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EDITORIAL 

Russell Euler 

The Pi Mu Epsilon Journal is a mathematics magazine primarily for 
students and instructors at a variety of post-secondary levels. Hopefully, the 
general reader with an interest in mathematics will also fmd interesting 
content in the Journal. 

Submissions to the Journal can include: 

1) research appropriate for the readership 
2) undergraduate research projects 
3) expository material 
4) historical material 
5) educational opportunities 
6) career opportunities 
7) problems and solutions. 

Manuscripts from student authors are given top priority. 

The transition between editors has been smooth -- primarily because 
of the excellent guidance from the previous editor Underwood Dudley. The 
Problems Editor, Clayton Dodge, has also been extremely helpful and cordial. 
The Journal now has a Business Manager -- Joan Weiss. Her help is 
appreciated very much. 

Since this is your journal, suggestions for improving the Journal 
will always be carefully considered. 



Red Light, Green Light: 
A Model of Traffic Signal Systems 

Ryan Bennink (student) 
Hope College 

Introduction 
Probably everyone who drives has had the experience of "hitting all the 

red lights." Especially since moving from a rural area to a town, I have found 
myself wondering why various lights (red in particular) last as long as they do and 
how the schedule of traffic signals is determined. What criteria should one use? 
Can multiple sets of signals on many streets be coordinated to yield optimum 
traffic flow? And so when a mathematical modeling project was assigned in my 
senior math seminar, I felt the time was ripe for an investigation of traffic light 
timing. 

At the outset of my project I had a number of objectives in mind. First, 
I wished to identify the parameters which characterize traffic flow and to 
determine what restrictions those parameters placed on signal timing. Second, I 
hoped to find a tuning scheme which would provide for the "best" traffic flow for 
a model city. And finally, I wanted to compare my proposed timing scheme to 
real-world traffic signal schedules. 

The model I came up with is based on several premises: Drivers always 
obey the speed limit and all traffic signals; drivers are perfect (they always make 
correct judgments); and conditions must never force a driver to do something 
illegal. Furthermore, a city consists of a lattice of intersections with a traffic signal 
at each intersection. Each block is square, and all blocks have the same side 
dimension b. Streets are two-way and there are no a priori preferred streets or 
directions to traffic. Finally, traffic signals are uniformly periodic in both time and 
space. This means that each light cycles from green to yellow to red on a regular, 
repealing schedule with period T. la addition, there is a number N such that traffic 
signals which are N intersections apart run on identical schedules. 

A Bask Description of Motion 
One can describe the motion of a car of length L (say, traveling north) by 

plotting die position s of the car's front bumper as a function of time t (see Figure 
occupy a width w become bands in the t-s plane. Regions 

particular band can then be color-coded to indicate the status of the light at the 
cm for various times. If the speed limit is v__, then the maximum slope 
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of s(t) is v,,,... We can also characterize starting and stopping by acceleration 
terms, denoting the maximum braking acceleration by a^&. We can then apply 
the elementary constant-acceleration motion formulas 

- 

2 v2=v,, +2m 

For example, the distance d , ,  required for a car traveling at the speed limit to 

come to a full stop is 
.a 

G G G  Y R R R R R  

/- 
slope = v / 

Figure 1. 

Implementing Restricting Conditions 
Yellow Lights 
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The amount of time the yellow light must be on is perhaps the simplest 
feature to determine. The governing rule is this: If a car cannot stop at an 
intersection, it must be able to clear the intersection before the light turns red, 
Consider a car going the speed limit as it approaches an intersection with a green 
light. Past a certain point, the car is too close to the intersection to stop in time 
ifthe light turns yellow. The point of decision, by which time the light must have 
turned yellow if the driver is to stop, is when the driver is dsOp away from the 
intersection (see Figure 2). Just past this point, the car must keep going and the 

/ lL  
G G G G  Y T / l R  R R R 

I 

^stop 
I 

I 

Figure 2. 

~-eIlovv light must stay on until the car's back bumper leaves the intersection. That 
is, td must be long enough to allow the car to traverse a distance dop + w + L. 

yields 
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The wider the intersection and the longer the car, the longer the yellow light must 
be. Good braking capability, however, reduces the minimum time. Although the 
speed limit enters twice, die dominant effect is that die required time lengthens 
with higher speed limits because stopping distance is increased. 
Red and Green Lights: Two-way traffic. 
In this model, traffic flow is considered optimal when cars traveling at the speed 
limit hit the fewest red lights. That is, one would like to time the sequence of 
traffic lights so that, as much as possible, cars which catch one green light will 
continue to encounter green lights. The green lights should "follow the speed 
limit." Peihaps this does not seem too daunting until we remember that since the 
streets are two-way, the schedule must work for cars traveling in both directions! 

Evay signal cycles through all three colors with the same period T, and 
so the times tÃ , tÃ£., and fd must add up to T. If all streets are assumed equally 
busy, then north-south drivers and east-west drivers should wait for each other 
equal amounts of time; thus tras = 772. It then follows that t-, = (T.2) - tÃ£, It is 
important to note that although eveq signal has period T, each signal has a 
separate phase delay 0 (measured in seconds). 

The concern here is the relative timing of signals along a single street, 
which depends primarily on urn.-- and the distance b between intersections. Since 
w does not affect the time required to go from one intersection to the next, we can 
represent intersections simply by lines spaced b units apart. And because signals 
are periodic in both time and space, we can map the entire t-s plane onto a 
rectangle of width T and length Nb (see Figure 3), where N is the number of 
intersections after which the schedule of signals repeats. (Notice the wrap-around 
effect on traffic trajectories.) The period is given by T = o / v r n = .  Hence our 
task is to situate the green, yellow, and red regions on each intersection timeline 
so that there exist straight lines with slopes + vrnm and - (representing 
northbound and southbound cars) which pass through only green regions. In this 
formulation, the problem is rather difficult since both the signal phases and traffic 
trajectories are arbitrary. Realizing that northbound and southbound trajectories 
always make the same " X  shape wherever they occur, we can simplify the 
situation by shifting the origin. We now consider the traffic trajectories fixed and 
allow the intersections to translate along the s axis. 

From this reference frame we can easily measure the time interval &/ 

between northbound and southbound cars at a particular location s. The left half 
of Figure 4 shows the "X" formed by northbound and southbound cars over a 3- 
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block distance. The horizontal separation between the legs of the " X  is the time 
interval A?, which is shown as a triangular-looking function of s in the right half 
of Figure 4. As one can see from the right half of the figure, the time interval 
between northbound and southbound trajectories is never more than half a period 
since the space "wraps around". The challenge is to determine if and how green 
light regions (solid horizontal bars marked with a "G") may be placed so as to 
intersect both trajectories at each intersection (thin horizontal lines). 

If green lights were to last at least half a period, the problem would be 
trivial; no matter how the intersections were translated, the green light duration 
would always exceed A?. The fact that tÃ is short of half a period by the amount 
/+means there are two forbidden zones (shaded horizontal bars) where the green 
region is not long enough to catch both trajectories; i.e., where t _  < A?. The 
problem has a solution if we can translate the intersections so that none of them 
falls in a forbidden zone. Geometrical analysis of Figure 4 reveals that each 

Figure 3. 
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forbidden zone extends over a distance vmJy., on the s axis. Clearly the 
intersection spacing b must be at least as large as this. But since two forbidden 
zones must be avoided, the condition which is sufficient to guarantee a solution 
becomes b > 2v,,,ofyet- Solving this inequality for,&, and combining it with 
equation (3), we find that a solution exists as long as 

daop s b - 2(w + L). 

Figure 4. 

In practice, this is never a concern. (If you cannot stop your car in a little under 
a block, either you are driving too fast or you need new brakes!) For a concrete 
example, letN= 4, b = 3309, U J  = 3OJ, L = 1 5 1 ,  vmw = 30mihr = 44ft/s, and 
u b r ~  = 1 5 p .  Then T = 30s and from equation (3) we have&, s 2.5s, which 
means tgm s 12.5s. Over every 4-block stretch of road there are two sections 
vm&, = 1 lo/? long which periodic northbound and southbound cars traverse at 
times more than 12.5s apart. If the lights are scheduled properly, such cars will 
be able to proceed &om intersection to intersection without having to stop for a 
red light. 
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As it turns out, many solutions exist. The best ones seem to be obtained 
with N = 2,3,4,6, or 8. (For typical real-world parameters and N = 1, the light. 
change too quickly. For N > 8, the lights can take several minutes to turn, and 
most people do not like to wait that long.) Acceptable solutions are optimized by 
adjusting the placement of intersections so that the sum of the time intervals across 
all intersections is a minimum. That way, one creates the widest green light 
intervals through which caravans of many cars can proceed uninhibited. The 
phase delay for each intersection is then determined by the times at which the 
trajectories cross the intersection line. 

Figures 5 and 6 show typical timing schemes. (The vertical axis is 
qualitative rather than quantitative, and refers to the particular light within the N- 
intersection pattern. For each light, a high level represents a green light, a middle 
level indicates a yellow light, and a low level indicates a red light.) As one can 
see, traffic signals are generally staggered rather than aligned. Some lights have 
identical phases, however, because northbound and southbound traffic trajectories 
are symmetrical and the optimization algorithm favors neither direction. 
Incidentally, Figure 5 was generated using N = 3, b = 330ft, and v = 30mi/hr = 

44Ws. Thus T = 7V6h = 22.5s, as shown in the graph. Figure 6 was generated 
with M, yielding the period T = 30s. 

Figure 5 
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A Complete Timing Schedule: Four-way traffic. 
Once we have determined a working time schedule for traffic signals 

along a single street (1 dimension), we can extend the schedule to accommodate 
city traffic (2 dimensions). An example will suffice to show how this is 
accomplished. 

Consider the caseN = 4. Assume that we have come up with appropriate 
phase delays for traffic signals along a single street, and say that northbound traffic 
encounters the sequence of signals with phase delays a,,, Q], 02,  0, , O0 , ... . 
(Southbound traffic encounters the same sequence in the opposite order.) If we 
apply this 4-element sequence to adjacent N-S streets but stagger it as shown in 
equation (5), then the sequence of phases holds for E-W streets as well. Columns 
of the 4 x 4 lattice represent 4-intersection segments of adjacent N-S streets; rows 
represent segments of adjacent E-W streets. Northbound and eastbound traffic 
(i.e., traffic traversing the lattice up or to the right) will encounter the same phase 
differences between consecutive lights; the same holds true for southbound and 
westbound traffic. 

Typical 4-intersection Timing Scheme 
5.0 

~ l l l l l l l l l l ~ l l l l ~ l l l l ~ l l l l ~ l l l l ~ l l l l ~ l l l  

l.ok-l' 2'-! 0.0 
0 10 20 30 40  50 60 70 60 SO 

t ime (s) 

Figure 6. 
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0 3  0 3 0 0  01 0 2  

0 2  0 2  0 3  0 0  01 

01 - 01 0 2  0 3  0 0  ( 5 )  
0  00 01 0 2  0 3  

This pattern can be extended indefinitely in all four directions. Thus one 
can come up with a traffic signal schedule which maximizes unimpeded traffic 
flow for a lattice of intersections. 
Computer Simulation 

I thought it would be fun to simulate traffic flow in a city by 
implementing my lattice of intersections and traffic signals schemes on a 
computer. Figure 7 shows position-versus-time data extracted from a typical run. 
In this particular run, four cars were driving north along a street with a 4- 
intersection signal pattern similar to that shown in Figure 6. One can see smooth 
curves indicating periods of acceleration or braking, as well as flat regions where 
cars are waiting at a red light. As one would expect. Figure 7 is reminiscent of 
Figure 1. 

To assess the effectiveness of the 4-intersection pattern suggested by my 
model, I decided to compare the average speed of cars in a city with the 4- 
intersection pattern with that of cars in a city with random signal schedules (See 
Figure 8). The average speed was calculated by taking the total distance traveled 
by all the cars in the city divided by the length of time the simulation was run 
(chosen to be 10 periods). As one can see, when there are few cars on the road the 
average speed in the "planned" city (upper line) is quite close to the given speed 
limit of 30 mihr (dashed line). Cars in the "random" city (lower line) average 
little more than half the speed limit. As the traffic becomes heavier, however, the 
planned signal scheme seems to be less and less effective, to the point that it 
produces results hardly better than those of traffic signals given arbitrary phases. 
This result surprised me; I expected that the 4-intersection pattern would be 
significantly better up to much heavier traffic loads. Apparently, only a short 
caravan ofvehicles are able to pass uninhibited through green lights at successive 
intersections. 

and H respectively. Show that the areas of sectors OBH and OGC areequal. 
See the accompanying figure. 

I. Solution by Robert Downes, Mountain Lakes High School, Plainfield, 
New Jersey. 

Place the ellipse in the Cartesian plane so that we have B(b, O), C(O, c), 
E(e, O), and F(f, 0). The equation of the ellipse then becomes 

Since we were given OE + OF = OB 2, from which we get e + f = 
b 2, then we find that H(f, celb) and G(e, cfib). The areas of sectors OBH 
and OCG, K(0BH) and K(OCG), are given by 

and 

11. Solution by Skidmore College Problem Group, Saratoga Springs, 
New York. 

Place the ellipse in the Cartesian plane (as in Solution I above). The 
linear transforrnationf, given by f ix ,  y) = (xlb, ylc), sends the ellipse to the 
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unit circle. We 1etfiA) = A', etc. The condition that 2 + f = &2 becomes 
el2 + f ' = 1. Since applying f multiplies areas by a constant value, we 
see that the elliptical sectors have the same area if and only if the 
corresponding circular sectors have the same area. The area of a circular 
sector of radius r and central angle 9 is 9912, so we must show the sectors 
O'B'H' and O'C'G' have equal central angles a and B, respectively. Now 
a = cos-If' and S = w12 - cod e'. Because el2  + f l 2  = 1, then cos-I f ' 
and cos-I e' are complementary, so a = S. 

Also solved by Miguel Amengual Covas, Paul S. Bruclonan, George P. 
Evanovich, Jayanthi Ganapathy, Richard I. Hess, Joe Howard, Murray S. 
Klamkin, Henry S. Lieberman, Peter A. Lindstrom, David E. Manes, V. 
S. Manoranjan, G. Mavrigian, Yoshinobu Murayoshi, H.-J. Seiffert, and 
the Proposer. 

870. [Fall 19951 Proposed by Grattan P. Murphy, University of Maine. 
Orono, Maine. 

This proposal is based on a problem posed at a recent mathematics 
meeting and is intended especially for students. Without using machine 
calculation, that is, without actually finding the digits of the number, show 
that at least one digit occurs at least 6 times in the decimal representation 
of the number (7')' -77. 

Solution by Henry S. Lieberman, Waban, Massachusetts. 
If n = (77)7 -Y7 '77, then loglo n = 57 log 7 + log 11 = 49.212 and 

n has 50 decimal digits. If no digit occurs at least 6 times, then each digit 
would occur exactly 5 times and the sum of the digits of n would be 

Since 3 1 225, then 3 1 n, but clearly n has no factor of 3. Hence, some 
digit must appear at least 6 times in the decimal representation of n. 

Also solved by Paul S. Bruckman, Victor G. Feser, Richard I. Hess, 
David E. Manes, Kandasamy Muthuvel, Michael R. Pinter, Kenneth M. 
Wilke, and the Proposer. 

Rachele Dembowski's Partition Problem 

Cecil Rousseau 
The University ofMemphis 

1. The Problem. In her article Enumerating Partitions, in the Fall, 1995 issue 
of this Journal [I], Rachele Dembowski poses the following problem. 

Problem A. Find the number of partitions with n parts in which, for k = 1,2,. . .,n, 
the kth part is less than or equal to n - k + 1 and all parts are odd. 

Interpreting the parts of the partition, taken in reverse order, as the values 
f(l), f(2), . . . ,f@), we have the following equivalent problem. 

Problem B. Find the number of nondecreasing functions 

satisfying f(k) s k fork = 1,2 ,..., n. 
Another equivalent problem can be phrased in the language of "heads or 

tails", hi this formulation, an HT sequence (or string) is a finite sequence of 
symbols, each of which is either H or T. 

Problem C. Find the number ofHT sequences with n - 1 H's where, from the 
begining up to any point in die sequence, there are at least twice as many H's as 
there are T 's. This is the number of outcomes of a "heads or tails" game in which 
the player, starting with no funds, wins one dollar for each head and owes two 
dollars for each tail, given (hat the player never goes in debt, and obtains heads a 
total of n - 1 times. 

To see that Problem B and Problem C are equivalent, associate with each 
function counted in Problem B a corresponding HT sequence, namely HB, 
HB i...HBn-l where B, , B, ,-, I$., are (possibly empty) blocks of T 's, with the 
number of T's in B,, being (f(k + 1) - f(k))/2. The resulting HI sequence has 
n - 1 H's and is constructed so that at any point in the sequence where there are 
as yet k H's, the number of T's is at most 
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Thus the resulting HT sequence satisfies the conditions of Problem C. It is clear 
that the mapping just described is a bijection. 

Let a,, denote the common answer to Problems A through C. We shall 
prove 

+ if n = 2m, 
m ( m )  

which agrees with the conjecture made in [I]. 
2. The Method. Note that a function counted in Problem B satisfies f(n) = n - 
k + 1 if and only if the total number of T's in the corresponding HT sequence is 
(Rn) - 1)/2 = (n - k)/2. Equivalently, f(n) = n - k + 1 if and only if the player has 
a fortune of (n - 1) - 2((n - k)/2) = k - 1 dollars after the last coin toss. Let c(n, k) 
denote the number cSHT sequences in Problem C so that the player's final fortune 
is k - 1 dollars. Clearly, c(n, k) = 0 unless k and n have the same parity, and 

c(n, 2) +c(n,4) + ... + c(n,n) if n is even, 

c(n, 1) + c(n, 3) + .- + c(n, n) if n is odd. 
(1) 

If the player's fortune after the last toss is k - 1 dollars, then the fortune just before 
obtaining the last head is k + 2(j - 1) for some j s 0, from which we have the 
recurrence relation 

c(n, k)=c(n- 1, k - 1) +c(n- 1, k +  1) +-  +c(n- 1, n -  1). (2) 
Comparing (1) and (2), we have 

c(n+1,1) i f n  is even, 

c(n+1,2) if nis odd. 

Note that by two applications of (2), 
c(n, k)=c(n- 1, k -  l)+c(n- 1, k +  I ) + - + c ( n -  1, n -  1) 

c(n,k+2)=c(n- l , k +  l)+c(n- l ,  k + 3 ) + - - + c ( n - 1 , n -  l), 
from which we have 

c(n, k) = c(n - 1, k - 1) + c(n, k + 2). (4) 
Thus our plan is mapped out. We want to determine the numbers c(n, k) using (4) 
and then find a,, using (3). Using (4) and the fact that c(n, n) = 1, we can easily 
compute a table of values for c(n, k) for small values of n a la Pascal's triangle. 
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Table 1 - Values for c(n, k) 
3. Solution by Generating Functions. We shall find c(n, k) using the method 

of generaing functions. In part, the solution rests on the following result from 
classical analysis [3,97.32], [4, p. 1381. 

Lagrange's Expansion. Let f(z) and F(z) be analytic on and inside a contour C 

surrounding the origin, and let w be such that lwf(z)l < lzl at all points z on C. 
Then the equation w = z/f(z) has one root z = z(w) in the interior of C, and 

F(z(w)) has the expansion 

Also, the following fact is crucial. 

Lemma. Let Ck denote the class of all HI sequences for the game in Problem C 

such that the player is never in debt and has a fortune of k - 1 dollars after the last 

toss. Thai GI = {aHbl a e Cb b E Cl] . Here ah% denotes the sequence obtained 
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obtained by concatenation of a e Cb a single H, and b e C,. 

Proof. Given a sequence in Cw locate the last point at which the player's fortune 

is k - 1 dollars, and let a denote the HT sequence up to that point. Then a e Cb 

and the next term of the sequence must be H; otherwise the player's fortune would 
be k - 1 dollars at some later point. Letting b denote the remainder of the given 

sequence, we see that, had the player started with no funds at the beginning of b, 
he or she would never go in debt and have a final fortune of 1 - 1 dollars. Hence 

b e CI. Thus every member of GI can be written aHb where a e C, and b E CI. 

We claim that this representation is unique. To see this, suppose for the moment 

1hat a'AFb' = aflb where a, a' e Ck and b, b' e Ci. We may assume that the lengths 
of a' and a are p and a, respectively, with p < q. Then toss p + 1 yields H, and the 

player begins at toss p + 2 with a fortune of k dollars, The ensuing sequence, b', 

leads to a fortune of k - 1 dollars after q - p - 1 tosses, so had the player started 
this sequence with no funds, he or she would then be in debt. This contradicts b' 
e CI and proves that the representation aHb with a e Ck and b e is unique. 

Note that if there are r - 1 H's in a and s - 1 H's in b then aHb has 
r + s - 1 H's. In view of the uniqueness of the aHb decomposition, we have the 

following important result. 

Corollary. For all n, k, 1 s 1, 

Let us introduce the following generating function for column k of the 

table of c(n, k) values: 

Thus, for example, 

G,(x) = x + x4 + 3x7 + 1 2x1Â + 55xI3 + 2 
and 
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Using (9, we obtain 

Gk+kx) = Gk(x)G,(x). 
. a 

(6) 
For simplicity, let Gl(x) = G(x). Simple induction using (6) yields 

G&) = [G(x)lk (k = 1, 2, ...). (7) 
Multiplying both sides of (4) by x011"10'2 and summing on n, we find 

Gi;(x) =xGi;.,(x) + xGw(x). (8) 

In view of (7) and (8), G(x) satisfies the cubic equation 

G(x) = x + xG3(x), (9) 
sox=G/f(G)wheref(z)=~+ 1. With~(z)=z"andf(z)=z'+l, 

Lagrange's expansion yields 

Let [9']Gk(x) denote the cofficient of ??" in the expansion of Q;(x). To simplify 
the notation, let r = (n - k)/2. Then 

ccn, k) = tx^lGk(x) 

Thus we have / \  

n-k 4 0 )  = - 
2 

Note: Having found a fonnula for c(n, k) using generating functions and 

Lagrange's expansion, it is easy enough to verify that this is indeed the solution 

of (4) satisfying c(n, n) = 1. It is clear that (1 0) gives c(n, n) = 1. Also, assuming 
that the formula holds for c(n - 1, k - 1) and c(n, k + 2) and setting r = (n - k)/2, 
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we have 

c(n,k)=c(n- 1,k- l)+c(n,k+2) 

Finally, 

ah=c(2m+ 1, 1) = - 

and 
2 3m+2 

a2,n+, = c(2m + 2,2) = - 
3m+2[ III ) '  

as claimed. 

4. Comments. The problem dealt with in this note belongs to the subject of 

lattice path counting, and the methods used are a standard part of that subject [2]. 

For more on the subject of generating functions and their many applications in 

combinatorics, we recommend the excellent book by Herbert Wilf 141. 

Acknowledgement. The author is indebted to Nicholas Sekreta, who obtained 

an independent proof of the lemma used in this proof. 
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Answers to 'What are These?' 

1. Sieve of Eratosthenes 

2. Brianchon point 

3. Markov chain 

4. Convex function 

5. Noncollinear points 

6. Dedekind cut 



Another Matching Problem with a Matching Probability 

Philip J.  Byme 
College of St. Benedict 

There are several fairly well known probability problems that have a 

limiting answer of 1 - 11e (see for example [I], [2] p. 107, [3] pp. 104-106, and 

[4]). This note adds the following, less well known, problem to this family: if n 

married couples are randomly assigned to 2n chairs lined up in a row, what is the 

probability, p,,, that at least one couple occupies adjacent chairs? We later vary 

this problem by arranging the chairs in a circle. 

To determine pro we first number the chairs 1, 2,. .. ,2n, from left to right. 

Let A, denote the event that a couple occupies chairs i and i + 1, i = 1 ,. . ., 2n - 1. 

Then p,, = P(A, u 4 u ... u A ,̂.,), and by a generalization of the result 

P(A u B) = P(A) + P(B) - P(A P B) to any finite union of events, we have 

+ P(Ai r- . . . n A ) .  (1) 
il<...<b-l I 

To evaluate (I), we first make the following simple observation. The expression 

A, n A,, is the event that there is a couple in chairs 1 and 2, and also a couple in 

chairs 2 and 3. But the person in chair 2 cannot be the spouse of both of the 

people in chairs 1 and 3, therefore A, n 4 = 0. Similarly, if li - jl = 1 then 

A, n A, = 0. Thus any event Ai,n , . . nAik for which two of the ijJs are 

consecutive integers has probability zero. One consequence of this is that the last 

nonzero summation in (1) is 

(-I)-' P(Ail r ... n A,_) = (-1)"+'(A1 n A, n A, ... n A,,.,). 
i,< ... <i_ 

Now consider any particular collection, Ail,. ..,A,, in which 

i2 - i, > 1, i3 - i2 > 1 , ..., ik - > 1. We will determine the probability 
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of the intersection of these events using an extension of the multiplicative law of 

conditional probability, P(A n B) = P(A)P(BlA), to the intersection of k events: 

P(Ai n...nAi) = P(Ai)P(Ai2lAi)P(AJA,nAi).-P(AklAil n-.nA4-) . F i r s t 
consider P( Ai) . No matter who occupies chair in there are 2n - 1 possibilities for 

the person in chair ii + 1, only one of whom is the spouse of the person in chair 

i,. Since the assignment of persons to chairs is done randomly, P (Ai) = lf(2n - 
1). Similarly, given that a couple occupies chairs i, and i, + 1, no matter who 

occupies chair i2 there are 2n- 3 possibilities for the person in chair i2 + 1, and 

therefore P(A41Ai) = ll(2n - 3). Continuing on in this manner we conclude 

that 

Since every non-null intersection of k A. 's has this same probability, it remains 
'1 

only to count how many of these there are to determine E P(A, n ... n A. ), 
i,< ... <& 'k 

~ek~s~ationin(l).Nowlet~=il-l,xj=ij-ij~l-2 forj=2,3, ..., k,and 

xk+, = 2n - 4 - 1. Thus x, is the number of chairs to the left of chair i,, 5 is the 

number of chairs between chair i ,  + 1 and chair i,, and so on. There is then a one- 

to-one correspondence between collections of k A. 's with a non-null intersection 
Ã‡ 

and solutions of x, + x2 +--+ xhl = 2n - 2k, with x, s 0, x2 2 0, ..., xM 2 0 . The 

number of such solutions is given by (see [2], p. 38), where the 
/ 

binomial coefficient 
n! (3 ' k!(n - I.)' 

k = 0, 1, 2 ,.... n. We can now 

express (1) as 
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This can be written more compactly by letting 

From the Taylor series for ex about x = 0, 

converges to 1 - 1/e as n - m. It should also be noted that 0 2 â a< 1 for all k and 

n, and that for each k lim = 1. These facts taken together would suggest 
n-- 

(- l)k+l 
that for n large, pQ = - , and therefore that lirn p = 1 - lle. A 

k=1 k! n-00 
careful proof of this result is somewhat technical, and is deferred until the end of 

this note. 

If the 2n chairs are arranged in a circle, a couple occupying chairs 

numbered 2n and 1 would then be in adjacent chairs. The event that at least one 

couple occupies adjacent chairs in this situation can be thought of as occurring in 

one of two mutually exclusive ways: (1) at least one couple occupies adjacent 

chairs other than the two numbered 2n and 1, or (2) a couple occupies chairs 2n 

and 1 with no other couple occupying adjacent chairs. The first of these events 

has probability pn. For the second event we note that the probability of being in 

the adjacent chairs 2n and 1 is l/(2n - I), and given that a couple is seated there 

the probability that no other couples occupy adjacent chairs among the remaining 

2(n - 1) seats is 1 - p,,.). Therefore, the probability, fin, of at least one couple 

occupying adjacent chairs when the chairs are arranged in a circle is given by 

Pn = pn + (A) (1 - fiom which it follows that fin also approaches 
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1 - 1/e as n - m. 

It is interesting to note that the congruence of both pn and 3 to 1 - 1Ie * 
( '  , which itself is the answer to a weii known is related to that of - 

k=1 k! 
probability matching problem: if n married couples are randomly paired up for a 

dance, what is the probability that at least one pair is a married couple? This 

problem is sometimes cast in terms of matching hats to men, letters to envelopes, 

or positions in two decks of cards (see for example [I], [2] p. 107, and [4]). We 

now present the proof that lim pn = 1 - lle. Let e > 0 be given. Since 
nÃ‘ 5 Ã converges to e, we can choose Nl so that 

k=O k! 

1 e (_1)k+l 1 - e 1 = 2 - < - for all n t N). Since - 
k=0 k k q + l  k! 3 k=, k! 

converges to 1 - lle, we can choose N2 so that 

(- 1lk+l - for all n t N2. Let N3 = max(Nl, N2). 1~ T - ( l - : ) l  

Since lim = 1, for each k = 1, 2 ,..., N3, we can chooser so that 
n-- 

1-a^ c e#e for all n s n,;. Let N4 = max(n,, % ,..., s). Now suppose 

n s max(N3, N4). We have 

The first term on the right side of (6) is 

since 1 ~ 1  <: 1 andN, t N,. The second term on the right side of (6) is 
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(the first inequality holds because n s N4). The last term on the right side of (6) 
is less than â‚¬ sinceN3 2 N2. Therefore we have shown that for all 
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A Generalization of a Dimension Formula 
and an "Unnatural" Isomorphism 

Daniel L. Vim 

Let V be a finite dimensional vector space with subspaces V, and V,. 
Then it is well known that 

dim(V, + V,) = dim V1 + dim V2 - dim(V, n V,) 
where V1 + V, = {x + y: x e V and y e V, 1. Anyone who has studied combin- 
atones will immediately recognize that this is similar to the principle of 
inclusion/exclusion for two sets (PIE from here on). That is, if Sl and S2 are two 
finite sets and lSil denotes the number of elements in S,, then 

IS1 u S2l= lS,l + IS21 - IS, s21 - 
Now the PEE generalizes to n sets. Hence a natural question to ask is whether we 
can find a similar formula for n subspaces. In this paper we present one such 
possibility and what it translates to in terms of quotient spaces. 

First of all, the obvious first guess would be to write down the general 
formula for the PIE and replace Si by Vi and u by +. Unfortunately, this doesn't 
work. For example, the formula for three subspaces would be 

3 

dim(Vl+V2+V3)= xdimVi-dim(VlnV2)-d.im(VlnV3)-dun(V2nV3) 
i=l 

+ dim(Vl n V2 n V3) 
which isn't true in general. For Example, in R2 let V, be the x-axis, V-, be the 
y-axis, and V3 be the line y = x. The left hand side of the above formula is 2 while 
the right hand side is 3. You might ask yourself why the inductive proof of the 
PIE doesn't work for subspaces. The reason is that in the inductive step of the 
PIE you need to know that n distributes over u. Unfortunately, n does not 
distribute over +. However, we can prove the following, 
Theorem 1. Let Vl, V2, - ,Vn be subspaces of a finite dimensional vector space. 
Then a 

dim(Vl +-+v,)=X dimVi-dim(VlnV,)-dim(V3n(Vl +V2)) 
i=l 

Proof. We proceed by induction on n, the number of subspaces. If n = 1 then. the 
statement is trivial and if n = 2 it is the well known dimension formula. suppose 
that the formula is true up to n - 1. Then viewing Vl + - + V,., as a single 
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subspace and applying the case n = 2 we have 
dim(Vl + - +Vn) = dimVn + dim(V1 + - +Vn.,) - dim(Vnn(Vl + - +V,,.,)) 

Hence the theorem follows by induction. D 
The problem with our formula is that it is not very symmetric in 

V,, V,, - , Vn . To get a more symmetric formula, write down our formula n! 
times (once for each permutation of {Vl, V,, - , Vn}), and then add each column. 
For example, in the case n = 3 this leads to 

-2dim(VlnV3)-2dim(V2nV3) 
- 2dim(Vl n(V2 +V3)) 
- 2dim(V2n(V, +VJ) 
- 2dim(V3n(Vl +VJ) 

We leave it to the reader to write down a general form for this. 
Recall that the second isomorphism theorem for vector spaces says that 

if V, and V, are subspaces then 

Taking dimensions of both sides of this formula yields the well known formula 
that we started with. One would guess that our dimension formula must also give 
rise to a quotient isomorphism. In fact, we have the following. 
Theorem 2. If Vl, V,,-, Vn are subspaces of a finite dimensional vector space, 
then 
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Proof. This is really a corollary to the first theorem. Take dimensions of both 
sides. The dimension of the left side is the same as the dimension of the right side 
by the first theorem. Since the left side and the right side have the same dimension 
and they are over the same field they must be isomorphic. 

The second theorem isn't very satisfying. It gives us a way of looking at 
the dimension formula of the first theorem in terms of quotient spaces, but the 
given isomorphism is "unnatural" in that we haven't given the isomorphism and 
it seems unlikely that one will be found. Is there a better generalization of the 
dimension formula, and does it lead to a natural generalization of the second 
isomorphism theorem? We leave this question the reader. 



Self-similarity and Fractal Dimension of Certain 
Generalized Arithmetical Triangles 

Mark Tomforde (student) 
Gustavus Adolphus College 

The following two forms of Pascal's (or the arithmetical) triangle are 
equivalent: 

where C(m, n) is the number of combinations of m + n objects taken n at a time. 
If we let p be a prime and code p different colors to the numbers 0 to p - 1, then 
we can replace each number in the above figure by the color coded to its least 
positive residue modulo p and thereby "visualize" the relation among the numbers. 
It is well known that the nonzero residues of Pascal's Triangle modulo a prime p 
form a fractal image which is self-similar and has fractal dimension 

1 In this paper we investigate a generalized combination C(m, n) which is defined 
as follows: Given a sequence of integers C,, C2, . . .,Cn we denote the generalized 
factorial of a number n as [n]!, and define it as [O]! = 1 and [n]! = C, C ,  * . . . - 
Cn for n e N. We then denote the generalized binomial coefficient by 

I 
I and define it as _ In]! . We can now define C(m, n) = 

k &]!in-k]! 1:1 11 
For our purposes in this paper we will only discriminate between 

elements which are congruent to 0 modulo a given prime (which will always be 
colored white) versus those which are not congruent to 0 modulo the prime (and 
winch will be colored nonwhite). We shall also use the following definitions for 
various types of sequences: 
A U-sequene is a sequence {Un) such that U,, = 0, U, = 1 and 

Un+2 = aUn+, +bun  for all n e {O, 1, 2 ...} and for some 
fixed integers a and b. In this paper, values of C(m, n) 

379 
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which are determined by a U-Sequence will be denoted 
U(m, n). 

A Gaussian seauence is a sequence {Q,,] which is a U-sequence such that a = 1 
+ q and b = -q for some interger q. Thw Qn = 0 and Q,, = 1 
+ q + q 2+ . .  .+qn-l. Whenq# l,Q,,=(l -qn)/(l -@;when 
q = 1 this is the sequence 1, 2, 3 ,4 ,  . . . . In this paper, 
values of C(m, n) which are determined by a Gaussian 
sequence will be denoted either by Q(m, n) or by Q, (m, n) to 
specify the value of q. 

A divisible is a sequence {Cn] such that gcd(C m, C,,) = 

CgaKnuil for all m, n > 0. All U-sequences with gcd(a, b) = 1 
are regularly divisible [2, p 132L and thus all Gaussian 
sequences are also regularly divisible. 

In addition, there are some well known facts about U-sequences which will be 
made use of in this paper. Some of these are listed here: 

U,,,+,, = Un+]Un + b UmUn-, (Fact 1) 
U(m, n) = U,,,+,U(m, n - 1) + b Un.lU(m - 1, n) (Fact 2) 
U(m, 0) = 1 (Fact 3) 
U(m, 1) = U l̂ (Fact 4) 
U(m, n) = U(n, m) (Fact 5) 

It is now possible to begin proving facts about generalized arithmetical triangles 
and the sequences used to form them. 

Lemma 1: Ifp is a prime and plb for a U-sequence, then Un = an-'(mod p) for all 
n 6 N where a and b are as defined before. 
Proof: This theorem can easily be proven by induction using the basic recurrence 
in the inductive step and the relationships U, = 1 and U2 = a as the base cases. 

Theorem 1: Ifp is a prime, then p 1 U(m, n) for all m, n e N iffpla and plb. 
Proof: First it will be shown that pla and plb => p 1 U(m, n) for all m, n 6 N. 
Since plb we know from lemma 1 that Un = an-'(mod p) which means that for m, 
n e N  

U(m, n) = U,,,+,U(m, n - 1) + b Un.,U(m - 1, n) (by fact 2) 
= amU(m, n -1) + b a n - v m  - 1, n)(mod p). 

Now since pla and plb it follows that p divides each of these terms in the sum and 
hence p 1 U(m, n) for all my n e N. Next it will be shown that p 1 U(m, n) for all 
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m, n e N => pla and plb. Since p 1 U(m, n) for all m, n e N, then certainly plU(m, 
1) for all m e N. Therefore pvmn(by fact 4) for all m e N. Thus plU 2,0r because 
U2 = a, pla. Also pIU3, or because U3 = a2 + b, p)(a2 + b) and since p also divides 
a we conclude that plb. Hence pla and plb. 

Theorem 2: If p is a prime for which plb and p/a, then p 1 U(m, n) for all m, n 
6 {O, 1,2, . . .}. Furthermore, if p / U(m, n) for all m, n e {O, 1,2, . . .}, then 
P / a. 
Proof: Begin by assuming that plb and p 1 a. Then because plb, it follows from 
lemma 1 that Un = an" (mod p) for all n 6 N. 
Now we will assume that p 1 U(m, n) for some my n e N and arrive at a 
contradiction. If n = 0 or 1 there is a contradiction since U(m, 0) = 1 and U(m, 1) 
= Uwl = am(modp). Ifn :> 2, then 

= a w m ,  n - 1) + b an*'U(m - 1, n)(mod p). 

Now since p I U(m, n) and p I b an-W(m - 1, n) (because p I b) we can conclude 
that p 1 rfTJ(m, n - 1). However, since p 1 a we can further conclude that p 1 U(m, 
n - 1). Now if n -1 is equal to 1 there is a contradiction as before. Otherwise we 
can use the same line of reasoning to see that p 1 U(m, n - 2). By continuing this 
method we eventually have that p 1 U(m, 1) which is a contradiction. Thus we 
conclude that p 1 U(m, n) for all m, n e N. 
For the second part of the proof begin by assuming that p / U(m, n) for all m, n 
e . Now since U(1, 1) = U2 we know p ,f Us,  and because U = a we can 
conclude that p 1 a. 

Theorem 3: Ifp is a prime and q = O(mod p), then Q(m, n) = l(mod p) for all my 
n e  {O, l , 2 , .  . .}. 
Proof: Begin by assuming that q = O(mod p). Now, recall that a Gaussian 
sequence is a U-sequence with a = q + 1 and b = q; it is clear that a = l(mod p) 
and b = 0(mod p). The theorem will be proven by fixing m in { 1,2,3, . . . } and 
using induction on n. 
Base case: Q(m, 0) = 1 = 1 (mod p) 
Inductive step: Assume the lemma to be true for all Q(m, k) such that k < n. 
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Q(m, n) = QnrtQ(m, n - 1) + b Qn-iQ(m - 1, n) (by fact 2) 
= amQ(m, n - 1) + b Qn.,Q(m - 1, n) (mod p) (from lemma 1) 
= amQ(m, n - 1) (mod p) (b = O(md PI) 
= am(mod p) (since we assumed the theorem true for k < n) 
= 1 (mod p) (since a = q + 1 = l(mod p)) 

Conclusion: By induction the theorem is true for all values of n which are whole 
numbers. Furthermore, since the value of m can be any arbitrarily chosen whole 
number, we conclude that the theorem is true for all m, n e {O, 1,2, ...}. 

Theorem 4: If p is a prime and r =s(mod p), then Q(m, n)= Q(m, n)(mod p) 
forallm, n 6 {O, 1,2, ...}. 
Proof: This theorem will be proven by double induction on m and n. 
We will first show that the theorem holds form = 0 and n e {O, 1,2, . . . } . Clearly 
this is true since Q(0, n) = 1 and Q(0, n) = 1 by fact 3, and hence Q (0, n) = 
Q(0, n)(mod PI. 
Next we will show that a m ,  n) = Q (m, n)(rnod p) for all n e {0, 1, 2, . . .} 
implies that Q(m+ 1, n) = Q(m+ l,n)(modp)foralln e {O, 1 ,2 ,...,}. Todo 
this we will perform induction on n while fixing m. 
Base cases: Since 

Q(m + 1,O) = 1 and Qs(m + l), 0) = 1 it follows that 
Q(m + 1,O) = Q(m + 1,0)(mod p) for any m. 

Also, 
Qr(m + 1, 1) = 1 + r + 8 + - + (by fact 4 and Q-seq. definition) 

1 + s + s2 + ... + s '̂(m& p) 
= Q(m + 1, 1) (mod p); 

it follows that Q/m + 1, 1) = Qc(m + 1, l)(mod p) for any m. 
Inductive step: Assume that Q(m + 1, n) = Qs(m + 1, n)(mod p) for all k < n and 
for somene {l ,  2,3, .  . .}. Then 
Q(m+ l , n +  1) 

=Q(m+ 1, l)Qr(m+ l ,n)  - a n -  1, l)Q(m,n+ l)(modp) 
(from facts 2 and 4 because b = -q = -r) 

= Q ( m +  1, l ) Q / m + l , n ) - r Q ( n - 1 ,  l)Q,(m,n+l)(modp) 
(from the 2nd base case) 

= Q(m + 1 , l )  Q.(m + 1, n) - r Q.(n - 1 , l )  Q(m, n + l)(mod p) 
(from the assumptions in the - 

inductive step and previous to the induction on n) 
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= Q(m + 1, 1) Q(m + 1, n) - s Qs(n - 1, 1) Q(m, n + l)(mod p) 
(because r = s(mod p)) 

s Q,(m + 1, n + l)(mod p). 
By induction we have that a m ,  n) = Q(m, n)(mod p) for all n e {O, 1,2, . . . } 
implies that Q^m + 1, n) = Qs(m+ 1, n)(mod p) for all n 6 {O, I,&...}. 
From the previous statement and the relationship Q/0, n) = Qs(O, n)(mod p) for 
all n e {O, 1,2, . . . } , we use the principle of mathematical induction to conclude 
that if r = s(mod p), then Q(m, n) = Q(m, n) for all m, n e {O, 1,2, . . .}. 

Theorem 5: Ifp is a prime and r$ s(mod p), then there exist m, n e {O, 1,2, . . 
.} such that Q(m, n) i Qs(m, n). 
Proof: Look at m = 1 and n = 1. Then Q(1, 1) = 1 + r and Q (1, 1) = 1 + s. 
Since r i s (mod p) it follows that 1 + r i 1 + s(mod p) and therefore Q (1, 1) i 
Qd,  1). 
Based on these theorems it is now possible to make some statements concerning 
the generalized arithmetical triangles generated by using a Gaussian sequence. 
When looking at one of these mangles modulo a prime p one knows that despite 
the infinite number of possible choices for q, by Theorem 4 we are assured that 
there will be only p different possible forms for these triangles to have. These 
cornpond to the residues of q modulo p, which have values of O,1,2, . . ., p - 1. 
Furthennore by Theorem 5 we know that for a given prime p these different forms 
of the triangles will be unique. It is also clear from Theorem 3 that all the 
triangles for which q is congruent to 0 modulo p will have every element replaced 
by a black square when looked at modulo p, and because q = 1 corresponds to 
Pascal's Triangle we know, again from Theorem 4, that all triangles for which q 
is congruent to 1 modulo p will be identical to Pascal's Triangle modulo p. These 
results are displayed in the table shown in Figure 1. One should also note that 
Malta Sved has published results on Gaussian coefficient residues modulo a prime 
[3]. When looking at the pictures generated by these triangles modulo a prime it 
is natural to wonder what the fractal dimension of these objects is. In order to 
approach this question it will be necessary to use the following definitions. 

Definition: The rank of ap~arition (or sometimes &) of m in a sequence {Cn} 
is denoted by r(m) and has the following value 

r(m) = - if m divides no elements in {Cn} 
or r(m) = min{k:m 1 Ck} otherwise. 
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Ddnition; A prime p is said to be for a sequence {C,,} if {Cn} is regularly 
divisible and there is a number s(p) such that the sequence of positive integers 
b,@) = r(p), bs@) = r(p'y'), b h )  = r(p3)/r(p2), . . . (which either terminates with 
bi;(p) = w for some k or continues indefinitely) is equal to the following: 

Definition; In this paper a prime p will be said to be psi-ideal for a sequence 
{Cn} if {Cn} is regularly divisible and there is a number s(p) such that bk(p) = 

p, for all k > s(p). 
Note that all primes are quasi-ideal for a Gaussian sequence. We can now state 
a theorem proven by Knuth and Wilt [4, p. 2151. 

Theorem (Knuth and WiM): Let p be an ideal prime for a sequence {C,,}. Then 
the exponent of the highest power of p that divides C(m, n) is equal to the number 
of carries that occur to the left of the radix point when the numbers mlr(p) and 
n/r(p) are added in p-ary notation, plus an extra s(p) if a carry occurs across the 
radix point itself. 
According to Knuth and Wilt, a similar result holds when p is not an ideal prime, 
but we must use a mixed-radix number system in the addition. 

Corollary: Given a regularly divisible sequence {Cn} and a prime p, it follows 
that p 1 C(m, n) iff there are carries when m and n are added in the mixed-radix 
system 

m = xnBn + &,Bn., + - + x1Bl + x,, 

where Bi = bi . bi., - . . . * bl and b,(p) = r(p), b&) = r(p2)lr(p), b@) = r(p3)/r(p2) 

- . Using this corollary the following theorem can now be proven. 

Theorem 6: Let Do be the B, x B, matrix 
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Note that this matrix does follow the usual matrix indexing with (0,O) at the 
upper left. Instead it follows the "Cartesian" pattern with (0, 0) at the bottom left. 
Also let Dn be generated by Dn., in the following way: 

where Dn is a square 
matrix comprised of 
b,,+, x bn+, submatrices. 

Then for any whole number n, when the entries of a generalized arithmetical 
triangle generated by a regularly divisible sequence are written as 

Dn has a 1 corresponding to those elements which are not congruent to 0 modulo 
p and a 0 corresponding to those elements which are congruent to 0 modulo p, for 
any prime p. 
Proof: This theorem can be proven by induction. It will be similar in structure to 
that of a less general theorem proven by A. Jaeger and K. Saldanha in an 
unpublished paper [5]. 
Base case: The proof for Do is trivial since by the definition of Do the theorem is 
true. 
Inductive step: Assume the theorem true for Dn.,. Recall the definition of Dn and 
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consider the (i, j)th element from the bottom left (i.e., starting at the bottom left 
coiner, count i elements (not submatrices) over and j elements up). We can write 
i andj as 

i = x,,Bn + x,,-,Bn-,+ . . . + x,B, + x,, 
J = ynBn + ~n-lBn-I + . . . + YIBI + YO 0 5 x,,, ~ i ,  ^ &+I 

so that the xkYs are the digits of i and the ykYs are the digits ofj in a mixed radix 
system. Now the values of these digits tell which submatrices the (i, j)th element 
from the bottom belongs to. For instance, this element belongs to the (x,,, yn)th 
submatrix of Dm the (x,,-,, yn.,)th submatrix of Dd, etc. 
It is also clear that this element corresponds to C(j, i) = C(i, j) in the generalized 
arithmetical triangle. We shall look at the following two cases: 
Case 1: If x,, + yn s b, , then we know that the elements is in one of the 
submatrices above the diagonal in the Dn matrix. We also know that i + j must 
yield at least one cany in mixed radix addition (since x,, + yn 2- bn). Therefore, by 
the corollary to Knuth and Wilts theorem, C(i, j) is divisible by p. Hence C(i, j) 
corresponds to a 0 in the matrix Dn and we can conclude that every element above 
the diagonal corresponds to 0. 
Case 2: If x,, + yn < b,,, then the (i, j)th element from the bottom is on or below the 
diagonal submatrices of Dn . Now consider i ' and j ' where 

i' = x,,-lBn-l + yn-2Bn.2 + . . . + x,B1 + x,, 
j' = yn-lBn-1 + yn-2Bn-2 + . . . + ylBl +yo. 

Notice that i = x,,Bn + i' and j = yn Bn + j'. As mentionsed earlier (xn , yn ) 
determines the location of a Dn.l submatrix and ( i '  j') determines the location of 
an element within this submatrix. 

Now suppose that i' + j ' produces no cany. Since x,, + yn < bn there is no 
cany out of the B, position so we know i + j yields no cany. On the other hand, 
if i' + j' produces a cany, then i + j yields at least one cany. Therefore i + j and 
i' + j' when added in this mixed radix system either both yield no carries or both 
yield at least one cany. Thus xp(i, j) = xp (i ', j ') and the elements below die 
diagonal in the matrix Dn (and which are constructed by the submatrices H, ) 
correspond to the elements of the generalized arithmetical triangle. 
Conclusion: By induction the matrix Dn does in fact correspond 0's to those 
elements in the generalized arithmetical triangle congruent to O(mod p) and 1's to 
all other elements. 

Theorem 7: Let Nn be the number of nonzero elements in the matrix Dn and let 
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Dn correspond to a regularly divisible sequence with a quasi-ideal prime p. 
Then, for n > s(p), Nn = (p(p + 1)/2)"-̂ ' p where p = (b,,) (bsw + 1)/2)- 
(b sfo>l(bsfc>l+ 1)/2) - . . . a (b 1)/2) and s(p) is the same as in the definition 
of a quasi-ideal prime. 
Proof: From the definition of Do and Knuth and WWs theorem we know that only 
the elements on or below the diagonal of Do are nonzero, so 

No = (1 + 2 + . . . + (bl - 1) + bl) = bl(bi + l)/2. 
Now from Theorem 6 we know that Dn contains (1 + 2 + . . . + bM1) copies of 
Dn., . Therefore 

Nu = (1 + 2 + ... + bu+J . Nn.i = (bn+,(bn+, + 1)/2) . N,,., and 
Nl = (b2(b2 + 1)/2) No = (b2(b2 + 1)/2) (bl(bi + 11/21, 
N2 = (b3(b3 + l)/2)-N1 = (b3(b3 + l)/2)-(b2(b2 + 1)/2)-(b,(b, + l)/2), 

and by induction 
Nn = (bM(bn+l+ 1)/2) . . . . . (bZ(b2 + 1)/2) * (bl(bI+ 1)/2), 

and for n > s(p) 
Nn = (P(P + 1)/2) - . . . . (p(p + 1)/2) - (bsM(bsM + 1)/2 . . . . . 

(b2(b* + l)/2) + 11/21 
so Nn = (p(p + l)/2)1-̂ 1 - p. 
Now fractal dimension, as calculated by Mandelbrot, requires a geometric 
construction to be carried out ad infiniturn while scaling it to fit, say, the unit 
square. The fractal, or self-similarity, dimension is then given by dim = 
log N/log(l/R) where N equals the number of self-similar pieces in the limit 
smctm and R equals the scaling ratio required b m  one stage to the next 
in order to fit the structure to the unit square. For our purposes we will use an 
equivalent measure of fractal dimension called the Entropy Index [6, p. 1841 or 
Mass/Cluster Dimension [7, p.321 which is defined as 

where Nn is as described in Theorem 7, S = 1/r, and r is the linear scaling ratio 
needed to shrink the entire figure to the unit square. 

Theorem 8: The Entropy Index or MassJCluster Dimension for a generalized 
arithmetical triangle which is looked at modulo p, where p is a quasi-ideal prime, 

is given by Dim = log(P(P +l)f2) 
1 % ~  
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Proof: The value for Nn is given by Theorem 7, and from Theorem 6 we know that 
Dn is a Bwl x Bn+l matrix so r = l/Bn+l and S = Bn+ Therefore 

Dim = lim - 
n-- log s 

= lim log@(p + 1)/2)"-^p (from Theorem 7) 
it-- l0gBn+1 

= lim log(@@ +l)/2)-^1p (by the definition of Bn+J - log@ "-^'B)) 

- log((P(P + l)/2) 
logp 

It is interesting to note that the dimension found in Theorem 8 is the same as that 
obtained for Pascal's triangle modulo a prime [I]. The formula also gives the 
fractal dimension of the triangles generated by a Gaussian Sequence. 
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Generalized Arithmetical Triangles Generated by Gaussian Sequences 

(all entries always => 
black squares) 

(Identical to Pascal's => 
Triangle modulo p) 

(FIG. 1) 

Approximating en/2 with nearly n + 113 Terms 

J.S. Frame and C.L. Frenzen 
Michigan State University and Naval Postgraduate School. 

n-1 

Let S = n "/k! denote the sum of the first n terms of the power 
k=O 

series for en, whose largest terms are the a& and (n + I)*, both equal to nn/n! and 
denoted by M. It was shown by Frenzen [l] that Sn is less than but near to en/2. 
Question! How much of the next term M needs to be added to S,, to get e"/2? 
With two different methods we obtain: 
e'Y2 = Sn + M(l/3 + 41(135n + f(n))), with f(n) near 90/(7 - 16/(3n + 13581495)) 

To show this by successive curve fittings we require successive limits as 
n - m. We first evaluate for n = 0 5 m 9, to 20 or 25 decimals the values 
of n-1 k 

pn = @OM = (e/n)"n!/2, sn = Sn/M + 113 = 413 + ml -j/n). 
k = l  j= l  

Stirling's fonnula with remainder approximates pn by 
(xn12)'' exp(ll12n - l/360n3+ . . . ) 

We notice that d,., = pn - s,, decreases and that nd,, appears to have a limit for large 
n. For example, 

Since these differences of nd,, values decrease by about Vi we add the last 
difference 0.00000 553 to 512d5,, to get 0.02962964, which is near 41135 = 
0.0296296296 ... This suggests evaluating the function 41114 - 135 = f(n)/n for 10 
values of n = 2m as follows. 
n 4/n4 - 135 
1 19.99321 75390 61752 
2 8.56789 21217 29290 
4 3.79347 85832 66614 
8 1.75661 91688 24471 

16 0.84142 86281 27822 

weights 
11315 
-212 1 

819 
-64121 

1 O24/3 15 
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We fit a quartic polynomial in 1/n, namely a(n) = a,, + al/n + aJn2 + &In3 + 
adn4 to the values above for arguments n, n12, d4 ,  d8,  d l 6  with n = 512, and 
sum these values multiplied by the weights in the last column above to obtain a 
value a,, which estimates the limit for n -> with an error of order n"? The 
weights shown were found in the first row of the inverse of the 5x5 Vandermonde 
matrix with i, j-entries 2('-'N-l). We get a,, = 4.1 x 10'11, indicating that the limit 
of 41114 is 135 to at least 12 significant digits. 

Next we use the same technique to obtain a limit for f(n) = 4/dn - 135x1. 
Since this limit is close to 12.857 which resembles 9017, we examine 7f(n) - 90 
instead, with values 2.132025259695, 1.068796892776, 0.53506601 1476, 
0.267696286445, 0.133888509235. Applying the same weights we get 
5.0 x 1 0"1Â for our limit estimate a,,, near 5 124. The limit of f(n) appears to be 
9017. We compute five values of n(f(n) - 9017) and apply the same weights to get 
an estimated limit a,, = 9.79591836678 = 9 + 141 + 1/3.899999986), close to 
9 + ll(4.913.9) = 480149 = (90/7)(16/21). Next assume 90n/f(n) = 7n - 16/(3 + 
r(n)). 
n n(f(n) - 9017) 3 + r(n) nr(n) 
32 9.74640 1 1871 77 3.08667 02527 07 2.77344 77666 
64 9.77185 73053 81 3.04310 11297 55 2.75847 23043 

128 9.78406 42099 47 3.02149 18770 27 2.75096 02594 
256 9.79003 56185 60 3.01073 12438 06 2.74719 84147 , 
5 12 9.79298 81040 46 3.00536 19473 69 2.74531 70528 
an 9.79591 83667 82 3.00000 00033 2.74343 59807 

This estimate a,, indicates that r(m) = 0 and nr(n) approaches a limit near 
. 

2.4 + .34343.. . which is about 1215 + 34/99 = l358/495. This gives the 4 digit 
approximation 2.7 18 for n = 1 which is not noteworthy but could be changed to 
e = 2.7182816 by replacing 495 by 495 - 96/11. However, for n ;> 64 the 
approximation for f(n) in the fast paragraph yields 12 significant digits for pn and 
for n s 512 yields 18 significant digits, 

A second way to obtain f(n) without some good guessing is to express 
factorials as integrals, and to make suitable changes of variable such as expressing 
z as a power series [2] in w if z - ln(1 + z) = d 2 .  We shall express 4 as a power 
series in 1/n which yields the same continued fraction obtained above. First we 
sum the first n + 1 terns of the e"n!/nn series getting 
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where t = nz. Then set d l 2  = z - ln(1 + z) = ( m ( 1  - 2z/3 + 2z2/4 - 2z3/5 + -) 
and get wdw = (1 - 1/(1 + z))dz = zdz/(l + z) or 1 + z = (z/w)(dzldw). We 
assume a series expansion 
1 + z = 1 + w + a , d  + a,& + ... = (1 + a,w + a2w2 + ...)( 1 + 2alw + 3a2d + ...I 
so that a l = l / 3 a n d ~ . l = ( n + 2 ) ( a n + a 1 a n , + ~ a n 2 + - ~ ~ + a n , a l + a n ) / 2 .  To 
simplify the fractions in the recurrence relations for an we set bn = 6"an and get 

Hence, b4= 3/10, b5= 16/35, b,, = -3(139)/350, b, = 48/35, bg = -57111400, bg = 

-64(281)/9625. Thus we can compute sn + 213 as an asymptotic series [3 ] 

Next we evaluate 2pn = e%!/n - (t/nYeMdt = (1 +z)tle T d z  where - f  0 f -1 

t = n(l + z). Again we set w2/2 = z - ln(1 + z), but now the lower limit is -Â¡Â 

since the odd powers of w drop out and the even powers double up on 

integration. Thus sn +2/3 - p,, = exp(-nw 2/2) ndw .A / 
0 

Now set $ = 2t.h and pn - sn = dn to obtain 
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= 213 - 4/(135n) + (213)3/(105 n2) + (2/3)41(105n3) - (2/3)5(2811(5 1975n4) + ... 
and so 
d,, = (4/135n)(l - (2/3n)/7 - (2/3n)'17 + (2/3n)'281/3465 + ...) . 
We expand this in a continued fraction to simplify the coefficients. Set 
x = 2421 n). 
d,, = (4/135n)/(l + x + 8x2 - 6344x31495 + ...) 

= 4/(135n + (90/7)/(1 - 8x + 56(679)?/495 + ...)) 
= 4/(135n + 90/(7 -1 613n + 1 6(1358)/495(9n2) + .. .)) 
= 4/(135n + 90/(7 - 16/(3n + 13581495 + . ..))). 

This continued fraction agrees with the one obtained by the first method, and 
shows that the previous limit guess 13581495 was correct. Actually, this guess 
helped to correct an error made in computing by by the second method. The 
second method makes dear why the denominator of the k* of the successive limits 
113, 413'5,9017, 1613, 135815(9)11 has prime factors only from the first k odd 
integers greater than 1. It can yield more terms if desired. 
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A Particular Polarity 

John A. Frohliger 
Richard Tuggle (student) 

Jennifer Van Sistine (student) 

INTRODUCTION 
Start with the Euclidean plane, represented by the Cartesian coordinate system. 
There is a one-to-one correspondence between points (a,b) in the Euclidean plane 
and nonvertical lines y = ax - b . (See Figure 1 .) Let us refer to I p  as the line 
corresponding to point P and to Xl as the point corresponding to line I .  This 
correspondence leads to some interesting results, pairing curves with curves, 
inflection points with cusps, and conic sections with conic sections. 

Figure 1 

Property 1 : If P and Q are points with different first coordinates then ip and zQ 
intersect at a point whose first coordinate is the slope of @ and whose second 

coordinate is the negative of the y-intercept of a . 
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Proof: Let P and Q have coordinates (a,b) and (c,d), respectively. The common geometric property. 

corresponding lines $ and lQ are described by the equations y = ax - b and Proposition: The diagonals of a parallelogram bisect each other. 

y = ex - d. (See shown that the intersection of these Proof: Let A, B, C, and D be vertices of a parallelogram, as shown in Figure 3. 

lines is the A (wick check reveals that f6 la M be the midpoint of AC. since A6 11 fie , the intersection of 1. and 1. 

has the same Hirst coordinate x, as the intersection of lines ID and lr- Similarly, 

has slope m = - the intersection of lA and lD has the same first coordinate x, as the intersection 
c - a  of lines Is and Ic. Now A,, is midway between 1, and @n the sense described 

; 
If points P and Q have coordinates (a,b) and (c,d) , respectively, then the line l%) 

can be parameterized as: 

{ x = at + c(1 - t) 
y = bt + d(l - t). 

Corresponding to the point with coordinates (at + c(1 - t), bt + d(l - t)) is the Figure 3 

line y = (at + c(l - t))x - (bt + d(l - t)). In particular, i fM is the midpoint This correspondence between points and nonvertical lines has another important 
a + c  b + d  of m, then the line lM , given by the equation y = - x - -, is the Property. 

2 2 
"midline" of $, and lQ. That is, lM has the property that , for every value of x, the Property 2: Let P be a point and Ip be its corresponding line. Then the set of lines 

point on ln with first coordinate x is midway between the corresponding points corresponding for the points on l p  is the pencil of nonverdcal lines through P. 

on l p  and lQ. Furthermore, lM is the only line with this property. This fact and Proof: (See Figure 4.) Let P be the point (a, b). Then lp has equation A 

Property 1 can be used to give a quick, though somewhat unusual, proof of a 

above. At xi and x, then, lM is midway between 1 and I D  . Consequently, 
slope = m lM is midway between l B  and I,, at every x; hence, we may conclude that M is the 

4 midpoint of and the property follows. 

1 c 

r 

Figure 2 L 
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y = ax - b . Now the line corresponding to a point R(t, at - b) on lp has the 

equation y = tx - (at - b); consequently, this line passes through P. Similarly, 

it can be shown that every nonvertical line through P corresponds to a point on lp. 

Figure 4 

In projective geometry, a transformation such as ours, which takes points to lines 

and lines to points, is called a correlation if it preserves incidence. That is, if 

point P is on line I, then under a correlation the point corresponding to i would be 

on the line corresponding to P. We can extend our correlation to the extended 

Euclidean plane , which contains ideal as well as ordinary points and lines, by 

having the vertical line x = a correspond to the ideal point associated with the 

bundle of parallel lines with slope a and having the ideal line correspond to the 

ideal point associated with the bundle of vertical lines. With this new, expanded 

definition, the next property shows that our correlation is a special type of 

transformation called a polarity. Readers unfamiliar with projective geometry 

may wish to skip the property and its proof. 

Property 3: This correlation is projective with period 2; hence, it is a polarity. 

Proof: To prove this, we need only show that the points on one line are 
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d o n n e d  into one pencil of lines in a projective fashion. It follows then that the 

points on every line are mapped to the corresponding pencil in a projective 

fashion. (See [I], page 57.) In our case, we will use the x-axis as the line &d the 

lines through the origin as the corresponding pencil. Let li and li be the y-axis 

and the line y = 1, respectively, and let Ol and 0, be the points (1,l) and (1,O). 

(See Rgure 5.) One can easily see that, for a * 0, 1 , a point (a, 0) is projected 

through Ol to the point (0, a/(a - 1))on li and this point is projected through 0, 

to the point (11% 1)on 1,. Finally, the line through this point and the origin is the 

line y = ax - 0, the image of (a, 0) under the correlation. 

Figure 5 

Using ideal points, one can easily see that this projectivity takes the point (0,O) to 

the x-axis and the point (1,O) to the line y = x. 

It is easy to see that the correlation has period 2. It follows from Property 3 that, 

I if point P is transformed into line lp then lp is transformed into P. 

I DUAL CURVES INDUCED BY THE POLARITY 

Let I be an open interval on the real line and ex) be a function on I whose second 

derivative is continuous with isolated zeros. Let C be the graph off. 
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(See Figure 6.) At the point P on C with coordinates (t, fft)) the line 1 with 

equation y = fJ(t)x - (tfJ(t) - St)) is tangent to the graph. Under our 

correlation, 1 is related to a point X, whose coordinates are (f '(t), t f '(t) - f(t)). 
Let C' be the set of all of these points Xi. That is, C' is the curve parameterized 

by the equations 
x = f '(I) 
y = tfl(t) - St). 

We will call C' the dual of C under this polarity. Notice that, at the point 

(x, y) = (f '(t), t f '(t) - f(t)), a tangent line 1 ' has slope 

dy _ dy/dt - tfl'(t) + fJ(t) - fJ(t) - - -- - - t and equation y = tx - St). (This 
dx dddt f "(t) 

also holds at those points where f "(t) = 0 since f " is continuous with isolated 

zoos.) Under the correlation this X i  is the original point P(t, Rt)) on C. Using 

the chain rule again, we see that if fl'(t) * 0 then, on C', 

We could have started by assuming that C was a curve parameterized by a 

d^  finBtion gxh: I - RxR for some open interval I. We can compute and - 
dx d x 2  

in terms of the parameter. As long as we have die condition that, on C, 
dy d^  - is continuous and - has isolated zeros and discontinuities, we will 
dx dx2 

achieve the same relationship between C and C' as the one described above. 

Therefore, it follows that C is also the dual of C' under the polarity. 

Figure 6 

Figure 7 
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Figure 8 
t 

PROPERTIES OF THE DUAL CURVE 

The dual of a curve can become very complicated. Figure 7, for example, shows 

the graphs of the sine function and its dual with some tangent lines. But what 

information does the dual of a curve C provide? For example, compare the graph 

of ffx) = 0.5(x + l)x(x - l)(x - 3) and its dual (Figure 8). First of all, the y- 

intercepts of C' correspond to the points where C has a horizontal tangent. The 

x-intercepts of C', on the other hand, correspond to points on C whose tangent 

fines pass through the origin. Furthermore, where fl'(x) * 0, the concavity of C 

at a point has the same sign (positive or negative) as the concavity of C' at the 

corresponding point. 

One of the striking features of the dual is the cusp. At this point the first 

coordinate f (t) was changing from decreasing to increasing and the concavity 
1 - changed signs. This means that cusps on the dual curve correspond to 

f "(t) 
inflection points on the original. It is curious that an inflection point, which is 

often difficult to pinpoint with the naked eye, would correspond to something 

as pronounced as a cusp. 

How are translations and reflections of C manifested in the dual? It is easy to 
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prove the following: 

1. If C is translated vertically a units, then C' is translated -a units 

vertically. 

2. If C is translated horizontally b units, then C ' is replaced by C ' + 1 

where 1 is given by y = bx. That is, every point (x, y) on C' is 

replaced by (x, y + bx). Conversely, if C is replaced by C + 1, then 

C' is translated horizontally b units. 

3. IfC is reflected about the x-axis, C' is rotated TI units about the 

origin. 

4. IfC is reflected about the y-axis, so is C'. 

Figure 9 shows the effects of such translations and reflections on the example 

in Figure 8. 

dual offf-x) 

dual of -fir) 

____<- 

Figure 9 
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COMICS AND SELF-DUALITY 

Since our correlation is a polarity, the dual of a conic is a conic [I]. The images 

of some basic conies are given in the following table. For the sake of 

completeness, ideal points and their images are included. 

Figure 10 shows four graphs, each one showing one of these basic conics and its 

dual. Every other conic in the plane results from one of these by a combination 

of reflections, translations, and "adding" lines. This is true since the equation of 

a conic section has the form Ax2 + Bxy + Cy2 + Dx + Ey + F = 0, which 

can be transformed into one of the forms in the table by the transformations 

x  -* x + 4 y - y + e, and y -* y + mx. Therefore, the correspondences listed in the 

table are sufficient to characterize the images of all conics. 

Under a polarity a point is called self-conjugate if it lies on its corresponding line. 

Furthermore, the set of self-conjugate points forms a conic and their corresponding 

lines are the tangents to the conic. Under our correlation there is such a selfdual 
1 curve which the reader can easily verify is the graph of y = - x2. This is the 
2 

only curve in which every point corresponds to itself in its dual. However, there 

Equation for C 

are other curves which are identical to their duals, though individual points do not - 

Equation for corresponding C' 

xL xL y L - l  
map to themselves. These include the graphs of y = -- and - - - - 

2 a 2 b 2  

when b = a" 
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Figure 10 
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The Power Means Theorem via the Weighted AM-GM 
Inequality 

N. Schaumberger andM Steiner 
Hofstra University 

For any real number r + 0, the power mean of order r, & is defined as 

where a, > 0. One of the fundamental theorems involving means states that if a 
> 0, then 

with equality iffa, = = - = 

In particular, it follows from (1) that the harmonic mean M-, does not 
exceed the arithmetic mean Mi which in turn does not exceed the quadratic mean 
M2. Other applications of (1) to problems in elementary mathematics can be found 
in [2], 

The usual proof of (1) uses both the ordinary AM-GM inequality and the 
Bernoulli inequality and is not particularly simple. (See, for example, [I]). 

The weighted AM-GM inequahty states that ifx,, x2,-,x,, are positive real 
numbers with Exi = 1, then for nonnegative real numbers q,, q,,-, a, we have 
(2) x1q1 + X A  + + Xnqn 2 q1 q2 
with equality iff q, = q, = --- = a,. 

In this note we show that for a and P either both positive or both 
negative, (1) is an almost immediate consequence of (2). Start out with y > 6 : 
0, and c,, c2,-, cn > 0. 

Since 
c; 2 6 

(3) 
cn +.+...+ 

GC.6 zc.6 w 
it follows from (2) that 
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Hence 

with equality iff c, = c, = - = cn. 

Again using (2) with (3) gives 

b 6 6 
c2 - - 

1 r̂ f 1 Fi st,.. [d-(2) [F 
It follows that 

Equality holds iff cl = c, = - = c,,. 

Equations (4) and (5) give 
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Write (6) as 

In other words 

with equality iff ci = c, = - = c,,. 
Toget(l)fora>6>O,use(7)withy=a, 6=p, andci=a;, 1 s i 2 n. 

Similarly, (1) can be obtained for 0 > a > p by using (7) with y = -p, 6 = 

1 -a, ci = -, 1 <Â i s n, and inverting both sides of the inequality. Finally, the 
ai 

ordinary AM-GM inequality can be used to complete the argument for a > 0 > p. 
Thus 

References 

1. N.D. Kazarinoff, Analytic Inequalities, Holt, Rinehart, and Winston, 
N.Y., 1961, pp. 62-64. 

2. P.P. Korovkin, Inequalities, Blaisdell Publishing Co., N.Y., 1961, 
Ch. 2,3. 

MISCELLANY 

Chapter Reports 

ProfessorJoanne Snow reports that the INDIANA EPSILON ~ h a ~ t e r  
(Saint Mary's College) was addressed by Dr. Maura Mast (University of 
Northern Iowa) at the department's annual Open House. The chapter performed 
various service activities during the year. 

Professor Chris Leary reports that sixteen talks were presented to the 
NEW YORK OMEGA Chapter (Saint Bonaventure University) during the 1995- 
96 academic year. Students P. J. Darcy and David Tascione were members of 
St Bonaventure's team in the Mathematical Contest in Modeling. SIAM selected 
the team's solution to Problem B as the outstanding solution for that problem. 

Professor Joan Weiss reports that the CONNECTICUT GAMMA 
Chapter (Fairfield University) was addressed by A. Michael White from the 
Defense Research Agency. The chapter was involved with various mathematical 
contests during the year. 

Errata 

Sandra Chandler found die following errors in her paper "Determining 
a Day of the Week" (Volume lO(1994-99), Number 4,283-284). In paragraph 
two on page 284, every occurrence of Thursday' should be replaced with 
'Wednesday'. Also, the last example should read: "Here is a last example to 
illustrate this: January 6, 1994 was a Thursday; what day will July 4, 1997 fall 
on? Thursday + 1 + 1 + 2 (now we are at January 6, 1997) + 3 + 0 + 3 + 2 + 3 
+ 2 (July 6, 1997) - 2 = Thursday + 15 = Friday." 

Paul S. Bruckman and Robyn M. Carley should have been listed as 
solvers to Mathacrostic 41. 
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The 1995 Game 

In die Fall 1995 issue of the Journal, Paul S. Bruckman challenged readers 
to represent die integers starting from 1 using the digits 1,9,9, and 5 in that order. The 
challenge was accepted by Victor G. Feser from the University of Mary. He 
represented the integers from 0 to 154 in the prescribed manner. Some of his 
representations are listed below. Contrary to Bruckman's expectations, Feser felt that 
the expressions for 20 and 25 were easy to find. He was more challenged by the 
representations for 63,78, and 79. 

0=1-1/9 + I/F5 

5 = 1 9 + 9 - 5  

1 0 = 1 +  i/9- 
20=(1+9) 49-5 
2 5 = ( - I + @ +  @ ) a 5  

28=(1+ i /9 ) !+9-5  

63=(1 + ( i / 9 ) ! ) -9 - r@1 

7 8 = - l + g - g - r , / 3 1  

7 9 = 1 - 9 . 9 - r \ / 5 1  

106=(-I+(@)!) ' - 9 - 5  

l54= 1 + 9 + (  ( i /9 ) ! ) ! /5  

Victor claims that every integer can be represented as directed. 

Cryptogram Solution 

Paul S. Bruckman provided the following solution to the 
c~yptogram which appeared on page 185 of the Fall 1995 issue of the 
Journal: 

Should the Pi Mu Epsilon Journal publish 
mathematical cryptograms? Or should it have 
no puzzles at all? 
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What are These? 

The following items were created by Florentin Smarandache and 
submitted by Charles Ashbacher. 

E A O T E E  
r t s h n s  

~ P m c h m  

R V R V R V  
M K M K M  K 

A O A O A O  

Answers, should you need them, are on page 370. 



MATHACROSTICS 

Solution to Mathacrostics 42, by Jeanette Bickley (Spring 1996). 

Words: 

sieve of Eratosthenes 
Windows 
even 
icosahedron 
Noah 
bowlers 
Elements 
relativity theoxy 
grown 
Dipper 
rack 
Euler 
amuck 
moa 
Stephen Hawking 

opine 
first law of hydrostatics 
august 
foolish 
injure 
null set 
absolute 
logarithms 
thirteen 
heighten 
Euclidean geometry 
owning 
race 
yesterday 

Author and title: S. Weinberg, Dreams of a Final Theory 

Quotation: Although we do not yet have a sure sense of where in our work we should 
rely on our sense of beauty, still in elementary particle physics, aesthetic judgments seem 
to be working increasingly well. I take this as evidence that we are moving in the right 
direction and perhaps not so far from our goal. 

Solvers: Avraham and Cham G. Adler (jointly); Thomas Banchoff; Frank P. Battles; 
Paul S. Bruckman; Keith G. Calkins; Charles R. Diminnie; Clayton W. Dodge; Thomas 
Drucker, Robert C. Gebhardt; Jennifer Hake; Geoff Inman. Brooke Bentley and Curt Eva 
(jointly); Henry S. and Elizabeth C. Liebennan (jointly); Rachael Lot horn Mi 

t ~easo4 Laurie Schlenkennann, Naomi Shapiro; Stephanie Sloyan; and the proposer. 

Mathacrostic 43 by Gerald M. Leibowitz appears on the following pages. The 
directions for solving acrostics are also given. To be listed as a solver, send your solution 
to the editor. 

A Coral structures 

B. Probability space, usually 

C. He wrote Operations Lineaires 

D. Member of a set 

E. Risque 

P. Dentifrice 

H. Algebraic systems 

1 Steel tool 

J. 23rd pan of a treatise, abbr. 

K American newt 

L Word associated with C. and R. 

M. Sworn statement 

N. Name with series and integrals 



0. Co-author of convexity theorem 

P. Covered with water 

Q. Parallel to canal 

R. Inventor of t2 

S. Lambs' moms 

T. Paired 

U. Attribute of f(x) = ax + b 

V. Bird sound 

W. Member of a list 

X. Translates of a subgroup 

Y. British snacks 

The mathacrostic is a keyed anagram. The 140 letters to be entered in the 
diagram in the numbered spaces will be identical with those in the 25 keyed words 
at the matching numbers. The key numbers have been entered in the diagram to 
assist in constructing the solution. 

When completed, the initial letters of tile words will give the name of an author 
and the title of a book; the completed diagram will be a quotation from that book. 



PROBLEM DEPARTMENT 

Edited by Clayton W. Dodge 
University of Maine 

This department welcomes problems believed to be new and at a level 
appropriate for the readers of this journal. Old problems displaying novel 
and elegant methods of solution are also invited. Proposals should be 
accompanied by solutions i f  available and by any information that will assist 
the editor. An asterisk (*) preceding a problem number indicates that the 
proposer did not submit a solution. 

All communications should be addressed to C. TV. Dodge, 5752 
Neville/Math, University of Maine, Orono, ME 04469-5752. E-mail: 
dodge@ganss.nmemat.maine.edu. Please submit each proposal and solution 
preferably typed or clearly written on a separate sheet (one side only) 
properly identified with name and address. Solutions to problems in this 
issue should be mailed to arrive by July 1, 1997. 

Problems for Solution 

888. Proposed by the Editor. 
In 1953 Howard Eves' book An Introduction to the History of 

Mathematics was first published. It quickly became the definitive 
undergraduate text in mathematics history. It still is today. To honor this 
outstanding text and its equally outstanding author, solve this base nine 
alphameric, finding the unique value of H E W  

MATH + HIST = HEVES. 

889. Proposed by M. S. Klamkin, University of Alberta, Edmonton, 
Alberta, Canada. 

Prove that 

x Y 2 

wherea> 1 a n d x >  y >  0. 

890. Proposed by Peter A. Lindstrom, Irving, Texas. 
Express the following sum in closed form, where real number a # 1: 

n 

891. Proposed by John Wahl, Aft. Pocono, Pennsylvania, and Andrew 
Cusumano, Great Neck, New York. 

Solve for d the equation 

bcd + cda + dab + abc = E ~ ,  

a + b + c + d  

892. Proposed by Bill Correll, Jr., student, Denison University, 
Granville, Ohio. 

Prove that the average of the eigenvalues of a real, symmetric, 
idempotent matrix is at most one. 

893. Proposed by Peter A. Lindstrom, Irving, Texas. 
Show that the sequence {xn} converges and find its limit, where x, = 2 

and, for n >. 1, 

894. Proposed by Andrew Cusumano, Great Neck, New York. 

Let us lake P, = 4 / 2 f i ,  P, = 8 { T f i ,  p4 = 

16/m/2, and so forth. Find the value of lim n+ n(Pn - P,,). 

895. Proposed by Andrew Cusumano, Great Neck, New York. 
Let ABC be an isosceles right triangle with right angle at C. Erect 

squares ACEH and ABDI outwardly on side AC and hypotenuse AB. Let CI 
meet BH at 0 and AB at K, and let A 0  meet BC at J. Let DE cut AB at F 
and AC at G. It is known (Problem 817, Fall 1994, page 72) that DE passes 
through 0. Let JF meet AH at S and let JG meet BH at T. Finally, let BH 
and AC meet at M and let JM and CI meet at L. See the figure. 

a) Prove that 
i) ST is parallel to DOE, 



ii) JK is parallel to AC, 
iii) JG is parallel to AB, 
iv) AI passes through T, 
v) JF passes through I, 
vi) EK passes through My and 
vii) BL passes through G. 

*b) Which of these results generalize to an arbitrary triangle? 

896. Proposed by Peter A. Lindstrom, Irving, Texas. 
For arbitrary positive integers k and n, find each summation: 

a) E (i)(i + l)(i + 2)--(i + k). 
i = 1  

n 

b) (i)(i - l)(i -2)-(i -k), where n > k + 1. 
i= l  

n 

c) (i - k)(i - k + l).-(i - l)(i)(i + l)(i +2)-(i + k), 
i = 1  

where n 2 k + 1. 

897. Proposed by J.  S. Frame, Michigan State University, East Lansing, 
Michigan. 

Pi MU EPSILON JOURNAL 

Show that all non-negative integral solutions of the Diophantine equation 

are given by consecutive terms of an infmite sequence of integers xi with xO 
= 0, xi = 1, and x+, = ax, + bxM. Find a and b and the first seven terms of 
the sequence x,. Generalize this procedure and determine the solution xi for 
the equation 

898. Proposed by Paul S. Bruckman, Edmonds, Washington. 
An n-digit number N is defined to be a base 10 Armstrong number of 

order n if 

where the dk are decimal digits, with dn., > 0. (See Miller and Whalen, 
'Armstrong Numbers: 153 = 13 + 53 + 33," Fibonacci Quarterly 30.3, (1992), 
pp. 221-224.) Prove that there are no base ten Armstrong numbers of order 
2; that is, prove the impossibility of the equation 

where x and y are integers with 0 s x < 9 and 1 < y < 9. 

899. Proposed by Robert C. Gebhardt, Hopatcong, New Jersey. 
Find the average number of times an ordinary six-sided die must be 

tossed in order that each of its six faces comes up at least once. 

900. Proposed by Howard Eves, Lubec, Maine. 
Given the lengths of two sides of a triangle and that the medians to those 

two sides are perpendicular to each other, construct the triangle with 
Euclidean tools. 



Solutions 

862. [Fall 19951 Proposed by Philip Tate, student, University of Maine, 
Orono, Maine. 

cGSolve this base ten addition alphametic." 
"But it doesn't have a unique solution." DODGE 
"It does if I give you the value of T." + THE 
"Never mind, I found it. Furthermore, it has a unique GREAT 

solution in base eight. Let me show it to you." 

Solution by William H. Peirce, Delray Beach, Florida. 
Let b 2 8 be the base. Since G # D and R # 0, there must be a carry 

from the hundreds column to the thousands column and from the thousands 
to the ten thousands. Then D + 1 = G, 0 = b - I ,  and R = 0. From the units 
column we have either T = 2E or T = 2E - b. In the latter case the hundreds 
column requires that c + D + 2 8  - b = E + b, where c is the carry fiom the 
tens column and hence is 0 or 1. Then D + E = 2b - c, which is impossible, 
so T = 2E < b and there is no carry from the units column. The alphametic 
now reads 

where c is the carry into the hundreds column. 
Suppose c = 0. Because then D + 2E = E + b, we have D = b - E. 

A s o A = D + l + H = b - E + l + H s b - 2 h p ~ e s a a t E 2 3 +  
H 2 4. For base 8, E 2 4 contradicts 2E C b. In base ten we must have 
E = 4 , s o T = 8 a n d D = l O - 4 = 6 . N o w A = D +  1 + H 2 7 + H  
2 8, which is impossible. 

Thusc=  l . W e h a v e l + D + 2 E = E + b , s o D = b - 1 - E a n d G  
= D +  1 = b - E . m e n G + H = A + b i m p l i e s h t A = H - E . m e  
alphametic now reads 

1 1 1 0 

b-1-E b - 1  b-1-E b - E  E 
2E H E 

b - E  0 E H - E  2E 

in which we have E 2- 2 because G = b - E < b - 1. 
I n b a s e k n , E = 2 , 3 , o r 4 . I f E = 3 , t h e n G =  1 0 - 3 = 7 , D = G  

- 1 = 6 , a n d T = 2 E  =6,acontradiction. I f E  = 2 , t h e n G =  1 0 - 2  = 
8 , D = G - 1  =7,andT=2E=4,lavhgl,3,5,and6,menA= 1 
and H = 3, or A = 3 and H = 5 provide solutions 79782 + 432 = 80214 
a n d 7 9 7 8 2 + 4 5 2 = 8 0 2 3 4 . I f E = 4 , t h e n G = 1 0 - 4 = 6 , D = G - l  = 
5, and T =  2E = 8, leaving 1, 2, 3, and7. Then A = 3 and H = 7yields 
the solution 59564 + 874 = 60438. Therefore, T cannot be specified 
randomly-T can only be 4 or 8-and the solution is unique only when T 
= 8. 

I n b a s e 8 , E = 2 o r 3 . I f E = 3 , h e n G = 8 - 3 = 5 , D = G - l  = 
4, and T = 2E = 6, leaving only 1 and 2 remaining. Then A and H cannot 
bechosentosatisfyA = H - E . I f E  = 2 ,  thenG= 8 - 2  = 6 , D  = G -  
1 = 5, a n d T =  2E = 4, leaving 1 and3. ThenA = 1 andH = 3provide 
the unique base 8 solution 57562 + 432 = 60214. 

These solutions are listed below: 

Base 10 Base 8 

For general base b, the number of solutions is a quadratic function of 
b having the form (3b2 - pb + 9116, and there are twelve such expressions 
in a congruence class of b modulo 12. These expressions are, for b = 8,9, 
. .. , 19 (mod 121, @, q) = (41, 1421, (48,201), (43, 1481, (44, 1631, 
(45, 1741, (46, 1811, (41, 1361, (48, 1951, (43, 1541, (44, 1691, (45, 1681, 
(46, 175). For bases 8 and 10, these give 1 and 3 respectively. 

Ako solved by Charles Ashbacher, Paul S. Bruckman, James Campbell, 
Mark Evans, Victor G. Feser, S. Gendler, Richard I. Hess, Carl Libis, 



PROBLEMS AND SOLUTIONS 42 1 

Henry S. Lieberman, David E. Manes, Brandon Marsee, Greg Mitts, 
Yoshinobu Murayoshi, Jeffrey Pierce, H.-J. Seifferty Kelly Straughen, 
Kenneth M. Wilke, Rex H. Wu, and the Proposer. 

*863. [Fall 19951 Proposed by James Chew, North Carolina 
Agricultural and Technical Sfafe Universiq, Greensboro, North Carolina. 

Here is a problem especially for undergraduates. Everyone is f d a r  
with the story of the absent-minded professor who wears different colored 
socks on his feet. Suppose a month's supply of socks are in the clothes 
drier; specifically, let there be n pairs of socks in a drier containing only 
these socks. 

a) Assume the socks are of n different colors. The professor draws 
socks one at a time from the drier without replacement, noting the color as 
he draws each sock. To get a pair of matching socks, at least 2 and at most 
n + 1 socks must be drawn. On average, how many socks would have to 
be drawn to get a matching pair? 

b) Repeat part (a), assuming k different colors of socks: nl pairs of red 
socks, 4 pairs of blue socks, etc., where nl + 4 + . . . + nk = n. 

Solution by Paul S. B r u h n ,  Sahiya, Kuwait. 
We fust solve the more general problem in Part (b). Some preliminary 

definitions are in order. Let xi = 2ni, i = I, 2Â . . ., k. Let denote the ith 
elementary symmetric function of the numbers xp Note that Ul = 2n; also 
Uk+l = 0. We define U,, = 1 for convenience. Let denote the sum of all 
the permutations of terms such as x12x&. . .xi. It is easily verified that 

Let Oi denote the probability of requiring exactly i draws to obtain a pair of 
socks. Note that 2 5 i 5 k + 1. The event d e f h g  Oi involves fust 
drawing i - 1 different-colored socks, which may be done in (i - I)! i&l ways, 
and then drawing another sock of a previously drawn color. Having 
previously drawn color cy there are xc - 1 ways to draw a matching sock. 
Thus, the total number of ways to draw a pair of socks in exactly i draws 
is given by (i - l)![v-l - (i - 1)l.JJ. The total number of ways to draw i 
socks, irrespective of resultsy and agah counting permutations, is (2n)(O = 

2n(2n - 1)--.(2n - i + 1). Therefore, 

for i = 2, 3, ..., k + 1, obtained by using muation (1). It is instructive to 
verify that d2 + d3 + . .. + Ok+l = 1, as required. We omit the proof, but 
note that it is easily demonstrated by the use of telescoping series. Let p(x) 
denote the required mean of the distribution, where x is the k-tuple 
(XI,%, . .*Y ~k).  Then 

The result in (3) is the most general and depends on the values of the ni for 
its evaluation in closed form. For Part (a) we have k = n, ni = 1, 1 5 i S 
n, so that Ui = 2i(7). We denote the mean of the distribution by p,, in this 
case. Then we obtain 

We may evaluate this sum in closed form. Identity 1.9 in [I] states 

Setting x = -n - 1 and y = -112 in (5) ,  we obtain 



From (6) we obtain the desired result for Part (a), 

since Z;=,, C+l) = 2-. Note that, from Stirling's formula, (3 = 4" (n~) - '~  
as n + m. Consequently, we see from (7) that p,, = (nr)ln as n + m . 

Reference 

1. H. W. Gould, Combinatorial Identities, Morgantown, W. Va., 
University, 1972. 

ALSO solved by William Chau, and Mark Evans. 

Editorial note: So much for a simple, little problem intended for 
undergraduates! 

864. [Fall 19951 Proposed by Charles Ashbacher, Geographic 
Decisions Systems, Cedar Rapids, Iowa. 

On page 11 of the booklet Only Problem, Not Solutions! by Florentine 
Smarandache, there is the following problem. 

Let aI, 4, ..., am be digits. Are there primesy on a base b, which 
contain the group of digits into its writing? But n!? But no? 

Prove that for any such sequence of digits al, 4 ,  .. . , am, no matter how 
generated, there exists a prime such that the sequence is found in that prime. 

I. Solution by H. -J. Seiflert, Berlin, Germany. 
Let b > 1 be a natural number and al, . . . , am be base b digits. By 

Dirichlet's theorem, the arithmetic progression, where the quantity in 
parentheses is the base b numeral al.. .amc and c is a base b digit chosen so 
that b and a]. . .amc have no common factors greater than 1, 

contains infinitely many primes. Clearly, each such prime has a base b 
representation of the fom ... aI...amc. In base loy we may take c = 1. 

11. Comment by Bob Prielipp, University of Wisconsin-Oshkosh, 
Oshkosh, Wisconsin. 

On pages 154-155 of 131, Sierpinslci established the following result. For 
an arbitrary f i ~ t e  sequence el, c2, . . . , cm of digits there exists a prime 
number whose fxst m digits are cI, c2, . . . , cm. George Barany [I] proved 
there are inf~ te ly  many such primes. Sierpinski [4] also proved given two 
arbitrq fh t e  sequences of digits (of the decimal system) aI, 6, . . . , a,,, and 
b,, b2, ..., b,,, where b,, = 1, 3, 7, or 9, there exist arbitrarily many prime 
numbers whose first m digits are the string a,, a2, . . ., am and whose last n 
digits are bl, b2, . . . , bn. Borucki and Diaz [2] proved both of Sierpinski's 
results for a Dirichlet arithmetic progression. 

References 

1. American Mathematical Monthly, Advanced Problem 5738,78(1971)683. 
2. L. J. Borucki and J.  B, Dim, "A Note on F'rimes, with Arbitrary Initial 

or Terminal Decimal Ciphers, in Dirichlet Arithmetic Progression,'' 
American Mathematical Monthly, 8 l(1974) 1001- 1002. 

3. Waclaw Sierpinski, Elementary meory of Numbers, Hafner hblishing 
Company, New York, 1964. 

4. Waclaw Sierpinski, A Selection of Problems in the Zheory of Numbers, 
The Macmillan Company, New York, 1964, page 40. 

Also solved by Paul S. Bruchan, Pat Costello, Thomas C. Leon;, 
David E. Manes, and the Proposer. 
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865. [Fall 19951 Proposed by Miguel Amengwl Covas, Mallorca, 
Spain. 

Let ABC be a triangle with sides of lengths a9 b, and c, semiperimeter 
s, and area K. Show that, if Ea(s - a) = 4K, then the three circles 
centered at the vertices A, B, and C and of radii s - a9 s - b, and s - c, 
respectively, are all tangent to the same straight line. 

Solution by ?Villiam H. Peirce, Delray Beach, Florida. 
Let rl = s - a, r2 = s - b, and r3 = s - c be the radii of the three circles 

centered respectively at A, B, and C. From these defmitions we get a = r2 
+ r3, b = r3 + rl, c = rl + r2, and s = rl + r2 + r3. Then 

Since we have 

we may eliminate K between these two expressions to obtain 

That is9 F = 0 is equivalent to the statement Za(s - a) = 4K. 
Consider any two extemally tangent circles of radii rl and r2. By simple 

geometry the distance between the two points of tangency along an external 
taugent line is 2 a .  Therefore, when the three externally tangent circles 
of the problem are tangent to the same line, one and only one of the 
following three situations will occur: 

These three expressions, along with the nonzero factor 

are the four factors of F, so that F = 0 is equivalent to the three circles 
being tangent to the same straight line. The theorem follows. 

Also solved by Paul S. Bruckman, David Iny, and the Proposer. 

866. [Fall 19951 Proposed by J. Rodriguez, Sonora, Mmko. 
For any nonzero integer n, the Smra~chefincZion is the smallest 

integer S(n) such that (S(n))! is divisible by n. Thus S(12) = 4 since 12 
divides 4! but not 3!. 

a) Find a strictly increasing idmite sequence of integers such that for 
any consecutive three of them the Smarandache function is neither increasing 
nor decreasing. 

*b) Find the longest increasing sequence of integers on which the 
Smarandache function is strictly decreasing. 

I. Solution by David Zny, Baltimore, Maryland. 
a) Obviously, if p is prime9 then S@) = p. Also, if p is an odd prime 

greater than or equal to 5, then p + 1 is divisible by distinct integers 2 and 
@ + 1112, so that S@ + 1) S @ + 1)12. Thus, if p,, p2Â ... is any 
increasing sequence of primes each greater than or equal to 5, then the 
sequence of integers pl,  pl  + 1, p2* p2 + 1, . . . is an increasing sequence 
whose Smarandache function values alternately increase and decrease. 

b) We extend the observation of P a  (a) to note that, if p is prime and 
k < p is a positive integer, then S(p9 = @. Now we fmd primes pl,  p2, . . . , 
pn7 all greater than n, so that S M  = Qk. If pl, p;, pi, . .. , # is increasing 
with pl, 2p2Â ..., npn decreasing, we are done. Recall that asymptotically 
there are mllnm primes less than or equal to m. 

The construction now follows. Fix n > > 1 and pick primep" > > nn. 
Suppose we have already picked pa, pn-l . . . , pk+ for k 2 1. Then we pick 
a prime pk so that A < 4:; and Qk > (k + l)pk+ That is, 

Since nn < < pn < pn-l < ... < pk+17 then we have that 

(k+lyk 2 (n911kpk+I 2 npk+l since k s n - 1. Pk+l 
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Thus it is sufficient to pick pk prime so that 

k + l  
~ P k + l  < Pk < nPk+l- 

We estimate the number of possible primes as 

since n > > 1. This completes the construction. 

11. Comment by Paul S. Bruckman, Salmya, Kuwait. 
This problem appeared almost verbatim in Z%e Fibonacci Quarterly, 

Vol. 32Â No. 1, February 1994, by the same proposer, as Problem H-484. 
My solution appeared in the same journal, Vol. 33, No, 2, May 1995, pp. 
189-192. 

ALSO solved by Charles Ashbacher, James Campbell, Wiiam Chau, 
Thomas C. Leong, H.-J. Seiffert, Rex H. Wu, and the Proposer. 

867. pall 19951 Proposed by Seung-Jin Bang, AJOU Universiv, 
Suwon, Korea. 

F i d  the number of solutions (x, y, z, w) to the system 

x + y + z + w = 7  
2 + f + 2 + d = 1 5  
2 + f + 2 + d = 3 7  

xyzw = 6. 

Solution by Henry S. Liebennan, Waban, Massachusetts. 
The solutions to the system are all of the permutations of (1, 1,2,3), of 

which there are 12. The left sides of the equations are rational integral 
symmetric functions of x, y, z, and w. We note the following elementay 
symmetric hctions of x, y, z, and w: 

u l = x + y + z + w ,  
u2 = q' + yz + zw + wx + xz + yw, 
u3 = xyz + yzw + m x  + wxy, and 
U4 = q'ZW. 

Let si = 2 + yi + zi + d. Then the system can be written as 

sl = ul = 7, s2 = ISy s3 = 37, and u4 = 6. 

We claim that (x, y, z ,w) solves the system if and only if these values are 
the zeros of the polynomial in f ,  f - ale  + u23 - u3s + u4. From formulas 
in [I] we see that 

We have a, = 7 and u4 = 6, and from (11, 

which yield u2 = u3 = 17. It is easy to discover that the zeros of 

are 1, 1,2, and 3. Hence, (1, 1,2,3) and its permutations solve the system. 

Reference 

1. B. L. Van der Waerden, Modem Algebra, vol. 1, Frederick Ungar 
Publishing Company, New York, 1953, page 81. 

Ako solved by Miguel Amengual Covas, Pad S. Bruchan, William 
Chau, Russell Euler, Mark Evans, Robert C. Gebhardt, S. Gendler, Richard 
I. Hess* David Iny, Carl Libis, David E. Manes, Yoshinobu Murayoshi, 
K e ~ e t h  M. Wilke, and the Proposer. 
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868. [Fall 19951 Proposed by William H. Peirce, Delray Beach, 
Line - 
1. 

Value Florida. 

1. Enter total amount of all social security 
benefits . . . . . . . . . . . . . . . , . . . . S 1.- - 
2. Enter one-half of line 1 . . . . . . . . . 2. 
7. Enter your provisional income . . . . . 7.-p- 
8. Enter $32,000 if married filing jointly 8.32,000- 
9. Subtract line 8 from line 7. If zero or 
less, enter 0 . . . . . . . . . . . . . . . . . . 9. 
Is line 9 zero? If yes, enter 0 on line 18. If 
no, continue to line 10. 
10. Enter $12,000 if married filing jointly 10.12,000- 
11. Subtract line 10 from line 9. If zero or 
less, enter 0 . . . . . . . . . . . . . . . . . . 11. 
12. Enter the smaller of line 9 or line 10 12. 
13. Enter one-half of line 12 . . . . . . . 13. 
14. Enter the smaller of line 2 or line 13 14. 
15.Multiplyline11by0.85 . . . . . . . .  15. 
16.Addlines14and15 . . . . . . . . . .  16. 
17. Multiply line 1 by 0.85 . . . . . . . . 17. 
18. Taxable social security benefits. Enter 
the smaller of line 16 or l&e 17 . . . . . . 18. T 
Social Security Benefits Worksheet (somewhat simplified) 

Computation of the taxable portion of social security benefits in 1994 
is considerably more complicated than in past years, and the IRS has 
designed the 1994 accompanying worksheet to determine these taxable 
benefits. Let S be the total social security benefits on line 1, P the 
provisional income on line 7, and T the taxable benefits on line 18. For 
married couples filing jointly, find T as a function of S and P. Exhibit the 
solution graphically by showing the function T for each pertinent region of 
the SP-plane, and give the boundary equations for each region. Assume S 
> 0 and P > 32,000 and ignore their practical upper limits. 

Solution by Paul S. Bruckman, Salmiya, Kuwait. 
We consider the possibilities in the table below. 
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We may display these results in the following five regions: 

1. T = .85S if P > 7SA7 + 44000 and S <s 12000, or if P > S + 
36941.18 and S > 12000; 

2. T = .5S + .85P - 37400 if 44000 < P < 75/17 + 44000 and S 5 
12000; 

3. T = .85P - 31400 if 44000 < P 5 S + 36941.18 and S > 12000; 

4. T = .5S if S + 32000 C P 5 44000 and S S 12000; and 

5. T = .5P - 16000 if P <a S + 32000 and S <a 12000. 

We see that T is a positive, piecewise continuous, linear function of the two 
variables P and S, subject to the conditions S > 0 and P > 32000. We 
graph the boundaries of these five regions into which the SP-plane is 
divided. (We note there is a void region for S > 12000 and P > 44000.) 

. Also solved by Mark Evans and the Proposer. 

869. [Fall 19951 Proposed by Rasoul Behboudi, University of North 
Carolina, Charlotte, North Carolina. 

Consider an ellipse with center at 0 and with major and minor axes AS 
and CD respectively. Let E and F be points on segment OB so that we have 
OE2 + OF2 = OB2. At E and F erect perpendiculars to cut arc BC at G 
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Simulated Traffic Flow (4  cars) 
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Figure 7. 
al-World Comparison 

The table below shows yellow light durations at several intersections in 
Hope College area. As one can see, the model (which predicts minimum 

ues for t,J for die most part agrees with actual traffic signals. Agreements and 
ancies should not be taken too seriously, since the predictions were based 

on very rough estimates of braking accelerations and intersection widths (it's hard 
to measure the width of an intersection when pesky cars keep getting in the way). 

Com~arisons with Actual Traffic Lights 

Location S D ~  Limit Predicted t ;,d Actual tF, 

' 8' @ River 25 miyhr 3.6s 3.7s 
8* @ Central 25 miflu 3.6s 4.0s 
8th @ College 25 m i h  3.6s 3.5s 
8th@US31 35mih.r 5.3s 6.2s 
US31@8' 5 5 m i h  5.6s 4.5s 
9* @Central 30 mi/hr 3.7s 4.0s 
9' @ College 30 milhr 3.8s 4.0s 
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results. 

Figure 8. 

Summary 
In conclusion, one can develop a suitable traffic signal timing schedule 

for a simple city based on a few parameters and a few formulas of motion. Yellow 
light timing depends pnmanly on speed limit, braking acceleration, and the width 
of intersections. Red and green light timing depends on the spacing of 
intersections, the speed limit, and the chosen pattern length N. The model shows 
that some degree ofunimpeded traffic flow is almost always possible for regularly 
spaced intersections. Furthermore, timing schemes for two-way traffic can 
generally be extended to four-way traffic systems. And finally, the model provides 
results which seem to be in general agreement with actual traffic signals. 

The model leaves many questions unanswered, however. How well do 
the proposed timing schedules prevent traffic jams? What if the city contains 
heavy-load and light-load streets? What if the lattice is irregular (e.g., the spacing 
varies)? I believe the model developed in this paper could be extended to handle 
these situations, and that the computer simulation would especially help in 
answering the first question. In any case, it was a fun project which I think gives 
a reasonable description of traffic systems. And who knows? Perhaps someone 
will pick up where I have left off I would be interested in hearing about the 
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Editorial note: F .  Y .  I., n = l6,292,246,262,786,755,l56,lO5,l6O,857, 
65 1,258,074,334,634,907,277. 

871. [Fall 19951 Proposed by Miguel Amengual Covas. Mallorca, 
Spain. 

Let ABCD be an isosceles trapezoid with major base BC. If the altitude 
AH is the mean proportional between the bases, then show that each side is 
the arithmetic mean of the bases, and show that the projection A P  of the 
altitude on side AB is the harmonic mean of the bases. See the figure. 

Solution by Richard I. Hess, Rancho Palos Verdes, California. 
Let BC = b, AD = a ,  and AH = h. Since h 2  = ab, then 

so AS = (a  + b)/2, the average of the bases. Let 6 = angle BAH. Then 

l a b  AH - 2@, so AP = AH cos6 = - cos6 = - - - 
AB a + b  a + b y  

whence A P  is the harmonic mean of a and b. 

Also solved by Paul S. Bruckman, William Chau, Russell Euler and 
Jawad Sadek, George P. Evanovich, Joe Howard, Tommy Jarrett and David 
Lindsey and Laura Ramdarass and Robyn Carley, Henry S. Lieberman, 
Kandasamy Muthuvel, H.-J. Seiffen, Skidmore Problem Group, Kenneth M. 
Wilke, Rex H. Wu, and the Proposer. 
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872. [Fall 19951 Proposed by Paul S. Bruckman, Edmonds, 
Washington. 

Given A,, A2, and A, are the angles of a triangle and 4 < k < 12, let 

defined on the triangular plane region R: 0 < A, < r, 0 < A2 < r,0 < 
A, + A2 < u. Find the maximum value of Sk for all triangles. 

Solution by David Zny, Baltimore, Maryland. 
In order for S,. to take on its maximum value for all choices of k, we 

will take the closure of the indicated region allowing the degenerate case. 
We show that max(Si) = k + 3 for k S 9, achieved with the degenerate 
triangle (0,0, r ) ,  and max(Sk) = 3(k - 1)/2 for k 2 9, achieved with the 
equilateral triangle. To do this, we write 

Sk = (k - 9)(E cos Ai) + Sa 

and we show that Sa has (up to permutations) two distinct global 
maximizers, the degenerate triangle (0,0, r )  and the equilateral triangle. We 
then combine this result with the inequality 1 5 L cos A, S 312 with lower 
and upper bounds achieved respectively by the degenerate and equilateral 
triangles. 

Consider first the functionflx) = 9 cosx + cos 2x. Since we havef"(x) 
= -8 cos2x - 9 cosx + 4, thenf" has a zero at a = cos-I [(-9 + d209)116]. 
We see that f is convex (concave downward) for 0 < x < a and concave 
(upward) for a < x < v. Thus, if max(A,) <s a ,  then 

It Sg = E / W  S s ~ ( $ ! ; A ~ )  = 12 with equality for A, = A2 = A3 = -. 
3 

Because f is concave on (a, u), a maximizer of EAAJ can have at most one 
angle greater than a. Thus, without loss of generality, we assume A, and A, 
do not exceed a. Since 

jO+Mi)s 2f(̂ ) 

by convexity, we must have A, = A, and we let y = A, = A,. Then 

Sg = 2(9 cos ;y + cos 2y) + 9 cos ( r  - 2y) + cos 2(r - 2y) 

which on the interval 0 S cosy S 1 has maxima at cosy = 112 and cosy 
= 1, which occur at y = d 3  and y = 0. This establishes that 

with equality for the degerate and equilateral triangles. 
It remains to show that E cos A, <, 312. If max(Ai) 5 u12, then cos x is 

convex, whence 

with equality for A, = A2 = A3 = ~ 1 3 .  If A, 2 rI2, then 

+ cos [r-(A, + AJ]. EcosA, 5 2cos - 

But 2 cos z - cos 2z = -2 cos2 z + 2 cos z + 1 has a maximum when cos z = 
112. Hence E cos A S 312. To get the lower bound, we take A, S A2 S 
vf2 and A, < A, without loss of generality. By convexity, A, = 0 whenever 
E cos A, is a minimum. Then 

Thus E cos A, 2 1 and the result is established. Furthermore, we see that 
the result holds for all real k. 

Also solved by William H. Peirce and the Proposer. 

873. [Fall 1.9951 Proposed by M o h d  K. Azarian, University of 
Evansville. Evansville. Zdiana. 

For p and q positive real numbers and any positive integer m let 

where x 2 0. Prove that 
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Solution by H. -J. Seiffert, Berlin, Germany. 

Since 1 + x + . . . + f ln!  < e* when x > 0 and n is a positive integer, 
we have that 

0 < m exp[-(p + q12 ̂I 

Hence 
m 03 

Also solved by Paul S. Bruckman, Russell Euler, David Iny, and the 
Proposer. 

874. [Fall 19951 Proposed by David Iny, Westinghouse Electric 
Corporation, Baltimore, Maryland. 

a) Given real numbers xi and zi for 1 < i < n, prove that 

b) Determine a necessary and sufficient condition for equality. 

I. Solution by Murray S. Klamidn, University of Alberta, Ed-on, 
Alberta, Canada. 

It will be shown that the given inequality is equivalent geometrically to 
the square of the volume of a tetrahedron being nonnegative. 

Let X, Z, and I denote, respectively, the n-dimensional vectors 
(x,,& ,..., x,J,(z,,z2 ,..., zy),aad(l,l, ..., 1)andlet 1 XI =x, 1 Z 1 = 
z, and here 1 1 1 = dn .  Also let a, B, and denote the angles between X 
and I, Z and I, and X and Z, respectively. The given inequality can now be 
rewritten in the form 

or equivalently 

*(I- cos2 7)  2 n̂ $ cos2 a + nx22 cos2 B - 2nx22 cos a cosB cos 7 

and finally 

The left side of the latter inequality is 36 times the square of the volume of 
the tetrahedron having X, Z, and I as three coterminal edges. There is 
equality if and only if the volume is 0 or equivalently if X, Z, and I are 
linearly dependent. That is, if either X or Z equal 0 or k1 or there are 
constants a and b such that zi = oxi + b for all i. 

11. Comment by H.-J. Seiffert, Berlin, Germany. 
This inequality is known. See [I], page 227, Equation 20.1. 

Reference 

1. D. S. Mitrinovit, J. E. Pdarid, and A. M. Fink, Classical and New 
Inequalities in Analysis, Kluwer, 1993. 

Also solved by Paul S. Bruckman, Joe Howard, Yoshinobu Murayoshi, 
and the Proposer. 



Subscription and Change of Address 

If your address label contains the symbols "F96" then this is the last 
issue in your current subscription. We hope that you agree that the Journal 
provides good value and that you will renew your subscription. The rates are: 

United States: $20 for 2 years 
$40 for 5 years 

Foreign: $25 for 2 years 

Back issues: $ 5  each 

Complete volumes: $50 (5 years, 10 issues) 

All issues: $400 (9 back volumes and volume 10) 

If you have moved, please let us know. The Journal is not forwarded so 
it is important that we have a current mailing address for you. 

To subscribe or change your address, complete the form below (or a 
copy thereof) and send it, with a check payable to the Pi Mu Epsilon Journal 
for subscriptions, to 

Joan Weiss 
Department of Mathematics and Computer Science 
Fairfield University 
Fairfield CT 06430 

Name: Chapter: 

Address: 

Address change? Subscription: 

439 

REFEREE APPLICATION FORM 

The contributions of a referee can enhance the Quality of any journal. If you would 
like to volunteer to serve as a referee for the Pi Mu Epsilon Journal, please provide the 
information requested below so that the appropriate manuscripts can be sent to you for 
your consideration. Since manuscripts are not to exceed ten pages in length, the editor 
believes that a referee's report should be sent back to the editor in at most two mtmths from 
the date of receipt. Please keep this in mind before volunteering your valuable time and 
expertise. Your support of the Journal is appreciated. Please send the completed form 
to: 

Russell Euler 
Department of Mathematics and Statistics 
Northwest Missouri State University 
Maiyville, MO 64468. 
(8 16)5 62- 1229 

(Please type or print neatly) 

Name 

Affiliation 

Mailing Address 

one Number 

E-mail Address 

"lease list the mathematical areas in which you feel competent to referee. 

Please list any specific times of the year that you would prefer NOT to receive a 
manuscript to review. 



Editor's Note 

The Pi Mu Epsilon Journal was founded in 1949 and is dedicated to 
undergraduate and beginning graduate students interested in mathematics. All 
submissions to the Journal should be directed toward this group. 

Undergraduate and beginning graduate students are urged to submit 
papers to the Journal for consideration for publication. Student papers are given 
top priority. Expository articles by professionals in all areas of mathematics are 
also welcome. Some priority areas are listed in the Editorial (p. 352) in the Fall 
1996 issue of the Journal. Some guidelines include: 

Manuscripts must be original work, not have been previously published 
nor should they be under consideration for publication elsewhere. 
Manuscripts must be typewritten, double spaced with wide margins, on 
only one ride of 8.5" x 11" white paper. Whenever possible, manuscripts 
should be typewritten in WordPerfect. 
Including figures, manuscripts should not exceed ten pages in length. 
Figures should be placed on separate sheets and photo-ready. Camera- 
ready figures should measure a maximum of 4.5" wide by 6" long. 
In order to insure anonymity in the review process, the author's name, 
affiliation (academic or otherwise), and address should appear only on a 
separate title page. 
The tide must also appear on the first page of the exposition. 
Each page should be numbered. 
Students submitting manuscripts should give their school, date of 
graduation, and the name of their faculty advisor for their submission. 
Two copies of each manuscript and a copy of the disk (whenever the 
manuscript is typed in WordPerfect) should be submitted to the editor at 
the address listed on the inside of the front cover. 

Eleventh Annual Moravian College 

Student Mathematics Conference 
Saturday, February 22, 1997 

Invited Lecture 

Newton's Original Method 
- o r - -  

Though this be Method, yet there is madness in't 

Professor William Dunham 
Truman Koehler Professor of Mathematics 

Muhlenberg College 

The one-day conference, sponsored by Moravian College's 
chapter of Pi Mu Epsilon, is a unique opportunity for 
undergraduate students in the Tri-State area to meet and 
discuss mathematics. Students are invited to give talks in 
the fields of mathematics, statistics, operations research, 
and computing. In October, mathematics departments in 
the region will receive detailed information on the 
conference, registration forms for students talks, and 
registration forms for attendance at the conference. Mark 
your calendars and encourage your students to come, to 
give a talk, or just to listen to some interesting talks by 
others and to socialize with students and faculty from 
many other institutions. 

For further information, contact: 
Doris Schattschneider 
Moravian College, 1200 Main St., Bethlehem, PA 1801 8-6650 
email: schattdo @ moravian.edu 
tel (610) 861 1373 fax (610) 861 1462 



Means Theorem via the Weighted 
&equality 

;. Schaumberger, M. Steiner .............................. 405 

acrostics 
Jeanette Bickley, Gerald M. Leibowitz ............... 41 1 

em Department 
Clayton Dodge, editor .......................................... 415 

:ription and Change of Address ............................. 439 

fferw Application Form ............................................... 440 

liter's Note .................................................................... 441 


