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SIERPINSKI n-GONS

Steven Schlicker and Kevin Dennis
Grand Valley State U. and Michigan State U.

Introduction. The growing interest
in chaos and fractal geometry hascreated
new field of mathematicsthat can be
explored by faculty and undergraduates
dike. "Sierpinski triangles' and "Koch’s
curves' have becomecommon phrasesin
many mathematics departments across
the country. In this paper we review
some basic ideas from fractal geometry
and generalize the construction of the
Sierpinski triangle to what we will call
Sierpinski polygons.

The Sierpinski Triangle. In fracta
geometry, the well known Sierpinski
triangle can be congtructed as a limit of
sets as follows. We begin with three
points, x, x,, and x; tha fonn the
vertices of an equilateral triangle A .

Figure 1

a.
Fori=1,2,o0r3let x; = [b'] Let R
i

represent the set of real numbersand let
M2 bethe red plane. Fori=1, 2, or 3,
we define o; : 9t2 — %> by

NEENEN
w: = _ +* - § .
“\ly byl 20p, Figure 2

Then ;, when applied to A, contracts A, by a factor of two and then
translates the image of A, SO that the ith verticesof A,, and the image of A,
coincide. DefineA, ; to be w;(A,). Then A, ; isthe set of dl points
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halfway between any point in A, and x;, or A; ; isatriangle half the size
of 3the original trandated to the ith vertex of the origina. Let A; =

;=141,i+ Ap and A} areshownin Figures1and 2, respectively. Wecan
continue this procedure, replacing Aq with A;. Fori=1, 2 or 3, let Az,i
= w;(A4;) and let A, = U?=1 A, ;. A, ispictured in Figure3. Again, we
can continue this procedure, each time replacingA; with A, ;. A, and Ag
are shown in Figures4 and 5.

Figure 3

If wetakethelimitasi — «, the
resulting figure i sthe Sierpinski trian-
gle. This algorithm for building the
Sierpinski triangle is called the deter-
ministic algorithm.

Classification. It isnatural to ask
what would happen if, in using the
deterministic algorithm, we cut the
distances by a factor of 3, 4, or 10,
instead of 2 That is, what would
happen if, for r > 0, we defined

ll, )= 300 L) Faures

let A, ;(r) = 0;(A,,_y(r) and let A,,,,(") = U] A, (D7 As earlier,
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A, ; isatriangle trandated to the ith vertex whose sides have length 1/r of
the lengths of the sides of the original triangle. If Figures 6 and 7 we see
A;(15) and A4(1.5) and in Figures 8 and 9 we see A; (3) and A4(3).

Figure7

. -
P .
wy
i

Figure 9

Figure 6

Figure 8

It is easy to see that if r> 2, then the resulting A,, consist of a
collection of 3™ digoint triangles. In this case we say that the A, are
totally disconnected. If O<r<2and r=1, A isa collection of 3™
intersecting triangles. In this case we say that the A,, are overlapping.
However, if r = 2we haveseenthat A isacollectionof 3™ triangles that
intersect only at the edges. In this case we say that the A, are just




84 P1 Mu EPSILON JOURNAL

touching. It seems that the most aesthetically pleasing situation is when
r = 2, where the triangles are just touching.

TheDeterministic Algorithm Applied to Regular n-gons. Thereis no
reason why we should restrict ourselves to looking at only three points. Let
Vi, ¥y, - ,V, betheverticesof aregular n-gon A,. For i € {1, 2, ..., n}

X

1 X] r=1 [“i]
= _ A
y ) f[y o Ly m,i")
= 8;(A,,.1(r)), and A, () = U/, A, r). Agan, A , isan a™-go
trandated to the #th vertex whose sides have length 1/r of the lengths of the

sides of the original n-gon. Some examples of A;(r) can be seen in Figures
10, 11, and 12.

, and, for r> 0, let 6,-([

a;
|€i Vi = [
b;

Figure 10 Figure 11

Again, for somevalues of , A, (r) consists of overlapping n-gons, and
for others totally disconnected n-gons. This raises the question of which
value of r makes the constituent n-gons just touching.

Since (M2, d) is a complete metric space, where d is the euclidean
metric on R2, the sequence {A, ()} hasalimit in R2. (See [1] for de-
tails) For the just touching r we will call SP, = lim _ A, (r) aregular
Sierpinski n-gon. (The figures included in this paper were obtained by
beginning with the regular n-gon with vertices

v; = (cos(ay + 2mi/n), sin(ay + 2wi/n))
fori=1,2 ..,n where oy = /2 -xt/n.)
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Regular Sierpinski  n-gons.
Given a regular n-gon, construct line
scgments from the center to cach
vertex. The radian measure of each
central angle is clearly 25t/n. Each O
of the triangles determined by the
center and iwo adjacent vertices is
isosceles, so He measure of the base (7

angles of cach of these triangles is —
(n - 2)7x/2n. Consequently, the
measure of a vertex angle of a regular
n-gon is (1; - 2)a/n.

PrOrOsSIToON 1. For 1; 2 5, the
value of » that determines a regular Sicrpinski n-gon is

[n/4]
r, = 2(] + E COS(an)),

k=1 n

Figure 12

where | x| is the greatest integer less than or equal to x.

Proof. Let n =5 be an integer. Without loss of generality, we can
consider a particular n-gon.  Using our previous notation, we will call the
A, (r) the constituent n-gons of A (r). Since the length of any side of

v \zz T 2 Yi® Y1
/ ’ W \
A1,2 W, A1,1
Figure 13

one of the constituent »-gons of A, (r) is 1/r times the length of any side of
one of the constituent n-gons of A, _,(r), for agiven m all of the n-gons
making up A, (r) are congruent regular n-gons. Lét dj be the length of one
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side of A, and let d,, be the length of one side of any constituent n-gon of
A, (r). Tofind the value of r that makesthe A, ;(r) just touching, all we
need do is find the ratio dy/d, . ’

In Figure 13 we see a picture of a portion of Ay andAy 2 Label the
vertices of Ay ; as wy 1, Wy 5, ., Wy starting with wy, = v and
proceeding counterclockwise. In Flgure 13 we see the sides v v, andv,v;
of Ag and sides w; ; Wy 3, wy w3, and wy 3wy 4 Of A; ;. Here,
[viv,| = dy and |w1 w1, ;+1] = dy for each i. Construct a line from
w, 3 perpendicular to vy v,. Label the point of intersection C;. Now,
m(L wi3Wi oWy 1) = (0 - 2)w/n, SO |wl 2C | = dlcos(Zn/n) Since
the sum of the measures of the angles in a right triangle is = radians, it
followsthat m(L w; ,w; 3C;) = (n - 4)=/2n. Now construct aline from
w1,4 perpendicular to vy v, and call the point of intersection C,. The
points Cy, €y, and wy 5 form three vertices of a rectangle. Label the
fourth vertex C,’. Construct rectangle C,C,)'Cywy 3. Since

m(Z w1,4w1,3C2 )+ m(£C) w1,3C1) + m(L w1,2w1,3C1)
+ m(Lwy 4wy 3w, ;) =21
m(Lw; 4wy 3C,') =4m/n. Som(L wy 3wy 4,C5') = (n - 8)m/2n. Then
[C1C,| = |wy 3C)'| = dcos(4n/n).
We can continue this process inductively, a the nth stage obtaining an
angle £Zwy ,,1wq ,,,C, With measure (n - 4f)w/2n, aslongas n =z 4t.
By the division algorithm we can find an integer k so that n =4k +r,
where 0 = r < 4. So we can continue the construction up to the kth step.
If r =20, then n = 4. In this situation, the kth side of Al  in this
progression coincides with a corresponding side of A, ;. If r> 0, then

n > 4k. InthissituationA; ; and A, ; intersect at a vertex. Now we can
seethat if the A, () are just touching then, by symmetry, the sum of the
lengths of w; jw; 5, wy ,Cy, and Ei=1 dy cos (2im/n) will be half of
dy. So
dy
2

= ey gwi gl + Iwy €|+ }_j 1€, 1€l = dy + ): dycos( 2).

in

Therefore, the contractivity factor necessary to obtain just touching 4, ;(r)
is
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dy ( £ Zin)
—_= 211+ cosl——1}].
d1 ,);-; (n)

Since k = [n/4] our proof is complete.
The sequence {r,}. What can be said about the sequence of distances

' cos(zTni)) ?

Intuitively, as n increases the polygonsare approaching circlesso we would
expect that the numbers 1/r,, would convergeto O. It iseasy to seethat this
iSso.

PROPOSITION 2. {r,}, as defined above, diverges to infinity.

Proof. It sufficestoshow that 252/14] cos(2mi/n) divergestoinfinity.

Let n = 5 and let f(k) = cos(2nk/n) - k/n for K< [0, n/6]. Then f'(k)
= -(1/n)(2nsin(2rk/n) +1), so f is a decreasing function of k on
[0, n/6]. Because f(n/6) >0, f(k) > O on [0, n/6]. It followsthen that
cos(2mk/n) > k/n for k€ [0, n/6].
i _ 6
¥ = izl

2(1+

i=1

[n/4] p [n/6] . [n/
y cos(ﬁ > ¥y cos(ﬂ) >
i=1 L i=1 h i=1
which divergesto infinity.

Fractal Dimension. The Sierpinski polygons we have been discussing
are all examplesof a wider class of objects known as fractals. Every fractal
has a number associated with it, the fractal dimension, that determines, in
some sense, how much o the underlying space it occupies. In this section
we see that the Sierpinski n-gons arc redly attractors of iterated function
systems and we determine the fractal dimension of each of the Sierpinski n-
gons. All definitions in this section can be found in Michael Barnsley’s
book Fractals Everywhere [1]. We begin with a discussion of iterated
functionsystems. As earlier, let SP, be the Sierpinski n-gon.

For a given n, in constructing SP we used n contraction mappings of
the form 8,(z) = (1/r, )L,z +u;, for z, u; = K2, where I, is the 2 x 2
identity matrix. This set of mapplngs forms what is called an iterated
function system (IFS) on %2 and is denoted {R?; 8, 8,, ..., 8,}. We
next need to view SP,, as the attractor of this IFS.

The attractor of an IFS {§R Wy, Wy, .., wy} isfound asfollows. Let
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B C R? be a compact set. Let W(B) = U?/:I w;(B). It turnsout that W
is a contraction mapping on the metric space of all non-empty compact
subsets of |2 with the Hausdorff metric. As such, W has a unique fixed
point A in :2. In other words, there is a non-empty compact subset A of
M2 so that W(A) = f’llm (A) =A. Another Way to think of A isthat A
= lim;_,, W?'(B) forany compact subset B C M2. ThesetA iscaled the

attractor of the IFS. In our situation, we chose B = A, to be a regular n-
gon. We then constructed sets A, (r) , Az(r) , A0, ... Infollowing
this construction of attractors, for each i the set A (r) |sequal to W"’(AO)
The attractor of the constructed IFS is then the set we are calling SP,,

Next we give the definition of fractal dimension in "2,

Let A be a non-empty subset of M2. Foreach e > 0 let n(A, E) denote
the smallest number of closed balls of radius € needed to cover A. If

D(A) = lim 12(?(4, €))
e—0 In(1/€)
exists, then D = D(A) is the fractal dimension of A.

In Fractals Everywhere there is a wonderful theorem [Theorem 3, p.
184] that allows us to determine easily the fracta dimensions of the
Sierpinski n-gons. We state it for 82 but it holds in al dimensions. A
complete proof can be found in [2], [4], or [5].

THEOREM 1. Let {?ﬁz; Wy, Wy, .., ®,} beajust touching hyperbolic
iterated function system and let A be its attractor. Suppose w, is a
similitude of scaling factor s, for each k € {1, 2, . Then D(A),
the fractal dimension of A, is the unique solution to Ek =1 |5k ID(A) =1,
D(A)E [0, 2].

Proposition 3. The fractd dimension of a Sierpinski n-gon is
In(n)/In(r,), wherer,, = 2(1 + E["M] cos(2kn/n)).

Proof. Earlier we showed that SP,, is the attractor of a just touching
iterated function system to which the contraction mappings 8, 65, ..., 6 all
had the same contractivity factor 1/r,. Then, by Theorem 1, 1 =

n|1/r, [P Asaresult, D(SP,) = In(i)/in(r,,).

At this point it seems natural to ask what happens to the sequence
{D(SP,)} as n—=. As mentioned earlier, as n increases, the polygons
we start with are approaching circles. Intuitively, then, we would expect
that, as n —o, D(SP,) should approach the fractal dimension of a circle,
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which is 1. Thisis, in fact, exactly what happens.
Corollary. lim,_,,D(SP,) =1
We omit the proof.
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Mathematical Literacy in the Media

A math student, for instance, might send e-mail to sequences
@research.att.com, and in the body of the message "look up 4 9 16 25 36."
The student would receive a quick e-mail response explaining the sequence
isthe start of an infinite series of square roots, and that the next numbersare
49, 64 and so on.—Newsweek 125 (1995) #2 (January 9), 10.




THE AM-GM INEQUALITY VIA ONE
OF ITS CONSEQUENCES

Norman Schaumberger
Hofstra University

The arithmetic mean-geometric mean inequality states that if ag, day, ...,
a, are positive real numbers, then

”1 +(12 £ e +(I"

1/n _
(N A, = z (ayay...a,) =G,
n
with cquality if and only if ¢; =a,= ... = a,.
Putting ¢y =a, = .. =g, =xad a |, =a, ., = .. a, =a, (1)

becomes

r n-r n-ryin
(3] =% el Bl ngln-nin

n n

(2) can he used to derive the basic incqualities of Holder and Minkowski
(see, for example, [1], pp. 67-71). 1t is casy to verify that (2)still holds for
the more general hypothesis that the coefficients of x and a, arc positive
reals whose sum is 1. (Sec, for example, [2], pp. 21-22.) However, for our
purpose we usc (2) with » = n — 1. Thus

n -1 _. 1 (n-1)/n, t/n
3 — Y+ _a,zX a, .

n n

Using basic propenties of the derivative we establish (3)without recourse
to (1). It isthen a simple matter to obtain (1) inductively.
If v > O, then

| n-1_ (n-1)/ 1/n
Jx) = Ta\ = gy 1A )”n"

has an absolute minimum at A- = a,, because

) n -1 n-t ot 1/
f(x)= —— - x I/n a, n
hn h

90
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vanishes if and only if x =a , and

£100) = (—l)(—" - )x(-l—n)/n anlln

n n

is positive. (3) now follows from the observation that

n-1 % _x(,,-l)/,,anlln b n-1 a __a(n-l)/nalln

n n n n n n n

with equality if and only if x = a.
Puttingx = A (3) can be written as

n-17

n-1 1 -1 1
) A, = Apq *—a,zADIng Ln

n n
with equality if and only if A, _; =a.
Now using the fact that A, = G, and assumingthat A, _; = G,_; with
equaity if and only if a, = @, = ... = a it follows that
A’Sr_nl-l)/nanlln > G'Sr-tl—l)/na 1/n =G

n n

with equality if and only if a; = a, =..=a

-
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YOUNG’S LATTICES

Carissa Hurst
Hendrix College

The focusof this paper is finding relationships
between partitionsand their Young's lattices. We ]
beginwith a review of partitions, lattices, rank, and
Hasse diagrams. Apartition of the natural number
N is a finite sequence of natura numbers
ny, ny, ., N in non-increasing order such that 1|

n; =N. The numbers n, are calledpartsof Figurel

the partition. One representation of partitions is

caled aFerrer's diagram. In a Ferrer's diagram the partition is displayed
in a matrix form where the ith row has n, squares. For example, Figure 1
shows the Ferrer's diagram for the partition {5, 4, 1, 1} of 11. The squares
will be referred to by ordered pairs, where (i, j) denotesthe square in the ith
row and jth column. Thereis nosimple formulafor the number of partitions

of N. One recurgonformulafor thetotal number B, of partitionsof N is B,
= Eﬁ%} (N—lij. See [1] for details.
J

A partialy ordered set (poset) that has the property that any two
elements x and y have a least upper bound and a greatest lower bound is
caled a lattice. In particular, a poset that has a maximum
element and a greatest lower bound for any two elementsisa
lattice [1].

For any partitionP, let B bethe set of al partitionswhose
Ferrer's diagram is contained in the Ferrer's diagram of P. If
we order them by containment of their Ferrer's diagram, the
resulting poset iscalled a Young's lattice. Young's latticesare
named for Alfred Y oung, who was born in 1873 and graduated F19ure 2
from Cambridgein 1895. His maininterest wasin quantitativesubstitutional
analysis [2].

For example, consider the partition {2, 2, 1} with Ferrer's diagramin

92
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Figure 2. The partitions whose Ferrer's
diagramsare contained in this partitionare D B T ]

in Figure 3. Ordering these by
containment we obtain the lattice in Figure
4. This lattice is the Young's lattice. &

In a Hasse diagram the elementsof a |
lattice are represented as points. Edges
connect points using the following rule: if
x, y are pointswithx < y, thenan edge is o f g h
drawn between them and we position y
above x. Edgesimplied by transitivity are
suppressed. We use a Hasse diagram to represent
the lattice in the diagram.

The rank of a point in a Hasse diagram is a
measure of how far the point is from the minimum,
or bottom, element. The bottom element is
assigned a rank of one. The lattice in the example
has elements of ranks one through five.

PROPOSITION. If A is a partition in a Young's
lattice, then the rank of A is the number of squares
in a Ferrer's diagram of A.

Proof. The result followsfrom the observation
that given a Ferrer's diagram in the lattice, the only way to move down the
poset is to remove sguares from the Ferer's diagram. Because of
trangitivity, the Ferrer's diagrams
directly below the given one are those (o} I
found by removing a single square.

We will now classify some ED:] D
Young's lattices. "

THEOREM 1. If a partition has the
form (i), with a Ferrer's diagram as in {1}

Figure 5, then the corresponding Y o-
ung's lattice is a single chain, as in Figure5
Figure 5.

Proof. The proof is by induction on n. The result clearly holds for n =

1 and n = 2. Suppose the theorem is true for n = k. If we remove the -

Figure 4
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rightmost square from a partition
(k+ 1), we have the partition (K) n
whose)latticeisasinglechain. Since []---[] ‘=t
lattices are formed by containment || <>
and the two Ferrer’s diagrams differ ) {
only be a single square, the Young's :
lattice for the larger partition is a
chain with an extra vertex {k * 1}
above the vertex {k} connected by an
edge. Figure 6
It follows similarly that the
Young's lattice for the partition (1, 1, ..., 1) isasingle chain.
THEOREM 2. The Young's lattice for the partition
(n, 1) isasin Figure 6. {k+1,1)
Proof. Again we use induction. It is easy to see
that the Young's lattice for (2, 1) has the correct form.
Suppose that the theorem is true for (k, 1) and consider
the partition (k + 1, 1). Figure 7
The only square that we can remove and still have
a frameisthe square at the end of the first row or the square on the second
row. Removing the square at the end of the first row leaves a partition (k,
1) to which the induction assumption
applies. Removing the square in the . . n
second row leaves a partition (k + 1) {n,1,1)

which we proved earlier has a ] ta-LL1) {n,1}
Young's lattice consisting of a single TN
chain. Therefore, the Young's lattice : . ta}

{L1,1

for (k + 1, 1) will have one vertex of
rank k + 2 and two vertices of rank k
+ 1 with the form in Figurc 7. Using
the induction assumption and the fact Figure8
that the (k) chain is a sub-lattice of
the (k, 1) lattice, we obtain the desired form for the (k + 1, 1) lattice.

Tin same reasoning shows that the Young's lattice for the partition
(n, 1. 1) is as in Figure 8 This extends to partitions of the form
(n, 1, 1, -, 1) in the obvious manner.

o}

{11}

{1} (k+1}

(n, 1, 1)
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The next most complicated
partition is (n, 2).

THEOREM 3. If a partition has the
form (n, 2) where n > 2 with a
Ferrer’s diagram as in Figure 9, then
its Young's lattice will be asin Figure
9.

Proof. The proof is again by
induction. The result holds for the
partition (3, 2) since its Young's Figure 9
lattice (Figure 10) has the proper
form. The induction argument
proceeds as before since the only
squares which can be removed |eaving
a frame are the square at the end of
the first row and the square in the (2,

2) position. Both are partitions whose
lattice are already known.

Figure 10
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DivISIBILITY TESTS FOR PRIMES GREATER THAN §

Phil Plummer
Portland State University

Many papers have been written giving divisibility testsfor integers. This
note does not contain any new result, but it gathers previous tests in one
place and shows how to generate any number of new ones.

Divisibility tests for 2, 3, 4, 5, 8, and 10 are taught as early as elementa-
ry school but tests for arbitrary prime numbers are not given. Hereisa test
for divisibility by 7. Take the number to be tested and double its last digit.
Subtract this from the number with its last digit removed. If 7 divides this
new number, then 7 divides the original. For example, 7 | 294 since
71(29 - 2-4) =21. Alternatively, one can multiply the last digit by 5and
add the result: 7 | 294 since 7 | (29 + 5-4) = 49.

Consider the number 51, a multiple of 17. Does 17|51 because
17| (5 -5-1) =0? Inother words, does5work for 17 the same way that
2 works for 7 ? The answer is "yes'. The proof is as follows. Letx =
10a +b andr=a - 5b. We have

x +7r = (10a +b) +7(a - 5b) = 17a - 34b.

If 17|r, then 17|7r. Since 17| (x +7r) we have that 17 | x.

By generalizing this procedure we can prove that a test can devised for
any prime and we can find the constant ti. However, if we had a 50-digit
number to be tested for divisibility by 7, removing only one digit at a time
would be time-consuming indeed. But if we removed ten digits for each
iteration it would cut the calculation time needed immensely. A test can be
given where the number of digits removed at each stage, y, can be chosen
arbitrarily:

THEOREM 1. Givenaprime p andx = 10%a + b, letr = a + nb where
nisthesolution to 10’n =1 (modp). If p|r thenp|x.

Proof. Let n' besuchthat nn'= 1 (modp). Notetha 10 nn’ = n'
(mod p) so 10 an’ (modp). Thus, both 10 - »" and 1 - nn' are a 0
(mod p). We have
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x+nr = 10a +b + n'(a - nb)
= (10Y -n')a +b(l -nn') =0 +0 (mod p).
If p|r, then p|n'r. Since p|x +n'r we have that p |x.

In exactly the same way we could prove

THEOREM 2. Given a prime p and x = 10a +b, let r = a- mb,
where m is the solution to 10¥m = -1 (modp). If p|r thenp|x.

There is a connection between m and n.

COROLLARY. m=p -n.

Proof. Since 107 = 1 (modp) and 10’m= -1 (mod p), we have
10”(n + m) = 0 (mod p), andso n + m = 0 (mod p). Sincemandnare
both between 0 and p, the corollary follows.

For an example, let us take x = 28,842, p= 23, and y = 2. To determine
nwesolve 1027 = 1 (mod 23). Thisis8a =1 (mod 23), son=23. Thus,
23| 28,842 if 23| (288 +3-42) = 414. Does 23|414? It will if
23| (4 +3-14) = 46. Since it does, it follows that 23 | 28,842.

The table on the next page gives, for primesp < 100, the value of n for
y=1 2, .., 12. Thevaluesof nare periodic, with period egqual to the order
of 10 (mod p).

If we let n,, denote the value of n for y, then we have

THEOREM 3. ny,=ngn, (modp).

Proof. 10**!n . = 1m1-1 = (10n,)(10”1,) (modp).

Thisrecursive property allows the generation of large tables very quickly
in a spreadsheet program without the problem of roundoff error. For
efficient tests, small values of n (or m = p - n) can be quickly determined.

Phil Plummer received hisB. S degree in mathematics and physics at
Portland State University and is currently finishing work toward his M. S
degree in mathematics. He wishes to thank his high-school mathematics
teacher, Mr. Wayne Wheeler o Springfield (Oregon) High School, for
teaching him that mathematics could befun.
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y (number of digits removed) A PROOF OF PASCAL’S HEXAGON THEOREM
USING ABRIDGED NOTATION
213|456 7189 ]|10]11]|12
1] 1|1 BN RN E Margaret Maxfield
Louisiana Tech University
46| 2|31 |5]4|6]| 2|31
1 (10f 1101|101 {10 1|10] 1
31121 9110l 1| 4t 3121 910 1 In a recent article about Pascal's hexagon theorem for a circle, Jan van
s li1l131 312171165191 6] 4 Yzeren [2] credited H. Guggenheimer with a previous proof. However,
Professor Guggenheimer [1] explained that the proof hed in fact been taught
4| 81161137 [14]9]18]17]15]11 him in his 11th grade Descriptive Geometry classin Basel, Switzerland. The
3121 9117} 4| 5 {12)15]13] 22|16 following proof, which | learned as a college junior, used to be called a
9|l27123111} 4 l12| 7121 5115 16 proof by "abridged notation”. In it, alinear form is represented by a single
ol 411901 5 16114120 2 1251 18| 8 letter, and for_ms are combined to make second-degreeexpressions that will
stand for conic sections.
10 26110 1 /2610 ] 1 |26]10 For example,if a=x + 2y + 1and 3= x - 2y + 2,thena = 0 and
16 [ 18 | 10| 1 |37 |16 |18 10| 1 | 37| 16 3 = Lareequationsof lines, af = 0 is the equation of a pair of intersecting
419131116136 138|2115]| 23141 lines (a degenerate conic—asymptotesonly), and af = 1 is the equation of
29 (1744|4223 7[a3] o ]15]25 a nondegenerate hyperbola o
Any equation of the form a + & = O represents a line (it is linear in
15128 124113 |49 | 42 |36 | 46 | 47 | 10 form) that passes through the intersection of the linesa= 0 and (3 = 0 since
39 [ 5747|146 {40 | 4 [ 24 [ 26 | 38 | 51 substitution of the coordinatesof the point of intersection make both a and
281 15132152154 |1421531481 17| 20 (3 take on the value 0. We use a similar strategy for conic sections. If S =
40| 4 154159126 1611513537164 O and T = 0 are conies, then they are of second degreein x aqd y. Then for
any nonzero constant k, S+ kT = 0 is of second degree so it represents a
12158120 2 |57)27|24145[40) 4 conic. Since the point where Sand T intersect has coordinates that satisfy
63 | 72|51 2710 1 |22[46]|63| 72 both§ =0and T = 0O, the conic S *+ T = O passes through the points of
38167 |62|22|18]65|46|52|21|10 intersection.
21 127 111 [ 26 | 69 {65 |48 [ 38 | 37| 12 PascaL's THEOREM: If aclosed hexagon isinscribed in a conic section,
17164 a2l 221201221181 73134/ 30 then the three points of intersection of its opposite sides are collinear.
5554183118160 6 1201 2139133 (If the two oppositesides are paralldl, their point of intersectionis taken

to be the point at infinity. The conic section may be degenerate, and the
n (multiplier for the lagt y digits)
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hexagon need not be convex.)

Proof. Let thesix verticesof the inscribed hexagon be labelled in order
A B,C D,E, F. Letthesidesbelabeleda, B, Y, 6, £, § (see Figure 1),
where, for instancea = a;x + a,y + a; and a = O is the equation of the
lineAB. Continuing, B = Oistheequationdf the line through BC and so on.
It is to be proved that the intersections P of side a and side 6, Q of side §
and E, and R of y and ¢ are collinear.

Construct a sev-
enth ling, 9, through
A and D. Let S
stand for the second-
degree sum of prod-
ucts

ay + rpé.

For any value of r,
§; = Oistheequation
of aconic section that
circumscribes the
quadrilatera  ABCD
since, for instance, C
lies on both B and .
Similarly, if

Figure1

Sy = 0T + se6

then S, = O is the equation of a conic section that circumscribes the
quadrilateral DEFA. Constantsr, s, and ¢ exist for which S; = ¢S, a C,
where C is the given conic section circumscribing the hexagon. From

S; = tS,, it follows that
0(rp - ste) = tdL - ay.

The equation rp - ste = O represents a line A that passes through the
intersection of lines B and e (Pascal point Q), so the left member of the
identity is the degenerate conic section composed of lines9 and A. Thisis
the same degenerate conic section as that on the right, including line 9
through A and D and a second line that passes through the intersection of
lines aand 6 (Pascal point P) and the intersection of linesy and T (Pascal
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point R). All three Pascal points lie on line A, and the theorem is proved.

Two of the vertices
may be brought into
coincidence, in which
case the side joining
them becomes the tan-
gent to the conic a the
double point. When the
circumscribing  conic
section degenerates to
straight lines, the special
case is the Theorem of
Pappus: L& three verti-
ccs, say A, B, C on one
line L of the degenerate
conic and three vertices A, B, € on the other line L be connected in any
order that alternatesthe two sets of three, such asABBACCA or ACBBCAA,
forming a closed (not convex) hexagon, as in Figure 2 Then the intersec-
lions of opposite sides of the hexagon (side 1 with 4, 2 with 5, and 3 with
6) are collinear. The six Pascal lines from the six different hexagons that
can be formed pass three by three through two points; that is, the six Pascal
lines divide into two concurrent sets of three.

An inscribed hexagon has sides that connect pairs of vertices on the
conic. The three points of intersection of pairs of opposite sides are
collinear. Using duality, we replace each line by point, immediately
obtaining Brianchon’s Theorem: A circumscribed hexagon has vertices that
connect pairs o lines "on" the conic (that is, it has vertices that are the
intersections of tangents to the conic). The three lines connecting pairs of
opposite verticesarc concurrent.

A way of constructing points on a conic section can be derived from
Pascal's Theorem. Five pointsdetermineaconic. To construct asixth point
givenA, B, C, D, E, let AB and DE intersect a the Pascal point P. Draw a
line x through E passing through the genera region where the sixth point F
is desired. (See Figure 3) The intersection of linex with BC is a second
Pascal point Q. Complete the Pascd line PQ. Its intersection with CD is
the third Pascal point R, and line AR intersects line x in the desired point F -

Figure2
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on the conic.  Further
points are obtained by
rotating the position of
the line x, as to x', and
repeating the construction
to get another Pascal line,
PQ'R’, and another point
on the conic, F' This
construction has actually
been used in fairing in
smooth curved outlines
for aircraft design.

How many hexagons
can be drawn using a
given set of six vertices on a conic? There are 6! permutations, but the
starting point is arbitrary for a closed hexagon, and reversing the order does
not change the hexagon, so there are 6!/(6-2) = 60 hexagons. The 60
corresponding Pascal lines pass 3 by 3 through 20 Steiner points, which lie
4 by 4 on 15 Steiner-Pliicker lines. Also, the 60 Pasca lines pass 3 by 3
through 60 Kirkman points, which lie 3 by 3 on 20 Cayley-Salmon lines
other than the Pascal lines.

Although conic sections arc only one degree more advanced than straight
lines, they have a rich analytic geometry.

Figure 3
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In response to a request for a few words about the author, Professor
Maxfield wrote
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Among all the beautiful proofs in mathematics, this abridged
notation proof of Pascal's theoremis my favorite. 1sn't it elegant?
For many of us, mathematicsis a branch of esthetics, certainly more
art than science. | teach statistics, which is kind of a branch of
epistemology—"Howcan we know?”. From students' difficulties in
learning elementary statistics, | suspect that they have a severe
problem with semiotics, a problem that has cursed their effortsin
arithmetic and algebra all their lives. Areyou a semiofician?

A Novel Sequence

From The Theory of Everything, by Lisa Grunwald (Knopf, New York,
1991, page 142):

Alexander opened hiseyesand tried to find a pattern in the row
of Lindas flowerpots. Hed always been good at sequences. If
one, ten, three, nine, five, eight, seven, seven, nine, and six are the
first elements in a group, what number continues the sequence?
Easy. Five.

It certainly is, and the next term is equally easy, is it not?
That was al right, but | think that in general novelists ought to stay
away from mathematics. E. g., on page 117 we find

Physicists and mathematicians played a similar game in their
heads, called sphere packing: How many spheres could fit inside one
sphere? How many circles could fit inside one circle?

Anybody here ever played the sphere packing game? | never have: have |
missed out on all the fun?
Then on page 144,

Zeno lived around Aristotle's time, and like Aristotle, he
enjoyed stirring things up.
Would we say that Euler lived around Hilbert’s time? | don't think so,

though the separation-around 150 years—is the same. Perhaps time
intervals foreshorten from a long way away.




A DIOPHANTINE EQUATION

Efraim Berkovich
Georgetown University

During a course in number theory, we solved the diophantine equation

1 1 _ 1

x y 14
The solution given in class and in the teacher's edition of the textbook was
rather long and time-consuming. In this notel giveastraightforward method

of solving this problem, and any diophantine equation

where a, b, and c are integers. The solution involves only factoring an
integer.
One method of solving this equation would be to set
c(ax + by) = abxy = A
and thus reduce the problem to solving the quadratic equation

zz—£+k=0

c

of onevariable. This method, however, requires that we then find values of
A which give integer values to the square root of the discriminant.

A simpler method is to make the substitutions s =c —axand t = ¢ - by.
The equation becomes

1 1
c-s c-t

1
C

cic-5)+c(c-0 =(c-5)c -1
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which simplifies to
c4 = St.

We now need integers s and t which satisfy c?=st. So, sandt have
the same sign and are factors of . Factoring yields all possible values-of
the integer pairs (s, t). Taking each (s, £) pair, we have a solution (x, y) if
X =(c-s)aandy = (c - 8)/b are integer valued. In this manner we will
find all the solutions of the original equation because any (X, y) which satisfy
the original diophantine equation will necessarily satisfy =,

This procedure reguires nothing more complicated than factoring ¢ and
provides an upper bound to the number of solutions. If c? has g factors, then
there are at most 25 - 1 solutions: the number of different factors and their
negatives, excluding s = ¢ and t = ¢ since that would givex =0andy = 0.
The actual number of solutions would be reduced by the conditions that ¢ -
sand ¢ - t be divisible by a and b, respectively.

As an example, let us consider 1/x + 1/y = 14. Since the equation is
symmetric in x and y, when we satisfy the condition c2=¢, it is sufficient
to consider the pairs (s, t) where s = t. The pairs are (196, 1), (98, 2),
(49, 4), (28, 7), (-1, -196), (-2, -98), (-4, -49), (-7, -28), and (-14, —14).
The corresponding solutions (x, y) with x s y are therefore (-182, 13),
(-84, 12), (-35, 10), (=14, 7), (15, 210), (16, 112), (18, 63), (21, 42), and
(28, 28).

This technique also allows us to make some observations about solutions
of the equation. For example, if ¢ is prime and a = b = 1, then we know
that there are exactly three solutions.

Efram Berkovich was graduated from Georgetown University in May
1994 with a B. S degree in mathematics. He hopes to pursue graduate
studies in electrical engineering.

All stiff regularity (such as borders on mathematical regularity) is
inherently repugnant to taste, in that the contemplation of it affords us no
lasting entertainment. —Immanuel Kant, Critique o Judgement.



GROUP GENERATORS AND SUBGROUP LATTICES

Scott M. Wagner
Hendrix College

This paper will examine one of the connections between combinatorics
and algebra We will use Philip Hall's Eulerian function to count the
number of generating sets of size n for the twenty-eight groups of order
fifteen or less. Recal that a generating set of a group is a subset of the
group such that every element in the group can be expressed as a product of
one or more elements of the generatingset. For example, the cyclic group
of grder 4, {e, a, a?, a3} has two generating sets of size 1. {a} and
{a”}.

The set of all subgroups of a group G under subset inclusion forms a
lattice where the greatest lower bound of two subgroupsis their intersection,
and the least upper bound of two subgroups is the smallest subgroup of G
containing both of them. Hasse subgroup diagrams are diagrams of these
lattices. The subgroups are represented by points, and if A and B are
subgroups with A € B then the points representing A and B are connected
with an edge, with B positioned above A. The subgroup { e} is at the
bottom of the lattice, and the group itself is at the top. Examples of Hasse
subgroup diagrams for groups of low order can be found in [1].

In 1935 Philip Hall described a method for counting the number of ways
of generating the group of symmetries of the icosahedron from a given
number of elements[2]. One outcomeof his method was the development
of a generalized Eulerian function which can be used to count the number
of generating sets of a given size for any finite group. The method does not
determine the actual generating sets, but only their number.

The function is defined by

9,(G) = Y w(H,G) ('HI)

H=<G h
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where G is the finite group, n is the number of elementsin the generating
set, H is asubgroup in the Hasse diagram, |H | is the order of H, and u is
defined recursively by u(G, G) = 1 and, for each subgroup H of G,
Y uk G)=o.
K:H=<K

So, 1 determinesa coefficient for each subgroup of G. The top subgroup of
the lattice, G itself, has coefficient 1. The coefficient of any other subgroup
in the lattice is the integer that, added to the coefficientsof every subgroup
above it in the lattice, gives a sum of zero.

For example, let us calcu-
late @ (C,), Where C,4 isthe

cyclic group of order 4. The {0,1,2,3) 1
Hasse diagram for C, and
the values of u(H, C,) for
the two subgroups of C, are
{0, 2} -1

shown in Figure 1. Applying
Hall's formula, wesee g (C,)

e e L

=4- 2% 0= 2 giving the
number of one-clement gener-
atorsof C,.

Now let us consider D,
the group of symmetri¢s of an
equilateral triangle. The
@rotip ermd tthmee refttetions,

Figure 1

s, rs, r s. The Hasse sub-
group diagram and the values
of w arc shown in Figure 2,
whereA = D; =
{e, r, rz, S, 1S, rzs},

B={es},C={e rs}, D
= {e¢, rzs}, F ={cr rz},
and G = {¢}. Since cyclic

r 3

Figure 2
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groups are the only groups with one-element generating sets, we know that
@,(D3) = 0, which is verified by the formula

@(D3) = 1(?)—3(?)-1(3)%(1) =6-6-3+3=0.

Moreover, ¢ ,(D3) is

6 2 3
D) =1 =3 -1 =15-3-3=09.
ws2 = 1(3) () (3
To see why that is correct, note that the first term in the sum, 1 g =
15, counts the number of two-element subsetsof D3. From these we must

exclude those that generate a proper subgroupof D5 . A two-element subset
that does not generate D; must generate one of the two subgroups of order

two or the unique subgroup

of order three. The term A
3(;) eliminates those that
generate the three two-ele- B ic )D -1
ment subgroups while the
term l(g) eliminates the P G H ()
three two-element sets that .
generate the subgroup o

J

order three. This can be

verified in another way by

noting that of the i =10 Figure 3

two-element subsets not containing the identity, only {r, r2} generates a
proper subgroup of Dj.
We will give three more examples and a table giving values of o, for
n =1, 2, 3 for some finite groups. This may serve as a source of examples.
The Hasse diagram and x values for

C,xCy = {(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (1, 3)}
appear in Figure 3, whereA = C, X C4, I= {(0, 0)},
B= {(01 O)’ (1’ 1)’ (0’ 2)* (1» 2)}»
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C = {(0, 0), (1, 0), (0, 2),(1, 2)},
D = {(0, 0), (0, 1), (0, 2),(0, 3)},
F = {(0, 0), (1, 0)}, G = {(0, 0), (0, 2)}, and
H={(0,0), (1, 2)}.
Since this group is not cyclic, the number of two element generators is

8 4 2
C,xCy) =1(°) -3(2) +2(%)=28-18+2=12
raccume = 1(;) -2(;) - 2(

We will look next at A4,
the aternating group of de-
gree four. Its members are
al the even permutations in
S,, the symmetric group of
degree four. The Hasse sub-
group diagram and the u
values are in Figure 4, where
A= A, L={e, B=
{e, (12)(34), (13)(24), (14)(23)},

C = {e, (123), (132)},

D = {e, (124), (142)}, Figure4

F = {e,(12)(34)},

G = {e, (13)(24)}, H = {e, (14)(23)},

J ={e, (234)(243)}, and K = {e, (134)(143)}.
So, we find that the number of two element generatorsis

12 4 3
A,) = ~ -4 = 48.
40~ (3) o) (2
The fina group we will examineisadicyclic group. A dicyclicgroup,
G, can be represented by the following group presentation:
G={(x,y) |x2" =1, xz"y 2=, y"lxyx =1}.

We will consider T, the dicyclic group of order 12, wheren = 3. The
dementsof T are

A

3 2
e,X,xz,x’?',x4,x5,y,y3,x)’,yx2»x2y, al’ldy X .
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The Hasse subgroup diagram

and the 4 valuesare in Figure

5 where A = T, J ={e},

andB= |, B
{e, x3, yx2,y3xﬂ

C={e,y,x5y3,

D= {e,x3 1y, 1%},

F={e,x, x2, x3, x4, x5},

G={ex%, ad

H= {e,x2 x%}.

Once again, since this group Figures

is not cyclic, we will find the

number of two-element generating sets.

12 4 6 2
T) = -3 - +3 = 36.
= (3)-2() - (2) 2(3)
The table below gives the number of one, two, and three element
generators for twenty-seven groups.

Group @, P, Ps3 Group Py P 93
C, 1 . - B, 0 9 19
€ 1 1 . D, 0 12 52
C, 1 3 1 D 0 30 110
C, 2 5 Dy 0 18 150
Cs 4 10 20 D, 0 63 329
¥ 2 11 19
&, 6 28 35 C,xC, 0 3 4
Cq 4 22 52 C,xC, 0 12 44
Cy 6 33 84 €5 %0, 0 24 80

Cig 4 34 9 C,xC,xC, 0 0 44

Chy 10 55 165 C,xCyxC, 0 18 156

Cy, 4 46 196

Ci 12 78 286 A, 0 48 212

Cia 6 69 329

Cys 8 92 444 T 0 36 188
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All Statements Are Not Correct

On the important subject of language, Professor James Chew (North
Carolina A & T State University) writes

One of my biggest peeves in English mis-usage has to do with
negations of statements. For example, "All athletes are not
basketball players’. We al know what is intended is "Not all
athletes are basketball players'. | would be willing to let this matter
slide were it not for the fact that even mathematicians who should
know better, since they arc the presumed guardians of clear and
logical thinking, commit this error regularly. In the Transactions of
the American Mathematical Society, that pinnacle of mathematical
journals, whose contents are so sublime that 1 wish 1 could under-
stand .05 of one percent of them, | found "All topological spaces arc
not Hausdorff". This is FALSE since the real line (with its usual
topology) is a topological space which is Hausdor{f.




MOTIVATING THE SOLUTION TO
A DIFFERENCE EQUATION

Russl Euler
Northwest Missouri State University

An nth-order linear homogeneous difference equation with constant
coefficients has the form

)] A, Ypok * Oy 1Vnak-1 ¥ o ¥ B Vkey + 80y =0

where a = 0. When seeking a solution of (1), students are frequently
asked under what conditions, if any, will

2 y, =\

be a nontrivial solution? This approach is used in severa standard
textbooks. It is sometimes motivated by examining the general form of the
solution to a first-order linear differenceequation. Substituting (2) into (1)
and simplifying yields the characteristic equation

3) a,\" +an_l)\.”'1 +..+tah+ay =0

This method is probably adequate motivation for students who have not
studied differential equations. However, those who have do not expect to
see solutions of the form (2). They know that solutions of an nth-order
linear homogeneous differential equation with constant coefficients,

any(") + an_ly(”'l) +w +ayy +agy =0,

have the form y = eM* where the A;’s are distinct roots of the same

characteristicequation (3). Such studentswould see the similarities between
difference equations and differential equationsif they were asked under what
conditions, if any, will

Q) Yo =M

be a nontrivial solution of (1)? Substituting (4) into (1) yields

An+k-1
ane}»(rﬁk) a, € (n ) R ale)“(’“l) + aoe”‘ -0
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and so
A

) a,eM+a M D+ 1gefray=0

As anillugtration, let n = 2 Then (5) becomes

azez" + ale)‘ +ap =0

2
A -a, * \/“1 -4aya,

2a,

and so

e

Hence, (4) becomes

For the case when n = 2 and the characteristic equation has a repeated
root, the form of the general solution is motivated in [1].
Finally, it can be seen that (3) and (5) have the same form by letting

t=erin(®)
Reference

1 Euler, Russal, A noteon a differenceequation, thisJournal 9 (1989-94)
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Russdll Euler is a frequent contributor to thisand other journals.

| don't take nostock in mathematics, anyway. —Mark Twain, Huckleber-
ry Fi nn, Chapter 4.



A TEST FOR AFFINENESS

Christopher Kohl
James Madison University

The purpose of this paper isto present acharacterization of affine spaces
and a necessary condition for a function to be an affine map. The ideas for
these theorems arose from a pair of problem setsin alinear algebra textbook
[1]. Specifically, the reader is given either a subset of a vector space or a
function and asked to determine whether or not it isaffine. An examination
of the first problem set led to an observation that was generalized into a
theorem (Theorem 1 below), which states a condition under which a subset
of a vector space is not an affine subspace. Similarly, an examination of the
second problem led to a theorem (Theorem 2 below) which states an
assertion about the image of an affine map.

We assume that the reader is familiar with the fundamental definitions
of a vector space, a subspace, and a linear map. These and the following
definitions can be found in chapters 4 and 5 of [1].

DEFINITION 1. A subset U of a vector space V is caled an affine
subspace of V provided that, for some subspace W of V and some fixed
vector binV,U={w t b |weE W}

DEFINITION 2. A function g : U — Vs caled an affine map provided
that, for some linear map f : U — V and some fixed element b of V,
gu)=fu)* bforal uin U.

THEOREM 1. Let S be a subset of a vector space V. If thereis a fixed
vector in V, cal it p,sothaa 0€ S+ pand S + p is not a subspace of V,
then S is not an affine subspace of V.

Proof. Suppose S is an affine subspace of a vector space V and that p
is a fixed vector in Vso that 0 € S + p. It follows from Definition 1 that
there is a subspace of V, call it W, and there is a fixed vector in V, call it b,
sothatS ={m *+b | me& W}. Thus,

S+p={m+b+p|mEW}
Since 0 € S + p, it follows that there is an element of W, call it r, so that
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O=r+h+tp Thus we can write r = —(b + p), which implies that
b+ p€& W. Now we show that S * p is a subspace of V.

Let xg, x; €S + pand c €R. It follows that there are elements of W,
call them t; and t;, so that

xg=tgtbhtpand x, =t; +bh+tp
Therefore, we can write
X+ x; =(tg+t; th+p)thtp

Sincetg, t;, (bt p) € W, it follows that (t; t t, + b+ p) € W. Thus, S+ p
is closed under addition.

Also,

exg=c(tyt bt p)=cty+(c-1)b+p)t(tp).
Sincec,c-1ER and ty, (b p) = W, it followsthat ¢ty + (c - 1)(b T p)
€ W. Thus, § + p is closed under scalar multiplication. And so, by
[1, Theorem 4.2], S t p is a subspace of V.

THEOREM 2. The image of an affine mapf : U — V between vector
spaces U and V is an affine subspace of V.

Proof. Let /: U — V bean affine map between vector spaces U and V,
and let M denote the image off. By Definition 2 there is a linear map, call
itg:U — V, and a fixed element of V, cal it b, so thatflu) = g(u) + b for
al uin U. Since g isalinear map it follows from [1, Theorem 5.5] that the
image of g, call it T, is a subspace of V. Sinceflu) = g(u) t b foral uin
U, we can write M =T+ b. And so, by Definition 1, M is an affine
subspace of B.

The problems that motivated the ideas for Theorem 1 deal exclusively
with two- and three-dimensiona vector spaces. For example, given the set
T = {(x,sinx + 3) | x € R}, determine whether T is a subspace of R, an
affine subspace of R?, or neither. After examining this problem and
formulating Theorem 1, it was observed that the geometry of T could have
been used to conclude that T is not an affine subspace of RZ. This results
from the tractable geometry of RZ. Since a subspacc of R? has a geometric
realization as cither the origin, a line through the origin, or the plane itself,
it follows that an affine subspace of R? must have a geometric realization as
cither a point, aline, or the plane itself. Therefore, given asubset of R? and
asked to determine whether or not it is affine, one can examine the geometry -
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of the subset and make conclusions accordingly. Consider the above
example dealing with the subset T of R2. Since the geometric realization of
TinR%isnot a ling, a point, or the plane itsdlf, one can concludethat T is
not an affine subspace. Now consider the vector space consisting of all 12
x 15 matrices. The geometry of such a vector space is certainly much more
complex than that of R%. Thus, given a subset of such a vector space, one
cannot rely on its geometry to test for affineness. Its algebraic structure
must be considered and that is where the utility of Theorem 1 is realized.
There will follow an application of Theorem 1 where the geometry of the
underlying vector space is too complex to use as a tool in testing for
affineness.

Inspection of Theorem 2 revesals that it can be restated as follows: if the
image of a function from a vector space U to a vector space V is not an
affine subspace of V, then the underlying function is not an affine map.
Clearly, Theorem 2 is a direct outgrowth of Theorem 1. Because of this
rel ati onshi p between the two theorems, the ideas for employing the geometry
of a given subset can be carried over to Theorem 2

Let M, denote the vector space of all n x n matriceswith real number
entries. Consider the set

S={A €M, | det(A) = 0}.
By definition, Sis the set of all nonsingular matrices of size n x n. By
employing Theorem 1, we will show that S does not congtitute an affine
subspace of M,, From the definition of 5, it followsthat Sis a subset of
M, and that O € S, which implies that Sis not a subspace of M,,. Since
I =S it followsthat 0 £ (St -7). Next, we verify that (S+ -7) is not a
subspace of M, by showing that it is not closed under addition.

Consider the n x n matrix 41, Since %I € S it follows that (%I'I' -I)
€ (St-7). Wecanwrite(4I+-7) + (4I+-I) = -I. SinceO€& S it
followsthat - € (St -7). Therefore, we can concludethat (S+ -7) is not
closed under addition and it follows from [1, Theorem 4.2) that (St -1) is
not a subspace of M,,, Since5is asubset of M,,, -l is a fixed vector in
M, sothat O < (St -I), and (St -7) is not a subspace of M,,,, it follows
from Theorem 1 that Sis not an affine subspace of M,,,.
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Rex H. Wu (Brooklyn, New York) points out two applications of the
pigeon-hole principle. If you ask people unfamiliar with the problem how
many socks it is necessary to take from a drawer containing four red socks,
five blue ones, six green, and seven white, you will get a variety of answers,
some irrelevant (e. g, "Nobody wears green socks, except maybe on St.
Patricks's day"). Try asking! All it can do is make you unpopular. A
second application proves the theorem that there are now living two people
who were born a exactly the same time, to the second. This follows from
the calculation that there have been fewer than five billion secondsin the last
150 yearsand the fact that the world contains more than five billion people.
Since there are only 31,536,000 seconds in a 365-day year and more births
than that this year, there will be two such people born in 1995.

Xuming Chen (University of Alabama) gives a good reason why 1 is
not counted among the primes. The vauable identity

EL =l —— .y
n=1 n® ppime 1 -(1/p)*’ 5

would not hold if 1 wasa prime.
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A. Cusumano and W. Topazio
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ANOTHER PROOF THAT THE NIEMYTZKI PLANE
IS NOT NORMAL

David H. Vetterlein
Auburn University

Let X be the upper half-plane X = { (x, y) ER*: y = 0} and let L be
its boundary L = {(x,0) : x€R}. The Niemytzki plane is the space X
whose basic sets are the open discs in X\L and the open discs in X \L
tangent to L together with the point of tangency. We will refer to the points
on L as being rational or irrational with the obvious correspondence. This
space and the Sorgenfrey plane (i. e. the product space Sx S where Sis the
real line with the half-open interval topology) provide examples of a T
topological space which is not a T-spacc. While the Sorgenfrey plane has
the merit of being the product of T4-spaces, the Niemytzki plane lacks this.
But it has another, namely that its topology is more familiar and easier to
work with.

While it is easy to see that both spacesare T, the usual proofs showing
that neither isa T,-space use acardinality or second category argument and
are often omitted from elementary textbooks. In this note we present an
alternate proof for the Niemytzki plane. The proof issimple, uses only the
nested set theorem, and works just as well for the Sorgenfrey plane.

The Niemytzki plane can be envisioned by thinking of hot air balloons.
The basic sets then become those balloons anchored at points of L and those
balloons floating above L. We refer to rational balloons as those balloons
B_ anchored at rational points ¢ on L. Similarly, we refer to irrational
bﬁ loons B » anchored at irrational points p on L.

Since every subset of L is closed, the rationals Q and irrationals L\ Q
fonn two disjoint closed subsets of L. 1f X is normal, then there are disjoint
open subsets U and V such that U1 @ and VD L\Q. Thus, lor cach
g € Q wemay lind a corresponding rational balloon Bq with positive radius
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lying inside U and for each p E L\Q we may similarly find an irrational
balloon Bp C V aso with positive radius.

Now the rational and irrational balloons lying in U and V respectively
cannot overlap. Hence, for example, given a rational point 4 € Q and its
corresponding rational balloon B, with radius rgs all irrational balloons
anchored in the shadow of B_ must have a radius s rq /4.

This is easily seen by taking
the worst possible scenario, i. e.
where the smaller baloon is
anchored at the edge of the shadow
of the larger balloon. Then the
distance between anchors is exactly
the radius of the larger balloon, say
r. Allowing the smaller balloon to
have as large a radius as possible,
say s, so that the two balloons
touch, simple geometry shows

(r+s)2= rz s (r—s)2 or s =r/4.

Now choose some rationa balloon By lyinginside U. In B,’s shadow,
on the right side, choose irrationa B; C V. On the left side in B;’s
shadow, choose rational B, CU. Continuing, we form a sequence
By, B, B,, - of rational and irrational balloons in U and V respectively
such that each is anchored in the shadow of the previous balloon, and in
such a way that the anchors alternate sdes—that is, if B, lies to the right
of B, _,’s anchor, then B, ,, lies to the left of B ,’s anchor.

This aternation of left, right, ... ensures a nested sequence of intervals
Iy 31,3+ 21,>~ where I istheinterval between B,’s and B, ,;’s
anchors. Denoting B, ’s radius by r,, we have r, < r,_,/4 and therefore
r, s ry/4" forevery n € N. By the nested set theorem, some point x must
liein al the intervals |

If x isan irrational point of L, then there is some irrational balloon B,
with positive radius r, such that B, CV. But B, is anchored in the
shadow of every rational balloon B,,, n< N in the sequence By, B,,
B,, = and hence

r,sry,lds r0/42'“'l
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forevery n< N. Thissays r, = O which contradicts B, having a positive
radius. A similar contradiction arisesif x is rational.

The author, a graduate student, thanks Professor Transue for the
problem.

A New View of Goldbach's Conjecture

Professor Simon Berkovich (George Washington University) notes that
the famous Goldbach Conjecture, made in 1742, that

Every even integer greater than two isa sum of two primes.
can be stated in another form:
Every integer greater than one is the average of two primes.

He writes:

This has a physica interpretation. If we think of a wave
spreading out from an integer, then, if Goldbach’s Conjecture is
true, it will simultaneously hit a lesser and greater prime number.

To me, this makes the conjecture (which iscertainly true) even
more mysterious.
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Chapter Reports

Professor Gerald W. Young, reporting for the OHIO Nu Chapter
(University of Akron), says that the department of mathematical sciences,
with assistance from the chapter, awarded eighteen one-year membershipsin
five organizations (AMS, SIAM, ASA, MAA, ACM) and foyrteen
scholarships.

The PENNSYLVANIA OMICRON Chapter (Moravian College) sponsored the
eighth annual Moravian College Student Mathematics Conference in
February 1994, with 62 participants from 15 colleges and universities. The
keynote speaker was Dr. Diane L. Souvaine, of the National Science
Foundation, whose topic was "Geometric computations and applications.”
There were twelve undergraduate student speakers as well.

The WISCONSIN DELTA Chapter (St. Norbert College) held its
Northeastern Wisconsin Math Seminar Series, with several guest speakers,
hosted the annual Pi Mu Epsilon Regional Undergraduate Math Conference,
and, with SNC’c Math Club, held the annual SNC High School Math Meet.

Professor James R. Weaver reports that the FLORIDA KAPPA chapter
(University of West Florida) was addressed by the president of the university
at its induction ceremony. The chapter also has subsidized members to
attend meetings and assisted in the annual northwest Florida Mathcounts
contest.

Letter to the Editor

In the Spring, 1994 issue (vol. 9, no. 10) of the Pi Mu Epsilon Journal,
a problem on page 646 asks "What is the largest integer that in base-16 is
an ordinary English word?' The suggested answer, on page 661, of
defacaded, is certainly not an ordinary English word, if indeed it is an
English word at all. (I did not find "to facade" as a verb in any dictionary
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at my disposal, which makes the longer construction highly implausible)) In
any case, under similar rules of admissibility, |1 can top it. How do we
describe a necklace made with ten glass spherules? Clearly, it is a
decabeaded necklace! This converts from base-16 to the decimal value
956,884,233,709, if my hand-held calculator can be trusted. | should also
point out that since decabeaded used only the first five letters of the
alphabet, it could also be the representation of a number in base-15.

A more sweeping generalization of this problem is. for each of the
2% _ 1 = 67,108,863 non-empty subsets of the 26 letters of the alphabet,
what is the longest English word which can be formed using only letters
from that subset? | particularly like the 8-letter word dedeeded (also a
palindrome!) from the 2-letter subset {d, e}. There are only 325 subsets
consisting of two letters, and unless one is a vowel and the other a
consonant, the possibilities are very limited. This reduces us to 125 sets,
where | have alowed y to be paired with either a vowel (as in yoyo) or a
consonant (as in lyly).

Solomon W. Golomb
University of Southern California

Editorial note: This may be the last word on hexadecimal words. Since
English is not an agglutinative language, the act of making a ten-bead
necklace cannot be caled a decabeaddeed, and describing the once-
tenbeaded necklace as dedecabeaded is strained. In any event, the proper
reaction to Professor Golomb's linguistic virtuosity is the longest base-2
word: 000000!

A Conjecture

Xuming Chen (University of Alabama, Tuscaloosa) conjectures that any
prime is a sum of a prime and two sguares, as 5 = 3+12+12, 7=
2+12+2%, 11=3+2% +2%,..,1997 = 1987 + 3% + 12, Thisconjecture
isvery likely to be true and very likely to be unprovable, but it might be of
interest to set a computer the task of determining in how many ways a prime
p can be so represented. | have no idea at what rate the number of
representations would grow as p increases.
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Laplace Transforms

Professor James Chew (North Carolina A & T State University) offers
another proof that, if the Laplace transform of f(¢) is F(s) then the

transform of f’f (t)dv is F(s)/s. Suppose that f (t) hasa forma power

0 ! ® . .
series, )7 a,t".  Then fof(’t)dt = Eo at™f/(n+1). Since
L{r*} = k!/s**1, we have

se{fo'f(x)dr} = Y0 antst = (U)X a,2{t") = F(s)ls.
A Triangle

In the last issue of the
Journal (10 (1994-99) #1, A
25), Andrew Cusumano
asserted that, in the figure on
the right, where the angles at
A, B, and C in the equilateral E
triangle ABC have been
bisected twice, EF is
perpendicular to D C and that
GH is paradlel to BC. Paul
Bruckman (Edmonds,
Washington) shows that this
is correct:

We embed the figure in the complex plane, with points represented by
complex numbers. Let

1) A =1B-a, C= w?, where q = e2™/3,

Clearly, G = 0. Let J denote the intersection of the first quadrisectors
(uppermost in the figure) of anglesB and C (J lieson lineAG). Sincel +
ot e?=0adE =@ t+C)/2 then
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?) E=(11 0?)2=-0/2.
Let 0 = m/12 and ¢ = (y3 - 1)/2. Note that LDAE = 30 and LDEA =
60, a right angle. Thustriangle DEA isan isosceles right triangle and | DE |
= |AE| = y3/2. Since |GE| = 1/2, it follows that |GD| = c, and so.D
=ca). Similarly,
3 F=co? J=c
Now

E-F: -w/2 -cw?= [ﬁ - i(Zv/— - 3)]/4’
after simplification. Thus,

arg(E - F) = 56 — (-8) = 60 = n/2,

which shows that E F extended is perpendicular to CD.
To determine H, we note that it is the intersection of E F with CJ. Thus
real r and s exist, withO<r <1 and O< s < 1, such that

H=(1-r)E +rF=(1-s5)C +sJ.

We may substitute the expressions for C, E, F, and Jin (1)-(3), substitute
(-1+ iﬁ)/z and (-1 - if3_)/2 for wand w? respectively, and equate real
and imaginary parts. This yields a pair of equationsin r and s which yield
r=s= 1/y3. Then substituting this in the expression for H yields H =
-ic (note that J,H, F, and D lie on thecircle {z} = ¢). SinceH - G and
C - B are pure imaginary, we see that GH is parallel to BC.

Editorial note. While the problem could have been stated by Euclid, he
could never have constructed a solution which involved complex numbers.
Two questions arise: does a purely geometric proof exist, and, if one does,
isit superior to one using is? The answer to the first surely is "yes', but the
answer to the second is less clear. On the one hand, in the universe of
mathematics we should be free to use whatever we need to solve a problem.
On the other, many mathematicians have a feeling that there is something not
quite right about using nineteenth-century mathematics to solve what could
have been a second-century problem, and prefer to avoid such things. For
example, Selberg and Erdés were acclaimed for proving the prime number
theorem without using complex variables. Would Bach have written for
electronic instruments, had he been able? Should his music be performed on
them? Analogous questions, analogously difficult to answer. The art and .
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science of mathematical estheticsis in itsinfancy.

Verse

Odetoe

Paul S Bruckman

Edmonds, Washington

| dedicate this rhyme and rhythm

To sing the natural logarithm.

That is, its base, great Euler's e

Is lauded in this rhapsody.

In higher math and nature both

We learn that e expresses growth

Of special, exponentia kind,

And €'s the limit, you will find,

As n grows larger by the hour,

Of something raised to the nth power,
That something being none other, then,
Thann + 1 al over n.

Another well-known fact, my dearies,
Is given by the endless series

Where each term's the nth power of x
Divided (there's no need for checks)
By n!, with such sum

Converging to e *, by gum,

Provided that we sum from naught;
The one who found this, we are taught,
Was Leibniz, and another Kraut,

Herr Lindemann, proved beyond doubt
That €'s a transcendental number
(although his proof induces slumber).
For elegance, Euler's relation

Is unsurpassed; its declaration
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Is this: that e™

+ 1 is 0—herein lie

Math's basic five constants (with zero),
Undreamt of by Euclid or Hero.

| could go on—it seems a crime—

But limits of both space and time
Restrict me and curtail my song:

Adieu e, you can do no wrong!

To readers of this little ditty

Who think it drivel —moré's the pity!

Identities

In the last issue of the Journal (10 (1994-99) #1, 43-44), Kenneth
Davenport gave the following identities.
1-(1 +2+..+n) =n(n+1)/2.
(13+2%+..+n3 = n?(n +1)%/2.
3P+« +nd) 1113+ 2B+ n?) = n3(n +1)2.
4:(17 +2" + . +n7) +4- (15 +3F +.. +0%) = ni(n + 1)Y2.
5:1°+2° +..+n%) +10-(17 427+ +n7) + 1-(15 + 25 + .. + %)
= n3(n +1)°/2.
6-(1M + 2+ L anty +20-(1° 20 4. +n%) 617 +27 +.. +n7)
= n8(n +1)%/2.

They are explained by Odoarde Brugia and Piero Filipponi:

We were not aware of the cute identities reported by K. B. Davenport
in this journal (10 (1994) #1, 43-44). They can be proved as follows.
For r, n, and k natural numbers, let us define f(r) to be the greatest
integer not exceeding (r - 1)/2, S, (k) = E}“_’i j*, and
[ #
X(n,r) = S 2r-2i-1).
CLED I U LY )

i=0
The proof that X(n, r) = n"(n +1)/2 follows:
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n ()

_ r :2r-2-1
X =% ()

g [2: I D> f’(i-l)’}-
j=1 j=1

"2

Put j - 1 = h in the second summation of the above identity, thus getting

n-1 n-1
X(n,r) %[n’(n +1) + El j"(j 1y - hEl h"(h + l)r]
ja =

n"(n+1Y.

Odoardo Brugia and Piero Filipponi
Fondazione Ugo Bordoni

Via B. Castiglione, 59

1-00142 Rome, Italy

(Xuming Chen, of the University of Alabama, Tuscaloosa, provided a
similar derivation.)

Trisecting the Paper

Augustus De Morgan (1806-1871), whose name is attached to De
Morgan's Laws, after discussing a trisection of the angle wrote

There is one trisection which is of more importancethan that of the
angle. It is easy to get half the paper on which you write for
margin; or a quarter; but very troublesome to get a third. Show us
how, easily and certainly, to fold the paper into three, and you will
be a red benefactor to society.
(A Budget d Paradoxes, London, 1872; reprinted by Dover, New York,
1954; val. 2, p. 15)

Though we no longer fed the nineteenth-century urge to fold paper into
vertical thirds, should the need again arise John Kasbohm (Oak Park,
Illinois) has a solution. He writes:
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"With a sheet W wide and L
long, L = 4 W13, you can twicebi-
fold the long right edge, making
just little pinches to show where
folds across the paper would be,
because we wouldn't want deep
creases dl over the place. (See
Figure 1) This makes little dents
a L/2 and 3L/4 on the edge L L
Now lift the lower right comer up 2
and lay it across the face of the
sheet, so that the dent at 3L/4 just
touches the left hand edge and the =

w
3
Figure 1

top and right hand edges still meet at the
% upper right comer. (See Figure 2)
Again this time you don't have to make
3L a full sharp crease, but just a little pinch
4 a that comer. The L12 dent is now

two-thirds of the way across the sheet
and you can fold the sheet vertically
through that point. The finished sheet
with the one-third margin is still in
pretty good shape, especidly if you have
Figure 2 some origami practice. If L is too long

you can use only an upper part of it.
'Of course the easiest way is to measure and divide, but | suppose that

is not what De Morgan meant.”

A difficulty is that 8%z x 11 paper is not quite long enough (by a third
of an inch) for the method to work. One way around this is to make the
sheet dightly longer, with a temporary paper-clipped extension. Anoctheris .
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to crease it in half verticaly and apply the method to that half, thus getting
one-sixth of the width which can quickly be doubled to get one-third.
Though neither may be as easy as De Morgan would have wanted, | think
that he would have been pleased with the solution.

Editorial Comment

(In case there is any doubt, the following comments do not necessarily
reflect the opinions of any of the officers of P Mu Epsilon or, for that
matter, any of its members. They contain the persona views of the editor
and do not need to be taken seriously or, for that matter, read at all.)

A not-bad definition of mathematics is that it is the art and science of
reasoning about and with quantities. The definition is not complete because
there are branches of mathematics where there are no quanti-
ties— mathematical logic, for example—but whatever your definition is, it
will have some mention of reason in it. Mathematics is not broad enough
to include all of reason (lawyers reason too, sometimes) but reasoning is
what it does. In fact, it was mathematics that taught the human race to
reason, but that's another story.

The thing about reason is that it's so ... reasonable. "Socrates is a
human. All humans are mortal. Therefore Socrates is mortal." Of course.
It follows. It's logical. It's easy to understand. All you have to do is listen
to reason, right?

Wrong. Teachers of mathematics spend thousands of hours trying to get
students of mathematics to listen to reason, and they do not always succeed.
Sometimes they do, of course, but many times they do not, as is shown by
the number of appearances of \/(a 2 +b% =a+ bon tests (even on calculus
tests), along with sin 3x = 3sin x (yes, that does make life easier, but it's not
reasonable—sines don't get as large as 3), and even the horrible

2r? + 3y?
o ),' = 2x + 3y
(gotten by applying a corollary of the Law of Universal Cancellation:
whenever a symbol appears in the numerator and the denominator of a
Iraction, it may be cancelled). It's usually possible to convince students of
mathematics that those cqualities are not reasonable, but sometimes it takes
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effort.

However, there is a class of people who deal in mathematics but who
will not listen to reason no matter how much effort is spent, namely
mathematical cranks. Mathematical cranks are people who think that they
have done the impossible, like trisecting angles with straightedge and -
compass alone, or that they have done something that they have not, like
prove Fermat’s Last Theorem. They try to convince mathematicians, using
reason, that they have done what they claim to have done, but reason is not
of much use in convincing them that what they say is not correct.

Recently a crank wrote me,

If EVERYBODY loves mathematics, all the bad things on this
planet will pass into history. | can edit a mathematics magazine
because | know EVERY THING about mathematics.

Shall | reason with him? He went on,

It is a pity that mathematics is unpopular as it is the worst subject
in every school because every time a mathematics teacher gives his
class mathematics homework, none of the students do their mathe-
matics homework which is never encouraged by their parentsand all
mathematics teachers approve of students not doing their mathemat-
ics homework thus making mathematics a futile subject.

A possible reason for that will be given in the last paragraph.

You might think that an angle trisector would be convinced of his error
if he was shown that his construction is not accurate. Not so. For example,
there was the angle trisector who was shown that, using trigonometry, the
angle he got when his construction was applied to a 60° angle was
something like 19° 56 42'. He saw that, but he did not therefore conclude
that his construction was wrong. The choice was between his trisection and
trigonometry, so he concluded that trigonometry was wrong, and that all the
trigonometry textbooks would have to be rewritten. How are you going to
reason with him?

Orwiththecircle-sguarer (circle-squarers construct with straightedge and
compass alone squares with the same areas as circles, something as
impossible as trisecting angles) who said, when asked how he knew that his
construction was correct,

The author was supernaturally taught the exact measure of the
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circle. All knowledge is revedled directly or indirectly, and the
truths hereby presented are direct revelations and are due in
confirmation of scriptural promises.

Reason is helpless againgt revelation.

Then there was the crank who considered the four-color theorem (that
no map needs more than four colors if adjacent countries have different
colors) and went it two better by claiming to have proved that two colors
were enough. Reason was not enough to prove to him that he was not
correct.

Cranks can get around anything. An angle trisector took care of the fact
that the trisection was impossible by saying

The author resents the negetive implicationssince, if everyone were
to accept statements as valid, there would be very little progress.

Of course, no progress in the trisection is al we can get. The same trisector
hed been told that Wantzel had proved that the trisection was impossiblein
1837, and his retort to that was

A mathematical proof is merdy an established approximation,
indicatinga limitation of errorsto a minimum applicable to each on
hand to be solved, and from a point, or point, of reference as they

appesr.

| did not make that up. | could not make that up. Absolute non-sense is
very hard to create. The trisector's point, whatever his words, was that the
proof did not count. His trisection was right, and any reason to the contrary
could be brushed aside. He would nat listen to reason.

One circle-squarer who said that © was 2518 = 3.125 had a voluminous
correspondence with a mathematician. The mathematician brought up the
proof that r was irrational and that Archimedes had shown that = was greater
than 3 10/71 ( = 3.1408... > 3.125) more than two thousand years ago, but
they meant nothing to the circle-squarer. Eventually he was backed into a
corner and hed to admit that the reason that ©t was 2518 was because he said
s0. He assumed that & = 2518;

If you didike the term datum, then, by hypothesis, let 8 circumfer-
ences exactly equal 25 diameters.

He could do this because, he said
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I think you will not dareto dispute my right to this hypothesiswhen
| can prove by means of it that every other value of & will lead to
the grossest absurdities.

Using exactly the same method, | can prove that 32 = 10. Herel go. By
hypothesis, let 32 = 10. Then any other assumption, such as 3% = 9, leads to
the grossest absurdities, in this case that 9 = 10.

Y ou cannot reason with cranks. They will not follow the laws of logic,
they will not listen to reason. Even students of mathematicshave difficulty,
sometimes, seeing things that are absolutely clear to their instructors and
follow mathematicaly from things that have gone before. Students of
mathematics sometimes do not even do their homework. Why is this?

The reason is clear. Mathematics is unnatural; mathematics is a
perversion. Of course it is. What are you doing when you are doing
mathematics? You are not doing something natural. You are sitting, hardly
moving, your only bodily activity outside of some necessary breaths and
heartbeats a few weak and flickering electric currents passing along the
neurons of your brain. Occasionaly you may move a hand to write a bit,
but you then lapse again into motionlessness, eyes unfocussed, with only the
electronsin your brain moving. You cannot do mathematicsfor very long,
can you? The reason you cannot is that mathematicsis not what your body,
with its dexterous fingers and powerful legs, was made for. Our legs were
made to run after our next meal, and our fingers to pick it apart after we
catch it. Sitting and thinking is an unnatural activity, and we have not yet
gotten used to it. What was it that last made you think, "Wow! | had a
really goodtime!"? Wasn't it after some activity that was entirely mindless?
Of courseit was. Evolution has not yet progressed far enough for reasoning
to be painless, much less enjoyable. It will take another hundred thousand
years, or maybe a million. At present, the race finds it hard. Thinking,
especially thinking about mathematics, is unnatural. However, mathematics
is not a bad perversion. Keep listening to reason: the more we try to hear,
the easier it will become.
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Pentagonal Number Identities

Kenneth Davenport (Pittsburgh, Pennsylvania) points out a relationship
between the generalized pentagonal numbers,

1, 2,5 7 12, 15, 22, 26, ...,
(3nt 1)n/2,n=1,2 ..and patia sums of cubes:

(2-1)Y _ 1}
==

-

(5-2  1¥+2

8 23

]

(7-5¢ _ P+22+3
3 33

’

(12-7) _ 13+23+33+4
16 43

(15-12 _ 1P+23+33+43+5°
5 - 53 '

The denominators of the odd-ranked fractions are the odd numbers 1, 3,
5, ... and the denominators of the even-ranked fractions are successive
multiples of 8.

While it is asimple exercise in algebra to verify that the identities hold
in general, they may be useful as an example, or as a curious connection
between two seguences that on the face of it have nothing in common other
than their geometric origin. And pentagons are two-dimensional, while
cubes arc three-dimensional.

M athacr ostics

Solution to Mathacrostic 39, by Robert Forsberg (Fall, 1994).
Words:

A. Tchebyshev I. effective pitch Q. mestizo

B. icosidodecahedron J  roots for R. Ibn Abd Rabbihi

C. Mithridates K. raffia S. legtrile

D. ordinary point L. independent events T. Kkennings

E. transfinite set M. spinning frame U. Yablonoi

F. Hippasus of N. trident V. Windows
Metapontum O. high pressure W. a penny postage

G. Ypsilanti physics stamp

H. Fermat’s |ast P. Ettingshausen Y. Yangchuanchan
theorem effect

Author and title: Timothy Ferris, The Milky Way.

Quotation: Newton's surviving drafts of the Principiasupport Thomas
Edison’s dictum that genius is one percent inspiration and ninety-nine
percent perspiration. Like Beethoven's drafts of the opening bars of the
Fifth Symphony, they are characterized |ess by sudden flashes of insight than
by a constant, indefatigable hammering away at immediate, specific
problems.

Solvers. THOMAS BANCHOFF, Brown University, JEANETTE
BICKLEY, St. Louis Community College, PAUL S. BRUCKMAN,
Highwood, Illinois, CHARLES R. DIMMINIE, St. Bonaventure University,
VICTOR G. FESER, University of Mary, ROBERT C. GEBHARDT,
Hopatcong, New Jersey, META HARRSEN, Durham, North Carolina,
HENRY LIEBERMAN, Waban, Massachusetts, CHARLOTTE MAINES,
Rochester, New Y ork, DON PFAFF, University of Nevada—Reno, NAOMI
SHAPIRO, Piscataway, New Jersey, STEPHANIE SLOY AN, Georgian Court
College, and JOSEPH S. TESTEN, Mobile, Alabama. Late solution to #37
by VICTOR G. FESER, University of Mary.

Mathacrostic 40, constructed by ROBERT FORSBERG, follows on the
next three pages. To be listed as a solver, send your solution to the editor.
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U 12

R 13

V14

P15

D 18
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J 18 20|H 21

N22|U23|G24

K25

T 28

M 27

A2

A\

R4

P a2

vV 43

X3 H 32| W 33

K 44 |E 45/ Q 48] L 47

C 34/B35|0 36

H 37

T 38

K 38

N 40

A 48K 48

G 50

A 51

H 52

L 83

G 54

T 55

Y 568 |N 57 U 58| G 59

G 68

[ :14

N 68

u7e

T77

178

R 88

P 89

Q 80

T 60|M 81

P &2

Y 63

Vv 64

O69|A 70 K71

E 79| V 80| W 81

B g1 C 92

A 89

H 100]

N 72| W73|J 74

C75

L 82 R &3

W 85

O 88

T 87

1 93T 94| H 85

D 98

T 101 O 102/ N 103|R 104 [ Q 105

L 108 |1 107

Y 1118112

U113

F114 B115( F 118]W 117

J108

R 109

ue7

R 65

M a8

1110

J118 D11

T 123

E 124

1125

R126|H 127 [V 128 C 129] K 130

H 136

G 137|

E138

Y 149

T 162

P173

0199

K150

M 151

F163

Y 174|M 175

L120

N 121

N122

B 131(§ 132

Q133

C 134

Q139 G 140] | 141|C 142

G143 C 144

N 145

W 146

T147

N 135

P 148

P 152 Y 153 J154

E 164 T 165| X 168

H 155 |A 158 |W 157

F 158

N 159

Cc 1687|0168 | V 1689

J 170

T171

T176] 1177 N 178|U 179

D18o(s181| G 18

H 183

F 184

G 188

N 187

T 188/ C 189X 180 [P 191 |V 182

K193 C 194

V200

J a0

K 202 | 203]M 204|T 205

N 185

E 198

C 160|R 161

T197

S208 | K207

K 208

S 209

ca11

G21

N 213

| 214 8215|D 216|T 217

vae

w238

D225

P 238

u218|L219| F220

P 221

H222

N 210

A172

V185

R 198

S22

H228|L227|B228 G229

T230| vB1|N 232

K 233

X234

R235

E 238

R 240|S 241 P 242

E243| R244|J 245

0248

1247

E248

K249

W 250

Q251

R252 |T 253{H 254|F 255

A. A red-orange coloring
material obtained from the seeds
of Bixa orellana

B. The outer of the two layers
forming the wall of spores such
as pollen

C. Describinga curve at a point
where a tangent may be drawn

D. To thrust out repeatedly

E. Literally "Tracker"; an animal
that hunts out crocodile eggs

F. An element

G. He discoveredin 1890 a
curve that could intersect every
point in a plane (2 wds)

H. He produced the first mathe-
matical works produced by an
Englishman in England (3 wds)

I Great figure in the resistance
of Wales to the English, d. 1170
(2 wds)

J. A small ceramic/metal vacuum
tube

K. A solution used as an acid/
base indicator

L. Hungarian writer, 1760-1820,
Hunnyas

of the Hexateuch

24 54 66 59 50 186 182 212 143 137

229 17 140
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N. A method of finding prime
numbers (3 wds)

O. Typical, accurately identified
specimen of a species, but nota
basis for a published description

P. Swiss mathematician, 1829-
13800

Q. An asteroid of about 220km
diameter

R. Equivalent to about 11.8
inches (hyph)

S. A word synthesized to mean:
someone showing contempt for
legalities

T. Author of The Dynamics of a
Particle, 1865 (3 wds)

U. Out of use; retired from
service

V. The entropy of the input to a

communication channel when the
output is known

W. An intracellular effector
organelle in coelenterates

X. A unit of firewood volume

Y. Spread out in a definite form

242

188 205 176 171 147 60 55 230 162
87 123 77

80 29

174 153 63 56 149 111
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PROBLEM DEPARTMENT

Edited by Clayton W. Dodge
University of Maine

This department welcomes problems believed to be new and at a level
appropriate for the readersof this journal. Old problems displaying novel
and elegant methods of solution are also invited. Proposals should be
accompanied by solutionsif available and by any information that will assist
the editor. An asterisk (*) preceding a problem number indicatesthat the
proposer did not submit a solution.

All communications should be addressed to C. W. Dodge, 5752
Neville/Math, Universty of Maine, Orono, ME 04469-5752. E-mail:
dodge@auss. unenat . nai ne. edu.  Please submit each proposal and solution
preferably typed or clearly written on a separate sheet (one side only)
properly identified with name and address. Solutionsto problems in this
issue should be mailed by December 15, 1995.

Correction

844. [Fall 1994] Proposed by Bill Correll, J., student, Denison
University, Granville, Ohio.

If F, denotes the nth Fibonacci number (Fy = F, = 1 and F,, =
F, +F,,, for k a positive integer), evaluate

)m: (Z)F”/Z’”".

n=1

(The index of the summation was incorrect.)
Problems for Solution

849. Proposed by L. A. Bohr, Great Works, Maine.
Solve this base 8 addition alphametic: THIS + IS = WORK.
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*850. Proposed by Bill Correll, Jr., Denison University, Granville, Ohio.
Clearly the following integral evaluation isincorrect. Find the flaw. By
letting u = —x we get that

- 44
I= |In(e*+1)dr=-|In(e™+1)du=-|ImnE_"1 du
J‘ J‘ J‘ ell
= - [ +1)au + [Ine"ydu =1+ u?2 4,

sothat | = x%4 + C'. (See Problem 828)

851. Proposed by Bill
Corréll, Jr., Denison University,
Granville, Ohio.

In triangle ABC let Cevian
AD bisect side BC and let
Cevians BE and BF trisect side
CA. Let AD intersect BE at P
and BF at R, and let CP meet
BF at Q. Seethefigure. If the
area of triangle ABC is 1, find
the area of triangle PQR.

852. Proposed by Rex H. Wu, Brooklyn, New York.
Let E be a point inside square ABCD with BE = x, DE=y, and CE = z.
If x2 + y? = 222, find the area of ABCD in terms of x, y, and z

853. Proposed by Charles Ashbacher, Cedar Rapids, lowa.

This problem was submitted by Vietnam for the 1990 International
Mathematical Olympiad and has appeared in booklets overseas. |If real
numbersx ay a z > 0, then prove that

2 2 2
XY X2 02X oyt g2
z x y
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854. Proposed by Jayanthi Ganapathy, University of Wisconsin at
Oshkosh, Oshkosh, \Wisconsin.
Let aand b be two nonzero real numbers such that

a’(3a* - 5ab + 3b% = b*(5a* - 3ab + 5b%).

Find the values of the expressions (a? + b?)/a? and (a% - b?)/ab.

855. Proposed by Florentin Smarandache, Phoenix, Arizona.
Prove that a square matrix of integers, having in each row and in each
column a unique element not divisible by a given prime p, is nonsingular.

856. Proposed by Paul S. Bruckman, Highwood, lllinois.

Starting with a regular n-gon whose side is of unit length, snip off
congruent isosceles triangles from each of its vertices, resulting in a regular
2n-gon. Repeat the process indefinitely. Find the ratio of the area of the
limiting circle to that of the original n-gon.

857. Proposed by Andrew Cusumano, Great Neck, New York.
Find al prime numbers whose reciprocals have repetends of exactly
seven decimal places.

858. Proposed by David Iny, Baltimore, Maryland.
It is known that the rational numbers in the interval [0, 1] can be

enumerated. Let {r,}}., be such an enumeration and pick & such that
0<e <1 Takean interval I, of length e27* centered on each r,. Thenthe .

sum of all these interval lengths £3_; r, = & < 1. Show how to find a real
number in [0, 1} and not contained in any of the intervals 7,.

859. Proposed by J. S. Frame, Michigan Sate University, East Lansing,
Michigan.
Sum in closed form the series

2
= 1 [-12 m\ _
s=Y (n), where (n)-.m(.m__l.)(m_..Z);Qm..n.i_:L).

asr h+ 1 n!
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860. Proposed by Richard |. Hess, Rancho Palos Verdes, California.

This problem originally appeared in a column by the Japanese problems
columnist Nob Yoshigahara. Find the minimal positive integer n so that
2n + 1 circles of unit diameter can be packed inside a 2 by n rectangle.

861. Proposed by J. S Frame, Michigan Sate University, East Lansing,
Michigan.
Evaluate in closed form the sum

S,k:n—ljn Zj‘
= B (7)()

Solutions

823. [Spring 1994] Proposed by Alan Wayne, Holiday, Florida.
Find all solutions to the multiplication alphametic

(IY(DINE) = ENID.

That is, find the form(s) taken by all solutions in all bases.

|. Solution by Paul S. Bruckman, Highwood, 11linois.

Let b denote the base of the alphametic. We show that if r = 3, then a
solution is provided by taking

b=r2,D=r,I=r— l,N=r2— r-1,and E=r*-r.

Then E-1=r3-2r2+r =rXr - 2)+ r, 50 E -1 = D (mod b), with a carry
to the next column of r - 1. Next we have that

Nel+r-2=r-22414r-2=r(r-2)+r-1=17(mod b)
with a carry of » = 2again. Next /2 tr- 2= -r-1=Nwith no cary.
Finally, D/ = r* = r = E. Thercfore, we have that (I(DINE) = ENID.

II. Comment by Victor G. Fever, University of Mary, Bismarck, North
Dakota.

This problem is much trickier than it looks. | set up a little computer
program to check successive bases. Solutions started to appear: bases 9, 16,
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25, 36. Ah hah! There seems to be a pattern here. Right. The next
solution was for base 39, and then base 47. | checked to base 200 and found
the additional solutions for bases other than square numbers in the table that
follows. There are fragments of patterns, but that is all | can find. It is
exasperating to find, for example, that these five bases include two primes, -
one odd composite, one power of 2, and one composite with both odd and
even factors.

base D I N E
39 1 16 37 23
47 4 9 43 37

109 1 45 107 63

128 16 5 26 80
200 11 128 55

(6]

ITI. Comment by Richard I. Hess, Rancho Palos Verdes, California.
If the base is b, then we must have that

I(Db® + IV* + Nb + E) = Eb> + Nb* + Ib + D,
and hence
(E-IDW*=({I2-Np? +I(N- )b+ IE-D

withO sD,I,N,Esb-1,I>1and D-E =0. If wehavethat E= | ‘D,
then

(N-I%b? = KN - 1)b+D({I?-1).
If also N = I?, then (Ibt D)% - 1) = 0, which is impossible. Hence we
have N > 12 so | < Vb. Further analysis might produce some results, but it
appears tedious.

Also solved by VICTOR G. FESER, University of Mary, Bismarck, ND,
RICHARD |. HESS, Rancho Palos Verdes, CA, REX H. WU, Brooklyn, NY,
and the PROPOSER.
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824. [Spring 1994] Proposed ly Joel L. Brewer, Palo Alto, California
Prove that there are no red integral solutions to the set of equations

7 + 6x% - 159)y = 160,
0 + 6y - 159)z = 160,
(2 + 622 - 159)x = 160.
You may not assume that a putative solution would possess any symmetry.

I. Composite d solutions submitted independently by Richard I. Hess,
Rancho Palos Veades, California, and Rex H. W4 Brooklyn, New York.

We see that x, y, and z are factors of 160, as are also x* + 6x° - 159,
y + 6y? - 159, and 2 + 62 - 159. Now |x3 +6x% -159| = 160 for
x | s 6. Furthermore, x* + 6X2 - 159 is a factor of 160 only for x = 4, in
which case x* + 6x2 - 159 = 1. Similarly, y = z = 4. But then the stated
products are each 4, not 160. Hence there is no solution.

I1. Solution by Paul S. Bruckman, Highwood, Illinois.

Let P(x) = x° + 6x% - 159. By checkingx = 0, 1, 2, 3, 4, we find that
P(x) @ 0 (mod 5) for all x. Inany putativesolution, it must be the case that
the product of integers P(x) and y is 160, so theny a O (mod 5). None of
P(-5), P(0), and P(5) is a divisor of 160, and if |x| 210, |P(x)| > 160.
Thus P(x) cannot be a factor of 160 for any permissiblex, and any putative
solution is impossible.

III. Solution by Kandasamy Muthuvel, Universty d Wisconsn at
Oshkosh, Oshkosh, Wisconan.

From the third given equation, x divides 160. Then, from the first
equation, we must have x divides 159y. Since x and 159 are relatively
prime, then x dividesy. Similarly, y dividesz and z dividesx, so thenx =y.
Therefore,

O + 6x2 - 159)x = 160.

Sincex and 159 are relatively prime, then x and x* + 6x? - 159 are relatively
prime. Thus the possible valuesfor x are 1, +5, and £32, but it is readily
checked that none of them does yield a solution.

IV. Comment by the Proposer.
The following generalization is readily proved by the same methods. If
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l= 3, ma3 and n a3are integers, then there are no rea integral solutions
to the set of equations

(! + 6x® - 159)y = 160,
O™ + 6y? - 159)z = 160,
(" + 62 - 159)x = 160.

Also solved by SEUNG-JIN BANG, Ajou University, Suwon, Korea,
BILL CORRELL, JR., Denison Universty, Granville, OH, VICTOR G.
FESER, University d Mary, Bismarck, ND, STEPHEN |. GENDLER,
Clarion University d Pennsylvania, HENRY S. LIEBERMAN, Waban, MA,
DAVID E. MANES, SUNY Collegeat Oneonta, DAVID S. SHOBE, New
Haven, CT, and the PROPOSER.

825. [Spring 1994] Proposed by Leon Bankoff, LosAngedes, California:

Let O be a point inside the equilateral triangle ABC whose side is of
length s. Let OA, OB, OC have lengths a, b c respectively. Given the
lengths &, b, ¢, find length s.

I. Solution by Rex H. Wy
Brooklyn, New Yak.

Let triangle ABC beoriented
counterclockwise and rotate
triangle AOC 60° about point C
to triangle BNC as shown in the
figure. Then AO = BN = a and
OC =NC = ON =cso LNOC =
60°. Let 8 = LBON. Applying
the law of cosines to triangles
BON and BOC, we get

cos9 = D21t ma’ oy cose ooy = B tel TS
2bc 2bc
From the left equation we get that

‘/4b2C2 _ (b2 + C2 _ a2)2
2bc

sin9 =
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Now substitute these valuesinto the equation
cos (9 * 60°) = cos 8 cos 60° - sin 9 sin 60°
and then solve for s to get that

2

Note that, although it does hot appear 0, the quantity inside the inner
radical is symmetricin a, b, and ¢. That is,

(2bc)* = (b + ¢* - a®)? = (2ca)? - (c? + a® - b?)?
= (2ab)? - (a® + b? - ¢? = 2b%? + 2c%a® + 2a%0% - b* - ¢* - o',
The symmetric statement of the problem impliesa symmetric solution. Ed.

2 2 2
s= \la—”’i + g\/(Zbc)2 - (% +c?-a??

II. Comment by Seung-Jin Bang, Ajou University, Suwon, Korea.
This problemis not new. See Problem 24.9, proposed by Russell Euler,
. in Mathematical Spectrum 1991192, vol. 24, no. 3, p. 90 and 1992193, val.
25 no. 1, p. 28.

III. Comment by Murray S Klamkin, University of Alberta, Edmonton,
Alberta, Canada.

This problem with solution appeared previousy as number 39, Crux
Mathematicorum,1976, p. 7. Anextensionto aregular tetrahedron appeared
as number 1087, ibid, 1987, p. 120. My solution there generalized the
problem to show that for positive numbers a,, a, ... , a,, there exists a
regular smplex S: AgA, - A, and apoint P in its space such that PA; =a;,
i=01,..,nif and only if

| = {Za2)? - nZa* = 0.
Theside length s of S is then given by
ns*=Yalt Jon+ DI

where the £ sign is chosen according to whether the point P isin the interior
or exterior of S.
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Also solved by MIGUEL AMENGUAL COVAS, Cala Figuera,
Mallorca, Joain, PAUL S. BRUCKMAN, Highwood, IL, XUMING CHEN,
University of Alabama, Tuscaloosa, BILL CORRELL, JR. Denison
University, Granville, OH, ROBERT DOWNES, Mountain Lakes High
School, NJ, RICHARD |. HESS, Rancho Palos Verdes, CA, HENRY S:-
LIEBERMAN,Waban,MA, DAVID E MANES, SUNY College at Oneonta,
SAMMY YU and IMMY YU, University of South Dakota, Vermillion, and
the PROPOSER.

Amengual Covas found the problem for (a, b, ¢) = (11, 14, 19) in
Gaceta Matematica, Supplement, 7V, 1952, p. 57.

826. [Spring 1994] Proposed by M. A. Kahn, Lucknow, India.
Prove or disprove that the product

P= f[(l + k?)
k=1

is a perfect square only for n = 3 and for no other positive integer.

Partial solution adapted from that submitted by Paul S. Bruckman,
Highwood, Illinois.

We write P, in place of P for the stated product. Let p be any prime
= 1 (mod 4). Then thereexist exactly two distinctintegersn,2snsp - 2,
such that n®+ 1 = 0 (mod p)and n® + 1 % O (mod p?). Let these values be
denoted by a, and b, Note that b, = p - a, and take, without loss of
generality,

25a,s(BpPp-1)<(Ap+1)sb,sp-2.

Now we see that p | P, if and only if n2 a and thatp2 | P, if and only if
na bp. Hence P,, cannot be a square number when

nelp={neZ:apsn<b,,}.

Now P, = 2 and P, = 10 are not squares, but P, = 100 = 10%. We
would like to show that the union S of al such sets | contains al integers
greater than 3. Since there are infinitely many primes p = 1 (mod 4) and
since each b, a p/2, then S has no upper bound. Hence, al we must show
is that' there are no gaps between members of S. For any prime p =
(2r)? + 1, such as 5, 17, 37, and 101, we have a = 2r and b,=p-2n
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making |, a large interval. There would be no such gap if one could always
find another such prime ¢ = (2)> + 1 with 2r < p - 2r. Unfortunately,
according to Rosen, Elementary Number Theory, 2nd ed., p. 65, it is not
even known whether there arc infinitely many primes of the form x* + 1.
For other primes df the form 4n * 1, there appearsto he no rule to determine
how far gpart a and bp arc. All we know for sure is that 1,, always contains
(p - /2. Mod intervals| will contain more integers, hut it appears we
cannot guarantee that all the gapswill be filled. The table below shows that
the theorem appearsto be true. Note that the number of integersin the set
I is equa to b,-a,

p a, bp bp -a, )/ a, bp bp -a,

5 2 3 1 53 23 30 7
13 5 8 3 61 11 50 39
17 4 13 9 " 73 27 46 19
29 12 17 5 89 34 55 21
37 6 31 25 97 22 75 53
41 9 32 23 101 10 91 81

Editorial comment. It appears that the product P is a perfect square
onlyfor n = 3. Our proof is not complete, however, so the problem is open
and further commentsand, if possible, afull solution are invited.

827. [Spring  1994]
Proposed by Stanley Rabinowitz, D 0 S c
MathPro Press, Wedtford,
M assachusetts.

Let Pbea point on diagonal
BD of square ABCD and let Q
be a point on side CD such that T P
APQ is a right angle. Prove
that AP = PQ.
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I. Solution by Francine Bankoff; Beverly Hills, Cdifornia

Let Sand T be the feet of perpendicularsdropped from P upon DC and
DA respectively. Then triangles PSQ and PTA are similar since their
corresponding sides are perpendicular. Since PS = PT because PSDT is a
square, the triangles are aso congruent, with PA = PQ.

II. Solution by Francine Bankoff, Beverly Hills, California.

Since QDA and APQ are both right angles, the pointsD, A, B, and Q lie
on a circle whose diameter isAQ. It follows that chords QP and AP are
equal, each measured by the equal 45° angles QDP and PDA.

III. Comment by Leon Bankoff, Beverly Hills, Cdifornia.

Although the diagram suggests that the point P be selected below the
midpoint of DB, the stated proposd does not exclude a point above that
midpoint. In that case the point Q fallson an extension of CD and solutions
| and TI remain valid with hardly any modification.

Also solved by MIGUEL AMENGUAL COVAS, Cala Figuera,
Mallorca, Spain, SEUNG-JN BANG, Ajou Universty, Suwon, Korea,
SCOTT H. BROWN, Auburn Universty, AL, PAUL S. BRUCKMAN,
Highwood, IL, XUMING CHEN (3 solutions), University o Alabama,
Tuscaoosa, BILL CORRELL, JR., Denison Universty, Granville, OH,
ANDREW CUSUMANO, Great Neck, NY, MARK EVANS, Louisville, KY,
ROBERT C. GEBHARDT, Hopatcong, NJ, SOLOMON W. GOLOMB,
University o Southern California, LosAngdes, MONICA GREENWOOD,
<. Bonaventure University, NY, RICHARD |. HESS, Rancho Palos Verdes,
CA, JOE HOWARD, New Mexico Highlands University, Las Vegas,
ROSALIE JUNGREIS, James Madison High School No. Woodmere, XY,
MURRAY S. KLAMKIN, University d Alberta, Canada, HENRY S.
LIEBERMAN (2 solutions), Waban, MA, PETER A. LINDSTROM, North
Lake College, Irving, T7X, DAVID E. MANES, SUNY College at Oneonta,
G. MAVRIGIAN (3 solutions), Youngstown State University, OH,
YOSHINOBU MURAYOSHI, Okinawa Japan, KANDASAMY
MUTHUVEL, Univesity d Wisconsin-Oshkosh, JOHN F. PUTZ, Alma
College, MI, GEORGE W. RAINEY, LosAngees, CA, DAVID S. SHOBE,
New Haven, CT, ROMAN SZNAJDER, University  Maryland, Baltimore,
L. J. UPTON, Mississauga, Ontario, Canada, REX H. WU (2 solutions),
Brooklyn, NY, SAMMY YU and JMMY YU, University of South Dakota,
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Vermillion, and the PROPOSER.

Other methods d solution included arguing that PA = PC and then
showing that triangle PCQ is isosceles with apex B, applying the law o
sines to triangles PQD and PAD, and placing thefigure on the Cartesian
plane with A at the origin, B at (1, 0 andD at (O, 1).

828. [Spring 1994] Proposed by Rex H. Wu, Brooklyn, New Yok
Evaluate the integral

j In(e * + 1) dx.
Solution by Richard l. Hess, Rancho Palos Verdes, Cdlifornia
"Thisintegral cannot be expressed as a finite combination of elementary

functions" — Gradshteyn and Ryzhik — 2.782.2.
For al b > 0, we have that

I= J;)bln(ex + 1) dx = J;)b[x + In(1 + e™)] dx

b? b o 1 5 1 3
= + er - _e ™+ e -.)dx
2 J:)( 2 3 )
2 b
=2 4 [-e™ + e . Lo, ]l
2 i}
b2

] ~kb
-1
=2+ Y (-1rE )
7 LV
If a < 0 then we have

I=Jaln(e‘+1)dx=faln(1 +e*)dx
0 0

ey 1e3" - )dx

{]
~
®
|
R N!‘-—

Hence the vaue of the indefinite integral depends upon whether x > 0
or x < 0. The vaue of any definite integral can be found by appropriately
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adding or subtracting one or both of the two forms above.

Also solved by SEUNG-JN BANG, Ajou University, Suwon, Korea,
PAUL S. BRUCKMAN, Highwood, 1L, JOE HOWARD, New Mexico
Highlands University, Las Vegas, PETER A. LINDSTROM, North L ake
College, Irving, TX, DAVID E MANES, SUNY Collegeat Oneonta, STAN
WAGON and JOAN HUTCHINSON, Macalester College, S. Paul, MN, and
the PROPOSER.

829. [Spring 1994] Proposed by Seung-Jin Bang, Ajou University,
Suwon, Republic d Korea.

Let f be a function such thet £, f ', ..., f " are al continuous, f (0) =
£ (0) == f*=1DO)=0ad f™(0) = 0. Let

fi) = [Cfod ad g0 = [[fandt k=23 0n

Evduate the limit
jim _f=®)
x=0 x ™ f(x)

Solution by the Proposer.
Using L’Hépital’s rule, we have

fa®) _ fO(0)

tim fO) = foO) and lim
n!

x=0 yn x—0 x*tm (n +m)' )
It follows that
fa®) "0
i S lim X" _ (aeml o ml
x—»OxnIf(x) x—~0 ﬁ.{)- f(")(O) (n +m)'
x" n!

Alsosolved by PAUL S. BRUCKMAN, Highwood, IL, MARK EVANS,
Louisville, KY, RICHARD |. HESS, Rancho Palos Veades, CA, CARL
LIBIS, |dahoState University, Pocatello, HENRY S. LIEBERMAN, Waban,
MA, and DAVID S. SHOBE, New Haven, CT.
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830. [Spring 1994] Proposed by David Iny, Baltimore, Maryland.

Let
x4n+k-l

Z% (@n +k - 1!

a) Prove that [(w; + w3)? = (wy T w)J[(w; =~ wa)* T (wy - wp] = 1
b) Can you find similar identitieswith p = 2 for

w, = k:L2,3,4.

@ xpn+k—l

w, = T A -y Pl R, )
t= X ) d

This praoblem is a generalization of a 1939 Putnam Exam problem, which
considered thecase of p= 3.

I. Solution topart (8) by Carl Libis, |daho State University, Pocatello,
Idaho.

Since w, * w; = cosh X, w, * w, = sinh X, w; - wy = cosX, and w, - w,
=sinx, andsincew; tw, Tt wytwy= efandw, - w, t w; - w,= e, we
have that

(W1 + wy)? = (wy + w,)? = cosh? x - sinh? x = 1,
(wy - wp)? + (wy - wp? =cos’ x +sin x = 1,
and
(Wit wytws T w(wy - wy T wy - wy) = e -

I1. Solution by Paul S Bruckman, Highwood, Illinois.
We solve the problem for fixedp z 2 Then

o x"
(1 Wk+1=§ﬁﬁ,.-u k=0,1,..,p-1.
and where
5 = 1 ifplm_,
m 0 otherwise

If we let O = exp(2im/p), then we may write

-1
) L
i=0

14
Pj
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We next look for a closed form for wy,;. Thus

E giln-k)

n=0 ! P j=0
Since the series in (1) is absolutely convergent for al complex x, we nay
rearrange its terms in any order. Then

lp—1 ik e (x 6’)"
)

Pjo a0 N

Wieet =

Wi

B'j"exp(xef), k=01, ..,p-1.

&)

We define, form=0, 1, 2, ., p-1,asumS§,,,, and then use equation (3)
to get

-1 p-1

P-l . .
S,=Y 0mw, =Y om L Y 67%exp(x6/)
=0 k=0 P j=o0

)

b

-1

P Y . .
E gktm=-j) = E exp(x8/)3,, ;,
j=0

k=0

p-1 o
= E exp(x6/) - —
j=0

ad it follows that

4) S, =exp(x6™), m=0,1,..,p-1.
Note that
p-1
Yoem=0
m=0

and consider the product
p-1 p-1
[15,.. = exp(xY 8™) = exp(0) = 1.
m=0 m=0
This result provides us with the general identity satisfied by the w,:

p-1 p-1
IT Y 6™ w.. =1,

m=0 k=0

and equivalently,
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p-1
(5) IT (v + 07w, + 627wy + -

m=0

(p-1)m -
+ 0 w,) =1

Some special cases follow. If p= 2 and hence 9 = -1, then
Wy + w)(wy = wy) = wi? —wy> = 1.
Forp = 3, by repeated application of the relation 8> + 9+ 1 =0, the identity
in (5) becomes
W13 + w23 + w33 - 3www; = 1
When p = 4, 9 = i and equation (5) becomes
(wy +wy +wy +w) (W) +iw, —wy —iw,):
(W —wy +wy —w, ) (w) —iw, —wy +iw,)
= [(wy + w3)® = (wy + W ][(w) - w3’ + (W, - w)] = 1.
ITI. Solution by Richard |. Hess, Rancho Palos Verdes, California.
Wetake, for any given positive integerp and fork =1, 2, ..., p,
: L) xpn#k-l
A pntk-1)1

and define u,, = e*™™P, Supposep isan odd number. Then

Wy

2,2 3.3
ux? ux g
e¥ = 1 +ux+ e S Wy oUW, Uy e uP
2! 3! p
and
2.2 3.3
- ux? ud ,
e = 1-ux+ e = W —UW, U iwy — e ruP W
2! 3! p

where u can be subscripted withm=1, 2, .., p- 1L
In the product

(1) 1 =e ulxe -ulxe uzxe —uzxm e up_lxe —up_lx

pairs of factors can be split out, such as

ux u _x -1 «1
e pomt = w+u? wt+uy?
e"e = (wy +u,w, +-+u, wp)(w1 U, Wyt +up_mwp)
r-1 s-1 s-1 r-1

2 2 2
=w, +w2 +...+wp + E wrws(u

m up-m +~ %m p—m)
Isrcssp
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s wlewl s rwl?2 Y w,w, cos 2am(S=r) _ 2« cos(2nmlp)
1 2 P r’s p e .

Isr<ssp
Similarly
e -2x cos(2mn/p) _ e "‘m"’e Ty m*

=wp e swl e 2 Y (F1) T w,w, cos 2mm(s- 1)

Isr<ssp P
The product of these last two expressions is 1. There will be (p - 1)/2 such
expressions form=1, 2, ..., (p - 1)/2.
Suppose now that p is an even number and define u,, as before. Then
equation (1) still holds. Its factors get paired off as before except that
Upy = -1 and

u_ X <
pI2" - X - + -
e =e = W1 W2 W3 w

is paired with

uyx _ x _
e’_e._w1+w2+w3+ +wp.
Then

u X u x

P2 P — - + ...

e e = (w - w,

- wp)(w1 + Wy + o+ WP) =1

There are p/2 - 1 additional equations form= 1, 2, ..., p/2 - 1,

[E w?+2Y w,w, cos 2mm{s—r)
res p

E w,2 +2 E D wow, COSM =1
rcs P

When m = p/4, the two expressions in brackets are the same and each is
equal to 1.
Also solved by the PROPOSER.

831. [Spring 1994] Proposed by Paul S. Bruckman, Highwood, 1llinois.
Solve exactly and completely

Lo+ -t -122+2x+1=0.
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I. Solution by Henry S. Lieberman, Waban, Massachusetts.
It seems reasonable that the stated polynomial might factor as

Craxt D+ b+ o +de+ 1),

where a, b, ¢, and d are integers. We multiply out this product and then
equate its coefficients with the corresponding ones in the given polynomial
to get that

atb=-8, ¢ +ah+ 1 =18,
d+ac+ b=-6, ltad+c=-12,
a+d=2.

These equations have the solution a= -3, b= -5,c=2,and d = 5. Thus
the given polynomial is equal to

% = 3x+ 1) - 5xF + 22+ Sx 4+ 1),

'Although the quartic factor can be factored similarly into the product of the
two quadratic factors

(x2+ ex - 1) + fic - 1),

we shall follow Ferrari’s solution as presented in Higher Algebra by Hall and
Knight, pp. 483-484.
To each side of

o5 e 2?+5x+1=0

" add (Ax + B)?, the quantities A and B being determined so as to make the left
side a perfect square of the form (x? - (5/2)x + k)%, That is, we want

(x2 - (5/2)x + k)* = x* - 5x3 + (25/4 + 2k)x? - Skx + k2
=x? -5x ' + (2 +ANx? +(5+24B)x + 1 + B2 = (Ax + B)?.
By comparing coefficients we get
2514 +2k=2+A2, -Sk=5+24B,and k2 =1+ B2.
Eliminate A and B from these three equations by taking
(AB)? = (=(5/2)k - 5/2)* = (1714 + 2k)(k?-1).

The resulting cubic polynomia in k easily factors thus
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a2 - 4% - 29k - 21 = (k+ 1)(2k + 3)(2k - 7) = 0.
Tekingk = -1, we get B = 0 and A = +3/2, which gives rise to

x2—_5.x-1=1-_3.x.
2 2

Thus the original polynomia factors into the product
02 -3c+ D2 -dx - 12 -x-1),
which has the easily verified zeros

x=2% 5, 1:’\/3’3:7;/'5—.

The other two values of k, -312 and 712, smilarly lead to factorizations
which produce the same zeros.

Also solved by BILL CORRELL, JR., Denison University, Granville,
OH, PATRICK COSTELLO, Eastern Kentucky University, Richmond,
MARK EVANS, Louisville, KY, J. S. FRAME, Michigan State University,
Lansng, MARCIE GARDNER, TOM SYMONS, ARTHUR THOMASON,
and RANDI KAY VEST, Hendrix College, Conway, AR, ROBERT C.
GEBHARDT, Hopatcong, NJ, RICHARD |. HESS, Rancho Palos Verdes,
CA, JOE HOWARD, New Mexico Highlands University, Las Vegas,
BECKY LATCH, ANGELA JONES, and WADE WILLIAMS, Hendrix
College, Conway, AR, CARL LIBIS, Idaho State University, Pocatello,
PETER A. LINDSTROM, North Lake College, Irving, TX, DAVID E.
MANES, SUNY College at Oneonta, YOSHINOBU MURAYOSHI,
Okinawa, Japan, BOB PRIELIPP, University of Wisconsin-Oshkosh, STAN
WAGON and JOAN HUTCHINSON, Macalester College, St. Paul, MN,
REX H. WU, Brooklyn, NY, SAMMY YU and JI MY YU, University of
South Dakota, Vermillion, and the PROPOSER.

832. [Spring 1994] Proposed by David Iny, Westinghouse Electric
Corporation, Baltimore, Maryland.

The taxicab distance between points (a, b) and (c, d) is |a -c| +
|b -d|. Determinethecircumferencein taxicabspacedf the circle whose
equation isx® + y? = 1.
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[. Solution by Victor G.
Feser, University o Mary,
Bismarck North Dakota.

The circumferenceis 8. In
taxicab geometry, the circleisa
square, as in the figure. To
confirm this fact, find equations
of each of the four segments.
For example, AB isgiven by y =
-x*+ lontheinterval 0 sx s 1.
Then a point on that segment is
(x, =x * 1) and its distance from (0, 0) is given by

|[x -0} +]|(-x+1)-0|=x+(-x+1)=1,

so it lies on the taxicab circle.
The length of segment AB is |1 - 0| + |0 - 1| = 2 Since each of the
other three segments has the same length, the total circumferenceis 8.

(UB)]

(1,0

R
<

1. Comment by Paul S. Bruckman, Highwood, |llinois.

Aha, Lindemann was wrong—you can sguare the circle after dl. In
taxicab geometry. Nor am | impressed with the Chudnowsky brothers
achievement — I can computert to infinitely many decimal places, al of them
zero! Now, for my next trick, | intend to show that o is a rational number
(in fact, | once actualy met a rational mathematician!).

Also solved by SEUNG-JN BANG, Ajou Univerdty, Suwon, Korea,
PAUL S. BRUCKMAN, Highwood, |IL, MARK EVANS, Louisville, KY,
ROBERT C. GEBHARDT, Hopatcong, NJ, STEPHEN |. GENDLER,
Clarion University d Pennsylvania, RICHARD 1. HESS, Rancho Palos
Veades, CA, HENRY S. LIEBERMAN, Waban, MA, DAVID S. SHOBE,
New Haven, CT, ROMAN SZNAJDER, University o Maryland, Baltimore,
MD, REX H. WU, Brooklyn, NY, and the PROPOSER.
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833.  [Spring 1994] Proposed by Seung-Jin Bang, Ajou University,
Suwon, Republic of Korea.
Deline a function fby f(0) =1 and

+ -2 + -3
f('ﬂ) - (" Z ) & (" m”_l | )

Find the value of the sum Ef":() f(m).

Solution by J. S. Frame, Michigan State University, East Lansing, MI.
Let us denote f(m) by f(m, n) to show its dependence on n. Then
fO, ) =1and
fmn)y=fmn+1)-fm-1,n+1) formz1.

Thus the required sum telescopes and yields

k k
Y fim oy =[O, 0) + Y [fim, n 1) - fim -1, n+1)]
m=1

m=0
= fO,n) + flk, n+1) = f(O,n+1) =1+ f(k,n+1) - 1

n+k-1 n+k-2 n+2k-1[n+k-2
e LT I 1)

Also solved by PAUL S. BRUCKMAN, Highwood, IL, BILL CORRELL,
JR., (who provided the final form for the solution), Denison University,
Granville, OH, RICHARD 1. HESS, Rancho Palos \/erdes, CA, HENRY S.
LIEBERMAN, Waban, MA, PETER A. LINDSTROM, North Lake College,
Irving, TX, PHYLLIS MAHAN, Eastern Kentucky University, Richmond,
DAVID E. MANES, SUNY College at Oneonta, REX H. WU, Brooklyn, NY,
and the PROPOSER.

834. [Spring 1994] Proposed by Murray S. Klamkin, University o
Alberta, Edmonton, Alberta, Canada.

Let Tand 7' denote two triangles with respective sides (a, b, c) and
(@, b, ¢’y wherea'® = 2a(s - a), b'? = 2b(s - b), and ¢’ 2 = 2¢c(s - ©).
Prove that

()s2s, (iYR2R, (ii)rzr. and (iv)F /s’ 2 Fis®
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where s = (@t bt ¢)/2 is the semiperimeter, R the circumradius, r the
inradius, and F the area of triangle ABC, and similarly for triangle A’ B’ C'.

Solution by Miguel Amengual Covas, Cala Figuera, Mallorca, Spain.

Giventriangle T, triangle T exists from items (1) and (35) in [2] for the
function f(x) = vx. (The converseis not true: given an arbitrary triangle 7,
then a, b, and c are not necessarily the sides of atriangle) Next, we define
x=s-a,y=s-bandz=s-c. Thenx+y=c,y+z=a,andz+x =
b.

By the arithmetic-geometric meaen inequality we get

2s"=a' +b' +c' =2y +2) +Y2(@ +x) + 22 +y)

2c+(y+z) 2y +(z+x) 22+ (x+y)
2 2 2
2(x +y +z) =25
from which inequality (i) follows.
Since we have

<

cosA’ = 5+ ¢c'? -q'? _ (z+x) + 22(x +y) + 2x(y +2)
b'e’ 2/2y(z+x) ~Y2x(x +y)
|
= yz _ yz - J (s-b)s-c) =snaA
W@ +x)z(e +y) = \J (z * 0 +y) Be 2’

then A" = /2 - A/2 and similarly B' = w/2 = B/2 and C’ = /2 — C/2. Now

A B C
s = ARcosEcos_.cos_. = 4R sinA'sinB’ sinC’

2 2
= 4R~ Zsm%lcosA_, -sm%l _BZ’ Zsm_czi —CZL
= 8R sm%'sm%’smc_z’ 4005%,00557’005%
= 8Rsm%sm%,sm7’ ;_,, s R'-é—,
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and inequality (ii) followssince, by item 212 in [1],
snA—'snB—'sng <1
2 2 2 8
By Heron's formula,
8F2=(@a+b+c)a+b-c)b+c-a)c+a-h)
= 2a%" + 2b%ct + 2c%* - a* - b* - !

by just a bit of algebra. Similarly, placing a prime on each letter in this last
equation and then replacing a' 2 by 2a(s = a), etc., and with just a bit more
algebra, we get that

8F'? = ¥ 2:2b(s -b)-2c(s -¢) - ¥ 4a’(s -a)’
= 2a%0% + 2b%* + 2c%a? - a® - b* - ¢* = 8F L

Hence ' = F. Now rs = F= F' = r's’, so inequality (iii) follows from

inequdity (i).
Finaly, from inequalities (i) and (iii) and F = rs, we get inequality (iv),
F.r.r.f
SIZ s’ s 2
References

1. O. Bottema et al, Geometric | nequalities, Wolters-Noordhoff, Groningen,
1968, p. 20.
2 D. S. Mitrinovié, J. E. Pecarié¢, and V. Volenec, Recent Advances in

Geometric Inequalities, Kluwer, 1989, p. 18-22.

Also solved by PAUL S. BRUCKMAN, Highwood, IL, and the
PROPOSER.

835. [Spring 1994] Proposed by the Alma College Problem Solving

Group, Alma College, Alma, Michigan.
Let P(x) be a polynomia of degree n = 2 with real coefficients and

whose leading three terms are ax” + bx" ' + cx*2. All remaining terms are
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of degreen - 3 or less. If b? < 2ac, then prove that P(x) cannot have n
distinct real roots. (This problemisa generalizationof Problem 4 from the
February 1990 issue of Problem Solving Newdetter by Dr. Hugh
Montgomery of the University of Michigan.)

. Solution by Kandasamy Muthuvel, University of Wisconsin at Oshkosh,
Oshkosh, Wisconsin.

Suppose that P(x) has n distinct rea zeros. Then by Rolle’s theorem,
one can see that P'(x) must have n - 1 distinct real zeros, and so forth, so
that

pe-B(x) = LZZ)!_[an(n - D)x2 +2b(n - Dx + 2c]
has two distinct red zeros. Hence its discriminant
4% (n - 1)? - 8an(n - 1)c = 4(n - 1)[b*(n - 1) - 2acn] > 0.

Thus we must have

2acn
n-1
a stronger inequality than proposed.

b2 > > 2ac,

1. Solution by David Iny, Baltimore, Maryland.
Suppose P(x) = 0 has n distinct red roots ry, 75, ..., I,- Then

P() = al‘l (x-r) with @ = 0.

Then
b=-aYr, and c=a y rrj.
=1

lsi<jsn

Now
n
b* - 2ac = ay, r,.2.
=

Now (r; - r)? > O when i = j, so then #} + r} > 2r;r; and hence

n
2
n-DYri>2 E AN
i=1 1si<jsn
so
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b2 - 2ac > _ac, and finally b2 - 2ac _" 15 0.

n-1 n -

Thus, if b? = 2nac/(n - 1) s 0, P(x) cannot have n distinct zeros. When
n = 2, thisis the usua b? - 4ac s 0 necessary and sufficient condition for
P(x) = 0 not to have distinct red roots.

Also 0lved by SEUNG-JN BANG, Ajou University, Suwon, Korea,
PAUL S. BRUCKMAN, Highwood, IL, BILL CORRELL, JR., Denison
University, Granville, OH, RICHARD |. HESS, Rancho Palos Verdes, CA,
HENRY S. LIEBERMAN, Waban, MA, DAVID E. MANES, SUNY College
at Oneonta, DAVID S. SHOBE, New Haven, CT, REX H. WU, Brooklyn,
NY, and the PROPOSERS.

Bruckman commented that it is proper to speak of the zeros of P (and
not of the rootsof P) asthose values of x that are the roots of the equation
P(x) = 0. That is, an expresson has zeros, an eguation has roots.

How often have | told my students that same distinction!  Yet | did
overlook the error here. —£d.

A problemistisone of those heros,
Who, when he sees "roots' used for "zeros,"
Thi nks it a harsh grate
Like nails scraping date.
So he charges out like a rhinoceros.
—Anon.




The 1994 National Pi Mu Epsilon Meeting

The meeting took place in conjunction with the summer meeting of the
Mathematical Association of America and the American Mathematical
Society in Minncapolis, Minnesota, August 15-17, 1994,

There were thirty-three student papers delivered in four sessions:

Analysis of covariance, by Mike Ameduri (Youngstown State University)

Diagnostics in insurance: an application for simple regression, by Mark
Bonsall (Moravian College)

A Mecllin-type integral transform method for solving Cauchy-Euler
differential cquations, by David A. Brown (lthaca College)

Aspects of orthonormalization in quantum information theory, by Bill
Correll, Jr. (Denison University)

The problems of scale in the hyperbolic world, by Andrew Douglass
(Miami University)

The construct matrix, by Jamic Downs (St. Norbert College)

A practical application of Mutex, by Joseph Engel (St. Norbert College)

Interface construction and 2-D fluid dynamics, by Geoffrey Gibbons
(University of California)

Three tools to help build term persistence assumptions, by Dale Hall
(John Carroll University)

The number theoretic propertics of the dynamical system known as rigid
rotation, by Allen G. Harbaugh (Boston University)

The Haar wavelet and the dilation cquation, by Kevin R. Hutson
(Hendrix College)

The numerical range of a matrix, by Dennis Keeler (Miami University)

Beyond chaos, by Brian Kemery (SUNY College at Fredonia)

The basic mathematics of production under uncertainty, by Nikolay K.
Kolcv (Moravian College)

Tranquilizing Bigfoot, by Sondra C. Laird (University of West Florida)

Magnetic monopoles in mathematical physics, by Erik Leder (Portland
State University)
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Finding probabilities with the Maple computer algebra system, by Joshua
D. Levy (Hope College)

Examples of negatively dependent randnm variables, by Teresa J.
Murphy (Georgia State University)

Quantum cryptography, by Kathryn Nyman (Carthage College)

Nothing in moderation, everything in excess. a new weighted statistic on
permutations, by Ann Marie Paulukonis (St. John's University, Minnesota)

The Chinese Remainder Theorem and object oriented programming, by
David M. Potts (Texas A & M University)

A linear programming formulation to optimize sawmill operations, by
Jerry Priddy (Youngstown State University)

Bernoulli numbers in series summations, by Alan B. Shettel
(Youngstown State University)

Re-marking dice, by Kendra Sinopoli (Y oungstown State University)

Fault tolerance in parald processing, by Jason M. Spangler
(Youngstown State University)

Using asymptotics to mathematically model macrosegregation in
continuously cast steel slabs, by Carl Stitz (University of Akron)

Existence theorems for 2-point boundary value problems, by Tishua
Taylor (Spelman College)

A discission of simple continued fractions and their applications, by
Christina T. Tsiaparas (Y oungstown State University)

Minimal Moebius strips, by Daniel L. Viar (University of Arkansas)

On b, n-happiness sequences, by Sonny Vu (University of Illinois)

Applications of fractals in geology and geophysics, by Lisa White
(Youngstown State University)

The combinatorics of semi-direct products of cyclic groups, by Jeb F.
Willenbring (North Dakota State University)

Having a ball with Pythagoras, by Adam J. Zeuske (St. Norbert College)

Five prizes of $100 each, for papers of unusual merit, were awarded to
Andrew Douglass, Allen Harbaugh, Kathryn Nyman, Sonny Vu, and Jeb
Willenbring.

The National Security Agency again awarded P Mu Epsilon a grant of
$5000 for the support and encouragement of student speakers, and the
American Mathematical Society contributed $1000 for prize awards.

The J. Sutherland Frame Lecture, delivered by Scoutmaster Mel




166 P1 Mu EPSILON JOURNAL

Slugbate, was entitled " Cheating your way to the knot merit badge’. Some
members of the audience detected a strong resemblance of the speaker to
Professor Colin Adams of Williams College, but this may have been mere
coincidence.

The Richard V. hdr ee Awards

The Richard V. Andree awards are given annualy to the authors of the
three papers written by students that have been judged by the officers and
councilorsof the P Mu Epsilon to be the best to have appeared in the H Mu
Epsi | on Journal in the past year.

Richard V. Andree was, until h's death in 1987, Professor Emeritus of
Mathematics at the University of Oklahoma. He had served Pi Mu Epsilon
long and well in many capacities: as president, as secretary-treasurer, and as
editor of theJournal .

The winner of the first prize for 1994 is Gina Aurello, for her paper
"On the rearrangement of infinite series’ (thisJour nal 9 (1989-94) #10, 641-
646).

The second prize is awarded to Rychard Bouwens, for "Who gets the
Washers?' (thisJour nal 10 (1994-99) #1, 1-4).

Thethird prizewinneris Michael Reske, for "The secret Santa problem”
(thisJour nal 10 (1994-99) #1, 18-21).

At the times the paperswere written, Ms Aurello wasa student at Seton
Hall University, Mr. Bouwens at Hope College, and Mr. Reske at Carthage
College.

The officers and councilors of the Society congratulatethe winners on
their achievementsand wish them well in their futures, whether or not they
involve mathematics.

ITME

St. Norbert College
Tenth Annual
Pl MU EPSILON

Regional Undergraduate Math Conference

November 3-4, 1995

Featured Speaker: Norbert J. Kuenzi

University of Wisconsin - Oshkosh

Sponsored by: S Norbert College Chapter of IME
and
S. Norbert College ENA Math Club

The conference will begin on Friday evening and continue through Saturday
noon. Highlights of the conference will include sessions for student papers and
two presentations by Professor Kuenzi, one on Friday evening and one on
Saturday morning. Anyone interested in undergraduate mathematics is
welcome to attend. All students (who have not yet received a master’s
degree) are encouraged to present papers.

For information, contact:

Rick Poss, St. Norbert College
De Pere, WI 54115

{414) 337-3198

FAX: (414) 337-4098

e-mail: possri@sncac.snc.edu
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