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V\HO CGETS THE WASHERS?
A PROBLEMIN D Vi D NG RESOURCES

Rychard J. Bouwens
Hope College

Suppose that a college has a stock of washing machines and two
dormitories with different numbers of residents. It wishes to divide the
number of washers between the two dormitoriesso as to minimize the total
waiting time for al the residents. One solution would be to divide the
washers in proportionto the number of residentsin each dormitory. It may
come asa surprisethat thisis optimal only when washersare in short supply
and the sizes of the dormitory are similar. The goa of this paper is to
demonstrate this and find the optimal solution.

We will do this by constructing a model for the use of the washing
machines by the residents from which the total waiting time can be
calculated. The optimal distributionof washerscan then be found numerical-
ly.
Y We make several assumptions. Firgt, that the probabilitiesfor washing
machine use are time independent. (Actudly, it is important only that the
probabilities are time independent during the busiest parts of the day.)
Second, that the probability that a resident will begin to use a washer in a
timeinterval At is aAt for some constant a. Third, that the probability
that a resident will finish using a washer in the interval At is B At for a
constant 8.

Let P; denotethe probebility thet i washersare baing used provided thati < z.
where z is the number of washersin the dormitory. If i > z, P; will denote
the probability that i - z people are waiting to use the washers.

The change in the probability Py that no washersare being used during
an interval At depends on the probability that the only resident using the
washers will leave, P;(B At), and the probability that a resident will come
to use the washerswhen none arein use, Po(aAt). Since probabilitiesare
assumed to be time-independent, the change in P, is zero, so APy =
-aPyAt + P At =0o0r -aPy + BP; = 0. Similarly, the change in P,
over At comes from the probabilitiesthat
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a resident will arrive when no washers are in use,
either of two residentswill finish washing when two washersare in

use,
a resident will arrive when one washer is in use, and
a resident will finish when one washer isin use
APy = aPyAt + (2B)P,At - aP At - BPyAt = 0.
Thus

QPO +(‘a‘ﬂ)Pl +26P2=0.
Using the same reasoning, we have in general, where i < z,
aP;_y + (~if ~a)P; + (i + 1)BP;,; = 0.

For i 2 z, theterms (i + 1)$ and if must be modified since there are only
z washers. Hence, for i = z,

ctP,-_l + (‘Zﬁ "a)P" + ZBPI.*I = 0.

Since it would be difficult to solve the preceding recursion relations
explicitly, we will proceed to numerical work. Suppose that the average
length of time that washersare used is 30 minutes. Then the decay rate 8
is1/(0.5)= 2 hr 1. Let a = yn, wheren is the number of residentsin a
dormitory, so y is the probability that a resident will begi n washing in an
interval At. If we assume that residents visit the washing room two times
a week and that there are 100 hours in a during which people wash their
clothes, then we estimate that y = 21100 = 0.02 hr -1,

Based on these parameters, we can calculatethe valuesof P; in terms
of P, using the recursion refations. Requiring that the probabilities sum to
one determines P,. We will let Py(n, w) be the distributionof P;’s for a
dormitory with n residents and w washers. For example, the values of
P,(150, 4) are

i 0 1 2 3 4 5 6

P, 22 33 25 12 .05 .02 a

1
When i > 4, people are waiting in line to use the washers.
We now consider how to distribute w washers between two dormitories
with populations n; and n, respectively. The total waiting time is
proportional to the expected number of peoplewho will bewaitingto usethe
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washersat any time. The expected number of residents waiting to use the
washers for both dormitoriesis

Y @ -wp)Pi(nuwy) + Y (i - wp)Pilny wy)
i=w,+1 imwy+1
where w; and w, are the number of washers in the first and second
dormitories respectively.
We minimized the above expression for some valuesof ny, n,, and w
by checkingall possibledistributions. For each minimization, n; = 50. The
optimal distributionof washersis givenin Table 1 for some valuesof w and

n,.

Residents Total number of washers, w
in second
i dorm, 7, 8 14 20

50 4:4 7:17 10: 10
100 3:5 5:9 9:11
150 3:5 5:9 8:12
200 2:6 4:10 7:13
300 2:6 4:10 6:14
400 2:6 3:11 5:15
500 1:7 3:11 5:15

Table1l Optimal distribution of washers for »; = 50.

Based on the notion that resources should be alocated in proportion to
need, one might expect the optimal washer ratio to follow the population
ratio quite closely. However, even for a small number of washers, the
optimal washer ration lies below the population ratio of the dormitories.
Furthermore, as the number of washers increases, the optimal washer ratio.
lies even further below the population ratio of the dormitories. The optimal*
washer ratio between two dormitories is generally much closer to one than
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is the population ratio.

Finally, we note that this model could also be used for other things, such
as dividing parking space between two sites. Instead of having people use
washers, they would use parking spaces. Of course, the assumptions
underlying the modd must be satisfied, and it seems as if they are for the
parking model. The distribution of cars in a parking lot is approximately
time-independent during the busiest parts of the day. Furthermore, people
arrive at random times, occupy one space, and leave randomly. It would be
interesting to see if actual distributionsof washersor parking spaces, or any
other resourceto which the mode could be applied, agree with the optimums
determined by the modd.

Rychard Bouwens graduated from Hope College in 1994 with degrees
in mathematics, physics, and chemistry. He plans to study theoretical
physics in graduate school. Thispaper was written aspart & a seminar
conducted by Dr. Timothy J Pennings.

Chapter Report

The FLORIDA EPSILON Chapter (University of South Florida) held ten
meetings in 1993-94 in conjunction with the student chapter of the
Mathematical Association of America, reports Professor FREDRIC ZERLA.,
Included were talks by new faculty members, the presidents of the Chapter
(Michael Pippin—"Geometric inequalities') and the president of the MAA
student Chrystal Brandon—"Pato and mathematics', and visitors (Professor
Vilmos Totik, of the Hungarian Academy of Sciences—"Why can we not
decompose the square into an odd number of trianglesof equal area?'). In
addition, a meeting was devoted to mathematical socializing as the officers
posed problems and invited the members to try to stump each other with
mathematical puzzles. Twelve new members were initiated.

F,, ANDL, CANNOT HAVE THE SAME INITIAL DiGIT

Piero Filipponi
Fondazione Ugo Bordoni

Let F, (Fg=0,F =1 F,=F, {+F, sifna2)andL, (Lg =2
L =1L, =Ln1*Ly2 if na2) denotethe n-th element of the well-
celebrated Fibonacci and Lucas sequences, respectively.

The closed-form expressions (the so-called Binet forms) for these
elements are

n _gn
1) F,,=u and L, =a” +b",
V5
wherea=1-b=-1/b=(1+ ,/?)/2 is the positive root of the equation
z2-z-1=0.
The first few terms in the sequences are

F, 0 1 1 2 3 5 8 13 21 34 55

n

L, 2 1 3 4 7 11 18 29 47 7 123

Because of the periodicity of the Fibonacci and L ucassequences reduced
modulo an integer k (k = 10, in our case), it can be seen that F,, and L,
(expressed in base 10) have the samefina digit if and only if n =10k + 1
or 10k +6 (h=0,1, 2 ..). Thedetailed proof of thisis beyond the scope
of this note, whoseaim isto establish a property of the Fibonacci and Lucas
numbers that seems to have passed unnoticed in spite of its simplicity: F,
and L, cannot have the same initial digit for nz 2.

To show this we need two lemmas. We will let I(x) denote the initial
digit of a real positive number x a1l (expressed in base 10) and D(x) the
number of digits of the integral part of x.

LEMMA 1 I(L,) = I(F,y5) for n a5.
Proof. From (1), we haveF,,fS_ =L,-2b". Since |2b"| <1 (for
na?2), and D(L,) (for n a5), the statement clearly holds.

5
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LEMMA 2 I(x/5) = I(x).

Proof. Therearetwo cases. If D(xy/5) = D(x) then, since Y5 > 2, the
statement holds true. If D(xy/5) = D(x) * 1 then, since V5 <3 we have
I(xy/5)) = 1or 2. If I(x) were to equal to 1 or 2, then we should have

D(xy/5) = D(x), a contradiction! The statement follows necessarily.
THEOREM. I(F,) = I(L,) for na2.

Proof. By inspection, we see that I(F,) = I(L,) forn =2 3, and 4. By
Lemma 2 we haveI(F, V5)= I(F,) whence, by Lemma 1, I(L,) = I(F,) for
nz5

We conclude this note by challengingthe reader to prove the identity

3SIF,) +1L,) S13 (422)
and to find the smallest » such that I(F,) * I{Z,) = 13.

Acknowledgement

This work has been carried out within the framework of an agreement
between the Italian PT Administrationand the Fondazione Ugo Bordoni.

Piero Filipponi is currently a senior researcher at the "Ugo Bordoni"
Foundation in Rome. Besides being a member of Unione Matematica
Italiana and the Fibonacci Association, he is a member of the American
Mathematical Society and a reviewer for Mathematical Reviews. Heisthe
author of more than seventy papers, most of which deal with second-order
recurring sequences and their generalizations.

Chapter Report

The NEWYORK ALPHA EPSILON Chapter (Siena College) was installed
in May of 1993 with thirteen charter members. LAURIE SCHLENKERMANN
was elected president of the chapter and she reports that members of the
chapter participated in the first Hudson River Undergraduate Mathematics
Conferenceand also tutored first through eighth grade students. Eight new
members were initiated in May of 1994.

COUNTING TYPES OF SUBSETS OF LATTICES

Jared Grigsby
Hendrix College

In histextbook Applied Combinatorics, Fred Roberts presentsthe classic
sick tree/well tree problem to determinethe number of ways that a row of
consecutive sick trees can be placed within a row of well trees. In this
paper, we present Roberts discussion of this problem and then extend the
ideas to two-dimensional forestsand consider some variations.

In the sick tree/well tree problem we are given a row of » trees and we
want to determine the number of ways that j adjacent sick trees can appear
among the n treesas shown in the following diagram, where the open circles
represent sick trees.

OO0 .O°*°* .."

To count the number of ways that this can occur, we can think of the line
of j adjacent sick treesas one object and count the number of ways to place
that one object among the remaining well trees. If j trees are sick, then
n - j treesarewell. Thisleavesn - j + 1 placesin which to place the line

of sick trees. So there are (1 _’1+ l) = n-j+1 ways to place the j

adjacent sick trees among the remaining well trees.

The question arises. given a row of » treeswith j sick trees, what isthe
probability that thosej trees will appear adjacent to each other? To answer
this, we first count the number of ways that the j sick trees can appear
adjacent to one another in a row of » trees and divide by the number of
ways to place j sick trees anywhere among the n trees. We have already
counted the number of waysto place j adjacent sick treesin a row of » trees,
and the number of ways to placej sick trees anywhereamong the n treesis

given by (” ) Therefore the probability that j sick trees will appear
J

adjacent to each otheris (n -j + 1) /(;’)
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For example, in a row of nine trees the probability that three sick trees
will appear adjacent to each otheris (9 - 3 + 1)/ g =7/84 = .083. Since

thisissmall, it is evidence that the disease is contagious.
In two dimensions, we begin withan mx n array of trees and we want
to placea k X j subarray of sick trees within it as shown:

e O ... O o
e O ... O o
e o e o o
e e . e e o

Counting the number of ways to place the subarray within the array
involvestwo steps: counting the number of ways to place thek rows within
the m rows, and counting the number of ways to place the j columnswithin
then columns. Since the k rows are adjacent to each other, they can be
considered as one object. There are m -k other rows, so there are
m -k + 1 waysto placethek rowsamongthemrows. Similarly, thereare
n - j +1 waysto place thej columnsamong the n columns. Thus thereare
(m -k +1)(m - j +1) waysto placea k xj subarray into an mx n array.

Again, we can ask what is the probability that kj sick trees will appear

in a k Xj subarray within an mxn aray of mn trees. Since the total
number of ways to place kj sick trees among the nm trees is (”,:"), the
probability is d

(m-k+1)(n-j+1)

mn

kj
For example, if we havea 6 x 9 array of treesand know that twelve of
them are diseased, then the probability that the diseased trees appear in a
3x 4 subarray is (6 - 3 + 1)(9 - 4 + 1)/ gf‘; = 6997 x 10711, Thusit

isamost certain that the disease is contagious.
A more realistic model would have a subarray of diseased trees where
there are holes where certain trees have not contracted the disease. We call
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this a remova configuration. To count the number of ways this
configuration can occur, we place a dx w subarray into an m x» array
where up to T = 1 vertices, where T = min{d, W}, are removed (not
diseased). The restriction on T is necessary to insure that an entire row or
columnis not removed. We have already calculated the number of waysto
placethe subarray in thelargerarray: (m - d +1)(n - w +1). The number

of waysto removeupto T - 1 verticesis (d;v)’ so the total number

of removal configurations is the product of those two quantities.

For example, suppose that we again have a 6 x 9 array and want to
determine the probability that it contains a removal configuration of 9ze
4 x5, asin the following diagram.

@ ° ° ° ° . ° ° ®
e O O O O O o = o
° (o] (o] [o]} ° [o]} ° ° °
e O O O O O o o o
°® (o] [o]} e [o] Y ° ° °
° ° . ° . ° ° ° 3

The number of ways that the subarray can be placed within the array is
6-4+1D(9-5+1) = 15 and the number of ways that up to three

3
vertices can be removed is 2,._0 ( 20) = 1351. So, the total number of

.

4 x5 removal configurationsis 20265. The total number of waysof placing
20, 19, 18, or 17 diseased trees is

W=54+54+54+54,
20 19 18 17
so the probability that the trees will appear in a remova configuration is
20265/W = 3.12x 10711, Again, the probability is very small that this
configuration will appear by chance.

Removal configurationscan be generalized to higher dimensionswhere
we havea wy X w; X ... X w,, subarray placedina k; x k; X ... X k,, array with
Up to min, _is<n {wywy..w; W, .q.w,} = 1vertices removed. The
ideas are the same, though it is no "“nger appropriate to speak of trees.

Another type of configuration, the shift configuration, is perhaps more
realistic than the removal configu-ation because more nondiseased treescan
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be omitted from the subarray while the diseased configuration still remains
dense. A shift configurationisasubset of a d x w subarray withinanm x n
array that is obtained as follows:

1) Choosea (d-1) x (w-1) subarray, but do not place it on the
rightmost column or aong the bottom row.

2) Choose a subset of the rows and columns of the subarray. To
avoid double-countingfull arrays, we are alowed to choose no rows or no
columns, but we can choose no more than d - 2 rowsor w - 2 columns.

3) Shift each row chosen to the right one place.

4) Shift each column down one place.

For example, if we havea 3x 4 subarray ina 6 x 9 array, with its upper
left-hand element in row 2 and column 2 of the large array, and we choose
rows 1 and 2 and column 3, the shift configurationthat resultsis

[
o
L
L]

**000°
..ooo.

L]
o
°
o
L]
®

e o o o L L
° ° ° ® ° L
® ® ® ® L] L ]
L] [ ] ® L] [ ] ®

To count the number of shift configurations, we

1) Count the number of ways to place the (d-1) x(w-1)
subarray within the mx n array, but not placingit on the right-hand side or
at the bottom, and count the number of ways to shift the chosen rows and
columns.

2) Count the number of waysto place a subarray at the bottom of
the array and shift rows

3) Count the number of ways to place a subarray on the right-hand
side of the array and shift columns

4) Count the number of ways to place a subarray in the bottom
right-hand comer of the array.

The result is
d-2 w-2 d-1 -1
S=(m-d+D)@n-w+) 3 ¥ ( _ )(“’ )
i=0 j=0 ¢ ¢

d-2

O "2 (w-1 d-1
(m d+1)E( l_ )+(n-w+1)2( )+1.

i=0 i=0 \ @
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Again, we areinterestedin the probability that given (d - 1)(w - 1) sick
trees that they will appear in a shift configuration. Thisis
S

mn
d-1Hw-1)
These configurations can be applicable to other situations where the
probability of clumping is important.

Jared Grigsby prepared this paper while a senior at Hendrix College,
under the direction of Dr. Dwayne Collins. He is presently a graduate
student at Clemson University.

Chapter Report

Professor JOHN PETRO, corresponding secretary for the MICHIGAN
EPSILON Chapter (Western Michigan University), reports a very full round
of activities for the past year. There was a pizza party, a used book sale
which netted $700 to help support the activities of the chapter, and the
chapter's annual service project consisting of a half-day program for high
school students involving mathematical problem-solvingand a broad range
of short talks. Forty-nine new members were initiated. Nine invited talks
were jointly sponsored by the chapter and the Kalamazoo Area Student
Chapter of the MAA, Speakersincluded Philip Hanlon, Underwood Dudley,
Joan Hutchinson, John Ewing, Peter Hilton, Jean Pedersen, Estela Gavosto,
and Evelyn Hart. The chapter received funds to partialy support these
activities through student assessment fees and the Honors College.



GREEDY IS NOT ALWAYS SAFE

Eric P Kamprath
Carthage College

A personnel officer is considering a pool of one hundred applicants for
a position. The officer would naturaly like to hire the best applicant. We
will assumethat before interviewsthereis no way to know the ability range
of the applicantsand, because they will appear in random order, no way of
knowing when the best applicant will be interviewed. \What should the
officer do?

The conditionsare

1) All of the applicants can be ranked in quality from 1 (best) to
100.

2) Therank of an applicant relativeto those aready interviewed can
be determined after the applicant is interviewed. The absolute rank of an
applicant cannot be determined.

3) The position must be offered immediately following an interview
since otherwise the applicant will leave and accept a job with a competitor.

4) If the position has not been filled by the 100th interview, the last
applicant must be hired.

Traditionally, the strategy proposed has been to interview some number
of applicantswithout hiring any, in order to determinea standard. Starting
with applicant n, the next applicant who exhibits ability above this standard
is hired. If none exceeds the standard, then the last applicant is hired. We
will call thisstrategy n. For example, strategy 25 usesthe first 24 applicants
to determine the standard, and the first of applicants 25 through 100 to
exceed the standard is hired.

The problem is to determinethe optimal value of n, by applying some
criterion. A natural criterionisto choose n so asto maximizethe probability
of hiring the best applicant. Wewill call this the greedy strategy. We will
show that the greedy strategy may not be the best strategy after all.

To do this, we will use the

THECREM  Given positive integers m, n, k with n+k s m+1, let
f(m, n, K) denote the probability of obtaining an object of rank k from a

12
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random permutation of m objects by using strategy n. Then

1/m whenevern =1

m
‘ ¥ " 1 whenevern>landk=1
f(m’ n, k) = P A m(p - 1)
. +1-k
n-1 ME (n - 1)(m - p)!(m - k)! otherwise.
mm -1  po @ -Dm+1-p-k'm!

Proof . We successfully obtain the object of rank k using strategy n
whenever the random permutation of m objectsexhibits all of the following
qualities:

1) The object of rank k must not be contained among the first
n - 1 objects.

2) If object k isin position p, then the object ranking best of the
first p - 1 objects must be contained among the first n - 1 objects.

3) All objects of better rank than k must follow object k in the
permutation.

Clearly, when strategy 1 is used, there is no standard and the object
obtainedisin thefirst position in the permutation. Hence f(m, 1, k) = 1/m.
We will suppose hereafter that n > 1.

Object k is found in any position with a probability of 1/m. If object k
isin positionp (1 s p s m) then the object ranking best of p - 1 objects
must be contained among the first n -1 objects. Thus condition 2 is
fulfilled with probability (n - 1)/(p - 1).

When k =1, condition 3is not a consideration because no other object
has a better rank than object 1. Since by condition 1 p cannot be less than
or equal to n -1, the lower limit on p is n Considering al possible
positionsp of object 1, the probability of obtaining object 1is

m
fim,n, 1) = _l_n—l.
pen mp-1

When k > 1 condition 3 must be taken into account. The k - 1 objects
ranking better than object k must be contained in the m - p positions
followingobject k in theordering. The probability that a permutation fulfills
condition 3, then, is
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m-p
(" - 1) = (m - p)(m - k)!
(m-l) m+1-p-bim-101

k=1

Condition 3 a'so dictates the upper limit of p because the last position
p which fulfillscondition 3 isthat for which only objectsof rank better than
k follow k These objects would occupy the last k - 1 positions, which are
positions m - k + 2 through m The upper limit of p isthus m - (k - 1).
Becausewe must consider all possible positionspof object &, the probability
that the permutation fulfillsall of conditions1 through 3is
m-k+1

¥ ln-l_ (m-plem-by
S mMp-1(m+1-p-Ri(m- 1)

We must dso consider thecasein which object K is obtained by defauilt.

The conditionsfor thisare

1) Object £k must appear in positionm

2) The object of rank 1 must appear in one of the firstn =1
positions.

Object k appearsin postion mwith probability 1lm. The probability that
object 1 appears in the firsd »n -1 of the remaining m -1 postions is
(n - 1)/(m - 1). Thus the probability that object 4 is obtained by default
is (» - 1)/m(m - 1). Thisdefault factor must be added to the expressions
aboveto give the correct probability. However, positionmis not considered
whenn = 1, and the k = 1 expression above dready considersthe casep =
m  This completesthe proof.

By cdculating f(100, 7, 1) for 1 sns100, the greedy Strategy is
strategy 38—that is, interview and reject thefirst 37 candidatesand hire the
first candidate beginning with the 38th who ranks higher than al of the
previouscandidates. The probability of hiring the best candidate using this
strategy is 0.3710.

However, with the probabilitiesin the Theoremit is possibleto calculate
the expected rank: of the candidate hired using strategy n.  For strategy 38,
it is1965. If instead of the greedy strategy, the personnd officer decides
to select the Strategy that makes the expected rank of the candidate selected
the highest (the sefe dtrategy), strategy 10 is the one to pick. The expected
rank for thisstrategy is 9.40. The safe Srategy produces, on the average, a
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considerably better result than the greedy strategy. Which one to select may
depend on whether the hiring process is going to take place many times, or
only once. .

By plotting the expected vaue of the rank of the candidate selected by
the greedy and safe Strategies for various vaues of m, it appears that the
greedy strategy gives an expected vaue thet is proportiond to m while the
safe strategy gives approximately ﬁ . More work would be needed to
determineif the appearancesreflect redlity.

Eric Kamprath, a native d Milwaukee, \Nisconsan, graduated from
Carthage College in 1994 with majors in mathematics and chemistry. He
plansto enter a graduateprogram in matematics or computer science.

Chapter Reports

Members of the CONNECTI CUT GAMMA Chapter (Fairfield University)
assisted in coordinating the activities for MathCounts, a mathematics contest
for junior high school students. Professor JOAN WYZKOWSKI WEISS also
reportsthat three membersof the chapter, Jennifer Bacik, Shannon Latham,
and Jody Panchak were recognized for outstanding achievement in mathe-
matics at the University's annua awards ceremony.

The GEORA ABETA Chapter (Georgia Intitute of Technology), reports
Professor JAMES M. OSBORN, presented awards to two seniors mgjoring in
applied mathematics, William Garrison and Christopher Spruell, who
maintained at least a 3.70 grade-point average in mathematics courses.

Professor CHRI STOPHERLEARY reportsthat the major activity of the NEW
YCORK OMEGA Chapter (St. Bonaventure University) continues to be the,
popular Mathematics Forum, co-sponsored with the MAA student chapter.
Last year there were nine talks by students, faculty members, and visitors.



A CURIOUS EQUIVALENCE RELATION

James M. Cargal
Troy State University in Mongomery

The following equivalence relation is curious because it is elementary
but not obvious or (very) well known. It may be useful as a source of
examples.

We define the relation ~ on the positive integers by

x ~y if and only if xy isa perfect square.

Reflexivity and symmetry are immediate. The surprising thing is that
trangitivity also holds. That is, if x ~y andy ~zthenx ~z Thisiseasily
proven: sincex -~y and y ~ z then xy and yz are squares, so their product,
xy?z, isasquare. So, xz = (xy 2z)/y? is a square divided by a square
and is thereforealso a square.

Like al equivalencerelations, ~ partitionsthe set that it operateson, in
this case the positive integers, into equivalence classes. It can be seen that
the smallest element in a class is a square-free integer (one that has no
square factors) and each square-free integer is the smallest element of its
own class. If we define sf(n) to be n with all square factors divided out
(so, for example, sf(12) = 3 and sf(200) = 2) then the smallest element of
n’s classis sf(n). Notethat if nisa square then sf(n) = 1, so the first
class under this relationis the class of square integers.

Let us denote, asis customary, the equivalence class that contains n by
[n]. For example, the class of squaresis denoted by [1]. The classes are
well-defined under multiplication. If x,y € [n}and u, v € [m] then[xul]
= [yv] because suyv = (xy)(uv), the product of two squares, is itself a
square. So, we can write [m][n] = [mn].

It follows that [1], the class of squares, is an identity element for the
multiplicative algebra of equivalence classes. Also, each class is its own
inverse: [n][n] = [n2] = [1]. Lastly, associativity and commutativity are
inherited from the positive integers. Therefore, the equivalence classes
constitute an abelian group under multiplication.
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Jim Cargal directs the mathematics department at Troy State University
in Montgomery. His Ph. D. degree, from TexasA & M, isin operations
research. Besidesfinishing a discrete mathematicstext, he isinterested in
jazz, classical mudc, and physics.

The Death of Astrology

A survey of al the mathematicians appearing in the Biographical
Dictionary of Mathematicians (Scribner's, New Y ork, 1970-91) whose names
begin with the letters from N to Z discloses the following distribution of
month of birth. (For those mathematicianswhose birth date is known, that
is. The birth certificate of Pythagoras, for instance, is logt.)

Jan Feb Mar  Apr May Jun Jul Aug Sep
22 23 18 26 14 20 8 31 18

Oct Nov  Dec
18 24 18

There are 240 mathematiciansin all, and so 20 births are to be exgected in
each month. Any student of statisticscan calculatethe value of %~ and see
that it is not significant at the 5% level. Thedistribution of births by season
iseven more uniform: {63, 58, 59, 60} for{Win, Spr, Sum, Fd}. Thevalue
of %2 for that distribution is so small as to raise the suspicion that the
agreement with the expected 60 per season is too good to be true. But that
is how the birth dates come out, as anyone can check. So much for
astrology!

But—we see that fifty-seven mathematicians were born in months
that begin with A. Supposing that births are uniformly distributed, the
number born in A months is approximately a norma random variable with
mean 240(1/6) = 40 and variance 240(1/6)(5/6) = 10013. Fifty-sevenis 2.9
standard deviationsaway from the mean! The probability of that happening
by chanceisso close to zero as to make no difference. There issomething
about A months that attracts mathematicians. Astrology is back again. .

Or isit? Has some lying with statistics been going on here?



THE SECRET SANTA PROBLEM

Michael J Reske
Carthage College

There are twenty peoplein a class who participatein a " Secret Santa’
paty. Each person chooses someone esgs name out of a hat and that
person becomestheir Secret Santa partner for whomthey secretly buy a gift.
Afterwards, the twenty people get together and stand next to their Secret
Santa partner. There may beas few asonelargecycleof twenty or as many
as ten cyclesof two. We will find the expected number of cycles for a
group of n people.

Formulating the problem in terms of graph theory, we will find the
expected number of cycles on a randomly generated n-vertex graph of a
certain type. Suppose that we have a randomly generated graph, not
necessarily connected, on n vertices where exactly one directed edge enters
every vertex and exactly one directed edge leaves every vertex. We will
refer to such graphsas Santagraphs, or S-graphsfor short. We want to find
the expected number of cyclesin an S-graph.

THEQREML Let fin, K) denote the number of S-graphs with n vertices

that have exactly k cycles. Then

fn, 1) = (8 - Df(n -1, 1),

f, K =(n-1Dfr-1L,K +f(n -2 k-1, if k> 1,
withf(2, 1) =1 and f(n, k) =Owhenn=2or3and k 2 2.

Proof. To find the number of n-vertex S-graphs with k cycles we will
consider two cases. Each will correspond to away of building a n-vertex S-
graph fromsmaller S-grgphs. In thefirst case, wherethe nth vertex isadded
to an »n - 1-vertex S-graph having k cycles, the nth vertex can be inserted
onany of n-1edges This resultsinf(n -1, K) cycles being formed. In
the second case, the nth point is joined with any of the n = 1 vertices to
formacycled two vertices: The remaining n - 2 vertices can be arranged
inay o f(n-2k-1) ways Thus f(m, K = (N-Df(n-1,K t
f(n -2, k-1).

There follows a table showing the vaues of f(n, k) for smal valuesof
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n and F(n), the total number of S-graphswith n vertices.

Number of cycdles, k

n F(n) 1 2 3
2 1 1 0 0
3 2 2 0 0
4 9 6 3 0
5 44 24 20 0
6 265 120 130 15
7 1854 720 924 210

fin, )
Since F(n) = ; f(n, k), Theorem 1 gives

F(n) =(n-1)[F(n-1) +F(n-2)], F(2) =1, F(3) =2.
The expected number of cycles, E(n), in an S-graph is
Em =Y f&0
k=1 F()
The next theorem gives a recurson relation for E(n).
THEOREM 2 E(2) = E(3) =1, and for n2 4,

E@m) - ‘; En;l[F(n “)E(@m-1) + F(n -2)E@-2) + F(n -2)].

Proof. Using the recurson relation for F(n) and Theorem 1, we have

1 L 1
1,'.—(")-"2_:2 f(n, )k 30 f(n, 1)

1 (- —1,k) +f(n -2, k-1)]k
Ty X~ Dfe 1B + fn -2 k1)
1_fn, 1)

0

E(n)
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_ Frn-1)(n-1) v~ f(n-1,k)k
F(n) k=2 F(n-1)

Ef(n 3 = 1)k+f(" 1)

F( ) k=2 F(n)
_ F(n-1)(n-1) Z”: fo-LBk| (-1)fn-1,1)
F(n) k=1 F(r-1) F(n)
, (n-Dfr-1,1)
F(),ﬂzzf(" Ah o
_Fe-De-D o on-1 .
= o5 E(n-1) 0] kzsjl fn-2,k)k +1)
_ F(n-1)(n-1)
= e gy X 2k
F( ) k):l fn-2,k
_ F(n-1)(n - I)E(n 1) F(n- 2)(n—1)2 f(n-2,k)k
F() F(n) & TFm-2)
F()
_ F(n-)(n-1) . F(n-2)(n-1)
o E(n-1) T E(n-2)
¥ '}(‘n)lF(n—Z)

[F(r-1)E(-1) + F(n-2)E(n ~2) + F(n-2)].

=F()

Caculations show that E(n) incresses dowly with n, reaching only
4.721 whenn=170. A plotof E(n) againgt nleadsto theconjecturethatE (n)
is proportional to Inn. Thiscould be verified if f(n, k) could be expressed
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in closed form.

Michael Reske prepared thispaper while a junior at Carthage College,
taking a coursein the theory ofprobability.

L anguage and M athematics

Professor 1. J. GOOD (Virginia Polytechnic Ingtitute and State
University) writes, | hope with some irony,

Theworg linguistic error frequently perpetrated isto write "denoted
x" where "denoted by x" iscorrect. Peopledont say "the ball was
kicked Tom" when they mean either (i) "the ball was kicked by
Tom" or (ii) "the ball was kicked, Tom". For examples of this
horrible error see mueJ9 (1994), p. 655, line 2 and p. 663, lire 8
The editor has the primary respongbility!

Meaculpa, | guess. However, this may beoneof those battles, like
the one against improperly using "hopefully” insteed of, as in the first
sentence, the correct "I hope’, that may have been logst and is therefore no
longer worth fighting. Language changes, even if to the purists among us
it seems to be continualy on the decline.

Readersareinvited to comment on any other misuses of mathemati-
cal language to which they are sengditive. For example, | find "math" hard
to abide. Theword isa proud one, mathematics, and deservesto be given
in full. Peopledon't tak about phys, or hist, or Eng. Yes, "mathematics’
has all of four syllables, but life is not so rushed, nor are we so incapable,
that we cannot come out with all of them. Besdes, "math" dready has a
meaning—a mowing, whence "aftermath"—and we don't want confusion to
arise, do we?



A NOTE ON AN EXPONENTIAL EQUATION

Rex H. Wu
SUNY, Brooklyn

In [1], Norman Schaumberger provided a positive integer solution to

2l eyt 27 4y

with x = 300D/ L 31008 5 _ 31007 gy 2 3100 [y eneral
(xo, xl, X2, ese ,x”) =
(n((ko-l)!#l)/ko’ n(ko-l)!/kl)’ n(k“-l)!/kz’ . ’n(k‘)—l)!/kn)

isasolutionto

.1t0k0 = J‘:lk1 4-14:2"2 +...+x:"

provided kg is primeand k; | (kg - 1)! for i =1,2,..,n. The reason for
thisis
® (@) o et - mme = s T ()
isl i=l
since kg isaprime, if wechooseq = (ky = 1)! then from Wilson's Theorem
(g + 1)/ky isaninteger, and k; | g for eachi.
Inthis note, we will use thisideat o develop solutionst o

n
k;
@ ag%y’ = pIEAS
ie1
We do not requirethat the k; be distinct. To avoid trivid cases, we will
taken > 1
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THEOREM 1 If ay |n and ged(kg, k) = 1 for i = 1, 2,...,n then (2) has
asolution in positiveintegers.

Proof. It sufficesto show that thereisaqsuch that kg, | (g +1) andk;] g
for i =1, 2 ..,n. Thenwe can apply (1).

Let M = lem(ky, &y, ..., k,). Then there exists an integer x such that
g = Mx and ky | (Mx +1). This is so because ged(kg, k;) = 1, which
implies ged(kg, M) =1, and Mx +1 » O (Mmod ky) has a solution if
ged(kg, M) = 1.

Next, apply (1) and let m = n/ag. Thenm isan integer and

ao-[(n/ao)(qd)lk"]ko = ag'm 9+l = agymm9=nm?

- 2": i = i (mq/k‘.)k.' _ g [( n/ao)q/k‘-]ki.

il i=l
Thus
1)/ k. v ik,
(g Xp» Xgp o2 X,y) = ((n/ao)“’ Do, wiag)™, (wlag)™, ..., (nlag)®
isasolution.
For example, let us find a solution to x!! = y4 +z7 + w® using the

theorem. Hereag =1andn = 3 Since 1|3 and ged(11, 4) = ged(11, 7)
= ged(11, 9) = 1, there exists a solution. We havem = 3 and M =
lem(4, 7, 9) = 252. Solving252v +1 » O (mod11) givesv s 1 (mod 11).
So, taking q = 252 would give a solution, specificaly (x,y,zZ w) =
(323’ 363’ 336, 328)'

While ged (kg, k;) =1 and ag | n aresufficient conditionsfor (2) to have
asolution, they are not necessary. There may besolutionsif ged(ky, k;) = 1
for some (but not dl) i. The next theorem determines some.

THECREM 2 If @y =t°, m =r®, t|r, ad ged(kg M) | s where M =
lem(ky, &y, ..., k,) and c is an integer, then (2) has a solution in positive
integers.
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Proof. Since ged (kg M) | (cky - S), thecongruence Mx +s = 0 (mod An)
has asolution. Now let q = Mx. Then

ky

o X1 T r ) = (TR i i, .., riy™)

isasolution, as can be seen from
aol (1T ] = ayeliy1*s = £5GRY @R = r Gty

= n(rld = f: [

i=1

For example, to find a solution to x014 = x12 + ZxZS + x36, we haven =
4=2% M =1lecm(2, 5 6) = 30, gcd(14, 30) = 2and 2| (14 - 2), so the
equation hasasolution. Solve 30v + 2 = O (mod14) toobtain v = 60r 13
(mod 14). If wetakex = 6, then g = 180 and a solution is(xg, x;, X, X3)
= (215, 2%, 2%, 230y,

There are many difficult questionsthat can be asked about exponential
equations. The two theorems do not provide al solutions to an equation
even if their conditions are met.  Is there an agorithm that can generate

more or even al solutions? Can we determinewhen (2) does not have any
solutions? Obvioudy, the theorems fail to find solutions for certain

equations. For instance, x2 =y 3 +z*4 has a solution, namdly (x,y, 2) =
k i

(3,2 1). A specid caseof theequationinok" = X ! +x2k2 with Jig, k;,

and k, > 2 Can we conclude that if this equation has a solution then

ged (kg, ky) = ged (kg, ky) = 1?7 (Theorem 2 fails to give a counterexample

for this hypothesis) If the aove were true, Fermat’s Last Theorem would

be a corollary.

Acknowledgement. | wish to thank Susan Hom and Shi-Feng Lu for
reviewing this paper.
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A Triangle

In the figure on the right, the
anglesat A, B, and C in the equilat-
eral triangle ABC has been bisected
twice. ANDREWCUSUMANO chd-
lenges you to show that £F is per-
pendicular to DC and that GH is E
paralld to BC.




A FABLE OF Tw0 COORDINATE STATES

Ellen Oliver
LeMars, | owa

Years ago, in lands far away, there were two countries known as the
Cartesian Stateand the Argand State. Now the Cartesian State was governed
by the Cartesian or rectangular coordinatesystem while the Argand state was
governed by the Argand or complex coordinate state.

It so happened that from each of these states ascholar journeyed to meet
with many other scholars from other statesto hear leading professorsand to
discuss and learn from each other in Seminars and Discussion Sessions.
That year, meetings were held in the great city of Know More and each
scholar who came hoped to gain new knowledge and understanding.

During one of the Discussion SessionsDr. Real and Dr. Imaginary began
to compare their two systems of government. They soon found that their
two systems were alike in some details. They each used two perpendicular
number lines which intersected at a point caled the origin and used the
valuesx = Oandy = Oto name itslocation. These perpendicular lines were
called the axes. All valuesto the right of the vertical axis were considered
to be positive values of x and al values above the horizona axis were
considered to be positivevalues of y.

Dr. Imaginary was now very interested in finding what was different
about their two systems. Dr. Red said that only rea numbers could be
represented on the Cartesian plane. He gave an example of the ordered pair
(%, y) and how it would be located. The example he gave was that of the
point (1, 3). Thevalueof x = 1 is represented by a vertical line which is
one unit to the right of the vertica axis and the valueof y = 3is represented
by the horizonta line which is three units above the horizontd axis. The
point (1, 3) isthen the point of the intersection of these two lines.

Dr. Imaginary said that he thought that there was a relationship between
this example and the complex number z= x +iy. Using the same ordered
pairs that Dr. Rea had used he wrote z = 1 + 3i. In order to show this
point on his system he labeled the horizontal axis as thex axis with the real
units of x as Dr. Real had done and the vertical axis was labeled the i axis.
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Thisdifference from they axis now cameas Dr. Imaginary changed the units
label to be units of yi value instead of regular units in the reals. Then he
located z= 1 + 3i to be the intersection of the vertical line one unit to the
right of the vertical axis and the horizontd line 3i which is three units
above the horizontal axis. Both scholars were excited to find that for the
ordered pair of real numbers (1, 3) and for the same ordered pair of the
complex number z = 1 + 3i that the location would be the same if one of
the two coordinate systems were to be superimposed on the other.

Since both these scholars were interested in the behavior of conies they
began to look into any relationship which might exist between their two
systems concerning these topics. For the short time they had left they
decided to limit their discussion to those conics whose vertices or centers
were located at the origin.

Dr. Real graphed acircle using the unit circlex 2 +y % = 1. Immediate-
ly Dr. Imaginary spoke up and said, "But how about thosex values excluded
from he domain of the red for the circle you have graphed?’ He then
proceeded to use those excluded values of x and the imaginary values of y
which he found to graph his results on the Argand coordinate system. When
he had finished they discovered that the graph was a hyperbola whose
vertices intersected the x axis at the same point that the circle intersected it
when one system was superimposedon the other. Then Dr. Real graphed the
hyperbola x? -y 2 =2 1 on the Catesian coordinate system and Dr.
Imaginary found that for the excluded of valuesof x that his graph was that
of a unit circle with the intersection of the x axis at the same point as that
of the hyperbola that Dr. Red had graphed. Then after more study they
found a similar relationship between the ellipse and the hyperbola.

When they studied the parabola, they discovered avery interesting result.
For any given parabola with its vertex on the vertical axis in the Cartesian
coordinate system there was a mirror image across the axis in the Argand
system.

There was no time left for further study on any of these topics of mutual
interest, so these two learned men left the city of Know More. Before
leaving, they made plans to continue their studies and meet for discussions
at the meeting to be held in the city of Further Knowledge during the next
year. Their plans for study were to investigate what happens to the
relationships between the conies of the two systems when a conic is*
translated from the origin or rotated away from the horizontal axis. We can



28 P1 Mu EPSILON JOURNAL

be sure of a most interesting meeting between these two scholars when they
meet next year in the city of Further Knowledge.

Ellen Oliver received her B. A. degreefrom Olivet College and her M.
A. degreefrom the University o South Dakota. She was Chairman o the
department o mathematics at Westmar College from 1957 until her
retirement in 1985.

One Derivativeis Plenty

Professor JAMES CHEW of North Carolina A & T State University
presents the following proof that a differentiable function of a complex
variable hasinfinitely many derivatives. This may be news to some readers
of the Journal, who should then read the proof carefully.

Let f(z) = U(x,y) T iV(x,y) beadifferentiablefunction of a complex
variablez =x +iy. Then

f'@ =U, +iV, = v, -iu,.

TheequationsU, = V and -U, = V, are called the Cauchy-Riemann
equations. The first formulafor '@ |sthe limit of the expression for the
derivative as Az — 0 horizontally, while in the second formulaAz — O
vertically. Conversdly, if the Cauchy-Riemannequations hold, and the four
first partial derivativesof U and V are continuous, then f'(z) exists.

Now let g(z) =P+ iQ wheeP= U, and Q= V,. The horizontal
approach for the difference-quotient expressionfor g'(z) is P, + iQ, while
the vertical approach answer is @, - iP,. Henceto show that g'(z) exists
we need to show that P, = @ and P, = -Q,. Bup, =(U,), =(Vy)x
= (Vx)y =0, We show ﬁ'y = -éx using the otber Cauchy Rlemann
equation, Uy = -V,.

Hence g'(z) = f"(2) exists and, by induction, all order derivatives of
f(@) exist!

ON THE NUMBER OF INVERTIBLE MATRICES
OVER GALOIS RINGS

Beth Miller
Penn State University—University Park

Recently, Lancaster [2] determined the number of 2x 2 invertible
matrices over ZP. and showed that the probability of choosing a 2x 2
invertible matrix over ZP. is equal to the probability of choosing a 2x 2
invertible matrix over ZP He also conjectured that the result is true for
nxn matricesover Zp°

In this note we will prove a generalized version of Lancaster's
conjecture.  We will show that the probability of choosing an nxn
invertible matrix over the Galoisring GR(p €, m) isequal to the probability
of choosing an nxn invertible matrix over the finite field Fp,. =

GR(p, m). om
For a prime p, let GR(p®, m) denote the Galois ring of order p
which can be obtained as a Galois extension of Z . of degree m. Thus

CGR(p% 1) = Z . and GR(p, M) = F m. For example, to construct the

ring GR(32 2) we first find an |rredUC|bIeponnom|aI over the fidd Zs,
say x2 +1, and then we construct the quotient ring Z9[x]/(x +1); i. e,

GR(3% 2) - Zg[x]/(x +1)={a+bila bgZyadi%+1=0).
We also see that the function B defined by
B((3a, +ag) +(3by + bg)i) = ag + byi

for al ay, ag by, and by in Z; is a homomorphism from the ring

GR(3% 2) onto the field GR(3, 2).
More generaly, if f(x) denotes an irreducible polynomial of degree m
over Zp, then

GR(p® m) = {Ag +Aqi +.. +A, i} |AEZ,,0sksm - 1}.

Further,if Ay = agg + P + @ .1P "1 with 4, €Z, forOsksm-1

29
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and O s r se - |, then the function g defined by

. .m-1y — . .m-1
B(Ag +Ayi = Ay 1i" ") =agy +aygi+. +a, ;qi™

is a homomorphism from the ring GR(p ¥, m) onto the fild GR(p, m).
Further details concerning Galois rings can be found in [1].
Now we are ready for our result.

THEOREM. Letp beaprimeand GR(p®, m) bethe Galoisring of order
p ™. Then the probability of choosingan nx n invertiblematrix over the
ring GR(p % m) isequal to the probability of choosing an nx n invertible
matrix over the field Fp.., = G(p, m).

Proof. Let M, (p°, m) denotethering of nx n matricesover thering

nxn

GR(p°, m) andlet M=, (p® m) denoteitscorresponding group of units.
Then

C =(bj)EM,,  (p°m) + det(C)a-GR*{pe,
< B(det(C)) €GR *(p, m)
< det(B(b;))EGR™(p, m),

where GR *(p ¢, m) and GR(p, m) denote the units of GR(p¢ m) and
GR(p, m) respectively. Hence, if
b’] = C'JO + c’.’lp + s +cij,e—lpe-1 With C”ke GR(p, m),
then
C=(b;)EM,, (p°m) < €ijo) EM,, . (p, m).
Thus,
lM;x,,(per m) I = lM;x,,(P’ m) Ipm(e-l)nxn

and

IMnxn(pe’ m)l =pm(e-1)nxn - anxn(pe’ m)l

an.xn(P’ m)| IM"""(p’ m)|

which is the result.
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Mathematicsin Literature

From Smilla’s Sense d Snow, by Peter Hgeg, translated by Tiina
Nunnally (Farrar, Strauss, and Giroux, New York, 1993), contributed by
Professor DONALD CROWE, University of Wisconsin, Madison:

Cantor illustrated the concept of infinity for his studentsby telling them
that there was oncea man who had a hotdl with an infinite number of rooms,
and the hotel was fully occupied. Then one more guest arrived. So the
owner moved the guest in room number 1 into room number 2; the guest in
room number 2 into number 3; the guest in 3 into room 4, and so on. In
that way room number 1 became vacant for the new guest.

What delights me about this story is that everyone involved, the guest
and the owner, accept it as perfectly natura to carry out an infinite number
of operationsso that one guest can have peace and quiet in a room of his
own. That isa gresat tribute to solitude.



LONG CHAINS OF PRIMES

Thomas Koshy
Framingham State College

In 1772, Euler discovered the celebrated prime-generating polynomial
E(x) = x2-x+41

that yieldsdistinct primesfor 1 s x < 40 [1, vol. 1, 420-4211. The largest
prime in the Euler chain is E(40) = 1601 and thesmallestisE(1) = 41. In
1899, Escott observed that

ES(x) = E(x - 39) = x2 - 79x + 1601
isaprimefor -40 < x < 39. Althoughthe Escott polynomial yieldsa chain

of eighty primes, they are the Euler primes, each repeated twice. 1n 1982,
Higgins [2] found a polynomial,

H(x) = 9x? - 231x + 1523,

that produces 40 distinct primes, some of which are different from the Euler
primes, the largest being H(39) = 6203.

Althoughit is known that no quadratic polynomial can do better than the
Euler polynomia in giving a chain of primes, in 1983 Schram [3] devised
a variation, §(x), that generatesa chain of 176 primesconsisting of the forty
distinct Euler primes with repetitions. To define S(x), let d denote the sum
of thedigitsof x, with thesamesignasx. Sincex = d (mod 3),x +24d = 0
(mod 3). That is, (x +2d)/3 isaninteger. Then

S(x) =E(x+2d)=(x+2d)2_ x+2d

3 3 3

will generate a prime for -88 < x < 87, atotal of 176 primes.
This can be improved upon. Since x = d (mod 9), we have x + 8d =
0 (mod 9) and hence (x + 84)/9 isan integer. If

K(x) =E(x +8d) - (x +8d)2 _(x +8d) + 41

9 9 9
then it will be found that K(x) generatesa chain of primesof length 336 for

32
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-167<x < 168. Of course, the primes are the Euler primes with
repetitions. There may not be any simple formula that produces a longer
chain of primes.
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Chapter Report

Ms. MARLA EASON, president of the Arkansas Beta Chapter (Hendrix
College) reports that the Chapter sent students to speak at conferences in
Terre Haute, Kalamazoo, and Cincinnati, as well as at the MAA section
meeting in Searcy and the Hendrix-Rhodes-Sewaneeconferencein Memphis.
The Chapter held several meetings, sponsored a monthly problem-solving
contest, and, after the initiation of new members, attended an Arkansas
Travelers baseball game.



COMPARISON OF QUEUEING SYSTEMS

Sumitava Chatterjee and Frederick Solomon
Warren Wilson College

In the standard one-server queue, the server is idle when there are no
customers. The server could then be doing other work, or could take a
break. In this note, we investigatean intermittent one-server queue, where
the server works until the queue length is zero and then takes a break for
timed. If at this time the queuelength isstill zero, the server takes another
break for time d.

Let T be a random variable assuming values on {t|¢t>0}. T is
exponentially distributed if T has the "lack of memory" property, that is
P(T>t+s|T>t)=P(T>s). It canbeshown that the lack of memory

property impliesthat P(T > t) = e~ for t a0 and some A. The expected
value of Tis 1/A.

We assume that the times between the arrival of customersare indepen-
dent random variables, each exponentiadly distributed with mean 1/A. The
queue is thus a Poisson process with parameter A. If N(rf) denotes the
number of customersin the queue at time ¢, then

j » —At
PN(O) =) = %_
(See, for example, {1, p. 3261.) We aso assume that the service times are
independent of each other and exponentialy distributed with parameter 6.
Hence the mean service timeis 1/6.

Wewill calculate the expected time between breaks, the expected length
of the queue, and the expected waiting time for a customer for variousvalues
of d. To get the time between breaks, suppose that the server takes a break
of length d. During that time, since A customersarrive on the average per
unit of timein a Poisson process, Ad can be expected to bein line when the
server returns. Since the expected service timeis 1/6, the expected time to
servethe Ad customersis (Ad)/6. During this d(A/6) time, an additional
d(\/0)A customersjoin the queue. The time to serve these customers is

, 1=0,1,2 ...
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[d(A/8)A] = d(A/8)%. And so on: the expected time from the beginning
of the last break until al customersare served and the next bresk beginsis
1 _ do g
1- x/e) 8-~

It is known that the expected length of the queue for the standard model
is A/(8 - A) [1, p. 337]). Since thereis no corresponding formula for the
intermittent-server model, we developed an agorithm that simulates the
expected length. The following table shows the variation of the expected
length as the serving rate is varied (A is held constant at 1) for different
values of the break times. Each data point representsthe average of 20,000
simulations. The expected length for the standard model (d = 0) isincluded
for comparison.

d +d(M8) + d(MBY +... = d(

0 Expected length of queue for d =
6 5 4 3 2 1 0

3.99 3.54 3.04 2.51 1.99 1.45 1.00

3.4 3.06 243 2.07 1.51 1.02 0.50

334 2.81 2.35 1.88 1.38 0.84 0.33

3.21 2.70 2.18 1.70 1.19 0.69 0.20

3.13 2.63 2.16 1.64 1.13 0.65 0.14

00 [N | W N

10 312 2.62 2.11 1.63 1.10 0.61 0.11

The average waiting time for a customer in the standard model can
be calculated by adding the expected time to serve the expected length of
line to the time it takes to serve the customer: [A/(6 - A)](1/8) + 1/6 =
1/(6 - A). With appropriate alterationsin our previousalgorithm we can
simulate the waiting time for the intermittent-server model. The table on the
next page shows the variation of the expected waiting time of a customer as
the serving rate is varied (A is held constant at 1) for various values of d.-

To answer the question of which type of queue is better, it would be
necessary to calculate the costs and benefits of having, on the one hand, less
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idle server time, and on the other, longer average queues and waiting times.,

0 Expected waiting time for d =
6 5 4 3 2 1 0

2 248 2.24 2.00 1.74 1.47 1.16 1.00
3 1.79 1.64 1.44 1.26 1.04 0.78 0.50
4 1.51 1.37 1.23 1.08 0.90 0.66 0.33
6 1.38 1.17 1.06 0.94 0.78 0.55 0.20
8 1.17 1.07 0.98 0.87 0.72 0.50 0.14
10 1.06 1.01 0.93 0.83 0.69 0.47 0.11
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A NOTE ON INTEGRALSINVOLVING MULTI PLEROOTS

M. A. Khan
RDSO, Lucknow, India

R Euler [1] gave a method for solving difference equations when the
roots of the characteristic polynomia are equa. His idea suggested the
following theorem, which can be gpplied as shown in the examples.

THEGREM If R isa linear operator and p and g continuous functions

with
p(x) P(")_)=  h
(())  f(x) ad (q(x)+h u(x, k)

then

p(x) | .
R((q(x)f] h—oa"u(x' K

Proof. We have

p(x) |- lim R (x)
R[(q(x))Z] h—0 ((q(x)(q(x)+h))

Y )
h"ﬂ‘oR(h[q(x) (q(x)+h))
= lim fX) 4 h)

h—0 h

Applying L’Hépital’s Rule to the quantity on the right yields the result.
For example, let us take R to be antidifferentiation, p(x) =1, and

q(x) = 1 + x2 and use the theoremt 0 evaluate fl/(l +x2)2dx, Hee

u(x, h) = I = ! a=_1 @t _*

+1+h \/l+h Q/1+h

(from the well-known formula fdx/(.t2 +a? = (1/a)tan"!(x/a)) s0

37
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d +tan"lx

I.._...l___dx = -lim L u@n) =21
(x2+1)2 h—0 doh 2

x“+1

For a second example, we will tind the inverse Laplace transform of
s/(s? +a?)2. Recal that the Laplace transform of a function f(z) is

defined by €f(r) = fo“ f(t)e %dt = F(s) and the inverse transform
@1 F(s) = f(t) is alinear operdtor. Also, Scos(ar) = s/(s? +a?)

Here we have
= cos\/az +ht.

u(e,h)y =15

s?+a?+h
Therefore,
St-lﬁ = lim —tsin'la2 +ht= ;sinat.
(s“+a®) h=0 ova? +h 2

The usual textbook procedure for solving this type of problem uses the
convolution integral which involves further integration, completely
eliminated by this technique.

It is possibleto extend the idea to show that

Rl_2D |« tim L 2y m
((ax))*) h—02 an?
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T

PARALLEL CURVESATINAINTY

Margaret Webb and David Miller
Perm State, New Kensington

Let B(®) = (x(¢), y(t)) denoteasmooth curvein RZ. wWewill say that
acurve B, is r-parallel to B if

B, =B® . TN
where N(f) denotes the counterclockwise unit normal vector of B at the
point (x(@®, y(t)); i. e,

(- (®, ¥ ()
V@R + 0'®)

N@ =

2,,

N

NI

N

A

Figurel
Curvesr-paralel toy =sinx

Figure 1 shows some r-parallel curvestoy = sin x. More information
about r-parallel curves can be found in Do Carmo [1, p. 47] and Pita-Ruiz
[2). In[2], Pita-Ruiz considerssevera basic properties (curvature, length,

39
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simplicity, ...) of r-parald curves and then gives a detailed study of r-paral-
lel curves to parabolas and dllipses.
In thisnotewe will show that at infinity al r-parallel curves are circles.
We will prove b

THEGREM Let B(f) be a smooth curvein R? with r-parald curve

&(t). Let By(t) = lim, —x B,(t). Then | Bw(t) 1 = C for some constant 5

Proof. Rrgt, we differentiate

%, = x(0) - 240
(@@ + o)
and
2 (1)
Y, =y@® + A
(w®y + @)
to get, after simplification,
r = w o FY XY
(@2 . 073"
and
' _ , (xﬂyl _xlyﬂ)ryl
Yy, =y *
(@y + )"
Hence,
Y+ "y’ -xy")ry’
A (0 D 0 e
r—>m x—r' Y+ (x"y’ 'x'y")"f’_ 7 "
(@) + )y :
On the other hand,

Ir = jim YA (@R AP L

reox -ry (Y )y

lim
r—o X,
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Hence,
= =12 O x Xy *YeVe =0.

Therefore,

x3+y3=c

for some congtant C, and the proof is complete.
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CHAPTER REPORTS, LETTERS, ETC.

L etter to the Editor

In "A note on isomorphic factor groups” in this Journal (9 (1989-94)
#10, 676-677), K. Muthuvel gave an example of an infinite group G with
norma subgroupsH and K such that GIH = G/K but H is not isomorphic
to K. It may be of interest to note that an example with finite groups can be
found in Problem 337 in Crux Mathematicorum (proposed by R. B.
Killgrove, 9 (1983) #4, 113; solution by Curtis Cooper, 10 (1984) #7, 230,
who credited K. R. McLean, "When isomorphic groups are not the same”,
Mathematical Gazette 57 (1973), 207-208). Let G ={1, a, a2, a3, b,
ab, a®b, ab} wherea®=b2=1andab=ba H= {1, a, a2, a3}, and
K = {l,a%2,b,a%b}. Then G/Hm=G/K=C, while HwC, and
KsCy®C,. Alo. ifH= {1,a%} andK = {1, b}, thenHu K = C,
while G/Hw= C,aC, and G/K= Cy.

N. L. Mackenzie
Seattle, Washington

Chapter Reports

Professor PREM N. BAJAJ, faculty adviser to the KANSAS GAMMA
Chapter (Wichita State University), reports that the chapter furnished
volunteer tutors for help sessions in courses up to differential equations,
sponsored the Putnam Examination, met (almost) biweekly for informal
discussions on topics of mathematics and general education, and heard
severa talks (including"Mathematicsas viewed by Plato”, "Applicationsof
spherical triangles’, "A queueing modd related to the ballot problem”, and
"Tilings of the plan—euclidean and non-euclidean”). Twenty-five new
members were initiated.

The INDIANA EPSILON Chapter (Saint Mary's College) participated in
several service activitiesin 1993-94, reports Professor JOANNE SNOW.
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Members of the chapter represented the mathematics department at the
college's Fall Day on campus for prospectivestudents, presented a program
at two eighth-grade mathematicsclasses a a South Bend middle school, and
assisted with the administration of the Indiana High School Mathematics
Contest. At the Christmas Bazaar, the chapter sold personalized picture
frames as a fund-raising activity and made a gift of $75 to the mathematics
department to be used towards the purchase of Math Horizons.

Pythagorean Theorem Proved

XUMING CHEN (University of Alabama, Tuscaloosa) providesyet another
proof of the Pythagorean Theorem. The area of a right triangle with sides
a and b and hypotenuse c is ab/2. On the other hand, the area of any
triangleis y s(s - a)(s - b)(s - c) wheres = (a + b +¢)/2. When we
expand thisand set the two expressions equal, we have

a_2b = %J2a2b2 +2b2c? +2c24% -a* - p* - ¢4
Simplify this and it tumns into (a2 +b2-¢2) = 0, which is the
Pythagorean Theorem.

Two questionsarise. Thefirg is, are proofsof the Pythagorean Theorem
that do not use the idea of area better than those that do not, and if so why?
The second is, what happenswhen you equate (abcos8)/2, thearea of any
triangle (where 8 is the angle included between the sides with lengths a and
b) to the other expression for area and start doing algebra?

L etters to the Editor
There follow some identities. The firg two are familiar, but the next
four were new to me
1(1 +2+-+n)=n(n+1)/2.
213+ 28+ 40 = 02+ 1)%2.
3 (PP + 2B 4w and) +1:(13 + 2 +n®) = 03+ 1)%2.
417 +27 + 0Ty + 4 (1P + 3 v+ nd) = ni(n + 1)Y2.
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5% +20 4+ +n®) +10-(17 +27 4 427y + 1-(1% + 2° 4+ +0%)
=n3(n +1)5/2.

6-(111 #2110 +nn) + 20-(19 +2 4. +n9) + 6'(17 #3 4w +n7)
= nb(n +1)5/2.

The pattern for the coefficients is now apparent:

1 3 3 1
1 4 6 4 1
1 § 1010 5 1
1 6 15 20 15 6 1

and so on.
| would be interested in knowing whether any reader has seen these
relations before.

Kenneth B. Davenport
P. O. Box 99901
Pittsburgh, Pennsylvania15233

What were caled "generalized random walks' in [1] are better called
‘trinomial  random walks" as in [2] where the relationship to Legendre
polynomialsisshown. When the probabilities of steps 1, 0, and -1 depend
on the present position there is a connection with continued fractions [3].
For random walks in # dimensions see [4] which generalizes[5].
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1. a Good
Virginia Polytechniclnstitute
and State University

Editorial

| hope that readers will not be annoyed by my taking up space in the
Journal with this bit of personal opinion. Writing editorialsis traditionally
one of the perquisites of an editor.

What is it that brings people to mathematics? | will answer that
question, to my satisfactionat least, and point out some implicationsfor the
teaching of mathematics.

Let us pull some biographies of mathematicians off the shelf and see
what they have to say on the subject. Lucidly, such information always
come near the beginning of a biography so the search for it is not difficult.
Here is an excerpt from an autobiography, that of Paul Hamos [2, p. 25]:

Analytic geometry was great. It began with a description of
Descartes great victory, the insght that made algebra out of
geometry and vice versa. The conic sections were defined three
ways. as plane sections of cones, in terms of foci and directrices,
and by quadraticeguations. The conies had eccentricitiesand latera
recta (and we were expected to remember that that's the plura of
latus rectum). There were also lemniscates and limagons, and most
phenomena had three-dimensional versions (but that got short shrift
near the end of the course). ... | thought it wasall great stuff and in
my letters home | wrote enthusiastically about my mathematics
course; it was a beauty, | said.

That passage contains a highly significant absence, which will be pointed out

later.

Constance Reid on David Hilbert [3, p. 6]:
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Already he had found the school subject which was perfectly suited
to hismind and a source of inexhaustibledelight. He said later that
mathematics first appealed to him because it was "bequem"—easy,
effortless. It required no memorization. He could always figure it
out again for himsdlf.

S. M. Ulam on himsdlf [5, pp. 20-21]:

| had mathematical curiosity very early. My father had in his
library a wonderful series of German paperback books—Reklam,
they were called. One was Euler's Algebra. | looked at it when |
was perhapsten or eleven, and it gave mea mysteriousfeeling. The
symbols looked like magic signs; | wondered whether one day |
could understand them. This probably contributed to the develop-
ment of my mathematical curiosity. | discovered by myself how to
solve quadraticequations. ... In general, the mathematicsclassesdid
not satisfy me. They were dry, and | did not like to have to
memorize certain forma procedures. | preferred reading on my
own. ... | also read a book by the mathematician Hugo Steinhaus
entitted What is and What Is Not Mathematics and a Polish
translation of Poincaré’s wonderful La Science et I’Fvpothése, La
Science et la Méthode, La Vaeur de Science, and his Derniére
Pensées. Their literary quality, not to mention the science, was
admirable. Poincaré molded portions of my scientific thinking.

Bruce Berndt on Hans Rademacher [1]:

At the age of 18 he had a curiosity for mathematics, the natural
sciences, foreign languages, and philosophy. It wasto thelatter area
that Rademacher devoted his primary initial attention. However, he
enjoyed the lectures of two of Felix Klein’s assistants, Erich Hecke
and Hermann Weyl, and eventualy he turned to mathematics.

Norbert Wiener on himsdlf [6, pp. 22-23]:

His course [G. H. Hardy's] was a delight to me. My previous
adventures into higher mathematics had not been completely
satisfying, because| sensed gapsin many of the proofswhich | was
unwilling to disregard-and correctly too, as it later turned out, for
the gaps were redly there and they should have disturbed not only
me but my former teachers. Hardy, however, led me through the
complicated logic of higher mathematics with such clarity and in
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such detail that he resolved these difficultiesas we came to them
and gave me a red sense of what is necessary for a mathematical
proof.

Finally, Constance Reid on Jerzy Neyman [4, p. 21]:

It was after this incident that Professor C. K. Russyan, a Polish
professor whose lectures on the theory of functions he was attend-
ing, spoketo him about a new integral from France-quite different
from the classical integral of Riemann. Because such prerequisites
as set theory were not offered at the university, Russyan had not
been able to treat the Lebesgue integral in his lectures. He now
suggested that Neyman investigate it on his own. ...

Neyman looks in his library for Henri Lebesgue's Legons sur
Pintégration et |la recherche des fonctions primitives and quickly
locates it. ..

From the first page, the Legons enthralled him. When he is
asked for other recollections of this period of hislife, he squirmsa
little in his chair, embarrassed by his inability to produce any.

‘The war," he apologizes. "Wiped out everything. And then
there was Mr. Lebesgue... "

But it seems to have been "Mr. Lebesgue” who wiped out
everything, even the war, as far as Neyman was concerned. The
year 1914-15, which saw defeat after defeat for the Russian army on
its western front, was a year of intense self-education for the young
man. His first task was to familiarize himsdf with set theory, and
he found that subject fascinating. Especidly intriguing was Ernst
Zermelo’s axiom of choice. He remembers how he walked the icy
streets of Kharkov trying to explain the concept to his friend Leo
Hirschvald.

I will not bore you with any more excerpts, though | could find many
more. (And they are not boring: the history of mathematicsis fascinating,
as can be the biographies of mathematicians. It istoo bad that there are not
more such biographies, but the general publicis not very interested in them
nor, for reasons that could be gone into in another editorial, are many
mathematicians.) The thread that runs through the excerpts, those given
above as well as those that could be cited, is that it is the subject of
mathematics that is the attraction.

The subject: the matter, the ideas, the glory, the beauty, the excitement,
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theexhilaration—mathematics! Mathematicsissplendid, and that isall there
istoit. It isthe most marvelous and magnificent activity the human mind
carries out. | will not go so far as to say that doing mathematicsis the
purpose of the human race, but | think | could make a case for that, at least
as good a case as is made for many other purported purposes.

Theimplication for teachingisthat it is the subject that isimportant and
not the person who teaches it. Note that Halmos does not even mention
whoever it was who was in charge of his analytic geometry course. |t was
al great stuff, he said. Not the class, not the teacher, it-the subject.
Hilbert found thesubject easy: no memorization was needed, you can always
figurethingsout. Ulamdidn't like his mathematics classes much—too much
memorization-but books showed enabled him to find out about it.
Rademacher and Wiener heard lectures, lectures so good that the subject
came through. Neyman also: Lebesgue’s book showed him what it was
about.

So, clearly, the first duty of ateacher of mathematicsis to be clear, to
allow what is important, namely the subject of mathematics, to shine
through. Teachersof mathematicsare best when they are most transparent.
If the blackboard can be read through them, so much the better. Lectures,
clear lectures, have persuaded people to go into mathematics.

Unfortunately, clarity is not valued as highly asit might bein these days
of student evaluations. Studentsin general cannot distinguish how well the
subject is being presented. How could they, since they have never seen it
before? My doctoral supervisor, William J. LeVeque, once taught a class
that | attended during which he proved a theorem whose proof | knew
aready. His proof was absolutely brilliant: different, better, and clearer than
any | had seen before. It was a stunning performance. | was amazed, but
the rest of the class took it as a matter of course. They might even have
written on their student evaluations, "This teacher is no good, all he does is
lecture and he doesn't alwayslet usout ontime” But there were no student
evaluations then.

In these days, caring for students as people seems to be more important
than being a transparent transmitter of the wonders of mathematics. While
it is certainly nicer to be cared about as a person than not, there does not
seem to be much relation between caring and transmitting. | have encoun-
tered many studentswho will praise their former mathematics teachersto the
skies—wonderful people, they redly cared about their students-but who

REFORTS LETTERS, ETC. 49

will demonstrate, conclusively, that they did not learn even a fraction of
what they were supposed to learn. Are there lawyerswho really care about
their clients but who lose every case, and till get clients? Maybethere are.
There is something to be said for caring more about mathematics than about
fedlings, but these are not the days to say such things.

Using graphing calculators, writing mathematical autobiographies,
working in groups, doing projects on computers and writing up laboratory
reports—these things are, | guess, dl very well. They may do good. If,
however, they get intheway, if they clog up the channel carrying mathemat-
ics to the learner, then they are not good. The teacher of mathematics, more
than anything else, should be clear. Do | make mysdlf clear?
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The Applications of Mathematics

The following is from Don Quixote de la Mancha, by Miguel de
Cervantes. The Don is speaking on the subject of knight-errantry:

"It is a science," said Don Quixote, "that comprehendsin itsdf all or
most of the sciences in the world, for he who professesit must be a jurist,
and must know the rules of justice, distributiveand equitable, so as to give
to each one what belongs to him and is due to him. He must be a
theologian, so as to be able to give a clear and distinctive reason for the
Chrigtian faith he professes, wherever it may be asked of him. He mus! be
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a physician, and above all a herbalist, so as in wastes and solitudes to know
the herbsthat have the property of healing wounds, for a knight-errant must
not go looking for some one to cure him at every step. He must be an
astronomer, so as to know by the stars how many hours of the night have
passed, and what clime and quarter of the world he isin. He must know
mathematics, for at every turn some occasion for them will present itself to
him; and, putting it aside that he must be adorned with all the virtues,
cardinal and theological, to come down to minor particulars, he must, | say,
be able to swim as well as Nicholas or Nicolao the Fish could ...

Did you notice that the Don was able to give specific uses for all his
sciences until he came to mathematics, where he lamely trailed off? Was
this due to Quixote’s addle-headedness? Or was it the best that Cervantes
could do? Of course, things have changed since the days of Cervantes

(1547-1616). Or have they?

Mathematics Education in the Nineteenth Century
From War and Peace, Book 1, Chapter 25, by Leo Tolstoy (. 328-1910).

The princess gave a wrong answer.

'‘Well now, isn't sheafool!" shouted the prince, pushing the book aside
and turning sharply away; but risng immediately, he paced up and down,
lightly touched hisdaughter's hair and sat down again. He drew up hischair
and continued to explain.

"This won't do, Princess; it won't do," said he, when Princess Mary,
having taken and closed the exercise book with the next day's lesson, was
about to leave: "Mathematics are most important, madam! | don't want to
have you like our silly ladies. Get used to it and you'll like it," and he
patted her cheek. "It will drive all the nonsense out of your head.”

Of course, such things would not be said nowadays.

M athacr ostics

Solution to Mathacrostic 38, by Theodor Kaufman (Spring, 1994).
Words:

A. tac-au-tac K. linear U. itineracy

B. utter loss L. dispatches V. Napier’s bones

C. friar's cap M. integra equation ~ W. first bass

D. tophetic N. scission X. ovalsof Cassini

E Euclid’s O. pseudosphere Y. radius vector
algorithm P. lithochromy Z Marshtest

F. vinculum Q. abysmal * ably

G. interpolate R. yurt #. thither

H. sinner S. ophiouride @. intertwist

[. unendingdecimal  T. fractal +. obstetrics

J. afterthought §. nuke

Author and title: Tufte, Visua Display of Information.

Quotation: The use of abstract, non-representational pictures to show
numbers is a surprisingly recent invention, perhaps due to the diversity of
visuad-artistic, empirica-gatistical, and mathematical skills required. This
occurred long after such triumphs of ingenuity as logarithms, cartesian
coordinates, the calculus, and the basics of probability theory.

Solvers:. THOMAS BANCHOFF, Brown University, JEANETTE
BICKLEY, . Louis Community College, PAUL S. BRUCKMAN,
Highwood, Illinois, CHARLES R DIMMINIE, St. Bonaventure University,
VICTORG. FESER, University of Mary, ROBERT FORSBERG, L exington,
Massachusetts, META HARRSEN, Durham, North Caroling, HENRY
LIEBERMAN, Waban, Massachusetts, CHARLOTTE MAINES, Rochester,
New York, DON PFAFF, University of Nevada—Reno, NAOMI SHAPIRO,
Piscatawvay, New Jersey, and STEPHANIE SLOYAN, Georgian Court
College. Latesolutionto#37 by VICTOR G. FESER, University of Mary.

The puzzle was marred by a large number of errors, some serious, for
which the editor was wholly responsible and for which he apologizes.
Mathacrostic 39, constructed by ROBERT FORSBERG, followson the next
three pages. It has been more carefully checked, so its number of errors may
be asymptotically closer to zero. To be listed asa solver, send your solution.
to the editor.
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TTH 2]V 3|P 4[W 5[L 6]0 7 G BTPF TR T0 L 19T 12]A 13[E 14]B 15 |W 16 A HiSfiltel’.deslignfeaturesa
passband with ripples of equal 280 81 167 108 293 185 72 26 196 13
T 77[J T8 [M 18| F 20|W 21|E 22 723K 24 7 5 (A 26| 27 W28[ 0 29 amplitude
B. A polyhedron with thirty- 223 59 41 240 33 98 137 211 77 189
C 30 |T 31|P 32|B 33|1 34|M 35| F 36 € 37| X 38/F 39[M 40| B a1 E 42| P &3 F a4 two faces
123 178 203 247 291 'ﬁ'ﬁ
X 45 |J 46 |C 47| S 48| O 48 WS0|D 51[C 52|H 53| J 5a|L 55| O 56 A 57|N 58|85 50 | C. Name borne by a large
number of Oriental kings, 47 52 272 258 162 30 201 216 172 284
H 60| F 61]Q 62 E 63| O 64| X 65]1 66 T e7({E 68|V 68|Q 70| F 71 |A 72 v 73 soldiers, and statesmen
37
P 74 U 75|M76|B 77 G 78]1 79| D 80| A 81|S 82] X B3|N B4 D 85|F 86| W 87, D. Locationon a curve where it
does not cross itself and thereis 227 80 &1 288 224 279 192 104 154 148
Cos |T 89| MBO|H 91[P 82[L 83|B 84|X 85 R96|M 07[B 98 W 99[ P 100{E 101 F 102 a smoothly turning tangent (2 '
ws) 85 265 241
103 [D 104 X105[{C 106 [U107[ A 108 W 109] P 110] S 191]1 112 [E 113[T 114] N 115 F 116 E One Of Georg Cantorls alephs
= (2 wds) 366 492 OE4 1 55 587 14 <101 108
P17 |H 118|W 118|0 120| G 121]K 122 | B 123 L 124 | R125|V 126 [M 127 5128| G 129] T 130| N 131 166 42 254 1 22267 14 101 198 150
68 141 113 63
A132 [H133|P 134 |Q 135| F136] 8 137] | 138 | O 139|W 140| E 141 L 142 | H143 U 144] K 145|W 146 G 147
i F. Greek mathematician, 5th
D 148| | 149 E150[ 0 151 T 152 U153|D 154| P 1565] L 156 R 157| G 158{ O 159 R 160
cent. B_C, banished for revealing <538 585 S8 583 187 565 57 154 555 50
136
that y'2 is irrational (3 wds) 252 39 263 161 205 71 174 292 20
F 161 (C 162 | M 163 Q 164| H 1865 E166| A 167] L 168 J169 |U170[ 1 171| C172|P 173 ﬁﬁﬂ-a—s-mgﬁﬁ. 795
£.
E174 | X 175|W 176/ L177 |B 178 | H178] P 180} G 181 H182| X 183|S 184 | A 185 X186| N187|L 188 S —
X175 61 261
B189|H 190 W181[ D 192| P 1930 194 F195|A 196 | J 197 |E 198 Q199 | L 200 |C 201 §202] B203 G Famlly Of Phanariot GreekS,
P 204 | F205] 208| U207 G 208[0208|V210[B21T|M212[T213 M21aU215[C216| H217 active in the liberation of GreeFe 181 78 ‘47 129 294 236 158 229 121
| H. A puzzle for the mathematical
1216 |Q219] J 220 D221|P 222 B223| D224|7 225 | K 226 P 227| R 228 | G 228 H230]| 0231 world since 1637 (3 wds) 165 2 143 296 242 230 217 256 91 53
K232 |N233 R234| 0235 G236 X237| F2a8| P 230 (B 240| D 241 H242|L 243 | J244 ) 182 60 190 276 179 118 133 260
1 The distance an airplane
5225 [H 246 B 247 |1 246 | P 240 | W 250] S 251 | F 252 | X 253| E 254| U 255 | H 256 L 257 C 258 A 259 |H 260 Fravels for each revolution of 79 149 171 281 112 25 264 138 248 34
its propeller (2 wds)
F 261|W262] O 263|1 264 | D 265|M 266 X 267| V 268| K 268 | W 270 wa71 c 272 S273 [M274 12 66 289 218
J. Expresses verbal
375 [H276 [N 277|R 278 | D279| A200|I 281 V282| F283 | C 204 | X 285| M 266| E 267| D 2881 289 encouragement (2 wds) 18 23 46 244 220 169 54 197
K. Useful fiber obtained from
W250|0 291| F292| A293|G 294 | O 205 H296|L 207 an African palm tree 122 560 24 145 226 232
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L. Of them you can say that
P(ANB) = P(A) P(B) (2 wds)

M. A yam-making machine
(2 wds)

N. of Newton, a
curve with equation xy =

ax3 +bx? +ex +d, ax 0.

0. Percy Bridgman's field

(3 wds)

P. Phenomenon relating current,
magnetic field, and temperature
in a metal strip (2 wds)

Q. Person of European/indian
ancestry

R. Arab poet, 860-940, Iqd
al-Farid (3 wds)

S. Controversial, ineffective
cure for cancer touted some time
back

T. Metaphorical expressions
used in Skaldic poetry

U. Mountainrange in Asiatic
Russia

V. It makes DOS-type computers
more like Macintoshes

W. "He looked again and saw it
was * (Lewis Carraoll,
Sylvie and Brunei) (4 wds)

X. Chinese city, Shanhsi
province (old sp.)

175 186 83 253 285 183 38 267 105 237
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PROBLEM DEPARTMENT

Edited by Clayton W. Dodge
University of Maine

This department welcomes problems believed to be new and at a level
appropriate for the readersof this journal. Old problems displaying novel
and elegant methods of solution are also invited. Proposals should be
accompanied by solutionsi f availableand by any informationthat will assist
the editor. An asterisk (*) preceding a problem number indicatesthat the
proposer did not submit a solution.

All communications should be addressed to C. W. Dodge, 5752
Neville/Math, University of Maine, Orono, ME 04469-5752. E-mail:
dodge@auss. unenat . nai ne. edu.  Pleasesubmit each proposal and solution
preferably typed or clearly written on a separate sheet (one side only)
properly identified with name and address. Solutions to problemsin this
issue should be mailed by July 1, 1995.

Correction

820. [Fall 1993] Proposed by William Moser, McGill University,
Montreal, Quebec, Canada.

Let a,; (O =< k < n) denote the number of n-bit strings (sequences
of 0’s and 1's of length n) with exactly k occurrencesof two consecutive 0’s.

Show that
— (r-k\(n-r+1
e B ()
% k r-k
n) _ n! ; n) _ .
where (k) —m__k)_! fO<ksnand (k) = 0 otherwise.

Editor's comment. The problem isunclear asto how many pairsof
zeros you count when there are three or more consecutive zeros. The
proposer's intent was that three or more consecutive zeros are not allowed,;
consider strings where zeros appear (between ones) only singly or in pairs.
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Thereis no such restriction on the ones; any number of consecutiveonescan
appear any place. The lower limit on the sum (r = 0) was not wrong, but
termsfor r < 2 vanish. The upper limit, which the editor had supplied, was
changed from n - 1 to n to avoid errors for somesmall valuesof k. Finally,
the editor inadvertently put n = r = 1in placeof n - r + 1in the summation.
Other than those errors, the problem was fine.

Problems for Solution

836. Proposed by the editor.

Solve this base ten holiday addition alphametic. Since the coming
year 1995 is an odd year, you are asked to find that solution such that A is
an odd digit.

MANY
NE W
NE W

YEARS

837. Proposed by J. Sutherland Frame, Michigan State University,
Eag Lansing, Michigan.
Evauate in closed form the integra

I=jaVa2 -x2 In|z -x|de, |z| <a.
-a

838. Proposed by Florentin Smarandache, Phoenix, Arizona.
Let d,,= p,e1 - PN =1, 2,3 ..., where p,, is the nth prime
number. Find the nature of the series

oo

1

n=1 dn
839. Proposed by James Chew, North Carolina Agricultural and

Technical State University, Greensboro, North Carolina.

a) A ticket buyer choosesa number from 10 through 99 inclusive.
A number is randomly picked as winner. If, for example, 63 is the winner,
then each ticket number 63 that has been sold is avarded $A. The reversal
ticket number 36 is awarded $5. That is, the second prize goes to any ticket

PROBLEMS AND SOLUTIONS 57

with both digits correct, but in the wrong order. The third prize of $C is
paid to any ticket that containsat least one of the correct digits, e.g. 33, 43,
34, 65, 76, etc. A ticket can win only one prize and prizes are not shared.
If you have bought 5tickets numbered 63, you win $5A. Find the fair price
for a ticket.

*b) Find the fair price for the game of part (a) if prizesare shared.
That is, theticket seller paysout atotal of at most §A + B+ C)inwinnings
for any one game, $4 is shared among all winning tickets (number 63), if
any. Then $B isshared among all holders of second prize tickets (number
36). Findly, al thud prize winners share the one amount $C.

840. Proposed by Seung-~Jin Bang, Seoul, Republic of Korea.
Provethat, forn 2 2
1 1 n+1

l+_+w+_>Inn +
n

841. Proposed by Seung-Jin Bang, Seoul, Republic of Korea.

For given real constants a, b, and c, let {a} be the sequence
satisfying the recursion equation na,, = aa,_; t ba,_, for n> 1, a5 = 0,
a; = c. Find thesum of the series

Y a,.
n=0

842. Proposed by Russl Euler, Northwest Missouri State
University, Maryville, Missouri.

Let x; be a positive red number for i = 1, 2, ... , n. Provethat

LAYE 1/2
i=1 %; J\i=1
with equality if and only if x; = x5 = == x,.
843. Proposed by Bill Correll, Jr., student, Denison University,
Granville, Ohio.
Let s(n) denote the sum of the binary digitsof the positive integer
n. Find avaluefor ¢ so that

[~

1 _ 2342173
nel S(® 5544
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844. Proposed by Bill Correll, J., student, Denison Universty,
Granville, Ohio.

|f F, denotesthe nth Fibonacci number (Fy = Fy =1 and Fy,p = F;,
+ F},, for k a positive integer), evauate

- ‘:)F
.2.:1 ik

845. Proposed by Russal Euler, Northwest Missouri Sate
University, Maryville,, Missouri.

Let A, B, and C besubsetsof U = {1, 2 3, ..., m}. Anambitious
student wants to provethat if AC B, then AU (BN C)=A U C) N B for
al A, B, and C. Expressin closed form the number of specific cases the
student must consider.

846. Proposed by M. A. Khan, Lucknow, | nd a.

Let N, L, M be pointsonsidesAB, BC, CA of agiven triangle ABC
such that
AN _ B _ CM
AB BC CA

Let AL meet CN at P and BM at
Q, and let BM and CN meet at
R Draw lines parale to CN
through A, padld to AL
through B, and pardle to BV
through C. Let XYZ be the
triangle formed by these three
new lines. Prove that:

a) TrianglesABC, POQR,
and XYZ have a common
centroid, and

b) If the areas of triangles PQR, ABC, and XYZ are in geometric
progression, thenk=v3 - 1.

*847. Proposed by Dmitry P. Mavio, Moscow, Russa.
From the SYMP-86 Entrance Examination: The midline of an
isosceles trgpezoid has length L and its acute angle isa.  Determine the

0<
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trapezoid's ares, if it is known that a circlecan beinscribed in the trapezoid-

848. Proposed by Rex H. Wu, SUNY Health Science Center,
Brooklyn, New York.

a) Givena non-trivia group (a group having more than oneelement)
such that, if x, y are any members, then (i) x =y impliesx2 » y? and (ii)
xy = %%, prove thegroup is abelian (commutative).

b) Prove part (8) if theterm group is replaced by semigroup.

Solutions

780, [Spring 1992, Fall 1992, Fall 1993] Proposed by R S Luthar,
Univergity of Wisconsin Center, Janesville, \Misconsin.

Let ABCD beaparadldogramwith LA = 60°. Let thecirclethrough
A, B, and D intersect AC at E. Seethe figure. Prove that BD? +AB-AD
= AE-AC.

Solutionby John D. Moores,

Westbrook, Maine. A £
Recdl thaa BC = AD, E

cos 60° = 1/2 and cos 120° = -1/2,

and gpply the law of cosines to H

triangle ABD and to triangle ABC,

obtaining A B
BD2=AB%+AD?- AD AB. \_/

and

AC2=AB%2+AD? + AD-AB.
Eliminating AB2 *+ A D 2 between the two equations, obtain

1) AC2=BD%4+2AD-AB.
Let H denote the point of intersectionaf the chordsAE and BD. Then
@ AH EH = BH-DH .

Note that DH = BH = BD/2, AH = AC/2, and thereforeEH = AE - ACE.
Substitute these valuesinto Equation (2) to get

(3) AC%=2AC-AE - BD?,
Finaly, diminate AC 2 between equations (1) and (3) to get the desired
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result
BD2 4+ AB-AD = AC-AE.

Also solved by SEUNG-JIN BANG, Seoul, Korea, PAUL S
BRUCKMAN, Edmonds, WA, MARK EVANS Louisville, KXY, LEE LIAN
Kl M Messiah College, Grantham, PA, HENRY S. LIEBERMAN, Waban,
MA, DAVID E NMANES, SUNY College at Oneonta, YOSHINOBU
MURAYOSHI (2 solutions), Okinawa, Japan, BOB PRIELIPP, University
of Wisconsin-Oshkosh, HARRY SEDINGER, St. Bonaventure University, N,
PAUL D. SHOCKLEE, Memphis TN, KENNETHM. WILKE, Topeka, XS,
REX H. WU, Brooklyn, NY, SAMMY YU and JMMY YU (2 solutions),
University of South Dakota, Vermillwn, and the PROPOSER.

In theoriginafigureit appearedthatABCD wasa rhombus. B LL
CORRELL, JR., Denison Univasty, Cincinnati OH, BARBARA .
LEHMAN, . Peter's College, Jersey City, NJ and DAVID INY,
Westinghouse Electric Corporation, Bdtimore, MD, solved the problem
under that assumption. Bruckman, Murayoshi, and Wilke al| pointed out the
error in the original statement of theproblem.

801 [Spring 1993, Spring 1994] Proposed by Norman Schaumberger,
Bronx Community College, Bronx, New Yak
If & b, and c are red numbers, then prove that

e*a-b) +eP(b-c) +ef(c-a) = 0
z e¥(c - a) +eP(a-b) +eC(b-¢).

I, Solutionby Murray S Klamkin, University of Alberta, Edmonton,
Alberta, Canada.

Let xy, Xy, ..., X, a0 yy, ¥5, - ¥, DE given Non-increasing sequences
of real numbers. Le z, 2, .., 2, beany permutation of the {y;} sequence.
Then it follows from a known [1] rearrangement inequality that

M XY T XYt 2 XY, B N3+ t =+ X,2Z,

2 X Vp ¥ Xp-1 - T XD
A physicd intuitive example of these inequditiesis loading one side of a
seesaw with differently weighted people. Toget the largest turning moment
we put the lightest person closest to the fulcrum, the next lightest next, and

S0 on, putting the heaviest person furthest out.  To get the smallest turning
moment, we reverse the order. Any other arrangement will produce an
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intermediate turning moment.
Sincea z bz cimpliesthat ¢* a€” a e, we apply Inequality (1) to
get
a8" + beP+ ez ajef t bieb + 0jea ce® + bP + &,
where a;, by, ¢4, is any parmutation of a, b, c. The given inequalities and
othersas well now follow.

Reference

1. G. H. Hady, J. E Littlewood, and G. Polya, Inequalities, Cambridge
Univerdity Press, London, 1934, p. 261.

802. [Spring 19931 Proposed by Murray S Klamkin, Universty of
Alberta, Edmonton, Alberta, Canada
Let aand b be positivered numbers. Determine the maximum value of

f0) = (@ - 9lx +x2 - b2 )
over all real x with 2 = b%. A non-caculussolution i's requested.

I1. Solution by theproposer.
First we assume that the maximum occurs for x > 0, so we can let
x = becosh 8 (0 5 0). Thissubstitution reduces the given functionf(x) to

1) 2[_1.bee(a .l_bee)] - _l.bz.

Since the quantity in the bracketsisof the form u(a - u), which tak&e onits
maxi mum when u = a/2, then Expression (1) takes its maximum (a - b2
when bef= a This requires, however, that a = b.

If b>aa b/2 then the maximum of (1), b(a = b), occurs at the
smallest value of be® when 8 = 0.

If b/2 > &, we can get valuesdf f(x) grester than b(a = b) by taking
x negative. Lettingx = -b cosh 8 (8 = 0), f(x) now reducesto

@ —be®a + %be ) - %bz.
Clearly Expression (2) isincreasingand approaches ~b%/2 as® - . Since
-b%2 > b(a - b), there is no maximum for this case, only a lim sup.

810. [Fall 1993} Proposed by Alan Wayrne, Holiday, Florida.
In the following base eight multiplication, the digits of the two
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multipliers have been replaced in a one to one manner by |etters:
(D(CLUED) = 437152.

Restorethedigits. Similarly replace437152to find out who might havesaid
"l dued.

Solution by Paul S Bruckman, Everett, \Washington.
With the aid of a TI-60 calculator, which readily converts between
octa and decimd notation, we find that

(437152), = (147050),0,
which factorsinto
2:5217-173.
Hencel mug beeither 2or 5. If | = 2 then
(CLUED)g = (73525),4 = (217465)g,

which is excluded since CLUED is a 5-digit number in base 8. Thus | = 5
and lience

(CLUED)g = (29410),, = (71342)q.

We havethe uniquesolution| = 5, CLUED = 71342, so 437152 =EUCLID.
Euclid couldn't have said "I clued,” however, since such a phrase would
have been al Englishto him (asit isall Greek to me).

Also solved by CHARLES ASHBACHER, Cedar Rapids, IA,
SEUNG-JIN BANG, Seoul, Korea, SCOTT H. BROWN, Auburn Universty.
AL, JAMES E. CAMPBELL, Arnold, MO, CAVELAND NVATH GROUP,
Wesern Kentucky Universty, Bowling Green, BILL CORRELL, R,
Denison Universty, Cincinnati, OH, GEORGE P. EVANOVICH, Saint
Peter's College, Jersey City, NJ, MARK EVANS Louisville, XY, VICTOR
G FESER, Univarsty d May, Bismarck, ND, STEPHEN |. GENDLER,
Clarion Universty d Pennsylvania, RICHARD |. HESS, Rancho Palos
Veades C4, CARL LIBIS, |dahoState University, Pocatello, Y OSHINOBU
MURAYOSHI, Okinawa, Japan, BOB PRIELIPP, Universty o
Wisconsin-Oshkosh, MOHAMMAD P. SHAIKH, Universty o Missou"
Columbia, DAVID S. SHOBE, New Haven, T, SONNY W, University of
lllinois, Urbana, KENNETH M. WILKE, Topeka, XS, REX H. WU, SUNY
Hedlth Science Center, Brooklyn, NY, SAMMY YU and JMMY YU,
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Universty d South Dakota, Vermillion, and the PROPOSER.

811 [Fal 1993] Proposed by Tan Moore, Bridgewater State
College, Bridgewater, M assachusetts.
If a < b < c are podtive integerswithged(a,b) = 1and a2+ 2 =
2 then (3 h c) is called aprimitivePythagorean e e (PPT). If both a
and ¢ are primes, then we shdll call it aprimePPT (P°T).
a If (a b ¢) isaPT, deducethat b=c - 1
b) Find all P2Ts in whicha and c are
i) twin primes.
if) both Mersenne primes.
iif) both Fennat primes.
iv) one a Mersenne, the other a Fermat prime.

Solution by Bob Prielipp, University d Wisconsin-Oshkosh, Oshkosh,
Wiscondn.
a) If (3 b ¢)is a P°T, then a®+ b%2=c?whereaisa prime
number and a < b < ¢. Thus
a2=¢c2-b2=(c-b)c+b)
This factorizationof a2 cannot bea=c-banda=c+ b, so we mug have

=c-banda?=c+b. It follows that b = ¢ - 1 and & = (a % - 1)/2.
Hence

a2 -1 a%+ 1)
2 ’
b) i) If aand ¢ aretwin primes, then

a? +1 _a=(a-l)2
2 -2
Thusa = 3and (3, 4, 5 is the only solution.
ii) If a and c are both Mersenne primes, thena=2" - 1
and ¢ = 2' = 1 where m and n are both prime numbers with n > m = 2
Hence

(@ b,¢c) = (a,

2=c-a-=

" -m=c-q=08 1@ -2
2 2
- 1)%. Thisisimpossblesince the right side

meking 2™-1(2"™ - 1) = (™1
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of thislast equationis odd and the |eft side is even becausem 2 2, so there
are no P*Ts in whicha and ¢ are both Mersenne primes. "

iii) If a and ¢ are both Fennat primes, thena = 22" + 1and
c=2%" + 1 wheren and mare integerswithn> m2 0. Hence

R N IS ) N 5l o
2 2

making 222" -1 = 22"-1. It followsthat m= O and n = 1 Thus
(3, 4,5 isthe only solution.

iv) If aisa Mersenne prime and ¢ is a Fennat prime, then
a=2"-1ladc= 2%+ 1 wheremis a prime and n is a positive integer
becausec > a2 3. Thus

2
22"‘2m+2=c—a=(a_1)2=(2m_2) ’

2 2
making
22”-1 - 2m-1 +1 = (Zm-’l - 1)2'
Hence
22"-'1 - (zm-l - 1)2 + (2"!"1 - 1) - (Zm—l - 1)2’"-1.

The only solution occurs for m= 2 and n= 1, that is, (3, 4, 5). o

If aisaFennat prime and c isa Mersenne prime, then a=22"+1
and c = 2" = 1 where n is a prime number and m is a nonnegative integer
withn > 2™ becausec > a. Thus

. _ 1y 2"\2
B N ek N b o
2 2

making
an-1 _ 921 _ 4 ( 22--32
It follows that
2n-1 -1 = (22771 - 2271 - 22"-1(22--1 + 1),

whichisimpossible because the left side of the equation isodd and the right
side iseven. Hence there are no solutionsto this part.

Also solved by PAUL S. BRUCKMAN, Everett, WA, JAMES E.
CAMPBELL, Arnold, MO, BILL CORRELL, JR., Denison University,
Cincinnati, OH, CHARLES R. DIMINNIE, S. Bonaventure University, N,
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M CICR G FESER, University of Mary, Bismarck, ND, STEPHEN 1.
GENDLER, Clarion University of Pennsylvania, RICHARD |. HESS,
Rancho Palos Verdes, CA, CARL LIBIS, |daho State University, Pocatello,
HENRY S. LIEBERMAN, Waban, MA, DAVID E. MANES, SUNY College
at Oneonta, LAWRENCE SOMER, Catholic University of America,

Washington., D.C, KENNETHM. WILKE, Topeka, KS, REX H. WU, SUNY

Health Science Center, Brooklyn, NY, and the PROPOSER.

812 [Fal 1993] Proposed by George P. Evanovich, Saint Peter's
College, Jersey City, New Jersey.
If n 2 2 isa pogtive integer, prove that
n . n N
Ecos(%) = Esin(%.) =0.
j=1 n j=1 n
|. Solution by John F. Putz, Alma College, Aima, Michigan.
Let cosz_]:., siner;n. y /=1, 2 .., N, represent n = 2 unit forces

acting on a particle. Since they are equally spaced around the unit circle
centered at the particle, these forces are in equilibrium, and hence, the
resultant is the zero vector. That is,
n . .
¥y (cosﬁf, sinﬂ) = (0, 0).
j=1 n n

Therefore,
d 2jrt . 2%
Ecos_"_ = Esmi. =0.
j=1 n j=1 n
I. Solution by Sammy Y, age 14, and Jimmy Yu, age 12, special
studentsat University of South Dakota, Vermillion, South Dakota.

Let 9=Wn. Then ¢ = ¢ = 1 Calculating the sum of the
geometric series, we have

Since

n as n n » *
Y €% = ¥ (cos jo + isinjo) = E(cosﬁt_ + isin %),
j=1 j=1 j=1 n n
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we obtain

n L " .o
Yy cos 2% = Re[z e"e) =0
n

j-l j'l
and

n . n
Yy sin %" = Im(z eije] 0.

j=1 n j=1

Also solved by SEUNG-JIN BANG, Seoul, Korea, CHRISTOPHER N.
BAUNACH (2 solutions). University of Louisville KY PAUL S
BRUCKMAN, Everett, WA, BILL CORRELL, JR,, Denison University,
Cincinnati, OH, MIGUEL AMENGUAL COVAS, Cala Figuera, Mallorca,
Spain, RUSSELL EULER, Northwest Missouri State University, Maryville,
JOHN DOUGLAS FAIRES, Iffley, Oxford, England, JAYANTHI
GANAPATHY, University of Wisconsin-Oshkosh, STEPHEN|. GENDLER,
Clarion University of Pennsylvania, RICHARD |. HESS, Rancho Palos
Verdes, CA, FRANCIS C. LEAKY, Saint Bonaventure University, NY,
CARL LIBIS, |daho Sate University, Pocatello, HENRY S UEBERMAN,
Waban, MA, DAVID E. MANES, SUNY College at Oneonta, YOSHINOBU
MURAYOSHI, Okinawa, Japan, BOB PRIELIPP, University of
Wisconsin-Oshkosh, HENRY J, RICARDO, Medgar Evers College,
Brooklyn, NY, MOHAMMAD P. SHAIKH, University of Missouri,
Columbia, KENNETHM. WILKE, Topeka, KS, REX H. WU, SUNY Health
Science Center, Brooklyn, NY, and the PROPOSER. Most solvers used the
fact that the sum of the n nth roots of a complex number is zero.

813. [Fall 1993] Proposed by thelate Jack Garfinkel, Flushing, New
York.

Given a triangle ABC with Sdes a, b, c and a triangle A’B’C’ with
sides(bt ¢)/2, (¢ + a)/2, (at b)/2. Provetha r' = r,wherer and r' arethe
inradii of trianglesABC and AB'C' respectively.

I. Solution by Sammy Yu and Jimmy Ya, special students at
University of South Dakota, Vermillion, South Dakota.
It iswell known that

[ = (s —a)s - b)s - ¢) =J(b +c-a)c+a-b)a+b-c)
_\‘I S 8s
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In triangle AB'C', let thesidesbed = (bt ¢)2, ¥ = (c T a)/2, and
¢ = (at b)/2 and the semiperimeter s’ = (@ 1t b’ * ¢')/2. Thens’ = sand

y = J (s - @) - b)(s - <), J abe

3 —

8s
Thereforeit issufficient to prove thet
(btc-afcta-b)atb=-c)s abe.

Sincewe have
b+c-afc+a-b)=c*-(@a-bls
(c+a-b)(a+b-c)=a2-(b—c)2sa2,
(a+b-c)(b+c-a)=b2-(c—a)2sb2,

multiply these inequalitiesside for side and take the positive square root to

get the desired inequality, with equality holding if and only if triangleABC
isequilateral.

II. Comment by Murray S Klamkin, University of Alberta,
Edmonton, Alberta, Canada.

This same problem by the same author hes dready appeared as
problem number 4303 in School Science and Mathematics 91 (1991) 390.
A more general inequality among others appears in my paper "Notes on
Inequalities Involving Triangles or Tetrahedrons" Publ. Electrotehn. Sef.
Mat. Fiz. Univ. Beograd, No. 330-337, 1970, pp. 1-15. A portion of this
paper is quoted in the former reference.

Alsosolved by SCOTT H. BROWN, Auburn University, AL, PAUL
S BRUCKMAN, Evereit, WA, WILLIAM CHAU, New York, NY, BILL
CORRELL, JR, Denison Universty, Cincinnati, OH, MIGUEL
AMENGUAL COVAS, Cala Figuera, Mallorca, Spain, GEORGE P.
EVANOVICH, Saint Peter's College, Jersey City, NJ, HENRY S
LIEBERMAN, Waban, MA, DAVID E. MANES, SUNY College at Oneonta,
YOSHINOBU MURAYOSHI, Okinawa, Japan, BOB PRIELIPP,University
of Wisconsin-Oshkosh, and the PROPOSER

814. [Fall 1993] Proposes sy Nathan Jaspen, Sevens Institute of
Technology, Hoboken, New Jer sey
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For any decimd integer n, prove that 7 andnendin thesamedigit,
that n% and n? end in the same digit, that n’ and n® end in the same digit,
and so forth.

I. Solution by Jimmy Yu, special student at University of South
Dakota, Vermillion, South Dakota.

It is sufficient to prove that 10 divides w4 - " where mis a
positive integer. We see that

A" = = (2 D(? - 1) = (2= 4+ )P - 1)
= 5N = 1)t Wi (n - 2)n - D@ + 1)(n t 2).

Sincen™ and n - 1 have opposite parities, then 5n"‘(n2 = 1) = 0 (mod 10).
Because (n = 2)(n — Dn(n + 1)(n + 2) is a product of five consecutive
integers, it if divisbleby 5! = 120. Consequently - a0 (mod 10)
and the desired result follows.

II, Solutionby Alma College ProblemSolving Group, Alma College,
Alma, Michigan.
The expression

w5 = bt 2 ke = m) = nfn - Dn(n + 1)(@? T 1),
wheren > 0 and k 2 0 are integers, is even because it has consecutive
integer factors. By Fermat’s Little Theorem, P -ne0 (mod 5). Thus
n*3 - p¥*1 s a multiple of 10 and the theorem follows.

Also solved by AARDVARK PROBLEM SOLVING GROUP,
Trenton State College, NJ, CHARLES ASHBACHER, Cedar Rapids, IA,
SEUNG-JIN BANG, Seoul, Korea, MARIO R BORDOGNA, Allegheny
College, Meadville, PA, PAUL S. BRUCKMAN, Everett, WA, CAVELAND
MATH GROUP, Western Kentucky University, Bowling Green, JAMES E.
CAMPBELL, Arnold, MO, BILL CORRELL, JR., Denison University,
Cincinnati, OH, CHARLES R DIMINNIE, . Bonaventure University, NY,
RUSSELL EULER, Northwest Missouri State University, Maryville,
GEORGE P. EVANOVICH, Saint Peter's College, Jersey City, NJ, MARK
EVANS, Louisville,KY, VICTOR G FESER, University of Mary, Bismarck,
ND, STEPHEN |. GENDLER, Clarion University of Pennsylvania,
RICHARD |. HESS, Rancho Palos VVerdes, CA, FRANCISC. LEARY, Saint
Bonaventure Universty, NY, CARL LIBIS, Idaho Sate University,
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Pocatello, HENRY S. LIEBERMAN, Waban, MA, DAVID E. MANES,
SUNY College at Oneontay, BOB PRIELIPP, University of
Wisconsin-Oshkosh, HENRY J. RICARDO, Medgar Evers College,
Brooklyn, NY, MOHAMMAD P. SHAIKH, University of Missouri
Columbia, LAWRENCE SOMER, Catholic University of America,
Washington., D.C, KENNETH M. WILKE, Topeka, KS, REX H. WU (2
solutions), SUNY Health Science Center, Brooklyn, NY, SAMMY YU,
University of South Dakota, Vermillion, and the PROPOSER.

815. [Fal 19931 Proposed by Bill Correll, Jr., Cincinnati, Ohio.
Let [ x]denote the greatest integer not exceeding X. Solve for x :

[x +1][x +2][x + 3
L2 03 [+
|. Solution by George P. Evanovich, Saint Peter's College, Jersey
City, New Jersey.

Since 819 = (13)(9)(7), then 13 s (x* 1)/2 < 14,9 s (x* 2)/3 < 10,
and7 s (x + 3)/4 < 8, or equivadently, 25 sx < 27.

[, Solution by Paul S Bruckman, Everett, Washington.
Let

]=819.

=[x +1][x +2][x +3
Gy iy
Forany 6,0 < 6 < 1, we find that f(25- 6) = (12)(8)(6) < 819, f(25) =
(13)(9)(7) = 819, f(27 - 6)= (13X9X(7) = 819, and f(27) = (14)(9)X7) > 819.
Note also that f(x) is nondecreasing for dl postive x. The equation
f(x) = 819 cannot have negative solutionssince f(x) sO if x < 0. Finally,
f(0) = 0. Therefore, the solution to the equation is 25 sx < 27.

Also solved by AARDVARK PROBLEM SOLVING GROUP,
Trenton State College, NJ, ALMA COLLEGE PROBLEM SOLVING
GROUP, MI, JAMES E. CAMPBELL, Arnold, MO, CAVELAND VATH
GROUT, Western Kentucky University, Bowling Green, MARK EVANS,
Louisville, KY, VICTOR G. FESER, University of Mary, Bismarck, ND,
JAYANTHI GANAPATHY, University of Wisconsin-Oshkosh, STEPHEN
GOODMAN, University of Dayton, OH, RICHARD |. HESS, Rancho Palos -
Verdes, CA, HENRY S LIEBERMAN, Waban, MA, DAVID E. MANES,
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SUNY College at Oneonta, Y OSHINOBU MURAYOSHI, Okinawa, Japan,
HENRY J. RICARDO, Medgar Evers College, Brooklyn, NY, DAVID S
SHOBE, New Haven, CT, LAWRENCE SOMER, Catholic University of
America, Washington., D.C, SONNY W/, University d lllinois, Urbana,
KENNETH M. WILKE, Topeka, XS, REX H. WU, SUNY Health Science
Center, Brooklyn, ¥Y, SAMMY YU and JMMY YU, University d South
Dakota, Vermillion, and the PROPOSER. Partial solutionsby WILLIAM
CHAU, New York, NY, CARL LIBIS, |dahoState University, Pocatello, and
MOHAMMAD P. SHAl KH University d Missouri, Columbia.

*816, [Fal 1993} Proposed by Robert C. Gebhardt, Hopatcong, New

Jersey.

a Fromtheintegers 1, 2 3, ..., n, astate lottery selects at random

k numbers (k < n). A person who had previoudy chosen at random m of

those k numbers(m s k) isawinner." Find the probability of beingawinner.

b) The Tri-StateM egabucks(Maine, New Hampshire, and Vermont)

ticketscost $1 each. A participant selectsm = 6 numbersout of n = 40 and

isa winner if al six numbers match the k = 6 numbers the game selects.

The winningsare paid in 20 equal annual installments. How large does the
pot have to be before a ticket is worth $1?

I. Solution by Richard |. Hess, Rancho Palos Verdes, California.

a Thereare k waysto pick mof k numbersand ;lways to
m

pick mof then numbers. So the probability Pof picking m of the k the

o[k n\ _ kYn-m)
state selected is P= (m)/(m) ST
b) Forn = 40 and m = k = 6, we get P = 6!341/40! = 1/3838380.
So, if the winnings W were paid immediately, then a ticket would be worth
$1when the pot reached $3,838,380. The present valuePV of winnings paid
in 20 equa installments (first installment immediately) is

PV =_%[1 s+t e (@) e s (1))

o wai-(1+)® _ wi+i-@+9P
20 g -1 +i)? 20 i

Now we must have PPV = 1 and the following table gives, for various
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vauesof i, the value of W that yieldsPV = $3,838,380:

i w { w
.04 $ 5,431,437 .08 $ 7,239,768
.05 $ 5,866,696 10 $ 8,197,358
.06 $ 6,314,103 A2 $ 9,176,386

That is, when money is worth i rate of interest per year, then a ticket is
worth $1 when the pot has reached W

II. Comment on part (0) by Mark Evans, Louisville, Kentucky.

The question as worded cannot be answered because the size of the
pot is just one of several variables. The following are variables that must be
congdered:

{ = interest rate used to reflect the time value of money,

C = money carried over from previous no-winner periods,

S= new money for the current period,

T(W) = tax on winnings per year, given there are W winners,

TI(W) = tax rate on interest, given there are Wwinners,

71 = tax on $1 bet,

P1 = probability the bettor wins, and
P(W) = probability there are W winners including the bettor.

-1
Now Pl = 40 = _l and
6 3838380

P(W) = PL-P(W - 1) = P1-&_ (S-PH¥"!
(w-1)
Note that Poisson is an excellent approximation for binomial in this case.
LetA=1%i[1 - TI(W)]. Now we can write an expressionfor the expected
gain E from a bet of $1:

M 20

C+S8 1 1-A"

E=~ "PW)—-=—2 .1 -T(W -
%‘1 77— PW) =5 i (1-T(W)) +T1 - 1.

Prectically, the terms of the summation are insignificant after the first
several. Thevaluedf E is highly dependent on C and S and the ratio CIS,
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If Cissmadll, E < 0 for reasonable choices of interest and tax variables.
Assuming i = 006, T1 = 0, and a typicd tax structure, E = O when C =
$10,000,000 and S = $4,000,000, or if C = $12,500,000 and S = $8,000,000.

Alsosolved by ALMA COLLEGE PROBLEM SOLVING GROUP,
MI, CHARLES ASHBACHER, Decisonmark, Cedar Repids, IA, PAUL S.
BRUCKMAN, Everett, WA JAMES E. CAMPBELL, Arnold, MO, MARK
EVANS, Louisville, Kentucky, MOHAMMAD P. SHAIKH, Universty d
Missouri, Columbia, and DAVID S. SHOBE, New Haven, CT.

817. [Fal 19931 Proposed
by Andrew Cusumano, Great Neck, Y
New York.

In the accompanying figure
squaresCEHA and AIDB are erected
externally on sdes CA and AB of
triangleABC. LeeBHmetICa O
andAC a G, and let CI mest AB at
F

a) Prove that points D, O,
and E are collinear.

b) Prove that anglesHOE, EOC, AOH, and AQI are each 45°.

c) If ACB isaright angle, then prove that E, F, and G are collinear.

Find an "elegant” proof for parts (a) and (b), both of which are
known to be true whether the squares are erected both externaly or both
internally (see TheAmerican Mathematical Monthly, problem E831, val. 56,
1949, pp. 406-407). Part (c) isadeightful result that aso should be known,
but appearsto be more difficult to prove.

Solution by Sammy Yu and Jmmy Yu, special studentsat University
d South Dakota, Vermillion, South Dakota.
a) and b) By SAS, ABAH e MAC. Hence ZAHB = LACI 0 that
A H, C 0 areconcydlic. Thiscircle aso passes through the fourth vertex
E of the square AHEC. Consequently, LHOC = £HAC = 90°. Therefore,
IC 1 HB. Also LAOH = LACH = 45°, LHOE = LHAE = 45°, and LEOC
= LEAC = 45°. Smilarly,A O, B, D, | are concyclic and £AOI = 45°.
Result (b) follows. Now, since 210D = LEOC = 45°, then D, O, E are
collinear. The desired result (a) thus follows.
¢) Since ABAH = A/AC and AH § BC, we let a = LABH = LAIC
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and we have B = ZACI =
LAHB = LHBE. L& a b, ad
C denote the lengthsof BC, CA4,
and AB respectively. Then AF
= Cctah a,

FB=AB-AF=c-ctanaq,
s0 that AF/FB = (tan a)/(1 — tan

).
Now tan 8 = HEIBE =
b/(@ + b), andtan A =db. Also

tana = tan (90° - A - B) = cot (A +ﬁ):;
tan(A . B)
= 1 —tanA tanf _ b?
anA +tanf ;2 . .p 4 p2
Therefore,
2
(1) AF b .
FB  a(a + b)
From the figure we find that
0 LLACELE
EC b
Since AGBC = AGHA,
3 Lo
GA AH b

Since the product of the right Sdes of equations (1), (2), and (3) is 1, the
desred result follows by the converse part of Menelaus’ theorem applied to
triangle ABC and Mendaus points k, F, G.

Also solved by PAUL S. BRUCKMAN, Everett, WA, HENRY S.

LIEBERMAN, Waban, M4, WILLIAM H, PH RCE, Rangeley, ME, and the
PROPOSER.

*818. [Fall 1993] Proposed by Dmitry P. Mavlo, Moscow, Russia.
From the SYMP-86 Entrance Examination, solve the inequality
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1 1
ooy T
Solution by Alma College Problem Solving Group, Alma College,
Alma, Michigan.

Clearly we cannot havex’ = X = 0, sox cannotbe-1, 0, orL The
inequality is satisfied when ¥ = x < 0, that is, whenx < <1 or 0 <X < 1.
When -1 <x < 0, |x| = =x and the given inequality reducesto ~x = x* -
X,andto 0 < X3, whichis fasein the stated interval. Whenx > 1, thegiven
inequality reducestox s x* = X, 2x < 23, whichis truewhenx = 42 Hence
the given inequality istrueif and only if x < -1, 0<x <1, 0rx = 42

Also solved by AARDVARK PROBLEM SOLVING GROUP,
Trenton State College, NJ, CHARLES ASHBACHER, Decisonmark, Cedar
Rapids, IA, SEUNG-JN BANG, Seoul, Korea, PAUL S. BRUCKMAN,
Everett, WA, JAMES E. CAMPBELL, Arnold, MO, CAVELAND NVATH
GROUP, Wegtern Kentucky Universty, Bowling Green, BILL CORRELL,
JR., Denison University, Cincinnati, OH, MASK. EVANS Louisville, KY,
JAYANTHI GANAPATHY, Universty d Wisconsn-Oshkosh, STEPHEN
|. GENDLER, Clarion University d Pennsylvania, STEPHEN GOODMAN,
Universty d Dayton, OH, RICHARD I. HESS, Rancho Palos Veades CA4,
HEATHERLECCEARDONE, &. Bonaventure University. §Y, CARL LIBIS,
Idaho State University, Pocatello, HENRY S LIEBERMAN, Waban, MA,
DAVID E NANES, SUNY College at Oneonta, YOSHINOBU
MURAYOSHI, Okinawa, Japan, MICHAEL R PINTER, Bdmont
University, Nashwille, TN, JENNIFER R. POWELL, Hendrix College,
Conway, AR, BOB PRIELIPP, Univerdty d Wisconsan-Oshkosh, HENRY J.
RICARDO, Medgar Evers College, Brooklyn, NY, MOHAMMAD P,
SHAIKH, Universty d Missouri, Columbia, DAVID S. SHOBE, New
Haven, CT, PATRICIA WHALEN and MICHAEL T. DANIELSON,
Allegheny College, Meadville, PA, REX H. WU, SUNY Health Science
Center, Brooklyn, &Y, and SAMMY YU and JMMY YU, Univerdty o
South Dakota, Vermillion. Partial solution by SAM HOUSKER, Drake
Universty, Des Moines, IA.

819. Proposed by Morris Katz, Macwahoc, Mane.
Evauate the integra

flnxsinlx dx.
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York Solution by Henry J. Ricardo, Medgar EversCollege, Brooklyn, New
or.

Using integration by parts we find that

fsin'lx dx =xsin"lx + Vl -x% s+,

Clearly we must have 0 < x s 1 for the integral to be defined. Now use
integration by parts with u = Inx and dv = sin’! x dx on the riven integral
to get - -

I= J'lnx sin"lx dx

=(xsinlx + {1 - x2 )inx - jsin"lx dx - f——__“-xz dx
x
= (xsin-x +{1 -x2 )(Inx - 1) - j'__.__“_xz dx.

X
This last integral can be evaluated by making the substitution X = sin 6,
0<0sn2:

f\’l -x2 L [cos?0.de _
X

g — i
— f (csc® - sin 8)d6

-In(csc@ + cotB) + cos8 + C

-1,,[1+¢1-x2 )r—c

X

It follows that
I= (x sin"lx +y1 -x2 )(lnx-l) +ln(1 i ~x2) -Y1-x% +C.
x

Also s0lved by AARDVARK PROBLEM SOLVING GROUP,
Trenton State College, NJ, RACHEL ABBEY, Alma College, MI, ALMA
COLLEGE PROBLEM SOLVING GROUP, MI, ZIV A. ARIE and
ROLAND A. ZOROTAC, Allegheny College, Meadville, PA, JASON
BANDLOW, Alma College, MI, SEUNG-JN BANG, Seoul, Korea, JEFF
BEANE, Alma College, MI, SCOTT H. BROWN, Auburn University, AL,
PAUL S. BRUCKMAN, Everett, WA, BILL CORRELL, JR., Denison
University, Cincinnati, OH, RUSS| L. EULER, Northwest Missouri State
Universty, Maryville, GEORGE P. EVANOVICH, Saint Peter's College,
Jarsey City, NJ MARK EVANS Louisville, KY, JAYANTHI
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GANAPATHY, University d Wisconsin-Oshkosh, LAURA GILBO, Alma
College, MI, DEREK HANDZO, Alma College, MI, RICHARD |. HESS,
Rancho Palos Verdes CA, CHAD HUSBY, Alma College, MI, HEATHER
LECCEARDONE, S. Bonaventure University, NY, CARL LIBIS, Idaho
State University, Pocatello, HENRY S. LIEBERMAN, Waban, MA, PETER
A. LINDSTROM, North Lake College, Irving, TX, DAVID E MANES,
SUNY College at Oneonta, WLLI AMD. MCINTOSH, Central Methodist
College, Fayette, MO, KARYN MROCZKOWSKI, Alma College, M,
MICHAEL R. PINTER, Bdmont University, Nashville, TN, HENRY J.
RICARDO (second solution), STEVEN VANCE, Alma Callege, MI, REX H.
WU, SUNY Health Science Center, Brooklyn, Y, SAMMY YU and JIMMY
YU, Universty o South Dakota, Vermillion, and the PROPOSER.

821 [Fall 1993] Proposed by Zeev Barel, Hendrix College, Conway,
Arkansas.

Problem B-2 at the fifty-second annua William Lowell Putnam
Mathematical Competition (1991) stated: Supposef and g are non-constant,
differentiable, rea-valued functions defined on (-%, ®). Furthermore,

suppose that for each pair of red numbersx and y,

flx + y) = f&Y©) - g()g) and g(x + y) = ()80 - X))
If £(0) = O, prove that (f(x))? + (g(x))? = 1 for al x.
In fact, one can do a little more under the same hypothesis. Prove
that there existsa real number k such that f(x) = coskx and g(x) = sin Ax for
al x.

I. Solution by David E. Manes, SUNY Collegeat Oneonta, Oneonta,
New Yak

As in the published solution to Problem B-2 [1}, begin by
differentiating both sides of the two equationswith respect to 'y, obtaining

f'x+y) = fOf' () - 8x)g' () and g'(x + y) = f(X)g'©) - gX)f ©)-
Settingy = 0 yidds

1) f'(x) = f)f' (0) - g(x)g' (0) = -&' (0)z(x)
and
@ g () = f(x)g' (0) - g)f' (0) = & (O)f (x):

Note that ' and g’ are both differentiablefunctions on (-, «) sincef and
gae Le g'(0)=k Thenk = 0sincef and g are non-constant functions.
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Now differentiate Equation (1) to get

f' (@) = -kg'(v) = -Kf(x),
where the second equadlity follows from Equation (2). This differentia
eguation has a genera solution

f@)=C, sink t €, cos kx

for some constants C; and C,. Since f'(0) . O, we obtain C; = 0. Thus
fx) = C, cos kx and 0, by (2),

8 (x) = kf(x) = Cok o3 k.,
Sinceg'(0) = k it followsthat C, =1 axd cnce
gx)=snkxtC,
for some congtant C;. But f'(x) = —-kg(x) and k = O imply that C4 = O.
Accordingly, there is a red number k, namdy k = g'(0), such that

J(x) = coskx ad g(x) = sin Ax for al x. Also, of course, the equation
(Fe))? + (g(x))? = Lisvalid for all x.

0. Comment by Murray S Klamkin, Univarsty o Alberta,
Edmonton, Alberta, Canada.

Thisisa known result [2] and holds under wesker conditions. It is
a0 known [2] that even for the Single equation

fee - y) = Q) + gx)80),

the only non-constant continuous solutions are the same as above.

References

1. L. F. Klosinski, G. L. Alexanderson, and L. C. Larson, The Fifty-Second
William Lowdl Putnam Mathematicd Competition, The American
Mathematical Monthly, 99 (1992), 715-724.
2 J Aczel, Lectures on Functional Equations and Their Applications,
Academic Press, New York, 1966, 176-180.

Alsosolved by PAUL S. BRUCKMAN, Everett, WA, CHARLESR.
DIMINNIE, . Bonaventure Universty, NY, JAYANTHI GANAPATHY,
Universty d Wisconan-Oshkosh, HENRY S. LIEBERMAN, Waban, MA,
and the PROPOSER.

Editorial comment.  Unfortunatdy, neither your editor nor
commercial word processors are perfect (although, d course, one d us
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comes quite close). Hencethe printed copy did not meke it clear that f'(0)
= 0 was intended. We have found that unless a tiny space is inserted

between the f and the’, they overprint one ancther.

822. [Fall 1993] Proposed by Sanley Rabinowitz, MathPro Press,

Westford, Massachusetts.
If aisa root of theequationx5 +x = 1= 0, then find an equation

that has & + 1 as a root.

|. Solutionby FrancisC. Leary, Saint BonaventureUniversity, Saint
Bonaventure, New York. 5 4

Clearly, a= 0, 1. Obsarvethata +a= a(a *a) =1, whencea
= 1/(a* +1). Therefore,

5
1 Sl l-1=0.
ot +1 at + 1

Clearing denominatorsyidlds 1+ (a%+ 1)* - (a*+ 1)’ = 0, sothat a* + 1
isa root of

©-x*-1=0.

Thisisaspecial caseof the generd result: aazero i f fix) implies
that a1 is a zero of g(x) = x*f(1/x), where n is the degree of f.
polynomial g is called the reciprocal polynomial off. If f(x) = a,x" + -
aix t ag, then gx) = aO{P ta,xt+ a3 See for example,
Theorem 36 in [1].

. Solutionby Murray S Klamkin, University of Alberta, Edmonton,
Alberta, Canada.

More generaly, let & be a root of the equation ¥"P(x™) - a = 0,
where P is a polynomia, and m, n are nonnegative integers. Then an
equation which hast = &" + 8 as a root is gotten from

x’""P(fn)m = am,
(which is also satisfied by @) or
(t- B)*P(t - BY" = a".
1. Solution by Russdll Euler, Northwest Missouri Sate University,

Maryville, Missouri.
Since an equation that has & + Lasaroot isx = (a* + 1) = 0, the
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problem was not posed correctly. Perhapsthe proposer wanted the equation
to be a polynomia with integer coefficients.

IV. Solution by Bob Prielipp, University of Wisconsin-Oshkosh,
Oshkosh, \\Wisconsin.
Sincea(a’t 1) - 1=0,thenax -1 =0 has a*+ 1 as a root.

Reference

1 Pless, Introduction to the Theory of Error Correcting Codes, 2nd ed,
Wiley-Interscience, New York, 1989.

Also solved by AVRAHAM ADLER, Monsey, NY, CHARLES
ASHBACHER, Decisionmark, Cedar Rapids, IA, SEUNG-JIN BANG, Seoul,
Korea, PAUL S. BRUCKMAN, Everett, WA, CAVELAND MATH GROUP,
Western Kentucky Universty, Bowing Green, BILL CORRELL, R,
Denison University, Cincinnati, OH, MIGUEL AMENGUAL COVAS, Cala
Figuera, Mallorca, Spain, GEORGEP. EVANOVICH, SaintPeter'sCollege,
Jersey Gty, NJ, JAYANTHI GANAPATHY, University of Wisconsin-
Oshkosh, STEPHEN |. (GENDLER Clarion University of Pennsylvania,
RICHARD |. HESS, Rancho Palos Verdes, CA, CARL LIBIS, |daho Sate
University, Pocatello, HENRY S. LIEBERMAN, Waban, MA, PETER A.
LINDSTROM, North Lake College Irving, TX, DAVID E. NANES, SUNY
College at Oneonta, THOMASE. MOORE, Bridgewater Siate College, MA,
WLLI AMH. PEIRCE, Rangeley, ME, MICHAEL R. PINTER, Belmont
University, Nashville, TN, JENNIFER R. POWELL, Hendrix College,
Conway, AR, MOHAMMAD P. SHAIKH, University of Missouri, Columbia,
DAVID S. SHOBE, New Haven, CT, KENNETH M. WILKE, Topeka, XS,
REX H. WU, SUNY Health cienceCenter, Brooklyn, NY, SAMMY YU and
JMMY YU, University of South Dakota, Vermillwn, and the PROPOSER.
One incorrect solution was received.

Correction

Rex H. Wu pointed out that, in the solution to Problem 795 in the
Fall 1993 issue, the open interval (-1, 1) at the top of page 634 should be,
aclosed interval [-1, 1].
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