





THEC. C. MACDUFFEE AWARD
FOR DISTINGUISHEDSERVICE

On August 7, 1995, at the annual meeting of Pi Mu Epsilonat Burlington,
Vermont, the C. C. MacDuffee Award for Distinguished Service was presented
to ProfessorEileen L. Poiani. Thetext of the citation, by Pi Mu Epsilon President
Robert C. Edinger, isasfollows:.

“It is with great appreciation and admiration that Pi Mu Epsilon presents
Eileen Poiani the C. C. MacDuffee Award for Distinguished Service. Dr. Poliani
hes served on the Pi Mu Epsilon Coundil for twenty-oneyears. After having been
eected for an unprecedentedfour consecutivethree-year terms as Councilor, she
was elected President-Elect in 1984. While serving as Pi Mu Epsilon’s first
woman president from 1987 to 1990, Dr. Poiani led the society through the
celebration of its 75th anniversary. As Pi Mu Epsilon's ambassador to other
organizationsshe was extraordinarily successful in securing externd fundingto
support thegods of the society. During her tenure on the Council she personally
installed over twenty chapters of Pi Mu Epsilon on college and university
campuses acrossthe United States.

""Eileen Poiani’s serviceto the mathematical community extendsfar beyond
Pi Mu Epsilon. Having beenon thefaculty of St. Peter's College since 1967, she
currently holdsthe rank of Professor of Mathematics and servesas Assistant to the
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Presidentfor Planning. She has been active in the Mathematical Association of
America, providingleadership on numerous committees and serving as Governor
of the New Jersey Section. 1n 1994 the Section honored her with its Award for
Digtinguished Teaching. She has a passionateinterest in promoting the status of
women and minorities in mathematics.

"' Designatedin honor of the seventh president of Pi Mu Epsilon, the C. C.
MacDuffee Award for Distinguished Service wasfirst awarded to J. Sutherland
Framein 1966. Subsequent recipientswere Richard V. Andree, John S. Gold,
FrancisRegan, J. C. Eaves, Houston Kames, Richard Good, and Milton D. Cox."

Professor Poiani isa graduatedf Douglass College, and earned her M. S. and
Ph. D. degreesin mathematicsat RutgersUniversity. Besides the items mentioned
in the citation, she has been a trustee of St. Peter's Preparatory School (Jersey
City, New Jersey) and of Rutgers, the State University of New Jersey. Shewasa
member for eight years, and Chair for five, of the United States Commission on
Mathematical | nstruction (a commission of the National Research Council of the
National Academy of Sciences). She has been a Visitng Lecturer for the
Mathematical Associationof Americaand was a Founding and National Director
of the Women and Mathematics Program of the Mathematical Association of
America. She hasbeen an evaduator for the Middle States Association of Colleges
and Schools. Sheis a member of Phi Beta Kappa, is listed in Who'sWho in
America, and has given two commencement addresses. She is an author and
speaker on higher education issues, strategic planning, mathematics, and
mathematicseducation.

THE RICHARD V. ANDREE AWARDS

TheRichard V. Andree Awards are given annudly to the authors of the three
papers written by students that have been judged by the officers and councillors
of B Mu Epsilonto bethe best that have appeared in the Pi Mu Epsilon Journal
in the past year.

Richard V. Andree was, until his death in 1987, Professor Emeritus of
Mathematics & the Universty of Oklahoma. He had served B Mu Epsilon long
and well in many capecities: as President, as Secretary-Treasurer,and as Editor
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of theJournal.

The winner of thefirst prizefor 1994 is Scott M. Wagner, for his paper
""Group generators and subgroup lattices™, thisJournal 10 (1994-99) #2, 106-
111.

3 nce therevies athree-way tiefor second place, therewill befour awardsthis
year. The winners are Kevin Dennis, for "Sierpinski n-gons” (with Steven
Schlicker), this Journal 10 (1994-99) #2, 81-89, Lars Serne for
“Automorphisms of Hasse subgroup diagramsfor cyclic groups”, thisJournal 10
(1994-99), #3, 215-220, and Julia Varbalow, for" An application of partitions
to thefactorizationof polynomiasover finitefields" (with David C. Véla), this
Journal 10 (1994-99) #3, 194-206.

At the times the papers were written, Messers. Wagner and Seme were
sudentsat Hendrix College, Mr. Dennisat Luther College, and Ms. Varbaow at
Skidmore College.

Theofficersand councillorsof the Society congratulate the winnerson their
achievementsand wish them well for their futures.

Referess

The job of referee is unpaid, anonymous, time-consuming, and can be
difficult. Thosethat takeit on do a serviceto the profession that deserves more
thanks than lists such as these provide. TheJournal is grateful for the help the
following people have given in the past two years.

Thomas Banchoff (Brown U.), James Becker (Purdue U.). Randall Campbell-
Wright (then of the U. of Tampa), Gary Chartrand (Western Michigan U.). John
Durbin (U. of Texas—Audtin), Joseph Gallian (U. of Minnesota—Duluth).
Jennifer Galovich (S. John's U.), Todd Hammond (Northcast Missouri State U.).
Richard Johnsonbaugh (DePaul U.)), Mak Kannowski (DecPauw U.). John
Kelingos (Vanderbilt U.), Gail Letzter (Virginia Polytechnic and State U.).
Frederick Leysicffer (Florida State U.), Robert Messcr (Albion Coll.). Gary
Mullen (Penn State U.), Alan Pankratz (DcPauw U.), Michad Plummer
(Vanderbilt U.). David Stonc (Georgia Southern U.). and Jingchen Tong (U. af
North Forida).



NEARNESS OF NORMALS

RickMohr
Rose-Hulman | nstitute of Technology

What i sthe distance between a given matrix and the set of norma matrices?

This question, given to me by Dr. Carl Cowen during my Research
Experiencefor Undergraduatesat Purdue University during the summer of 1994,
isnot new. And the underlying generd problem—to minimize something subject
toacondraint—is much older dill. Anyonefamiliar with calculus has surely seen
this idea, for example in Lagrange multipliers. Such problems arise in linear
algebraas well.

The quegtiont urns up not only asa problem in minimization, but also as part
of ared-world problem. Supposeyou area control theorist and want to study the
dability of afeedback system. One way to gain stability informationis to look at
the transferfunction matrix. However, analyzingit isnot easy unlessitis specia
in some way. For example, you might want the matrix to have perpendicular
elgenvectors, maki ng itanorma retrix  (Thisturns out to beexactly the property
youwant!) Sincethetrangfer function matrix probably doesn't have perpendicular
elgenvectors,you might gpproximateit with a norma matrix. The normal matrix
will then givean approximation to the stability of the original sysem. However,
to minimizetheerror using thisestimate, you shouldtry to find the closest normal
matrix. For moreinformationon control theory's relation to the problem, see[1].

Finding the closest norma matrix to a given matrix not only solves the
questionoriginaly posed but aso exhibitsa solution that achieves the minimum
distance. In addition, it solves the associated problem in control theory. The
closest norma matrix is the focus of this paper. While it does not contain a
generd solution for every n xn matrix, it does contain a solution for any redl
2x 2 marix. Resultsarealso givenfor the closest Hermitian, skew-Hermitian,
and unitary matrix toagiven nxn matrix. Someof these resultsarein [2].

A matrix N is normd if N*~N = NN*, where* denotes the conjugate
transpose. Although this paper deds only with real matrices, the * notationis
usad becausemany resultscarry over directly to complex matrices. Alternatively,
amatrix isnormd if and only if it has acompleteset of orthonormal eigenvectors
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(see[4, p. 311]). Asnoted before, it isthisproperty that nakes them so useful
in control theory.
To minimize the distance between matrices, we need some notion of what

"distance™nears. Thedistance between N x N matricesA and B will be defined

as thenormofd - B, |4 - Bl. wherethenorm of amatrixis definedas
IA]| = max {|4v]:vER" and |v| = 1}
with the norm of avector being theusual Euclidean norm. Although thereare

other definitionsfor the norm of amatrix, this definition, cdled the 2-norm, will
be the one used throughout this paper. (Another type of norm isthe Frobenius

norm, defined as
141 = VZstl |aijlz‘

The problem of finding dieclosest norma matrix using the Frobenius norm has
dready been solved [3].)
For example, suppose

p 2 -1 dB_’zo
"4 6) ™7 o)

Thenthedistancebetween A andB is
=4,
4 0

Why is the norm of the matrix equal to 4? Because the vector v = (0, 1)
maximizes ||(A - B)v|, andthisvalueis 4.

Although B is a normal matrix, it is not the closest normal matrix. For
instance, if & isthe normal matrix

2 15
N =
15 2

then thedistancebetweenA and N'is

e _“ 0 -2.5)
14 -N| = 25 0

Ths A is doser toNthanB. Wewill seelater why Nisanormal matrix closest
toA.
This definition of the norm has severa important properties. Thefast is

4 - Bj =

=2.5.
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unitary invariance. This means that if U, and U, are unitary matrices (U is
uitary if U* = U™), then
I1U, AU, = |U, Al = |AU,| = 4]l
Other propertiesinclude
l4£B| < 4] +Bl, 4" = |4, and |kA| = |k||A].
Another useful tool will be the singular vdue decomposition of a matrix.

Thissaysthat any matrix T can bewrittenas U SV*, where U and V areunitary
matricesand 2 is adiagona matrix of theform

whereo, 2 0, 2 - > 0, > 0 (see[4,p. 442]).

To begin, it is helpful to look at specia subclasses of norma matrices.
Findingthe dosest metrix of each specid classto our given matrix will not solve
the entire problem. However, thesematricescan provideinitia guessesfor the
closest norma matrix and in any case will provide bounds on just how far avay
the closest norma matrix is.

The first specid class are Hermitian matrices.  Hermitian matrices are

characterized by H = H*, and they are dearly norma. To find the closest
Hermitian matrix to a given matrix T, note that for any HermitianH

IT-T*=IT-H-T*+H*| =|(T-H)-(T-H)"|<2|T-H|.
Thuswe seethat

i7-my > 2T

2
and that equality isachievedif H = (T + T *)/2. Hence thereis no Hermitian
matrix dosertoT'than (T + 7)/2. Readersmight noticethat thisis andogous
to the fact that the closest real number to any complex number z is
Re(@) =(z+27)/2.

The next subclass of norma martices to be considered ar e skew-Hermitian
matrices. Thesematricesarecharacterizedby K = -K'*.  An argumentsimilar

to the one above will show that if K is any skew-Hermitian matrix, then for a
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given matrix T

i - ki 2 2L

2
withequdity for X = (T - T*)/2. Sonoskew-Hermitianmatrixiscloserto T
than (T - T *)/2. Theandogousresult isthat the closest imaginary number to
zis(z-2z%)/2.

Whilethis result is good, we can do better. Since adding a multipleof the
identity metrix toanorma matrixresults in another norma matrix, matricesof the
form K + al, where a is any red scdar, are aso normd and encompass all
skew-Hermitianmatrices. This alows us to broaden our possibilitiesfor the
closest normd matrix. Tofind the closest matrix of thistype, noticethat

IT - (K + D)) = I(T - al) - K.

Tominimizethisdistance, weneedtofindtheK closestto T - el. For agiven
vaueof a, weknow that K must equa

(T-aD)-(T-al)* T-el-T"+al _T-T°

2 2 2
Sincethisvauedf K isindependent of a, our problemisto nin mze
i & T T#
7= (K + ol = |- (£ - val)| | . - al]

Snce (T + T *)/2 isHemnitian, itcan bewrittenas U*DU whereU isaunitary
matrix and D isared diagond matrix. Thus

However, thediagond ettries arejust theegenvauesof (T + T *)/2. Therefore,
the closest matrix of type K + e toagiven matrix Tis

T'z" T~ all-|upu- a1 =D - ai].

T - 7‘a = }'max + Amm I
2 2
where A and A, are the largest and smallest eigenvaluesof (7 + T*)/2. -

Another subclass of norma matricesis the set of unitary matrices. Unitary
matricesare norma since
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U*U=U"'U=1=-U0U"=UU".

Tosolvetheproblem of finding the closest unitary matrix we must find a unitary
matrix,R, thatminimizes|| T - R|}. Takingthesngular vauedecompostionof
Ttobe UZV* [4], we have

I7 - Rl = [ULV* - R| = |U*(UZV" - R)V| = |Z - U"RV].

Because U*RYV isd S0 unitary, the problem reducesto finding the closest unitary
rrix toZ. Asitturnsout, thisisdieidentity matrix. (Theproof of thisisrather
longand will be omitted here)) Continuingwith our analogies, this corresponds
to thefact thet thedosest point on the unit circleto any positivered numberis 1

If U*RV =1, then R=UV" Thus, the closest unitary martix to an
abitray matrix Tis UV™*.

This result can be extended to find the closest scdlar multipleof a unitary
retrix, whichisasoanorma matrix. Let k beapostivered numberandR be
a unitary matrix. Wewant tofind vauesfor kand Rto minimize | T = kRj.
Proceedingas above, we seethat

IT - kR| = |UZV* - kR|| = |2 - kU*RV| = k|Z/k - U*RV)

= k|2’ - U*RV].
Since Z * hasthesamepropertiesas 2, diedosest unitary matrix to Z* isasothe
identity matrix. Once again, to mn mze the norm, weset U*RV equal to 1.
Thus, |3 - kU*RV| = |2 - kI||. Wesaw beforethat theclosest multipleof
| to a diagond matrix is obtained when K is the average of ther largest and
smdlest diagond entries. In thiscase, thelargest and smalest entriesare o, and
o, respectively. As aresult, thereis no multipleof aunitary matrix closerto T

than
ol . on

uve.

Wenow haveenoughinformationtofind thenorma matrix closesttoa 2 x 2
redl matrix. Itisnot hardt o show thatany2 x 2 real norma matrix must haveone

of theforms
ab a b
b ¢ or -b a)’

Note that thefirst form is a Hemitian matrix and the second f or mis a skew-
Hermitian matrix plus a multiple of the identity matrix. By determining the
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closestmatrixof eachof theseforms, we canfind the norma matrix closestt o our
given 2 x 2 matrix. So, if weare given

()]

then the closest Hennitian matrix will be

w ";y
g-I+tT" .
2 x+y
2

and the closest skew-Hermitian plus multipleof theidentity will be

T A +A

2 2
xX-y
0
= 2 + A’max )'mmI’
XY 0
2

whereA  and A, are thelargest and smallest eigenvauesof H. But the sum
of the dgenvauesof amatrix equalsthet race of the matrix, and sinceH hasonly
twoegenvalues, A, + Ay, =W + 2. Thus

w+z x-y

2 2
K+al =
X-F WrZ
2 2

So, t o find the normd matrix closest to T, wefirst evauate

W x+y w_+z x-y
2 2 2
and
X+V z ~X-y wtz
2 2 2
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- -

Next, we f| nd the distance between T and each of the mamces and choosethe
closer one. Notethat it is possiblethat the distance will be the 9me &in the
following example:

2 -1 2 15 -2.
T=[ , H= , K+al = 4 25,
4 6 15 6 25 4

distancetoclosestnormd = | T - H|| = |T - (K + al)| = 2.5.

Itisinteresting to note that for 2 x 2 matrices the sol ution to the closest normal
problem s the same when using the Frobenius norm, but thisis not the casefor
larger matrices.

At this point we haveonly candidatesfor the closest norma approximation
to an arbitrary matrix T. On the other hand, the previous results can tell us that
some matrices are never the closest norma to any matrix. Using the singular
va ue decomposition of 7, we have

0+

"UV’ “UEV" 17 %, ugv*

Ir-~

01+0n
=2 - 7 IN< |2 -0I|=|T-0].

This shows that the zero matrix (which is norma) is never the closest normal
matrix toa non-zero matrix T becausethereisa multipleof a unitary matrix that
isgloger. This,gan then be used to show that, if T is not a multipleof I, g/ is
never the closest normal matrix for any red scalar a. .

Although these results provide a good stepping- -stonefor further progeﬁ on
this problem, it isstill far from beingsolved. The 3 x 3 case could be solved if
onecouldfind theclosest matrix of theform alU + . Unlikethe 2 x 2 normal
martices, not all 3 x 3 normal matricesare Hermitian or sSkew-Hermitian plusa
multipleof theidentity. Thefollowingexampleshowswhy thisthird category is
needed:

S i

32 0 0 -1.0

100
N=|0 -3 2|=2[0 0 1|+¢3)lo10
2.0 -3 100 001

| N ; .y

WALANSRRER R Fa. 1l LY BT AR, B FE 7> 'mv R R

It seems as though looking at subclasses of normals may provide the key to
solvingthis problem entirely.

4
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Watch Those Unitd .

Oxley benked the twin turboprop-engingd Baffin CZ-4LO for abetter .view of
Isla Danzante, a steep-sided, 5-squaré-kilometer (3-square-mile) rock formation

that jutted 400 meters (1312 feet) abovethe sea of Cortez just south of the popular.

resort town of Loreto.—Clive Cussler, Inca G d. p. 318, Pocket Books, New
York, 1995 reprint of the 1994 edition published by Smon & Schuster. New
York. Contributed by Mark Kannowski.
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NEWPROOFSOF THE PYTHAGOREANTHEOREM

William Koerick and ChrisSoha
Universty of North Florida

The Pythagorean Theorem has beenknown for thousandsof years, and nany
proofshavebeen given. Herear e two more, t he first found byt he first author and
diesecond by the second, while studentsin Professor Jingeheng Tong's Mbdem
Geometry course.

Pace two congruent right
trianglesABC and BEFsuch that
AB1 BEasinFigurel Extend
EFand CA tomest at D. Draw
CF. | txiems] "Batn theeSiE-.at

EF dnce L BEG= £ ABC ad
L ABE =90°,

let AB=BE=a, AC=
BF =b,BC = EF=c¢c, BG=x,
AD =y, and DF =z, 9nce
triangles BEG and BEF ae Figurel
similar, we have x/a = b/c or x
=ab/c. SincetrianglesADF and BEF aresmilar, we have y/i(a+ b) =a/b and
zia+b)=clb. Hence y = a(a +b)/b and z=c(a + )b, Wecan cdculaethe
areaof A CDFintwoways

AF-CD (b +)a+b) . CGDF _( +nz
2 2 2 2

Therefore
(b +y)a +b) = (¢ +x)z,

(b + g.(a_bti).ka +8) = (c + 5})(2(3_;1)),

b +a%+ab = c?+ab,
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a’ +b? = ¢c?,
completingthe proof.

For the second proof, in
Figure 2 let ABC and DEF be
two congruent right triangles
suchthaBisonDFandBCis
perpendicularto £F. Draw FG
padld to BC to med the
extensonof AB at G.

Let BC = EF=a, AC = DE
=b,AB=DF=c, and BF = x.
BecausetrianglesBCFand DEF A
aesmilar,xla=¢/b and CF/x
=alc. Hencex = aclb and CF= Figure2
a%/b. Because triangles ABF
andABCaesmilar, AF/x = c/a, 0 A F = c¢%/b.Becausetriangles FGB and
DEFare similar, FG /x = db SOFG = ex/b = ac?/b?. Sncethearead the
triangleAFG isthesumd theareas of thetriangleABC and thetrapezoid BCFG,
we have

AF-FG/2 = ab/2 + CF-(a + FG)/2,
(c?/b)-(ac?/b?) = ab + (a®/b)(a + ac?/b?),

ac* = ab* + a*(ab? + ac?),
c* = b*+a’*? +a’c?,

(@ + b)) - b?) = a*@ + ¢,

c?-b2% = a?,

so
a’+b%=c2

Both authorsgraduated in August 7995. Bill Koerick isenjoyinghidirst
year d marriage as well as teaching and coaching. Chris Sehka is now a
teacher at Bishop Kenny High School.




FIBONACCI PARTIAL SUMS

ThomasKoshy
Framingham Sate College

It can sometimes happen that you solvea problem brilliantly whenitt ur ns out
that your brilliancewas not necessary. Thisnote gives an example.
Suppose that we arrange the Fibonacci numbers (F, = F, =1, F,,, =

F, +F,_,,n22)inatriangular aray andlet S, denotethe sum of the numbers
inthenth row, asin Figure 1. Wewould liketo deriveaformulafor §,.

Sn
1 1
1 2
3 5 8 16
13 21 34 55 123
89 144 233 377 810 1453
Figure1

It is not everyone who would observe that the sums are differences of
Fibonacci numbers

1=2-1, 3=5-2, 16=21-5, 123=144 - 21, 1453 =1597 - 144
Thatis,
Sy =F-F, $=F-F, $=FK-F, S,=F,-F,
and soon. It appearsthat
So =k, - Fy
where {4,} = {3, 5,8, 12,17, -},
Nor is it everyone who would observe thet 4, = ¢, + 2, where ¢, =
n(n +1)/2, thenth triangular number. Snced, - n= ¢,_, + 2, wehavea
formula

Sn = F;,,+2 - }Tt"_l*z‘
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This can be proved by induction.
Fortunately, the observations mede above are not necessty.  From the

formula

we get

the same formulaas before.

The reader may enjoy, using brilliance or some other method, getting a
formulafor the sum of the Fibonacci numbersin the nth row of the following
aray, wherethe nthrow has ¢, dements

1
1 2 3
5 8 13 21 34 55
89 144 233 377 610 987 1597 2584 4181 6765

After graduating from the University of Kerala, India, Thomas Koshy
received hisPh. D. degree from Boston Universityin 1971. Snce 1970 he has
been on the faculty at Framingham Sate College, Framingham, Massachusetts.

Do you know how to determine mathemétical talent by looking at someone's -
scap? Seeif the person's hair hes squareroots.




HoOw ECONOMISTSUSE MATHEMATICSTO SHOW WHY
SOME PEOPLE \WORK SO MUCHFORSOLITTLE

John E. Morrill
DePauw University

A standard problem in economic Price per unit
theory isto derivesupply and demand Supply
relationshipsin various markets for
goods and services. When rendered
geometrically, they usudly result in
thefamiliar supply and demand grgph
in Agure 1. In the market for a
particular consumption good or
product, the supplying agents are
firms and the demanding agents are
individual consumers. These roles  Figure 1. Supply and demand.
are reversed in the market for labor,
wherethe person isthesupplier and thefirm is the demander or buyer. However,
in the determination of al supply and demand relationshipsthe basic method is
essentially the same—begin with a sSingle person or a singlefirm and then
aggregate the appropriate quantities demanded or supplied, at eech price, to
produce the market relationships. The
gppropriate quantities are usudly found
by solving straightforward optimization ~ § DeP8&HS
problems which, in the dementary supply
theory, are based on the behaviord
assumptionsthet firms wish to maximize
economic profits and people wart to
maximize utility, anumerica meesure of . d
happiless/ailwebkeoaing. one of  these et fime int, h

|
ime unt

Demand

Quantity per time period

micro-relationships—the supply of labor Figure 2. Thesupply of labor.
provided by one person. More precisdy,
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we Will seek tofind the quantity of labor, h, that a personwould provideinatime
period as afunction of the offered wagerate, w. That is, we want to find the
analyticdescription of the geometricstory given by the usud economist's graph
inFgure2. (Theanswer to the question of why the axesin Figure 2 are labeled
as they ae, vith w. the independent variable, on the vertical axis, isthat Alfred
Nttall solabeledd AN and economists havefollowed hisexample. Who Alfred
Marshall wasand why hedid itis nicly answveredin [2].)

Inparticular, wewill examine the supply relationshipfor a class of commonly
used utility functionsand seethat, though “correct” economic and mathematical
argumentscan lead to many sensible outcomes, they alsolead to onethat may be
cdled paradoxica, or nonsensicd.

A person's labor supply decisonisquitesmple. Thelaborer can chooseto
work many hours, and thus have a high level of consumption but little timefor
leisure. On the other hand, the laborer can choose to work less. consequently
conauminglessbut having moreleisuretune. So, thereis a tradeoff between [abor
and leisure or, since we assume that the purpose of labor is to provide for
consumption, a tradeoff between consumptionand leisure.

Followingtheusual modelingassumptions, wewill assumethat each person
has a Utility function, U(C, L) , where U measuresthe utility redizedinatime
period from a combinationof € current consumptionurits and L current leisure
units. Let usdefinevariablesasfollows:
the amount of time availablefor labor per time period
thetimeworked, O< A< T
thewagerate, w>0
the non-labor income availablefor consumptionin atime period
the vdueassigned to aunit of leisuretime, k>0
theamount of leisurepertimeperiod,so L =T - A
Then the optimal consumption-le surealocation followsfrom maximizing

U(C,L) =U(wh + M ,K(T - h)) = U(h),

afunctionof the singledecisonvariableh.
Onewell-known book [3, p. 63] says, “'a commonly used utility functionis
the Cobb-Douglas utility function™ whichfor this problem would be written
UC,L)=C"LP,

wheree: and B arc positivecondants. Using thisutility function (actualy afamil}
of functions), the solution to the labor-leisure problem is the vaue of h,

mrxgs o
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0 < h < T, which maximizes
U(h) = (Wh + M)*(k(T - h))P.
Elementary calculusshquvsthisvaueto be

— 0, it mi Tl

a
T - p i{, otherwise.

a+B’ a+pB w

For example, if U(h) = (15h + 45)**(9(12 - 1))'2, then the choice that
maximizesutility ish = 7.

This provides the labor-supply curve of Figure 2 by alowing wto vary with
all dse hdd constant. The result also makes some intuitive sense—as M, the
amount of outsideincome, increases, lesswork is done, and if A7 is sufficiently
large, nowork at all will be undertaken.

However, notetheimplicationswhen A= 0. Inthiscase,

h=-2%_r
a+p
independent ofw. Thet is if a person has no outsideincome, then the number of
hours of'work is the same no matter what wage is paid. Also, h isindependent
of k, so no matter what value a person puts on leisure, the number of hours of
work to maximizetility isthesame. This seemsto be a paradox.

There are a number of questions that can be asked. For ingtance, is the
paradox real or only apparent? If it isapparent, what isitsresolution? If itis
red, is the Cobb-Douglasmodd at fault? Istherea situation that makes economic
sensewhereM can be negative, and if so, isthereamathematica solution to the
problem of maximizingutility? What information do the relativesizes of aand
p tell us about a person's preferences? (The geometry of the Cobb-Douglas
family of functionsisworth considering.) Who were Cobb and Douglas? (See
[1], especidly page 132.)

Some extensions are also worth considering. Fo: « ioes e result
change if overtimeis possible? Th there is a two-tiered wage
scheme, with

W, 0<h<T
Y E w, T<h< S,
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For ancther, in today's world there are many two-person households. What about
the problem of maximizing

Uh,, b)) = CL'L}?

where C = w b, + w,h, +M, 0< h; < T, 0< h, < T,, and so on? What
behaviora assumptions are needed? How does the solution relate to the single-
person case?
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Here incaseyou didn't get them, are the answersto the problemsthat occur
later. Don't look at them beforetrying theproblemst 1. vertical asymptote. 2.
linear indegpendence: 3. repested roots. 4. radius of convergence. 5. upper and
lower bounds.

Now, whet isthefirst linein thefollowing?

uppe bound
uppe bound
upper bound
upper bound
upper bound



THE SQUARE-FREE PROPERTY OF COMPLEXPOLYNOMIALS

SeveMcCracken
Penn Jate, New Kensington

In a paper [1] explaining why the real and imaginary parts of a complex
polynomid intersect in the complex planeat the polynomid's roots, theauthors
required that the parts did not display any unusud behavior that might be caused
by thepresence of a squarefactor. This notewill show that the real and imaginary
partsof acomplex polynomia are aways square-free.

Let R(x,y) and I(x,y) denote the red and imaginary parts of the

polynomid f( z):
f(z) = R(x,y) +il(x, ).
Replacingi with =i, we get
2R(x,y) = f(x+iy) +f(x - iy)
and
2il(x,y) = f(x +iy) - f(x - iy).
Letusdenoteby R, (x, y) and I (x, y) theterms of the real and imaginary
partswith highest total degrees. Forexample,i ff(z)=23 +z + 1, then
R(x,y)=x>-3x%y +x + 1, I(x,y)=3x%y - y3+y,
and
Ry(x,y) =x*-3x%, L(x,y)=3x% - y3
If R has a squarefactor, R(x, y) = A%(X,y)B(X,y),then Ry(x,y) =
Ag(x, ¥)By(x, y) doesaswell. Thus,if R, iSsquare-free thenR i s square-

free
Now we areready for our result.

THECREM Le f(z) beamonic polynomid with redl coefficientsand degree
d Let R(x, y)and I(x, y) denctethered andimaginarypartsof /© ThenR and
| aresquare-free.
Proof. It isenough to provethat R,, and I, are square-free. Supposethat
Ry(x,y) =a*(x, y)b(x, y). Thus
273
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2R,(x,y) = (x+ )T - (x - ) = 2a° (%, 1)b(x,Y).
Hence, the partial derivativesof R, give

] . 0 _ _aoNd-1
aRH(x, y)+ "a‘y"RH(x’y) = d(x-1y)

= a(x, y)(m(x,y) +n(x,y))

for omepaynomidsm(x, y) ad n(x, y). Hence using uniquefactorization
of C(x,y),wege a(x, y) = ¢(x - iy)" for some complex number ¢ and an
integer r. Since a(x, y) isred, thisispossibleonlyifr =0. Thatis, a(x, y)
isacondantand R,, does not havea non-trivia squarefactor. ItfollowsthatR
Issquare-free.

To provethat | issquare-free, westart with

2il,(x,y) = (x +iy)? - (x - iy)? = u’(x, YIv(x, ¥)
and then work aswe didfor R,, to completethe proof.
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THE ELIMINATIONOFA FAM LY OFPER CD CPARITY
VECTORSINTHE 3x + 1 PROBLEM

Carolyn Farruggia, Michael Lawrence, andBrian Waterhouse
University of Scranton

The 3x + 1 Problem, a so known as the Collate Conjecture, is traditionally
credited to Lothar Collate at the University of Hamburg in the 1930s. Jeffrey
Lagarias at AT & T Bell Laboratories has written an excellent expository paper
on the subject [1] and we will use much of his notation here. Simply put, the
3x + 1 problem proposes that repested iteration of the following function
T:Z2* - Z"* will eventualy lead to thevalue 1 for any n > O:

3n+1)/2,if n=1 (mod 2
T(n) ={ (nr}Z, ) if n sno (mé?z). )

Definethetrgectory of n to bethe sequenced iterates
n, T(n)a T(Z)(n), T(3)(n)’

where T9(n) representsthe i composition of T withitself We can classify
thesetrgjectoriesinto threetypes for n > 0:
(i) Convergent: T®(m) = 1 for somek.
(i) Non-triviad cydic: Thesequence { T®(n)} eventualy becomes periodic
and T®(n) # Lforany k 2 1.
(iii) Divergent: lim, _ 7®(n) = oo,
Definetheparity vector of n to bethe sequenceof 0s and 1s
Qco = so(n)sl (n)sz(n)
satisfying s,(n) = TO@) (mod 2) forall i 2 0. The parity vector completely
describestheresult of k iterationsof T, since
T®n) = A, (m)n + p, ()
where

35+ 45 (n)

— md g0 = L5

URIOREES W )]

A =
k(n) 2k—l
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(see [1]).

A non-trivial cyclictrgectory has a periodic parity vector. It hasyet to be
determined whether or not thereare any non-trivial cycles. Thus, in order to show
that thereare no non-trivial cycles, it sufficesto show that any periodic sequence
of 0s and 1s is not the parity vector of an integer greater than or equal to 3.

For a (O, 1)-sequences, to eliminate s as a parity vector (or, smply, to
eliminate s) means to show that s is not the parity vector of a positive integer.
Our main result is the eimination of a family of periodic (0, 1)-sequences as
parity vectors.

1, if i = 0 (modk
THECREM Léet s(k) = 5,5, , where's; = { 0, othe(rwise.)

Thereis no positiveinteger whose parity vector is s(k) for k > 2.

While this family of (O, 1)-sequences might easily be eliminated by other
means, what is of interest in this paper is not only the result but also the method
used in the proof. In theory, this method can be used to eliminateany family of
(O, 1)-sequencesaas parity vectors. Also, it givesa very good expository insight
into the natureof the problem, especidly the relationship with the 2-adic integers.

Any parity vector isa sequenceof 0s and 1s and thus can be interpreted asan
element of the 2-adic integers,

Zyy = {5y, | 5, {0,1} for ali}.

One candefinearingstructureon Z,, by the usual rulesfor manipulatingformal
power series where we identify the sequence s, s, s, -~ € Z,y with the formal
power series s, + 5,2 +5,2% +5,2° + - (see ay standard text on p-adic
numbers e g. [2), for details). Notethat the integers, Z (and, in fact, the rationals
with odd denominators, @, ,,) can be considered to be subrings of 7y by
associating each positive integer p with its base-two expansion. That is, if
p= ZTO b,2 isthebase-2 representationof p & &, then we associatep with
the 2-adic integer 4,6,6, € Z,,. This incluson can be extended to an
embedding of therings Zand Q,,, into Z,, in a unique way (see [2]). In
particular,1/(1 -r) = Z,mo r'ifr=2*forsomek ® N.
Definethe set of even 2-adics to bethe set of all sequences, s, s, s, > Such -

that s, = 0 and the set of odd 2-adics to be the complement of thisset in Z,,,.
Thus, we can extend T to the 2-adics in the obvious manner. that is T: Z,,, = Z,,




FARRUGGIA, LAWRENCE, & WATERHOUSE, THE 3x+ 1 PROBLEM 277

by

_[(8s+1)/2, if sisodd
IGs) = { s/2,  otherwise.

Smilarly, wecan definethe parity vector Q,,(9) forany s € Z,, just as was done
in the integer case The map Q.. : Z(z) - Z(z) is a continuous, measure-
preserving, and onto map on the 2-adicintegers Z,, [1, TheoremL}). Since @,
isonto, every 2-adicisthe parity vector of some other parity vector. Thereforewe
will usethetermsparity vector and 2-adic interchangesbly to meen any sequence
of Os and 1s.

A natura questionto ask when onefirst encountersthe Collate problemis
whether or not thereis atrgjectory whoseentriesareal odd. In termsof parity
vectors this is equivaent to asking if we can diminate the parity vector T
consstingof al 1s. (Wewill sometimesdenotethe repegting part of a periodic
sequence by an over-bar.)

EXAMPLEL Thereisno postiveinteger nsuchthat @, (n) = 111---.

A graightforward argument that there cannot be such a trgjectory might proceed
asfollows:

First proof d Example 1: We begin by stating some number-theoretic
lemmas. Thefirstisastandard result whaose proof will be omitted.

LEMMA 1. Thereisno positiveintegernsuchthat n = -1 (mod 2*) for all
k=21l

If Q.(n) = 55,5, - thendefine Q,(n) = 5,5, " 5,_,.

LEMMA 2. If @ (n) = 111--1 (k Is) then n = -1 (mod 2%).

Proof. If k = 1 then Q,(n) = 1 < nisodd < » = -1 (mod 2). Assume
thelemmaishuefor k - 1. Suppose @, (7) = 11 - 1 (k1s). Then @, _,(T(n))
=11--1(k - 1 1s) by definitionof 0, ,. Hence, T(n) = -1 (mod 2*7!). So,
by the definition of T, T(n) = (3n + 1)/2. Therefore, (3n +1)/2 +1 =
q2**! for ome g€ Z*. Therefore 3(n + 1) = g2*. Since 3(n +1) is
divisbleby 3, g2* isdsodivisbleby 3. But 2* isnot divisibleby 3, soq must
be divisbleby 3. Tha is, q = 3x for somex. Theefore 3(n + 1) = 3x2*.
Thereforen + 1 = x2* for somex. Thereforeno -1 (mod 2¥). QED

To complete the proof of Example 1, assumethat thereis a positiveinteger
n such that Q,(m) = 111, Then @,(n) =11--1 (k 1s) for dl k= 1.
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Thereforeby Lemma2, n = =1 (mod 2¥) forall k > 1. ThiscontradictsLenma
1 Thereforethereisno positiveinteger nsuchthat @, (n) = 11--. QED

Thisdementary method i s straightforward, but cannot easily be generaized
todiminatecther parity vectors. Let usconsider another gpproach. Since O, i's
one-to-one, wecan diminatea parity vector s by showingthat Q. () isnota
positiveinteger.

Second proof d Examplel. Since T(-1) = -1, thetrgectory of -1is
-1,-1,-1,-.S0 @, =111--. Since O, is one-to-one, there is no positive
integer n whose parity vector is 111+, QED

Thus, inorder to generdize thistechniqueto diminateother sequences, it is
necessary to have a method for computing ..

Let s = 5,5, -+ bea periodic parity vector. By [1, Theoren B], @,(n) =
0, (n + 2*) for dl integersn, andt her e isanon-negetiveinteger t < 2% such that
0. = 5,5, 5,,. Thusif () = s;s, s,_, theneither

0, (O = 545,58, or O, (t+2F) =5,5 5,
sncetand t + 2* arethe only numberslessthan 2**! that are congruent to t

(mod 2*). Thus, we can recursively defineaset of integers ¢, asfollows: let ¢,
=5, andlet

oo e if 75(,_,) = 5, (mod 2)
¥ t,., +2F,  otherwise.

Then Q,.,(1,) = 5,5, 5, foral k So, the sequenceof integers ¢, converges
top= Q. (s) in Z02-

Thus, by looking at the binary expangondf ¢, for sufficiently largek, onecen
conjecturewhet the 2-adic digitsof p might be. (For example, if p isrationd, its
digitswill beeventudly repedting.) 1t isthenasmple matter of verifyingthat the
conjecturedvaueof pis, infact, Q;', by directly computingthe parity vector of
p. If p isnot a postiveinteger, we have successtully €iminated the vector s.

EXAMPLE 2. Let us diminaethe parity vector s = 001. By definition,
t,=0,t =0, t, = 4, etlc. We continuecomputing tinasimilar manner util
we reach ¢, = 13108. In (reversed) binary form this number is 00101100-
110011, and we see a pattern developing in the binary expansion. We then
conjecturethat p = 0010110 = 415. To verify, we check the parity vector of
4/5. Snce T(4/5) = 2/5, T(2/5) = 1/5, and T(1/5) = 415, dieparity vector”
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of 4/5 is001 andwe havediminated this parity vector.

1f { s(k)| k € N } isafamily of parity vectors, one can usethistechniqueto
determine p(k) = Q:(s(k))forthefastfeNvauesd k. Using thesevaueswe
can conjecture what p(k) might be for awy k. Vaeification that p(k) =
Q' (s(k)) for al k again can be obtained by direct computation of the parity
vector of p(k). Thisisthemethod usad in the proof of the theorem.

EXAMPLE 3. Let s(k) = s,s, -5, where s, = 1 if i = k and O otherwise.
Then a calculation similar to the one usad in Example 2 yields the following
results.

k s(k) p(k)(2-adicexpansion) p(k) (base 10)

0 T I -1
1 01 01 2
2 (00L 0010110 4/5
3 0001 0001010001101110 8/13
4 00001 00001010110001000011010011101110 16/29

By looking at the valuesof p (k) in base 10, we areled to the conjecture

for k € N.

P - s

Having conjectured the values of p(k), we are now ready to prove the
theorem.

Proof. Let p(k) = 2¢/(2F* - 3). Then

T®(p(k)) = T® 2 = 1
2k+] -3 2k‘1 -3

So,

2k -3

T®ED(p(k)) = T(T®(p(k)) = T( 1 ]

3(!:11 )+l k
27" -3 2
= = = k.
5 3 p(k)

Therefore, thetrgectory of p(k) iscydicand the parity vector of p(k) isequa
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to 0001 (k0s)=s(k).Itisclear that thiswill dwayslead to afractionfor
k> |, dncethenumerdor isapowve o 2 and the denominator isan odd number
greater than 1. Thus s (k) isnot the parity vector of a positiveinteger for k > 1.
QED
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Two WAYSARE BETTER TrAN ONE

J. h? Boyd and P. H?Raychowdhury
. Christopher's School and Virginia CommonwealthUniversity

N we glance through the problem sections of mathematica journds, we
often wonder how the proposersof the problems ever discovered their resultsin
thefirst place. Thereisno generd ruleto guide an explorer to a pretty sight, but
a procedure that has given us severa pleasant surprisesis one which is often
employedin ninth-grade geometry. It isto compute some quantity correctly in two
differentways. If theresultsare Pand Q, thenP = Q.

Wewill gpply this procedureto show that in any right trianglewhoselegsa
and b and hypotenuse ¢ all haveinteger lengths, ab/(a + b + ¢) isdwaysan
integer. Wewill then get the sameresult in another way. Someexamplesare

ab/(a+b+cC)

4 3 5 1
12 5 13
8 15 17
24 7 25
20 21 29

We will get this by calculating
the area of the triangle in two
different ways. (See Figurel) The
firstway is ab12. Thesecond way
is as the sum of the areas of the ¢ ;
subtrianglesOAB, OBC, and OCA O/ ,
formed with O, the center of the /7 { ...~ /

a b c

AN W W

inscribed circle. Thissumis
re/2 +rail +rb/2. b
It follows that

ab=r(a+b+c)

Figurel. Righttriangle
and inscribedcircle.
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or .. ab
a+b +C

It remains only to show that r is an integer. It is a sandard exercise in
elementary plane geometry to show thet r = (a+ b - ¢)/2. We know" that
a +b isevenifand only if (@ + p)? is even.. Since (a+ b)* = a’+ b+
2ab, itfollowsthat a* + b isevenif andonly if (a + b’ iseven. Therefore,
a+b,a?+b? = c2andcareallevenoralloddtogether. Thusa +b - cis
evenand r isan integer.

Another way to get thisisto remember that in aright trianglewith integer
sides,

a=2kmn, b=k(m?-n?), c=k(m?+n?)
for someintegersk, m, and n. Then

ab _ (2kmn)(k(m? - n?))
a+b+c  2kmn+km?-n? +k(m?+n?)

- 2kImn(m_, n)(m -n) _ kn(m - n)
2km(n +m) ’

aninteger. Two waysare better than onel

J. N. Boyd teaches geometry at . Christopher's School in Richmond,
Virginia. He earned hisM. S. degree at Virginia Commonwealth University
where histhesisadvisor was Professor P. N. Raychowdhury.




DETERMININGA DAY OF THE V\EEK

SandraRena Chandler
Georgia State University

Have you ever needed to know the day of aweek that acertain datefallson,
but didn't havea caendar handy? Thisnotewill show you how to determineit.
If the date isin the current month, just add, modulo seven. If May Sisa
Thursday, tofind what day of the wesk May 28 is, add 23 to Thursday: Thursday
+ 23 =Thursday + 2 = Saturday.
If thedateis in afuture month, we need to remember
Thirty days hath September/ April, June, and November
All therest have thirty-one/ Except February.
Or, we can remember how many days more than 28 each month has:

Jn Feb Ma Apr May Jun Jul Aug Sep Oct Nov Dec
3 0,1 3 2 3 2 3 3 2 3 2 3

If February hes 28 days, March is identica to February except for the addition of
days29-31. If February has 29 days, then the daysin March are shiftedto the
right on the calendar by one day. If amonth has 30 days, the day of theweek is
two days to the right for the next month, and three days to the right for months
with 31 days. So, if May 5 is Thursday, June 5 will be Thursday + 3 = Sunday
and July 5 will be Sunday + 2 = Tuesday.

Suppose that January 1 isa Sunday and you want to know what day of the
week June 1l is so that you can plan your vacation. If it is not aleap year, then
June 1 will fall on Sunday + (3 + 0 + 3 + 2 4 3) = Sunday + 11 = Sunday + 4 =
Thursday.

Thesumof dl thenumbersinthetableis 29 (in a non-lespyesar), so if January
lison Sunday, January 1 of the next year will beon Sunday + 29= Sunday + 1
= Monday.

For lespyears if February 29 comes between your two dates, you need to add
one more for theextraday. For example, 1996 isaleap year. (Lesp yearsare
thoseyearsthat can beevenly divided by four and arethoseyears when Americans
are supposed to votefor the President of the United States.
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Century yearsarenot leap years unless the century isdivisible by four. So, 1900
and 2100 are not leap years, but 2000 will be)) Since January 1, 1996 wason a
Monday, March 1, 1997 will be on Monday + 2 (for theleap year) + 3+ 6 (for
January and February 1997) = Monday + 5 = Saturday. January 1, 1997ison a
Woednesday, so, Snce 1997 and 1998 are both non-legp years, March 1, 1998 will
be on Wednesday + 1+ 3 + 0 = Wednesday + 4 = Sunday.

Theideacan be usad to determine the day of the week for dates more than one
year inthefuture. SinceJanuary 1,1994 was on a Saturday, January 1, 1997 will
be on Saturday + 1 (for 1994) + 1 (for 1995) + 2 (for 1996) = Saturday + 4 =
Wednesday. For another example, we can find the day of the week for New
Year's Eve 1999. Since January 1,1996 was on a Monday, January 1,2000 will
beonMonday +2+1+1+1=Monday +5 = Saturday. So, December 31, 1999
will bea Friday.

Working backwards you can determine the days of the week for previous
monthsand years. For example, since January 1, 1994 was a Saturday, you can
find what day April 15, 1992 was by going back to January 1,1992 — Saturday
- 3 (1992 had a leap year day) = Thursday —and then forward to April 15:
Thursday + 3 (January) + 1 (leap year February) + 3 (March) + 14 (April 1 to
April 15) = Thursday + 21 = Thursday.

So, the next timeyou find yoursdf without a calendar and wanting to know
what day of the week a certain datefalls on, just remember (if the dateisin the
future)

add one for each year without a leap day and add two if aleap day is
involved

add the month numbers

add (or subtract) the differencein days.
Hereisalagt exampletoillugtratethis January 6, 1994 was a Tuesday; what day
will duly 4, 1997 fall on? Tuesday +2+ 1 (now weare at January 6, 1997) + 3
+0+3+2+3+2(Qly 6,1997) - 2="Tueday + 14 = Tuesday.

Sandra Rena Chandler was granted her M. S. degree in mathematics
with a concentration in statisticsfrom Georgia State University' in March 1995.
Thisnote was part of a paper written for her Technical Wtirg course.



NOTHING IN MODERATION, EVERYTHING IN EXCESS:
A NEW WEIGHTED STATISTIC ON PERMUTATIONS

AnmnMarie Paulukonis
Colleged . Benedict/St. John's University

A statisticon a set of permutationsis a function which associates to each
permutation some non-negdive integer. One of the best known permutation
Statigticsisthemaor index, which iscomputed by weighting descents by position.
Another statisticon permutationsinvol ves excedances—when a number exceeds
itspogtion. Inthispaper, wewill consder the bivariate distribution that occurs
when permutationsare grouped according to both the number of excedancesand
aweght smilar to the mgjor index (see TableI). | will call thisdistribution the
P-Distribution.

Beforeddving into theorems about the excedance-weight distribution, some
basi cdefinitionsand propositionsareneeded. Throughout this paper, we will use
one-linenotationfor permutations, writing w, w, w, --- w,,, where w; is the number
in positionii.

Wewvill sy that a permutation has an excedance wherea number is greater
thanitsposition. A permutation has a nonexcedancewhereany number is equal
to or lessthan its position.

For example, the permutation 24135 has excedances in positions one and
two; positionsthree, four and five contain nonexcedances.

Permutations can be weighted by summing positions, in this case positions
of theexcedances. Thus 24135 hasaweight of 3. Noticethat the number 1 can
never exceed, aso, any number other than 1 will waysexceed in position 1. The
number n will exceed any position (except n) while position n can never be
exceeded.

Let S, denotetheset of permutationson {1, 2, ..., n} and S(n, j, k) denote
thesubset of S conisting of permutationswhich have j excedancesand weight
k. Wewill let N(n, j, k) denotethe number of dementsintheset S(n, j, k).
Welet S(n, j) indicatethe "excedanceblock” of all permutationsin S, withj
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excedances.

Thefollowing propositionsare easy to establish:

Propostionl: If x isthefirst postionexcesded, positions 1,2, -+, (x - 1)
arefixed; thatis,. w, =ifor1<i<x - 1. ,

Proposition 2. The weights k for S(n,j) are exactly the sequence of
consecutiveintegersfrom j(j + 1)/2 tonj - j (7 + 1)/2.

Proof: Thesumof thefirstj positionsis j(j + 1)/2, whilethe sum of the
last j positionsisnj - j( + 1)/2.

Looking at the distribution datain Table 1, we notice that for each n the
sequence of vadues N(n,1,k) is 2" -1, m=n-1l,n-2,-,1, s0
N(n, 1, k) is apparently 2"°% - 1. Since every N(n, 1, k) gives the same
sequence, with theinclusionof one more term for each successive n, could we
establishthisresult by recurson?

Let us consider an example: the set S(6, 1, 3) contains the permutations
124356,125346,125436,126345,126354,126435, and 126453. If weremove
the 6 from each permutation where 6 is at theend, we get exactly the elements of
S(5, 1, 3): 12435, 12534, 12543 In the other permutations, if we swap
position 3 (wherethe6 is) and position 6, then removethe 6, we again get 12534,
12435, and 12543, plusthe identity 12345. Thissame processworksin genera
forj=1

THEOREML N(n,1,k) =2N(n-1,1,k) +1, L<k<n-1.

Proof ) N(n, | ,K) 22N(n - 1, 1,k) + L. Let m=N(n - 1, 1, k).
Consider # ®S(n-1,1,k). Placena theend, toform un=vesS .
Since v, = n, theonly excedancein visin positionk. Makea copy of the new
permutationv and switch v, with v, to get
v*, sothat v =nand v, =V, (¢ u=12354€ S(5,1,4)
Example1.1). Sncepositionncannever v _ 193546 € S(6,1,4)
be exceeded and n aways exceeds  « - 93645 € 5(6, 1, 4)
anywherebut in position s, position k will
hold theonly excedance. Perform the same
procedureon eech of the m permutationsin
S(n - 1, 1, k), obtaining 2m permutations(thev's and the v *'s). In addition,
act on the identity permutation, 12 - n - 1 by placing n at the end and then
switching the nth and kth positions as before. Position k will now be exceeded

Examplel.1
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andwehaveatotd of 2 N(n - 1, 1, K) permutations, each of which isan element
of S(n, 1, k).

(i) N(n,1,k) < 2N(n - 1,1,k) + 1. Choose any permutetion v o
S(n, 1, K). The letter niseither in postionn or positionk (if it were elsewhere,
that position would also have an excedance). If v, = n, remove n to get
uc S, . Theletterwhichves an excedancein v isstill an excedancein u inthe
same position. Thereare no other excedances sincetherewas only one to begin
with, thus u e S(n-1,1,k). If v, =n,swap v, and v, to obtain a
permutation v * wherev,” =nand v;* = v, =gfor some g < n.Removen as

v=1253467¢€ §(7, 1,3) = u=125346¢ S(6, 1, 3)

v=1274563 € 8(7, 1,3) = u=123456 ¢ S(6, 1, 3)

v=1273456 € S(7,1,3) » u=126345¢ S(6, 1, 3)
Example1.2

beforeto get apermutation # € S, (e Examplel?). cdamg<k. If g<k,
some other position in addition to k would have been exceededin v € S, . If
v, =g <k, then v, would haveto beanumber smaller than g sincethereisonly
oneexcadance. However, Proposition1 states (hat all positionsup tok are fixed,
therefore v, = g. Thusg 2 k.If g = %, our new permutation u < S, _,isthe
identity permutation (the "+ 1" of the equation). Otherwise, we have a
permutationinS(n - 1,1, k). H

The sequenceof numbers N(n, j, K) can now beexpressedin closed form
by usingthe preceding theorem and inductionon n and k.

Corollaryld. 2**-1=N(n,1,k)for L<k<n-1.

Now compare N(n, j, k)with N(n + 1,7, k + j)in Tablel. Thehighest
few vauesin block S, j) appearinblock S(n + 1, j) . However, theentire
excedanceblock does not carry throughfromn to n + 1; only thesmallestn - j
weightsfrom one block appear in the corresponding block for n+ 1. What could
be so gpecia about the permutations with these weights? First, we note that these
permutationsaways havea 1 in position 1 (hence a non-excedance) while the
permutations which do not carry over may or may not have an excedancein
position 1. Infact thereareno mutati ons with excedancesin position 1 which
correspond to thehighestn - j - 1 waghtsinany block. Thesefactsfollow easly
from Proposition 2.

Now let's take a closer look at the role of position 1 for carryover
permutations, Condder 13254< S(5, 2, 6)and 124365 ¢ S(6, 2, 8). Writing
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one above the other, § ; Z % 2 g, we noticethat thelettersin each position

differ by one. Soif weadd oneto eachletterin 13254 and then placea 1 at the
front, we construct 124365. This same processworksfor each of the carryover
permutations: -

THEOREM 2. N(n, j,k) =N(n + 1,7, k +j)for all n andj and the top
n - jvauesof k

Proof: Letusdefineamep ¢ : S, » S, .,, givenby ¢(v) = w wherew,
=1, w, = v, , +1, (i = 2,-+, n).In other words, w is obtained by adding one
to each letter of v and then placinga 1 at the beginning of the new permutation.
Iclaimthatif ve S(n,j, k), then d(v) e S(n+ 1,7,k +j).

Letv @ S(n, j, K). By Proposition 1, weknowthat upto thefirst exceeded
position all lettersarefixed, v, = 1, v, = 2, etc. Apply ¢ (see Example2.1).
Every letterincreasesby 1and its position is now one greater. Any fixed pointin
v correspondsto a fixed point in w, a
non-excedance corresponds to a non- v :ﬁ 124563 € 5(6, 3, 12)
excedance, and each of the j excedances ¢ - 235674
correspondsto an excedance; everything W = 1235674 S(7, 3, 15)
is just one position higher. Thus, the Example 2.1
weight of wincreasesby j (adding 1 for
each of thej excedancesof v). Therefore, w € S(n + 1, j,k +j).

It is easy to seethat ¢ can be reversed so that we can recover v from w,
establishing ¢ asabijection. i

Oned themogt striking symmetriesin the P-distributionis that the numbers
N(n, j,K) are symmetric with respect to excedance blocks, N order to
understand why, consider 124365 € S(6, 2, 8) and 143562 = §(6, 3, 11).
Inthefirst permutation, excedancesoccur in positions3 and 5 whilein the second
permutation the excedancesare in positions 2, 4, and 5. Non-excedances are
found in 1, 2 and 4 for the former and in 1 and 3 in the latter (and the
inconsequential pogtion 6). Thus, thefirst fivelettersin each permutation are of
theform nneneand nenee. Look closely and you can seethat theseare reverse

mirror images. That is, one is the other written backwards with a's and e's
switched. This same unusud pattern is found throughout all the excedance
blocks, and isthe basisfor the proof of thefollowing theorem:

THEOREM 3. N(n,j,K) = N(n,n -j - 1, k') where k, k' range together
from the highest to lowest weightsfor their respectivenumber of excedances.
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Proof. Let ve S(n,j, k). Find v 132654¢ S(6, 2, 6)
v,, but reverse the order of the first ,
n-lpositionstogetv'. Next, take Z,,ﬂ 526125:;1626 5(6, 3, 9)
thecomplementof v' with respectton + : T
1, gettingv”. Thatis,

V=V, v, Example3.1
VISV, VY,
v’ =(n+l SV, ) (n ] 'Vn-i) w(ntl-v)

(see Example 3.2).

”

vam>mino,Iclaimvn_m <n-m. Inv' v isinposition N - m.
Inv", positionn - mcontainsn +1 - v, . Butifv,>mthenv, > m+1,
and so

Vpn=h+l-v <n+l-(m+1)=n-m,
Similarly, if v, < m then
Vam=n+l-v 2n+1l-m>n-m.
Ontheother hand, if v,,_,, < n - m, then

View =Rt 1 -V :n+1-v, <n-m

n-(n-m)

sov, > m. Smilaly,if v,_ >n-m,then

! = * = = = =
Voew =B +1l-v o s=n+l-v >n-m.
sov, <m.

Thus the non-excedances in v" come from excedances in v and the
excedancesin v comefrom the non-excedancesin v. We concludethat v hasj
excedancesif andonly if v” hasn - j - 1 excedances.

Now, all that is left to show is that these reversals actualy land us in the
proper placesfor excedances and so givethe correct value of £'. In other words,
wewant to show that if a permutationin S(#, j ) has an excedancein positioni,
then the corresponding permutationin S(#, n - j - 1) hasanon-excedancein
the swapped position.

Hrg, from Proposition 2 we know that the least possiblekis 1 + 2 + -+ +
and theleastk’is 1+2+.-+(n -1 -j). Alsofrom Propostion 2, it is
obviousthat k' > kfor j <(n - 1)/2. Since the weights form a consecutive
sequence, each pair , £’ differs by aconstant. We have
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B -k=(0+2++n-1-7)-(1+2+-+])
=G+ +(G+2)++(n-1-j)=(n*-n-2nj)2.

Sok' = (n®-n-2nj)/2 +k.

Lete,,e,, -, ¢ be the excedance places for vandlet £ £ .. ,f,_, bethe
non-excedance places for v. Recal that f,_;=n,s0 n SRS W
n - f,_;_, aedieexcedanceplacesfor v”. Thesumof al excedanceplacesin
vis Y 7., e, =k, and the sum of all positions is Y iii=n(n+1)/2,sothe

sumof all nonexcedanceplacesinvis

gﬁf (n(n +1)/2) -k
and "

”il r,=(nm+1)/2)-k-n,

1=1

Thereforethe sum of all excedanceplacesin v” is
n-j-1 n-j-1
S (-f) =nn-i-D- Y
i=1 i=

=nn-j-1)-{nn+1)2)-k-n)
((n*-n-2nj)/2)+k=Fk. 0
Wehaveshown thet the P-Distributionon permutationsof {1, 2, > n} has

Sverd interestingsymmetry properties. One might also consider whether or not
similar theorems nay holdfor multiset permutations. |n a preliminary anaysiswe
noted somesymmetriesin specid cases, but moresignificant resultsawait farther
research.

A table of P-distributionsfor n=4, 5, 6, and 7 follows. In thetable, »,
standsfor N(i, j, k).

Thase interested in further reading should see Stanley, Richard P,
Enumerative Combinatorics, volume 1, Wadsworth and Brooks. Belmont.
Cdlifornia, 1986.
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A SOLUTIONSTRATEGY FORDIFFERENTIAL EQUATIONS

Henry J. Ricardo
Medgar EversCollege (CUNY)

A student in anintroductory differentia equationsclass, after being exposed
tothevariouski nds offirst-orderequations, asked inwhat order thesol utionmethods
should betried  For example, if separating variableswas unsuccessful, what next?
Thiswas areasonablequestionsincethestandard treatment of first-order ordinary
differentia equations has been described as "a collection of specia ‘methods,’
‘devices,' 'tricks," or recipes,’ in descending order of kindness!™ [4,p. 25]. In

particular, the relationships that
exist, or fal to exist, among
separable, exact, homogeneous, and
linear equitionsar e not dwaysmeade
clear.

TheVenndiagramon theright
divides the space of first-order

esjatiolesi areajjhenets dar, witieh

possible both linear (L) and
nonlinear NL). They mey befound
useful  even in differentia
equations courses that no longer

Separable

/2
VAV

emphasizespecia solution methods, and may befound of interest in any event.
For consstency, dl equations will be written in the differential form

M(x, y) dx + N(x, y)dy =0

A. Separable, but neither exact nor homogeneous:
O (y-1de+dy=0
(NL)  (xy®-4x)dx+(x?y+y)dy=0
B. Separable and exact, but not homogeneous:
() xdx +(y+1dy =0
(NL) (xy?-4x)dx+(x?y+y)dy=0 -
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C. Separable, exact, and homogeneous.
@ 2xydx +x%dy = 0
(NL) x2dx-y*dy=0
D. Separableandhomogeneous, but not exact:
L  yde-xdy=0
(NL) x2%ydr -y*xdy =0
E. Exact, but neither separable nor homogeneous.
@L None if exact, then separable
(NL)  (x®+2yHdx + (dxy -y + 1)dy = 0
F. Exact and homogeneous, but not separable:
L None: if exact, then separable

MO  (X2+2y%)& + (@xy -y)dy =0

G. Homogeneous, but neither exact nor separable:

O (y+x)de-xdy=0
NL) y%dc +(Bxy - Ddy=0
H. Neither separable, exact, nor homogeneous:
L  (xy-x®)&+dy=0
ND  y?de +Gxy - Dy =0

For thosedifferentia equation courses that till treat these types of equations
insomedetal (and suchan gpproachis pedegogicdly defensble), hereisa solution
Srategy that can be offered to a sudent facing a first-order ordinary differential
equation:

Firgt, try to separate variables. (Someequations, as

y' ' =1+x+y?+xy?
arenat ingantaneoudy recognizable as separable. Scott [5] hasasmpletest for
separability. A lessuseful criterionis provided by Plaet [2, ex. 8, p. 38]. Plaat
[3] has some interesting comments on the agorithm for solving an equation by
separation of variables))

Next, seif the equation ishomogeneous—that is, seeif it can bewrittenin the
fom dydx = f(y/x). Thisisasessy (or as difficult) as recognizing separability.
Thechangedf variabley = ux givesaseparableequationfor u.

Then see if the equation is linear, in ether variable. |f jt is then
multiplication by the proper integratingfactor leads to the solution.

Thereisates involving partid derivativesto seeif an equation is exact. If
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itisnot exact, therenay bean integratingfactor that will mekeit exact. Thereis
auseful tableof integratingfactorsin [1, p. 28].

If theequationhessstill not yidded, it nay haveagpedd form that a change-of
variableswill changetoasolvableeguation. The Bernoulli, Riccati, and Clairaut
equationsare examples

If the equiation i s a textbook exercise, thenit must be solvableby oneof the
abovemethods. If theeguaionisareal one, thenit is possblethat nonewill work,
and somethingelse—numerical solution, solution in series, ingpection of integral
curves generated by a caculator or computer —will haveto betried.
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A GENERALIZATION OF LINEAR MAPS

Danid L. Viar
University of Arkansas

In linear algebra, when we define linear maps between vector spaces we
always assume that the vector spacesare over thesamefield. Of coursethisis
doneforagoodreason. 1f T:V = Wisalinear map between the vector spaces
Vad W, ve V,andcisascalar,then T(cv) = ¢T(v) makessenseonlyif V
and W are over the samefield. However, if our godl is to be able to compare
different vector spaces, then it seems natural that we would want to be able to
definelinear maps between vector pacesover differentfields. The purposeof this
noteisto investigatethat possibility.

Let Vand W be vector spaces over thefieldsFand F* respectively. Let us
supposethat if v, v, € Vthen Ty, + v,) = T(v,) + T(v,). Let ¢ beamap
from F toF'and let ussupposethat ¢ and T satisfy T(ev) = d(c) T(v) forall
v 6 Vand ¢ € . Wethenhave

THEOREM 1. Let V and W be vector spaces of the fields F and F”
respectively. Let T: V= W, T # Oand ¢ : F— F’ bemapssuch that

TG, . vy) = T . T(vy)
T(ev) = $()TE)
foral v;, v, € Vand c € F. Then ¢ isahomomorphismof fields.
Proof. Leta,be Fand 0 # ve V. Then

da + B)T) = T((@ + b)v) = T(av + bv) = T(av) + T(bv)
=¢@T() . $O)TE) = ($(a) . $@NTV).

SinceT isnotthezeromapand v # 0 wemay assumethat 7(v) # 0. Henceit
followsthat ¢(a + b) = ¢p(a) + ¢(b).

Sofar wehaveshownthat ¢ isan additivehomomorphism. Exactly thesame
argument as the one above, replacing+ with -, showsthat ¢ (ab) = (@) ¢ (b)
so that ¢ isa multiplicativehomomorphism.

For ¢ to beanontriviad homomorphismoffields, it remains only to show that
¢takes1to 1’ wherele Fand 1’ € F' arethemultiplicativeidentities. We
have

1T =TE) = TA+v) = $(1): T(),
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whichiswhat we wanted.

What else can we say about ¢? 1t would be niceif ¢ turned out to be an
isomorphism. Then thiswhole discussionwould be moot. However, everyone
knows that homomorphismsare not necessarily isomorphisms. For example, if
welet R and C denote the real and complex numbers, then ¢ :R = C given by
¢ (a)=a+ Q isafidd homomorphism but not an isomorphism. However, if we
put arestrictionon T we can prove

THEOREM 2. If Tisinjectivethan ¢ isinjective.

Proof. Let a,be Fand 0 # ve V. Supposethat ¢(a) = b(d). We
want to show that a = b. Notethat ¢(a)= ¢(b) impliesthat ¢ (@)T(v) =
¢(B)T(v). Wehave

T(@v) = d@T0) = BT () = T().

However, T isinjectivesothat T(av) = T'(bv) implies av = bv sothat, since
v#0,a=5b.

Now it would be naturd to ask, "What happens if T is surjective?’
Unfortunately, if T is surjective, it does not follow that ¢ is surjective. For
example, let the real and complex numbers be denoted a s above. Let V bethe
complex numbersasa vector spaceover thereds(i. e., F= R) and the # be the
complex numbersasa vector spaceover itsdlf (i. e, F' = C). Let T:C ~ Che
theidentitymapandlet ¢ :R — C betheembeddingmap ¢(a) = a + 0i. Then
T and ¢ satisfy all the conditionsof the two theoremsand T is surjective, but ¢
isnot.

We have seen how one might begin to definelinear transformationsbetween
vector spacesover differentfields. However, it isnot clear (to the author) what
the appropriate notion of isomorphism might be. Certainly, if ¢ isa bijection
then we have shown (hat Fand F* areisomorphic. Must this be the case to have
a notion of isomorphism? For instance, how does the structure of the reds over
the rationals compareto thecomplex numbers over the rational complex numbers
(i. e, dl complex numbersof theform r + gi wherer and q arerationd)? What
about generdizationsto modules over aring? We leave such questions to the
interested reader. The author would be interested in any solutions.

Daniel Viar, a veteran of two Budapest semestersin mathematics (7992-
1993), is completing his master's degree at the Universty' o Arkansas at
Fayetteville. This fall he will embark on a 'n D program w1 algebraic
geometry and commutativealgebra.



A TRIANGLE OF COEFFICIENTSAND | TS USES

Joe Howard
New MexicoHighlandsUniversity

Consider thefollowingidentities:

x= x

x? = x +x(x-1)

x3= x+3x(x-1)+x@x-Dix-2)

x*= x+ Ix(x- 1)+ 6x(x- D(x - 2) +x(x - D)(x-2)(x - 3).

Thecoefficients are

1
1 1
1 3 1
1 7 6 1
and the next row would be
1 15 25 10 1

Themethodfor gettingrow n + 1from row n can be seen in theexample
15=1+2-7, 25=7+36, 10=6+4-1,
andtherow after, {1,31, 90, 65, 15, 1}, would comefrom
31=1+2:15, 90=15+3-25, 65=25+4-10, 15=10+5-1.

These numbers, the Stirling numbers of the second kind, have been known for a
long time, but do not often appear in the undergraduatemathematicscurriculum.
Let S, (k) denotethe number inrow n and columnk. Then S (K) is the number
of waysof partitioninga set of k dementsinton non-empty subsets. For example,
S,(2) =7, counting the seven partitions

({a,5,¢c},{d}), ({a,b,d},{c}), ({a,c,d},{b}),({b,c,d,}, {a}),
({a,8}, {c,d}), ({a,c}, {b,d}), ({a,d}, {b,c}).
The numberscan be calculated directly from
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k
S, = 2 2 (—1)’”‘(’;’) .

As an application of their use, let usderiveaformulafor

5 ()

We usethe binomia formulaand differentiate repeatedly:

(1 +x)"= Z (Z)Jck

W n@rxyi=Y k( Z) e
@ n(n-DA D" = T k- 1)( ']:) k-2
@) nr-Dn-2)1+0)">= 3 k- 1)(k—2)( ":) b
@ n(-n-2)n-3)1A+x)"*
=Y k(- 1)k-2)k- 3)( ]':) k4
Set x = 1 in(1)-@) and form thesum (1) +7-(2)+ 6:(3)+ (4). Using the

identtity for k#, theright-hand side of thesumisjust EZ=0 (:) k* whilethe
left-hand sideis

n2"' +7n(n - 1)2"7% + 6n(n - 1)(n - 2)2"3
+ n(n- 1) - 2)n -3)2""%.
Smplifying, we get

n

Y (Z] k* = (n+ Dn(®? + 5n - 2)2"7°.
k=0 ,
nkx"

nt .

(o]

For another example, we can evauate E n 0
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We have

o0
nkxn

n =0 n!

i Sn+S,@Qn@ - 1) +- +S(Bn(n-1)-(n-k+1)x"

= n!
S sy E 4 sy E 4
H )x,,z=|(n-|)! 2 z (n-2)!
L Sty X
k( )x 'gc (n_k)|

= (S(L)x + S,(Q)x? + - + S(k)x*)e.

In particular, if weput x =1 and k = 4 weget

X L4

YL -@+7+6+1De = 15e

n=0 n!

Joe Howard received hiseducation from Eastern New Mexico University and
NewMexico State University: He hastaught for several years at New Mexico
Highlands University,

A STATISTICAL ANALYSIS OF BASEBALL'S 1987 HOME
RUN PHENOMENON

Terry McMahan and Mike Surrey
CentreCollege

Themog dramdtichit in basebadl isthe homerun. A record 4458 homeruns
werehitin 1987, more than were hit even in thedays of Babe Ruth, Lou Gehrig,
Joe DiMaggio, and Roger Maris. Why so many? We conclude, because of
statistical data, that the home run phenomenon was caused by a production of
lively baseballs.

What are the possible causes of such an offensiveexplosion? One explana-
tion isleagueexpansion, which has historically produced offensive booms. For
example, when the Seattle Mariners and Toronto Blue Jays entered the American
Leaguein 1977, theother twelveteamsin the league hit 658 more home runsthan
theyear before. But expansion can be excluded from our discussion because no
new teams were added to either leaguein 1987.

Another possible reason for the phenomenon is that there was smply more
offendvepower and talentin theleaguein 1987. But the numbersdo not support
this theory. Home runs per game decreased by over 0.5 per game between the
1987 and 1988 seasonsin both leagues. Perhapsthe umpires are the cause of the
phenomenon—did they tighten their strike zones? The numbersalso contradict
this theory: record numbersof strikeoutswere recorded in both leaguesin 1987.

Perhapsthe phenomenonwas caused by poor pitching. A multipleregression
modd with homer uns per game as the dependent variableand strikeouts per game
and bases on balls per game as the independent variables measuresthe relation-
ship between homerunsand pitching. The modd is based on data gathered for
twenty-oneseasons, 1973-1993, and resultsin thefollowingregression lines (see
the appendix for alist of data):

AL: HR = -0.59145 + 0.12295 SO+ 0.15337 BB
NL: HR = -2.00911 + 0.17440 SO+ 0.23633 BB.

This modd yidds interesting results. It shows, unexpectedly, a positive
correlation between strikeouts and home runs (e. g., r = .55 in the American
League). Although thiscontradictsour initial intuition, this relationship hasa
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reasonableexplanation: as more home runs are hit during a season, more players
begin to swingfor thefences. Thusthey beginto swingat pitchesout of thestrike
zone, resulting in higher numbersof strikeouts.

The phenomenonves not merely coincidental. The American League model
produces results consistent with the observed datafor every year except 1987,
whereit tells usto expect 1.92homeruns per game. Theactud ratefor 1987 was
2.32home runsper game. Similarly, the predicted and observed valuesfor the
National League are 1.68 and 1.88. These results lead us to believe that an
uncharacteristically large number of home runs was recorded for each leaguein
1987, despiterecord numbers of strikeoutsand near record numbersof baseson
balls.

An expected response hypothesistest (see [1, p. 526]) supportsour claim.
For the American League, atest of the null hypothesisof 2.32 HR/game against
thedternative of lessthan 2.32HR/game producesap-value of 0 (more than four
Sandard deviationsfrom the meen), and thep-val uefor the corresponding test for
theNational Leagueis .00 15.

Inspection of thedatain the gppendix shows that the increases and decreases
in home runs per game from year to year seem to be closeto the same for both
leagues. Not only does the direction of change tend to be the same, even the
magnitudesaf the changes areclose. This pattern consistently repeatsitself over
the entire 1973-1993 time span.

A paired differencetest confirms thisclam. Let ALC denote die changein
the number of home runs per gamein the American Leaguefrom one year to the
next and NLC the corresponding number for the National League. If D = ALC
- NLC, then a test of the hypothesis that the mean of D is zero against the
aternativethat it is not zero producesap-vaueof .8474.

Theregressionandyssshowsthat the home run phenomenon existed for both
leagues in 1987. The paired difference test supports the hypothesis that the
phenomenon was caused by a production of lively baseballs. The two leagues
havedifferent umpires, players, coaches, and managers. The only common factor
between the two leagues is the equipment used, the baseballs, bats, helmets, and
soon. Only the batsand bals can affect the number of home runs, but the bats
are manufactured by mary different companies. Thus we have excluded all
possible explanations, cxccpt the official major league bascballs, manufactured
by only onec company and under contract with the Mgor Lcaguc Baseball
Association.
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Richard Levin, a pokesmanfor the Association, denied that the phenomenon
isexplained by thebaseball. "Theball isthesameasit dwayshas been,”" hesaid
[2, p. 72]. Ex-big league manager Whitey Herzog performed his own test by
unravelingand bouncingtwo baseballs, onefrom 1986 and onefrom 1987._The
1987 baseball bounced higher. We agreewith hisconclusion[2, p. 72]:"'You
didn't haveto be no scientisttofigure that oneout.”
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Appendix
American League
Year HR H SO ERA BB
1973 160 1789  10.13 3.82 6.84
1974 141 16.18 9.80 3.62 6.31
1975 1.51 1735 9.76 3.78 6.86
1976 1.17 17.30 9.41 3.52 6.30
1977 1.78 18.14 9.91 4.06 6.41
1978 1.48 17.59 8.96 3.77 6.43
1979 1.77 18.24 8.92 4.22 6.54
1980 1.63 1848 9.14 4.04 6.37
1981 140 1738 9.27 3.66 6.36
1982 1.83 18.14 9.63 4.07 6.47
1983 1.68 18.22 9.67 4.08 6.26
1984 1.75 18.11 10.20 3.99 6.32
1985 1.92 17.80 10.39 4.15 6.58
1986 2.02 17.85 11.51 418 6.76
1987 232 1818 11.85 4.46 6.89

1988 1.68 17.61 10.87 3.97 6.34
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Year

1989
1990
1991
1992
1993

Y ear

1973
1974
1975
1976
1977
1978
1979

1non
19Xl
pora s iy

1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993

HR

151
1.58
172
157
1.83

HR

1.60
1.32
1.27
1.15
1.68
131
1.47

1 A
I 7
B hlS

1.13
1.34
1.44
1.31
1.47
1.57
1.88
1.32
1.40
1.56
1.47
1.30
1.72

H SO
17.71 10.84
17.55 11.19
17.81 1141
17.64 10.75
18.22 11.42

Nationa League

H SO
17.30 10.81
17.39 10.23
17.49 10.08
17.26 9.88
17.97 10.79
17.03 10.19
17.73 10.20
17.41 9.89
17.58 10.60
17.26 11.06
17.33 11.24
17.07 10.98
17.12 11.98
17.77 11.99
16.75 1131
16.68 11.68
17.40 11.49
16.83 11.78
17.01  11.67
18.01 11.78

ERA

3.89
3.91
4.09
3.94
4.32

3.86
3.62
3.62
3.50
391
3.57
3.73

~
4 Kl
~&.UV

3.50
3.60
3.63
3.69
3.59
3.72
4.05
345
3.50
3.80
3.68
3.50
4.04

BB

6.42
6.73
6.82
6.79
7.06

BB

6.64
7.02
6.92
6.44
6.67
6.46
6.37

6.42
6.14
6.61
6.33
6.56
6.75
6.77
5.96
6.43
6.40
6.43
6.15
6.25

Lo
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Terry McMahan, a 1994 graduate from CentreCollege, was a mathematics
major and had a batting average of .529 as a sophomore. Mike Surrey, who
alsowas graduated from Centrewith a mathematicsmajor and who also played
baseball, isnow attending law school. Their faculty advisor was Professor Bill
Johnston. T

What arethese?

(From Professor K. R. Johnson of North Dakota State University.)

1 A 2. DEPENLINEARENCE
S
Y
M 3. ROOTSROOTSROQOTS
P
T
(0] 4.
T
E
5.

bound

bound

Answers, shoud you need them, areon page 272.




LAPLACE TRANSFORMSANDTAYLOR SERIES

Russdll Euler
Northwest Missouri State University

In [2], basicpropertiesof Laplace tranformsarediscussed. In [11, aformal
power series was used to prove a result involving Laplace transforms. The
purposeof this paper isto show how Taylor seriesexpansonscan be usad tofind
the Laplace tranformsof certainfunctions.

Wewill asumetha f (t) can beexpandedin aTaylor series

M ﬂ0=2%H

on || < R forsome R > 0, where a, = f((0)/n!. Snce L[t"] = n!/s"*!
for s > 0, onecan use(1) tofind L[f(¢)] provided that the Laplace transform
of a power seriescan be computed termwise. Since power seriesare uniformly
convergent on compact subsetsof the interva of convergence, power series can
beintegrated termwise. Also, SinceLaplace transformsareintegral operators, it
is reasonableto assume

«©

@ LN = Y a,L[t"] = E a,

n=0

Sn+l

for s> 0. Inmeany cases, it is possibleto expresstheright-hand sideof (2) in
clossedform.

Asanexanple sncee® = Y (at)"/n! for|t| < and any nonzero
congtant a,
g[e at] Z g[t ] Z a

n=0 ! n=0 §"*!
for s> 0. Butthisisageometricserieswithfirstterm 1/s and ratio a/s, sO

P[e™] - s _ 1
l-als s-a

for |als| <1 (i.e, s> |a|). If theredrictionthat a # 0 isremoved and we
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let a=0, we get that L[1] = 1/s for s > O.
As another example, it iswdl known that

Sinat _ E (_l)n(at)2n+l
n=0 (2n +1)'
for |¢]| <. So,fors>0,
) (_l)na2n+]g[t2n¢l] _ b (_l)na2n+l
Y[sinat] = ¥, ol b
n=0 (2n + l)' n=0 S2n+2

another geometric series, from which ¥[sinat] = a/(s? + a?) follows.

In [2] it was shown udng integration by parts that, with certain growth
regrictionsonf (t), L[f '(t)] = s<L[f(t)] -f(0). Thiscanbeobtaned using
seriesasfollows. From (1),

>

So,
QL' ()] =

I
e
B
Q
|18
—
~
=
'
—
Il
e
S
x
—~
S
|
ereneet
~

Thelast equality follows from (2) and thefact thet a, = /((0)/0! = 7(0).
The above result is essy to generdize usng power series. If k isapositive
integer, then

S®) = in(n - (n-k+ l)ant""‘

n=k
and 0
L/ P(1)] = nz; nin-1)—(n-A+1a, w
> ’%l a
= Z = Z’]' i 2 n!A"__‘_:‘_

’ ¢ k41

3
>

n=0 Y n=0 N
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k-1

= s*QLAO] - X SO(0) s+

n=0

Using the definition of Laplace transform, it is easy to show that

Plet i) =2["]| _, andso L[e®r"] =(_s_-£‘g'-)-_I
Hence,
Dt F(D) = a Ll = Yot — 2 g -
n=0 n0 (s - b)**! o

Thisresult was givenin Table 1 of [2].

Although the computationsin this paper were done formally, perhapsthe
main justification of the techniques is that the results agree with those obtained
using standard techniques.
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WHEN BLESSED EVENTS CO NQ DE

Amanda Beck and A. J. Mitchell
Carthage College

What is the probability of a couple having their first child on their first
wedding anniversary? To answer this question mathematicallyin the real world
would betoo difficult, so we will createa perfect world" by making thefollowing
assumptions.

e All womenwill get pregnant within thefirst year of trying.

@ No birth control methods or fertility drugsare used.

¢ All couples start trying to get pregnant immediaely after their

wedding.

® The time it takes to get pregnant and the term of pregnancy are
independent and normaly distributed.

Let p, bethemeenlength of timethat it takesa coupleto conceivetheir first
childfromtheir weddingday and let o, bethe sandard deviation. Let p, and o,
bethe mean durationand standard deviation of a pregnancy term. The distribution
of the total time from wedding until birth will, because of the independence

assumption, benorma withmean p, + p, and standard deviation \/0,2 +a;.

According to doctors the averagetime it takes a couple to conceiveis six
months, or 180 days. Themean length of the term of pregnancy is 40 weeks, or
280 days. Doctors say that 10% of babies are born on their due date. If we
condder theduedat e to betheexact middieof the actual day, we can say that 10%
of babiesare born within + .5 daysof their due date. Using thesefacts, we can
assign vauesto the parameters.

Since 100% of women get pregnant within thefirst yeer after their wedding
in this perfect world, we assume that dl times to conception lie within = 3
standard deviationsfrom p,. Thetis, 30, = 6months, SO g, = 2 months,

Usingatableof thenormd distributionwefind that 10% of datafallswithin
+.125 gandarddeviationsof p,. Since 10% of babies are born within + .5 days
of their duedate, weseethat 0 125, = .5 days, so o, = 4 days.

So, u, + k, = 460 daysand y o; + o; = 60.1 daysare themean and
standard deviation of thetimeto birth. The probabilitythat thetimewill be
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between 365 and 366 daysis.0019286 or .19%.

This probability is lessthan the random probability of 11365 or .27%. The
reasonfor thisisthat some couples do not conceive soon enough after marriage
to havea baby ontherfirst anniversary. It might beinterestingto seewhat isthe
probability that a second child is born on awedding anniversary.

AmandaBeck is asenior mathematicsmajor at Carthage Collegewith a
stronginterestin computers. A. J. Mitchell graduatedfrom Carthagein 1995
with amajor in businessand a minor in mathematics

A medicd doctor in Japan hasa question, asfollows:

Hereisa perfectdie. When| throw it once, one of thesix numbersl, 2, 3,
4,5, 6 must come up. The probability of each is exactly 116. Supposethat the
outcomesof then tossesare a,, a, -, a whereeach g, isoneof theintegers
from1to®6.

Wecan makearational number fromthesenintegers, 0.a,a - a . Then
we can make thefollowingfinite sequence, $,, s,, - , $,,,

s, =0.a, 5,=0.aa, ~ 5, =004, a,

Thelarger n becomes, the largers, becomes.

If I continueto throw thedieinfinitely often, thisfinitesequencewill become
an infinite sequence. The infinite Sequence is bounded from above (by 213 =
66666 -+ ) and is monotoneincreasing. Doesit converge?

For example, supposethat thefirstfivetosseswerel, §, 3, 2, and 4. If the
sequenceconverges, thenit hasalimit. Letthelimitbes. Then

0.15324111 = < s < 0.15324666 .

Thenwecan writes = 0.15324a.a,a, . Eacha , n=6,7,8, ", isoneof
theintegersfrom 1t0 6. Thelimit, s, isafixed read number. That meansthat the
number g has aready been decided before the sixth toss.
Thisisacontradiction, since the probabilitythat &, will turn upis116, not
1 Thesameistruefor a, 9s, . Therefore the sequence does not converge.
But there is a theorem that a sequence that is monotone increasing and
bounded above must converge. How can this contradiction be resolved?

MATHACROSTICS

Solution to Mathacrostic 41, by Corine Bickley (Fall 1995).
Words:

A. moonstone K. offand on
B. order L. whole

C. rabble M. equate

D. raft N. right hand
E itch O. speed

F. shel sort P. ocean

G. onhigh Q. foggiest
H. Newton R. teteatete
l.  shear stress S. eigensystem
J. paameters T. night

Author and title: Morrisons, Powersd Ten

Quotation: Thestepfrom one sceneto its neighbor is always mede a tenfold
change. The edge of each square representsa length ten times longer or shorter
then thet of itstwo neighbors.

Solvers: Thomas Banchoff, Jeanette Bickley, Barbara Buckley, CharlesR.
Diminnie, ThomasL. Drucker, Victor G. Feser, Richard C. Gebhardt, Henry S.
Lieberman, Naomi Shapiro, and the proposer.

Mathacrostic 42, by Jeanette Bickley appears on the next four pages.
Directionsfor solving acrostocs appear at the end of theclues. Tobelistedasa
solver, send your solation to theeditor.
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Method of finding primes

(3 wds) 110 144 27 172 10 239 72 67 147
12254615077197207 A 1]1G 2|Q 3|S 4|B 5{Z 6|{R 7|W 8 F 9]A 10 J 11|D 12
85 29 24 ; U 13|1 14[X 15. H 16|X 17|H 18 X 18]K 20[H 21|T 22 M 23
A graphical computer- - A 24|R 251 |A 27 O 28]A 29]X 308 31]c 32 vV 3[Q 34 a 35
user interface. 183100212174 5 137 31
H 36|G 37|K 38|C 39 Q40T41.Q42R43T44 1 45 |A 48]Q 47
Exact —_———— 0 48 O 49|L 50 W 51]Y 52|S 53|V 54]Q 55]Z 56 X 57|J 58|H 59
39 190 32 91
Z 60 N 61|G 62 P 63|T 64|F 65 c 66|A 67|Y 68|S 69| F 70
A polyhedron of twenty —_—
faces 118 177 138 28 93 219 90 122 186 E 71]|A 72 F 73|H 74|V 75|M 76|A 77]Q 78 79 [R 80|H 81|L 82|U 83
12 223 Y 84]JA 85 Y 66|F 87|P 88]|G 89]D 90|C 91|U 92|D 93|z °4|c 95
He experienced much P 96[0 57]1 %8|G 99/B100|Z 101]S 102 |U 103 7104 |Y 105 | ¢ 106 |U 107 |Q 108 K 109
ran 142 71 111 180 A110 E111|H 112|R 113 |V 114[0 1150 116 |H 117 [D 118 |M 119 T120]L121|D 122
Those who hope to - 0123|w124[ 2125|1126 |z 127|Q 128 V129 |G 130/ 131 [N 132 Q 133| H 134
knock down pins 73 227 9 87 70 65 222
V135 |G 136 B 137|D 138|Q 139 | M 140]J 141 |E 142 |Z 143 A 144 [Z 145|Q 146 | A 147
Euclid's — T T T T T e T v 148]Q 149]A 150 | H 151] O 152|Y 153 [W 154]|H 155 Q156|z 157 [U 158| v 159 S 160
37 2 130 89 136 62 99 226 _
. . . H161]|b 162 |[K 163 |L 164 X 165 |Q 166 | P 167 |Q 168 R 169 c171
Einstein's achievement -
(2 wds) 237 112 59 240 161 81 21 151 117 A172|0173[B174|Z 175|176 |D 177 |¥ 178 0 179|E 180 | Z 181
155 18 36 74 134 26 16 185|D 186 b 187 M 188| S 189]C 190 [T 191
Bigger than it was W 196[A 197 X 198 b 199 [W200|a 201 [0 202]Q 203 Q204
238 98 14 45 126
208 [Z 210 [W211|B 212 N213[a 214 |c 215 0217|L 218 |D 219]|Q 220
A little one and a big one _ I S
. e 4 F222 D 223|a 224 |A 225 G 226 |F 227 S228|c229 | J 230 Q231|c232
might be visible at night 11 141 216 104 58 230
Q2332234 Z 235U 236 | H 237 1238 | A 239 H 240|Z 241

311




To subjectto extreme
physical cruelty

He discovered that
el* = cosx +isinx

. In afrenzied manner

. An extinct flightless bird

. He was born on the 300%
anniversary of Galileo’s
death (2 wds)

Believe

. Abodyimmersedin
liquid is buoyed up by
a force equalto the
weight of the displaced
liquid (4 wds)

Stately

Not wise

Damage

. There's nothingin
it (2 wds)

38 20 109 163

23 188 76 119 140

132 61 213

13 236 83 158 107 103 92

313

V. — value

W. John Napier's remarkable
invention

X. Abaker's dozen

Y. Elevate

Z. Frequently studied by
teens (2 wds)

a. Possessing

b. Presidential

c. It's past now

224 35 192 205 214 201

199 162 208 187

106 171 66 209 184 232 215 229 95

The mathacrostic is akeyed anagram. The 241 letters to be entered in the
diagramin the numbered spaces will be identical with those in the 29 keyed words
at the matching numbers. The key numbers have been enteredin the diagram to

assist in constructing the solution.

When completed, the initial letters of the words will give the name of an
author and the title of abook; the completed diagram will be a quotation from that

book.
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PROBLEM DEPARTMENT

Edited by Clayton W. Dodge
University of Maine

This department welcomes problens believed to be new and at a leve
appropriate for the readers of this journal. Old problems displaying novel
and eegant methods of solution are also invited. Proposals should be
accompanied by solutionsi f available and by any informationthat will assist
the editor. An agterisk (*) preceding a problem number indicatesthat the
proposer did not submit a solution.

All communications should be addressed to C. W. Dodge, 5752
Neville/Math, University of Maine, Orono, ME 04469-5752. E-mail:
dodge@gauss. umemat. maine. edu. Pleasesubmit each proposal and solution
preferably typed or clearly written on a separate sheet (one side only)
properly identified with name and address. Solutions to problems in this
issue should be mailed by Decermber 1, 19%%.

Problemsfor Solution

875. Proposaed by Howe Ward Johnson, Iceboro, Maine.

A certain restaurant chain used to advertise” 28 flavors" of ice cream.
In remembrance of many pleasant stops there, this problem is proposed.
Replace each letter by a digit to reconstruct this base ten equation:

(ICE* T 28 = ICONE.

876. Proposed by Peter A Lindstrom, Irving, Texas.

Consider the portion of atypical caculator keyboard shown on the next
page:

a) Define a small square number to be a four-digit number formed by
pressing in cyclic order four keys that form a small square, e.g. 1254 or
8569. Show that each small square number is divisibleby 11.

b) Define a large square nunber to be a four-digit number formed by
pressing in cyclic order thefour keys that form the vertices of the large
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square, e.g. 9713 or 3179. Show that each large square number is divisible
by 11.

¢) Define a diamond nunmber to be a four-digit number formed by
pressing in cyclic order the four keys that form a diamond, e.g. 6842 or
2486. Show that each diamond number is divisible by 22.

d) Define a big square number to be an eight-digit number formed by
pressing in cyclic order the eight keys that form the vertices and sides of the
large sguare, e.g. 98741236 or 14789632. Show that each big square
number is divisibleby 11 and is divisible by neither 3 nor 5.

€) Define a rectangular number to be a six-digit number formed by
pressing in cyclic order six keys that form the vertices and sides of a
rectangle, e.g. 987456 or 478521. Show that each rectangular number is
divisbleby 111.

) Define a double triangle number to be a six-digit number formed by
pressing in any order the six keys that form the vertices of two right
triangles with a common hypotenuse, e.g. 958956 or 421245. Show that
each double triangle number is divisibleby 3.

877. Proposad by the late John M. Howell, Littlerock, California.

For given constantsa, b, ¢, d, letq, = a,a, = b, and, forn > 1, let
a, = ca,_, + da,_,.

a) Find a, interms of a, b, ¢, and d.

b) Find lim,, (a,/ a,_,).

¢) Find integersa, b, c, d so that the limit of part (b) is 3.

878. Proposed by Andrew Cusumano, Great Neck, New York.
If x is a solution to the equation x* — ax + 1 = 0, wherea is an
integer greater than 2, then show that x* can be written in the form p +
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qﬁ, wherep, g, and r are integers.

879. Proposed by BartonL. Willis, Universty d Nebraskaat Kearney,
Kearney, Nebraska
A Mydery Space. Let S be aset of ordered pairs of eements. Define

binary operations +, *, and + onShy
@b t@cd=@tcbtad, (ab*ed=c, ad?t b,
and
(a,b)+(c,d =(@ac,bac—ad+ A).

Although it might be fun to deduce properties of space S (commutativity,
associdivity, etc.), the problem isto find an applicationfor S.

880. Proposed by Rex H. WU Brooklyn, New Yak
Evauate, wherei = /-1 ,

lim ‘l(eZalln _ e-2ailn).

n»o 41
83l Proposed by Andrew Cusumano, Great Neck, New Yak
Let ABChean equilateral triangle with center D. Let abe an arbitrary
positive angle less than 30°. Let BD mest (A at F. La G bethat point on
segment CD such that angle CBG = a, and let E be that point on FG such
that angle FCE = a. Provethat DE is pardléd to BC.

882. Proposed by Rex Wu, Brooklyn, New Yark.
Define, for any nonnegativeinteger m and any rea number n,

[n] - - -m D) el [n} - o.
m m! m

Find the values of

o B[ = @ B[
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883. Proposed by Samnmy Yu (student), University d South Dakota,
Vermillion, South Dakota

M. N. Khatri [Scripta Mathematica, 1955, vol. 21, p. 94] found that
from theidentity T(4) + 719) = 7(10), where T(n) = n(n + 1)/2 isthenth
triangular number, Pythagorean triples (5, 12, 13) and (8, 15, 17) produce
the moregeneral formulasT(4 + 5k) + T(9 + 12k) = 110 + 13K) and 714
+ 8k + T(© T 15k) = T(10 T 17k), wherek is a positive integer. Given
p, 1 r, sothat T(p) + T(g) = T(), find Pythagorean triples(a, b, c) so that
@dTr=adTp T & * Tq T k) = 7 T &) for any positive
integer k.

884. Proposed by Seema Chauhan, Lucknow, India.

a) Held every day is a tutorial class in which 2m studentsare enrolled.
Exactly m of these students, sdected at random, attend class on any given
day. If the class meetsfor exactly 2r days, find the probability that in the
end each student has attended exactly r classes.

*b) Theclass of part (8) contains m boys and mgirls. For eechp, 0 <
p < r, find the probability that each girl attends exactly r + p classesand
each boy attendsjust r — p classes.

885. Proposed by Arthur Marshall, Madison, Wiscondn.
Evduate the sum

D
13m0y - 1)
886. Proposed by R. S Luthar, Universty & Wisconsn Center,
Janesville, Wisconan.
Find the general solution in integersto the equation x> — 8y t7=0.

887. Proposed by J. S Frame, Michigan State Universty, East
Lansing, Michigan.

The Fibonacci numbers F, aredefined by F, = 0, F, = 1, and F, =
F., T F,_, for k > 1. Compute the following sums involving Fibonacci
numbers.

n

- 1 &
Sl.n = and S o — —_— =
; Fy i Fy,, - Z; Fy F

.
+2

1
2%
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Also find their limitsS, and §, as n=» oo, Expressthefinitesumsas rationa
numbers in lowest terms. Findly, smplify each of the following
expressions.

S2
g = ol amE -5,
Sz Sz,n Sl,u
d=.§§.:". s,,, ad e=_%~i.
2n Sl,n SZ.n
Solutions

844. [Fal 1994, Spring 1995] Proposad by Bill Correll, Jr., student,
Denison Univergty, Granville, Ohio.

If F, denotes the nth Fibonacci number (F, = F, = 1 and F,,, =
F, + F,,, for k a positiveinteger), evauate

; [Z] Fu/2""‘.

|. Solution by the Proposer.
For 0 < |x| < 1, recdl that 2=_,x* = -1 T 1/0 - x).
Differentiation k times yields
Y -Dn-2)-@m-k+1x"* = K1 -0*",
n=1
from which we get that

f:nx"=___xk 1= )"
Pl a-»~ x|T-x|

Let4 = (1+ /5)/2. Then

H L P HIU 1B

_ 1 2 ¢ k+1 _ l kel
75 E[M] *2"’[ 2¢*1]
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= _L[(F-neert « (Frne-y5 ]
245
sincewehave -1 < —-1/24 <0< ¢/2 < 1L

O, Solutionby Paul S Bruckman, Edmonds, \Nashington.
Recdl the wel-known "Binet formula" for the Fibonacci numbers,

.

F, = L@ - 8", where a = # andB = 1 ‘2‘/5_
5

Itiseasy to verifytha aB = —1,2 — a= 8% ad2 — B = o Recall
asothat (3) iszeroif k < Oor if nisapodtiveinteger and k > n, that
CH = (" andthat " = (-1)"™. Now, fork =0, 1, 2, 3, ..., teke

—G’ n Fﬂ_“ n I:n_m n+k Fiu
SIHESHESESE

n=1 n=k n=0 n

o [ [2)

n=0 n

= %Eo [—kn_l] [__71_] (amk _ﬁmk).

Since |8/2] < |all| <1, weobtan

a9 )]

= 1 [akﬁ—Zk-z - Jgka-u-z] = 1 [asm _ ﬁam] = F, 32

21 ‘/5_ k-1 ‘[5' 21

Editor's note—The misprint in the original statement of the problem
prompted the following two submissions.

. Comment by Bob Prielipp, Universty of Wisconsin, Oshkosh,
Wisconsin.
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We assume the proposer intended the following summetion:

SRR

k=1 k=1 k=1

Bl () (2 -1 = Exy e [L) - &
= 1 2 i3 | k 2 p
=_F_.".1+.l —f’.‘:ﬂ 3 -1].

2 2 2" 2" 2

V. Comment by Paul S. Bruckman, Edmonds, \Nashington.

As it was stated originaly, the statement made no sense. This solution
is based on the assumption that the proposer intended the following
summeation:

[ o)

n F
S(n) = b sk
( ) g i k] 2n+k

Lettinga= (1 + {5)2adB = (1 — /5)/2, we havethat
n 3 k
S(n) = 1 [n [%] (an-k _ﬁn-k)

1 e 1 = [n) [1) e
IR I HIEE

1
/5
1
45
Snce2at 1 =aand B T 1 =8, then
1
45

I
—

[Qa + 1) - 28 + 1)").

S(n) =

F
ot - B3 = 3n .
@ - p =
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Also solved by Henry S. Lieberman and Bob Prielipp.

&49. [Spring 1995] Proposed by L. A. Bohr, Great Works. Maine.
Solve this base 8 addition aphametic: THIS + IS = WORK.

Solution by Victor G. Feser, University of Mary, Bismarck, North
Dakota.

The unique solution is 1756 + 56 = 2034,

Immediately we haveH = 7,0 =0, W= T+ 1, and | = 4. There
aresix possible vduesfor S from eech we get a valuefor K. This process
eliminatesS = 4, K = 0. For each of the remaining five pairs we choose
al available values for |, and thus get R. Eliminating duplications of
previousvalues, weareleft with just four cases: (S,K, I, R) = (1, 2, 6, 4),
(3,6,5,2), (5 2, 4, 1), ad (6, 4, 5, 3). Theremaining two valuesare T
and W. In only theone case (6, 4, 5, 3) can we hae T+ 1= W, the case
given above.

Also solved by Charles Ashbacher, Adelicia Beckhama, Aaron Bedler,
LauraBolton, Scott H. Brown, Paul S. Bruckman, James Campbell, Sandra
Rena Chandler, William Chau, Shaw Cunningham, Martin Davis, Mark
Denton, Jack T. Dunn, Mark Eckstein, Mark Evans, Robert C. Gebhardt,
Brandi Hamilton, Michael Hamilton, Lynette Harvey, Richard |. Hess,
Jamie Kiner, Kee-Wai Lau, Carl Libis, Henry S. Lieberman, Peter A.
Lindstrom, Yoshinobu Murayoshi, Chuck Pierce, Mike Pinter, Medley
Raymond, H.-J. Seiffert, Carla Strassle, Kenneth M. Wilke, Rex H. Wu,
and the Proposer.

*850. [Spring 1995] Proposed by Bill Correll, Jr., student, Denison
University, Granville. Ohio.

Clearly the following integrd evauaion is incorrect. Find the flaw.
By lettingu = —x weget that

1= [ +Dde = - [+ Dau = - [mELaw
e

= - I Ine® + 1)du + Iln(e")du = —I+ u?/2 + C,
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sothatl = x#4 + C'. (SeeProblem 828).

Solution by David Tascione and Christopher W. Murphy, students, S.
Bonaventure University, S. Bonaventure, New York.
Each step of the solution proves vaid except for the final substitution

I= Iln(e" + 1) du.

These are not equivalent expressions for the indefiniteintegral. The initial
integral should be described as

Ix) = [ln(e’ + 1) dx,
whereas the latter integral is actually
I(-x) = J'ln(e“‘ + Dd(-x) = -Im(e-x + 1) dx.
The correct final statement would then become
x').
Ix) = I(-x) + 5+ C.

Also solved by Charles Ashbacher, Paul S. Bruckman, James Campbell,
Russell Euler, Mark Evans, Victor G. Feser, Robert C. Gebhardt, Richard
|. Hess, Henry S. Lieberman, Peter A. Lindstrom, V. S. Manoranjan,
Kandasamy Muthuvel, Mike Pinter, John FE. Putz, H.-J, Seiffert,
Selvaratnam Sridharma, and Rex H. Wu.

851 [Spring 1995] Proposed by Bill Correll, Jr., student, Denison
University, Granville, Ohio.

In triangle ABClet Cevian AD bisect side BCand let Cevians BE and
BFtrisect side CA. Let AD intersect BEat Pand BFat R, and let CP meset
BFat Q Seethefigure. If thearea of triangle ABCis 1, find the area of
triangle PQR.

|. Solution by William H. Peirce, Rangeley, Maine.
This problem and Problem 846 in the Fall, 1994, issue are specia cases
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of a more general problem: If
ABCand PQR are two coplanar
triangles with a known linear
rel ationshipbetweenthevertices
P, Q, R and the vertices A, B,
C, find the ratio of the triangle
aress.

The solution to the genera
problem makes use of three
lemmas, the first two of which
are stated without proof. They
apply equaly well to rectangular coordinates in the Cartesian plane or to
affixesin the complex plane.

Lemma 1. Any point on the line through two digtinct points can be
expressed uniquely as a linear combination of the two points in which the
coefficients add to 1.

Thus, if A(ay, ay), B(b,, by), C(c,, ¢, are Cartesianpoints with C lying
on line AB, then there are unique real constantsm and n such that m +n
=1,¢c, =ma T nb, andec, = ma, T nb,. If a, b, c aretheaffixesof A,
B, C in the complex plane, then c = ma + nb for the same mand n. In
either case we will write C = mA + nB.

Lemma 2. Any point in the plane of three non-collinear (and therefore
distinct) points can be expressed uniquely as a linear combination of the
three points, in which the three coefficients add to one.

Lemma 3. If points P, Q, R are related to pointsA, B, C by

P=uA+ u,B+uC, Q@Q=vA+vB+vC, R=wA+ w,B+ wC,
where

u(+u2+u3=vl+V2+V3=W1+W2+W3=1,

then theareas K(PQR) = + H'K(ABC), whereH is the 3X 3 determinant of
the coefficients

o u, U
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The plus sign is used if the two triangles have the same clockwise or
counterclockwise orientation, the minus sign if they are opposite.

To establish Lemma 3, recdl that the area of triangle ABC is given by
either of these two determinant formulas, the former for rectangular
coordinates, the latter for complex coordinates:

a a, 1
K4BO = b b U= &

¢ c 1

1

1,
1

i

|
ol o &l

a
b
c
using whichever sign makes the value nonnegative. It is easy to check that
the product of determinant H by either of these two determinantsyields the
corresponding area determinant for triangle PQR. Since the determinant of
a product equds the product of the determinants, Lemma 3 is established.

Problems such as 851 and 846 are solved by finding the determinant
whose rows are the coefficients of P, Q, and R when each is written as a
linear combination of A, B, and C. Problem 851 is now solved by using the
defining intersections to determine these coefficients.

SinceD is the midpoint of BC, then D = B/2 + €/2. Likewise E =
24/3 T C/3 and F = 4/3 T 2C/3. For some),

P=)\A+(1—-)\)D=)\A+1;)‘B+ I;Ac.
Also, for some y,
P=uB+(l—u)E=&_§_’_‘_).A+uB+_l__;’_ﬁC.

The coefficientsof A, B, and Cin each expressonfor Padd to 1. Now the
uniqueness property of Lemma 2 alows usto equate like coefficientsto get
three equationsin X and p:

SN+ 20 =2, AN+2u=1,and3\ — 2p = 1,

which are consistent and have the unique solution A = 112 and p = 114.
Using these values in either expression gives

p=14.1p,1¢

A S
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Point Qlieson BFand CPand point Rison BFand AD. By the method
of the preceding paragraph we obtain

= 2 l 4 = 1A + EB + gc.
Q 7A + 7B + 7C ad R 5 = E
The determinant of Lemma 3 is now reedily calculated. We have

172 1/4 1/4
H= 2/T 1/7 47 =
1/5 2/5 2/5

2

Since K(ABC) = 1, then K(PQR) = 91140.

II. Solution by Jianming \WU student. Denison University, Granville,
Ohio.

Draw segment DF to intersect PCat J. SinceEF = FCand BD = DC,
then FD is parale to EB and FD = EB/2. Alo AP = PD because 4AF =
EF, PE = DF/2, and JF = PE/2. L&t JF = x. Then PE = 2x, DF = 4x,
BE = &, and BP = 6x. SincetrianglesBPQ and FJQ are similar as are
trianglesBPR and FDR, we have

BR _ PR _BP _ 6 _ 3 BQ _BP _ &

RF ®D T®™ & 2 QF F =

2BR = 3RQ + 3QF, BR + RQ = 6QF,

BR+ RO = 4R - 6RQ, and BR _ 7

RQ 3

Since BD = DC, then K(ABD) = 112. Snce AP = PD, then K(BPD) =
K(ABD)/2 = 114. From PR/RD = 312 we get that

3

K(BPR) = %K(BPD) - =

Finaly, BR/IRQ = 713 gives us
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a _ b
20 140°

Also solved by Miguel Amengual Covas, Paul S Bruckman, William
Chau, Mark Evans, Richard |. Hess, Henry S. Lieberman, Y ashinobu
Murayoshi, William H. Peirce (second solution), Rex H. Wu, and the
Proposer.

K(POR) = 3

852. [Spring 1995] Proposed by Rex H. Wu, Brooklyn, New York.
Let E be a point insdesquare ABCD with BE = x, DE =y, and CE =
z. If 2 +y? = 27 find thearea of ABCD in terms of x, y, and Z.

I. Solution by Victor G. Feser, University of Mary, Bismarck, North
Dakota.

Let the square have Sdes of length 1. Drop perpendiculars from point
Eto FonBCandto G on CD, of lengths g and f, respectively, as shown in
the accompanyingfigure.

A D
N/
E/”f g
x z
4
B F C

By the Pythagorean theorem we have
V=r1t0-9g% 2=t A—-sR and 2= + g

Substitute these values into the equationx? + y? = 22 and simplify to get
f + g = 1. It follows that BFE and DGE are both isosceles right triangles
and thus D, E, and B are collinear, forming a diagond of the square. Then
by familiar formulas, the area of the square ABCD is (x T y)%/2.

[1. Solution by the Proposer.

Rotate triangle BCE 90° about point C so0 that BC coincides with DC
and let E mgp to E'. Then ZECE' = 90° and EE' = zy2. In triangle
EDE' wehavex? + y* = 272 which impliesthat ZEDE' = 90°, <0 then
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quadrilateral CEDE' can beinscribedin acircle (with center at the midpoint
of EE"). Now we gpply Ptolemy’s theorem to get

DC-EE' = DE-CE' + CE-DE', DC-z/2 = yz + xz,
S0 that
2
K4BCD) = DC? = £ — 22 4

III. Comment by William H. Peirce, Rangeley, Maine.

Thelocus of E isthe diagona BD of the square, so that x +y = BD.
The theorem can be generadized to dlow E to lie outside or on the square,
with the understanding that the numerically smaller of x and y will be
replaced by its negative. Then E ill lies on the diagona (extended) and the
areaof thesquareis still (¢ + y)%2 = 22 + xy. Of course, in this case, xy
<0

Also solved by Scott H. Brown, Paul S. Bruckman, William Chau, Mark
Evans, Robert 'C. Gebhardt, Richard |. Hess, Jamshid Kholdi, Henry S
Lieberman, David E. Manes, V. S. Manoranjan, Can A. Minh, Kandasamy
Muthuvel, William H. Peirce (two solutions), H.-J. Seiffert, George
Tsapakidis, Kenneth M. Wilke and Sammy and Jmmy Wu.

853, [Spring 1995] Proposed by Charles Ashbacher, Cedar Rapids,
lowa.

This problem was submitted by Vietnam for the 1990 International
Mahematicad Olympiad and has appeared in booklets overseas. If red
numbersx =y = z > 0, then prove that

2 2
___xzy+'_y_f+zxsziry2+z2

z x y
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I. Solution by Henry S. Lieberman, Waban, M assachusetts.
By using the A.M.-G.M. inequality, we obtain that

_y..+_+_.23
4 X Y

from which we get

o] efs ] efs o) o

Denote by Q the left side minus the right side of the desired inequdlity.

Then
Q=x2[z-l] +y2{£—1] +z[ -1]
z x y

and @ 2 0if Q — P 2 0. Weestablish this latter inequality thus:

omresfp ] ol el el

= (xz _zz))’;z +0,2 _zz)Z

]

@ - 20 ~Z)[x M +z)[~l”
F4 X

- -2 -
xZ

z)(x"‘ +x2 -yz -2%)

(x

— +0'-z_)[(x2 -2 tx -y =20

HO. Solution and generalizationby Murray S Klamkin, Universty d
Alberta, Edmonton, Alberta, Canada.

Let (X, Y, 2) = (1/¢, |Ib, 1/a), S0 that we want to prove equivaently
that

1) &bt et daz bttt o
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wherea 2 b = ¢ > 0. Moregenerdly, weshow thatif a, = a, = -+ =
a3 >0andm=n = 0, then

()] S(m, n) = Sm, m — 1)
where
S(m, n) = at*"a5™" + a3 a} " + 0 + artray ",

Since it is known [2] that S(m, n) = S(n, —n), we have by Cauchy’s
inequality that

S*(m, n) = S(m, n) S(n, —n) = S(m, 0).

For the specid caser = 3, m = 2, n = 1, we get inequality (1).
By Holder's inequality we get

S(m, n) = [S(n, n)]* V" [S(n, —n)]'™ = S(n, n—1).

This latter inequality dlows us to interpolate the inequdity S¢m, n) = S(m,
0), i.e., in termsof other exponents:

H'-'a =L@ %> - = Laal,

where the sums are cyclic over theindices 1, 2, ..., r

Also solved by Miguel Amengual Covas, Paul S. Bruckman, J. S
Frame, Richard |. Hess, Joe Howard, Kee-Wai Lau, David E. Manes,
Yoshinobu Murayoshi, Kandasamy Muthuvel, H.-J. Seiffert, George
Tsapakidis, J. Ernest Wilkins, Jr., Rex H. Wu, and the Proposer.
Amengud Covasfound theproblem in references 1.and 3, and Howard also
supplied reference 1.

References

1. Crux Mathematicorum, 20(1994)43-44, Problem 6.

2. M. S Klamkin, Crux Mathematicorum, 6(1980)107,

3. The Vietnamese Nationd Olympiad in Mathematics for Secondary
Schools, Hanoi, February, 1991.
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854. [Spring 1995] Proposed by Jayanthi Ganapathy, University d
Wisconsin at Oshkosh, Oshkosh, Wiscondn.
Let aand b be two nonzero real numbers such that

@(3a® - 5ab + 3b) = b’(5a* — 3ab + 5b%).
Find the values of the expressions (a2 + b2)la? and (a? - b*)/ab.
Solution by Can Anh Minh, student, University d California, Berkeley,

Cdifornia
Substitute b = ta, so that t = b/a. The given equation reduces to

3-5t+32=207(5-3t+559
and
5 -3¢+5°_-33t5 -3=0,
which factors easily to yield
St—=3)(+F2+1)=0.
Since the latter factor has no real roots, we must have t = 315. Hence

16

—t= =
15

a’ + b’ 4 a?-b? 1
sl = M T g
Also solved by Anurag Agarwal, Miguel Amengual Covas, Seung-Jin
Bang, Scott H. Brown, Paul S. Bruckman, James Campbell, & Ira Rena
Chandler, William Chau, Russell Euler, GeorgeP. Evanovich, M « k Evans,
Victor G. Feser, Robert C. Gebhardt, Richard |. Hess, Joe Howard,
Jamshid Kholdi, Murray S. Klamkin, Kee-Wai Lau, Carl Libis, Henry S.
Lieberman, Peter A. Lindstrom, David E. Manes, Kandasamy Muthuvel,
Yoshinobu Murayoshi, William H, Peicce, Bob Pridlipp, H.-J. Seiffert,
Selvaratnam Sridharma, Kenneth M. W.ike, 1tex H. Wu, and the Proposer.

855. [Spring 1995] Proposed by the late Florentin Smarandache,
Phoenix, Arizona

Prove that a square matrix of integers, having in each row and in each
column a unique element not divisibleby a given prime p, is nonsingular.
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Solution by H.-J. Seiffert, Berlin, Germany.

Let A = (ay), i, j = 1, 2, ..., n, be a square matrix having the
described properties. Then there exists one and only one permutation It « §,
such that p /f a,,, for dl i e {1, 2, ..., n}. Sincep is a prime, then p }
IT;_, a,,- For al other permutationsa e S, a = 11, we have that p |
IT;_, a,,,- Since

det(d) = sgn(m) [J a,, + Y sen@ ] a,,,
i=1 i=1

€S,
aEX

we see that det(4) is an integer of theform det(4) = r + ps wherer, Se
Zand p }f r. Hence r + ps cannot be O, so det(d) = O and A is
nonsingular.

Also solved by Paul S. Bruckman, James Campbell, Richard 1. Hess,
Murray S. Klamkin, Henry S. Lieberman, Can A. Minh, Skidmore College
Problem Group, and the Proposer.

856. [Spring 1995] Proposed by Paul S. Bruckman, Edmonds,
Washington.

Starting with a regular n-gon whose side is of unit length, snip off
congruent isoscel es trianglesfrom each of its vertices, resulting in a regular
2n-gon. Repeat the process indefinitely. Find the ratio of the area of the
limiting circle to that of the original n-gon.

Solution by H.-J. Seiffert, Berlin, Germany.
It is easily seen that dl the regular polygons obtained by the described
process have the same inradius r as the original n-gon. The area of the
original n-gon is S = mil and of the incircle is C = 772, where we have
tan (x/n) = 1/(2r). Since the incircle is the limiting circle, we have
C _ 2ar? win  _ %mt[w}

h rn tan (7/n)

n

Alsosolved by James Campbell, Mark Evans, Richard |. Hess, Murray
S. Klamkin, Henry S. Lieberman, William H. Peirce, Skidmore College”
Problem Group, Rex H. Wu, and the Proposer.
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857. [Spring 1995] Proposed by Andrew Cusumano, Great Neck, New
York.

Find all prime numbers whose reciprocas have repetends of exactly
seven decimd places.

I. Solutionby J Ernest Wilkins, Jr., Clark Atlanta Univerdty, Atlanta,
Georgia

If p issuch aprime number, then 11 p can be written as afraction whose
numerator is the seven-digit repetend and whose denominator is 9999999.
Hencep is a factor of 9999999 = 32-239-4649, so p is 3, 239, or 4649.
Clearly, p = 3 does not satisfy the conditionsof the problem, but p = 239
and p = 4649 do; the repetends for 11239 and for 114649 are 0048141 and
0002151, respectively.

II. Solution by Bob Prielipp, Universty d Wisconsin-Oshkosh,
Oshkosh, \Wisconan.

Theorem 4 on pages 123-124 of [1] statesthat if ged(n, 10) = 1, then
the period of 1/n isr, wherer isthe smallest positiveinteger such that 107
= 1 (mod n). Now 107 = 1 (mod p) if and only if p divides 10’ — 1 =
9999999 = 32-239-4649. Now 7 is the smallest positive integral exponent
r such that 10 = 1 (mod p) for p = 239 and for p = 4649, but 10' = 1
(mod 3). Thus 239 and 4649 are the desired primes.

Also solved by Paul S. Bruckman, Russdl Euler, Robert C. Gebhardt,
Richard|. Hess, Jamshid Kholdi, Henry S. Lieberman, Peter A. Lindstrom,
David E. Manes, ThomasE. Moore, H.-I. Seiffert, Kenneth M. Wilke, Rex
H. Wu, Sammy and Jmmy Wu, and the Proposer.

Reference

1. U. Dudley, Elementary Number Theory, 2nd ed, W. H. Freeman and
Company, San Francisco, 1978.

858. [Spring 1995] Proposed by David Iny, Batimore, Maryland.
It is known that the ratiiond numbers in the intervad [0, 1] can be
enumerated. Let {r,}5., be such an enumeration and pick ¢ such that
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0 < e < 1L Takeanintervd I, of length e27* centered on each r,. Then
the sum of all theseinterval lengthsE5., r, = € < 1. Show how to find
areal number in [0, 1] and not contained in any of theintervalsi,.

Solution by Henry S Lieberman, Waban, Massachusetts.

TheCantor diagona method workshere. Consider adenumerablelisting
of the nonterminating decima expansonsof the rationds {r,}% -, in [0,1].
Without loss of generdity we assume that the tenths digit in each of r,
through r, is zero. Constructa red number s asfollows. Let thetenthsdigit
of sbe7. Then |s —r,| 206 > 22> 2% Foreachr, k=1, 2,
3,4,wehave | s - r,| = 0.6 > 27*!¢, so s liesoutsideintervalsl ,, I,
I, and I,. Foreachk e N, k > 1, |et thekth entry of s be thesmallest of 3,
4,5, 6, and 7 that is not equal to the kth entry of r, for m = 4k + 1, 4k +
2, 4k * 3, and 4k * 4. Then, assuming theworst possible case for the (k
+ 1)st decimal place, | s = rg. | = 03107 > 0.3:2°% > 2742 >
2 %%, 30 s lies outside the interval I,;,,. Similarly, it lies outside Iy,
I3y and Iy, ,. Hence s isadecimd in (0,1) and lies outsideall the I,.

Alsosolved by Paul S. Bruckman, Sdvaratnam Sridharma, Rex H. Wu,
and the Proposer.

859. [Spring 1995] Proposed by J S Frame, Michigan State
Universty, East Lansing, Michigan.

Sum in closed form the series
~ 1 (—1/2
n=1 n+ 1 h

I. Solution by Paul S Bruckman, Edmonds, \Washington.
Wefirgt show that S isawell defined congtant, i.e. the series converges
(absolutely). F omStirling's formula,

2
2n "‘~"-4—2-n- an—> oo,
n nw

mm=-1)m=-2)--(m-n+1) )
n!

S = )2, where ':) =

Note that

=T li) ()
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Then, for some constant C we have

-

1
0<sS<C -— =
,gn(nJrl)

bg

which proves the series converges.
Using Pochhammer’s symbol (x), = x(x + DEt2)-(xtn-1,we
next express S in the form
1 1
= (3), {5,
=¥

&S

Therefore, S may be expressed in terms of the hypergeometric function F
S

S = -1+ Fos, %; 2; 1).
It is wdl known, whereT is the gamma function, that

Tre)'c-a-b)
Tc-aT(-b)’

provided that Re(c - a - b) > 0 and cis not a nonnegetiveinteger. Thus

F(a, b; c; 1) =

S=—-1%1FW%, %;21) = -1+ TQIWO
T'%(3/2)

= -1+ 2 = 02732305,

w

snceI'(1) = T'@2) = 1and I'G3/2) = V= /2.

II. Solution by the Proposer.
We have that

e i. 1 (-11/2)2

n+1

_ o _1/2 2 «/2.2" l—”
E[ ]_Io sin OdOI(x)dx

n=1 n L) 0

x2

1
=2 [ j [(1 - xsin’0)" - 1]dxdo.
TJo 0
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We 52t x = (SNP¢)/(sin’f), 0 dx = 2 5n ¢ cos4 de/sin®8, and we get

2 /2 [}
S = _] sin‘ZGI (sec¢p - 1)2sin¢ cos do db
wJo 0
sin’@
sin24 [1 - cost - 3 dé

w/2

",

x/2
=i[ sec2|8]all] -1=34_1.
7)o 2 2 T

Also solved by Murray S. Klamkin, Carl Libis, and H.-J. Seiffert.

860. [Spring 1995] Proposed by Richardl. Hess, Rancho Palos Verdes,
California.

This problem originally appeared in acolumn by the Japanese problems
columnist Nob Yoshigahara. Find the minima positive integer n so that
2n * 1 circles of unit diameter can be packed insde a 2 by n rectangle.

Solution by the Proposer and the Problems Editor.

The "usual™ packing of pairsof circles sde-by-sdewill alow only 2n
circles in a 2 by n rectangle, so we must use a different packing. Let us
“glue” equilateral triangles of 3 circles each, and then pack them into the
2 by n rectangle, as shown in thefigure.

Clearly we lose at the start, since a 2 by 2 rectangle then holds just 3
circles, circdles (P), (D), and (Q). Sincethe height 7 isonly 4/3/2, there
is a dight gain in space when the next t1 of circesis  -edin. Since
DE=1and CE =1 - 3/2,then CD = {/3 - 3/4 = 0.9909847666
by the Pythagorean theorem. Hence, although 3 circlesfit in a rectangle of
length 2, we have 4 circlesfit in oneof length 1.5 + D = 249, 5circles
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fitinlength2 + €D = 2.99, 6inlength2.5 T CD = 3.49. Ingenera, 3n
- 2circlesfitinlength (n — 1)CD + (n * 1)/2, 3n — 1fitin(n — 1)CD
+ (n t 2)/2, and 3n circlesfitinlength (n — 1HCD + (n T 3)/2. Sincewe
want the number of circlesto be twice the length plus one, we examine the
equation

n-2=2(n-DED Tt (ntpr1t1
and solveit for n to get

2-CD
1-CD

Using the second general case with n = 112, wefindthat 3n — 1 = 335
circles fit in length (n — 1)ep + (n + 2)/2 = 166999 < 167.
Furthermore, n = 111 produces 331 circles in length 165.008 > 165,
which does not saveenough length. In thefigure above notice that if we cut
off theleft 1 unit, we remove spacefor exactly thefirst two circles. Doing
so, we find that the smallest solution to the problem is 166 units of length
enclosing 333 circles.

Are there other configurations that might produce smaller solutions?
Onemighttry packing "rhombi* of four circles"glued” together, as shown
in the figure below.

n= = 111.92.

M N
K L

<4/§ B
\Aj J\!"/K

A derivation similar to that above shows the distance

AF = _'/23_ + ‘[?3_ =~ 0.995781916.

Here the smallest solution is 238 units of length for 477 circles. Thus the
first solution is more efficient.

Alsosolved by Rex H. Wu. One incorrect solution was received.
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8L [Spring 1995] Proposed by J S Frame, Michigan State
University, East Lansing, Michigan.
Evauate in closed form the sum

S(n, k) = }nj(-l)f ["] [ZZ] .

j=0 J

Solution by Paul S Bruckman, Edmonds, Washington.
Let

(¢)) f@O=(-2"=1-1+x1,n=0,1,2, ...

Then

Z " % .
0= (5] o= § 5w (1)

j=0 Jj=0

-En B ()3 - R (] 2]

k=0

2n
= Y S(n,B)x*
k=0

since [:Z] - 0if0 <2 <k

From (1) we seethat theexpansion of £, (x) contains no termsfor powers
of x that are less than n. Therefore, S(n, k) = 0if O < k < n. Thus

2n

2 Sx) = ES(",k)x"
k=n

On the other hand,

k-0

i) = (—x0)"(x + 2) = (—x)nz [:} Xt —

nz’l n 2n-k .k
-1ry k—n]2 <.

ken
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By comparison of the coefficientsof this last expresson and (2), we obtain

n .
S(n, k) = (_l)nth\;/n ot if n <k<2n
O ot is4.

Also solved by Murray S. Klamkin, H.-J. Seiffert, and the Proposer.
Klamkin found the inequality in H. W. Gould, Combinatorial |dentities,
Morgantown Printing and Binding G., Morgantown, 1972, p. 29, #364.

Eoal
i
i

Now let n go to infinity.

MISCELLANY

Trisectingthe Paper Better

Professor MONTE ZERGER of Adams State College (Alamosa, Colorado),
referring to the method of dividing a sheet of paper into vertica thirds using
nether ruler, straightedge, nor compassin the gpring 1995 issue (10 (1994-99)
#2, pages 128-130) says that he hasfound a method that isjust as smpleand

y| B A

Figurel Figure?2

does not depend on thelength of the paper. Hereishow todoit.

"(I) Cresteasguareonthe upper portion of the sheet by bringing the upper
and left edges of the sheet into coincidence. Labd the vertices of the square
ABCD asshowninFigurel, and unfold..

"(2) Locate E, themidpoint of BC, by folding AB to coincidewith DC.
Unfold. SeeFigure2.

A B
p
E

A
nk x

G

D5 ==

Fgure3 Figure4

340
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'(3) Foldto bring D into coincidencewith E. Then T, theintersection point
of theleft and top edges of the paper, isthedesred point. SeeFigure3.

"To provethis, e BE=EC=x, GC=y,and TB=z ThenDG=2x-.
Since the folding brought DG into coincidence with GE, and £ADC irto
coincidencewith 2 TEG, we know GE=2x - y and . TEGisarightangle. See
Figure4.

"FHOMAGEC, x2? +y? = (2x - y)* whichleadstoy = 3x14.

"Since AGEC ~ AETB,wehave x/y = z/x or x? = yz = 3xz/4. Thus
z = 4x13 = (2/3)4B o tha ATis (1/3)4B.

" \hen can ‘n-secting’ a paper beaccomplished? For n = 2¥ itistrivia, and
since we can 3-sect we can certainly 3+ 2¢-sect, by repeatedly bisectingour 3-
Sected result. What about 5-secting? Thereisasmpleway.

4 £ B 4 5 B
F
- T
D C C

""(1) Agan create asquareon the upper portion of the sheet by bringingthe
upper and | eft edges of dieshest intocoincidence. Labe the verticesof the square
ABCD asshown beforein Fgure 1,

“(2) Thistimefold the shest in
haf veticaly, bringing BC into A G E ¥ p
coincidence with AD.  This will
locatethemidpoint Eof 43. Unfald.
SeeFigure5. + x

. “(3) Now foldB downinsucha
way that the resulting crease passes
through both C andE. Let the point D Cc
whereB touchesthe paper be = Then
diedistancefrom Fto the | eft edge of

Figure7
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the paper is 1150f thewidth. SeeFigure®6.
"To proveths, labd asinFigure7. SN AEFG issimilarto AFCH, wecan
write

H2 L YIXR gy -xakToNE, 47 -y = )R,
x /xz _ yz
so Yy = 4x15, which means that the
speci fi ed distanceis x/5.

“This leaves 7-secting a paper as the £
first pesky case. Atleast, | dot knowa ‘
relatively simple way. Do any readers?”

After that, the problemof 11-secting
aises and, after that is solved, the
problemof what usewould bean 8 1/2- _
by-11 sheet of paper withdevenvertical Figure8
cd uwms, each .77272727... inches in
width.

Hereis a different way 0f trisecting
the paper, from Professor Emi! Slowinski P
ofthe chemistry departmentof Macalester '
College. Fold the paper in hdf and in c
half again so as tomekefour strips. Take
therect angl e formed by three of them and
foldsnas toget i € diagond, asin Figure
8. Itintersectstheorigina foldsat points Figure9
Pand Q. Thesepointsdo thejob.

There is a Smilar mathod for
accomplishing the same task (see Figure 4 D
9). Fold the pgper in half andfold to get
the main diagond D. Congruct the
diagond o oneof thehdf-sheets, €. The
intersection of D and C at P does the
trisection.

The dert reeder might haveasked the
question, "But how do you fold those
diagonas?* Stan Wagon, of Macalester Figure10
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College, shows how. Given a rectangle-ABCD as.in-Figure -10,-fold so that C
touchesA. Then, without unfolding, fold so that B touchesD. Unfold, and there
you havethe diagona fromAto C.

When Augustus De Morgan asked how tofold paper intothirdsin 1872 he
got, asfar as | know, no satisfactory answer. Look at.the progress Since then!
Reeders of the Journal are capable of feats that were beyond the capacuy of
peoplein De Morgan's time. G R

.
) PITTN S PR it

. . Il 8r5 s gan PR
An Application ef War toMatﬂemmi_cs 2

Theapplicationsusualy go \
the other way, but not thistime. "

Fermat (1601-1665) asked,
probably out of nothing more
than curiogity, for thelocation of
thepoint P inatriangleABC so
that the sum o the distances
fromP to the vericesisas smdll
as possible. Theanswer isthat
it is where the three angles B
around P areall equal to 120°.

Here isa very clever proof
of that, due to J. E. Hoffmann,
that can be found on pages 21
and 22 of H. S. M. Coxeter's
Introduction to Geometry
(Wiley, New York, second
edition 1969).

In Figure 2, rotate the
triangle APB through 60°
around B to get triangle C'P’ B.
Then triangles ABC’ ad
PBP’ areequilatera triangles. .

(The f.igurc 'S not vay accurete, Figure2. Finding the Fermat point.
but pictures are for illugtration
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only) Thus AP+BP+CP=C’'P’ + P'P + PC Therlght-handsumwnl be

{BPC = 180° - LBPP' = 120°

aﬂd N N‘V ;
LAPB = ZC'P'B = 180° - ZPP’B = 120°.

This ZCPA is 120°ty = ™™+ =

Mr. Woodson W. Bald ad of Torrance Cdlifornia, independently
rediscovered Fermat’s res) and proved it as“well. The rediscovery, a good
filustration of how theoreniS Gan come into being, came about because of the
Persian GuIf war. Duringthewar, Mr. Baldwin was employed by a corporation
that provided the U, S. Air Forcewith information and advice on satellites and
midgdes Mr. Baldwin writes N |

"During the Gl f war theré Were triany Scud missilesbeing lainched, which
launches were observed by Air Fo Force. eosynchronous satellites. For every Scud
missile launch, three different Saté‘lllte/ground station combinations produced
three different estimates of the geographiclocation of the Scud launch point. ]
weighed thethreepointsequally, determmed their center Of | gravity, measured the
sum of dief@Clifrom thetent‘él’ of gravity t6 the three points, calculated themean
fadius, and multipliéd it by a constant to yidd an edi mate 0‘ the standard
deviation of a circular-normd distributién, ' -
L 9°“On a féw Such.Seud:larich~occasions we: were supplied ‘alse a - fourth
estimate of the Scud launch point, which was provided by some undisclosed
il {pétice sources, whick'peirit | gencrally ighored. However, Gt 6f Ciiriosity,
or boredom, | did occasionally measure thesum of theradii from the intelligence
fibirit to the three ¥ Rité:beved points, with which theformer had no logical
connection, of course, and this measurement was, as | expected, usually greater
than theradial sumfrom the satellite-based center of gravity. However, én one
earth-shaking day, theintelligence-basedradial sum wassmaller than thié reghilar
radinl sum! HowlcBWMd'ahmp¥ I asked mysdf. The center. oE:gtdvity'is an
dnbiased etimate ;of the~trthOtanter Of the disttibution, T Famisds@ kel
Measuring from diecenter (o itsestimate) ought to nlinimiize suth Wed@riniehls,l
I thoughé< ¥ cheeked the-figures; and'fe2dhecked. THe figuttd wersdiest:Hrhis
fact raised the more fundamental question: given three points, if the céal‘ef>
gravity is nob e poihtwhich finimizes thetididl $am tothe o Dasivlpeints,
where 1g the piint Whichdoes gor & " T ¥« ok 2 arladumet

‘| set up ahypotheticd triangle, dnd wroté a‘%mbﬁenpmgmmu@ chlpunes)
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fast radial sumfromany point Then| combedtheareaof thetriangle, usingfiner
andfiner spacings, until | found theminimumof dl minima, good to about eight
sgnificantfi gures. Thefina measuringpoint | knew, thet hr ee final radii | knew.
| caculated thethree centrd angles. They were exactly 120° each! | was
astounded. ...

"The above exercisesprovided the experimental proof of thelocation of the
point which minimizes the radia sum to the vertices of a triangle. The
mathematical proof isfurnishedin theattached document™

Mr. Woodson’s proof is longer then the proof given above, but no less
correct.

The 1995 National Pi Mu Epslon Meeting

The meseting took place in conjunction with the summer mesting of the
Mathematicdl Assodiationof Americaandt he AmericanMathematica Society in
Burlington, Vermont, August 5-7,1995.

There weretwenty-two student papers ddiveredinfour sessons:

Charles Sanders Peirce, or the consequences of a hypothesis, by Ivana
Metodieva Alexandrova (Furman Universty)

Iteration of the greatest integer function, by Jason Calmes (Southeastern
LouisanaUniversty)

Applicationsof the Polya-Burnside theorem to teaching, toysand jewdry, by
Adhley Carter (University of Wisconsn—Parksde)

Nt & it breskingthecodes, by Shawn Chiappetta and Steven Gannaway
(CarthageCollege)

Check digits and license numbers, by Alayne Clare (Youngstown State
Universty)

Thetriangle peg game, by Scott E. Clark (Y oungstown State University)

Pursuitcurves: the mathematicsof coyotes, roadrunners and ants, by Philip
J. Darcy (S. Bonaventure Universty)

Hamiltonian propertiesof Petersenlike graphs, by Dan Diminnie (Allegheny
College)

Isthere (ever) an end?, by Jacqueline Goss (St. Norbert College)

Pertubation expanson for hermitian gaussian randon matrices, by Nancy
Heinschel (Universty of Cdifornia—Davis)
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Groebner bases, by DennisKeder (Miami Universty)

Commutativity of matrices, by GeeY okeLan (WichitaState University)

The secret behind the Keebler cards, by Jason Martin (Y oungstown State
University)

Subspacesof the Sorgenfrey line, by Justin Moore (Miami University)

Derivativerings, by Dan Nordman (St John's Universty)

The seven guests no longer a guesd, by Dennis Schmidt (St. Norbert
College)

Indiana Jones and the quest for anticonnected digraphs, by Nick Sousanis
(Western Michigan University)

Imegesandinverseimages of iteratesof theline graph operator, by DonnaR.
Swwoid (Hendrix College)

Solving generd nonlinear multivariatepolynomia sysems using agebraic
geometry, by Wayne Tarrant (\Wake Forest Universty)

Specid rddivity: the Lorentz transformation and the hyperbolic geometry of
spacetime, by Michadl Theriot, J. (Louisana State University)

Afunctionanditsdud", by Richard Tuggle (St. Norbert College)

Dirichlet’s theorem and animproved|ower boundfor an L-function, by Sonny
Vu (Univergty of Illinois—Urbana-Champaign).

Four prizesfor papers of unusualk merit were avarded to Aron Atkins,
Adley Carter, AlayneClare, and Scott Clark.

TheNationd Security Agency againawarded the Society a grant of $5000 for
the support and encouragement of student speskers.

TheJ Sutherland F ane L ecturewas ddivered by Marjorie Senechal of Smith
College, whosesubject was “Tilings as diffraction gratings.”

Unpar allded Opportunity

At the business meetingof the Society, the decisionwas made to raise the
subscription price of theJournal. The price has been unchanged since 1980,
whent he cost of living (which indudes reading the Journal) was less than half of
what itisnow. Thenew ratesare $20 for two years and $40 for fiveyears

However, present subscribers have the opportunity to extend their present
subscriptions a theadld ratesthrough theend of themillennium. Therewill beno
similar opportunityfor at least the next onethousand years -

rd
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Totakeadvantageof thisoffer, cal cul atethe number of copies of theJournal
that will be issued between the time of the expiration of your subscription
(indicated on your addresslabdl) and thefall 1999issue. For example, if your
addresslabd containsan “F 96”, the number of issueswould besix (S 97, F 97,
S 98, F 98, S99, F 99). Then multiply that integer by two and send a check,
marked" extension” (0 asto avoid confusion), for that amount to theJournal's
busi ness manager,

Robert S. Smith

Depatrment 0f Mathematicsand Statistics
M am University

Oxford, Ohio 45056-1641

Subscribersouts de the United States should multiply theinteger by threeand
proceed smilarly.

IITME

St. Norbert College

Eleventh Annual
Pl MU EPSILON

Regional Undergraduate Math Conference
November 8-9, 1996

Featured Speaker: Don Saari

Northwestern University

Sponsored by: St. Norbert College Chapter of IIME

and
St. Norbert College SNA Math Club

The conference will begin on Friday evening and continue through
Saturday noon. Highlights of the conference will include sessions for
student papers and two presentations by Professor Saari, one on Friday
evening and one on Saturday morning. Anyone interested in
undergraduate mathematics is welcome to attend. All students (who
have not yet received a master's degree) are encouraged to present
papers. The conference is free and open to the public.

For information, contact:

Rick Poss, St. Norbert College
De Pere, Wi 54115

{414) 337-3198

FAX: {414) 337-4098

e-mail: possri@sncac.snc.edu

>NA



PI MU EPSILON
T-SHIRTS

The shirts are white, Hanes’ BEEFY-T°, pre-shrunk,
1 % cotton. Thefront of the shirt hasa large Pi Mu
Epsilon shield (in black), with the line "1914 - »"
below it. Theback of the shirt hasa "I M E" tiling in
the PME colors of gold, lavender, and violet. This
tiling of the plane was desgned by Doris
Schattschneider, on the occason of PME's 75th
anniversary in 1989. The shirts are available in sizes
large and X-large. The priceis only $10 pe shirt,
which includes postage and handling. To obtain your
shirt, send your check or money order, payableto Pi
Mu Epsilon, to:

Rick Poss

Mathematics- Pi Mu Epsilon
St. Norbert College

100 Grant Street

De Pere, WI 54115

SPEECHLESS IN SEATTLE?

Don't be!

Fresent a paper at the national Pi Mu Epsilon meeting at the
Wniversity of Washington, in Seattle, WA, August 10-12,
1996. This meeting is being held in conjunction with the
annual MAA MathFest. Pi Mu Epsilon student speakers are
eligible for free travel to the meeting! (See below for details.)
Any student member of Pi Mu Epsilon not having received a
master’'s degree by May, 1996, is eligible to speak at the
national meeting.

Pi Mu Epsilon will provide travel support for student speakers at the
national meeting. If a chapter is not represented by a student speaker,
Pi Mu Epsilon will provide one-half support for a student delegate. Full
support is defined to be full round-trip air fare (including ground
transportation) from the student's school or home to Seattle, WA, up to
$600. (Delegates will receive up to $300.) A student who chooses to
drive will receive 25 cents per mile for the round trip from school or
home to Seattle, up to $600. (Delegates will receive 12% cents per
mile, up to $300.)

If there is more than one speaker from a chapter, each of the additional
speakers (up to four) will be eligible for 20% of what the first speaker
receives. For example, if the distance traveled{by car or van) is over
2400 miles (round trip distance), a single speaker would receive $600,
two student speakers would receive $720 (to share in any way they
wish), three speakers would share $840, four speakers would share
$960, and five or more speakers from this single chapter would share
$1080.

For information on how to apply to speak and to receive travel funds,
see your Pi Mu Epsilon Advisor



Subscription and Change of Address

If your addresslabel containsthe symbols"S 96" then thisisthelast issuein
your current subscription We hopethat you agree that theJournal provides good
vaueand that you will renew your subscription. Ratesare:

United States: $20for 2 years
$40for 5 years
Foreign: $25 for 2 years
Back issues: $5each
Completevolumes:  $50 (5 years, 10 issues)
All issues: $400 (9 back volumes and volume 10)

If you havemoved, pleaselet us know. TheJournal is not forwarded so it is
important that we have a current mailing addressfor you.

To subscribe or change your address, complete the form below (or a copy
thereof) and send it, with a check payable to the P Mu Epsilon Journal for
subscriptions, to

Robert S. Smith

Department of Mathematicsand Statistics
Miami University

Oxford, Ohio 45056-1641

Name

Address:

Address change? Subscription?






