PI MU EPSILON JOURNAL

 THE OFFICIAL PUBLIGATTOX OFTHE HONORARYMATHEMATICAL FRATERNITY

VOLUME 1

NUMBER 7

CONTENTS

PageSo You Want to Be a Graduate Student? . .C. C. MacDuffee 258
Report of the National Meeting of the $\operatorname{Pi} \mathbf{Y} u$ 표silion
Fraternity, Eat Lansing, Michigan. J. Suerland Frame 266
Area in Which a Narrow Rod Can Be Reversmi in Direction Robert E. Greenwood 270
Addendum to Mr. Greenwood's PaperR. J. Walker 275
Problem Department. 276
Problems for Solution 276
Solutions 277
Notes 283
Reports of the Chapters 290
Medals, Prizes and Scholarships. 296
Directory 297
Initiates, Academic Year 1951-1952 302

PI MU EPSILON JOURNAL
THE OFFICIAL PUBLICATION
OF THE HONORARY MATHEMATICAL FRATERNITY

RUTH W. STOKES, Editor

ASSOCIATE EDITORS

J. S. FRAME, Michigan State College, East Lansing, Michigan H. T. KARNES, L. S. U., Baton Rouge 3, Louisiana
N. H. McCOY, Smith College, Northampton. Massachusetts LEO MOSER, University of Alberta, Edmonton, Alberta, Canada
R. J. WALKER, Cornell University. Ithaca, New York

HOWARD C. BENNETT, Business Manager

GENERAL OFFICERS OF THE FRATERNITY

Director General: C. C. MacDuffee, University of Wisconsin Vice-Director General: W. M. Whyburn, University of N. C. Secretary-Treasurer General: J.S. Frame, Michigan State College Councillors General:
S. S. Cairns, University of Illinois, Urbana, Illinois

Tomlinson Fort, University of Georgia, Athens, Georgia Sophie McDonald, University of California, Berkeley, Calif.
Ruth W. Stokes, Syracuse University, Syracuse, New York
Ex-officio Member of the Council: Howard C. Bennett

MANUSCRIPTS and EDITORIAL CORRESPONDENCE, including CHAPTER REPORTS, NEWS ITEMS, etc., should be addressed to the Editor, Ruth W. Stokes, 15 Smith College, Syracuse University, Syracuse 10, New York.
PI MU EPSILON JOURNAL is published semi-annually at Syracuse University.
SUBSCRIPTION PRICE: To Individual Members, $\$ 1.50$ for 2 years; to Non-Members and Libraries, $\$ 2.00$ for 2 years. Subscriptions, orders for back numbers and correspondence concerning subscriptions and advertising should be addressed to Howard C. Bennett, 15 Smith College, Syracuse University, Syracuse 10, New York.

PI MU EPSILON JOURNAL

THE OFPICIAL PUBLIGATION OF

THE HONORARY MATHEMATICAL FRAIERNITY

CONTENTS

Dynamic Beauty of Geometrical Forms

By Hermann Baravalle

The above design is obtained by drawing all the diagonals
of a regular polygon of 24 sides.

[^0]
SO
 YOU WANT TO BE A GRADUATE STUDENT?* C. C. MacDuffee, University of Wisconsin

A graduate student has been defined as a moron wandering around the campus who doesn't know the show is over. He is miles apart from the undergraduate. His social position in an institution such as Harvard or Princeton is absolutely nil. The genuine alumni who have carried the football team to victory with their raucous voices become mildly indignant with a person who claims to be an alumnus merely on the basis of an advanced degree.

The graduate student rarely has any money. Both graduate and undergraduate dress like Raggedy Andy, the undergraduate because it is the style, the graduate because he has nothing better. As a rule the graduate student does not belong to a fraternity, or if he does he conceals his membership tosave money and to avoid having to chaperone dances. He cannot afford the Roman festivals in the stadium or the more expensive musicales in the university theatre. He lives a Spartan existence with his books, or like the little Chinaman the school boys in New York sing about,
sittin' on a fence
Tryin' to make a quarter out of fifteen cents.
The graduatestudent is apt to be married. Probably his wife works and supports them both. (This, by the way, is a suggestion to you men who can't think of a way to finance yourself through Graduate School.) Or else they have three

[^1]children and live in a trailer or temporary housing unit surrounded by clothes lines, baby pens and pandemonium.

To the undergraduate these graduate students are a phenomenon to accept but not to understand. They are strange people who actually like to study. They are going to be teachers, for the most part, and that of course marks them for what they are. Teachers never make any money. Only screw-balls become teachers, instead of respectable stock brokers or realtors who make money and play golf and use personality instead of brains.

In fact, when you think about it, it is a wonder that anyone becomes a graduate student. And yet there are thousands of new ones every year. They go into every field of human endeavor. There are even a few hundred who go into that most impossible of all subjects, mathematics. Even graduate students in the socially significant subjects think the mathematicians are queer. They think they spend all their time learning to add up columns of figures very rapidly. "and, my dear, they have machines now-a-days that can do it ever so much more quickly."

These people can never understand the appeal that mathematics has for a few selected individuals. If they do not feel it, it is useless to try to explain it to them, so let's not waste our time. If you do have this feeling toward mathematics, it is a waste of my time to tell you what your feelings are. If you are a genuine devotee you will pursue mathematics regardless of the trials and tribulations through which your pursuit will lead you. All my attempts to dissuade you from becominga graduate student will be of no avail.

My only serious word of warning, however, is that you should be sure that you are a genuine devotee before you become immersed. Don't think of entering graduate school without a good background of undergraduate mathematics. This should include a year of elementary calculus and all the work preparatory to the calculus, and five or six semesters beyond the calculus. These courses should be diversified to include a liffle analysis, a liffle algebra and probably a little geometry or applied mathematics. A course or two in physics is desirable, and of course no other information that you may happen to pick up will do you any serious injury.

Among the subjects most commonly presented as part of the undergraduate major are a year of advanced calculus, a semester each of differential equations, theory of equations, solid analytic geometry, college geometry, vector analysis and statistics. A large number of other courses are readily acceptable such as complex variable, determinants and matrices, theory of numbers, projective geometry, analytic mechanics, probability, etc. But at this stage the student would do well to get a broad foundation, and not try to take graduate courses before he is ready for them.

Beware of courses in the teaching of mathematics. You will probably be shocked to find that these courses will not be accepted by the Graduate School as counting among the post calculus courses required for entrance. Of course the situation may be different if your graduate work is to be in Education. I am considering only those who wish a degree in pure or applied mathematics.

Probably every graduate school receives many applications for admission from enthusiastic young mathematicians who have had little beyond the calculus. Regardless of their abilities, these students are at adisadvantage in competition for scholarships or other aid, and in fact do not yet know if they really like mathematics or can do it. The work for the master's degree is prolonged to three semesters or two years. It would seem to be more economical for the student to get all the mathematics he can while still an undergraduate. Even if he comes from a school so small that five mathematics courses beyond the calculus are not given, he can usually arrange to do honors reading in his senior year.

Do not forget that mathematics is an international subject. Particularly if you expect to go beyond the master's degree, you must know your foreign languages. The most important of these are French and German, and some universities such as Wisconsin expressly stipulate these two foreign languages. Some universities give a limited choice. But the popular easy language of our high schools, namely Spanish, is generally not acceptable for the simple reason that Spanish-speaking nations have not been important in the development of mathematics and there is no large Spanish mathematical literature. I cannot impress upon you
too strongly the advisability of taking two years, or if this is impossible at least one year, of each of the two languages French and German while you are still an undergraduate.

In spite of your enthusiasm, you will probably not make a successful graduate student unless you have had high grades as an undergraduate. Your grades in mathematics beyond the calculus should be at least half A's, and your general over-all averageas an undergraduate should be B or above. Some graduate schools will admit you with a slightly lower average, but the competition will make you unhappy. We sometimes have applicants whose records contain only A's for four yearsstraight and, the Sunday newspapers and popular misconceptions to the contrary notwithstanding, these persons invariably are highly successful in later life.

Let us suppose, then, that you have an overpowering enthusiasm for mathematics, have majored in it as an undergraduate, and have been at the top of your class in this subject and close to the top in all subjects. The chances are favorable that you will be accepted by some good graduate school and that in a year or so more you' will achieve the coveted M. A. or M. S. degree.

Almost every application for admission that we receive begins in the same way: "I want to take graduate work in mathematics but I have no money and will not be able to come unless I am given a scholarship or a teaching assistantship." One boy last year calmly stated that it would cost us a cool $\$ 3000$, if we wished to be graced with his presence. I suppose there are graduate students with a little money, just as there are wealthy undergraduates, but we don't seem to get many of them at Wisconsin. I suspect that in many cases parents think the show should be over and refuse to cooperate further.

Fortunately all of the graduate schools do have funds available for the subsidization of graduate students. These vary from a simple remission of tuition to half-time teaching positions. Some require service on the part of the recipient, some do not. A student with no entrance deficiencies and a very high undergraduate record can usually do quite well by himself. Renewal of scholarships depends of course upon success in the graduate school.

If rou wish to enter a graduate school next September, you should begin operations the moment your grades for the first semester are in. Consult your favorite mathematics provessor and ask his advice regarding graduate schools. Select three or four that appeal to you and write to the dean of the graduate school for information and instructions. Or you may make your first contact by writing to the chairman of the department of mathematics.

By general agreement among the universities, your application for a scholarship, together with a transcript of your grades to date and supporting letters from three or four \boldsymbol{f} your professors should be filed by the middle of February. On the first of April or thereabouts you will be notified of your awards. You will make your choice (not entirely, it is to be hoped, on a monetary basis) and notify each university of your decision.

Appointments to teaching assistantships are usually made by department chairmenand can be made at any time, even up to the middle of September if vacancies occur.

A student is sometimes confronted with the dilemma whether he should accept a scholarship which does not pay much but requires no services, or a teaching assistantship which pays a little more but limits him to two-thirds residence credit. The answer depends upon other considerations. If you expect to be in graduate school more than one year, probably you should take the scholarship the first year. However, unless you are already an experienced teacher you should arrange to do a little teaching sometime before you leave if you wish to be recommended for a teaching position.

When you enter graduate school you are no longer an amateur mathematician, you have turned professional. Your classmates will have come from every section of the United States and perhaps from foreign countries as well. Each one was the joy and pride of some college. Many will have had more experience than you have had, and everybody will be as competitive as a race horse. Probably you will have to relinquish your habit of being at the top of your class and it will take your best efforts just to keep up. You will have to do more than just the daily assignments. You will have to
diagnose your own weaknesses and spend much time in the library stopping them up. But you will learn mathematics at a rate that you have never learned it before.

You will find your fellow students a really wonderful lot. For the first time in your career you will associate almost exclusively with your mental equals, people who think as you do and who will understand what you are trying to express. They will have the same ideas and ideals as yourself, and although you will have furious arguments with them, these will be genuine debates in which fact will be met with fact. You will make friends with people who will afterwards become famous, and you will have acquaintances in almost every state of the Union. The graduate students of today are the persons who will carry the torch of civilization in the years to come.

To what does all this effort lead? It rarely leads to riches. But it usually leads to a comfortable and highly respectable living, and in these days that is not to be scorned. A master's degree in mathematics opens the door 'to a teaching position in a small college whether or not you have had Education with the big E. If you are a qualified high school teacher and have the master's degree in addition, you are in a position to be a departmental head in a large city high school. In New York City many departmental heads have the doctorate in the subject that they teach, but I do not think that many cities have such high standards.

American industry is rapidly becoming mathematically conscious. In the last few years we have placed as many graduates, both masters and doctors, in industry or Government service as in teaching positions. Such positions are so diversified that I will make no attempt to describe them. It is not necessary that you be a specialist in applied mathematics to qualify for an industrial position. Pure mathematicians are in great demand, for it is the insight which they bring to a problem that is important; and regardless of what psychologists say at the moment, there is a transfer of training. Today it is hard to say which branches of mathematics are pure and which arc applled. A pure mathematician often has a fresh viewpoint on an old problem. Some of the finest work in applied mathematics in connection with
the last war was done by pure mathematicians without previous applied experience.

The giant computing machines have opened up a new era in mathematics by making it possible to attack problems which were formerly impossibly tedious. But the machines have their own limitations which differ from those of the human mind so that many mathematics courses must be entirelyrewritten for the calculator. The machine operator is not a garage mechanic, he must be a highly skilled and specialized mathematician. The demand for competent operators of electronic computing machines is now greater than the supply so that at the moment such a person is able to command an excellent salary.

I have refrained from giving any advice regarding subjects to be studied in graduate school for this would be trespassing on private ground. But perhaps I may speak in generalities. Until a student is sure of his own abilities in graduate competition, he had best not take too many subjects nor too advanced ones. I have seen graduate students ruined by their desire to jump too quickly into advanced subjects. I haveseen some of thesesame demoralized students transfer to another university, start over, and become excellent mathematicians. But the experience is not good for one's soul and it should be avoided.

The master's degree conventionally stands for a broad unspecialized trainingin the principal fields of mathematics, analysis, algebra and geometry or topology. The doctorate represents research ability, a high order of scholarship, and specialized training in some narrow field.

I have not said much about the doctor's degree. Ideally one should wait until after one has the master's degree before even thinking about the doctorate. But humans are not like this, and almost every graduate student cherishes an outspoken or secret intention to become a doctor. Some succeed and some find that the God-given fire of originality was not vouchsafed to them. But regardless of whether one is completely or partially successful, a year in a graduate school is an experience of deep significance, after which one can scarcely be immature or superficial in his thinking no matter what paths he may tread in later life.

REPORT OF THE NATIONAL MEETING
OF THE PI MU EPSILON FRATERNITY
East Lansing, Michigan

A national program meeting of the PI MU EPSILON fraternity was held in the Physics-Mathematics Building at Michigan State College, East Lansing, on Monday, September 1, 1952, preceded by an informal discussion meeting for delegates and a meeting of the National Council on Sunday evening, August 31.

Twenty-two of the fifty-one active chapters were represented by the following members either at the Sunday evening meeting or the Monday morning business meeting, or both:
Alabama Alpha (university of Alabama) - Betty Ellis*
California Beta (University of California) - R. M. Lakness,
K. O. May (now at Carleton College)

Delaware Alpha (University of Delaware) - Verna Lair ${ }^{* *}$ Georgia Alpha (University of Georgia) - Bevan K. Youse, ${ }^{*}$ L. A. Nix, Jr.

Illinois Beta (Northwestern University) - F. P. Peterson* Iowa Alpha (Iowa State College) - C. Gouwens
Kentucky Alpha (University of Kentucky) - W. M. Zaring**
Michigan Alpha (Michigan State College) - J. S. Frame, W.
G. Franzen, G. W. Hess, Mary Ann Hutchinson, Robert

Jones, L. M. Kelly, H.S. Leonard, Jr., ${ }^{* *}$ C. D. Parker,** Mary H. Payne, W. A. Reid
Missouri Gamma (St. Louis University) - W. J. Huexbner*
New York Alpha (Syracuse University) - Ruth King, ${ }^{*}$ Ruth Stokes
New York Beta (Hunter College) - J. Hobart Bushey, Jewell H. Bushey

[^2]New York Gamma (Brooklyn College) - A. J. Goldman** New York Eta (University of Buffalo) - Edith Schneckenberger
North Carolina Beta (University of North Carolina) - W. M. Whyburn
Ohio Gamma (University of Toledo) - Grace Cutler, Violet Davis
Oklahoma Alpha (University of Oklahoma) - R. V. Andree, R. B. Deal, Jr., John E. Hoffman.** C. E. Springer

Oklahoma Beta (Oklahoma A. and M.) - Gene Marshall,* J. H. Zant

Pennsylvania Beta (Bucknell University) - William L. Wolfe* Pennsylvania Gamma (Lehigh University) - G. E. Raynor Pennsylvania Delta (Penn. State College) - H. L. Black
Wisconsin Alpha (Marquette University) - H. P. Pettit
Wisconsin Beta (University of Wisconsin) - C.C. MacDuffee
Discussion at the Sunday evening meeting (attended by 28 members) centered around the problems and interests of local chapters. Refreshments were served by members of Michigan Alpha, and delegates had a chance to become acquainted with each other.

The National Officers (MacDuffee, Whyburn, Frame, and Stokes) and Professors R. M. Lakness and Edith Schneckenberger (who substituted for other members of the National Council) left the discussion about $9: 30$ p.m. to attend a business meeting of the National Council which lasted until midnight. Actions taken by the council included the following:

1. The petition of the Mathematics Club of the Alabama Polytechnic Institute for a charter for a chapter of Pi Mu Epsilon was discussed, approved, and referred to the chapters.
2. It was decided that a 50 cent fee should be charged in the future for issuing a duplicate certificate to correct a mistake in spelling on the order blank.
3. The Secretary General reported that Pi Mu Epsilon had initiated 20,775 members to date, including 1918 since April 1, 1951.
4. The Treasurer reported a cash balance of $\$ 5368.81$
on hand in the national treasury as of June 30, 1952. from which an estimated $\$ 500$ will be disbursed to pay travel allowances for delegates and other expenses of the national meeting.
5. It was suggested that the next national meeting be held in December 1953.

Following the Monday luncheon in the Phillips Hall Lower Dining Room there was a business meeting at which Director General MacDuffee presided. Actions of the National Council (described above) were reported to the delegates. Dr. Ruth Stokes, Editor of the PI MU EPSILON JOURNAL, reported on problems and plans for the journal. She urged the six student speakers at this meeting to submit their papers to her for publication.

These six student papers. supplemented by an address by Director General MacDuffee and a round table discussion on club programs. were the unusual feature of this national meeting, and were of much higher caliber than one might have expected from relatively inexperienced speakers. They were attended by 40 to 50 persons, many of whom stayed on later for the programs of the Mathematical Association of America, and the American Mathematical Society that were scheduled from September 1-5.

The formal program appears on the following page.

PROGRAM

Sunday, August 31, 1952

EVENING
Room 221, Physics-Mathematics Building
8:00 Informal discussion meeting about programs for local chapter meetings to serve as a basis for the round table discussion Monday morning.

Room 206, Physics-Mathematics Building
9:00 National Council Meeting: C. C. MacDuffee, W. M. Whyburn, J S. Frame, (S.S.Cairns), (Tomlinson Fort),'(Sophie MacDonald), Ruth W.Stokes. (H. C. Bennett). R. M. Lakness, Edith Schneckenberger.

Monday, September 1, 1952

MORNING

Room 118, Physics-Mathematics Building
9:00 So You Want to Be a Graduate Student
DIRECTOR GENERAL C. C. MacDUFFee, Wisconsin Beta.
Modification of Infinite Series.
BEVAN K. YOUSE, Georgia Alpha.
10:00 Rapid Square Roots.
CHARLES D. PARKER, Michigan Alpha.
10:30 INTERMISSION
10:40 Almost Periodic Functions. JOHN E; HOFFMAN, Oklahoma Alpha.
11:10 Round Table discussion on programs and activities of local chapters.

NOON

Lower Dining Room, Phillips Hall
12:15 Lunch and Business Meeting.
AFTERNOON
Room 118, Physics-Mathematics Building
2:00-5:00 Sessions of the Mathematical Association of America
EVENING
Room 118, Physics-Mathematics Building
Matrix Inversion.
VERNA LAIR, Delaware Alpha
ALAN J. GOLDMAN, New York Gamma
The G. C. D. Algorithm.
WILSON M. ZARING, Kentucky Alpha.
Room 221, Physics-Mathematics Building

AREA IN WHICH A NARROW ROD CAN BE REVERSED IN DIRECTION

Robert E. Greenwood, The University of Texas

How much area is needed for a ship to turn itself around in? Let us replace the ship with bow A and stern B by a thin rod of length k with midpoint C . Then the interior of a circle of diameter k with C as center is a possible area in which the "ship" may be turned around in. See Figure 1. The area is $\pi k^{2} / 4$.

CIRCULAR AREA $=\frac{i r k^{*}}{4}$

RADIUS of CIRCLE $=\frac{k}{2}$

FIGURE 2

Are there smaller areas? If we are not interested in the final position in the plane in which our reversed ship is located, we may consider the area between two concentric circles of radii \mathbf{r} and $\mathrm{R}, \mathbf{r}<\mathrm{R}$, where R is so chosen that when the midpoint C of the ship is tangent to the small circle, the two ends A and B will fall on the large circle. An immediate consequence is that $\mathbf{R}^{2}-\mathbf{r}^{2}=\mathbf{k}^{2} / 4$. Furthermore, from Figure 2, the area of the ring may be readily computed, area of annular ring $=\pi\left(\mathbf{R}^{2}-\mathbf{r}^{2}\right)=\pi \mathrm{k}^{2} / 4$. If the ship be moved from position ACB through $\mathbf{A}^{\prime} \mathbf{C}^{\prime} \mathbf{B}^{\prime}$ to position $A^{\prime \prime} \mathrm{B}^{\prime \prime} \mathrm{C}^{\prime \prime}$, we see that the area $\mathrm{ACC}^{\mathrm{n}} \mathrm{B}^{\prime \prime}$ (in the upper part of Figure 2) is not used at all in the reversing process. Intuitively, we feel that as \mathbf{r} gets larger and larger the area ACC"B" approaches half the area of the annular ring, and hence we feel that we need only half the area of the ring to reverse the ship. Notice, however, that as \mathbf{r} gets larger, the distance $\mathrm{CC}^{\prime \prime}$ also gets larger, so that the reversed

FIGURE 1
ship gets farther and farther away from its original position. We conclude that the limiting area required for reversal is area $=\pi k^{2} / 8$.

By considering an equilateral triangle of altitude k (and hence side $2 \mathrm{k} / \sqrt{3}$), we may effect quite a saving in the area as compared to the circular case of Figure 1. See Figure 3. Since the area inside the triangle is $k^{2} / \sqrt{3}, 1 / \sqrt{3}=0.577$, $\pi / 4 \simeq 0.785$, there is a saving in area.

AREA INSIDE DELTOID $=\frac{\pi k^{2}}{8}$
AREA of CIRCLE $=\left(\frac{3}{4} k\right)^{2} \pi$

FIGURE 4

Another area somewhat triangular in appearance is given by the interior of the deltoid, or three-cusped hypocycloid, a curve first studied by Euler in 1745. The equation of the deltoid is more neatly expressed in parametric form

$$
\begin{aligned}
& x=\frac{k}{4}(2 \cos t+\cos 2 t) \\
& y=\frac{k}{4}(2 \sin t-\sin 2 t)
\end{aligned}
$$

than in (\mathbf{x}, \mathbf{y}) notation with the parameter t eliminated:

$$
\left(x^{2}+y^{2}\right)^{2}-2 k x^{3}+6 k x y^{2}+\frac{18 k^{2}}{18}\left(x^{2}+y^{2}\right)=\frac{27 k^{4}}{256}
$$

See Figure 4. The area inside the deltoid is sufficient to turn the ship around in. The area is "efficiently" used, for a tangent to any of three arcs at any position along that arc
has length k inside the deltoid area. Since the area is $\pi \mathbf{k}^{2} / 8$, this is just the limit of the half ring area of Figure 2 , except that the final position of the ship is the same (except for reversal) as the original position.

For an interesting description of the deltoid and a discussion of its properties see Robert C. Yates, CURVES AND THEIR PROPERTIES, 1947, AM Arbor, Michigan, pages 71-74.

Since we have reduced the area to half the area of the circle of diameter k , the question as to whether or not we can go still further becomes important. The Japanese mathematician, Kakeya, conjectured in 1917 that the deltoid area represented a least area. However, Besicovitch in 1928 showed that there was no least area. A reference to Besicovitch's paper may be found in Professor Yates' book - the argument showing that smaller and smaller areas may be found in which it is possible to turn the ship around in, is outside the scope of this note.

ADDENDUM TO MR. GREENWOOD'S PAPER

R. J. Walker, Cornell University

Once one knows that the deltoid is not the smallest area within which one can reverse a "ship ${ }^{n}$ one naturally asks for a sample of a smaller area. The Besicovitch proof, which makes use of a shuttling of the ship over long distances but with relatively small amounts of turning, suggests how this can be done, and Figure 5 shows an "efficient" are a obtained by this process.

The figure is based on a regular five-pointed star. The arc $A B$ is more or less arbitrary (as long as the curvature is small enough); in this figure it is an arc of a circle tangent to a side and to a bisector of an angle of the star. The length k of the ship is then determined as BE. As the ship moves, staying tangent to arc FG and keeping one end on arc AB , the other end describes arc ED. By symmetry we get arc GH for the point of tangency to move along. Evidently a continuation of this process enables us to construct the entire figure.

The area of this figure comes out to be about $.30 \mathbf{k}^{\mathbf{2}}$, considerably less than the. $\mathbf{3 9 2 \mathbf { k } ^ { 2 }}$ given by the deltoid.

FIGURE 5

PROBLEM DEPARTMENT
Edited by
Leo Moser, University of Alberta

This department welcomes problems believed to be new and, as a rule, demanding no greater ability in problem solving than that of the average member of the Fraternity, but occasionally we shall publish problems that should challenge the ability of the advanced undergraduate and/or candidate for the Master's degree. Solutions of these problems should be submitted on separate, signed sheets within five months after publication. Address all communications concerning problems to Leo Moser, Mathematics Department, University of Alberta, Edmonton, Alberta, Canada.

PROBLEMS FOR SOLUTION

45. Proposed by Mel Stover, Winnipeg, Manitoba

At a faculty meeting attended by six professors, each one left with someone else's hat. The hat taken by Aitkins belonged to the man who took Baily's hat. The man whose hat was taken by Caldwell, took the hat of the man who took Dunlop's hat. Finally, the man who took Easton's hat was not the one whose hat was taken by Fort. Who took Aitkin's hat?

46. Proposed by J. Lambek, McGill University

A partial amnesty having been declared, the jailor unlocked every cell in the prison row. Next he locked every second cell. Then he turned the key in every third cell, locking those cells which were open and opening those which were locked. He continued in this way, on the nth
trip turning the key of every nth cell. Those prisoners whose cells eventually remained open were allowed to go free. Who were the lucky ones?

47. Proposed by the problem editor

Given a finite number of points in a plane such that any three of them may be simultaneously covered by a circle of unit radius. Show that they all may be simultaneously covered by a circle of unit radius.
48. Proposed by Victor Thébault, Tennie, Sarthe, France

Find bases B and B^{\prime} such that the number 11, 111, 111, 111 consisting of eleven digits in base B is equal to the number 111 consisting of three digits in base B^{\prime}.
49. Proposed by C. S. Venkataraman, Trichur, India

If $\mathrm{S}=(\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}) / 2$ and $\mathrm{S}=\mathrm{a}-\mathrm{b}-\mathrm{c}-\mathrm{d}$, prove that
$s^{4}+(s-b-c)^{4}+(s-c-d)^{4}-(s-a)^{4}-(s-b)^{4}-(s-c)^{4}-(s-d)^{4}=12 s$.
50. Proposed by Pedro Piza, San Juan, Puerto Rico

Prove that the integer $2 n+1$ is a prime if, and only if, for every value of $r=1,2,3, \ldots,[\sqrt{n / 2}]$ the binomial coefficient $\binom{\mathrm{n}+\mathrm{r}}{\mathrm{n}-\mathrm{r}}$ is divisible by 2 r t 1 .
51. Proposed by C. W. Trigg, Los Angeles City College

Suppose D is the foot of the altitude from C, the vertex of the right angle in the triangle $A B C$. Show that the area of the traingle determined by the incenters of triangles $\mathrm{ABC}, \mathrm{ADC}, \mathrm{BDC}$ is $(\mathrm{a}+\mathrm{b}-\mathrm{c})^{3} / 8 \mathrm{c}$.

SOLUTIONS

6. Proposed by C. W. Trigg, Los Angeles City College

Starting with a straight edge, closed compasses, and two straight line segments, a and b, construct the harmonic
mean of a and b in the least number of operations. Changing the opening of the compasses, drawing a circle or the arc of a circle, and drawing a straight line are each considered an operation.

Figure for No. 6, by Bankoff
Solution by Leon Bankoff, Los Angeles, California
The construction described below involves only nine operations.

1. Draw a straight line $A B$, conveniently extended.
2. Open compasses to a radius a.
3. On AB choose an arbitrary point C as center and describe a circle of radius a, cutting $A B$ in D and E.
4. With E as center and radius a, describe an arc cutting $A B$ and the circumference of a circle in F.
5. Change compass opening to radius b.
6. With C as center describe circle of radius b, cutting $A B$ in H and J.
7. With J as center and radius b, describe an arc cutting circle $C(b)$ in K.
8. Draw HF.
9. Draw JK extended, cutting HF in L. LJ is the harmonic mean of a and b.

Proof: Draw FE. then $\angle \mathrm{FEA}=60^{\circ}=\angle \mathrm{LJA}$. In similar triangles HLJ and HFE, LJ/FE = HJ/HE, or LJ/a=2b/(a+b). So $L J=2 a b /(a+b)$.

No claim is made that this construction involves the least number of operations possible.
28. (Corrected) Proposed by N. S. Mendelsohn, University of Manitoba
The isle of Pythagora, while very sparsely populated, is capable of supporting a population of thirty million. On the sixth day of the twenty-eighth anniversary of his accession to the throne, the king of the island called a meeting of his 496 advisers to divide the real jewels among the people of the land. All the people, including the king and the advisers, were lined up in a single file, and the jewels were distributed as follows.

Starting with the second in line, each person was given one jewel. Starting with the fourth in line, each second person was given two jewels. Starting with the sixth in line, each third person was given three jewels. Starting with the eighth in line, each fourth person was given four jewels, and so on.

The man at the extreme end of the line noticed that the number of jewels he received corresponded to his position in the line.

How many people were there in Pythagora?
Where was the person who got the most jewels standing?

Solution by Francis L. Miksa, Aurora, Illinois

An examination of the conditions reveals that the number of jewels received by each person is the sum of the divisors of his position number n, with n itself excluded, or in standard notation $\sigma(\mathbf{n})-\mathbf{n}$. Hence for a man to receive a number of jewels equal to his position number, his position number must be a "perfect" number, i.e. one of the series
$6,28,496,8128,33550336$. Since there are more than 496 and fewer than $30,000,000$ people in Pythagora, the only solution is that there are 8128 people there.

To find what number receives the most jewels we must find what number 8129 maximizes $\sigma(\mathbf{n})-n$. Using Glaisher's table of number divisors, we find the maximum is attained at $\mathrm{n}=7560$ and the number of jewels received by the lucky person is $\sigma(7560)-7560=21240$.

35. Proposed by N. S. Mendelsohn, University of Manitoba

A point moves in a straight line starting from rest and finishing at rest, and covers unit distance in unit time. Prove that at some point its acceleration has a magnitude of at least 4 units.

Solution by C. W. Trigg, Los Angeles City College

It is assumed that v and a are continuous functions of t. If we plot v against t, the area under the curve must be the same (1 square unit) as that of an isosceles triangle having the same base and an altitude of 2 . The slopes of the sides are ± 4. Part of the v, t curve must fall outside the triangle or coincide with its sides. Thus, at some point the slope a of the curve is numerically ≥ 4.

Solution by W. Moser, University of Toronto
By the symmetry of the conditions with respect to initial and final point, we may assume without loss of generality that if $S=\mathbf{S}(t)$ then $\mathbf{S}\left(\frac{1}{2}\right) \geq \frac{1}{2}$. If we further assume $\mathbf{a}(\mathrm{t})<4$, then by integration $\mathbf{v}(\mathrm{t})<4 \mathrm{t}$ and $\mathbf{S}(\mathrm{t})<\mathbf{2} \mathrm{t}^{\mathbf{2}}$. Hence $\mathbf{S}\left(\frac{1}{2}\right)<\frac{1}{2}$, a contradiction which proves the required result.

Also solved by the proposer.

38. Proposed by C. W. Trigg, Los Angeles City College

In the triangle $A B C, A A^{\prime}$ is a median. Prove that if

$$
\frac{A M}{M A}{ }^{\prime}=\frac{p}{q}
$$

then $C M$ extended divides $A B$ in the ratio $\frac{p}{2 q}$.

Solution by R. W. Hippe, Saint Louis University
Let CM extended meet AB in N . Construct from A^{\prime} a line parallel to $N C$ intersecting $A B$ in D. Now $B A^{\prime}=A^{\prime} C$ implies $\mathrm{BD}=\mathrm{DN}$. Further, the line MN , being parallel to the base of the triangle $A A^{\prime} D$, cuts the sides A^{\prime} and $A D$ proportionally, hence

$$
\mathrm{p} / \mathrm{q}=\mathrm{AM} / \mathrm{MA}^{\prime}=\mathrm{AN} / \mathrm{ND}=2 \mathrm{AN} / \mathrm{NB}
$$

which completes the proof.
Also solved by Leon Bankoff, D. W. Barnum, R. Chaffee, J. E. Faulkner, and the proposer.

39. Proposed by Pedro Piza, San Juan, Puerto Rico

Find digits m, a, b, c, d, e, f such that

$$
\frac{9 m+1}{9 m} \cdot a b c d e f=f e d c b a
$$

Solution by F. L. Miksa, Aurora, Illinois
There are nine solutions:

9×109890	$=10 \times 098901$
18×208791	$=19 \times 197802$
27×307692	$=28 \times 296703$
36×406593	$=37 \times 395604$
45×505494	$=46 \times 494505$
54×604395	$=55 \times 593406$
63×703296	$=64 \times 692307$
72×802197	$=73 \times 791208$
81×901098	$=82 \times 890109$

Also solved by the proposer.
42. Proposed by Mel Stover, Winnipeg, Manitoba

Prove that the volume of a tetrahedron determined by two line segments lying on two skew lines is unaltered by sliding the segments along their lines (but leaving their lengths unaltered).

Solution by Leon Bankoff, Los Angeles, California

Let one segment remain stationary while the other is
permitted to vary its position. The area of the triangle formed by the sliding segment as base and an extremity of the stationary segment as vertex is constant in area. Moreover, the distance of the other extremity of the fixed segment to the plane of the variable triangles is also constant. Since the determining factors (base and altitude) remain constant, the volume of the tetrahedron is unaltered.

Also solved by C. W. Trigg and the proposer.

43. Proposed by Paul W. Gilbert, Syracuse University

Four solid spheres lie on top of a table. Each sphere is tangent to the other three. If three of the spheres have the same radius R , what is the radius of the fourth sphere?

Solution by Leon Bankoff, Los Angeles, California

The small sphere, radius r, touches the table at a point equidistant from the contacts of each of the large spheres with the table. Hence it lies on the circumcenter of an equilateral triangle the side of which is $2 R$. Then ($\mathbf{R t} \mathbf{r}$) is the hypotenuse of a right triangle the altitude of which is $\left(\mathbf{R}^{-} r\right)$ and the base of which is $2 R \sqrt{3} / 3$. So $(R+r)^{2}=(R-r)^{2}$ $+4 \mathbf{R}^{2} / 3$, and $\mathbf{r}=\mathbf{R} / 3$.

Also solved by E. Faulkner and C. W. Trigg.
44. Proposed by Paul W. Gilbert, Syracuse University

Assuming that c is a positive constant, solve the following equation for x :

$$
2 \log _{x} C-\log _{c x} C-3 \log _{c} 2 x=0
$$

Solution by Leon Bankoff, Los Angeles, California
We use the relation $\left(\log _{a} b\right)\left(\log _{b} a\right)=1$, and let $\log _{c} x=y$. Then we have:

```
\(2 / \log _{c} x-1 / \log _{c} c x-3 / \log _{c} c^{2} x=0\),
\(2 / y-1 /(1+y)-3 /(2+y)=0\),
\(2 y^{2}-y-4=0\),
\(\log _{c} x=y=(1 \pm \sqrt{33}) / 4\)
\(x=C^{y}=C^{(1 \pm \sqrt{33}) / 4}\).
```

Also solved by C. W. Trigg and Earl Faulkner.

NOTES

Of tht two hundred and seventeen doctorates,* with mathematics, mathematical physics, or statistics as a major subject, conferred during the year 1951 by the universities in the United States and Canada, sixty-nine of these are known to have gone to persons who had been previously initiated into Pi Mu Epsilon at universities within the United States. The list given below was checked against chapter records and cannot be complete because many of our members, after being initiated into the Fraternity, transferred to other universities to work on their doctorates, in some cases to a university where there was no chapter of Pi Mu Epsilon, and in such cases there was no way for the editor to check membership in the Fraternity. When the list was being prepared, the Secretary-General kindly made available his lists (by chapters) of initiates who had received certificates of membership. Had time permitted no doubt the names of many others, whose names properly belong in the list we are publishing, might have been found. It is our intention to publish annually the list of names of our members who take their doctorates, in that year, whenever such information is made available (The corresponding secretaries of the chapters can help us with this.); also, we should like to be able to inform our readers where these new doctors of philosophy are presently employed.

University of California, Los Angeles:
W. G. BADE (1947), June, "An operational calculus for operators with spectrum confined to a strip."

MILTON DRANDELL (1947), June, "Generalized convex sets in the plane."

[^3]I. L. GLICKSBERG (1945), June, "Cesaro summation in harmonic analysis in groups."
E. R. IMMEL (1949), June, "Problems of estimation and of hypothesis testing connected with birth-and-death Markov processes."
M. L. STEIN (1947), January, "On methods for obtaining solutions of fixed end point problems in the calculus of variations."

University of California, Berkeley:

O. R. AINSWORTH (1946), September, "Theory of waves from a point source in one of two semi-infinite contiguous elastic media."
E. A. DAVIS (1939), June, "A dynamic economic theory."
J. M. G. FELL (1947), January, "On L-spaces."
A. R. LOVAGLIA (1948), September, "Locally uniformly convex Banach spaces. ${ }^{*}$
W. K SAUNDERS (1948), July, "Existence of the solution of the exterior problem of the electromagnetic field."

MAURICE SION (1947), June, "On the existence of functions having given partial derivatives on Whitney's curve."
W. F. TAYLOR (1942), January, 'On tests of hypotheses and best asymptotically normalestimates related to certain biological tests."

University of Georgia:

W. D. PEEPLES, Jr. (1948), June, "Elliptic curves and rational distance sets."
G. O. PETERS (1948), August, "Bernoulli polynomials of the second kind of higher order. Eider polynomials of the second kind of first and higher orders. Boole polynomials of the first and second kinds of higher order. Bernoulli, Euler, and Boole series and functions of negative degree."

University of Illinois:

P. F. CONRAD (1948), June, minor in philosophy, "Imbedding theorems for Abelian groups with valuations.'
B. E. HOWARD (1946), June, minor in electrical engineering, "Hydrodynamic properties of an electron gas."
W. R. ORTON, Jr., June, "Representation of functions of a complex variable and related integral equations."
L. L. SCOTT (1947), October, "Finite metabelian groups and planes of $\boldsymbol{\Sigma}_{14}$."
L. J. SNELL (1944), October, minor in physics, "Applications of martingale system theorems."

Northwestern University:
G. M. BLOOM (1949), June, "On the total variation of solutions of the bounded variation moment problem."

Iowa State College:

R. J. LAMBERT (1948), July, minor in physics, 'Extension of normal theory to general matrices."
R. F. REEVES (1949), June, minor in physics, "Force fields in which centers of gravity can be defined."
A. M. WEDEL (1948), July, minor in physics, "Volterra transforms of some hypergeometric series."

University of Kansas:

W. K. MOORE (1948), June, minor in physics, "The characterizations of a class of transformations and of differentiable functions."

University of Kentucky:

ELSIE T. CHURCH (1943), June, Inversion with respect to a cubic of the syzygetic pencil."
A. E. FOSTER (1947), August, "A generalized harmonic conjugate for commutative algebras."

Louisiana State University:
R. L. BROUSSARD (1947), August, "A necessary and sufficient condition that a set be homeomorphic to a plane
region bounded by a finite number of nonintersecting circles."

University of Missouri:

J. W. GADDUM (1948), August, "Metric methods in integral and differential geometry."
J. W. SAWYER (1948), August, "A study of metric torsion."

Washington University:
RUTH L. POTTER, May, "Oscillation and boundedness of solutions of a second-order linear differential equation."

Syracuse University:

H. H CHANG (1948), January, "Approximately analytic functions of bounded type and boundary behavior of solutions of elliptic partial differential equations."

ROBERT FINN (1947), June, 'On some properties of the solutions of a class of non-linear partial differential equations."
F. P. PU (1948), January, "Some inequalities in certain non-orientable Riemannian manifolds."

DANIEL RESCH (1947), January, "Some Baecklund transformations of partial differential equations of second order."

JAMES SANDERS (1949), June, "Some classes of partial differential equations of the fourth order."

New York University:
J. R. KNUDSON, May, "A study of effects of viscosity and heat conductivity on the transmission of sound waves in a compressible fluid."
J. R. LURYE, May, "Electromagnetic reflection and transmission matrices of a continuously stratified anisotropic medium by variational technique."
F. V. POHLE, January, "The Lagrangian equations of
hydrodynamics: Solutions which are analytic functions of the time."

Duke University:

R. T. HERBST (1949), June, minor in physics, "Reduction of passive orthonormic differential systems to passive systems of the first order."
S. M. SPENCER, Jr. (1949), June, minor in philosophy, "Transcendental numbers over certain function fieldr.."

University of North Carolina:

L. P. BURTON, June, "Minimax solutions of ordinary differential systems.'
W. S. CONNOR (1949), August, "The structure of balanced incomplete block designs and the impossibility of certain unsymmetrical cases."
T. L. REYNOLDS (1947), June, "On the impossibility of an odd perfect number not divisible by five with six different prime divisors."
J. H. WAHAB (1949), June, "Some new cases of irreducibility for Legendre polynomials."

Ohio State University:
NORMAN LEVINE (1948), August, «Absolutely continuous product transformations in the plane."

University of Oklahoma:

E. V. GREER (1950), June, minor in physics, "A theorem on planar transformations."
E. J. PIPES (1950), August, minor in physics, "Properties of sets and functions relative to exceptional sets."

University of Oregon:
L. P. H. CHEO (1950), June, "The density of the sum of sets of Gaussian integers."
J. E. MAXFIELD (1948), June, "Normal numbers in k dimensions."

MARGARET W. MAXFIELD, June, "Format's theorem for matrices over a modular ring."
F. H. YOUNG (1938), June, "A matrix transformation of Fourier coefficients."

University of Pennsylvania:
G. H. BUTCHER (1943), February, "An extension of the sum theorem of dimension theory."

LELIA A. DRAGONETTE (1948), June, "Asymptotic formulae for the mock theta series of Ramanujan."

PHILIP RABINOWITZ (1945), June, "Normal coverings and uniform spaces."

ALBERT SCHILD (1948), February, "On a problem in conformal mapping of schlicht functions."

Lehigh University:

J. O. CHELLEVOLD (1949), June, "Singular quadratic functions for n dependent variables."

Carnegie Institute of Technology:

R. L. ELY (1948), June, "Forced vibrations of continuous beams under pulsating, moving loads."
T. R. GREENE (1950), June, "Water waves in channels of infinite depth."
E. P. KING (1947), June, "The operating characteristic of the control chart for sample means when process standards are unspecified."
K. H. KRAMER (1948), June, "The distribution of range in compositions of normal universes."

RAYMOND SEDNEY (1948), June, "On the hydrodynamical theory of lubrication. I. The Reynolds lubrication equation with smooth outflow. II. The finite length journal bearing with high eccentricity."
H. C. VOLKN (1947), June, "Rotating and accelerated reference systems."
H. J. WEISS (1947), June, "Structural stability of thinwalled open sections."

University of Wisconsin:
W. F. DONOGHUE, Jr. (1949), August, minor in physics, "The bounded closure of locally convex spaces."
W. H. FLEMING (1950), August, "Boundary and related notions for generalized parametric surfaces, ${ }^{\text {n }}$
D. R. FULKERSON (1948), January, Â¥Quasi-Hermit forms of row-finite matrices."

MELVIN HENRIKSEN (1950), August, 'On the ideal structure of the ring of entire functions and other function rings."

K T. SMITH (1949), August, "The L-B topology in locally convex spaces."

Many will recall the article entitled "A certain property of continuous functions" written by Melvin Hausner of Brooklyn College, which appeared in Volume 1, Number 1, this Journal. The article was written while Melvin was an undergraduate. In June, 1951, he was awarded the Doctor of Philosophy Degree by Princeton University, the title of his doctorial thesis being "Dirichlet's principle and generalized boundary values." We understand he is presently a member of the mathematics staff at Brooklyn College. Congratulations, Melvin! You have braught honor and distinction to both your Alma Mater and Pi Mu Epsilon.

Professor Albert Einstein once gave what he considered the best formula for success in life. He said, "If a is success in life, I should say the formula is a equals ${ }^{-} \mathbf{x}$ plus \boldsymbol{g} plus z, x being WORK and y being play."
"And what is \underline{z} ?", inquired the interviewer.
"That,". he answered, "is keeping yoor mouth shut."

DEFINITION

Desk - A wastebasket with drawers.

REPORTS OF THE CHAPTERS

(Send reports to Ruth W. Stokes, 15 Smith College, Syracuse University, Syracuse 10, New York.)

EDITOR'S NOTE. According to Article VI, Section 3 of the Constitution: "The Secretary shall keep account of all meetings and transactions of the chapter and, before the close of the academic year, shall send to the Secretary-General and to the DirectorGeneral, an annual report of the chapter activities including programs of meetings, results of elections, etc." The SecretaryGeneral now suggests that an additional copy of the annual report of each chapter be sent to theeditor of the Pi Mu Epsilon Journal. Besides the information listed above we are especially interested in learning what the chapters are doing by way of competitive examinations, medals, prizes and scholarships. These annual reports will be published in the chronological order in which they are received.

Beta of North Carolina, University of North Carolina

The following papers were presented at meetings of the North Carolina Beta chapter during the academic year 1951-1952:
'The Educational System of England as related to the development of prospective mathematics students ${ }^{\mathrm{n}}$ by Dr. Doris Lee, University of London, London, England
"Characteristic roots of matrices" by Gene Medlin
'Relation of the Euler-Fermat Theorem to matrices ${ }^{n}$ by Alex Davis
'Time series' by Sudhish Ghurye (Dept. of Math. Statistics)
"Flat Lands" by Bill Chapman, Duke University
"Theory of some simple games" by Dr. A. Brauer.
The first and last meetings of this academic year were business meetings.

A picnic in honor of Dr. Thomas Felix Hickerson was sponsored by the chapter on May 17, 1952.

The chapter established a Pi Mu Epsilon library consisting of undergraduate texts and periodicals.

During the present academic year there has been an Increase of about 285% in membership.

Officers for 1951-1952 were:Director, Tolio J. Pignani;ViceDirector, Mrs. Mary Nunn Morrow; Secretary, John Jones, Jr.; Treasurer, Mrs. Margaret Butler Seelbinder.

Officers elected for 1952-1953: Director, Edward E. Grace Vice-Director, Paul S. Herwitz; Secretary, C. V. Williams Jr.; Treasurer, Richard J. Painter;Chairman at Awards and Scholarship Committee, Hasell T. La Borde.

Alpha of Michigan, Michigan State College
The Michigan Alpha Chapter held twelve meetings during the year 1951-1952, Including business meetings, program meetings, initiations, the annual winter banquet and the spring picnic. Topics at program meetings were as follows:
"The theory of measurement" by Dr. H. S. Leonard
"The rate of interest in installment buying" by Dr. H. E. Stelson
"Mathematics in its application to the movement of underground waters" by Mr. John G. Ferris
"Four biographical sketches of mathematicians (Cauchy, Galois, Leibnitz and Gauss) by student speakers (John Long, Henry Leonard, Hugo Myers and W. G. Franzen)
"Summing series by means of indeterminate coefficients" by

James Monsma

"Fake coin problem" by Charles Parker
A talk on visual aids by Russell Schneider
"Pascal's Triangle" by Dale Mesmer
"Rotation of spheres" by Mrs. Mary H. Paype
"Some uses of mathematics in genetics* by Dr. H. R. Hunt.
Officers for the year 1952-1953 are: President, George Hazelworth; Vice-president, Walter Reid; Secretary, Mary Hutchinson; Treasurer, George Hess; Permanent Secretary, James Powell; Faculty Advisors, Dr. L. M. Kelly and Dr. J. E. Powell.

Alpha of the District of Columbia, Howard University

The District of Columbia Alpha chapter held eight meetings during the academic year 1951-1952. The following talks were presented at program meetings:
"Some visits to physics and mathematics departments of
several European Universities ${ }^{\mathrm{n}}$ (illustrated with Kodachrome slides) by Dr. Herman Branson
"Construction of normal orthogonal systems and applications" by Dr. George Butcher
"A property of sequences ${ }^{n}$ by Dr. David Blackwell
"Toeplitz matrices ${ }^{\text {n }}$ by Dr. George Butcher
"Keplar's laws of planetary motion as derived from Newton's laws of motion and law of universal gravitation" by Dr. Allen Maxwell
"The principle of fair division" by Dr. David Blackwell.
The initiation meeting was held in May. Three new members joined the chapter.

In the Spring Quarter David Franks was elected to the presidency left vacant by the resignation of Lt.Robert N. Smith, USAF.

Officers for 1951-1952 were: Director, Dr. George Butcher; President, Lt. Robert N. Smith (Sept. - March) and David A. Franks (March • June); Secretary, Mrs. Andretta Yeldell; Treasurer, Young Lee.

Alpha of Louisiana, Louisiana State University

The first meeting of the Louisiana Alphachapter for the 19511952 session was held October 11, and the following officers were elected for the year: Director, Ezra J. Westbrook;Vice-Director, Gleb Mamantov; Secretary, Lynden Howell; Treasurer, Carlton Strickland; Corresponding Secretary, Professor Houston T. Karnes.

The following papers were presented before the chapter during the academic year:
"Monte Carlo methods in probability" by Dr. Ernest S. Elyash
'(Another way of doing it ${ }^{\mathrm{n}}$ by Dr. Paul K. Rees
"Giant brains ${ }^{\text {n }}$ by Dr. Fred H. Fenn.
The annual Pi Mu Epsilon lectures this year were given by Dr. W. M. Whyburn, Vice-Director General of Pi Mu Epsilon and head of the department of mathematics at the University of North Carolina. For the afternoon lecture, his topic was "Linear differential equations ${ }^{\mathrm{n}}$, and his evening lecture was on "Mathematics for the muddled".

The annual initiation and banquet were held on May 1, 1952. Twenty-five new members were initiated.

The Kansas Gamma chapter held five meetings during the academic year 1951-1952. These included three business meet• ings and two for initiation, one of which was the annual dinner meeting.

At the December meeting two new members were initiated, and a paper, "Fitting of polynomial equations to empirical data", was presented by William Parks.

More new members were elected at the March and April meetings, bringing the total for the year to ten new members. Included in the business transacted by the chapter at the March meeting was the decision to provide sufficient funds to take care of the expenses of any undergraduate or graduate student who wished to attend the meeting of the Kansas Section of the Mathematical Association of America.

Besides the initiation ceremony at the annual dinner meeting, there was a talk by Professor Arnold Wedel, member of Pi Mu Epsilon and head of the department at Bethel College. His topic was "Volterra's theory of composition."

Gamma of Missouri, St. Louis University

The first 1951-1952 meeting of Pi Mu Epsilon, Missouri Gamma chapter, was held November 3, 1951, at Fontbonne College. Forty-nine members and guests were present. William Golomski was elected Vice-Director to succeed Richard Kern, and Bernard Jansen was elected Secretary-Treasurer to succeed Virginia Herre. Rev. Lester Heider, S. J., spoke on "Boolean Algebra." Refreshments were served after the meeting.

The second meeting was held December 12, 1951, at St. Louis University. Thirty members and guests were present. Dr. John J. Andrews of the St. Louis University Staff, lectured on "Probability."

The third meeting was held March 15, 1952 at Maryville College. Forty members and guests were present. Mother Marie Kernaghan, R.S.C.J., Associate Professor of Physics, Maryville College, spoke on "The Life and Works of George David Birkhoff." The meeting was followed by a social hour in the Student Lounge.

The fourth and final meeting of the academic year was held May 1, 1952, at St. Louis University, Commerce and Finance School. One hundred and thirty-five members and guests were present. Eighty-two new members were inducted into the chapter,
bringing the total membership since the chapter was granted to six hundred and thirty-five and total active membership to two hundred and ninety. William Golomski was elected Director for the academic year 1952-53 to succeed Eugene Bold. (Election of Vice-Director and Secretary-Treasurer will be held at the first meeting in the fall of 1952.) After the business meeting Professor W. L. Ayres, Dean of the Science School, Purdue University, gave a lecture on "A one-dimensional world". Following the lecture a reception was held to honor Professor Ayres and the new initiates. Then followed the fifteenth annual banquet held in Des Peres Hall, at which Director Bold was toastmaster. One hundred and twenty members and guests were present. Among the honored guests were Rev. Robert J. Henle, S. J., Dean of the Graduate School, St. Louis University, and Professor Ayres.

Dr. Francis Regan has again accepted the post of Faculty Adviser and Permanent Secretary-Treasurer of the chapter.

Gamma of New York, Brooklyn College

The New York Gamma chapter elects officers twice a year. During the academic year 1951-1952 the chapter elected the following officers:

	Fall, 1951	Spring, 1952
Director	Professor Mi. Richardson	Professor M. Richardson
President	Joseph Sucher	Alan J. Goldman
Vice-Pres. Alan Goldman	Joel Lebowitz,	
		Irving Katz
Secretary Martin Milgram	Laura Chiarulli	
Treasurer Ruth Beller	Audrey Riemer	

The chapter initiated into membership thirty students and two faculty members. The latter, called "honarary inductees", were Professor Martin E. Lean (of the philosophy department) and Professor Melba Phillips (of the physics department).

The chapter does not use students as speakers. However, at the meetings of the Brooklyn College Mathematics Society, both students and faculty lecture and present papers. Lectures given before the chapter last year were:
"Mathematical curves on the oscilloscope ${ }^{n}$ by Professor Green of the Physics Department of Brooklyn College
"Topology and the foundations of geometry* by Professor Zippin of the Mathematics Department of Queens College
"Relativity without mathematics" by Professor Banesh Hoffman of the Mathematics Department of Queens College
"Geometry of crystals" by Professor Brocity of the Physics Department of Brooklyn College.

Papers given before the Mathematics Society by student members of Pi Mu Epsilon were:
"Metric spaces* and "The bilinear transform" by Alan J.
Goldman *
"Stirling's formula and probability ${ }^{8}$ and "Fourier series" by Paul Cohen
"Lattice theory" by Joseph Sucher.

[^4]
MEDALS, PRIZES AND SCHOLARSHIPS

EDITOR'S NOTE. Each chapter undoubtedly will be interested in learning what other chapters are doing along the line of prize competitions. So the editor makes the request that chapters offering prizes, scholarships, or other awards, write up their plans for such contests and submit them for publication in this journal.

In the 1951-1952 academic year, the North Carolina Beta chapter established an award to be made annually to each of the two persons achieving the highest scores in a statewide high school mathematics contest.

The Missouri Alpha's report on prize winners in the annual calculus competition May 13, 1952, is as follows: First prize of $\$ 15.00$, to James Fithian; second prize, \$10.00, Delmar Van Meter; third prize, \$5.00, Donald Meyer.

The Michigan Alpha chapter annually makes the L. C. Plant awards. These are given to the students who have in the past year contributed the most to mathematics through scholarship, interest in mathematics and help to the mathematics department. At the winter banquet for the year 1951-1952, the awards were presented to Mary Hutchinson, Henry Leonard and Harry Achziger by Dr. J. S. Frame, head of the mathematics department.

The Louisiana Alpha chapter made the following awards at their annual banquet, May 1, 1952: Senior award to Jasper A. Welch, Jr., of Baton Rouge, Louisiana; freshman award to Robert E. Cavanaugh, of Leesville, Louisiana.

Three prizes were awarded by the Missouri Gamma chapter during the year 1951-1952. The sixth annual Prize Essay Contest was conducted by Professor Alois Lorenz. The prize for the senior undergraduate division was won by Ying-nien Yu, a student at Park College. The title of his paper was "Daniel Bernoulli's hydrodynamical equation." His prize was D. E. Smith's "Source Book of Mathematics." Roland Nokes, also of Park College, won the junior prize for his essay, "Daniel Bernoulli." He received a copy of E. T. Bell's "Men of Mathematics." Dr. Francis Regan, director of the department of mathematics, awarded The Garneau Mathematics Award of twenty-five dollars to Louise Renard for being the highest ranking senior majoring in mathematics.

At the October 17,1951, meeting of the Kansas Gamma chapter there was made the annual award of the Pi Mu Epsilon Mathematical Scholarship, the recipient being Ann Klein.

DIRECTORY

of
PI MU EPSILON FRATERNITY, INC.

General Officers
(1951-1954)

Director General: Professor C. C. Hacpuee, 202 North Hall, University of Wisconsin, Madison 6, Wisconsin
Vice-Director General: Professor W. M. Whybarn, Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina
Secretary-Treasurer General: Professor J. S. Frame, 207 Phys-ics-Mathematics Bldg., Michigan State College, East Lansing, Michigan
Councilors General:
Professor S. S. Cairns, Department of Mathematics, University of Illinois, Urbana, Illinois
Professor Tomlinson Fort, Department of Mathematics, University of Georgia, Athens, Georgia
Professor Sophia McDonald, Department of Mathematics, University of California, Berkeley, California
Professor Ruth W. Stokes, Department of Mathematics, Syracuse University, Syracuse 10, New York
Mr. Howard C. Bennett (ex officio), Department of Mathematics, Syracuse University, Syracuse 10, Hew York

FALL 1952 ROSTER OF THE FIFTY-ONE ACTIVE CHAPTERS WITH CHARTER DATE

```
Corresponding Secretaries }\mp@subsup{}{}{1
    1952-1953}\mp@subsup{}{}{\mathbf{2}
```

(5) Alabama Alpha, 1922, University of Alabama, University, Ala.; Dr. H. S. Thurston, Department of Mathematics
(40) Arizona Alpha, 1941, University of Arizona, Tucson, Arizona; Dr. R. F. Graesser, Department of Mathematics
(22) Arkansas Alpha, 1931, University of Arkansas, Fayetteville, Arkansas;

Mary John Skillern, 208 N. Church Street
(12) California Alpha, 1925, University of California, Los Angeles 24, California;

Faculty Adviser: Prof. W. T. Puckett, Department of Mathematics
(19) California Beta, 1930, University of California, Berkeley 4, California;

Mrs. Sophia L. MacDonald, Dept. of Mathematics
(33) Colorado Alpha, 1936, University of Colorado, Boulder, Colo.; Mr. Edmund H. Brown, 2500 Goss B.
(50) Colorado Beta, 1950, University of Denver, Denver, Colorado; Miss Katherine C. Garland, Department of Mathematics
(41) Delaware Alpha, 1941, University of Delaware, Newark, Del.; Professor Russell Remage, Jr., Dept. of Mathematics
(52) District of Columbia Alpha, 1951, Howard University, Washington 1, D. C.;

Mrs. Andretta A. Yeldell, 3778 Hayes St. N. E., Apt. 1

[^5](51) Florida Alpha, 1951, University of Miami, Coral Gables 46, Florida;

Mr. Robert Fitzgerald, 10907 N. E. 8 Ave., Miami, Florida
(29) Georgia Alpha, 1934, University of Georgia, Athens, Georgia; Professor W. S. Beckwith, 731 Cobth Street
(7) Illinois Alpha, 1924, University of Iltiouls, Urbana, Illinois; Mr. J. H. Abbott, Box 64, University Station
(42) Illinois Beta, 1944, Northwestern University, Evanston, Ill.; Mr. Daniel Wilson, 6134 N. Francisco, Chicago, Illinois
(6) Iowa Alpha, 1923, Iowa State College, Ames, Iowa; Professor Ralph M. Robinson, 1222 Northwestern
(16) Kansas Alpha, 1928, University of Kanses, Lawrence, Kansas; Prof. Wealthy Babcock, 209 Strong Fall, Department of Mathematics
(31) Kansas Beta, 1935, Kansas State College, Manhattan, Kansas; Prof. W. T. Stratton, Department of Mathematics
(49) Kansas Gamma, 1950, University of Wichita, Wichita 14, Kan,; Professor C. B. Read, Department of Mathematics
(13) Kentucky Alpha, 1927, University of Kentucky, Lexington, Ky.; Dr. H. H. Downing, Department of Mathematics
(38) Louisiana Alpha, 1939, Louisiana State University, Baton Rouge 3, Louisiana;

Professor H. T. Karnes, Department of Mathematics
(39) Michigan Alpha, 1940, Michigan State College, East Lansing, Michigan;

Prof. Fritz Herzog, Deprtan of Mathematics
(4) Missouri Alpha, 1922, University of Missouri,Columbia, Mo.; Professor Mary Cummings, 212 Engineering Building
(11) Missouri Beta, 1925, Washington University, St. Louis 5, Mo.; Professor Jessica Young Stephens, D $\boldsymbol{\sim}$ opt, of Mathematics
(43) Missouri Gamma, 1945, St. Louis University, St. Louis, Mo.; Professor Francis Regan, Department of Mathematics
(9) Montana Alpha, 1925, Montana State University, Missoula, Montana;

Prof. George Marsaglia, Montana State University
(15) Nebraska Alpha, 1928, University of Nebraska, Lincoln, Neb.; Faculty Adviser: Dr. Edwin Halfar, Department of Mathematics, 213 Burnett Hall, University of Nebraska
(45) New Hampshire Alpha, 1948, University of New Hampshire, Durham, N. H

Mr. Donald Childs, Director IIME, University of New Hampshire
(1) New York Alpha, 1914, Syracuse University, Syracuse 10, New York;

Professor Nancy Cole, Department of Mathematics
(10) New York Beta, 1925, Hunter College, 695 Park Ave., New York 21, N Y.;

Prof. Jewel Bushy and Miss Leila Singh, Department of Mathematics
(26) New York Gamma, 1933, Brooklyn College, Bedford Ave. and Ave. H, Brooklyn 10, N. Y.;

Prof. J. Singer, Department of Mathematics
(28) New York Delta, 1933, N. Y. University, 100 Washington Sq. East, New York 3, N. Y.;

Mr. William G. Zoellner, 93 Eaton Place, E. Orange, New Jersey
(30) New York Epsilon, 1935, St. Lawrence University, Canton, New York;

Mr. John Taylor, 27 State Street
(53) New York Eta, 1951, University of Buffalo, Buffalo 14, N. Y.; Mr. Howard W. Baeumler, Department of Mathematics
(24) North Carolina Alpha, 1932, Duke University, Durham, N. C.; Prof. F. G. Dressel, 309 Frances Street
(46) North Carolina Beta, 1948, University of N. C., Chapel Hill, North Carolina;

Dr. John W. Lasley, Jr., 523 E. Rosemary St.
(2) Ohio Alpha, 1919, Ohio State University, Columbus, Ohio; Mr. Pat H. Sterbenz, Brand Road, Worthington, Ohio
(13) Ohio Beta, 1927, Ohio Wesleyan University, Delaware, Ohio; Prof. Sidney A Rowland, 45 Oak Hill Ave.

DIRECTORY
(32) Ohio Gamma, 1936, University of Toledb, Toledo, Ohio; Dr. Wayne Dancer, Department of Mothematics
(48) Ohio Delta, 1949, Miami University, Oaford, Ohio; Dr. H. S. Pollard, Upham Hall
(18) Oklahoma Alpha, University of Oklahoms, Norman, Oklahoma; Professor Dora McFarland, Department of Mathematics
(35) Oklahoma Beta, Oklahoma A and M.College, Stillwater, Okla.; Professor James H. Zant, Department of Mathematics
(21) Oregon Alpha, 1931, University of Oregaa, Eugene, Oregon; Dr. K. S. Ghent, Department of Mathematics
(36) Oregon Beta, 1938, Oregon State College, Corvallis, Oregon; Professor George A. Williams, Dept. of Mathematics
(3) Pennsylvania Alpha, 1921, University of Pennsylvania, Philadelphia 4, Pennsylvania;

Dr. R. D. Shafer, Department of Mathematics
(8) Pennsylvania Beta, 1925, Bucknell University, Lewisberg, Pa.; Mr. D. Ohl, Director TTME, Bucknell University
(17) PennsylvaniaGamma, 1929, Lehigh University, Bethlehem, Pa.; Professor R. R. Stoll, Department of Mathematic
(20) Pennsylvania Delta, 1930, Pennsylvania State College, State College, Pennsylvania;

Prof. Orrin Frink, Department of Mathematics
(44) Pennsylvania Epsilon, 1947, Carnegie lost. of Tech., Pittsburgh 12, Pennsylvania;

Mr. Richard C. Di Prima, Dept. of Mathematics
(47) Virginia Alpha, 1948, University of Richmoad, Richmond, Va.; Professor E. S. Grable, Box 45, University of Richmond
(25) Washington Beta, 1932, University of Washington, Seattle 5, Washington;

Prof. Lee H. MacFarlan, Depermeat of Mathematics
 Wisconsin;

Dr. H. P. Pefflt, Department of Mathematics

(37) Wisconsin Beta, 1939, University of Wisconsin, Madison 6, Wisconsin;

Mr. Marshall F. Ruchte, 803ente St., Madison 5, Wis.

INITIATES, ACADEMIC YEAR 1951-1952

ALABAMA ALPHA, University of Alabama
(Fall, 1951)
(Fall, 1951)

Margaret Ann Alison	Romae J. Cormier	Scott Spaulding
Ed. Barker, Jr.	S. Ashby Foote	Roger Wicks
Arthur C. Bentley	Alfred Goode	Alfred W. Yonda
	Sarah Jensen	
	(Spring, 1952)	
Gunnar Anderson Frances Gaynor	Shirley McCallum Rex L. Callaway Gary W. Crain	John S. Henderson

ARIZONA ALPHA, University of Arizona
(May 8, 1952)

Abbas N. Al-Khafaji	Leland Harris	John O. Maloy
David C. Allais	Richard C. Heyser	Ernest G. MeCray
Donald A Anhorn	Martin Hochdorf	Stanley D. Spray
Kenneth A. Fowler	Gale Holladay	Harold E. Sweeney
Sue L. Gin	Raymond J. Jimonez	Charles D. Vail
Max R. Grundvig	Paul E. Koenig	Janis J. Zalmans
	Gary Lotto	

CALIFORNIA ALPHA, University of California, Los Angeles

(Spring, 1952)

Miriam Ann Caldwell
Jan Drent
Steve Gaspar
Richard Carl Gilbert

Tomo-aki Hayata
Raymond Paul Kachelmeyer
Luther Clark Lay

Stanley Robert Lenihan Edgar Reich Marjory Irene Thorn Edward Oakley Thorp

CALIFORNIA BETA, University of California, Berkeley (May 17, 1952)

Fariborz Amini
Alexander B. Cecil Walter L. Dieckmann Robert Donatt

Randolph Eidemiller
Lee O. Heflinger
Robert Holten
William Keating
Milton Lees

Joseph Rosenbaum Rex Shudde
Margaret Swanson
Paul B. Yale

Jane T. Beasley Alan J. Bockstahler Albert Claus Marilyn Dixler Donald E. Freeland Paul Goldberg Paul Goldberg Willam M. Ground Robert S. Hathaway

Sheldon Kahn	Boris Musulin
Eugene King	Carl F. Samuelson
Arthur A Krawetz	Donald Shult
Richard Leach	Alan C. Skinrood
Harold Leiendecker	Walter W. Stone
Robert Leigh	Harvey E. Wahls
Donald Malm	C. Charles Welch
Ann Morrison	Daniel Wilson
	John Zimmerman

KANSAS ALPHA, The University of Kansas
(May 6, 1952)

Norman Baumann
Melville Evans
O. John Gerriets

Joseph A. Bukowski
Ervin R. Deal
Donald H. Firl

> William D. McGlinr
> Isaac Namioka
> Prom Panitchpakdi
> S. S. Shrikhande

KANSAS BETA, Kansas State College
(Date of initiation not given)

Vahe Keshishian	Gerald M. Smith
Herald W. Kruse	Henry Unruh, Jr.
	Thomas K. Witt

KANSAS GAMMA, University of Wichita
(December 5, 1951)

Gynith Giffin

Lloyd L. Brown
Glen E. Conklin
(April 25, 1952)
John Dahler
Richard G. Holmes

Kjersti Swanson

Jerry Wackerli
Roy G. Woodle, Jr.

Dale S. Krasser

ALPHA, Louisiana State University
(May 1, 1952)
Lloyd Aquillard
Lewis E. Batson John Coon
Benjamin Craft
Frances Dutsch
Kay Davis
Robert Griffi
Jack R. Hall
Mary Jane Hanford

Tildon Hebert	James Oliver
C. R. Hibberts	Donald A. Preston
Jack Jackson, Jr.	Roy R. Runck, Jr.
Alien Kelly	Lloyd P. Savoie
Carl M. Koreen	Jacques L. Savoy
Frederick G. Landry	Jimmie D. Sippel
Carlyle Kuke Le Bas	Roy St. Pierre
William W. Lee	Grover J. Trammell, Jr.
	Van C. Vives

Tildon Hebert
C. R. Hibberts

Alien Kelly
Frederick G. Landry
Carlyle Kuke Le Ba
William W. Lee

James Oliver Donald A. Preston Roy R. Runck, Jr. Lloyd P. Savoie Jimmie D. Sippe oys. Pierre Van C. Vives

MICHIGAN ALPHA, Michigan State College
(November 13, 1951)

Homer R. Arthurs	Halbert Frederick Gates	Thomas B. Jones
Herbert S. Eleuterio	George William Hess	Rodney H. Lubben
Harrison C. Fisch	Winston H. Heneveld	John Hubert Muller
Russell Harry Fay Robert E. Garner	Bernard Jacobson	James Edwin Monsma Walter A. Reid

(May 6, 1952)
Harry N. Achziger
Mary Jo Boehm
Michael Chernjawski
Frank M. d ark
Gene R. Cudney
Lyle C. Davis
Charles Diaz
Donald W. Earle
Sara Ruth Eaton
George W. Ficken
John H. Forsten
Walter L, Gessert
Patricia A. Hauser
Mary Ann Hutchinson
Adolph Loeber
Richard D. Pruett
Karl Riggs
Clio F. Sanborn
Pand E. Schleusener
Kenneth W. Sidwell
Dorothy Stryer
Vance V. Vanness
Donald Van Ostenburg
EYaS. Williams
Marilyn Y. Zweng

MISSOURI ALPHA, University of Missouri
(December, 1951)

James Edward Cain David A. Kibler Kenneth R. Reichert, Jr Clarence Edward Henson

Aubra Clinton Mathers John Porter Reid

(May 13, 1952

Harker Thomas August, Jr.
Carl Marvin Bruns
Robert Paul Bruns, Jr.
Arthur McHarg Breipohl
Stanley H. Bueg
Robert Joe Carte
Robert Joe Carter
Datricia Ann Covert
arricia Ann Covert
Egon Lorenz Doering
Jerry James Edwards

Bill Jerome Gangwisch
James Horace Gillian Ronald Gene Graham Harvey Wendel Greene Donald George Harris Harold Alexander Heckart Phyllis Ann Heyssel William Terril Higdon Carl William Johnson Robert James McCloud

Lawrence Donald Meyer. Tom M, Noel
Harriet M. Phlllips
John William Reed George Alien Saum Stanley Reed Scruby Elmer Erwin Strehly Howard Keith Stumpif Robert G. Veltrop Howard Wayne Wicklein

MISSOURI GAMMA, St. Louis Unirersity
(Spring, 1952)
Robert Allison
Francis J. Babka
William J. Best
John D. Blanton, S. J.
Sr. Francis E. Bolk
Robert W. Boll
Herman H. Bowers
Robert J. Breen
Thomas V. Bruns
Eugene Brys

Betty Ann Ganss
Maryanna Gerber
Francis N. Glover, S. J.
Robert H. Hamilton
John W. Hartfield
Glenn B. Hoidale Anthony C. Hummel
Robert Isom
Paul Koichi Ito
Richard Jaeger

Howard G. Minor
Charles W. Moehle
Kom 4 , Moellenberg
Vincent 8. Murino
St. X. Marguerita C. Neumann
Lammert B. Otten
Rev. Zachary O'Friel
Louis Perrin
oh H. Plluke

Maureen M. Burke William F. Cantwell William F. Carrozza Donald R. Casper Patricia Ann Cowi Thomas A. Dailey Robert M. Delaney Edward A. Desloge, S. Sr. Ambrose Devereux Rev. Norbert J. Dietz Robert C. Distler Robert C. Doerner Donald L. Ekstedt Paul G. Fischer Gerald A Fleischer Major James H. Fox Ann Gallagher
Arthur E. Davis
Norman C. Davis
Robert S. DeZur
Larry C. Hunter

Robert S. DeZur
Larry C. Hunter

NEB:
ASKA ALPHA, University of Nebraska (January, 1952)

John J. Lliteras	Robert C. Tefft
John A Marks	John T. Warren
Herbert A. Meyer	Dale R. Winder
Thomas A. Reed	James C. Wolford
Marvin B. Rhodes	David P. Sheetz
William L. Sawrey	

Arnis R B. Ackerma
Arnis R. Aumalis
John H Blazek
Dean T. Buckingham
Emerson Jones

Alfred W. Blessing
William E, Doole
Ernest E. Haight
Gerald Heuer

NEW HA..
nshIRE ALPHA, University of New Hampshire
C. Webster Boodev

Stanley Bukata
Frederick Cunningham, Robert B. Davis

Edward J. Jaskula
oseph A. Kelemen delen Mary Kelly
ynn Kerber
Tlieordore J Klingen
M Bengen
Michael I Koehler
Charles P. Koehler
Charles P. Krau
James J. Krebs
Charles A. Kribs
Garolyn Leadlove
Francis A Liuima, S. J
Ci, Donald Lundergan
Robert L. Mandeville
Kenneth J. Martin
Hiramie T. McAdams
Robert McCarthy

Sus K Mnicu - Mary Ruse hauen, NGB unsier]. Redi. Ir Kraseri Resikt ATstans: Siballaustites Miliam]. Sethr Mllam F. Sunderman Prul Suanida Marrr Starr Kaptarine M. Swertio Karitami Tolesike mathel J. Troy Muala Vetrane timile J. Walcet Carol Wherler Kurt Wolisberg Rotert E. Wysorki, CR

MON1A
: NA ALPHA, Montana State University (April, 1952)

> Rachel A Kinney Benjamin M. Kramer Frank R. Marshall

John W. Marvin
Robert E. Pozera Donald J. Schaf! Maynard B. Stevenson Paul G. Tschache

John J. Lliteras

Herbert A. Meyer
Thomas A. Reed
William L. Sawrey David P. Shetz
(May, 1952)

Roscoe Lodwig	David Moomaw
Coleman Logan	Maurice Mullen
lean Loudon	Rita L. Stout
Margaret McCoy	Joe B. Warner
Duncan B. McGregor	

David Moomaw
Rita L. Stout
Joe B. Warner

William Andrews
Richard C. Austin Cornelia L. Cark
Harold. Clark
(May 13, 1952)

Carl Johnson
Alfred E. Landry
William D. Peterson

Arthur Petrou Harrison E. Radford Rod aloi C. Trulson

NEW YORK ALPHA, Syracuse Dwiversity (December 15, 1951)

Ethel Censor
Marie Chiarito
Marilyn Factor
Rosalie Fasulo
Alan A. Bloom
Werner J. Beyen
Frank E. Butler
Donald M. Casper Sergei Chernijowsky Kebbeth Clum Ernest O. Codier Naomi Cohn
Kenneth S. Dewire
William F. Doehne Robert Elias Ehrlich Joan Farber

Robert E. Fishlock

 Marcel P. Fraser Kenneth E. Gabel Edward Glazier Elaine Goldberg Wallace GravesNis Hansen, Jr.
John Hower, Jr.
Stanley Kapuscienski
Virginia Keledjian
John Klein
Ruth King

Ieo A. Magmanti Alan Meltzer Joseph Ontko Edward Perry Frederick Picut Lawrence Port Lewis Simonoff John Slayton Spencer A. Weller Spencer A. Weller Benjamin Wu Howard Zimmerman

NEW YORK BETA, Hunter College
(Fall, 1951)

Eleanor Marsico	Marilyn O'Connor
Dorothy Meleski	Nuld Torresola
Antoinette Moreno	Clemmy Zagni
Arlene Moskowitz	Marcia Zimet
Jean Moskowitz	

NEW YORK GAMMA, Brooklyn College
(Fall, 1951)

Laura Somma Chiarulli
Naomi Cohen
Kenneth Geller
Joseph Gruenbaum
William J. Judge
Erving Katz

Martin E. Lean (Prof.)
Jeremy Lifsey Ruth Miller
Rosaline Pekarowitz
Edward Porto
Audrey Riemer
(Spring, 1952)
Benjamin Gross
Norma Gross
Louis Libelo
Alien Morton

Walter Rubin
Max Sissman Ann Ugelow Ann Ugelow Frank Zaretsky Israel Zuckerman

Samuel Oelbaum
Melba Phillips (Prof.)
Donald Solitar
Vivian Stark
Claire Wasserman

NEW YORK EPSILON, St. Lawrence University
(Fall, 1951)

Stuart Collins, Jr.	Anthony Lucca	Bernard Silkowitz
Donald Hastings	Hugh O'Neil	John Taylor
Margaret Hoose		George Van Wyck

NORTH CAROLINA ALPHA, Duke University
(November 15, 1951)

Frederick P. Brooks, Jr. Bruce Mylrea			Donald H. Rutter Frederick Sarles, J
		Gilbert Sward	
OHIO BETA, Ohio Wesleyan University (November 16, 1951)			
John N. Cole Jack E. Cornett		Robert H. Schwinn	Elliot L. Swanson Shizuo Takata
		John F. Shuster	
		George Stanklevich	
	OHIO	GAMMA, Univers (Spring, 195	

Frank C. Sherburne, Jr. Lois Crew Carol Garn

OHIO DELTA, Miami University
(November, 1951)

William Herrmannsfeldt Richard Hopper

$$
\begin{aligned}
& \text { Carolyn Jerreris } \\
& \text { Geraldine Lytle } \\
& \text { Helm B. Roberts }
\end{aligned}
$$

OKLAHOMA ALPHA, University of Oklahoma
(April 18, 1952)

J. C. Albright	R. A. Gibson	S. K. Penny
A. C. Atkins	B. T. Goldbeck	R. M. Rhodes
Charlotte A. Carpenter	J. H. Hill	W. W. Rogers
B. G. Casteel B. G. Hodges		
M. L. Chatkoff	H. E. Hoffman	J. L. Terneus
T. R. Coleman	W. R. Holden	J. D. Thomas
J. O. Danley	P. D. Kenan	J. E. Urban
W. R. Davis	Jack Kline	Jane A. Varga
J. T. Day	Whit Marks	R. E. Vesley
M. E. Drummond, Jr.	R. G. McIntyre	G. R. Vick
R. A. Elms	Mary H. Miller	E. G. Watkins
L. O. Erwin	D. L. Patten	J. K. Whithaus
		A. H. Woollett

> R. A. Gibson B. T. Goldbeck J. H. Hill B. G. Hodges H. E. Hoffman W. R. Holden P. D. Kenan Jack Kline Whit Marks R. G. McIntyre Mary H. Miller

John Sinai
Frederick G. Werner
D. L. Patten
L. O. Erwin
,

OKIAHOMA BETA, Oklahoma A. and ․ College (Date of Initiation not given)

Edward M. Barnes, Jr.
Frank F. Dyer
Glenn R. Elliott
Tom P. Gilmer, J
Tom P. Gilmer, J
Ronald G. Henry

Paul Langford	Helmo Raag
Samuel E. Loy II	Richard John Robinson
Frand W. Manley	VirginiaSmith
Gene W. Marshall	Alan H. Staht
Normal L. Martin	Roger W. Williams

OREGON ALPHA, University of Oregu

(May, 1952)

Younis Abbood Al-Doori	Richard Chaffee		
Charles Edmond Aull	Forrest Garland Easton		
Dennis Warren Barnum	John Frederick Endicott		
Melvin Leroy Blevens	Edward Roy Gammon		
Richard Arthur Bray	William Sidney Harris		
Shirley Ann Burr	Carl Frederick Jensen		
Gunning Butler, Jr.	Darrel Glen Littlefield		
Craig Jennings Canfield	Granville E. McCormick		
OREGON BETA, Oregon State College			
(Fall, 1951)			

Richard Bredemeier
Harold Johnson
Adrian Wenner

PENNSYLVANIA ALPHA, University of Pennsylvania

 (Spring, 1952)| Louis Reed Baker | Samuel Hoffman | Lewis Nosanow |
| :--- | :--- | :--- |
| Walter Byck | Doris Holzman | Joseph C. Mayer |
| Robert Charles Gebhardt | David Kaufman | Albert Milduan |
| Joan Goldman | Arthur Kraiman | Anthony Monaco |
| Geneva Grosz | Yale Jay Lubkin | Violet Simmons |
| Joseph J. Higgins | Bernard Margolis | Malcolm Sitkoft |
| Barbara Bender | Norman Indictor | Rank Shallcross |
| Allan Gellert | | Torycah Schub |

PENNSYLVANIA BETA, Bucknell University
(Date of initiation not given)
Charles Ackmar
Leonard घ, Ahlfeld
Fred Beers
Isabel Beers
Marjorie Boote
Betsy Conkdin
Norman Fretag

Joseph A. Gobbo	James A. Smith
Richard W. Greiner	John L. Sorch
Richard H. Kemm	Bernard Tostanoski
Robert D. Larrabec	John Walker
James J. Loughney	Fran R. Willson
W. N. Lowry, Jr.	Franeis Williamson
John P. Jackson	William L. Wolfe

VIRGINIA ALPHA, University of Richmond
(Date of initiation not given)
Catherine Bell
Jane Cather
Bertha Cosby

Janet R. Johnston	Frank A. Lowman
Maxine Lindsay	J. C. Mills
Thomas J. Little	J. S. Phillips

WASHINGTON BETA, University of Washington
(Fall, 1951)
E. C. Ash, Jr.

John E. Barger
John W. Benolt
Robert L. Bivine
James H. Brown
William J. Bruce
Lingurn H. Burkhead
Anthony V. Domandich
Samuel S. Ellis
Verna L. Engstrom
Jay A Erickson
D. Jackson Farmer

Frederick H. Fisher
Frederick H. Fishe

Clyde Hudson
John L. Jaech
William Johnson, Jr.
R. B. Kleburtz

William T. King
Dan W. Kingery Stuart E. Levell Earle H. MacCannell Clarice MacDonald
T. J. Matsui

Leston W. Miller
E. Wayne Rawlings

Richard R. Reeves
Olney R. Perry
(May 8, 1952)
Lester B. Aldridge
Harold F. Anderson
George H. Allen
Charles Ballantine
Stanley N. Barker
Sing-Tsze Bow
Charles H. Brockaway
Sat Pal Chhabra
Mark P. Freeman
James R. Grover

James R. Grover
Yutaka Izumi
Albert C. Jones
Walter D. Jones
Glen H. Keitel
Henry C. Kreide
Tamami Kusuda
James C. Li
Victor A. Madsen
Leo J. St. Jean
Donald R. Truax
Leo Helser

Marcus H. Petersen Wesley A. Robinson Burnett H. Sams D. Andrew Schew Lyle S. Stokes Jack B. Stutesman Winston G. Walker Edward T. Weng David H. White Kathleen White A. Lewis Wilson Sylvia Vopni John W. Zevenbergen

Donald R. Lockner Robert M. Kalbach Roger A. Vail Malcolm D. Woodard Hugh Noland Charlotte Jackson John R. Penning, Jr.
Alvin P. Hjorten
Robert L. Cooper Eugene H. Lehman, Jr.

WISCONSIN ALPHA, Marquette University
(November 26, 1951)

Robert J. Herzberg Eugene Schmit John Kischefsky Robert O. Nimtz Wayne A. Robins Alfred Rynning

Addison D. Smart Donald V. Starich William J. Wei David D. Zak

> (May 17, 1952)

QUALITY LITHOPRINTING

including

Typewriter and Letterpress Composition

CUSHING-MALLOY, Inc.

1350 North Main Street Ann Arbor, Michigan

The most economical process for limited editions and out-of-print material.

$1953 \mathbb{B A L I} \mathcal{O} \mathbb{R}$

BLUE BOOK

This 40th Anniversary edition presents for you the largest selection of fraternity jewelry in the country. Order your Christmas gifts early.

Crested Rings Bracelets, Pendants Cuff Links, Knives
Favors, Gifts
Jewel Cases
Poo Parade of felt, plush and furry animals Wedding and Baby Gifts in silver
Ming China
Mail Coupon for your FREE COPY!
Wear Your Fraternity Key every day. Write for your price list, mentioning fraternity name.

Official Jeweler to Pi Mu Epsilon

[^0]: *Courtesy of SCRIPTA MATHEMATICA.

[^1]: *An address presented before the Pi Mu Epsilon Fraternity at the beginning of the scientific session, Monday morning, September 1, during the National Meeting held at Michigan State College, East Lansing, Michigan, August 31 and September 1, 1952.

[^2]: *Student delegate who recelved part transportationexpense.
 **Student speaker.

[^3]: *Bull. Am. Math. Soc., vol. 58, May 1952, pp. 424-435.

[^4]: *Alan J. Goldman gave one of the student papers at the East Lansing, Michigan, meeting. See 'Program" printed elsewhere in this journal.

[^5]: ${ }^{1}$ The name and address of the Permanent Secretary, or Corresponding Secretary, is given for each chapter which replied to the May 1952 questionnaire sent out by the Secretary general; otherwise, that of the Faculty Adviser or Department Chairman.
 ${ }^{2}$ Number appearing before chapter designation indicates chronological order in which charter was granted.

