawing Graphs ... Algorithms<br>Brian Black<br>Providence College - Rhode Island Gamma

We describe ... logic humans use to draw graphs.
4:20-4:35

> Drawing Graphs ... Algorithms
> Brian Black
> Providence College - Rhode Island Gamma

We describe ... logic humans use to draw graphs.

## MAA Session \#7

## Taos Room

3:00P.M. - 5:35P.M. 3:00-4:30

Drawing Graphs ... Algorithms<br>Brian Black<br>Providence College - Rhode Island Gamma

We describe ... logic humans use to draw graphs.
4:35-5:35

> Drawing Graphs ... Algorithms
> Brian Black
> Providence College - Rhode Island Gamma

We describe ... logic humans use to draw graphs.

## PME Session \#8

Santa Ana Room
3:00P.M. - 4:55P.M. 3:00-3:15

Drawing Graphs ... Algorithms<br>Brian Black<br>Providence College - Rhode Island Gamma

We describe ... logic humans use to draw graphs.
3:20-3:35

> Drawing Graphs ... Algorithms
> Brian Black
> Providence College - Rhode Island Gamma

We describe ... logic humans use to draw graphs.
3:40-3:55

> Drawing Graphs ... Algorithms
> Brian Black
> Providence College - Rhode Island Gamma

We describe ... logic humans use to draw graphs. 4:00-4:15

Drawing Graphs ... Algorithms<br>Brian Black<br>Providence College - Rhode Island Gamma

We describe ... logic humans use to draw graphs.
4:20-4:35

> Drawing Graphs ... Algorithms
> Brian Black
> Providence College - Rhode Island Gamma

We describe ... logic humans use to draw graphs.
4:40-4:55

> Drawing Graphs ... Algorithms
> Brian Black
> Providence College - Rhode Island Gamma

We describe ... logic humans use to draw graphs.

## MAA Session \#8

Cochiti Room
3:00P.M. - 5:35P.M.
3:00-3:15

Drawing Graphs ... Algorithms<br>Brian Black<br>Providence College - Rhode Island Gamma

We describe ... logic humans use to draw graphs.
3:20-3:35

Drawing Graphs ... Algorithms<br>Brian Black<br>Providence College - Rhode Island Gamma

We describe ... logic humans use to draw graphs.
3:40-3:55

> Drawing Graphs ... Algorithms
> Brian Black
> Providence College - Rhode Island Gamma

We describe ... logic humans use to draw graphs. 4:00-4:15

Drawing Graphs ... Algorithms<br>Brian Black<br>Providence College - Rhode Island Gamma

We describe ... logic humans use to draw graphs.
4:20-4:35

> Drawing Graphs ... Algorithms
> Brian Black
> Providence College - Rhode Island Gamma

We describe ... logic humans use to draw graphs.
4:40-4:55

> Drawing Graphs ... Algorithms
> Brian Black
> Providence College - Rhode Island Gamma

We describe ... logic humans use to draw graphs.

## J. Suthlerland Frame Lectures

2005 Arthur T. Benjamin
2004 Joan P. Hutchinson
2003 Robert L. Devaney
2002 Frank Morgan
2001 Thomas F. Banchoff
2000 John H. Ewing
1999 V. Frederick Rickey
1998 Joseph A. Gallian
1997 Philip D. Straffin, Jr.
1996 J. Kevin Colligan
1995 Marjorie Senechal
1994 Colin Adams
1993 George Andrews
1992 Underwood Dudley
1991 Henry Pollack
1990 Ronald L. Graham
1989 Jean Cronin Scanlon
1988 Doris Schattschneider
1987 Clayton W. Dodge
1986 Paul Halmos
1985 Ernst Snapper
1984 John L. Kelley
1983 Henry Alder
1982 Israel Halperin
1981 E. P. Miles, Jr.
1980 Richard P. Askey
1979 H. Jerome Keisler
1978 Herbert E. Robbins
1977 Ivan Niven
1976 H. S. M. Coxeter
1975 J. Sutherland Frame

Proofs that Really Count: The Art of Combinatorial Proof When Five Colors Suffice
Chaos Games and Fractal Images
Soap Bubbles: Open Problems
Twice as Old, Again, and Other Found Problems
The Mathematics of Computers
The Creation of the Calculus: Who, What, When, Where, Why
Breaking Drivers' License Codes
Excursions in the Geometry of Voting
Webs, Sieves and Money
Tilings as Differential Gratings
Cheating Your Way to the Knot Merit Badge
Ramanujan for Students
Angle Trisectors
Some Mathematics of Baseball
Combinatorics and Computers
Entrainment of Frequency
You Too Can Tile the Conway Way
Reflections of a Problems Editor
Problems I Cannot Solve
The Philosophy of Mathematics
The Concept of Plane Area
How to Discover and Prove Theorems
The Changing Face of Mathematics
The Beauties of Mathematics
Ramanujan and Some Extensions of the Gamma and Beta Funct
Infinitesimals: Where They Come From and What They Can Do
The Statistics of Incidents and Accidents
Techniques of Solving Extremal Problems
The Pappus Configuration and Its Groups
Matrix Functions: A Powerful Tool

MAA Student Lectures

| 2005 | Annalisa Crannell \& Marc Frantz | Lights, Camera, Freeze! <br> 2004 <br> Mario Martelli |
| :--- | :--- | :--- |
| 2004 | Mark Meerschaert | The Secret of Brunelleschi's Cupola |
| 2003 | Arthur T. Benjamin | Fractional Calculus with Applications |
| 2003 | Donna L. Beers | The Art of Mental Calculation |
|  | What Drives Mathematics |  |
| 2002 | Colin Adams | and Where is Mathematics Driving Innovation? |
|  |  | "Blown Away: What Knot to do When Sailing" |
| by Sir Randolph "Skipper" Bacon III |  |  |

## PI MU EPSILON

## President:

Joan W. Weiss
Fairfield University
President Elect:
David C. Sutherland
Hendrix College
Past-President:
Robert S. Smith
Miami University
Secretary-Treasurer:
Leo Schneider
John Carroll University
Councillors:
Paul Fishback
Grand Valley State University
Michelle Schultz
University of Nevada
Angela Spalsbury
Youngstown State University
Eve Torrence
Randolph-Macon College
Editor, PME Journal:
Brigitte Servatius
Worcester Polytechnic Institute

## MAA Committee on Undergraduate Activities and Student Chapters

Betty Mayfield, Chair

Hood College
Ben Fusaro
Florida State University
Mary Hawkins
Prairie View A\&M University
John Holte
Gustavus Adolphus College
Mario Martelli
Claremont McKenna College
Michael Pearson
Mississippi State University
Kay Somers
Moravian College
Jody M. Sorensen
Grand Valley State University
Robert Smith, ex officio
Miami University
James Tattersall, ex officio
Providence College

