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November 23 

Dear Dan, 

I t  was good to see you at the MAA Section meeting last weekend. 1 
meant to tell you about a problem 1 have been working on, which I think 
might interest you. I got interested in  i t  one day while fooling around with 
Matheniatica. I think that programs like Matheniatica offer real 
opportunities for students to make their own niatheniatical discoveries, and 
was working on one possible direction for exploration-telescoping series. 
You know the standard example? 

and all the terms cancel except the first so the sum is I .  I was looking for 
generalizations. One obvious sum to consider is 

Proceeding as i n  the first example, I used a partial fractions decomposition 
tor the sumnian~l. Mathematica has a built-in function for this, you kno\v, 
so it is really effortless to see what will happen. Anyway, here is what 

came out: 

As before, the sum telescopes. To simplify the notation. niiiltiply both sick's 



by 2 .  Then the first several terms of the sum reveal the following pattern: 

m - 

So all but three terms are consumed by the collapse of the telescope, leaving 

00 

00 
Encouragedbythissuccess, Iwentonto  l / k ( k + l ) ( k + 2 ) ( k + 3 )  

and a few more in the same pattern. Each time Mathematica gave me a 
partial fractions decomposition that turned out to telescope. All of the sums 
fit a nice pattern, and suggest a general identity: 

Have you ever seen that before? Any ideas on how to prove it? The partial 
fractions decompositions themselves fit a nice pattern. After multiplying the 
summand by m!, it looks like this: 

I don't have a proof that either pattern holds in general, although they hold 
in every case I checked. Maybe the partial fractions decomposition identity 
could be used to prove the other one. Any ideas? The first identity (1) 
seems like such a nice result, I would sure like to see a proof. 

John 

December 5 

Dear John, 

Thanks for a very interesting letter. I have never seen your identity 
before, but 1 can't imagine that it is new. It is too natural a generalization 
of telescoping series, and too pretty an extension, not to have been 
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discovered before. My first thought was that it should be easy to prove, 
too, but I have changed my opinion! Of course, the most direct way to 
prove the conjecture is to carry out the telescoping operation in the general 
case. This requires two steps. First, we need to establish the pattern you 
found for the partial fraction decomposition of the summand 

The second step is to carry out the telescoping operation on the sum. It is 
easy to verify that the terms do eventually all cancel, leaving a finite number 
of initial terms. To complete the proof, we need to show that these initial 
terms sum to Ilm. I worked on that part for a bit with no success. And 
since I had no success, I didn't bother to work on the partial fractions part. 

I also thought briefly about induction on m, but could find no way to get 
at the induction step. 

Then I thought about generating functions. You know how they work? 
The basic idea is this. If you have a series Â ak you turn it into a power 
series E a k x k .  Then it is a function of .v and you can use methods of 
analysis on it, like differentiation. If you can work out a closed form 
representation of the function, then plugging in x = 1 will give the sum of 
the original series. Neat, huh? In some sense you make the original sum 
infinitely harder because you transform it  from a single sum to an 
uncountably infinite number of sums. But if it works, you get not only the 
sum you wanted, hut infinitely many others, too. Wilt has a beautiful little 
book on the sub-ject, called Gi'neratinffunctionology 171. 

Anyway, I did make some progress on a generating functions proof of 
your identity. Let 

Then if you differentiate m times you get the series expansion for the natural 
logarithm. That is, 

Also, / and its first m derivatives all vanish at t = I. So just integrate the 



natural log from I to f, then integrate the result from 1 to f, then integrate 
that from I to f, and so on. After m steps you will have a formula for /j1, 
as a function off.  I think that if I could work out the first few steps, maybe 
I could see a pattern that can be established by induction, but 1 keep making 
errors. It' 1 was smart 1 would use Matlieniatica like you, but somehow 1 
can't get motivated to sit down and mess with it. Anyway, if I could 
somehow get a formula for / ,  , then all we need to do is show that 

Well, actually we need to compute that as a limit for f decreasing to 0 
because 0 is at the boundary of the circle of convergence of the power 
series. So there are a few twists and turns, but it might leadto a proof 
eventually. 

It is a good problem, John. Thanks for sharing it with me. 1 have 
already spent more time on it then 1 ought. 1 wish I could just get a proof, 
then I could leave i t  alone. 

December 9 

Dear John, 

Just a quick footnote to the last letter. I have nearly completed the 
proof using generating functions. All I need to do is prove one simple 
identity: 

I l l  

k = l  k = I  

That is interesting in itself, don't you think? 1 never saw anything like it 
before. Did you? 
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December 12 

Dear Dan, 

SUCCESS! If you were right in your last letter we have a proof! At 
any rate I was able to prove your identity (2). I want to see the details of 
the generating function argument. 

I do like your identity by the way, and the proof is really very easy. 
Let 

Next use the identity 

(T)  = (TI ; )  + ( m i  l )  

to replace the binomial coefficient in the definition of A(m) . Actually, you 
can only make the replacement in the first m - 1 terms of the sum, since 
the identity doesn't hold fork  = m. So split off the final term, and then use 
the identity. That gives 

Now look-the first sum is just A (m - 1 ) . Also, 

Substituting these leads to 

The sum at right simplifies using the binomial expansion of (1 - 1 )In to 
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give (1 Im) (1 + ( -  I)'"), which combines with the other llm term to give 
just llm. This shows that the first difference of the sequence A(m) is llm. 
Since A( 1 ) = 1, your identity is established. 

I still want to work on the general case of the partial fractions 
decomposition, if I can find some time to get to it. As soon as I get 
somewhere, I will let you know. 

John 

December 20 

Dear John, 

Thanks for the proof of that last identity. Yes, I have rechecked 
everything, and I am confident now that we have a proof. But what a 
monstrosity it is! I refuse to believe it has to be that hard. I had to define 
a whole family of generating functions, indexed on m, and then resort to an 
induction on m to get it to work out. Yukk! And there is something else 
that bothers me. The whole point of using a generating function in the first 
place is to avoid an induction argument. Somehow, the properties of 
analytic functions carry out the induction for you. So I was thinking that 
there ought to be a bivariate generating function argument. I tried to 
concoct a power series in x and y so that taking partials with respect to y 
and evaluating at 1 would give the parameterized univariate power series of 
the induction argument. I thought this would avoid the induction on m, just 
leaving me with some PDE to solve. Unfortunately, I couldn't get it to 
work out. 

Where that leaves us is with a proof of your identity, but not a very nice 
one. There must be a better approach. If we can find it, maybe we should 
give a talk about all this at the MAA meeting in March? One thing we 
definitely should do first though is try to find somewhere that the identity 
has already appeared in print. 

I guess you are about done with your semester now. That should give 
you a little more free time. That is one advantage that your academic 
position has over mine in industry. I can take some time off at Christmas, 
but it all counts against my annual allotment of vacation time. I will 
probably only take off a few days this Christmas, so I can save up for a big 

family vacation next summer. On the other hand, I am mighty glad not to 
have any finals to grade! 

dan - - 
3-. .. 

March 4 

Dear Dan, 

Sorry not to write for so long. I got real busy around the holidays and 
then the time just seemed to fly past! Then, seeing you at the section 
meeting last Saturday made me think about the problem again. As I 
mentioned, I did succeed in proving the general partial fractions 
decomposition pattern for m! /k(k + 1 ) (k + 2) - (k + m) . It is a nice little 
induction argument. Clearly the pattern is valid for m = 1 .  So assume the 
m - 1 case: 

m - I  
(m - l ) !  

k ( k + l ) ( k + 2 ) - ( k + m - 1 )  .so 

Multiply both sides by m/(k + m) and obtain 

The second sum is just the binomial expansion for ( 1 - 1 )"I lacking only 
the final term. Since the complete sum is 0, the sum of the initial terms 
must be the negative of the final term. This gives 
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Observing that the final term is just the with term of the sum now completes 
the proof. 

I have been looking through back issues of Mathematics Magazine, the 
Monthly, and the AMAWC Journal, but so far have not seen the identity. 
I am sure that you are right about it being previously known, but it would 
be interesting to see a different proof. 

John 

March 23 

Dear John, 

I appreciated getting the proof of that partial fractions identity. 
Interesting how the binomial expansion of (1 - 1 ) popped up in both the 
proofs, isn't it? I have been trying to find a better proof for your main 
identity (I), but so far with no success. The corporation's library is pretty 
limited as far as mathematics goes, and most of the holdings are on 
permanent loan in people's offices. I think I heard once that the library 
building isn't big enough to shelve all the holdings. Anyway, I really 
haven't gotten around to doing any library research. Instead, I have been 
trying to come up with some different ways of looking at the identity. 
Actually, I have found a couple of pretty interesting reformulations, but 
nothing that has led to a proof so far. 

One idea is to introduce a binomial coefficient into the sum by 
multiplying the numerator and denominator of the summand by (k - 1 ) ! . 
The identity can then be rearranged in a few steps: 

For the last transformation, I 
substituted n for m + 1 . In 
the final form, you can see 
that the terms of the sum are 
the reciprocals of the entries 
on one diagonal of Pascal's 
triangle. 
triangle into diagonal lines as 
illustrated on the right and 
call the sum of the 
reciprocals of the entries in a 
line a reciprocal sum. The 
first two reciprocal sums clearly diverge. The remaining sums are given by 
your identity. Is there a simple combinatorial argument that can be used to 
derive the identity? I found none. It would be nice to find a proof that 
connects in a neat way with this Pascal's triangle interpretation. 

Another idea was suggested by Art Benjamin. I stopped to see him on 
a recent visit to Harvey Mudd. Don Goldberg (from Occidental) was there 
too, so I mentioned your identity to them. Art took one look at the form (3) 
with the binomial coefficients and immediately started talking about 
probability. He pointed out that reciprocals of binomial coefficients often 
show up as probabilities. With an appropriate model, it might be possible 
to view the infinite sum in the identity as an expectation or as some 
computation associated with probability. If so, a proof might be constructed 
by showing in an alternate fashion that this computation should have the 
value at the right side of the identity. Art, Don, and I played around with 
it a bit, but never got anywhere. Later, on a visit to Northridge, I 
mentioned Art's idea to Mark Shilling who knows all about probability and 



stats. Mark seemed pretty sure that Art's approach should work out, so 
maybe he will come up with an alternate proof. But so far I haven't heard 
anything more from him. 

In a few weeks the kids will be out of school for their spring break. We 
have plans to go up to Santa Barbara to visit Linda's folks for a few days 
at Easter. While I am up there, I am supposed to visit the UC campus to 
check things out for the fall MAA section meeting. I also plan to take the 
opportunity to nose around in the library there, to see what I can find. If 
anything turns up, I will let you know. 

dan 

May 25 

Dear John, 

I have all kinds of news to report from my visit to UC Santa Barbara. 
The main item is that I found your identity in print, and a nice neat proof. 
I even found my little binomial identity (2) in one reference [5]. But I am 
getting ahead of the story. Abraham Ungar is visiting us for a few days 
from Fargo (where he is a math prof at North Dakota State). He came 
along on the library trip, and when I told him what I was after he knew just 
where to look: an encyclopedia of sums, products, and integrals [2] that he 
enjoys browsing in. So I met with immediate success, of a sort. In [2] I 
found as equation 3 the following: 

With p == q = 1 and r = m - 1, this particularizes to 
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did give a reference for the identity (in fact it has references for every 
identity it contains). The reference for our equation is an earlier book of 
tables [ l ]  dating from 1922. There I found an even more general form of 
the identity, another reference, but still no proof. In another book [4], the 
special case of (4) for m = 3 appears as equation 1 15. Again there is no 
proof, but a reference to [3], which is a textbook from 1895. Just for fun, 
I looked that textbook up in the card catalog, and would you believe it, the 
Santa Barbara library had a copy, just a few aisles from where 1 was 
standing. There is something really intriguing and exciting about playing 
detective in this way. When I held that book, almost 100 years old, in my 
hands and looked down at the same identity you discovered, I got goose 
bumps. Honestly! 

Anyway, the main thing I got out of all those references was a new 
perspective: finite sums! Where we began by considering infinite sums, the 
references I unearthed all made use of finite sums. The advantage of a 
finite sum is that it permits induction on the number of terms. Indeed, (4) 
is easily established by induction on n, as follows. For n = 1, each side of 
(4) is readily seen to equal 1 /(m + 1 ) !  . So suppose the identity holds up 
to n, and consider a sum of n + 1 terms: 

Substitute the right side of (4) in the sum above to obtain 

Now make a few rearrangements. 

which obviously implies your identity. However, no proof was given. It 
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This shows that the identity is valid for n + 1 and completes the proof. 
Simple! I would never have thought of the idea of trying to approach your 
identity in terms of finite sums, but it is a lesson I am not likely to forget 
soon! 

Well, John, I guess that is about the end of the trail. I don't think you 
could ask for a simpler proof, and now we know that the identity has been 
known for a good long time. It was great fun! Thanks again for sharing it 
with me. 

dan 

June 5 
Dear Dan, 

I enjoyed your letter and proof, but don't lay the problem to rest just 
yet. I can top your discoveries. I was browsing through some back issues 
of the College Math Journal when one of the articles caught my eye [6]. 
There, the special case of our identity corresponding to m = 2 is handled 
as a telescoping sum. Unlike our initial approach, where the telescope 
involves three term cancellations, in [6] there are only two terms. The 
example shown there generalizes in an obvious way to give this proof. 

Observe that for any positive m, 

This clearly telescopes and you can see by inspection that the sum for k 
running from 1 to infinity is 1 /(m m!) . That proves the identity! 

This proof really brings us full circle, for it's an obvious and direct 
generalization of the telescoping series I started with. I just headed off in 
the wrong direction with that partial fractions stuff. You might say we 
looked the wrong way through the telescope! 

On the other hand, as you said, it was lots of fun. And if I had done 

it right at the start, there would have been no partial fractions identity, no 
binomial identity, no need to use Mathematica, and you would have missed 
out on the joys of getting dusty up in the Santa Barbara library. 

In fact, we had so much fun with the subject, I wonder if we ought to 
try and write it up somehow. Do you suppose there is a form we could put 
it in that would capture some of the experience of doing it? Do you suppose 
anyone would care to read about it? 

John 
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Chapter Reports 

The NEW YORK OMEGA Chapter (St. Bonaventure University) had as 
its major activity, Professor Francis Leary reports, its popular Mathematics 
Forum. Fifteen talks were presented last year, mostly by students, including 
one on "The mathematics of coyotes, roadrunners, and ants". The 
Chapter's graduating vice-president, Heather Lecceardone, won the 
department's Mathematics Medal. 

The MICHIGAN ZETA chapter (University of Michigan-Dearborn) 
cosponsored a student-faculty mixer which was attended by most of the 
faculty, nine alumni, and more than fifty students. Professor John 
Frederick Fink says that is the best attendance ever at such an event. The 
Chapter inducted eighteen new members last year. 

The CONNECTICUT GAMMA Chaper (Fairfield University) sponsored its 
annual High School Math Bowl, similar to the College Bowl. Professor 
Joan Wyzkoski Weiss reports that eight teams from local high schools 
participated. At the spring initiation ceremony, nineteen new members were 
initiated and Carole Lacapagne of the U. S. Department of Education spoke 
on "The prime number connection: bow number theory helps secure vital 
data. " 

A WEIGHTED AM-GM-HM INEQUALITY 

Ayoub B. Ayoub 
Pennsylvania State U., Ogontz Campus 

The familiar arithmetic mean-geometric mean inequality, 

holds with more general weights [I]: 

mla  + q b  2 a *I brn2 

where a ,  b > 0, ml + q = 1, and mi ,  3 2 0 .  We will modify this 
inequality to permit negative weights, then extend it to include the harmonic 
mean. To that end, we will first prove the weighted AM-GM inequality 
using the natural logarithm function. If we consider the points A: ( a ,  In a )  
and B: (b  , ln b) on the graph of y = lnx , then the point C that divides AB 
in the ratio 3 : mi will be 

m l a  +-b mllna  + m ^ \ n b  
' 

)"I +m^. m~ +"'2 

However, if ml + q = 1, then C will have the coordinates 

If, in addition, we assume that ml, 3 > 0 ,  then C divides AB internally 
(see Figure 1). Since the graph of y = lnx is concave down (y" = 

- llx2 < 0 )  , the point D: (ml a + + ln(mI a + q b ) )  lies vertically 
above C. It is obvious that C will coincide with A or B if q = 0 or ml 
= 0,  respectively. Thus, ml , q Si 0 implies that 

Since the function y = lnx is increasing (y' = llx > O), then 



One may ask, what if m, or m, is negative? In both cases C will 
divide AB externally and consequently C will be above D. See Figure 1, 
where C' and C" illustrate this case. Thus, 

But then, 

w h e r e  mlm- < 0 ,  
ml + m ,  = 1 ,  a n d  
a ,  b ,  m , a  + m,b > 0 .  If, 
for example, m, = 312, 
m, = -112, a = 9, and b 
= 4, we get 2312 < 2712. 
Now we may combine the 
three cases in which m, and 
m, are both positive, or one 
of them is zero, or one is 
positive and the other is 
negative, as follows: Figure 1 

If a ,  b, mi a + m,b > 0 and mi + m, = 1 then 

n 1  a + m, b 5 a n '  bm2 according to m, m, 5 0. 

If we multiply this inequality by arnlb"lll ( m ,  a + m,b) , it becomes 

Combining this inequality with the previous one, we get the weighted AM- 
GM-HM double inequality: 

according to m1 4 5 0, where m, + TO) = I and a ,  b, m, a + m,b > 0. 

AYOUB, AM-GM-HM INEQUALITY 185 

If we set m, = m, = 112, we get the standard AM-GM-HM inequality 

a + b  2ab 
- S : Â ¥ f a b S *  

2 a + b  

where a ,  b > 0. 
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ON THE GIRTHS OF REGULAR PLANAR GRAPHS 

Masakazu Nihtv 
Fujishiro High School 

One of the most fascinating yet mysterious classes of graphs are the cages. 
We introduce a planar version, classify them. and use this information to 
present another proof of the fact that there are exactly five Platinic solids. 

We begin with a few definitions. The degree of a vertex v in a graph G is 
the number of edges of G incident with v. A graph in which every vertex has 
the same degree is called a regular graph; if every vertex has degree k, the 
graph is called a k-regular graph. The cardinality of the vertex set of G is 
called the order of G and is denoted by p. while the cardinality of its edge set 
is the size of G and is denoted by q.  The length of the shortest cycle in a graph 
G that contains cycles is called the girth of G and is denoted by g(G) or g. 

Let us consider the k-regular graphs with girth g. The minimal order of a 
k-regular graph with girth g is denoted by f (k, g ) , and the k-regular graphs of 
girth g and order f(k, g )  are called (k, g)-cages . For example, f ( 3,4)  = 6 
and f (3,5) = 10. The ( 3,4)-cage and (3, 5) -cage are unique and nonplanar, 
[ I ,  236-2391, 12.34-431. They are shown below. 

Fig. 1: (3,4) -cage Fig. 2: @ , 5 )  -cage 

is not true. 
We will first determine the girths of all planar k-regular graphs for k = 4, 

5 .  
THEOREM 1. If G is a connected planar +regular or 5-regular graph, then 

g(G) = 3 .  
Proof. Let p, q, and s denote the order, size, and number of faces .of G. 

Then we have 

(1) 
and 

by Euler's formula. 
Let the distinct lengths of the boundaries of the faces of G be denoted by 

g = g o , g , , - , g " ,  (go s g , ,  i =  L 2 , - .  m). 

Suppose that there are s, faces with boundary of length g, . Then we have 

(3) E^=o s,g = 29.  

From (1) and (2) we have 

(4) y,":o s, = 2 + q ( k -  2 ) / k ,  

and from (3) we also have 

(5) O < ~ E Y . , , S ,  < x:'io.~g, = 29.  

Hence we obtain 

(6) g a 2 qk/( 2 + q(k - 2)) < 2qklq(k - 2)) = 2k/(k - 2) 

by (4) and (5). 
If k is 4 or 5, then 2 k/(k - 2) is 4 or 1013, so we have g -; 3 .  On the 

other hand, it is clear that g 2 3 . This con~pletes the proof. 
The girth of a 3-regular graph need not be 3, however. In fact. the girths 

A planar. k-regular, graph of girth g of minimum order will be called a 
(k,~)-pflge.  So every planar (k,g) -cage is a (k,g) -page. but the converse 



Fig. 3: Girth 4 Fig. 4: Girth 5 

of the graphs in Figures 3 and 4 are 4 and 5, respectively. 
Since no planar k-regular graphs exist for k 2 6, we need consider only 

2 5  k < 5 . K k = 4 o r 5 , t h e n g = 3  byTheorem 1. Whenk=2 ,a  (2 ,  g)-page 
is the cycle whose length is g. If the graph G is a (5,3 )-page, then G must 
satisfi 

p -  q + s  = 2, 3s 5 29,  and 5p  = 29.  

From this it is easy to see that the graph of Figure 5 is a (5,3 )-page, and the 
graph of Figure 6 is a (4,3) -page. 

Fig. 5: A (5,  3) -page Fig. 6: A (4,3 ) -page 

Therefore it remains only to investigate k = 3. 
TIIIOREM 2. If g(G) : 6 ,  then a (3 . g )  -page does not exist. 
lJrooJ Let G be a (3 , g )  -page of order 11 and s i ~ e  q.  The for a (3, g) - 

page. we have g(q - p + 2 ) ,, a by Euler's fon~iula, Hence we obtain 

Since G is a 3-regular graph, ive also ha\e 

(8) 3p = 2q. 

Hence, with (7) and (8) we have 

(9) 

Thus g , 6. 
PROPOSITION. Let Gg be a (3, g )  -page of order pf and s i x  qg (g = 3, 4. 

5). Then (p3,q3) = (4.6). (p,.q,) = (8. 12). and ( p 5 , q 5 )  = (20,30). 
PruoJ We nu> deal onlj with g = 4. since the other cases are sin~ilar. 

Putting g = 4 In (7). we have q 2(p - 2).  Therefore we obtain p, = 8 and 
q, = 12 by (8). 

Froni this proposition it is easj to check that the graphs of Figures 7. 3. and 
4 are a (3,3) -page. a (3 , 4 )  -page, and a (3,5 )-page. respecti~el~. 

A regular pol>hedron is a poljhcdron whose faces are bounded b~ 
congruent regular polygons and ~vhose polyhedral angles are congruent Then 
every regular polyhedron P is associated with a regular connected planar graph 
G(P) whose vertices and edges are the vertices and edges of 1'. 

If G(P) is a k-regular graph 
with girth g, then the order of G(P) 
becomes n~inin~al in such graphs 
since P is a regular polyhedron. 
So, G(P) becomes a (k, g )  -page 

When g ., 3. it is clear that the 
number of dimerent types of 
(k,g )-pages is only five by our 
previous results. This shows that 
the number of regular pol~licdra is 
at most five. On the other hand, Fig. 7: A (3.3) -page 
we can construct fi\e regular 
polyhedra from the graphs of Figures 3-7 (the cube, dodecal~edron. 
~cosal~edron. octahedron. and tetral~edron. respecti~el~). We tl~erefore haie the 
\veII-known the or en^ 

Theorcn~ 3 There are ewctl! fi\e regular polyhedra 
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Hurry! Time's A-wasting! 

Ordinarily, only thc pliysicist or thc ~iiathcniatician can hopc to cntcr carly 
middle agc having niadc a scholarly mark; indccd. for such a scientist to glidc 
into tlic thirtics without distinction can bc causc for dcspair-r a job in 
univcrsity administration. 
-David Rcmnick. Thc dc\-il problc~i~. New Yorker 71 (1995) #6 (April 

13). 54-65, pagc 54. 

Thc niost conlnion fc~iialc first name among subscribers to tllc . /oz~rtid IS 

Jcnnifcr, Thc 1110st conlnlon 111alc first name IS Micliacl Tlic 1110st co~il~iio~i 
last name IS S~liitl~. but ncithcr Jcnn~fcr Sni~th nor Micliacl S1ii111i is 011 tlic 
subscription rolls 

Mark Bonsa// 
Conrad M. Siege/, Inc. 

Insurance companies are interested in predicting the hture. Not for 
individual policyholders, but for groups of them, so that they can predict as 
accurately as possible the loss that will result from the risk they are insuring. 
To do their analyses, insurance actuaries use many applications of 
mathematics, sonie very advanced, but they also use simple regression, a 
technique studied in basic statistics classes. The purpose of this note is to give 
an example of its use, sho~ving that there is an actual application of 
undergraduate mathenlatics outside the classroom. 

In linear regression, we wish to find the equation of a line, 5, = a + p-y, 
which minimizes the sum of the squared deviations between the y-coordinates 
of the data points and the corresponding y-coordinates on the fitted curve, i. e. 

ss = ( ydafo - yfif )2 = (ydola - a - Px)* ' 

To do this, we calculate dSS/da and 8 S / d p ,  set them equal to zero, and 
solve for cz and 0 to get 

Table 1 gives actual data for a casualty insurance company for 1987-1993. 
The figures in the loss column are estimates of the total amount that will 
eventually be paid because of claims made in the year (the number of which 
appear in the third column). Exposures, the numbers in the second column, 
are, roughly, the number of items being insured. The frequency in the fourth 
column is the result of dividing the number of claims by the exposure. 
Severity, in the fifth column is thc loss per claim, and the pure premium in the 
last column is the amount that cach policyholder would have to pay to just 
cover the losses-loss divided by number of claims. 



Table 1 

Y car 

Of coursc, the insurance conipany would Iikc to bc ablc to extrapolate the 
purc prcniiuni into the futurc so as to bc ablc to sct its ratcs appropriatcly. 
Applying linear rcgression. we ivould gct thc prediction in Tablc 2. 

Year 88 89 90 91 92 93 94 95 
I 1 I I I I 1 1 

Loss 

Prcni. 1 673 1 767 972 I082 1198 1319 1445 

Tablc 2 

Exposures 

Ho\vevcr. Iincar rcgrcssion niay not bc thc bcst n~odcl. lf \vc assunie that 
thc prcmium tcnds to incrcasc a constant pcrccntagc each ycar. then thc bcst fit 
\vould bc an cxponcntial function, 

Yfil = ct '! 

Tlicrc is no difTicult~ in finding tlic paraliictcrs. since 

ln(Yfil) = P X  + ln(ct).  

\iliicli is a linear fu1ict1011 W = 0 + Par. \vitli W In( Y )  and 0 - 11i(ct ) , 
This gives tlic predictions in Tablc 3 

Clainis Year 88 89 90 91 92 93 94 95 
I I I I I I I I 

Table 3 

Scvcrity 

As could be expected the exponential fit gives larger predictions, since 
cxponential cunes bend upward while lines are straight. But they arc more 
likely to be accurate. Answering the qucstion of how accurate ~vould involve 
finding the variance of thc predicted values. This would involve the variances 
of the observed values, which can only bc estiniated. This is one of thc reasons 
that, in spite of all that actuaries and niatheniatics can do. the future can still 
be surprising. 

Pure 
Prcmium 

Mark Bonsall wrote this paper umhile a strident at Muravian College He is 
now3 an assistant actriay uVth a cun.~~iltingjrm in Harr1.s-brdrg, Penns~*Ivania, 
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AN APPLICATION OF PARTITIONS TO THE 
FACTOFUZATION OF POLYNOMIALS OVER FINITE FIELDS 

Julia Varbalow and David C. Vella 
University of Kentucky and Skidmore College 

In this paper, partitions of natural numbers are used to count the 
irreducible polynomials of degree n over a finite field. This apparently little 

known application of partitions is described in detail in Section 11. Section 
I is a brief introduction to partitions. These results were developed as part 
of the first author's senior mathematics thesis under the direction of the 
second author. 

I) Introduction. Let n be a natural number. A partition of n is a finite 
set u of natural numbers (possibly with repetitions) whose sum is n. We 
sometimes write u I- n to indicate that T is a partition of n. For example 
if u = {4, 3, 3, 1, I,  11, then T I- 13. Two partitions are considered 
equal if they have the same entries or purrs, regardless of the order of those 
parts. For convenience, partitions are frequently written with their parts in 
nonincreasing order: u = {pl  , p2,  . . . , pm } wherep, 2 p2 2 -.. 2 pm , 
as in the above example. 

For each i ( 1 5 i 5 n) , the number of times i occurs as a part of the 
partition u is called the multiplicity of i in u, and is denoted by mi(u) or 
more simply by ui (so ri is the cardinality of {pk 1 pk = i } ) .  This leads 
to an alternate notation for partitions where u is denoted by 

[ 1 2=*, ... , nTn] with entries of multiplicity zero omitted. Thus the 
above partition u of 13 can also be written as [ 13, 32, 41, suppressing the 
superscripts equal to 1. We shall refer to the number of parts l ( u )  of u 
as its length and the number of distinct parts d(u)  as its depth. In the 

3 above example T = [1 , 32, 41, we have t ( u )  = 6 and d ( ~ )  = 3. It is 
clear that the length of any partition is the sum of the multiplicities of its 
parts: 
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Let P stand for the set of all partitions. Let Pn = {-y â P 1 7 I- n} 

be the set of partitions of n, so P = unW= Pn (disjoint union). It will be 

convenient to allow the number 0 to be a part of a partition. In fact, 

although we will omit 0 when writing a partition, we will follow the 
convention of assuming that 0 is a part of any partition, of multiplicity 1, 
although it contributes nothing to the length or the depth of the partition. 
Thus %(u) = u,, = 1 for all u â Pn, while the sum in (1) is not 
adjusted to begin at i = 0. Furthermore, in order to treat the formulas 
appearing in Section I1 uniformly, it will also be convenient to assume there 
is precisely one partition of 0 (which has length 0 and depth 0), namely [0], 
which we adjoin to P. 

The partitionfinction is defined by p(n) = 1 Pn 1 (cardinality of Pn). 
For example p(5) = 7, since 

One may compute p(n) for small values of n by hand, although this process 
soon becomes tedious since p(n) grows rather quickly. For instance, p(10) 
= 42, p(20) = 627, and p(l00) = 1!90,569,292. While there is an exact 
formula for p(n) (see [7]), it is rather complicated and many calculations of 
p(n) rely instead on some kind of recursion. 

The partition function and partitions in general have a long history, and 
they arise in many diverse situations. The grade school student may meet 
them in simple counting exercises such as "how many ways are there to 
make change for a dollar without pennies?", which is really the question of 
how many partitions of 100 are there with each part equal to 5, 10, 25, or 
50. In a similar manner one can rephrase questions such as "how many 
different ways are there to roll a 12 with exactly three dice?'' or "what is the 
largest number of Chicken McNuggets that you cannot order exactly if they 
come in packages of 6, 9, and 20?". The reader should have no trouble 
seeing that these questions and many others like them are rally questions 
about counting partitions with certain restrictions on the parts. While these 
questions can be answered easily by ad hoc methods, a very satisfiing 



uniform method exists which is sometimes covered in an introductory course 
in discrete mathematics. Originally due to Euler, it is based on multiplying 
together certain power series (e.g., see [4], section 19.3) known as 

' 1  generating jiinction.~. 
Like the above examples, many of the most interesting problems related 

to partitions involve counting partitions with restrictions on the parts. 
However, just as p(n) itself is elusive, it is frequently impossible to do this 

. . 

directly with the added restrictions. As a consequence, many counting 
arguments focus on showing that one set of restricted partitions is 
equinumerous with a different set of restricted partitions without actually 
counting either set. For example, it is a well known result that the number 
of partitions of n into at most k parts is the same as the number of partitions 
of n into parts which are at most k. As a concrete example consider the 
case n = 6, k = 3. The partitions of 6 into parts which are at most 3 are 

and the partitions of 6 into at most 3 parts are 

There are the same number of partitions in each set, namely seven. 
The interested reader will find an elegant proof of this assertion (and 

many others like it) using a graphical device known as the Ferrers diagram 
of a partition (invented by N. M. Ferrers and later popularized by J. J. 
Sylvester) in [ I]. 

In addition to these counting problems there are many celebrated 
applications of partitions in other areas of mathematics. Two of our 
favorites in group theory are the connection between partitions of n and the 
conjugacy classes in the symmetric group Sn and the classification theorem 
of finite Abelian groups. Since these applications can be found in any good 
introduction to abstract algebra (161, for example), we will not dwell on 
them. At a somewhat deeper level there are also some beautihl applications 
to the representation theory of Sn (see [8]). Partitions of a natural number 
can also be used to extend the chain rule of calculus to higher derivatives, 
leading to the well-known Bell polynomials (see [3]), among other things. 
The interested reader can find some applications of this in 1121. We will 

presently describe an application of partitions to undergraduate mathematics 
which does not seem to be as widely known. 

11) Counting Irreducible Polynomids Over Finite Fields. 

Let F be a field and let flfl be the ring of polynomials with coefficients 
in F. Then f lq is a unique factorization domain* and the nonzero constant 
polynomials form the group of units (see [S], [6], or [lo]). Thus, every 
polynomial of degree 1 or larger factors into a product of a nonzero constant 
and monic irreducible polynomials in a unique way (up to the order of the 
factors)* where m n i c  means the leading coefficient is 1. Thus in many 
ways this ring behaves like the ring Z of integers. In particular, the (monic) 
irreducible polynomials play the role of the (positive) prime numbers in Z. 

Therefore, one could ask questions about the distribution of irreducible 
monic polynomials which are analogous to questions about the distribution 
of primes in Z .  Because f lq is an integral domain, the degree of p(X)q(X) 
is the sum of the degrees of p(X) and q(X). By induction on m, the 
following is true: 

It follows that every (monic) , polynomial of degree one is irreducible. 
Such a polynomial has the form X + a for some a â F, so if F is infinite, 
the ring flfl  has an infinite number of irreducible polynomials just as Z has 
an infinite number of primes. (In case F is algebraically closedy these are 
the only monic irreducible polynomials.) It turns out that even if F is a 
finite field, there are still infinitely many irreducible polynomials (see page 
274 of [S] for the case F = Z,, the field of integers modulo the prime p), 
although there can be only a finite number of any fixed degree n. This 
raises the question of finding the number of irreducible polynomials of each 
degree in case F is finite. 

Let NF(n) stand for the number of irreducible monic polynomials of 
degree n over the field F. In case F is a finite field with q elements (where 
q = pr,  p is the characteristic of f l ,  we will also use the standard notation 
Nq(n). Our method for computing NF(n) is a recursive method based k,,n 
(2). It is a generalization of exercise Cy page 255 of [lo], except that there 
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it is only carried out for n = 2 and n = 3. When this is attempted for 
larger values of n, partitions enter the picture. Indeed, if p(X) is a monic 
polynomial of degree n, it factors uniquely as a product of monic irreducible 
polynomials p(X) = II pi (X) . So if we let di = deg(pi (X)) , then (2) 
implies that the set of degrees { d l ,  d2, - , dm } is a partition of n. 
Furthermore, p(X) is itself irreducible only if the partition so obtained is [n], 
otherwise each di < n. A typical monic polynomial of degree n has the 
form 

with the ai's in F. Let F be finite from now on, with q = \ F 1 . Now 
there are exactly q choices for each of the n ai's, so there are q n  monk 
polynomials of degree n altogether. Our goal is to count the number of 
reducible polynomials of degree n (provided Nc (di) for di < n has already 
been computed), and subtract this number from q n  to find Np(di). 

First we consider some preliminary information regarding partitions. 
We remind the reader that the conventions about 0 from Section I are still 
in effect. We now introduce an operation on P. Given a partition IT I- n, 
recall that the length I(v) is the total number of (nonzero) parts and the 
depth d(v) is the number of distinct (nonzero) parts. From (1) it follows 
that the set of multiplicities S(v) = { 7r, ,  7r2, - , vn } is a partition of 
I (IT) , which we call the derived partition of IT. Observe that 6 (v) has 
length equal to the depth of IT (many of the multiplicities ui are 0). For 

2 3 example, if T = [13, 2 ,  4 , 5 1 ,  then v I- 28 and there are 9 parts, but 
only 4 of them are distinct, so I (IT) = 9 and d(v) = 4. The multiplicities 
are {3, 1 ,0 ,  2, 3}, leading to S(v) = [ 1 , 2 ,  32], a partition of 9 of length 
4. We further illustrate this with the table on the next page. 

Next, suppose that v ? Pn; T = {p, , p2, - , pm} . Then we remind 

the reader that the expression n! /II:, pi! is an integer, known as a 

n multinomial coefficient, and often written as I . We will P I  9 P29 .* '> Pm 

further abbreviate this to simply , writing the name of the partition on (:) 
the bottom. When m = 2, we will follow the usual convention of writing 

the binomial coefficient as rather than [p:p2 ] or ( ; ) . 
Derived partitions for PA 

We are now prepared to prove the following: 

THEOREM 1 : Let F be a finite field with 1 FI = q. Then the total 
number of monic polynomials of degree n with coefficients in F is given by: 

Proof: We have observed above that the left side of (3) is correct. We 
now count the monic polynomials a different way to see that the right side 
is also correct. Let p(X) be one, and let p(X) = II , pi (X) be its 
factorization into irreducible monic polynomials. Let v be the degree set 
{ d l ,  d2, - , dm} (listed with multiplicities). Since F[Xl is a commutative 
ring, the di's may be listed in any order, so as noted above, IT belongs topn. 
Let j be an integer with 1 < j S n. So there are TT, of the irreducible 
factors pi(X) with degree j. If Nj represents the number of ways of 
choosing these factors of degree j ,  then the multiplication principle of 
counting yields that there are Nj ways of choosing all the factors 
together, so this accounts for the product in (3). 

It remains to show that 



ti) 
Nj = 18 6 P_ [ ~ 7 ~ )  ] (&$'))). 

I 
First observe that for a given value of j ,  it may be the case that none of the 
pi (X) 's have degree j, so that particular factor Nj should have a value of 
1 But if there are no factors of degree j ,  then uj = 0 and so the innermost 
sum runs over the index set Po = {[O]}. Thus there is only one summand 
corresponding to the partition [O] of 0. By our conventions about zeros, 
both the length and the depth of the partition [O] are 0, so that both the 
binomial and the multinomial coefficient have the value 1, as desired. 

So now consider the case where 5 > 0, so there is at least one of the 
p i  (X)'s with degree j. Now there are exactly N ( j )  monic irreducible 
polynomials of degree} to choose from, and we must choose exactly v, of 
them, possibly with repetitions, for the pi (X)'s of degree j. The possibility 
of repetitions complicates matters, so we break the problem into two steps. 
First, select the distinct factors, and second select their multiplicities to add 
up to TI, the total number of factors of degree j. Since their multiplicities 
add up to vj (and again the order of the factors is irrelevant), the set of 
such multiplicities (3 = {p  , p ;, -.-, p ,.} forms a partition of vj of length 
1(0) = d equal to the number of distinct factors. Conversely, every 
partition of vj accounts for a possible set of multiplicities for the factors of 
degree j. This is why the innermost sum runs over P . 

J 
Now given a partition 5 of IT:, since d = ?(/?) is the number of 

J .. . 

distinct factors, the binomial coefficient y 1 counts all the possible 

sets of distinct factors from among the N.,( j )  which are available. For each 
( -l 

such set, the multinomial coefficient 
d 1 fl o2 ... pirj 1 counts the number of 

ways of assigning the given multiplicities to that particular set of factors, 
where fSi. is the multiplicity of k as a part of 0. (That is, flk is the number 
of distinct factors (of degree J]  which have multiplicity k.) Rut observe that 
the set {fl , 0 2 ,  - , & }  is nothing more than the derived partition a((?) 
of 13. Thus Nj has the desired form and this completes the proof of the 
theorem. 

COROLLARY 1 : Let F be a finite field with I Fl = q. Then the number 
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Nq(n) of monic irreducible polynomials of degree n can be computed 
recursively from the forinula r 

Proof. Formula (4) follows immediately from (3) because the only 
partition in P of length 1 is [n], which corresponds to the case of p(X) 
being irreducible in Theorem 1. It is recursive because I ( v )  > 1 implies 
that a -  = 0, whence the only N,(j)'s which appear in the right hand side 
are those for which j < n. 

Some examples may help to clarify what we have done. First, we show 
a specific example of the counting technique used in the proof of Theorem 
1. 9 Suppose that p(X) is a degree 24 polynomial, with factorization P(X) = 
IIi_ ,pi (x)  , with one linear factor, three quadratic factors, four cubic 
factors, and one quintic factor. This corresponds to the partition v = 

11 , z3, 34, 51 of 24 in the outermost sum of (3). There are 24 factors Nj 
in the product, but since v4  = 0 and vj = 0 for 6 < j < 24 ,  most of 
these factors have the value 1. By definition there are Nq(l ) = q ways to 
choose the linear factor and Nq(5) ways to choose the quintic factor. 
Consider next the quadratic factors. Since v2 = 3, the index set for the 
innermostsumof(3) is P3 = {[13],  [ 1 , 2 ] ,  131). 

The partition f3 = [13] corresponds to choosing three distinct 
(quadratic) factors, since P (0)  = 3. Since there are only three quadratic 
factors altogether, each of these three necessarily occurs with multiplicity 
1 (the parts of o), so there is only one way to assign these multiplicities. 
Observe that S([ 13]) is the partition [3], since fli = 3, fli = 0, & = 0. 
Thus the number of ways to choose 3 distinct quadratic factors is 

The partition /3 = [ I ,  21 corresponds to choosing two distinct 
(quadratic) factors, since P (0) = 2. One of them will have multiplicity 1 
and one will have multiplicity 2 (the parts of /3), and clearly there are 
exactly two ways to make that assignment. Observe that the derived 
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partition in this case is 6((3) = [ 12], since 13, = P2 = 1 and O3 = 

0. Thus the number of ways to choose two distinct factors with one 
repeated twice is 

Finally the partition [3] of length 1 corresponds to choosing exactly one 
(quadratic) factor and using it three times (there is only one way to assign 
the multiplicity). In this case the derived partition is [I] as (3, = fS2 = 0 
and fS3 = 1. Thus 

This shows that in this case 

Similarly, for the 5 = 4 cubic factors, one may compute N3 as a sum 
over PA. Using the table above of the derived partitions for all T t- 4 , 
one obtains N3 = 

Therefore, the total number of degree 24 monic polynomials which factor 
into monic irreducible polynomials with degrees corresponding to the 

3 4 partition v = [ l ,  2 , 3 , 51 is 
24 

Nj = N, * N 2 * N 3 -  1 * N 5 * - *  1 = 
j =  1 

Of course, there are many other partitions of 24 to consider! Let us close 

with an example of the corollary. Let F = Z so that q = p,  and let n = 

5. Then (3) becomes 

Notice that the number Np(5) occurs only in the first term, which 
corresponds to the sole partition [5]  of length 1 in P5. Specialize to the 
casep = 3. Then N3(l)  = 3, N3(2) = 3, N3(3) = 8, and N3(4) = 18, 
as can be verified by using (3). Alternatively, one could look them up in 
a table (such as what appears in [9]), or use the approach outlined in [I I]. 
Then the above expression for o5 simplifies to 
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Consider the following property of certain positive integers n: 

(1) L,, = 1 (mod n), 

where { L,, } is the sequence of Lucas numbers, L,, + = L,, + L,, _ , LQ = 

2, Ll = 1. It is well-known that (1) is satisfied for all prime n. If (1) is 
satisfied for some composite n, then n is called a Lucas pseudoprime (or 
LPP). Let V denote the set of LPP's. 

Some of the known properties of the LPP's have been discussed in [I]- 
[4]. Among them are that all LPP's are odd (the smallest is 705), there are 
infinitely many, and all known LPP's are square-free, or quadratfrei (q. f.). 
P. Filipponi has compiled a list of the 4438 LPP's less than 2" (without 
factorizations) and one of the 852 LPP's less than lo8 with factorizations, 
all q. f. ([S], [6]). The author acknowledges his debt to Filipponi for 
graciously making these tables available. 

On the basis of the admittedly skimpy numerical evidence of the tables. 
it is tempting to make the following conjecture: 

CONJECTURE 1 : All Lucas pseudoprimes are quadratfrei. 

The author has shown [4] that Conjecture 1 is equivalent to 
CONJECTURE 2: z ( ~ ~ )  = p Z ( p )  for all primes p that divide some 

LPP. 

Here Z(p) is the Fibonacci entry-point of p ,  that is, the smallest positive 
integer m such that p \ Fm. (Fm denotes the mth Fibonacci number.) 

It seems very likely (see [4]) that all primes p divide some LPP, but 
this has not been established. The validity of this assertion would allow us 
to replace Conjecture 2 by the stronger statement 



CONJECTURE 3: z(p2) = pZ(p) for all primes p. 
In correspondence [7], J. Lagarias expressed his doubts that Conjecture 

3 is valid, even though it has been verified for all p < lo9 by H. C. 
Williams [8]. Using a heuristic argument, Lagarias surmises that the 
number of p <. x such that z ( ~ ~ )  = Z(p) (such being the negation of 
Conjecture 3) is O(log logx) . If Lagarias is correct, this would of course 
invalidate all three conjectures, under the assumption that every p divides 
some LPP. Until this question is resolved, we must allow for the possibility 
that there may exist LPP's that are not q. f. 

The aim of this paper is to characterize q. f. LPP's in a manner distinct 
from the definition in (1). As we will see, our characterization will 
facilitate numerical computations since it involves much smaller numbers 
than those involved in (1). We require a preliminary definition, along with 
some relevant results. As they are easily derived (or found elsewhere in the 
literature), they are given here without proof. 

DEFINITION: Given an integer m > 1, the Lucas period (mod m), 
denoted by E(m) , is the smallest positive integer e such that Lj+e = Lj 
(mod m) for all integers j. 

PROPERTY 1 : E(m) = 1cm {E(p ") : p " 11 m} . 
PROPERTY 2: Z(m) is even for all m > 2; E(2) = 3, E(5) = 4. 

LEMMA 1: E(m) is the smallest positive integer e such that a' = 1 
(mod m), where a = l/2 ( 1 + 6). That is, E(m) = ordm a . 

LEMMA 2: If n is odd and p a prime # 2, 5, then Ln = 1 (mod p) iff 
either 

(a) an-' = 1 (modp) or (b) an+' = -1 (modp). 

The next result is very important, and we consequently elevate it to the 
status of a theorem. 

THEOREM 1: If n â V, then for all p \ n either 

(a*) n = 1 (mod J((p)) or (b*) n = l/2 E(p) - 1 (mod E(p)). 

Proof: Suppose n â V. Then Ln = 1 (mod n), and so Ln = 1 
(mod p) for all p 1 n . If p # 5, the conclusion of Lemma 2 applies and 
there are two cases. If part (a) holds, then H(p) \ n - 1 by Lemma 1. 
Hence n vs 1 (mod H(p)), which is part (a*). If part (b) holds, then 

= - - 1 (mod p) and so am = 1 (mod p). Using Lemma 1, this 

implies E(p) 12n + 2 but E(p) / n  + 1. Then 2n + 2 = (2 + l )E(p) 
for some integer s, or 

n = sE(p) + %E(p) - 1. 

Then 

n = E(p) - 1 (mod E(p)), 

which is part (b*). If 5 1 n , then Ln = 1 (mod 5), which implies n = 1 
(mod 4), i. e., n = 1 (mod Q)). This completes the proof. 

We now give our characterization of q. f. LPP's, which is our main 
theorem. 

THEOREM 2: n is a q. f. LPP if and only if n is odd, composite, q. f. 
and, for all p \ n ,  either - ., 

(a') n = 1 (mod E(p)) or (b') n = Y a p )  - 1 (mod E(p)) .  

Proof: If n is a q. f. LPP, then n is odd, composite, q. f., and the 
conclusions in (a') or (b') follow from Theorem 1. Thus, it remains only 
to show that if n is odd, composite, q. f. and if either (a') or (b') holds, 
then n is an LPP. There are two cases. In the first, if p \ n and n = 1 
(mod E(p)), then L = Ll ss 1 (mod p). In the second, if p \ n and n 

= Ih E(p) - 1 (mod E(p)) ,  then n + 1 = I/z rE(p) for some odd integer 
r. Then 

CY 2n+2 = = 1 (mod PI, 

using Lemma 1. Therefore, an+' = Â 1 (mod p). Since E(p) / n + 1, 
we have an+' $ 1 (mod p), which implies an+' a - 1 (mod 11). Then 
an = Q (mod p), where Q = '/2 ( 1 - 6) ; likewise, 0" = a (mod 11). 
This implies that 

Ln = an + 0" = a + 18 = 1 (modp). 

In either case, Ln s= 1 (mod p) for all p \ n .  Since n is q. f., it follows 
that L = 1 (mod n). Since n is composite, therefore it is a LPP. Thib 
completes the proof. 

It is of interest to derive necessary conditions for 11 Â V that are 
independent of the assumption that n be q. f. Suppose n  Â V and p \ 11. 
Then either (a*) or (b*) of Theorem 1 holds. If (a*) holds, then clearly 
n2 = 1 (mod E(p))  for all such p. If (h*) holds, note t h i t  I ;  I ( / ) )  1 



must be odd, since n is odd and Tc{p) is even. Thus 4 1 E(p). Squaring 
both sides of (b*) we obtain 

n2 = V, ( E d  - Elf )  + 1 (mod TUp-) 

or n2 = 1 mod Q)) for all p \ n .  Our conclusion is the following 
corollary of Theorem 1: 

COROLLARY 1: If n ?  V, then n2 = 1 (mod H(p)) for all p 1 n .  

Using Property 1 of the Lucas period, we obtain similarly the following 
corollary of Theorem 2: 

COROLLARY 2: If n â V and n is q. f., then n2  = 1 (mod E(n)) . 
Unfortunately, the converse of either corollary is false. If n is 

1 
composite and if n- = 1 (mod E(p)j for all p \ n ,  it is not necessarily 
true that n ? V. The counterexamples less than 500 are n = 15, 105, 161, 
195, 231, 323, 341, 377, 435, and 451; since all these are q. f. they are 
counterexamples of either corollary. 

The hypothesis n2 s 1 (mod Tc(p)) does imply the weaker conclusion 

L 2  = 1 (modp) fo ra l lp  I n .  

If in addition we restrict n to be q. f. this implies only L 2  = 1 (mod n). 
In conclusion, Theorem 2 could have some usefulness in testing for 

n â V, provided n is q. f. and its factorization is known. Until Conjecture 
1 is disposed of, we cannot completely characterize LPP's, but only q. f. 
LPP's. A priori, it might be the case that L,, = 1 (mod p) but Ln ?fe 1 
(mod p2) for some p with p2 \ n,  so that n $ V. 
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The Public Perception of Mathematicians 

Mathematics is at the heart of the sciences. All of them require 
mathematical formulas to express their various truths. As the saying goes, 
the physicists defer only to the mathematicians, and the mathematicians 
defer only to God. (Though one would be hard-pressed to find a 
mathematician that modest.) 

-Dick Teresi, review of Science Matters by R. M. Hazen and James 
Trefil, New York Times Book Review, February 3, 1991, pp. 7, 9. 



Rachele Dernbowski 
SUNY, Stony Brook 

Let I@) (where m is a positive integer) denote the number of partitions 
having m parts in which the kth part is less than or equal to m - k + 1 . 1 

For example, 
/(I) = 1: 1 
l(2) = 2: 11,21 
l(3) = 5: 111, 211, 221, 311, 321 
l(4) = 14: 1111, 2111, 2211, 2221, 3111, 3211, 3221, 

3311,3321,4111,4211,4221,4311,4321. 
In this note we will show that 

the well-known Catalan numbers. 
Let Ik(m) denote the number of partitions counted in I(m) having largest 

part k. For example, 

1](4) = 1 , li(4) = 3 ,  13(4) = 5 ,  14(4) = 5 ,  

We will get a formula for Ik(m) . Clearly, ll (m) = 1, the only partition 
being 11 1 - 1 (m Is). For Ii(m) there are m - 1 places where the 
rightmost 2 can be placed, so /->(m) = m - 1 . To count I3(m) note that we 
get a suitable partition by placing a 3 on the left of any partition into m - 1 
parts with largest part 3, so 

13(m) = Il(m - 1) + li(m - 1) + 13(m - 1) 

Applying this to the last term, we have 

13(m) = ll(m - 1) + b(m - 1) + ll(m - 2) + 12(m - 2) + 13(m - 2). 

Continuing this process and using the values for Il(m) and 12(m) we get 

Since 13(m) = 2. we have, since the sum contains m - 3 Is, 

I3(m) = (m - 3) + [(m - 2) + (m - 3) + - + 21 + 2 

In a similar manner, starting with 

14(m) = ll(m - 1) + 12(m - 1) + 13(m - 1) + 14(m - 1) 

and using the formula for Ii(m), we get 

Then, using mathematical induction, we can show that for t 2 3 ,  

Since f(m) = zrn I =  I i,(m) , using the last formula and the identity 

we find that, for m S 3 ,  

It is not hard to show that this is equivalent to 



There are other questions that could be asked about similar partitions. For 
example, let 0(m) denote the number of partitions with m parts in which the 
kth part is less than or equal to m - k + 1 and all parts are odd. For 
example, O(5) = 7 because of the partitions 

53311 53111 51111 33311 33111 31111 11111. 

I conjecture that, for m 2 2 ,  

and 

Rachele Dembowski did the work that led to this paper while a student 
at Seton Hall University, from which she was graduated in May. Her 
advisor was Professor Esther Guerin. 

Xuming Chen (University of Alabama, Tuscaloosa) notes that it seems 
as if, given three consecutive odd primes, pn , p + pn +'>, it is always the 
case that pn + p n + ,  > pn+? (3 + 5 > 7, 5 + 7 > 11, ... , 99971 + 
99989 > 99991, . . .) and wonders if this is easy or hard to prove. Is there 
any relation to Bertrand's Theorem that for any positive integer n > 2 there 
is a prime between n and 2n7 

AUTOMORPHISMS OF HASSE SUBGROUP DIAGRAMS 
FOR CYCLIC GROUPS 

Lars Seme 
Hendrix College 

lit; --. 

The work presented here extends that of Butt [ l]  and Woodard [4], who 
calculated automorphisms of Hasse subgroup diagrams, Butt for groups of 
small order and Woodard for the cyclic group C m  n ,  where p and q are 
prime and m and n are natural numbers. Here we extend their results to 
cover all finite cyclic groups. The theory of Hasse subgroup diagrams is 
not new; the definitive texts are Suzuki [3] and the recently published book 
[2] by Schmidt. Our results are a special case of Jones' theorem on 
classifying the isomorphism classes of Hasse subgroup diagrams associated 
to any finite group (see [3], p. 37, Theorem 4.5). However, the work in 
this paper was done independently of these references. 

The Hasse subgroup diagram for a group G is the lattice of subgroups 
ordered by subgroup containment. The group is the top element of the 
lattice and the subgroup containing only the identity is the bottom element. 
Subgroup A is below subgroup B in the lattice if A G B. An edge connects 
A and B whenever there are no intermediate subgroups; thus edges implied 
by transitivity are suppressed. 

An automorphism, ip, of a Hasse subgroup diagram, H, is a bijection 
from H to H that preserves or reverses order. An order-preserving 
automorphism has the property that for tyo lattice elements x and y, if 
x Â¥ y, then ip(x) Â¥ ~ ( y )  . If x 2 y, then p is an order-reversing 
automorphism. Finally, the identity automorphism is the bijection that fixes 
the elements of H. 

Let C ,,, nj , where pi is prime and ni and j are positive integers, 
PI Pi -pj 

denote a finite cyclic group. Since the subgroups of a cyclic group are 

cyclic, we can give the subgroups the general form < p f l  p$ ... p: > , 



where ki can take on any value between 0 and ni and using the notation 
< g > to denote the subgroup generated by g. A few simple calculations 

show that 

and that 

is directly below 

in the Hasse subgroup diagram. 

LEMMA 1. In the Hasse subgroup diagram of C nl nj the subgroup 
Pi P? -Pj 

< pfl  p$ p>jl  > has: 

0 subgroups directly below if ki = ni for i = 1 to j ,  
j subgroups directly below if ki # ni for i = 1 to j, 
j - m subgroups directly below if m is the number of times ki = ni 

for i = 1 to j. 
k k  Proof. Suppose < p l  p22 - p> > is a subgroup of C n l  n2 If 

Pi P. -p;j . 
ki = ni, then our subgroup is the identity subgroup and can have no 
subgroups below it. Suppose ki # ni for i = 1 to j. By adding 1 to any 

exponent in < p? p S p >  > we obtain another subgroup in the form 
k k  < p l  1 . - p ~ *  -p> > . As noted above, this subgroup will be directly 

below < p? -p> > . Since there are j choices of exponents to increase 

by 1, there will be j distinct subgroups directly below < p;l p^ -p> > . 
Finally, suppose that there are m exponents such that ni = ki . We can add 
1 only to those j - m exponents which are not ni. Therefore, there are 

j - m subgroups directly below < pfl  p$ - p.1 > . 
LEMMA 2. In the Hasse subgroup diagram of C nj the subgroup 

P? P;. ... Pj 

< p f ~ p $ . -  - p j  > has: 
0 subgroups directly above if ki = 0 for i = 1 to j ,  
j subgroups directly above if ki # 0 for i = 1 to j ,  
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j - m subgroups directly above if m is the number of times ki = 

O f o r i =  1 to j .  

The proof is similar to that of Lemma 1. 
The rank of a subgroup is its level or height in the Hasse subgroup 

diagram. We define the rank of the identity subgroup to be zero. Therank 
of a subgroup is then the number of lattice points passed following a 
continually ascending chain from the identity to the subgroup. 

Figure 1 shows the Hasse 
subgroup diagram for the 

group Since <4> is 
two lattice points above the 

<2> <3> 
identity subgroup, <4> has ,/' >-,, y /' 
rank 2. Figures 2 and 3 show <4>' <6> 

' \  CQQ. Figure 2 shows the ,,' >, ,/' 
Hasse subgroup diagram and <8> <12> 

Figure 3 shows a two- '-, \ '  
dimensional representation to (4' 
show the rank structure more 
clearly. 

LEMMA 3. The rank of 

< pk>p$ - p>jl > in the Hasse subgroup diagram of C n l  n2 ... IS 
PlP2 P̂  

(nl + n2 - + nj) - (kl + + - + kj). 

Proof. Suppose < pFp$ ..- p>jl > is a subgroup of CpBlp;2 ...py. 
Using the fact that {e} can be 
written as < p ~ l p ~  - p? > , 
we create a chain by 
subtracting 1 from the 
exponent of pl . We continue 
until the exponent of p i  is 
k l .  We have now moved 
nl - k, l a t t i c e  p o i n t s  
(subgroups) up the diagram. 
Continuing this for eachp, , 
the chain is now (nl + n2 + - Figure 2 

Figure 1 

Rank 

4 

3 



+ n,) - (k, + 4 + -- + k,) lattice points high, and that is the rank of the 
subgroup. 

Clearly, the rank of C nl  n; is then n, + n2 + - + n,. Looking at 
PI Pi  

the examples, we see that C24 and Cm have rank 4. 

THEOREM 1. The automorphism group of the Hasse subgroup diagram 
H for the group C n1 n; where pi is prime and n is a positive integer, 

PI P i  - - 
is isomorphic to Sj X C2. 

Proof. Suppose we have 
the Hasse subgroup diagram, 
H, of the group C n l  n; ,.. 

P i p 2  P '̂ 
<2> <3> <5> 

We first claim that the , \, \ , \\, 

permutation group of any \, ' Y\\\ 

number of the primes creates <4> , <15> ,<lo> 
, / ' ,  

,, --%/,,, '/ a valid automorphism of H. 
<12> <30> <20> 

Define a function ip : H -Ã , I ,,' 

Figure 3 

Rank 
4 

3 

2 

To show that ip is an automorphism, we must show that it is bijective 
and order-preserving. The bijective result follows immediately from the 
definition of ip. Function ip is order-preserving provided A has the same 
number of subgroups above (respectively below) it as does B, and 
furthermore ip maps the subgroups directly above (respectively below) A to 
those directly above (respectively below) B. In other words, if this is true, 
A can fit into 5 's  slot in the lattice H. The proof of this follows from 
Lemmas 1 and 2, their proofs, and the definition of ip. The rest of the 
structure is clearly preserved since this transposition affects all subgroups, 
and hence ip is an automorphism. Recalling that transpositions can generate 
any permutation, we see that showing this function to be an automorphism 
shows that all permutations are automorphisms. 

We now wish to show that there exist no other order-preserving 

automorphisms. Suppose we have a function ip which preserves order. 
Since ip must preserve the rank of individual subgroups, ip must move 
subgroups around in the same rank. In addition, each chain of subgroups 
must be preserved since the ordering of H must be preserved. Now, any 
reordering of subgroups is accomplished by permuting the pi's within each 
subgroup. This forces any attempt at reordering to be applied globally since 
ip cannot switch p4 and pi in rank four and switch p4 and pt in rank five, 
as this would result in chains being broken. Hence, any valid order- 
preserving automorphism must come from the permutation group s,. 

We also claim that there exists a reverse autorn~rphismip~: H + H  
defined by 

n-ml n- in ,  ipr(A) = <pl  p2 ...p,"-m~...p~-mk...pJn-mj > B, 

where A is the same as above. (Geometrically, this is a flip followed by a 180 O 

rotation about the axis joining the group and the identity subgroup, although 
this analogy falls short in more than three dimensions.) 

By Lemma 3, A has rank (jn) - (ml + q + - + m,) and B has rank 
(m, + q + - + m,) . By applying Lemmas 1 and 2, we see that A has the 
same number of subgroups above as B has below and vice versa. Also, any 
chain that originally liked A and B still exists, except that it has been turned 
upside down. Clearly, ip is bijective and so ip is an automorphism of our 
diagram. 

Finally, these two automorphisms can be combined, yielding a total 
automorphism group isomorphic to Sj X C2. 

We now turn to the general case. 

THEOREM 2. The automorphisms of the Hasse subgroup diagram for 
C nl n ;  nj form a group isomorphic to Sa x Sf, x - S' X C2. where a is 

Pl PI Pj 
the number of times ni = m, , for a given m1 , b is the number of ni = 

q for a given 9 ,  and so on. Disregard 5, whenever it appears. 

Proof. Consider the group C n1 n; .,.p;j. Suppose two exponents, sayni 
PI P i  

and nk, are equal. Then permuting pi and pk is an automorphism by the 
proof of Theorem 1. 

We also claim that if ni # nk, permuting pi and pk is not an 
isomorphism. Assume that ni < nk and define a function ip : H -* H as in 
Theorem 1. Consider the subgroup 



< pylp? . . . p ~  . . . p ?  ...p? > - A. 

Applying <p to this subgroup produces 

p(A) = <p^p^. . .p? . . .p?+l  ..p? > 
But <p is then not a function as < p ~ p ~  - p? - plni+ ' - p? > is not an 
element of C ,, since ni < ni + 1 . Therefore y> is not an 

P i p 2  p l j  
automorphism. 

As in the proof of Theorem 1,  nothing other than permutations can be 
used as order-preserving elements in the automorphism group. We also see 
that the reverse automorphism as defined in the proof of Theorem 1 is still 
an automorphism. 

Therefore, our automorphisms form a group automorphic to S x Sb 
x - x Sf x C2,  where a ,  b ,  -,fare as defined above. 
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Solution to Mathacrostic 40, by Robert Forsberg (Spring, 1995). 

Words: 

A motto 

I 
B. exine 
C. differentiable 
D. dartle 
E. ichneumon 
F. neodynuum 
G. Giuseppe Peano 
H. the venerable Bede 
I. Owen Gwynedd 
J. Nuvistor 
K. phenolphthalein 
L. Horvath 
M. Yahwist 

N. sieve of Eratosthenes 
0. icotype 
P. Chistoffel 
Q. aurora 
R. light-nanosecond 
S. scofflaw 
T. Charles Luhvidge Dodgson 
U. inactive 
V. equivocation 
W. nematocyst 
X. cord 
Y. effuse 

Author and title: A Eddington, Physical Science. 

Quotation: Pure mathematicians, having learned by experience that the 
obvious is difficult to prove~and not always truefound it necessary to delve 
into the processes of reasoning. In so doing, they developed a powerful 
technique which has been welcomed for the advancement of logic generally. 

Solvers: Thomas Banchoff, Jeanette Bickley, Barbara Buckley, Charles R. 
Diminnie, Thomas L. Drucker, Victor G. Feser, Richard C. Gebhardt, Henry 
S. Lieberman, Naomi Shapiro, and the proposer. 

Two errors escaped both the proposer and the editor: several solvers noted 
that the G in word I was omitted and Naomi Shapiro points out that the 
definition of word Y should be "Spread out without a definite form." No solver 
identified the "powerful technique" referred to in the quotation. 

Mathacrostic 41, by Corine Bickley appears on the next three pages. It 
has been some time since the directions for solving acrostics have been given, 
so they appear as well. To be listed as a solver, send your solation to the one 
of the two editors who is not Clayton Dodge. 



A. A kind of feldspar 

B. Serial, for example 

C. rouser 

D. Seen in the Grand Canyon 

E. Urge 

F. A method of ordering 
(2 wds) 

G. Angels were heard there 
(2 wdsl 

H. Devised an algorithm for 
iterative solution of 
nonlinear differential 
equations 

I. Force applied at a cross 
direction 

J. x and y or a and 0,  for 
instance 

K. Now and again (3 wds) 

L. Not part 

M. Compare 



N. - Rule, used for 
spatial orientation 

0. A kind of signal, some 
analyses of which use 
spectral displays 

P. Across the wide 

Q. Haven't the notion -------- 
67 109 92 137 27 79 40 125 

R. French conference for two --------- 
(3 wdsl 23 61 98 77 45 93 84 95 26 

S. Can be solved by QR or QL 
method, or by Householder 09 33 g4 68 105 15 39 24 5 
reduction -- 

3 100 
T. time 

The mathacrostic is a keyed anagram. The 142 letters to be entered in 
the diagram in the numbered spaces will be identical with those in the 20 
keyed words at the matching numbers. The key numbers have been entered 
in the diagram to assist in constructing the solution. 

When completed, the initial letters of the words will give the name of 
an author and the title of a book; the completed diagram will be a quotation 
from that book. 

PROBLEM DEPARTMENT 

Edited by Clayton W. Dodge 
University of Maine 

This department welcomes problems believed to be new and at a level 
appropriate for the readers of this journal. Old problems displaying %GI 
and elegant methods of solution are also invited. Proposals should be 
accompanied by solutions i f  available and by any information that will assist 
the editor. An asterisk (*) preceding a problem number indicates that the 
proposer did not submit a solution. 

All communications should be addressed to C. W. Dodge, 5752 
Neville/Math, University of Maine, Orono, ME 04469-5752. E-mail: 
dodgernauss. umemat. mine.  edu. Pleasesubmit each proposal and solution 
preferably typed or clearly written on a separate sheet (one side only) 
properly identified with name and address. Solutions to problems in this 
issue should be mailed by July 1, 19%. 

Problems for Solution 

862. Proposed by Philip Tate, student, University of Maine, Orono, 
Maine. 

"Solve this base ten addition alphametic." 
"But it doesn't have a unique solution." 
"It does if I give you the value of T." 
"Never mind, I found it. Furthermore, it has a unique 

solution in base eight. Let me show it to you." 

DODGE 
+ THE 
GREAT 

863. Proposed by James Chew, North Carolina Agricultural and 
Technical State University, Greensboro, North Carolina. 

Here is a problem especially for undergraduates. Everyone is familiar 
with the story of the absent-minded professor who wears different colored 
socks on his feet. Suppose a month's supply of socks are in the clothes 
drier; specifically, let there be n pairs of socks in a drier containing only 
these socks. 



a) Assume the socks are of n different colors. The professor draws 
socks one at a time from the drier without replacement, noting the color as 
he draws each sock. To get a pair of matching socks, at least 2 and at most 
n + 1 socks must be drawn. On average, how many socks would have to 
be drawn to get a matching pair? 

b) Repeat part (a), assuming k different colors of socks: nl pairs of red 
socks, n2 pairs of blue socks, etc., where nl + n2 + ... + ni = n. 

864. Proposed by Charles Ashbacher, Geographic Decisions Systems, 
Cedar Rapids, Iowa. 

On page 11 of the booklet Only Problems, Not Solutions! by Florentine 
Smarandache, there is the following problem. 

Let a l ,  a,, ..., a be digits. Are there primes, on base b, which 
contain the group of digits a, -am into its writing? But n!? But nn? 

Prove that for any such sequence of digits a, ,  a2, .... am, no matter how 
generated, there exists a prime such that the sequence is found in that prime. 

865. Proposed by Miguel Amengual Covas, Mallorca, Spain. 
Let ABC be a triangle with sides of lengths a,  b, and c, semiperimeter 

s, and area K. Show that, if Ea(s - a) = 4K, then the three circles 
centered at the vertices A, B, and C and of radii s - a, s - b, and s - c, 
respectively, are all tangent to the same straight line. 

866. Proposed by J. Rodriguez, Sonora, Mexico. 
For any nonzero integer n, the Smarandache junction is the smallest 

integer S(n) such that (S(n))! is divisible by n. Thus S(12) = 4 since 12 
divides 4! but not 3!. 

a) Find a strictly increasing infinite sequence of integers such that for 
any consecutive three of them the Smarandache function is neither increasing 
nor decreasing. 

*b) Find the longest increasing sequence of integers on which the 
Smarandache function is strictly decreasing. 
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867. Proposed by Seung-Jin Bang, AJOU University, Suwon, Korea. 
Find the number of solutions (x,  y, z, w) to the system 

x + y + z + w = 7  
2 + 3 + z 2 + d = 1 5  
x 3 + y 3  + z 3  + w 3 = 3 7  

xyzw = 6. 

868. Proposed by William H. Peirce, Delray Beach, Florida. 

1. Enter total amount of all social security 
benefits . . . . . . . . . . . . . . . . . . . .  1. S -- 
2. Enter one-half of line 1 . . . . . . . . .  2. 
7. Enter your provisional income . . . . .  7.-p- 
8. Enter $32,000 if married filing jointly 8 .32 ,000  

- - 
9. Subtract line 8 from line 7. If zero or 
less, enter 0 . . . . . . . . . . . . . . . . . .  9. 
Is line 9 zero? If yes, enter 0 on line 18. If 
no, continue to line 10. 
10. Enter $12,000 if married filing jointly 10. - 12,000- 
11. Subtract line 10 from line 9. If zero or 
less, enter 0 . . . . . . . . . . . . . . . . . .  1 1. 
12. Enter the smaller of line 9 or line 10 12. 
13. Enter one-half of line 12 . . . . . . . .  13. 
14. Enter the smaller of line 2 or line 13 14. 
15. Multiply line 11 by 0.85 . . . . . . . .  15. 
16. Add lines 14 and 15 . . . . . . . . . .  16. 
17. Multiply line 1 by 0.85 . . . . . . . .  17. 
18. Taxable social security benefits. Enter 

. . . . . .  the smaller of line 16 or line 17 T 18.- - 
Social Security Benefits Worksheet (somewhat simplified) 

Computation of the taxable portion of social security benefits in 1994 
is considerably more complicated than in past years, and the IRS has 
designed the 1994 accompanying worksheet to determine these taxable 
benefits. Let S be the total social security benefits on line 1, P the 
provisional income on line 7, and T the taxable benefits on line 18. For 
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married couples filing jointly, find T as a function of S and P. Exhibit the 
solution graphically by showing the function T for each pertinent region of 
the SP-plane, and give the boundary equations for each region. Assume S 
> 0 and P > 32,000 and ignore their practical upper limits. 

869. Proposed by Rasoul 
Behboudi, University of North 
Carolina, Charlotte, North 
Carolina. 

Consider an ellipse with 
center at 0 and with major and 
minor axes AB and CD 
respectively. Let E and F be 
points on segment OB so that 
O E ~  +  OF^ = O B ~ .  At E 
and F erect perpendiculars to 
cut arc BC at G and H Figure 1. Problem 869. 
respectively. Show that the 
areas of sectors OBH and OGC are equal. See Figure 1. 

870. Proposed by Gruffan P. Murphy, University of Maine, Orono, 
Maine. 

This proposal is based on a problem posed at a recent mathematics 
meeting and is intended especially for students. Without using machine 
calculation, that is, without actually finding the digits of the number, show 
that at least one digit occurs at least 6 times in the decimal representation 
of the number (77)7 77 77. 

871. Proposed by Miguel Amengual Covas, Mallorca, Spain. 
Let ABCD be an isosceles trapezoid with major base BC. If the altitude 

AH is the mean proportional between the bases, then show that each side is 
the arithmetic mean of the bases, and show that the projection A P  of the 
altitude on side AB is the harmonic mean of the bases. See Figure 2. 

872. Proposed by Paul S. 
B r u c k m a n ,  E d m o n d s ,  A D 
Washington. 

Given A , ,  A-,, and A3 are 
the angles of a triangle and 4 C 

F7' \ 
k C 12, let Sk = S k ( A l , A h )  

= EL (k cos A, + cos 2/19, 
\ - -  

pLi - 

\~, 
defined on the triangular plane 
regionR:O C A ,  < TI-,0 C A-, B ll---: H c \ 
<  IT,^ C A ,  + A +  TI-. Find 
the maximum value of Sk for all 
triangles. Figure 2. Problem 87 1. 

873. Proposed by Mohammad K. Azarian, University of Evansville. 
Evansville, Indiana. 

For p and q positive real numbers and any positive integer m let 

where x 2 0. Prove that 

874. Proposed by David Iny, Westinghouse Electric Corporation. 
Baltimore, Mary land. 

a) Given real numbers xi and zi for 1 <s i 5 n, prove that 

b) Determine a necessary and sufficient condition for equality. 
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Solutions 

820. [Fall 1993, Fall 19941 Proposed by William Moser, McGill 
University, Montreal, Quebec, Canada. 

Let an,^ (0 .<. k < n) denote the number of n-bit strings (sequences of 
0's and 1's of length n) with exactly k occurrences of two consecutive 0's. 
Show that 

r - k  n - r + 1  
= S ( k )( r - k  ), 

r=lk  

where n! if 0 5 k 5 n and 
k!(n -k)! 

Editor's comment. The problem is unclear as to how many pairs of 
zeros you count when there are three or more consecutive zeros. The 
proposer's intent was that three or more consecutive zeros are not allowed; 
consider strings where zeros appear (between ones) only singly or in pairs. 
There is no such restriction on the ones; any number of consecutive ones 
can appear any place. 

I. Solution by the Proposer. 
We use the well-known result that m like objects can be placed in q 

unlike boxes in (m.:?;l) ways. For r = 0, 1, 2, . . . , we shall construct and 
count the n-bit strings with r zeros, n - r ones and exactly k occurrences 
of two consecutive zeros. We use the symbol Z to denote 00. 

Place k 2 ' s  and r - 2k zeros in a row, which can be done in (rik) ways 
These r - k symbols in a row determine r - k + 1 boxes-one at each end 
and r - k - 1 between adjacent symbols. Into each in-between box place 
a 1. There remain n - r - (r - k - 1) = n - 2r + k + 1 ones, which 
we distribute into the r - k + 1 boxes without restriction. This distribution 
can be done in 

(n - 2 r + k +  1) + ( r - k  1 ) - 1 ) = / Ã ˆ - r + 1  
( r - k + 1 ) - 1  r - k  

ways. We thus have 

over r gives the desired result. 

11. Comment by Paul S. Bruckman, Edmonds, Washington. 
Of the a strings having no occurrences of 00, let u and z denote 

those strings that end in 1 and 0 respectively. Clearly a n O  = un + zn. To 
form a string of n + 1 zeros and ones having no 00's one can append a 1 
to the end of any such string of length n, or one can append a 0 to the end 

- of any string of length n that ends in 1. That is, un+ = a n 0  and zn+ - 
un = It follows that anto = Fn+?, where Fl = F2 = I and Fn+2 
= F + FnÃ are the Fibonacci numbers. 

It may also be shown that the "row" sums of these coefficients, that is, 

where the brackets indicate the greatest integer function, may be expressed 
in terms of the Tribonacci numbers Tn, where To = TI = 0, T2 = 1, and 
in general Tn+. = Tn+-, + + Tn. Specifically, sn = Tn+3. 

Also solved by Paul S. Bruckman, and Mark Evans. Henceforth we 
shall print only the names of the also-solvers. The omission of affiliations 
and locations will save enough space to print an additional article in each 
issue. We regret the inconvenience and ask your understanding-ed. 

825. [Spring 1994, Spring 19951 Proposed by Leon Bankojf, Los 
Angeles, California. 

Let 0 be a point inside the equilateral triangle ABC whose side is of 
length s. Let OA, OB, OC have lengths a, b, c respectively. Given the 
lengths a ,  b, c, find length s. 

IV. Comment by Henry S. Lieberman, Waban, Massachusetts. 
In addition to Rex Wu's demonstration of the symmetry in Solution I 

and the editor's comment, we observe that 

which is clearly symmetric. 
n-bit sequences with r zeros, n - r ones, and exactly k 00's. Summing 



836. [Fall 19941 Proposed by the editor. 
Solve this base ten holiday addition 

alphametic. Since the coming year 1995 is an odd 
year, you are asked to find that solution such that 
A is an odd digit. 

MANY 

NEW 
NEW 

YEARS 

Solution by Alma College Problem Solving Group, Alma College, Alma 
Michigan. 

Since we can carry at most 1 from the hundreds column, we see that 
YE = 10 and M = 9. Since E = 0, we must carry 1 from the units column 
and R = N + 1.  Thus we carry 0 to the hundreds column. From the two 
A's in that column, we see that N = 5, so R = 6. Since W > 4, we have 
W = 7 or 8. Because W = 7 leads to the contradiction S = N = 5, then 
W = 8 and S = 7. We know A is an odd digit and therefore A = 3, the 
only remaining odd digit. Thus our solution is 9351 + 508 + 508 = 

10367. 

Also solved by Charles Ashbacher, Scott H. Brown, Paul S. Bruckman, 
Sandra Reni Chandler, William Chau, Mark Evans, Victor G. Feser, 
Stephen I. Gendler, Sergey Gershtein, Richard I. Hess, Bill Hooper, Carl 
Libis, Henry S. Lieberman, Raymond Medley, Yoshinobu Murayoshi, 
Michael R. Pinter, Mike Saparov, Leslie J. Upton, Rex H. Wu, and the 
Proposer. 

837. [Fall 19941 Proposed by J. Sutherland Frame, Michigan State 
University, East Lansing, Michigan. 

Evaluate in closed form the integral 

I =  x-  Injz - x \  dx, jzj < a .  
-a 

Solution by the Proposer. 
Note that I is an improper integral because x = z at one point inside the 

interval of integration. In a small neighborhood of that point the quantity 
- 2) I72 is essentially a nonzero constant and the integral is equivalent 

to 
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I I 
i m  2 1  n x d x  = lim 2[xInx  - X I  = -2 - lim 2elne = -2, 
â ‚ ¬  â â ‚ ¬  â â ‚ ¬  

so the integral I converges. Now we set x = a cos 6 and z = a cos 4 ,  then 
add an equal term to 1 by replacing 6 by TT - 6, getting 

Since both integrand summands have period TT, we can replace 6 by 6 - 4, 
or by 6 + 4 ,  and get 

where we used sin2 y = (1 - cos 2y)/2 and the formula for cos (u + r). 
Since 



and finally 

-1 

Also solved by Paul S. Bruckman. 

838. . [Fall 19941 Proposed by Florentin Smarandache, Phoenix, 
Arizona. 

Let dn = pn+, - pn, n = 1, 2, 3, ..., where pn is the nth prime 
number. Find the nature of the series 

n = l  dn 

I. Solution by Richard I. Hess, Rancho Palos Verdes, California. 
For large x the probability of x being a prime is approximately 11111 x. 

Thus there is on average one prime between x and x + In x. Hence 

Since 

- In (In A') - In (In 2), 
2 x l n x  

the integral diverges when N becomes infinite, so the sum of the reciprocals 
of the primes diverges. Now 

I - = 1 1 > -, 
dn p n + ~ - P n  Pn+l 

so E lldn diverges by the comparison test. 

11. Comment by Paul S. Bruckman, Edmonds, Washington. 
The same problem by the same author appeared as Problem B-726 in 

The Fibonacci Quarterly, Vol. 30, No. 4 (Nov. 1992). The published 
solution, ibid, Vol. 32, No. 1 (Nov. 1994) showed that the indicated series 
is divergent. 
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Also solved by Joe Howard, David E. Manes, Rex H. Wu, and the 
Proposer. 

839. [Fall 19941 Proposed by James Chew, North Carolina Agricultural .. .- 
and Technical Stare Uni~r(~r.s~ity, Greensboro, North Carolina. 

a) A ticket buyer chooses a number from 10 through 99 inclusive. A 
number is randomly picked as winner. If, for example, 63 is the winner, 
then each ticket number 63 that has been sold is awarded $A. The reversal 
ticket number 36 is awarded $5.  That is, the second prize goes to any 
ticket with both digits correct, but in the wrong order. The third prize of 
$ C  is paid to any ticket that contains at least one of the correct digits, e.g. 
33, 43, 34, 65, 76, etc. A ticket can win only one prize and prizes are not 
shared. If you have bought 5 tickets numbered 63, you win $5A. Find the 
fair price for a ticket. 

*h) Find the fair price for the game of part (a) if prizes are shared. 
That is, the ticket seller pays out a total of at most $(A + B + C )  in 
winnings for any one game, $A is shared among all winning tickets (number 
63), if any. Then $B is shared among all holders of second prize tickets 
(number 36). Finally, all third prize winners share the one amount $C. 

I. Solution to part (a) hy Mark Evans, Louisville, Kentucky. 
The ticket price should actually he a function of the number the player 

chooses. There are three cases. 
Case 1 .  To illustrate the nine numhers that end in zero, suppose you 

pick the number 10. You win $A with probability 1/90, you cannot win $B, 
and you win $C if any of 11, 12, ..., 19, 20, 21, 30, 31, .... 90, 91 is 
chosen, with probability 25/90. The fair price is P i  = $(A + 25Ql90. 

Case 2. Suppose the buyer picks one of the nine numbers with two like 
digits. For example, suppose you pick 11. You win $A if 1 1  is chosen, 
with probability 1/90, you cannot win $B, and you win $C if any of 10, 12. 
13, . . . , 19, 21 , 3 1 , . . . , 91 is chosen, with probability 17/90. Hence the fair 
price for your ticket is P, - = $(A + 17Qf90. 

Case 3. There are 72 remaining numhers, such as 12, having twib 
distinct digits, neither of which is 0 .  Then you win $A with prob;tbility 
1/90, now $B (for the number 21) with probability 1/00, and $C't"or :iny of" 
the numbers 10, 1 1 ,  13, 14, .... 10, 20, 2 2 .  23. .... 2 9 ,  31, 32. 41. 42.  .... - 



91, 92, a total of 32 numbers. Here the fair price is P3 = $(A + B + 
320190. 

11. Solution to part (a) by the Proposer. 
Continuing Solution I, suppose the player selects a number completely 

at random without regard to the three cases considered. (Perhaps the 
number is assigned by a drawing.) Then the probabilities of picking case 1, 
2, or 3 are 9/90 = 1/10, 9/90 = 1/10, and 72/90 = 8/10, so the fair price 
should be 

111. Solution to part (b) by Richard I. Hess, Rancho Palos Verdes, 
California. 

Assume you follow a mixed strategy with probabilities p, q, and r = 1 
- p - q of choosing numbers from cases 1, 2, and 3 (from Solution 1 
above) respectively. We shall solve for p and q so that your expectation is 
indifferent to whatever strategy the remaining population chooses. Let the 
population consist of n people including yourself. We suppose the others 
all pick pure strategies from cases 1, 2, and 3. 

Suppose the remaining population all pick from case 1, say they pick the 
number 10. The table shows your expectation for each choice you make. 

You pick tone of) With probability Your expectation 
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23, 24, ..., 98 
(no 0 ,  1, or repeat) 

Hence the expectation E(l) is given by 

Similar counting for the cases where the remaining population chooses 
purely from sets 2 and 3 gives 

and 

To make the expectations equal we set 

0 = E(3) - E(2) = 

and 

which, since r = 1 - p - q,  reduce to 



and 

After much algebra, during which we find that AIC 2 /27? + 2587 - 27 
= 30.58472 in order for r to be nonnegative, we find the expectation E to 
be 

If AIC < i/27? + 2587 - 27, the problem simplifies and you choose only 
from sets 1 and 2, taking r = 0, as the reader may wish to verify. 

Also solved by Paul S. Bruckman, William Chau, Mark Evans, Richard 
I. Hess, and the Proposer. 

Editorial note-// is interesting to see a problem where f ive solvers 
submit solutions with five different answers. Some of these differences were 
due to different assumptions about strategies and about theconditions of the 
problem. Combinatorial and probability problems attract different 
interpretations, clearly illustrated in the recent furor over the so-called 
Monty Hal l  problem. 

840. [Fall 19941 Proposed by Seung-Jin Bang. Seoul, Republic of 
Korea. 

Prove that, for n S 2, 

Solution by George P. Evanovich, Saint Peter's college. Jersey City, 
New Jersey. 

We have that 

Draw the graph of f (x) = I lx and approximate the area under the curve on 
the interval [ I ,  n1 by the trapezoidal rule. Since the curve is concave 
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upward, the area is less than the approximation, that is, 

Now add 112 + l l (2n)  to each side to obtain the desired result. -. .- 

Also solved by Alma College Problem Solving Group, Paul S. 
Bruckman, Mark Evans, Jayanthi Ganapathy , Edward Hamilton, Richard I. 
Hess, Joe Howard, Murray S. Klamkin, Henry S. Lieberman, Peter A. 
Lindstrom, David E. Manes, Can. A. Minh, Yoshinobu Murayoshi, Bob 
Prielipp, St. Olaf Problem Solving Group, Selvaratnam Sridharma, Sammy 
Yu and Jimmy Yu, and the Proposer. 

841. [Fall 19941 Proposed by Seung-Jin Bang, Seoul. Republic of 
Korea. 

For given real constants a, b, and c,  let { a }  be the sequence satisfying 
the recursion equation n a  = aan-, + ban--, for n > 1 ,  a. = 0, a l  = c. 
Find the sum of the series 

Solution by Paul S. Bruckman, Edmonds, Washington. 
00 

Initially we ignore questions of convergence. Let S = En ( J ~ .  We 

first deal with degenerate eases. I fa  = b = 0, then clearly S = c .  If (J  # 

0 and b = 0 ,  we see that an = c a " ' l n !  for n '&. 1, and S = (c/rt)(elJ - 1). 
By letting a -Ã 0 we see that the former case is a limiting instance of the 
latter. 

Henceforth we suppose that b # 0. To develop a differential equation, 
suppose 

whose coefficients a satisfy the given recursion equation. Since 



then xy' - alx  = axy + bgY, or 

y' = c + ay + bxy, 

subject to the conditions y(0) = 0 and y' (0) = c. To solve this system we 
make the substitution y = u exp(ax + b212) and we get 

u = c exp(-ax - b&) with u(0) = 0 and u'(0) = c. 

x 
From this equation we obtain the solution u = c f exp(-at - bt2/2) dt and 

0 
r 1 r 1 

We observe that the integral exists for all x and hence that the given series 
converges. Since S = y(l), we obtain 

s = c exp [(a 1: exp [- (a $1 dt 

or equivalently, 

If b > 0, then by making the substitution a + bt = uJb,  we can 
obtain 

where $(-r) is the cumulative function of the normal probability distribution, 
defined by 

a .. 

Also solved by Murray S. Klamkin, and the Proposer. 
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842. [Fall 19941 Proposed by Russell Euler, Northwest Missouri State 
University, Mary ville, Missouri. 

Let xi be a positive real number for i = 1, 2, . . . , n. Prove that 

- - 
with equality if and only if xl  = x2 = ... = x,,. 

Solution by Joe Howard, New Mexico Highlands University, Las Vegas, 
New Mexico. 

By the Cauchy-Schwartz inequality we have that 

and 

Combining (1) and (2) we get that 

and the theorem follows. It is easy to see that we have equality if and only 
i fx l  = x2 = ... = xn. 

Also solved by Miguel Amengual Covas, Seung-Jin Bang, Scott H. 
Brown, Paul S. Bruckman, Philip A. D. Castoro, William Chau, Richard 
I. Hess, Murray S. Klamkin, Henry S. Lieberman, David E. Manes, Can. 
A. Minh, Yoshinobu Murayoshi, Bob Prielipp, St. Olaf Problem Solving 
Group, Selvaratnam Sridharma, Sammy Yu and Jimmy Yu, and the 
Proposer. 

Klarnkin showed more generally that 



with equality i f  and only i f  the xi are constant. Here p, q. r. s are positive 
numbers such that pr = qs. 

843. [Fall 19941 Proposed by Bill b e l l ,  Jr., student, Denison 
University. Granville, Ohio. 

Let s(n) denote the sum of the binary digits of the positive integer n. 
Find a value for c so that 

y> 1 _ 2342173 - -  
n = 1 s(n) 5544 

Solution by David E. Manes. SUNY College at Oneonta, Oneonta, New 
York. 

The value of c is 2050. Let m be a nonnegative integer and n any 
integer such that 2" S n < 2m+1. Then the number of digits for n in base 
2 is m + 1 .  Since the leading digit for these numbers in base 2 must be 1 ,  
it follows that the number of these integers with k ones in the base 2 
representation is ( kml ) ,  1 S k S m + 1 .  Therefore, 

Since 

this sum can be written in closed form as 

Consequently, 
2m4 l - 1 

1 
m 2"' - 1 

1 
m 

T m =  E - = E  E - = E -  I (2"' - 1 ) .  
n-1 '("1 r60 s(n) r a o r + l  

Then we find that 

Thus 2047 = 211 - 1 < c < 212 - 1 = 4095. Fortunately ~ ( 2 0 4 8 )  = 1 
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and ~ ( 2 0 4 9 )  = ~ ( 2 0 5 0 )  = 2 ,  so that 

and the solution is complete. - 
Also solved by Charles Ashbacher, Paul S. Bmckman, Mark Evans, 

Richard I. Hess, Michael R. Pinter, Rex H. Wu, and the Proposer. 

845. [Fall 19941 Proposed by Russell Euler, Northwest Missouri State 
University, Maryville, Missouri. 

Let A, B,  and C be subsets of U = { l ,  2,  3, ..., m}. An ambitious 
student wants to prove that if A Â B, then A U (B fl C) = (A U C) fl B 
for all A,B ,  and C. Express in closed form the number of specific cases the 
student must consider. 

Solution by William Chau, New York, New York. 
We must consider only sets A and B such that A G B. There are (7) 

sets B of k elements each, and each has 2k subsets A. Therefore, the total 
number of choices for A and B is 

Considering the 2'" different subsets C, one obtains a total of 2m3m = 6" 
possibilities. 

Also solved by Paul S. Bmckman, Mark Evans, Stephen I. Gendler and 
Daniel Schall, David E. Manes, Rex H. Wu, and the Proposer. 

846. [Fall 19941 Proposed by M. A. Khan, Lucknow, India. 
Let N, L, M be points on sides AB, BC, CA of a given triangle ABC 

such that 

Let AL meet CN at P and BM at Q, and let BM and CN meet at R. Draw 
lines parallel to CN through A, parallel to AL through B, and parallel to BM 
through C. Let XYZ be the triangle formed by these three new lines. Prove 



that: 
a) Triangles ABC. PQR, 

and W7. have a common 
centroid, and 

b) If the areas of triangles 
PQR, ABC, and XYZ are in 
geometric progression, then k = 

,IT - 1. 

Solution by William H. 
Peirce, Defray Beach, Florida. 

Place the figure in the 
complex plane and let the 
complex affix of each point be denoted by the corresponding lower case 
letter. Then 

Figure 3. Problem 846 

1 = (1 - k)b + kc, m = (1 - k)c + ka, and n = (1 - k)a + kb. 

Next, P lies on line AL, so for some real number A, we have 

Since P lies also on line CN, there is a real constant p such that 

Since the representation for p must be unique, we may equate the 
coefficients of a ,  those of b, and those of c in the two expressions for p ,  
obtaining 

which we solve simultaneously to get 

\ = 
(1 - k)2 and p = k2 

1 - k + k 2  1 - k + k2. 

Note that the denominator 1 - k + k1 is positive for all real k. Substituting 
for \ and p in either expression above gives the expression for p in terms 
of a,  b, and c. Similarly, q and r are found, yielding 

and 

r = 
(1 - k12c + k(l - k)a + k2b 

1 - k + k 2  

We develop similar expressions for x, y, and z. Since XZ is parallel to BM 
and passes through C, there is a real constant \ such that 

Also, XY is parallel to CN and passes through A, so for some real p ,  we 
have 

x = a + p(n - c) = (1 + p - kp)a + kpb - pc. 

Again we equate the coefficients of a ,  b, and of c in these two expressions 
for x to solve for \ and p. Then we substitute back into either'equation to 
find an expression for x. Similarly, we find y and z .  We get . 

a) The centroid of a triangle is the intersection of the medians and is 
equal to the average of its vertices. Thus the centroid G of triangle ABC is 
given by 

Similarly we average the affixes for triangles PQR and XYZ. Easy algebra 
shows each centroid coincides with point G. Furthermore, the centroid of 
triangle LMN, too, is at G. 

b) The area of a triangle ABC, denoted by K(ABC), in the complex 
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plane is given by 

If P = Xa + pb + vc, Q = Xc + pa + vb, and R = Ab + pc + va, 
where A, p, and v are real numbers such that X + p + v = 1, then 

Now the multiplier determinant D(PQR) is given by 

For the given triangles PQR and XYZ we have 

For K(PQR), K(ABQ, and K(XYZ) to be in geometric progression, then 
D(PQR) and D ( X m  must be reciprocals of one another, so their product 
must be 1 .  We have 

This equation simplifies to 3$($ + 2k - 2) = 0, whose only root in the 
allowable range for k is i/3" - I .  

Also solved hy Miguel Amengual Covas, Paul S. Bruckman, Murray S. 
Klamkin, Henry S. Lieherman, and the Proposer. 
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*847. [Fall 19941 Proposed by Dmitry P. Mavlo, Moscow, Russia. 
From the SYMP-86 Entrance Examination: The midline of an isosceles 

triangle has length L and its acute angle is a. Determine the trapezoid's 
area, if it is known that a circle can be inscribed in the trapezoid. 

Solution by George W. 
Rainey , Los Angeles, 
California. 

Let the inscribed circle 
have radius R. Then R = 

(Ll2) sin a and the 
trapezoid's altitude h = 2R, 
as seen in the figure. The 
trapezoid's area A is given 

by 

b* 

Figure 4. Problem 847. 

Also solved by Alma College Problem Solving Team, Miguel Amengual 
Covas, Paul S. Bmckman, William Chau, Richard I.  Hess, Henry S. 
Lieberman, Can. A. Minh, Kandasamy Muthuvel, Selvaratnam Sridharma, 
Rex H. Wu, and Sammy Yu and Jimmy Yu (two solutions). 

848. [Fall 19941 Proposed by Rex H. Wu, S U M  Health Science Center, 
Brooklyn, New York. 

a) Given a non-trivial group (a group having more than one element) 
such that, if x, y are any members, then (i) x # y implies 2 # y2 and (ii) 

7 7 
xy = y - r ,  prove the group is abelian (commutative). 

b) Prove part (a) if the term group is replaced by semigroup. 

1. Solution by Kandasamy Muthuvel*. University of Wisconsin-Oshkosh, 
Oshkosh , Wisconsin. 

a) Let e be the identity and x any element of the group. Then 
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so that x = e. Thus there is no non-trivial group satisfying condition (ii) 
and the theorem is vacuously true. 

b) For any two elements x and y of the semigroup we have 

" 2 2  = ^ m y 2  = ( 2 y 2 ) ( y 2 )  = ( r y  ) = (w)2. 

By the contrapositive of (i) we have that xy = yx. 
More generally, if xy = y Y  for some fixed positive integer n and all 

members x and y of a semigroup, then it is commutative. See Problem 
1400, Mathematics Magazine, 66 (1993) p. 198. 

11. Solution by Henry S. Lieberman, Waban, Massachusetts. 
b) By (ii) we have 

so then 

7 "  1 1 1 2  xy = y-r = @-)-(A?) = 2 y 2  = yx. 

Also solved by Douglas L. Bedsaul, Paul S. Bruckman, William Chau, 
David Del Sesto, Victor G. Feser*, Jayanthi Ganapathy , Linda Gellings part 
(a) only, Stephen I .  Gendler*, Peter A. Lindstrom, David E. Manes, Can. 
A. Minh, John F. Putz, Selvaratnam Sridharma, David C. Vella, Sammy Yu 
and Jimmy Yu, and the Proposer. 

Solvers whose names are marked with an asterisk (*) showed the non- 
existence of the group of part (a). Many solvers proved part (b) only, 
stating that that was sufficient to prove part (a) also. 

C h a p t e r  Report 

The INDIANA EPSILON Chapter (St. Mary's College) organized the 
mathematics department's Open House. which featured an address by Professor 
Thomas Bachoff on "Flatland, linkages. and interactive computer graphi&"-- 
The Chapter also (reports Professor Joanne Snow) prepared hvo mathematics 
activities for the kindergarten class at the Early Childhood Development Center 
and prepared displays for Matliematics Awareness Week. 

Comment 

We're lucky, you and I. Not just for being alive in this time and place 
(though that has a lot to be said for it), nor for being able to spend time with the 
Pi Mu Epsilon Journal (though that does as well), but for having mathematics. 

I will explain. We have minds and the question is, what are we going to 
do with them? After we get through with the dailyness of dealing with the 
details of life that must be dealt with event day, that is. The same qucstion 
arises for us as a species: after doing what is necessary to scc to it that we 
survive for another generation, what do we do then to keep our minds 
occupied? 

There are, of course, many answers, and the variety of human mental 
pursuits is as amazing as the variety in human beings. Did you know, for 
example, that there are numerological literary critics? I never did until I picked 
up a copy of Triumphal Forms, by Alistair Fowler (Cambridge University 
Press, 1970), who explained that Shakcspcarc's sonnets numbered 99. 126. and 
145 are irregular because 153 is a triangular number. and who said (p. 200) that 
"Some critics regard numerology as the key to all literary knowledge." That 
is amazing. 

There arc many answers to the qucstion of what \vc should occupy our 
minds with, but none is better than mathematics. There arc mail! that arc as 
good, or nearly as good, but none better. I do not say that because 1 think that 
mathcniatics is the most glorious creation of the human mind. I t  is. but oilier 
people~pocts  and philosophers perhaps-might argue strcnuousI> that it is 
not. and they must be granted thc right to disagree. .. 



Whatever the degree of its glory, mathematics has matter. Mathematics 
has problems to be solved, problems with substance. Crossword puzzles, and 
the mathacrostic that appears in this issue, are problems to be solved as well, 
but once they are solved, what of them? They are insubstantial, and they are 
discarded and forgotten. Their solution does not get us anywhere. 

Solving problems in mathematics does get us somewhere. First, we solve 
quadratic equations. Then. a couple of thousand years later, we solve cubics 
and, almost immediately, quartics. After another two hundred years, we show 
that we can't solve quintics. Not all of them, that is, but only some-which 
ones? Galois finds out, and starts group theory. Just a little while ago we (and 
it took a lot of us. working together) found all the finite simple groups. We are 
getting somewhere. Progress is being made. What do we do next-are we 
done? Certainly not: there are plenty of problems left-infinitely many, in 
fact-and we will never be done. 

This is not so in all lines of intellectual endeavor. Take philosophy for 
example, whose date of birth was approximately the same as mathematics'. 
There are many problems and many questions that can be asked, but there are 
no answers. Someone said that the history of philosophy consists of attempts 
to answer questions that Plato asked. Philosophy does not seem to get 
anywhere. Progress can be said to be made-the questions become more 
clear-but it is not the same as progress in mathematics. A philosopher will 
write a paper and some other philosopher will write another paper saying that 

I 
the first philosopher is an idiot. Well, not quite that, but the second 
philosopher will point out things that the first philosopher, who was not as 
acute as the first philosopher, failed to notice, or interpreted wrongly. The first 
philosophcr (or a third. a friend of the first) can write a third paper explaining 
why the second philosopher is all wet. Well, not all wet, but damper than he 
or she should be. The cycle can go on and on, bringing us not much closer to 
the answer to. for example. the question of what is knowledge and how do we 
know it. 

Theology's problem of evil will never be solved. In history, all we can 

I have are reinterpretations. And pity the poor classicists! I t  is possible that, 
lying in an attic somewhere, there is someone's dairy for the years 1862-65 that 

1 i l l  shed a whole new light on the Civil War. Historians thus have a hope. 
, however slim, of getting new material, but the chance of finding Sophocles's 

diary is nil: classicists have a fixed amount of material and all they can do is 
rearrange it in difircnt ways. 

In mathematics we havc i t  better. The amount of material is infinite, and 
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we make progress. Of course, progress is made in the sciences, but it is not the 
same. Once the physicists construct their grand theory of everything and verify 
it sufficiently by experiment, that's it. They're finished. They can all be given 
gold watches and put out to pasture, or be put into classrooms explaining F = 

ma to the next generation. It will take longer to wind up chemistry, but there 
are only finitely many elements and I think only finitely many compounds that 
could exist and be stable. Once everything is known, there is nothing more to 
find out. Biology is harder yet and we have a long, long way to go, but the end 
of biology is also conceivable. But mathematics will have no end, ever. The 

race may get tired of the subject and stop pursuing it, but that will be because 
the race is exhausted, not mathematics. 

Another huge advantage of mathematics is that it has matter at all levels 
to be worked on. Very few of us have the ability and the courage to attack the 
Riemann Hypothesis, but more of us can do things like finding equivalent 
statements of it (they might be easier), or of verifying that the next few million 
zeros of C(s) lie on the critical strip (a counterexample might turn up). 
Contributions on lower levels can be made. May I mention the best theorem 
that I ever proved? It was known that the fractional parts of {n cos n} are 
uniformly distributed on [ O ,  11 and those of {cos n} are not: where does the 
switch occur? The answer is that for any f(n) that goes to infinity, no matter 
how slowly, the fractional parts of { f(n) cos n} are uniformly distributed. 
Not an important result, but satisfying. 

The capacity for satisfaction exists at all levels. All journals of 

mathematics aimed at general audiences, including this one. havc problem 
sections. They do not have them because it is the right thing to do, they have 
them because their readers like them. They are sometimes the most popular 
parts of the journals. The reason is obvious: they provide matter, matter for 
readers to work with and sometimes triumph over. And any reader can grapple 
with it. 

Lucky us! All of us have matter that we can deal with. Do journals of 
philosophy have problem sections? I have not made a survey, but I doubt it. 
The vast majority of people with training in philosophy do not have any matter 
to occupy them. They can read and appreciate the works of the masters of the 
field, just as we can, but they do not have anything to do. The same holds for 
students of history, classics, and almost anything else. 

Mathematics is wonderful. Not only does it have matter that can engage. 
any of us, it also gives us the satisfaction of knowing that we have mastered the 
matter. When you know calculus, you know it, once and for all, and for 
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certain. Anyone who has been teaching calculus for a while could, if locked 
in a room, supplied with nothing but food, water, and reams of paper and told 
that the door would not be unlocked until a calculus textbook had been written, 
do the job. It might be excruciatingly tedious, but we could produce an 
acceptable calculus text because we know calculus. 

Not everyone is as lucky. In some fields, not only do its practitioners not 
have the satisfaction of knowing that they have mastered a body of knowledge, 
there is a question of whether there is a body of knowledge to be mastered. 

Mathematicians have the assurance that comes with mastery. This has 
been widely observed, as by Rebecca Goldstein, a philosopher and novelist, in 
The Mind-Body Problem (Random House. 1983, Penguin reprint, 1993, pp. 
201-202): 

Observers of the academic scene may be aware that there are 
distinct personality types associated with different disciplines. The 
types can be ordered along the line of a single parameter: the degree 
of concern demonstrated over the presentation of self, or "outward 
focus." ... 

Thus at the end of the spectrum occupied by the sociologists and 
professors of literature, where there is uncertainty as how to discover 
the facts, the nature of the facts to be discovered, and whether indeed 
there are any facts at all, all attention is focused on one's peers, whose 
regard is the sole criterion for professional success. Great pains are 
taken in the development of the impressive persona, with excessive 
attention given to distinguished and faultless sentence structure. 

At the other end, where, as the mathematicians themselves are 
fond of pointing out, "a proof is a proof," no concern need be given to 
making oneself acceptable to others; and as a rule none whatsoever is 
given. 

To sum up, mathematics is the best of all possible places to be, 
intellectually. There is matter, plenty of it, that can be mastered. We cannot 
master all of mathematics, but in the part we have mastered there are problems 
to be worked on and solved, no matter what our level of brilliance is. Solving 
the problenls can give satisfaction, and can also advance the subject. Further, 
the supply of problems will never dry up. We are finite but mathematics is 
infinite. Who could ask for anything more? We are lucky. 

Play the 1995 Game! 

Though the year is no longer young. there is still time to play the 1995 
game. Paul S. Bruckmiin challenges you to represent the integers from 1 on 
up using the digits 1.  9. 9. and 5 in that order. For example. 

I =  -1. /9"+9 - 5  2 =  1 + 9 - 1 / 9 ' - 5  - . .- 

3 =  1 - 9 + ( / 9 ) !  + 5  4 = - 1 + 9 - 9 + 5  

5 =  1-9  - 9  + 5 6 =  1 + 9 - 9 + 5 .  

You may have some dilliculty with 20 and 25 Using various subterfuges, Mr. 
Bruckman got all the way to 139 before quitting. and closed with a four de 
force by noting that 

1995 = ( l9 . /9-5) . (  l + 9 - 5) .  

After the 1995 game there is always the 1996 game to look forward to. 
though 1 think i t  may be a bit harder. We should enjoy these games while 
can. since the 2000 game will not be vey rewarding. 

Errata 

Whatever his other virtues, your editor is not very good at proofreading. 
The Journal always lias errors. too many of them. For example, in the last 
issue (p. 103) the sequence was misprinted: as several readers pointed out, it 
should have been 

which makes the next term. 5. obvious if you see the pattern. 
Rex Wu found three errors in his "A note on an exponential equation" (10 

(1 994-99) # 1 .  22-25): on page 23, line 5. (A-,,. A- ,. , . 4) should have the 
subscripts running from 1 to n; on page 23, line 24 in gcd(A-, M) s the term 
to the right of the divides sign should be ( c k  - s) ; and on page 24, line 1 1 the 

four-tuple of powers of 2 sllould be (2 l 3  .2", 236, 2'" ). 
He also notes that ? + 18' = 3' provides an answer to his last question 

in the paper's last paragraph. 
Corrections generally have a hard time catching up with the original errors, 

but theJournal will continue to print errata as space permits. 
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