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Introduction. The growing interest 
in chaos and fractal geometry has created .. 
a new field of mathematics that can be 
explored by faculty and undergraduates 
alike. "Sierpinski triangles" and "Koch's 
curves" have become common phrases in 
many mathematics departments across 
the country. In this paper we review 
some basic ideas from fractal geometry 
and generalize the construction of the 
Sierpinski triangle to what we will call 
Sierpinski polygons. 

The Sierpinski Triangle. In fractal 
geometry, the well known Sierpinski 
triangle can be constructed as a limit of 
sets as follows. We begin with three 
points, x,, xi, and xi that fonn the 
vertices of an equilateral triangle An.  

F o r i = 1 , 2 , 0 r 3 , 1 c t x j =  . L e t s  [:;I 
represent the scl of real numbers and let 
?lt2 be the real plane. For i = 1, 2, or 3, 
we define mi : 9t2 -> !)t by 

Figure 1 

Figure 2 

Then ( I ) ,  when applied to A n ,  contracts An by a factor of two and then 
transliitcs the iin;ige of An so that thc ith vertices of A,, ;111d the image of 4 
coincide. Define A ] , ,  to be a) , - (Ao) .  Then A ] , ,  is thc set of all points 



DENNIS AND SCHLICKER, SIERPINSKI N-GONS 83  
82 PI MU EPSILON JOURNAL 

halfway between any point in A. and x i ,  or A l i  is a triangle half the size 
of the original translated to the ith vertex of the original. Let Al  = 

3 Uial A l i  . An and A, are shown in Figures 1 and 2, respectively. We can 
continue this procedure, replacing A. with Al  . For i = 1, 2, or 3, let A 2 ,  

3 = toi(Al) and let A2 = uiSl A^,;. A2 is pictured in Figure 3. Again, we 
can continue this procedure, each time replacing A, with A, . A4 and A8 
are shown in Figures 4 and 5. 

Figure 3 Figure 4 

If we take the limit as i -Ã  ̂ 00 , the 
resulting figure is the Sierpinski trian- 
gle. This algorithm for building the 
Sierpinski triangle is called the deter- 
ministic algorithm. 

Classification. It is natural to ask 
what would happen if, in using the 
deterministic algorithm, we cut the 
distances by a factor of 3, 4, or 10, 
instead of 2. That is, what would 
happen if, for r > 0 ,  we defined 

Figure 5 

A l i  is a triangle translated to the ith vertex whose sides have length 1/r of 
the lengths of the sides of the original triangle. If Figures 6 and 7 we see 
A, (1.5) and A4(1.5) and in Figures 8 and 9 we see Al (3) and A4(3). 

Figure 6 Figure 7 

Figure 8 Figure 9 

It is easy to see that if r > 2, then the resulting Am consist of a 
collection of 3'" disjoint triangles. In this case we say that the A m  are 
totally disconnected. If 0 < r -c 2 and r # 1, A is a collection of 3" 
intersecting triangles. In this case we say that the Am are overlapping. 
However, if r = 2 we have seen that A is a collection of 3"' triangles that 
intersect only at the edges. In this case we say that the Am are just . 



touching. It seems that the most aesthetically pleasing situation is when 
r = 2, where the triangles are just touching. 

The  Deterministic Algorithm Applied to Regular n-gons. There is no 
reason why we should restrict ourselves to looking at only three points. Let 
v,, v.,, ... , v  be the vertices of a regular 12-gon An . For i ? { I ,  2, ... , ti} 

a - 
let vi = [;:I, and, for r >  0, let bi [ ; I )  = L [ x ]  + G[bJ9 ~ m , i ( r )  

r v  
= 6i(Am_i (r)), and Am+]  (r) = U , t l  Am,( r ) .  Again, A ,  is an Ãˆ-go 

translated to the fth vertex whose sides have length 1/r of the lengths of the 
sides of the original 11-gon. Some examples of Ai(r) can be seen in Figures 
10, 11, and 12. 

Figure 10 Figure 11 

Again, for some values of r, A ( r )  consists of overlapping n-gons, and 
for others totally disconnected n-gons. This raises the question of which 
value of r makes the constituent 11-gons just touching. 

Since (912, d) is a complete metric space, where d is the euclidean 
metric on 912, the sequence { A ( r ) }  has a limit in 912. (See [I]  for de- 
tails.) For the just touching r we will call S P  = lim Am(r) a regular 
Sierpinski n-gon. (The figures included in this paper were obtained by 
beginning with the regular n-gon with vertices 

V, = (cos ( a o  + 2ni/11), s in(ao + 2ni/n)) 

for i = 1, 2, ... , 11, where an = n / 2  - n/n  .) 

Regular Sierpinski n-gons. 
Given ;I regul;~r I;-gon, constnict line 
scgim-nts I'roin the center to c;ich 
vertex. The nidiiiii mc;isure of each 
ceiitnil aiiglc is clc;irly 2x11; . Each 
ol' the tri;ingIcs determined by the 
cciiter ;ind two ;id.j;iccnt vertices is 
isoswles, so Hie me;isurc of the base 
;mgles of eiicli of these triiiiiglcs is 
(I; - 2)s t21; .  Consequently, the 
measure of ;I vertex angle of a regular v 
I;-go11 is (I;  - 2)1/11 . 

P ~ o t ~ o s m o ~  1.  For I; .Ã 5 ,  the 
Figure 12 

v;ilue of r thiil dcterininrs ;I regular Sierpinski n-gon is 

where 1.v) is the greatest integer less than or equal to x. 

Proof. Let n 2 5 he an integer. Without loss of generality, we can 
considcr ;I piirticul;ir I;-gon. Using our previous notation, we will call the 
A t11e ~.o~~stituent 11-gons of Am(r) . Since the length of any side of 

Figure 13 

one o f  thc constituent ti-gons of A ( r )  is Mr times the length of any side of 
one of the coiistitucnt I;-gons of Am -, ( r ) ,  for a given m all of the n-gons * 

making up A ( r )  are congruent regular 11-gons. Let do be the length of one 



side of An and let dm be the length of one side of any constituent n-gon of 
Am(r). To find the value of r that makes the Ami(r) just touching, all we 
need do is find the ratio dOldl. 

In Figure 13 we see a picture of a portion of A and A ,2 . Label the 
vertices of A as wl1,  w12, ..., w l n  starting with w l 1  = vl and 
proceeding counterclockwise. In Figure 13 we see the sides vl v2 and vn vl 
of A. and sides w l 1  w 1 2 ,  w12 w13 , and w13 w14 of A l l  . Here, 

1 v1 v2 1 = do and 1 wl ,; w l  i+l  I = dl for each i. Construct a line from 
w13 perpendicular to vl v2. Label the point of intersection Cl . Now, 
m(L w ~ , ~ w ~ , ~ w ~ , ~ )  = (n - 2 ) d n ,  so 1 wl2Cl  \ = dlcos(2n/n). Since 
the sum of the measures of the angles in a right triangle is n radians, it 
follows that m ( L  w12w13 Cl) = (n - 4)n/2n. Now construct a line from 
w14 perpendicular to vl v2 and call the point of intersection C2. The 
points Cl ,  C2, and w13 form three vertices of a rectangle. Label the 
fourth vertex C2' . Construct rectangle C2C2'Cl wl ,3 . Since 

m(^1,4w1,3ci) + m(Lc21w1,3c1) + m(^1,2w1,3c1) 

+ m(Lw1,4w1,3w1,2) = 2:19 

m(/-w^,4~1,3C2') = 4dn. So m(L W ~ , ~ W ~ , ~ C ~ ' )  = (n - 8 ) n l h .  Then 

lClC21 = jw13C^\ = dlcos(4n/n). 

We can continue this process inductively, at the nth stage obtaining an 
angle L w1, t+ lwl , t+2C with measure (n - 4t)n/2n, as long as n 2 4t. 

By the division algorithm we can find an integer k so that n =4k + r ,  
where 0 s r < 4 .  So we can continue the construction up to the Alh step. 
If r = 0, then n = 4k. In this situation, the kth side of A in this 
progression coincides with a corresponding side of A 2, . If r > 0 ,  then 
n > 4k. In this situation A and A 2  intersect at a vertex. Now we can 
see that if the A J r )  are just touching then, by symmetry, the sum of the 

k lengths of w l 1  w 1 2 ,  wl2C1 , and zis1 dl cos(2idn)  will be half of 
do. SO 

Therefore, the contractivity factor necessary to obtain just touching Ami(r)  
is 
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Since k = [nl4] our proof is complete. 
The sequence { r } .  What can be said about the sequence of distances 

Intuitively, as n increases the polygons are approaching circles so we would 
expect that the numbers 1 I r  would converge to 0. It is easy to see that this 
is SO. 

PROPOSITION 2. { r } ,  as defined above, diverges to infinity. 

Proof. It suffices to show that y!y cos (2niln) diverges to infinity. 

Let n a 5 and let f(k) = cos(2nkIn) - kln for k â [O, nl6].  Then fl(k) 
= -(l/n)(2nsin(2Jik/n) + I ) ,  so f is a decreasing function of k on 
[O, n/6]. Because f(nl6) > 0 ,  f(k) > 0 on [O, nl6 ] . It follows then that 
cos(2nk/n) > kin for k â [O, ~ 1 6 1 .  So 

which diverges to infinity. 

Fractal Dimension. The Sierpinski polygons we have been discussing 
are all examples of a wider class of objects known as fractals. Every fractal 
has a number associated with it, the fractal dimension, that determines, in 
some sense, how much of the underlying space it occupies. In this section 
we see that the Sierpinski n-gons arc really attractors of iterated function 
systems and we determine the fractal dimension of each of the Sierpinski n- 
gons. All definitions in this section can be found in Michael Barnsley's 
book Fractals Everywhere [I]. We begin with a discussion of iterated 
function systems. As earlier, let S P  be the Sierpinski n-gon. 

For a given tz, in constructing S P  we used n contraction mappings of 
the form 6;(z) = (llrn)12z + Ã§; for z, ui E 912, where I2 is the 2 x 2 
identity matrix. This set of mappings forms what is called an iterated 
function system (IFS) on 9t2 and is denoted {9t2; 61, 62, ... , 6 } .  We 
next need to view S P  as the attractor of this IFS. 

The attractor of an IFS { a 2 ;  01,, w2, ... , wN} is found as follows. Let 



B C 912 be a compact set. Let W(B) = u", (oi(B). It turns out that W 
is a contraction mapping on the metric space of all non-empty compact 
subsets of 8 with the Hausdorff metric. As such, W has a unique fixed 
point A in 912. In other words, there is a non-empty compact subset A of 

N 912 so that W(A ) = Ui=, wi(A) = A. Another way to think of A is that A 
= lim i_Ã WO'(B) for any compact subset B C 912. The setA is called the 
attractor of the IFS. In our situation, we chose B = An to be a regular n- 
gon. We then constructed sets A, (r) , A2(r), ... , A ( r )  , ... . In following 
this construction of attractors, for each i the set Ai(r) is equal to W O' (A~) .  
The attractor of the constructed IFS is then the set we are calling S P  . 

Next we give the definition of fractal dimension in 8 .  
LetA be a non-empty subset of 912. For each E > 0 let n(A, E)  denote 

the smallest number of closed balls of radius E needed to cover A. If 

exists, then D = D(A)  is the fractal dimension of A. 
In Fractals Everywhere there is a wonderful theorem [Theorem 3, p. 

1841 that allows us to determine easily the fractal dimensions of the 
Sierpinski n-gons. We state it for 912 but it holds in all dimensions. A 
complete proof can be found in [2], [4], or [5].  

THEOREM 1. Let {912; (o, , w2, ... , (on} be a just touching hyperbolic 
iterated function system and let A be its attractor. Suppose (ok is a 
similitude of scaling factor sk for each k â { I ,  2, ... , NJ . Then D(A) ,  
the fractal dimension of A, is the unique solution to 5\=, Isk ID̂ = 1, 
D ( A ) E  [O, 21. 

Proposition 3. The fractal dimension of a Sierpinski ti-gon is 

ln(n)/ln(r,), where r,, = 2 ( 1  + EL':' cos(2kn/n)) .  

Proof. Earlier we showed that S P  is the attractor of a just touching 
iterated function system to which the contraction mappings 6,, 02, ... , 6 all 
had the same contractivity factor 1 / r .  Then, by Theorem 1, 1 = 

ti 1 1 / r n  1 D ( s p n ) .  As a result, D(SP,,) = ln (n) / ln ( r ) .  
At this point it seems natural to ask what happens to the sequence 

{ D ( S P )  } as 11 -Ã w . As mentioned earlier, as n increases, the polygons 
we start with are approaching circles. Intuitively, then, we would expect 
that, as n -*m, D ( S P )  should approach the fractal dimension of a circle, 
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which is 1. This is, in fact, exactly what happens. 
Corollary. lim + ^  D ( S P )  = 1. 

We omit the proof. 

- .  
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Mathematical Literacy in the Media 

A math student, for instance, might send e-mail to sequences 
@research.att.com, and in the body of the message "look up 4 9 16 25 36." 
The student would receive a quick e-mail response explaining the sequence 
is the start of an infinite series of square roots, and that the next numbers are 
49, 64 and so on.-Newsweek 125 (1995) #2 (January 9), 10. 



THK AM-GM I N I Q L I A I ~ I T Y  VIA ONE 
OF ITS CONSKQUI<NCKS 

(2) c;in he used to derive the hasic inequiilitics of Holder and Minkowski 
(see, for example, [ 11, pp. 67-71 ). I t  is easy to verify that (2) still holds for 
the more general hypothesis that the coefficients of x and an ilrc positive 
reals whose sum is 1.  (See, for example, 121, pp. 21-22.) However, for our 
purpose we use (2) with r = 11 - 1.  Thus 

Using hasic properties of the derivative we c ~ t i i h l i ~ h  (3) without recourse 
to (1). I t  is then ii simple 11i;itter to ohtiiin (1) inductively. 

If x > 0, then 

has ;in absolute minimum at A- = a,, because 
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vanishes if and only if x = a ,  and 

is positive. (3) now follows from the observation that - .  

with equality if and only if x = a .  
Putting x = An_, , (3) can be written as 

with equality if and only if A n _ l  = a .  
Now using the fact thatA2 2 G2 and assuming that A n _ ,  2 Gn-l with 

equality if and only if a, = a, = ... = a it follows that 

with equality if and only if a^  = a2 = ... = an. 
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Carissa Hurst 
Hendrix College 

The focus of this paper is finding relationships 
between partitions and their Young's lattices. We 
begin with a review of partitions, lattices, rank, and 
Hasse diagrams. Apartition of the natural number 
N is a finite sequence of natural numbers 
n,, n,, ... , n in non-increasing order such that 

ni = N. The numbers ni are calledparts of Figure 1 
the partition. One representation of partitions is 
called a Ferrer's diagram. In a Ferrer's diagram the partition is displayed 
in a matrix form where the ith row has ni squares. For example, Figure 1 
shows the Ferrer's diagram for the partition {5,4, 1, I} of 11. The squares 
will be referred to by ordered pairs, where (i, j) denotes the square in the ith 
row and jth column. There is no simple formula for the number of partitions 
of N. One recursion formula for the total number BN of partitions o f N  isBN 
= q-4 N-1 N - 1  ) B ~ .  See [I] for details. 

A partially ordered set (poset) that has the property that any two 
elements x and y have a least upper bound and a greatest lower bound is 
called a lattice. In particular, a poset that has a maximum 
element and a greatest lower bound for any two elements is a 
lattice [I]. 

For any partition P, let B be the set of all partitions whose 
Ferrer's diagram is contained in the Ferrer's diagram of P. If 
we order them by containment of their Ferrer's diagram, the 
resulting poset is called a Young's lattice. Young's lattices are 
named for Alfred Young, who was born in 1873 and graduated 

s 
Figure 2 

from Cambridge in 1895. His main interest was in quantitative substitutional 
analysis [2]. 

For example, consider the partition {2, 2, l} with Ferrer's diagram in 

92 

Figure 2. The partitions whose Ferrer's 
diagrams are contained in this partition are 
in Figure 3. Ordering these by 
containment we obtain the lattice in Figure 

a 
4. This lattice is the Young's lattice. 

In a Hasse diagram the elements of a 
lattice are represented as points. Edges 
connect points using the following rule: i f  
x, y are points with x < y, then an edge is a f 8 h 

drawn between them and we position y 
above x. Edges implied by transitivity are Figure 3 

suppressed. We use a Hasse diagram to represent 
the lattice in the diagram. 

The rank of a point in a Hasse diagram is a 
measure of how far the point is from the minimum, 
or bottom, element. The bottom element is 
assigned a rank of one. The lattice in the example 
has elements of ranks one through five. 

@ g  c 

PROPOSITION. If A is a partition in a Young's 
lattice, then the rank of A is the number of squares a 

in a Ferrer's diagram of A. Figure 4 
Proof. The result follows from the observation 

that given a Ferrer's diagram in the lattice, the only way to move down the 
poset is to remove squares from the Ferrer's diagram. Because of 
transitivity, the Ferrer's diagrams 
directly below the given one are those 
found by removing a single square. 

I n )  I 
m ---0 We will now classify some 

n 
Young's lattices. 

THEOREM 1. If a partition has the 
form ( t i ) ,  with a Ferrer's diagram as in ( 1 1  

Figure 5, then the corresponding Yo- 
ung's lattice is a single chain, as in Figure 5 

I 
Figure 5. 

Proof. The proof is by induction on tr. The result clearly holds for 11 = 
1 and tr = 2. Suppose the theorem is true for tl = k. If we remove the -- 



rightmost square from a partition 
(k + I), we have the partition (k) a 

whose lattice is a single chain. Since ^ * *  a*{ 

lattices are formed by containment 
and the two Ferrer's diagrams differ 

<_>^- 
n l 

only be a single square, the Young's 
( 1 9 1 )  

lattice for the larger partition is a 
chain with an extra vertex {k + l} 
above the vertex {k} connected by an 
edge. Figure 6 

It follows similarly that the 
Young's lattice for the partition (1, 1, ... , 1) is a single chain. 

THEOREM 2. The Young's lattice for the partition 
(n, 1) is as in Figure 6. 

Proof. Again we use induction. It is easy to see 
that the Young's lattice for (2, 1) has the correct form. 
Suppose that the theorem is true for (k, 1) and consider 

x 
l k l l  ( k + 1 1  

the partition (k + 1, 1). Figure 7 
The only square that we can remove and still have 

a frame is the square at the end of the first row or the square on the second 
row. Removing the square at the end of the first row leaves a partition (k, 
1) to which the induction assumption 
applies. Rcinoving the square in the 
second row leaves a partition (k + 1) 
which we proved earlier has a 
Young's lattice consisting of a single 
chain. Therefore, the Young's lattice 1 1 1 1  . . 
for (k + 1,  1)  will have one vertex of 
rank k  + 2 and two vertices of rank k 
+ 1 with the form in Figurc 7. Using 
the induction assumption and the fact Figure 8 
lh ; i t  tlic ( k )  chain is a sub-lattice of 
Ilic (k ,  1 )  lattice, we obtain the desired form for the (k + 1, 1) lattice. 

Tin- s;inie reasoning shows that the Young's lattice for the partition 
( 1 1 ,  1 .  1 )  is ;IS in Figure 8 .  This extends to partitions of the form 

The next most complicated 
partition is (n, 2). 

THEOREM 3. If a partition has the (n.2 1 

form (n, 2) where n > 2 with a 
Ferrer's diagram as in Figure 9, then 
its Young's lattice will be as in Figure { 2s ) . 
9. 

Proof. The proof is again by 
induction. The result holds for the (n .2 )  

partition (3, 2) since its Young's Figure 9 
lattice (Figure 10) has the proper 
form. The induction argument 
proceeds as before since the only 
squares which can be removed leaving 
a frame are the square at the end of 
the first row and the square in the (2, 
2) position. Both are partitions whose 
lattice are already known. 

Figure 10 
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DIVISIBILITY TESTS FOR PRIMES GREATER THAN 5 

Phil Plummer 
Portland State University 

Many papers have been written giving divisibility tests for integers. This 
note does not contain any new result, but it gathers previous tests in one 
place and shows how to generate any number of new ones. 

Divisibility tests for 2, 3,4, 5, 8, and 10 are taught as early as elementa- 
ry school but tests for arbitrary prime numbers are not given. Here is a test 
for divisibility by 7. Take the number to be tested and double its last digit. 
Subtract this from the number with its last digit removed. If 7 divides this 
new number, then 7 divides the original. For example, 7 1 294 since 
7 1 (29 - 2 -4) = 21. Alternatively, one can multiply the last digit by 5 and 
add the result: 7 1 294 since 7 1 (29 + 5 - 4 )  = 49. 

Consider the number 51, a multiple of 17. Does 17  I51 because 
17  I ( 5  - 5 -1) = 0 ? In other words, does 5 work for 17 the same way that 
2 works for 7 ? The answer is "yes". The proof is as follows. Let x = 
lOa + b  and r =  a - 5 b .  We have 

If 17  1 r , then 17 1 7 r .  Since 17 1 (x + 7 r )  we have that 17 I x . 
By generalizing this procedure we can prove that a test can devised for 

any prime and we can find the constant ti. However, if we had a 50-digit 
number to be tested for divisibility by 7, removing only one digit at a time 
would be time-consuming indeed. But if we removed ten digits for each 
iteration it would cut the calculation time needed immensely. A test can be 
given where the number of digits removed at each stage, y, can be chosen 
arbitrarily: 

THEOREM 1. Given a primep and x = lOYa + b , let r = a + nb where 
n is the solution to lOYn a 1 (mod p)  . If p \ r then p \ x . 

Proof. Let n' be such that nn' s 1 (mod p )  . Note that lo^ nn' e n' 
(mod p)  so 10y a 11' (mod p )  . Thus, both 10Y - n' and 1 - nn' are a 0 
(mod p). We have 

x + n'r = l v a  + b + nl(a - nb)  

= (10y - nl)a + b(l  - nn') s0 + 0 (mod p). 

I f p I r ,  t h e n p \ n l r .  S i n c e p l x  + n l r w e h a v e t h a t p \ x .  
In exactly the same way we could prove 

THEOREM2. G i v e n a p r i m e p a n d x =  1 0 ^ a + b ,  l e t r =  a - m b ,  
where m is the solution to 10Ym n -1 (mod p )  . If p \ r then p \ x .  

There is a connection between m and n. 

COROLLARY. m = p  - n. 

Proof. Since 1 CP'n m 1 (mod p )  and lo^ m - - 1 (mod p )  , we have 
1 0 ~ ( n + m ) m 0 ( m o d p ) , a n d s o n  + m a O ( m o d p ) .  S incemandna re  
both between 0 and p,  the corollary follows. 

For an example, let us take x = 28,842, p = 23, and y = 2. To determine 
n we solve 102ti m 1 (mod 23).  This is 8 n  m 1 (mod 23),  so n = 3. Thus, 
23 1 28,842 if 23 1 (288 + 3 -42) = 414. Does 23 1 414 ? It will if 
23 I ( 4  + 3 -14) = 46. Since it does, it follows that 23 1 28,842 . 

The table on the next page gives, for primesp < 100, the value of ti for 
y = 1, 2, ..., 12. The values of n are periodic, with period equal to the order 
of 10 (mod p). 

If we let n denote the value of n for y, then we have 

THEOREM 3. n - n l  n (mod p )  . 
Proof. 10Y+lny+l IIR 1 m 1 - 1  m(10n1)(10Yny) (modp) .  

This recursive property allows the generation of large tables very quickly 
in a spreadsheet program without the problem of roundoff error. For 
efficient tests, small values of 11 (or m = p - 11) can be quickly determined. 

Phil Plummer received his B. S. degree in mathematics and physics at 
Portland State University and is currently finishing work toward his M. S. 
degree in mathematics. He  wishes to thank his high-school mathematics 
teacher, Mr. Wayne Wheeler of Springfield (Oregon) High School, for 
teaching him that mathematics could be fun. 
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y (number of digits removed) 

n (multiplier for the last y digits) 

Margaret Maxjield 
Louisiana Tech University 

In a recent article about Pascal's hexagon theorem for a circle, Jan van 
Yzeren [2] credited H. Guggenheimer with a previous proof. However, 
Professor Guggenheimer [I] explained that the proof had in fact been taught 
him in his 1 lth grade Descriptive Geometry class in Basel, Switzerland. The 
following proof, which I learned as a college junior, used to be called a 
proof by "abridged notation". In it, a linear form is represented by a single 
letter, and forms are combined to make second-degree expressions that will 
stand for conic sections. 

For example, if a = x + 2y + 1 and (3 = x - 2y + 2, then a = 0 and 
(3 = 1 are equations of lines, a(3 = 0 is the equation of a pair of intersecting 
lines (a degenerate conic-asymptotes only), and a(3 = 1 is the equation of 
a nondegenerate hyperbola. 

Any equation of the form a + k(3 = 0 represents a line (it is linear in 
form) that passes through the intersection of the lines a = 0 and (3 = 0 since 
substitution of the coordinates of the point of intersection make both a and 
(3 take on the value 0. We use a similar strategy for conic sections. If S = 
0 and T = 0 are conies, then they are of second degree in x and y. Then for 
any nonzero constant k, S + kT = 0 is of second degree so it represents a 
conic. Since the point where S and T intersect has coordinates that satisfy 
both S = 0 and T = 0, the conic 5 + kT = 0 passes through the points of 
intersection. 

PASCAL'S THEOREM: If a closed hexagon is inscribed in a conic section, 
then the three points of intersection of its opposite sides are collinear. 

(If the two opposite sides are parallel, their point of intersection is taken 
to be the point at infinity. The conic section may be degenerate, and the 



hexagon need not be convex.) 

Proof. Let the six vertices of the inscribed hexagon be labelled in order 
A, B, C, D, E, F. Let the sides be labelled a ,  6, y, 6, E, < (see Figure I), 
where, for instance a = alx  + a2y + a3 and a = 0 is the equation of the 
line AB. Continuing, $ = 0 is the equation of the line through BC and so on. 
It is to be proved that the intersections P of side a and side 6, Q of side $ 
and E, and R of y and E; 

Construct a sev- 
enth line, 9, through 
A and D. Let S, 
stand for the second- 
degree sum of prod- 
ucts 

a y  + 1-60. 

For any value of r, 
Si = 0 is the equation 
of a conic section that 
circumscribes the 

are collinear. 

quadrilateral ABCD 
A 

since, for instance, C 
lies on both $ and y. Figure 1 

Similarly, if 

s2 = 6E; + s & 9  

then S2 = 0 is the equation of a conic section that circumscribes the 
quadrilateral DEFA. Constants r, s, and t exist for which Sl a tS2 a C, 
where C is the given conic section circumscribing the hexagon. From 
s1 = tS2, it follows that 

9 ( r $  - s te )  D t6E; - a y  . 
The equation r $ - s t &  = 0 represents a line A that passes through the 

intersection of lines 6 and E (Pascal point Q), so the left member of the 
identity is the degenerate conic section composed of lines 9 and A. This is 
the same degenerate conic section as that on the right, including line 9 
through A and D and a second line that passes through the intersection of 
lines a and 6 (Pascal point P) and the intersection of lines y and E; (Pascal 

point R). All three Pascal poinls lie on line A, and the theorem is proved. 
Two of the vertices 

may be brought into 
coincidence, in which 
case the side joining 
them becomes the tan- 
gent to the conic at the 
double point. When the 
circumscribing conic 
section degenerates to 
straight lines, the special 
case is the Theorem of 
Pappus: Let three vcrti- 
ccs, say A, B, C on one 
line L of the degenerate Figure 2 

conic and three vertices A, B, C on the other line L be connected in any 
order that alternates the two sets of three, such as AEBACSA or ASB&&4, 
forming a closed (not convex) hexagon, as in Figure 2. Then the intersec- 
lions of opposite sides of the hexagon (side 1 with 4, 2 with 5, and 3 with 
6) are collincar. The six Pascal lines from the six different hexagons that 
can be Conned pass three by three through two points; that is, the six Pascal 
lines divide into two concurrent sets of three. 

An inscribed hexagon has sides that connect pairs of vertices on the 
conic. The three points of intersection of pairs of opposite sides are 
collinear. Using duality, we replace each line by point, immediately 
obtaining Brianchon's Theorem: A circumscribed hexagon has vertices that 
connect pairs of lines "on" the conic (that is, it has vertices that are the 
intersections of tangents to the conic). The three lines connecting pairs of 
opposite vertices arc concurrent. 

A way of constructing points on a conic section can be derived from 
Pascal's Theorem. Five points determine a conic. To construct a sixth point 
given A, B, C, D, E, let AB and DE intersect at the Pascal point P. Draw a 
line x through E passing through the general region where the sixth point F 
is desired. (See Figure 3.) The intersection of line x with BC is a second 
Pascal point Q. Complete the Pascal line PQ. Its intersection with CD is 
the third Pascal point R, and line AR intersects line x in the desired point F 



on the conic. Further 
points are obtained by 
rotating the position of 
the line x, as to x', and 
repeating the construction 
to get another Pascal line, 
PQ'R1, and another point 
on the conic, F' This 
construction has actually 
been used in fairing in 
smooth curved outlines 
for aircraft design. A 

How many hexagons 
can be drawn using a Figure 3 

given set of six vertices on a conic? There are 6! permutations, but the 
starting point is arbitrary for a closed hexagon, and reversing the order does 
not change the hexagon, so there are 6!/(6-2)  = 60 hexagons. The 60  
corresponding Pascal lines pass 3 by 3 through 20 Steiner points, which lie 
4 by 4 on 15 Steiner-Pliicker lines. Also, the 60 Pascal lines pass 3 by 3 
through 60 Kirkman points, which lie 3 by 3 on 20 Cayley-Salmon lines 
other than the Pascal lines. 

Although conic sections arc only one degree more advanced than straight 
lines, they have a rich analytic geometry. 
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In response to a request for a few words about the author, Professor 
MaxJield wrote 

Among all the beautiful proofs in mathematics, this abridged 
notation proof of Pascal's theorem is my favorite. Isn't it elegant? 
For many of us, mathematics is a branch of esthetics, certainly more 
art than science. I teach statistics, which is kind of a branch of 
epistemology-"How can we hiow?". From students' difficulties in 
learning elementary statistics, I suspect that they have a severe 
problem with semiotics, a problem that has cursed their efforts in 
arithmetic and algebra all their lives. Are you a semiotician? 

A Novel Sequence 

From The Theory of Everything, by Lisa Grunwald (Knopf, New York, 
1991, page 142): 

Alexander opened his eyes and tried to find a pattern in the row 
of Linda's flowerpots. He'd always been good at sequences. If 
one, ten, three, nine, five, eight, seven, seven, nine, and six are the 
first elements in a group, what number continues the sequence? 
Easy. Five. 

It certainly is, and the next term is equally easy, is it not? 
That was all right, but I think that in general novelists ought to stay 

away from mathematics. E. g., on page 117 we find 

Physicists and mathematicians played a similar game in their 
heads, called sphere packing: How many spheres could fit inside one 
sphere? How many circles could fit inside one circle? ' 

Anybody here ever played the sphere packing game? I never have: have I 
missed out on all the fun? 

Then on page 144, 

Zeno lived around Aristotle's time, and like Aristotle, he 
enjoyed stirring things up. 

Would we say that Euler lived around Hilbert's time? I don't think so, 
though the separation-around 150 years-is the same. Perhaps time 
intervals foreshorten from a long way away. 



E 'a im  Berkovich 
Georgetown University 

During a course in number theory, we solved the diophantine equation 

The solution given in class and in the teacher's edition of the textbook was 
rather long and time-consuming. In this note I give a straightforward method 
of solving this problem, and any diophantine equation 

where a, b, and c are integers. The solution involves only factoring an 
integer. 

One method of solving this equation would be to set 

c(ax + by) = abxy = A 

and thus reduce the problem to solving the quadratic equation 

of one variable. This method, however, requires that we then find values of 
A which give integer values to the square root of the discriminant. 

A simpler method is to make the substitutions s = c - ax and t = c - by. 
The equation becomes 

c - s  c - t  c 

which simplifies to 

c z  = St .  

We now need integers s and t which satisfy c 2  = st. So, s and t have 
the same sign and are factors of c2. Factoring yields all possible values-of 
the integer pairs (s, t). Taking each (s, t) pair, we have a solution (x, y) if 
x = (c - s)/a and y = (c - t)lb are integer valued. In this manner we will 
find all the solutions of the original equation because any (x, y) which satisfy 
the original diophantine equation will necessarily satisfy c2 = st. 

This procedure requires nothing more complicated than factoring c2 and 
provides an upper bound to the number of solutions. If c2 has 5 factors, then 
there are at most 25 - 1 solutions: the number of different factors and their 
negatives, excluding s = c and t = c since that would give x = 0 and y = 0. 
The actual number of solutions would be reduced by the conditions that c - 
s and c - t be divisible by a and b, respectively. 

As an example, let us consider 1/x + 1/y = 14. Since the equation is 
symmetric in x and y, when we satisfy the condition c2 = st, it is sufficient 
to consider the pairs (s, t) where s 2 t. The pairs are (196, I), (98, 2), 
(49, 4), (28, 7), (-1, -1 96), (-2, -98), (-4, -49), (-7, -28), and (-14, -14). 
The corresponding solutions (x, y) with x s y are therefore (-182, 13), 
(-84, 12), (-35, lo), (-14, 7), (15, 210), (16, 112), (18, 63), (21, 42), and 
(28, 28). 

This technique also allows us to make some observations about solutions 
of the equation. For example, if c is prime and a = b = 1, then we know 
that there are exactly three solutions. 

Efraim Berkovich was graduated from Georgetown University in May 
1994 with a B. S. degree in mathematics. He  hopes to pursue graduate 
studies in electrical engineering. 

All stiff regularity (such as borders on mathematical regularity) is 
inherently repugnant to taste, in that the contemplation of it affords us no 
lasting entertainment. -1mmanuel Kant, Critique of Judgement. 



Scott M. Wagner 
Hendrix College 

This paper will examine one of the connections between combinatorics 
and algebra. We will use Philip Hall's Eulerian function to count the 
number of generating sets of size n for the twenty-eight groups of order 
fifteen or less. Recall that a generating set of a group is a subset of the 
group such that every element in the group can be expressed as a product of 
one or more elements of the generating set. For example, the cyclic group 
of order 4, {e ,  a ,  a 2, a 3} has two generating sets of size 1: { a }  and 

{a3}  
The set of all subgroups of a group G under subset inclusion forms a 

lattice where the greatest lower bound of two subgroups is their intersection, 
and the least upper bound of two subgroups is the smallest subgroup of G 
containing both of them. Hasse subgroup diagrams are diagrams of these 
lattices. The subgroups are represented by points, and if A and B are 
subgroups with A C B then the points representing A and B are connected 
with an edge, with B positioned above A. The subgroup {e}  is at the 
bottom of the lattice, and the group itself is at the top. Examples of Hasse 
subgroup diagrams for groups of low order can be found in [I]. 

In 1935 Philip Hall described a method for counting the number of ways 
of generating the group of symmetries of the icosahedron from a given 
number of elements [2]. One outcome of his method was the development 
of a generalized Eulerian function which can be used to count the number 
of generating sets of a given size for any finite group. The method does not 
determine the actual generating sets, but only their number. 

The function is defined by 

where G is the finite group, n is the number of elements in the generating 
set, H is a subgroup in the Hasse diagram, \ H \ is the order of H, and p is 
defined recursively by p(G, G)  = 1 and, for each subgroup H of G, 

So, p determines a coefficient for each subgroup of G. The top subgroup of 
the lattice, G itself, has coefficient 1. The coefficient of any other subgroup 
in the lattice is the integer that, added to the coefficients of every subgroup - 

above it in the lattice, gives a sum of zero. 
For example, let us calcu- 

late cpl (C4), where C4 is the 
cyclic group of order 4. The 
Hasse diagram for C4 and 
the values of p ( H ,  C4) for 
the two subgroups of C4 are 
shown in Figure 1. Applying 
Hall's formula, we seecp (C4) 

= 4 - 2 + 0 = 2, giving the 
number of one-clement gener- 
ators of C, . 

Now let us consider D3, 
the group of  symmetric?^ of an 

Figure 1 

equilateral triangle. The 
group e, r,  r 2 has and three three reflections, rotations, QF @ 
s, rs, r s .  The Hassc sub- 

- 1 
group diagram and the values 
of p arc shown in Figure 2, 
where A = D, = 

2 { e ,  r, r 2 ,  s, rs, r s}, 
B = { e , . ~ } ,  C = { e ,  rs}, D 
= { c - ,  r 2 s } ,  F = { c ,  r, r ' ) ,  Fiyiii-c 2 
;ind G = { c }  . Si~irr c'yelic 



groups are the only groups with one-element generating sets, we know that 
q1(D3) = 0, which is verified by the formula: 

6 

Moreover, (p 2 (D3 ) is 

To see why that is correct, note that the first term in the sum, 1 

15, counts the number of two-element subsets of D3 . From these we must 
exclude those that generate a proper subgroup of D3 . A two-element subset 
that does not generate D3 must generate one of the two subgroups of order 

two or the unique subgroup 
of order three. The term 

3 ( )  eliminates those that 

generate the three two-ele- 
ment subgroups while the 

term 1 ( )  eliminates the 

three two-element sets that 
generate the subgroup of 
order three. This can be 
verified in another way by 

Figure 3 
noting that of the 

two-element the identity, only {r, r 2}  generates a 
proper subgroup of D3 . 

We will give three more examples and a table giving values of ( p  for 
n = 1, 2, 3 for some finite groups. This may serve as a source of examples. 

The Hasse diagram and p values for 

C2xC4 = {(O, O), (0, I ) ,  (0, 2), (0, 3) ,  (1,  0)-  (1,  I), (1,  21, (1,  3 ) )  

appear in Figure 3, where A = C2 x C4, J = {(O, O)}, 

B = {(O, O), ( 1 ,  I ) ,  (0,  2), ( 1 , 2 ) } ,  

We will look next at A4, 
the alternating group of de- 
gree four. Its members are 
all the even permutations in 
S4, the symmetric group of 
degree four. The Hasse sub- 
group diagram and the ,u 
values are in Figure 4, where 
A = A4, L = {e}, B = 
{e, (12)(34), (13)(24), (14 

C = {e, (123), (132)}, 
D = {e, (124), (142)}, Figure 4 
F = {e, (12)(34)}, 

G = {e,  (13)(24)}, H = {e,  (14)(23)}, 
J =  {e, (234)(243)}, and K = {e, (134)(143)} 

So, we find that the number of two element generators is 

The final group we will examine is a dicyclic group. A dicyclic group, 
G, can be represented by the following group presentation: 

We will consider T, the dicyclic group of order 12, where n = 3. The 
elements of T are 

3 2 e , x , x 2 , x 3 , x 4 , x 5 , y , y 3 , x y , y x 2 , x 2 y ,  andy x . 
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The Hasse subgroup diagram 
and the p values are in Figure 
5, whereA = T, J ={e}, 
and B = , 

2 3 ' -  B 
e , x 3 , y x  , y  x -1 

3 3 C =  { e , y , x  , Y  }, 
3 D =  {e ,x  , v , x 2 y } ,  

2 3 4 5  F =  { e , x , x  , x  , x  , x  }, 
G =  {e ,x 3} ,  and 

2 4 H =  { e , x  , x  }. 
Once again, since this group 
is not cyclic, we will find the 
number of two-element generating sets: 

Figure 5 

The table below gives the number of one, two, and three element 
generators for twenty-seven groups. 
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All Statements Are Not Correct 

On the important subject of language, Professor James Chew (North 
Carolina A & T State University) writes 

One of my biggest peeves in English mis-usage has to do with 
negations of statements. For example, "All athletes are not 
basketball players". We all know what is intended is "Not all 
athletes are basketball players". I would be willing to let this matter 
slide were it not for the fact that even mathematicians who should 
know better, since they arc the presumed guardians of clear and 
logical thinking, commit this error regularly. In the Transactions o f  
the American Mathematical Society, that pinnacle of mathci~li~ti~:~l 
journals, whose contents are so sublime that 1 wish 1 could under- 
stand .05 of one percent of them, I found "All topologici~l spaces ilrlb 
not Hausdorff". This is FALSE since the real line (wit11 its usual 
topology) is a topological space which is Hiiu~d~rff .  



MOTIVATING THE SOLUTION TO 
A DIFFERENCE EQUATION 

Russell Euler 
Northwest Missouri State University 

An nth-order linear homogeneous difference equation with constant 
coefficients has the form 

where a vt 0 .  When seeking a solution of (I), students are frequently 
asked under what conditions, if any, will 

(2) yn = A" 
be a nontrivial solution? This approach is used in several standard 
textbooks. It is sometimes motivated by examining the general form of the 
solution to a first-order linear difference equation. Substituting (2) into (1) 
and simplifying yields the characteristic equation 

This method is probably adequate motivation for students who have not 
studied differential equations. However, those who have do not expect to 
see solutions of the form (2). They know that solutions of an nth-order 
linear homogeneous differential equation with constant coefficients, 

any(n) + + ... + alyl  + aoy = 0, 
A;x have the form y = e where the Ai's are distinct roots of the same 

characteristic equation (3). Such students would see the similarities between 
difference equations and differential equations if they were asked under what 
conditions, if any, will 

be a nontrivial solution of (I)? Substituting (4) into (1) yields 

an e W n  +k) 
+ an-1 e A(n+k-l)  + ... + ale  A ( k + l )  + = 0 

and so 

((5) 
A ane An + an-,eA(Â¥"-l + ... + ale  + an = O. 

As an illustration, let n = 2. Then (5) becomes 

and so 

e^ = 
202 

Hence, (4) becomes 

For the case when n = 2 and the characteristic equation has a repeated 
root, the form of the general solution is motivated in [I]. 

Finally, it can be seen that (3) and (5) have the same form by letting 
t =  e A  in ((5). 
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I don't take no stock in mathematics, anyway.-Mark Twain, Huckleber- 
ry Finn, Chapter 4. 
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A TEST FOR AFFINENESS 

Christopher Kohl 
James Madison University 

The purpose of this paper is to present a characterization of affine spaces 
and a necessary condition for a function to be an affine map. The ideas for 
these theorems arose from a pair of problem sets in a linear algebra textbook 
[I]. Specifically, the reader is given either a subset of a vector space or  a 
function and asked to determine whether or not it is affine. An examination 
of the first problem set led to an observation that was generalized into a 
theorem (Theorem 1 below), which states a condition under which a subset 
of a vector space is not an affine subspace. Similarly, an examination of the 
second problem led to a theorem (Theorem 2 below) which states an 
assertion about the image of an affine map. 

We assume that the reader is familiar with the fundamental definitions 
of a vector space, a subspace, and a linear map. These and the following 
definitions can be found in chapters 4 and 5 of [I]. 

DEFINITION 1. A subset U of a vector space V is called an affine 
subspace of V provided that, for some subspace W of V and some fixed 
vector b in V, U = {w + b 1 w E W}. 

DEFINITION 2. A function g : U -* V is called an affitie map provided 
that, for some linear map f : U -* V and some fixed element b of V, 
g(u) = flu) + b for all u in U. 

THEOREM 1. Let S be a subset of a vector space V. If there is a fixed 
vector in V, call it p, so that 0 E S + p and S + p is not a subspace of V, 
then S is not an affine subspace of V. 

Proof. Suppose S is an affine subspace of a vector space V and that p 
is a fixed vector in V so that 0 E 5 + p. It follows from Definition 1 that 
there is a subspace of V, call it W, and there is a fixed vector in V, call it b, 
so tha t5  = {m + b [ m E W}. Thus, 

S + p = { m + b + p  I m E W } .  

Since 0 E S + p, it follows that there is an element of W, call it r, so that 
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0 = r + h + p. Thus, we can write r = -(h + p), which implies that 
h + p E W. Now we show that 5 + p is a subspace of V. 

Let x0, xi E 5 + p and c E R. It follows that there are elements of W, 
call them to and t i ,  so that 

x0 = to + h + p and x, = t, + h + p. 

Therefore, we can write 

x 0 +  x, = ( t o +  t ,  + h + p) + h + p. 

Since to, t,, (h + p) E W, it follows that (to + t ,  + b + p) E W. Thus, S + p 
is closed under addition. 

Also, 

cxy = c(to + b + p) = cto + (c - l ) (b + p) + (b + p). 

Since c, c - 1 E R and to, (b + p) E W, i t  follows that cto + (c - l)(b + p) 
E W. Thus, S + p is closed under scalar multiplication. And so, by 
[ I ,  Theorem 4.21, 5 + p is a subspace of V. 

THEOREM 2. The image of an affine map f : U -Ã V between vector 
spaces U and V is an affine subspace of V. 

Proof. Let f: U -* V be an affine map between vector spaces U and V, 
and let M denote the image off.  By Definition 2 there is a linear map, call 
it g : U -Ã V, and a fixed element of V, call it b, so that flu) = g(u) + b for 
all u in U. Since g is a linear map it follows from [I ,  Theorem 5.51 that the 
image of g, call it T, is a subspace of V. Since flu) = g(u) + b for all u in 
U, we can write M = T + b. And so, by Definition 1, M is an affine 
subspace of B. 

The problems that motivated the ideas for Theorem 1 deal exclusively 
with two- and three-dimensional vector spaces. For example, given the set 
T = {(x, sin x + 3) [ x E R}, determine whether T is a subspace of R2, an 
affine subspace of R2, or neither. After examining this problem and 
formulating Theorem 1, i t  was observed that the geometry of T could have 
been used to co~iclude that T is 1101 an ;~ffine subspace of R ~ .  This results 
fro111 the tmct;~ble geo~netry of R ~ .  Si~lce a subspacc of R2 has a geometric 
realization as cither the origin, a line through the origin, or the plane itself, 
i t  follows that a n  affine subspace of R2 must have a geometric realization as 
cither :I poilit, a li~ie, or the plane itself. Tlicrcfore, given a subset of R2 and 
asked to determine whether or not i t  is affine, one can examine the geometry - 



of the subset and make conclusions accordingly. Consider the above 
example dealing with the subset T of R2. Since the geometric realization of 
T in R2 is not a line, a point, or the plane itself, one can conclude that T is 
not an affine subspace. Now consider the vector space consisting of all 12 
x 15 matrices. The geometry of such a vector space is certainly much more 
complex than that of R .  Thus, given a subset of such a vector space, one 
cannot rely on its geometry to test for affineness. Its algebraic structure 
must be considered and that is where the utility of Theorem 1 is realized. 
There will follow an application of Theorem 1 where the geometry of the 
underlying vector space is too complex to use as a tool in testing for 
affineness. 

Inspection of Theorem 2 reveals that it can be restated as follows: if the 
image of a function from a vector space U to a vector space V is not an 
affine subspace of V, then the underlying function is not an affine map. 
Clearly, Theorem 2 is a direct outgrowth of Theorem 1. Because of this 
relationship between the two theorems, the ideas for employing the geometry 
of a given subset can be carried over to Theorem 2. 

Let At,,,, denote the vector space of all n x n matrices with real number 
entries. Consider the set 

S = {A â M,,,, 1 detv) ~t O}. 

By definition, S is the set of all nonsingular matrices of size n x n. By 
employing Theorem 1, we will show that S does not constitute an affine 
subspace of M,,,,. From the definition of 5, it follows that S is a subset of 
M,,,, and that 0 e S, which implies that S is not a subspace of M,,,,. Since 
I â S, it follows that 0 â (S + -7). Next, we verify that (S + -7) is not a 
subspace of M by showing that it is not closed under addition. 

Consider the n x n matrix W. Since ?4Z â S, it follows that (I/̂ / + -I) 
â (S + -7). We can write (I/̂ / + -7) + (I/̂ / + -7) = -I. Since 0 e S, it 
follows that -I e (S + -7). Therefore, we can conclude that (S + -7) is not 
closed under addition and it follows from [I, Theorem 4.21 that (S + -I) is 
not a subspace of M,,,,. Since 5 is a subset of M,,,,, -I is a fixed vector in 
M,,,, so that 0 â (S + -4, and (S + -7) is not a subspace of M,,,,, it follows 
from Theorem 1 that S is not an affine subspace of M,,,,. 
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Rex H. Wu (Brooklyn, New York) points out two applications of the 
pigeon-hole principle. If you ask people unfamiliar with the problem how 
many socks it is necessary to take from a drawer containing four red socks, 
five blue ones, six green, and seven white, you will get a variety of answers, 
some irrelevant (e. g., "Nobody wears green socks, except maybe on St. 
Patricks's day"). Try asking! All it can do is make you unpopular. A 
second application proves the theorem that there are now living two people 
who were boni at exactly the same time, to the second. This follows from 
the calculation that there have been fewer than five billion seconds in the last 
150 years and the fact that the world contains more than five billion people. 
Since there are only 31,536,000 seconds in a 365-day year and more births 
than that this year, there will be two such people born in 1995. 

Xuming Chen (University of Alabama) gives a good reason why 1 is 
not counted among the primes. The valuable identity 

O 0 1  1 E - =  n , s > 1  
n = 1 11 p prime 1 - (I /p)" 

would not hold i f  1 was a prime. 



STARS AND STRIPES 

A. Cusumano and W. Topazio 
Great Neck, New York 

(Symmetric projective geometry.) 

ANOTHER PROOF THAT THE NIEMYTZKI PLANE 
IS NOT NORMAL 

David H. Vetterlein 
Auburn University 

- - 

Let X be the upper half-plane X = { (x, y) E 8' : y s O} and let L be 
its boundary L = { (x, 0 )  : x E 3 } . The Niemytzki plane is the space X 
whose basic sets are the open discs in X \ L and the open discs in X \ L 
tangent to L together with the point of tangency. We will refer to the points 
on L as being rational or irrational with the obvious correspondence. This 
space and the Sorgenfrey plane (i. e. the product space S x S where S is the 
real line with the half-open interval topology) provide examples of a T3 
topological space which is not il T4-space. While the Sorgenfrey plane has 
the merit of being the product of TA-spaces, the Niemytzki plane lacks this. 
But i t  has another, namely that its topology is more familiar and easier to 
work with. 

While it is easy to see that both spaces are Ti, the usual proofs showing 
that neither is a T4-space use a cardinality or second category argument and 
are often omitted from elementary textbooks. In this note we present an 
alternate proof for the Niemytzki plane. The proof is simple, uses only the 
nested set theorem, and works just as well for the Sorgenfrey plane. 

The Niemytzki plane can be envisioned by thinking of hot air balloons. 
The basic sets then become those balloons anchored at points of L and those 
balloons floating above L. We refer to rational balloons as those balloons 
B anchored at rational points q on L. Similarly, we refer to irrational 
9 

balloons B anchored at irrational points p on L. 
Since every subset of L is closed, the rationals Q and irrationals L \ Q 

fonn two disjoint dosed subsets of L. I f  X is noriiial, then there are dis.join1 
open subsets U iiiid V such that U 1) Q and V U Q .  Thus, lor e;ich 
q E Q we may find ;I correspoiiding ralion;il halloo~i B with positive r;idius 

'I 



lying inside U and for each p E L  \Q we may similarly find an irrational 
balloon B C V also with positive radius. for every n â N . This says rx = 0 which contradicts Bx having a positive 

Now the .rational and irrational balloons lying in U and V respectively radius. A similar contradiction arises if x is rational. 

cannot overlap. Hence, for example, given a rational point q ?E Q and its 
corresponding rational balloon B with radius r ,  all irrational balloons 
anchored in the shadow of B must have a radius a r 14 .  

This is easily seen by taking 
the worst possible scenario, i. e. 
where the smaller balloon is 
anchored at the edge of the shadow 
of the larger balloon. Then the -s 

distance between anchors is exactly 
the radius of the larger balloon, say 
r. Allowing the smaller balloon to 
have as large a radius as possible, L 
sav s. so that the two balloons 

d ,  

touch, simple geometry shows 

- .  

The author, a graduate student, thanks Professor Transue for the 
problem. 

A New View of Goldbach's Conjecture 

Professor Simon Berkovich (George Washington University) notes that 
the famous Goldbach Conjecture, made in 1742, that 

Every even integer greater than two is a sum of two primes. 

can be stated in another form: 

Now choose some rational balloon Bo lying inside U. In Be's shadow, Every integer greater than one is the average of two primes. 
on the right side, choose irrational Bl C V. On the left side in B,'s He writes: 
shadow, choose rational B2 C U.  Continuing, we form a sequence 
Bo, B , ,  B2, - of rational and irrational balloons in U and V respectively 
such that each is anchored in the shadow of the previous balloon, and in 
such a way that the anchors alternate sides-that is, if B lies to the right 
of B 1  's anchor, then B ,  lies to the left of B ' s  anchor. 

This alternation of left, right, ... ensures a nested sequence of intervals 
lo 3 I, 3 - 3 1 3 - where I is the interval between B ' s  and B 1 ' s  
anchors. Denoting Bk's radius by rk, we have r 5 rn-I I 4  and therefore 
r s ro/4" for every n E N . By the nested set theorem, some point x must 
lie in all the intervals I .  

If x is an irrational point of L, then there is some irrational balloon Bx 
with positive radius r such that By C V. But B is anchored in the 
shadow of every rational balloon B y ,  n E N in the sequence Bo, Bi , 
B2, and hence 

rx s r2,,14 s r0/4h+1 

This has a physical interpretation. If we think of a wave 

spreading out from an integer, then, if Goldbach's Conjecture is 
true, it will simultaneously hit a lesser and greater prime number. 

To me, this makes the conjecture (which is certainly true) even 
more mysterious. 



Chapter Reports 

Professor Gerald W. Young, reporting for the OHIO NU Chapter 
(University of Akron), says that the department of mathematical sciences, 
with assistance from the chapter, awarded eighteen one-year memberships in 
five organizations (AMS, SIAM, AS& MAA, ACM) and fourteen 
scholarships. 

The PENNSYLVANIA OMICRON Chapter (Moravian College) sponsored the 
eighth annual Moravian College Student Mathematics Conference in 
February 1994, with 62 participants from 15  colleges and universities. The 
keynote speaker was Dr. Diane L. Souvaine, of the National Science 
Foundation, whose topic was "Geometric computations and applications." 
There were twelve undergraduate student speakers as well. 

The WISCONSIN DELTA Chapter (St. Norbert College) held its 
Northeastern Wisconsin Math Seminar Series, with several guest speakers, 
hosted the annual Pi Mu Epsilon Regional Undergraduate Math Conference, 
and, with SNC'c Math Club, held the annual SNC High School Math Meet. 

Professor James R. Weaver reports that the FLORIDA KAPPA chapter 
(University of West Florida) was addressed by the president of the university 
at its induction ceremony. The chapter also has subsidized members to 
attend meetings and assisted in the annual northwest Florida Mathcounts 
contest. 

Letter to the Editor 

In the Spring, 1994 issue (vol. 9, no. 10) of the P i  Mu Epsilon Journal, 
a problem on page 646 asks "What is the largest integer that in base-16 is 
an ordinary English word?" The suggested answer, on page 661, of 
defacaded, is certainly not an ordinary English word, if indeed it is an 
English word at all. (I did not find "to facade" as a verb in any dictionary 

at my disposal, which makes the longer construction highly implausible.) In 
any case, under similar rules of admissibility, I can top it. How do we 
describe a necklace made with ten glass spherules? Clearly, it is a 
decabeaded necklace! This converts from base-16 to the decimal value 
956,884,233,709, if my hand-held calculkor can be trusted. I should also 
point out that since decabeaded used only the first five letters of the 
alphabet, it could also be the representation of a number in basyl5.  

A more sweeping generalization of this problem is: for each of the 
226 - 1 = 67,108,863 non-empty subsets of the 26 letters of the alphabet, 
what is the longest English word which can be formed using only letters 
from that subset? I particularly like the 8-letter word dedeeded (also a 
palindrome!) from the 2-letter subset {d, e}. There are only 325 subsets 
consisting of two letters, and unless one is a vowel and the other a 
consonant, the possibilities are very limited. This reduces us to 125 sets, 
where I have allowed y to be paired with either a vowel (as in yoyo) or a 
consonant (as in lyly). 

Solomon W. Golomb 
University of Southern California 

Editorial note: This may be the last word on hexadecimal words. Since 
English is not an agglutinative language, the act of making a ten-bead 
necklace cannot be called a decabeaddeed, and describing the once- 
tenbeaded necklace as dedecabeaded is strained. In any event, the proper 
reaction to Professor Golomb's linguistic virtuosity is the longest base-2 
word: oooooo! 

A Conjecture 

Xuming Chen (University of Alabama, Tuscaloosa) conjectures that any 
prime is a sum of a prime and two squares, as 5 = 3-+ l2 + 12, 7 = 
2 + l2  + z 2 ,  11=  3 + 2 2  + 2 ? ,  -, 1997= 1987 +32 + 1 2.  Thisconjecture 
is very likely to be true and very likely to be unprovable, but it might be of 
interest to set a computer the task of determining in how many ways a prime 
p can be so represented. I have no idea at what rate the number of 
representations would grow as p increases. 



Laplace Transforms 

Professor James Chew (North Carolina A & T State University) offers 
another proof that, if the Laplace transform of f ( t )  is F (s)  then the 

I 
transform of f ( t )  dr is F (s) /s  . Suppose that f ( t )  has a formal power 

1 0  I 

series, a n t n .  Then f o f ( t ) d r  = E: an tn+ l / (n  "1). Since 

ff{fk} = k!/sk+' ,  we have 

A Triangle 

In the last issue of the 
Journal (10 (1994-99) #1, 
25), Andrew Cusumano 
asserted that, in the figure on 
the right, where the angles at 
A, B, and C in the equilateral 
triangle ABC have been 
bisected twice, E F  is 
perpendicular to D C  and that 
G H  is parallel to BC. Paul 
Bruckman (Edmonds,  B C 

Washington) shows that this 
is correct: 

We embed the figure in the complex plane, with points represented by 
complex numbers. Let 

(1) A = 1, B =a), C = w2, where a) = e2Ki'3. 

Clearly, G = 0. Let J denote the intersection of the first quadrisectors 
(uppermost in the figure) of angles B and C (J lies on line AG). Since 1 + 
01 + co2 = 0 and E = (A + C)/2, then 

(2) E = (1 + w2)/2 = -012. 

Let 0 = it112 and c = ( 6  - 1)/2.  Note that LDAE = 30 and LDEA = 
60, a right an le. Thus triangle DEA is an isosceles right triangle and \DE 1 

I 
= \AE 1 = 6 1 2 .  Since IGE 1 = 112, it follows that IGD 1 = c, and SO-D 
= ca). Similarly, 

Now 

E - F = -w/2 - cco2 = [ 6  - i ( 2 6  - 3)]/4,  

after simplification. Thus, 

which shows that E F  extended is perpendicular to CD. 
To determine H, we note that it is the intersection of E F  with U. Thus 

real r and s exist, with 0 < r < 1 and 0 < s < 1, such that 

H =  (1  - r ) E  + r F  = (1  - s )C  +sJ .  

We may substitute the expressions for C, E, F ,  and J in (1)-(3), substitute 
(-1 + i ^ 3 ) / 2  and (-1 - i 6 ) / 2  for w and w2 respectively, and equate real 

parts. This yields a pair of equationsin r and s which yield 
r = s = 1 / 3 . Then substituting this in the expression for H yields H = and imagin7 
-ic (note that J, H, F ,  and D lie on the circle l z  1 = c). Since H - G and 
C - B are pure imaginary, we see that GH is parallel to BC. 

Editorial note. While the problem could have been stated by Euclid, he 
could never have constructed a solution which involved complex numbers. 
Two questions arise: does a purely geometric proof exist, and, if one does, 
is it superior to one using is? The answer to the first surely is "yes", but the 
answer to the second is less clear. On the one hand, in the universe of 
mathematics we should be free to use whatever we need to solve a problem. 
On the other, many mathematicians have a feeling that there is something not 
quite right about using nineteenth-century mathematics to solve what could 
have been a second-century problem, and prefer to avoid such things. For 

] example, Selberg and Erd6s were acclaimed for proving the prime number 
theorem without using complex variables. Would Bach have written for 
electronic instruments, had he been able? Should his music be performed on 
them? Analogous questions, analogously difficult to answer. The art and + 
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science of mathematical esthetics is in its infancy. 

Verse 

Ode to e 

Paul S. Bmckman 
Edmonds, Washington 

I dedicate this rhyme and rhythm 
To sing the natural logarithm. 
That is, its base, great Euler's e 
Is lauded in this rhapsody. 
In higher math and nature both 
We learn that e expresses growth 
Of special, exponential kind, 
And e's the limit, you will find, 
As n grows larger by the hour, 
Of something raised to the nth power, 
That something being none other, then, 
Than n + 1 all over n. 
Another well-known fact, my dearies, 
Is given by the endless series 
Where each term's the nth power of x 
Divided (there's no need for checks) 
By n!, with such sum 
Converging to e x, by gum, 
Provided that we sum from naught; 
The one who found this, we are taught, 
Was Leibniz, and another Kraut, 
Herr L i n d e m a ~ ,  proved beyond doubt 
That e's a transcendental number 
(although his proof induces slumber). 
For elegance, Euler's relation 
Is unsurpassed; its declaration 
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Is this: that ex '  
+ 1 is L h e r e i n  lie 
Math's basic five constants (with zero), 
Undreamt of by Euclid or Hero. 
I could go on-it seems a crime- 
But limits of both space and time 
Restrict me and curtail my song: 
Adieu e, you can do no wrong! 
To readers of this little ditty 
Who think it drivel-more's the pity! 

Iden tities 

In the last issue of the Journal (10 (1994-99) #1, 43-44), Kenneth 
Davenport gave the following identities. 

1 -(1  + 2 + . . . + n ) = n ( n + 1 ) / 2 .  
( 1 3  + i3 + ... + n3)  = n 2( n  + 1)'/2. 

3-(1' + Z 5  +... + n 5 )  + 1-(13 +z3  +... n3)  = n3(n  + 1)3/2. 
4-(1' + 2' + ... + n7)  + 4 - ( I 5  + 3' + ... + n5)  = n 4 ( n  + 1 ) ~ / 2 .  

5.(19 + z9 + ... + n 9)  + 10-(17 + z7 + ... + n7)  + 1-(15 + z5 + ... + n5)  
= n '(n + l )5 /2 .  

6.(111 + 2 "  +... + n l 1 )  + 20-(19 + Z 9  +... + n 9 )  + 6-(17 +z7  +... + n 7 )  
= n 6(n  + 1)Â¡/2 

They are explained by Odoardo Brugia and Piero Filipponi: 

We were not aware of the cute identities reported by K. B. Davenport 
in this journal (10 (1994) #1, 43-44). They can be proved as follows. 

For r, n, and k natural numbers, let us define f ( r )  to be the greatest 
integer not exceeding (r - 1)/2, Sn(k)  = = r )  jk, and 

1 = 1  

The proof that X(n, r )  = 11 'Â¥(I + follows: 



Put j - 1 = h in the second summation of the above identity, thus getting 

Odoardo Brugia and Piero Filipponi 
Fondazione Ugo Bordoni 
Via B. Castiglione, 59 
1-00142 Rome, Italy 

(Xuming Chen, of the University of Alabama, Tuscaloosa, provided a 
similar derivation.) 

Trisecting the Paper 

Augustus De Morgan (1806-1871), whose name is attached to De 
Morgan's Laws, after discussing a trisection of the angle wrote 

There is one trisection which is of more importance than that of the 
angle. It is easy to get half the paper on which you write for 
margin; or a quarter; but very troublesome to get a third. Show us 
how, easily and certainly, to fold the paper into three, and you will 
be a real benefactor to society. 

(A Budget of Paradoxes, London, 1872; reprinted by Dover, New York, 
1954; vol. 2, p. 15.) 

Though we no longer feel the nineteenth-century urge to fold paper into 
vertical thirds, should the need again arise John Kasbohm (Oak Park, 
Illinois) has a solution. He writes: 
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"With a sheet W wide and L  
long, L  a 4  W13, you can twice bi- 
fold the long right edge, making 
just little pinches to show where 
folds across the paper would be, 
because we wouldn't want deep 
creases all over the place. (See - 

Figure 1.) This makes little dents 
at L l 2  and 3 L / 4  on the edge. 
Now lift the lower right comer up 
and lay it across the face of the 
sheet, so that the dent at 3 L / 4  just 
touches the left hand edge and the 

Figure 1 

top and right hand edges still meet at the 
upper right comer. (See Figure 2.) 
Again this time you don't have to make 
a full sharp crease, but just a little pinch 
at that comer. The L12 dent is now 
two-thirds of the way across the sheet 
and you can fold the sheet vertically 
through that point. The finished sheet 
with the one-third margin is still in 
pretty good shape, especially if you have 

Figure 2 some origami practice. If L is too long 
you can use only an upper part of it. 

'Of  course the easiest way is to measure and divide, but I suppose that 
is not what De Morgan meant." 

A difficulty is that 8 V2 x 1 1 paper is not quite long enough (by a third 
of an inch) for the method to work. One way around this is to make the 
sheet slightly longer, with a temporary paper-clipped extension. Another is . 
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to crease it in half vertically and apply the method to that half, thus getting 
one-sixth of the width which can quickly be doubled to get one-third. 
Though neither may be as easy as De Morgan would have wanted, I think 
that he would have been pleased with the solution. 

Editorial Comment 

(In case there is any doubt, the following comments do not necessarily 
reflect the opinions of any of the officers of Pi Mu Epsilon or, for that 
matter, any of its members. They contain the personal views of the editor 
and do not need to be taken seriously or, for that matter, read at all.) 

A not-bad definition of mathematics is that it is the art and science of 
reasoning about and with quantities. The definition is not complete because 
there are branches of mathematics where there are 110 quanti- 
ties-mathematical logic, for example-but whatever your definition is, it 
will have some mention of reason in it. Mathematics is not broad enough 
to include all of reason (lawyers reason too, sometimes) but reasoning is 
what it does. In fact, it was mathematics that taught the human race to 
reason, but that's another story. 

The thing about reason is that it's so ... reasonable. "Socrates is a 
human. All humans are mortal. Therefore Socrates is mortal." Of course. 
It follows. It's logical. It's easy to understand. All you have to do is listen 
to reason, right? 

Wrong. Teachers of mathematics spend thousands of hours trying to get 
students of mathematics to listen to reason, and they do not always succeed. 
Sometimes they do, of course, but many times they do not, as is shown by 
the number of appearances of J(a ' + 1, *) = a t b on tests (even 011 calculus 
tests), along with sin 3x = 3 sin x (yes, that does make life easier, but it's not 
reasonable-sines don't get as large as 3), and even the horrible 

zr ^y 2 

x + y  = 2.i- t 3y 

(golteii by applying a coroll;iry of the Law of Universal Cancclliition: 
whenever ;I symbol appears in  the nunienitor ;ind the de~ioiniiiiitor of ;I 

Iraclioii, i t  in;iy be cancelled). It's usually possible lo convince students of 
i~~;illie~ii;ilics tI1;it ll~ose cqu;ililies are not rc;~so~i;ible, bul sonieli~iies i t  1;ikr.s 

effort. 
However, there is a class of people who deal in mathematics but who 

will not listen to reason no matter how much effort is spent, namely 
mathematical cranks. Mathematical cranks are people who think that they 
have done the impossible, like trisecting angles with straightedge and - 

compass alone, or that they have done something that they have not, like 
prove Fermat's Last Theorem. They try to convince mathematicians, using 
reason, that they have done what they claim to have done, but reason is not 
of much use in convincing them that what they say is not correct. 

Recently a crank wrote me, 

If EVERYBODY loves mathematics, all the bad things on this 
planet will pass into history. I can edit a mathematics magazine 
because I know EVERYTHING about mathematics. 

Shall I reason with him? He went on, 

It is a pity that mathematics is unpopular as it is the worst subject 
in every school because every time a mathematics teacher gives his 
class mathematics homework, none of the students do their mathe- 
matics homework which is never encouraged by their parents and all 
mathematics teachers approve of students not doing their mathemat- 
ics homework thus making mathematics a futile subject. 

A possible reason for that will be given in the last paragraph. 
You might think that an angle trisector would be convinced of his error 

if he was shown that his construction is not accurate. Not so. For example, 
there was the angle trisector who was shown that, using trigonometry, the 
angle he got when his construction was applied to a 60' angle was 
something like 1 9 O  56' 42". He saw that, but he did not therefore conclude 
that his construction was wrong. The choice was between his trisection and 
trigonometry, so he concluded that trigonometry was wrong, and that all the 
trigonometry textbooks would have to be rewritten. How are you going to 
reason with him? 

Or with the circle-squarer (circle-squarers construct with straightedge and 
compass alone squares with the same areas as circles, something as 
impossible as trisecting angles) who said, when asked how he knew that his 
construction was correct, 

The author was supernaturally taught the exact measure of the 
* 



circle. All knowledge is revealed directly or indirectly, and the 
truths hereby presented are direct revelations and are due in 
confirmation of scriptural promises. 

Reason is helpless against revelation. 
Then there was the crank who considered the four-color theorem (that 

no map needs more than four colors i f  adjacent countries have different 
colors) and went it two better by claiming to have proved that two colors 
were enough. Reason was not enough to prove to him that he was not 
correct. 

Cranks can get around anything. An angle trisector took care of the fact 
that the trisection was impossible by saying 

The author resents the negative implications since, if  everyone were 
to accept statements as valid, there would be very little progress. 

Of course, no progress in the trisection is all we can get. The same trisector 
had been told that Wantzel had proved that the trisection was impossible in 
1837, and his retort to that was 

A mathematical proof is merely an established approximation, 
indicating a limitation of errors to a minimum applicable to each on 
hand to be solved, and from a point, or point, of reference as they 
appear. 

I did not make that up. I could not make that up. Absolute non-sense is 
very hard to create. The trisector's point, whatever his words, was that the 
proof did not count. His trisection was right, and any reason to the contrary 
could be brushed aside. He would not listen to reason. 

One circle-squarer who said that JC was 2518 = 3.125 had a voluminous 
correspondence with a mathematician. The mathematician brought up the 
proof that n was irrational and that Archimedes had shown that JC was greater 
than 3 10171 ( = 3.1408 ... > 3.125 ) more than two thousand years ago, but 
they meant nothing to the circle-squarer. Eventually he was backed into a 
corner and had to admit that the reason that JC was 2518 was because he said 
so. He assumed that n = 2518: 

If you dislike the term datum, then, by hypothesis, let 8 circumfer- 
ences exactly equal 25 diameters. 

He could do this because, he said 

I think you will not dare to dispute my right to this hypothesis when 
I can prove by means of it that every other value of re will lead to 
the grossest absurdities. 

Using exactly the same method, I can prove that 32 = 10. Here I go. By 
hypothesis, let 3' = 10. Then any other assumption, such as 3' = 9, leads to 
the grossest absurdities, in this case that 9 = 10. 

You cannot reason with cranks. They will not follow the laws of logic, 
they will not listen to reason. Even students of mathematics have difficulty, 
sometimes, seeing things that are absolutely clear to their instructors and 
follow mathematically from things that have gone before. Students of 
mathematics sometimes do not even do their homework. Why is this? 

The reason is clear. Mathematics is unnatural; mathematics is a 
perversion. Of course it is. What are you doing when you are doing 
mathematics? You are not doing something natural. You are sitting, hardly 
moving, your only bodily activity outside of some necessary breaths and 
heartbeats a few weak and flickering electric currents passing along the 
neurons of your brain. Occasionally you may move a hand to write a bit, 
but you then lapse again into motionlessness, eyes unfocussed, with only the 
electrons in your brain moving. You cannot do mathematics for very long, 
can you? The reason you cannot is that mathematics is not what your body, 
with its dexterous fingers and powerful legs, was made for. Our legs were 
made to run after our next meal, and our fingers to pick it apart after we 
catch it. Sitting and thinking is an unnatural activity, and we have not yet 
gotten used to it. What was it that last made you think, "Wow! I had a 
really good time!"? Wasn't it after some activity that was entirely mindless? 
Of course it was. Evolution has not yet progressed far enough for reasoning 
to be painless, much less enjoyable. It will take another hundred thousand 
years, or maybe a million. At present, the race finds it hard. Thinking, 
especially thinking about mathematics, is unnatural. However, mathematics 
is not a bad perversion. Keep listening to reason: the more we try to hear, 
the easier it will become. 



Pentagonal Number Identities 

Kenneth Davenport (Pittsburgh, Pennsylvania) points out a relationship 
between the gcncriizcd pentagonal numbers, 

1, 2, 5, 7, 12, 15, 22, 26, ... , 
(311 Â 1)1~ /2 ,  n = 1,  2, ... and partial sums of cubes: 

The denominators of the odd-ranked fractions are the odd numbers 1, 3, 
5, ... and the denominators of the even-ranked fractions are successive 
multiples of 8. 

While it is a simple exercise in algebra to verify that the identities hold 
iii general, they may be useful as an example, or as a curious connection 
between two sequences that on the face of i t  have nothing in common other 
than their geometric origin. And pentagons are two-dimensional, while 
cubes arc three-dimensional. 

Solution to 

Words: 

Mathacrostics 

Mathacrostic 39, by Robert Forsberg (Fall, 1994). 

A. Tchebyshev 
B. icosidodecahedron 
C. Mithridates 
D. ordinary point 
E. transfinite set 
F. Hippasus of 

Metapontum 
G. Ypsilanti 
H. Fermat's last 

theorem 

I. effective pitch 
J. roots for 
K. raffia 
L. independent events 
M. spinning frame 
N. trident 
0. high pressure 

physics 
P. Ettingshausen 

effect 

Q. mestizo 
R. Ibn Abd Rabbihi 
S. laetrile 
T. kennings 
U. Yablonoi 
V. Windows 
W. a penny postage 

stamp 
Y. Yangchuanchan 

Author and title: Timothy Ferris, The Milky Way. 
Quotation: Newton's surviving drafts of the Principia support Thomas 

Edison's dictum that genius is one percent inspiration and ninety-nine 
percent perspiration. Like Beethoven's drafts of the opening bars of the 
Fifth Symphony, they are characterized less by sudden flashes of insight than 
by a constant, indefatigable hammering away at immediate, specific 
problems. 

Solvers: THOMAS BANCHOFF, Brown University, JEANETTE 
BICKLEY, St. Louis Community College, PAUL S. BRUCKMAN, 
Highwood, Illinois, CHARLES R. DIMMINIE, St. Bonaventure University, 
VICTOR G. FESER, University of Mary, ROBERT C. GEBHARDT, 
Hopatcong, New Jersey, META HARRSEN, Durham, North Carolina, 
HENRY LIEBERMAN, Waban, Massachusetts, CHARLOTTE MAINES, 
Rochester, New York, DON PFAFF, University of Nevada-Reno, NAOMI 
SHAPIRO, Piscataway, New Jersey, STEPHANIE SLOYAN, Georgian Court 
College, and JOSEPH S. TESTEN, Mobile, Alabama. Late solution to #37 
by VICTOR G. FESER, University of Mary. 

Mathacrostic 40, constructed by ROBERT FORSBERG, follows on the 
next three pages. To be listed as a solver, send your solution to the editor. 



A. A red-orange coloring ------- 
156 28 99 70 48 172 51 

material obtained from the seeds 
of Bixa orellana 
6. The outer of the two layers ?28 35 i i g  
forming the wall of spores such 
as pollen 
C. Describing a curve at a point 167 160 134 92 75' 144 189 142 194 "I29 
where a tangent may be drawn 

D. To thrust out repeatedly ------ 
96 16 225 119 180 216 

E. Literally "Tracker"; an animal 138 196 45 164 248 124 236 243 79 
that hunts out crocodile eggs 

F. An element 
--------- 
116 114 158 184 255 220 163 2 5 

G. He discovered in 1890 a ---------- 
24 54 66 59 50 186 182 212 143 137 

curve that could intersect every 
point in a plane (2 wds) --- 

229 17 140 

H. He produced the first mathe- 226 136 183 21 155 95 100 3 127 '32' 
matical works produced by an 
Englishman in England (3 wds) 

------ 
254 37 52 237 222 9 

I Great figure in the resistance 93 141 30 214 203 107 125 177 78 
of Wales to the English, d. 1170 
(2 wds) 

- 
110 

J. A small ceramic/metal vacuum 170 201 74 245 18 108 118 154 
tube 

K. A solution used as an acid/ 1208 202 249 130 25 71 49 44 207 
base indicator ----- 

6 193 150 39 233 

L. Hungarian writer, 1760-1 820, 227 219 106 53 82 47 120 
Hunnyas 

M. Author of the earliest sources 175 204 84 61 151 98 
of the Hexateuch 

1 37 



N. A method of finding prime 210 22 121 178 213 187 122 4 72 232 
numbers (3 wds) --------- 

135 145 57 68 8 195 159 40 103 

0. Typical, accurately identified 199 246 168 69 86 36 102 
specimen of a species, but not a 
basis for a published description 

P. Swiss mathematician, 1829- 43 173 89 "75" 148 239 152 191 62 221 
1900 - 

242 

Q. An asteroid of about 220km 46 90 139 133 251 105 
diameter 

R. Equivalent to about 11.8 ---------- 
83 13 244 19 88 198 252 161 240 104 

inches (hyph) 

S .  A word synthesized to mean: 132 206 181 241 223 112 209 215 
someone showing contempt for 
legalities 

T. Author of The Dynamics of a 101 197 20 38 217 26 165 253 94 7 
Particle, 1865 (3 wds) --------- 

188 205 176 171 147 60 55 230 162 

U. Out of use; retired from -------- 
97 23 76 218 12 58 113 179 

service 

V. The entropy of the input to a 43 200 192 169 231 224 14 185 128 64 
communication channel when the 
output is known -- 

80 29 

W. An intracellular effector ---------- 
238 250 10 85 81 73 146 33 157 117 

organelle in coelenterates 

X. A unit of firewood volume ---- 
234 166 190 31 

Y. Spread out in a definite form 174 153 63 56 149 111 

PROBLEM DEPARTMENT 

Edited by Clayton W. Dodge 
University of Maine 

This department welcomes problems believed to be new and at a level 
appropriate for the readers of this journal. Old problems displaying novel 
and elegant methods of solution are also invited. Proposals should be 
accompanied by solutions i f  available and by any information that will assist 
the editor. An asterisk (*) preceding a problem number indicates that the 
proposer did not submit a solution. 

All communications should be addressed to C. W. Dodge, 5752 
Neville/Math, University of Maine, Orono, ME 04469-5752. E-mail: 
dodge@eauss.umemat.maine.edu. Please submit each proposal and solution 
preferably typed or clearly written on a separate sheet (one side only) 
properly identified with name and address. Solutions to problems in this 
issue should be mailed by December 15, 1995. 

Correction 

844. [Fall 19941 Proposed by Bill Correll, Jr., student, Denison 
University, Granville, Ohio. 

I f  F denotes the nth Fibonacci number (F, = Fn = 1 and F k 2  = 
Fk + for k a positive integer), evaluate 

(The index of the summation was incorrect.) 

Problems for Solution 

849. Proposed by L. A. Bohr, Great Works, Maine. 
Solve this base 8 addition alphametic: THIS + IS = WORK. 



*850. Proposed by Bill Correll, Jr., Denison University, Granville, Ohio. 
Clearly the following integral evaluation is incorrect. Find the flaw. By 

letting u = -x we get that 

so  that I = 214 + C' . (See Problem 828.) 

851. Proposed by Bill 
Correll, Jr., Denison University, 
Granville, Ohio. 

In triangle ABC let Cevian 
AD bisect side BC and let 
Cevians BE and BF trisect side 
CA. Let AD intersect BE at P 
and BF at R, and let CP meet 
BF at Q. See the figure. If the 
area of triangle ABC is 1, find B D C 
the area of triangle PQR. 

852. Proposed by Rex H. Wu, Brooklyn, New York. 
Let E be a point inside square ABCD with BE = x, DE = y, and CE = z. 

If Jf2 + y2 = Q, find the area of ABCD in terms of x, y, and z. 

853. Proposed by Charles Ashbacher, Cedar Rapids, Iowa. 
This problem was submitted by Vietnam for the 1990 International 

Mathematical Olympiad and has appeared in booklets overseas. If real 
numbers x a y a z > 0, then prove that 

PROBLEMS AND SOLUTIONS 

854. Proposed by Jayanthi Ganapathy, University of Wisconsin at 
Oshkosh, Oslikosh, Wisconsin. 

Let a and b be two nonzero real numbers such that 

Find the values of the expressions ( a  + b 2 ) / a  and ( a  - b ' ) l a b .  

855. Proposed by Florentin Smarandache, Phoenix, Arizona. 
Prove that a square matrix of integers, having in each row and in each 

column a unique element not divisible by a given prime p, is nonsingular. 

856. Proposed by Paul S. Bruckman, Highwood, Illinois. 
Starting with a regular M-gon whose side is of unit length, snip off 

congruent isosceles triangles from each of its vertices, resulting in a regular 
21-gon. Repeat the process indefinitely. Find the ratio of the area of the 
limiting circle to that of the original H-gon. 

857. Proposed by Andrew Cusumano, Great Neck, New York. 
Find all prime numbers whose reciprocals have repetends of exactly 

seven decimal places. 

858. Proposed by David Iny, Baltimore, Maryland. 
It is known that the rational numbers in the interval [O, 11 can be 

enumerated. Let {rk}T=l be such an enumeration and pick E such that 
0 < E < 1. Take an interval Ik of length e2*  centered on each rk. Then the . 

sum of all these interval lengths SEl rk = E < 1. Show how to find a real 
number in [O, 11 and not contained in any of the intervals 4 

859. Proposed by J. S. Frame, Michigan State University, East Lansing, 
Michigan. 

Sum in closed form the series 

S = ~Ã‘Ã‘Ã‘(-!~ where t) = m (m - l)(m - 2)-(m - n + 1) 
, ,=I  11 + 1 / I !  



860. Proposed by Richard I. Hess, Rancho Palos Verdes, California. 
This problem originally appeared in a column by the Japanese problems 

columnist Nob Yoshigahara. Find the minimal positive integer n so that 
2n t 1 circles of unit diameter can be packed inside a 2 by n rectangle. 

861. Proposed by J. S. Frame, Michigan State University, East Lansing, 
Michigan. 

Evaluate in c l o s e d " h  the sum 

Solutions 

823. [Spring 19941 Proposed by Alan Wayne, Holiday, Florida. 
Find all solutions to the multiplication alphametic 

(I)(DINE) = ENID. 

That is, find the form(s) taken by all solutions in all bases. 

I .  Solution by Paul S. Bruckman, Highwood, Illinois. 
Let b denote the base of the alphametic. We show that if r 2 3, then a 

solution is provided by taking 

b = ? , D = r , I = r -  1 , N = r 2- r -  l , a n d E = ? - r .  

Then Â £ -  = r 3-  2r2 t r =?(r - 2) t r. so Â £ -  = D (mod h), with a o r r y  
to the next column of r - 1. Next we have that 

z N - l t r - 2 = r  - 2 r 2 t  l t r - ? = r ( r - z ) t r -  1 = / ( m o d / ) )  

with a carry ol r - 2 spin. Ncxt l 2  t r - 2 = r2 - r - 1 = N with no carry. 
Fina~lly, D . I  = ? - r = E. Tlicrcfore, we h;ive that (/)(DINE) = ENID. 

11. Comment Victor G. Fever, Univcr.si/j~ o f  Mary, Bismarck, North 
Dakota. 

This proI1le111 is much trickier tl1;111 i t  looks. I sct up a little computer 
prograin to i.liec-k succ-rssivc bases. Solutions started to appctir: bases 0, 16, 
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25, 36. Ah hah! There seems to be a pattern here. Right. The next 
solution was for base 39, and then base 47. I checked to base 200 and found 
the additional solutions for bases other than square numbers in the table that 
follows. There are fragments of patterns, but that is all I can find. It is 
exasperating to find, for example, that these five bases include two primes, - 

one odd composite, one power of 2, and one composite with both odd and 
even factors. 

base D I N E 

39 1 16 37 23 
47 4 9 43 37 

1 09 1 45 107 63 
128 16 5 26 80 
200 5 11 128 55 

111. Comment by Richard I. Hess, Rancho Palos Verdes, California. 
If the base is b, then we must have that 

and hence 

(E -  ID)^^ = ( I ~  - N)b2 t I(N - l ) b  t IE - D 

with 0 s D, I, N, E s b - 1, I > 1, and D - E  v 0. If we have that E = I * D ,  
then 

(N - ~ ~ ) b ~  = I(N - i ) b  + D ( I ~  - I ) .  

If also N = I ~ ,  then (Ib t D ) ( I ~  - 1) = 0, which is impossible. Hence we 
have N > I 2, so I c db. Further analysis might produce some results, but it 
appears tedious. 

Also solved by VICTOR G. FESER, University of Mary, Bismarck, ND, 
RICHARD I .  HESS, Rancho Palos Verdes, CA, REX H. WU, Brooklyn, NY, 
and the PROPOSER. 



824. [Spring 19941 Proposed by Joel L. Brewer, Palo Alto, California. 
Prove that there are no real integral solutions to the set of equations 

You may not assume that a putative solution would possess any symmetry. 

I. Composite of solutions submitted independently by Richard I. Hess, 
Ranclio Palos Verdes, California, and Rex H. Wu, Brooklyn, New York. 

We see that x, y, and z are factors of 160, as are also 2 + 6x2 - 159, 
y 3 +  6y2- 159, and i? + 6z2 - 159. Now lx3 + 6x2 - 1591 s 160 for 
x I s 6. Furthermore, 2 + 6x2 - 159 is a factor of 160 only for x = 4, in 

which case 2 + 6x2 - 159 = 1. Similarly, y = z = 4. But then the stated 
products are each 4, not 160. Hence there is no solution. 

11. Solution by Paul S. Bruckman, Highwood, Illinois. 
Let P(x) = x3 + 6x2 - 159. By checking x = 0, 1, 2, 3, 4, we find that 

P(x) 0 (mod 5) for all x. In any putative solution, it must be the case that 
the product of integers P(x) and y is 160, so then y as 0 (mod 5). None of 
P(-5), P(O), and P(5) is a divisor of 160, and i f  lx 1 2 10, \P(x) \ > 160. 
Thus P(x) cannot be a factor of 160 for any permissible x, and any putative 
solution is impossible. 

111. Solution by Kandasamy Muthuvel, University of Wisconsin at 
Oshkosh, Oshkosh, Wisconsin. 

From the third given equation, x divides 160. Then, from the first 
equation, we must have x divides 159)'. Since x and 159 are relatively 
prime, then x divides y. Similarly, y divides z and z divides x, so then x = y. 
Therefore, 

Since x and 159 are relatively prime, then x and 2 + 6x2 - 159 are relatively 
prime. Thus the possible values for x are 21, 25, and 232, but it is readily 
checked that none of them does yield a solution. 

IV. Comment 191 the Proposer. 
The following generalization is readily proved by the same methods. If 
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I s 3, m a 3, and n a 3 are integers, then there are no real integral solutions 
to the set of equations 

(Z" + 6 2  - 1 5 9 ) ~  = 160. 

Also solved by SEUNG-JIN BANG, Ajou University, Suwon, Korea, 
BILL CORRELL, JR., Denison University, Granville, OH, VICTOR G. 
FESER, University of Mary, Bismarck, ND, STEPHEN I. GENDLER, 
Clarion University of Pennsylvania, HENRY S. LIEBERMAN, Waban, MA, 
DAVID E. MANES, SUNY College at Oneonta, DAVID S. SHOBE, New 
Haven, CT, and the PROPOSER. 

825. [Spring 19941 Proposed by Leon Bankoff, Los Angeles, California: 
Let 0 be a point inside the equilateral triangle ABC whose side is of 

length s. Let OA, OB, OC have lengths a, b, c respectively. Given the 
lengths a, b, c, find length s. 

I. Solution by Rex H. Wu, 
Brooklyn, New York. 

Let triangleABC be oriented 
counterclockwise and rotate 
triangle AOC 60' about point C 
to triangle BNC as shown in the 
figure. Then A 0  = BN = a and 
O C = N C = O N = c s o L N O C =  B A --- ----- - -  , ; C - C 
60Â¡ Let 9 = D O N .  Applying ---&--- 
the law of cosines to triangles N 

BON and BOC, we get 

b 2  + c 2  - a 2  b 2  + c 2  - s2 
cos 9 = and cos(9 + 60') = 

2bc 2bc 

From the left equation we get that 

sin 9 = Ab2c2 - (b2 + c 2  - a2)' 
2bc 



Now substitute these values into the equation 

cos (9 + 60Â° = cos 6 cos 60' - sin 9 sin 60' 

and then solve for s to get that 
I 

Note that, although it does not appear so, the quantity inside the inner 
radical is symmetric in a, b, and c. That is, 

The symmetric statement of the problem implies a symmetric solution. Ed. 

11. Comment by Seung-Jin Bang, Ajou University, Suwon, Korea. 
This problem is not new. See Problem 24.9, proposed by Russell Euler, 

. in Mathematical Spectrum 1991192, vol. 24, no. 3, p. 90 and 1992193, vol. 
25, no. 1, p. 28. 

In. Comment by Murray S. Klamkin, University of Alberta, Edmonton, 
Alberta, Canada. 

This problem with solution appeared previously as number 39, Crux 
Mathematicorum, 1976, p. 7. An extension to a regular tetrahedron appeared 
as number 1087, ibid, 1987, p. 120. My solution there generalized the 
problem to show that for positive numbers an, a,, ... , a,,, there exists a 
regular simplex S: A d ,  - A  and a point P in its space such that PAi =ai, 
i = 0, 1, ... , n, if and only if 

I = {SO?}' - n ~ a ?  ;> 0. 

The side length s of S is then given by 

where the Â sign is chosen according to whether the point P is in the interior 
or exterior of S. 
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Also solved by MIGUEL AMENGUAL COVAS, Cala ~ i ~ u e r a ,  
Mallorca, Spain, PAUL S. BRUCKMAN, Highwood, IL, XUMING CHEN, 
University of Alabama, Tuscaloosa, BILL CORRELL, JR., Denison 
University, Granville, OH, ROBERT DOWNES, Mountain Lakes High 
School, NJ, RICHARD I. HESS, Rancho Palos Verdes, CA, HENRY S.- . 
LIEBERMAN, Waban, MA, DAVID E. MANES, SUNY College at Oneonta, 
SAMMY YU and JIMMY YU, University of South Dakota, Vermillion, and 
the PROPOSER. 

Amengual Covas found the problem for (a, b, c) = (11, 14, 19) in 
Gaceta Matematica, Supplement, IV, 1952, p. 57. 

826. [Spring 19941 Proposed by M. A. Kahn, Lucknow, India. 
Prove or disprove that the product 

is a perfect square only for n = 3 and for no other positive integer. 

Partial solution adapted from that submitted by Paul S. Bruckman, 
High wood, Illinois. 

We write P in place of P for the stated product. Let p be any prime 
w 1 (mod 4). Then there exist exactly two distinct integers n, 2 s n s p  - 2, 
such that n2 + 1 - 0 (mod p) and n2 + 1 4 0 (mod p2). Let these values be 
denoted by ap and bp. Note that bp = p - ap and take, without loss of 
generality, 

Now we see that p \ P,, if and only if n 2 a and that p2 1 P,, if and only if 
n a bp. Hence P,, cannot be a square number when 

n & I p =  {t i  E Z: u p s  n < b,,}. 

Now P, = 2 and P2 = 10 are not squares, but P, = 100 = 10'. We 
would like to show that the union S of all such sets I contains all integers 
greater than 3. Since there are infinitely many primes p = 1 (mod 4) and 
since each b a pI2, then S has no upper bound. Hence, all we must show 
is that" there are no gaps between members of S. For any prime p = 
2r)? + 1, such as 5, 17, 37, and 101, we have a = 2r and b = p - 2r, 



14s PI Mil EIJSII.ON JOIII~NAI.  

milking I,, a large interval. There would be no such gap i f  one could always 
find another such prime q = ( 2 / ) ?  + 1 with 3 s p - 2r. Unfortunately, 
according to Roscii, Elementary Number Theor\\ 2nd cd., p. 65, i t  is not 
even known whether thcrc arc infinitely many primes of the form .v2 + 1. 
For other primes of the form 411 + 1 ,  thcrc appears to he no rule to determine 
how far apart a and b,, arc. All we know for sure is that I,, always contains 
(p - 1)/2. Most intervals I will contain more integers, hut i t  appears we 
cannot guarantee that all  the gaps will be filled. The table below shows that 
the theorem appears to be true. Note that the number of integers in the set 
1 is equal to bp - 

"Pa 

Editorial comment. It appears that the product P is a perfect square 
only for 11 = 3. Our proof is not complete, however, so the problem is open 
and further comments and, if possible, a full solution are invited. 

827. [Spring 19941 
Proposed by Stanley Rabinowitz, 
Mathpro Press, Westford, 
Massachusetts. 

Let P be a point on diagonal 
BD of square ABCD and let Q 
be a point on side CD such that 
APQ is a right angle. Prove 
that AP = PQ. 

B 
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I. Solution by Francine Bankoff, Beverly Hills, California. 
Let S and T be the feet of perpendiculars dropped from P upon DC and 

DA respectively. Then triangles PSQ and PTA are similar since their 
corresponding sides are perpendicular. Since PS = P T  because PSDT is 
square, the triangles are also congruent, with PA = PQ. 

11. Solution by Francine Bankoff, Beverly Hills, California. 
Since QDA and APQ are both right angles, the points D, A, P, and Q lie 

on a circle whose diameter is AQ. It follows that chords QP and AP are 
equal, each measured by the equal 45' angles QDP and PDA. 

111. Comment by Leon Bankoff, Beverly Hills, California. 
Although the diagram suggests that the point P be selected below the 

midpoint of DB, the stated proposal does not exclude a point above that 
midpoint. In that case the point Q falls on an extension of CD and solutions 
I and I1 remain valid with hardly any modification. 

Also solved by MIGUEL AMENGUAL COVAS, Cala Figuera, 
Mallorca, Spain, SEUNG-JIN BANG, Ajou University, Suwon, Korea, 
SCOTT H. BROWN, Auburn University, AL, PAUL S. BRUCKMAN, 
Highwood, IL, XUMING CHEN (3 solutions), University of Alabama, 
Tuscaloosa, BILL CORRELL, JR., Denison University, Granville, OH, 
ANDREW CUSUMANO, Great Neck, NY, MARK EVANS, Louisville, KY, 
ROBERT C. GEBHARDT, Hopatcone, NJ, SOLOMON W. GOLOMB, 
University of Southern California, Los Angeles, MONICA GREENWOOD, 
St. Bonaventure University, NY, RICHARD I. HESS, Rancho Palos Verdes, 
CA, JOE HOWARD, New Mexico Highlands University, Las Vegas, 
ROSALIE JUNGREIS, James Madison High School No. Woodmere, NY, 
MURRAY S. KLAMKIN, University of Alberta, Canada, HENRY S. 
UEBERMAN (2 solutions), Waban, MA, PETER A. LINDSTROM, North 
Lake College, Irving, TX, DAVID E. MANES, S U M  College at Oneonta, 
G. MAVRIGIAN (3 solutions), Youngstown State University, OH, 
YOSHINOBU MURAYOSHI, Okina wa, Japan, KANDASAMY 
MUTHUVEL, University of Wisconsin-Oshkosh, JOHN F. PUTZ, Alma 
College, MI, GEORGE W. RAINEY, Los Angeles, CA, DAVID S. SHORE, 
New Haven, CT, ROMAN SZNAJDER, University of Maryland, Baltimore, 
L. J. UPTON, Mississauga, Ontario, Canada, REX H. W U  (2 solutions), 
Brooklyn, NY, SAMMY YU and JIMMY YU, University of South Dakota, * 



Vermillion, and the PROPOSER. 
Other methods of solution included arguing that PA = P C  and then 

showing that triangle PCQ is isosceles with apex P, applying the law of 
sines to triangles PQD and PAD, and placing the figure on the Cartesian 
plane with A at the origin, B at (1, 0) and D at (0, 1). 

828. [Spring 19941 Proposed by Rex H. Wit, Brooklyn, New York. 
Evaluate the integral 

Solution by Richard I. Hess, Rancho Palos Verdes, California. 
"This integral cannot be expressed as a finite combination of elementary 

functions" - Gradshteyn and Ryzhik - 2.782.2. 
For all b > 0, we have that 

If a c 0 then we have 

Hence the value of the indefinite integral depends upon whether x > 0 
or x c 0. The value of any definite integral can be found by appropriately 

adding or subtracting one or both of the two forms above. 

Also solved by SEUNG-JIN BANG, Ajou University, Suwon, Korea, 
PAUL S. BRUCKMAN, Highwood, IL, JOE HOWARD, New Mexico 
Highlands University, Las Vegas, PETER A. LINDSTROM, North La 
College, Irving, TX, DAVID E. MANES, SUNY College at Oneonta, ST 
WAGON and JOAN HUTCHINSON, Macalester College, St. Paul, MN, an 
the PROPOSER. 

829. [Spring 19941 Proposed by Seung-Jin Bang, Ajou University, 
Suwon, Republic of Korea. 

Let f be a function such that /, f ', ..., f are all continuous, f (0) = 
f l(0) = - = f("-')(0) = 0 and f^(0)  v 0. Let 

fl(x) = J" f(t) dt and fk(x) = dt k = 2, 3, ..., ti. 
JOX 

Evaluate the limit 

fm@) lim -. 
- 0  x '" f(x) 

Solution by the Proposer. 
Using L'H6pital's rule, we have 

It follows that 

Also solved 11y PAUL S. BRUCKMAN, Higllwood, IL, MARK EVANS, 
Louisville, KY, RICHARD I. HESS, Rancho Palos Verdes, CAI CARL 
LIBIS, Idaho State University, Pocatello, HENRY S. LIEBERMAN, Wahm, 
MA, and DAVID S. SHOBE, New Haven, CT. 



PROBLEMS AND SOLUTIONS 1 53 

We next look for a closed form for wk1. Thus 830. [Spring 19941 Proposed by David Iny, Baltimore, Maryland. 
Let 

x 4 n + k - l  

wk = 2 k = 1, 2, 3, 4. 
n..o (4n +k  - l)! 

Since the series in (1) is absolutely convergent for all complex x, we may - 

rearrange its terms in any order. Then a) Prove that [(w, + w ~ ) ~  - (w2 + W ~ ) ~ ] [ ( W ~  - w312 + (w2 - w4)'] = 1. 
b) Can you find similar identities with p a 2 for 

This problem is a generalization of a 1939 Putnam Exam problem, which 
considered the case of p = 3. 

We define, for m = 0, 1, 2, ..., p - 1, a sum and then use equation (3) 
I. Solution to part (a) by Carl Libis, Idaho State University, Pocatello, 

Idaho. 
Since wl + w3 = cosh x, w2 + w4 = sinh x, w1 - w3 = cos x, and w2 - w4 

= sin x, and since wl + w2 + w3 + w4 = e* and wl - w2 + w3 - w4 = e-x, we 
have that 

to get 

and it follows that 
and 

(wl + w2 + w3 + w4)(wl - w2 + w3 - w4) = e ' ex  = 1. 
Note that 

11. Solution by Paul S. Bruckman, Highwood, Illinois. 
We solve the problem for fixed p a 2. Then 

and consider the product 

P-1 P-1 
Sm +l = exp (x y  ̂e m )  = exp(0) = 1. 

and where 

This result provides us with the general identity satisfied by the wk: 1 i f p l m ,  " = { 0 otherwise. 

If we let 0 = exp(2idp), then we may write 

and equivalently, 



2 2 = w + W + + W P  2 E wrwscos 2nm(s -r )  - - e2xcos(2xm/p).  

l s r c s s p  P 

Some special cases follow. If p = 2 and hence 9 = -1, then Similarly 

F o r p  = 3, by repeated application of the relation g2 + 9 + 1 = 0, the identity = wl 2 + ... + w; + 2 ^ (-l)r+swrws cos 2ltm(s - r )  

l s rc s sp  P in (5)  becomes 
3 3 w1 + w2 + w; - 3w1w2w3 = 1. 

When p = 4, 9 = i and equation (5) becomes 

In. Solution by Richard I. Hess, Rancho Palos Verdes, California. 
We take, for any given positive integerp and fo rk  = 1, 2, ..., p, 

x p n + k - l  
WÃ = 2 

(pn + k - l ) !  

and define urn = e2"""'p. Suppose p is an odd number. Then 

and 

where u can be subscripted with m = 1, 2, ..., p - 1. 
In the product 

pairs of factors can be split out, such as 

2 2 = wl + w2 + ... + w; + - 1  S - 1  S -1  E w r ~ s ( u m  + um u::) 
l s r c s s p  

The product of these last two expressions is 1. There will be (p  - 1)/2 such 
expressions for m = 1, 2, ... , ( p  - 1)/2. 

Suppose now that p is an even number and define urn as before. Then 
ation ( 1 )  still holds. Its factors get paired off as before except that 

eUpi2 = e 'x = wl - w2 + w3 - ... - w 
P 

eupx = e x  = wl + w2 + w3 + - + w 
P ' 

e " ~ / ' l x e u ~ x  = ( w l  - w2 + ... - wP)(wl + w2 + -.. + w ) = 1. 
P 

ere are p/2 - 1 additional equations for m = 1,  2, ..., p/2 - 1 ,  

I=,? + 2~ wrws cos 2ltm ( s  - r )  , 
rcs P I 

E w,? + 2 y (-I)--  wr ws cos 
2ltm ( s  - r )  ] =  1. 

rcs P 

en m = pI4, the two expressions in brackets are the same and each is 
a1 to 1. 
Also solved by the PROPOSER. 

831. [Spring 19941 Proposed by Paul S. Bruckman, Higliwood, Illinois. 
Solve exactly and completely 



I .  Solution by Henry' S. Lieherman, Waban, Massachusetts. 4Jk3 - 4*2 - 29k - 21 = (k + l ) ( Z  + 3 ) ( Z  - 7)  = 0. 
It seems reasonable that the stated polynomial might factor as 

Taking k = -1, we get B = 0 and A = 2312, which gives rise to 
(x2 t ax + 1)(x4 t hx3 t c.2 t dx t I ) ,  5 3 x2  - - = X  - 1 =  2-X. 

m 

where a,  h, c,  and d are integers. We multiply out this product and then z L 

Thus the original polynomial factors into the product equate its coefficients with the corresponding ones in the given polynomial 
to get that 

a t  1) = -8, c t ah t 1 = 18, 

d t  ac t 1) = -6, 1 t a d  t c = -12, 

a t d = 2 .  

These equations have the solution a = -3, b = -5, c = 2, and d = 5.  Thus 
the given polynomial is equal to 

which has the easily verified zeros - - 

( x ~  - 3~ + I ) ( x ~  - 5 2  + 2x2 + 5~ + I ) .  

'Although the quartic factor can be factored similarly into the product of the 
two quadratic factors 

(x2 + ex - 1)(x2 t fx - I ) ,  

we shall follow Ferrari's solution as presented in Higher Algebra by Hall and 
Knight, pp. 483-484. 

To each side of 

x4 - 5x3 t 2r2 t 5x t 1 = 0 

' add (Ax t B)?, the quantities A and B being determined so as to make the left 
side a perfect square of the form (x2 - ( 5 4  t A - ) ~ .  That is, we want 

= x 4  - 5 x 3 + ( 2  + A ? ) x ~  + ( 5  + 2 4 B ) x  + 1 + B 2 =  (Ay + B ) ~ .  

The other two values of k, -312 and 712, similarly lead to factorizations 
which produce the same zeros. 

Also solved by BILL CORRELL, JR., Denison University, Granville, 
OH, PATRICK COSTELLO, Eastern Kentucky University, Richmond, 
MARK EVANS, Louisville, KY, J. S. FRAME, Michigan State University, 
Lansing, MARCIE GARDNER, TOM SYMONS, ARTHUR THOMASON, 
and RAND1 KAY VEST, Hendrix College, Conway, AR, ROBERT C. 
GEBHARDT, Hopatcong, NJ, RICHARD I. HESS, Rancho Palos Verdes, 
CA, JOE HOWARD, New Mexico Highlands University, Las Vegas, 
BECKY LATCH, ANGELA JONES, and WADE WILLIAMS, HendrIX 
College, Conway, AR, CARL LIBIS, Idaho State University, Pocatello, 
PETER A. LINDSTROM, North Lake College, Irving, TX, DAVID E. 
MANES, SUNY College at Oneonta, YOSHINOBU MURAYOSHI, 
Okinawa, Japan, BOB PRIELIPP, University of Wisconsin-Oshkosh, STAN 
WAGON and JOAN HUTCHINSON, Macalester College, St. Paul, MN, 
REX H. WU, Brooklyn, NY, SAMMY YU and JIMMY YU, University of 
South Dakota, Vermillion, and the PROPOSER. 

832. [Spring 19941 Proposed by David Iny, Westinghouse Electric By comparing coefficients we get 

2514 + 2 k = 2 + A 2 ,  - 5 k = 5 + 2 A B , a n d  k 2  = 1 t B 2 .  Corporation, Baltimore, Maryland. 
The taxicab distance between points (a, b)  and (c, 4 is 1 a - c 1 + Eliminate A and B from these three equations by taking 1 b - d 1 . Determine the circumference in taxicab space of the circle whose 

I ( A B ) ~  = ( - ( 5 1 2 ) k  - 5 1 2 ) ~  = (1714 + 2 k ) ( k 2  - 1 ) .  equation is 2 + y2 = 1. 

The resulting cubic polynomial in k easily factors thus 



I. Soliition by Victor G. 
Feser, Universiy of Mary, 
Bismarck North Dakota. 

The circumference is 8. In 
taxicab geometry, the circle is a 
square, as in the figure. To 
confirm this fact, find equations 
of each of the four segments. 
For example, AB is given by y = 
-x + 1 on the interval 0 s x s 1. 
Then a point on that segment is 
(x, -x + 1) and its distance from (0, 0) is given by 

so it lies on the taxicab circle. 
The length of segment AB is 11 - 0 1 + 10 - 1 1 = 2. Since each of the 

other three segments has the same leiigth, the total circumference is 8. 

11. Comment by Paul S. Bruckman, Hig/iwood, Illinois. 
Aha, Lindemam was wrong-you can square the circle after all. In 

taxicab geometry. Nor am I impressed with the Chudnowsky brothers' 
achievement-I can compute JC to infinitely many decimal places, all of them 
zero! Now, for my next trick, I intend to show that 00 is a rational number 
(in fact, I once actually met a rational mathematician!). 

Also solved by SEUNG-JIN BANG, AJOU University, Suwon, Korea, 
PAUL S. BRUCKMAN, Higl~wood, IL, MARK EVANS, Louisville, m, 
ROBERT C. GEBHARDT, Hopatcong, NJ, STEPHEN I. GENDLER, 
Clarion University of Pennsylvania, RICHARD I. HESS, Ranc/io Palos 
Verdes, CA, HENRY S. LIEBERMAN, Waban, M, DAVID S. SHOBE, 
New Havet?, CT, ROMAN SZNAJDER, University of Maryland, Baltimore, 
MD, REX H. WU, Brooklyn, m, and the PROPOSER. 

Tlius the rcquircd su~ii tclescopcs and yields 

x f(m, 11) = ].(O, 11) + x 1 f(m, 11 + 1) - [(m - I, 11 + 1 ) ] 
m = 0 m =  1 

Al.so .solvedl~y PAUL S. BRUCKMAN, Hig/?wood, IL, BILL CORRELL, 
JR., (MQ/IO l~rovided the fiilul form for the soliition), Denis011 U~?iversity~ 
Gr(~t~ville, OH, RICHARD I. HESS, Rat~cl~o Palos Verdes, CAI HENRY S. 
LIEBERMAN, W(I/~I~I, MAl PETER A. LINDSTROM, North Lake College, 
lrvii~g, TX, PHYLLIS MAHAN, Easteri~ Kentucky Ui?iversiyJ Ric/~mond, 
DAVID E. MANES, SUWCollege at Ot~eo~~ta,  REX H. WU, Brookl~v?, W ,  
and the PROPOSER. 

834. [Spring 19941 Proposed by Murray S. Klamkin, Ui~iversit~l of 
A ll~erta, Edmonton, A ll~erta, Canada. 

Let T and T' de~iote two triangles with respective sides (a, b, c) and 
( ( I ! ,  l~',  c ' )  where a' ' = 3 ( s  - u), 11' ' = %(s - b), and cJ ' = 2c(s - c). 
Provc that 

(i) .s 2 s', (ii) R 2 R', (iii) I-' 2 r, and (iv) F' Is1 ' 2 FIS' 



where s = (a + b + c)l2 is the semiperimeter, R the circumradius, r the 
inradius, and F the area of triangle ABC, and similarly for triangle A' B1 Cf. 

Solution by Miguel Amet~gual Covas, Cala Figuera, Mallorca, Spain. 
Given triangle T, triangle Tf exists from items (1) and (35) in [2] for the 

function f(x) = dx. (The converse is not true: given an arbitrary triangle TI, 
then a, b, and c are not necessarily the sides of a triangle.) Next, we define 
x = s - a , y = s - b , a n d z = s - c .  T h e n x + y = c , y + z = a , a n d z + x =  
b. 

By the arithmetic-geometric mean inequality we get 

from which inequality (i) follows. 
Since we have 

and inequality (ii) follows since, by item 2.12 in [I], 

A 1 .  B 1 . C 1  1 sin- sin- sin- s -. 
2 2 2 8  

By Heron's formula, 

8 ~ ~ = ( a +  b + c ) ( a +  b - c ) ( b + c - a ) ( c + a -  b) 

= k 2 b 2  + 2b2c2 + k 2 a 2  - a4 - b4 - c4 

by just a bit of algebm. Similarly, placing a prime on each letter in this last 
equation and then replacing a' by k ( s  - a), etc., and with just a bit more 
algebra, we get that 

8 ~ ' ~  = x 2 - B ( s  -b).k(s -c) - x 4 a 2 ( s  -a12 

Hence F1 = F. Now rs = F = F' = r l s f ,  so inequality (iii) follows from 
inequality (i). 

Finally, from inequalities (i) and (iii) and F = rs, we get inequality (iv), 

- - Yz Yz = J ( s - b ) ( s - c )  = sin - A References 
= J  ~ Y ( Z  +x)*~(x +Y) (2 +Y) bc 2 ' 

1. 0. Bottema et al, Geometric Inequalities, Wolters-Noodhoff, Groningen, 
then Af = 4 2  - A12 and similarly B1 = d 2  - B/2 and c1 = d 2  - ~ 1 2 .  p . ~ ~ ~  1968, p. 20. 

A B C  2. D. S. Mitrinovid, J. E. Pecarie, and V. Volenec, Recent Advances in 
s = 4R COS - cos - cos - = 4R s i d  sinB sin C1 

2 2 2  Geometric Inequalities, Kluwer, 1989, p. 18-22. 

A1 A1 B1 Bf  C f  C 1  = ~ R ~ ~ s ~ ~ - c o s ~ ~ ~ s ~ ~ ~ c o s ~ - ~ s ~ ~ ~ ~ ~ ~ ~  
7 

Also solved by PAUL S. BRUCKMAN, Higltwood, E, and the 
2 - 2 2 2 2 PROPOSER. 

A t .  B1 c1 Af B1 C1 = ~ R s i n - s i n ~ s i n ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  
2 2 2  2 2 2 835. [Spring 19941 Proposed by the Alma College Problem Solving 

A' . Bf C 1 . s l  s Group, A [ma College, A [ma, Michigan. = 8Rsin-sin-sin- - s R . ~  
2 2 2 R 1  R Let P(x) be a polynomial of degree tt 2 2 with real coefficients and 

whose leading three terms are ax" + b2-l + c F 2 .  All remaining terms are 
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of degree n - 3 or less. If b2 s h c ,  then prove that P(x) cannot have n 
distinct real roots. (This problem is a generalization of Problem 4 from the 
February 1990 issue of Problem Solving Newsletter by Dr. Hugh 
Montgomery of the University of Michigan.) 

I. Solution by Kandasamy Muthuveh University of Wisconsin at Oshkosh, 
Oshkosh, Wisconsin. 

Suppose that P(x) has n distinct real zeros. Then by Rolle's theorem, 
one can see that P1(x) must have n - 1 distinct real zeros, and so forth, so 
that 

p (n-2) (x) = (n - 2)! [an(n - 1)x2 + B ( n  - 1)x + k] 
2 

has two distinct real zeros. Hence its discriminant 

Thus we must have 
h e n  b 2  > - > h c ,  

n - 1  
a stronger inequality than proposed. 

11. Solution by David Iny, Baltimore, Mavland. 
Suppose P(x) = 0 has n distinct real roots rl, r2, ..., rn. Then 

n 

Then 

P(x) = a n ( x  - ri)  witha # 0. 
i= 1 

b = - a x r i  and c = a x rirj. 
i= 1 ls ie jsn 

Now 

Now (ri-  rj12 > 0 when i # j, so then < + $ > 2rirj and hence 

Thus, if b2 - 2nac/(n - 1) s 0, P(x) cannot have n distinct zeros. When 
n = 2, this is the usual b2 - 4ac s 0 necessary and sufficient condition for 

- .  

P(x) = 0 not to have distinct real roots. 

Also solved by SEUNG-JIN BANG, Ajou University, Suwon, Korea, 
PAUL S. BRUCKMAN, Highwood, IL, BILL CORRELL, JR., Denison 
University, Granville, OH, RICHARD I. HESS, Rancho Palos Verdes, CA, 

2 n b 2  - 2uc > -ac, and finally b 2  - 2uc- s 0. 
n - 1  n - 1  

HENRY S. LIEBERMAN, Waban, M, DAVID E. MANES, SUNYCollege 
at Oneonta, DAVID S. SHOBE, New Haven, CT REX H. W, Brooklyn, 
W, a d  the PROPOSERS. 

Bruckman commented that it is proper to speak of the zeros of P (and 
not of the roots of P) as those values of x that are the roots of the equation 
P(x) = 0. That is, an expression has zeros; an equation has roots. 

How open have I told my students that same distinction! Yet I did 
overlook the error here. - E d .  

A problemist is one of those heros, 
Who, when he sees "roots" used for "zeros," 

Thinks it a harsh grate 
Like nails scraping slate. 

So he charges out like a rhinoceros. 
-Anon. 
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permutations, by Ann Marie Paulukonis (St. John's University, Minnesota) 
The Chinese Remainder Theorem and object oriented programming, by 

David M. Potts (Texas A & M University) 
A linear programming formulation to optimize sawmill operations, by 

lerry Priddy (Youngstown State University) 
Bernoulli numbers in series summations, by Alan B. Shettel 

[Youngstown State University) 
Re-marking dice, by Kendra Sinopoli (Youngstown State University) 
Fault tolerance in parallel processing, by Jason M. Spangler 

[Youngstown State University) 
Using asymptotics to mathematically model macrosegregation in 

:ontinuously cast steel slabs, by Carl Stitz (University of Akron) 
Existence theorems for 2-point boundary value problems, by Tishua 

I'aylor (Spelman College) 
A discission of simple continued fractions and their applications, by 

Zhristina T. Tsiaparas (Youngstown State University) 
Minimal Moebius strips, by Daniel L. Viar (University of Arkansas) 
On b, n-happiness sequences, by Sonny Vu (University of Illinois) 
Applications of fractals in geology and geophysics, by Lisa White 

(Youngstown State University) 
The combinatorics of semi-direct products of cyclic groups, by Jeb F. 

Willenbring (North Dakota State University) 
Having a ball with Pythagoras, by Adam J. Zeuske (St. Norbert College) 

Five prizes of $100 each, for papers of unusual merit, were awarded to 
Andrew Douglass, Allen Harbaugh, Kathryn Nyman, Sonny Vu, and Jeb 
Willenbring. 

The Natio~~al Security Agency again awarded Pi Mu Epsilon a grant of 
$5000 for the support and encouragement of student speakers, and the 
America11 Mathematical Society contributed $1000 for prize awards. 

The J. Sutherland Frame Lecture, delivered by Scoutmaster Me1 . 



Slugbate, was entitled "Cheating your way to the knot merit badge". Some 
members of the audience detected a strong resemblance of the speaker to 
Professor Colin Adam of Williams College, but this may have been mere 
coincidence. 

The Richard V. h d r e e  Awards 

The Richard V. Andree awards are given annually to the authors of the 
three papers written by students that have been judged by the officers and 
councilors of the Pi Mu Epsilon to be the best to have appeared in the Pi M u  
Epsilon Journal in the past year. 

Richard V. Andree was, until his death in 1987, Professor Emeritus of 
Mathematics at the University of Oklahoma. He had served Pi Mu Epsilon 
long and well in many capacities: as president, as secretary-treasurer, and as 
editor of the Journal. 

l%e winner of the first prize for 1994 is Gina Aurello, for her paper 
"On the rearrangement of infinite series'' (this Journal 9 (1989-94) #lo, 641- 
646). 

The second prize is awarded to Rychard Bouwens7 for ''Who gets the 
Washers?" (this Journal 10 (1994-99) #I, 1-4). 

The third prize winner is Michael Reske7 for 'The secret Santa problem" 
(this Journal 10 (1994-99) #I, 18-21). 

At the times the papers were written, Ms. Aurello was a student at Seton 
Hall University, Mr. Bouwens at Hope College, and Mr. Reske at Carthage 
College. 

The officers and councilors of the Society congratulate the winners on 
their achievements and wish them well in their futures, whether or not they 
involve mathematics. 

St. Norbert College 

Tenth Annual 

PI MU EPSILON 

Regional Undergraduate Math Conference 

November 3-4, 1995 

Featured Speaker: Norbert J. Kuenzi 

University of Wisconsin - Oshkosh 

Sponsored by: St. Norbert College Chapter of KME 
arld 

St. Norbert College ENA Math Club 

The conference will begin on Friday evening and continue through Saturday 
noon. Highlights of the conference will include sessions for student papers and 
two presentations by Professor Kuenzi, one on Friday evening and one on 
Saturday morning. Anyone interested in undergraduate mathematics is 
welcome to attend. All students (who have not yet received a master's 
degree1 are encouraged to present papers. 

For information, contact: 

Rick Poss, St. Norbee College 
De Pere, W 541 15 
(414) 337-31 98 
FAX: (414) 337-4098 
ma i l :  possrl@sncac.snc.edu 
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