





A CORRESPONDENCE ON TELESCOPING SERIES

Dan Kalman and John Mathews
The American University and California State University, Fullerton

November 23

Dear Dan,

It was good to see you a the MAA Section meeting last weekend. 1
meant to tell you about a problem { have been working on, which | think
might interest you. | got interested in it one day while fooling around with
Matheniatica. | think that programs like Matheniatica offer red
opportunities for students to make their own niatheniatical discoveries, and
was working on one possible direction for exploration—telescoping series.
You know the standard example?

i/\(ul)hg:, [ kil]

and al the terms cancel except the first so the sum is |. | was looking for
generalizations. One obvious sum to consider is

oo
|

AE; k(k+1)(k+2)

Proceeding as in the first example, | used a partia fractions decomposition
tor the summand. Mathematica has a built-in function for this, you know,
so it is really effortless to see what will happen. Anyway, here is what
came out:

| o i
k(k + 1)(k + 2) 2| %

As before, the sum telescopes. To simplify the notation. multipty both sides
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by 2. Then thefirst severa terms of the sum reveal the following pattern:

= U1 +12+1/3+1/4+ ..
-2/2-2/3 -2/4 - ..
+1/3 +1/4 + ..

So all but three terms are consumed by the collapse of the telescope, leaving

g k(k + l)(k+2)

bl 1
,?;1 k(k+])(k+2) T3

Encouraged by this success, |wentonto E,:l l/k(k +1)(k+2)(k+3)

and a few more in the same pattern. Each time Mathematica gave me a
partial fractions decomposition that turned out to telescope. All of the sums
fit a nice pattern, and suggest a general identity:

oo

! 2 = L
() k§=:l kk+ 1)k +2)-(k+m) m

Have you ever seen that before? Any ideas on how to proveit? The partial
fractions decompositions themselves fit a nice pattern. After multiplying the
summand by m!, it looks like this:

m! _ o 1
k(k+ 1)(k +2)—(k + m) ;,( g (j)k+‘7'

| don't have a proof that either pattern holds in general, although they hold
in every case | checked. Maybe the partial fractions decomposition identity

could be used to prove the other one. Any ideas? The first identity (1)
seems like such a nice result, | would sure like to see a proof.

John

ket sk sk ke e o

December 5
Dear John,

Thanks for a very interesting letter. | have never seen your identity
before, but 1 can't imagine that it is new. It istoo natural a generalization
of telescoping series, and too pretty an extension, not to have been
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discovered before. My first thought was that it should be easy to prove,
too, but | have changed my opinion! Of course, the most direct way to
prove the conjecture is to carry out the telescoping operation in the general
case. This requires two steps. First, we need to establish the pattern you
found for the partia fraction decomposition of the summand
m!
(lk =
k(k + 1)k +2)-(k+m)

The second step is to carry out the telescoping operation on the sum. It is
easy to verify that the terms do eventually all cancel, leaving afinite number
of initial terms. To complete the proof, we need to show that these initial
terms sum to 1/m. | worked on that part for a bit with no success. And
since | had no success, | didn't bother to work on the partial fractions part.

| also thought briefly about induction on m, but could find no way to get
at the induction step.

Then | thought about generating functions. You know how they work?
The basic idea is this. If you have aseries £ a; you turn it into a power
series £ akxk. Then it is a function of x and you can use methods of
analysis on it, like differentiation. If you can work out a closed form
representation of the function, then plugging in x = 1 will give the sum of
the original series. Neat, huh? In some sense you make the original sum
infinitely harder because you transform it from a single sum to an
uncountably infinite number of sums. But if it works, you get not only the
sum you wanted, hut infinitely many others, too. Wilt has a beautiful little
book on the subject, called Generatingfiinctionology [7].

Anyway, | did make some progress on a generating functions proof of
your identity. Let

oo m+k
= (-1 m+l (1 -1
(1) = (-1) ,Z:, k(k + 1Y(k +2) - (k + m)

Then if you differentiate m times you get the series expansion for the natural
logarithm. That is,

l m
[7] fult) = Int

Also, f,, and its first m derivatives al vanish & ¢ = |. So just integrate the
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natural log from | to ¢, then integrate the result from 1 to ¢, then integrate
that from | to ¢, and so on. After /m steps you will have a formula for f,
as afunction off. 1 think that if | could work out the tirst few steps, maybe
I could see a pattern that can be established by induction, but 1 keep making
errors. It'1 was smart 1 would use Mathiematica like you, but somehow 1
can't get motivated to sit down and mess with it. Anyway, if | could
somehow get a formula for f,, , then al we need to do is show that

]
mm!

S0} = (= 1)

Well, actually we need to compute that as a limit for ¢ decreasing to O
because O is at the boundary of the circle of convergence of the power
series.  So there are a few twists and turns, but it might lead to a proof
eventually.

It is a good problem, John. Thanks for sharing it with me. 1 have
already spent more time on it then 1 ought. 1 wish | could just get a proof,
then | could leave it alone.
dan

2k ok 2k o ok e ofe e ok ok

December 9
Dear John,

Just a quick footnote to the last letter. | have nearly completed the
proof using generating functions. All | need to do is prove one simple
identity:

Il k m
(-H)my 1
PR (l») X

k=1 k=1

(2)

That is interesting in itself, don't you think? 1 never saw anything like it
before. Did you?

dan

KALMAN AND MATHEWS, TELESCOPING FERIES 173
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December 12
Dear Dan,

SUCCESS! If you were right in your last letter we have a proof! At
any rate | was able to prove your identity (2). | want to see the details of
the generating function argument.

| do like your identity by the way, and the proof is realy very easy.
Let

A(m) = k'X:jl lek_](';:)

Next use the identity

m m-1 m-1

kj=\k-1]/ k
to replacethe binomial coefficient in thedefinition of A(m). Actually, you
can only make the replacement in the first m — 1 terms of the sum, since

theidentity doesn't hold fork = m So split off thefinal term, and then use
the identity. That gives

m-1 k-1 m-1 k-1
_ (-1) m-1 (-1 m-1
A(m)_,,);, k (k )+k_2, k (k-l *

(-nm-1l
m

Now look—thefirst sum isjust A( m-1). Also,

Ifm-1\ _ 1 [m
X\k-1) 7 @ik
Substituting these leads to

= Atm -1+ (~1ym-11 lm_l_kalm
A(m) = A(m-1) + (-1) 7n.+7n.k§=:l(1) (k)

The sum at right simplifies using the binomial expansion of (1 - 1)™ to
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give (1/m)(1 + (-1)™), which combines with the other 1/m term to give
just Ilm. Thisshowsthat the first difference of the sequence A(m) is 1/m.
Since A(1) = 1, your identity is established.

| still want to work on the general case of the partid fractions
decomposition, if | can find some time to get to it. As soon as | get
somewhere, | will let you know.

John

ke 3 3 sfe ofe o afe ok o e

December 20
Dear John,

Thanks for the proof of that last identity. Yes, | have rechecked
everything, and | am confident now that we have a proof. But what a
monstrosity it is! | refuse to believeit has to bethat hard. | had to define
awholefamily of generating functions, indexed on m, and then resort to an
induction on m to get it to work out. Yukk! And there is something else
that bothers me. The whole point of using a generating function in the first
place is to avoid an induction argument. Somehow, the properties of
analytic functions carry out the induction for you. So | was thinking that
there ought to be a bivariate generating function argument. | tried to
concoct a power series in x and y so that taking partials with respect to y
and evaluating at 1 would give the parameterized univariate power series of
theinduction argument. | thought this would avoid the induction on m, just
leaving me with some PDE to solve. Unfortunately, | couldn't get it to
work out.

Where that leaves us iswith a proof of your identity, but not a very nice
one. There must be a better approach. If we can find it, maybe we should
give a tak about dl this at the MAA meseting in March? One thing we
definitely should do first though is try to find somewhere that the identity
has aready appeared in print.

| guess you are about done with your semester now. That should give
you a little more free time. That is one advantage that your academic
position has over minein industry. | can take some time off at Christmas,
but it al counts against my annual allotment of vacation time. | will
probably only take off afew days this Christmas, so | can save up for a big
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family vacation next summer. On the other hand, | am mighty glad not to
have any finals to grade!

dan

afe 3¢ e of¢ ole ofe afe afe sfe ok
March 4

Dear Dan,

Sorry not to writefor so long. | got real busy around the holidays and
then the time just seemed to fly past! Then, seeing you at the section
meeting last Saturday made me think about the problem again. As |
mentioned, | did succeed in proving the general partial fractions
decomposition pattern for m! /k(k +1)(k + 2)- (k + m). Itisanicelittle
induction argument. Clearly the pattern is valid for m = 1. So assume the
m — 1 case

m-1
(m - 1)! _ ENTLEI AN
k(k+1D)(k+2)-(k+m-1) ,502( )( J )k+j

Multiply both sides by m/(k + m) and obtain

m-1

m! ifm -1 m
= _ni{m:
wenEn wm - 2 e

='"E'l(_|)j(m-l) m |
b J m-j | k+j k+m

m-1

Chi(m 11
Jg(l) (j)[k+j k+m]
1 m-1

o)

j=0

m-1 R

) (-1)!(".’) S
j=0 JIk+j k+m
The second sum is just the binomial expansion for (1 - 1)™ lacking only

the fina term. Since the complete sum is O, the sum of the initid terms
must be the negative of the final term. This gives
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(m - 1)! gl (m) 1
= -7 +
kk+ Dk +2)~(k+m-1) ,§,‘ "\J Ry
(-nm 1

k+m

Observing that thefinal term is just the with term of the sum now completes
the proof.

| have been looking through back issues of Mathematics Magazine, the
Monthly, and the AMATYC Journal, but so far have not seen the identity.
| am sure that you are right about it being previously known, but it would
be interesting to see a different proof.

John

e ake e sfe ofe e sfe ke ok

March 23
Dear John,

| appreciated getting the proof of that partia fractions identity.
Interesting how the binomial expansion of (1 - 1)* popped up in both the
proofs, isn't it? | have been trying to find a better proof for your main
identity (1), but so far with no success. The corporation's library is pretty
limited as far as mathematics goes, and most of the holdings are on
permanent loan in people's offices. | think | heard once that the library
building isn't big enough to shelve dl the holdings. Anyway, | redly
haven't gotten around to doing any library research. Instead, | have been
trying to come up with some different ways of looking at the identity.
Actually, | have found a couple of pretty interesting reformulations, but
nothing that has led to a proof so far.

One idea is to introduce a binomia coefficient into the sum by
multiplying the numerator and denominator of the summand by (k - 1)!.
The identity can then be rearranged in a few steps:

i mi(k-1)! 1

k=1 (k+m)! a

| i (m+D(k-1) _ 1

m+ 1 (k + m)! m
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k=1 Lo
i‘:[m+k+l]'l _ m+1
k=0 k m -’
— [n+k)]"! n
For the last transformation, |
substituted n for m + 1. In
. 1
the final form, you can see
that the terms of the sum are 1 J
the reciprocals of the entries W2 N
on one diagonal of Pascal's NI N3 N3 N
triangle. Partition the ! 4 6 4 1
triangle into diagonal linesas 1 \"\5 10 10 N5 N1
illustrated on the right and ~ + N+ N N . N

cal the sum of the
reciprocals of the entriesin a
line a reciprocal sum. The
first two reciprocal sums clearly diverge. The remainingsums are given by
your identity. |sthere asimple combinatorial argument that can be used to
derive the identity? | found none. It would be nice to find a proof that
connects in a neat way with this Pascal's triangle interpretation.

Another idea was suggested by Art Benjamin. | stopped to see him on
a recent visit to Harvey Mudd. Don Goldberg (from Occidental) was there
too, so | mentioned your identity to them. Art took onelook at theform (3)
with the binomia coefficients and immediately started talking about
probability. He pointed out that reciprocals of binomial coefficients often
show up as probabilities. With an appropriate model, it might be possible
to view the infinite sum in the identity as an expectation or as some
computation associated with probability. If so, a proof might be constructed
by showing in an alternate fashion that this computation should have the
value at the right side of the identity. Art, Don, and | played around with
it a bit, but never got anywhere. Later, on a visit to Northridge, |
mentioned Art's ideato Mark Shilling who knows dl about probability and
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stats. Mark seemed pretty sure that Art's approach should work out, so
maybe he will come up with an alternate proof. But so far | haven't heard
anything more from him.

In a few weeksthe kids will be out of school for their spring break. We
have plans to go up to Santa Barbarato visit Linda's folks for a few days
a Easter. While | am up there, | an supposed to visit the UC campus to
check things out for the fall MAA section meeting. | also plan to take the

opportunity to nose around in the library there, to see what | can find. If
anything turns up, | will let you know.

dan

ke sfefe afe s ofe e ke e ofe

May 25
Dear John,

| haveal kinds of news to report from ny visit to UC Santa Barbara.
The main item is that | found your identity in print, and a nice neat proof.
| even found my little binomial identity (2) in one reference [5]. But | am
getting ahead of the story. Abraham Ungar is visiting us for a few days
from Fargo (where he is a math prof a North Dakota State). He came
aong on the library trip, and when | told him what | was after he knew just
where to look: an encyclopedia of sums, products, and integrals [2] that he
enjoys browsing in. So | met with immediate success, of asort. In[2] |
found as equation 3 the following:

b

1
[p +(k-1)qllp + kql-|p + (k +r)q]

k=
I
(r+1)q

[ m—

1 1
Pp+@)-(p+rq) (p+nq)-(p+(n+ r)q)] '

Withp = g = land r = m — 1, this particularizes to

= i I T 1
@ ,{El k(k + 1) (k +m) m[m (l+n)(2+n)---(m+n)]

which obviously implies your identity. However, no proof was given. It
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did give a reference for the identity (in fact it has references for every
identity it contains). The reference for our equation is an earlier book of
tables [1] dating from 1922. There | found an even more general form of
the identity, another reference, but till no proof. In another book [4], the
special case of (4) for m = 3 appears as equation 115. Again there is no
proof, but a referenceto [3], which is a textbook from 1895. Just for fun,
| looked that textbook up in the card catalog, and would you believe it, the
Santa Barbara library had a copy, just a few aides from where 1 was
standing. There is something redly intriguing and exciting about playing
detectivein this way. When | held that book, amost 100 years old, in my
hands and looked down at the same identity you discovered, | got goose
bumps. Honestly!

Anyway, the main thing | got out of dl those references was a new
perspective: finitesums! Where we began by considering infinitesums, the
references | unearthed al made use of finite sums. The advantage of a
finite sum is that it permits induction on the number of terms. Indeed, (4)
is easily established by induction on n, as follows. For n = 1, each side of
(4) is readily seen to equd 1/(m + 1)!. So supposethe identity holds up
to n, and consider asum of n + 1 terms:

n+l 1 _ i 1
kzn:l k(k +1)-(k +m) i1 k(k + 1) (k +m)

1
g (1 +m)(2+n)-(m+1 +n)

Substitute the right side of (4) in the sum above to obtain

e ! [ | ]
k);, kik +1).(k+m) mim (L+n)(2+n)—(m+n)
+ ! .
(1 +m)(2 +n)-(m+1+n)

Now make a few rearrangements.

n+l 1

kzzjl k(k + 1) (k +m)
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3| =
—
3|

_ 1 m
. (1+nx2+ny4m+n)+(1+nx2+ny4m+1+n)]

3~ 3= 3|~

' (1 +n)@2+n)(m+n)y(m+n+1)

_ m+n+1-m ]

.-

1
m!
1 1
| m! (2+ny4m+nxm+n+1)]
1
m!

_ 1
__T (1 +"‘*1)"'('"*"+I):l ;

This shows that the identity is valid for n + 1 and compl etes the proof.
Simple! | would never have thought of the idea of trying to approach your
identity in terms of finite sums, but it isalesson | am not likely to forget
soon!

WEell, John, | guess that is about the end of the trail. | don't think you
could ask for a simpler proof, and now we know that the identity has been
known for agood long time. It was great fun! Thanks again for sharing it
with me.

dan

e afeake o e o afe o afe o

June 5
Dear Dan,

| enjoyed your letter and proof, but don't lay the problem to rest just
yet. | can top your discoveries. | was browsing through some back issues
of the College Math Journal when one of the articles caught my eye [6].
There, the specia case of our identity corresponding to m = 2 is handled
as a telescoping sum.  Unlike our initial approach, where the telescope
involves three term cancellations, in [6] there are only two terms. e
example shown there generalizesin an obvious way to give this proof.

Observe that for any positivem,

|
k(k + 1) (k +m)

1/m B 1/m
k(k +T)-(k +m - 1) (k+1)(k+2)-(k+m)’
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This clearly telescopesand you can see by inspection that the sum for k
running from 1 to infinity is 1/(m m!) . That proves the identity!

This proof redly brings us full circle, for it's an obvious and direct
generalization of the telescoping series | started with. | just headed off in
the wrong direction with that partial fractions stuff. You might say we
looked the wrong way through the telescope!

On the other hand, as you said, it was lots of fun. And if | had done
it right at the start, there would have been no partia fractions identity, no
binomial identity, no need to use Mathematica, and you would have missed
out on the joys of getting dusty up in the Santa Barbara library.

In fact, we had so much fun with the subject, | wonder if we ought to
try and write it up somehow. Do you suppose thereis aform we could put
it in that would capture some of the experienceof doing it? Do you suppose
anyone would care to read about it?

John
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Dan Kaman was originally attracted to college mathematics by its lack
d laboratories. He was an applied mathematician at the Aerospace
Corporation and now teaches at the American University. John Mathews
earned his doctorate at Michigan State University and has written texts on
complex variables and numerical methods.

Chapter Reports

The NEwW YORK OMEGA Chapter (St. Bonaventure University) had as
its major activity, Professor FrancisLeary reports, its popular Mathematics
Forum. Fifteentalkswere presented last year, mostly by students, including
one on "The mathematics of coyotes, roadrunners, and ants'. The
Chapter's graduating vice-president, Heather Lecceardone, won the
department's Mathematics Medal.

The MICHIGAN ZETA chapter (University of Michigan—Dearborn)
cosponsored a student-faculty mixer which was attended by most of the
faculty, nine alumni, and more than fifty students. Professor John
Frederick Fink saysthat is the best attendanceever at such an event. The
Chapter inducted eighteen new members last year.

The CONNECTICUT GAMMA Chaper (Fairfield University) sponsored its
annual High School Math Bowl, similar to the College Bowl. Professor
Joan Wyzkoski Weiss reports that eight teams from local high schools
participated. At the spring initiation ceremony, nineteen new memberswere
initiated and Carole Lacapagneof the U. S. Department of Education spoke
on "The prime number connection: bow number theory helps secure vita
data."

A WEIGHTED AM-GM-HM INEQUALITY

Ayoub B. Ayoub
PennsylvaniaState U., Ogontz Campus

The familiar arithmetic mean-geometric mean inequality,
a ; b = yab,

holds with more general weights [1]:

ma + myb = a"'b™
wherea, b > 0, my + my = 1, and m;, my = 0. We will modify this
inequality to permit negative weights, then extend it to include the harmonic
mean. To that end, we will first prove the weighted AM-GM inequality
using the natural logarithm function. If weconsider the pointsA: (a, Ina)
and B: (b, Inb) onthegraph of y = Inx, then the point Cthat divides AB
in the ratio m, : m; will be
mya +myb mlna + mylnb
my+my n; ©imp '

However, if m; + my = 1, then Cwill have the coordinates

(mya + myb, mIlna + myInb).

If, in addition, we assumethat m,;, my > 0, then Cdivides AB internaly
(see Figure 1). Since the graph of y = Inx is concave down (y" =
-1Ix2 < 0), the point D: (m;a + myb, In(m;a + myb)) lies vertically
above C. It isobvious that C will coincidewith A or B if my = 0 or m,
= 0, respectively. Thus, ™, my, 2 0 implies that

In(ma + myb) = mjlna + mylnb .

Since the functiony = Inx isincreasing (y' = 1/x > 0), then
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mya +mb > a"p™ .
One may ask, what if m; or m, is negative? In both cases C will
divide AB externally and consequently C will be above D. See Figure 1,
where C' and C” illustratethis case. Thus,

In(mya + myb) < mjlna + myInb.
But then,
mia +mb < a"p™
where mm, < O,

m +m = 1, and y
a,b,ma+mb > 0. If, T

for example, m; = 312, n
m = -112,a=9,ad b c 1
= 4, we get 2312 < 2712. ,TD

Now we may combine the
three cases in which m; and
m, are both positive, or one ,/ y=lnx
of them is zero, or one is [
positive and the other is
negative, as follows: Figure 1

Ifa, b, mja + myb > 0 and m; + my, = 1 then
mia+mb 2 a"b™ according to mm, 2 0.
If we multiply this inequality by am‘bm?/(mla +m,b), it becomes
aMp™ = M
mya +mb
Combining this inequality with the previous one, we get the weighted AM-
GM-HM double inequality:

2m; 2
ma+mb = g"p™ 2z 39 " L
mpa + myb
accordingto mym, = O, wherem; +70) = | anda, b, mja + myb > O.
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If weset m; = my = 112, we get the standard AM-GM-HM inequality

a+b2 T 2ab

2 a+b

where a, b > 0.
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ON THE GIRTHS OF REGULAR PLANAR GRAPHS

Masakazu Nihe1
Fujishiro High School

One of the most fascinating yet mysterious classes of graphs are the cages.
We introduce a planar version, classify them. and use this information to
present another proof of thefact that there are exactly five Platinic solids.

We begin with a few definitions. The degree of a vertex v in agraph G is
the number of edges of G incident with v. A graph in which every vertex has
the same degree is called a regular graph; if every vertex has degree k, the
graph is called a k-regular graph. The cardinality of the vertex set of G is
called the order of G and is denoted by p. while the cardinality of its edge set
isthesize of G and is denoted by ¢. The length of the shortest cycle in a graph
G that contains cyclesis called thegirth of G and is denoted by g(G) org.

Let us consider the k-regular graphs with girth g. The minimal order of a
k-regular graph with girth g is denoted by /' (k,g), and the k-regular graphs of
girthg and order / (k g) arecalled (k, g)-cages. For example, /( 3,4) =6
and /(3,5) =10. The (3,4)-cage and (3, 5 -cageare uniqueand nonplanar,
[1, 236-2391, |2, 34-43}. They are shown below.

Fig. 1: (3,4) -cage Fig. 2: 3,5) -cage

A planar. k-regular, graph of girth g of minimum order will be called a
(k,g)-page. So every planar (k,g) -cageis a (k,g) -page. but the converse

186
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is not true.

We will first determinethe girths of al planar k-regular graphs for & = 4,
)

THEOREM 1. If G isaconnected planar 4-regular or 5-regular graph, then
2(G) = 3.

Proof. Letp, g, and s denote the order, size, and number of faces of G.
Then we have

(¢)) kp =29 (k=4)5)
and
Q) p-qg+s =2

by Euler's formula.
Let the distinct lengths of the boundaries of the faces of G be denoted by

g:go,gl,"',g’" (gosgi’i::lszs"'qm).
Suppose that thereare s; faces with boundary of length g . Then we have

3 dlhosg =24

From (1) and (2) we have

) oS = 2+q(k-2)/k,

and from (3) we also have

&) 0<gY m,s < Y'os g =2q.
Hence we obtain

(6) gs 2qk/(2 +q(k - 2) < 2qkl/qkk -2)) = 2k/(k = 2)
by (4) and (5).

If kis4 or 5, then 24/(k - 2) is4 or 1013, sowe have g < 3. On the

other hand, itisclear that g= 3. Thiscompletes the proof.
The girth of a 3-regular graph need not be 3, however. In fact. the girths
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Fig. 3: Girth4 Fig. 4: Girth5

of the graphsin Figures3 and 4 are 4 and 5, respectively.

Since no planar k-regular graphs exist for k > 6, we need consider only
2< k <5.If k=4or5, then g =3 by Theorem 1. Whenk =2,a (2, g) -page
is the cycle whose length isg. If the graph G isa (5,3 )-page, then G must
satisfy

p-q+s=2 3s< 2q, and 5p = 2q.
From this it is easy to see that the graph of Figure 5 isa (5,3 ) -page, and the
graph of Figure6 isa (4, 3) -page.

£\ /A

Fig. 5: A (5, 3) -page

Fig. 6: A (4,3) -page

Thereforeit remains only to investigatek = 3.

THEOREM 2. If g(G) . 6, thena (3, g) -page does not exist.

Proof. Let G bea @,g)-page of order p and size q. Thefora @, g -
page. we have g(g - p +2) - 2 by Euler's formula. Hencewe obtain
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N g<gp-2/@g-2).

Since G isa 3-regular graph, we also have

®) 3p = 20.

Hence, with (7) and (8) we have

® p(g=06) x <dg

Thusg. 6.

PROPOSITION. Let G, bea (3.g) -page of order p, and size g, (g = 3. 4.
5). Then (p,,q;) =(4.6). (p,.q,) = (8.12). and (5.95) = (20,30).

Proof. We may deal only with ¢ = 4. since the other cases are similar.
Putting g = 4 n (7). we have ¢ 2(p - 2). Therefore we obtain p = 8 and
¢ =12ty (8).

From this proposition it is easy to check that the graphs of Figures7. 3. and
4 area (3,3)-page. a (3,4) -page, and a (3, 5)-page. respectively.

A regular polyhedron is a polyhedron whose faces are bounded by
congruent regular polygons and whose polyhedral angles are congruent Then
every regular polyhedron P is associated with a regular connected planar graph
G(P) whose vertices and edgesare the vertices and edges of /7.

If G(P) is a k-regular graph
with girth g, then the order of G(P)
becomes minimal in such graphs
since P is a regular polyhedron.

So, G(P) becomesa (%, g) -page

When g - 3. it isclear that the
number of different types of
(k,g)-pages is only five by our
previous results. This shows that
the number of regular polyhedra is ’
at most five. On the other hand,
we can construct five regular
polyhedra from the graphs of Figures 3-7 (the cube, dodccahcdron,
icosahedron, octahedron. and tetrahedron. respectively). We therefore have the
well-known theorem

Theorem 3 Thereare exactly five regular polvhedra

Fig. 7. A (3.3) -page
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Hurry! Time's A-wasting!

Ordinarily, only the physicist or the mathematician can hope to cntcr carly
middle age having niadc a scholarly mark; indccd. for such a scientist to glide
into the thirtics without distinction can bc causc for despair—or a job in
university administration.

—David Remnick, The devil problem, New Yorker 71 (1995) #6 (April
13). 54-65, page 54.

The most common female first name among subscribers t0 the Journal s
Jennifer. The most common male first name 1s Michael  Tlic most common
last name is Smith, but ncither Jennifer Smith nor Michacl Smith is on the
subscription rolls

PREDICTION IN INSURANCE

Mark Bonsall
Conrad M. Siegel, Inc.

Insurance companies are interested in predicting the future. Not for
individual policyholders, but for groups of them, so that they can predict as
accurately as possible the loss that will result from the risk they are insuring.
To do their anayses, insurance actuaries use many applications of
mathematics, sonie very advanced, but they also use simple regression, a
technique studied in basic statistics classes. The purpose of this noteis to give
an example of its use, showing that there is an actua application of
undergraduate mathematics outside the classroom.

In linear regression, we wish to find the equation of a line, Yﬁ, =a + pX,
which minimizes the sum of the squared deviations between they-coordinates
of the data points and the correspondingy-coordinates on the fitted curve, i. e.

S8 = Z(Ydam - }fﬁr)z = Z (Ydala Tl ﬁX)z :
To do this, we caculate 3SS/da and aSS/AP, set them equal to zero, and

solvefor @ and B to get
B = EE '{2},, a=Y-pX.
X2 -XZX

Table 1 gives actual data for a casualty insurancecompany for 1987-1993.
The figures in the loss column are estimates of the total amount that will
eventually be paid because of claims made in the year (the number of which
appear in the third column). Exposures, the numbers in the second column,
are, roughly, the number of items being insured. The frequency in the fourth
column is the result of dividing the number of claims by the exposure.
Severity, in the fifth column is the loss per claim, and the pure premium in the
last column is the amount that cach policyholder would have to pay to just
cover the losses—Ioss divided by number of claims.

191
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Y car Loss Exposures | Claims Scverity Pure
Premium
1987 | 23,875,471 38,836 1,555 15,536 615
1988 | 22,951,051 35,965 1,566 14,657 638
1989 | 24,446,385 33,647 1,438 16,996 727
1990 | 29,372,493 32,673 1,453 20,218 899
1991 | 31,741.929 31,667 1.542 20,591 1,002
1992 | 32.032.910 30,470 1.507 21.620 1.051
1993 | 33,242,092 27,574 1,390 23911 1,206
Table |

Of course, the insurance conipany would like to bc able to extrapolate the
pure premium into the future SO as to bc able to sct its rates appropriately.
Applying linear regression. we would get the prediction in Tablc 2.

Year 88 89 90 91 92 93 94 95

| Proni. | 673 | 767 | 867 | 972 | 1082 | 1198 | 1319 | 1445

Tablc 2

However, lincar regression niay not be the best model. |f we assume that
the premium tends to incrcasca constant percentagce each year, then the best fit
would bc an exponential function,

s g BV
):ﬁ , = ac
There is no difficulty in finding tlic parameters, since

In(Yf“) = BX +In(a).

which isalincar function W = 8 + BX", with W = In( Y) and 6 - In(@ ).
This gives tlic predictions in Tablc 3
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Y ear 88 89 90 91 92 93 94 95

Prem. 671 756 852 960 | 1081 | 1218 | 1373 | 1547

Table3

As could be expected the exponential fit gives larger predictions, since
exponential curves bend upward while lines are straight. But they arc more
likely to be accurate. Answering the question of how accurate would involve
finding the variance of the predicted values. This would involve the variances
of the observed values, which can only bc estiniated. This is one of the reasons
that, in spite of all that actuaries and mathematics can do. the future can still
be surprising.

Mark Bonsall wrote this paper while a student at Moravian College He is
now an assistant actuary with a consulting firm in Harrisburg, Pennsyivana.

Chapter Reports

Profcssor Betty Mayfield reports that tlic spcaker at tlic induction
cercniony of the MARYLAND DELTA Chapter (Hood College) was Profcssor
Cora Sadosky of Howard University, tlic immediate past president of the
Association for Wonicn in Mathematics.  She spoke. appropriately. on
“Women in niathcniatics”.

Profcssor Prcni N. Bgjg has retired as advisor to tlic KANSAS GAMMA
Chapter (Wichita State University) reports tlic new advisor. Profcssor Andrew
Acker. During Profcssor Bajaj's twelve-year tenure as advisor. 307 ncw
members were initiated. 86 lecturcs or presentations were organized. |
students gave papers a state or regional meetings. and 6 students presented
papers at nationa A Mu Epsilon mectings. Profcssor Acker notes .
chapter is going to miss his active involvement  The same 1s true
organization as a wholc




AN APPLICATION OF PARTITIONSTO THE
FACTORIZATION OF POLYNOMIALS OVER FINITE FIELDS

Julia Varbalow and David C. Vella
University & Kentucky and Skidmore College

In this paper, partitions of natura numbers are used to count the
irreducible polynomials of degree n over afinitefield. Thisapparently little
known application of partitionsis described in detail in Section II. Section
| isa brief introduction to partitions. These results were developed as part
of the first author's senior mathematics thesis under the direction of the
second author.

[) Introduction. Let n bea natural number. A partition of n isafinite
set « of natural numbers (possibly with repetitions) whose sum isn. We
sometimes write = 1- n to indicate that « is a partition of n. For example
if # ={4,3,3, 1,1, 1}, then = I- 13. Two partitions are considered
equal if they have the same entries or parts, regardiessof the order of those
parts. For convenience, partitionsare frequently written with their parts in
nonincreasing order: # = {py, p, ..., p,,} Wherep; 2 p, 2 - 2 p,,,
as in the above example.

Foreachi (1 < i < n), the number of timesi occurs as a part of the
partition 7 is called the multiplicity of i in «, and is denoted by m;(x) or
more simply by =; (so =; is the cardinality of {p; | p =i1}). Thisleads
to an dternate notation for partitions where 7 is denoted by
(1™,2™, .., n™] with entries of multiplicity zero omitted. Thus the
above partition « of 13 can also be written as [13, 32, 4], suppressing the
superscripts equal to 1. We shall refer to the number of parts ¢ (u) of =
as its length and the number of distinct parts d(x) as its depth. In the
above example = = [183, 3%, 4], wehave ¢(7) = 6and d(x) = 3. Itis
clear that the length of any partition is the sum of the multiplicities of its
parts:

194
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n

1)) tmy =Y = if T+ n

i=1
Let Pstand for the set of al partitions. Let P, ={y < P|y kn}
be the set of partitionsof n, so P = U::l P, (digoint union). It will be

convenient to alow the number O to be a part of a partition. In fact,
athough we will omit 0 when writing a partition, we will follow the
convention of assuming that O is a part of any partition, of multiplicity 1,
athough it contributes nothing to the length or the depth of the partition.
Thus my(w) = =g = 1for dl = € P,, while the sum in (1) is not
adjusted to begin at i = 0. Furthermore, in order to treat the formulas
appearing in Section II uniformly, it will also be convenient to assume there
is precisely one partition of O (which has length O and depth 0), namely [Q],
which we adjoin to P.

The partition function is defined by p(n) = | P,| (cardindity of P,).
For example p(5) = 7, since

Ps = {51, [1, 41, [2, 31, [13, 31, [1, 221, (13, 21, [1°)}.

One may compute p(n) for small values of n by hand, although this process
soon becomes tedioussince p(n) grows rather quickly. For instance, p(10)
= 42, p(20) = 627, and p(100) = 190,569,292. While there is an exact
formula for p(n) (see [7]), it is rather complicated and many cal culations of
p(n) rely instead on some kind of recursion.

The partition function and partitions in general have a long history, and
they arise in many diverse situations. The grade school student may meet
them in simple counting exercises such as "how many ways are there to
make change for a dollar without pennies?’, which is realy the question of
how many partitions of 100 are there with each part equal to 5, 10, 25, or
50. In a similar manner one can rephrase questions such as "how many
different ways are there to roll a 12 with exactly three dice?’ or "what is the
largest number of Chicken McNuggets that you cannot order exactly if they
come in packages of 6, 9, and 20?". The reader should have no trouble
seeing that these questions and many others like them are really questions
about counting partitions with certain restrictionson the parts. While these
questions can be answered easily by ad hoc methods, a very satisfying
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uniform method exists which is sometimes covered in an introductory course
in discrete mathematics. Originally due to Euler, it is based on multiplying
together certain power series (e.g., see [4], section 19.3) known as
generating functions.

Like the above examples, many of the most interesting problems related
to partitions involve counting partitions with restrictions on the parts.
However, just as p(n) itself iselusive, it is frequently impossibleto do this
directly with the added restrictions. As a consequence, many counting
arguments focus on showing that one set of restricted partitions is
equinumerous with a different set of restricted partitions without actually
counting either set. For example, it is awell known result that the number
of partitionsof n into & most k parts is the same as the number of partitions
of n into parts which are a most k. As a concrete example consider the
case n = 6, k = 3. The partitions of 6 into parts which are at most 3 are

{011, (14, 2], 1%, 221, (23], 113, 31, 11, 2, 3], [32]}
and the partitions of 6 into at most 3 parts are
{161, 11,51, 12,41,13%], 1%, 41,11, 2, 31, [2°]}

There are the same number of partitions in each set, namely seven.

The interested reader will find an elegant proof of this assertion (and
many others like it) using a graphica device known as the Ferrers diagram
of a partition (invented by N. M. Ferrers and later popularized by J. J.
Sylvester) in [1].

In addition to these counting problems there are many celebrated
applications of partitions in other areas of mathematics. Two of our
favorites in group theory are the connection between partitionsof n and the
conjugacy classes in the symmetric group S, and the classification theorem
of finite Abelian groups. Since these applications can be found in any good
introduction to abstract algebra ([6], for example), we will not dwell on
them. At asomewhat deeper level thereare also some beautiful applications
to the representation theory of 5, (see[8]). Partitionsof a natural number
can aso be usad to extend the chain rule of calculus to higher derivatives,
leading to the well-known Bdl polynomials (see [3]), among other things.
The interested reader can find some applications of this in {12]. We will
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presently describe an application of partitionsto undergraduate mathematics
which does not seem to be as widely known.

11) Counting Irreducible Polynomials Over Finite Fields.

Let Fbeafield and let FIX] betheringof polynomials with coefficients
in . Then F1X] is a uniquefactorization domain, and the nonzero constant
polynomials form the group of units (see [S], [6], or {10]). Thus, every
polynomial of degree 1 or larger factors into a product of a nonzero constant
and monic irreducible polynomials in a unique way (up to the order of the
factors), where monic means the leading coefficient is 1. Thus in many
waysthis ring behaves like the ring Z of integers. In particular, the (monic)
irreducible polynomials play the role of the (positive) prime numbersin Z.

Therefore, one could ask questionsabout the distribution of irreducible
monic polynomials which are analogousto questions about the distribution
of primesinZ. Because F1X] isan integral domain, the degree of p(X)q(X)
is the sum of the degrees of p(X) and ¢(X). By induction on m, the
following is true:

2 deg [ II pi®
i=1

= Y deg(p;(X)).
i=1

It follows that every (monic) polynomia of degree oneis irreducible.
Such a polynomial has the form X + aforsomea € F, soif Fisinfinite,
the ring F1X] has an infinite number of irreducible polynomialsjust as Z has
an infinite number of primes. (In case Fis algebraically closed, these are
the only monic irreducible polynomials.) It turns out that even if Fis a
finitefield, there are still infinitely many irreducible polynomials (see page
274 of [5] for thecase F = ZP, the field of integers modulo the primep),
athough there can be only a finite number of any fixed degree n. This
raises the question of finding the number of irreducible polynomialsof each
degree in case Fisfinite.

Let Ng(n) stand for the number of irreducible monic polynomials of
degree nover thefield F.  In case Fisafinite field with q elements (where
q= pr, pis the characteristic of F), we will also use the standard notation
Nq(n). Our method for computing Ng(n) isa recursive method based on
(2). Itisageneraizationof exerciseC, page 255 of [10], except that there
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it isonly carried out for n = 2 and n = 3. When this is attempted for
larger values of n, partitionsenter the picture. Indeed, if p(X) isa monic
polynomia of degreen, it factorsuniquely asa product of monic irreducible
polynomials p(X) = T1;L, p,(X). Soif welet d = deg(p;(X)), then (2)
implies that the set of degrees {d,, d,, - ,d, } is a partition of n.

Furthermore, p(X) isitsalf irreducibleonly if the partltlon so obtainedis[n],

otherwise each d; < n. A typicd monic polynomia of degree n has the
form

n n-1 n-2
X" +a, X +a, X +. +a X +ay,

with the a;’s in F.  Let F befinitefrom now on, with g = |F |. Now
there are exactly q choices for each of the n a;’s, so there are q" monic
polynomials of degree n altogether. Our god is to count the number of
reduciblepolynomiasof degreen (provided Ng (d;) for d; < nhasalready
been computed), and subtract this number from q" to find Np@;).

First we consider some preliminary information regarding partitions.
We remind the reader that the conventions about O from Section | are still
in effect. We now introducean operation on P. Given a partition« |- n
recal that the length £() is the total number of (nonzero) parts and the
depth d(x) is the number of distinct (nonzero) parts. From (1) it follows
that the set of multiplicities §(x) = {#, 5, -, 7, } IS a partition of
I (i), which we call the derived partition of IT. Observe that § (x) has
length equal to the depth of It (many of the multiplicities «; are 0). For
example, if T = [13 2, 42,53, then = |- 28 and there are9parts, but
only 4 of them aredistinct, so | (i) = 9 and d(x) = 4. The multiplicities
are{3, 1,0, 2, 3}, leadingto (%) = [1, 2, 32], apartitionof 9 of length
4. Wefurther illustratethis with the table on the next page.

Next, supposethat = € P,; # = {p;, P2, s Pm}- Thenweremind

the reader that the expression n! /II, 1 p;! isan integer, known as a

n

P> Pys > P | Wewill

multinomial coefficient, and often written as [
further abbreviate thisto ssimply (;lr ), writing the name of the partition on

the bottom. When m = 2, we will follow the usua convention of writing
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. i . n aher th n (n)
the binomia coefficient as p; rather than P\ P or\ /-

Derived partitions for Py

T T £(x) o(%) d(w) =

i: 1,2,3,4 £(o())
4 0,0,0,1 1 1 1
3,1 1,0,1,0 2 1,1 2
2,2 0,2,0,0 2 2 1
2,1,1 2,1,0,0 3 2,1 2
1,1,1,1 4,0,0,0 4 4 1

We are now prepared to prove the following:
THEOREM 1: Let F be a finite field with |F| = g. Then the total
number of monic polynomialsof degreen with coefficientsin F is given by:

n N (1) ew)
3 "= 1 ]
3 q ,Ep, ,Hl e;,, [e(B) 5(8) H

Proof: We have observed abovethat the left side of (3) iscorrect. We
now count the monic polynomialsa different way to see that the right side
is dso correct. Let p(X) be one, and let p(X) = H,g,p,(X) be its
factorization into irreducible monic polynomias. Let 7 be the degree set
{d,,d,, ", d,} (listed with multiplicities). Since F1X] is a commutative
ring, the d;’s may belisted in any order, so as noted above, it belongsto P,,.
Let j bean integer with 1 < j < n. So thereare «; of the irreducible
factors p;(X) with degree j. If N; represents the number of ways of
choosing these factors of degree i then the multiplication principle of
counting yields that there are n’ j=1 N; ways of choosing al the factors
together, so this accounts for the product in (3).

It remains to show that
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. N, &) e (8)

N BZ‘\P [ £(B) ] 5(3))

First observe that for a given val ueofj, it may bethecasethat none of the
p; (X)’s have degreej, so that particular factor N; should have a value of
1 Butif thereare no factorsof degreej, then T = 0 and so the innermost
sum runs over theindex set P, = {[0]}. Thusthereisonly one summand
corresponding to the partition [0] of 0. By our conventions about zeros,
both the length and the depth of the partition [0] are O, so that both the
binomial and the multinomial coefficient have the value 1, as desired.

So now consider the case where w; > 0, so thereis at least one of the
p;(X)’s with degree j. Now there are exactly Nq(j) monic irreducible
polynomials of degree j to choose from, and we must choose exactly «; of
them, possibly with repetitions, for the p, (X)'s of degreej. The possibility
of repetitionscomplicates matters, so we break the problem into two steps.
First, select the distinct factors, and second select their multiplicitiesto add
up to =, the total number of factorsof degreej. Since their multiplicities
add up to T (and again the order of the factors is irrelevant), the set of
such multiplicities = {u;, u,, -, u,} formsa partition of T of length
?(#) = d equa to the number of distinct factors. Conversely, every
partitionof #; accountsfor a possible set of multi pIicitiesfor the factors of
degree j. Thisis why the innermost sum runs over P,

Now given a partition 8 of T smced e L’(ﬁ) is the number of

distinct factors, the binomid coefficient ‘1 N ] counts all the possible

setsof ditinct factorsfrom among the Nq( i) WhICh areavailable. For each

such set, the multinomial coefficient d counts the number of
B 1 B 2 B *

ways of assigning the given multiplicitiesto that particular set of factors,
where (3, isthe multiplicity of kasapart of 8. (That is, 8 is the number
of distinct factors (of degree;) which have multiplicity k.) Rut observe that
theset {B8,, B85, -, B, } is nothing more than the derived partition §(8)
of 3 Thus N; has the desired form and this completes the proof of the
theorem.

COROLLARY 1: ld F beafinitefield with |F}| = g. Then the number
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N,(n) of monic irreducible polynomias of degree n can be computed
recursively from the formula ‘
N (W2 ()
N_(n) = . ] ( )
@ g =& 1rEP l lBEP 1) 6 () ]
{m)>1

Proof. Formula (4) follows immediately from (3) because the only
partition in P, of length 1 is[n], which correspondsto the case of p(X)
being irreduciblein Theorem 1. It isrecursivebecause ¢(v) = 1 implies
that 7,, = 0, whencetheonly Nq(j)‘s which appear in the right hand side
are thosefor which j < n.

Some examples may help to clarify what we havedone. First, we show
a specific example of the counting technique used in the proof of Theorem
1. sSupposethat p(X) is a degree 24 polynomial, with factorization P(X) =
m;_,pi(x), with one linear factor, three quadratic factors, four cubic
factors, and one quintic factor. This corresponds to the partition © =
1, 23, 3%, 5] of 24 in the outermost sum of (3). Thereare 24 factors N;
in the product, but since =, = O and ;= Ofor 6 < j < 24, most of
these factors have the value 1. By definition there are Nq(l) = q waysto
choose the linear factor and Nq(5) ways to choose the quintic factor.
Consider next the quadratic factors. Since w, = 3, the index set for the
innermost sum of (3) is P; = {[13] 1,21, (31}

The partition 8 = [l ] corresponds to choosing three distinct
(quadratic) factors, since £(8) = 3. Sincethere are only three quadratic
factors altogether, each of these three necessarily occurs with multiplicity
1 (the parts of B), so there is only one way to assign these multiplicities.
Observe that 6([13]) is the partition [3], since 5; = 3, 8, =0, 83 =0.
Thus the number of ways to choose 3 distinct quadratic factorsis

N,2)] |, (4(8) Ng(2) = [N .
[e‘iﬁ) (s) = [ ] (5,0.0) ["3 ‘

The partition 8 = [1, 2] corresponds to choosing two distinct

(quadratic) factors, since £(8) = 2. Oneof them will have multiplicity 1

and one will have multiplicity 2 (the parts of 8), and clearly there are
exactly two ways to make that assignment. Observe that the derived
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partition in thiscaseis 6(8) = [12],since13 =B, =1land B3 =
0. Thus the number of ways to choose two distinct factors with one
repeated twice is

Na@) (@) _ [Ne®) L[ 2 | [N@)] .
[e‘is) (58 ‘[ b ] (1,1,0)‘[ % ] 2

Finaly the partition [3] of length 1 correspondsto choosing exactly one
(quadratic) factor and using it three times (there is only one way to assign
the multiplicity). In this case the derived partitionis[l}as 8, = 8, = O
and B3 = 1. Thus

N,Y 6B _ [N ) 1\ _ [N,
o] -G8 =[] lo.00) = [M7] -
This shows that in this case

Similarly, for the 73 = 4 cubic factors, one may compute N5 as a sum
over P,. Using the table above of the derived partitions for al = t— 4,
one obtains N3 =

3

Ne®) oy [Ma®) o, [Na®) L [NaB®) Ly, [Na®)
()1 [7) o ['57) 2 [57) 2 [)

Therefore, the total number of degree 24 monic polynomials which factor
into monic irreducible polynomials with degrees corresponding to the
partition = = [1, 23, 34, 5] is

24

o Nj =Ny *Ny+N3+1+Ng+ool=

][] () 2+ (4]
) ) [) o 0] 1)

Of course, there are many other partitions of 24 to consider! Let us close

__
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with an exampleof thecorollary. Let F= Z, sothat ¢ = p, and letn =
5. Then (3) becomes

N, (5 N,(4 N, (1)
e () (4] (47)

[Np1(3)] . [Npl(z)] n
) [[7) - %)) +
[5) - ()] ()
(o [50)[] ()

N, (1) N,(D] . N, (D] . N, (D)) |
[Ps P4]4+ P3]3+[3 3

[Np(l)] “gl i [N,,(l)] e 4 [N,,(l)]-

-+

2 2 1

Notice that the number N,(5) occurs only in the first term, which
corresponds to the sole partition [5] of length 1 in Ps. Specidizeto the
case p = 3. Then N3(1) =3, N3(2) = 3, N3(3) =8, and N3(4) = 18,
as can be verified by using (3). Alternatively, one could look them up in
a table (such as what appearsin [9]), or use the approach outlined in [11].
Then the above expression for p5 simplifies to

#= [%0) (501040
510 +3)]
1)@ 0 0 [816)2-6)]

+ (3)+(3) 2+ (3)-2+B) - (3) -2+ (3) 2+ 3)
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or, evaluating the binomial coefficients,

243 = N3(5) +54 +24 +48 + 18 +30+0+0+3 +3+6+6
+ 3, which yields N3(5) = 243 — 195 = 48. This checks with Table C,
page 555 of [9].

Readers familiar with combinatorial arguments may have noticed a
somewhat more direct way to compute N;. Indeed, the binomial coefficient

[n+s-l

" ] counts "combinations with repetition”, i. e., it counts the

number of ways of selecting (when order is irrelevant) n objects from a set
of s objects where there is no restriction on the number of times a particular
object may be repeated in the selection (see theorem 4.2 of {4], for
example).

Now, there are precisely Nq( j) factors of degree j available, and
of them must be selected (with possible repetitions, and without regard for
N,(j ;=
order), so N; = g+ -l

.

] . Thus, we have the following
J

Ny + 7y - 1
7rj )

Applying (5) to the case p = ¢ = 3; n = 5 yields

simplified version of (3)

(5) " =Y [1‘[
T EP, f

J=1

Ny(5)

35 N4 | M) N;(3)| [ N3(2)
1 ) 1 1 1 1
AO) NN PR I P YRS I PG
. 1 | 2 N

1 3 5

P

or, evaluating the binomial coefficients
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243=N3(5)+54+24+48+18+30+21,

which of course leads to the same value 48 for N3(5) computed above but
is somewhat less tedious. While (5) is clearly more efficient than (3), the
reason for giving both versions is to point out the connections with [2].
Indeed, one might distinguish the cases of factoring a quartic polynomial
into either two distinct quadratics or one quadratic factor which is repeated
by the notation "22" vs. " 22", With this notation, it is clear that the 17
terms in the sum above obtained from (3) correspond to the 17
"factorization patterns” of 5: 5, 41, 32, 312, 311, 2%1, 221, 2111, 2121,
213, 11111, 12111, 1311, 12121, 1*1, 1312, 1°. Thus, (3) will always
reduce to a sum over the factorization patterns of n, while (5) will be a sum
over the partitions of n. In [2], it is shown that the number of factorization
patterns of n can be obtained by counting the partitions with "d(a) copies of
a". From our results, it is clear that each summand in (3) corresponds to
a different factorization pattern of n, so it is immediate that one may obtain
the number of factorization patterns of n by replacing each summand of the
form
N D) . (e(B)
[ £(B) ] 3(8)
by a 1. We obtain
COROLLARY 2 ([2], Lemma 2.1): Let F(n) stand for the number of
factorization patterns of n. Then

Fmy=Y JI| X 1] = Y I r@p.
‘)I’GP"J=1 BGP‘.»] IEPA.’:l

This illustrates the recursive approach to computing Nq(n) for any
finite field F. However, in case F = ZP, it certainly is not the quickest
approach to this problem. The approach in [11] or [9, p. 91-93] based on
Mobius inversion is much more efficient. Nevertheless, we hope this simple
application conveys to the reader something of the ubiquity and the beauty
of partitions of natural numbers. The reader with a further interest in the
subject of partitions might consult [1] for more information.
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A CHARACTERIZATION OF QUADRATFREI
LUCAS PSEUDOPRIMES

Paul S Bruckman
Edmonds, Washington

Consider the following property of certain positive integers n:
) L, = 1 (modn),

where {L,} isthesequenceof Lucas numbers, L,,.1 = L, +L, _1, Ly =
2, L, = 1. Itiswel-known that (1) is satisfied for al primen. If (1) is
satisfied for some composite n, then n is called a Lucas pseudoprime (or
LPP). Let Vdenotethe set of LPP's.

Someof the known properties of the LPP's have been discussed in {1]-
[4]. Amongthem arethat al LPP's are odd (thesmallest is 705), there are
infinitely many, and al known LPP's are square-free, or quadratfrei (q. f.).
P. Filipponi has compiled a list of the 4438 LPP's less than 232 (without
factorizations) and one of the 852 LPP's less than 10® with factorizati ons,
dl g. f. (5], [6]). The author acknowledges his debt to Filipponi for
graciously making these tables available.

On the basis of the admittedly skimpy numerical evidence of the tables.
it is tempting to make the following conjecture:

CONJECTURE 1: All Lucas pseudoprimes are quadratfrel.

The author has shown [4] that Conjecture 1 is equivalent to

CONJECTURE 2 Z(pz) = pZ(p) for Al primesp that divide some
LPP.
Here Z(p) is the Fibonacci entry-point of p, that is, the smallest positive
integer msuch that p | F,,,. (F,, denotesthe mth Fibonacci number.)

It seems very likely (see [4]) that all primes p divide some LPP, but
this has not been established. The vaidity of this assertion would alow us
to replace Conjecture 2 by the stronger statement

207
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CONJECTURE 3 Z(p2) = pZ(p) for al primesp.

In correspondence [7], J. Lagarias expressed his doubtsthat Conjecture
3 is valid, even though it has been verified for dl p < 10° by H. C.
Williams [8]. Using a heuristic argument, Lagarias surmises that the
number of p < x such that Z(pz) = Z(p) (such being the negation of
Conjecture 3) is O(log log x). If Lagarias is correct, this would of course
invalidate all three conjectures, under the assumption that every p divides
some LPP. Until this question is resolved, we must allow for the possibility
that there may exist LPP’s that are not g. f.

The aim of this paper isto characterized. f. LPP’s in a manner distinct
from the definition in (1). As we will see, our characterization will
facilitate numerical computations since it involves much smaller numbers
than those involved in (1). We requirea preliminary definition, along with
some relevant results. As they areeasily derived (or found elsewherein the
literature), they are given here without proof.

DEFINITION:  Given an integer m > 1, the Lucas period (mod m),
denoted by k(m), is the smalest positive integer e such that Lj =L
(mod m) for al integersj.

PROPERTY 1: K(m) = lem {K(p€) : p€ | m}.

PROPERTY 2 k(m) isevenfordl m > 2; k(2) = 3, k(5) = 4.

LEMMA 1. E(m) isthe smalest positiveinteger e such that o® = 1
(mod m), wherea = % (1 + /5). Thatis, &(m) = ord,a.

LEMMA 2: If nisoddandp aprime # 2,5, then L, = 1 (mod p) iff
either

(@ o ! = 1(modp)or (b) a"+' = —1 (modp).

The next result is very important, and we consequently elevate it to the
status of a theorem.

THEOREM 1. If n € V, then for dl p | n either

@) n= 1(modk(p)) or (b*) n= %Ek(p) -1 (mod k(p)).

Proof: Suppose n€ V. Then L, = 1 (mod n),andso L, = 1
(mod p) foral p|n. If p# 5, theconclusion of Lemma 2 applies and
there are two cases. If part (a) holds, then k(p) | n -1 by Lemma 1.
Hence n = 1 (mod X(p)), which is part (a*). If part (b) holds, then
o"*! = —1(modp) and so @***? = 1 (modp). Using Lemmal, this

+ée
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impliesk(p) |27 +2 but K(p) Jnt 1. Then2nt 2= (25 + DE(p)
for some integer s, or

n = sk(p) + YLk(p) - 1.
Then
n= %E@p) -1 (mod k(p)),
which is part (b*). If 5| n, then L, = 1 (mod 5), which impliesn = 1
(mod 4),i. e, n = 1 (mod %(p)). Thiscompletesthe proof.

We now give our characterizationof g. f. LPP’s, which is our main
theorem.

THEOREM 2: nisagq. f. LPPif and only if nisodd, composite, g. f.
and, for al p | n, either

@) n=1(modk(p)) or () n= %k(p) - 1 (mod k(p)).

Proof: If nisaq. f. LPP, then n is odd, composite, g. f., and the
conclusionsin (&) or (b) follow from Theorem 1. Thus, it remainsonly
to show that if nis odd, composite, g. f. and if either (&) or (b) holds,
then n isan LPP. There are two cases. In thefirst, if p{nad » = 1
(mod k(p)), then L,, = L; = 1 (mod p). In thesecond, if p |n and n
= Y Ek(p) — 1 (mod k(p)), thenn+ 1 = Y2 rk(p) for some odd integer
r. Then

ot2n+2 = arf(p) _ l (mod p),

using Lemmal. Therefore, a"+' = +1 (modp). Sincek(p) }n + 1,
we have a"+' # 1 (modp), which implies a"+' a —1 (mod p). Then
a” = B (modp), where = % (1 - /5); likewise, * = a (mod p).
This implies that

L, =a"+p8" =atg=1(modp).

n
In either case, L, = 1 (mod p) fordl p|n. Sincen isq. f., it follows
that L, = 1 (mod n). Since n is composite, therefore it isa LPP. This
compl etes the proof.

It is of interest to derive necessary conditions for n € V that are
independent of the assumption that nbe . f. Suppose n € Vand p | n.
Then either (a*) or (b*) of Theorem 1 holds. If (a*) holds, then clearly
n? =1 (mod k(p)) for adl such pp. 1f (b*) holds, note that 2 X(p) 1
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must be odd, sincenis odd and k(p) iseven. Thus 4 | k(p). Squaring
both sides of (b*) we obtain
n2 = u (k@) - &) + 1 (mod k(p))
or n2 = 1 mod E(p)) for al p|n. Our conclusion is the following
corollary of Theorem 1:
COROLLARY 1: If n € V, then n2 = 1 (mod k(p)) fordl p| n.
Using Property 1 of the Lucas period, we obtain similarly the following
corollary of Theorem 2:
COROLLARY 2. If n€ Vand nisq. f., then n? = 1 (mod k(n)).
Unfortunately, the converse of either corollary is fase. If n is
composite and if n* = 1 (mod E(p)) for dl p| n, it is not necessarily
truethat n € V. Thecounterexampleslessthan 500 are n = 15, 105, 161,
195, 231, 323, 341, 377, 435, and 451; since dl these are q. f. they are

counterexamples of either corollary.
The hypothesis n? = 1 (mod k(p)) doesimply the weaker conclusion

L,» = 1(mod p) forall p|n.
If in addition we restrict n to be g. f. thisimpliesonly L, 2 = 1 (mod n).
In conclusion, Theorem 2 could have some usefulness in testing for
n & V, providednisg. f. and itsfactorizationis known. Until Conjecture
1 is disposed of, we cannot completely characterize LPP’s, but only g. f.
LPP’s. A priori, it might bethecasethat L, = 1 (modp) but L, # 1
(mod p?) for somep with p? | n, so that n € V.
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The Public Perception of Mathematicians

Mathematics is at the heart of the sciences. All of them require
mathematical formulas to express their various truths. As the saying goes,
the physicists defer only to the mathematicians, and the mathematicians
defer only to God. (Though one would be hard-pressed to find a
mathematician that modest.)

—Dick Teresi, review of Science Matters by R. M. Hazen and James
Trefil, New Yok Times Book Review, February 3, 1991, pp. 7, 9.



ENUMERATING PARTITIONS

Rachele Dernbowski
SUNY, Stony Brook

Let I(m) (wherem is a positiveinteger) denote the number of partitions
having m parts in which the kth part is less than or equal to m - k + 1.
For example,

=1 1

12y =2 11,21

I3) =5 111, 211, 221, 311, 321

I(4) = 14: 1111, 2111, 2211, 2221, 3111, 3211, 3221,

3311,3321,4111,4211,4221,4311,4321.

In this note we will show that

()
m

m+1

Im) =

the well-known Catalan numbers.
Let 1,(m) denotethe number of partitionscounted in I(m) having largest
part k. For example,
L& =1, 15L& =3, 54=5, ,@) =5,

Wewill get aformulafor I, (m). Clearly, I;(m) = 1, theonly partition
being 111--1 (m Is). For I,(m) there are m - 1 places where the
rightmost 2 can be placed, so I,(m) = m - 1. To count I3(m) note that we
get a suitable partition by placing a 3 on the left of any partition into m - 1
parts with largest part 3, so

Iym) = I)(m - 1) + I,(m - 1) + I3(m - 1)
Applying this to the last term, we have

Ism) =Iim - 1) + I(m - 1) + I)}(m - 2) + L(m - 2) + I(m - 2).
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Continuing this process and using the values for I1(m) and I,(m) we get
B =1 ("7 e (1) + B

Since I3(m) = 2. we have, since the sum contains m - 3 ls,
Im) =M -3 +[(M=-2) +M=-3) ++2]+2

_[m\ [m
12 0/
In a similar manner, starting with
Iym) =1 (m - 1) + I,(m - 1) + I3(m - 1) +I4(m - 1)

and using the formula for I3(m), we get
1,(m) =(m; 1) _(ml+ 1).
Then, using mathematical induction, we can show that for ¢ = 3,
m+t-3 m+¢t-3
we =(" ) (70150
. m . . .
Since I(m) = Y ;=1 I,(m), using the last formula and the identity
n
E (r+.l) =(r+n—l)
=0 l n
we find that, for m = 3,

- (572 -222),

m -~ 1 m-3
It is not hard to show that this is equivaent to

()

I(m) =
m
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There are other questionsthat could be asked about similar partitions. For
example, let O(m) denotethe number of partitions with m partsin which the

kth part is less than or equal to m -k + 1 and al parts are odd. For
example, O(5) = 7 because of the partitions
53311 53111 51111 33311 33111 31111 11111

| conjecture that, for m > 2,
Im - l) _(3m— l)

m m-2
m+ 1

oQ2m) = (

o@m + 1) = (”‘ST‘ ) _ (’"3""1)
m

Rachde Dembowski did the work that led to this paper while a student
at Seton Hall University, from which she was graduated in Myy. Her
advisor was Professor Esther Guerin.

Xum ng Chen (University of Alabama, Tuscaoosa) notes that it seems
asif, given three consecutiveodd primes, p,,, p,, |, p, .2, it isadwaysthe
casetha p, + P,y > Ppoy 315 >7,51T7> 11, ...,990971
99989 > 99991, ...) and wonders if this iseasy or hard to prove. Is there
any relation to Bertrand's Theorem that for any positiveinteger n > 2 there
is a prime between n and 2n?

AUTOMORPHISMSOF HASSE SUBGROUP DIAGRAMS
FOR CYCLIC GROUPS

Lars Seme
Hendrix College

Thework presented here extends that of Buitt [1] and Woodard [4], who
calculated automorphisms of Hasse subgroup diagrams, Butt for groups of
small order and Woodard for the cyclic group Cpm », Where p and q are
prime and m and n are natura numbers. Here we extend their results to
cover al finite cyclic groups. The theory of Hasse subgroup diagrams is
not new; the definitive texts are Suzuki [3] and the recently published book
[2] by Schmidt. Our results are a specid case of Jones theorem on
classifying the isomorphism classes of Hasse subgroup diagrams associated
to any finite group (see [3], p. 37, Theorem 4.5). However, the work in
this paper was done independently of these references.

The Hasse subgroup diagram for a group G is the lattice of subgroups
ordered by subgroup containment. The group is the top element of the
lattice and the subgroup containing only the identity is the bottom element.
Subgroup A is below subgroup B in thelatticeif A € B. An edge connects
A and B whenever there are no intermediate subgroups; thus edges implied
by transitivity are suppressed.

An automorphism, ¢, of a Hasse subgroup diagram, H, is a bijection
from H to H that preserves or reverses order. An order-preserving
automorphism has the property that for two lattice elements x and vy, if
x <y, then o(x) < ?0), If x =y, then ¢ is an order-reversing
automorphism. Finally, the identity automorphism is the bijection that fixes
the elements of H.

Let C n n, _n, Wherep; isprimeand n; and j are positive integers,
pl p2 Pj

denote a finite cyclic group. Since the subgroups of a cyclic group are
cyclic, we can give the subgroups the general form < pf' pé‘? wp ;‘/ >,

215
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where k; can take on any value between O and n; and using the notation
< g > to denote the subgroup generated by ¢g. A few simple calculations
show that

k, k k k k, k k
<p11p22...pi“1...pj1> Cc <pllp22...pj1>
and that
k k k;+1 k
<l’111’22'"l’ii+ '"Pj’>
is directly below

kK ko k
< P 1 p22 oy i pj/ >
in the Hasse subgroup diagram.

LEMMA 1. Inthe Hassesubgroup diagram of Cﬁ"‘p"z o the subgroup
22-P)

< pfl pé‘z ...pj"/ > has

O subgroups directly below if k; = n; fori = 1toj,
J subgroups directly below if k; # n; fori = 1toj,
J - msubgroupsdirectly below if m isthe number of times k; = n;
fori = 1toj.
Proof. Suppose < pf‘pghp;‘/

> isasubgroup of C », » If
group PtlF?z"

-p .
k; = n;, then our subgroup is the identity subgroup and can have no
subgroups below it. Suppose k; # n; fori = 1toj. By adding 1 to any

exponent in < pfl p:’,‘z pff > we obtain another subgroup in the form

k. Kk k;+1
<p1|p22...pi' .

below < p]k‘ pé‘z pfl > . Sincethereare j choicesof exponentsto increase

-p ;‘/ > . As noted above, this subgroup will be directly

by 1, there will be j distinct subgroups directly below < p{! p32 - piy > .
Finally, suppose that there are m exponentssuch that n; = k;. We can add
1 only to those j - m exponents which are not n;. Therefore, there are
j - m subgroups directly below < pf! p§2...p;‘1 >,
LEMMA 2. Inthe Hassesubgroup diagram of C"p,.,p,.2 B the subgroup
Mp..

< plkl p:,;:‘zp,kj > has:

0 subgroups directly aboveif k; = O fori = 1toj,

j subgroups directly aboveif k; = Ofori = 1toj,
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J - m subgroups directly above if m is the number of times k; =
Ofori=1toj.
The proof is similar to that of Lemma 1.

The rank of a subgroup is its level or height in the Hasse subgroup
diagram. Wedefine the rank of the identity subgroup to be zero. The-rank
of a subgroup is then the number of lattice points passed following a
continually ascending chain from the identity to the subgroup.

Figure 1 shows the Hasse

subgroup diagram for the Rank
group G4 Since <4> is /C"\ 4
two lattice points above the > 9> 3
identity subgroup, <4> has TN e

rank 2. Figures 2 and 3 show iy <6> 2
Ceo. Figure 2 shows the 7 >

Hasse subgroup diagram and <8> <12> 1
Figure 3 shows a two- ™. =

dimensional representation to {ef 0
show the rank structure more

clearly. Figure 1

LEMMA 3. The rank of

Kk kS [ .
<py'py?~p;? > in the Hasse subgroup diagram of Sorpgrpp
(nl + n2 .+ ”j) — (kl + k2 + o+ kj)-

Proof. Suppose <p,"'p§2--.pf/ > is a subgroup of C mpm
Using the fact that {e} can be c Prpeby
writtenas < pl"‘p;2 -.-pj"/ >, “\<’5>
we creste a chan by
subtracting 1 from the /<2> s <3>\\
exponent of p;. Wecontinue \ / <15>
until the exponent of p, is <4>"‘i20>'/ <6>
k;. We have now moved / \<30>
n; - k; lattice points <12>” /

(subgroups) up the diagram. \\(‘e}
Continuing this for eachp;,
thechainis now (n; t ny *.- Figure 2
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+n) - (kT h + .. T K lattice points high, and that is the rank of the
subgroup.
Clearly, the rank of Cpflp;Z p™ isthen ny + ny + - + n;. Looking at

the examples, we see that C,4 and Cgy have rank 4.

THEOREM 1. The automorphism group of the Hasse subgroup diagram
H for the group Cpnlpnz o where p; is primeand n is a positiveinteger,
"py2.p;

is isomorphic to §; X C;.

Proof. Suppose we have Rank
the Hasse subgroup diagram, /Cm 4
H, of thegroup C ay sy _n;. 7|

Pl PZ ...pj ) s s 3
<2> <d>
We first clam that the VX TR X%
permutation group of any e N
number of the primes creates 4> ‘_15> =<10> 2
a valid automorphism of H. N TSl
. . 0

Defineafunctione : H = <12>‘ <3?> _<2 > 1
H by ¢(A) = B, where A = N | 2

m m m m m e 0
<Py Py P Pk By > tel
a n d B — Figure 3

my m m; my i
<pl p2 = Pk p‘ pjj>

To show that ¢ is an automorphism, we must show that it is bijective
and order-preserving. The bijective result follows immediately from the
definition of ¢. Function ¢ is order-preserving provided A has the same
number of subgroups above (respectively below) it as does B, and
furthermore ¢ maps the subgroups directly above (respectively below) A to
those directly above (respectively below) B. In other words, if this is true,
A can fit into B’s dlot in the lattice H.  The proof of this follows from
Lemmas 1 and 2, their proofs, and the definition of ¢. The rest of the
structure is clearly preserved since this transposition affects all subgroups,
and hence ¢ is an automorphism. Recaling that transpositions can generate
any permutation, we see that showing this function to be an automorphism
shows that al permutations are automorphisms.

We now wish to show that there exist no other order-preserving
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automorphisms.  Suppose we have a function ¢ which preserves order.
Since ¢ must preserve the rank of individual subgroups, ¢ must move
subgroups around in the same rank. In addition, each chain of subgroups
must be preserved since the ordering of H must be preserved. Now, any
reordering of subgroups is accomplished by permuting the p;’s within each
subgroup. Thisforces any attempt a reordering to be applied globally since
@ cannot switch p4 and p5 in rank four and switch p4 and pg in rank five,
as this would result in chains being broken. Hence, any vdid order-
preserving automorphism must come from the permutation group S.

We aso clam that there exists a reverse automorphisme,: H—>H
defined by

0, (4) = <p[ Mpy ".p] M.py .p!TI> = B,

whereA isthesameasabove. (Geometrically, thisisaflipfollowedby a180°
rotation about the axis joining the group and the identity subgroup, athough
this analogy falls short in more than three dimensions.)

By Lemma3, A hasrank (jn) - (m + my + - + mj) and B has rank
(my +my + - + mj). By applying Lemmas 1 and 2, we see that A has the
same number of subgroups aboveas B has below and vice versa. Also, any
chain that originally liked A and B till exists, except that it has been turned
upside down. Clearly, ¢ is bijective and so ¢ is an automorphism of our
diagram.

Finally, these two automorphisms can be combined, yielding a total
automorphism group isomorphic to S; X Cy.

We now turn to the general case.

THEOREM 2. The automorphisms of the Hasse subgroup diagram for

Cp;.,pz,.2 pl form a group isomorphicto S, X §p X - Sfx G;. whereais

the number of times n; = m,, for agiven my, b is the number of n; =
my for agiven m,, and so on. Disregard §; whenever it appears.

Proof. Consider thegroup Cpnlpn2 ..p™+ SUPPOSetwo exponents, say n;
1 72 i

and n;, areequal. Then permuting p; and p; is an automorphism by the
proof of Theorem 1.

We aso cam that if n; # n, permuting p; and pg is not an
isomorphism. Assumethat n; < n, and defineafunctione : H —~ H asin
Theorem 1. Consider the subgroup
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ng+1

< p{"lpé"z p'm' Pk ...p;"] >
Applying ¢ to this subgroup produces
1
p(A) = < p;nlpénz p;"' ...pin‘+ ...p;"] >

BUt ¢ is then not afunction as < p{™py - pii . pf*! ~pj? > isnotan

eement of C . ) o Since m; < n;+1. Therefore ¢ is not an
) pl PZ pj
automorphism.

As in the proof of Theorem 1, nothing other than permutations can be
used as order-preserving elementsin the automorphism group. We also see
that the reverse automorphism as defined in the proof of Theorem 1 is still
an automorphism.

Therefore, our automorphisms form a group automorphicto S, x §,

X . X Sf X C,, wherea, b, —,fare as defined above.

]
B
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MATHACROSTICS

Solutionto Mathacrostic 40, by Robert Forsberg (Spring, 1995).
Words:

A amotto N. seveof Eratosthenes
B. exine O. icotype

C. differentiable P. Christoffel

D. dartle Q. aurora

E. ichneumon R. light-nanosecond
F. neodymium S. scofflaw

G. GiuseppePeano T. CharlesLutwidge Dodgson
H. thevenerableBede U. inactive

[.  Owen Gwynedd V. equivocation

J. Nuvistor W. nematocyst

K. phenolphthaein X. cord

L. Horvath Y. effuse

M. Yahwist

Author and title: A Eddington, Physical Science.

Quotation: Pure mathematicians, having learned by experience that the
obviousis difficult to prove—and not aways true—found it necessary to delve
into the processes of reasoning. In so doing, they developed a powerful
technique which has been welcomed for the advancement of logic generaly.

Solvers: Thomas Banchoff, Jeanette Bickley, Barbara Buckley, CharlesR.
Diminnie, Thomas L. Drucker, Victor G. Feser, Richard C. Gebhardt, Henry
S. Lieberman, Naomi Shapiro, and the proposer.

Two errors escaped both the proposer and the ediitor: severa solvers noted
that the G in word | was omitted and Naomi Shapiro points out that the
definition of word Y should be™* Spread out without a definiteform.” No solver
identified the powerful technique' referred to in the quotation.

Mathacrostic 41, by Corine Bickley appearson the next three pages. It
has been some time since the directions for solving acrosticshave been given,
so they appear aswell. To be listed as a solver, send your solation to the one
of the two editorswho is nat Clayton Dodge.
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E 1|G 2|s 3 F 4fs 5[A 6/ 7 K 8y 9B 10]A 1
F 12[P 13|J 14 S 15[P 16|F 17|T 18[0 19 I 20 [G 21 8 LGS 2 -
1 133 31 48 142 86 104121 6
E 22(R 23|S 24 H 25|R 26(Q 27|T 28 (F 29|C 30|A 31|B 32 B. Serial, for example
10 32 43 96 78
S 33[1 34 J 35|F 36|L 37|N 38|S39/Q 40 J 41|l 42 C. rouser
76 88 139 30 51 58
alp 5 N 46 [H 47 |A 48[K 49|L 50|C 51|N 52 )
B4 “ R4 D. Seenin the Grand Canyon
O 53|L 54(P 55/K 56|G 57(C 58 H 59|N 60|R 61 J 62K 63 117120 127 129
E. Urge
S 64|L 65 H 66(Q 67 S68(M6IE 70 N 71 1 72|M 73 22 71 70 138
F. A method of ordering
M 74|J 75 C 76|R 77 B780279 P 80 81(S 82|00 83|R 84 (H 85 {2 wds) "4 29 17 36 103 130 12 108 115
A 86[1 87 C 88 L. 89|{M 90N 91|a 92|R 93|G 94 R5 < ,;ngels WS EUE 2 _ o
(2 wds) 21 134 94 99 57 2
B 96K 97 R 98/G 99 100|M101[1 102 F 103|A 104|S 105 N 106 H. Devised an algorithm for
iterative solution of 25 47 132 59 66 85
0107 |F 108 Q109 110 J 1110112 K113 [N 114{F115| 116 [D 117 nonlinear differential
equations
M 118l 119 [D120(A 121 J 122|T123 [K 124{Q 125 P 126 (D 127 I. Force applied at a cross
A direction "1 118
N128(D 129 F 130 T 131 H132A 133 G134 {1 135(T 136|Q 137 72119135 42 110102 20 81 11
E138|C139 K 140[J 141|A142] i 87 34
J. xand yor a and 8, for
instance "7 3514175 41 1412262 9
K. Now and again (3 wds) L
140 49 8 124 56 63 113 97
L. Not part
'37 54 50 89 65
M. Compare
90 73 74 69 118 101
222
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N. Rule, used for
spatial orientation 114 128 106 71 46 60 38 91 52

0. Akind of signal, some
analyses of which use
spectral displays

P. Acrossthe wide

Q. Haven't the notion

R. French conference for two
{3 wds) 23 B1 98 77 45 93 84 95 26

S. Can be solved by QR or QL

method, or by Householder "g2 33 64 68 105 15 39 24 5
reduction

3 100
T. time

18 136 28 123 131

The mathacrostic is a keyed anagram. The 142 |etters to be entered in
the diagram in the numbered spaces will be identical with those in the 20
keyed words at the matching numbers. The key numbers have been entered
in the diagram to assist in constructing the solution.

When completed, the initia letters of the words will give the name of
an author and thetitle of a book; the completed diagram will be a quotation
from that book.
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PROBLEM DEPARTMENT

Edited by Clayton W. Dodge
University of Maine

This department welcomes problems believed to be new and at a level
appropriatefor the readers of thisjournal. Old problems displaying novel
and elegant methods of solution are also invited. Proposals should be
accompanied by solutionsif available and by any information that will assist
the editor. An asterisk (*) preceding a problem number indicatesthat the
proposer did not submit a solution.

All communications should be addressed to C. W. Dodge, 5752
Neville/Math, University of Maine, Orono, ME 04469-5752. E-mail:
dodge@gauss. umemat. maine.edu. Pleasesubmiteach proposal and solution
preferably typed or clearly written on a separate sheet (one side only)
properly identified with name and address. Solutions to problens in this
issue should be mailed by July 1, 19%.

Problems for Solution

862. Proposed by Philip Tate, student, University of Maine, Orono,
Maine.
"Solve this base ten addition alphametic."

"But it doesn't have a unique solution." DODGE
"It does if | give you the value of T." + THE
"Never mind, | found it. Furthermore, it has a unique GREAT

solution in base eight. Let me show it to you."

863. Proposed by James Chew, North Carolina Agricultural and
Technical Sate University, Greensboro, North Carolina.

Here is a problem especialy for undergraduates. Everyoneis familiar
with the story of the absent-minded professor who wears different colored
socks on his feet.  Suppose a month's supply of socks are in the clothes
drier; specifically, let there be n pairs of socks in a drier containing only
these socks.

225
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a) Assume the socks are of n different colors. The professor draws
socks one at a timefrom the drier without replacement, noting the color as
he draws each sock. To get apair of matching socks, & leest 2 and a mogt
n + 1 socks must be drawn. On average, how many socks would have to
be drawn to get a matching pair?

b) Repeat part (a), assuming k different colors of socks: n; pairsof red
socks, n, pairs of bluesocks, etc., wheren; * ny + ... t n, = n.

864. Proposedby Charles Ashbacher, Geographic Decisions Systems,
Cedar Rapids, lowa

On page 11 of the booklet Only Problems, Nat Solutiond by Florentine
Smarandache, there is the following problem.

Leta;, 8, ..., a bedigits. Arethereprimes, on‘a base b, which
contain thegroup of digits a, - a,, into its writing? But n? But n"*?

Prove that for any such sequence of digits a,, a,, ..., a,,, N0 maiter how
generated, thereexistsa primesuch that the sequenceis found in that prime.

865. Proposed by Migud Amengual Covas, Mallorca, Spain.

Let ABC beatriangle with sdes of lengths a, b, and ¢, semiperimeter
s, and area K. Show that, if La(s — a) = 4K, then the three circles
centered at the vertices A, B, and Cand of radiis — a,s - b, ands - ¢,
respectively, are dl tangent to the same straight line.

866. Proposed by J. Rodriguez, Sonora, Mexico.

For any nonzero integer n, the Smarandache junction is the smallest
integer S(n) such that (S(n))! is divisbleby n. Thus §(12) = 4 since 12
divides 4! but not 3.

a) Find a drictly increasing infinite sequence of integers such that for
any consecutivethreeof them the Smarandachefunction is neither increasing
nor decreasing.

*p) Find the longest increesng sequence of integers on which the
Smarandachefunction is strictly decreasing.
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867. Proposed by Seung-Jn Bang, AJOU University, Suwon, Korea
Find the number of solutions (x, y, z, w) to the system

x+y+z+w=7
Ay +2+w=15
L+y 173 +w =37
xyzw = 6.

868. Proposed by William H. Peirce, Delray Beach, Florida

1. Enter total amount of &l socia security

benefits . ......... ... ... .. .. 1S
2. Enter one-hdf of linel . ........ 2.
7. Enter your provisond income . . ... 7. P

8. Enter $32,000 if married filingjointly 8. 32,000
9. Subtract line 8 from line 7. If zero or o
less,enterO .. ......... ... .. 9.

Isline 9 zero? If yes, enter O on line 18. If

no, continueto line 10.

10. Enter $12,000 if married filing jointly ~ 10._12,000
11. Subtract line 10 from line 9. If zero or

lessenterO . ................. 11.
12. Enter the smdler of line 9 or line 10 12.
13. Enter one-hdf of linel12 . .. ... .. 13.
14. Enter thesmdler of line2 or line 13 14.
15. Multiply line11 by 0.85 . .. ... .. 15.
16. Add lines1l4and15 .......... 16.
17. Multiply linelby 085 ........ 17.
18. Taxablesocial security benefits. Enter

thesmdler of linel6orlinel7 ...... 18.

Socia Security Benefits Worksheet (somewhat ssimplified)

Computation of the taxable portion of socid security benefits in 1994
is consderably more complicated than in past years, and the IRS has
designed the 1994 accompanying worksheet to determine these taxable
benefits. Let S be the total socid security benefits on line 1, P the
provisona income on line 7, and T the taxable benefits on line 18. For
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married couples filing jointly, find T asa function of S and P. Exhibit the
solution graphically by showing the function T for each pertinent region of
the SP-plane, and give the boundary equations for each region. Assume §
> Oand P > 32,000 and ignore their practical upper limits.

869. Proposed by Rasoul

Behboudi, University of North c S
Carolina, Charlotte, North / H
Caralina. A [ 5
Consider an ellipse with 0
E F

center at O and with mgjor and
minor axes AB and CD
respectively. Let E and F be
points on segment OB so that D
OE2 + OF? = OB%2. At E
and F erect perpendiculars to
cut aac BC a G and H
respectively.  Show that the
areas of sectors OBH and OGC are equal. See Figure 1.

Figure 1. Problem 869.

870. Proposed by Grattan P. Murphy, University of Maine, Orono,
Maine.

This proposal is based on a problem posed at a recent mathematics
meeting and is intended especialy for students. Without using machine
calculation, that is, without actually finding the digits of the number, show
that at least one digit occurs at least 6 times in the decima representation
of the number (77)7 - 77 « 77.

871. Proposed by Miguel Amengual Covas, Mallorca, Spain.

Let ABCD bean isoscelestrapezoid with major base BC. If the altitude
AH is the mean proportional between the bases, then show that each sideis
the arithmetic mean of the bases, and show that the projection A P of the
atitude on side AB is the harmonic mean of the bases. See Figure 2.
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872. Proposed by Paul S
Bruckman, Edmonds,
Washington.

Given A,, A,, and A3 are
theanglesof atriangleand 4 C e
kC 12, let S = Si(A}, Ay, A43)
= £3_,(kcos A, T cos 24),
defined on the triangular plane /.
regionR:0 CA, < 7,0 CA, B__ H- . e
<7,0CA, +A4,<T1. Find
the maximum value of S for al

: Figure2. Problem 871.
triangles.

873. Proposed by Mohammad K. Azarian, University of Evansville.
Evansville, Indiana.
For p and ¢ positive rea numbers and any positive integer m let

Pq
m m+l 3 3
ﬂx)-——[l+x+f_+f_'__] [1+£]chp[qx

?

m! m p q+x

wherex = 0. Provethat

<Xy Jomf(x) exp(-[(p + q)* + k"|x)dx < 1.

k=2 n=2

874. Proposed by David Iny, Westinghouse Electric Corporation.

Baltimore, Mry land.
a) Given red numbersx; and z; for 1 < i < n, prove that

n[Ex,-zEz,-2 ~(Fxz) =
(Exi)'-’(zziz) - (z:x,-?')(z:z,-)2 - 2 x(Y Y xz)-

b) Determine a necessary and sufficient condition for equality.
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Solutions

820. [Fdl 1993, Fal 1994] Proposed by William Moser, McGill
University, Montreal, Quebec, Canada.

Let a, , (0 < k < n) denote the number of n-bit strings (sequencesof
0’s and 1's of length n) with exactly k occurrencesof two consecutiveQ’s.

Show that n
r-Kmn-r+
ae= 300D
n rgz:k k r-k
|
h L < () ise.
where =Bl if 0 £ k £ nand 0 otherwise

Editor's comment. The problem is unclear as to how many pairs of
zeros you count when there are three or more consecutive zeros. The
proposer's intent was that three or more consecutive zeros are not allowed;
consider strings where zeros appear (between ones) only singly or in pairs.
There is no such restriction on the ones; any number of consecutive ones
can appear any place.

I. Solution by the Proposer.

We use the well-known result that m like objects can be placed in q
unlike boxes in ('”+‘_1i‘) ways. Forr =0, 1, 2, ..., weshal construct and
count the n-bit strings with r zeros, n — r ones and exactly k occurrences
of two consecutivezeros. We use the symbol Z to denote 00.

Placek Z’s and r - 2k zerosin a row, which can bedonein ("") ways
Theser - k symbolsin a row determiner — k + 1 boxes—one at each end
and r - k — 1 between adjacent symbols. Into each in-between box place
al. Thereremann-r - (r—k—-1) =n - 2r ¥ k+ 1ones, which
we distributeinto ther - k + 1 boxeswithout restriction. This distribution
can be done in

((n -2r +(l'c.1:]]c_)++l()r_-lk +1) - 1) _ (n ;:;(l)

ways. We thus have
r - k)n -r+1
k r-k

n-bit sequences with r zeros, n — r ones, and exactly k 00's.  Summing
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over r gives the desired result.

II. Comment by Paul S. Bruckman, Edmonds, \Washington.

Of the a 4 strings having no occurrences of 00, let u, and z, denote
those strings that end in 1 and O respectively. Clearly a, o = u, + z,. To
form astring of n T 1 zeros and ones having no 00’s one can append al
to the end of any such string of length n, or one can append a O to the end
of any string of length nthat endsin 1. That is, u,,; = a,gand z,,; =

u, = 10 It follows that a,0 = F,is WhereFy = F, = | and F,
= F, T F,,, are the Fibonacci numbers
It may also be shown that the "row" sums of these coefficients, that is,
[(n+1)/3]
Sp = an,k ’
k=0

where the brackets indicatethe greatest integer function, may be expressed
in terms of the Tri bOI’laCCI numbers T,, whereTy = T} = 0, T2 =1, and
ingenerdl T, 3 = Tpys T T, T T Specificaly, s, = T,

Also solved by Paul S. Bruckman, and Mark Evans. Henceforth we
shall print only the names d the also-solvers. The omisson d affiliations
and locations will save enough space to print an additional article in each
issue. We regret the inconvenienceand ask your understanding—ed.

825. [Spring 1994, Spring 1995] Proposed by Leon Barkoff, Los
Angeles, Cdifornia

Let O be a point inside the equilateral triangle ABC whose side is of
length s. Let OA, OB, OC have lengths a, b, ¢ respectively. Given the
lengths a, b, c, find length s.

IV. Comment by Henry S Lieberman, Waban, Massachusetts.

In addition to Rex Wu's demonstration of the symmetry in Solution |
and the editor's comment, we observe that

(2bc)2 —(b2 +c? -az)?' =hb+c+a)b+c-a)c+a-b)a+b-c),

which is clearly symmetric.
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836. [Fall 1994] Proposed by the editor.

Solve this base ten holiday addition MANY
aphametic. Sincethe coming year 1995 is an odd NEW
year, you are asked to find that solution such that NEW
Ais an odd digit. YEARS

Solution by Alma College Problem Solving Group, Alma College, Alma
Michigan.

Since we can carry a most 1 from the hundreds column, we see that
YE= 10and M = 9. SinceE = 0, we must carry 1 from the units column
and R = N+ 1. Thuswecarry 0 to the hundreds column. From the two
A's in that column, weseethat N = 5, soR = 6. Since W > 4, we have
W = 7 or 8. Because W = 7 leads to the contradiction S = N = 5, then
W=8and S= 7. Weknow Ais an odd digit and therefore A = 3, the
only remaining odd digit. Thus our solution is 9351 *+ 508 + 508 =
10367.

Also solved by Charles Ashbacher, Scott H. Brown, Paul S. Bruckman,
Sandra Rend Chandler, William Chau, Mark Evans, Victor G. Feser,
Stephen |. Gendler, Sergey Gershtein, Richard |. Hess, Bill Hooper, Carl
Libis, Henry S. Lieberman, Raymond Medley, Yoshinobu Murayoshi,
Michagl R. Pinter, Mike Saparov, Ledie J. Upton, Rex H. Wu, and the
Proposer.

837. [Fal 1994] Proposed by J Sutherland Frame, Michigan State
University, East Lansing, Michigan.
Evauate in closed form the integra

[ = I_:\/az -x%Inlz - x| dx, |z] < a.

Solution by the Proposer.
Note that 7 is an improper integral becausex = z a one point inside the

interval of integration. In a small neighborhood of that point the quantity
(a* — xH)12 is essentialy a nonzero constant and the integral is equivalent

to
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| |
lim 2] nxdx = lim 2[x Inx - x] = -2 - lim 2elne = -2,
a,- Je a,- ¢ €40

so theintegral 7 converges. Now weset X = acos 6and z = a cos ¢, then
add an equal term to 7 by replacing 6 by # - 6, getting

2] = azj 7rsinzt')[lnalc:osd) - cosf| + InajcosB + cose|]db,
0

21
’_.)

I wsinZBIn[azlsin?'B cos2¢ - cosZh sin2¢|]d0
a- 0

I"sin20[lna|sin(0 + @)| + Inalsin@@ - ¢)|1d6.
0

Since both integrand summands have period =, we can replace6 by 6 - ¢,
orby 6 * 4, and get

2 I"[sinz(o _ ) + sin*(@ + &)]In(asin6)df
a 0

= I”[l - cos2¢ cos26] In(a sinb) db,
0

where we used sinzy = (1 - cos 2y)/2 and the formula for cos (¢ + ).
Since

12
Q - 1)[0”1n(asino)do = Jo’rm(azsinzo)do " Io" In (a sin 26) d(26)

™
=2J’
0

_2_] - wln; = ~c052¢J"c05201n(asin0)d0
2 0

a

2. q . . a
[lni + Insinf - Insin(w - )} df = 1rln-2-.

SO

= cos2¢ ([ -sinfcosOIn(a sinB)]Z)r + JOW sinf cosf cotd d@).

a

= 7w|ln= +
2 2
- a

42_]. = 7rln(_21 + (2cosz¢» - l)[O +

(ST

2
a

ra
Y 3
[
| SO
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and finally

Also solved by Paul S. Bruckman.

838. . [Fall 1994] Proposed by Florentin Smarandache, Phoenix,
Arizona.

Letd, = p,.y - Py n =12 3, .., where p, is the nth prime
number. Find the nature of the series

y L
n=1 dn
[. Solution by Richard /. Hess, Rancho Palos Verdes, California

For large x the probability of x being a prime is approximately 1/In x.
Thus there is on average one prime between x and x + In x. Hence

I _ dx
Xom= |

x Inx’

Since

N dx
= Ind -
jz —— = In(nA) - In(in2),

the integral diverges when N becomes infinite, so the sum of the reciprocals
of the primes diverges. Now

| 1

= > _1
dn Pnet ~ Py Py

so L 1/d, diverges by the comparison test.

I1. Comment by Paul S Bruckman, Edmonds, \Washington.

The same problem by the same author appeared as Problem B-726 in
The Fibonacci Quarterly, Vol. 30, No. 4 (Nov. 1992). The published
solution, ibid, Vol. 32, No. 1 (Nov. 1994) showed that the indicated series
is divergent.
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Also solved by Joe Howard, David E. Manes, Rex H. Wu, and the
Proposer.

839. [Fall 1994] Proposed by James Chew, North Carolina Agricultural
and Technical Stare University, Greensboro, North Carolina '

a) A ticket buyer chooses a number from 10 through 99 inclusive. A
number is randomly picked as winner. If, for example, 63 is the winner,
then each ticket number 63 that has been sold is awarded $A. The reversa
ticket number 36 is awarded $B. That is, the second prize goes to any
ticket with both digits correct, but in the wrong order. The third prize of
$C is paid to any ticket that contains at least one of the correct digits, e.g.
33, 43, 34, 65, 76, etc. A ticket can win only one prize and prizes are not
shared. If you have bought 5 tickets numbered 63, you win $54. Find the
fair price for a ticket.

*h) Find the fair price for the game of part (a) if prizes are shared.
That is, the ticket seller pays out a total of a& most $(A + B + ) in
winnings for any one game, $A is shared among al winning tickets (number
63), if any. Then $B is shared among al holders of second prize tickets
(number 36). Finaly, al third prize winners share the one amount $C.

I. Solution to part (8 #y Mark Evans, Louisville, Kentucky.

The ticket price should actually he a function of the number the player
chooses. There are three cases.

Case 1. To illustrate the nine numhers that end in zero, suppose you
pick the number 10. You win $A with probability 1/90, you cannot win $B,
and you win $C if any of 11, 12, ..., 19, 20, 21, 30, 31, .... 90, 91 is
chosen, with probability 25/90. The fair price is Py = $(A + 25O)/90.

Case 2. Suppose the buyer picks one of the nine numbers with two like
digits. For example, suppose you pick 11. You win $A if 11 is chosen,
with probability 1/90, you cannot win $B, and you win $C if any ot 10, 12,
13, ..., 19,21, 31, ..., 91 ischosen, with probability 17/90. Hence the fair
price for your ticket is P, = $(A T 17€)/90.

Case 3. There are 72 remaining numbers, such as 12, having two
distinct digits, neither of which is 0. Then you win $A with probability
1/90, now $B (for the number 21) with probability 1/00, and $C tor any of
the numbers 10, 11, 13, 14, .... 19,20, 22, 23.....29. 31, 32. 41. 42. .... -
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91, 92, a total of 32 numbers. Here the fair price is P; = $A +B+
320)/90.

II. Solution to part (a) by the Proposer.

Continuing Solution |, suppose the player selects a number completely
at random without regard to the three cases considered. (Perhaps the
number is assigned by a drawing.) Then the probabilitiesof picking case 1,
2, 0r 3are9/90 = 1/10, 9/90 = 1/10, and 72/90 = 8/10, so the fair price

should be
P=__1_Pl+_l_P2 P3_$10A+88+298C
10 10 10 900
III. Solution to part () by Richard |. Hess, Rancho Palos Verdes,
Cadlifornia.

Assume you follow a mixed strategy with probabilitiesp, g, and r = 1
— p — g of choosing numbers from cases 1, 2, and 3 (from Solution 1
above) respectively. We shall solvefor p and ¢ so that your expectationis
indifferent to whatever strategy the remaining population chooses. Let the
population consist of n people including yourself. We suppose the others
al pick pure strategies from cases 1, 2, and 3.

Supposethe remaining population al pick from case 1, say they pick the
number 10. The table shows your expectation for each choice you make.

You pick tone of) With probability Your expectation

10 P 25C
) 90
20, 30, ..., 90 %” 1 [A » J6C 9c]
1 q 1 [A . C . 16C
9 “n
22,33, ..., 99 % [A + 14C + _]
12-19,21,31,...,9 16r ER Py 16C+ 16C
72 30
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23,24, ..., 98

s [A+B+6_.C+26C]
(no 0, 1, or repeat) %

72 n

Hence the expectation E(1) is given by

A
Efly= A ~

M= 5
PA 1) B PCI1T g 113+ 30 214+ 14
80| | 90 9 810 3

Similar counting for the cases where the remaining population chooses
purely from sets 2 and 3 gives

A
EQy= A4 -
2) %0
1
gAf;_1),B, pC ﬂ 185] +9€ [120+33) + 7€ [ 230+ 38
gio| = 90 810 810 " | 85 ry
and

EQ) = i-ﬂ_[l-l] . B ’_B[I-U

9% 6480| =n| 90 6480 | n|
s PC | T 51 ] .96 [05. 98 | « P {119+ 2
810| n 810 n 540 n
To make the expectationsequal we set
0=E@Q) - EQ) =
34C A-25C A +B+412C 1
_po +qo —-re l :
810 810 6480 n
and
A+113C -A+7C 16C 1
0= - E() = |[p- . : e
E@ = £ [” TR ST 810] n]

which, sincer = 1 — p — ¢, reduceto

A+ B+ 1400 + g9A + B + 2120) = A + B + 412C
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and
—p(A +970) + (A + 90) = 16C.

After much algebra, during which wefind that AIC = \/272 + 2587 — 27
= 30.58472 in order for r to be nonnegative, we find the expectation E to

be

9143+362860C3+9142B+132804 2C+3684494C>-173999BC2+50204BC

810(1042 + 21824C? + 24B + 1234AC + 106BC)

If A/IC < \/272 + 2587 — 27, the problem simplifiesand you choose only
from sets 1 and 2, taking r = 0, as the reader may wish to verify.

Also solved by Paul S. Bruckman, William Chau, Mark Evans, Richard
|. Hess, and the Proposer.

Editorial note—Iir is interesting to see a problem where five solvers
submit solutions withfive different answers. Some d these differences were
due to different assumptions about strategies and about theconditions d the
problem. Combinatorial and probability problems attract different
interpretations, clearly illustrated in the recentfuror over the so-called
Monty Hall problem.

840. [Fall 1994] Proposed by Seung-Jin Bang. Seoul, Republic d
Korea.
Prove that, forn = 2,
| | n+ 1

l + — + e+ — > Ilnn +

2 n 2n
Solution by George P. Evanovich, Saint Peter's college. Jersey City,
New Jersey.
We have that
|
Inn = J —dx,
1 x

Draw the graph of f (x) = 1/x and approximatethe area under the curve on
the interval {1, n] by the trapezoidal rule. Since the curve is concave
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upward, the area is less than the approximation, that is,

lnn<l]+2l +21 + o+ 2 1 +_l_
2 2 3 n -1 n

Now add 112 + 1/(2n) to each side to obtain the desired result.

Also solved by Alma College Problem Solving Group, Paul S.
Bruckman, Mark Evans, Jayanthi Ganapathy, Edward Hamilton, Richard |.
Hess, Joe Howard, Murray S. Klamkin, Henry S. Lieberman, Peter A.
Lindstrom, David E. Manes, Can. A. Minh, Y oshinobu Murayoshi, Bob
Prielipp, St. Olaf Problem Solving Group, Selvaratnam Sridharma, Sammy
Yu and Jmmy Yu, and the Proposer.

841. [Fall 1994] Proposed by Seung-Jin Bang, Seoul. Republic d
Korea.

For given red constants a, b, and ¢, let { a } be the sequence satisfying
the recursion equation na,, = aa,_, t ba,_,forn > 1, a3 =0, a; =c.
Find the sum of the series

Ya
n=0

Solution by Paul S. Bruckman, Edmonds, \Washington.

Initially we ignore questions of convergence. Let S = E::o a,. We
first deal with degenerateeases. If ¢ = b =0, thenclearlyS =c¢. It a #
Oandb =0, weseetha a,, = cd Yn! forn = 1, and S = (c/a)(e” — 1).
By letting a = 0 we see that the former case is a limiting instance of the
latter.

Henceforth we supposethat & # 0. To develop a differential equation,
suppose

n:

y=yx =Y a,x",

n=>0

whose coefficientsa satisfy the given recursion equation. Since

" s n S o, g s n
xy'= Y nax", ay =4y a, x" and by = by a, 1"

nzl1 n=2 n=2
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thenxy’ — apx = axy T bx?y, or
y=ctatby,

subject to the conditionsy(0) = 0 andy' (0) = c. To solve this system we
make the substitutiony = u exp(ax T bx2/2) and we get

u' = cexp(—ax — b,r2/2) with #(0) = 0 and 4’ (0) = c.

From this equation weobtain thesolutionu = ¢ Ixexp(—at - bt%/ 2)dt and
0

2b 2b

We observe that the integral existsfor al x and hence that the given series
converges. Since S = y(1), we obtain

1
2 x 2
y = cexp[(a + bx) J exp (_ (@ + by :, ar:
J 0

2
s = CeXpl:(a ;bb) J lexp -MJ dr
0

] T
or equivaently,

b| ¢! bt?
S =cexpla + = -at - — | dt.

If b > 0, then by making the substitution a + bt = u,/Z_, we can
obtain

T a + b)> a+b| _ a
S=0Eexp[%]-[q’[ ﬁ_] q)[—‘/b:]:l,

where ®(x) i sthe cumulativefunction of the normal probability distribution,
defined by

l X -luz
)= — j e 2 du.
V2r ' -
Also solved by Murray S. Klamkin, and the Proposer.
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842. [Fall 19941 Proposed by Russell Euler, Northwest Missouri State
University, Maryville, Missouri.
Let x; be a positive red number for i = 1, 2, ..., n. Prove that

R n 172
£ [fe] =e

with equality if and only if x; = x, = -+ = x,

n°

Solution by Joe Howard, New Mexico Highlands University, Las Vegas,
New Mexico.

By the Cauchy-Schwartz inequality we have that
2

1y [z%](zx.-) 2 T |2n| =
and
@ (ST 2 (Bxf or (T17)2vr 2 ¥,
Combining (1) and (2) we get that
[zxii](zxf)‘”-ﬁ > [T |(X5) 2 2,

and the theorem follows. It iseasy to see that we have equality if and only
ifx, =x,=..=1x,

Also solved by Miguel Amengual Covas, Seung-Jin Bang, Scott H.
Brown, Paul S. Bruckman, Philip A. D. Castoro, William Chau, Richard
I. Hess, Murray S. Klamkin, Henry S. Lieberman, David E. Manes, Can.
A. Minh, Yoshinobu Murayoshi, Bob Prielipp, St. Olaf Problem Solving
Group, Sdvaratham Sridharma, Sammy Yu and Jimmy Yu, and the
Proposer.

Klarnkin showed more generally that

n 1 3
Y. =
t=1x'.




242 P1 MU EPSILON JOURNAL

with equality if and only if the x; are constant. Here p, g, r, s are positive
numbers such that pr = gs.

843. [Fal 1994] Proposed by Bill Correll, Jr., student, Denison
University. Granville, Ohio.
Let s(n) denote the sum of the binary digits of the positive integer n.
Find a value for ¢ so that
c 2342173

,,g?("n_)i 5544

Solution by David E. Manes. SUNY Collegeat Oneonta, Oneonta, New
York.

The value of ¢ is 2050. Let m be a nonnegative integer and n any
integer such that 2™ < n < 2m*+1, Then the number of digitsfor n in base
2ism * 1. Sincetheleading digit for these numbersin base 2 must be 1,
it follows that the number of these integers with k ones in the base 2
representation is (), 1 < k < m+ 1. Therefore,

2o m+1

E s(ln)_ 2 (k"l)

.'!52'" k=

1(m)= l(m+l)
TE-1) ml kb

this sum can be written in closed form as
2miog

Since

E 1 — 1 (m + l) (2m+l =0 1.
2m s(n) m + lk 1 + l
Consequently,
2ml -y m 27!-1 m |
T, = @ - ).
" ,,2.:1 s(n) ,z.% 2, s(n) ,Eo r+l
Then wefind that
2331085 4222975
T = d7T, = .
107 =553 ¢ T T —55gg

Thus2047 = 2! — | < ¢ <212 _ | = 4095. Fortunately s(2048) = 1
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and $(2049) = s(2050) = 2, so that

ZE" 1 _ 2331085 ., _ 2342173
s(n) 5544 5544

n=
and the solution is complete.
Also solved by Charles Ashbacher, Paul S. Bmckman, Mark Evans
Richard I. Hess, Michad R. Pinter, Rex H. Wu, and the Proposer.

845. [Fall 1994] Proposed by Russell Euler, Northwest Missouri Sate
University, Maryville, Missouri.

Let A, B, and C be subsets of U = {1, 2, 3, ..., m}. An ambitious
student wantsto provethat if A € B,then AU (BN C) = (AU O) N B
foral 4, B, and C. Expressin closed form the number of specific cases the
student must consider.

Solution by William Chau, New York, New York.

We must consider only sets A and B such that A € B. There are (})
sets B of k dementseach, and each has 2F subsets A.  Therefore, the total
number of choicesfor Aand B is

m m

m\ ok _ M\ ok ym-k _ _am
E(kz-z(k)zl"' — @+ = 3m
k=0 k=°

Considering the 2™ different subsets C, one obtains a total of 2"3™ = 6™
possibilities.

Also solved by Paul S. Bmckman, Mark Evans, Stephen |. Gendler and
Danidl Schall, David E. Manes, Rex H. Wu, and the Proposer.

846. [Fall 1994] Proposed by M. A. Khan, Lucknow, India.
Let N, L, M be points on sides AB, BC, CA of a given triangle ABC
such that
0< AN _BL_CM _, ..
AB BC (A
Let AL mest CN & Pand BM a Q, and let BM and CN meat & R. Draw

lines parale to CN through A, parald to AL through B, and parale to BM
through C. Let XYZ bethetriangleformed by these three new lines. Prove
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that:

a) Triangles ABC, PQOR,
and XYZ have a common
centroid, and

b) If the areas of triangles
POR, ABC, and XYZ are in
?/e_ometric progression, thenk =

3 -1

Solution by William H.
Peirce, Defray Beach, Florida.

Place the figure in the
complex plane and let the
complex affix of each point be denoted by the corresponding lower case
letter. Then

Figure 3. Problem 846

I=0-Kkbtkem=(1-kct ks andn= (1 - ka T kb
Next, Plies on line AL, so for some rea number A, we have
P=MN+ (A -N=xa+(1-NI-bb+ (1 — Nke.
Since Pliesalso on line CN, thereis a red constant g such that
p=puc+ (A —pwn=>U0-pwd —-ka+ (1 — pukb + puc.

Since the representation for p must be unique, we may equate the
coefficients of a, those of b, and those of ¢ in the two expressions for p,
obtaining

A== -k, (1 =N =K =(-pk and (I — Nk = p,
which we solve simultaneously to get

2 2
A =B g = K

1 -k+k?2 1 -k + k2
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Notethat the denominator 1 - k + &% is positivefor al rea k. Substituting
for A and p in either expression above gives the expression for p in terms
of a, b, and c. Similarly, q and r are found, yielding

(1 - K% + k(1 - kb + k*c

p=
1 -k + k2

_ (1 -k + k1 - B + k’a
1 -k + k2

q

?

and

Lo a- K% + k(I - ba + k%
1- k+k?2
We develop similar expressionsfor x, y, and Z. Since XZ is parallel to BM
and passes through C, thereis a red constant A such that
x=c+Nm—5b)=kna— N+ ({ + X — k\)c.

Also, XY is pardld to CN and passes through A, so for some real u, we
have

X=atpun-co=QQ+p-kpat kub — pc.

Again we equate the coefficientsof a, b, and of ¢ in these two expressions
for x to solve for A and . Then we substitute back into either'equation to
find an expression for x. Similarly, wefindy and z. We get

_ k% -ka + b
X T ity Y = i and 7 = —
1 -k + k2 1 -k + k2 1 -k + k2
a) The centroid of a triangle is the intersection of the medians and is
egual to the average of its vertices. Thus the centroid G of triangle ABCis
given by

k%a - kb + ¢ kb - kc +a

a+b+c
————
Similarly we average the affixes for triangles POR and XYZ. Easy algebra
shows each centroid coincides with point G.  Furthermore, the centroid of
triangle LMN, too, isa G.

b) The area of a triangle ABC, denoted by K(ABC), in the complex

g:
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plane is given by

1
1} .
1

a
K(ABC) = 2 |b

c

fP=Xtpubtw Q=X tpatvoadR=x *t puc*+ va
where X, u, and v are redl numberssuch that A + p + » = 1, then

ENR
ol | at

Aa+ub+vc )\Emsz 1 Ap v

K(PQR) = :té Ac+pa+vb Ne+pa+vb 1| = £ |p v A\|+K(4BO
Ab+uc+va Ab+uc+va 1 vy Aop

Now the multiplier determinant D(PQR) is given by

Apov
D = pu)\=3)\;w-)\3—-p3—V3=3(uu+v)\+)\u)—-l.
v A

For the given triangles PQR and XYZ we have

”
DPoR) = = 20° 4 pixyzy = R
1 -k +k? 1 -k + k2
For K(PQR), K(ABC), and K(XYZ) to be in geometric progression, then
D(PQR) and D(XYZ) must be reciprocalsof one another, so their product
must be 1. We have

(A -207 (U +k?
1 -k + k2 1 -k +k?

This equation simplifiesto 3k*(k* + 2 — 2) = 0, whose only root in the
allowable range for k is /3 - |.

= 1.

Also solved by Miguel Amengua Covas, Paul S. Bruckman, Murray S.
Klamkin, Henry S. Lieberman, and the Proposer.
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*847. [Fall 1994] Proposed by Dmitry P. Mavlo, Moscow, Russia.

From the SY MP-86 Entrance Examination: The midlineof an isosceles
triangle has length L and its acute angle isa. Determine the trapezoid's
areq, if it is known that a circle can be inscribed in the trapezoid.

Solution by George W
Rainey, Los Angeles,
Cdlifornia

Let the inscribed circle
have radius R. Then R =
(L/2) sn a ad the
trapezoid's atitude h = 2R,
as seen in the figure. The
trapezoid's area A is given
by

A= ﬂ';b_z)f=L(2R)=

Figure4. Problem 847.

7 .
L”sin o.

Alsosolved by Alma College Problem Solving Team, Miguel Amengual
Covas, Paul S. Bmckman, William Chau, Richard |. Hess, Henry S.
Lieberman, Can. A. Minh, Kandasamy Muthuvel, Selvaratnam Sridharma,
Rex H. Wu, and Sammy Yu and Jmmy Yu (two solutions).

848. [Fall 1994] Proposed by Rex H. Wu, SUNY Health Science Center,
Brooklyn, New York.
a) Given a non-trivia group (a group having more than one element)
such that, if x, y are any members, then (i) x # vy impliesx2 # y* and (ii)
77 . . .
xy = y“x~, prove the group is abelian (commutative).
b) Prove part (a) if the term group is replaced by semigroup.

1. Solution by Kandasamy Muthuvel*. University & Wisconsin-Oshkosh,
Oshkosh, Wisconsin.
a) Let e be the identity and x any element of the group. Then
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x=xe=2 =2 = 2,

so that x = e. Thus there is no non-trivial group satisfying condition (ii)
and the theorem is vacuously true.
b) For any two elements x and y of the semigroup we have

) = @) = xom)y = 2632y = P(y)y>
= 20*? = (D) = (HH? = )2

By the contrapositive of (i) we have that xy = yx.
More generaly, if xy = y"x" for some fixed positive integer n and all

members x and y of a semigroup, then it is commutative. See Problem
1400, Mathematics Magazine, 66 (1993) p. 198.

II. Solution by Henry S Lieberman, Waban, Massachusetts.
b) By (ii) we have

2 =xx = 2 = (P2,

so then
Xy =yir = 0AXAD? = 2 = yx.

Also solved by Douglas L. Bedsaul, Paul S. Bruckman, William Chau,
David Del Sesto, Victor G. Feser*, Jayanthi Ganapathy, Linda Gellings part
(a) only, Stephen |. Gendler*, Peter A. Lindstrom, David E. Manes, Can.
A. Minh, John F. Putz, Selvaratham Sridharma, David C. Vella, Sammy Yu
and Jimmy Yu, and the Proposer.

Solvers whose names are marked with an asterisk (*) showed the non-
existence of the group of part (a). Many solvers proved part (b) only,
stating that that was sufficient to prove part (a) also.

MISCELLANEOUS

Chapter Report

The INDIANA EPILON Chapter (St. Mary's College) organized the
mathematics department’s Open House. which featured an address by Professor
Thomas Bachoff on "Flatland, linkages. and interactive computer graphics.”
The Chapter aso (reports Professor Joanne Snow) prepared two mathematics
activitiesfor the kindergarten class at the Early Childhood Devel opment Center
and prepared displays for Matliematics Awareness\Week.

Comment

We're lucky, you and I. Not just for being aive in this time and place
(though that has a lot to be said for it), nor for being able to spend time with the
Pi Mu Epsilon Journal (though that does as well), but for having mathematics.

| will explain. We have minds and the question is, what are we going to
do with them? After we get through with the dailyness of dealing with the
details of life that must be dealt with every day, that is. The same qucstion
arises for us as a species: after doing what is necessary to sce to it that we
survive for another generation, what do we do then to keep our minds
occupied?

There are, of course, many answers, and the variety of human menta
pursuits is as amazing as the variety in human beings. Did you know, for
example, that there are numerological literary critics? | never did until | picked
up a copy of Triumphal Forms, by Alistair Fowler (Cambridge University
Press, 1970), who explained that Shakcspcarc's sonnets numbered 99. 126. and
145 areirregular because 153 is a triangular number. and who said (p. 200) that
""Some critics regard numerology as the key to al literary knowledge.” That
isamazing.

There arc many answers to the qucstion of what we should occupy our
minds with, but none is better than mathematics. There arc many that arc as
good, or nearly as good, but none better. | do not say that becausel think that
mathcniatics is the most glorious creation of the human mind. It is. but other
people—poets and philosophers perhgps—might argue strenuously that it is
not. and they must be granted the right to disagree.

249
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Whatever the degree of its glory, mathematics has matter. Mathematics
has problems to be solved, problemswith substance. Crossword puzzles, and

the mathacrostic that appears in this issue, are problems to be solved as well,
but once they are solved, what of them? They are insubstantial, and they are
discarded and forgotten. Their solution does not get us anywhere.

Solving problems in mathematics does get us somewhere. First, we solve
guadratic equations. Then. a couple of thousand years later, we solve cubics
and, ailmost immediately, quartics. After another two hundred years, we show
that we can't solve quintics. Not all of them, that is, but only some—which
ones? Galois finds out, and starts group theory. Just a little while ago we (and
it took a lot of us. working together) found all the finitesimple groups. Weare
getting somewhere. Progress is being made. What do we do next—are we
done? Certainly not: there are plenty of problems left—infinitdly many, in
fact—and wewill never be done.

This is not so in al lines of intellectua endeavor. Take philosophy for
example, whose date of birth was approximately the same as mathematics.
There are many problems and many questions that can be asked, but there are
no answers. Someone said that the history of philosophy consists of attempts
to answer questions that Plato asked. Philosophy does not seem to get
anywhere. Progress can be said to be made—the questions become more
clear—but it is not the same as progress in mathematics. A philosopher will
write a paper and some other philosopher will write another paper saying that
the first philosopher is an idiot. \Well, not quite that, but the second
philosopher will point out things that the first philosopher, who was not as
acute as thefirst philosopher, failed to notice, or interpreted wrongly. Thefirst
philosopher (or athird. afriend of the first) can write a third paper explaining
why the second philosopher is all wet. Well, not all wet, but damper than he
or she should be. The cycle can go on and on, bringing us not much closer to
the answer to. for example. the question of what is knowledge and how do we
know it.

Theology's problem of evil will never be solved. In history, all we can
have are reinterpretations. And pity the poor classicists! |t is possible that,
lying in an attic somewhere, there is someone's dairy for the years 1862-65 that
will shed a whole new light on the Civil War. Historians thus have a hope.
however dlim, of getting new material, but the chance of finding Sophocles's
diary is nil: classicists have a fixed amount of material and all they can do is
rearrangeit in different ways.

In mathematics we havc it better. The amount of materia is infinite, and
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we make progress. Of course, progressis made in the sciences, but it is not the
same. Once the physicists construct their grand theory of everythingand verify
it sufficiently by experiment, that's it. They're finished. They can all be given
gold watches and put out to pasture, or be put into classrooms explaining F=
ma to the next generation. It will take longer to wind up chemistry, but there
are only finitely many elementsand | think only finitely many compoundst hat

could exist and be stable. Once everything is known, there is nothing more to
find out. Biology is harder yet and we havealong, long way to go, but the end
of biology is also conceivable. But mathematics will have no end, ever. The
race may get tired of the subject and stop pursuing it, but that will be because
the race is exhausted, not mathematics.

Another huge advantage of mathematics is that it has matter at all levels
to be worked on. Very few of us have the ability and the courage to attack the
Riemann Hypothesis, but more of us can do things like finding equivaent
statements of it (they might be easier), or of verifying that the next few million
zeros of {(s) lie on the critical strip (a counterexample might turn up).
Contributions on lower levels can be made. May | mention the best theorem
that | ever proved? It was known that the fractional parts of {n cos n} are
uniformly distributed on [0, 1] and those of {cos n} are not: where does the
switch occur? The answer is that for any f(r) that goes to infinity, no matter
how slowly, the fractional parts of {f(n) cosn} are uniformly distributed.
Not an important result, but satisfying.

The capacity for satisfaction exists at all levels. All journas of
mathematics aimed at general audiences, including this one. have problem
sections. They do not have them becauseit is the right thing to do, they have
them because their readers like them. They are sometimes the most popular
parts of the journals. The reason is obvious: they provide matter, matter for
readers to work with and sometimestriumph over. And any reader can grapple
with it.

Lucky us! All of us have matter that we can deal with. Do journals of
philosophy have problem sections? | have not made a survey, but | doubt it.
The vast mgjority of people with training in philosophy do not have any matter
to occupy them. They can read and appreciate the works of the masters of the
field, just as we can, but they do not have anything to do. The same holds for
students of history, classics, and almost anything el se.

Mathematics is wonderful. Not only does it have matter that can engage.
any of us, it also gives us the satisfaction of knowing that we have mastered the
matter. When you know calculus, you know it, once and for all, and for
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certain. Anyone who has been teaching calculusfor a while could, if locked
in a room, supplied with nothing but food, water, and reams of paper and told
that the door would not be unlocked until a calculus textbook had been written,
do the job. It might be excruciatingly tedious, but we could produce an
acceptable calculus text becausewe know calculus.

Not everyoneis as lucky. In some fields, not only do its practitioners not
have the satisfaction of knowing that they have mastered a body of knowledge,
thereis a question of whether there isa body of knowledge to be mastered.

Mathematicians have the assurance that comes with mastery. This has
been widely observed, as by Rebecca Goldstein, a philosopher and novelist, in
The Mind-Body Problem (Random House. 1983, Penguin reprint, 1993, pp.
201-202):

Observers of the academic scene may be aware that there are
distinct personality types associated with different disciplines. The
types can be ordered along the line of a single parameter: the degree
of concern demonstrated over the presentation of self, or "outward
focus." ...

Thus at the end of the spectrum occupied by the sociologists and
professors of literature, where there is uncertainty as how to discover
the facts, the nature of the facts to be discovered, and whether indeed
thereare any facts at all, all attention is focused on one's peers, whose
regard is the sole criterion for professional success. Great pains are
taken in the development of the impressive persona, with excessive
attention given to distinguished and faultless sentence structure.

At the other end, where, as the mathematicians themselves are
fond of pointing out, "*a proof is a proof,” no concern need be given to
making oneself acceptable to others; and as a rule none whatsoever is
given.

To sum up, mathematics is the best of al possible places to be,
intellectually. There is matter, plenty of it, that can be mastered. We cannot
master all of mathematics, but in the part we have mastered there are problems
to be worked on and solved, no matter what our level of brillianceis. Solving
the problems can give satisfaction, and can also advance the subject. Further,
the supply of problems will never dry up. We are finite but mathematics is
infinite. Who could ask for anythingmore? Weare lucky.
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Play the 1995 Game!

Though the year is no longer young. there is till time to play the 1995
game. Paul S. Bruckman challengesyou to represent the integers from 1 on
up using thedigits 1. 9. 9. and 5 in that order. For example.

I=-1-/9+9-5 2=1+9-/9-5
3=1-9+(/9! +5 4=-1+9-9+5
5=1-9-9+35 6=1+9-9+5

Y ou may have some difficulty with 20 and 25 Using various subterfuges, Mr.
Bruckman got al the way to 139 before quitting. and closed with a four de

foree by noting that

1995 = (19-/9-5)-(1:y/9 + 9 - 5).
After the 1995 game there is dways the 1996 game to look forward to.

though 1 think it may be a bit harder. We should enjoy these games while we
can. since the 2000 game will not be very rewarding.

Errata

Whatever his other virtues, your editor is not very good at proofreading.
The Journal always has errors. too many of them. For example, in the last
issue (p. 103) the sequence was misprinted: as severa readers pointed out, it
should have been

1.10.3.9.5.8.7.7.9.6. 11

which makesthe next term. 5. obvious if you see the pattern.

Rex Wu found three errorsin his"A note on an exponential equation™ (10
(1994-99) #1. 22-25): on page 23, line 5. (A, A,. . .4, should have the
subscripts running from 1 to »; on page 23, line 24 in ged(k,. M) s the term
to the right of the dividessign should be (ck,, - s) . and on page 24, line 11 the
four-tuple of powers of 2 should be (2'%.2™, 2¢, 2,

He also notes that 3* + 18" = 3* providesan answer to his last question
in the paper's last paragraph.

Corrections generaly have a hard time catching up with the original errors,
but the Journal will continueto print errataas space permits.
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tiling of the plane was designed by Doris
Schattschneider, on the occasion of PME’s 75th
anniversary in 1989. The shirts are availablein sizes
large and X-large. The price is only $10 per shirt,
which includes postage and handling. To obtain your
shirt, send your check or money order, payable to Pi
Mu Epsilon, to:

Rick Poss

Mathematics - FH Mu Epsilon
St. Norbert College

100 Grant Street

De Pere, WI 54115

Rose-Hulman I nstitute of Technology

Thirteenth Annual

Undergraduate M athematics Conference
March 15-16, 1996

Richard Brualdi
Department of Mathematics
University of Wisconsin, Madison

Featured Speakers:

Steven Lalley
Department of Statistics
Purdue University

Conference registration tables will be open at 10:00 a m., and the
conference will begin with the Friday Luncheon, which startsat 11:30 a. m.,
followed by the Opening Session at 1:00 p. m. The conference will
conclude Saturday afternoon.  Anyone interested in undergraduate
mathematics is welcome to attend. All students are encouraged to present

papers.

For further information, contact:
Nacer E. Abrouk, Ph. D.

Department of Mathematics
Rose-Hulman Institute of Technology
5500 Wabash Avenue

Terre Haute, IN 47803

phone; 812-877-8124
fax: 812-877-3198
email: abrouk@rose-hulman.edu




Subscription and Change of Address

If your addrcss label contains the symbols "F93" then this is the last issuc
in your current subscription. We hope that you agree that the Journal provides
good value and that you will renew your subscription. Rates arc'

Members: $ 8 for 2 vears
$20 for 5yvcars

Non-members: $12 for 2 vears
$30 for 5 years

Libraries: $30 for 5 ycars

Foreign: $15 for 2 vcars (surface mail)

Back issucs: $4 each

Complete volumes:  $30 (5 years. 10 issucs)

All issues: $300 (9 back volumes plus current volume)

If you have moved. please let us know. The Journal is mailed at bulk rate
and such mail is not forwarded. It is important that we have a current mailing
addrcss for you.

To subscribe or change vour addrcss, coniplctc the form below (or a copy
thereof) and send it. with a check payable to the Pi Mu Ipsilon Journal for
subscriptions, to

Underwood Dudlcey
Mathcmatics Department
DcPauw University
Greencastle, Indiana 46135

Address change? _ Subscription?




