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Red Light, Green Light:
A Modd of Traffic Sgnal Systems

Ryan Bennink (student)
Hope College

Introduction

Probably everyone who drives has had the experience of "hittingdl the
red lights." Especiadly sincemoving from arural areato atown, | havefound
myd f wonderingwhy variouslights(red in particular) last aslong asthey doand
how thescheduleof trafficsigna sisdetermined. What criteriashould one use?
Can multiple sets of signals on many streets be coordinated to yield optimum
trafficflow? And so when amathemetical modeling project was assigned in my
senior math seminar, | fdt thetimewas ripe for an investigation of trafficlight
timing.

Atthe outset of my project | had a number of objectivesinmind. First,
| wished to identify the parameters which characterize traffic flow and to
determinewhat restrictionsthose parameters placed on signal timing. Second, |
hoped tofind atuning schemewhich would providefor the"'best” traffic flow for
amodd city. Andfindly, | wanted to comparemy proposed timing schemeto
real-world trafficsgnal schedules.

The modd | came up with is based on severd premises: Driversaways
obey thespeed limitand a| trafficsignals; driversare perfect (they dwaysmeke
correct judgments); and conditions must never force a driver to do something
illegd. Furthermore acity consists of alatticeof intersectionswith atrafficsigna
at each intersection. Each block is square, and al blocks have the same side
dimensiond. Stregtsaretwo-way and thereareno a priori preferred streets or
directionstotraffic. Findly, traffic Sgnasare uniformly periodicin both timeand
gpece. Thisnaars that each light cydesfrom green toyelow to red on aregular,
repedling schedulewith period T. laaddition, there isa number N such that traffic
signalswhich are N intersectionsapart run on identica schedules.

A Bask Descriptiondf Motion

One candescribethemation of a car of length L (say, travelingnorth) by
plottingdie position s of thecar's front bumper asafunction of timet (see Figure
1). Intersections which oocupy awidth w become bandsin the £-s plane. Regions
of a particular band can then be color-coded toindicate the status of thelight at the
miersection for varioustimes. If thegpeed limitisv,., thenthemaximumdope
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of s(t) isv,.. We can aso characterize starting and stopping by acceleration
terms, denoting the maximum braking acceleration by a,,.... \We can then apply
the dementary constant-acceleration motion formulas

s=S5, +vot+%az‘2
v=y,+at (O
vi=vi+2as
For example, thedistanced,,,,, requiredfor acar travelingat thespeed limit to
cometo afull stopis

2
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Figurel.

Implementing Restricting Conditions
Yelow Lights
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The amount of timetheydlow light must be on i s perhaps the smplest
feature to determine. The governing rule is this: If a car cannot stop at an
intersection, it must be able to clear the intersection before the light turnsred,
Condder acar going the speed limit asit gpproachesan intersectionwith a green
light. Past acertain point, the car istoo cosetotheintersectionto stopin time
ifthe lighttuns ydlow. The point of decision, by whichtimethelight must have
turned ydlow if the driver is to stop, is when the driver is d,,,, away from the
intersection (see Figure 2). Judt past this point, the car must keep going and the

s
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Figure2.

yvellow light mugt stay on until thecar's back bumper leavestheintersection. That
is, 1,.; must be long enough to dlow thecar to traversea distanced,, +w+L.
TthleldS Viax +w+L ) (3)
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Thewider theintersectionand thelonger thecar, thelonger theydlow light must
be  Good hraking capability, however, reducesthe minimumtime. Althoughthe
speed limit enterstwice, die dominant effectis that die required timelengthens
with higher speed limits because stopping distanceisincreased.

Red and Green Lights. Two-way traffic.

Inthis modd, trafficflow i s considered optimal whencar s traveling at the speed
limit hit thefewest red lights. That is, one would like to time the sequence of
trafficlights so that, as much as possible, cars which catch one greenlight will
continue to encounter green lights. The green lights should "fallow the speed
limit."" Perhaps thisdoes not seem too daunting until we remember that sincethe
streets aetwo-way, the schedulemust work for car s traveling in both directions!

Every Sgnd cydesthroughall three colorswith the same period T, and
othetimes £,,,, ¢ 4, and t, s mustaddupto 7. Ifdl streetsareassumedegualy
busy, then north-south drivers and east-west drivers should wait for each other
equa amountsof time; thust,,,= 7/72. Itthenfollowsthat ¢, = (T/2) - 1,,,. Itis
important to note that athough every signa has period T, each signd has a
separate phase delay o (measuredin seconds).

The concern hereis therelativetiming of signalsadong asinglestres,
which depends primarily on v, and the distance b betweenintersections. Since
w does not affecttheti ra required to go fromoneintersectionto the next, we can
represent intersectionssimply by linesspaced b unitsapart. And becausesignals
are periodic in both time and space, we can map the entire t-s plane onto a
rectangle of width T and length A (see Figure 3), where N is the number of
intersectionsafter which the schedule of signalsrepeats. (Notice the wrap-around
effect ontraffictrgectories)) The periodisgivenby T = (Wb)A,,... Henceour
tak is to situatethe green, yellow, and red regions on each intersection timeline
so that there exist straight lines with dopes + v,,. and -y,  (representing
northbound and southbound cars) which pass through only green regions. In this
formulaion,the problemisrather difficult since boththe signal phasesand traffic
trgectoriesarearbitrary. Realizingthat northbound and southbound trajectories
dways make the same" X shape wherever they occur, we can smplify the
Stuation by shiftingthe origin. We now consider the traffic trgjectoriesfixed and
dlow theintersectionsto trandate dong the s axis.

From this reference frame we can easily messure the time interval af
between northbound and southbound cars at a particular locations. Theleft half
of Figure 4 showsthe“X” formed by northbound and southbound cars over a 3-
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block digance. Thehorizonta separation betweenthelegsof the™ Xisthetime
interval at, whichis shown as atriangular-looking function of s in theright half
of Figure4. Asone can seefrom the right hdf of thefigure, thetimeinterva
bet ween northbound and southbound trgjectoriesis never morethan half a period
since thespace"wrgpsaround”. Thechdlengeisto determineif and how green
light regions (solid horizontal bars marked with a “G”) may be placed so as to
intersect both trgjectoriesat eachintersectior(thin horizontal lines).

If green lights wereto last at least hal f a period, the problem would be
trivial; no matter how theintersectionsweretrandated, the green light duration
would dways exceed a2 Thefact that ¢, is short of half a period by the amount
£, means thereare two forbidden zones (shaded horizonta bars) wherethe green
region is not long enough to catch both trgjectories; i.e., where t,,,, < at. The
problem has a solutionif we can trandate theintersectionsso that none of them
fdlsin aforbidden zone. Geometrica andysisof Figure 4 reveds that each

Nb
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Figure 3.
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forbidden zone extends over a distance v,,.t,;, on the s axis. Clealy the
intersectionspacing & must be at least aslargeasthis. But sincetwo forbidden
zones must be avoided, the condition which is sufficient to guarantee a solution
becomes & > 2v,..t,.. Solving this inequality for £, and combining it with
equation (3), wefind that asolution existsas long as

Aoy < D-2(w +1). (€))

Nb I
\ |

G\ G :

1

m' 7 MT////“'/%W/— 7////////

© /" ‘G [
Figure4.

In prectice, thisis never aconcern. (if you cannot stop your car in alittle under
a block, ether you are driving too fast or you need new brakesl) For aconcrete
example, let N=4, b =330/, w = 30f%, L = 15#%, v, = 30mi/hr = 44f/s, and
O4rae = 1552 ThenT = 30s and from equation (3) wehave £, 2 2.5s, which
means t,,, < 12.5s. Over every 4-block stretch of road there are two sections
Vnadyer = 11072 long which periodic northbound and southbound carstraverseat
times morethan 12.5s apart. If thelights arescheduled properly, such carswill
be ableto proceed from intersection to intersection without having to stop for a
redlight.
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As itturns out, many solutionsexist. The best onesseem to be obtained
withN =2, 3, 4, 6, or 8. (For typical red-world parametersand N = 1, thelight.
changetoo quickly. For N > 8, thelights can take several minutesto turn, and
most peopledo not liketo wait that long.) Acceptable solutionsareoptimized by
adjugting the placement of intersections so that the sum of the timeintervalsacross
al intersectionsis a minimum. That way, one creates the widest green light
intervals through which caravans of many cars can proceed uninhibited. The
phase delay for each intersection is then determined by the times at which the
trgjectoriescrosstheintersectionline.

Figures 5 and 6 show typical timing schemes. (The verticd axisis
quditativerather then quantitative, and refersto the particular light within the N«
intersection pattern. For each light, a highlevel representsa greenlight, amiddle
level indicatesayellow light, and a low level indicatesared light.) As onecan
see, traffic signasare generally staggered rather than aligned. Some lightshave
identica phases, however, becausenorthboundand southboundtraffic trajectories
are symmetrical and the optimization agorithm favors neither direction.
Incidentally, Figure 5 was generated usingN = 3, b = 33072, andv = 30mi/hr =
44fi/s. ThusT = NbA = 22.3s, asshowninthegraph. Figure6 was generated
with & = 4, yiedingthe period T = 30s.

Typical 3—intersection Timing Scheme
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A Complete Timing Schedule: Four -way traffic.

Once we have determined a working time schedulefor traffic signals
along a singlestreet (1 dimension), we can extend the scheduleto accommodate
city traffic (2 dimensions). An example will suffice to show how this is
accomplished.

Condiderthecase N = 4. Assumethat wehavecome up with appropriate
phaseddaysfor trafficsignalsaong asinglestreet, and say that northbound traffic
encounters the sequence of signals with phase delays 2o, @, 82, 85, 8 , « .
(Southbound traffic encountersthe same sequencein the oppositeorder.) If we
apply this 4-dement sequenceto adjacent N-S streets but stagger it as shownin
equation (5), then the sequenceof phasesholdsfor E- Wetreetsaswell. Columns
of the4 x 4 | atticerepresent 4-intersection segments of adjacent N-S streets; rows
represent segmentsof adjacent & Whtreets. Northbound and eastbound traffic
(., traffictraversingthelatticeup or to theright) wll encounter the same phase
differences between consecutivelights; the same holdstruefor southbound and

westbound traffic.

Typical 4—intersection Timing Scheme
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BENNINK, RED LIGHT, GREENLIGHT 361

o, 03 8, 0, &
2, 2, 9; B, 9
g = 8, 0, B; 9 5)
0 2 0 9; 93

Thispatterncan beextended indefinitely in al four directions. Thusone
can come up with atraffic signa schedule which maximizes unimpeded traffic
flowfor alatticedf intersections.

Computer Simulation

| thought it would be fun to smulae traffic flow in a city by
implementing my lattice of intersections and traffic signals schemes on a
computer. Figure 7 showsposition-versus-time data extracted from atypical run.
In this particular run, four cars were driving north along a street with a 4-
intersectionsgnd pattern Smilar to that shownin Figure 6. One can see smooth
aurvesindicating periodsof accelerationor braking, aswell asflat regionswhere
casarewaitingat aredlight. Asonewould expect. Figure 7 is reminiscent of
Figurel.

Toassesstheeffectiveness of the 4-intersection pattern suggested by ny
model, | decided to compare the average speed of carsin a dity with the 4-
intersection pattern with that of carsin a city with random signal schedules (See
Foure8). Theaverage speed wasca culated by taking thetotal distancetraveled
by al the carsin the city divided by t he length of time the smulation was run
(chosen to be 10 periods). As onecan see, when therearefew carson theroad the
average speed in the™' planned” city (upper ling) is quite closeto the given speed
limit of 30 mi/Ar (dashed line). Carsin the"random’™ city (lower line) average
little nare than half the speed limit. As the traffic becomes heavier, however, the
planned signal scheme seems to be less and less effective, to the point that it
producesresults hardly better then those of traffic signals given arbitrary phases.
This result surprised me | expected that the 4-intersection pattern would be
significantly better up to much heavier traffic loads. Apparently, only a short
caavanofvehidesareadleto pass uninhibited through green lightsat successive
intersections.
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and Hrespectively. Show that the areas of sectorsOBHand OGCareequal .
See the accompanying figure.

c G

A o B

-

I. Solution by Robert Downes, Mountain LakesHigh School, Plainfield,
New Jersay.

Pacethedllipse inthe Cartesian plane so that we have B(b, 0), GO, ¢),
E(e, 0), and F(f, 0). The equation of the ellipse then becomes

D

2 2
2oL <,

b2 ¢

Since we were given OE? T OF? = OB?, from which we get 2 T2 =
b2, then we find that H(f, ce/b) and G(e, ¢f/b). The aress of sectors OBH
and OCG, K(OBH) and K(OCG), are given by

celb

k(o8B = [ b - Yylay = o £
o \C ce 2 b
and

(ST - L) = P sin1 € - koBR).
K(OGC) {(b\/b x bex)dx 5 Sy (OBH)

I1. Solution by Skidmore College Problem Group, Saratoga Springs,
New Yak.

Place the ellipse in the Cartesian plane (as in Solution | above). The
linear transformation f, given byfix, y) = (x/b, y/c), sendsthe ellipseto the



PROBLEMSAND SOLUTIONS 433

unitcircle. Welet fd) = A', etc. The conditionthat & +f 2 = 5* becomes
e’ T f'2 = 1. Since applying f multiplies areas by a constant value, we
see that the dliptica sectors have the same area if and only if the
corresponding circular sectors have the same area. The area of a circular
sector of radius r and central angle 9is #6/2, so we must show the sectors
O'B’'H' and 0'C'G' have equdl central angles a and 8, respectively. Now
a=cos'f'and B = w/2-cos'e. Because e’2 + 2 = 1, then cos'f ’
and cos e’ are complementary, so a = 8.

Also solved by Miguel Amengual Covas, Paul S. Bruckman, George P.
Evanovich, Jayanthi Ganapathy, Richard |. Hess, Joe Howard, Murray S.
Klamkin, Henry S. Lieberman, Peter A. Lindstrom, David E. Manes, V.
S. Manoranjan, G. Mavrigian, Yoshinobu Murayoshi, H.-J. Seiffert, and
the Proposer.

870. [Fdl 1995] Proposed by Grattan P. Murphy, University of Maine.
Orono, Maine.

This proposd is based on a problem posed at a recent mathematics
meeting and is intended especidly for students. Without using machine
calculation, that is, without actualy finding the digits of the number, show
that at least one digit occurs at least 6 times in the decima representation
of the number (77)-77-77.

Solution by Henry S. Lieberman, \Waban, Massachusetts.

If n = (7)Y -77+77, then logen = 57 log 7 * log 11 = 49.212 and
n has 50 decimd digits. If no digit occurs a least 6 times, then each digit
would occur exactly 5 times and the sum of the digits of » would be

SO0+1+2+..+9 =545 = 225.

Since 3| 225, then 3| n, but clearly n has no factor of 3. Hence, some
digit must appear a least 6 times in the decima representation of n.

Also solved by Paul S. Bruckman, Victor G. Feser, Richard |. Hess,
David E. Manes, Kandasamy Muthuvel, Michad R. Pinter, Kenneth M.
Wilke, and the Proposer.

Rachde Dembewski’s Partition Problem

Cecil Rousseau
The University of Memphis

1. TheProblem. In her articleEnumerating Partitions, inthe Fall, 1995issue
of thisJour nal 1), Rachele Dembowski posesthe following problem.

ProblemA. Findthenunber of partitionswith n partsin which, for k=1, 2,...,n,
the kth partislessthanor equa ton - k + 1andd | partsare odd.

Interpretingthe parts of the partition, takenin reverse order, asthe vaues
f(1), £2),...,Kn), we have thefollowingequivaent problem.

Problem B. Find the number of nondecreasingfunctions

£{1,2,.a} - {1,3,5,...,2[“;1]+1}

satisfyingfik) < kfork=1,2,...,n.

Ancther equivdent problem can be phrased in thelanguageof **heads or
tails’, hi thisformulation, an HT sequence (or string) is a finite sequence of
symbols, eech of whichisether H or T.

Problem C. Find the number of AT sequences with n - 1 H'swhere, from the
begining Up to any point in die sequence, thereareét least twiceas many H'sas
thereare T’s. Thisisthenumber of outcomesof a™heads or tails" gamein which
the player, starting with no funds, wins one dollar for each head and owes two
dollarsfor eech tail, given (hat the player never goesin debt, and obtains headsa
total of n- 1times.

Toseethat Problem B and Problem C ar e equivaent, associate with each
function counted in Problem B a corresponding H7 sequence, nandy HB,
HB....HB,, where B,, B, .-, B,, are(possbly empty) blocks of T's, with the
number of T'sin B, being (ftk + 1) - fk))/2. The resulting HI sequencehas
n=1Hsandis constructed so that at any point in the sequencewherethereare
asyetk H'’s, the number of T'sisat most

f2)-f(1) f3)-f2) ,  fk+1)-fl)_fk+D)-1 k
2 2 2 2 2
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Thus theresulting 27 sequencesatisfiesthe conditionsof Problem C. Itisclear
thet the mapping just describedisa bijection.
Let a, denotethe common answer to ProblemsA throughC. Weshdl

prove ;
_]'.._ 3m+1 if n= Zm,
3m+1 m
a =%
2 _|3m+2 if n=2m+1,
| 3m+2\ m

which agresswith theconjecturemadein [1].

2 TheMethod. Notethat afunction countedin Problem B satisfiesf(n) = n -
k + 1 if and only if the total number of 7'’s in the corresponding #7 sequencei's
{fn) - 12 =(n - k)/2. Equivdently,f(n)=n- k+ 1if and only if the player has
afortunedf (n - 1) = 2((n - k)/2) = k - 1 dollarsafter thelast cointoss. Let ¢(n, K)
denotethe number of AT sequences in Problem C so that the player's final fortune
isk - 1 dollars. Clearly, c(n, k) = 0 unlessk and n have the same parity, and

c(n,2) +c(n,4) +-+ c(n,n) if nis even,
a = .
 le(n, )+e@3) +.-+ c(n,n) if nis odd.
If the player’'s fortunedter thelast tossis k - 1 dallars, then thefortunejust before
obtainingthelast heed isk + 2¢ - 1) for somej = 0, framwhich we have the
recurrence rdation
c@mky=cn-Lk-D+cm-1k+1)+. +¢m-1,n-1). )
Comparing (1) and (2), we have

o= cn+1,1) if nis even,
" lem+1,2) if nis odd.

Note that by two gpplications of (2),
cnk=cm-1L,k-D+cm-Lk+D+--+c(n-1,n-1)
cmk+2)=clm-1L,k+D+cn-1,k+3)+-+cm-1,n-1),
from which wehave
cm, K =cm-1,k-1) +cm k+2). C))
Thus our planismapped out. Wewart to determine the numbers e(a, K) usi ng (4)
and thenfinda, using (3). Using (4) andthefact that ¢(n, n) = 1, wecan easlly
compute a table of vauesfor c(n, k) for snal vaues of n ala Pascal's triangle.

)

A

S
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#
n\k 1 2 3 4 5 6 7 10
1 1
2 1
3 1 1
4 2 1
5 3 3 1
6 7 4 1
7 12 12 5 1
8 30 18 6 1
9 55 55 25 7
10 143 88 33 8 1
11 273 273 130 42
12 728 455 182 52 10

Tablel- Valuesfor c(n, k)

3. Solutionby Generating Functions. Weshdl find c(n, k) using the method
of generaing functions. In part, the solution rests on the following result fram
dasscd analyss (3, §7.32}, [4, p. 138].

Lagranges Expanson. g f(z) and F(z) be andytic on andinsidea contour C
surrounding the origin, and let w be such that jwi(z)} < |2} at all pointsz on C.
Then the equation w = z/f(z) has one root z = z(w) in the interior of C, and
F(z(w)) hasthe expansion

Few)=F0)+ Y. —V”—F{f’-i'f_lF'(t)[f(t)lm} .
m=1 m! |t -

Also, thefallowingfact iscrucid.
Lenma. Let C, denotethe dassof dl HT sequencesfor the gamein Problem C
such that theplayerisnever in debt and has afortuneof k - 1 dollarsafter thelast
toss Thai Cy,= {aHblac C, be Cj}. HereaHb denotesthe sequenceobtained
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obtained by concatenationof a< C,, asingleH, andb < C;.
Proof. Givenassquencein Gy, locate thelast point at which the player's fortune
isk - 1 dollars, and let a denotethe HT sequenceup tothat point. Thenac C,,
andthe next teemof the sequencemust be H; otherwisethe player's fortune would
bek - 1 dollarsa somelater point. Letting b denotethe remainder of the given
suence, we seethat, had the player started with no funds at the beginningof b,
heor shewould never goin debt and haveafinal fortuneof 1- 1 dollars. Hence
b e C. Thusevery member of G, can be written aHb wherea= C,and b € C,.
Wedamthet thisrepresentationis unique. To seethis, supposefor the moment
that a’Hb' = aHb whereg @ € Cyand b, b' < C, Wemay assune thet thelengths
o & andaaepand a repectivey,withp< g Thentossp+ 1yiddsH, andthe
player begins a tossp + 2 with afortune of k dollars, The ensuing sequence, b,
leadsto afortuneof k - 1 dollarsafter q - p - 1 tosses, so had the player started
thisssquencewith nofunds, he or she would then bein debt. This contradictsb’
¢ C, and provesthat the representation aib witha< Cx andb = G isunique.
Note that if therearer - 1 H’sinaand s- 1 H’s in b then afb has
r+s-1H's. Inview of the uniquenessof the &b decomposition, we havethe
followingimportant result.
Cordllary. Fordlnk, 7> 1,

e, k+D =Y o, Kcm-r, ). 3)

L et usintroduce thefollowing generatingfunction for columnk of the
tableof ¢(n, k) values.

o

Gy(x) = Z c(nk)xGeb2,

Thus, for example,

G(x) =X + X'+ 3" + 12"+ 55x2 + 273%™ + -
and

Gy(x) = x2 + 2x° + 7x® + 30x" + 143x" + 728x" + - .
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Using (5), weobtain

Gpfx) = GU(X)GLx)- )
For amplicity, let G,(x) = G(x). Simpleinduction using (6) yields

Gix) = [GWI* k=1,2..). @
Multiplyingboth sides of (4) by x®*®? and summingon n, wefind

Gi(x) =xGi 1 (x) + xGjo(X). ®)
Inview of (7) and (8), G(x) stisfiesthe cubic equation

G@) =x + xGX), )

sox=G/MG) where fz) =2 + 1. WithF(z)=Z andf(z) =2' + 1,
Lagrange’s expangonyieds

m=k

(X) Z X {d n:l k—l(t3+l)m}
=0

Let [x™)G(x) denotethe cofficient of ¥ in theexpansion of G.(x). Tosmplify

thenotation, letr = (n - k)/2. Then
o, k) = [x™]G(x)

k dnﬂ--l

- k-1,.3 n+1
(m+r)! ggmr? PR

= k (n ](n+r D!.

(@+r)!

t=0

Thuswe have RN
n+r n- k
c(n, )—( )'l J where r=—-. 10)

Note Havingfounda formiula for ¢(a, K) using generatingfunctionsand
Lagrange’s expanson, it isessy enough to verify that thisisindeed the solution
of (4) stiffyinge(n, m)= 1. Itisclear that (10) givese(n, n) = 1. Also, assuming
that theformulaholdsfor ¢(n - 1, k - 1) and c(n, k + 2) and setting r = (n - k)/2,
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wehave
cm,k)=cn-1,k~1)+c{n,k+2)

k-1 (@+r-1! | k+2 (m+r-1)!
n+r-1 rimn-1)! n+r-1 (@-Din!

= @12 e~ Dns e+ 2]
!

= @D ) - (- 20)]
rn!

= @D pnr-1)]
In!

_ k |n+r
n+r{ r

Findly, . 3m+1
ay=cm+1 1= ( ]

3m+1 m
aw 5 (3m+2
B =C(2m+2,2) = )
3m+2% m

asdamed.

4. Comments. The problem dedlt with in this note belongs to the subject of
|attice path counting, and the methods used are a Standard part of that subject {2].
For more on the subject of generatingfunctions and their many applicationsin
combinatorics, we recommend the excdlent book by Herbert Wilf [4].
Acknowledgement. Theauthor isindebted to Nicholas Sekreta, who obtained
an independent proof of thelemmaused in this proof.
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Answersto ‘What are These?

. Seveodf Eratosthenes

Brianchon point
Markov chain
Convex function

. Noncollinear points

Dedekind cut



Another Matching Problem with a Matching Probability

PhilipJ. Byrme
Collegeof St. Benedict

There are severd fairly wel known probability problems that have a
limitinganswer of 1 - 1/e (seefor example[l], [2] p. 107, [3] pp. 104-106, and
[4]). Thisnoteaddsthefollowing, lesswdl known, problemto thisfamily: if n
maried couplesarerandomly assignedto 2n chairslined up in arow, what is the
probability, p,, thet at least one couple occupies adjacent chairs? Welater vary
this problem by arranging the chairsin acircle.

Todeterminep,, wefirst number thechairs1, 2,...,2n, from I€eft toright.
Let A, denote the event that a coupleoccupieschairsi andi+1,i =1, ..,2n- 1.
Then p, = P(A, u A, u...u A, ), and by a generdization of the result
P(A u B) = P(A) + P(B) - P(A n B) to any finite union of events, we have
P, = Z PA,) - E P(A; N A + 2; P(A, N A, NA) - ..

5 i< i, <iy<iy
+ E PA ~...0nA) . (D
IS

Toevduae(1), wefirst make thefollowing smpleobservation. Theexpression
A, n A istheevent that thereisa couplein chairs1 and 2, and alsoa couplein
chairs2 and 3. But the personin chair 2 cannot be the spouse of both of the
peoplein chairs1 and 3, therefore A, N A, = o. Similarly, if [i =j| =1 then
A nA =o. Thusayevent A;n ... nA; for which two of the i’s are
consecutiveintegershas probability zero. One consequenceof thisisthat thelast
nonzero summationin (1)is

(-1 Y PA, r.onA) = CIMANANA L nA,)

<<l
Now consder any particular collection, Ai,’-"’Aig in which
Lb-14,>114-4,>1,.,1 -i_, > 1. Wewildeeminethe probability
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of theintersection of these events using an extension of the multiplicative law of
conditiona probability, P(A n B) = P(A)P(BJA), to theintersectionof k events.
P(A; N ---nAik) = P(Ai,)P(Aa2|Ai,)P(Ai,lAi, ”Ai)‘"P(AaJAi, N-NA; ) . First
considerP(A;). Noratte whooccupieschair i, thereare 2n - 1 possibilitiesfor
the personinchair i, + 1, only oneof whomisthe spouseof the personin chair
i,. Sincetheassgnment of personsto chairsisdone randomly, P(Ai,) =1/2n -
1). Smilarly, given that a couple occupies chairsi; and i; + 1, no matter who
occupieschair i, there are 2n- 3 possibilitiesfor the personin chairi, + 1, and
thereforeP(AizlAil) = 1/@2n - 3). Continuingonin this manner we conclude
that

(1 1 L) 1
P00 Aik)"(zn—l](zn—s)(zn—sl (2n-2k+1)' @

S nce every non-null intersectionof k A

,j’s hasthis same probability, it remains

only to count how meny of these there are to determine Z P(Ai] n..nA,),

i< <y,
the k™ summation in (1). Now letx, =i, - 1,x,=i,-i,_, -2 f(l)rj : 2,3,k and
X = 2n -k = L. Thusx, isthenumber of chairstotheleft of chair i,, x, isthe
number of chairsbetweenchair i, + 1 and chair i,, and soon. Thereisthen aone-
to-one correspondence between callections of k A‘j 's with a non-null intersection
and solutionsof x; +x, ++ %, =2n- 2k, withx, = 0,%; 2 0,..., X,, 2 0. The
2n-k

number of such solutionsis given by ( X

n

) (see [2). p. 38), where the
n] = _ k
k ki(n - k)

binomial coefficient [ =01, 2., n Weca now

express (1) as

Fe.® (znf l)(znl- 1) ) (an_ 2)[2n1- 1)(2n1—3] ’
" +('1)M(2](2n1— 1)(2n1— 3) (%')(%J ®
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This can bewritten morecompactly by letting

k
2Zn-k-j3+1
——— 2 | fork=1,2,..,n Then we have from (3)
Bn 7 H( 2n -2 +1 )

n k+1
=) a, S @
k=1
Fromthe Taylor seriesfor € about x = O,
3 1)“" LS SRS U Gl i
::‘ TR TR TR ©)
convergestol - 1/easn - . |t shouldasobenotedthat O < a., < 1foral k and
n, and that for eech k lim a,, = 1. Thesefacts taken together would suggest

n-w

that fornlarge, p, = i (-—il(l)k—q ,andthereforethat im p, = 1 - le. A
careful proof of this resikjﬁ issorhaNhat technica, and istgg‘erred until theend of
thisnote.

If the 2n chairs are arranged in a circle, a couple occupying chairs
numbered 2n and 1 would then bein adjacent chairs. Theevent that at least one
couple occupies adjacent chairsin this Situation can be thought of as occurringin
one of two mutudly exclusiveways. (1) at least one couple occupies adjacent
chairs other than the two numbered 2n and 1, or (2) a couple occupies chairs2n
and 1 with no other couple occupying adjacent chairs. Thefirst of theseevents
hes probahility p,. For the second event we notethat the probability of beingin
the adjacent chairs2n and 1is 1/(2n - 1), and giventhat acoupleis seated there
the probability thet no other couples occupy adjacent chairs among the remaining
2(n - 1) seatsis1 - p,,. Therefore, the probability, g, of at least one couple
occupying adjacent chairs when the chairs are arranged in a circleis given by

f’n :pﬂ+

: (L - Py-1) from whichit followsthat , alsoapproaches
o
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1-1/easn- =,

It isinterestirig to note thet the congruenceof bothp, and p, to 1 - 1/e
is reated to that of 37 L2
probability matching problem: if n married couplesare randomly paired upfor a
dance, what is the probability that at least one pair is a married couple? This
problemissometimescast in terms of matching hetsto nen, |ettersto envelopes,
or positionsintwo decksof cards(seefor example[1], [2] p. 107, and [4]). We
now present the proof that lim p, = 1 - 1/e. Let € > 0begiven. Since
E kll convergesto e wecan choose N, so that

, Which itsdf is the answer to a wei known

Z e <§ for all n > N. Snce Y |M

k=n+l

Z
Lonvergesto 1 - 1/e, wecan chooeN, so that

k+1
E L )l ‘) (1 - .::-) ; S fordlims Ny Let N, = max,, N,

Since lim a,, = 1, for ech k =1, 2,...N; we can choosen, so that
1-a, <efe for Al n n. Le N, = max(n, n,,...n ). Now suppose
n 2z max(N, NJ. Wehave

S (w0

E[ak,, (- 1)’“‘] P D
k=1 k!

k=1

n . +1 N, _1 +1
<y a‘k,n( Y )‘Z(ak,n( k)!k )

k=1 k! k=1

©

j‘i‘ o —(1—-:-] .

k=1 k!

Thefirst termon theright Sdeof (6) is

n -1
R 1
k—N3+1 k' xxa K

n +1
Y o, N (G2 1)k

k=N;+1

= £
3

since [a,l < 1 andN; > N;. The second term on the right side of (6) is
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Hn

(LT | e w1 _¢
) Z()'T<—Zﬁ 3

1

(thefirstinequality holds becausen > Ny). Thelast term on theright side of (6)
is less than €/3 sinceN, > N,. Therefore we have shown that for dl

n (_l)k¢1 . _ l
&[a“’“ i ) (1 e)

<g, and thus lim p, =

-

n > max(N;, N)),

1-1/e.
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A Generalization of a Dimenson Formula
and an" Unnatural" |somorphism

Danid L.Vi m

Let V beafinitedimensiona vector space with subspacesV, and V,.

Thenitiswdl known that
dim(V, + V) =dimV, +dimV, - dim(V, " V,)
wheaeV,+V,={x+y. x< V andy e V, }. Anyonewho has studied combin-
atorics Will immediately recognize that this is similar to the principle of
inclusion/exclusion for two sets (PIEfranhereon). Thatis, if §, and S, aretwo
finitesetsand }S{ denotesthe number of dementsin S, then
ISy U Saf = [8] + 1S} - [S1 N Sy} .

Nowthe FEE generdl i zes ton sets. Henceanaturd question to ask iswhether we
can find a similar formulafor n subspaces. In this paper we present one such
possibility and what it trandatestoin terms of quotient spaces.

First of all, the obvious first guess would be to write down the generd
formulafor the PIE and replaceS; by V; and u by +. Unfortunately, thisdoesn't
work. For example, theformulafor threesubspaces would be

3
dim (V, + V,+ V) = Y dimV, - dim(V,nV,)- dim(V,nV,) - dim(V,nV,)
=1 + dim(V, 0 V, 0 V,)
whichisn't truein generd. For Example, in R? & V, be the x- -axis, v; bethe
y-axis axd V, bethe liney = x. Theleft hand sideof the aboveformulais 2 while
theright hand sideis 3. Y ou might ask yoursdf why theinductive proof of the
PIE doesn't work for subspaces. Thereasonis that in theinductive step of the
PIE you need to know that r distributes over v.  Unfortunatdly, n does not
distributeover +, However, we can provethefollowing,
Theoreml L&V, V,, - ,V,besubspaces of afinitedimensiona vector space.
Then
dim(V, +-+V)= Z dimV, -dim(V,NV,) - dim(V,n(V, +V,))

—dlm(V4ﬂ(V1 +Vz +V3)) ---"dml(Vnﬂ(Vl‘* +V 1))

Proof. Weproceed by inductionon n, the number of subspaces. If n=1then.the
gatementistrivia and if n=2itisthewdl knowndimensonformula. Suppose
that the formulaistrueupton - 1. ThenviewingV, + ..+ V,, asasngle
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subspace and applyingthecasen =2 we have
dim(V, +--+V ) =dimV_ +dim(V, +--+V__)-dim(V NV, +-+V_ )

- 2; dimV, - dim(V, NV,) - dim(V, n(V, +V,))
-dim(V,N(V, +V,+V,))
-djm(Vn_!"r.w(V (V)
—di]]:\('\/nﬁ(vl + o +Vu-l))'

Hence the theoremfollows by induction. J
The problem with our formula is that it is not very symmetric in
Vi, Vo, -, Va. To get a more symmetric formula, write down our formulan!
ti nes (oncefor each permutationaf {V,, V5, -, V,}), and then add each column.
For example, inthecasen= 3 thisleadsto ,
31dim(V, +V,+V,)=3!Y" dimV,-2dim(V,nV,)
i=1

- 2dim(V,nV,) -2dim(V,NV,)
- 2dim (V1 n(vz +V3))
- 2dim(V,n(V, +V3))
- 2(11!11(V3 n(Vl % 2))
Weleaveit to the reeder to write down a generd formfor this.
Red| that the second isomorphismtheoremfor vector spaces saysthat
if V, and V, are subspaces then

Vi+V, Vs
v, V,nV,
Taking dimensionsof both sdesof thisformulayiedsthe wel known formula
that westartedw th. Onewould guessthat our dimension formulamust also give
rise to a quotientisomorphism. In fact, we have thefollowing.
Theorem 2 If V,, V,,, V, are subsgpaces of afinitedimensond vector space,
then
V,++V, v, \A v

x o

X e X
v, VAV,  V,n(v,+V,) VAV, +-+V_ )
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Proof. This isredly acorollaryto thefirst theorem. Takedimensions of both
Sdes Thedi nensi on of theleft Sdeis the same asthedimensionof theright side
by thefirst theorem. Sincetheleft Sdeand theright Side havethe samedimension
and they areover thesamefield they et beisomorphic. O

Thesscond theoremisn't veary satisfying. It gives usavay of looking at
the dimensionformulacf thefirst theoremin terms of quotient spaces, but the
givenisomorphismis ™ unnaturd™ in that we haven't given theisomorphismand
it ssems unlikely that onewill befound. Is therea better generdization of the
dimension formula, and does it lead to a natural generdization of the second
isomorphismtheorem? Weleavethis question the reader.



Self-Similarity and Fractal Dimenson of Certain
Generalized Arithmetical Triangles

Mark Tomforde (student)
Gustavus Adolphus College

Thefollowingtwo formsof Pasca's (or the arithmeticd) triangleare
equivaent:

1 4 10 20 . . C©,3) C(1,3) C@2,3) CG3,3) .
1 3 6 10 . . C®,2) C(1,2) C2,2) CG3B,2) .
1 2 3 4 . . C@©,1) C1, 1) CE2, 1) C3,1) .
1 11 1 . . C@©,0) C(,0) C@,0 CG3,0) .

whereC(m, n) isthe number of combinationsof m+ n objectstakenn at atime.
If welet p bea primeand code p differentcolorsto thenumbersOtop - 1, then
we can replace each number in the abovefigure by the color coded toitsleast
positiveresiduemodulo p and thereby "'visudize''t he relationamong the numbers.
Itiswell known that the nonzero residuesof Pascal's Trianglemoduloaprimep
form afractal imagewhich s self-similar and hasfracta dimension

log(p(p +1)/2) o)
logp

Inthis paper weinvestigate a generdizedcombination C(m, n) whichisdefined
asfallows. Givenasequenceof integersC,, C,, . . .,C, wedenotethe generdlized
factorid of anumber nas[n]!, and defineitas[0]! = land[n]! =C, - C,- ...
C.forne N, Wethen denotethe generdizedbinomid coefficient by

m+n
lﬂ] and defineit as unH= [n]' . Wecannow defineCm, n) = H I]
K ki [K}'n-Kk]! m
For our purposes in this paper we will only discriminate between
dementswhich are congruent to 0 modulo a given prime (which will dways be
colored white) versus those which are not congruent to 0 modulo the prime (and
Wi nch will becolored non-white). We shall aso use thefollowingdefinitionsfor
varioustypes of sequences:
A U-sequenceisa sequence {U,} suchthat U, =0, U, = 1and
U,.,=aU,,, +bU,fordl ne {0, 1,2 ...} and for some
fixedintegersaand . In this paper, vaues of C(m, n)
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which are determined by a U-Sequencewill be denoted
U(m, n).

A Gaussan sealenceis a sequence {Q,} whichis aU-sequencesuch thata = 1
+gand b = -q for someinterger q. Thus Q,=0andQ, =1
+0+0%+...+q". Whenq# 1, Q,= (1 -q"/(1 - @); when
g=1thisisthesequencel, 2, 3,4, ... . Inthispaper,
values of C(m, n) which are determined by a Gaussian
seouence Will be denoted either by Q(m, 1) or by Q, (m, m) to

specify thevaueof q.
A regularly divigble sequence is a sequence {C,} such that ged(C ,, C,) =

Cyoamn fOrdl m, n> 0. All U-sequenceswith ged(a, b) =1
are regularly divisible [2, p 132}, and thus d| Gaussian
sequencesare also regularly divisible.
In addition, there are some well known facts about U-sequenceswhich wll be
made useof in thispaper. Some of thesearelisted here:

Umm = m+lUn +b UmUn-l (Fa:t 1)
U@m, n) =U,,,,Um, n- 1) + b U, ,Um- 1, n) (Fect 2)
Um, 0) =1 (Fact 3)
U(m, 1) = U,,., (Fact 4)
U(m, n) = U, m) (Fact 5)

Itisnow possibleto begin proving factsabout generdizedarithmetical triangles
and the sequencesused to form them.

Lemmal: I fpisa primeand plb for a U-sequence, then U, = &' (mod p) for dl
n e N whereaand b are as defined before,

Proof: Thistheoremcaneasily beproven by induction using the basic recurrence
intheinductive step and the rdationships U, = 1 and U, = a as the base cases.

Theorem 1: Ifpisaprime, thenp| U, n) foral m, n< N iff pla and plb.
Proof: Firstit will be shown that pla and plb => p | U(m, n) for dl m, ne N.
Sinceplb weknow from lemma that U, = d~(mod p) which meansthat for m,
neN
U@, n)=U,, ,Um, n-1)+bU,_,Um-1, ) (by fact 2)
= a™U(m, n-1) + ba™*U(m - 1, n)(med p).

Now sincepla and pib it followsthat p divideseach of thesetermsin the sum and
hencep | U(m, n) fordl m, ne N. Nextit will beshownthat p| Utm, n) foral|
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m,ne N=>plaandplb. Sncep|Um, n) for al m, n < N, then cartainly p{U(m,
1 fordl me N. Thereforep|U,.(by fact 4) ford| me N. Thusp|U ,or because
U, = g pla. Alsop|U,, or becauseU, = a* + b, pj(a’ + b) and sincep also divides
awecondudethat pjb. Hencepla and pib.

Theorem 2 |If pisaprimefor which pfb and pfa, thenp  U(m, n) fordl m, n
61{0,1,2,...}. Furthermoreif pJU(m, n)fordlm ne {0,1,2,...},then

P/a

Proof: Begin by assuming that pib and p f a. Then becausepib, it followsfrom
lemmal that U, = a*' (mod p) foral ne N,

Now we will assume that p | U(m, n) for somem, n € IN and arrive at a
contradiction. If n=0or 1thereisacontradictionsince Um, 0) = 1 and U(m, 1)
=Upy = d"(modp). Ifn > 2, then

U(m, n) =U,;,,Um, n-1)+bU,,Um- 1, n)
= @"U(m, n- 1) + ba**U(m - 1, n)(mod p).

Now since p | U(m, n) and p | b a**U(m - 1, n) (because p | b) we can conclude
that p|a™U@m, n= 1). However, since p f awe canfurther concludethat p | U(m,
n-1). Nowif n-1isequal to 1 thereisa contradiction as before. Otherwise we
can uethesamelineof reasoningto seethat p | U(m, » = 2). By continuingthis
method we eventudly havethat p | Ugm, 1) whichisa contradiction. Thuswe
concludethat pf U(m, n) fordl m,n ¢ N,

For thesecond part of the proof begin by assuming that p / U(m, n) ford| m, n
€. NowsinceU(, 1) =U, weknow p } U,, and because J, = awecan
concludethat p | a

Theorem 3 Kpisaprimeand g = O(mod p), then Q(m, n) = 1(mod p) for al m,
ne{0,1,2,...}.

Proof: Begi n by assuming that g = O@mod p). Now, recal that a Gaussian
seguenceisaU-sequencewitha=q+ 1land b= q;itisclear thata = 1(mod p)
and b = 0(mod p). Thetheorem will be proven by fixingmin {1, 2, 3, ...} and
usinginductiononn.

Basecase Q(m, 0) =1 = 1(mod p)

Inductive step: Assumethelemmato betrueforall Qm, k) suchthat k <n.
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Q(m, n) = Q. Qm, n - 1) + b Q,,Q(m - 1, n) (by fact 2)
=d'Q(Mmn-1)+bQ.Qm-1,n) (modp) (from lemmal)
=&d"Q(m, n - 1) (mod p) (b = O(mod p))
= d"(mod p) (since we assumed thetheorem truefor k < n)
= 1(mod p) (sncea=q+1 = 1(mod p))
Concluson: By inductionthe theoremist rue for dl vaduesof nwhicharewhale
numbers. Furthermore, sincethe vaue of m can be any arbitrarily chosenwhole
number, we concludethat thetheoremistruefordl m,ne {0, 1, 2, ...}.

Theorem4: pisaprimeandr =s(mod p), then Q.m, n)= Q.(m, n)(mod p)
forallm, ne {0, 1, 2, ...}.
Proof: Thistheoremwill be proven by doubleinduction on mand n.
Wewvillfirst show that thetheoremholdsform=0andn ¢ {0, 1, 2, . . .}. Clearly
thisistruesince Q0, n) =1 and Q.(0, n) = 1 by fact 3, and henceQ (O, n) =
Q.(0, n)(mod p).
Next we Wl show that Q(m, n) = Q(m, n}{mod p) foralne {0, 1, 2,.. .}
impliesthat Qm + 1, n) = Q(m + 1, n)(mod p) foralln < {0, 1,2,...,}. Todo
thiswewill performinductionon nwhilefixingm.
Basecases Since

Q(m+ 1, 0)=1and Q,m + 1), 0) = 1 it followsthat

Qm+1,0) = Q(m+ 1, 0)(mod p) for any m.
Also,

Qm+1,1)=1+r+72+..+r™  (byfact 4and Q-seq. definition)

1tstgt..+s™modp)
= Qm+1, 1) (mod p);

itfollowsthat Qqm+ 1, 1) = Qm+ 1, 1)(mod p) for ay m.
Inductivestep: Assumethat Qqm + 1, n) = Q(m + 1, n)(mod p) fordl k < nand
forsomene{l,2,3,...}. Then
Qm+1,n+1)

=Q(m+1 1) Qm+I,n) -rQm -1, 1) Q(m, n + 1)(mod p)

(from facts2 and 4 becauseb = -q =-1)
= Qs(m +1, l) Qr(m +1, I'l) -r Qs(n -1 I) Qr(m’ n+ l)(mOd p)
(from the 2nd base case)
:Qm+1,1)Qm+1,n)-rQn-1,1)Qm, n+ 1)(mod p)
(from the assumptionsin the
inductivestep and previousto theinductionon n)
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= Qm +1,1) Qm+1,n)-sQ,m- 1, 1) Qm, n+ 1)(mod p)
(becauser = s(mod p))
= Q(m+ 1, n+ 1)(mod p).
By induction we have that Qm, n) = Q.(m, n)(moed p) fordl ne {0, 1, 2, ...}
impliesthat Qqm+ 1, n) = Q,(m + 1, n)(mod p) fordl ne {0, 1, 2,...}.
From the previous statement and the relationship Q,(0, n) = Q.(0, n)(mod p) for
dlne{0,1,2,...}, weusethe principleof mathematica inductionto conclude
thatif r = s(mod p), then Q,(m, n) = Q,(m, n) forallmne {0,1,2,...}.

Theorem 5 If pisaprimeandr# s(mod p), thenthereexism,n< {0, 1, 2, ..
.} suchthat Q(m, n) # Q,(m, n).

Proof: Lookaam=1andn=1 ThenQ(l, )=1+randQ(1, 1)=1+s.
Sncer # s (mod p) it followsthat 1 +r ¢ 1+ s(mod p) and thereforeQ, (1, 1) #
Q1 1).

Basad on thesetheoremsit i s now possibleto make some statementsconcerning
the generdized arithmetical triangles generated by using a Gaussian sequence.
Whenlooking at one of thesemangles modulo a prime p one knows that despite
theinfinite number of possiblechoicesfor g, by Theorem 4 we are assured that
there will be only p different possibleformsfor thesetrianglesto have. These
correspond totheresduesof g modulop, which havevaduesof 0, 1,2, .. ., p- 1.
Furthenmore by Theorem 5 weknow thet for a given primep these different forms
of the triangles will be unique. It is also dear from Theorem 3 that dl the
trianglesfor which giscongruent to O modulo p will have every element replaced
by a black square when looked a modulo p, and because g = 1 correspondsto
Pascdl's Trianglewe know, againfrom Theorem 4, that d| trianglesfor which g
iscongruent to 1 modulo p will beidentical to Pascal's Trianglemodulo p. These
resultsare displayed in the table shownin Figurel. One should also notethat
Mta Sved has publishedresults on Gaussian coefficient residuesmoduloa prime
[3]. Whenlooking at the pictures generated by thesetrianglesmodulo a primeit
isnatural to wonder whet thefractd dimension of theseobjectsis. Inorder to
approachthis questionit will be necessary to use thefollowing definitions.

Definition: The rank of apparition (or sometimesrank) of min asequence {C,}
isdenoted by r(m) and has thefollowing vaue
r(m) =co if mdividesnodementsin {C,}
or r@m)=min{k:m|C,} otherwise
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Definition; A primepissaidto beideal for a sequence{C,} if {C,} isregulaly
divisble and thereis a number s(p) such that the sequence of positiveintegers
b,(p) = (D), by(P) = r(P/r(p), by(p) = r(P*}/r(p?), . . . (Which either terminateswith
b.(p) =« for somek or continuesindefinitely)is equa to thefollowing:

[Lif1<k<s@p)
b“(p)'{p,ifk>s(p) :

Definition; In thispaper a prime pwill be said to be guasi-ideal for a sequence
{C.} if {C,} isregularly divisbleand thereis anumber s(p) suchthat by(p) =
p, for al k> s(p).

Notethat al primesare quasi-ideal for a Gaussan sequence. We can now dtate
atheorem proven by Knuthand \Wt [4, p. 215].

Theorem (K nuth and Wiif): Let pbean ided primefor asequence {C,}. Then
the exponentof thehighest power of p that dividesC(m, n) isequd to the number
of carriesthat occur to theleft of the radix point when the numbers m/r(p) and
n/1(p) areadded in p-ary notation, plus an extra s(p) if acarry oceurs acrossthe
radix point itsalf.

According to Knuth and Wt asimilar result holdswhen pisnot anideal prime,
but we must usea mixed-radix number systemin the addition.

Coradllary: Givenaregulaly divisible sequence {C,} and aprimep, it follows
that p | C(m, n) iff there are carrieswhen m and n areadded in the mixed-radix
sysem

M=x,B, +x,, By, + - +xB, +x,

B =Y By +¥uBo++yB +y, 0 <X < by

whereB; =b;. by, " . .. - by and by(p) = r(p), b,() =1 (P (), bs(P) =PV (P)
-, Using this corollary thefollowing theorem can now be proven.

Theorem 6. Let D, betheB,x B, matrix
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%0,B,-1) . . . x®B-1B -1

) XP={0gpICC(m,n)
20, ) 1 f C(m, n)

%0,0 %(1,0 . . %(0,B,-1)

Notethat this matrix does not follow the usud matrix indexing with (0, 0) at the
upper left. Ingteed it followsthe™ Cartesian™ patternwith (0, 0) at the bottom left.
Alsolet D, be generated by D, in thefollowingway:

D, 0 O 0 . . .0

D, D, 0 0 whereD, isasquare

Dy Du Dy O . matrix comprised of
D,=| . . ) by * by Submatrices.
. D,, D., 0
Dn-l % & p @ Dn-l Dn-l Dn-l

Then for any whole number n, when the entries of a generdized arithmetica
triangle generated by aregularly divisible sequencear e written as

C@©,B) . : ; . C®B.B)
C(O., 2)

Co,1) CL D .
C0,00 C1,00 C2,00 ... C@®B, B,

D, hesa 1 corresponding to those dements which are not congruent to O modulo
p and a0 corresponding to thosedlementswhich ar e congruent to O modulo p, for
any primep.

Rodf : Thistheorem can beproven by induction. 1t will besimilarin structureto
that of a less generd theorem proven by A. Jaeger and K. Saldanha in an
unpublished paper [5].

Base case: The proof for D, istrivia since by thedefinition of D, thetheoremis
true.

Inductivestep: Assumethetheorem truefor D,,,. Recdl thedefinition of D, and
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condder the (i, j)th dement from the bottom left (i.e., starting at the bottom left
coi ner, count i dements (not submatrices) over andj dementsup). We can write

i andj as
1=xBy+ 3Bt ... txB tx
j =Yan +Yn-an-l + - + YIBI + Yo 0< Xy, Yx < bk+l

so that thex,’s arethedigits of i and they,’s arethedigitsofj in amixed radix
sydem. Now thevauesof thesedigitstell which submatricesthe, j)th dement
from the bottom belongs to. For ingtance, this dement belongsto the (x,, y,)th
submatrix of D,, the (.., ¥,.,)th submatrix of D, &tc.

Itisalso clear that thisdement correspondsto C, i) = C(, j) inthe generdized
arithmeticd triangle. We shdl look at thefollowing two cases:

Case1l: If x,ty, 28 |, thenweknow that the dementsisin one of the
submatrices abovethediagona in the D, matrix. We also know that i +j must
yiddat least onecany in mixed radix addition (Sncex, +y, = b,). Therefore, by
thecorallary to Knuth and Wilf’s theorem, C(, j) is divisbleby p. HenceCq, j)
correspondstoaQint he matrix D, and we can concludethat every dement above
thediagona correspondsto 0.

Case 2 If x,+y,<Hb, thenthe (i, j)th dement from the bottom is on or below the
diagona submatrices of D, . Now condderi’ andj’ where

' =%Bay +¥aoBra +. . X B %

I =¥aBu+ YaBra +. .. +yBi H Y,

Noticethati =x,B, +i’andj =y, B, +]'. Asmentionsed earlier (x, ,y, )
determinesthelocation of aD,., submatrix and (i’, j*) determinesthelocation of
an dement within this submatrix.

Now supposethati’ + ' producesnocany. Sincex, +y, <b, thereisno
cany out of the B, posdition soweknow i +j yiddsno cany. On theother hand,
if i’ +j" producesa cany, theni +j yieldsa |east onecany. Thereforei +j and
i’ +j" when added in this mixed radix system either both yied no carriesor both
yidd at least onecany. Thus x,G, j) = X, (i, j*) and the dements below die
diagonal in the matrix D, (and which are congtructed by the submetrices D, )
correspond to theeementsof the generdized arithmetical triangle.

Conclusion: By induction the matrix D, does in fact correspond 0's to those
dementsin the generdized arithmeti cal triangle congruent to O(mod p) and 1's to
al other elements.

Theorem 7: Let N, be the number of nonzerodementsin thematrix D, and let
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D, correspond to a regularly divisible sequence with a quasi-ided prime p.
Then, for n> s(p), N, = (p(p + 1)/2)™®™ - B where B = (b, (b, + 1)2)-
® wpibspat 1)/2) - ... - (b (b 1+ 1)/2) and s(p) isthesame asin the definition
of aquasi-ided prime.
Proof : Fromthedefinitionof D, and Kmith and Wilf’s theoremwe know that only
thedementson or bdow the diagona of D, are nonzero, so

No=(1+2+...+(, - 1)+b,)=byb, + 1)/2.
Now from Theorem 6 we know that D, contains (1+ 2+ . . . + by, copiesof
D,.,. Theaefore

N,=(1+2+..+b,).N_ =¢,,0,, +1)¥2).N_, ad

N, = (b,(b, - 1)12) + N, = (b, . 1)12) - (b,(b, . 1/2),

N, = (by(b, . 1)/2)°N, = (by(b; . 1)2)-(b,(b, . 1/2)-(by (b, . 1)/2),
and by induction

Ny = p(bn +1)/2) ... .. (dy(b; + 1)/2) - (by(b, + 1)/2),
andfor n> s(p)

No=@@+1)/2)-.... 00+ 1)/2) OypybexntD2.....

(,(b; + 1)/2) - (by(b, + 1)12)

SO Na=(p(p+ 1)22)™®" - B.
Now fractal dimension, as caculated by Manddbrot, requires a geometric
construction to be carried out ad infinitum while scaling it to fit, say, the unit
square. The fradtd, or sdf-amilarity, dimension is then given by dim =
log N/log(1/R) where N equas the number of self-similar pieces in the limit
structure and R equal sthe linear scaling ratio required from one stage to the next
in order tofit the structure to the unit square. For our purposeswe will usean
equivalent measure of fractal dimendon cdled the Entropy Index [6, p. 184] or
Mass/Cluster Dimension[7, p.32] whichis definedas

a-» logS

whereN, isasdescribedin Theorem 7, S= 1/r, and r i sthelinear scaling ratio
needed to shrink the entirefigure to the unit square.

Theorem 8 The Entropy Index or Mass/Cluster Dimension for a generdized
arithmeticd triangle which islooked at modulo p, where pisa quasi-ided prime,

is given by Dim = log(p(p-+1)/2).
logp
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Proof: Thevduefor N, isgiven by Theorem 7, and from Theorem 6 we know that
D, isaB,,; x B,,; marixsor=1/B,,, and S= B,.;. Therefore

Dm=tim ——
ng: |OgS

=lim L’%%a’-)rmﬂ B (from Theorem 7)

n+l

iy o2 (@@ +1)2y 0B

(by the definition of By.y)
e log(p"®"IB, )

i (75@) + Dloge(@ +1)/2) +1ogB
ne (n-s()+1)logp +logB,,

_lo 12
logp
Itisinteregtingto note that the dimensionfound in Theorem 8isthe sameas that
obtained for Pasca's trianglemodulo a prime [1]. The formulaaso givesthe
fractal dimension of the triangles generated by a Gaussan Sequence.
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Generalized Arithmetical Triangles Generated by Gaussian Sequences

Jalue of the prime: 2 3 §

(all entries always =>
black squares)

1

(Identical to Pascal's =>
Triangle modulo p)

FN
ALY

(FIG. 1)

Approximatinge®2 with nearly m + 1/3 Terms

J.S. Frameand C.L.Frenzen
Michigan State University and Naval Postgraduate School.
n-1
Let S, =Y n¥/k! denotethesumof thefirst n terms of the power
k=0

series for €, whoselargest terms arethen® and (n + 1)®, both equal to n/n! and
denoted by M. It was shown by Frenzen [1] that S, islessthan but near to€'/2.
Quegtion!  How much of the next term M needs to be added to S, to get e"/2?
With two different methodswe obtain:
&2 =S, +M(1/3 + 4/(135n + f(n))), with f(n) near 90/(7 - 16/(3n + 13581495))

Toshowthi s by successive curvefittings we require successivelimits as
n ~ «. Wefirst evduaefor n=2=0 < m< 9, to 20 or 25 decimalsthe vaues
of n-1 k
P, =¢¥2M = (e/my'nl/2, 5,=S,/M+13 =43+ Y [[(1-j/n).

k=1 j=1
Stirling's formula with remainder gpproximatesp,, by
(Tn/2)* exp(1/12n = 1/360m*+ . . .)

Wendticethat d,=p, - s, decreasesand that nd,, agppearsto havealimit for large
n. For example,

dj2e = 0.00023 13083 53860 07169 8269, 128d,,; = 0.02960 747 ...
dy5s=0.00011 56975 70464 71564 4961, 256d,,; = 0.02961 858 ...
ds;, = 0.00005 78595 91786 55076 2801, 512d,,, = 0.02962 411 ...

Since these differences of nd, vaues decrease by about 2 we add the last
difference 0.00000 553 to 512ds,, to get 0.02962964, which is near 41135 =
0.0296296296... Thissuggests evauaingthefunction4/nd, - 135 = f(n)/n for 10
vauesof n=2"asfollows.

n 4/nd, - 135 n 4/nd, - 135 weights

1 19.993217539061752 32 0.41130 36841 90604 1/315

2 8567892121729290 64 0.20327 85644 92804 2121

4 3.7934785832 66614 128 0.10104 36004 59236 8/9

8 1.75661 91688 24471 256 0.05037 25983 74131 64121
16 0.841428628127822 512 0.02514 89644 27800  1024/315
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Wefit a quartic polynomiad in 1/n, namely a(m) = 3, + a,/n + a,/n’ + a,/n’ +
a,/n’ to the vaues abovefor algumentsn, n/2, n/4, /8, n/16 with n = 512, and
aum these vaues multiplied by the weightsin thelast column aboveto obtaina
vaue 3, which estimates the limit for n -> « with an error of order n®. The
weights shovnwerefoundin thefirst row of theinverse of the 5x5 Vandermonde
matrix with i, j-entries 2¢- -V We gat 3, = 4.1 x 10", indicatingthat thelimit
of 4/nd, is135to at least 12 Sgnificant digits.

Next we use the same techniqueto obtain a limit for f(n) = 4/d, - 135n.
Sincethislimit is closeto 12.857 which resembles90/7, we examine 7f(n) - 90
instead, with values 2.132025259695, 1.068796892776, 0.535066011476,
0.267696286445, 0.133888509235. Applying the same weights we get
5.0 x 10" for our limit estimatea,, near 512°. Thelimitof f(n) appearsto be
90/7. Wecomputefivevduesdf n(f(n) - 90/7) and apply the sameweightsto get
an estimated limit g, = 9.79591836678 =9 + 1/(1 + 1/3.899999986), closeto
9+ 1/(4.9/3.9) = 480149 = (90/7)(16/21). Next assume90n/f(n) = 7n - 16/3 +
1(n)).

n  n) - 90/7) 3+1(n) nr(n)

32 9.7464011871 77 3.08667 02527 07 2.77344 77666

64 9.771857305381 3.043101129755 2.7584723043

128 9.78406 42099 47 3.0214918770 27  2.75096 02594

256 9.7900356185 60 3.010731243806 2.7471984147

512 9.7929881040 46 3.005361947369 2.74531 70528

a, 9.795918366782 3.0000000033 2.7434359807
This estimate g, indicates that r(~) = 0 and nx(n) goproaches a limit near
2.4+ 34343... whichisabout 12/5 + 34/99=1358/495. Thisgivesthe4 digit
approximation 2.718 for n= 1 which is not noteworthy but could be changed to
e = 2.7182816 by replacing 495 by 495 - 1L However, for n = 64 the
goproximationfor fn) in thefast paragraphyidds 12 significant digitsfor p, and
forn > 512yields18 significant digits,

A second way to obtain fin) without some good guessing is to express
factorid sasintegras, and to meke suitable changes of variablesuch as expressing
z asapowe saries[2] inw if z-In(l + 2) =w*2. Weshdl expressd, asa power
seriesin 1/n which yidds the same continued fraction obtained above. First we
sum thefirst n+ 1 terms of thee™n!/n" seriesgetting

s, +2/3 in‘&l!/n“k!:nz( nk) (n-k)!/n**

k=0 k=0 \ -
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oo

= f (1 +t/n)“e ‘1dt =n f e -n(z-In(1 *z»dz
0 0

wheet=nz, Thensgt w2 =2z-In(1 +2) = Z/2)(1 - 22/3 + 2744-22/5+ .)
and get waw = (1 - 1/(1 + z))dz = zdz/(1 + 2) or 1 + z = (z/w)(dz/dw). We
assumeaseriesexpansion

l+z=1+wt+taw+ta,w+.. =1 +aw+aw +..)(1+2aw+3aw+.)
so that a,=1/3 and a _, =(n+2)a, +aa,_,+aa _,+~+a _,a +a)2  To
smplify thefractionsin the recurrence relationsfor a, weset b, = 6"a,, and get

n-2
b,=2,b,=1,b,=-4/5,b,= (2 -2n)b,,/(n +2) - 3 bb /2, n24.
k=2

Hoe, b, = 3/10, bs= 16/35, bs =-3(139)/350, b, = 48/35, by = -57111400, by =
-64(281)/9625. Thus wecan computes, + 2/3 asan asymptotic series[3]

s, +2/3 = f exp(-nw %/2)(dz/dw)ndw
0

o

= f exp(-nw?2)(1 + fj (k + b, (W/6Y)Indw
k=1

o o '3
Next weevaluate2p, = ¢'nl/n" = [ (th)e™dt= [ (L+z)%e ™ndz where

t=n(l +2). Aganweset w/2 =2z - In(1 + 2), but now thelower limitis -,
2p, = f exp(-nw?/2)(dz/dw)ndw

=2 f exp(-nw?/2)(1 + Zm: (2k +1)b,, (W/6 ) )ndw
A k=1

si nce the odd powersof w drop out and the even powers double up on
|nt®ralon Thus sn +2/3 -pn = fexp(—nwz/z)( r Zkak_l(W/6)Zk_l) ndW.)
0 k=1
Now set w? = 2t/n and p, - s, = d, to obtain
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2/3 -d,= f ey 2kb,, ,(/18n):'dt/6
o k=1

=Y by, k!/3(18n)k!
k=1

=213 4/(135n) + (2/3)*(105 r?) + (2/3)"/(1051°) - (2/3)*(281/(51975n") + ...
and so
d, = (4/135n)(1 = (2/3n)/7 = (2/3n)%/7 + (2/3n)’281/3465 + ...) .
We expand thisin a continued fraction to smplify the coefficients. Set
X =2/(21 n).
d, = (4/135n)/(1 + x + 8x2 - 634431495+ ...)

=4/(135n + (90/7)/(1 - 8x + 56(679)x%/495 + ...))

=4/(135n + 90/(7 -16/3n + 16(1358)/495(91%) + ...))

=4/(135n + 90/(7 - 16/(3n + 13581495+ ...))).
This continued fraction agrees with the one obtained by the first method, and
showsthat the previouslimit guess 13581495 was correct. Actudly, this guess
helped to correct an error made in computing b, by the second method. The
second methodmakes dear why thedenominator of thek™ of the successivelimits
113, 4135,9017, 1613, 1358/5(9)11 has primefactors only f r onthefirstk odd
integers greater than 1. It can yidd moretermsif desired.
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A Particular Polarity

John A. Frohliger
Richard Tuggle (student)
Jennifer Van Sistine (Student)

INTRODUCTION

Start with the Euclidean plane, represented by the Cartesian coordinate system.
Thereisa one-to-one correspondence between points(a,b) in the Eudidean plane
and nonvertical linesy = ax - b. (See Figurel) Letusrefertol, astheline
corresponding to point P and to X, as the point corresponding tolinel. This
correspondence leads to some interesting results, pairing curves with curves,
inflection points with cusps, and conic sectionswith conic sections.

2N

, P@ab)

Figurel

Property 1: If P and Q arepointswith differentfirst coordinatesthen/p and /o
intersect at a point whosefirst coordinateis the dope of 156 and whose second
coordinatei s the negative of the y-intercept of 15_6 .

394
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Proof: Let P and Q have coordinates (a,b) and (c.d), respectivdly. The
corresponding lines 7, and J, aredescribed by theequationsy = ax - b and
y = ox - d. (See Figure 2.) It can be easily shown that theintersectionof these

-t ad-bel A (wick check reveds that 5O

lines is the point 1
c-a c-a

hasdopem = d-b and y-intercept (0, €) = (0, be - ad) .
c-a c-a

dope=m

\ / IQ lP
©.9 \

(m, -€)

\

If paints Pand Q havecoordinates(a,b) and (c,d), respectively, then theli nel"_é
can be parameterized as.

Figure2

x=a+cl -1t
y=hbt+d( -t.
Correspondingto thepoint with coordinates (at + ¢(1 - t), bt +d(l - t)) isthe

iney = (a +c(l - t)x = (bt +d(l -1t)). Inpaticular,if Misthemidpoint
of PQ, thentheline Ly , given by theequadtion v = atc,. b + d) isthe
"midine’ of I and /. Thatis, A hasthe property that , for every vaueof x, the
point on 4, with first coordinate x is midway between the corresponding points
onlp and ly. Furthermore, i istheonly linewith this property. Thisfact and
Property 1 can be used to give a quick, though somewhat unusual , proof of a
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common geometric property.

Proposition: Thediagonalsof a paralelogram bisect each other.

Proof: Le A, B, C,and D beverticesof a pardlelogram, as shownin Figure 3.
IaM bethemidpointof AC. Since AB | fi€, theintersectionof 2, and 1
hesthe samefirst coordinatex; as theintersectionof lines 4, and /.. Similarly,
theintersectiondf 1, and I, hasthesamefirst coordinatex, as theintersection
of lines & and I.. Now A ismidway betweeni, and I in the sensedescribed
above. Atx, andx, then, b, ismidway between!y and /. Conseguently,
hyismidway betweenly and I, & evary x; hence, wemay concludethat M isthe
midpoint of BD, and the property follows.

Figure3
Thiscorrespondencebetween points and nonvertical lines has another important
property.
Propaty 2: Let P beapointand % beitscorrespondingline. Then theset of lines
correpondingfor the points on & is the pencil of nonvertical lines through P.
Proof: (See Figure4.) Let Pbethepoint (a b). Then 4 hasequation
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y = & - b. Now thelinecorrespondingto apointR(t, & - b) on, hasthe
equationy = tx - (at - b); consequently, thislinepassesthrough P. Smilarly,
it can beshown that every nonvertical line through P correspondsto a point on /.

Kol

Y /

Figure4

In projective geomelry, a transformation such as ours, which takes pointsto lines
and lines to points, iscdled acorrelation if it presarvesincidence. That is, if
point Pisonlinel, then under a correlation the point correspondingto / would be
on theline corresponding to P. We can extend our correlationto the extended
Euclidean plane,, which containsided as well as ordinary pointsand lines, by
having the vertical line X = a correspond to theidea point associated with the
bundle of pardld lineswith dopea and having theidedl line correspond tothe
ided pointassociated with the bundle of verticd lines. With this new, expanded
definition, the next property shows that our correlation is a specid type of
transformationcaled a polarity. Readers unfamiliar with projective geometry
nay wishto skip the property and its proof.

Property 3: Thiscorreation is projectivewith period 2; hence, itisa polarity.
Roof: To provethis, weneed only show that the pointson onelineare

R o T
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transformed into onependl of linesina projectivefashion. It followsthen that the
points on every line are mapped to the corresponding pencil in a projective
fashion (See [1], page57.) Inour case, wewill usethex-axisas thelineand the
lines through the origin as the corresponding pencil. Let /; and 7, bethey-axis
andtheliney = 1, respectively, andlet O, and O, bethe points (1,1) and (1,0).
(See Figure 5.) Onecan eeslly seethat,for a = 0, 1, apoint (g, 0) is projected
through O, tothepoint (O, a/(a - 1))on!, andthis pointis projected through O,
tothepoint (1/a, 1)on /,, Frdly, thelinethrough this point and the originisthe
liney = ax - 0, theimageof (a, 0) under thecorrelation.

L
L o,
D
y=ax
Figure5

Wi g idedl points, onecan easily seethat this projectivity takes the point (0,0) to
thex-axisand the point (1,0) totheliney = x.

Itiseasy toseethat the corrdation has period 2. It followsframProperty 3 that,
if point Pistransformedintoline 4, then Jp istransformedinto P.

DUAL QRVES INDUCED BY THEPQ AR TY

Let | bean openinterva onthered lineand f(x) be afunction on | whose second
derivativei scontinuouswithisolated zeros. Let C bethe grgph off.
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(See Figure6.) At the point P on C with coordinates (t, fit)) the line 1 with
equation y = f(t)x - (tf(t) - £t)) is tangent to the graph. Under our
correlation, lisrelated toapoint X; whosecoordinatesare (f'(t), tf't) - ft)).
LetC' bethesat of al of thesepointsX; Thatis, C' isthecurve parameterized
by the equations

{x = f 1)

y = tf/(t) - ).

Wewill cal C’ thedual of C under thispolarity. Noticethat, at thepoint
x y) = (f'®), tf'e) - &), atangentlinel" hasdope

dy _ dvidt _ "0 + 0 - 'O _ i sdequaiony = & - S (Th
dx  dx/dt f*(t) e - (e

aso holdsat those pointswhere f**(t) = 0 since f” is continuouswith isolated
z00s.) Under thecorrdationthisX,’ istheorigina point P(t, fit)) on C. Usng
thechainruleagain, weseethat if £(t) = O then,on C’,

dy _ dy/dt _ dvdt _ 1
dx?  dx/dt  dxdt )

We could have started by assuming that C was a curve parameterized by a

finction gxh: | - RxR for someopeninterva |. Wecan compute % and :—zg
X
intermsof the parameter. As long aswe havedi e conditionthet, onC,
aﬂ is continuousand g—xzyz- hasisolated zerosand discontinuities, wew |
X
achievethe samerelationship between C and C' as the one described above.
Therefore,it followsthat Cisalso thedud of C’ under the polarity.
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y =R

c c’ /
P=X,

Figure7
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y=fx) /dual of fx)

I~
—

Figure8

PROPERTIESOFTHE DUAL CURVE
Thedud of acurvecan becomevay complicated. Figure 7, for example, shows

the graphs of the sinefunction and its dua with some tangent lines. But what
information doesthedud of acurve C provide? For example, comparethe graph
o fix) = 0.5(x + Dx(x - D - 3) anditsdua (Figure8). Firstof dl, they-
intercepts of C' correspond to the points where C hasa horizonta tangent. The
x-intercepts of C', on the other hand, correspondto pointson C whose tangent
lines passthroughtheorigin. Furthermore, where £(x) # 0, the concavity of C
at a point has the same sign (positiveor negative) as the concavity d C” at the
corresponding point.
Oneof thedtriking featuresof thedua isthecusp. At thispoint thefirst
coordi nate f /(t) vés changing from decreasing toincreasingand the concavity
—— changed dgns. Thismeansthat cuspson thedud curvecorrespond to
%tlon pointsontheoriginal. Itiscuriousthat aninflection point, whichis
oftendifficult to pinpoint with the naked eye, would correspondto something
as pronounced as a cusp.
How aretrandationsand reflections of C manifestedinthedua? Itisessy to
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provethefollowing:

1. If Cistrandatedverticdly a units, then C’ i strand ated -a units
verticaly.

2. If Cistrandated horizontadly b units, then C’ isreplaced by C' + !
wheelisgivenby y = bx. Thatis, every point (X, y)onC’ is
replaced by (x, y + bx). Conversdy, if Cisreplacedby C+1, then
C’ istrandated horizontdly b units.

3. ¥ Cisreflectedabout the x-axis, C’ isrotated = un ts about the
origin.

4. If Cisreflected about they-axis, soisC'.

Figure9 showsthe effectsof suchtrandationsand reflectionson the example
in Figure8.

\

dual of fix + 2)

cualofflx )+ 1

dual of -x)
dual of -ftx)

A

Figure9
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COMICSAND SHLFDUALITY.

Snceour corrdaionisa polarity, thedud of aconicisaconic [1]. Theimages
of some basic conies are given in the following table. For the sske of
completeness,ided pointsand their imagesareincluded.

Equationfor C Equation for correspondingC’
4a
2 2
I .¥X= a?.y?=p?
a? b?
2 2
A S al? +y? = b?
b? a?
2
y = _9. X = -._y_.
X

Fgure 10shows four graphs, each one showing oneof thesebasic conicsand its
dud. Evey other conicin the plane resultsfrom one of theselby acombination
of reflections, trandations,and "adding” lines. Thisistruesincethe equation of
aconic section hastheform Ax? + Bxy + Cy? + Dx + Ey + F = 0, which
can be transformed into one of the forms in the table by the transformations
x-xtdy-y+eady-y+mx Therefore the correspondenceslistedin the
table are sufficient to characterizetheimages of all conics.

Under apolarity a pointiscaled self-conjugate if it liesonitscorrespondingline.
Furthermore, theset of selfconjugate pointsf or ng a conicand their corresponding
linesar e thetangentsto the conic. Under our correlationthereis such a self-dual
curve which the reeder can easily verify isthe graphof y = % x2. Thisisthe
only curvein which every point correspondstoitself initsdua. However, there
aedha curveswhichareidentica totheir duals, thoughindividual Boims go not

map to themselves. Theseincludethe graphsof y = X—ZL and % - _yb_z. =1

when b = a?
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/>\/

N
]

Figure10
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The Power Means Theorem viathe Weghted AM-GM
I nequality

N. Schaumberger and M. Steiner
Hofstra University
For any red number r # O, the power mean of order r, M,, is defined as
1

T r T
aj +ay ++ay

n

r

M, =

wherea > 0. Oneof the fundamenta theoremsinvolving neans statesthat if a
> B, then

1
o o o =
al +a2 + e -l-a'l p

1
=)o
withequdlity iffa, = a, =~ =a,,

In particular, it follows from (1) that the harmonic mean M., does not
exceed thearithmeticmean M, whichint urn doesnot exceed the quadraticmean
M, Other gpplicationsdf (1) to problemsin dementary mathematicscan befound
in{2].

Theusua proof of (1) uses bath the ordinary AM GMlinequaity and the
Bernoulli inequality and i snot particularly smple. (See, for example, [1]).

Theweighted AM-GM inequality states thet if x,, x,,-,X, arepositivered
numberswith ¥'1x; =11, then for nonnegativeredl numbersq,, 4., 8 wehave
2 X0+ X t T X002 G @
withequdlity iff q,=q,=-=43a.

In this note we show that for a and B either both positive or both
negative, (1) isan dmostimmediate consequenceof (2). Startout with y > 6>
0, and ¢y, ¢4+, €, > 0.

M M, - ararocay

o

n

Since 5 8 6
c c
1 °z I n

+ =
T Do Dy
itfollowsfrom (2) that

Y & y-5 5 v-%
P2 _ GG T GG et Gy

(€) 1

8 v-d
c‘Y

3
N Xic

1
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[ [ [
Sy 2y c

8 - ? - nc."
> @HE T @O @ HE

o

Hence

& ] -]
1 €y G Cn

‘y-—

)RR 1 T o
6 ch c2 ...c
Elllci

with equdity iff ¢, = ¢, = -~ =c,.

@

Again using (2) with (3) gives

ol 1
¢ | —
1 5
n__ ¢

5
G

It followsthat

sl 1
+°2'—g

+ e +cn&- .16_
cn

[ &

&
1 ] n s
b3 °i° 1 cf 1 °i& Z?l’ G |8
[ c, - C p

&)

Equdity holdsiff ¢, = ¢, = - =¢,.
Equations(4) and (5) give

1 1
3T e . [Z’l’ cf)a
S cib

©

n
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Write(6) as
-5
2 CiY 5 (}3 chYT(Z‘,‘ cib] - (lel cia]%
n n n n
In other words
1 1
E: ciY Y Z'll Cia B
@ ( n) (e

with equality iff ¢, =¢c, = =g¢,,
Toget(Dfora>PB>0,use (7)withy=a,d=0,and¢;=a, 1<i<n
Similarly, (1) can be obtained for 0> a> B by usng (7) withy = -§, 6 =

-, ¢ = —l, 1 <i < n,and inverting both sides of the inequdity. Findly, the

ordinary AM-GM inequdlity can be used to complete the argument for a> 0> .
Thus
En al ':? n - n d n A ¥ a-ﬁ %
1 9 > (Haia) wn _ (Hai)n - (Haxp] [ > 1% )
n 1 1 1 n

References

1. N.D. Kazarinoff, Andyticlnequalities, Holt, Rinehart, and Winston,
N.Y., 1961, pp. 62-64.

2. P.P. Korovkin, Inequalities, Blaisdell Publishing Co.,N.Y ., 1961,
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MISCELLANY
Chapter Reports

ProfessorJoanne Snow reportsthat the INDIANA EPSILON Chapter
(Saint Mary's College) was addressed by Dr. Maura Mast (Universty of
Northern lowa) at the department's annual Open House. The chapter performed
various serviceactivitiesduring theyear.

Professor Chris Leary reports that sixteen talkswere presentedto the
NEWY ORK OMEGA Chapter (Saint Bonaventure University) during the 1995-
96 academic year. Students P 1 Darcy and David Tascionewere members of
St Bonaventure’s teamin the Mathematicd Contestin Modding. SIAM sdected
theteam's solution to Problem B as the outstanding sol utionfor that problem.

Professor Joan Weiss reports that the CONNECTICUT GAMMA
Chapter (Fairfield University) was addressed by A. Michael White franthe
DefenseReszarch Agency. The chapter wasinvolved with various meathematical
contestsduring theyear.

Errata

SandraChandler found diefollowing errorsin her paper **Determining
aDay of the Week” (Volume10(1994-99), Number 4,283-284). In paragraph
two on page 284, every occurrence of Thursday' should be replaced with
'Wednesday'. Alsp, the last example should reed: "Hereis alast example to
illustratethis: January 6, 1994 was a Thursday; whet day will duly 4, 1997fall
on? Thursday + 1+ 1+ 2 (now wearea January 6, 1997)+3+0+3+2+3
+2 (duly 6, 1997) - 2=Thursday + 15 = Fiday."

Paul S Bruckman and Robyn M. Carley should have beenlisted as
solversto Mathacrogtic41.
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The 1995 Gane
Indie Fal 1995 issuedf the Journal, Paul S Brackman chdlenged readers What are These?
to represnt dieintegers starting fr_om 1using thedigitsi, 9, 9, and 5_in thet order. The
challenge wes acoepted by Victor G. Feser from the Universty of Mrry. He The following items were created by Florentin Smarandache and
represented the integers from O to 154 in the prescribed manner. Some of his submitted by CharlesAshbacher
representationsare listed below. Contrary to Bruckman’s expectations, Feser felt that
the expressionsfor 20 and 25 were easy to find. He was more chalenged by the 1 EAOTEE
representationsfor 63, 78, and 79. ) f t s hon s
0=1-4/9+,/9-35
5=1949-5 2. Bx?anchon
10=1+ f9Y9°5 R V R V R V
3. M K M K M K
25=(1+,/9+ 0)-5
28=(1+ {9 )+9-5 4 F N
63=(1+(/9)) 9 TVy5 U o
78=-1+9-9-7,/5 NC TI
79=1-9-9-T5]
106=(-1+ (9N !'-9-5 ol
154=1+9+( (yONI/5 5 P N S P N S
Victor daimsthat every integer can be represented as directed. ar T 4
. ! DEDE/KIN
Cryptogram Solution s E/KIND
Paul S. Bruckman provided thefollowing solutionto the Answers, should you need them, are.on page 370.
cryptogram which gopeared on page 185 of the Fall 1995 issue of the

Journal:

Should the A Mu Epsilon Jour nal publish
mathematica or?/ptograms’> Or shouldit have
no puzzlesat al?




MATHACROSTICS

Solution to Mathacrostics 42, by Jeanette Bickley (Spring 1996).

Words.
A.  deved Eratosthenes P. opne
B.  Windows Q. firstlawv o hydrogtatics
C. even R aigust
D. icosahedron S. foalish
E. Neh T. injure
F. bowles U nullsst
G. Elements V. aolute
H. redivity theory W. logaithms
I.  grown X. thirteen
1. Dipper Y. heghten
K. rak Z. Euclideangeometry
L. Euler a.  owning
M. anuck b. race
N. moa c. yederday
0. Stephen Hawking

Author andtitle S Weinberg,Dreamsd a Final Theory

Quotation: Althoughwedo not yet haveasuresense d wherein our work we should
rdy on our sensedf beaty, till in dementary particle physics aesthetic judgments seem
to be working increasingly v | . | takethisasevidence that weare movingin theright
directionand perhapsnot so far from our god.

Solvers  Avraham and Chara G. Adler (jointly); Thomas Banchoff, Frank P. Battles,
Paul S Bruckman; Keith G. Calkins; CharlesR. Diminnie; Clayton W. Dodge; Thomas
Drucker; Robert C. Gebhardt, Jennifer Hake; Geoff Inman, Brooke Bentley and Curt Evans
(jointly); Henry S. and Elizabeth C. Lieberman (jointly); Rachael Lott; Thorn Mitchell,
Mat( Reason; L aurieSchlenkermann; Neomi Shapiro; Stephanie Sloyan; and the proposer.

Mathacrostic43 by Gerald M. Leibowitz appears on the following pages. The

directionsfor solving acrosticsare o given. Tobelisted asa solver, send your solution
to theeditor.
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“ Kk P M

Cord gructures
Probability space, usudly

He wrote OperationsLinéaires

Member of asst

Risqué

Dentifrice

Algebraicsystems

Sted toal

23rd pan of atrestise, abbr.

Ameican nent
Word associatedwith C. and R.
Snorn satement

Namewith seriesand integras
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O. Co-authord convexity theorem 109 90 126 63 75

56
P. Covaedwith water 134 38 66 6 85 3
Q Padld tocard 37 4 54 102 94 l: s
77 26
= =
R. Invettor d 2 72 129 100 112 15 i N
=4
6 i S L
3 - el
S. Lanbs' mors 27 71 1383 50 = S 2
T. Padred 7 % B R 6 a i
97 104 a 'l =
U Attributed fix)=ax+b 110 136 16 114 45 - o
9 s .
V. Birdsound R AT v _ ;
W. Marbe d alis g U v ) EPR
= A
X. Tradaesd asibgoup 76 ~5 46 53 89 ~ 2
- o i
Y. British snacks 140 52 "86 123 57 = 2 ; S
92 % i .
The mathacrogtic is a keyed anagram. The 140 |etters to be entered in the L o < =
diagramin thenumbered spaces will beidentica with those in the 25 keyed words 3 2 ]
at thematchingnumbers. The key numbers have been enteredin the diagramto L N i A N
assistin congtructingthe solution. . 3 = = 3 = Z
When completed, theinitid lettersof ti | words will give the name of an author L L ; "
and thetitleof abook; the completed diagram will be a quotation from that book. = & = : v 5
feed = =9 [N = =

413




PROBLEM DEPARTMENT

Edited by Clayton W. Dodge
Universityof Maine

This department welcomes problems believedto be new and at a level
appropriatefor the readersof this journal. Old problems displaying novel
and elegant methods of solution are also invited. Proposals should be
accompaniedby solutionsi f available and by any informationthat will assist
the editor. An asterisk (*) preceding a problem number indicatesthat the
proposer did not submit a solution.

All communications should be addressed to C. W. Dodge, 5752
Neville/Math, University of Maine, Orono, ME 04469-5752. E-malil:
dodge@ganss.nmemat.maine.edu Please submit each proposal and solution
preferably typed or clearly written on a separate sheet (one side only)
properly identified with name and address. Solutionsto problemsin this
issue should be mailed to arrive by July 1, 1997.

Problemsfor Solution

888. Proposed by the Editor.

In 1953 Howard Eves book An Introduction to the Higtory of
Mathematics was first published. It quickly became the definitive
undergraduate text in mathematics history. It still is today. To honor this
outstanding text and its equally outstanding author, solve this base nine
alphametic, finding the unique value of HEVES:

MATH + HIST = HEVES

889. Proposed by M. S. Klamkin, University of Alberta, Edmonton,
Alberta, Canada.
Prove that

x Y 2 \ a )

wherea> landx >y > 0.

a* -1 a"—1>x—y.(a—1}2
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890. Proposed by Peter A. Lindstrom, Irving, Texas.
Expressthe following sum in closed form, where real number a # 1:

n
ia™,

891. Proposed by John Wahl, Mt. Pocono, Pennsylvania, and Andrew
Cusumano, Great Neck, New York.
Solvefor d the equation

bed + cda + dab + abc
= abcd.
a+b+c+d
892. Proposed by Bill Correll, Jr., student, Denison University,
Granville, Ohio.

Prove that the average of the eigenvalues of a red, symmetric,
idempotent matrix is at most one.

893. Proposed by Peter A Lindstrom, Irving, Texas.
Show that the sequence {x,} convergesand find its limit, wherex, = 2
and, fornz1,
2x,sinx, + sinx, + cosx,
x . =

n+l

2sinx,
894. Proposed by Andrew Cusumano, Great Neck, New York.

Let us lake P, = 42 -2, P, = 8Y2 -2 +2, P, =
15‘5 - Y2 + 2 + 2, and soforth. Find thevalueof lim . n(P, - P,.).

895. Proposed by Andrew Cusumano, Great Neck, New York.

Let ABC be an isosceles right triangle with right angle at C. Erect
squaresACEH and ABDI outwardly on side AC and hypotenuseAB. Let CI
meet BH at O and AB at X, and let 4O meet BC at J. Let DE cut AB at
and AC at G. It isknown (Problem 817, Fall 1994, page 72) that DE passes
through O. Let JF meet AH at S and let JG meet BH at T. Finadly, let BH
and AC meet at M and let IM and CI meet at L. Seethe figure.

a) Prove that

i) ST is parallel to DOE,
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ii) JK is parallel to AC,
iii) JG is pardlel to AB,
iv) A7 passesthrough T,
v) J-passesthroughl,
vi) EK passesthrough M, and
vii) BL passesthrough G.
*I) Which of these results generalizeto an arbitrary triangle?

896. Proposed by Peter A. Lindstrom, Irving, Texas.
For arbitrary postive integersk and n, find each summation:

a) 2": @G+ 1) +2)-E +K).
i1

b) E @G- 1G-2)—(i -k), wheren = k+ 1.
i=l

c) Y (=B -k+1)-G - D@+ DE+2)-( +K),
i=1

wheren=2k+ 1

897. ProposedbyJ. S. Frame, Michigan State University, East Lansing,
Michigan.
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Show that al non-negativeintegral solutionsof the Diophantineequation
30x - %) =205, + %) + 1

aregiven by consecutiveterms of an infinite sequenceof integersx; with x,
=0,x,=1, and x,, = ax,+ bx,.,. Find a and b and the first seven terms of
the sequencex;,. Generdizethis procedure and determinethe solution x; for
the equation

(2c + 1)(x; - x,)" = 2c(x; + x,,)* + 1.

898. Proposed by Paul S. Bruckman, Edmonds, \Washington.
An n-digit number N is defined to be a base 10 Armstrong number of
order n if

n-1 n-1
N =Y 4,10t = Y dy,
k=0 k=0

where the d, are decima digits, with d,, > 0. (See Miller and Whalen,
"Armstrong Numbers; 153= 13+ 5% + 33, Fibonacci Quarterly30.3, (1992),
pp. 221-224.) Prove that there are no base ten Armstrong numbers of order
2; that is, prove the impossibility of the equation

10y +x =x* + )74,
wherex andy are integerswithO< x<9and1<y < 9.

899. Proposed by Robert C. Gebhardt, Hopatcong, New Jersey.
Find the average number of times an ordinary six-sided die must be
tossed in order that each of its six facescomes up at least once.

900. Proposed by Howard Eves, Lubec, Maine.

Giventhelengthsof two sidesof atriangleand that the mediansto those
two sides are perpendicular to each other, construct the triangle with
Euclidean tools.
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Solutions

862. [Fal 1995] Proposed by Philip Tate, student, Universtyd Maine,
Orono, Maine.
“Solve this base ten addition dphametic.”

"But it doesn't have a unique solution.™ DODGE
“It does if | give you the value of T.” + THE
"Never mind, | found it. Furthermore, it hasa unique GREAT

solution in base eight. Let me show it to you™

Solution by William A. Peirce, Delray Beach, Florida.

Let b= 8 bethe base. Since G = D andR # O, there must be a carry
from the hundredscolumn to the thousands column and from the thousands
to theten thousands. ThenD +1=G, O=b - 1, and R = 0. From the units
columnwe haveeither T=2E or T = 2E - b. In thelatter casethe hundreds
columnrequiresthat ¢ + D + 2E - b = E + b, wherec is the carry from the
tenscolumnand henceisO or 1. ThenD + E=2b - ¢, which isimpossible,
so T=2E < band thereis no carry from the units column. The alphametic
now reads

1 1 c 0
D b-1 D D+1 E
2E H E
D+1 0 E A 2E

where c is the carry into the hundreds column.

Suppose € = 0. Because thenD + 2E=E *+ b, wehaveD = b - E.
AlsoA=D+1+H=b-E+1+H<Db-2impliesthat E = 3 +
H = 4. For base 8, E = 4 contradicts 2E C b. In base ten we must have
E=4,50T=8andD=10-4=6.Nowd=D+1+H=27+H
= 8, which isimpossible.

Thusc =1 Wehave | + D+2E=E+ b, 50D =b-1-Fand G
=D+ 1=b-E Then G+ H=A + b implies that 4 = H - E. The
aphametic now reads
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1 1 1 0
b-1-E b-1 b-1-E b-E E
2E H E
b-E O E H-E 2E

in which we haveE = 2because G=b-E < b- 1

Inbaseten, E=2,3,0r4. IfE=3,thenG=10-3=7,D=G
-1=6,and T =2E = 6, a contradiction. If E =2, then G = 10-2 =
8, D=G-1=7,and T = 2E = 4, leaving 1, 3,5,and 6. Then 4 = 1
andH = 3, orA = 3and H = 5 provide solutions 79782 + 432 = 80214
and 79782 + 452 = 80234. If E=4,then G=10-4 =6,D = G-1 =
5,andT = 2E =8, leaving 1, 2, 3, and 7. Then A = 3and H = 7 yields
the solution 59564 + 874 = 60438. Therefore, T cannot be specified
randomly —T can only be 4 or 8—and the solution is unique only when T
= 8.

Inbase 8, E=2o0r3.IfE=3,then G=8-3=5,D=G-1=
4,and T = 2E = 6, leaving only 1 and 2 remaining. Then A and H cannot
be chosen to satisfy A = H-E. fE=2,thenG=8-2=6,D = G-
1=05,and T = 2E = 4, leaving 1 and 3. Then A = 1 and H = 3 provide
the unique base 8 solution 57562 + 432 = 60214.

These solutionsare listed below:

Base 10 Base 8

T =4 T =4 T=8: T =4
79782 79782 59564 57562
432 452 874 432
80214 80234 60438 60214

For generd base b, the number of solutions is a quadratic function of
b having the form (3b* - pb t+ g)/6, and there are twelve such expressions
in acongruence class of b modulo12. These expressionsare, forb = 8, 9,
.., 19 (mod 12), (p,q) = (41, 142), (48,201), (43, 148), (44, 163),
(45, 174), (46, 181), (41, 136), (48, 195), (43, 154), (44, 169), (45, 168),
(46, 175). For bases 8 and 10, these give 1 and 3 respectively.

Also solvedby Charles Ashbacher, Paul S. Bruckman, James Campbell,
Mark Evans, Victor G. Feser, S. Gendler, Richard I. Hess, Carl Libis,
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Henry S. Lieberman, David E. Manes, Brandon Marsee, Greg Mitts,
Yoshinobu Murayoshi, Jeffrey Pierce, H.-J. Seiffert, Kely Straughen,
Kenneth M. Wilke, Rex H. Wu, and the Proposer.

*863. [Fdl 1995] Proposed by James Chew, North Carolina
Agricultura and Technica State University, Greensboro, North Carolina.

Here is a problem especidly for undergraduates. Everyone is familiar
with the story of the absent-minded professor who weers different colored
socks on his feet.  Suppose a month's supply of socks are in the clothes
drier; specificdly, let there be n pairs of socks in a drier containing only
these socks.

a) Assume the socks are of n different colors. The professor draws
socks one at a time from the drier without replacement, noting the color as
he draws each sock. To get apair of matching socks, a least 2 and at most
n t 1 socks mugt be drawvn. On average, how many socks would have to
be drawn to get a matching pair?

b) Repeat part (a), assuming k different colors of socks », parsof red
socks, n, pairs of blue socks, etc., wheren, T n, + ... t n, = n.

Solution by Paul S. Bruckman, Salmiya, Kuwait.

We fust solve the more generd problemin Rrt (b). Some preliminary
definitionsare inorder. Letx, = 2n,, i = 1,2, ..., k. Let U, denote the ith
dementary symmetric function of the numbersx;. Note that U, = 2n; a0
U,., = 0. We define U, = 1 for convenience. L&t V, denote the sum of al
the permutations of terms such as x,%x,x;...x;,. It is easly verified that

¢)) V, = UU, - (i + DU,

Let 6; denote the probability of requiring exactly i draws to obtain a pair of
socks. Note that 2 < i < k+ 1. The event defining 6, involves fust
drawing i - 1 different-colored socks, which may bedonein (i - 1)U, ways,
and then drawing another sock of a previoudy drawn color. Having
previoudy drawn color ¢, there are x, - 1 ways to draw a matching sock.
Thus, the total number of ways to draw a pair of socks in exactly i draws
is given by (i- D[V, - (i-DU,]. The totd number of ways to draw i
socks, irrespective of results and again counting permutations, is (2n)® =
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2n(2n-1)-+-2n-i T 1). Therefore,
CG-DV, - G-DU] G-DURr+1-DU,, - iU)]

6. .
(2,,)(0 (2,,)(1)

fori = 2, 3, ..., k1, obtained by usng Equation (1). It isingructive to
veify that 6, T 6, + ... T 6,,, = 1, as required. We omit the proof, but
note thet it is easily demondirated by the use of telescoping series. Let u(x)
denote the required meen of the didribution, where x is the k-tuple
(x;, %3, ..., X). Then

b1kl i@n+1-)U,, - iU]

=V = i
Hx) Z;I ' .2; @n)®
) >": G+DIU, & iy, ol zk:Ui(zn)~l,
i (2m@ iz 2n)® iz i
or
L 2n\?
@) b = zu,.( ; ) .
. i=0

The result in (3) isthe most generd and depends on the vadues of then, for
itsevauation in dosed form. For Rtt (@ wehavek=n,n,=1,1<i <
n, so that U, = 2{(%). We denote the meen of the distribution by g, in this
cae. Then we obtain

n -1
o B
i=0 \l/\1
We may evauate thissum in closed form. Identity 1.9 in [1] States

(5) Z(’f)y" = }:(";"](1 )

i=o\! i=0

Setingx = -n-1andy = -1/2 in(5), we obtain

o E(TII-ECTR
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On the other hand, since ()(*%) = (D), we see from (4) that

20\ = qi(2n-1 20\ = i (B
= 2i = n-i
we () 32 ) -G s ()
21\ (1Y -n-1
= 2" — ;
RGN
From (6) we obtain the desired result for Part (a),
2\~ (2n+1 2n)\™!
7 = = 4n
o e GTERCT) )
since 7., (3*") = 2. Note tha, from Stirling’s formula, () = 4%(nx)*?
asn - . Consequently, we see from (7) that p, = (nm)? asn - .

Reference

1. H. W. Goud, Combinatoria ldentities, Morgantown, W. Va,
University, 1972.

Also solved by William Chau, and Mark Evans.

Editorial notle So much for a smple, little problem intended for
undergraduates!

864. [Fall 1995] Proposed by Charles Ashbacher, Geographic
Decisons Sysgems Cedar Regpids, lowa

On page 11 of the booklet Only Problems, Nat Solutiond by Florentine
Smarandache, there isthe following problem.

Let a,, a,, ..., a, bedigits. Are there primes, on a base b, which
contain the group of digits @, - a,, intoits writing?But N'? But n°?

Prove that for any such sequence of digits ay, a,, ..., a,, NO Mater how
generated, thereexistsa primesuch that the sequence isfound in that prime.

|. Solution by H.-J. Seiffert, Berlin, Germany.
Let b > 1 be a naturd number ad a,, ..., a,, be base b digits. By
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Dirichlet’s theorem, the arithmetic progresson, where the quantity in
parentheses is the base b numerd a;...a,c ad c isabase b digit chosen so
that b and a,...a,c have no common factors greater than 1,

m
kb™! + [E a; bt 4 c), k=12,..,
i=1

contains infinitely many primes. Clearly, each such prime has a base b
representation of the form ...a;...a,c. In base 10, we may teke c = 1.

1. Commet by Bob Pridipp, Universty d Wisconan-Oshkash,
Oshkogh, Wisoongin.

On pages 154-155df [3], Sierpinski established thefollowing result. For
an arbitrary finite sequence ¢y, 6, ..., ¢, OF digits there exists a prime
number whose first mdigits are ¢, ¢, ..., ¢, George Barany [1] proved
there are infinitely many such primes. Sierpinski [4] aso proved given two
arbitrary finite Sequences of digits (of thededmd system) a,, 4;, ..., 8, ad
b,b,, ....,b, whaeb,=1, 3,7, or 9, thereexist arbitrarily many prime
numbers whose first mdigits are the string a,, a;, ..., a,, axd whose last
digits are b, b, ..., b,. Borucki and Diaz [2] proved both of Sierpinski’s
resultsfor a Dirichlet arithmetic progression.

References

1. AmericanMathematica Monthly, Advanced Problem 5738, 78(1971)683.

2. L. J. Borucki and J, B. Diaz, "A Note on Primes, with Arbitrary Initia
or Temind Decimd Ciphers, in Dirichlet Arithmetic Progression,”
American Mathematica Monthly, 81(1974)1001-1002.

3. Wadaw Serpinski, Elementary Theory & Numbers Hafner Publishing
Company, New York, 1964.

4. Wadaw Sierpinski, A Sdectiond Problemsin the Theory & Numbers,
The Macmillan Company, New York, 1964, pege 40.

Al solved by Paul S. Bruckman, Pat Costello, Thomas C. Leong,
David E. Manes, and the Proposer.
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865. [Fdl 1995] Proposed by Migud Amengual Covas, Mdlorca,
Spain.

Let ABC be atriangle with Sdes o lengthsa, b, and ¢, semiperimeter
s, and area K. Show that, if Za(s — a) = 4K, then the three circles
centered a the vertices A, B, and Cand of radiis —a,s — b, ad s — ¢,
respectively, are al tangent to the same straight line.

Solution by William H. Peirce, Delray Beach, Florida.
Letr,=s-a,r,=s5"-b, axdr, =S- chetheradii of thethree circles
centered respectively a A, B, and C. From these definitions we geta = r,
trnb=rntrc=ntnads=r+r,trn Thn
K2 =s5(s-a)s-b)s-c) =nrnr(r, +r,+ r).
Since we have
4K = Xa(s - a) = 2(nyry + ryrs + nry),
we may eiminate K between these two expressonsto obtain
F=r+rd+8R-2rnnn+n+n) =0
That is, F = 0 isequivaent to the Satement La(s — a) = 4K.
Consider any two extemaly tangent circlesof radii , and r,. By smple
geometry thedistance between the two pointsof tangency dong an externd
tangent lineis2,/r,r,. Therefore, when thethree externaly tangent circles

of the problem are tangent to the same line, one and only one o the
following three situations will occur:

1/rlr2 + ‘/rzr3 - ,/r3rl =0, ‘/rlrz - ‘/r2r3 +frgry = 0,
‘/rlrz - ‘/rzr_._, - = 0.

These three expressions, dong with the nonzero factor
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are the four factors o F, s0 tha F = O isequivdent to the three circles
being tangent to the same sraight line. The theorem follows.

Also s0lved by Paul S. Bruckman, David Iny, and the Proposer.

866. [Fal 1995) Proposed by J. Rodriguez, Sonora, Mexico.

For any nonzero integer n, the Smarandache function is the smalest
integer S(n) such thet (S(n))! is divisbleby n. Thus S(12) = 4 snce 12
divides4! but not 3!.

a Find a grictly increesing infinite sequence of integers such that for
any consecutive three of them the Smarandache functionisneither increasing
nor decressing.

*b) Find the longest increesing sequence of integers on which the
Smarandache function is strictly decreasng.

I. Solution by David Iny, Bdtimore, Maryland.

a) Obvioudy, if p isprime, then S(p) = p. Also, if p isan odd prime
greater than or equal to 5, thenp t Lisdivisbleby distinct integers 2 and
@t D2, otha SetT1) < @ + D2 Thus, if pi, pa ... isay
increasing sequence of primes eech greater than or equd to 5, then the
sequence o integerspy, py +1p.p, T 1 .. isan increasing sequence
whose Smarandache function vaues dternately increase and decrease.

b) We extend the observation of Part (8) to note thet, if p isprimeand
k < p isapostiveinteger, then S@* = kp. Now we find primesp;, p,, ...,
P, Al greater then n, so that S@f) = kp,. If p,, P2, P3, ..., plisincreasing
with p,, 2p,, ..., np, decreasing, we are done. Rcd | that asymptoticaly
there are m/Inm primes less than or equa tom

The congtruction now follows. Fix n > > 1 and pick prime p, > > n".
Suppose We have dready picked p,, p,.y» =+, Pesr fOr k 2 1. Then we pick
aprimep, so that pf < pil and kp, > (kT 1)p,..- That is,

k+1 (k+1)/k
—i‘qu <P < Pra -

Sncen” << p, < Ppy < «oo < Py then we have that

+1)k .
pVE . m™p,., 2 np,,, Sncek < n- 1,
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Thus it is sufficient to pick p, prime so that

k+1
7 P < Py < NPy

We estimate the number of possible primes as

k+1

L % Pra {
m@pe) ()

snce n > > 1. This completes the construction.

1. Comment by Paul S Bruckman, Salmiya, Kuwat.

Thi s problem gppeared amost verbatim in The Fibonacci Quarterly,
Vol. 32, No. 1, February 1994, by the same proposer, as Problem H-484.
My solution appeared in the same journal, Vol. 33, No, 2, May 1995, pp.
189-192.

Also solved by Charles Ashbacher, James Campbdll, William Chau,
Thomas C. Leong, H.-J. Seiffert, Rex H. Wu, and the Proposer.

867. [Fall 1995] Proposed by Seung-Jin Bang, AJOU University,
Suwon, Korea
Find the number of solutions(x, y, z, W) to the system

+ty+z+
b ake o s
y+2+

+ 4+ %
AR

2
x

I wn
W
OXa

Solution by Henry S Lieberman, Waban, Massachusts.

The solutionsto the sysemare all of the permutationsof (1, 1, 2, 3), of
which there are 12. The left sdes of the equations are rationa integral
symmetric functions of x, y, Z, and w. We note the following elementary
symmetric functions of X, y, z, and w.
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ogg=x+y+z+w,
0, =xy+yZ+ZN+W.x+xz+y\N,
o, = xyz T yaw + zwx + way, and
g, = XyIw.
Lets; =« Ty 7 + w. Then the system can be witten as
s,=0,=7,5 =158 =37, ad g, = 6.
We clam that (x,y, Z,w) solvesthe system if and only if these values are
the zeros of the polynomid in¢, # - o, 6, - ot T 6,. From formulas
in [1] we see that
(1) s2 = Slo‘, + 202 - 0 and S3 - S261 + .5‘162 = 303 = O.
We have ¢, = 7 and e, = 6, and from (1),
15"7'7 + 20'2 =Oand37' 15'7 + 702'303 = 0,
which yield o, = 03 = 17. It iseasy to discover that the zeros of
£-7°+ 177 - 17t + 6
ael, 1,2, and 3. Hence, (1, 1, 2, 3) and its permutations solve the system.

Reference

1. B. L. Van der Waerden, Modem Algebra, vol. 1, Frederick Ungar
Publishing Company, New York, 1953, page 81.

Also solved by Miguel Amengual Covas, Paul S. Bruckman, William
Chau, Rusdl Euler, Mark Evans, Robert C. Gebhardt, S. Gendler, Richard
|. Hess, David Iny, Carl Libis, David E. Manes, Yoshinobu Murayoshi,
Kenneth M. Wilke, and #e Proposer.
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868. [Fdl 1995] Proposed by William H. Peirce, Delray Beach,

Florida. Line Vaue
m
1. Enter tota amourt of dl social security 1 N
benefits .. ....... i, 1. S
2. Enter one-half of linel .. ....... 2 2 S/2
7. Enter your provisond income . . . . . 7.__ P 7 P
8. Enter $32,000 if married filing jointly 8. 32,000 i
9. Subtract line 8 from line 7. If zero or - - 8 32000
less,enter 0. ........... 0. 9.
Isline 9 zero? If yes, enter O online 18. If 9 P - 32000
no, continue to line 10.
10. Enter $12,000 if married filing jointly  10. 12,000 10. 12000
11. Subtract line 10 from line 9. If zero or - -
less,enter 0. .....ovviinnnnnns 11. 11. P > 44000: P - 44000 P = 44000: 0
12. Enter the smdler of line9 or line 10 12.
13. Enter one-hdlf of line 12 ... .... 13. 2. 12000 P - 32000
14. Enter the smaller of line2orline13 14 13. 6000 P/2 - 16000
15. Multiply line 11 by 0.85 . . ... ... 15. .
16. Addlines 14and 15 .......... 16. 14. S > 12000: | S < 12000: | S>P-32000;: | S<P-32000:
17. Multiply line1by 085 ........ 17. 6000 S2 P/2 - 16000 S/2
18. Taxablesocial security benefits. Enter
the smaller of line 16 or line 17. . . . . . 8. T 15. .85P-37400 | .85P-37400 0 0
Socid Security Benefits Worksheet (somewhat smplified) 16. | .85P-31400 | .55 + .85P | P/2 - 16000 s

- 37400

Computetion of the taxable portion of socia security benefits in 1994
is considerably more complicated than in past years, and the IRS has 17. 858 858 .85§ 858
designed the 1994 accompanying worksheet to determine these taxable
benefits. Let S be the totl socidl security benefits on line 1, P the 18, nits | Somssi | S 2 5§
provisiona income on line 7, and T the taxable benefits on line 18. For P-36941.18: | -106857.14: | - 18823.53:

married couples filing jointly, find T asafunctionof Sand P. Exhibit the .85P-31400 .55+.85P .5P-16000
solution graphically by showing the function T for each pertinent region of - 37400
the SP-plane, and give the boundary equations for eech region. Assume S
> 0 and P > 32,000 and ignore their practical upper limits. S < S < 17P/7T | § < 10P/17
P-36941.18: | -106857.14: | - 18823.53:
Solution by Paul S Bruckman, Salmiya, Kuwait. .858 .858 .858

We consider the possibilities in the table below.
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We mey display these results in the following five regions:

1. T=.858if P> 7817 + 44000 and S < 12000, or if P> S+
36941.18 and S > 12000:

2. T=.551 .85P - 37400 if 44000 < P < 75/17 + 44000 and § <
12000;

3. T=.85P- 31400if 44000 < P < § + 36941.18 and S > 12000;

4. T=.58if S+ 32000 < P < 44000 and S < 12000; ad

5 T=.5P-16000if P < § T 32000 ad S < 12000.

We see that T isa positive, piecewise continuous, linear function of the two
vaiables Pand S, subject to the conditions S > 0 and P > 32000. We
graph the boundaries of these five regions into which the SP-plane is
divided. (We note there is a void region for § > 12000 and P > 44000.)

|P P =5 + 3694118
52000, -
P 2 7S/17 + 44000 2] 3
{ 47000
S = 12000
P = 44000 =

S

15000

0 2500 5000 7500 10000 12500
Also solved by Mark Evans and the Proposer.

869. [Fall 1995) Proposed by Rasoul Behboudi, University of North
Carolina, Charlotte, North Carolina.

Condder an dlipsewith center at O and with mgor and minor axes AS
and CD respectively. Let E and F be pointson segment CB so that we have
OE* 1+ OF? = OB?. At E and Ferect perpendiculars to cut arc BC at G
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Simulated Traffic Flow (4 cars)

xsoo_.,..,.1...1..:_.)l;-r-l T “‘S‘é
C 2 %-—-
r £ S 3
1500 b= = = 1
C F 3 o
C = S
- & £ =
1400 & A ]
i F = 3
1200 F s = B
- - F < E
- - = 9
8 of F ]
£ 1000 & & E
e o 3
B 00 3
- - . ]
BOO P -
E 3
- &S g
4 bar. o~ -
Wk 5
[ & b
e s B
200 ;‘/'. E
E PIRES N ANSNIRY.
0 =t

70

0

Fgure7.

Red-World Comparison

Thetable bdow showsydlow light durations at severd intersectionsin
the Hope Collegearea.  As one can see, the modd (which predicts minimum
values for £,,) for diemodt part agrees with actud traffic sgnals. Agreementsand
discrepancies should not betaken too serioudy, Sincethe predictionswere bassd
on very rough esimates of braking accd erationsand intersection widths (it's herd
to messrethewidth of an intersection when pesky cars keep getting in the way).

| . | . . E | | ;el ; | y'l
'8 @River 25 mi/hr 3.6s 3.7s

8" @ Centrd 25 mi/hr 3.6s 40s

82 @College 25 mi/hr 3.6s 35s

82 @ US 31 35 mi/hr 5.3s 6.2s

Us3l@s*® 55 mi/hr 5.6s 4.5s

9t @trd 30 mi/hr 3.7s 4.0s

9 @Codlege 30 mi/hr 38s 4.0s



BENNINK, RED LIGHT, GREEN LI GAT 363

Comparison d Random and Planned Timing Schedules
<0 .

Rl eI s o e e R e s o e R

Averoge Speed (mi/hr)
3
T

8.0 5.0

Figure8.

Summary

In conclusion, one can develop a suitabl etraffic Sgna tming schedule
for agmplecity basad on afew parametersand af ewformulas of motion. Yelow
light timing dependsprimarily on speed limit, braking acceleration, and thewidth
of intersections. Red and green light timing depends on the spacing of
intersections, the gpeed limit, and the chosen patternlength N. Themodd shows
that Somedegreeofunimpeded trafficflow isdmogt dways possiblefor regularly
spaced intersections.  Furthermore, timing schemes for two-way traffic can
gengdly beextendedto four-way trafficsysems. And finaly, themodd provides
resultswhich seemto bein generd agreement with actual trafficsgnals.

The modd leaves many questions unanswered, however. How well do
the proposed timing schedules prevent trafficj ans? What if the city contains
heavy-load andlight-load streets? What if thelatticeisirregular (e.g., the spacing
varies)? | believe the modd developedin this paper could be extended to handle
these situations, and that the computer simulation would especially help in
ansver i ng thefirst question. In any case, it wasafun project which I thi nk gives
areasonabledescriptionof trafficsyst ens. And who knows? Perhaps someone
will pick up where| haveleft off | would beinterested in hearing about the
results.
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Editorial note: F.Y .I., n = 16,292,246,262,786,755,156,105,160,857,
651,258,074,334,634,907,277.

871. [Fal 1995] Proposed by Miguel Amengual Covas, Mallorca,
Spain.

Let ABCD be anisoscelestrapezoid with major base BC. If the dtitude
AH is the mean proportiona between the bases, then show that each sideis
the arithmetic n@an of the bases, and show that the projection A P of the
dtitude on side AB is the harmonic mean of the bases. See the figure.

A D

P

L [

B H Cc

Solution by Richard |. Hess, Rancho Palos Verdes, California.
Let BC = b, AD = a, and AH = h. Since k% = ab, then

AB? = h2 + (b—a‘f = (b +a)2’

2 2
s0AB = (at b)/2, the average of the bases. Let 6 = angle BAH. Then
cosO = AR _ &\@,SOAP=AHcos0 - 2ab

AB a+b a+b’
whence A P is the harmonic ngan of a and b.

Also solved by Paul S. Bruckman, William Chau, Russell Euler and
Jawad Sadek, George P. Evanovich, Joe Howard, Tommy Jarrett and David
Lindsey and Laura Ramdarass and Robyn Carley, Henry S Lieberman,
Kandasamy Muthuvel, H.-J. Seiffert, Skidmore ProblemGroup, KennethM.
Wilke, Rex H. Wu, and the Proposer.



PROBLEMSAND SOLUTIONS 435

872, [Fdl 19951 Proposed by Paul S Bruckman, Edmonds,
Washington.
Given A,, 4,, and A, aretheangles of atriangleand 4 < k < 12, let

S, = Sy(A,, Ay, A3) = T3_, (k cos A, + cos 24),

defined onthe triangular planeregionR: 0 < A, < 7,0 < 4, < 7,0 <
A, T 4, < u. Find the maximum vaue of S, for al triangles.

Solution by David Iny, Baltimore, Maryland.

In order for S, to take on its naxi numvaue for al choices of k, we
will take the closure of the indicated region alowing the degenerate case.
We show that max(§)) = k T 3for k < 9, achieved with the degenerate
triangle (0, 0, 7), and max(S,) = 3(k - 1)/2 for k = 9, achieved with the
equilaterd triangle. To do this, we write

S, = (k- 9)Eocosd) T 8,

and we dhow that S, has (up to permutations) two distinct globd
maximizers, thedegenerate triangle(0, 0, =) and theequilatera triangle. We
then combine this result with the inequeity 1 < £ cosA, < 312 with lower
and upper bounds achieved respectively by the degenerate and equilatera
triangles.

Condder first the function f{x) = 9cosx + cos2x. Since we have Filts)
= -8cos2x - 9cosx T 4, then f" hasazero at a = cos [(-9 +v/209)/16].
We see thet T is convex (concave downward) for 0 < x < aand concave
(upward) for a < x < 7. Thus, if max(4) < a, then

S, = Efi4) < 3fGY4) = 12 with equality for A, = 4, = 4, = g

Becausef isconcave on (a, u), amaximizer of £ f{4,) can have & most one
angle greater than a. Thus, without loss of generdlity, we assumeA, and 4,
do not exceed a. Since

f4) + R4y < 2f(2%)

2
by convexity, we mugt have A, = A and welety = A, = A4,. Then

Sy = 2(9cosy T cos2y) + 9cos(r-2y) t cos2(x-2y)
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= 8cos'y - 22cos?y + 18cosy + 8,

which ontheinterval 0 < cosy < 1 has maximaat cosy = 112 and cosy
= 1, whichoccur aty = «/3 and y = 0. This establishes that

Sy = Z(9cos4; + cos24) < 12

with equality for the degerate and equilatera triangles.
It remainsto show that £ cos4; < 312 If max(4) < =/2, thencosx is
convex, whence

Lcos4d; < 3cos(%EA..) = 3¢os1;- =

N w

with equdity for A, = 4, = A; = #/3. If 4, = =/2, then
A +A,

Lcosd; < 2cos(—2-) + cosfr-(4, T Al

But 2c0sZ - cos2z = -2c0s2z T 2cosz T 1 hasamaximum when cosz =
172. Hence ZcosA = 312 To get thelower bound, we teke A, < 4, <
#/2 and A, < A; without lossof generdity. By convexity, A, = O whenever
L cosA, isamni num Then

EcosA4; = 1 + cosAd, + cos(m - 4) = 1.

Thus £ cosA, = 1 and the result is established. Furthermore, we see that
the result holds for dl red k.

Als0 solved by William H. Peirce and the Proposer.

873. [Fdl 1995] Proposed by Mohammad K. Azarian, University of
Evansville. Evansville. Indiana.
For p and g postivered numbers and any positiveinteger m let

m m+ 3 3
ﬂx)=[1+x+_x__+x I]m[l‘i'i]pexp[qx],

m! m!

whaex = 0. Provetha

0 < [, 7@ (-1 + 9 + k1D dx < 1.

k=2 n=2
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Solution by H.-J. Seiffert, Berlin, Ger many.

Snceltx * ...t xm! < ¢ whenx > 0and n isa positiveinteger,
we have that

0 < fix)expl-( + 9)*x]
= [(1 +x)[1 + ﬂ]]m [1 + f]p’exp[ g% _ (p+q)2x]
m! P g +x

3 3.3
< exp[2pqx +pe+ X (p+q)2x) - exp(—q X ]< 1.
q+x q+x

Hence

@ @

0<% [ T@ exp(-1(0 + gF + k"na

k=2 n=2

<Y Y [Tk = ¥ ¥ ;1- [Fexp(-nar

=2 p=2 k=2 n=2

bl

Also solved by Paul S. Bruckman, Russll Euler, David Iny, and the
Proposer.

874. [Fdl 1995] Proposed by David Iny, Westinghouse Electric
Corporation, Bdtimore, Maryland.
a) Given red numbersx; and z; for 1 < i < n, prove thet

n[zxizzziz - (Zx,z'.)z] 2
(Zx,)z(zziz) + (Exiz)(zzi)z - Z(Exi)(zzi)(zx:zi)‘

b) Determine a necessary and sufficient condition for equdlity.
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I. Solution by Murray S Klamkin, Univarsty d Alberta, Edmonton,
Alberta, Canada.

It will be shown that the given inequdity isequivalent geometricaly to
the square of the valume o a tetrahedron being nonnegative.

Let X, Z, ad | denote, repectively, the n-dimensond vectors
X1y X2y ooer Xy (T4 22y --» Zp),and (1,1, ..., Dandlet | X| =x, |Z]| =
z,andhere | 1] =Vvn. Aloleta, B, and v denote the angles between X
ad|l,Zandl, and X and Z, respectively. The given inequdity can now be
rewritten in the form

n[X*7Z? - (X-Z)1] = X-D*Z? + (Z-D°X*-2(X-)(Z-D)(X-Z)
or equivalently
(1 -costy) = nalzt cos* at mi’z? cos B - 2nx*2 cosacosB cosy
ad finaly
n*z%(1 -cos* a - cos*B-cos*y + 2cosacosBcosy) = 0.

The left Sdedf the latter inequdity is 36 times the square of the volume of
the tetrahedron having X, Z, and | as three coterminal edges. There is
equdity if and only if the volumeis O or equivdently if X, Z, and | are
linearly dependent. Thet is, if either X or Z equd O or I or there are
constants a and b such that z; = ax; + bfor al i.

II. Commetby H.-J. Seiffert, Berlin, Germany.
This inequdity is known. See [1], page 227, Equation 20.1.

Reference

1. D. S. Mitrinovi¢, J. E. Pecari¢, and A. M. Fink, Classica and New
Inequditiesin Andyss, Kluwer, 1993.

Alsosolvedby Paul S Bruckman, Joe Howard, Yoshinobu Murayoshi,
and the Proposer.
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Editor's Note

The B Mu Epsilon Journal wes founded in 1949 and i s dedicated to
undergraduate and beginning graduate Sudents interested in mathemetics. Al
submissionsto theJournal should be directed toward this group.

Undergraduate and beginning graduate students are urged to submit
papersto the Journal for condderationfor publication. Student papersar e given
top priority. Expository articlesby professondsina | areasof mathematicsare
asoweocome. Some priority areasar e listedin the Editorid (p. 352) in the Rl
1996issueof theJournal. Some guiddinesinclude:

1. Manuscriptsmust be origind work, not have been previoudy published
nor should they be under considerationfor publicationesewhere.

2. Manuscripts must be typewritten, double spaced with wide margins, on
only oneride of 85" x 11" white paper. Whenever possible, manuscripts
should be typewrittenin WordPerfect.

3. Includingfigures, manuscriptsshould not exceed ten pagesin length.

4. Figuresshould be placed on separate sheets and photo-reedy. Camera-
reedy figures should neesLre a naxi numof 4.5" widehby 6" long.

5. In order to insure anonymity in the review process, the author's name,
affiliation (academic or otherwise), and address should gppear only ona
separatetitle page.

6. Thetidemust also appear on thefirst pageof theexposition.

7. Each page should be numbered.

8. Students submitting manuscripts should give thar school, date of
gradugtion, and the nameof their faculty advisor for their submission.

9. Two copiesof each manuscript and a copy of the disk (whenever the
manuscripti s typed in WordPerfect) should be submitted to theeditor at
theaddresslisted on theinside of thefront cover.
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Eleventh Annual Moravian College

Student Mathematics Conference
Saturday, February 22, 1997

Invited Lecture

Newton's Original Method

-=Qr--
Though this be Method, yet there is madness in't

Professor William Dunham
Truman Koehler Professor of Mathematics
Muhlenberg College

The one-day conference, sponsored by Moravian College's
chapter of Pi Mu Epsilon, is a unique opportunity for
undergraduate students in the Tri-State area to meet and
discuss mathematics.  Students are invited to give talks in
the fields of mathematics, statistics, operations research,
and computing.  In October, mathematics departments in
the region will receive detailed information on the
conference, registration forms for students talks, and
registration forms for attendance at the conference. Mark
your calendars and encourage your students to come, to
give a talk, or just to listen to some interesting talks by
others and to socialize with students and faculty from
many other institutions.

For further information, contact:

Doris Schattschneider

Moravian College, 1200 Main St., Bethlehem, PA 18018-6650
email: schattdo @ moravian.edu

tel (610) 861 1373 fax (610) 861 1462






