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THE C. C. MACDUFFEE AWARD 
FOR DISTINGUISHED SERVICE 

On August 7, 1995, at the annual meeting of Pi Mu Epsilon at Burlington, 
Vermont, the C. C. MacDuff'ee Award for Distinguished Service was presented 
to Professor Eileen L. Poiani. The text of the citation, by Pi Mu Epsilon President 
Robert C. Eslinger, is as follows: 

'1t is with great appreciation and admiration that Pi Mu Epsilon presents 
Eileen Poiani the C. C. MacDuffee Award for Distinguished Service. Dr. Poliani 
has served on the Pi Mu Epsilon Council for twenty-one years. After having been 
elected for an unprecedented four consecutive three-year terms as Councilor, she 
was elected President-Elect in 1984. While serving as Pi Mu Epsilon's first 
woman president from 1987 to 1990, Dr. Poiani led the society through the 
celebration of its 75th anniversary. As Pi Mu Epsilon's ambassador to other 
organizations she was extraordinarily successful in securing external funding to 
support the goals of the society. During her tenure on the Council she personally 
installed over twenty chapters of Pi Mu Epsilon on college and university 
campuses across the United States. 

"Eileen Poiani's service to the mathematical community extends far beyond 
Pi Mu Epsilon. Having been on the faculty of St. Peter's College since 1967, she 
cunendy holds the rank of Professor of Mathematics and serves as Assistant to the 
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President for Planning. She has been active in the Mathematical Association of 
America, providing leadership on numerous committees and serving as Governor 
of the New Jersey Section. In 1994 the Section honored her with its Award for 
Distinguished Teaching. She has a passionate interest in promoting the status of 
women and minorities in mathematics. 

"Designated in honor of the seventh president of Pi Mu Epsilon, the C. C. 
MacDuffee Award for Distinguished Service was first awarded to J. Sutherland 
Frame in 1966. Subsequent recipients were Richard V. Andree, John S. Gold, 
Francis Regan, J. C. Eaves, Houston Kames, Richard Good, and Milton D. Cox." 

Professor Poiani is a graduate of Douglass College, and earned her M. S. and 
Ph. D. degrees in mathematics at Rutgers University. Besides the items mentioned 
in the citation, she has been a trustee of St. Peter's Preparatory School (Jersey 
City, New Jersey) and of Rutgers, the State University of New Jersey. She was a 
member for eight years, and Chair for five, of the United States Commission on 
Mathematical Instruction (a commission of the National Research Council of the 
National Academy of Sciences). She has been a Visitng Lecturer for the 
Mathematical Association of America and was a Founding and National Director 
of the Women and Mathematics Program of the Mathematical Association of 
America. She has been an evaluator for the Middle States Association of Colleges 
and Schools. She is a member of Phi Beta Kappa, is listed in Who's Who in 
America, and has given two commencement addresses. She is an author and 
speaker on higher education issues, strategic planning, mathematics, and 
mathematics education. 

The Richard V. Andree Awards are given annually to the authors of the three 
apers written by students that have been judged by the officers and councillors 
Pi Mu Epsilon to be the best that have appeared in the Pi Mil Epsilon Journal 

ichard V. Andree was, until his death in 1987, Professor Emeritus of 
ematics at the University of Oklahoma. He had served Pi Mu Epsilon long 
ell in many capacities: as President, as Secretary-Treasurer, and as Editor 

of the Journal. 
The winner of the first prize for 1994 is Scott M. Wagner, for his paper 

"Group generators and subgroup lattices", this Journal 10 (1994-99) #2, - 106- - 

111. 
Since there was a three-way tie for second place, there will be four awards this 

year. The winners are Kevin Dennis, for "Sierpinski n-gons" (with Steven 
Schlicker), this Journal 10 (1994-99) #2, 81-89, Lars Serne, for 
"Automorphisms of Hasse subgroup diagrams for cyclic groups", this Journal 10 
(1994-99), #3,215-220, and Julia Varbalow, for "An application of partitions 
to the factorization of polynomials over finite fields" (with David C. Vella), this 
Journal 10 (1994-99) #3, 194-206. 

At the times the papers were written, Messers. Wagner and Seme were 
students at Hendrix College, Mr. Dennis at Luther College, and Ms. Varbalow at 
Skidmore College. 

The officers and councillors of the Society congratulate the winners on their 
achievements and wish them well for their futures. 

Referees 

The job of referee is unpaid, anonymous, time-consuming, and can be 
difficult. Those that take it on do a service to the profession that deserves more 
thanks than lists such as these provide. The Journal is grateful for the help the 
following people have given in the past two years. 

Thomas Banchoff (Brown U.), James Beckcr (Purdue U.). Randall Campbcll- 
Wright (then of the U. of Tampa), Gary Chartrand (Western Michigan U.). John 
Durbin (U. of Texas-Austin), Joseph Gallian (U. of Minnesota-Duluth). 
Jennifer Galovich (St. John's U.), Todd Hamn~ond (Nortlieast Missouri State U.). 
Richard Johnsonbaugh (DePaul U.), Mark Kannowski (DcPaut~ U.). John 
Kelingos (Vanderbilt U.), Gail Letztcr (Virginia Polytechnic and State U.). 
Frederick Leysieffer (Florida State U.), Robert Messer (Albion Coll.), Gar\ 
Mullen (Penn State U.), Alan Pankratz (DePauw U.). Michael P11111itiicr 
(Vanderbilt U.). David Stone (Georgia Southern U.). and Jmgchcn Tong ([I .  01' 
North Florida). 



Rick Mohr 
Rose-Hulman Institute of Technology 

What is the distance between a given matrix and the set of normal matrices? 
This question, given to me by Dr. Carl Cowen during my Research 

Experience for Undergraduates at Purdue University during the summer of 1994, 
is not new. And the underlying general problem-to minimize something subject 
to a constraint-is much older still. Anyone familiar with calculus has surely seen 
this idea, for example in Lagrange multipliers. Such problems arise in linear 
algebra as well. 

The question turns up not only as a problem in minimization, but also as part 
of a real-world problem. Suppose you are a control theorist and want to study the 
stability of a feedback system. One way to gain stability information is to look at 
the transfer function matrix. However, analyzing it is not easy unless it is special 
in some way. For example, you might want the matrix to have perpendicular 
eigenvectors, making it a normal matrix. (This turns out to be exactly the property 
you want!) Since the transfer function matrix probably doesn't have perpendicular 
eigenvectors, you might approximate it with a normal matrix. The normal matrix 
will then give an approximation to the stability of the original system. However, 
to minimize the error using this estimate, you should try to find the closest normal 
matrix. For more information on control theory's relation to the problem, see [I]. 

Finding the closest normal matrix to a given matrix not only solves the 
question originally posed but also exhibits a solution that achieves the minimum 
distance. In addition, it solves the associated problem in control theory. The 
closest normal matrix is the focus of this paper. While it does not contain a 
general solution for every n x n matrix, it does contain a solution for any real 
2 x 2 matrix. Results are also given for the closest Hennitian, skew-Hermitian, 
and unitary matrix to a given n x n matrix. Some of these results are in [2]. 

A matrix N is normal if N *N = NN *, where * denotes the conjugate 
transpose. Although this paper deals only with real matrices, the * notation is 
used because many results carry over directly to complex matrices. Alternatively, 
a matrix is normal if and only if it has a complete set of orthonormal eigenvectors 

(see [4, p. 3 111). As noted before, it is this property that makes them so useful 
in control theory. 

To minimk the distance between matrices, we need some notion of what 
"distance9* means. The distance between n x n matrices A and B will be defined 
as the norm ofA - By \\A - B \\ . where the norm of a matrix is defined as' 

- 

with the norm of a vector being the usual Euclidean norm. Although there are 
other definitions for the norm of a matrix, this definition, called the 2-nom, will 
be the one used throughout this paper. (Another type of norm is the Frobenius 
norm. defined as 

The problem of finding die closest normal matrix using the Frobenius norm has 
already been solved [3].) 

For example, suppose 

Then the distance between A and B is 

W h y  is the norm of the matrix equal to 4? Because the vector v = ( 0 ,  1)  
maximizes 11 (A - B)v\\, and this value is 4. 

Although B is a normal mptrix, it is not the closest normal matrix. For 
instance, iiW is the normal matrix 

then the distance between A and N is 

Thus A & closer to N than B. We will see later why N is a normal matrix closest- 
to A. 

This definition of the norm has several important properties. The fast is 



unitary invariance. This means that if U, and U2 arc unitary matrices (U is 
unitary if U *  = U-I),  then 

llUlA~211 = llU1AIl = llAU2Il = MI. 
Other properties include 

Another useful tool will be the singular value decomposition of a matrix. 
This says that any matrix T can be written as U S  V*, where U and V are unitary 
matrices and 2 is a diagonal matrix of the form 

where ol 2 o2 s - s on 2 0 (see [4, p. 4421). 
To begin, it is helpful to look at special subclasses of normal matrices. 

Finding the closest matrix of each special class to our given matrix will not solve 
the entire problem. However, these matrices can provide initial guesses for the 
closest normal matrix and in any case will provide bounds on just how far away 
the closest normal matrix is. 

The first special class are Hermitian matrices. Hermitian matrices are 
characterized by H = H * ,  and they are clearly normal. To find the closest 
Hermitian matrix to a given matrix T, note that for any Hermitian H 

llT- T*[l = [IT - H -  T*  + H * \ \  = \ \ ( T - H )  - (T-El)*\ \  s 2l lT-  HI .  

Thus we see that 

and that equality is achieved if H = ( T  + T * ) / 2 .  Hence, there is no Hermitian 
matrix closer to Tthan ( T  + T * ) / 2 .  Readers might notice that this is analogous 
to the fact that the closest real number to any complex number z is 
Re(z) = ( z  + 2 7 1 2 .  

The next subclass of normal m be considered are skew-Hermitian 
matrices. These matrices are characterized by K = -K *. An argument similar 
to the one a ermitian matrix, then for a 

given matrix T 

with equality for K = (T  - T * ) l 2 .  So no skew-Hermitian matrix is closer to T 
than ( T - T 7 1 2 .  The analogous result is that the closest imaginary number to 
z  is ( z  - z  * ) / 2 .  

While this result is good, we can do better. Since adding a multiple of the 
identity matrix to a normal matrix results in another normal matrix, matrices of the 
form K + aI ,  where a is any real scalar, are also normal and encompass all 
skew-Hermitian matrices. This allows us to broaden our possibilities for the 
closest normal matrix. To find the closest matrix of this type, notice that 

To minimize this distance, we need to find the K closest to T - al .  For a given 
value of a ,  we know that K must equal 

( T - a I ) - ( T - a I ) *  - T - a l - T * + a l  -- - T - T *  
2  2  2  

Since this value of K is independent of a,  our problem is to minimize 

Since (T + T *)I2 is Hennitian, it can be written as U *D U where U is a unitary 
matrix and D is a real diagonal matrix. Thus 

However, the diagonal entries are just the eigenvalues of ( T  + T 7 1 2 .  Therefore, 
the closest matrix of type K + aI to a given matrix T is 

where Am= and AÃ are the largest '""1 smallest eigenvalues of (2' + T D ) / 2 .  ; 
Another subclass of normal matrices is the set of unitary matrices. Unitary 

matrices are normal since 



To solve the problem of finding the closest unitary matrix we must find a unitary 
matrix, R, that minimizes 11 T - R \\ . Taking the singular value decomposition of 
Ttobe U S V *  [4],wehave 

Because U*R V is also unitary, the problem reduces to finding the closest unitary 
matrix to S. As it turns out, this is die identity matrix. (The proof of this is rather 
long and will be omitted here.) Continuing with our analogies, this corresponds 
to the fact that the closest point on the unit circle to any positive real number is 1. 

If U W = I ,  then R = UV *. Thus, the closest unitary martix to an 
arbitrary matrix T is UV*.  

This result can be extended to find the closest scalar multiple of a unitary 
matrix, which is also a normal matrix. Let k be a positive real number and R be 
a unitary matrix. We want to find values for k and R to minimize \ T - kR 11. 
Proceeding as above, we see that 

Since S ,. has the same properties as 2, die closest unitary matrix to 2 ' is also the 
identity matrix. Once again, to minimize the norm, we set U*R V equal to 1. 
Thus, 11 23 - kU*R V\\ = 11 S - kl\\ . We saw before that the closest multiple of 
I to a diagonal matrix is obtained when k is the average of ther largest and 
smallest diagonal entries. In this case, the largest and smallest entries are a. and 
c r  respectively. As a result, there is no multiple of a unitary matrix closer to T 
than 

Ol + UV*.  
2 

We now have enough information to find the normal matrix closest to a 2 x 2 
real matrix. It is not hard to show that any2 x 2 real normal matrix must have one 
of the forms 

Note that the first form is a Hermitian matrix and the second form is a skew- 
Hennitian matrix plus a multiple of the identity matrix. By determining the 
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closest matrix of each of these forms, we can find the normal matrix closest to our 
given 2 x 2 matrix. So, if we are given 

then the closest Hennitian matrix will be 

and the closest skew-Hermitian plus multiple of the identity will be 

where A and A- are the largest and smallest eigenvalues of H. But the sum 
of the eigenvalues of a matrix equals the trace of the matrix, and since H has only 
two eigenvalues, A- + Amin = w + 2. Thus 

So, to find the normal matrix closest to T, we first evaluate 

x + Y  w - 
2 2 

and 
x  + v x - - v  n l + z  - z -- - 

2 2 
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Next, we find the distance between T and each of the ma@iss.yd, choose the 
1 , , Â¥ "fa t*.  , 

closer one. Note that it is possible that the distance will &"the same, as in the 
following example: 

distance to closest normal = 11 T - H\\ = 11 T - (K + aI) 11 = 2.5. 

It is interesting to note that for 2 x 2matrices the solution to the closest normal 
problem is the same when using the ~ r o b e i u s  norm, but this is not the case for 
larger matrices. 

At this point we have only candidates for the closest normal approximation 
to an arbitrary matrix T. On the other hand, the previous results can tell us that 
some matrices are never the closest normal to any matrix. Using the singular 
value decomposition of T, we have 

IlT - UV* II = II U'SV*- - '1 + on UV* 
2 

This shows that the zero matrix (which is normal) is never the closest normal 
matrix to a non-zero matrix T because there is a multiple of a unitary matrix that 
is,hgojsr.: g is ,wthen,  be, v&ed to show. that, if T isnot a multiple of I, @I is 
never the closest normal matrix for any real scalar a. 

', *'Â¥*, . 
Although these results provide a good stepping-stone for further progess on 

this problem, it is still far from being solved. The 3 x 3 case could be solved if 
one could find the closest matrix of the form a U + 67. Unlike the 2 x 2 normal 
martices, not all 3 x 3 normal matrices areHennitian or skew-Hermitian plus a 
multiple of the identity. The following example shows why this third category is 
needed: 

It seems as though looking at subclasses of normals may provide the key to 
solving this problem entirely. 

'.Ã̂ * . . -  

1. Daniel, R. W. and B. Kouvaritakis, The choiofan'Ause of n o d  matrix ' 
approximations to ;transfer-function matrices od multivariable control 
systems, Int. J.  Control 37 (1983), 1121-1 133. 

2. Higham, N. 'A, Maftixlneamess problems and-applicdtiong in AfiftliQOtaar& '. 
ofMatrix  he*; Cover and B b t t ,  eds., Clarendon Press, Ox-lord, 1-989.1' 

3. Ruhe, A., closest n&hal matrix finally found, BIT 27 (1987), 585-598 
4. Strang, G.,  ine ear ~lgrbra'and'ifs .- . ~ ~ ~ l i c a t i o n ~  HaCbyt BE%% JoTahovichV 

* - 
San Diego, 1988. .- - -  ,.----. -- < 

.. . .. - - .... ..- .. - UG -: .- -. -.- .-. - 
- f * ,  J , ..-'. . Ik +I- ,-.. 

Rick Mohr will graduate from Rose-Hulman in May with B. S. degrees in 
physics and mathematics. He then plans to puree a Ph: D. 'Degr& 4n 
theoretical physics. His interestsinclude reding,  - ultimate frisbee, and martial 
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Watch Those Units! . - 

Oxley banked the hyin.tmboproprengingl Baffip CZ-4 LO for a be.tter .view of 
Isla Danzante, a steep-sidedf5-square-kilometer (3-square-mile) rock formation 
that jutted 400 meters (13 12 feet) above the sea of Cortez just south of the popular. 
resort town of Loreto.Ã‘Cliv Cusslcr. Inca Gold. p. 3 18, Pocket Books, New 
York, 1995 reprint of the 1994 edition published by Simon & Schustcr. Ncu 
York. Contributed by Mark Kannowski. 



NEW PROOFS OF THE PYTHAGOREAN THEOREM 
completing the proof. 

William Koerick and Chris Soha 
University of North Florida 

For the second proof, in 
Figure 2 let ABC and DEF be 
two congruent right triangles - - 

such that B is on DF and BC is 
perpendicular to EF. Draw FG 
parallel to BC to meet the 
extension of AB at G. 

LetBC=EF=a,AC=DE 
=b,AB=DF=c,andBF=x. 
Because triangles BCF and DEF 
are similar, xla = c/b and CF Ix 
= ale. Hence x = aclb and CF = Figure 2 
a '1 b . Because triangles ABF 
and ABC are similar, AF/x = c/a, so A F  = c 2/ b . Because triangles FGB and 
DEF are similar, FG Ix = clb so FG = cxlb = ac2/b '. Since the area of the 
triangle AFG is the sum of the areas of the triangle ABC and the trapezoid BCFG, 

The Pythagorean Theorem has been known for thousands of years, and many 
proofs have been given. Here are two more, the first found by the first author and 
die second by the second, while students in Professor Jingcheng Tong's Modem 
Geometry course. 

Place two congruent right 
triangles ABC and BEF such that c 
W E  as in Figure 1. Extend 
E F  and CA to meet at D. Draw b 
CF. G. It Extend is easily CB seen to that meet BG EF JL at A hw B b *-. \ F 

EF since L BEG = L ABC and \ x 

LAKE = go0. Y ;  
L e t A B = B E = a ,  A C =  ...--*- E 

BF=b,BC = EF= c,  BG=x, D : i... _..-* 
AD = y, and DF = z. Since 
triangles BEG and BEF are Figure 1 
similar, we have xla = b/c or x 
= able. Since triangles ADF and BEF are similar, we have yf(a + b) = alb and 
z/(a + 6) = c/b. Hence y = a(a + b)lb and z = c(a + b)/b. We can calculate the 
area of A CDF in two ways: 

we have 
AF-FGl2 = abl2 + CF-(a + FG)/2 , 

AF-CD - (b +yXa + b) -- CG *DF - (c + x)z - 
2 2 2 2 

Therefore 

(b + y)(a + b) = (c + x)z, 

Both authors graduated in August 1995. Bill Koerick is enjoying his first 
year of marriage as well as teaching and coaching. Chris Soha is now a 
teacher at  Bishop Kenny High School. * 



Thomas Koshy 
Framingham State College 

It can sometimes happen &at you solve a problem brilliantly when it turns out 
that your brilliance was not necessary. This note gives an example. 

Suppose that we arrange the Fibonacci numbers (F, = F2 = 1 ,  Fn+, = 

Fn + Fn - n Â¥ 2 ) in a triangular array and let Sn denote the sum of the numbers 
in the nth row, as in Figure 1. We would like to derive a formula for Sn . 

Figure 1 

It is not everyone who would observe that the sums are differences of 
Fibonacci numbers: 

1 = 2 - 1 ,  3 = 5 - 2 ,  16=21-5,  123=144-21, 1453=1597-144 

That is, 

S ,  = F 3 - F 2 ,  S 2 = F 5 - F 3 ,  S 3 = F 8 - F 5 ,  S 4 = F I 2 - F 8 ,  

and so on. It appears that 

' n  = Fbn - Fbn -n 

where { bn} = {3 ,5 ,8 ,  12, 17, -}. 
Nor is it everyone who would observe that bn = tn + 2 ,  where tn = 

n(n + 1)/2,  the nth triangular number. Since bn - n = t n_ ,  + 2 ,  we have a 
formula: 

This can be proved by induction. 
Fortunately, the observations made above are not necessary. From the 

formula - - 

we get 

the same formula as before. 
The reader may enjoy, using brilliance or some other method, getting a 

formula for the sum of the Fibonacci numbers in the nt$ row of the following 
array, where the nth row has t elements: 

After graduating from the University of Kerala, India, Thomas Koshy 
received his Ph. D. degree from Boston University in 1971. Since 1970 he has 
been on the faculty at Framingham State College, Framingham, Massachusetts. 

Do you know how to determine mathematical talent by looking at someone's ; 
scalp? See if the person's hair has square roots. 



270 PI MU EPSILON JOURNAL 

How ECONOMISTS USE MATHEMATICS TO SHOW WHY we will seek to find the quimtity of labor, h, that a person would provide in a time 
OPLE WORK SO MUCH FOR SO LITTLE period as a function of the offered wage rate, w. That is, we want to find the 

analytic description of the geometric story given by the usual economist's graph 
John E. Morrill in Figure 2. (The answer to the question of why the axes in Figure 2 are labeled 

DePauw University as they are. with w. the indwendent variable, on the vertical axis, is that Al&ed 

A standard problem in economic 
theoiy is to derive supply and demand 
relationships in various markets for 
goods and services. When rendered 
geometrically, they usually result in 
the familiar supply and demand graph 
in Figure 1. In the market for a 
particular consumption good or 
product, the supplying agents are 
firms and the demanding agents are 
individual consumers. These roles 
are reversed in the market for labor, 

. - 
Marshall so labeled than and-econonusts have followed his example. Who Alfred 
Marshall was and why he did it is nicely answered in [2].) 

Price per unit In particular, we will examine the supply relationship for a class of commonly 
Supply x* used utility functions and see that, though "comt" economic and mathematical 

arguments can lead to many sensible outcomes, they also lead to one that may be 
called paradoxical, or nonsensical. 

A person's labor supply decision is quite simple. The laborer can choose to 
work many hours, and thus have a high level of consumption but little time for 

Demand leisure. On the other hand, the laborer can choose to work less. consequently 
consuming less but having more leisure tune. So, there is a tradeoff between labor 

Quantity per time period and leisure or, since we assume that the purpose of labor is to provide for 
consumption, a tradeoff between consumption and leisure. 

Figure 1. Supply and demand. Following the usual modeling assumptions, we will assume that each person 
has a Utility function, U(C,  L) , where U measures the utility realized in a time 
period from a combination of C current consumption units and L current leisure 
units. Let us define variables as follows: 

T the amount of time available for labor per time period 
h the time worked, 0 <, h <Â T 
w the wage rate, w > 0 
M the non-labor income available for consumption in a time period 
k the value assigned to a unit of leisure time, k > 0 
L the amount of leisure per time period, so L = T - h 
Then the optimal consumption-leisure allocation follows from maximizing 

U(C,  L )  = U(wh + M, k(T - h ) )  = U(h) ,  

a function of the single decision variable h. 
One well-known book [3, p. 631 says, "a commonly used utility function is 

the Cobb-Douglas utility function" which for this problem would be Written 

U(C, L)  = c a L ^ ,  

where a and 6 arc positive constants. Using this utility function (actually a family 
of functions), the solution to the labor-leisure problem is the value of h, 

where the person is the supplier and the firm is the demander or buyer. However, 
in the determination of all supply and demand relationships the basic method is 
essentially the samebegin with a single person or a single firm and then 
aggregate the appropriate quantities demanded or supplied, at each price, to 
produce the market relationships. The 
appropriate quantities are usually found wage rate 
by solving straightforward optimization 
problems which, in the elementary 
theory, are based on the behavioral 
assumptions that firms wish to maximize 
economic profits and people want to 
maximize utility, a numerical measure of 

'per hour, w 
supply 

Hours worked 
happiness We will or well-being. examine one of these /'- per time unit, h 

micro-relationships-the supply of labor Figure 2. The supply of labor. 
provided by one person. More precisely, 
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0 s h s T, which maximizes 

U(h) = (wh + w u ( k ( T  - h))P. 

Elementary calculus shows this value to be 

0, 
awT if M i -  - [ a I3 

T -  -- P M ,  otherwise. 
a + P  a + P w  

For example, if U(h) = (l5h + 45)* (g( l2  - then the choice that 
maximizes utility is h = 7. 

Illis provides the labor-supply curve of Figure 2 by allowing w to vary with 
all else held constant. The result also makes some intuitive sense-as M, the 
amount of outside income, increases, less work is done, and ifM is sufficiently 
large, no work at all will be undertaken. 

However, note the implications when M =  0. In this case, 

independent ofw. That is, if a person has no outside income, then the number of 
hours ofwork is the same no matter what wage is paid. Also, h is independent 
of k, so no matter what value a person puts on leisure, the number of hours of 
work to maximize "tility is the same. This seems to be a paradox. 

There are a number of questions that can be asked. For instance, is the 
paradox real or only apparent? If it is apparent, what is its resolution? If it is 
real, is the Cobb-Douglas model at fault? Is there a situation that makes economic 
sense where M can be negative, and if so, is there a mathematical solution to the 
problem of maximizing utility? What information do the relative sizes of a and 

tell us about a person's preferences? (The geometry of the Cobb-Douglas 
family of functions is worth considering.) Who were Cobb and Douglas? (See 
[I], especially page 132.) 

Some extensions are also worth consi 
change if overtime is possible? TIi 

scheme, with 

For another, in today's world there are many two-person households. What about 
the problem of maximizing 

where C = w,h, + w2h2 + M ,  0 s, hl s TI, 0 s h2 s T2, and so on? What 
behavioral assumptions are needed? How does the solution relate to the single- 
person case? 
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Here, in case you didn't get them, are the answers to the problems that occur 
later. Don't look at them before trying the problems! 1. vertical asymptote. 2. 
linear independence. 3. repeated roots. 4. radius of convergence. 5. upper and 
lower bounds. 

Now, what is the first line in the following? 

upper bound 

upper bound 

upper bound 
upper bound 



SQUARE-FREE Y OF COMPLEX POLYNOMIALS 

Steve McCracken 
Penn State, New Kensington 

In a paper [I] explaining why the real and imaginary parts of a complex 
polynomial intersect in the complex plane at the polynomial's roots, the authors 
required that the parts did not display any unusual behavior that might be caused 
by the pmence of a square ihdor. 'I'b note wil l  show that the real and hagbay 
parts of a complex polynomial are always square-free. 

Let R(x,  y )  and I(x ,  y )  denote the real and imaginary parts of the 
polynomial f ( z )  : 

Replacing i with - i , we get 

2R(x,y)  = f ( x  + i y )  + f ( x  - i y )  
and 

2iI(x7 y )  = f ( x  + i y )  - f ( x  - iy). 

Let us denote by RH(xy y )  and IH(x, y )  the terms ofthe real and imagimy 
parts with highest total degrees. For example, i f f  ( z )  = z + z + 1 ,  then 

R(x, y )  = x 3 -  3x 2y  + x  + 1 ,  I (x ,  y )  = 3x2^ - y 3  + y ,  
and 

If R has a square factor, R(x,  y)  = A 2(x ,y)B(x ,y) ,  then RH(x,y)  = 
A^,(x, y)BH(x, y )  does as well. Thus, if R, is square-fiee then R is square- 
free. 

Now we are ready for our result. 

THEOREM. Let f ( z )  be a monic polynomial with real coefficients and degree 
d. Let R(x, y )  and I(x,  y )  denote the real and imaginary parts of / Then R and 
I are square-free. 

Proof. It is enough to prove that RH and IH are square-free. Suppose that 
R H ( x 7  Y) = Y ) ~ ( x Y  Y ) .  Thus 
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2RH(x, y )  = ( x  + iy)' + ( x  - iY)' = 2a2(x,  y)b(x, y).  

Hence, the partial derivatives of RH give 
. 

for some polynomials m ( x ,  y )  and n ( x ,  y).  Hence, using unique factorization 
of C(x,  y)  , we get a (x ,  y )  = c(x - iylr for some complex number c and an 
integer r. Since a(x, y )  is real, this is possible only i f  r = 0. That is, a(x ,  y )  
is a constant and RH does not have a non-trivial square factor. It follows that R 
is square-free. 

To prove that I is square-fi-ee, we start with 

and then work as we did for Ru to complete the proof. 
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THE ELIMINATION OF A FAMILY OF PERIODIC PARITY 
VECTORS IN THE 3~ + 1 

Carolyn Farruggia, Michael Lawrence, and Brian Waterhouse 
University oflcranton 

The 3x + 1 Problem, also known as the Collate Conjecture, is traditionally 
credited to Lothar Collate at the University of Hamburg in the 1930s. Jeffrey 
Lagarias at AT & T Bell Laboratories has written an excellent expository paper 
on the subject [1] and we will use much of his notation here. Simply put, the 
3x + 1 problem proposes that repeated iteration of the following function 
T : Z + + Z + will eventually lead to the value 1 for any n > 0 : 

(3n + 1)/2, if n = 1 (mod 2) 
n/2, i f n = O ( m o d 2 ) .  

Define the trajectory of n to be the sequence of iterates 

where T('\n) represents the i " composition of T with itself We can classic 
these trajectories into three types for n > 0 : 

(i) Convergent: T^(n) = 1 for some k. 
(ii) Non-trivial cyclic: The sequence { Tck)(n) } eventually becomes periodic 

and T^(n) * 1 for any k 2: 1 . 
(iii) Divergent: l ink- ~ ( ~ ) ( n )  = 00. 

Define the parity vector of n to be the sequence of 0s and Is  

Qoo = ~o(n)s^ (n)s,(n) 
satisfying si(n) = T('l(n) (mod 2) for all i  2: 0. The parity vector completely 
describes the result of k iterations of T, since 

TÃˆ (n) = \(n) n + p, (n) 

where 

(see [ll). 
A non-trivial cyclic trajectory has a periodic parity vector. It has yet to be 

determined whether or not there are any non-trivial cycles. Thus, in order to show 
that there are no non-trivial cycles, it suffices to show that any periodic sequence 
of 0s and Is is not the parity vector of an integer greater than or equal to 3. 

For a (0, 1)-sequence s, to eliminate s as a parity vector (or, simply, to 
eliminate s) means to show that s is not the parity vector of a positive integer. 
Our main result is the elimination of a family of periodic (0, 1)-sequences as 
parity vectors. 

1 ,  if i = 0 (modk) 
THEOREM. Let s(k) = s, s2 - , where s, = { 0, otherwise. 

There is no positive integer whose parity vector is s(k) for k 2 2. 
While this family of (0, 1)-sequences might easily be eliminated by other 

means, what is of interest in this paper is not only the result but also the method 
used in the proof. In theory, this method can be used to eliminate any family of 
(0, 1)-sequences as parity vectors. Also, it gives a very good expository insight 
into the nature of the problem, especially the relationship with the 2-adic integers. 

Any parity vector is a sequence of 0s and Is and thus can be interpreted as an 
element of the 2-adic integers, 

Zc2) = {sosl s2 - I s, E {O, 1} for all i } .  

One can define a ring structure on 7.n, by the usual rules for manipulating formal 
power series where we identify the sequence so sl s2 .-. e Z.,,, with the formal 
power series so + sl 2 + s2z2 + + (see any standard text on p-adic 
numbers, e. g. [2], for details). Note that the integers, Z (and, in fact, the rationals 
with odd denominators, Q,,,) can be considered to be subrings of by 
associating each positive integer p with its base-two expansion. That is, if 

p = xi=o bi 2' is the base-2 representation of p e N, then we associate p with 
the 2-adic integer bo b, - e Z(2). This inclusion can be extended to an 

embedding of the rings Z and Qd into ZC2) in a unique way (see [2]). In 

particular, 1 /(I - r) = $̂: r ' if r = 2* for some k N. 
Define the set of even 2-adics to be the set of all sequences, SG, s2 , such 

that so = 0 and the set of odd 2-adics to be the complement of this set in 7,̂ . 
Thus, we can extend T to the 2-adics in the obvious manner, that is T: Z c  Zt2, 



(3s + 1)/2, if s is odd 
= { s12, otherwise. 

Similarly, we can define the parity vector Q_ (s) for any s E q2) just as was done 
in the integer case. The map Q_ : Z,2) -* Zc2) is a continuous, measure- 
p d g ,  aud onto map on the 2-adic integers Z,2) [I, Theorem L]. Since Qm 
is onto, every 2-adic is the parity vector of some other parity vector. Therefore we 
will use the terms parity vector and 2-adic interchangeably to mean any sequence 
of 0s and Is. 

A natural question to ask when one first encounters the Collate problem is 
whether or not there is a trajectory whose entries are all odd. In terms of parity 
vectors this is equivalent to asking if we can eliminate the parity vector 1 
consisting of all Is. (We will sometimes denote the repeating part of a periodic 
sequence by an over-bar.) 

EXAMPLE 1. There is no positive integer n such that Q_ (n) = 1 1 1 
A straightforward argument that there cannot be such a trajectory might proceed 
as follows: 

First proof of Example 1: We begin by stating some number-theoretic 
lemmas. The first is a standard result whose proof will be omitted. 

LEMMA 1. There is no positive integer n such that n = - 1 (mod 2*) for all 
k >  1. 

If Qco(n) = sosl s2 '-- then define Qk(n) = sosl - sk. . 
LEMMA 2. If Qk(n) = 111 . -  1 (k Is) then n = -1 (mod 2*). 
Proof. If k = 1 then Ql (n) = 1 * n is odd -  ̂n = - 1 (mod 2). Assume 

the lemma is hue for k - 1 . Suppose Qk(n) = 1 1 1 (k 1s). Then Qk-I (T(n)) 

= 11 - 1 (k - 1 1s)bydefinitionof Qk-.. Hence, T(n) = -1 (mod 2*-'). So, 
by the definition of T, T(n) = (3n + 1)/2. Therefore, (3n + 1)/2 + 1 = 

q lk+ '  for some q e Z i .  Therefore 3(n + 1) = q2*. Since 3(n + 1) is 
divisible by 3, q2*' is also divisible by 3. But 2* is not divisible by 3, so q must 
be divisible by 3. That is, q = 3x for some x. Therefore 3(n + 1)  = 3 ~ 2 ~ .  
Therefore n + 1 = xZk for some x. Therefore n - 1 (mod 2k). QED 

To complete the proof of Example 1, assume that there is a positive integer 
n such that Qm(n) = 11 1 a - .  Then Qk(n) = 11 .+' 1 (k 1s) for all k 2 1. 

Therefore by Lemma 2, n = - 1 (mod 2*) for all k 2 1 . This contradicts Lemma 
1. Therefore there is no positive integer n such that Qw (n) = 1 1 . QED 

This elementary method is straightforward, but cannot easily be generalized 
to eliminate other parity vectors. Let us consider another approach. Since Qi is 
one-to-one, we can eliminate a parity vector s by showing that (n) is not a 
positive integer. 

Second proof of Example 1. Since T(- 1) = - 1, the trajectory of - 1 is 
-1, -1, - 1 , ~ .  SoQw = l l l Ã ‘  SinceQ_isone-to-one,thereisnopositive 
integer n whose parity vector is 1 11 -.- . QED 

Thus, in order to generalize this technique to eliminate other sequences, it is 
necessary to have a method for computing 0:'. 

Let s = sOsl --. be a periodic parity vector. By [I, Theorem B], Qk(n) = 
Qk(n + 2*) for all integers n, and there is a non-negative integer t < 2k such that 
Qk(t) = sOsl - sk- . Thus if Qk(t) = sosl - sk- then either 

since t and t + 2* are the only numbers less than 2*+l that are congruent to t 
(mod 2*). Thus, we can recursively define a set of integers tk as follows: let to 
= so and let 

Then (tk) = sos, - sk for all k. So, the sequence of integers tk converges 
top = Qil(s) in Z,,,. 

Thus, by looking at the binary expansion of tk for sufficiently large k, one can 
conjecture what the 2-adic digits ofp might be. (For example, i f p  is rational, its 
digits will be eventually repeating.) It is then a simple matter of verifying that the 
conjectured value ofp is, in fact, Q:' , by directly computing the parity vector of 
p. I f p  is not a positive integer, we have successfully eliminated - the vector s. 

EXAMPLE 2. Let us eliminate the parity vector s = 001. By definition, 
to = 0, t, = 0, t2 = 4, etc. We continue computing t in a similar manner until 
we reach tli = 13 108. In (reversed) binary form this number is 00 10 1 100- 
11001 1, and we see a pattern - developing in the binary expansion. We then 
conjecture that p = 00101 10 = 415. To verify, we check the parity vector of 
415. Since T(415) = 215, T(215) = 115, and T(l15) = 415, die parity vector" 
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of 4 15 is 001 and we have eliminated this parity vector. 
I f  { s (k) 1 k  e N } is a family of parity vectors, one can use this technique to 

determine p  (k) = Q,.' ( s  ( k ) )  for the fast few values of k. Using these values we 
can conjecture what p ( k )  might be for any k. Verification that p ( k )  = 

Q: ( s ( k ) )  for all k  again can be obtained by direct computation of the parity 
vector of p  ( k )  . This is the method used in the proof of the theorem. 

EXAMPLE 3. Let s ( k )  = S ~ S ^  --. sk where si = 1 if i = k  and 0 otherwise. 
Then a calculation similar to the one used in Example 2 yields the following 
results. 

k s ( k )  p ( k )  (2-adic expansion) ~ ( k )  (base 10) 

o 1 i - 1 
1 0 1  

- 
0 1 2 

2 001 0010110 415 
3 0001 0001010001101110 8/13 
4 00001 0000101011000100001101001110111 10 16/29 

By looking at the values of p  ( k )  in base 10, we are led to the conjecture 

~ ( k )  = 
z- for k  e N. 

2*+1 - 3 

Having conjectured the values of p ( k )  , we are now ready to prove the 
theorem. 

Proof. Let p ( k )  = 2k/(2k+1 - 3). Then 

to 00 01 (k 0s) = s ( k ) .  It is clear that this will always lead to a fraction for 
k  > I ,  since the numerator is a power of 2 and the denominator is an odd number 
greater than 1. Thus s (k) is not the parity vector of a positive integer for k  > 1. 
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Therefore, the trajectory of p  ( k )  is cyclic and the parity vector of p  ( k )  is equal 



o WAYS ARE ONE 

J.  h? Boyd and P. h? Raychowdhury 
St. Christopher's School and Virginia Commonwealth University 

When we glance through the problem sections of mathematical journals, we 
often wonder how the proposers of the problems ever discovered their results in 
the first place. There is no general rule to guide an explorer to a pretty sight, but 
a procedure that has given us several pleasant surprises is one which is often 
employed in ninth-grade geometry. It is to compute some quantity correctly in two 
different ways. If the results are P and Q, then P = Q. 

We will apply this procedure to show that in any right triangle whose legs a 
and b and hypotenuse c all have integer lengths, abl(a + b + c )  is always an 
integer. We will then get the same result in another way. Some examples are 

ab/(a + b + c )  

We will get this by calculating 
the area of the triangle in two 
different ways. (See Figure 1 .) The 
first way is ab 12. The second way 
is as the sum of the areas of the 
subtriangles OAB, OBC, and OCA 
formed with 0, the center of the 
inscribed circle. This sum is 

re12 + rai l  + rbl2. 

It follows that 
Figure 1. Right triangle 

and inscribed circle. 

It remains only to show that r is an integer. It is a standard exercise in 
elementary plane geometry to show that r = ( a  + b - c) /2 .  We knowthat 
a + b isevenifandonlyif(a + bl2 iseven.. Since ( a  + b)2 = a 2  + b 2  + 
2 ab , it follows that a + b is even if and only if ( a  + b )' is even. Therefore, 
a + b ,a2  + b 2  = c2,andcareallevenoralloddtogether. Thus a + b - c i s  
even and r is an integer. 

Another way to get this is to remember that in a right triangle with integer 
sides, 

a = Ikmn,  b = k(m 2 - n 2) ,  c = k (m 2 + n 2 )  

for some integers k ,  m , and n . Then 

- - 2k2mn(m + n) (m  - n )  = kn(m - ,,), 
2km(n + m )  

an integer. Two ways are better than one! 

J. N. Boyd teaches geometry at St. Christopher's School in Richmond, 
Virginia. He earned his M S. degree at Virginia Commonwealth University 
where his thesis advisor was Professor P. N. Raychowdhury. 



DETERMINING A DAY OF THE WEEK 

Sandra Rena Chandler 
Georgia State University 

Have you ever needed to know the day of a week that a certain date falls on, 
but didn't have a calendar handy? This note will show you how to determine it. 

If the date is in the current month, just add, modulo seven. If May 5 is a 
Thursday, to find what day of the week May 28 is, add 23 to Thursday: Thursday 
+ 23 = Thursday + 2 = Saturday. 

If the date is in a future month, we need to remember 
Thirty days hath September / April, June, and November 
All the rest have thirty-one / Except February. 

Or, we can remember how many days more than 28 each month has: 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
3 0 , l  3 2 3 2 3 3 2 3 2 3  

If Februaty has 28 days, March is identical to February except for the addition of 
days 29-31. If February has 29 days, then the days in March are shifted to the 
right on the calendar by one day. If a month has 30 days, the day of the week is 
two days to the right for the next month, and three days to the right for months 
with 31 days. So, if May 5 is Thursday, June 5 will be Thursday + 3 = Sunday 
and July 5 will be Sunday + 2 = Tuesday. 

Suppose that January 1 is a Sunday and you want to know what day of the 
week June 1 is so that you can plan your vacation. If it is not a leap year, then 
June 1 will fallon Sunday+(3 + O + 3  +2+3)=Sunday+ 11 =Sunday+4= 
Thursday. 

The sum of all the numbers in the table is 29 (in a non-leap year), so if January 
1 is on Sunday, January 1 of the next year will be on Sunday + 29 = Sunday + 1 
= Monday. 

For leap years, if February 29 comes between your two dates, you need to add 
one more for the extra day. For example, 1996 is a leap year. (Leap years are 
those years that can be evenly divided by four and are those years when Americans 
are supposed to vote for the President of the United States. 

Century years are not leap years unless the century is divisible by four. So, 1900 
and 2100 are not leap years, but 2000 will be.) Since January 1, 1996 was on a 
Monday, March 1, 1997 will be on Monday + 2 (for the leap year) + 3 + 0 (for 
January and February 1997) = Monday + 5 = Saturday. January 1, 1997 is on a 
Wednesday, so, since 1997 and 1998 are both non-leap years, March 1, 1998 will 
be on Wednesday + 1 + 3 + 0 = Wednesday + 4 = Sunday. 

The idea can be used to determine the day of the week for dates more than one 
year in the future. Since January 1,1994 was on a Saturday, January 1, 1997 will 
be on Saturday + 1 (for 1994) + 1 (for 1995) + 2 (for 1996) = Saturday + 4 = 

Wednesday. For another example, we can find the day of the week for New 
Year's Eve, 1999. Since January 1,1996 was on a Monday, January 1,2000 will 
be on Monday + 2 + 1 + 1 + 1 =Monday + 5 =- Saturday. So, December 3 1, 1999 
will be a Friday. 

Working backwards you can determine the days of the week for previous 
months and years. For example, since January 1, 1994 was a Saturday, you can 
find what day April 15, 1992 was by going back to January 1,1992-Saturday 
- 3 (1992 had a leap year day) = Thursday-and then forward to April 15: 
Thursday + 3 (January) + 1 (leap year February) + 3 (March) + 14 (April 1 to 
April 15) = Thursday + 2 1 = Thursday. 

So, the next time you fmd yourself without a calendar and wanting to know 
what day of the week a certain date falls on, just remember (if the date is in the 
future) 

add one for each year without a leap day and add two if a leap day is 
involved 

add the month numbers 
add (or subtract) the difference in days. 

Here is a last example to illustrate this: January 6, 1994 was a Tuesday; what day 
will July 4, 1997 fall on? Tuesday + 2 + 1 (now we are at January 6, 1997) + 3 
+ 0 + 3 + 2 + 3 + 2 (July 6, 1997) - 2 = Tuesday + 14 = Tuesday. 

Sandra Rena Chandler was granted her M. S. degree in mathematics 
with a concentration in statistics from Georgia State University' in March 1995. 
This note was part of a paper written for her Technical Writing course. 



Ann Marie Paulukonis 
College of St. Benedicmt. John's University 

A statistic on a set of permutations is a function which associates to each 
permutation some non-negative integer. One of the best known permutation 
statistics is the major index, which is computed by weighting descents by position. 
Another statistic on permutations involves excedances-when a number exceeds 
its position. In this paper, we will consider the bivariate distribution that occurs 
when permutations are grouped according to both the number of excedances and 
a weight similar to the major index (see Table I). I will call this distribution the 
P-Distribution. 

Before delving into theorems about the excedance-weight distribution, some 
basic definitions and propositions are needed. Throughout this paper, we will use 
one-line notation for permutations, writing w, w, w, w , where wi is the number 
in position i. 

We will say that a permutation has an excedance where a number is greater 
than its position. A permutation has a nonexcedance where any number is equal 
to or less than its position. 

For example, the permutation 24135 has excedances in positions one and 
two; positions three, four and five contain nonexcedances. 

Permutations can be weighted by summing positions, in this case positions 
of the excedances. Thus 24135 has a weight of 3. Notice that the number 1 can 
never exceed, also, any number other than 1 will always exceed in position 1. The 
number n will exceed any position (except n) while position n can never be 
exceeded. 

Let S denote the set ofpermutations on {I, 2, ... , n} and S(n, j, k) denote 
the subset of S consisting of permutations which have j excedances and weight 
k. We will let N(n, j, k) denote the number of elements in the set S(n, j, k). 
We let S(n, j )  indicate the "excedance block" of all permutations in S with j 

excedances. 
The following propositions are easy to establish: 
Proposition 1: If x is the first position exceeded, positions 1 , 2 ,  ..- , (x - 1 ) 

are fixed; that is,. w, = i for 1 < i i x - 1. 
Proposition 2: The weights k for S(n, j )  are exactly the seque 

consecutive integers from j (j + 1112 to n j  - j (j + 1112. 
Proof: The sum of the first j positions is j ( j  + 1 )/2, while the sum of the 

last j positions is n j  - j (j + 1)/2. 
Looking at the distribution data in Table 1, we notice that for each n the 

sequence of values N(n, 1, k) is 2'" - 1 ,  m = n - l , n  - 2 , - ,  1, so 
N(n, 1, k) is apparently 2n-k - 1. Since every N(n, 1, k) gives the same 
sequence, with the inclusion of one more term for each successive n, could we 
establish this result by recursion? 

Let us consider an example: the set S(6, 1, 3)  contains the permutations 
124356,125346,125436,126345,126354,126435, and 126453. If we remove 
the 6 from each permutation where 6 is at the end, we get exactly the elements of 
S(5, 1 ,3 ) :  12435, 12534, 12543 In the other permutations, if we swap 
position 3 (where the 6 is) and position 6, then remove the 6, we again get 12534, 
12435, and 12543, plus the identity 12345. This same process works in general 
for;= 1: 

THEOREM 1. N(n, 1, k) = 2N(n - 1, 1,  k) + 1, 1 s k s n - 1. 
Proof.(i) N(n, I ,  k) s 2N(n - 1; 1, k) + 1. Let m =  N(n - 1, 1 ,  k). 

Consider 14 S ( n  - 1, 1, k) . Place n at the end, to form un = v Sn . 
Since v = n , the only excedance in v is in position k. Make a copy of the new 
permutation v and switch vn with v, to get 
v*,  s o t h a t v , * = n a n d v n * = v k  (see u = 1 2 3 5 4 e S ( 5 , 1 , 4 )  
Example 1.1). Since position n can never = 123546 ~ ( 6 ,  1, 4 )  
be exceeded and n always exceeds * = 123645 s ( 6 ,  4)  
anywhere but in position n, position k will 
hold the only excedance. Perform the same Example 1.1 
procedure on each of the m permutations in 
S(n - 1 , 1 , k) , obtaining 2m permutations (the v's and the v * Is). In addition, 
act on the identity permutation, 12 n - 1 by placing n at the end and then 
switching the nth and kth positions as before. Position k will now be exceeded 



and we have a total of 2 N(n - 1.1, k) permutations, each of which is an element 
of S ( n , l ,  k). 

(ii) N(n, 1, k) s 2N(n - 1, 1, k) + 1. Choose any permutation v 
S(n , 1, k) . The letter n is either in position n or position k (if it were elsewhere, 
that position would also have an excedance). If vn = n,  remove n to get 
u e S - . The letter which was an excedance in v is still an excedance in u in the 
same position. There are no other excedances since there was only one to begin 
with, thus u e S ( n - l , l , k ) .  If vk=n,swap v and vita obtain a 
permutation v where v *  = n and v,* = vn = g for some g < n .Remove n as 

Example 1.2 

before to get a pmutation u e S , (see Example 1.2). I claim g Ã§' If g < k, 
some other position in addition to k would have been exceeded in v e S,, . If 
vn = g < k, then v would have to be a number smaller than g since there is only 
one excedance. However, Proposition 1 states (hat all positions up to k are fixed, 
therefore vg = g. Thus g 2 k. If g = k, our new permutation u e Sn _ , is the 
identity permutation (the "+ 1" of the equation). Otherwise, we have a 
permutationin S(n - 1, 1 ,  k). W 

The sequence of numbers N(n, j, k) can now be expressed in closed form 
by using the preceding theorem and induction on n and k. 

Corollary 1.1. 2"-* - 1 = N(n, I, k) for 1 -a k s n - 1. 
Now compare N(n, j, k)with N(n + 1, j, k + j)in Table I. The highest 

few values in block S(n, j) appear in block S(n + 1 , j). However, the entire 
excedance block does not cany through from n to n + 1 ; only the smallest n - j 
weights fiom one block appear in the corresponding block for n + 1. What could 
be so special about the mutations with these weights? First, we note that these 
permutations always have a 1 in position 1 (hence a non-excedance) while the 
permutations which do not carry over may or may not have an excedance in 
position 1. In fact there are no mutat ions  with excedances in position 1 which 
coiicspond to the highest n - j - 1 weights in any block. These facts follow easily 
from Proposition 2. 

Now let's take a closer look at the role of position 1 for carryover 
pemlutations. Consider 13254 e S(5,2,  6)and 124365 S(6,  2, 8). Writing 

we notice that the letters in each position one above the other, , 
differ by one. So if we add one to each letter in 13254 and then place a 1 at the 
front, we constmct 124365. This same process works for each of the carryover 
permutations: < - 

THEOREM 2. N(n, j, k) = N(n + 1,j,  k +/)for all n and j  and the top 
n - j values of k. 

Proof: Let us define a map d) : Sn + Sn + , , given by d) (v) = w where wl 
=1, w, = v 1  + 1, (i = 2,~~~,n).Inotherwords,wisobtainedbyaddingone 
to each letter of v and then placing a 1 at the beginning of the new permutation. 
Iclaimthatifv e S(n, j ,  k), then d)(v) e S(n + 1,j, k + j). 

Let v S(n , j, k) . By Proposition 1, we know that up to the first exceeded 
position all letters are fixed, v, = 1, v, = 2, etc. Apply (0 (see Example 2.1). 
Every letter increases by 1 and its position is now one greater. Any fixed point in 
v corresponds to a fixed point in w, a 
non-excedance corresponds to a non- v = 124563 e S ( 6 , 3 ,  12) 

excedance, and each of the j excedances <i> -> 235674 

corresponds to an excedance; everything w = 1235674 e S(7,  3,  15) 
is just one position higher. Thus, the Example 2.1 
weight of w increases by j (adding 1 for 
each of the j excedances of v). Therefore, w e S(n + 1 , j, k + j). 

It is easy to see that d) can be reversed so that we can recover v from w, 
establishing d) as a bijection. I 

One of the most striking symmetries in the P-distribution is that the numbers 
N(n, j, k) are symmetric with respect to excedance blocks. In order to 

understand why, consider 124365 e S(6,2 ,8)  and 143562 e S(6,3 ,  11). 
In the first permutation, excedances occur in positions 3 and 5 while in the second 
permutation the excedances are in positions 2, 4, and 5. Non-excedances are 
found in 1, 2 and 4 for the former and in 1 and 3 in the latter (and the 
inconsequential position 6). Thus, the first five letters in each permutation are of 
the form nnene and nenee. Look closely and you can see that these are reverse 
mirror images. That is, one is the other written backwards with n's and e's 
switched. This same unusual pattern is found throughout all the excedance 
blocks, and is the basis for the proof of the following theorem: 

THEOREMS. N(n,j, k) = N(n,n - j  - 1, k') wherek,kl rangetogether 
from the highest to lowest weights for their respective number of excedances. 



Proof. v S(n,j ,  k). Find v: 132654 e S(6,  2, 6 )  
v ,  but reverse the order of the first ,,I: 562314 
n- lpos i t ions toge tv ' .  Next,take ~ ( 6 ~ ~ ~ ~ )  
the complement of v' with respect to n  + 
1, getting v " . That is, 

Example 3.1 
V = v1v2 .-. V,,-A, 

v = vn-1vn-2 -v2v1, 

v n = ( n + l - v n - , ) - - ( n + l - v n - , ) - ( n  + I - v n )  

(see Example 3.1). 
I f v m > m i n o , l c l a i m v ~  s n  - m .  Inv',vmisinposition n - m .  

In v", positionn - m contains n  + 1 - v .  But if vm > m  then v 2 m + 1, 
and so 

~ ~ - ~ = n + l - v ~ < i n + l - ( m + l )  = n - m .  

Similarly, if v s, m then 

On the other hand, if vLm Ã§ n - m, then 
- vi-,,, - n + 1 - v,-(,-,,,) = n + 1 - vm s n - m. 

so vm > m. Similarly, if v,"-_ > n  - m,  then 

Thus the non-excedances in v" come from excedances in v and the 
excedances in v " come from the non-excedances in v. We conclude that v has j 
excedances if and only if v " has n - j - 1 excedances. 

Now, all that is left to show is that these reversals actually land us in the 
proper places for excedances and so give the correct value of kt. In other words, 
we want to show that if a permutation in S(n, j )  has an excedance in position i, 
then the corresponding permutation in S(n, n  - j - 1 ) has a non-excedance in 
the "swapped position. 

First, from Proposition 2 we know that the least possible k is 1 + 2 + - + j 
and the least k' is 1 + 2 + + (n - 1 - j). Also from Proposition 2, it is 
obvious that k' > k for j < (n  - 1 )12. Since the weights form a consecutive 
sequence, each pair k, k' differs by a constant. We have 

s o k ' = ( n 2  - n  - 2nj)/2 + k .  
Let el, e2, -, e,betheexcedanceplacesforvandlet &,A,  - , f n  beihe 

non-excedance places for v. Recall that f n j  = n, so n - & , n - f̂ , 
n - f. s ,  are die excedance places for v " . The sum of all excedance places in 

sum of all nonexcedance places in v is 

and 
n-'-1 

r i =  (n(n + l ) /2)  - k - n .  
1=1 

Therefore the sum of all excedance places in v " is 

We have shown that the P-Distribution on permutations of { 1, 2, .-- n } has 

several interesting symmetry properties. One might also consider whether or not 
similar theorems may hold for multiset permutations. In a preliminary analysis we 
noted some symmetries in special cases, but more significant results await farther 
research. 

A table of P-distributions for n = 4, 5, 6, and 7 follows. In the table, N; 
stands for N(i , j, k) . 

Those interested in further reading should see Stanley, Richard P., - - - - - - - 
Enumerative Combinatorics, volume 1, Wadsworth and Brooks. Belmont. 
California, 1986. 



This paper is based on the senior thesis ofAnn Marie Paulukonis, written 
in 1993-94 under the direction of Professor Jennifer Galovich. 

A SOLUTION STRATEGY FOR DIFFERENTIAL EQUATIONS 

HenryJ. Ricardo 
Medgar Evers College (CUNY) a - 

A student in an introductory differential equations class, after being exposed 
to the various kinds offirst-order equations, asked in what order the solution methods 
should be tried. For example, if separating variables was unsuccessful, what next? 
This was a reasonable question since the standard treatment of first-order ordinary 
differential equations has been described as "a collection of special 'methods,' 
'devices,' 'tricks,' or recipes,' in descending order of kindness!" [4, p. 251. In 
particular, the relationships that 
exist, or fail to exist, among 

Separable 
separable, exact, homogeneous, and 
linear equations are not always made 
clear. 

The Venn diagram on the right 
divides the space of first-order 
equations examples into are eight given parts, below, for which when @ H 

possible both linear (L) and 
nonlinear (NL). They may be found Homogeneous 

useful even in differential 
equations courses that no longer 
emphasize special solution methods, and may be found of interest in any event. 

For consistency, all equations will be written in the differential form 
M(x, Y)  '2c + N(x, Y )  = 0. 

A. Separable, but neither exact nor homogeneous: 

(L) ( y  - 1 ) k  +dy = O  
(NL) ( x y 3- 4 x ) d x + ( x 2 y + y ) d y = 0  

B. Separable and exact, but not homogeneous: 
(L) x d x + ( y + l ) d y = O  
(NL) ( x y 2- 4 x ) d x + ( x 2 y + y ) d y = 0  



C.  Separable, exact, and homogeneous: 
(L) 2 x y & + x 2 d y = 0  

(NL) x2& - y2dy = 0  
D. Separable and homogeneous, but not exact: 

(L) y & - x d y = O  

(NL) x2y& - y2xdy = 0  
E. Exact, but neither separable nor homogeneous: 

(L) None: if exact, then separable 
(NL) ( ~ ~ + 2 ~ ~ ) & + ( 4 x y - ~ ^ + l ) d y = O  

F. Exact and homogeneous, but not separable: 

(L) None: if exact, then separable 

(NL) ( x 2  + 2 y 2) &  +(4xy - y 2 ) d y  = o  
G. Homogeneous, but neither exact nor separable: 

(L) ( y + x ) & - x d y = O  
(NL) y 2 & + ( 3 x y -  l ) d y = O  

H. Neither separable, exact, nor homogeneous: 
(L) ( x y - x 3 ) & + d y = 0  
(NL) ~ ~ & + ( 3 x y -  l ) d y = O  

For those differential equation courses that still treat these types of equations 
in some detail (and such an approach is pedagogically defensible), here is a solution 
strategy that can be offered to a student facing a first-order ordinary differential 
equation: 

First, try to separate variables. (Some equations, as 
y' = 1 + x  + y 2 + x y 2  

are not instantaneously recognizable as separable. Scott [5] has a simple test for 
separability. A less useful criterion is provided by Plaat [2, ex. 8, p. 381. Plaat 
[3] has some interesting comments on the algorithm for solving an equation by 
separation of variables.) 

Next, see if the equation is homogeneous-that is, see if it can be written in the 
form dy/dx = f (ylx). This is as easy (or as difficult) as recognizing separability. 
The change of variable y  = ux gives a separable equation for u. 

Then see if the equation is linear, in either variable. If it is, then 
multiplication by the proper integrating factor leads to the solution. 

There is a test involving partial derivatives to see if an equation is exact. If - 

it is not exact, there may be an integrating factor that will make it exact. There is 
a useful table of integrating factors in [I, p. 281. 

If the equation has still not yielded, it may have a special form that a change-of 
variables will change to a solvable equation. The Bernoulli, Riccati, and Clairaut 
equations are examples. 

If the equation is a textbook exercise, then it must be solvable by one of the 
above methods. If the equation is a real one, then it is possible that none will work, 
and something else-numerical solution, solution in series, inspection of integral 
curves generated by a calculator or computer-will have to be tried. 
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Daniel L. Viar 
University of Arkansas 

In linear algebra, when we define linear maps between vector spaces we 
always assume that the vector spaces are over the same field. Of course this is 
done for a good reason. I f  T : V ^ W is a linear map between the vector spaces 
V and W, v e V, and c is a scalar, then T(cv) = cT(v) makes sense only if V 
and W are over the same field. However, if our goal is to be able to compare 
different vector spaces, then it seems natural that we would want to be able to 
define linear maps between vector spaces over different fields. The purpose of this 
note is to investigate that possibility. 

Let V and W be vector spaces over the fields F and F' respectively. Let us 
suppose that if v , ,  v, E V then T(y, + v,) = q v , )  + T(y^) .  Let <  ̂be a map 
from F to F'and let us suppose that <  ̂and T satisfy T(cv) = <o(c)T(v) for all 
v 6 Vand c E F. Wethenhave 

THEOREM 1 .  Let V and W be vector spaces of the fields F and F' 
respectively. Let T :  V -> W, T + 0 and <  ̂: F -> F' be maps such that 

T(v, + v2 = + T(v2 

T(m)  = 0 ( 4  T(v) 
for all v J ,  v p  V and c 6 F. Then 4> is a homomorphism of fields. 

Proof. Let a, b E F and 0 + v 6 V .  Then 

<^(a + b)T(v) = T((a  + b)v )  = T(av + bv) = T(av) + T(bv) 

= W T ( v )  + <^(b)T(v) = (+(a)  + <^(b))T(v). 
Since T is not the zero map and v + 0 we may assume that T(v) + 0 .  Hence it 
follows that <^(a + b)  = <  ̂(a) + (0 (b) .  

So far we have shown that <  ̂is an additive homomorphism. Exactly the same 
argument as the one above, replacing + with ., shows that <  ̂(ab) = <  ̂(a) <  ̂(b) 
so that 6 is a multiplicative homomorphism. 

For <  ̂to be a nontrivial homomorphism offields, it remains only to show that 
<  ̂takes 1 to 1 ' where 1 e F and 1 ' E F' are the multiplicative identities. We 
have 

1 ' -T(v) = T(v) = T(1 -v)  = <  ̂(1)-T(v), 

which is what we wanted. 
What else can we say about <o? It would be nice if 4> turned out to be an 

isomorphism. Then this whole discussion would be moot. However, everyone 
knows that homomorphisms are not necessarily isomorphisms. For example, if 
we let R and C denote the real and complex numbers, then (0 : R -> C given by 
<  ̂(a) = a + Oi is a field homomorphism but not an isomorphism. However, if we 
put a restriction on T we can prove 

THEOREM 2. IfT is injective than (0 is injective. 
Proof. Let a, b e F and 0 + v e V. Suppose that (KG) = M b ) .  We 

want to show that a = b . Note that <  ̂(a) = <  ̂(b) implies that &(ci)T(v) = 

<  ̂(6) T(v) . We have 
T(av) = <^(a) T(v) = 4> ( A )  T(v) - T(bv). 

However, T is injective so that T(m)  = T(bv) implies av = bv so that, since 
v + O , a = b .  

Now it would be natural to ask, "What happens if T is surjective?" 
Unfortunately, if T is surjective, it does not follow that (0 is surjective. For 
example, let the real and complex numbers be denoted a s above. Let V be the 
complex numbers as a vector space over the reals (i. e., F = R) and the W be the 
complex numbers as a vector space over itself (i. e., F' = C). Let T : C -> C be 
the identity map and let <  ̂: R -> C be the embedding map 4> (a)  = a + Oi. Then 
T and <  ̂satisfy all the conditions of the two theorems and T is surjective, but 4> 
is not. 

We have seen how one might begin to define linear transformations between 
vector spaces over different fields. However, it is not clear (to the author) what 
the appropriate notion of isomorphism might be. Certainly, if (j) is a bijection 
then we have shown (hat Fand F' are isomorphic. Must this be the case to have 
a notion of isomorphism? For instance, how does the structure of the reals over 
the rationals compare to the complex numbers over the rational complex numbers 
(i. e., all complex numbers of the form r + qi where r and q are rational)? What 
about generalizations to modules over a ring? We leave such questions to the 
interested reader. The author would be interested in any solutions. 

Daniel Viar, a veteran ofhvo Budapest semesters in mathematics ( 1  992- 
1993), is completing his master's degree at the University' of Arkansas at 
Fayetteville. This fall he will embark on a l'h D program 111 n b - h i ' i ~ i c ~  
geometry and commutative algebra. 



A TRIANGLE OF COEFFICIENTS AND ITS USES 

Joe Howard 
New Mexico Highlands University 

Consider the following identities: 
x = x 
X 2  = x + x ( x -  1) 

X 3  = x + 3x(x - 1) + x(x - l)(x - 2) 
x4 = x + 7x(x - 1) + 6x(x - l)(x - 2) + x(x-  l)(x - 2)(x - 3). 

The coefficients are 
1 

1 1 
1 3 1 

1 7 6 1 
and the next row would be 

1 15 25 10 1. 

The method for getting row n + 1 from row n can be seen in the example 

and the row after, { 1,3 1,90,65,15,1}, would come from 

These numbers, the Stirling numbers of the second kind, have been known for a 
long time, but do not often appear in the undergraduate mathematics curriculum. 
Let Sn(k)  denote the number in row n and column k. Then Sn( k) is the number 
of ways of partitioning a set of k elements into n non-empty subsets. For example, 
S4(2) = 7,  counting the seven partitions 

The numbers can be calculated directly from 

As an application of their use, let us derive a formula for . - 

We use the binomial formula and differentiate repeatedly: 

Set x = 1 in (1)-(4) and form the sum ( 1 )  +7-(2) + 6-(3) + (4). Using the 

identity for k4, the right-hand side of the sum is just El=o (4 k4 while the 

left-hand side is 

n 2"-' + 7n(n - 1)2"-' + 6n(n - l)(n - 2)2n-3 

+ n(n - l ) (n  - 2)(n - 3)2n-4. 

Simplifying, we get 

00 n kx "  
For another example, we can evaluate 

= - n ! . 



We have 

xn-l Y o - 2  
= sk ( l )x  - + sk(2)x2 - + ..- 

, , = I  (n - I )!  n-l ( n  -2)!  

n - k  

+ sk(k)xk x 
,,=k ( n  - k ) !  

= (Sk(1)x + Sk(2)x + .-. + Sk(k)x k ) e  x. 

In particular, if we put x = 1 and k = 4 we get 

Joe Howard received his education from Eastern New Mexico University and 
New Mexico State University: He has taught for several years at New Mexico 
Highlands University, 

Terry McMahan and Mike Surrey 
Centre College - - 

The most dramatic hit in baseball is the home run. A record 4458 home runs 
were hit in 1987, more than were hit even in the days of Babe Ruth, Lou Gehrig, 
Joe DiMaggio, and Roger Maris. Why so many? We conclude, because of 
statistical data, that the home run phenomenon was caused by a production of 
lively baseballs. 

What are the possible causes of such an offensive explosion? One explana- 
- tion is league expansion, which has historically produced offensive booms. For 

example, when the Seattle Mariners and Toronto Blue Jays entered the American 
League in 1977, the other twelve teams in the league hit 658 more home runs than 
the year before. But expansion can be excluded from our discussion because no 
new teams were added to either league in 1987. 

Another possible reason for the phenomenon is that there was simply more 
offensive power and talent in the league in 1987. But the numbers do not support 
this theory. Home runs per game decreased by over 0.5 per game between the 
1987 and 1988 seasons in both leagues. Perhaps the umpires are the cause of the 
phenomenon-did they tighten their strike zones? The numbers also contradict 
this theory: record numbers of strikeouts were recorded in both leagues in 1987. 

Perhaps the phenomenon was caused by poor pitching. A multiple regression 
model with home runs per game as the dependent variable and strikeouts per game 
and bases on balls per game as the independent variables measures the relation- 
ship between home runs and pitching. The model is based on data gathered for 
twenty-one seasons, 1973-1993, and results in the following regression lines (see 
the appendix for a list of data): 

AL: HR = -0.59145 + 0.12295 SO + 0.15337 BB 

NL: HR = -2.0091 1 + 0.17440 SO + 0.23633 BB. 

This model yields interesting results. It shows, unexpectedly, a positive 
correlation between strikeouts and home runs (e. g., r = .55 in the American 
League). Although this contradicts our initial intuition, this relationship has a 
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reasonable explanation: as more home runs are hit during a season, more players 
begin to swing for the fences. Thus they begin to swing at pitches out of the strike 
zone, resulting in higher numbers of strikeouts. 

The phenomenon was not merely coincidental. The American League model 
produces results consistent with the observed data for every year except 1987, 
where it tells us to expect 1.92 home runs per game. The actual rate for 1987 was 
2.32 home runs per game. Similarly, the predicted and observed values for the 
National League are 1.68 and 1.88. These results lead us to believe that an 
uncharacteristically large number of home runs was recorded for each league in 
1987, despite record numbers of strikeouts and near record numbers of bases on 
balls. 

An expected response hypothesis test (see [ l ,  p. 5261) supports our claim. 
For the American League, a test of the null hypothesis of 2.32 HRIgame against 
the alternative of less than 2.32 HWgame produces ap-value of 0 (more than four 
standard deviations from the mean), and the p-value for the corresponding test for 
the National League is .OO 15. 

Inspection of the data in the appendix shows that the increases and decreases 
in home runs per game from year to year seem to be close to the same for both 
leagues. Not only does the direction of change tend to be the same, even the 
magnitudes of the changes are close. This pattern consistently repeats itself over 
the entire 1973-1993 time span. 

A paired difference test codinns this claim. Let ALC denote die change in 
the number of home runs per game in the American League from one year to the 
next and NLC the corresponding number for the National League. If D = ALC 
- NLC, then a test of the hypothesis that the mean of D is zero against the 
alternative that it is not zero produces a p-value of .8474. 

The regression analysis shows that the home run phenomenon existed for both 
leagues in 1987. The paired difference test supports the hypothesis that the 
phenomenon was caused by a production of lively baseballs. The two leagues 
have different umpires, players, coaches, and managers. The only common factor 
between the two leagues is the equipment used, the baseballs, bats, helmets, and 
so on. Only the bats and balls can amcct the number of home runs, but the bats 
are manufactured by many dimerent companies. Thus we have excluded all 
possible explanations, cxccpt the ofTicial major league baseballs. nianuFacturcd 
by only one company and under contract with the Major League Baseball 
Association. 

Richard Levin, a spokesman for the Association, denied that the phenomenon 
is explained by the baseball. "The ball is the same as it always has been," he said 
[2, p. 721. Ex-big league manager Whitey Herzog performed his own test by 
unraveling and bouncing two baseballs, one from 1986 and one from 1987. The 
1987 baseball bounced higher. We agree with his conclusion [2, p. 721: "You 
didn't have to be no scientist to figure that one out." 
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Year 

Appendix 

American League 

ERA 

3.82 
3.62 
3.78 
3.52 
4.06 
3.77 
4.22 
4.04 
3.66 
4.07 
4.08 
3.99 
4.15 
4.18 
4.46 
3.97 



Year HR H SO ERA BB 

1989 1.51 17.71 10.84 3.89 6.42 
1990 1.58 17.55 11.19 3.91 6.73 
1991 1.72 17.81 11.41 4.09 6.82 
1992 1.57 17.64 10.75 3.94 6.79 
1993 1.83 18.22 11.42 4.32 7.06 

National League 

Year HR H SO ERA BB 

TerryMcMahan, a 1994 graduate from Centre College, was a mathematics 
major and had a batting average of S.29 as a sophomore. Mike Surrey, who 
also was graduated/rom Centre with a mathematics major and who also played 
baseball, is now attending law school. Their faculty advisor was Professor Bill 

- .  Johnston. 

4 What are these? 

! 
(From Professor K. R. Johnson of North Dakota State University.) 

1. A 2. DEPENLINEARENCE 
s 
Y 
M 3. ROOTS ROOTS ROOTS 
P 
T 

1 bound 1 

Answers, shoud you need them, are on page 272. 



LAPLACE TRANSFORMS AND TAYLOR SERIES 

Russell Euler 
Northwest Missouri State University 

hi [2], basic properties of Laplace transforms are discussed. In [I], a formal 
power series was used to prove a result involving Laplace transforms. The 
purpose of this paper is to show how Taylor series expansions can be used to find 
the Laplace transforms of certain functions. 

We will assume that f (t) can be expanded in a Taylor series 

on It1 < RforsomeRB O,whetean = f(")(o)/n!. Since Â£Â£[t =n ! / sn^  
for s > 0, one can use (1) to find 9' [f(t)] provided that the Laplace transform 
of a power series can be computed termwise. Since power series are uniformly 
convergent on compact subsets of the interval of convergence, power series can 
be integrated termwise. Also, since Laplace transforms are integral operators, it 
is reasonable to assume 

for s > 0. In many cases, it is possible to express the right-hand side of (2) in 
closed form. 

As an example, since e at = x:=o (at)"In ! for \ t \ < and any nonzero 
constant a, 

for s > 0. But this is a geometric series with first term 1 1s and ratio als,  so 

11s - 1 Â£Â£[ea = - - - 
1 - a h  s - a  

leta=O,wegetthat Â£Â£[ = l / s f o r s >  0. 
As another example, it is well known that 

(-1)" sin at = 
,,=O (In +I)! 

for It1 <a. So,fors>O, 
00 (-1)na2n+lg[,2"+l] ^ 2 (-l)na2..+l 

^[sin at] = 
n = o  (2n + 1) ! ,,=,, s 2 n + 2  ' 

another geometric series, from which Â£ [sin at] = a/(s + a2) follows. 
In [2] it was shown using integration by parts that, with certain growth 

restrictions on f (t), Â£ [ f '(t)] = sÂ£ [ f (t)] - f (0). This can be obtained using 
series as follows. From (I), 

00 

(t) = E nantn- I .  
n = l  

The last equality follows from (2) and the fact that a. = f (0) (~) lO!  = f (0) .  
The above result is easy to generalize using power series. If k is a positive 

integer, then 

and so 
Lm 

^ \ f w ( t ) ]  = n(n - 1)- (n - A -  + I)",, (n - k)! 
n = k  .T n - k * l  

for 1 als 1 < 1 (i. e., s > \ a \ ). If the restriction that a + 0 is removed and we 
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Using the definition of Laplace transform, it is easy to show that 

a [ e b t t n ]  = 9 ? [ t n ] s + s - b  andso 2 [ e b t t n ]  = 
n ! 

( s  - b y 1  
Hence, 

This result was given in Table 1 of [2]. 
Although the computations in this paper were done formally, perhaps the 

main justification of the techniques is that the results agree with those obtained 
using standard techniques. 
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Amanda Beck and A. J.  Mitchell 
Carthage College 

- .  

What is the probability of a couple having their first child on their first 
wedding anniversary? To answer this question mathematically in the real world 
would be too difficult, so we will create a "perfect world" by making the following 
assumptions. 

All women will get pregnant within the f i r t  year of trying. 
0 No birth control methods or fertility drugs are used. 
* All couples start trying to get pregnant immediately after their 

wedding. 
0 The time it takes to get pregnant and the term of pregnancy are 

independent and normally distributed. 
Let p be the mean length of time that it takes a couple to conceive their first 

child from their wedding day and let o,  be the standard deviation. Let \i2 and o2 
be the mean duration and standard deviation of a pregnancy term. The distribution 
of the total time from wedding until birth will, because of the independence 

assumption, be normal with mean p, + and standard deviation i/o,2=. 
According to doctors the average time it takes a couple to conceive is six 

months, or 180 days. The mean length of the term of pregnancy is 40 weeks, or 
280 days. Doctors say that 10% of babies are born on their due date. If we 
consider the due date to be the exact middle of the actual day, we can say that 10% 
of babies are born within * .5 days of their due date. Using these facts, we can 
assign values to the parameters. 

Since 100% of women get pregnant within the first year after their wedding 
in this perfect world, we assume that all times to conception lie within Â 3 
standard deviations from p, . That is, 3 ul = 6months, so o l  = 2 months. 

Using a table of the normal distribution we find that 10% of data falls within 
* .125 standard deviations of p,. Since 10% of babies are born within Â .5 days 
of their due date, we see that 0 125 a, = .5 days, so a- = 4 days. 

So, p, + p2 = 460 days and /= = 60.1 days are the mean and 
standard deviation of the time to birth. The probability that the time will be '* 



between 365 and 366 days is .0019286 or .l9%. 
This probability is less than the random probability of 11365 or .27%. The 

reason for this is that some couples do not conceive soon enough after marriage 
to have a baby on their first anniversary. It might be interesting to see what is the 
probability that a second child is born on a wedding anniversary. 

Amanda Beck is a senior mathematics major a t  Carthage College with a 
strong interest in computers. A. J.  Mitchell graduated from Carthage in 1995 
with a major in business and a minor in mathematics 

A medical doctor in Japan has a question, as follows: 

Here is a perfect die. When I throw it once, one of the six numbers 1,2,3,  
4, 5, 6 must come up. The probability of each is exactly 116. Suppose that the 
outcomes of the n tosses are a,, a,, - , a where each a, is one of the integers 
from 1 to 6. 

We can make a rational number from these n integers, 0 .  a, a, Â¥- a .  Then 
we can make the following finite sequence, s, , s ,̂ -.- , sn,  

s, = O.a,, s2 = 0.ala2, - sn = 0.a,a2 - an. 

The larger n becomes, the largers becomes. 
If I continue to throw the die infinitely often, this finite sequence will become 

an infinite sequence. The infinite sequence is bounded from above (by 213 = 

.66666 - - -  ) and is monotone increasing. Does it converge? 
For example, suppose that the first five tosses were 1, 5,3,2,  and 4. If the 

sequence converges, then it has a limit. Let the limit be s. Then 

0.153241 11 s s < 0.15324666 - * *  . 
Then we can write s = 0.15324a6a7a8 - . Each a ,  n = 6,7, 8, - , is one of 
the integers from 1 to 6. The limit, s, is a fixed real number. That means that the 
number a, has already been decided before the sixth toss. 

This is a contradiction, since the probability that a, will turn up is 116, not 
1. The same is true for a,, a. , . Therefore the sequence does not converge. 

But there is a theorem that a sequence that is monotone increasing and 
bounded above must converge. How can this contradiction be resolved? 

Solution to Mathacrostic 41, by Corine Bickley (Fall 1995). 

Words: 

A. moonstone K. offand on 
B. order L. whole 
C. rabble M. equate 
D. raft N. right hand 
E. itch 0. speed 
F. shell sort P. ocean 
G. on high Q. foggiest 
H. Newton R. tete a tete 
I. shear stress S. eigensystem 
J. parameters T. night 

Author and title: Morrisons, Powers of Ten 

Quotation: The step from one scene to its neighbor is always made a tenfold 
change. The edge of each square represents a length ten times longer or shorter 
than that of its two neighbors. 

Solvers: Thomas Banchoff, Jeanette Bickley, Barbara Buckley, Charles R. 
Dimumie, Thomas L. Drucker, Victor G. Feser, Richard C. Gebhardt, Henry S. 
Lieberman, Naomi Shapiro, and the proposer. 

Mathacrostic 42, by Jeanette Bickley appears on the next four pages. 
Directions for solving acrostocs appear at the end of the clues. To be listed as a 
solver, send your solation to the editor. 



A Method of finding primes 
(3 wds) 

B. A graphical computer- 
user interface. 

C. Exact 

D. A polyhedron of twenty 
faces 

E. He experienced much 
rain 

F. Those who hope to 
knock down pins 

G. Euclid's 

H. Einstein's achievement 
(2 wds) 

I. Bigger than it was 

J. A r i le  one and a big one 
might be visible at night 



K To subject to extreme 
physical cruelty 

L. He discovered that 
e i x  = m s x  + i s i n x  

M. In a frenzied manner 

N. An extinct flightless bird 

0. He was born on the 300" 
anniversary of Galilee's 
death (2 wds) 

P. Believe 

Q. A body immersed in 
liquid is buoyed up by 
a force equal to the 
weight of the displaced 
liquid (4 wds) 

R. Stately 

S. Not wise 

T. Damage 

U. There's nothing in 
it (2 wds) 

V. value - - - - - - - - 
75 135 129 33 159 54 114 148 

W. John Napier's remarkable - - - - - - - - - 
invention 154211 193 185206200 196 8 124 

- 
51 

X. A baker's dozen -------- 
15 19 194 57 165 198 17 30 

Y. Elevate 

Z. Frequently studied by - - - - - - - - - 
teens (2 wds) 125 6 101 241 210 56 175 181 145 

------- 
143 157 235 234 131 127 94 

a. Possessing 

b. Presidential ---- 
199 I62 208 187 

c. It's past now 

The mathacrostic i s  a keyed anagram. The 241 letters to be entered in the 
diagram in the numbered spaces will be identical with those in the 29 keyed words 
at the matching numbers. The key numbers have been entered in the diagram to 
assist in constructing the solution. 

When completed, the initial letters of the words will give the name of an 
author and the title of a book; the completed diagram will be a quotation from that 
book. 



PROBLEM DEPARTMENT 

Edited by Clayton W. Dodge 
University of Maine 

This department welcomes problems believed to be new and at a level 
appropriate for the readers of this journal. Old problems displaying novel 
and elegant methods of solution are also invited. Proposals should be 
accompanied by solutions i f  available and by any information that will assist 
the editor. An asterisk (*) preceding a problem number indicates that the 
proposer did not submit a solution. 

All communications should be addressed to C. W. Dodge, 5752 
Neville/Math, University of Maine, Orono, ME 04469-5752. E-mail: 
dodge@eauss. umemat.maine. edu. Please submit each proposal and solution 
preferably typed or clearly written on a separate sheet (one side only) 
properly identified with name and address. Solutions to problems in this 
issue should be mailed by December 1,  19%. 

Problems for Solution 

875. Proposed by Howe Ward Johnson, Iceboro, Maine. 
A certain restaurant chain used to advertise "28 flavors" of ice cream. 

In remembrance of many pleasant stops there, this problem is proposed. 
Replace each letter by a digit to reconstruct this base ten equation: 

( ICU + 28 = ICONE. 

876. Proposed by Peter A. Lindstrom, Irving, Texas. 
Consider the portion of a typical calculator keyboard shown on the next 

page: 
a) Define a small square number to be a four-digit number formed by 

pressing in cyclic order four keys that form a small square, e.g. 1254 or 
8569. Show that each small square number is divisible by 1 1 .  

b) Define a large square number to be a four-digit number formed by 
pressing in cyclic order the four keys that form the vertices of the large 
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square, e.g. 9713 or 3179. Show that each large square number is divisible 
by 11. 

c) Define a diamond number to be a four-digit number formed by 
pressing in cyclic order the four keys that form a diamond, e.g. 6842 or 
2486. Show that each diamond number is divisible by 22. 

d) Define a big square number to be an eight-digit number formed by 
pressing in cyclic order the eight keys that form the vertices and sides of the 
large square, e.g. 98741236 or 14789632. Show that each big square 
number is divisible by 11 and is divisible by neither 3 nor 5. 

e) Define a rectangular number to be a six-digit number formed by 
pressing in cyclic order six keys that form the vertices and sides of a 
rectangle, e.g. 987456 or 478521. Show that each rectangular number is 
divisible by 11 1. 

f) Define a double triangle number to be a six-digit number formed by 
pressing in any order the six keys that form the vertices of two right 
triangles with a common hypotenuse, e.g. 958956 or 421245. Show that 
each double triangle number is divisible by 3. 

877. Proposed by the late John M. Howell, Littlerock, California. 
For given constants a, b ,  c, d,  let = a,  a,  = b,  and, for n > 1 ,  let 

an = can-1 + 
a) Find an in terms of a, b ,  c,  and d. 
b) Find limn+- (an / an- ,) . 
c) Find integers a, by c,  d so that the limit of part (b) is 3. 

878. Proposed by Andrew Cusumano, Great Neck, New York. 
If x is a solution to the equation 2 - ax + 1 = 0, where a is an 

integer greater than 2, then show that x' can be written in the form p + 
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q^f7', where p,  q, and r are integers. 

879. Proposed by Barton L. Willis, University of Nebraska at Kearney, 
Kearney, Nebraska. 

A Mystery Space. Let S be a set of ordered pairs of elements. Define 
binary operations + , *, and Ã on S by 

(a, b) + (c, d) = (a + c, b + 4, (a, b)*(c, d) = (ac, ad + be), 

and 

(a, b) Ã (c, d) = (a Ã c, b Ã c - ad Ã 2).  

Although it might be fun to deduce properties of space S (commutativity, 
associativity, etc.), the problem is to find an application for S. 

880. Proposed by Rex H. Wu, Brooklyn, New York. 
Evaluate, where i = n, 

881. Proposed by Andrew Cusumano, Great Neck, New York. 
Let ABC be an equilateral triangle with center D. Let a be an arbitrary 

positive angle less than 30'. Let BD meet CA at F. Let (7 be that point on 
segment CD such that angle CBG = a, and let E be that point on FG such 
that angle FCE = a. Prove that DE is parallel to BC. 

882. Proposed by Rex Wu, Brooklyn, New York. 
Define, for any nonnegative integer m and any real number n, 

Find the values of 

883. Proposed by Sammy Yu (student), University of South Dakota, 
Vennillion, South Dakota. 

M. N. Khatri [Scripta Mathematics, 1955, vol. 21, p. 941 found &at 
from the identity T(4) + 719) = 7110), where T(n) = n(n + 1)/ 2 is the nth 
triangular number, Pythagorean triples (5, 12, 13) and (8, 15, 17) produce 
the more general formulas T(4 + 5k) + T(9 + 12k) = 7110 + 13k) and 714 
+ 8k) + T(9 + 15k) = 7T[10 + 17k), where k is a positive integer. Given 
p, q, r, so that T(p) + T(q) = T(r), find Pythagorean triples (a, b, c) so that 
a2 + b2 = 2 and T(p + ak) + T(q + bk) = T(r + ck) for any positive 
integer k. 

884. Proposed by Seema Chauhan, Lucknow, India. 
a) Held every day is a tutorial class in which 2m students are enrolled. 

Exactly m of these students, selected at random, attend class on any given 
day. If the class meets for exactly 2r days, find the probability that in the 
end each student has attended exactly r classes. 

*b) The class of part (a) contains m boys and m girls. For each p,  0 < 
p <> r, find the probability that each girl attends exactly r + p classes and 
each boy attends just r - p classes. 

885. Proposed by Arthur Marshall, Madison, Wisconsin. 
Evaluate the sum 

886. Proposed by R. S. Luthar, University of Wisconsin Center, 
Janesville, Wisconsin. 

Find the general solution in integers to the equation 2 - 8y + 7 = 0. 

887. Proposed by J. S. Frame, Michigan State University, East 
Lansing, Michigan. 

The Fibonacci numbers Fn are defined by Fn = 0, Fl = 1, and Fi = 
Fk-, + Fk_2 for k > 1. Compute the following sums involving Fibonacci 
numbers: 
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Also find their limits S, and S2 as n -* a. Express the finite sums as rational 
numbers in lowest terms. Finally, simplify each of the following 
expressions: 

d =  - 1 - 1 and e =  - -. 
s;, s2, 

Solutions 

844. [Fall 1994, Spring 19951 Proposed by Bill Correll, Jr., student, 
Denison University, Granville, Ohio. 

If F, denotes the nth Fibonacci number (F, = F2 = 1 and F k 2  = 
Fk + Fk+ , for k a positive integer), evaluate 

I .  Solution by the Proposer. 
For 0 < \x\ < 1, recall that Â£", = -1 + 1/(1 - x). 

Differentiation k times yields 

from which we get that 

Let 4 = (1 + t/5")/2. Then 

since we have - 1 < - 1/24 < 0 < <A/2 < 1. 

II. Solution by Paul S. Bruekman, Edmonds, Washington. 
Recall the well-known "Binet formula" for the Fibonacci numbers, 

It is easy to verify that aB = -1, 2 - a = B2, and 2 - B = a2. Recall 
also that @ is zero if k < 0 or if n is a positive integer and k > n, that 
("I") ("("I") and that ("";") = (-1)"a. Now, fork = 0, 1, 2, 3 ,  .,., take 

Since 1 B/2 1 < 1 all \ < 1 ,  we obtain 

Editor's note-fie misprint in the original statement of the problem 
prompted the following two submissions. 

111. Comment by Bob Prielipp. University of Uri.vt~ori.vi~~, O.v/~ku+vh, 
Wisconsin. 
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We assume the proposer intended the following summation: 

IV. Comment by Paul S. Bruckmn, Edmonds, Washington. 
As it was stated originally, the statement made no sense. This solution 

is based on the assumption that the proposer intended the following 
summation: 

Letting a = (1 + v/5')/2 and 6 = (1 - v/5')/2, we have that 

Since 2a + 1 = a3 and 2B + 1 = B3, then 
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Also solved by Henry S. Lieberman and Bob Prielipp. 

849. [Spring 19951 Proposed by L A. Bohr, Great Works. Maine. 
Solve this base 8 addition alphametic: THIS + IS = WORK. 

Solution by Victor G. Feser, University of Mary, Bismarck, North 
Dakota. 

The unique solution is 1756 + 56 = 2034. 
Immediately we have H = 7, 0 = 0, W = T + 1, and I 2 4. There 

are six possible values for S; from each we get a value for K. This process 
eliminates S = 4, K = 0. For each of the remaining five pairs we choose 
all available values for I, and thus get R. Eliminating duplications of 
previous values, we are left with just four cases: (S, K, I, R) = (1, 2, 6, 4), 
(3, 6, 5, 2), (5, 2, 4, l), and (6, 4, 5, 3). The remaining two values are T 
and W. In only the one case (6, 4, 5, 3) can we have T + 1 = W, the case 
given above. 

Also solved by Charles Ashbacher, Adelicia Beckhama, Aaron Beeler, 
Laura Bolton, Scott H. Brown, Paul S. Bruckman, James Campbell, Sandra 
Rena Chandler, William Chau, Shaw Cunningham, Martin Davis, Mark 
Denton, Jack T. Dunn, Mark Eckstein, Mark Evans, Robert C. Gebhardt, 
Brandi Hamilton, Michael Hamilton, Lynette Harvey, Richard I. Hess, 
Jamie Kiner, Kee-Wai Lau, Carl Libis, Henry S. Lieberman, Peter A. 
Lindstrom, Yoshinobu Murayoshi, Chuck Pierce, Mike Pinter, Medley 
Raymond, H.-J. Seiffert, Carla Strassle, Kenneth M. Wilke, Rex H. Wu, 
and the Proposer. 

*850. [Spring 19951 Proposed by Bill Correll, Jr., student, Denison 
University, Granville. Ohio. 

Clearly the following integral evaluation is incorrect. Find the flaw. 
By letting u = -x  we get that 
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so that I = 274 + C' . (See Problem 828.). 

Solution by David Tascione and Christopher W. Murphy, students, St. 
Bonaventure University, St. Bonaventure, New York. 

Each step of the solution proves valid except for the final substitution 

These are not equivalent expressions for the indefinite integral. The initial 
integral should be described as 

whereas the latter integral is actually 

The correct final statement would then become 

Also solved by Charles Ashbacher, Paul S. Bruckman, James Campbell, 
Russell Euler, Mark Evans, Victor G. Feser, Robert C. Gebhardt, Richard 
I. Hess, Henry S. Lieberman, Peter A. Lindstrom, V. S. Manoranjan, 
Kandasamy Muthuvel, Mike Pinter, John F. Putz, H.-J. Seiffert, 
Selvaratnam Sridhanna, and Rex H. Wu. 

851. [Spring 19951 Proposed by Bill Correll, Jr., student, Denison 
University, Granville, Ohio. 

In triangle ABC let Cevian AD bisect side BC and let Cevians BE and 
BF trisect side CA. Let AD intersect BE at P and BF at R, and let CP meet 
BF at Q. See the figure. If the area of triangle ABC is 1, find the area of 
triangle PQR. 

I. Solution by William H. Peirce, Rangeley, Maine. 
This problem and Problem 846 in the Fall, 1994, issue are special cases 

,>-- ,. 
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of a more general problem: If 
ABC and PQR are two coplanar 
triangles with a known linear 
relationship between the vertices 
P, Q, R and the vertices A, B, 
C, find the ratio of the triangle 
areas. 

The solution to the general 
problem makes use of three 
lemmas, the first two of which 
are stated without proof. They 
apply equally well to rectangular coordinates in the Cartesian plane or to 
affixes in the complex plane. 

Lemma 1. Any point on the line through two distinct points can be 
expressed uniquely as a linear combination of the two points in which the 
coefficients add to 1. 

Thus, if A(a,, a;), B(bl, by), C(c,, c2), are Cartesian points with d y i n g  
on line AB, then there are unique real constants m and n such that m + n 
= 1, c, = ma, + nb,, and c2 = wia, + nb2. If a, b, c are the affixes of A, 
B, C in the complex plane, then c = ma + nb for the same m and n. In 
either case we will write C = mA + nB. 

Lemma 2. Any point in the plane of three non-collinear (and therefore 
distinct) points can be expressed uniquely as a linear combination of the 
three points, in which the three coefficients add to one. 

Lemma 3. If points P, Q, R are related to points A, B, C by 

where 

then the areas K(PQR) = Â H-K(ABQ, where H is the 3 x 3 determinant of 
the coefficients 
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The plus sign is used if the two triangles have the same clockwise or 
counterclockwise orientation, the minus sign if they are opposite. 

To establish Lemma 3, recall that the area of triangle ABC is given by 
either of these two determinant formulas, the former for rectangular 
coordinates, the latter for complex coordinates: 

using whichever sign makes the value nonnegative. It is easy to check that 
the product of determinant H by either of these two determinants yields the 
corresponding area determinant for triangle PQR. Since the determinant of 
a product equals the product of the determinants, Lemma 3 is established. 

Problems such as 851 and 846 are solved by finding the determinant 
whose rows are the coefficients of P, Q, and R when each is written as a 
linear combination of A, B, and C. Problem 851 is now solved by using the 
defining intersections to determine these coefficients. 

Since D is the midpoint of BC, then D = 512 + Cl2. Likewise E = 
2A13 + Cl3 and F = A13 + 2Cl3. For some X, 

Also, for some p, 

The coefficients of A, B, and C in each expression for P add to 1. Now the 
uniqueness property of Lemma 2 allows us to equate like coefficients to get 
three equations in A and p: 

which are consistent and have the unique solution X = 112 and p = 114. 
Using these values in either expression gives 
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Point Q lies on BF and CP and point R is on BF and AD. By the method 
of the preceding paragraph we obtain 

2 1 4  1 2 2  Q = -A + -B + -C and R = A + -B + -C. 
7 7 7  5 5 5  

The determinant of Lemma 3 is now readily calculated. We have 

Since K(ABQ = 1, then K(PQR) = 91140. 

XI. Solution by Jianming Wu, student. Denison University, Granville, 
Ohio. 

Draw segment DF to intersect PC at J. Since EF = FC and BD = DC, 
then FD is parallel to EB and FD = EBl2. Also AP = PD because AE = 

EF, PE = DN2, and JF = PE/2. Let JF = x. Then PE = 2x, D F  = Ax, 
BE = &c, and BP = 6x. Since triangles BPQ and FJQ are similar as are 
triangles BPR and FDR, we have 

BR 3 = - and RQ = 6 ,  
RQ + QF 2 QF 

BR - 7 BR + RQ = 4BR - 6RQ, and - - -. 
RQ 3 

Since BD = DC, then K(ABD) = 112. Since AP = PD, then K(BPD) = 

K(ABD)l2 = 114. From PRIRD = 312 we get that 

Finally, BRIRQ = 713 gives us 
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Also solved by Miguel Amengual Covas, Paul S. Bruckman, William 
Chau, Mark Evans, Richard I. Hess, Henry S. Lieberman, Yoshinobu 
Murayoshi, William H. Peirce (second solution), Rex H. Wu, and the 
Proposer. 

852. [Spring 19951 Proposed by Rex H. Wu, Brooklyn, New York. 
Let E be a point inside square ABCD with BE = x, DE = y, and CE = 

Z. If 2 + y2 = 2z2, find the area of ABCD in terns of x, y, and z. 

I. Solution by Victor G. Feser, University of Mary, Bismarck, North 
Dakota. 

Let the square have sides of length 1. Drop perpendiculars from point 
E to F on BC and to G on CTÃˆ of lengths g and/, respectively, as shown in 
the accompanying figure. 

By the Pythagorean theorem we have 

y2 = f + (1 - g)2, 2 = g2 + (1 -n2, and z2 = f 2  + g2. 

Substitute these values into the equation 2 + y2 = 2z2 and simplify to get 
f + g = 1. It follows that BFE and DOE are both isosceles right triangles 
and thus D, E, and B are collinear, forming a diagonal of the square. Then 
by familiar formulas, the area of the square ABCD is (x + ~ 1 ~ 1 2 .  

II. Solution by the Proposer. 

Rotate triangle BCE 90' about point C so that BC coincides with DC 
and let E map to E'. Then ZECE' = 90Â and EE' = zv/2". In triangle 
EDE' we have 2 + f = 2z2, which implies that ZEDE' = We, so then 

quadrilateral CEDE' can be inscribed in a circle (with center at the midpoint 
of EE'). Now we apply Ptolemy's theorem to get 

so that 

111. Comment by William H. Peirce, Rangeley, Maine. 
The locus of E is the diagonal BD of the square, so that x + y = BD. 

The theorem can be generalized to allow E to lie outside or on the square, 
with the understanding that the numerically smaller of x and y will be 
replaced by its negative. Then E still lies on the diagonal (extended) and the 
area of the square is still (x + ~ ) ~ 1 2  = z2 + xy. Of course, in this case, x y  
5 0. 

Also solved by Scott H. Brown, Paul S. Bruckman, William Chau, Mark 
Evans, Robert C .  Gebhardt, Richard I. Hess, Jamshid Kholdi, Henry S 
Lieberman, David E. Manes, V. S. Manoranjan, Can A. Minh, Kandasamy 
Muthuvel, William H. Peirce (two solutions), H.-J. Seiffert, George 
Tsapakidis, Kenneth M. Wilke and Sammy and Jimmy Wu. 

853. [Spring 19951 Proposed by Charles Ashbacher, Cedar Rapids, 
Iowa. 

This problem was submitted by Vietnam for the 1990 International 
Mathematical Olympiad and has appeared in booklets overseas. If real 
numbers x 2 y 2 z > 0, then prove that 



I. Solution by Henry S. Lieberman, Waban, Massachusetts. 
By using the A.M.4.M. inequality, we obtain that 

Y Z X  + - + - 2 3 ,  
z .x Y 

from which we get 

Denote by Q the left side minus the right side of the desired inequality. 
Then 

and Q 2 0 if Q - P 2 0. We establish this latter inequality thus: 

- - (x - ̂ )@ - Â¥^)[(x - z2) + rt̂  - y)] * 0. 
xz 

II. Solution and generalization by Murray S. Klamkin, University of 
Alberta, Edmonton, Alberta, Canuda. 

Let (x, y, z) = (llc, llb, lla), so that we want to prove equivalently 
that 

where a 2 b 2 c > 0. More generally, we show that if a, S a, 2 - - -  2 
a, > 0 and m 2 n S 0, then 

(2) S(m, n) 2 S(m, m - 1) 

where 

Since it is known [2] that S(m, n) 2 S(m, -n), we have by Cauchy's 
inequality that 

For the special case r = 3, m = 2, n = 1, we get inequality (1). 
By Holder's inequality we get 

This latter inequality allows us to interpolate the inequality S(m, n) S S(m, 
O), i.e., in terms of other exponents: 

Ed'''-'a, 2 E v f l j  2 2 Ma?, 
where the sums are cyclic over the indices 1, 2, ..., r. 

Also solved by Miguel Amengual Covas, Paul S. Bruckman, J. S. 
Frame, Richard I. Hess, Joe Howard, Kee-Wai Lau, David E. Manes, 
Yoshinobu Murayoshi, Kandasamy Muthuvel, H.-J. Seiffert, George 
Tsapakidis, J. Ernest Wilkins, Jr., Rex H. Wu, and the Proposer. 
Amengual Covas found the problem in references 1 and 3. and Howard also 
supplied reference 1. 

References 

1. Crux Mathernaticorum, 20(1994)43-44, Problem 6. 
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Schools, Hanoi, February, 1991. 
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PROBLEMS AND SOLUTIONS 

854. [Spring 19951 Proposed by Jayanthi Ganapathy, University of 
Wisconsin at Oshkosh, Oshkosh, Wisconsin. 

Let a and b be two nonzero real numbers such that 

Find the values of the expressions ( a 2  + b 2) la2 and ( a 2  - b ̂  ) / a h  . 

Solution by Can Anh Minh, student, University of California, Berkeley, 
California. 

Substitute b = fa, so that t = bla. The given equation reduces to 

and 

51s - 3 t  + 5r' - 3 3  + 5t - 3  = 0, 

which factors easily to yield 

Since the latter factor has no real roots, we must have t = 315. Hence 

a 2 + b 2  
= l + t 2  = 

34 - and a 2  - b2 - 1 16 - - - t = - .  
b 25 ab t 15 

Also solved by Anurag Agarwal, Miguel Amengual Covas, Seung-Jin 
Bang, Scott H. Brown, Paul S. Bruckman, James Campbell, fci Ira Rena 
Chandler, William Chau, Russell Euler, George P. Evanovich, M t k Evans, 
Victor G. Feser, Robert C. Gebhardt, Richard I. Hess, Joe Howard, 
Jamshid Kholdi, Murray S. Klamkin, Kee-Wai Lau, Carl Libis, Henry S. 
Lieberman, Peter A. findstrom, David E. Manes, Kandasamy Muthuvel, 
Yoshinobu Murayoshi, William H. Peir-x-, Bob Prielipp, H.-J. Seiffert, 
Selvaratnam Sridharma, Kenneth M. W.it.c, Krx H. Wu, and the Proposer. 

855. [Spring 19951 Proposed by the late Florentin Smarandache, 
Phoenix, Arizona. 

Prove that a square matrix of integers, having in each row and in each 
column a unique element not divisible by a given prime p ,  is nonsingular. 

Solution by H. -J, Setflirt, Berlin, Germany. 
Let A = (a,-), i, j = 1, 2, ..., n, be a square matrix having the 

described properties. Then there exists one and only one permutation IT e S,, 
such that p / air,n for all i e { I ,  2, ..., n]. Since p is a prime, then p / 
q., air(n. For all other permutations a e S,,, a # IT, we have that p 1 
Q = u~,,(~. Since 

a # *  

we see that det(A) is an integer of the form det(A) = r + ps, where r, s e 
Z and p / r. Hence r + ps cannot be 0, so det(A) # 0 and A is 
nonsingular. 

Also solved by Paul S. Bruckman, James Campbell, Richard I. Hess, 
Murray S. Klamkin, Henry S. Liebennan, Can A. Minh, Skidmore College 
Problem Group, and the Proposer. 

856. [Spring 19951 Proposed by Paul S. Bruckman, Edmonds, 
Washington. 

Starting with a regular n-gon whose side is of unit length, snip off 
congruent isosceles triangles from each of its vertices, resulting in a regular 
2n-gon. Repeat the process indefinitely. Find the ratio of the area of the 
limiting circle to that of the original n-gon. 

Solution by H. -J. Seiffert, Berlin, Germany. 
It is easily seen that all the regular polygons obtained by the described 

process have the same inradius r as the original n-gon. The area of the 
original n-gon is S = mil and of the incircle is C = d, where we have 
tan (uln) = ll(2r). Since the incircle is the limiting circle, we have 

Also solved by James Campbell, Mark Evans, Richard I. Hess, Murray 
S. Hamkin, Henry S. Lieberman, William H. Peirce, Skidmore College A 

Problem Group, Rex H. Wu, and the Proposer. 



857. [Spring 19951 Proposed by Andrew Cusumano, Great Neck, New 
York 

Find all prime numbers whose reciprocals have repetends of exactly 
seven decimal places. 

I. Solution by J. Ernest Wilkins, Jr., Clark Atlanta University, Atlanta, 
Georgia. 

If p is such a prime number, then llp can be written as a fraction whose 
numerator is the seven-digit repetend and whose denominator is 9999999. 
Hence p is a factor of 9999999 = 32-239.4649, so p is 3, 239, or 4649. 
Clearly, p = 3 does not satisfy the conditions of the problem, but p = 239 
and p = 4649 do; the repetends for 11239 and for 114649 are 0048141 and 
000215 1, respectively. 

11. Solution by Bob Prielipp, University of Wisconsin-Oshkosh, 
Oshkosh, Wisconsin. 

Theorem 4 on pages 123-124 of [I] states that if gcd(n, 10) -= 1, then 
the period of lln is r, where r is the smallest positive integer such that 10'" 
= 1 (mod n). Now lo7 ss 1 (mod p) if and only if p divides lo7 - 1 = 
9999999 = 32-239-4649. Now 7 is the smallest positive integral exponent 
r such that 10' = 1 (mod p) for p = 239 and for p = 4649, but 10' = 1 
(mod 3). Thus 239 and 4649 are the desired primes. 

Also solved by Paul S. Bruckman, Russell Euler, Robert C. Gebhardt, 
Richard I. Hess , Jamshid Kholdi , Henry S . Lieberman, Peter A. Lindstrom, 
David E. Manes, Thomas E. Moore, H.-J. Seiffert, Kenneth M. Wilke, Rex 
H. Wu, Sammy and Jimmy Wu, and the Proposer. 

Reference 

1. U. Dudley, Elementary Number Theory, 2nd ed, W. H. Freeman and 
Company, San Francisco, 1978. 

858. [Spring 19951 Proposed by David Zny, Baltimore, Maryland. 
It is known that the rational numbers in the interval [O, 11 can be 

enumerated. Let {rk}?_. be such an enumeration and pick e such that 

0 < e < 1. Take an interval Zk of length ~ 2 " ~  centered on each rk. Then 
the sum of all these interval lengths ET_l rk = e < 1. Show how 
a real number in 10, 11 and not contained in any of the intervals Zk. 

Solution by Henry S. Lieberman, Waban, Massachusetts. 
The Cantor diagonal method works here. Consider a denumerable listing 

of the nonterminating decimal expansions of the rationals {rk} = in [O, 11. 
Without loss of generality we assume that the tenths digit in each of rl 
through r4 is zero. Construct a real number s as follows. Let the tenths digit 
of s be 7. Then 1 s - rl 1 a: 0.6 > 2-' > 2-'e. For each rk, k = 1, 2, 
3, 4, we have 1 s - rk 1 2 0.6 > 2^'c, so s lies outside intervals I,, Z2, 
I,, and Z4. For each k e N, k > 1, let the Ath entry of s be the smallest of 3, 
4 ,5,6,  and 7 that is not equal to the Ath entry of r,,, for m = 4k + 1, 4k + 
2, 4k + 3, and 4k + 4. Then, assuming the worst possible case for the (k 
+ 1)st decimal place, 1 s - rwl 1 S 0.3-lo-* > 0.3-2-* > 2-"-2 > 
2-"-'e, so s lies outside the interval Similarly, it lies outside I*+', 

and ZU+,. Hence s is a decimal in (0,l) and lies outside all the Zk. 

Also solved by Paul S. Bruckman, Selvaratnam Sridharma, Rex H. Wu, 
and the Proposer. 

859. [Spring 19951 Proposed by J. S. Frame, Michigan State 
University, East Lansing, Michigan. 

Sum in closed form the series - 1 S = -(-Y2r, where t) = 
m(m - l)(m - 2)-(m - n + 1) 

n + 1 n ! 

I. Solution by Paul S. Bruckman, Ednwnds, Washington. 
We first show that S is a well defined constant, i.e. the series converges 

(absolutely). From Stirling's formula, 

Note that a 
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Then, for some constant C we have 
00 

which proves the series converges. 
Using Pochhammer's symbol (x). = x(x + l)(x + 2) (x + n - I), we 

next express S in the form 

Therefore, S may be expressed in terms of the hypergeometric function F 
as 

S = -1 + F(lh, lh; 2; 1). 

It is well known, where F is the gamma function, that 

provided that Re(c - a - b) > 0 and c is not a nonnegative integer. Thus 

S = -1 + F(lh, lh; 2; 1) = -1 + r(2) r(1) 
T\3/2) 

since F(1) = F(2) = 1 and F(3/2) = 6 1 2 .  

11. Solution by the Proposer. 
We have that 

Pi MU EPSILON JOURNAL 

e set x = (sin2 ^/(sin2 t), so G!X = 2 sin t$ cos 4 dt$lsin2 0, and we get 

'I2 
= 1 sin-20 1 - cost - 

V 0 .- -1 2 

Also solved by Murray S. Klamkin, Carl Libis, and H.-J. Seiffert. 

860. [Spring 19951 Proposed by Richard I. Hess, Rancho Palos Verdes, 
lifornia. 
This problem originally appeared in a column by the Japanese problems 

umnist Nob Yoshigahara. Find the minimal positive integer n so that 
+ 1 circles of unit diameter can be packed inside a 2 by n rectangle. 

Solution by the Proposer and the Problems Editor. 
The "usual" packing of pairs of circles side-by-side will allow only 2n 

;les in a 2 by n rectangle, so we must use a different packing. Let us 
luen equilateral triangles of 3 circles each, and then pack them into the 
by n rectangle, as shown in the figure. 

Clearly we lose at the start, since a 2 by 2 rectangle then holds just 3 
;les, circles (F), (D), and (Q). Since the height 9D is only 6 1 2 ,  there 
i slight gain in space when the next of circ-es iq "ed in. S 

= 1 and CE = 1 - 6 1 2 ,  then CD =/i/3" - 0.9909847666 
the Pythagorean theorem. Hence, although 3 circles fit in a rectangle of 
gth 2, we. have 4 circles fit in one of length 1.5 + CD = 2.49, 5 circles 



fit in length 2 + CD Ã 2.99, 6 in length 2.5 + CD Ã 3.49. In general, 3n 
- 2 circles fit in length (n - 1)CD + (n + 1)/2, 3n - 1 fit in (n - 1)CD 
+ (n + 2)12, and 3n circles fit in length (n - 1)CD + (n + 3)/2. Since we 
want the number of circles to be twice the length plus one, we examine the 
equation 

3n - 2 = 2[(n - 1)CD + (n + 1)/2] + 1 

and solve it for n to get 

Using the second general case with n = 112, we find that 3n - 1 = 335 
circles fit in length (n - 1)CD + (n + 2)/2 = 166.999 < 167. 
Furthermore, n = 11 1 produces 331 circles in length 165.008 > 165, 
which does not save enough length. In the figure above notice that if we cut 
off the left 1 unit, we remove space for exactly the first two circles. Doing 
so, we find that the smallest solution to the problem is 166 units of length 
enclosing 333 circles. 

Are there other configurations that might produce smaller solutions? 
One might try packing "rhombi" of four circles "glued" together, as shown 
in the figure below. 

A derivation similar to that above shows the distance 

Here the smallest solution is 238 units of length for 477 circles. Thus the 
first solution is more efficient. 

Also solved by Rex H. Wu. One incorrect soiutwn was received. 

861. [Spring 19951 Proposed by J. S. Frame, Michigan State 
'niversity, East Lansing, Michigan. 

Evaluate in closed form the sum 

Solution by Paul S. Bruckman. Edmonds, Washington. 
Let 

hen 

From (1) we see that the expansion of f i x )  contains no terms for powers 
' x  that are less than n. Therefore, S(n, k) = 0 if 0 < k < n. Thus 

n the other hand, 



By comparison of the coefficients of this last expression and (2), we obtain 

S(n, k) = (-I)Â [ ] 22" 
if n < , k : S 2 n  

k-n 
0 otherwise. 

Also solved by Murray S. Klamkin, H.-J. Seiffert, and the Proposer. 
Klamkin found the inequality in H. W. Gould, Combinatorial Identities, 
Morgantown Printing and Binding Co., Morgantown, 1972, p. 29, #364. 

Trisecting the Paper Better 

Professor MONTE ZERGER of Adams State College (Alamosa, Colorado), 
referring to the method of dividing a sheet of paper into vertical thirds using 
neither ruler, straightedge, nor compass in the spring 1995 issue (10 (1994-99) 
#2, pages 128-130) says that he has found a method that is just as simple and 

(-Ilk+1 Norman Schaumberger shows that In 2 = 9 - by a new 
k = l  k 

method: 

Now let n go to infinity. 

Figure 1 Figure 2 

does not depend on the length of the paper. Here is how to do it. 
"(I) Create a square on the upper portion of the sheet by bringing the upper 

and left edges of the sheet into coincidence. Label the vertices of the square 
ABCD as shown in Figure 1, and unfold.. 

"(2) Locate E, the midpoint of z, by foldingD to coincide with m. 
Unfold. See Figure 2. 

Figure 3 Figure 4 

340 



'(3) Fold to bring D into coincidence with E. Then T, the intersection point 
of the left and top edges of the paper, is the desired point. See Figure 3. 

"To prove this, let BE = EC = x, GC = y, and TB = z. Then DG = 2 x - y. 
Since the folding brought into coincidence with my and LADC into 
coincidence with Z TEG, we know GE = 2x - y and Z TEG is a right angle. See 
Figure 4. 

"From AGEC , x2 + y 2  = (2x - y)' which leads to y = 3x14. 
"Since AGEC - AETB, we have xly = Z/X or x2 = yz = 3x214. Thus 

z = 4x13 = (213)AB so that AT is (1 13)AB. 
"When can â€˜n-settin a paper be accomplished? For n = 2* it is trivial, and 

since we can 3-sect we can certainly 3 2*-sect, by repeatedly bisecting our 3- 
sected result. What about 5-secting? There is a simple way. 

Figure 5 Figure 6 

"(1) Again create a square on the upper portion of the sheet by bringing the 
upper and left edges of die sheet into coincidence. Label the vertices of the square 
ABCD as shown before in Figure 1. 

"(2) This time fold the sheet in 
half vertically, bringing into A 
coincidence with AD. This will 
locate the midpoint E of B. Unfold. 
See Figure 5. 

"(3) Now fold B down in such a 
way that the resulting crease passes 
through both C and E. Let the point D 

where B touches the paper be F. Then 
die distance from F to the left edge of 

Figure 7 

paper is 115 of the width. See Figure 6. 
'To prove this, label as in Figure 7. Since AÂ£F is similar to ATCH, we can 

so y = 4x15, which means that the 
specified distance is x l5  . 

'This leaves 7 + d g  a paper as the 
first pesky case. At least, I don't know a 
relatively simple way. Do any readers?" 

After that, the problem of 11-secting 
arises and, after that is solved, the A 

problem of what use would be an 8 112- 
by-1 1 sheet of paper with eleven vertical 
columns, each .77272727... inches in 
width. 

Here is a different way of trisecting 
the paper, fiom Professor Emil Slowinski 
of the chemistry department of Macalester 
College. Fold the paper in half and in 
half again so as to make four strips. Take 
the rectangle formed by three of them and 
fold so as to get die diagonal, as in Figure 
8. It intersects the original folds at points 
P and Q. These points do the job. 

There is a similar mathod for 

Figure 8 

Figure 9 

accomplishing the same task (see Figure A 

9). Fold the paper in half and fold to get 
the main diagonal D. Construct the 
diagonal of one of the half-sheets, C. The 
intersection of D and C at P does the 
trisection. 

Tbe alert reader might have asked the L 
question, "But how do you fold those B 

diagonals?" Stan Wagon, of Macalester Figure 10 



College, shows how. Given a rectangle-^iPCDas.in-Figure -10,-fold sojhat C 
touches A. Thdn, without unfolding, fold so Aat B touches IX. Unfold, and there 
you have the diagonal from A to C.  

When Augustus De Morgan asked how to fold paper into thirds in 1872 he 
got, as far as I know, no satisfactory answer. Look at,the progress since then! 
Readers of the Journal are capable of feats that were beyond the capacity of 
people in De Morgan's time. ... 

. . 

QIU <io .- us -Â i f  1d'JJe * 

An Application ,of War tohatkemdi 

The applications usually go 
the other way, but not this time. 

Fermat (1 60 1-1 665) asked, 
probably out of nothing more 
than curiosity, for the location of 
the point P in a triangle ABC so 
that the sum of the distances 
from P to the verices is as small 
as possible. The answer is that 
it is where the three angles 
around P are all equal to 120Â . 

Here is a very clever proof 
of that, due to J. E. Hoffiann,. 
that can be found on pages 21 
and 22 of H. S. M. Coxeter's 
Introduction to Geometry 
(Wiley, New York, second 
edition 1969). 

In Figure 2, rotate the 
triangle APB through 60Â 
around B to get triangle CfPf B .  
Then triangles A BC' and 
I'BP' are equilateral triangles. 
(The figure is not very accurate, 
but pictures are for illustration 

n ..ha. c .. 
. -.- ...................... 

Figure 2. Finding the Fcniiat point. 

ly.) Thus AP + BP +CP = C 'P ' + P 'P + PC. The right-hand sum will be . . . . .  
nimal when the three segments form a straight line. When thatis the cas 

a h .  .. 
fBPC = 180Â - LBPP' = 120' 

i ,v .-" 

ZAPB = ZC'P'B = 180' - APP'B = 120'. 

us L CPA is 120 O too: ' '"*" 
- 7  ari' 

Mr. Woodson W. Baldwin,, Jr., ce, California, independently 
iscovered Fermat's r e ~ ~ a n d l $ ~ v e d i t  &'well. The rediscovery, a good 

oo3'y istration of how theorems Zin come into being, came about because of the 
sian Gulf war. During the war, Mr. Baldwin was employed by a corporation 
t provided the U. S. Air Force with information and advice on satellites and 
isles. Mr. Baldwin writes ,. 

d, ?. .-'.'Â¥"Â¥ , I 
''During the Gulf war theG\sere many Scud missiles being launched, which 

iches were observed by Aq Force geosynchr~?ous satellites. For every Scud 
" V '  * l^n* .-;.'.,,. t". , 

isile launch, three different satellite/ground-station combinations produced 
;e different estimates of the geographic location of the Scud launch point. J 
gjhed the three points equally, determined their center of *gravity, measured the .'J.. ,.Â fff .-.'*b ;;,.. *' 3 

1 of die radii from the center bf giavity t 6 h e  && fichts, calculated the mean 
ius, Mid mdtiplied i t  by a constant to yield an estimate of the standard 

:1 . -- - - . .c 

iation of a circular-normal distobdff6n. ..- . - 
''0; a few Such. ScM~lailIlch-wcasioils we woe supplied a k a  a*/ourth 
mate of the Scud launch point, which was provided by some undisclosed 
ffifeetttse sources, which'p6kt I ge6&iiy igabred: Howevkr,"&it bfcuri-osity, 
onxiom, I did occasionally measure the sum of the radii fromthe intelligence 
it to the three &l~â‚¬&-b^iedr~oint with which the former had no logical 
iection, of course, and this measurement was, as I expected, us&lly greater 
the radial sum from the satellite-based center of gravity. However, 6n one 

i-shaking day, the intelligence-based radial sum was smaller than {He regtiJar' 
a1 sum! HOW^B~R~W* 1asked myself. The center. S f e f t a t l s  an 
%ett' estimate-; oFth+WfiPleriter of the disffibution,"~ . f ~ f ~ I I ^ ( f t ^ s e ~ f  
suring fiom die center (or its estimate) ought to minimize su&li-rffesiSkffifi^Is& 
iigfenI' ch&M the'fifiotes: antTte^hfeciied. Am figifl-a ~ ~ ~ t ^ t h i s  
raised the more fundamental question: given three points, if the c6?8@f'Qf* 
ty is noti&$ p&&+X& fiiu&rti& aie~dial'ifim b't~~*tfa^ 
IS the $in~i+hich~oes sfo?!"*" & "'1 T?I'~ 1 ' ~  ? WILF.gV.: C ii 

'I set up a hypothetical triangle, ' and"kt& d^^tepd&pt^b^ftigbM~f&i 



fast radial sum from any point Then I combed the area of the triangle, using finer 
and finer spacings, until I found the minimum of all minima, good to about eight 
significant figures. The final measuring point I knew, the three final radii I knew. 
I calculated the three central angles. They were exactly 120' each! I was 
astounded. ... 

"The above exercises provided the experimental proof of  the location of the 
point which minimim the radial sum to the v d c a  of a triangle. The 
mathematical proof is furnished in the attached document" 

Mr. Woodson's proof is longer than the proof given above, but no less 
correct. 

The 1995 National Pi Mu Epsilon Meeting 

The meeting took place in conjunction with the summer meeting of the 
Mathematical Association of America and the American Mathematical Society in 
Burlington, Vermont, August 5-7,1995. 

There were twenty-two student papers delivered in four sessions: 

Charles Sanders Peirce, or the consequences of a hypothesis, by Ivana 
Metodieva Alexandrova (Funnan University) 

Iteration of the greatest integer function, by Jason Calmes (Southeastern 
Louisiana University) 

Applications of the Polya-Bumside theorem to teaching, toys and jewelry, by 
Ashley Carter (University of Wisconsin-Parkside) 

Mastermind: breaking the codes, by Shawn Chiappetta and Steven Gannaway 
(Carthage College) 

Check digits and license numbers, by Alayne Clare (Youngstown State 
University) 

The triangle peg game, by Scott E. Clark (Youngstown State University) 
Pursuit curves: the mathematics of coyotes, roadrunners, and ants, by Philip 

J. Darcy (St. Bonaventure University) 
Hamiltonian properties of Petersenlike graphs, by Dan Diminnie (Allegheny 

College) 
Is there (ever) an end?, by Jacqueline Goss (St. Norbert College) 
Pertubation expansion for hermitian gaussian randon matrices, by Nancy 

Heinschel (University of California-Davis) 

Groebner bases, by Dennis Keeler (Miami University) 
Commutativity of matrices, by Gee Yoke Lan (Wichita State University) 
The secret behind the Keebler cards, by Jason Martin (Youngstown State 

aiversity) 
Subspaces of the Sorgenfiey line, by Justin Moore (Miami University) 
Derivative rings, by Dan Nordman (St John's University) 
The seven guests: no longer a guess!, by Dennis Schmidt (St. Norbert 

)liege) 
Indiana Jones and the quest for anticonnected digraphs, by Nick Sousanis 

iestern Michigan University) 
Images and inverse images of iterates of the line graph operator, by Donna R. 

void (Hendrix College) 
Solving general nonlinear multivariate polynomial systems using algebraic 

geometry, by Wayne Tarrant (Wake Forest University) 
Special relativity: the Lorentz transformation and the hyperbolic geometry of 

spacetime, by Michael Theriot, Jr. (Louisana State University) 
A function and its "dual", by Richard Tuggle (St. Norbert College) 
Dirichlet's theorem and an improved lower bound for an L-function, by Sonny 

Vu (University of Illinois-Urbana-Champaign). 

Four prizes for papers of unusualk merit were awarded to Aron Atkins, 
Ashley Carter, Alayne Clare, and Scott Clark. 

The National Security Agency again awarded the Society a grant of $5000 for 
the support and encouragement of student speakers. 

The J. Sutherland Frame Lecture was delivered by Marjorie Senechal of Smith 
College, whose subject was "Tilings as diffraction gratings." 

Unparalleled Opportunity 

At the business meeting of the Society, the decision was made to raise the ' 
subscription price of the Journal. The price has been unchanged since 1980, 

the cost of living (which includes reading the Jouma1) was less than half of 
it is now. The new rates are $20 for two years and $40 for five years. 

However, present subscribers have the opportunity to extend their present' 
scriptions at the old rates through the end of the millennium. There will be no 

imilar opportunity for at least the next one thousand years. .-. - 
^ 
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To take advantage of this offer, calculate the number of copies of the Journal 
that will be issued between the time of the expiration of your subscription 
(indicated on your address label) and the fall 1999 issue. For example, if your 
address label contains an "F 96", the number of issues would be six (S 97, F 97, 
S 98, F 98, S 99, F 99). Then multiply that integer by two and send a check, 
marked "extension" (so as to avoid confusion), for that amount to the Journal's 
business manager, 

Robert S. Smith 
Depatrment of Mathematics and Statistics 
Miami University 
Oxford, Ohio 45056-1641 

Subscribers outside the United States should multiply the integer by three and 
proceed similarly. 

St. Norbert College 

Eleventh Annual 

PI MU EPSILON 

Regional Undergraduate Math Conference 

November 8-9, 1996 

Featured Speaker: Don Saari 

Northwestern University 

Sponsored by: St. Norbert College Chapter of DME 

and 
St. Norbert College SNA Math Club 

The conference will begin on Friday evening and continue through 
Saturday noon. Highlights of the conference will include sessions for 
student papers and two presentations by Professor Saari, one on Friday 
evening and one on Saturday morning. Anyone interested in 
undergraduate mathematics is welcome to attend. All students (who 
have not yet received a master's degree) are encouraged to present 
papers. The conference is free and open to the public. 

For information, contact: 

Rick Poss, St. Norbert College 
De Pere, WI 541 15 
(41 4) 337-31 98 
FAX: (41 4) 337-4098 



The shirts are white, ~ a n e s *  BEEFY-T*, pre-shrunk, 
1 %  cotton. The front of the shirt has a large Pi Mu 
Epsilon shield (in black), with the line "1914 - It  

below it. The back of the shirt has a I 1 I I  M El1 tiling in 
the PME colors of gold, lavender, and violet. This 
tiling of the plane was designed by Doris 
Schattschneider, on the occasion of PME1s 75th 
anniversary in 1989. The shirts are available in sizes 
large and X-large. The price is only $10 per shirt, 
which includes postage and handling. To obtain your 
shirt, send your check or money order, payable to Pi 
Mu Epsilon, to: 

Rick Poss 
Mathematics - Pi Mu Epsilon 
St. Norbert College 
100 Grant Street 
De Pere, WI 541 15 

SPEECHL SS IN SEATTLE? 

Don't be! 

resent a paper at the national Pi Mu Epsilon meeting at the 
University of Washington, in Seattle, WA, August 10-1 2, 
996. This meeting is being held in conjunction with the 
nnual MAA MathFest. Pi Mu Epsilon student speakers are 
ligible for free travel t o  the meeting! (See below for details.) 
my student member of Pi Mu  Epsilon not having received a 
naster's degree by May, 1996, is eligible t o  speak at the 

national meeting. 

Pi Mu Epsilon will provide travel support for student speakers at the 
national meeting. If a chapter is not represented by a student speaker, 
Pi Mu Epsilon will provide one-half support for a student delegate. Full 
support is defined to  be full round-trip air fare (including ground 
transportation) from the student's school or home to  Seattle, WA, up to  
$600. (Delegates will receive up to  $300.) A student who chooses to 
drive will receive 25 cents per mile for the round trip from school or 
home t o  Seattle, up  to  $600. (Delegates will receive 12% cents per 
mile, up to  $300.) 

If there is more than one speaker from a chapter, each of the additional 
speakers (up to  four) will be eligible for 20% of what the first speaker 
receives. For example, i f  the distance traveled(by car or van) is over 
2400 miles (round trip distance), a single speaker would receive $600, 
two  student speakers would receive $720 (to share in any way they 
wish), three speakers would share $840, four speakers would share 
$960, and five or more speakers from this single chapter would share 
$1080. 

For information on how to  apply to speak and to  receive travel funds, 
see your Pi Mu Epsilon Advisor 
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