PI MU EPSILON JOURNAL

THE OFFICIAL PUBLICATION OF
THE HONORARYMATHEMATICAL FRATERNITY

NUMBER 8

CONTENTS

Page
Examples and Counterexamples R. H: Bing 311
Curves and Points 318
Problem Department 322
Problems for Solution 322
Solutions 323
Addition to Pi Mu Epsilon Journal Staff 331
Reports of the Chapters 332
Medals. Prizes and Scholarships 337
News and Notices 340
Initiates. Academic Year 1951-1952 344
Initiates. Academic Year 1952-1953 345
APRIL 1953

RUTH W. STOKES, Editor

ASSOCIATE EDITORS

J. S. FRAME, Michiigan State College, East Lansing, Michigan H. T. KARNES, L. S. U., Baton Rouge 3, Louisiana
N. H. McCOY, Smith College, Northampton, Massachusetts

LEO MOSER, University of Alberta, Edmonton, Alberta, Canada
R. J. WALKER, Cornell University, Ithaca, New York

HOWARD C. BENNETT, Business Manager

GENERAL OFFICERS OF THE FRATERNITY
Director General: C. C. MacDuffee, University of Wisconsin Vice-Director General: W. M. Whyburn, University of N. C. Secretary-Treasurer General: J.S. Frame, Michigan State College
Councillors General:
S. S. Cairns, University of Illinois, Urbana, Illinois Tornlinson Fort, University of Georgia, Athens, Georgia Sophie McDonald, University of California, Berkeley, Calif. Ruth W. Stokes, Syracuse University, Syracuse, New York

Ex-officio Member of the Council: Howard C. Bennett

MANUSCRIPTS and EDITORIAL CORRESPONDENCE, including CHAPTER REPORTS, NEWS ITEMS, etc., should be addressed to the Editor, Ruth W. Stokes, 15 Smith College, Syracuse University, Syracuse 10, New York.
PI MU EPSILON JOURNAL is published semi-annually at Syracuse University.
SUBSCRIPTION PRICE: To Individual Members, $\$ 1.50$ for 2 years; to Non-Members and Libraries, \$2.00 for 2 years. Subscriptions, orders for back numbers and correspondence concerning subscriptions and advertising should be addressed to Howard C. Bennett, 15 Smith College, Syracuse University, Syracuse 10, New York.

PI MU EPSILON JOURNAL

THE OFFICIAL PUBLICATION OF

THE HONORARY MATHEMATICALFRATERNITY

VOLUME 1

NUMBER 8

CONTENTS

Page
Examples and Counterexamples R. H. Bing 311
Curves and Points C. Stanley Ogilvy 318
Problem Department 322
Problems for Solution. 322
Solutions 323
Addition to Pi Mu Epsilon Journal Staff 331
Reports of the Chapters 332
Medals, Prizes and Scholarships 337
News and Notices 340
Initiates, Academic Year 1951-1952 344
Initiates, Academic Year 1952-1953 345

KNOTTED OUTSIDE

ANTOINE'S NECKLACE

ALEXANDER'S HORNED SPHERE

SUM OF 2 HORNED SPHERES

EXAMPLES AND COUNTEREXAMPLES
R. H. Bing, University of Wisconsin

It is not intended that each reader assimilate all the topology in the following expository article. However, it is hoped that he will finish with the impression that mathematics is a living and growing subject and that although we have learned many interesting facts about the structure of things, there is much yet to learn.

Topological Equivalence. Two figures are topologically equivalent if there is a $\mathbf{1 - 1}$ correspondence between the points of the two figures such that points "close togethers in one figure correspond to points "close togethers in the other. For example, a square, a triangle, and a circle are topologically equivalent.

One might suppose that if two sets are topologically equivalent, it is possible to deform one into the other by $\hat{A} ¥ p u l l i n a n d$ stretching but without breaking or tearing"'. However, in $\mathbf{E}^{\mathbf{3}}$ (Euclidean 3-space) consider two sets each consisting of two tangent spheres; in the first set the spheres are tangent externally and in the second set one sphere lies on the interior (except for the point of tangency) of the other. The two sets are topologically equivalent because there is a 1-1 correspondence of the proper sort between the two sets. However, it is not possible to deform one set into the other in $\mathbf{E}^{\mathbf{s}}$ by "pulling and stretching but without breaking or tearing*.

Let us consider another counterexample to the "pulling and stretching* definition. One can form a cylinder or tube by sewing two opposite sides of a rectangular rubber sheet together. If the ends of the cylinder are sewn together, the resulting figure may resemble an inner tube. However, if a knot is tied in the cylinder before its ends are united, the exterior view of the inner tube will be changed but its
interior structure will not be. If after the knot is tied and before the final sewing is done, one end of the cylinder is stretched and pulled over the knot before the ends are connected, another figure results. The three surfaces shown at the top of the frontispiece are topologically equivalent but not one of them can be stretched to make it fit on any other one of them. The interior of the unknotted surface is topologically equivalent to the outside of the one knotted inside, while the interior of the unknotted surface is like the interior of the one knotted outside.

The complement of a given figure is the set of points not in the figure. For example, on the surface of the earth, the surface of the oceans, seas, lakes, etc., is the complement of the surface of the land. In the plane, the complement of a circle is the sum of the interior and the exterior of the circle. The complement of a circle in $\mathbf{E}^{\mathbf{s}}$ would be connected. We shall give further examples of sets which are topologically equivalent but whose complements are not. They emphasize the contention that two sets may be topologically equivalent even though neither may be pulled to make it fit on the other.

Antoine's Necklace. Suppose $\mathbf{M}_{\boldsymbol{1}}$ is a solid torus. We will carve from it a necklace as shown on the frontispiece,

Replace \mathbf{M}_{1} by a closed chain of solid tori as shown. A person who has whittled a chain from a stick will understand how a part of \mathbf{M}_{1} may be removed so as to leave a closed chain. We call this chain \mathbf{M}_{2}.

Replace each link of $\mathbf{M}_{\mathbf{2}}$ by a closed chain to get $\mathbf{M}_{\mathbf{b}}$. To avoid complications in the figure, we only show this dobne in one link. Actually each link of $\mathbf{M}_{\mathbf{3}}$ is replaced by a closed chain.

The process is continued a countable number of steps, The points remaining after infinitely many steps is called Antoine's necklace and may be shown (we do not do it) to have the following properties:
(1) Antoine's necklace has uncountably many points,
(2) The biggest connected piece of Antoine's necklace is a point.
(3) If \mathbf{J} is the circle illustrated, the circle cannot be shrunk to a point without touching Antoine's necklace.
(4) Each simple surface (set topologically equivalent to a sphere) that has a point of Antoine's necklace on its interior and a point of Antoine's necklace on its exterior also contains a point of Antoine's necklace.
Antoine's necklace gets its name because it was first described by Louis Antoine and, like a set of beads, it is made up of small pieces. From properties (3) and (4) we may see that if it were hung around one's neck, not a point of it would break off and fall to the floor. Although the set is a thing of beauty, what is it good for except possibly to give to one's wife? However, in the last section of this article we discuss some of the uses to which topologists put queer examples,

Cantor Set. A Cantor set as shown on the frontispiece is obtained by starting with a straight line interval, removing its open middle third, removing the open middle thirds of each of the remaining pieces, removing the open middle thirds of the remaining pieces, etc.

A Cantor set can be shown to be topologically equivalent to Antoine's necklace (we do not show it). It has properties (1) and (2) but not property (4). Hence, $\boldsymbol{E}^{\mathbf{3}}$ cannot be pulled and stretched until Antoine's necklace fits onto a Cantor set.

We call any set topologically equivalent to a Cantor set a topological Cantor set, Antoine's necklace is a topological Cantor set.

It is possible to construct many other interesting topological Cantor sets. There is one in a square plus its interior such that each line intersecting the square intersects the topological Cantor set. There is one in $\mathbf{E}^{\mathbf{3}}$ that would cast a dense shade. There are others in $\mathbf{E}^{\mathbf{3}}$ with positive "volumes*. These sets are of interest in studying surface area. Since each topological Cantor set in $\mathbf{E}^{\mathbf{3}}$ lies on a surface with "small area* (in a certain sense), it is possible to obtain surfaces whose "areas* are less than their "volumes*,

Sum of Two Mobius Bands, A M Mbius band is sometimes called a one-sided band. If a belt connecting pulleys is twisted like a mubius band, it will wear on both sides. There is the story of the workman who was assigned to the task of painting one side of such a belt and removing all the paint from the other side.

The boundary of a Mobius band is a simple closed curve (set topologically equivalent to a circle). If the boundaries of two Mobius bands are sewn together as shown on the frontispiece, there results a Klein bottle. It has been called a bottle with no inside and no outside.

If one tries to construct a Klein bottle physically by sewing together Mobius bands as shown, a kink develops just before the sewing is finished, making itimpossible to complete the construction in E^{3}. There does not exist a Klein bottle in $\mathbf{E}^{\mathbf{3}}$. However, a topologist does not limit his study to only those figures occurring in E^{3}. The study of abstract spaces is very interesting.

In traveling around a circle in one direction in the plane, one either goes in a clockwise or a counterclockwise direction. Also, it is possible to assign an orientation to small simple closed curves on a sphere. However, if a cyclone follows a closed path on a Klein bottle and comes back to its starting point, its direction of spinning about the point may have changed, even though it never changed its direction of spinning a s it moved.

Another example of a nonorientable surface is the projective plane. It may be obtained by sewing a circle plus its interior to a Mobius band along the boundary of each. Physically, this sewing could not be done in $\mathbf{E}^{\mathbf{3}}$ but it could be done in E^{4} and some other spaces.

Horned Sphere. J. W. Alexander described the horned sphere illustrated on the frontispiece. It is topologically equivalent to the surface of a sphere but its exterior is not topologically equivalent to the exterior of a sphere. We might describe the horned sphere as follows. A long cylinder closed at both ends is folded until the ends are near each other and parallel. (In the figure we show only the ends of the closed cylinder.) Then tubes are pushed out of
each end until they almost hook as shown. The process is continued by pushing out additional tubes, pushing out additional tubes, etc. The resulting set has the property that although it is topologically equivalent to the surface of a sphere, there is a circle in the exterior of the horned sphere that cannot be shrunk in the exterior of the horned sphere to a point.

A set is simply connected if each simple closed curve (set topologically equivalent to a circle) in it can be shrunk to a point in it. It is uniformly locally simply connected if each "small" simple closed curve in it can be shrunk to a point on a "small" piece of it. The complement of a straight line interval in E^{3} is simply connected but not uniformly locally simply connected. A torus is uniformly locally simply connected but not simply connected. Neither the complement in $\mathbf{E}^{\mathbf{3}}$ of Antoine's necklace nor of the horned sphere is either simply connected or uniformly locally so. However, both the complement in $\mathbf{E}^{\mathbf{3}}$ of a Cantor set and a sphere is simply connected and also uniformly locally so.

A simple surface is tame if there is a homeomorphism (1-1 correspondence of the sort previously mentioned) of E^{3} onto itself that takes the simple surface onto the surface of a sphere. The surface of an ellipsoid is tame but a horned sphere is not. However, at certain points the horned sphere is smooth and fits into E^{3} in a nice fashion. We call it locally tame here. It has been recently discovered that a simple surface is tame if it is locally tame at each point.

Here is an unanswered question. Suppose S is a simple surface in $\mathbf{E}^{\mathbf{3}}$ such that the complement of S is both simply connected and uniformly locally simply connected. Is S tame? Considering the rate at which we are learning new things about E^{3}, I would conjecture that we shall find the answer before many years.

Sum of Two Solid Horned Spheres, In the last figure on the frontispiece we show two horned spheres. The tubes, instead of being pushed out, were pushed in. The interiors of the horned spheres are not simply connected. Each of the horned spheres plus itsinterior is called a solid horned sphere.

One of the horned spheres is the reflection of the other through a plane halfway between them. Suppose the two solid horned spheres are sewn together along the points on their boundaries made to correspond under this reflection. To what is the resulting set topologically equivalent?

If a sphere plus its interior is sewn to another sphere plus its interior along the spheres, there results a set topologically equivalent to \mathbf{E}^{3} with a point added "at infinity ${ }^{\hat{\wedge}}{ }^{\wedge}$ This set may be shown to be topologically equivalent to S^{3} (the surface of a sphere in Euclidean 4-space).

Is the set obtained by sewing the two horned spheres together in the above prescribed way topologically equivalent to \mathbf{S}^{3} ? The question went unanswered from 1930 to 1951. Some mathematicians conjectured that it was but others thought not. When it was discovered in 1951 that the sum was topologically equivalent to S^{3}, this discovery exploded a conjecture concerning periodic transformation. (See False Statement H in next section.)

We do not yet know the answer to the following question, If the boundaries of the horned spheres were sewn together in some other fashion (we do not prescribe that a point be joined to its reflection), is the sum topologically equivalent to S^{3} ?

Usefulness of Examples. If we have examples of the things we are studying, these examples may give us a better understanding of our subject. A wealth of examples helps our intuition in picking out certain theorems that are likely to be true and in labeling others as false.

A counterexample is a convincing way of showing that a theorem is false. One of the chief roles of examples is to show that certain statements are false and that it is futile to try to prove them. We illustrate this by mentioning some false statements. Consider the following.

False Statement A If two sets in $\mathbf{E}^{\mathbf{3}}$ are topologically equivalent and one has the property that a simple surface in its complement separates two points of it from each other, the other set has this property also.

False Statement B. Each surface is orientable.
False Statement C. If two sets in E^{3} are topologically equivalent, their complements are also.

False Statement D. The complement of a simple surface is simply connected.

Although the statements may sound very pleasing, a topologist acquainted with Antoine's necklace and a Cantor set would not make (A), one acquainted with a Klein bottle would not make (B). one acquainted with a horned sphere would not make (D), and one acquainted with either Antoine's necklace or a horned sphere would not make (C).

Perhaps it has been many years since any competent topologist considered as true any of the preceding false statements. However, we now mention some, each of which was conjectured as true for many years and each of which was exploded during the past five years. We use the terminology of topology and do not expect the reader to grasp the meaning of each statement.

False Statement E. The arc is the only nondegenerate plane continuum topologically equivalent to each of its nondegenerate subcontinua.

False Statement F. Each nondegenerate indecomposable continuum is $\mathbf{1}$-dimensional.

False Statement G. No set in the plane is a minimal dispersion set.

False Statement H. Each mapping of period two of E^{3} onto itself is topologically orthogonal.

We could mention many other conjectures that have been exploded by counterexamples but instead mention some which still persist.

Conjecture A. Each normal Moore space is metrizable.
Conjecture B. A normal Hausdorff space is countably paracompact.

Conjecture C. A tree-like plane continuum has the fixed point property.

Conjecture D. A connected linear Haudorff space is separable if each uncountable subset of it contains a limit point of it.

The reader may not have understood each of the preceding statements. Nevertheless he should have gotten the point that examples may be very useful in solving difficult problems.

CURVES AND POINTS
C. Stanley Ogilvy, Syracuse University

Felix Klein, in his entertaining book "Elementary Mathematics from an Advanced Standpoint," gives examples of a class of continuous algebraic curves which thread their way through the everywhere dense set \underline{R} of points both of whose coordinates are rational, without going through any of them except $(\mathbf{0}, \mathbf{1})$ and $(\mathbf{1} \mathbf{0})$. V. E. Dietrich has shown (p. 407, Vol. 56, American Mathematical Monthly) that a very extensive class of circles also has this property: any circle whose center has at least one of its coordinates irrational passes through at most two points of R .

Klein, later in the same book, waxes enthusiastic about the exponential curve $y=\mathbf{e}^{\mathbf{x}}$. Let \underline{A} be the set of all points both of whose coordinatesare algebraic numbers. Of course A $\supset \underline{R}$, and so in some sense the points of A are denser than those of R Yet the point $(0,1)$ is the only point of A which lies on the curve $\mathrm{y}=\mathbf{e x}$. Klein exclaims, "What would Pythagoras have sacrificed after such a discovery if the irrational seemed to him to merit a hecatomb!" - a remark which, interestingly, has found its way into the Encyclopedia Britannica (p. 302, Vol. 14, 1950 edition).

We can point to even simpler curves with the above properties. The straight line $\mathrm{x}=\sqrt{\mathbf{2}}$ contains no points of R , and $\mathrm{x}=\pi$ contains no points of A But one feels somehow let down by these examples. Straight lines exhibit no delicacy in picking their way through the dense fields; they simply find a hole and blunder straight through. Consideration of this phenomenon leads to the realization that the coordinate system plays a major role in the wholequestion. There is nothing intrinsically rational, irrational or transcendental about a point. The point $\frac{\mathrm{P}}{\mathbf{(1 , 1)}} \mathbf{1}$ is in R : but change the scale - merely magnify by π, for example; and \underline{P} now has both coordinates transcendental and thus is not
even in A. In polar coordinates, any circle $\rho=\underline{\mathbf{k}}, \mathbf{k}$ transcendental, has no points in A, Such a circle marches through the (polar) points of $\underline{\mathbf{A}}$ very much as $\mathrm{x}=\pi$ avoids them in the Cartesian plane.

All these curves are really far less talented than one is at first disposed to think. The trouble lies in our inability to appreciate "relative denseness." That the points of a denumerable set are everywhere dense is deceptive. The density of the non-denumerablecontinuum is so muchgreater (of a higher order of infinity, of course) that the remarkable fact is rather that a curve should manage to hit any points of \mathbb{A} or $\underline{\mathrm{R}}$ at all. Although any attempt at analogy is dangerous guesswork, one suspects that if we could "see" the way the algebraic points are distributed among the far more numerous transcendentals, the picture would somewhat resemble the way the rationals are distributed among, say, the points both of whose coordinates are integers.

A curve truly worthy of note would be one which contained only points of A; but such a curve is an impossibility since it must be also a continuum.

Perhaps a more suitable way of thinking about these properties (since in spite of themselves most mathematicians admit that they like to get a firm grip on an intuitive handle) is not to think of curves cleverly weaving their way through points with predetermined coordinates. Rather we might do better to think of all the points of the plane as being completely nameless until a curve comes along. The points will thus become points of $\underline{\mathbf{A}}$ or of $\underline{\mathbf{R}}$ in certain coordinate systems if special curves happen to hit them; otherwise they will join the vast stockpile of transcendental points.

M. G. Gyllstrom
*Courtesy of SCRIPTA MATHEMATICA

M. G. Gyllstrom

Courtesy of SCRIPTA MATHEMATICA

PROBLEM DEPARTMENT

Edited by
Leo Moser, University of Alberta

This department welcomes problems believed to be new and, as a rule, demanding no greater ability in problem solving than that of the average member of the Fraternity, but occasionally we shall publish problems that should challenge the ability of the advanced undergraduate and/or candidate for the Master's Degree. Solutions of these problems should be submitted on separate, signed sheets within five months after publication. Address all communications concerning problems to Leo Moser, Mathematics Department, University of Alberta, Edmonton, Alberta, Canada.

PROBLEMS FOR SOLUTION

$$
\begin{aligned}
& \text { 49.* Proposed by C. S. Venkataraman, Trichur, India } \\
& \text { If } \begin{aligned}
\mathbf{s} & =(a+b+c+d) / 2 \text { and } S=a \cdot b \cdot c \cdot d, \text { prove that } \\
s^{4} & =\left(s^{-} b^{-} \mathbf{c}\right)^{4}+(\mathbf{s}-c-d)^{4}+\left(s^{-} d-b\right)^{4-}\left(s^{-} a\right)^{4} \\
& =\left(s^{-} b\right)^{4-}\left(s^{-} \mathbf{c}\right)^{4}-\left(s^{-} d\right)^{4}=12 \mathrm{~S} .
\end{aligned}
\end{aligned}
$$

52. Proposed by R. T. Sharp, University of Alberta

A set of n smooth dominoes $1^{\prime \prime} \times 2^{\prime \prime} \times 1 / 4^{\prime \prime}$ is piled on a table, one horizontally placed domino in each layer. Find the largest distance that the top domino can be made to overhang the bottom one.

[^0]
53. Proposed by Leon_Bankoff, Los Angeles, California

A rectangular slab of width w is moved horizontally from one corridor of width a into another at right angles to it , of width b . What is the maximum value of the length ℓ, of the slab, that will permit passage?

54. Proposed by E. L. Miksa, Aurora. -لllinois

Given a right triangle ABC , with right angle at C , find a point P on AC so that the inscribed circles of the triangles BPC and BAP will be equal.
55. Proposed by Pedro Piza, San_Juan, Puerto Rico

Let

$$
\begin{aligned}
& a=1^{3}+2^{3}+3^{3}+\ldots+n^{3} \\
& b=1^{5}+2^{5}+3^{5}+\ldots+n^{5} \\
& c=1^{7}+2^{7}+3^{7}+\ldots+n^{7}
\end{aligned}
$$

Prove that

$$
(a+6 b+3 c)^{2}+(7 a+13 b+4 c)^{2}=(7 a+14 b+5 c)^{2}
$$

56. Proposed by the problem editor

Prove that

$$
\left[\frac{1}{\frac{\pi^{2}}{6}-\sum_{i=1}^{n} 1 / i^{2}}\right]=n
$$

where, as usual, $[\mathrm{x}]$ denotes the largest integer not exceeding x .

SOLUTIONS

11. Proposed by Frank Hawthorne, Hofstra College

A projectile in vacuo passes through two given points.

Determine the locus of foci and of vertices of the parabolic trajectories.

Solution by C. W. Trigg, Los Angeles City College

Let the equation of the parabola passing through the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ be $(x-X)^{2}=-2 p(y-Y)$, where the vertex is at (\mathbf{X}, Y) and the focus at $\left(\mathrm{X}, \mathrm{Y}^{-} \mathbf{p} / \mathbf{2}\right)$. Then $\left(x_{1}-X\right)^{2}=-2 p\left(y_{1}-Y\right)$ and $\left(x_{2}-X\right)^{2}=2 p\left(y_{2}-Y\right)$.

Eliminating the parameter p between these two equations, we have the locus of the vertices of the trajectories,

$$
\begin{gathered}
\left(y_{2}-y_{1}\right) X^{2}+2\left(x_{1}-x_{2}\right) X Y+2\left(x_{2} y_{1}-x_{1} y_{2}\right) X \\
+\left(x_{2}^{2}-x_{1}^{2}\right) Y+x_{1}^{2} y_{2}-x_{2}^{2} y_{1}=0
\end{gathered}
$$

This locus is a hyperbola, since the discriminant

$$
4\left(x_{1}-x_{2}\right)^{2}>0, \text { for } x_{1} \# a
$$

To obtain the locus of the foci of the trajectories, we eliminate the parameter p between the equations

$$
\left(x_{1}-X\right)^{2}=2 p\left[y_{1}-(Y+p / 2)\right]
$$

and

$$
\left(X_{2}-X\right)^{2}=-2 p\left[y_{2}-(Y+p / 2)\right]
$$

and obtain

$$
\begin{gathered}
4 X^{2}\left[\left(x_{1}-x_{2}\right)^{2}-\left(y_{1}-y_{2}\right)^{2}\right]+8 X Y\left(x_{1}-x_{2}\right)\left(y_{1}-y_{2}\right)+4 X\left[2\left(y_{1}-y_{2}\right)\right. \\
\left.\cdot\left(x_{2} y_{1}-x_{1} y_{2}\right)-\left(x_{1}-x_{2}\right)^{2}\left(x_{1}+x_{2}\right)\right]-4 Y\left(y_{1}-y_{2}\right)\left(x_{1}^{2}-x_{2}^{2}\right) \\
+\left(x_{1}^{2}-x_{2}^{2}\right)^{2}+4\left(y_{1}-y_{2}\right)\left(x_{1}^{2} y_{2}-x_{2}^{2} y_{1}\right)=0 .
\end{gathered}
$$

Again we have a hyperbola, since the discriminant
$64\left(x_{1}-x_{2}\right)^{2}\left(y_{1}-y_{2}\right)^{2}>0$, for $x_{1} \neq x_{2}, y_{1} \neq y_{2}$.
In the special case $X_{1}=X_{2}$, the equations of both loci reduce to $X=\mathbf{x}_{1}$, which is also the equation of all the trajectories. In the special case $\mathbf{y}_{1}=\mathbf{y}_{\mathbf{2}}$, both loci become $\mathrm{X}=$ $\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right) / 2$.

14. Proposed by C. W. Trigg, Los Angeles City College

1. How may a sealed envelope be folded into a rectangular parallelepiped if overlapping is permitted? 2. What is the maximum volume so obtained in terms of the edges $\underline{\mathrm{a}}$ and $\underline{\mathrm{b}}$ of the envelope? 3. What must be the relative dimensions of the envelope in order to yield a cube? 4. What will be the volume of the cube?

Solution by the Proposer

(1) Assume that the edges of the envelope $A B=C D=$ $\mathrm{b}>\mathrm{a}=\mathrm{AC}=\mathrm{BD}$. Now on the face of the envelope at a distance $x<a / 2$ from the edges draw EF and GH parallel to $A B$, and $I J$ and $K I$ parallel to $A C$. In each corner of the envelope there will now be a square. In these squares draw the diagonals $\mathrm{AM}, \mathrm{BN}, \mathrm{CO}$ and DP. Consider that the corresponding lines are on the back of the envelope with the interior vertices of the squares being $\mathbf{M}, \mathbf{N}^{\prime}, \mathrm{O}^{\prime}$, and P^{\prime}.

Fold out along all lines except $\mathbf{O G O}^{\prime}, \mathrm{PHP}^{\prime}, \mathrm{NFN}^{\prime}$, and MEM'. Along these fold in until each of them forms a straight line. Then fold down along these lines until the triangles with vertices at the corners of the envelope lie along the faces of the resulting rectangular parallelepiped. This will then have edges $a-2 x, b-2 x$ and $2 x$.
(2) $V=2 a b x^{-} 4 x^{2}(a+b)+8 x^{3}$. Differentiating, setting the derivative equal to zero, and solving, we have $x=(a+b$ $\left.\pm \sqrt{\mathrm{a}^{2}-\mathrm{ab}+\mathrm{b}^{2}}\right) / 6$. Using the positive sign and assuming $a / \mathbf{2}>x$ leads to the contradictory inequality, $a>b$, hence only the minus sign holds and

$$
V_{\max }=\left[(a+b)(2 a-b)(2 b-a)+2\left(a^{2}-a b+b^{2}\right)^{3 / 2}\right]
$$

(3) Each face of a cube is a square, and the folding process reduces each edge of the envelope by the same amount. Hence, in order to secure a square face by folding, the edges of the envelope must be equal, say to a.
(4) Then each edge of the envelope must be divided by folding into $a / 4, a / 2, a / 4$, so the edge of the cube will be $a / 2^{\prime}$ and its volume will be $a^{3} / 8$. Due to the over-lapping
triangles, this is not the maximum parallelepiped possible from the square envelope. The maximum one will have edges of $2 a / 3,2 a / 3, a / 3$, and a volume of $4 a^{3} / 27$.
31. Proposed by Victor Thébault, Tennie, Sarthe, France

For integers written in base B , find a number N of n digits which divides the number of digits obtained in writing the integers $1,2,3, \ldots, N$.

Solution by the Proposer

The integers from 1 to N consist of
B-1 numbers containing 1 digit,
$\mathbf{B}^{\mathbf{2}} \mathrm{B}$ numbers containing 2 digits,
$\mathbf{B}^{\mathbf{n - 1}}-\mathbf{B}^{\mathbf{n - 2}}$ numbers containing $\mathrm{n}-1$ digits,
$\mathrm{N}+1^{-\mathbf{B}^{n-1}}$ numbers containing n digits.
Hence the total number of digits is

$$
\begin{aligned}
& 1(B-1)+2\left(B^{2}-B\right)+\ldots+(n-1)\left(B^{n-1}-B^{n-2}\right)+n\left(N+1-B^{n-1}\right) \\
& =n(N+1)-\left(1+B+B^{2}+\ldots+B^{n-1}\right)=n N+n-\frac{B^{n}-1}{B-1}
\end{aligned}
$$

In order for this to be divisible by N it is clearly necessary and sufficient that N divide $\left(B^{n-1}\right) /(B-1)=n$. But this number is $11 \ldots 1$ (containing n digits) less n, and this has no divisors of n digits except itself. Thus the only possible value of N is $11 \ldots 1^{-n}$.

Editorial Note. For example, with $\mathrm{B}=10, \mathrm{n}=3,111$ - 3 $=108$ and the numbers $1,2, \ldots, 108$, contain altogether 216 digits where 216 is a multiple of 108 . However, for $\mathrm{n}=2$, 11-2 $=9$ contains only 1 digit. Thus there is no number N of 2 digits having the required property. It appears that the only exceptional n are $\mathrm{n}=2$ for any base and $\mathrm{n}=3$ for base 2.
32. Proposed by Francis L. Miksa, Aurora, Illinois

In a class in Number Theory the professor gave four
students the assignment of finding a fairly large primitive Pythagorean triangle using the well known formula for the legs:

$$
A=2 m n, B=m^{2}-n^{2}, C=m^{2}+n^{2}
$$

where m and n are co-prime integers, not both odd. The four students produced four entirely different primitive triangles, but on comparing them it was found that two of them had the same perimeter, while the other two, also, had the same perimeter, this perimeter differing from the first one by 2 . This interested the class greatly, and much time was spent in an effort to find other such sets, only to discover that there were only four such sets with perimeter less than 500,000 . Can you find at least one such set?

Solution by the Proposer

m	n	A	B	C	A+B+C
106	195	41340	26789	49261	117390
215	58	24940	42681	49589	117390
184	135	49680	15631	52081	117392
232	21	9744	53383	54265	117392

Editorial Note. The triangles given above were extracted from very extensive tables recently completed by F. L. Miksa and A. S. Anema. These tables list primitive Pythagorean traingles in order of ascending perimeter and ascending area.

36. Proposed by Joan Sherley, Syracuse University

A man wished to plant an orchard with n trees in ten straight rows, five in a row. What is the smallest value n can have?

Solution by R. T. Sharp, University of Alberta

Consider the 19 points:
$(0,0)(\pm 1, \pm 1),(\pm 1, \pm 2),(\pm 2, \pm 1),(\pm 2, \pm 2),(0, \infty),(\infty, 0)$.

These yield 10 lines with 5 points in each line. It seems unlikely that this can be obtained with fewer points. If the man has some objections to planting trees at infinity he may project the configuration given above so as to bring all points within easy reach.

Also solved by C. W. Trigg and the proposer.
Editorial Note. It can be proved that 19 is actually the smallest value of n. The proof, however, is somewhat involved and will not be given here.

41. Proposed by Chester McMaster, New York City

There are more chess masters in New York City than in the rest of the U. S. combined. A chess tournament is planned in which all American masters are expected to attend. In determining the site of the tournament it is agreed that the primary consideration would be the minimization of the total inter-city distance covered by all participants. The New York masters claim that by this criterion the site chosen should be their city. The west coast players and some others claim that a city at or near the center of gravity or centroid of the players would be better. Prove that the New Yorkers are right.

Solution by the Proposer

Let the New Yorkers be labeled $\mathbf{A}_{1}, \mathbf{A}_{\mathbf{2}}, \ldots, \mathbf{A}_{\mathbf{n}}$, and let the other players be $\mathbf{B}_{1}, B_{2}, \ldots, \mathbf{B}_{\mathbf{m}},(\mathbf{n}>m)$. Let the distance from $\mathbf{A}_{\mathbf{i}}$ to Bj be denoted by $\mathbf{A}_{\mathbf{j}} \mathbf{B}_{\mathbf{j}}$. If the meeting is held in New York, the total distance traveled will be $\mathrm{T}=$ $\mathbf{A}_{1} \boldsymbol{B}_{1}+\mathbf{A}_{\mathbf{2}} \mathrm{B}_{2}+\ldots+\mathbf{A}_{\mathbf{m}} \mathbf{B}_{\mathrm{m}}$: Suppose now that the meeting is held elsewhere. The total distance traveled by $\mathbf{A}_{\mathbf{i}}$ and $\mathbf{B}_{\mathbf{i}}$ ($\mathrm{i}=1,2, \ldots, \mathrm{~m}$) will be at least $\mathbf{A}_{\mathbf{i}} \mathbf{B}_{\mathbf{i}}$. Hence the total distance traveled by all participants will be at least T plus the sum of the distances traveled by $\mathbf{A}_{\mathbf{m}+1}, \mathbf{A}_{\mathbf{m}+2}, \ldots, \mathbf{A}_{\mathbf{n}}$.

45. Proposed by Mel Stover, Winnipeg, Manitoba

At a faculty meeting attended by six professors, each one left with someone else's hat. The hat taken by Aitkins belonged to the man who took Baily's hat. The man whose hat was taken by Caldwell, took the hat of the man who took Dunlop's hat. Finally, the man who took Easton's hat was not the one whose hat was taken by Fort. Who took Aitkin's hat?

Solution by Leon Bankoff, Los Angeles, California

Using capital initials and the symbolism $\mathbf{x} \rightarrow \mathrm{y}$ to denote that x 's hat was taken by y, we have $B \rightarrow \mathbf{x} \rightarrow \mathrm{~A}$, where \mathbf{x} is the man who took Baily's hat. Also, $\mathrm{D} \rightarrow \mathrm{z} \rightarrow \mathrm{y} \rightarrow \mathrm{C}$, where z is the man who took Dunlop's hat and y is the man whose hat was taken by Caldwell.

We note at once a surplus of symbols, signifying that at least one of the unknowns duplicates a capital initial already allocated in one of the two unbroken sequences. By a double substitution the sequences can be joined in two different ways:
(1) $\mathrm{B} \rightarrow \mathrm{D} \rightarrow \mathrm{A} \rightarrow \mathrm{y} \rightarrow \mathrm{C} \quad$ (where $\mathrm{x}=\mathrm{D}$ and $\mathrm{z}=\mathrm{A}$)
(2) $\mathrm{D} \rightarrow \mathrm{z} \rightarrow \mathrm{B} \rightarrow \mathrm{C} \rightarrow \mathrm{A} \quad$ (where $\mathrm{x}=\mathrm{C}$ and $\mathrm{y}=\mathrm{B}$)

Now each sequence lacks one symbol. To supply the missing link which, at the same time, closes each unbroken sequence cyclically, use s in (1)and t in (2). We then have

All conditions are satisfied if in (1), $y=F, S=E$, and in (2), $\mathrm{t}=\mathrm{F}, \mathrm{z}=\mathrm{E}$. In either case, Fort took Aitkins' hat.

Also solved by R. M. Frisch, J. J. Greever, F. L. Miksa, C. Stone, C.Strong, C. W. Trigg, E. Zahar, and the proposer.

46. Proposed by J. Lambek, McGill University

A partial amnesty having been declared, the jailor unlocked every cell in the prison row. Next he locked every second cell. Then he turned the key in every third cell, locking those cells which were open and opening those which were locked. He continued in this way, on the nth trip turning the key of every nth cell. Those prisoners whose cells eventually remained open were allowed to go free. Who were the lucky ones?

Solution by C. W. Trigg, Los Angeles City College

The number of times, t, that the key was turned in the qth cell is equal to the number of divisors of q. Thus, if $\mathrm{q}=\mathrm{p}_{1}{ }^{\alpha_{1}} \cdot \mathrm{p}_{2}^{\alpha_{2}} \ldots \mathrm{p}_{\mathrm{k}}{ }^{\alpha} \mathrm{k}$, thent $=\left(\alpha_{1}+1\right)\left(\alpha_{2}+1\right) \ldots\left(\alpha_{k}+1\right)$. Now if any $\boldsymbol{\alpha}_{i}$ is odd, t is even and the corresponding cell eventually remained locked. If all the $\boldsymbol{\alpha}_{\mathbf{i}}$ are even, q is a square number, t is odd, and the lucky occupants of the "square ${ }^{\mathrm{n}}$ cells found that their cells eventually remained open.

Also solved by L. Bankoff, R. M. Frisch, N. Grossman, F. L. Miksa, W. Moser, C. Stone, C. Strong, E. Zahar, and the proposer.

Men do not fail. They give up trying.

- Elihu Root.

ADDITION TO PI MU EPSILON JOURNAL STAFF*

ASSOCIATE EDITOR

HOUSTON THURMAN KARNES, Associate Professor of Mathematics, Louisiana State University, Baton Rouge, Louisiana. Native of Mt. Juliet, Tennessee. A.B. and A.M, Vanderbilt University; Ph.D, (math), Peabody College; summers, U. of Wisc. and U. of Mich. Prof. of math. and biol, Northwestern Jr. Coll; prof. of math. and dean of men, Harding Coll; tchr. of math. and dept. head, H.S. Nashville, Tenn; visiting prof, Peabody Coll; dept of math, Louisiana State University, instr, asst. prof (1938-1945), asso. prof (1945--); dean of men during the war. Hon. positions: Bd. of trustees, Harding Coll; chmn. of natl. comm. of the Natl. Coun. of Tchrs. Math; director of the La. State Univ. Math. Inst; pres. La. State University Faculty Club. Mem: AMS; MAA; Natl. Coun. Tchrs. of Math; NEA; Omicron Delta Kappa; Pi Mu Epsilon; Phi Delta Kappa; Kappa Mu Epsilon; AAUP. Contr. to Amer. Math. Monthly; Natl. Math. Magazine; Math. Tchr. Ph.D. dissertation: Professional training of teachers of mathematics.

[^1]
REPORTS OF THE CHAPTERS

(Send reports to Ruth W. Stokes, 15 Smith College, Syracuse University, Syracuse 10, New York.)

EDITOR'S NOTE. According to Article VI, Section 3 of the Constitution: *The Secretary shall keep account of all meetings and transactions of the chapter and, before the close of the academic year, shall send to the Secretary-General and to the DirectorGeneral, an annual report of the chapter activities including programs of meetings, results of elections, etc." The SecretaryGeneral now suggests that an additional copy of the annual report of each chapter be sent to the editor of the Pi Mu Epsilon Journal. Besides the information listed above we are especially interested in learning what the chapters are doing by way of competitive examinations, medals, prizes and scholarships. These annual reports will be published in the chronological order in which they are received.

Epsilon of New York, St. Lawrence University
The New York Epsilon chapter held six meetings during the academic year of 1951-1952. This included the fall initiation meeting at which eight persons were initiated During the year the following papers were presented:
"Elementary Theory of Constructibility" by John Taylor and Stuart Collins
"Theory of Numbers and Bases ${ }^{\mathrm{n}}$ by Bernard Silkowitz and George Van Wyck
"Preliminary Inspection of Algebraic Equations" by Hugh $\mathbf{O}^{\prime} \mathrm{Niel}$ and Tony Luca
"The Differential Analyzer and Some of Its Applications ${ }^{u}$ by Donald Hastings and Robert Lambert.

Officers for 1951-1952 were: President, Robert Lambert; Secretary and Treasurer, John Taylor; Faculty Adviser, Dr. O. Kenneth Bates.

Officers for 1952-1953 are: President, Heidi Genhart; Secretary, Hilda Budelman; Treasurer, George Van Wyck; Director, Dr. O. Kenneth Bates; Permanent Secretary, Dr. Ruth Peters.

Alpha of Oklahoma, University of Oklahoma

The first meeting of the Oklahoma Alpha chapter for the 19511952 session was held October 2, 1951. The following officers were elected for the year: Director, John E. Hoffman; ViceDirector, Leroy A Guest; Secretary-Treasurer, Peter W. M John; Faculty Adviser, Professor Arthur H Bernhart; Corresponding Secretary, Professor Dora McFarland.

During the year the following papers were presented at regular meetings:
"Uses of Mathematics in Games ${ }^{\text {u }}$ by Dr. Arthur Bernhart
"Some Uses of Mathematics in Meteorology" by Mr. Harold V. Huneke
"Consequences of the Logarithm Curve" by Mr. Roy B. Deal, Jr.
'Mathematics in the British School System" by Mr. Peter W. M John
"Elementary Theory of Games" by Mr. L. A Guest
"Polynomial Sets* by Dr. W. N Huff
"Application of Simple Mathematics in Astronomy ${ }^{\mathrm{u}}$ by Mr.

Balfour Whitney

"Radar ${ }^{\mathrm{u}}$ by Mr. John E. Hoffman.
The annual spring banquet, honoring thirty-six new members, was held on April 18. Professor L. Wayne Johnson, head of the department of mathematics at Oklahoma A and M College, gave the address. His subject was: "Plea for the Middle Man."

Mr. John E. Hoffman was selected as student speaker to present a paper on ${ }^{*}$ Almost Periodic Functions ${ }^{\text {u }}$ at the national meeting in September (1952).

The following were elected to serve as officers during 19521953: Director, George R. Vick; Vice-Director, William R. Davis; Secretary-Treasurer, Mary Helen Miller; Faculty Adviser, Professor Arthur H Bernhart; Corresponding Secretary, Professor Dora McFarland.

Alpha of New Hampshire, University of New Hampshire
During the 1951-1952 session the following papers were presented at meetings of the New Hampshire Alpha chapter.
"Opportunities in the Actuarial Profession" by Mr. Richard A Leggett, Assistant Actuary of the Travelers Insurance Company, Hartford, Connecticut
'Mathematical Logic ${ }^{\mathrm{n}}$ by Dr. Crabtree
"Infinite Dimensional Spaces ${ }^{\mathrm{u}}$ by Mr. Cunningham
"Mathematical Logic" by Mr. Peterson
"Statistical Quality Control" by Mr. Kichline
"Calculus of Variations" by Donald Childs
"Mathematical Proof on the Impossibility of Trisecting an Angle" by Robert Hux
"Rudimentary Computing Machines" by Professor Gordon Rice
"The Four Color Mapping Problem ${ }^{\text {u }}$ by Stewart Hobbs.
There were two initiation periods held during the year at which a total of twenty-two new members were received.

The by-laws were amended a s follows: "All graduate students shall be extended invitations to join Pi Mu Epsilon by virtue of their positions as graduate students in mathematics."

The chapter held its annual outing on Mendon's Pond in Barrington, New Hampshire, on May 21, 1952,

The following officers were elected for the year 1952-1953: Director, Donald Childs; Vice-Director, John Oberti; Secretary, Cornelia Cahill; Treasurer, William Peterson.

Alpha of Montana, Montana State University

During the 1951-1952 session the following papers were presented before meetings of the Montana Alpha chapter:
"Boolian Algebra" by Mr. G. A Craft
"Finite Induction" by Mr. A. L. Duquette
"Foundations of Mathematics" by Dr. T. G. Ostrom.
The annual banquet was held on March 7, 1952, with Director Richard Wood as toastmaster. Thirty-five members, faculty and guests attended. Certificates of membership were presented to eleven new members.

The following were elected as officers for the year 1952-1953: Director, Larry Hunter; Vice-Director, Maynard Stevenson; Secretary, Robert Pozega; Treasurer, Dr. G. Marsaglia.

Alpha of New York, Syracuse University
The New York Alpha chapter help four regular meetings during the 1951-1952 session. The following papers were presented:
"The Four Color Problem" by Dr. William Pierce
"Fermat's Theorem" by Dr. Kathryn Morgan
"Cooperative Phenomenon" by Dr. Melvin Lax of the Physics Department
"Product Integration" by Dr. George Mostow.
The initiation banquet was held on December 14,1951. Thirtysix persons were initiated. The guest speaker was Dr. W. H Fuchs, Department of Mathematics, Cornell University. His subject was: "Unusual Applications of Mathematics".

On April 23, 1952, a joint meeting was held with the Mathematics Club. The speaker on this occasion was Dr. William Hotchkiss, of the History Department, Syracuse University. His subject was: "Leibniz and Newton".

The officers for 1951-1952 were: Director, William Rouse; Vice-Director, Murray Falkowitz; Recording Secretary, Joseph L. Sullivan; Treasurer, John Parley; Faculty Adviser, Dr. Paul W. Gilbert; Permanent Secretary, Dr. Nancy Cole.

The following were elected to serve a s officers for 1952-1953: Director, Alan S. Meltzer; Vice-Director, Joseph A Ontko; Corresponding Secretary, John E. Klein; Recording Secretary, Ruth M. King; Treasurer, Robert E. Fishlock; Faculty Adviser, Dr. Paul W. Gilbert; Permanent Secretary, Dr. Nancy Cole.

Alpha of Oregon, University of Oregon

During the 1951-1952 session Oregon Alpha initiated twentyseven new members. The following paper was presented:
"Space Filling Curves" by Hugh Christensen.
Officers for 1952-1953 are: Director, Leroy Warren, ViceDirector, Calvin T. Long; Secretary-Treasurer, Pearl A Van Natta.

Beta of Oregon, Oregon State College
The following papers were presented before meetings of Oregon Beta during 1951-1952:
"Errors in Linear Systems" by Dr. A T. Lonseth
"Mathematical Paradoxes" by Mr. A, Wenner, Mr. H Johnson, and Mr. R. Bredemeier
"Opportunities in Mathematics" by Dr. C. L. Clark
"Computer Physiology" by Mr. John Blankenbaker.
Thirty-four new members were initiated at the annual banquet held May 13.

The officers for the academic year 1952-1953 are: Director, Thomas Glahn; Vice-Director (office yet to be filled); Secretary, Richard Bredemeier; Treasurer, Professor G. A Williams.

Alpha of Pennsylvania, University of Pennsylvania
Pennsylvania Alpha held seven meetings during the 1951-1952 session. The following papers were presented at these meetings:
"The Role of the Mathematician in Computing Machinery ${ }^{\mathrm{u}}$ by Mr. Holmes W. Taylor, Associate Research Engineer of Burroughs Adding Machine Company
"Geometric Construction of Counter-Examples ${ }^{u}$ by Dr. Richard Anderson
"Some Remarks Concerning the Invariance Principle in Algebra and Geometry ${ }^{\text {u }}$ by Dr. George Schweigert.

Other speakers during the year were Dr. Nathan Fine, Dr. Harry Rauch and Dr. Pincus Schub.

The annual banquet was held on May 13, 1952. The guest speaker for this occasion was Dr. John R. Kline, Chairman of the Department of Mathematics,

Beta of Washington, University of Washington

Washington Beta held ten regular meetings during 1951-1952, exclusive of two initiations and the annual picnic. Sixty-nine new members were initiated during the year. The following papers were presented at the regular meetings:
"Gamma and Beta Functions* by Judson Smith
"Derivation of Computing Formulae for the Quartic Equation ${ }^{\text {u }}$ by Lee Tower
"What is Topology?" by Professor Carl B. Allendoerfer
"History of Geometry ${ }^{u}$ by Professor Roy M Winger
"Vacations for Payu by Professor Roy B. Leipnik
"Theory of Braids ${ }^{\text {u }}$ by Professor J. Maurice Kingston
"Algebra of Points ${ }^{\mathrm{u}}$ by Robert J. Wisner
"Magic Squares ${ }^{\text {u }}$ by Professor Ross A Beaumont.
The annual picnic was held on May 24, 1952, at Lake Wilderness. Ninety-one adults and thirty-two children were in attendance.

Officers for the year were: Director, Ted R. Jenkins; ViceDirector, J. Richard Byrne; Secretary-Treasurer, Judson Smith.

MEDALS, PRIZES AND SCHOLARSHIPS

EDITOR'S NOTE. Each chapter undoubtedly will be interested in learning what other chapters are doing along the line of prize competitions. So the editor makes the request that chapters offering prizes, scholarships, or other awards, write up their plans for such contests and submit them for publication in this journal.

The Oklahoma Alpha chapter holds an annual mathematics contest on problem solving. The contest for 1951-1952 resulted in a three-way tie. The winners were James T. Day, Jack Kline and John D. Thomas. The reward was five dollars worth of mathematics books to each of the winners.

Harrison E. Radford won the prize of $\$ 10.00$ given by the New Hampshire Alpha chapter for 1951-1952. This award was made to the freshman receiving the highest average in algebra, trigonometry, analytic geometry and introductory calculus.

The Montana Alpha chapter began the 1951-1952 academic year with the awardingof the Pi Mu entrance prizes. These prizes are given to the three freshmen who placed highest in an examination in mathematics.

The DeCou prize of $\$ 50.00$ is awarded annually by the Oregon Alpha chapter. The award is presented to a senior in mathematics due to recognition of an outstanding record and achievement in mathematics. The prize was presented to Sam Saunders for the 1951-1952 session.

The Oregon Beta chapter gives an annual award based on a mathematical contest. Three men were tied for first place in 1951-1952. They were: John Blankenbaker, Charles Luehr and John Pendleton.

During the winter quarter of 1951-1952 the Washington Beta chapter sponsored a weekly contest in the local campus newspaper. A mathematical puzzler was published in the newspaper and solutions were turned in to the chapter. Winners were awarded cash prizes of $\$ 2.50$. The final contest involved a more sophisticated problem and the prize was $\$ 5.00$.

MISSOURI GAMMA ESSAY CONTEST

The Missouri Gamma chapter each year holds the Pi Mu Epsilon Essay Contest. The contestant submits his essay with a digest to the judges. Two prizes are awarded annually in this contest, one to a student in the Senior Division and the other to a student in the Junior Division. For the session 1951-1952, the topic was "The Bernoullis: Their Lives and Works." Mr. Ying Nien Yu was the winner of the Senior Division, and Mr. Roland Nokes won the Junior Division Contest. Both of these students were enrolled in Park College of Saint Louis University. A digest of the senior contest prize-winning essay is given below,

DANIEL BERNOULLI'S HYDRODYNAMICAL EQUATION
 by Ying-Nien Yu

Daniel Bernoulli (1700-1782) was the founder of mathematical physics. He introduced innumerable mathematical theorems to the solutions and descriptions of problems in physics. Perhaps the most creditable contribution that Daniel bequeathed us was his work in Hydrodynamics. The term, hydrodynamics, was actually introduced by Daniel Bernoulli to comprise the two sciences of hydrostatics and hydraulics. Hence, we may justly consider him the father of Hydrodynamics.

The science of hydrodynamics is concerned with the behavior of fluids in motion. During the 18th century and the beginning of the 19th century, those masters of mathematics such as Daniel Bernoulli, Isaac Newton, Leonard Euler, and others derived many differential equations and introduced the potential theory to describe the fluid motion. The fluid they dealt with is known as the perfect or ideal fluid, i.e., frictionless or non-viscous fluid, and the type of flow they restricted to is irrotational. In most cases, streamlines were used to describe the fluid flow. This is the socalled "Classical Hydrodynamics". Since the potential theory is a branch of mathematics, we may consider classical hydrodynamics a branch of mathematics.

The first substantial result of the theory of fluid motion was established by Daniel Bernoulli in his "Hydraulicostatica", written in 1738. The result can be described by Bernoulli's hydronamical equation, which states that, for a steady motion, at any point along a definite streamline, the sum of the kinetic energy, the integral of $\mathbf{d p} / \mathbf{p}$, and the potential energy for a unit of mass is constant. This equation is of utmost importance in the hydrodynamics of non-viscous fluid.

Later, Leonard Euler, a contemporary of Daniel Bernoulli, derived Bernoulli's equation more systematically by applying Newton's second law.

Bernoulli's equation is concerned only with steady motion along a streamline. It is logical to consider the flow as one dimensional because the vector of the fluid travels in the same path as the streamline. By this idea of the one dimension flow, engineers nowadays apply Bernoulli's equation to pipes, tubes, or channels of finite cross-sections, and obtain fairly accurate results. However, mathematicians may feelapprehensive about this.

Most classical theories show discrepancies with the 20th century's experimental results due to the restrictive assumptions of the classical theories. However, in working with the theoretically perfect fluid and in studies of theories both old and new, Bernoulli's Hydronamical Equation is still a basic tool for engineers and mathematicians, and plays a greater role in modern hydraulics and aerodynamics.

ACKNOWLEDGMENTS

For complimentary copies of the following publications received at the office of the Pi Mu Epsilon Journal, the editor is very grateful.
"A Mathematics Oklahoma University Newsletter," Vol. 1, No. 2, published in March, and No. 3, in May, 1952, by the Oklahoma Alpha Chapter of Pi Mu Epsilon.
"The Missouri Gamma News," Vol. II, No. 2, published in July, 1952, by the Missouri Gamma Chapter of Pi Mu Epsilon.
"Math Mirror," Spring 1952, published annually by the Mathematics Society of Brooklyn College.

NEWS AND NOTICES

A new name has been added to the list of associate editors of the Pi Mu Epsilon Journal, that of Professor Houston T. Karnes of Louisiana State University, His work will be closely connected with that of the chapters, and he will edit the sections "Reports of the Chapters" and "Medals, Prizes and Scholarships*. For many years he has been a most cooperative and efficient corresponding secretary for the Louisiana Alpha chapter, always responding promptly to our communications and sending in annual reports of the chapter on time and in excellent form. Because he has such a genuine interest in the work of the Fraternity and its members, we are fortunate in having him join the staff of editors.

Two new chapters of Pi Mu Epsilon are soon to be added, which will bring the number of active chapters to fifty-six. Sec-retary-Treasurer General J. S. Frame reports that the petitions of Alabama Polytechnic Institute and Cornell University have been approved. These chapters will be Installed sometime this spring, probably in April.

Two letters dated November 3, and December 4, 1952, from Corresponding Secretary Professor C. B. Read, of the Kansas Gamma chapter, are concerned with matters not only of great interest to his chapter at the University of Wichita but, also, to chapters on other campuses where there might be motivated similar action. With this object in mind, we quote, in part, Professor Read's letters (addressed to the editor):
(1)
"Kansas Gamma chapter of Pi Mu Epsilon has received two substantial cash donations to its Pi Mu Epsilon Mathematics Scholarship Fund. One contribution was made by Mrs. E. B. Wedel in memory of her husband (former professor of mathematics at the University of Wichita) who died last July. The other was made
by Mr. H. K. Sears, lecturer in mathematics and a member of the Kansas Gamma chapter, in memory of Mrs. Sears, who died about a year ago."
'Income from this scholarship fund goes to a senior, majoring in mathematics. The present holder of the scholarship is Miss Ann Klein."

(2)

"Kansas Gamma chapter reported earlier in the year a gift from Mr. Henry K. Sears to our Pi Mu Epsilon Scholarship Fund in memory of his wife who died last year. Mr. Sears has just made an additional contribution of slightly under $\$ 100$ to this fund. The purpose of the second gift is to cover the cost of exchanging securities, given earlier in the year, for other securities having a higher market value and carrying a higher dividend rate. Mr. Sears volunteered to stand all expense involved in exercising conversion rights of the original securities."
"I thought this item might be of interest for the Pi Mu Epsilon Journal."*

News Items Gleaned from Chanter Reports

The secretary of the New York Epsilon chapter reported: "Our annual, high school mathematics contest, promoted by the members of the Northern New York Interscholastic League, was held on April 26 (1952), and fourteen schools were represented."
"A mathematics 'Oklahoma University Newsletter' was produced for the first time during the Session 1951-1952 by the Oklahoma Alpha chapter. Problems and articles of interest to high school students were included and copies sent to high schools throughout the country."

Gleanings from the report of the New Hampshire Alpha chap ter indicate a lively interest in the Fraternity. Note the following three activities:
(1) "Aid classes were given by the members of the chapter in courses ranging from algebra to differential equations every other Wednesdayevening throughout the year for those students who had difficulty In these courses.. .. "

[^2]'Two volumes, a German-English and EnglishGerman Dictionary and 'Mathematics-Queen and Servant of Science' by Bell, were added to the Pi Mu Epsilon Shelf in the mathematics library.. . " "
"Donald Childs was elected to membership in the Mathematical Association of America."

Reference is made to page 283, Vol. 1, No. 7, of this Journal. The date, in parentheses, following each name in the list of Pi Mu Epsilon members who received the Doctor of Philosophy Degree in 1951, refers to the year in which the person was initiated into the Fraternity and not to the year in which the degree was conferred.

Repeating what we said there, it is our intention to publish annually the list of names of our members who take their doctorates in that year, whenever such information is made available. It would be appreciated if when the corresponding secretaries are making their annual chapter reports they would include news items about their members earning advanced degrees and receiving notable appointments and other honors. Many of our members, after being initiated into the Fraternity, transfer to other universities to work on higher degrees, and thus identification with their home chapters is lost. It would be a matter of great pride to have a complete list of our members earning the doctorate each year, in the files of the Secretary General; then the editor of the Journal could refer to those files for such information.

We understand that many of our readers solve the problems that are published in the PROBLEM DEPARTMENT of the Journal but just do not take the trouble to send in their solutions to the problem editor. We should like to make the special plea that you do take time to send in your solutions. The editor of that department is doing a fine job. His supply of interesting problems seems to be a nondenumerable set, but his only means of knowing what type of problem has the most popular appeal to our readers is based on the response he gets. Problem solving is an important phase of mathematical study. In a recent letter from Dr. Moser he mentioned the fact that his solution to a problem which had appeared in the AMERICAN MATHEMATICAL MONTHLY
served as a starting point for a paper "On Sequences of Integers ${ }^{n}$ published in the latest issue of the MATHEMATICAL GAZETTE. Won't you write him. He would be interested in any comments, favorable or otherwise, about the problems he is publishing.

Notice Concerning Changes of Addresses
 and Subscriptions to Journal

When communicating with Business Manager Howard C. Bennett, concerning change of address to which the Journal is to be sent, it is important to state the name of the chapter into which the member communicating was initiated.

INITIATES, ACADEMIC YEAR 1951-1952

(Continued from Vol. 1, No. 7)

ILLINOIS ALPHA, University of Illinois
(May 19, 1952)
James H. Abbott
J. E. Ams
Dale Ashcroft
Jyots Bhattacharjee
J. D. Busch
Glenn Cate
Stanley Changnon
Charles R. Chubb
C. L. Coates
Jeanne Crawford
Arno Cronheim
Ray Eckman
M. A. El-Fifni
R. L. Fisher
Aubyn Freed
James Henderson
Raymond

Richard Janer Q, R. Jeffiries Richard King Ken Rolence Philip Larsen A. D. Liehr W. L. Masterton John Muerle Marshall Nolan
R. H. F. Pao Karl Pister Ray Lolivka A. L. Promislow R. C. Quinlan J. M. Quinn
P. H. Rosenfield
George Russell

George Russell
C. T. Sain

Harry Schey
Norman Shaplro
Ronald M. Shelton
Sidney Singer
Edward Stejska
Michlo Suzuldi
Kenneth Tabler
L. N. Tao
W. E. West
R. S. Wiseman
J. B. Wong

Theodore Wright
H. N. Yu

NEW YORK ETA, The University of Buffalo
(April 28, 1952)

Mrs. Allan Brown
Walter Fleming

NORTH CAROLINA ALPHA, Duke University
(May 14, 1052)
Alexander Troy Cole
Edwin Richard Gabler
George Earl Gerber
and

William H. Jennings, Jr.	John Edward Roberts
Alfred Evison Kerby	Ronald B. Stauffer
Still-ley June Markee	Charles H. Warlick
George Wilmot Marsden	Walter Q. Wilson
Elaine Popp	

NORTH CAROLINA BETA, University of North Carolina

Joseph A. Arnold
acob F. Blackburn

$$
\begin{aligned}
& \text { Donald J. Morrison } \\
& \text { Richard J. Painter } \\
& \text { Steve Pugh }
\end{aligned}
$$

Herbert Spease
Ronald Telley
C. V. Williams, Jr.

OHIO ALPHA, The Ohio State University
(May 16, 1052)

Billy O. Hoyle	Jack Herbert Richmond
Jui Sheng Hsieh	Dorothy Lee Roberts
William Ray Irion	John Everett Sandefw
Lawrence D. Jones, Jr.	Dorothy K. Shaner
Richard Theodore Kuechle	John Andrew Stamper
John Kenneth Lerohl	Constantine Vontsolos
Robert Stanley Marcum	Sakae Yamamura
	John Jacob Young

PENNSYLVANIA GAMMA, Lehigh University
(March 3, 1952)
(March 3, 1952)
Richard A. Ash
Stanley E. Aungst
John F. Barteau, Jr.
Richard T. Begley
Malcolm A. Bingaman
James P. Bond
Donald W. Clapp
Nathan L. Cohen
J. David Conrad
David A. DeGraat
John C. Diercks
Daniel D. Dubosky
Neil A. Fisher
James G. Gottling
Kenneth A. Heller
Robert S. Knox
William C. Ladew
Robert A. Lane
Thomas R. May
Richard A. Moyer
Robert W. Moore
Donald W. Oplinger
Donald L. Ort
Frederick A. Otter, Jr.
A. Graham Patterson
Samuel I. Plotnick

Bruce L. Relnhart
Frederick A. Saal
Frederick A. Saal
Robert G. Schilling
Lloyd R. Schissler
Andrew E. Seman
Robert C. Smith
William T. Spencer
A. Walter Stubner

Philip J. Sturiale
Joseph Teno
Franklin \mathbf{M}, Townsend
Robert J. Vekony
Leroy J. Yeager

WISCONSIN BETA, University of Wisconsin
(May 21, 1952)

Morton Brown	Richard Gitter	Raymond Rishel
Phyllis Drews	Beverly Iverson	Marilyn Ulrich
George Gioumousis		Donald White

INITIATES, ACADEMIC YEAR 1952-1953

CALIFORNIA ALPHA, University of California, Los Angeles

Earl A. Coddington
 Robert E. Jackson
 Wendell S. Miller

Roger A. Moore	Seymore Singer
Mary J. Schulte	James V. Whittake
Yutaka Shiradshi	Jacob Wolfowitz
Isadore M. Singer	Dean Zes

COLORADO BETA, University of Denver
(December 4, 1052)

Claude Peter Coppel
Raymond Henry DeMoulln

Randon Eugene Holben
John Ray Hunsberger

Martin Nesenbergs Donald Edwin Rugg

Aloysia Mary German	John Thomas Irwin	John G. Tomkinson
Clifford A. Hauenstein	William Joseph Kunzman	Marvin C. Warner

DISTRICT OF COLUMBIA ALPHA, Howard University
(November 18, 1952)
Mr. William F. Howard

KANSAS GAMMA, University of Wichita
(November 21, 1952)

John M. Dale
 Richard P. Dodge

John W. Johnson, Jr
Wayne Holmes
L. K. Walker

MICHIGAN ALPHA, Michigan State College (November 25, 1952)
James L. Bailey
Edward H. Carlson
Warren J. Eding
James S. Grimes
Mary Lu Hamill
William J. Hardell

Ching-U Ip	Richard M. Meyer
Delia Koo	Shirley Ann Overley
Anthony Koo	Malik M. Quraishee
Hubert W. Lilliefors	Orrin E. Taulbee
John T. McCall	Phillip R. Thornton
	Donald H. Webb

MISSOURI ALPHA, University of Missouri (December 12, 1952)

Richard Burnap Beale
F. Joe Crosswhite

James Eugene Fythian Anna Lee Freshman Edward Dale Fryslie

Dan Barton Hoagland Robert Marshall McKee Raymond Lester Owen Joe Wiley Painter Dorothy Lee Powell Bob Ray Scott

Katheryne Shoop
Roland D. Taylor
Kenneth Oliver Weiser
Delmar B Van Meter
Henry L. S. Yee

NEBRASKA ALPHA, University of Nebraska
(November 18, 1952)

Rolland W. Ahrens
Richard D. Ayers

Edward A. Brong
Jean Davis

Robert J. Tockey William E. Wageman

NEW YORK ALPHA, Syracuse University
(December 17, 1952)

Walter Baum
Norbet Bischof
John Chase
Hellena Cooper
Robert Downing
Virginia Feldmann
George Finkbeiner

Sally Keller
Paul Kenline
Warren Lombard
Robert Mack
Alfred MacRae
Thomas Manwarren
George Mulfinger

Joseph E. Rtzzo, Jr
Charles Serby
Herbert Shoen
Joyce Shorrin
Harold Siegal
Emmanuel Stern
William Terrell
Robert I. Gray
Patricia Hansell
Fritz Hemmer

Fritz Hemmer Charles Johnson
Ira Nemeroff
Victor Pietrafesa
Frank Raymond Victor Pietrafesa

Roll Thorkildsen
Clarence Vanselow ohn H. Van De Walker Ralph Wiegand

NEW YORK BETA, Hunter College (November 8, 1952)

Carmen Bell	Grace Sacks	Sandra Tausig
Millicent Karmin	Pauline Sakles	Marilyn Tuckman
Helga Muhlstock	Nancy Scribano	June Zimany

Millicent Karmin
Helga Muhlstock

NEW YORK EPSILON, St. Lawrence University
(Fall, 1952)

Hilda Budelman
Heidi Genhart

OHIO DELTA, Miami University (Fall, 1952)

Harvey F. Blanck Richard Blancenbecler Traian Cindea
Edgar B. Dally
Iean Fell
Pat Flanagan

Robert E. Gaynor	Amelia Mattson
James Henkelman	Richard S. Neddenriep
Nancy L. Kiehborth	Charles C. Robinson
Ernie A. Kuehls	Richard C. Roth
John L. Madden	Elmer W. Schirmer
Joseph Martino	Ronald L. Siereveld

OKLAHOMA ALPHA, University of Oklahoma
(Fall, 1952)
F. W. Ashley
James C. Bradford
E. N. Brandt
Wayne T. Ford
Doyle E. Goins
Charles C. Grimes
Thomas J. Head
Ernest L. Lippert

T. Richard McCalla
 Frank L. Miller Franklin A. Phillips J. B. Willis

OKLAHOMA BETA, Oklahoma A. and M. College (Fall, 1952)

Charles E. Durrett
John Leroy Folks John Leroy Folks Burt Gambill

Edward Gastineau
Dan C. Hanan
Edward D. Holstein
Therman I. Lassle

Frank G. Martin
William E. Pruitt
Lorene O. Young

OREGON BETA, Oregon State 'College (November 25, 1952)

Ruth M. Blair

James F. Carpenter

Charles H. Gutzler

Patric W. Paddock Walter C. Riddell

PENNSYLVANIA ALPHA, University of Pennsylvania
(November 21, 1952)
John J. Crawford
Arlene Goldman
Gerson Goldstick
Edwin Kellerman
Fred Ketterer
Marvin Kornblau

Rhoda Rosen
Sheldon Lisker
Leroy R. Loewenstern
Clarence Reed Donald Rosen Lowell Zeid Doris Zoblan Albert Whetstone
(Dėcember 12, 1952)
Yonathan Bard
Henry J. Greenwood

Howard Grey	Paul Venuto
Edwin Langberg	Aaron Wasserman

PENNSYLVANIA BETA, Bucknell University (November 19, 1952)

Stuart Evans Athey	Francis Derby	Mrs. Lieberhorr
Ed. Axelrod	Eleanor Gilliams	John McKee
Harry Bostlan	Ronald Goodman	Mrs. V. Richardson
Donald Burns	John E. Gorman	Janet Sandford
Robert Catherman	Gates Hallino	Wu Wen Shao
Jeanne Cooper	Robert Keller	Bill Swartz
Lois Cullon	Al George Koslin	Tonny Wang
Barbara Davis	Mr. Zrzomins	Donald Watson
Harold Debbi		Richard Wilson

PENNSYLVANIA GAMMA, Lehigh University
(November 17, 1952)

Robert J. Adler	Frederick A. D. Granados	A. R. Middlekauff, Jr
Peter M. Barba	Louis W. Hauschild	Donald G. Smith
George E. Clauser	Charles E. Klabunde	Kenneth W. Todd
James Cutler	James P. Zlom	Raymond P. Vogel
Donald J. Glick	Stanley P. Lundstrom	Lawrence J. Wallen
Samuel Golderg	Ronald B. Madison	William P. Whyland

Robert T. Dolezal	Jerome W. Riese
Rev. Lawrence W. McCall	James P. Scanlon

Rev. Lawrence W. McCall William G schutz
James P. Scanlon
William G. Schutz

WISCONSIN BETA, University of Wisconsin
(Fall, 1952)

Archie Roy Burks
Robert L. Glass
Rosso
Helen S. MacDuffe

Eva Perlman

James Pomeroy
James Pomero
Catherine Standerfer
John A. Standerfer

EDITOR'S NOTE

In addition to the highly appreciated work of the associate editors, the editor wishes to express appreciation to the following persons who have given so freely of their time in their ready response when called on to help with the work of the Journal, such as: (1) refereeing papers; (2) preparing pen and ink drawings, or diagrams, and lettering for the same; (3) expert typing of mathematical papers and material for the Problem Department. Those who have been of recent service to us in these classifications are from the Syracuse University staff as listed below:
(1) Professors Albert Edrei, Abe Gelbart, Erik Hemmingsen, Kathryn Morgan, and Otway Pardee;
(2) Professor Joseph Kowalski of the Art and Industrial Design Departments;
(3) Miss Helen Folts and Mrs. Janet Marlin, secretaries to the Mathematics Department.

The typing of the non-mathematical parts of the manuscript is the work of the most efficient and cooperative secretary, Mrs. Reta Spaulding, of the City of Syracuse.

QUALITY LITHOPRINTING

including
Typewriter and Letterpress Composition

GUSHING - MALLOY, Inc.

1350 North Main Street
Ann Arbor, Michigan

(园宣

The most economical process for limited editions and out-of-print material.

- IT'S YOUR FUTURE -

SAVE FOR IT WITH UNITED STATES SAVINGS BONDS!

1953 BALFOUR

BLUE BOOK

This 40th Anniversary edition presents for you the largest selection of fraternity jewelry in the country.

Crested Rings

Bracelets, Pendants Cuff Links, Knives
Favors, Gifts
Jewel Cases

Zoo Parade of felt, plush and furry animals Wedding and Baby Gifts in silver Ming China

Mail Coupon for your FREE COPY!
Wear Your Fraternity Key every day. Write for your price list, mentioning fraternity name.

Official Jeweler to Pi Mu Epsilon

TME
L.G. Balfour Company

Attleboro, Mass.
L.G. BALFOUR COMPANY
\qquad Date

Please send1953 Blue Book

Name \qquad Factories...Attleboro, Mass.

In Canada.. . . . Contact your nearest BIRK'S STORE

Address \qquad

[^0]: *This is the corrected form of Problem 49 as printed in Number 7 of this Journal.

[^1]: *Photographs and biographical sketches of the General Officers of the Fraternity and of the Editorial Staff of the Journal appeared in Vol. 1, Nos. 5 and 6, of this Journal.

[^2]: *Editor's comment: It certainly is of interest to us. Thank you very much, Professor Read.

