PI MU EPSILON

JOURNAL

VOLUME 10 FALL 1996 NUMBER 5 CONTENTS

Editorial	352
Red Light, Green Light: A Model of Traffic Signal Systems	
Ryan Bennink	353
Rachele Dembowski's Partition Problem	
Cecil Rousseau	364
Another Matching Problem with a Matching Probability	
Philip J. Byrne	371
A Generalization of a Dimension Formula	
and an "Unnatural" Isomorphism	
Daniel L. Viar	376
Self-Similarity and Fractal Dimension of Certain	
Generalized Arithmetical Triangles	
Mark Tomforde	379
Approximating e ⁿ /2 with nearly n + 1/3 Terms	
J.S. Frame, C.L. Frenzen	390
A Particular Polarity	
John Frohliger, Richard Tuggle,	
Jennifer Van Sistine	394

(continued on inside back cover)

PI MU EPSILON JOURNAL

VOLUME 10 FALL 1996 NUMBER 5 CONTENTS

Editorial	352
Red Light, Green Light: A Model of Traffic Signal Systems	
Ryan Bennink	353
Rachele Dembowski's Partition Problem Cecil Rousseau	364
Another Matching Problem with a Matching Probability Philip J. Byrne	371
A Generalization of a Dimension Formula and an ''Unnatural'' Isomorphism Daniel L. Viar	
Self-Similarity and Fractal Dimension of Certain Generalized Arithmetical Triangles Mark Tomforde	379
Approximating e ⁿ /2 with nearly n + 1/3 Terms J.S. Frame, C.L. Frenzen	390
A Particular Polarity John Frohliger, Richard Tuggle, Jennifer Van Sistine	394

(continued on inside back cover)

PI MU EPSILON JOURNAL THE OFFICIAL PUBLICATION OF THE NATIONAL HONORARY MATHEMATICS SOCIETY

Editor:

Russell Euler

Problems Editor:

Clayton W. Dodge

Business Manager:

Joan Weiss

Officers of the Society

President:

Richard L. Poss, St. Norbert College

President-Elect:

J. Douglas Faires, Youngstown State University

Secretary-Treasurer:

Robert M. Woodside, East Carolina University

Past-President:

Robert C. Eslinger, Hendrix College

Councilors

S. Brent Morris, National Security Agency Brigitte Servatius, Worcester Polytechnic Institute Robert S. Smith, Miami University Joan Weiss, Fairfield University

Editorial correspondence, including manuscripts and news items, should be sent to Russell Euler, Department of Mathematics and Statistics, Northwest Missouri State University, Maryville, Missouri 64468 (e-mail address, 0100120 Queed nwmissouri.edu). Guidelines for authors are found on page 441 of this issue.

Problems for solution sad solutions to problems should be sent directly to Clayton W. Dodge, Mathematics Department, 5752 Neville Hall, University of Maine, Orono, Maine 04469.

Correspondence regarding subscriptions, back issues or changes of address should be addressed to Jam Weiss, Department of Mathematics and Computer Science, Fairfield University, Fairfield, CT 06430.

The PI MU EPSILON JOURNAL is published twice a year - Fall and Spring. One volume consists of five years(tea issues).

EDITORIAL

Russell Euler

The Pi Mu Epsilon Journal is a mathematics magazine primarily for students and instructors at a variety of post-secondary levels. Hopefully, the general reader with an interest in mathematics will also **find** interesting content in the **Journal**.

Submissions to the **Journal** can include:

- 1) research appropriate for the readership
- 2) undergraduate research projects
- 3) expository material
- 4) historical material
- 5) educational opportunities
- 6) career opportunities
- 7) problems and solutions.

Manuscripts from student authors are given top priority.

The transition between editors has been smooth -- primarily because of the excellent guidance from the previous editor Underwood Dudley. The Problems Editor, Clayton Dodge, has also been extremely helpful and cordial. The **Journal** now has a Business Manager -- Joan Weiss. Her help is appreciated very much.

Since this is your journal, suggestions for improving the **Journal** will always be carefully considered.

Introduction

Probably everyone who drives has had the experience of "hitting all the red lights." Especially since moving from a **rural** area to a town, I have found **nyealf** wondering why various lights (red in particular) last as long as they do and how the schedule of traffic signals is determined. What criteria should one use? Can multiple sets of signals on many streets be coordinated to yield optimum traffic flow? And so when a mathematical modeling project was assigned in my senior math seminar, I felt the time was **ripe** for an investigation of traffic light timing.

At the outset of my project I had a number of objectives in mind. First, I wished to identify the parameters which characterize traffic flow and to determine what restrictions those parameters placed on signal timing. Second, I hoped to find a tuning scheme which would provide for the "best" traffic flow for a model city. And finally, I wanted to compare my proposed timing scheme to real-world traffic signal schedules.

The model I came up with is based on several premises: Drivers always obey the speed limit and all traffic signals; drivers are perfect (they always make correct judgments); and conditions must never force a driver to do something illegal. Furthermore, a city consists of a lattice of intersections with a traffic signal at each intersection. Each block is square, and all blocks have the same side dimension b. Streets are two-way and there are no a priori preferred streets or directions to traffic. Finally, traffic signals are uniformly periodic in both time and space. This means that each light cycles from green to yellow to red on a regular, repealing schedule with period T. Ia addition, there is a number N such that traffic signals which are N intersections apart run on identical schedules.

A Bask Description of Motion

One can describe the motion of a car of length L (say, traveling north) by plotting die position s of the car's front bumper as a function of time t (see Figure 1). Intersections which occupy a width w become bands in the t-s plane. Regions of a particular band can then be color-coded to indicate the status of the light at the intersection for various times. If the speed limit is v_{max} then the maximum slope

of s(t) is v_{max} . We can also characterize starting and stopping by acceleration terms, denoting the maximum **braking** acceleration by a_{braks} . We can then apply the elementary **constant-acceleration** motion formulas

$$s = s_0 + v_0 t + \frac{1}{2} a t^2$$

$$v = v_0 + a t$$

$$v^2 = v_0^2 + 2 a s$$
(1)

For example, the distance d_{ilop} required for a car traveling at the speed limit to come to a full stop is

$$d_{stop} = \frac{v_{\text{max}}^2}{2|a_{brake}|} \tag{2}$$

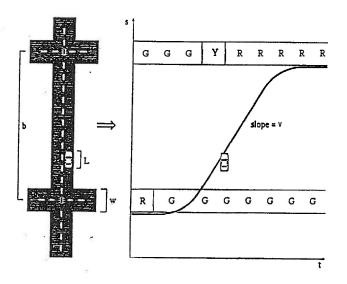


Figure 1.

Implementing Restricting Conditions Yellow *Lights*

The amount of time the yellow light must be on is perhaps the simplest feature to determine. The governing rule is this: If a car cannot stop at an intersection, it must be able to clear the intersection before the light turns red, Consider a car going the speed limit as it approaches an intersection with a green light. Past a certain point, the car is too close to the intersection to stop in time if the light turns yellow. The point of decision, by which time the light must have turned yellow if the driver is to stop, is when the driver is d_{stop} away from the intersection (see Figure 2). Just past this point, the car must keep going and the

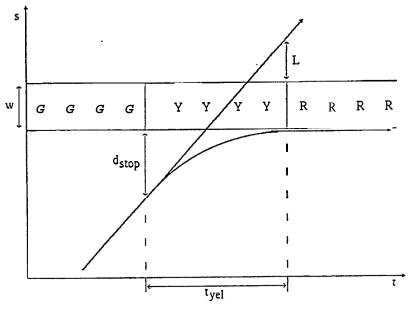


Figure 2.

yellow light must stay on until the car's back bumper leaves the intersection. That is, t_{yel} must be long enough to allow the car to traverse a distance $d_{top} + w + L$. **This** yields

 $t_{yel} \ge \frac{v_{\text{max}}}{2|a_{brake}|} + \frac{w + L}{v_{\text{max}}} \qquad (3)$

The wider the intersection and the longer the car, the longer the yellow light must be. Good braking capability, however, reduces the minimum time. Although the speed limit enters twice, die dominant effect is that die required time lengthens with higher speed limits because stopping distance is increased.

Red and Green Lights: Two-way traffic.

h this model, traffic flow is considered optimal when **cars** traveling at the speed limit hit the fewest red lights. That is, one would like to **time** the sequence of traffic lights so that, as much as possible, cars which catch one green light will continue to encounter green lights. The green lights should "follow the speed limit." Perhaps this does not seem too daunting until we remember that since the **streets** are two-way, the schedule must work for **cars** traveling in both directions!

Every signal cycles through all three colors with the same period T, and so the **times** t_{gm} , t_{yel} , and t_{red} must add up to T. If all streets are assumed equally busy, then north-south drivers and east-west drivers should wait for each other equal amounts of time; thus $t_{red} = T/2$. It then follows that $t_{gm} = (T/2) - t_{yel}$. It is important to note that although **every** signal has period T, each signal has a separate phase delay 0 (measured in seconds).

The concern here is the relative timing of signals along a single street, which depends primarily on v_{max} and the distance b between intersections. Since w does not affect the time required to go from one intersection to the next, we can represent intersections simply by lines spaced b units apart. And because signals are periodic in both time and space, we can map the entire t-s plane onto a rectangle of width T and length Nb (see Figure 3), where N is the number of intersections after which the schedule of signals repeats. (Notice the wrap-around effect on traffic trajectories.) The period is given by $T = (Nb)/v_{max}$. Hence our task is to situate the green, yellow, and red regions on each intersection timeline so that there exist straight lines with slopes $+ v_{max}$ and $- v_{max}$ (representing northbound and southbound cars) which pass through only green regions. In this formulation, the problem is rather difficult since both the signal phases and traffic trajectories are arbitrary. Realizing that northbound and southbound trajectories always make the same " X shape wherever they occur, we can simplify the situation by shifting the origin. We now consider the traffic trajectories fixed and allow the intersections to translate along the s axis.

From this reference **frame** we can easily measure the time interval Δt between northbound and southbound cars at a particular location s. The left half of Figure 4 shows the "X" formed by northbound and southbound cars over a 3-

358

block distance. The horizontal separation between the legs of the "X is the time interval Δt , which is shown as a triangular-looking function of s in the right half of Figure 4. As one can see from the right half of the figure, the time interval between northbound and southbound trajectories is never more than half a period since the space "wraps around". The challenge is to determine if and how green light regions (solid horizontal bars marked with a "G") may be placed so as to intersect both trajectories at each intersection (thin horizontal lines).

If green lights were to last at least **half** a period, the problem would be **trivial**; no matter how the intersections were translated, the green light duration would always exceed Δt . The fact that t_{gn} is short of half a period by the amount t_{gn} means there are **two** forbidden zones (shaded horizontal bars) where the green region is not long enough to catch both trajectories; **i.e.**, where $t_{gn} < \Delta t$. The problem has a solution if we can translate the intersections so that none of them falls in a forbidden zone. Geometrical analysis of Figure 4 reveals that each

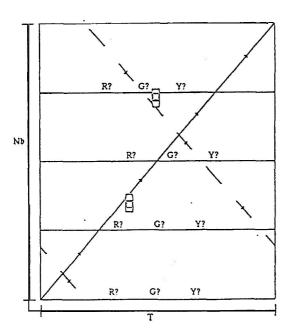


Figure 3.

forbidden zone extends over a distance $v_{max}t_{yel}$ on the s axis. Clearly the intersection spacing b must be at least as large as this. But since two forbidden zones must be avoided, the condition which is sufficient to guarantee a solution becomes $b > 2v_{max}t_{yel}$. Solving this inequality for f_{el} and combining it with equation (3), we find that a solution exists as long as

$$d_{stop} \le b - 2(w + L). \tag{4}$$

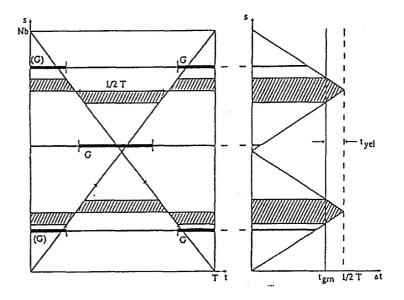


Figure 4.

In practice, this is never a concern. (If you cannot stop your car in a little under a block, either you are driving too fast or you need new brakes!) For a concrete example, let N=4, b=330 ft, w=30 ft, L=15 ft, $v_{max}=30 mi/hr=44 ft/s$, and $a_{brake}=15 ft/s^2$. Then T=30 s and from equation (3) we have $f_{el} \ge 2.5 s$, which means $t_{grn} \le 12.5 s$. Over every 4-block stretch of road there are two sections $v_{max}t_{yel}=110 ft$ long which periodic northbound and southbound cars traverse at times more than 12.5 s apart. If the lights are scheduled properly, such cars will be able to proceed from intersection to intersection without having to stop for a red light.

360

As it turns out, many solutions exist. The best ones seem to be obtained with N = 2, 3, 4, 6, or 8. (For typical real-world parameters and N = 1, the light. change too quickly. For N > 8, the lights can take several minutes to turn, and most people do not like to wait that long.) Acceptable solutions are optimized by adjusting the placement of intersections so that the sum of the time intervals across all intersections is a minimum. That way, one creates the widest green light intervals through which caravans of many cars can proceed uninhibited. The phase delay for each intersection is then determined by the times at which the trajectories cross the intersection line.

Figures 5 and 6 show **typical** timing schemes. (The vertical axis is qualitative rather than quantitative, and refers to the particular light within the N-intersection pattern. For each light, a high level represents a green light, a middle level indicates a yellow light, and a low level indicates a red light.) **As** one can **see**, traffic signals are generally staggered rather than aligned. **Some** lights have identical phases, however, because northbound and southbound traffic trajectories are symmetrical and the **optimization** algorithm favors neither direction. Incidentally, Figure 5 was generated using N = 3, b = 330 ft, and v = 30 mi/hr = 44 ft/s. Thus T = Nb/v = 22.5 s, as shown in the graph. Figure 6 was generated with N = 4, yielding the period T = 30 s.

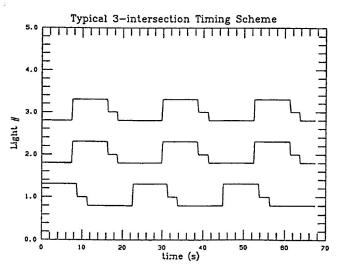


Figure 5

A Complete Timing Schedule: Four-way traffic.

Once we have determined a working time schedule for traffic signals along a single street (1 dimension), we can extend the schedule to accommodate city traffic (2 dimensions). An example will suffice to show how this is accomplished.

Consider the case N=4. Assume that we have come up with appropriate phase delays for traffic signals along a single street, and say that northbound traffic encounters the sequence of signals with phase delays \emptyset_0 , \emptyset_1 , \emptyset_2 , \emptyset_3 , \emptyset_0 , (Southbound traffic encounters the same sequence in the opposite order.) If we apply this 4-element sequence to adjacent N-S streets but stagger it as shown in equation (5), then the sequence of phases holds for **E-W** streets as well. Columns of the 4 x 4 lattice represent 4-intersection segments of adjacent N-S streets; rows represent segments of adjacent **E-W** streets. Northbound and eastbound traffic (i.e., traffic traversing the lattice up or to the right) will encounter the same phase differences between consecutive lights; the same holds true for southbound and westbound traffic.

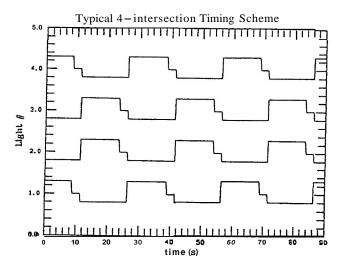


Figure 6.

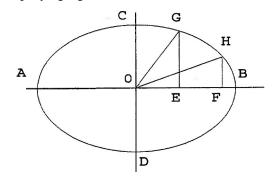
This pattern can be extended indefinitely in all four directions. Thus one can come up with a traffic signal schedule which maximizes unimpeded **traffic** flow for a lattice of intersections.

Computer Simulation

I thought it would be fun to simulate traffic flow in a city by implementing my lattice of intersections and traffic signals schemes on a computer. Figure 7 shows **position-versus-time** data extracted from a typical run. In this particular run, four cars were driving north along a street with a 4-intersectionsignal pattern similar to that shown in Figure 6. One can see smooth curves indicating periods of acceleration or braking, as well as flat regions where cars are waiting at a red light. As one would expect. Figure 7 is reminiscent of Figure 1.

To assess the effectiveness of the 4-intersection pattern suggested by my model, I decided to compare the average speed of cars in a city with the 4-intersection pattern with that of cars in a city with random signal schedules (See Figure 8). The average speed was calculated by taking the total distance traveled by all the cars in the city divided by the length of time the simulation was run (chosen to be 10 periods). As one can see, when there are few cars on the road the average speed in the "planned" city (upper line) is quite close to the given speed limit of 30 mi/hr (dashed line). Cars in the "random" city (lower line) average little more than half the speed limit. As the traffic becomes heavier, however, the planned signal scheme seems to be less and less effective, to the point that it produces results hardly better than those of traffic signals given arbitrary phases. This result surprised me; I expected that the 4-intersection pattern would be significantly better up to much heavier traffic loads. Apparently, only a short caravan ofvehicles are able to pass uninhibited through green lights at successive intersections.

and H respectively. Show that the areas of sectors OBH and OGC are equal. See the accompanying figure.



I. Solution by Robert Downes, Mountain Lakes High School, *Plainfield*, New Jersey.

Place the ellipse in the Cartesian plane so that we have B(b, 0), C(0, c), E(e, 0), and F(f, 0). The equation of the ellipse then becomes

$$\frac{x^2}{b^2} + \frac{y^2}{c^2} = 1.$$

Since we were given $OE^2 + OF^2 = OB^2$, from which we get $e^2 + f^2 = b^2$, then we find that H(f, ce/b) and G(e, cf/b). The areas of sectors OBH and OCG, K(OBH) and K(OCG), are given by

$$K(OBH) = \int_{0}^{ce/b} \left(\frac{b}{c}\sqrt{c^2 - y^2} - \frac{bf}{ce}y\right) dy = \frac{bc}{2} \sin^{-1}\frac{e}{b}$$

and

432

$$K(OGC) = \int_0^e \left(\frac{c}{b}\sqrt{b^2 - x^2} - \frac{cf}{be}x\right) dx = \frac{bc}{2} \sin^{-1}\frac{e}{b} = K(OBH).$$

II. Solution by **Skidmore** College Problem Group, Saratoga Springs, New York.

Place the ellipse in the Cartesian plane (as in Solution I above). The linear **transformation** f, given by fix, y) = (x/b, y/c), sends the ellipse to the

unit circle. We let f(A) = A', etc. The condition that $e^2 + f^2 = b^2$ becomes $e'^2 + f'^2 = 1$. Since applying f multiplies areas by a constant value, we see that the elliptical sectors have the same area if and only if the corresponding circular sectors have the same area. The area of a circular sector of radius r and central angle 9 is $r^2\theta/2$, so we must show the sectors O'B'H' and O'C'G' have equal central angles a and b, respectively. Now $a = \cos^{-1}f'$ and a are complementary, so a = b.

Also solved by Miguel Amengual Covas, Paul S. Bruckman, George P. Evanovich, Jayanthi Ganapathy, Richard I. Hess, Joe Howard, Murray S. Klamkin, Henry S. Lieberman, Peter A. Lindstrom, David E. Manes, V. S. Manoranjan, G. Mavrigian, Yoshinobu Murayoshi, H.-J. Seiffert, and the Proposer.

870. [Fall 1995] Proposed by Grattan P. Murphy, University of Maine. Orono, Maine.

This proposal is based on a problem posed at a recent mathematics meeting and is intended especially for students. Without using machine calculation, that is, without actually finding the digits of the number, show that at least one digit occurs at least 6 times in the decimal representation of the number $(7^{7})^{7} \cdot 7^{7} \cdot 77$.

Solution by Henry S. Lieberman, Waban, Massachusetts.

If $n = (7^7)^7 \cdot 7^7 \cdot 77$, then $\log_{10} n = 57 \log 7 + \log 11 \approx 49.212$ and n has 50 decimal digits. If no digit occurs at least 6 times, then each digit would occur exactly 5 times and the sum of the digits of n would be

$$5(0 + 1 + 2 + ... + 9) = 5.45 = 225.$$

Since $3 \mid 225$, then $3 \mid n$, but clearly n has no factor of 3. Hence, some digit must appear at least 6 times in the decimal representation of n.

Also solved by Paul S. Bruckman, Victor G. Feser, Richard I. Hess, David E. Manes, Kandasamy Muthuvel, Michael R. Pinter, Kenneth M. Wilke, and the Proposer.

Rachele Dembowski's Partition Problem

Cecil Rousseau The University of Memphis

1. The Problem. In her article *Enumerating Partitions*, in the Fall, 1995 issue of this **Journal [1]**, Rachele Dembowski poses the following problem.

Problem A. Find the **number** of partitions with n parts in which, for k = 1, 2,...,n, the kth part is less than or equal to $n \cdot k + 1$ and all parts are odd.

Interpreting the parts of the partition, taken in reverse order, as the values **f(1)**, **f(2)**,...,**f(n)**, we have the following equivalent problem.

Problem B. Find the number of nondecreasing functions

$$f: \{1, 2, ..., n\} \rightarrow \{1, 3, 5, ..., 2 \left[\frac{n-1}{2} \right] + 1 \}$$

satisfying $f(k) \le k$ for k = 1, 2, ..., n.

Another equivalent problem can be phrased in the language of "heads or tails", hi this formulation, an HT sequence (or string) is a finite sequence of symbols, each of which is either *H* or *T*.

Problem C. Find the number of HT sequences with n - 1 H's where, from the **begining** up to any point in die sequence, there are at least *twice* as many H's as there are T's. This is the number of outcomes of a "heads or tails" game in which the player, starting with no funds, wins one dollar for each head and owes two dollars for each tail, given (hat the player never goes in debt, and obtains heads a total of n - 1 times.

To see that Problem B and Problem C are equivalent, associate with each function counted in Problem B a corresponding HT sequence, namely HB, $HB_2...HB_{n-1}$ where B_1 , B_2 ,..., B_{n-1} are (possibly empty) blocks of T's, with the number of T's in B_k being (f(k+1) - f(k))/2. The resulting HI sequence has n - 1 H' sand is constructed so that at any point in the sequence where there are as yet k H's, the number of T's is at most

$$\frac{f(2)-f(1)}{2}+\frac{f(3)-f(2)}{2}+\cdots+\frac{f(k+1)-f(k)}{2}=\frac{f(k+1)-1}{2}\leq \frac{k}{2}.$$

Thus the resulting *HT* sequence satisfies the conditions of Problem C. It is clear that the mapping just described is a bijection.

Let **a**, denote the common answer to Problems A through C. We shall

prove

$$a_{n} = \begin{cases} \frac{1}{3m+1} {3m+1 \choose m} & \text{if } n = 2m, \\ \\ \frac{2}{3m+2} {3m+2 \choose m} & \text{if } n = 2m+1, \end{cases}$$

which agrees with the conjecture made in [1].

2. The **Method.** Note that a function counted in Problem B satisfies $\mathbf{f}(\mathbf{n}) = \mathbf{n} \cdot \mathbf{k} + 1$ if and only if the total number of T's in the corresponding HT sequence is $(\mathbf{f}(\mathbf{n}) - 1)/2 = (\mathbf{n} \cdot \mathbf{k})/2$. Equivalently, $\mathbf{f}(\mathbf{n}) = \mathbf{n} \cdot \mathbf{k} + 1$ if and only if the player has a fortune of $(\mathbf{n} \cdot 1) - 2((\mathbf{n} \cdot \mathbf{k})/2) = \mathbf{k} \cdot 1$ dollars after the last coin toss. Let $\mathbf{c}(\mathbf{n}, \mathbf{k})$ denote the number of HT sequences in Problem C so that the player's final fortune is $\mathbf{k} - 1$ dollars. Clearly, $\mathbf{c}(\mathbf{n}, \mathbf{k}) = 0$ unless \mathbf{k} and \mathbf{n} have the same parity, and

$$a_{n} = \begin{cases} c(n,2) + c(n,4) + \cdots + c(n,n) & \text{if n is even,} \\ c(n,1) + c(n,3) + \cdots + c(n,n) & \text{if n is odd.} \end{cases}$$
 (1)

If the player's fortune after the last toss is $k \cdot 1$ dollars, then the fortune just before obtaining the last head is k + 2(j - 1) for some $j \ge 0$, from which we have the recurrence relation

$$\mathbf{c}(\mathbf{n}, \mathbf{k}) = \mathbf{c}(\mathbf{n} - 1, \mathbf{k} - 1) + \mathbf{c}(\mathbf{n} - 1, \mathbf{k} + 1) + \dots + \mathbf{c}(\mathbf{n} - 1, \mathbf{n} - 1).$$
(2)

Comparing (1) and (2), we have

$$a_{n} = \begin{cases} c(n+1,1) & \text{if } n \text{ is even,} \\ c(n+1,2) & \text{if } n \text{ is odd.} \end{cases}$$
 (3)

Note that by two applications of (2),

$$c(n, k) = c(n-1, k-1) + c(n-1, k+1) + \dots + c(n-1, n-1)$$

$$c(n, k+2) = c(n-1, k+1) + c(n-1, k+3) + \dots + c(n-1, n-1),$$

from which we have

$$c(n, k) = c(n - 1, k - 1) + c(n, k + 2).$$
 (4)

Thus our plan is mapped out. We want to determine the numbers $\mathbf{c}(\mathbf{n}, \mathbf{k})$ using (4) and then find \mathbf{a} , using (3). Using (4) and the fact that $\mathbf{c}(\mathbf{n}, \mathbf{n}) = 1$, we can easily compute a table of values for $\mathbf{c}(\mathbf{n}, \mathbf{k})$ for small values of \mathbf{n} a la Pascal's triangle.

n\k	1	2	3	4	5	6	7	8	9	10	11	12
1	1											1807
2		1										
3	1		1									
4		2		1								
5	3		3		1						E.	
6		7		4		1						
7	12		12		5		1					
8		30		18		6		1				
9	55		55		25		7		1			
10		143		88		33		8		1		
11	273		273		130		42		9		1	
12		728		455		182		52		10		1

Table 1 - Values for c(n, k)

3. Solution by Generating Functions. We shall find **c(n, k)** using the method of **generating** functions. In part, the solution rests on the following result **from** classical analysis [3, §7.32], [4, p. 138].

Lagrange's Expansion. Let f(z) and F(z) be analytic on and inside a contour C surrounding the origin, and let w be such that $|\mathbf{w}f(z)| < |z|$ at all points z on C. Then the equation $\mathbf{w} = \mathbf{z}/\mathbf{f}(\mathbf{z})$ has one root $\mathbf{z} = \mathbf{z}(\mathbf{w})$ in the interior of C, and $F(\mathbf{z}(\mathbf{w}))$ has the expansion

$$F(z(w)) = F(0) + \sum_{m=1}^{\infty} \frac{w^m}{m!} \left\{ \frac{d^{m-1}}{dt^{m-1}} F'(t) [f(t)]^m \right\}_{t=0}^{m}.$$

Also, the following fact is crucial.

Lemma. Let C_k denote the class of all HT sequences for the game in **Problem** C such **that** the player is never in debt and has a fortune of k - 1 dollars after the last toss. That $C_{k+l} = \{aHb | a \in C_k, b \in C_l\}$. Here **aHb** denotes the sequence obtained

obtained by concatenation of $a \in C_k$, a single H, and $b \in C_I$.

Proof. Given a sequence in C_{k+b} locate the last point at which the player's fortune is $k \cdot 1$ dollars, and let a denote the HT sequence up to that point. Then $a \in C_k$ and the next term of the sequence must be H; otherwise the player's fortune would be $k \cdot 1$ dollars at some later point. Letting b denote the remainder of the given sequence, we see that, had the player started with no funds at the beginning of b, he or she would never go in debt and have a final fortune of $1 \cdot 1$ dollars. Hence $b \in C_k$. Thus every member of C_{k+l} can be written aHb where $a \in C_k$ and $b \in C_l$. We claim that this representation is unique. To see this, suppose for the moment that a'Hb' = aHb where $a \in C_k$ and $b \in C_l$. We may assume that the lengths of a' and a are b' and b' are b' with b' and b' are player begins at toss b' with b' a fortune of b' dollars, The ensuing sequence, b', leads to a fortune of b' and the player started this sequence with no funds, he or she would then be in debt. This contradicts b' b' and proves that the representation aHb with b' and b' and b' is unique.

Note that if there are r - 1 H's in a and s - 1 H's in b then aHb has r + s - 1 H's. In view of the uniqueness of the aHb decomposition, we have the following important result.

Corollary. For all n, k, $l \ge 1$,

$$c(n, k+l) = \sum_{r} c(r, k) c(n-r, l).$$
 (5)

Let us introduce the following generating function for column k of the table of $\boldsymbol{c}(\boldsymbol{n},k)$ values:

$$G_k(x) = \sum_{n=k}^{\infty} c(n,k) x^{(3n-k)/2}.$$

Thus, for example,

$$G_1(x) = x + x^4 + 3x^7 + 12x^{10} + 55x^{13} + 273x^{16} + \dots$$

and

$$G_2(x) = x^2 + 2x^5 + 7x^8 + 30x^{11} + 143x^{14} + 728x^{17} + \cdots$$

Using (5), we obtain

$$G_{k+1}(x) = G_k(x)G_l(x).$$
 (6)

For simplicity, let $G_1(x) = G(x)$. Simple induction using (6) yields

$$G_k(x) = [G(x)]^k (k = 1, 2,...).$$
 (7)

Multiplying both sides of (4) by $\mathbf{x}^{(3n-k)/2}$ and summing on n, we find

$$G_k(x) = xG_{k-1}(x) + xG_{k+2}(x).$$
 (8)

In view of (7) and (8), **G(x)** satisfies the cubic equation

$$G(x) = x + xG^{3}(x),$$
 (9)

so x = G/f(G) where $f(z) = z^3 + 1$. With $F(z) = z^k$ and $f(z) = z^3 + 1$,

Lagrange's expansion yields

$$G_k(x) = \sum_{m=k}^{\infty} \frac{x^m}{m!} \left\{ \frac{d^{m-1}}{dt^{m-1}} kt^{k-1} (t^3 + 1)^m \right\}_{t=1}^{m}$$

Let $[x^m]G_k(x)$ denote the cofficient of x^m in the expansion of $G_k(x)$. To simplify the notation, let $r = (n \cdot k)/2$. Then

$$\begin{split} c(n,k) &= [x^{n+r}]G_k(x) \\ &= \left. \frac{k}{(n+r)!} \frac{d^{n+r-1}}{dt^{n+r-1}} t^{k-1} (t^3+1)^{n+r} \right|_{t=0} \\ &= \frac{k}{(n+r)!} \binom{n+r}{r} (n+r-1)! \,. \end{split}$$

Thus we have

$$c(n,k) = \frac{k}{(n+r)!} \binom{n+r}{r} \text{ where } r = \frac{n-k}{2}.$$
 (10)

Note: Having found a formula for $\mathbf{c}(\mathbf{n}, k)$ using generating functions and **Lagrange's** expansion, it is easy enough to verify that this is indeed the solution of (4) satisfying $\mathbf{c}(\mathbf{n}, \mathbf{n}) = 1$. It is clear that (10) gives $\mathbf{c}(\mathbf{n}, \mathbf{n}) = 1$. Also, assuming that the formula holds for $\mathbf{c}(\mathbf{n} - 1, k - 1)$ and $\mathbf{c}(\mathbf{n}, k + 2)$ and setting $\mathbf{r} = (\mathbf{n} - k)/2$,

we have

$$c(n,k) = c(n-1,k-1) + c(n,k+2)$$

$$= \frac{k-1}{n+r-1} \frac{(n+r-1)!}{r!(n-1)!} + \frac{k+2}{n+r-1} \frac{(n+r-1)!}{(r-1)!n!}$$

$$= \frac{(n+r-2)!}{r!n!} [(k-1)n + (k+2)r]$$

$$= \frac{(n+r-2)!}{r!n!} [k(n+r) - (n-2r)]$$

$$= \frac{(n+r-2)!}{r!n!} [k(n+r-1)]$$

$$= \frac{k}{n+r} \binom{n+r}{r}$$

Finally,

$$a_{2n} = c(2m+1, 1) = \frac{1}{3m+1} {3m+1 \choose m}$$

and

$$a_{2m+1} = c(2m+2, 2) = \frac{2}{3m+2} {3m+2 \choose m},$$

as claimed.

4. **Comments.** The problem dealt with in this note belongs to the subject of *lattice* path *counting*, and the methods used are a standard part of that subject [2]. For more on the subject of generating functions and their many applications in combinatorics, we recommend the excellent book by Herbert Wilf [4].

Acknowledgement. The author **is** indebted to Nicholas **Sekreta**, who obtained an independent proof of the lemma used in this proof.

References

- 1. **Dembowski**, Rachele, *Enumerating partitions*, this journal, *Fall*, 1995, pp. 212-214.
- **2. Mohanty**, Sri **Gopal**, *Lattice Path Counting and Applications*, Academic Press, New York, 1979.
- **3.** Whittaker, E.T. and Watson, G.N., *A Course in Modem Analysis*, Cambridge University Press, Cambridge, UK, 1963.
- 4. Wilf, Herbert S., Generatingfunctionology, Academic Press, Boston, 1990.

Answers to 'What are These?'

- 1. Sieve of Eratosthenes
- 2. Brianchon point
- 3. Markov chain
- 4. Convex function
- 5. Noncollinear points
- 6. Dedekind cut

Another Matching Problem with a Matching Probability

Philip J. Byrne College of St. Benedict

There are several fairly well known probability problems that have a limiting answer of 1 $\,\overline{}\,$ 1/e (see for example [I], [2] p. 107, [3] pp. 104-106, and [4]). This note adds the following, less well known, problem to this family: if n married couples are randomly assigned to 2n chairs lined up in a row, what is the probability, $\mathbf{p_n}$, that at least one couple occupies adjacent chairs? We later vary this problem by arranging the chairs in a circle.

To determine $\mathbf{p_n}$ we first number the chairs 1, 2,...,2 \mathbf{n} , from left to right. Let A, denote the event that a couple occupies chairs i and i+1, i=1, ..., 2n-1. Then $\mathbf{p_a} = \mathbf{P(A_1} \cup \mathbf{A_2} \cup ... \cup \mathbf{A_{2a-1}})$, and by a generalization of the result $\mathbf{P(A \cup B)} = \mathbf{P(A)} + \mathbf{P(B)} - \mathbf{P(A \cap B)}$ to any finite union of events, we have $\mathbf{p_n} = \sum_{i_1} \mathbf{P(A_{i_1})} - \sum_{i_1 < i_2} \mathbf{P(A_{i_1} \cap A_{i_2})} + \sum_{i_1 < i_2 < i_3} \mathbf{P(A_{i_1} \cap A_{i_2} \cap A_{i_3})} - ...$

+
$$\sum_{i_1 < ... < i_{2n-1}} P(A_{i_1} \cap ... \cap A)$$
. (1)

To evaluate (1), we first make the following simple observation. The expression A, $\cap A$, is the event that there is a couple in chairs 1 and 2, and also a couple in chairs 2 and 3. But the person in chair 2 cannot be the spouse of both of the people in chairs 1 and 3, therefore A, $\cap A_2 = o$. Similarly, if |i - j| = 1 then A, $\cap A_1 = o$. Thus any event $A_{i_1} \cap \ldots \cap A_{i_k}$ for which **two** of the i_j 's are consecutive integers has probability zero. One consequence of this is that the last nonzero summation in (1) is

$$(-1)^{n+1} \sum_{i_1 \leq \ldots \leq i_n} P(A_{i_1} \cap \ldots \cap A_{i_n}) = (-1)^{n+1} (A_1 \cap A, \cap A, \ldots \cap A, \ldots).$$

Now consider any particular collection, $\mathbf{A_{i_1}}$,..., $\mathbf{A_{i_k}}$, in which $\mathbf{i_2}$ - $\mathbf{i_1}$ > 1, $\mathbf{i_3}$ - $\mathbf{i_2}$ > 1,..., $\mathbf{i_k}$ - $\mathbf{i_{k-1}}$ > 1. We will determine the probability

of the intersection of these events using an extension of the multiplicative law of conditional probability, $P(A \cap B) = P(A)P(B|A)$, to the intersection of k events: $P(A_i \cap \cdots \cap A_{i_k}) = P(A_{i_l})P(A_{i_l}|A_{i_l})P(A_{i_l}|A_{i_l} \cap A_{i_l})\cdots P(A_{i_k}|A_{i_l} \cap \cdots \cap A_{i_{k-1}})$. F if r s t consider $P(A_{i_l})$. No **matter** who occupies chair i_l , there are $2n \cdot 1$ possibilities for the person in chair $i_l + 1$, only one of whom is the spouse of the person in chair i_l . Since the assignment of persons to chairs is done randomly, $P(A_{i_l}) = 1/(2n \cdot 1)$. Similarly, given that a couple occupies chairs i_l and $i_l + 1$, no matter who occupies chair i_l there are $2n \cdot 3$ possibilities for the person in chair $i_l + 1$, and therefore $P(A_{i_l}|A_{i_l}) = 1/(2n \cdot 3)$. Continuing on in this manner we conclude that

$$P(A_{i_1} \cap \dots \cap A_{i_k}) = \left(\frac{1}{2n-1}\right) \left(\frac{1}{2n-3}\right) \left(\frac{1}{2n-5}\right) \dots \left(\frac{1}{2n-2k+1}\right).$$
 (2)

Since every non-null intersection of k A_{i_j} 's has this same probability, it remains only to count how many of these there are to determine $\sum_{i_1 < ... < i_k} P(A_{i_1} n ... n A_{i_k})$, the k^{th} summation in (1). Now let $x_1 = i_1 - 1$, $x_j = i_j - i_{j-1} - 2$ for j = 2, 3, ..., k, and $x_{k+1} = 2n - i_k - 1$. Thus x_1 is the number of chairs to the left of chair i_1 , x_2 is the number of chairs between chair $i_1 + 1$ and chair i_2 , and so on. There is then a one-to-one correspondence between collections of k A_{i_1} 's with a non-null intersection and solutions of $x_1 + x_2 + ... + x_{k+1} = 2n - 2k$, with $x_1 \ge 0$, $x_2 \ge 0$,..., $x_{k+1} \ge 0$. The number of such solutions is given by $\binom{2n-k}{k}$ (see [2], p. 38), where the binomial coefficient $\binom{n}{k} = \frac{n!}{k!(n-k)!}$, k = 0, 1, 2,..., n. We can now express (1) as

$$p_{n} = {2n-1 \choose 1} \left(\frac{1}{2n-1}\right) - {2n-2 \choose 2} \left(\frac{1}{2n-1}\right) \left(\frac{1}{2n-3}\right) + \dots + (-1)^{n+1} {n \choose n} \left(\frac{1}{2n-1}\right) \left(\frac{1}{2n-3}\right) \dots \left(\frac{1}{3}\right) \left(\frac{1}{1}\right).$$
(3)

This can be written more compactly by letting

$$a_{k,n} = \prod_{j=1}^{k} \left(\frac{2n - k - j + 1}{2n - 2j + 1} \right) \text{ for } k = 1, 2, ..., n. \text{ Then we have from (3)}$$

$$p_n = \sum_{k=1}^{n} a_{k,n} \frac{(-1)^{k+1}}{k!}. \tag{4}$$

From the Taylor series for e^x about x = 0,

$$\sum_{k=1}^{n} \frac{(-1)^{k+1}}{k!} = 1 - \frac{1}{2!} + \frac{1}{3!} - \frac{1}{4!} + \dots + \frac{(-1)^{n+1}}{n!}$$
 (5)

converges to 1 - 1/e as $\mathbf{n} \to \infty$. It should also be noted that $0 \le a_{k,n} \le 1$ for all k and n, and that for each k $\lim_{n \to \infty} a_{k,n} = 1$. These facts **taken** together would suggest

that for **n** large, $p_n \approx \sum_{k=1}^n \frac{(-1)^{k+1}}{k!}$, and therefore that $\lim_{n\to\infty} p_n = 1 - 1/e$. A careful proof of this result is somewhat technical, and is deferred until the end of this note.

If the 2n chairs are arranged in a circle, a couple occupying chairs numbered 2n and 1 would then be in adjacent chairs. The event that at least one couple occupies adjacent chairs in this situation can be thought of as occurring in one of two mutually exclusive ways: (1) at least one couple occupies adjacent chairs other than the two numbered 2n and 1, or (2) a couple occupies chairs 2n and 1 with no other couple occupying adjacent chairs. The first of these events has probability \mathbf{p}_n . For the second event we note that the probability of being in the adjacent chairs 2n and 1 is 1/(2n-1), and given that a couple is seated there the probability that no other couples occupy adjacent chairs among the remaining 2(n-1) seats is $1 \cdot \mathbf{p}_{n-1}$. Therefore, the probability, $\tilde{\mathbf{p}}_n$, of at least one couple occupying adjacent chairs when the chairs are arranged in a circle is given by $\tilde{\mathbf{p}}_n = \mathbf{p}_n + \left(\frac{1}{2n-1}\right)$ (1 - \mathbf{p}_{n-1}), from which it follows that $\tilde{\mathbf{p}}_n$ also approaches

1 - 1/e as n → ∞.

It is interesting to note that the congruence of both $\mathbf{p_n}$ and $\mathbf{\tilde{p}_n}$ to $1 \cdot 1/e$ is related to that of $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k!}$, which itself is the answer to a weil known probability matching problem: if n married couples are randomly paired up for a dance, what is the probability that at least one pair is a **married** couple? This problem is sometimes cast in terms of matching hats to **men**, letters to envelopes, or positions in two decks of cards (see for example [1], [2] p. 107, and [4]). We now present the proof that $\lim_{n\to\infty} \mathbf{p_n} = 1 - 1/e$. Let $\epsilon > 0$ be given. Since $\sum_{k=0}^{\infty} \frac{1}{k!}$ converges to ϵ , we can choose N_1 so that

$$\left|\sum_{k=0}^{n} k - e\right| = \sum_{k=n+1}^{\infty} \frac{1}{k!} < \frac{\epsilon}{3} \text{ for all } n \ge N_1. \text{ Since } \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k!}$$

converges to 1 - 1/e, we can choose N_2 so that

$$\left| \sum_{k=1}^{n} \frac{(-1)^{k+1}}{k!} - \left(1 - \frac{1}{e}\right) \right| = \frac{\epsilon}{3} \text{ for all } n \ge N_2. \text{ Let } N_3 = \max(N_1, N_2).$$

Since $\lim_{n\to\infty} \mathbf{a}_{k,n} = 1$, for each k = 1, $2,...,N_3$, we can $\mathbf{choosen}_k$ so that $1-\mathbf{a}_{k,n} \le \varepsilon/3\mathbf{e}$ for all $n \ge n_k$. Let $\mathbf{N}_4 = \max(\mathbf{n}_1, \mathbf{n}_2,...,\mathbf{n}_{N_3})$. Now suppose $n \ge \max(N_3, N_4)$. We have

$$\left| \sum_{k=1}^{n} \left(\left. a_{k,n} \frac{(-1)^{k+1}}{k!} \right) - \left(1 - \frac{1}{e} \right) \right| \leq \left| \sum_{k=1}^{n} \left(\left. a_{k,n} \frac{(-1)^{k+1}}{k!} \right) - \sum_{k=1}^{N_3} \left(\left. a_{k,n} \frac{(-1)^{k+1}}{k!} \right) \right| \right|$$

$$+ \left| \sum_{k=1}^{N_3} \left(a_{k,n} \frac{(-1)^{k+1}}{k!} \right) - \sum_{k=1}^{N_3} \frac{(-1)^{k+1}}{k!} \right| + \left| \sum_{k=1}^{N_3} \frac{(-1)^{k+1}}{k!} - \left(1 - \frac{1}{e} \right) \right|.$$
 (6)

The first term on the right side of (6) is

$$\left| \sum_{k=N_3+1}^n a_{k,n} \frac{(-1)^{k+1}}{k!} \right| \le \sum_{k=N_3+1}^n \frac{1}{k!} < \sum_{k=N_3+1}^\infty \frac{1}{k!} < \frac{\epsilon}{3}$$

since $|\mathbf{a}_{n,k}| \le 1$ and $N_3 \ge N_1$. The second term on the right side of (6) is

$$\left| \sum_{k=1}^{N_3} (1 - a_{k,n}) \frac{(-1)^{k+1}}{k!} \right| < \sum_{k=1}^{N_3} \left(\frac{\epsilon}{3e} \right) \frac{1}{k!} < \frac{\epsilon}{3e} \sum_{k=0}^{\infty} \frac{1}{k!} = \frac{\epsilon}{3}$$

(the first inequality holds because $n \ge N_4$). The last term on the right side of (6) is less than $\in /3$ since $N_3 \ge N_2$. Therefore we have shown that for all

$$n \ge \max(N_3, N_4), \left| \sum_{k=1}^{n} \left(a_{k,n} \frac{(-1)^{k+1}}{k!} \right) - \left(1 - \frac{1}{e} \right) \right| < \epsilon, \text{ and thus } \lim_{n \to \infty} p_n = 1 - 1/e.$$

References

- 1. B.R.Crain, "On the Matching Problem in Probability," Pi Mu *Epsilon Journal*, 9 (Fall 1992), pp. 448-450.
- 2. W. Feller, *An Introduction* to *Probability Theory and Its Applications*, Volume 1, 3rd Edition, **Wiley**, 1968.
- 3. **R**. Honsberger, ed., *Mathematical Plums*, The Mathematical Association of America, 1979.
- 4. E. A Tams, "The Answer is 1-1/e. What is the Question?," Pi Mu *Epsilon Journal*, 8 (Spring 1987), pp. 387-389.

A Generalization of a Dimension Formula and an ''Unnatural'' Isomorphism

Daniel L. Vim

Let V be a finite dimensional vector space with subspaces V_1 and V_2 . Then it is well known that

$$\dim(V_1 + V_2) = \dim V_1 + \dim V_2 - \dim(V_1 \cap V_2)$$

where $V_1 + V_2 = \{x + y: x \in V_1 \text{ and } y \in V_2\}$. Anyone who has studied **combinatorics** will immediately recognize that this is similar to the principle of **inclusion/exclusion** for two sets (PIE **from** here on). That is, if S_1 and S_2 are two finite sets and $|S_1|$ denotes the number of elements in S_p then

$$|S_1 \cup S_2| = |S_1| + |S_2| - |S_1 \cap S_2|$$
.

Now the **PEE** generalizes to **n** sets. Hence a natural question to **ask** is whether we can find a similar formula for n subspaces. In this paper we present one such possibility and what it translates to in terms of quotient spaces.

First of all, the obvious first guess would be to write down the general formula for the PIE and replace S_i by V_i and \cup by +. Unfortunately, this doesn't work. For example, the formula for three **subspaces** would be

$$\begin{aligned} \dim \left(V_1+V_2+V_3\right) &= \sum_{i=1}^3 \dim V_i - \dim(V_1\cap V_2) - \dim(V_1\cap V_3) - \dim(V_2\cap V_3) \\ &+ \dim(V_1\cap V_2\cap V_3) \\ \text{which isn't true in general. For Example, in R^2 let V, be the x-axis, V_2 be the } \end{aligned}$$

which isn't true in general. For Example, in R^2 let V, be the x-axis, V_2 be the y-axis, and V_3 be the line y = x. The left hand side of the above formula is 2 while the right hand side is 3. You might ask yourself why the inductive proof of the PIE doesn't work for subspaces. The reason is that in the inductive step of the PIE you need to know that \cap distributes over \cup . Unfortunately, \cap does not distribute over +. However, we can prove the following,

Theorem 1. Let V_1, V_2, \cdots, V_n be **subspaces** of a finite dimensional vector space.

$$\begin{aligned} & \text{Inen} \\ & \dim(V_1 + \dots + V_n) = \sum_{i=1}^n \dim V_i - \dim(V_1 \cap V_2) - \dim(V_3 \cap (V_1 + V_2)) \\ & - \dim(V_4 \cap (V_1 + V_2 + V_3)) \cdots - \dim(V_n \cap (V_1 + \dots + V_{n-1})). \end{aligned}$$

Proof. We **proceed** by induction on n, the number of **subspaces**. If n = 1 then the statement is trivial and if n = 2 it is the well known dimension formula. **Suppose** that the formula is true up to $n \cdot 1$. Then viewing $V_1 + \cdots + V_{n-1}$ as a single

378

subspace and applying the case n = 2 we have $\dim(V_1 + \dots + V_n) = \dim V_n + \dim(V_1 + \dots + V_{n-1}) - \dim(V_n \cap (V_1 + \dots + V_{n-1}))$ $= \sum_{i=1}^{n} \dim V_{i} - \dim(V_{1} \cap V_{2}) - \dim(V_{3} \cap (V_{1} + V_{2}))$ $-\dim(V_4 \cap (V_1 + V_2 + V_3))$ $-\dim(V_{n-1}\cap(V_1+\cdots+V_{n-2}))$ $-\dim(V_{n}\cap(V_{1}+\cdots+V_{n-1})).$

Hence the theorem follows by induction. \Box

The problem with our formula is that it is not very symmetric in V_1, V_2, \dots, V_n . To get a more symmetric formula, write down our formula n! times (once for each permutation of $\{V_1, V_2, \dots, V_n\}$), and then add each column.

For example, in the case
$$n = 3$$
 this leads to
$$3! \dim(V_1 + V_2 + V_3) = 3! \sum_{i=1}^{3} \dim V_i - 2\dim(V_1 \cap V_2)$$
$$-2\dim(V_1 \cap V_3) - 2\dim(V_1 \cap (V_2 + V_3))$$
$$-2\dim(V_1 \cap (V_2 + V_3))$$
$$-2\dim(V_2 \cap (V_1 + V_3))$$
$$-2\dim(V_3 \cap (V_1 + V_2)).$$

We leave it to the reader to write down a general form for this.

Recall that the second isomorphism theorem for vector spaces says that if V_1 and V_2 are subspaces then

$$\frac{V_1 + V_2}{V_1} \cong \frac{V_2}{V_1 \cap V_2}$$

Taking dimensions of both sides of this formula yields the well known formula that we started with. One would guess that our dimension formula must also give rise to a quotient isomorphism. In fact, we have the following.

Theorem 2. If V_1, V_2, \dots, V_n are subspaces of a finite dimensional vector space, then

$$\frac{V_1 + \dots + V_n}{V_1} \cong \frac{V_2}{V_1 \cap V_2} \times \frac{V_3}{V_3 \cap (V_1 + V_2)} \times \dots \times \frac{V_n}{V_n \cap (V_1 + \dots + V_{n-1})}$$

Proof. **This** is really a corollary to the first theorem. Take dimensions of both sides. The dimension of the left side is the same as the dimension of the right side by the first theorem. Since the left side and the right side have the same dimension and they are over the same field they **mst** be isomorphic. \square

The second theorem isn't very satisfying. It gives us a way of looking at the dimension formula of the first theorem in terms of quotient spaces, but the given isomorphism is "unnatural" in that we haven't given the isomorphism and it seems unlikely that one will be found. Is there a better generalization of the dimension formula, and does it lead to a natural generalization of the second isomorphism theorem? We leave this question the reader.

The following two forms of Pascal's (or the arithmetical) triangle are equivalent:

where $\mathbf{C}(\mathbf{m}, \mathbf{n})$ is the number of combinations of $\mathbf{m} + \mathbf{n}$ objects taken \mathbf{n} at a time. If we let \mathbf{p} be a prime and code \mathbf{p} different colors to the numbers 0 to $\mathbf{p} - 1$, then we can replace each number in the above figure by the color coded to its least positive residue modulo \mathbf{p} and thereby "visualize" the relation among the numbers. It is well known that the nonzero residues of Pascal's Triangle modulo a prime \mathbf{p} form a fractal image which is **self-similar** and has fractal dimension

$$\frac{\log(p(p+1)/2)}{\log p} \tag{1}$$

In this paper we investigate a generalized combination C(m, n) which is defined as follows: Given a sequence of integers C_1, C_2, \ldots, C_n we denote the generalized factorial of a number n as [n]!, and define it as [0]! = 1 and $[n]! = C_1 \cdot C_2 \cdot \ldots \cdot C_n$ for $n \in \mathbb{N}$. We then denote the generalized binomial coefficient by

$$\begin{bmatrix} \mathbf{n} \\ \mathbf{k} \end{bmatrix} \text{ and define it as } \begin{bmatrix} \mathbf{n} \\ \mathbf{k} \end{bmatrix} = \frac{[\mathbf{n}]!}{[\mathbf{k}]! [\mathbf{n} - \mathbf{k}]!}. \text{ We can now define } \mathbf{C}(\mathbf{m}, \mathbf{n}) = \begin{bmatrix} \mathbf{m} + \mathbf{n} \\ \mathbf{m} \end{bmatrix}.$$

For our purposes in this paper we **will** only discriminate **between** elements which are congruent to 0 modulo a given prime (which will always be colored white) versus those which are not congruent to 0 modulo the prime (and **winch will** be colored **non-white**). We shall also use the following definitions for various types of sequences:

A U-sequence is a sequence
$$\{U_n\}$$
 such that $U_0 = 0$, $U_1 = 1$ and $U_{n+2} = aU_{n+1} + bU_n$ for all $n \in \{0, 1, 2 ...\}$ and for some fixed integers a and **b**. In this paper, values of $C(m, n)$

which are determined by a U-Sequence \mathbf{Will} be denoted $\mathbf{U}(\mathbf{m}, \mathbf{n})$.

A <u>Gaussian seauence</u> is a sequence $\{Q_n\}$ which is a U-sequence such that $\mathbf{a} = 1$ + q and $\mathbf{b} = -\mathbf{q}$ for some interger q. Thus $Q_0 = 0$ and $Q_n = 1$ + $\mathbf{q} + \mathbf{q}^2 + \ldots + \mathbf{q}^{n-1}$. When $\mathbf{q} \neq \mathbf{1}$, $Q_n = (\mathbf{1} - \mathbf{q}^n)/(\mathbf{1} - \mathbf{q})$; when $\mathbf{q} = 1$ this is the sequence $\mathbf{1}$, $\mathbf{2}$, $\mathbf{3}$, $\mathbf{4}$, \ldots In this paper, values of $\mathbf{C}(\mathbf{m}, \mathbf{n})$ which are determined by a Gaussian sequence will be denoted either by $Q(\mathbf{m}, \mathbf{n})$ or by $Q_q(\mathbf{m}, \mathbf{n})$ to specify the value of \mathbf{q} .

A <u>regularly divisible sequence</u> is a sequence $\{C_n\}$ such that $gcd(C_m, C_n) = C_{gcd(m,n)}$ for all m, n > 0. All U-sequences with gcd(a, b) = 1 are regularly divisible [2, p 132], and thus all Gaussian sequences are also regularly divisible.

In addition, there are some well known facts about U-sequences which will be made use of in this paper. Some of these are listed here:

$$\begin{array}{ll} U_{m+n} = U_{m+1}U_n + b \ U_m U_{n-1} & (\text{Fact 1}) \\ U(m, \ n) = U_{m+1}U(m, \ n-1) + b \ U_{n-1}U(m-1, \ n) & (\text{Fact 2}) \\ U(m, \ 0) = 1 & (\text{Fact 3}) \\ U(m, \ 1) = U_{m+1} & (\text{Fact 4}) \\ U(m, \ n) = U(n, \ m) & (\text{Fact 5}) \end{array}$$

It is now possible to begin proving facts about generalized arithmetical triangles and the sequences used to form them.

Lemma 1: If p is a prime and **p|b** for a U-sequence, then $U_n \equiv a^n$ -'(mod p) for all $n \in \mathbb{N}$ where a and b are as defined before.

Proof: This theorem can **easily** be proven by induction using the basic recurrence in the inductive step and the relationships $U_1 = 1$ and $U_2 = a$ as the base cases.

Theorem 1: If p is a prime, then $p \mid U(m, n)$ for all m, $n \in \mathbb{N}$ iff $p \mid a$ and $p \mid b$. **Proof:** First it will be shown that $p \mid a$ and $p \mid b = p \mid U(m, n)$ for all $m, n \in \mathbb{N}$. Since $p \mid b$ we know from lemma 1 that $U_n = a^n$ (mod p) which means that for m, $n \in \mathbb{N}$

$$U(\mathbf{m}, \mathbf{n}) = U_{\mathbf{m}+1}U(\mathbf{m}, \mathbf{n}-1) + b U_{\mathbf{n}-1}U(\mathbf{m}-1, \mathbf{n})$$
(by fact 2)

$$\equiv \mathbf{a}^{\mathbf{m}}U(\mathbf{m}, \mathbf{n}-1) + b \mathbf{a}^{\mathbf{n}-2}U(\mathbf{m}-1, \mathbf{n})(\mathbf{mod} \mathbf{p}).$$

Now since $\mathbf{p}|\mathbf{a}$ and $\mathbf{p}|\mathbf{b}$ it follows that \mathbf{p} divides each of these terms in the sum and hence $\mathbf{p} \mid \mathbf{U}(\mathbf{m}, \mathbf{n})$ for all $\mathbf{m}, \mathbf{n} \in \mathbb{N}$. Next it **will** be shown that $\mathbf{p} \mid \mathbf{U}(\mathbf{m}, \mathbf{n})$ for all

1) for all $m \in \mathbb{N}$. Therefore $p[U_{m+1}(by \text{ fact 4}) \text{ for all } m \in \mathbb{N}$. Thus $p[U_2 \text{ or because }]$ $U_3 = a$. Also plU₃, or because $U_3 = a^2 + b$, pl($a^2 + b$) and since p also divides a we conclude that **p|b**. Hence **p|a** and **p|b**.

Theorem 2: If p is a prime for which p|b and p/a, then p / U(m, n) for all m, n 6 $\{0, 1, 2, \ldots\}$. Furthermore, if p / $U(\mathbf{m}, n)$ for all m, $n \in \{0, 1, 2, \ldots\}$, then P/a.

Proof: Begin by assuming that **p|b** and p / a. Then because **p|b**, it follows from lemma 1 that $U_n = \mathbf{a}^{n-1} \pmod{p}$ for all $n \in \mathbb{N}$.

Now we will assume that $p \mid U(m, n)$ for some $m, n \in \mathbb{N}$ and arrive at a contradiction. If n = 0 or 1 there is a contradiction since $\mathbf{U}(\mathbf{m}, 0) = 1$ and $\mathbf{U}(\mathbf{m}, 1)$ $= \mathbf{U}_{\mathbf{n}+1} = \mathbf{a}^{\mathbf{m}} \pmod{\mathbf{p}}$. If $\mathbf{n} \ge 2$, then

$$U(m, n) = U_{m+1}U(m, n-1) + b U_{n-1}U(m-1, n)$$

$$\equiv a^{m}U(m, n-1) + b a^{n-2}U(m-1, n) \pmod{p}.$$

Now since p | U(m, n) and p | b aⁿ⁻²U(m - 1, n) (because p | b) we can conclude that $p \mid a^m U(m, n-1)$. However, since $p \nmid a$ we can further conclude that $p \mid U(m, n-1)$. n - 1). Now if n - 1 is equal to 1 there is a **contradiction** as before. **Otherwise** we can use the same line of reasoning to see that $p \mid U(m, \mathbf{n} \cdot 2)$. By continuing this method we eventually have that p | U(m, 1) which is a contradiction. Thus we conclude that p / U(m, n) for all m, $n \in \mathbb{N}$.

For the second part of the proof begin by assuming that p / U(m, n) for all m, n \in . Now since $U(1, 1) = U_2$ we know $p \not\mid U_2$, and because $U_2 = a$ we can conclude that p / a.

Theorem 3: If p is a prime and $q = 0 \pmod{p}$, then $O(m, n) = 1 \pmod{p}$ for all m, $\mathbf{n} \in \{0, 1, 2, \ldots\}.$

Proof: Begin by assuming that $q = 0 \pmod{p}$. Now, recall that a Gaussian sequence is a U-sequence with a = q + 1 and b = q; it is clear that $a = 1 \pmod{p}$ and $b = 0 \pmod{p}$. The theorem will be proven by fixing m in $\{1, 2, 3, ...\}$ and using induction on n.

Base case: $\mathbf{Q}(\mathbf{m}, 0) = 1 = \mathbf{1} \pmod{p}$

Inductive step: Assume the lemma to be true for all $\mathbf{Q}(\mathbf{m}, \mathbf{k})$ such that $\mathbf{k} < \mathbf{n}$.

 $Q(m, n) = Q_{m+1}Q(m, n-1) + b Q_{m-1}Q(m-1, n)$ (by fact 2) $= a^{m}Q(m, n - 1) + b Q_{n-1}Q(m - 1, n) \pmod{p}$ (from lemma 1) $\equiv a^m O(m, n \cdot 1) \pmod{p}$ $(b \equiv 0 \pmod{p})$ (since we assumed the theorem true for $k \le n$) $\equiv a^{m} \pmod{p}$ (since $a = q + 1 = 1 \pmod{p}$) $\equiv 1 \pmod{p}$

Conclusion: By induction the theorem is true for all values of n which are whole numbers. Furthermore, since the value of m can be any arbitrarily chosen whole number, we conclude that the theorem is true for all m, $n \in \{0, 1, 2, ...\}$

Theorem 4: If p is a prime and $r \equiv s \pmod{p}$, then $Q_r(m, n) \equiv Q_s(m, n) \pmod{p}$ for all $m, n \in \{0, 1, 2, ...\}$.

Proof: This theorem will be proven by double induction on m and n.

We will first show that the theorem holds form = 0 and $n \in \{0, 1, 2, ...\}$. Clearly this is true since $Q_{\bullet}(0, n) = 1$ and $Q_{\bullet}(0, n) = 1$ by fact 3, and hence $Q_{\bullet}(0, n) = 1$ $O_{\epsilon}(0, n) \pmod{p}$.

Next we will show that $Q_r(m, n) \equiv Q(m, n) \pmod{p}$ for all $n \in \{0, 1, 2, ...\}$ implies that $Q_n(m+1, n) = Q_n(m+1, n) \pmod{p}$ for all $n \in \{0, 1, 2, \dots\}$. To do this we will perform induction on n while fixing m.

Base cases: Since

$$Q_r(m+1, 0) = 1$$
 and $Q_s(m+1), 0) = 1$ it follows that $Q_r(m+1, 0) \equiv Q_s(m+1, 0) \pmod{p}$ for any m .

Also.

382

$$Q_r(m+1, 1) = 1 + r + r^2 + \dots + r^{m+1}$$
 (by fact 4 and Q -seq. definition)
 $1 + s + s^2 + \dots + s^{m+1} \pmod{p}$
 $= Q_s(m+1, 1) \pmod{p}$;

it follows that $Q_s(m+1, 1) \equiv Q_s(m+1, 1) \pmod{p}$ for any m.

Inductive step: Assume that $Q_m + 1$, $n = Q_m + 1$, $n \pmod{p}$ for all $k \le n$ and for somene $\{1, 2, 3, \ldots\}$. Then

$$Q_r(m+1, n+1)$$

=
$$Q_r(m + 1, 1) Q_r(m + 1, n) - rQ_r(n - 1, 1) Q_r(m, n + 1) \pmod{p}$$

(from facts 2 and 4 because b = $-q = -r$)

$$\equiv Q_s(m+1,\,1)\;Q_r(m+1,\,n) - r\;Q_s(n-1,\,1)\;Q_r(m,\,n+1) (mod\;p)$$

(from the 2nd base case)

$$= Q_s(m+1, 1) Q_s(m+1, n) \cdot r Q_s(m-1, 1) Q_s(m, n+1) \pmod{p}$$

(from the assumptions in the

inductive step and previous to the induction on n)

383

$$\label{eq:continuous_problem} \begin{split} & \equiv Q(m + 1, \, 1) \; \boldsymbol{Q_s(m + 1, \, n) \cdot s} \; \boldsymbol{Q_s(n \cdot 1, \, 1)} \; \boldsymbol{Q_s(m, \, n + 1) (mod \; p)} \\ & \qquad \qquad (because \; \boldsymbol{r} \; \equiv \; \boldsymbol{s(mod \; p)}) \end{split}$$

 $\equiv \mathbf{Q}_{\mathbf{r}}(\mathbf{m}+1,\mathbf{n}+1)\pmod{p}.$

By induction we have that $Q_r(m, n) \equiv Q_s(m, n) \pmod{p}$ for all $n \in \{0, 1, 2, ...\}$ implies that $Q_r(m+1, n) \equiv Q_s(m+1, n) \pmod{p}$ for all $n \in \{0, 1, 2, ...\}$. From the previous statement and the relationship $Q_r(0, n) \equiv Q_s(0, n) \pmod{p}$ for all $n \in \{0, 1, 2, ...\}$, we use the principle of mathematical induction to conclude that if $r \equiv s \pmod{p}$, then $Q_r(m, n) \equiv Q_s(m, n)$ for all $m, n \in \{0, 1, 2, ...\}$.

Theorem 5: If p is a prime and $r \neq s \pmod{p}$, then there exist m, $n \in \{0, 1, 2, ...\}$ such that $Q_n(m, n) \neq Q_n(m, n)$.

Proof: Look at $\mathbf{m} = 1$ and $\mathbf{n} = 1$. Then $\mathbf{Q_r}(\mathbf{l}, 1) = 1 + \mathbf{r}$ and $\mathbf{Q}(1, 1) = 1 + \mathbf{s}$. Since $\mathbf{r} \neq \mathbf{s} \pmod{p}$ it follows that $1 + \mathbf{r} \neq 1 + \mathbf{s} \pmod{p}$ and therefore $\mathbf{Q_r}(1, 1) \neq \mathbf{Q_s}(1, 1)$.

Based on these theorems it is now possible to make some statements concerning the generalized arithmetical triangles generated by using a Gaussian sequence. When looking at one of these mangles modulo a prime p one knows that despite the infinite number of possible choices for q, by Theorem 4 we are assured that there will be only p different possible forms for these triangles to have. These correspond to the residues of q modulo p, which have values of $0, 1, 2, \ldots, p \cdot 1$. **Furthermore** by Theorem 5 we know that for a given prime p these different forms of the triangles will be unique. It is also clear from Theorem 3 that all the triangles for which q is congruent to 0 modulo p will have every element replaced by a black square when looked at modulo p, and because q = 1 corresponds to Pascal's Triangle we know, again from Theorem 4, that all triangles for which q is congruent to 1 modulo p will be identical to Pascal's Triangle modulo p. These results are displayed in the table shown in Figure 1. One should also note that Malta. Sved has published results on Gaussian coefficient residues modulo a prime [3]. When looking at the pictures generated by these triangles modulo a prime it is natural to wonder what the fractal dimension of these objects is. In order to approach this question it will be necessary to use the following definitions.

<u>Definition</u>: The <u>rank of **apparition**</u> (or sometimes <u>rank</u>) of m in a sequence $\{C_n\}$ is denoted by r(m) and has the following value

 $r(m) = \infty$ if m divides no elements in $\{C_n\}$ or $r(m) = \min\{k: m \mid C_k\}$ otherwise.

<u>Definition:</u> A prime p is said to be <u>ideal</u> for a sequence $\{C_n\}$ if $\{C_n\}$ is regularly divisible and there is a number s(p) such that the sequence of positive integers $b_1(p) = r(p)$, $b_2(p) = r(p^2)/r(p)$, $b_3(p) = r(p^3)/r(p^2)$, . . . (which either terminates with $b_k(p) = \infty$ for some k or continues indefinitely) is equal to the following:

$$b_k(p) = \begin{cases} 1, & \text{if } 1 < k \le s(p) \\ p, & \text{if } k > s(p) \end{cases}$$

<u>Definition</u>; In this paper a prime p will be said to be <u>quasi-ideal</u> for a sequence $\{C_n\}$ if $\{C_n\}$ is regularly divisible and there is a number s(p) such that $b_k(p) = p$, for all k > s(p).

Note that all primes are **quasi-ideal** for a Gaussian sequence. We can now state a theorem **proven** by Knuth and **Wilt** [4, p. **215**].

Theorem (Knuth and Wilf): Let p be an ideal prime for a sequence $\{C_n\}$. Then the exponent of the highest power of p that divides C(m, n) is equal to the number of carries that occur to the left of the radix point when the numbers m/r(p) and n/r(p) are added in **p-ary** notation, plus an extra s(p) if a carry occurs across the radix point itself.

According to Knuth and **Wilt** a similar result holds when p is not an ideal prime, but we must use a mixed-radix number system in the addition.

Corollary: Given a regularly divisible sequence $\{C_n\}$ and a prime p, it follows that p | C(m,n) iff there are carries when m and n are added in the mixed-radix system

$$m = x_n B_n + x_{n-1} B_{n-1} + \dots + x_1 B_1 + x_0$$

$$n = y_n B_n + y_{n-1} B_{n-1} + \dots + y_1 B_1 + y_0 \qquad 0 \le x_k, y_k \le b_{k+1}$$

where $B_i = b_i \cdot b_{i-1} \cdot \ldots \cdot b_1$ and $b_1(p) = r(p)$, $b_2(p) = r(p^2)/r(p)$, $b_3(p) = r(p^3)/r(p^2)$ Using this corollary the following theorem can now be proven.

Theorem 6: Let D_0 be the $B_1 \times B_1$ matrix

386

Note that this matrix does **not** follow the usual matrix indexing with (0, 0) at the **upper** left. Instead it follows the "Cartesian" pattern with (0, 0) at the bottom left. Also let $\mathbf{D}_{\mathbf{n}}$ be generated by $\mathbf{D}_{\mathbf{n-1}}$ in the following way:

$$D_n = \begin{pmatrix} D_{n\text{-}1} & 0 & 0 & 0 & \dots & 0 \\ D_{n\text{-}1} & D_{n\text{-}1} & 0 & 0 & & \dots \\ D_{n\text{-}1} & D_{n\text{-}1} & D_{n\text{-}1} & 0 & & \dots \\ & & & & & & \\ \vdots & & & & & \\ D_{n\text{-}1} & & \dots & & & D_{n\text{-}1} & D_{n\text{-}1} & 0 \\ D_{n\text{-}1} & & \dots & & & D_{n\text{-}1} & D_{n\text{-}1} & D_{n\text{-}1} \end{pmatrix} \quad \text{where D_n is a square matrix comprised of $b_{n+1} \times b_{n+1}$ submatrices.}$$

Then for any whole number **n**, when the entries of a generalized arithmetical triangle generated by a regularly divisible sequence are written as

D_n has a 1 corresponding to those elements which are not congruent to 0 modulo p and a 0 corresponding to those elements which are congruent to 0 modulo p, for any prime p.

Proof: This theorem can be proven by induction. It will be similar in structure to that of a less general theorem proven by A. Jaeger and K. Saldanha in an unpublished paper [5].

Base case: The proof for \mathbf{D}_0 is trivial since by the definition of \mathbf{D}_0 the theorem is true.

Inductive step: Assume the theorem true for \mathbf{D}_{n-1} . Recall the definition of \mathbf{D}_n and

consider the (i, i)th element from the bottom left (i.e., starting at the bottom left coiner, count i elements (not submatrices) over and j elements up). We can write i andi as

$$i = x_n B_n + x_{n-1} B_{n-1} + \dots + x_1 B_1 + x_0$$

$$j = y_n B_n + y_{n-1} B_{n-1} + \dots + y_1 B_1 + y_0$$

$$0 \le x_k, y_k \le b_{k+1}$$

so that the x_k 's are the digits of i and the y_k 's are the digits of j in a mixed radix system. Now the values of these digits tell which submatrices the (i, j)th element from the bottom belongs to. For instance, this element belongs to the (x_n, y_n) th submatrix of \mathbf{D}_n , the $(\mathbf{x}_{n-1}, \mathbf{y}_{n-1})$ th submatrix of \mathbf{D}_{n-1} , etc.

It is also clear that this element corresponds to C(i, i) = C(i, j) in the generalized arithmetical triangle. We shall look at the following **two** cases:

Case 1: If $x_n + y_n \ge b_n$, then we know that the elements is in one of the **submatrices** above the diagonal in the D_n matrix. We also know that i + j must yield at least one cany in mixed radix addition (since $x_n + y_n \ge b_n$). Therefore, by the corollary to **Knuth** and **Wilf's** theorem, C(i, j) is divisible by p. Hence C(i, j)corresponds to a 0 in the matrix $\mathbf{D}_{\mathbf{n}}$ and we can conclude that every element above the diagonal corresponds to 0.

Case 2: If $x_n + y_n < b_n$, then the (i, j)th element from the bottom is on or below the diagonal **submatrices** of D_n . Now consider i' and j' where

$$\begin{split} i' &= x_{n-1}B_{n-1} + y_{n-2}B_{n-2} + \ldots + x_1B_1 + x_0 \\ j' &= y_{n-1}B_{n-1} + y_{n-2}B_{n-2} + \ldots + y_1B_1 + y_0. \end{split}$$

Notice that $\mathbf{i} = \mathbf{x}_n \mathbf{B}_n + \mathbf{i}'$ and $\mathbf{j} = \mathbf{y}_n \mathbf{B}_n + \mathbf{j}'$. As **mentionsed** earlier $(\mathbf{x}_n, \mathbf{y}_n)$ determines the location of a D_{n-1} submatrix and (i', j') determines the location of an element within this submatrix.

Now suppose that $\mathbf{i'} + \mathbf{j'}$ produces no cany. Since $x_n + y_n < \mathbf{b_n}$ there is no **cany** out of the B_1 position so we know i + j yields no cany. On the other hand, if $\mathbf{i'} + \mathbf{j'}$ produces a cany, then $\mathbf{i} + \mathbf{j}$ yields at least one cany. Therefore $\mathbf{i} + \mathbf{j}$ and i'+j' when added in this mixed radix system either both yield no carries or both yield at least one cany. Thus $\chi_{D}(i, j) = \chi_{D}(i', j')$ and the elements below die diagonal in the matrix D_n (and which are constructed by the submatrices D_{n-1}) correspond to the elements of the generalized arithmetical triangle.

Conclusion: By induction the matrix $\mathbf{D}_{\mathbf{n}}$ does in fact correspond 0's to those elements in the generalized arithmetical triangle congruent to **0(mod** p) and 1's to all other elements.

Theorem 7: Let N_n be the number of nonzero elements in the matrix D_n and let

D_n correspond to a regularly divisible sequence with a quasi-ideal prime p. Then, for n > s(p), $N_n = (p(p+1)/2)^{n-s(p)+1} \cdot \beta$ where $\beta = (b_{s(p)} (b_{s(p)} + 1)/2) \cdot (b_{s(p)+1} + 1)/2) \cdot \dots \cdot (b_1(b_1 + 1)/2)$ and s(p) is the same as in the definition of a quasi-ideal prime.

Proof: From the definition of D_0 and Knuth and Wilf's theorem we know that only the elements on or below the diagonal of D_0 are **nonzero**, so

$$N_0 = (1 + 2 + ... + (b_1 - 1) + b_1) = b_1(b_1 + 1)/2.$$

Now from Theorem 6 we **know** that D_n contains $(1+2+\ldots+b_{n+1})$ copies of D_{n-1} . Therefore

$$\begin{array}{lll} N_n=(1+2+...+b_{n+1}) \cdot N_{n-1}=(b_{n+1}(b_{n+1}+1)/2) \cdot N_{n-1} \text{ and } \\ N_1=(b_2(b_2+1)/2) \cdot N_0=(b_2(b_2+1)/2) \cdot (b_1(b_1+1)/2), \\ N_2=(b_3(b_3+1)/2) \cdot N_1=(b_3(b_3+1)/2) \cdot (b_2(b_2+1)/2) \cdot (b_1(b_1+1)/2), \\ \text{and by induction} \end{array}$$

 $N_n = (b_{n+1}(b_{n+1} + 1)/2) \dots (b_2(b_2 + 1)/2) \cdot (b_1(b_1 + 1)/2),$ and for n > s(p)

$$\begin{split} N_n = & (p(p+1)/2) \cdot \ldots \cdot (p(p+1)/2) \cdot (b_{s(p)}(b_{s(p)}+1)/2 \cdot \ldots \cdot \\ & (b_2(b_2+1)/2) \cdot (b_1(b_1+1)/2) \end{split}$$

so
$$N_n = (p(p+1)/2)^{n-s(p)+1} \cdot \beta$$
.

Now **fractal** dimension, **as** calculated by Mandelbrot, requires a geometric construction to be carried out ad **infinitum** while **scaling** it to fit, say, the unit square. The fractal, or self-similarity, dimension is then given by dim = log **N/log(1/R)** where N equals the number of **self-similar** pieces **in** the limit **structure** and R equals the **linear** scaling ratio required **from** one stage to the next in order to fit the structure to the unit square. For our purposes we will use an equivalent measure of fractal dimension called the Entropy **Index** [6, p. **184]** or **Mass/Cluster** Dimension [7, **p.32]** which is defined **as**

$$Dim = \lim_{n \to \infty} \frac{\log N_n}{\log S}$$

where N_n is as described in Theorem 7, S=1/r, and r is the linear **scaling** ratio needed to shrink the entire figure to the **unit** square.

Theorem 8: The Entropy Index or **Mass/Cluster** Dimension for a generalized arithmetical **triangle** which is looked at modulo p, where p is a quasi-ideal prime,

is given by
$$Dim = log(p(p+1)/2)$$
, $log p$

Proof: The value for N_n is given by Theorem 7, and from Theorem 6 we know that D_n is a $B_{n+1} \times B_{n+1}$ matrix so $\mathbf{r} = 1/B_{n+1}$ and $S = B_{n+1}$. Therefore

$$\begin{split} & \underset{n \to \infty}{\text{Dim}} = \underset{n \to \infty}{\text{lim}} \quad \frac{\log(p(p+1)/2)^{n-s(p)+1}\beta}{\log B_{n+1}} \qquad \qquad \text{(from Theorem 7)} \\ & = \underset{n \to \infty}{\text{lim}} \quad \frac{\log((p(p+1)/2)^{n-s(p)+1}\beta}{\log(p^{n-s(p)+1}B_{s(p)})} \qquad \qquad \text{(by the definition of } B_{n+1}) \\ & = \underset{n \to \infty}{\text{lim}} \quad \frac{(n-s(p)+1)\log(p(p+1)/2) + \log\beta}{(n-s(p)+1)\log p + \log B_{s(p)}} \\ & = \underset{n \to \infty}{\text{log}((p(p+1)/2))} \\ & = \underset{n \to \infty}{\text{log}((p(p+1)/2)} \\ & = \underset{n \to \infty}{\text{log}((p(p$$

It is interesting to note that the dimension **found** in Theorem 8 is the same as that obtained for Pascal's triangle modulo a prime [1]. The formula also gives the fractal **dimension** of the **triangles generated** by a Gaussian **Sequence**.

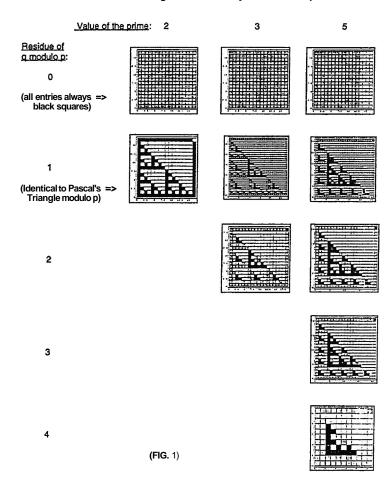
References

- S. Wolfram, "Geometry of Binomial Coefficients," <u>American Mathematical</u> <u>Monthly</u>, 1984, p. 566-571.
- P. Horak and L. Skula, "A Characterization of the Second-Order Strong Divisibility Sequences," <u>The Fibonacci Quarterly</u>, May 1985, p. 126-132.
- **3.** M.Sved, "Divisibility-With Visibility," <u>Mathematical Intelligencer</u>, Vol. 10, No. 2 (1988), p. 54-56.
- D. Knuth and H. Wilf, "The Power of a Prime that Divides a Generalized Binomial Coefficient," *Journal fur die reine und angewande Mathematik*, 1989, p. 212-219.
- A. Jaeger and K. Saldanha, "Self-Similarity and Fractal Dimension of the Fibonomial Triangle, "Pi Mu Epsilon conference, St. John's University, Collegeville, MN, 4 April 1992.

- 6. G. Edgar, *Measure*, *Topology*. *and Fractal Geometry*, Springer-Verlag, New York, 1990.
- 7. J. Feder, *Fractals*, Plenum Press, New York, 1988.

This paper was prepared under the supervision and guidance of Dr. John **Holte** while Mark Tomforde was a **sophomore** at **Gustavus** Adolphus College.

Generalized Arithmetical Triangles Generated by Gaussian Sequences



Approximating $e^{n}/2$ with nearly n + 1/3 Terms

J.S. Frame and C.L. Frenzen

Michigan State University and Naval Postgraduate School.

Let
$$S_n = \sum_{k=0}^{n-1} n^k / k!$$
 denote the sum of the first n terms of the power

series for e^n , whose largest terms are the n^{th} and $(n+1)^{th}$, both equal to $n^n/n!$ and denoted by M. It was shown by Frenzen [1] that S_n is less than but near to $e^n/2$. Question! How much of the next term M needs to be added to S_n to get $e^n/2$? With two different methods we obtain:

 $e^n/2 = S_n + M(1/3 + 4/(135n + f(n)))$, with f(n) near 90/(7 - 16/(3n + 13581495))To show this by successive curve fittings we require successive limits as

 $\mathbf{n} \to \infty$. We first evaluate for $n = 2^m$, $0 \le m \le 9$, to 20 or 25 decimals the values of n-1 k

of
$$p_n = e^n/2M = (e/n)^n n!/2$$
, $s_n = S_n/M + 1/3 = 4/3 + \sum_{k=1}^{n-1} \prod_{j=1}^k (1-j/n)$.

Stirling's formula with remainder approximates \boldsymbol{p}_n by

$$(\pi n/2)^{1/2} \exp(1/12n - 1/360n^3 + ...)$$

We notice that $d_n = \boldsymbol{p_n} - \boldsymbol{s_n}$ decreases and that nd,, appears to have a limit for large n. For example,

 $d_{128} = 0.00023 \ 13083 \ 53860 \ 07169 \ 8269, \ 128d_{128} = 0.02960 \ 747 \dots$

 $d_{256} = 0.00011\ 56975\ 70464\ 71564\ 4961,\ 256d_{256} = 0.02961\ 858\dots$

 $d_{512} = 0.00005 78595 91786 55076 2801, 512d_{512} = 0.02962 411 ...$

Since these differences of nd_n values decrease by about $\frac{1}{2}$ we add the last difference 0.00000 553 to $512d_{512}$ to get 0.02962964, which is near 41135 = 0.0296296296.. This suggests evaluating the function $4/nd_n - 135 = f(n)/n$ for 10 values of $n = 2^m$ as follows.

n	4/nd _n • 135	n	$4/nd_{n} - 135$	weights
1	19.99321 75390 61752	32	0.41130 36841 90604	1/315
2	8.56789 21217 29290	64	0.20327 85644 92804	-2121
4	3.793478583266614	128	0.10104 36004 59236	8/9
8	1.75661 91688 24471	256	0.05037 25983 74131	-64121
16	0.841428628127822	512	0.02514 89644 27800	1 024/3 15

We fit a quartic polynomial in 1/n, namely $\mathbf{a}(\mathbf{n}) = \mathbf{a}_n + \mathbf{a}_1/\mathbf{n} + \mathbf{a}_2/\mathbf{n}^2 + \mathbf{a}_3/\mathbf{n}^3 + \mathbf{a}_4/\mathbf{n}^4$ to the values above for arguments n, $\mathbf{n}/2$, $\mathbf{n}/4$, $\mathbf{n}/8$, $\mathbf{n}/16$ with $\mathbf{n} = 512$, and sum these values multiplied by the weights in the last column above to obtain a value \mathbf{a}_n which estimates the limit for $\mathbf{n} -> \infty$ with an error of order \mathbf{n}^{-5} . The weights shown were found in the first row of the inverse of the 5x5 Vandermonde matrix with i, j-entries $2^{(i-1)(j-1)}$. We get $\mathbf{a}_n = 4.1 \times 10^{-11}$, indicating that the limit of $4/\mathbf{n}\mathbf{d}_n$ is 135 to at least 12 significant digits.

Next we use the same technique to obtain a limit for $\mathbf{f(n)} = 4/d_n \cdot 135n$. Since this limit is close to 12.857 which resembles 90/7, we examine $7\mathbf{f(n)} \cdot 90$ instead, with values 2.132025259695, 1.068796892776, 0.535066011476, 0.267696286445, 0.133888509235. Applying the same weights we get 5.0 x 10^{-10} for our limit estimate $\mathbf{a_{rr}}$ near 512^4 . The limit of $\mathbf{f(n)}$ appears to be 90/7. We compute five values of $\mathbf{n(f(n)} \cdot 90/7)$ and apply the same weights to get an estimated limit $\mathbf{a_{rr}} = 9.79591836678 = 9 + 1/(1 + 1/3.899999986)$, close to 9 + 1/(4.9/3.9) = 480149 = (90/7)(16/21). Next assume $90\mathbf{n/f(n)} = 7\mathbf{n} \cdot 16/(3 + \mathbf{r(n)})$.

- (//	•		
n	n(f(n) - 90/7)	3 + r(n)	nr(n)
32	9.74640 1 1871 77	3.08667 02527 07	2.77344 77666
64	9.77185 73053 81	3.043101129755	2.75847 23043
128	9.78406 42099 47	3.02149 18770 27	2.75096 02594
256	9.79003 56185 60	3.01073 12438 06	2.7471984147
512	9.79298 81040 46	3.00536 19473 69	2.74531 70528
\mathbf{a}_{0}	9.79591 83667 82	3.00000 00033	2.74343 59807

This estimate \mathbf{a}_n indicates that $\mathbf{r}(\infty) = 0$ and $\mathbf{nr}(\mathbf{n})$ approaches a limit near 2.4 + .34343... which is about 12/5 + 34/99 = 1358/495. This gives the 4 digit approximation 2.718 for n = 1 which is not noteworthy but could be changed to e = 2.7182816 by replacing 495 by 495 - 96/11. However, for $n \ge 64$ the approximation for $\mathbf{f}(\mathbf{n})$ in the fast paragraph yields 12 significant digits for \mathbf{p}_n and for $n \ge 512$ yields 18 significant digits,

A second way to obtain f(n) without some good guessing is to express factorials as integrals, and to make suitable changes of variable such as expressing z as a power series [2] in w if $z - \ln(1+z) = w^2/2$. We shall express d_n as a power series in 1/n which yields the same continued fraction obtained above. First we sum the first n + 1 terms of the $e^n n!/n^n$ series getting

$$s_n + 2/3 = \sum_{k=0}^{n} n^k n! / n^n k! = \sum_{k=0}^{n} {n \choose n-k} (n-k)! / n^{n-k}$$

 $= \int_{0}^{\infty} (1 + t/n)^{n} e^{-t} dt = n \int_{0}^{\infty} e^{-n(z - \ln(1 + z))} dz$

where t = nz. Then set $w^2/2 = z - \ln(1 + z) = (z^2/2)(1 - 2z/3 + 2z^2/4 - 2z^3/5 + \cdots)$ and get wdw = $(1 \cdot 1/(1 + z))dz = zdz/(1 + z)$ or 1 + z = (z/w)(dz/dw). We assume a series expansion

 $1 + z = 1 + w + a_1 w^2 + a_2 w^3 + ... = (1 + a_1 w + a_2 w^2 + ...)(1 + 2a_1 w + 3a_2 w^2 + ...)$ so that $a_1 = 1/3$ and $a_{n-1} = (n+2)(a_n + a_1 a_{n-1} + a_2 a_{n-2} + ... + a_{n-1} a_1 + a_n)/2$. To simplify the fractions in the recurrence relations for a_n we set $b_n = 6^n a_n$ and get

$$b_1 = 2, b_2 = 1, b_3 = -4/5, b_n = (2 - 2n)b_{n-1}/(n+2) - \sum_{k=2}^{n-2} b_k b_{n-k}/2, n \ge 4.$$

Herce, $b_4 = 3/10$, $b_5 = 16/35$, $b_6 = -3(139)/350$, $b_7 = 48/35$, $b_8 = -57111400$, $b_9 = -64(281)/9625$. Thus we can compute $s_n + 2/3$ as an asymptotic series [3]

$$s_n + 2/3 = \int_0^\infty \exp(-nw^2/2)(dz/dw)ndw$$

$$= \int_0^\infty \exp(-nw^2/2)(1 + \sum_{k=1}^\infty (k+1)b_k(w/6)^k)ndw$$

Next we evaluate $2p_n = e^n n!/n^n = \int_0^\infty (t/n)^n e^{n-t} dt = \int_1^\infty (1+z)^n e^{-nz} n dz$ where

t = n(1 + z). Again we set $w^2/2 = z - \ln(1 + z)$, but now the lower limit is $-\infty$.

$$2p_{n} = \int_{-\infty}^{\infty} \exp(-nw^{2}/2)(dz/dw)ndw$$

$$= 2\int_{0}^{\infty} \exp(-nw^{2}/2)(1 + \sum_{k=1}^{\infty} (2k+1)b_{2k}(w/6)^{2k})ndw$$

since the odd powers of w drop out and the even powers double up on

integration. Thus
$$\mathbf{s_n} + 2/3 - \mathbf{p_n} = \int_0^\infty \exp(-\mathbf{n}\mathbf{w}^2/2) \left(\sum_{k=1}^\infty 2k \mathbf{b_{2k-1}} (\mathbf{w}/6)^{2k-1}\right) \mathbf{n} d\mathbf{w}$$

Now set $\mathbf{w}^2 = 2t/\mathbf{n}$ and $\mathbf{p}_n \cdot \mathbf{s}_n = \mathbf{d}_n$ to obtain

$$2/3 - d_n = \int_0^\infty e^{-t} \sum_{k=1}^\infty 2k b_{2k-1} (t/18n)^{k-1} dt/6$$
$$= \sum_{k=1}^\infty b_{2k-1} k!/3 (18n)^{k-1}$$

= $213 - 4/(135n) + (2/3)^3/(105 n^2) + (2/3)^4/(105n^3) - (2/3)^5(281/(51975n^4) + ...$ and so

$$d_p = (4/135n)(1 - (2/3n)/7 - (2/3n)^2/7 + (2/3n)^3281/3465 + ...)$$

We expand this in a continued fraction to simplify the coefficients. Set x = 2/(21 n).

$$d_n = (4/135n)/(1 + x + 8x^2 - 6344x^31495 + ...)$$

- $= 4/(135n + (90/7)/(1 8x + 56(679)x^2/495 + ...))$
- $= 4/(135n + 90/(7 16/3n + 16(1358)/495(9n^2) + ...))$
- = 4/(135n + 90/(7 16/(3n + 13581495 + ...)))

This continued fraction agrees with the one obtained by the first method, and shows that the previous limit guess 13581495 was correct. Actually, this guess helped to correct an error made in computing b₉ by the second method. The second method *makes* dear why the denominator of the kth of the successive limits 113, 413'5,9017, 1613, 1358/5(9)11 has prime factors only from the first k odd integers greater than 1. It *can* yield more terms if desired.

References

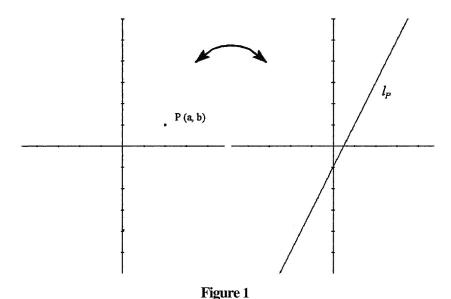
- 1. Frenzen, C.L., A New Elementary Proof of Stirling's Formula, Mathematics Magazine, Vol. 86, No. 1, February 1995, pp. 55-58.
- 2. Frame, J.S., *Power Series for Inverse Functions*, American Mathematical Monthly, Vol. 64, No. 4, April 1957, pp. 236-240.
- 3. Olver, **F.W.J.**, *Asymptotic* and *Special Functions*, Academic Press, 1974, pp. 85-88.

A Particular Polarity

John A. Frohliger Richard Tuggle (student) Jennifer Van Sistine (student)

INTRODUCTION

Start with the Euclidean plane, represented by the Cartesian coordinate system. There is a one-to-one correspondence between points (\mathbf{a},\mathbf{b}) in the Euclidean plane and **nonvertical** lines y = ax - b. (See Figure 1.) Let us refer to l_p as the line corresponding to point P and to X_l as the point corresponding to line l. This correspondence leads to some interesting results, pairing curves with curves, inflection points with cusps, and conic sections with conic sections.



Property 1: If P and Q are points with different first coordinates then l_P and l_Q intersect at a point whose first coordinate is the slope of \overrightarrow{PQ} and whose second coordinate is the negative of the y-intercept of \overrightarrow{PQ} .

Proof: Let P and Q have coordinates (a,b) and (c,d), respectively. The corresponding lines l_p and l_Q are described by the equations $y = ax \cdot b$ and $y = cx \cdot d$. (See Figure 2.) It can be easily shown that the intersection of these

y = cx - d. (See Figure 2.) It can be easily shown that the intersection of these lines is the point $\left(\frac{d-L}{c-a}, \frac{ad-bc}{c-a}\right)$. A (wick check reveals that \overrightarrow{PQ}

has slope $m = \frac{d - b}{c - a}$ and y-intercept (0, e) = $\left(0, \frac{bc - ad}{c - a}\right)$.

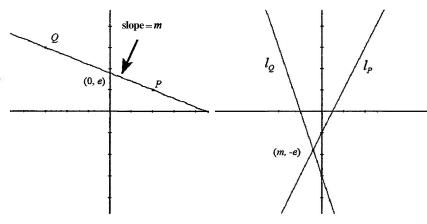


Figure 2

If points P and Q have coordinates (a,b) and (c,d), respectively, then the line \overrightarrow{PQ} can be parameterized as:

 $\begin{cases} x = at + c(1 - t) \\ y = bt + d(1 - t). \end{cases}$

Corresponding to the point with coordinates (at $+ c(1 \cdot t)$, bt $+ d(1 \cdot t)$) is the line $y = (at + c(1 \cdot t))x \cdot (bt + d(1 \cdot t))$. In particular, **if** M is the midpoint of \overline{PQ} , then the line l_M , given by the equation $y = \frac{a+c}{2}x \cdot \frac{b+d}{2}$ is the "midline" of l_P and l_Q . That is, l_M has the property that, for every value of x, the point on l_M with first coordinate x is midway between the corresponding points on l_P and l_Q . Furthermore, l_M is the only line with this property. This fact and Property 1 can be used to give a quick, though somewhat unusual, proof of a

common geometric property.

Proposition: The diagonals of a parallelogram bisect each other.

Proof: Let A, B, C, and D be vertices of a parallelogram, as shown in Figure 3. Let A, B, C, and D be vertices of a parallelogram, as shown in Figure 3. Let M be the midpoint of \overline{AC} . Since $\overline{AB} \parallel fie$, the intersection of l_A and l_B has the same first coordinate x_1 as the intersection of lines l_D and l_C . Similarly, the intersection of l_A and l_D has the same first coordinate x_2 as the intersection of lines l_B and l_C . Now l_M is midway between l_A and l_C in the sense described above. At x_1 and x_2 then, l_M is midway between l_B and l_D . Consequently, l_M is midway between l_B and l_D at every x; hence, we may conclude that M is the midpoint of \overline{BD} , and the property follows.

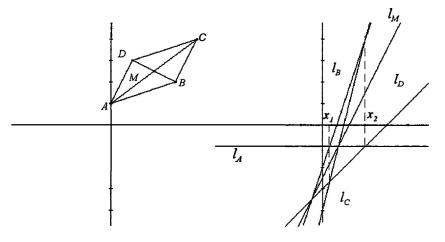


Figure 3

This correspondence between points and **nonvertical** lines has another important **property**.

Property 2: Let P be a point and l_P be its corresponding line. Then the set of lines corresponding for the points on l_P is the pencil of **nonvertical** lines through P. Proof: **(See** Figure 4.) Let P be the point (a, b). Then l_P has equation

y = ax - b. Now the line corresponding to a point R(t, at - b) on l_P has the **equation** y = tx - (at - b); consequently, this line passes through P. Similarly, it can be **shown** that every **nonvertical** line through P corresponds to a point on l_P .

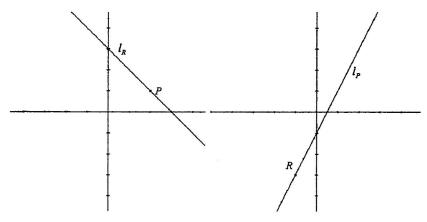
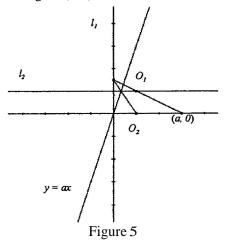


Figure 4

In projective geometry, a transformation such as ours, which takes points to lines and lines to points, is called a correlation if it preserves incidence. That is, if point P is on line I, then under a correlation the point corresponding to l would be on the line corresponding to P. We can extend our correlation to the extended Euclidean plane, which contains ideal as well as ordinary points and lines, by having the vertical line x = a correspond to the ideal point associated with the bundle of parallel lines with slope a and having the ideal line correspond to the ideal point associated with the bundle of vertical lines. With this new, expanded definition, the next property shows that our correlation is a special type of transformation called a polarity. Readers unfamiliar with projective geometry we wish to skip the property and its proof.

Property 3: This correlation is projective with period 2; hence, it is a polarity. **Proof:** To prove this, we need only show that the points on one line are

transformed into one pencil of lines in a projective fashion. It follows then that the points on every line are mapped to the corresponding pencil in a projective fashion. (See [1], page 57.) In our case, we will use the x-axis as the line and the lines through the origin as the corresponding pencil. Let l_1 and l_2 be the y-axis and the line y = 1, respectively, and let O_1 and O_2 , be the points (1,1) and (1,0). (See Figure 5.) One can easily see that, for $a \neq 0$, 1, a point (a, 0) is projected through O_1 to the point (0, a/(a - 1)) on l_1 and this point is projected through O_2 to the point (1/a, 1) on l_2 . Finally, the line through this point and the origin is the line $y = ax \cdot 0$, the image of (a, 0) under the correlation.



Using ideal points, one can easily see that this **projectivity** takes the point **(0,0)** to the x-axis and the point **(1,0)** to the line y = x.

It is **easy** to see that the correlation has period 2. It follows **from** Property 3 that, if point P is transformed into line l_P then l_P is transformed into P.

DUAL CURVES INDUCED BY THE POLARITY

Let I be an open interval on the real line and f(x) be a function on I whose second derivative is continuous with isolated zeros. Let C be the graph of f.

(See Figure 6.) At the point P on C with coordinates (t, $\mathbf{f(t)}$) the line 1 with equation $y = \mathbf{f'(t)} \mathbf{x} - (\mathbf{tf'(t)} - \mathbf{f(t)})$ is tangent to the graph. Under our correlation, 1 is related to a point X_i whose coordinates are (f'(t), tf'(t) - f(t)). Let C' be the set of all of these points X_i . That is, $\mathbf{C'}$ is the curve parameterized by the equations

 $\begin{cases} x = f'(t) \\ y = tf'(t) \cdot f(t). \end{cases}$

We will call C' the dual of C under this polarity. Notice that, at the point (x, y) = (f'(t), tf'(t) - f(t)), a tangent line 1' has slope

$$\frac{dy}{dx} - \frac{dy/dt}{dx/dt} - \frac{tf''(t) + f'(t) + f'(t)}{f''(t)} = t \text{ and equation } y = tx - St). \text{ (This }$$

also holds at those points where f''(t) = 0 since f'' is continuous with isolated zoos.) Under the correlation this X_l is the original point $P(t, \mathbf{f(t)})$ on C. Using the chain rule again, we see that if $\mathbf{f''(t)} \neq 0$ then, on C',

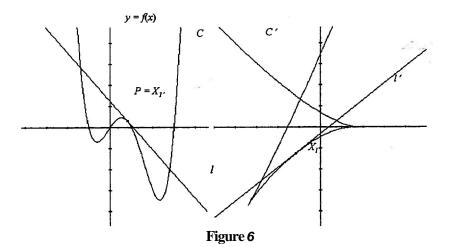
$$\frac{d^2y}{dx^2} = \frac{dy'/dt}{dx/dt} = \frac{dt/dt}{dx/dt} = \frac{1}{f''(t)} \text{ at } X_{I}.$$

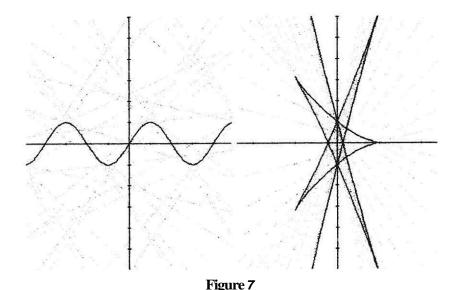
We could have started by assuming that C was a curve parameterized by a

function $\mathbf{g} \times \mathbf{h}$: $\mathbf{I} - \mathbb{R} \times \mathbb{R}$ for some open interval \mathbf{L} . We can compute $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$

in terms of the parameter. As long as we have die condition that, on C, $\frac{dy}{dx}$ is continuous and $\frac{d^2y}{dx^2}$ has isolated zeros and discontinuities, we will

achieve the same relationship **between** C and C' as the one described above. Therefore, it follows that C is also the dual of C' under the polarity.

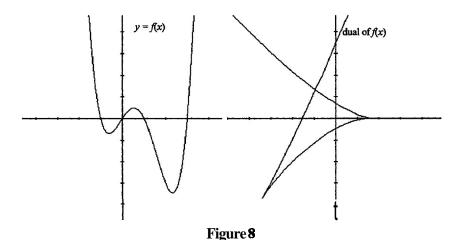




prove the following:

- If C is translated vertically a units, then C' is translated -a units vertically.
- 2. If C is translated horizontally b units, then C' is replaced by C' + l where l is given by y = bx. That is, every point (x, y) on C' is replaced by (x, y + bx). Conversely, if C is replaced by C + l, then C' is translated horizontally b units.
- 3. If C is reflected about the x-axis, C' is rotated π units about the origin.
- 4. **If C** is reflected about the y-axis, so is C'.

Figure 9 shows the effects of such translations and reflections on the example in Figure 8.



PROPERTIES OF THE **DUAL** CURVE

The dual of a curve can become very complicated. Figure 7, for example, shows the graphs of the sine function and its dual with some tangent lines. But what **information** does the dual of a curve C provide? For example, compare the graph of $\mathbf{f}(\mathbf{x}) = \mathbf{0.5}(\mathbf{x} + \mathbf{1})\mathbf{x}(\mathbf{x} - \mathbf{1})(\mathbf{x} - \mathbf{3})$ and its dual (Figure 8). First of all, the **y**-intercepts of C' correspond to the points where C has a horizontal tangent. The **x-intercepts** of C', **on** the other hand, correspond to points **on** C whose tangent lines pass through the origin. Furthermore, where $\mathbf{f}''(\mathbf{x}) \neq 0$, the concavity of C at a point has the same sign (positive **or** negative) as the concavity of **C'** at the corresponding point.

One of the striking features of the dual is the cusp. At this point the first coordinate f'(t) was changing **from** decreasing to increasing and the concavity $\frac{1}{f''(t)}$ changed signs. This means that cusps on the dual curve correspond to inflection points on the original. It is curious that an inflection point, which is often difficult to pinpoint with the naked eye, would correspond to something as pronounced as a cusp.

How are translations and reflections of C manifested in the dual? It is easy to

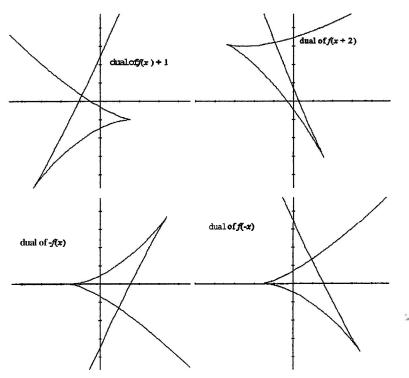


Figure 9

COMICS AND SELF-DUALITY

Since our correlation is a polarity, the dual of a conic is a conic [1]. The images of some basic conies are given in the following table. For the sake of completeness, ideal points and their images are included.

Equation for C	Equation for corresponding C'
$y = ax^2$	$y = \frac{x^2}{4a}$
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$a^2x^2 - y^2 = b^2$
$\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$	$a^2x^2 + y^2 = b^2$
$y = \frac{c}{x}$	$x = -\frac{y^2}{4c}$

Figure 10 shows four graphs, each one showing one of these basic conics and its dual. Every other conic in the plane results from one of these by a combination of reflections, translations, and "adding" lines. This is true since the equation of a conic section has the form $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$, which can be transformed into one of the forms in the table by the transformations x - x + d, y - y + e, and y - y + mx. Therefore, the correspondences listed in the table are **sufficient** to characterize the images of all conics.

Under a polarity a point is called **self-conjugate** if it lies on its corresponding line. Furthermore, the set of self-conjugate points forms a conic and their corresponding lines **are** the tangents to the conic. Under our correlation there is such a **self-dual** curve which the reader can easily verify is the graph of $y = \frac{1}{2}x^2$. This is the only curve in which every point corresponds to itself in its dual. However, there **are other** curves which are identical to their duals, though individual points do not map to themselves. These include the graphs of $y = \frac{x^2}{2}$ and $\frac{x^2}{a^2} \cdot \frac{y^2}{b^2} = 1$ when $b = a^2$

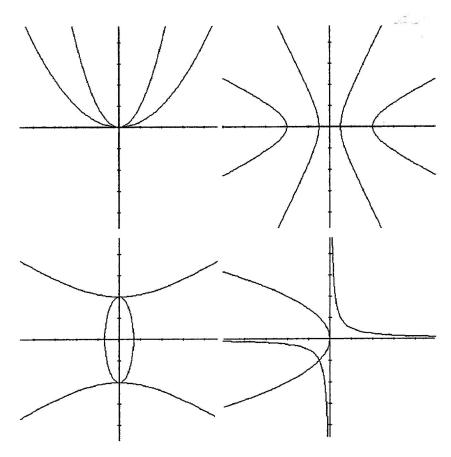


Figure 10

REFERENCE

 H. S. Coxeter, *Projective Geometry*, Blasidell Publishing Company, New York, 1964.

N. Schaumberger and M. Steiner Hofstra University

For any real number $r \neq 0$, the power mean of order r, \mathbf{M}_{r} is defined as

$$M_{r} = \left(\frac{a_{1}^{r} + a_{2}^{r} + \dots + a_{n}^{r}}{n}\right)^{\frac{1}{r}}$$

where a, > 0. One of the fundamental theorems involving **means** states that if $a > \beta$, then

(1)
$$M_{\alpha} = \left(\frac{a_1^{\alpha} + a_2^{\alpha} + \dots + a_n^{\alpha}}{n}\right)^{\frac{1}{\alpha}} \ge M_{\beta} = \left(\frac{a_1^{\beta} + a_2^{\beta} + \dots + a_n^{\beta}}{n}\right)^{\frac{1}{\beta}}$$

with equality iff $\mathbf{a}_1 = \mathbf{a}_2 = \dots = \mathbf{a}_n$.

In particular, it follows from (1) that the harmonic mean M_1 does not **exceed** the arithmetic mean M_1 which in turn does not exceed the quadratic mean M_2 . Other applications of (1) to problems in elementary mathematics can be found in [2].

The usual proof of (1) uses both the ordinary **AM-GM** inequality and the Bernoulli inequality and is not particularly simple. (See, for example, [1]).

The **weighted** AM-GM **inequality states** that **if** $\mathbf{x_1}$, $\mathbf{x_2}$,..., $\mathbf{x_n}$ are positive real numbers with $\sum_{1}^{n} \mathbf{x_i} = 1$, then for nonnegative real numbers $\mathbf{q_1}$, $\mathbf{q_2}$,..., $\mathbf{a_r}$ we have (2) $\mathbf{x_1}\mathbf{q_1} + \mathbf{x_2}\mathbf{q_2} + \cdots + \mathbf{x_n}\mathbf{q_n} \ge \mathbf{q_1} \mathbf{q_2}$

with equality iff $\mathbf{q}_1 = \mathbf{q}_2 = \cdots = \mathbf{a}_r$.

In this note we show that for a and β either both positive or both negative, (1) is an almost immediate consequence of (2). Start out with $\gamma > 6 > 0$, and $\mathbf{c_1}$, $\mathbf{c_2}$,..., $\mathbf{c_n} > 0$.

(3) Since
$$\frac{\mathbf{c}_1^{\delta}}{\sum_{1}^{n} \mathbf{c}_i^{\delta}} + \frac{\mathbf{c}_2^{\delta}}{\sum_{1}^{n} \mathbf{c}_i^{\delta}} + \dots + \frac{\mathbf{c}_n^{\delta}}{\sum_{1}^{n} \mathbf{c}_i^{\delta}} = 1$$

it follows from (2) that

$$\frac{\sum_{1}^{n} c_{i}^{\gamma}}{\sum_{1}^{n} c_{i}^{\delta}} = \frac{c_{1}^{\delta} c_{1}^{\gamma-\delta} + c_{2}^{\delta} c_{2}^{\gamma-\delta} + \cdots + c_{n}^{\delta} c_{n}^{\gamma-\delta}}{\sum_{1}^{n} c_{i}^{\delta}}$$

Hence

$$(4) \quad \left(\frac{\sum_{1}^{n} c_{i}^{\gamma}}{\sum_{1}^{n} c_{i}^{\delta}}\right)^{\frac{1}{\gamma-\delta}} \geq c_{1}^{\frac{c_{1}^{\delta}}{\sum_{1}^{n} c_{i}^{\delta}}} c_{2}^{\frac{c_{2}^{\delta}}{\sum_{1}^{n} c_{i}^{\delta}}} \cdots c_{n}^{\frac{c_{n}^{\delta}}{\sum_{1}^{n} c_{i}^{\delta}}}$$

SCHAUMBERGER, **STEINER**, POWER MEANS

with equality iff $c_1 = c_2 = \dots = c_n$.

Again using (2) with (3) gives

$$\frac{n}{\sum_{1}^{n} c_{i}^{\delta}} = \frac{c_{1}^{\delta} \cdot \left(\frac{1}{c_{1}^{\delta}}\right) + c_{2}^{\delta} \cdot \left(\frac{1}{c_{2}^{\delta}}\right) + \dots + c_{n}^{\delta} \cdot \left(\frac{1}{c_{n}^{\delta}}\right)}{\sum_{1}^{n} c_{i}^{\delta}}$$

$$\geq \left(\frac{1}{c_{1}^{\delta}}\right) \frac{\sum_{1}^{n} c_{i}^{\delta}}{\sum_{1}^{n} c_{i}^{\delta}} \left(\frac{1}{c_{2}^{\delta}}\right) \frac{c_{2}^{\delta}}{\sum_{1}^{n} st_{j} \dots \left(\frac{1}{c_{n}^{\delta}}\right)} \frac{\delta}{\sum_{1}^{n} c_{i}^{\delta}}$$

It follows that

$$(5) c_1^{\frac{c_1^{\delta}}{\sum_{i=1}^{n} c_i^{\delta}} c_2^{\frac{c_2^{\delta}}{\sum_{i=1}^{n} c_i^{\delta}}} \cdots c_n^{\frac{c_n^{\delta}}{\sum_{i=1}^{n} c_i^{\delta}}} \ge \left(\frac{\sum_{i=1}^{n} c_i^{\delta}}{n}\right)^{\frac{1}{\delta}}$$

Equality holds iff $c_1 = c_2 = \dots = c_n$.

Equations (4) and (5) give

(6)
$$\left(\frac{\sum_{1}^{n} c_{i}^{\gamma}}{\sum_{1}^{n} c_{i}^{\delta}}\right)^{\frac{1}{\gamma-\delta}} \geq \left(\frac{\sum_{1}^{n} c_{i}^{\delta}}{n}\right)^{\frac{1}{\delta}}.$$

Write (6) as

$$\frac{\sum_{i=1}^{n} c_{i}^{\gamma}}{n} \geq \left(\frac{\sum_{i=1}^{n} c_{i}^{\delta}}{n}\right)^{\frac{\gamma-\delta}{\delta}} \left(\frac{\sum_{i=1}^{n} c_{i}^{\delta}}{n}\right) = \left(\frac{\sum_{i=1}^{n} c_{i}^{\delta}}{n}\right)^{\frac{\gamma}{\delta}}$$

In other words

(7)
$$\left(\frac{\sum_{1}^{n} c_{i}^{\gamma}}{n}\right)^{\frac{1}{\gamma}} \geq \left(\frac{\sum_{1}^{n} c_{i}^{\delta}}{n}\right)^{\frac{1}{\delta}}$$

with equality iff $c_1 = c_2 = \dots = c_n$.

To get (1) for $\alpha > \beta > 0$, use (7) with $\gamma = \alpha$, $\delta = \beta$, and $c_i = a_i$, $1 \le i \le n$. Similarly, (1) can be obtained for $0 > a > \beta$ by using (7) with $y = -\beta$, $\delta = -\beta$

- α , $\mathbf{c_i} = \frac{1}{\mathbf{a_i}}$, $1 \le i \le n$, and inverting both sides of the inequality. Finally, the

ordinary AM-GM inequality can be used to complete the argument for a $> 0 > \beta$. Thus

$$\left(\frac{\sum_1^n \ a_i^\alpha}{n}\right)^{\frac{1}{\alpha}} \ \geq \left(\prod_1^n a_i^\alpha\right)^{\frac{1}{\alpha n}} \ = \left(\prod_1^n a_i\right)^{\frac{1}{n}} \ = \left(\prod_1^n a_i^\beta\right)^{\frac{1}{\beta n}} \ \geq \left(\frac{\sum_1^n \ a_i^\beta}{n}\right)^{\frac{1}{\beta}} \ .$$

References

- 1. N.D. **Kazarinoff**, Analytic Inequalities, Holt, Rinehart, and Winston, N.Y., 1961, **pp**. 62-64.
- 2. P.P. Korovkin, Inequalities, **Blaisdell** Publishing Co., N.Y., **1961**, **Ch. 2, 3**.

MISCELLANY

Chapter Reports

Professor Joanne Snow reports that the INDIANA EPSILON Chapter (Saint Mary's College) was addressed by Dr. Maura Mast (University of Northern Iowa) at the department's annual Open House. The chapter performed various service activities during the year.

Professor Chris **Leary** reports that sixteen talks were presented to the **NEW** YORK OMEGA Chapter (Saint **Bonaventure** University) during the **1995-**96 academic year. Students P. J. Darcy and David Tascione were members of St **Bonaventure's** team in the Mathematical Contest in Modeling. **SIAM** selected the team's solution to Problem B as the outstanding solution for that problem.

Professor Joan Weiss reports that the CONNECTICUT GAMMA Chapter (Fairfield University) was addressed by A. Michael White from the Defense Research Agency. The chapter was involved with various mathematical contests during the year.

Errata

Sandra Chandler found die following errors in her paper "Determining a Day of the **Week**" (Volume **10(1994-99)**, Number 4,283-284). **In** paragraph two on page 284, every occurrence of Thursday' should be replaced with 'Wednesday'. Also, the last example should read: "Here is a last example to illustrate this: January 6, 1994 was a Thursday; what day will July 4, 1997 fall on? Thursday + 1 + 1 + 2 (now we are at January 6, 1997) + 3 + 0 + 3 + 2 + 3 + 2 (July 6, 1997) \cdot 2 = Thursday + 15 = Friday."

Paul S. Bruckman and **Robyn M. Carley** should have been listed as solvers to Mathacrostic 41.

The 1995 Game

In die Fall 1995 issue of the **Journal, Paul S. Bruckman** challenged readers to represent die *integers* **starting** from 1 **using** the digits **1**, **9**, **9**, and 5 in that order. The challenge was accepted by **Victor** G. **Feser** from the University of **Mary**. He represented the integers from 0 to 154 in the prescribed manner. Some of his representations are listed below. Contrary to **Bruckman's** expectations, **Feser** felt that the expressions for 20 and 25 were easy to find. He was more challenged by the representations for **63**, **78**, and **79**.

$$0 = 1 - \sqrt{9} + \sqrt{9 - 5}$$

$$5 = 1^9 + 9 - 5$$

$$10 = 1 + \sqrt{9}\sqrt{9 - 5}$$

$$20 = (1 + 9)\sqrt{9 - 5}$$

$$25 = (-1 + \sqrt{9} + \sqrt{9}) \cdot 5$$

$$28 = (1 + \sqrt{9})! + 9 - 5$$

$$63 = (1 + (\sqrt{9})!) \cdot 9 \cdot \lceil \sqrt{\sqrt{5}} \rceil$$

$$78 = -1 + 9 \cdot 9 - \lceil \sqrt{5} \rceil$$

$$79 = 1 \cdot 9 \cdot 9 - \lceil \sqrt{5} \rceil$$

$$106 = (-1 + (\sqrt{9})!)! - 9 - 5$$

$$154 = 1 + 9 + ((\sqrt{9})!)!/5$$

Victor claims that every integer can be represented as directed.

Cryptogram Solution

Paul S. Bruckman provided the following solution to the **cryptogram** which appeared on page 185 of the Fall 1995 issue of the **Journal:**

Should the Pi Mu **Epsilon Journal** publish mathematical cryptograms? Or should it have no puzzles at all?

What are These?

The following items were created by **Florentin Smarandache** and submitted by **Charles Ashbacher.**

- 1. **E A O T E E**r t s h n s
- 2. Brianchon
- R V R V R V 3. M K M K M K A O A O A O
- 4. F N U O N I C T
- 5. P N S P N S OI T T

6. DEDE/KIND

Answers, should you need them, are on page 370.

MATHACROSTICS

Solution to Mathacrostics 42, by Jeanette Bickley (Spring 1996).

Words:

A. B. C. D. E. F. G. H. I. J. K. L. M. N.	sieve of Eratosthenes Windows even icosahedron Noch bowlers Elements relativity theory grown Dipper rack Euler amuck moa	P. Q. R. S. T. U. V. W. X. Y. Z. a. b. c.	opine first law of hydrostatics august foolish injure null set absolute logarithms thirteen heighten Euclidean geometry owning race yesterday
N. O.	moa Stephen Hawking	Ç.	yesterday
	1		

Author and title: S. Weinberg, Dreams & a Final Theory

Quotation: Although we do not yet have a sure sense of where in our work we should rely on our sense of beauty, still in elementary particle physics, aesthetic judgments seem to be **working** increasingly **well.** I take this as evidence that we are moving in the right direction and perhaps not **so** far from our goal.

Solvers: Avraham and **Chara** G. Adler (jointly); Thomas **Banchoff**; Frank P. Battles; Paul S. **Bruckman**; Keith G. **Calkins**; Charles R. Diminnie; Clayton W. Dodge; **Thomas Drucker**; Robert C. **Gebhardt**; Jennifer Hake; Geoff Inman, Brooke Bentley and Curt Evans (jointly); Henry S. and Elizabeth C. **Lieberman** (jointly); **Rachael Lott**; **Thom** Mitchell; **Mat** Reason; Laurie **Schlenkermann**; Naomi **Shapiro**; Stephanie **Sloyan**; and the proposer.

Mathacrostic 43 by **Gerald M. Leibowitz appears** on the following pages. The directions for solving acrostics are also given. To be listed as a solver, send your solution to the editor.

A	Coral structures	132	27	139	34	67
В.	Probability space, usually	35	28	19	116	88
C.	He wrote Operations Linéaires	105	29	111	55	3
				107		
D.	Member of a set	10	135	73	23	-58
				115	84	
E.	Risqué	49	137	18	106	
F.	Dentifrice	130	101	124	25	79
		64	83	20	71	113
G.	boundary	33	9	48	14	61
				98		
H .	Algebraic systems	22	68	- 7	121	96
				43		
1	Steel tool	80	59	69		
J.	23rd pan of a treatise, abbr.	91	4	17	122	-8
				128		
K	American newt	41	74	30		
L	Word associated with C. and R.	95	125	42	138	119
M	. Sworn statement	39	120	51	131	
N.	Name with series and integrals	47	21	108	36	12
				70	118	

O. Co-author of convexity theorem	$\overline{109} \overline{90} \overline{126} \overline{63} \overline{75}$
	56
P. Covered with water	$\overline{134} \overline{38} \overline{66} \overline{6} \overline{85}$
Q. Parallel to canal	37 44 54 102 94
	77 26
R. Inventor of ℓ^2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	40 60
S. Lambs' moms	$\overline{127}$ $\overline{1}$ $\overline{133}$ $\overline{50}$
T. Paired	87 24 78 32 65
	97 104
U. Attribute of $f(x) = ax + b$	$\overline{110}$ $\overline{136}$ $\overline{16}$ $\overline{114}$ $\overline{45}$
	99
V. Bird sound	81 93 2 103 11
W. Member of a list	31 13 62 82
X. Translates of a subgroup	76 5 46 53 89
	117
Y. British snacks	$\overline{140}$ $\overline{52}$ $\overline{86}$ $\overline{123}$ $\overline{57}$
	92

The mathacrostic is a keyed anagram. The 140 letters to be entered in the diagram in the numbered spaces \mathbf{will} be identical with those in the 25 keyed words at the matching numbers. The key numbers have been entered in the diagram to assist in constructing the solution.

When completed, the initial letters of tile words will give the name of an author and the title of a book; the completed diagram will be a quotation from that book.

7	75	\$	28		2	8,	13		
							1		
0	æ	13	0		Ω	<u> </u>	F		
13	7.7	4	55	5,	83	88	112	127	
}	<	×	ပ	Z.	7. T	ರ	×	SO.	
27	792	6 X	48	8		76		126 S	140
z =	O	~	0	 	_ ≥	96 T		0	<u> </u>
gard gash	75						ш	125	139
>	F-					H	ပ	124 T	₹
	24	39	53	67	81		91	12	138
	L	Σ	X 22	⋖ .	>		109 U	Œ	12
0	23	38	22	99	08	88	1	123	137
2	<u> </u>	37 P	<u> </u>	- 83 - 14	=	7	0		-
					8		108	122	136
© 		0		7 T	78 F	<u>8</u>	Z	٦-	P
20	22		1 51		1	1	C 107		
ר	<u> </u>		\$0 M	8	H	>			lw.
	21	36	1					H 121	D 138
_	z	35 N	69 S	0 73	- 1-	S.	19	021	134
			1			1	106	i	
=		m m	田	≱	92		H H	119 M	<u> </u>
•	20	34	84		7	91	C 105	- 1	133
*C	<u> </u>	<<	7 . 7.		\$7 X	<u> </u>		118 17	2
	61				1	0 %		II N	A 132
4 ×	- B	8	z	8	0 47	<u>s</u>	101		
	E4	5		o «	×		T 16		
ان ب	=	8	4			× ×	<u> </u>	12	131
ت ا	-	-	- \$\$		- (m		2	X 911	Σ
	16	31	4	80	73	87	102		130
	b	≥	- 1		Δ	F	<u> </u>	<u>m</u>	<u> </u>
23		30		28	77	98	101	118	129
>		29 K	\$ 0	S7 D	-11 R	<u>></u>	<u> </u>	- 6	80 24 ×
_	15	55	4	ŝ	F	85	100	114	128
co.	~	ပ	=	>	E4	2	~	Þ	7

This department welcomes problems believed to be new and at a level appropriate for the readers of this journal. Old problems displaying novel and elegant methods of solution are also invited. Proposals should be accompanied by solutions if available and by any information that will assist the editor. An asterisk (*) preceding a problem number indicates that the

proposer did not submit a solution.

All communications should be addressed to C. W. Dodge, 5752 Neville/Math, University of Maine, Orono, ME 04469-5752. E-mail: dodge@ganss.nmemat.maine.eduPlease submit each proposal and solution preferably typed or clearly written on a separate sheet (one side only) properly identified with name and address. Solutions to problems in this issue should be mailed to arrive by July 1, 1997.

Problems for Solution

888. *Proposed by the Editor.*

In 1953 Howard Eves' book *An Introduction to the History of Mathematics* was first published. It quickly became the definitive undergraduate text in mathematics history. It still is today. To honor this outstanding text and its equally outstanding author, solve this base nine **alphametic,** finding the unique value of *HEVES*:

$$MATH + HIST = HEVES.$$

889. Proposed by M. S. Klamkin, University of Alberta, Edmonton, Alberta, Canada.

Prove that

$$\frac{a^{x}-1}{x}-\frac{a^{y}-1}{Y}>\frac{x-y}{2}\cdot\left(\frac{a-1}{a}\right)^{2}$$

where a > 1 and x > y > 0.

890. Proposed by Peter A. Lindstrom, Irving, Texas.

Express the following sum in closed form, where real number $a \neq 1$:

$$\sum_{i=1}^n ia^{n-i}.$$

891. Proposed by John **Wahl**, **Mt**. Pocono, Pennsylvania, and Andrew Cusumano, Great Neck, New York.

Solve for d the equation

416

$$\frac{bcd + cda + dab + abc}{a + b + c + d} = \sqrt{abcd}.$$

892. Proposed by Bill Correll, Jr., student, Denison University, Granville, Ohio.

Prove that the average of the eigenvalues of a real, symmetric, idempotent matrix is at most one.

893. Proposed by Peter A. Lindstrom, Irving, Texas.

Show that the sequence $\{x_n\}$ converges and find its limit, where $x_1 = 2$ and, for $n \ge 1$,

$$x_{n+1} = \frac{2x_n \sin x_n + \sin x_n + \cos x_n}{2 \sin x_n}$$

894. Proposed by Andrew Cusumano, Great Neck, New York.

Let us lake
$$P_2 = 4\sqrt{2 - \sqrt{2}}$$
, $P_3 = 8\sqrt{2 - \sqrt{2 + \sqrt{2}}}$, $P_4 = 16\sqrt{2 - \sqrt{2 + \sqrt{2} + \sqrt{2}}}$, and so forth. Find the value of $\lim_{n \to \infty} n(P_n - P_{n-1})$.

895. Proposed by Andrew Cusumano, Great Neck, New York.

Let *ABC* be an isosceles right triangle with right angle at *C*. Erect squares *ACEH* and *ABDI* outwardly on side *AC* and hypotenuse *AB*. Let *CI* meet *BH* at *O* and *AB* at *K*, and let *AO* meet *BC* at *J*. Let *DE* cut *AB* at *F* and *AC* at G. It is known (Problem 817, Fall 1994, page 72) that *DE* passes through *O*. Let *JF* meet *AH* at *S* and let *JG* meet *BH* at T. Finally, let *BH* and *AC* meet at *M* and let *JM* and *CI* meet at *L*. See the figure.

- a) Prove that
 - i) ST is parallel to DOE,

418

iii) JG is parallel to AB,

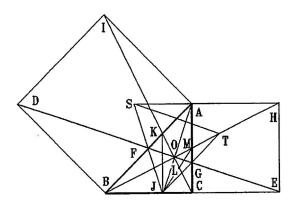
iv) AI passes through T,

v) JF passes through I,

vi) EK passes through M, and

vii) BL passes through G.

*b) Which of these results generalize to an arbitrary triangle?



896. Proposed by Peter A. Lindstrom, Irving, Texas.

For arbitrary positive integers k and n, find each summation:

a)
$$\sum_{i=1}^{n} (i)(i+1)(i+2)\cdots(i+k)$$
.

b)
$$\sum_{i=1}^{n} (i)(i-1)(i-2) - (i-k)$$
, where $n \ge k + 1$.

c)
$$\sum_{i=1}^{n} (i-k)(i-k+1)\cdots(i-1)(i)(i+1)(i+2)\cdots(i+k)$$
,

where $n \ge k + 1$.

897. Proposed by J. S. Frame, Michigan State University, East Lansing, Michigan.

Show that all non-negative integral solutions of the Diophantine equation

$$3(x_i - x_{i-1})^2 = 2(x_i + x_{i-1})^2 + 1$$

are given by consecutive terms of an **infinite** sequence of integers x_i with $x_0 = 0$, $x_1 = 1$, and $x_{i+1} = ax_i + bx_{x-1}$. Find a and b and the first seven terms of the sequence x_i . Generalize this procedure and determine the solution x_i for the equation

$$(2c+1)(x_i-x_{i-1})^2=2c(x_i+x_{i-1})^2+1.$$

898. Proposed by Paul S. Bruckman, Edmonds, Washington.

An n-digit number N is defined to be a base 10 Armstrong number of order n if

$$N = \sum_{k=0}^{n-1} d_k 10^k = \sum_{k=0}^{n-1} d_k^n,$$

where the d_k are decimal digits, with $d_{n-1} > 0$. (See Miller and Whalen, "Armstrong Numbers: $153 = 1^3 + 5^3 + 3^3$," Fibonacci Quarterly 30.3, (1992), pp. 221-224.) Prove that there are no base ten Armstrong numbers of order 2; that is, prove the impossibility of the equation

$$10y + x = x^2 + y^2,$$

where x and y are integers with $0 \le x \le 9$ and $1 \le y \le 9$.

899. Proposed by Robert C. Gebhardt, Hopatcong, New Jersey.

Find the average number of times an ordinary six-sided die must be tossed in order that each of its six faces comes up at least once.

900. Proposed by Howard Eves, Lubec, Maine.

Given the lengths of two sides of a triangle and that the medians to those two sides are perpendicular to each other, construct the triangle with Euclidean tools.

Solutions

862. [Fall 1995] Proposed by Philip Tate, student, University of Maine, Orono, Maine.

"Solve this base ten addition alphametic."

"But it doesn't have a unique solution."

DODGE

"It does if I give you the value of T."

+ THE

"Never mind, I found it. Furthermore, it has a unique

GREAT

solution in base eight. Let me show it to you."

Solution by William H. Peirce, Delray Beach, Florida.

Let $b \ge 8$ be the base. Since $G \ne D$ and $R \ne O$, there must be a carry from the hundreds column to the thousands column and from the thousands to the ten thousands. Then D + 1 = G, O = b - 1, and R = 0. From the units column we have either T = 2E or T = 2E - b. In the latter case the hundreds column requires that c + D + 2E - b = E + b, where c is the carry from the tens column and hence is 0 or 1. Then D + E = $2b \cdot c$, which is impossible, so T = 2E < b and there is no carry from the units column. The alphametic now reads

where c is the carry into the hundreds column.

Suppose c = 0. Because then D + 2E = E + b, we have $D = b \cdot E$. $H \ge 4$. For base 8, E ≥ 4 contradicts 2E C b. In base ten we must have E = 4, so T = 8 and D = 10 - 4 = 6. Now $A = D + 1 + H \ge 7 + H$ \geq 8, which is impossible.

Thus c = 1. We have 1 + D + 2E = E + b, so D = b - 1 - E and G $= D + 1 = b \cdot E$. Then G + H = A + b implies that $A = H \cdot E$. The alphametic now reads

in which we have $E \ge 2$ because G = b - E < b - 1.

In base ten, E = 2, 3, or 4. If E = 3, then G = 10 - 3 = 7, D = G1 = 6, and T = 2E = 6, a contradiction. If E = 2, then G = 10 - 2 = 68, D = G - 1 = 7, and T = 2E = 4, leaving 1, 3, 5, and 6. Then A = 1and H = 3, or A = 3 and H = 5 provide solutions 79782 + 432 = 80214and 79782 + 452 = 80234. If E = 4, then G = 10 - 4 = 6, D = G - 1 = 65, and T = 2E = 8, leaving 1, 2, 3, and 7. Then A = 3 and H = 7 yields the solution 59564 + 874 = 60438. Therefore, T cannot be specified randomly—T can only be 4 or 8—and the solution is unique only when T = 8.

In base 8, E = 2 or 3. If E = 3, then G = 8 - 3 = 5, D = G - 1 = 64, and T = 2E = 6, leaving only 1 and 2 remaining. Then A and H cannot be chosen to satisfy A = H - E. If E = 2, then G = 8 - 2 = 6, D = G - 2 = 61 = 5, and T = 2E = 4, leaving 1 and 3. Then A = 1 and H = 3 provide the unique base 8 solution 57562 + 432 = 60214.

These solutions are listed below:

	Base 10		Base 8
T = 4:	T = 4:	T = 8:	T=4:
79782	79782	59564	57562
432	<u>452</u>	<u>874</u>	432
80214	80234	60438	60214

For general base b, the number of solutions is a quadratic function of b having the form $(3b^2 - pb + q)/6$, and there are twelve such expressions in a congruence class of b modulo 12. These expressions are, for b = 8, 9, ..., 19 (mod 12), (p,q) = (41, 142), (48, 201), (43, 148), (44, 163), **(45, 174)**, (46, **181)**, (41, **136)**, (48, **195)**, (43, **154)**, (44, **169)**, (45, **168)**, (46, 175). For bases 8 and 10, these give 1 and 3 respectively.

Also solved by Charles Ashbacher, Paul S. Bruckman, James Campbell, Mark Evans, Victor G. Feser, S. Gendler, Richard I. Hess, Carl Libis, Henry S. Lieberman, David E. Manes, Brandon **Marsee**, Greg Mitts, Yoshinobu Murayoshi, Jeffrey Pierce, H.-J. **Seiffert**, Kelly Straughen, Kenneth M. Wilke, Rex H. Wu, and the Proposer.

*863. [Fall 1995] Proposed by James Chew, North Carolina Agricultural and Technical State University, Greensboro, North Carolina.

Here is a problem especially for undergraduates. Everyone is **familiar** with the story of the absent-minded professor who wears different colored socks on his feet. Suppose a month's supply of socks are in the clothes drier; specifically, let there be n pairs of socks in a drier **containing only** these socks.

- a) Assume the socks **are** of n different colors. The professor draws socks one at a time from the drier without replacement, noting the color as he draws each sock. To get a pair of matching socks, at least 2 **and** at most n+1 socks must be drawn. On average, how many socks would have to be drawn to get a matching pair?
- b) Repeat part (a), assuming k different colors of socks: n_1 pairs of red socks, n_2 pairs of blue socks, etc., where $n_1 + n_2 + ... + n_k = n$.

Solution by Paul S. Bruckman, Salmiya, Kuwait.

We fust solve the more general problem in **Part** (b). Some preliminary definitions **are** in order. Let $x_i = 2n_i$, i = 1, 2, ..., k. Let U_i denote the *i*th elementary symmetric function of the numbers x_i . Note that $U_1 = 2n$; also $U_{k+1} = 0$. We define $U_0 = 1$ for convenience. Let V_i denote the sum of all the permutations of terms such as $x_1^2x_2x_3...x_i$. It is easily verified that

(1)
$$V_i = U_1 U_i - (i+1) U_{i+1}.$$

Let θ_i denote the probability of requiring exactly i draws to obtain a pair of socks. Note that $2 \le i \le k+1$. The event **defining** θ_i involves fust drawing i-1 different-colored socks, which may be done in $(i-1)!U_{i-1}$ ways, and then drawing another sock of a previously drawn color. Having previously drawn color c, there are x_c-1 ways to draw a matching sock. Thus, the total number of ways to draw a pair of **socks** in exactly i draws is given by $(i-1)![V_{i-1} \cdot (i-1)U_{i-1}]$. The total number of ways to draw i socks, irrespective of results and **again** counting permutations, is $(2n)^{(i)} = 1$

 $2n(2n-1)\cdots(2n-i+1)$. Therefore,

$$\theta_i = \frac{(i-1)![V_{i-1} - (i-1)U_{i-1}]}{(2n)^{(i)}} = \frac{(i-1)![(2n+1-i)U_{i-1} - iU_i]}{(2n)^{(i)}}$$

for i = 2, 3, ..., k + 1, obtained by using **Equation** (1). It is instructive to verify that $\theta_2 + \theta_1 + ... + \theta_{k+1} = 1$, as required. We omit the proof, but note that it is **easily** demonstrated by the use of telescoping series. Let $\mu(\mathbf{x})$ denote the required mean of the distribution, where \mathbf{x} is the k-tuple $(x_1, x_2, ..., x_k)$. Then

$$\mu(\mathbf{x}) = \sum_{i=2}^{k+1} i\theta_i = \sum_{i=2}^{k+1} \frac{i![(2n+1-i)U_{i-1} - iU_i]}{(2n)^{(i)}}$$

$$=\sum_{i=1}^k\frac{(i+1)!\,U_i}{(2n)^{(i)}}-\sum_{i=2}^k\frac{i\cdot i!\,U_i}{(2n)^{(i)}}=2+\sum_{i=2}^k\,U_i\binom{2n}{i}^{-1},$$

or

(3)
$$\mu(\mathbf{x}) = \sum_{i=0}^k U_i \binom{2n}{i}^{-1}.$$

The **result** in (3) is the most general and depends on the values of the n_i for its evaluation in closed form. For **Part** (a) we have k = n, $n_i = 1$, $1 \le i \le n$, so that $U_i = 2^i \binom{n}{i}$. We denote the mean of the distribution by μ_n in this case. Then we obtain

(4)
$$\mu_n = \sum_{i=0}^n 2^i \binom{n}{i} \binom{2n}{i}^{-1}.$$

We may evaluate this sum in closed form. Identity 1.9 in [1] states

(5)
$$\sum_{i=0}^{n} {x \choose i} y^{i} = \sum_{i=0}^{n} {n-x \choose i} (1+y)^{n-i} (-y)^{i}.$$

Setting x = -n - 1 and y = -1/2 in (5), we obtain

(6)
$$\sum_{i=0}^{n} {-n-1 \choose i} \left(\frac{-1}{2}\right)^{i} = \sum_{i=0}^{n} {2n+1 \choose i} \left(\frac{1}{2}\right)^{n}.$$

On the other hand, since $\binom{n}{i}\binom{2n}{n} = \binom{2n}{i}\binom{2n-i}{n-i}$, we see from (4) that

$$\mu_n = \binom{2n}{n}^{-1} \sum_{i=0}^n 2^i \binom{2n-1}{n-1} = \binom{2n}{n}^{-1} \sum_{i=0}^n 2^{n-i} \binom{n+i}{i}$$
$$= 2^n \binom{2n}{n}^{-1} \sum_{i=0}^n \left(\frac{-1}{2}\right)^i \binom{-n-1}{i}.$$

From (6) we obtain the desired result for Part (a),

(7)
$$\mu_n = {2n \choose n}^{-1} \sum_{i=0}^n {2n+1 \choose i} = 4^n {2n \choose n}^{-1}$$

since $\sum_{i=0}^{n} {2n+1 \choose i} = 2^{2n}$. Note that, from Stirling's formula, ${2n \choose n} \approx 4^n (n\pi)^{-1/2}$ as $n \to \infty$. Consequently, we see from (7) that $\mu_n \approx (n\pi)^{1/2}$ as $n \to \infty$.

Reference

1. H. W. Gould, Combinatorial Identities, **Morgantown,** W. Va., University, **1972.**

Also solved by William Chau, and Mark Evans.

Editorial note: So much for a simple, little problem intended for undergraduates!

864. [Fall **1995**] Proposed by Charles *Ashbacher*, Geographic Decisions Systems, Cedar Rapids, Iowa.

On page 11 of the booklet Only *Problems*, Not Solutions! by Florentine Smarandache, there is the following problem.

Let $a_1, a_2, ..., a_m$ be digits. Are there primes, on a base b, which contain the group of digits $\overline{a_1 \cdots a_m}$ into its writing? But n!? But n°?

Prove that for any such sequence of digits $a_1, a_2, ..., a_m$, no matter how generated, there exists a prime such that the sequence is found in that prime.

I. Solution by H.-J. Seiffert, Berlin, Germany. Let b > 1 be a natural number and $a_1, ..., a_m$ be base b digits. By **Dirichlet's** theorem, the arithmetic progression, where the quantity in parentheses is the base b numeral $a_1...a_m c$ and c is a base b digit chosen so that b and $a_1...a_m c$ have no common factors greater than 1,

$$kb^{m+1} + \left(\sum_{i=1}^{m} a_i b^{m-i+1} + c\right), k = 1, 2, ...,$$

contains **infinitely** many primes. Clearly, each such prime has a base b representation of the **form** $...a_1...a_mc$. In base 10, we may take c = 1.

11. Comment by Bob Prielipp, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin.

On pages 154-155 of [3], Sierpinski established the following result. For an arbitrary finite sequence $c_1, c_2, ..., c_m$ of digits there exists a prime number whose first m digits are $c_1, c_2, ..., c_m$. George Barany [1] proved there are infinitely many such primes. Sierpinski [4] also proved given two arbitrary finite sequences of digits (of the decimal system) $a_1, a_2, ..., a_m$ and $b_1, b_2, ..., b_n$, where $b_n = 1, 3, 7, or 9$, there exist arbitrarily many prime numbers whose first m digits are the string $a_1, a_2, ..., a_m$ and whose last n digits are $b_1, b_2, ..., b_n$. Borucki and Diaz [2] proved both of Sierpinski's results for a Dirichlet arithmetic progression.

References

- 1. American Mathematical Monthly, Advanced Problem 5738, 78(1971)683.
- L. J. Borucki and J. B. Diaz, "A Note on Primes, with Arbitrary Initial or Terminal Decimal Ciphers, in Dirichlet Arithmetic Progression," American Mathematical Monthly, 81(1974)1001-1002.
- 3. Waclaw Sierpinski, Elementary *Theory* of Numbers, Hafner **Publishing** Company, New York, 1964.
- Waclaw Sierpinski, A Selection of Problems in the *Theory* of Numbers, The Macmillan Company, New York, 1964, page 40.

Also solved by Paul **S. Bruckman,** Pat Costello, Thomas **C. Leong,** David E. Manes, and the Proposer.

865. [Fall **1995]** Proposed by Miguel *Amengual Covas*, Mallorca, Spain.

Let ABC be a triangle with sides of lengths a, b, and c, semiperimeter s, and area K. Show that, if $\Sigma a(s - a) = 4K$, then the three circles centered at the vertices A, B, and C and of radii s - a, s - b, and s - c, respectively, are all tangent to the same straight line.

Solution by William H. Peirce, Delray Beach, Florida.

Let $r_1 = s - a$, $r_2 = s - b$, and $r_3 = s - c$ be the radii of the three circles centered respectively at A, B, and C. From these **definitions** we get $a = r_2 + r_3$, $b = r_3 + r_1$, $c = r_1 + r_2$, and $s = r_1 + r_2 + r_3$. Then

$$K^2 = s(s - a)(s - b)(s - c) = r_1 r_2 r_3 (r_1 + r_2 + r_3).$$

Since we have

$$4K = \Sigma a(s - a) = 2(r_1r_2 + r_2r_3 + r_3r_1),$$

we **may** eliminate K between these two expressions to obtain

$$F \equiv r_1^2 r_2^2 + r_2^2 r_3^2 + r_3^2 r_1^2 - 2r_1 r_2 r_3 (r_1 + r_2 + r_3) = 0.$$

That is, F = 0 is equivalent to the statement $\Sigma a(s - a) = 4K$.

Consider any two externally tangent circles of radii r_1 and r_2 . By simple geometry the distance between the two points of tangency along an external tangent line is $2\sqrt{r_1r_2}$. Therefore, when the three externally tangent circles of the problem are tangent to the same line, one and only one of the following three situations will occur:

$$\sqrt{r_1r_2} + \sqrt{r_2r_3} - \sqrt{r_3r_1} = 0, \quad \sqrt{r_1r_2} - \sqrt{r_2r_3} + \sqrt{r_3r_1} = 0,$$

$$\sqrt{r_1r_2} - \sqrt{r_2r_3} - \sqrt{r_3r_1} = 0.$$

These three expressions, along with the nonzero factor

$$\sqrt{r_1r_2} + \sqrt{r_2r_3} + \sqrt{r_3r_1}$$

are the four factors of F, so that F = 0 is equivalent to the three circles being tangent to the same straight line. The theorem follows.

Also solved by Paul S. Bruckman, David Iny, and the Proposer.

866. [Fall 1995] Proposed by J. Rodriguez, Sonora, Mexico.

For any nonzero integer n, the **Smarandache function** is the smallest integer S(n) such that (S(n))! is divisible by n. Thus S(12) = 4 since 12 divides 4! but not 3!.

- a) Find a strictly increasing **infinite** sequence of integers such that for any consecutive three of them the Smarandache function is neither increasing nor decreasing.
- *b) Find the longest increasing sequence of integers on which the Smarandache function is strictly decreasing.
 - I. Solution by David *Iny*, Baltimore, Maryland.
- a) Obviously, if p is **prime**, then S(p) = p. Also, if p is an odd prime greater than or equal to 5, then p + 1 is divisible by distinct integers 2 and (p + 1)/2, so that $S(p + 1) \le (p + 1)/2$. Thus, if p_1, p_2, \ldots is any increasing sequence of primes each greater than or equal to 5, then the sequence of integers $p_1, p_1 + 1, p_2, p_2 + 1, \ldots$ is an increasing sequence whose Smarandache function values alternately increase and decrease.
- b) We extend the observation of **Part** (a) to note that, if p is prime and k < p is a positive integer, then $S(p^k) = kp$. Now we find primes $p_1, p_2, ..., p_n$, all greater than n, so that $S(p_k^k) = kp_k$. If $p_1, p_2^2, p_3^3, ..., p_n^n$ is increasing with $p_1, 2p_2, ..., np_n$ decreasing, we are done. **Recall** that asymptotically there are $m/\ln m$ primes less than or equal to m

The construction now follows. Fix n > 1 and pick **prime** $p_n > n^n$. Suppose we have already picked $p_n, p_{n-1}, \ldots, p_{k+1}$ for $k \ge 1$. Then we pick a prime p_k so that $p_k^k < p_{k+1}^{k+1}$ and $kp_k > (k+1)p_{k+1}$. That is,

$$\frac{k+1}{k}p_{k+1} < p_k < p_{k+1}^{(k+1)/k}.$$

Since $n^n < < p_n < p_{n-1} < \dots < p_{k+1}$, then we have that

$$p_{k+1}^{(k+1)/k} \ge (n^n)^{1/k} p_{k+1} \ge n p_{k+1} \text{ since } k \le n-1.$$

$$\frac{k+1}{k}p_{k+1} < p_k < np_{k+1}.$$

We estimate the number of possible primes as

$$\frac{np_{k+1}}{\ln{(np_{k+1})}} - \frac{\frac{k+1}{k}p_{k+1}}{\ln{\left(\frac{k+1}{k}p_{k+1}\right)}} >> 1$$

since n >> 1. This completes the construction.

11. Comment by Paul S. Bruckman, Salmiya, Kuwait.

This problem appeared almost **verbatim** in *The* Fibonacci *Quarterly*, **Vol. 32**, No. 1, February 1994, by the same proposer, as Problem H-484. My solution appeared in the same journal, **Vol.** 33, No, 2, May 1995, pp. **189-192**.

Also solved **by** Charles Ashbacher, James Campbell, William Chau, Thomas C. **Leong, H.-J. Seiffert,** Rex H. Wu, and the Proposer.

867. [Fall 1995] Proposed by *Seung-Jin* Bang, AJOU *University*, Suwon, Korea.

Find the number of solutions (x, y, z, w) to the system

$$x + y + z + w = 7$$

 $x^{2} + y^{2} + z^{2} + w^{2} = 15$
 $x^{3} + y^{3} + z^{3} + w^{3} = 37$
 $xyzw = 6$.

Solution by Henry S. Lieberman, Waban, Massachusetts.

The solutions to the system are **all** of the permutations of (1, 1, 2, 3), of which there are 12. The left sides of the equations are rational integral symmetric functions of x, y, z, and w. We note the following **elementary** symmetric **functions** of x, y, z, and w:

$$\sigma_1 = x + y + z + w,$$
 $\sigma_2 = xy + yz + zw + wx + xz + yw,$
 $\sigma_3 = xyz + yzw + zwx + wxy,$ and
 $\sigma_4 = xyzw.$

Let $s_i = x^i + y^i + z^i + w^i$. Then the system can be written as

$$s_1 = \sigma_1 = 7$$
, $s_2 = 15$, $s_3 = 37$, and $\sigma_4 = 6$.

We claim that (x, y, Z, w) solves the system if and only if these values are the zeros of **the** polynomial in t, $t^4 - \sigma_1 t^3 + \sigma_2 t^2 - \sigma_3 t + \sigma_4$. From formulas in [1] we see that

(1)
$$s_2 - s_1\sigma_1 + 2\sigma_2 = 0$$
 and $s_3 - s_2\sigma_1 + s_1\sigma_2 - 3\sigma_3 = 0$.

We have $\sigma_1 = 7$ and $\sigma_4 = 6$, and from (1),

$$15 - 7.7 + 2\sigma_2 = 0$$
 and $37 - 15.7 + 7\sigma_2 - 3\sigma_3 = 0$,

which yield $\sigma_2 = \sigma_3 = 17$. It is easy to discover that the zeros of

$$t^4 - 7t^3 + 17t^2 - 17t + 6$$

are 1, 1, 2, and 3. Hence, (1, 1, 2, 3) and its permutations solve the system.

Reference

1. B. L. Van der Waerden, Modem Algebra, vol. 1, Frederick Ungar Publishing Company, New York, 1953, page 81.

Also solved by Miguel Amengual Covas, Paul S. Bruckman, William Chau, Russell Euler, Mark Evans, Robert C. Gebhardt, S. Gendler, Richard I. Hess, David Iny, Carl Libis, David E. Manes, Yoshinobu Murayoshi, Kenneth M. Wilke, and the Proposer.

868. [Fall 1995] Proposed by William H. Peirce, Delray Beach, Florida.

1. Enter total amount of all social security	
benefits,	1. S
2. Enter one-half of line 1	2.
7. Enter your provisional income	7. P
8. Enter \$32,000 if married filing jointly	8. 32,000
9. Subtract line 8 from line 7. If zero or	<u>-</u> -
less, enter $0 \dots$	9
Is line 9 zero? If yes , enter 0 on line 18. If	
no, continue to line 10.	
10. Enter \$12,000 if married filing jointly	1012,000_
11. Subtract line 10 from line 9. If zero or	- · -
less, enter $0 \dots$	11
12. Enter the smaller of line 9 or line 10	12
13. Enter one-half of line 12	13.
14. Enter the smaller of line 2 or line 13	14.
15. Multiply line 11 by 0.85	15.
16. Add lines 14 and 15	16.
17. Multiply line 1 by 0.85	17
18. Taxable social security benefits. Enter	
the smaller of line 16 or line 17	18. <u> </u>

Social Security Benefits Worksheet (somewhat simplified)

Computation of the taxable portion of social **security benefits** in 1994 is considerably more complicated than in past years, and the IRS **has designed** the 1994 accompanying worksheet to determine **these** taxable **benefits**. Let S be the total social **security benefits** on line 1, P the provisional income on line 7, and T the taxable **benefits** on line 18. For married couples filing jointly, find T as a function of S and P. Exhibit the solution graphically by showing the function T for each pertinent region of the SP-plane, and give the boundary equations for each region. **Assume** S > 0 and P > 32,000 and ignore their practical upper **limits**.

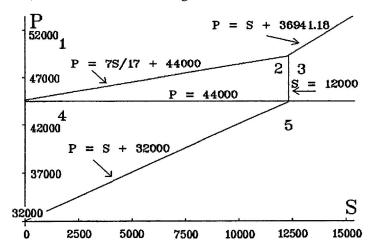
Solution by Paul S. Bruckman, Salmiya, Kuwait. We consider the possibilities in the table below.

Line		Va	ilue	art spre	
1.		12 ²	S		
2.		S	/2		
7.		P			
8.		32000			
9.	P - 32000				
10.	12000				
11.	P > 44000: P - 44000		<i>P</i> ≤ 4	4000: 0	
12.	12000		P - 32000		
13.	6000		P/2 - 16000		
14.	S > 12000: 6000	$S \le 12000:$ $S/2$	S>P-32000: P/2 - 16000	S≤ <i>P</i> -32000: S/2	
15.	.85 <i>P</i> -37400	.85 <i>P</i> -37400	0	0	
16.	.85 <i>P</i> -31400	.5S + .85P - 37400	P/2 - 16000	S/2	
17.	.85 <i>S</i>	.85 <i>S</i>	.85 <i>S</i>	.85 <i>S</i>	
18.	S > P-36941.18: .85P-31400 S ≤	$S > 17P/7$ -106857.14 : $.5S + .85P$ -37400 $S \le 17P/7$	$S > 10P/17$ - 18823.53: .5 P -16000 $S \le 10P/17$.5\$	
	P-36941.18: .85S	-106857.14: .85 <i>S</i>	- 18823.53: .85\$	S.	

We may display these results in the following five regions:

- 1. T = .85S if P > 7S/17 + 44000 and S \leq 12000, or if P > S + 36941.18 and S > 12000;
- 2. T = .5S + .85P 37400 if $44000 < P \le 75/17 + 44000$ and $S \le 12000$;
- 3. $T = .85P 31400 \text{ if } 44000 < P \le S + 36941.18 \text{ and } S > 12000;$
- 4. T = .5S if $S + 32000 < P \le 44000$ and $S \le 12000$; and
- 5. $T = .5P 16000 \text{ if } P \le S + 32000 \text{ and } S \le 12000.$

We see that T is a positive, piecewise continuous, linear function of the two variables P and S, subject to the conditions S > 0 and P > 32000. We graph the boundaries of these five regions into which the SP-plane is divided. (We note there is a void region for S > 12000 and P > 44000.)



Also solved by Mark Evans and the Proposer.

869. [Fall **1995**] *Proposed* by *Rasoul Behboudi*, *University of North Carolina*, *Charlotte*, *North Carolina*.

Consider an ellipse with center at O and with major and minor axes AS and CD respectively. Let E and F be points on segment OB so that we have $OE^2 + OF^2 = OB^2$. At E and F erect perpendiculars to cut arc BC at G

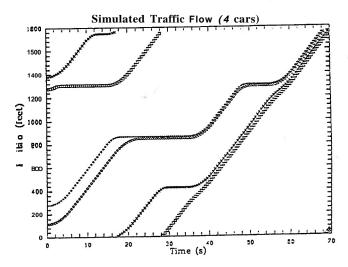


Figure 7.

Real-World Comparison

The table below shows yellow light durations at several intersections in the Hope College area. As one can see, the model (which predicts minimum values for t_{y,v}) for die most part agrees with actual traffic signals. Agreements and discrepancies should not be taken too seriously, since the predictions were based on very rough estimates of braking accelerations and intersection widths (it's hard to measure the width of an intersection when pesky cars keep getting in the way).

Comparisons with Actual Traffic Lights

Location	Speed Limit	Predicted t *yel	Actual t _{yel}
8 @ River	25 mi/hr	3.6s	3.7s
8 th @ Central	25 mì/hr	3.6s	4.0s
8 th @ College	25 mi/hr	3.6s	3.5s
8th @ US 31	35 mi/hr	5.3s	6.2s
US 31 @ 8th	55 mi/hr	5.6s	4.5s
9 th @Central	30 mi/hr	3.7s	4.0s
9 @ College	30 mi/hr	3.8s	4.0s

Figure 8.

Summary

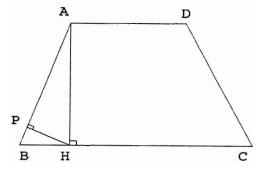
In conclusion, one can develop a suitable **traffic** signal **timing** schedule for a simple city based on a few parameters and a **few** formulas of motion. Yellow light timing depends **primarily** on speed limit, braking acceleration, and the width of intersections. Red and green light timing depends on the spacing of **intersections**, the speed limit, and the chosen pattern length N. The model shows that some degree of unimpeded traffic flow is almost always possible for regularly spaced intersections. Furthermore, timing schemes for two-way traffic can generally be extended to **four-way** traffic systems. And finally, the model provides results which seem to be in general agreement **with** actual traffic signals.

The model leaves many questions unanswered, however. How well do the proposed timing schedules prevent **traffic jams?** What if the city contains **heavy-load** and **light-load streets?** What if the lattice is irregular (e.g., the spacing **varies)?** I believe the model developed in this paper could be extended to handle these situations, and that the computer simulation would **especially** help in **answering** the first question. In any case, it was a fun project which I think gives a reasonable description of traffic **systems**. And who knows? Perhaps someone will pick up where I have left off I **would** be interested in hearing about the results.

Editorial note: F.Y.I., n = 16,292,246,262,786,755,156,105,160,857,651,258,074,334,634,907,277.

871. [Fall 1995] Proposed by Miguel Amengual Covas, Mallorca, Spain.

Let ABCD be an isosceles trapezoid with major base BC. If the altitude AH is the mean proportional between the bases, then show that each side is the arithmetic **mean** of the bases, and show that the projection AP of the altitude on side AB is the harmonic mean of the bases. See the figure.



Solution by Richard I. Hess, Rancho Palos Verdes, California. Let BC = b, AD = a, and AH = h. Since $h^2 = ab$, then

$$AB^2 = h^2 + \left(\frac{b-a}{2}\right)^2 = \left(\frac{b+a}{2}\right)^2,$$

so AB = (a + b)/2, the average of the bases. Let 6 = angle BAH. Then

$$\cos \theta = \frac{AH}{AB} - \frac{2\sqrt{ab}}{a+b}$$
, so $AP = AH \cos \theta = \frac{2ab}{a+b}$,

whence A P is the harmonic **mean** of a and b.

Also solved by Paul S. Bruckman, William Chau, Russell Euler and Jawad Sadek, George P. Evanovich, Joe Howard, Tommy Jarrett and David Lindsey and Laura Ramdarass and Robyn Carley, Henry S. Lieberman, Kandasamy Muthuvel, H.-J. Seiffert, Skidmore Problem Group, Kenneth M. Wilke, Rex H. Wu, and the Proposer.

872. [Fall 19951 Proposed by Paul S. Bruckman, Edmonds, Washington.

Given A,, A_2 , and A, are the angles of a triangle and 4 < k < 12, let

$$S_k = S_k(A_1, A_2, A_3) = \sum_{i=1}^3 (k \cos A_i + \cos 2A_i),$$

defined on the triangular plane region R: $0 < A_1 < \pi$, $0 < A_2 < \pi$, $0 < A_1 + A_2 < u$. Find the maximum value of S_k for all triangles.

Solution by David Iny, Baltimore, Maryland.

In order for S_k to take on its **maximum** value for all choices of k, we will **take** the closure of the indicated region allowing the degenerate case. We show that $\max(S_k) = k + 3$ for $k \le 9$, achieved with the degenerate triangle $(0, 0, \pi)$, and $\max(S_k) = 3(k - 1)/2$ for $k \ge 9$, achieved with the equilateral triangle. To do this, we write

$$S_k = (k - 9)(\Sigma \cos A_i) + S_g$$

and we show that S_9 has (up to permutations) two distinct global maximizers, the degenerate triangle $(0, 0, \pi)$ and the equilateral triangle. We then combine this result with the inequality $1 \le \Sigma \cos A$, ≤ 312 with lower and upper bounds achieved respectively by the degenerate and equilateral triangles.

Consider first the function $f(x) = 9\cos x + \cos 2x$. Since we have $f''(x) = -8\cos^2 x - 9\cos x + 4$, then f'' has a zero at $a = \cos^{-1}[(-9 + \sqrt{209})/16]$. We see that f is convex (concave downward) for 0 < x < a and concave (upward) for $a < x < \pi$. Thus, if $\max(A_i) \le a$, then

$$S_9 = \Sigma f(A_i) \le 3f(\frac{1}{3}\sum A_i) = 12$$
 with equality for A, $= A_2 = A_3 = \frac{\pi}{3}$.

Because f is concave on (a, u), a maximizer of $\Sigma f(A_i)$ can have at most one angle greater than a. Thus, without loss of generality, we assume A, and A_2 do not exceed a. Since

$$f(A_1) + f(A_2) \le 2f\left(\frac{A_1 + A_2}{2}\right)$$

by convexity, we must have $A_1 = A_2$, and we let $y = A_1 = A_2$. Then

$$S_9 = 2(9\cos y + \cos 2y) + 9\cos(r-2y) + \cos 2(\pi-2y)$$

$$= 8\cos^4 y - 22\cos^2 y + 18\cos y + 8,$$

which on the interval $0 \le \cos y \le 1$ has maxima at $\cos y = 112$ and $\cos y = 1$, which occur at $y = \pi/3$ and y = 0. This establishes that

$$S_9 = \sum (9\cos A_i + \cos 2A_i) \le 12$$

with equality for the degerate and equilateral triangles.

It remains to show that $\Sigma \cos A_i \le 312$. If $\max(A_i) \le \pi/2$, then $\cos x$ is convex, whence

$$\Sigma \cos A_i \leq 3 \cos \left(\frac{1}{3} \Sigma A_i\right) = 3 \cos \frac{\pi}{3} = \frac{3}{2}$$

with equality for A, $= A_2 = A_3 = \pi/3$. If $A_3 \ge \pi/2$, then

$$\Sigma \cos A_i \leq 2 \cos \left(\frac{A_1 + A_2}{2}\right) + \cos \left[\pi - (A_1 + AJ)\right].$$

But $2\cos Z = \cos^2 z = -2\cos^2 z + 2\cos z + 1$ has a maximum when $\cos z = 1/2$. Hence $\Sigma\cos A \le 312$. To get the lower bound, we take $A_1 \le A_2 \le \pi/2$ and $A_2 \le A_3$ without loss of generality. By convexity, $A_1 = 0$ whenever $\Sigma\cos A_1$ is a minimum. Then

$$\sum \cos A_i = 1 + \cos A_2 + \cos (\pi - A_2) = 1.$$

Thus $\Sigma \cos A$, ≥ 1 and the result is established. Furthermore, we see that the result holds for all real k.

Also solved by William H. Peirce and the Proposer.

873. [Fall 1995] Proposed by Mohammad K. Azarian, University of Evansville. Evansville. Indiana.

For p and q positive real numbers and any positive integer m let

$$f(x) = \left[1 + x + \frac{x^m}{m!} + \frac{x^{m+1}}{m!}\right]^{pq} \left[1 + \frac{x}{p}\right]^{p^2} \exp\left[\frac{q^3x}{q+x}\right],$$

where $x \ge 0$. Prove that

$$0 < \sum_{k=2}^{\infty} \sum_{n=2}^{\infty} \int_{0}^{\infty} f(x) \exp(-[(p+q)^{2} + k^{n}]x) dx \le 1.$$

Solution by H.-J. Seiffert, Berlin, Germany.

Since $1 + x + ... + x^n/n! < e^x$ when x > 0 and n is a positive integer, we have that

$$0 < f(x) \exp[-(p+q)^2 x]$$

$$= \left[(1+x) \left[1 + \frac{x^m}{m!} \right] \right]^{pq} \left[1 + \frac{x}{p} \right]^{p^3} \exp\left[\frac{q^3 x}{q+x} - (p+q)^2 x \right]$$

$$< \exp\left[2pqx + p^2 x + \frac{q^3 x}{q+x} - (p+q)^2 x \right] = \exp\left(-\frac{q^2 x^2}{q+x} \right) < 1.$$

Hence

$$0 < \sum_{k=2}^{\infty} \sum_{n=2}^{\infty} \int_{0}^{\infty} f(x) \exp(-[(p+q)^{2} + k^{n}]x) dx$$

$$< \sum_{k=2}^{\infty} \sum_{n=2}^{\infty} \int_{0}^{\infty} \exp(-k^{n}x) dx = \sum_{k=2}^{\infty} \sum_{n=2}^{\infty} \frac{1}{k^{n}} \int_{0}^{\infty} \exp(-t) dt$$

$$= \sum_{k=2}^{\infty} \sum_{n=2}^{\infty} \frac{1}{k^{n}} = \sum_{k=2}^{\infty} \frac{1}{k^{2}} \sum_{n=2}^{\infty} \frac{1}{k^{n-2}} = \sum_{k=2}^{\infty} \frac{1}{k^{2}} \frac{k}{k-1}$$

$$= \sum_{k=2}^{\infty} \left(\frac{1}{k-1} - \frac{1}{k} \right) = 1.$$

Also solved by Paul S. Bruckman, Russell **Euler,** David Iny, and the Proposer.

874. [Fall **1995]** Proposed **by** David Iny, Westinghouse Electric Corporation, Baltimore, Maryland.

a) Given real numbers x_i and z_i for $1 \le i \le n$, prove that

$$n\left[\sum x_{i}^{2} \sum z_{i}^{2} - (\sum x_{i}z_{i})^{2}\right] \geq \left(\sum x_{i}^{2}(\sum z_{i}^{2}) + (\sum x_{i}^{2})(\sum z_{i})^{2} - 2(\sum x_{i})(\sum z_{i})(\sum x_{i}z_{i})\right)$$

b) Determine a necessary and sufficient condition for equality.

I. Solution by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada.

It will be shown that the given inequality is equivalent geometrically to the square of the volume of a tetrahedron being nonnegative.

Let X, Z, and I denote, respectively, the n-dimensional vectors $(x_1, x_2, ..., x_n)$, $(z_1, z_2, ..., z_n)$, and (1, 1, ..., 1) and let |X| = x, |Z| = z, and here $|1| = \sqrt{n}$. Also let a, b, and γ denote the angles between X and I, Z and I, and X and Z, respectively. The given inequality can now be rewritten in the form

$$n[X^2Z^2 - (X \cdot Z)^2] \ge (X \cdot I)^2Z^2 + (Z \cdot I)^2X^2 - 2(X \cdot I)(Z \cdot I)(X \cdot Z)$$

or equivalently

$$nx^2z^2(1-\cos^2\gamma) \ge nx^2z^2\cos^2\alpha + nx^2z^2\cos^2\beta - 2nx^2z^2\cos\alpha\cos\beta\cos\gamma$$
 and finally

$$nx^2z^2(1-\cos^2\alpha-\cos^2\beta-\cos^2\gamma+2\cos\alpha\cos\beta\cos\gamma)\geq 0.$$

The left side of the latter inequality is 36 times the square of the volume of the tetrahedron having X, Z, and I as three **coterminal** edges. There is equality if and only if the volume is 0 or equivalently if X, Z, and I are linearly dependent. That is, if either X or Z equal 0 or kI or there are constants a and b such that $z_i = ax_i + b$ for all i.

II. Comment by H.-J. Seiffert, Berlin, Germany. This inequality is known. See [1], page 227, Equation 20.1.

Reference

 D. S. Mitrinović, J. E. Pečarić, and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer, 1993.

Also solved by Paul S. Bruckman, Joe Howard, Yoshinobu Murayoshi, and the Proposer.

Subscription and Change of Address

If your address label contains the symbols "F96" then this is the last issue in your current subscription. We hope that you agree that the *Journal* provides good value and that you will renew your subscription. The rates are:

United States:

\$20 for 2 years

\$40 for 5 years

Foreign:

\$25 for 2 years

Back issues:

\$5 each

Complete volumes:

\$50 (5 years, 10 issues)

All issues:

\$400 (9 back volumes and volume 10)

If you have moved, please let us know. The *Journal* is not forwarded so it is important that we have a current mailing address for you.

To subscribe or change your address, complete the form below (or a copy thereof) and send it, with a check payable to the Pi $M\iota$ *Epsilon Journal* for subscriptions, to

Joan Weiss

Department of Mathematics and Computer Science Fairfield University

Fairfield CT 06430

Name.	Chapter	
Address:		
radioss.		
	2004200 uni 41.0000 uni 41	
Address change?	Subscription:	

REFEREE APPLICATION FORM

The contributions of a referee can enhance the Quality of any journal. If you would like to volunteer to serve as a referee for the Pi Mu Epsilon Journal, please provide the information requested below so that the appropriate manuscripts can be sent to you for your consideration. Since manuscripts are not to exceed ten pages in length, the editor believes that a referee's report should be sent back to the editor in at most two months from the date of receipt. Please keep this in mind before volunteering your valuable time and expertise. Your support of the Journal is appreciated. Please send the completed form to:

Russell **Euler**Department of Mathematics and Statistics
Northwest Missouri State University **Maryville,** MO 64468.
(816)562-1229

(Please type or print neatly)

ame	
ffiliation	
failing Address	
hone Number	
-mail Address	
lease list the mathematical areas in which you feel competent to referee.	

Please **list** any **specific** times of the year that you would prefer **NOT** to receive a manuscript to review.

Editor's Note

The Pi Mu Epsilon Journal was founded in 1949 and is dedicated to undergraduate and beginning graduate students interested in mathematics. All submissions to the Journal should be directed toward this group.

Undergraduate and beginning graduate students are urged to submit papers to the Journal for consideration for publication. Student papers are given top priority. Expository articles by professionals in all areas of mathematics are also welcome. Some priority areas are listed in the Editorial (p. 352) in the Edit 1996 issue of the Journal. Some guidelines include:

- 1. Manuscripts must be original work, not have been previously published nor should they be under consideration for publication elsewhere.
- 2. Manuscripts must be typewritten, double spaced with wide margins, on only one **ride** of 8.5" **x** 11" white paper. Whenever possible, manuscripts should be typewritten in **WordPerfect**.
- 3. Including figures, manuscripts should not exceed ten pages in length.
- **4**. Figures should be placed on separate sheets and photo-ready. **Camera**-ready figures should **measure** a **maximum** of 4.5" wide by 6" long.
- **5**. In order to insure anonymity in the review process, the author's name, affiliation (academic or otherwise), and address should appear only on a separate title page.
- **6**. The tide must also appear on the first page of the exposition.
- 7. Each page should be numbered.
- **8.** Students submitting manuscripts should give their school, date of graduation, and the name of their faculty advisor for their submission.
- **9**. Two copies of each manuscript and a copy of the disk (whenever the manuscript is typed in **WordPerfect**) should be submitted to the editor at the address listed on the inside of the front cover.

Eleventh Annual Moravian College Student Mathematics Conference Saturday, February 22, 1997

Invited Lecture

Newton's Original Method

Though this be Method, yet there is madness in't

Professor William Dunham

Truman Koehler Professor of Mathematics Muhlenberg College

The one-day conference, sponsored by Moravian College's chapter of Pi Mu Epsilon, is a unique opportunity for undergraduate students in the Tri-State area to meet and discuss mathematics. Students are invited to give talks in the fields of mathematics, statistics, operations research, and computing. In October, mathematics departments in the region will receive detailed information on the conference, registration forms for students talks, and registration forms for attendance at the conference. Mark your calendars and encourage your students to come, to give a talk, or just to listen to some interesting talks by others and to socialize with students and faculty from many other institutions.

For further information, contact:

Doris Schattschneider

Moravian College, 1200 Main St., Bethlehem, PA 18018-6650

email: schattdo@moravian.edu

tel (610) 861 1373 fax (610) 861 1462

Power Means Theorem via the Weighted AM-GM Inequality	
N. Schaumberger, M. Steiner 40)5
Miscellany 40	8
Mathacrostics	
Jeanette Bickley, Gerald M. Leibowitz 41	1
Problem Department	
Clayton Dodge, editor 41	5
Subscription and Change of Address 439	9
Referee Application Form 44	0
Editer's Note	11