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Some Solutions of the Generalized Fermat Equation 

Herbert E. Salzer 

The Diophantine equation 
pq(p + q) =an, n2: 3, (1) 

is here called the "generalized Fermat equation" because it is equivalent to 
Fermat's equation 

(2) 

only whenever 
a) (p, q) = 1, n ;e 3k, or b) for any (p, q), n = 3k. (1) 

For a), in (1) when (p, q) = I, also (p, p + q) = 1 and (q, p + q) = 1, so that 
p, q and p + q are nth powers, implying Fermat's equation (2) which, conversely, 
implies (1) for p = xn, q =~and a= xyz. 

For b), divide (I) by (p, q)3 = d3 to get p'q'(p' + q') = a3k/d3 = (ak/d)3 = a13, 
(p 1 , q 1 ) = I, to which we employ the argwnent in a) applied to n = 3. 

It was shown in [ 1] that ( 1 ), for (p, q) * 1, n * 3k, does have solutions. 
Following is an additional multiple infinitude of solutions to (l): t 

In the simpler case of(1) where p = q, 2p3 = an, it is easily seen, for n * 3k, 
that all solutions are given by 

(2to nt1 ntk)3 _ ( 2s 3t1 3\)0 2 Pt ... Pk - Pt ... Pk ' (3) 

whenever 3to + 1 = sn, R is any odd prime and ~ is any integer, i = 1, ... ,k for any 
k. 

To satisfy (1) when p * q, (p, q) = d > 1, for n = 3k + m, m = 1 or 2, and 
pq(p + q) =ad· pd(ad + Pd) = ap(a + P)d3, (a, P) = 1: 

When m = 1, choose a= ap(a + p) and d =[ap(a + P>t, to get pq(p + q) 
= [ap(a + p)pk+l = a3k+1 =an. 

Whenm = 2, choose a= [ap(a + p)] 112
, which is an integer when a, P and 

a + p are squares satisfying the Pythagorean equation, and d =[ ap( a + P jk/2, to 
get pq(p + q) = ap(a + p)d3 = [ap(a + p)pklz+I = a3k+z =an. Another solution 
is had by choosing d = [ap(a + P)fk+I and a= [ap(a + P)f, so that pq(p + q) 
= ap(a + P)d3 = [ap(a + p)]6k+4 = a3k+z. 

The writer's original approach to the solutions for p * q did not go beyond 

r The present simplification of the original versions of the solutions was suggested by the 

referee. 
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taking the easiest one of making the d some suitable powe~ of a~( a + p). A 
slight extension is to make d = ail)i(a + p)k, where each of3t + 1, 3J + 1 and 3k 
+ 1 is congruent to 0 mod n, gi'ing choices ofr, sand t for a= arps(a

1
+ PY. 

Going still further, for kno\\n prime power factors of a, P or a+ P say Pmm, ~e 
D is given the factor p~ and a has the factor p~, the u obtained from th~ solunon 
x of the congruence 3x + lm = 0 mod n. Finding the complete solunon to (1) 
appears to be unattainable, since it requires the knowledge of the complete 
factorization of a + p from that of any a and P when (a, P) = 1. 

This present elementary note has two possible consequences:. . 
I. It might encourage mathematicians to seek a proof of FL T that 1s easter than 
the existing one, by trying to prm·e that every p and q in (1) must have (p, q) > 

1. . 
II. It might launch a systematic search for interesting Diophantine equations 

other than ( 1 ), where the solutions must have their g.c.d. greater than 1. 
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A Note on the Unity of a Subring 

.\'ubhash C. -.S1axena 
Coastal Carolina University 

In abstract algebra courses, occasionally, we encounter examples of a ring 
with unity, and a subring also with unity, but the two multiplicative identities 
differ. When does it happen, and how does it occur? The purpose of this short 
note is to scrutinize this apparent dilemma, and develop a theorem which gives 
a necessarv and sufficient condition. Let us explore an exantple. 

Consider Z10, the residue class ring of integers mod 10 whose unity 
(multiplicative identity) is the class [1]. Let us consider the subring S = {fO]. 
[2], [4], [6], [8)}. In this subring, the class (6] becomes the unity, since [2] f6] 
= [2]~ [4] [6] = [4]~ [6] [6] = [6]; [8] [6] = [8]; and of course, we always have 
[O]f6) = fO]. At the frrst encounter, this appears a strange result, but it has an 
easy explanation: 

[xi [6] = [x], for every [x] inS 
is valid in this subring, simply because [ x] ( [ 6] - [ 1 ]) = [x] [5) = [ 0] for every l x] 
inS; since xis an even integer. Therefore, [x][6]- [x] = [0] and so [xjf6] = [x]. 

This type of situation can occur only in rings 'vith zero divisors \vhich have 
more than one solution for the equation ax = a for some a in the ring, because 
this equation becomes a(x- c)= 0; where e is the multiplicative identity (the 
original unity) of the ring. 

Furthem10re, ifu is the unity of a subring of the ring with original unity e~ 
u * e, then u2 = u~ and thus, u must be an idempotent element of the ring. 

Hence, any ring with an idempotent element u other than the unity and zero, 
will have at least one subring, generated by u, consisting of {nu: n E Z}. 
Obviously, it is a subring, since it is an additive cyclic group; and if nu is an 
arbitrary element of this subring, then nu(u) = nu2 = nu, which proves that u is 
the unity of this ring. 

Also, only rings with zero divisors can have idempotent elements other than 
the identity, since it is known that in a ring without zero divisors the only 
idempotent elements are zero and the multiplicative identity [Refs. 1, 2 J. Thus. 
we have established the following theorem. 

· .. 
Theorem: A necessary and sufficient condition that a subring of a ring ~ has 
a multiplicative identity different from that of the original ring is that R has an 
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idempotent element other than zero and unit) . 
Not every ring with zero divisors \\ill have this proper!)'. A simple example 

of such a ring is Z8 , which does not have any idempotent elements besides [ 0] 
and [ 11, and thus cannot have a subring with a unity different from that of the 
original ring. 
I wish to thank Dr. Joseph E. Cicero and the referees for their valuable 
suggestions. 
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A Note On An "Unnatural" Isomorphism 

Michael Kinyon 
Indiana University South Bend 

Let VI, Vz, .... vn be subspaces of a finite dimensional vector space. Viar [2] 
proved the following extension of the second isomorphism theorem for vector 
spaces: 

Vt +···+Vn V2 V3 V,l 
--- •,:; __ x x ... X---~--

V1 V1n V2 (V1+V2)n V3 (V1+···+V,
1
_ 1)n V

11 

(1) 

Viar~ s proof does not explicitly give the isomorphism, but instead compares 
the dimensions of both sides. Viar remarks that it seems unlikely an explicit 
isomorphism will be found. The purpose of this note is to provide further 
evidence of the '"'"unnaturalness" of (I) by sketching a different proof that 
suggests exactly where the trouble lies. 

Applying the second isomorphism theorem itself to each of the factors on the 
right side of (I) gives the equivalent, but more suggestive 

V +···+V V +V V1+V2+V3 V +··· +V 
1 n !: _1 _2 X X ... X J n (2) 

V1 V1 V1+V2 V1+···+Vn-J 

which is what \Ve will actually prove. ln fact, it is enough to prove (2) for three 
subspaces VI, V2, V3 For asswning this case proven, we have for nz3, 

V1+···+V V +···+V (V +···+V )+V ___ n !: J n-1 X 1 n-1 n 

V1 V1 V1+·· ·+Vn_1 
(3) 

and the induction hypothesis that (2) holds for n-I subspaces implies that it 
holds for n subspaces. 

The first isomorphism theorem for vector spaces applied in this context gives 
the isomorphism 

Vt +V2+VJ Vt +V2 Vt +V2+VJ 
-------------/ ~-------

VI vl vl +V2 
(4) 

lhis is equivalent to the exactness of the sequence of homomorphisms 

0 
V1+V2 1 V1+V2+V3 1 V1+V2+V3 0 (5) 

---t 
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Here 1 is the inclusion that sends x2 +V1 as a coset in (V1 + V2 )N1 to x2 +V1 
as a coset in (V1 + V2 + V3)Nh and f is (well-)defmed by f(x2 + x3 + V1) = x2 

+V1 +V2 . Exactness means that the image of each homomorphism is the kernel 
of the next homomorphism in the sequence [ 1, p.3 26 j. 

So far, nothing we have said is specific to vector spaces; evel)1hing holds 
for abelian groups. Now comes the ''unnatural'" part. It is a theorem that evel)' 
short exact sequence of vector spaces (like our (5)) splits [1 , p.328). The 
meaning of this is quite simple. The exactness of 

V1+V2 1 V1+V2+V3 0----+--
v. v. 

(6) 

is equivalent to asserting that 1 Is mJective. But every injective linear 
transformation between vector spaces has a left inverse: that is, there exists a 
linear transformation K: (V1 + v2 + V3)Nl (V1 + v2 )N1 such that K0 1 is 
the identity mapping on (V 1 + V 2)N 1. Similarly, the exactness of 

V1+V2+V3 f V1+V2+V3 0 (7) 
V

1 
----+ V

1
+V

2 

is the same as asserting that f is surjective. But every surjective linear 
transformation between vector spaces has a right inverse; that is, there exists a 
linear transformation g: (V 1 + V 2 + V3)/(V 1 + V 2 ) ----+ (V 1 + V 2 + V3)/ V 1 such 
that fog is the identity mapping on (V1 + V2 + V3)/(V1 + V2 ). 

If a short exact sequence like (5) splits as we have described, then it follows 
that the middle space in the sequence, which in our case is (V 1 + V 2 + V 3)N 1, 

is isomorphic to the direct product of the other two spaces, (V 1 + V 2 )N 1 x (V 1 
+ v2 + V3)/(Vl + v2) . The desired isomorphism in our case is JCXf . As in [ 1, 
p.328], we leave the details as an exercise for the reader. This concludes our 
sketch of the proofof(2). 

The "unnaturalness" of this arises in the construction of K and g. The usual 
argument is to choose bases for all the spaces and define K and g in terms of 
these bases. (The existence of a basis for an arbitrary vector space is guaranteed 
by Zorn's Lemma (see, for instance, [1, p.231]); this complication is avoided in 
the finite dimensional case, which is the setting of [2].) In the absence of 
additional structure such as an inner product, an arbitrary vector space does not 
have a "canonical" basis. Thus there is no "canonical" choice ofK and g. 

We close by noting that a trap awaits the unwary here, but it makes a good 
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exercise in understanding how mappings are defined on coset spaces. It might be 
tempting to define, say, g by g(x3 + V1 + V2) = x3 + V1. We leave it to the reader 
to check that this is actually not well-defined. 
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Cubic Connections: An Attack on Antiquity 

Richard L. Francis 
Southeast Missouri ,S'tate University 

The fourth decade of the nineteenth century was to prove a productive 
period in algebraic advancement. Many of the rapidly unfolding group theory 
developments ofEvariste Galois (1811-1832) from the earlier part of the decade 
(but published posthumously in 1846) were supplemented by critical fmdings in 
the theory of equations by Pierre Laurent W antzel ( 1814-1848). W antzel, of the 
Ecole Polytechnique of Paris, resolved at long last two of the famous problems 
of antiquity. The year was 1837, roughly two and a half millennia following the 
posing of the famous problems. Such a challenge had thus extended from the 
earliest years of demonstrative Greek mathematics. Resolution rested on a 
significant insight in the case for algebraic equations and the overall matter of 
irreducibility. 

W antzel' s proof of the impossibility of trisecting the general angle with the 
Euclidean tools of the unmarked straightedge and compass appeared in Journal 
de Mathematiques, a publication of the mathematician Joseph Liouville ( 1809-
1882). [Coincidentally, this was the same periodical which printed the group 
theory findings of Galois as mentioned above.] The proof was accompanied in 
the journal by a demonstration of the impossibility of the Deli an construction, 
that of duplicating a cube. Remarkably, the tools of algebra were utilized to 
resolve what was perceived historically as a purely geometric problem. 

Trisection and the Cubic Criterion 

The critical condition employed by W antzel focused on a cubic equation 
with integral coefficients and the theorem that if such a cubic equation has no 
rational roots, then none of its roots are constructible (with the Euclidean 
instruments). Using a trigonometric identity for cos 36, it can be shown that cos 
20° (and hence, the 20° angle) is not constructible. Accordingly, the 
constructible 60° angle cannot be trisected. Interestingly, some attribute this 
resolution indirectly to Carl Friedrich Gauss (1777-1855). It is regarded as a 
corollary to his regular polygon constructibility standard as proved in part in the 
Disquisitiones Arithmeticae (1801). Should such a standard express both 
necessary and sufficient conditions of regular polygon constructibility, then the 
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regular nine-sided polygon would be shown non-constructible (and similarly for 
its 40 o central angle). It would follow that the 120 o angle could not be trisected. 
Nevertheless, many prominent historians do not credit Gauss with prQvit1g the 
necessity of the standard (today a well-kno"n theorem), only the sufficiency. 

It can be shown that n-secting the general angle is possible if and only if n 
is a power of 2, a result which follows immediately from Gauss's regular 
polygon constructibility standard. Moreover, the degree (basic unit of 
sexagesimal measure) proves non-constructible; otherwise, the 20° angle could 
be constructed by angle repetition. 

Duplication and the Cubic Criterion 

W antzel further reduced the problem of cubic duplication to that of 
constructing the cube root of 2. This is precisely the length by which the edge 
of a given cube must be multiplied in order to effect the desired duplication. The 
argument parallels the demonstration above. As x3 

- 2 = 0 has no rational roots, 
none of its roots (including the cube root of 2) are constructible. This famous 
problem also has a far-reaching generalization. By the same cubic connection, 
it can be shown that a cube cannot be triplicated (nor multiplied in volume by 
any non-cubic integer). This is an astronomical advancement over the 
elementary forerunner problem of duplicating a square by the simple 
construction of the square root of 2. 

The Cubic Criterion Conjecture 

The central cubic theorem ofW antzel has thus proved a powerful tool in its 
attack on antiquity. But, does it admit a generalization to higher degree 
equations? That is, if an algebraic equation of degree 3 or more has no rational 
roots, does it follow that none of its roots are constructible? Consider an attempt 
at generalization by letting the degree of the algebraic equation be any odd 
integer greater than 3. For example, let the degree of the equation be 5. Also 
consider the equation 

(x - {i) (x + {i)(x 3 - 2) = 0 
which is 

· ... 

(x 2 - 2)(x 3 - 2) = 0. 
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This equatiQl\ x ~ - 2x 3 - 2x 2 + 4 = 0, clearly has integral coefficients (i.e., 
is algebraic) but has no rational roots. It is also of degree 5. Yet /i is 
constructible. It is the hypotenuse of a right triangle Vti.th each leg of unit length. 

By counterexample, the generalized conjecture above is thus false. Nor can 
one find select integral exponents n greater than 3 for which the algebraic 
equation 

n n-1 n-2 O a0x + a1x + a2x + ... + an = 
never has constructible roots in the event none of its roots are rational. Note that 

(x - /i)n(x + {i)n(x 3 - 2) = 0 
is an equation of degree 2n + 3, and thus ranges in degree over all odd integers 
greater than 3. Rejection of the even case follows in a similar manner bv use of 
~~~ . 

(x - {i)0 (X + {i)n = 0 
as n ranges over the positive integers. 

4 8 
Clearly, ?f., "{i, etc. are all constructible by repeated square root 

extraction Note too that x4 
- 2 = 0 has no rational roots, yet all of its real roots 

are constructible. A contradiction would thus appear at such points should one 
attempt to apply the erroneous generalization above. 

The rejected cof\iecture may otherwise have forced the geometer to look 
beyond the three dimensions of familiar Euclidean space. The renowned 
problem of cube duplication, fully resolved, would have been left far behind in 
a quest for a higher order dimensional variant on the Delian problem and the 
constructing of the nth root of 2. It is difficult to imagine such a modified 
problem in a fifth (or higher) dimensional setting. Analysis raises various 
questions of hyper-space and the counterpart in extended geometric settings to 
the conventional cube of Euclid's geometry. 

Quadrature and the Algebraic Equation Connection 

The remarkable year of 183 7 witnessed the resolution of two longstanding 
problems. Disposition of the third famous problem, that of squaring the circle, 
occurred in 1882. It too was a consequence of advancements in the theory of 
equations. The cubic connection however was not the sole means to this end. 

Essentially. the problem reduced to a demonstration of the non-
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constructibility of 1t. Charles Hermite (1822-190 l) proyed in 1873 that the 
natural logarithmic base e cannot occur as a root of an algebraic equation (and 
is thus transcendental). Building on this result, C. Ferdinand Lindemann (1852-
1939) just nine years later verified that 1t is also transcendental. · As no 
transcendental length is constructible, the famous quadrature construction. that 
of squaring the circle, was shown impossible. 

An interesting cubic connection surfaces however. Disposition of the angle 
trisection problem hinged on sho,ving that cos 20°, though algebraic, is not 
constructible. Similarly, disposition of the cube duplication problem rested on 
shoVti.ng that the cube root of2, also algebraic, is not constructible. However, 
the number 1t falls completely outside the realm of algebraic numbers. It cannot 
occur as the root of the cubic (algebraic) equation or any other such equation 
(whatever its degree). This classification of 1t identifies the impossibility of 
cubing the sphere, a three-dimensional variation on squaring the circle. [Note: 
if 1t i~ not constructib.le, n~ither is ~ . As multiplication of se~ents is a valid 
Euclidean construction, Jt follows that the constructibility of {i would imply 
the constructibility of 1t.) 

The problems of antiquity continue to fascinate the mathematician of today. 
By means of further abstraction and generalization. implications far transcending 
the geometry of the ancient world come more clearly into focus. Included among 
them are such pursuits as asymptotic constructions, famous problems in a non­
Euclidean setting (such as the squaring of a circle in spherical geometry), higher 
dimensions, or the Morley Triangle Theorem and its abundant angle trisectors. 
The tools of disposition include algebraic approaches as symbolized by cubic 
connections and the works ofWantzel. Techniques thus extend from the theory 
of equations and group theory notions to higher forms of analysis. All convev 
a picture of a remarkably unified field of study. -
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Change Ringing: A Connection Between Mathematics 
and Music 

Danica A. Nowosielski (student) 
Russell Sage College 

The object of change ringing is to ring a given set of bells through all 
possible permutations while moving methodically from one combination to 
another ''ithout repetition of any sequence. There are certain rules that must be 
followed. Change ringing is comected to mathematics as changes can be written 
as transpositions of bells in adjacent positions. In addition, changes may be 
mapped onto a Hamiltonian circuit. This article discusses the breakdown of the 
permutations into right and left cosets of the nth dihedral group, a subgroup of 
the symmetric group of permutations on n letters. 

OVERVIEW 
Bell ringing may be seen as an art by most people, but to change ringers it 

is also a science with a basis in mathematics. Change ringing involves a set of 
bells that are rung through all possible permutations (Tufts, 1961). The main 
objectives are to: 
(1) ring all p<)ssible sequences of a given set of bells; 
(2) move methodically from one combination to the next· 
(3) avoid repetition of any sequence. (DeSimone, 1992) 

Fabian Stedman, a Cambridge printer, investigated the possibilities of 
change ringing (Camp, 1974) and published its formal rules in 1668 in his 
Tintimalogia (The Art of Change Ringing) (White, 1987). These rules include: 
(I) the first and last change are both rounds (ringing the bells in order from 

the highest to the lowest); 
(2) no other change is repeated; 
(3) no bell moves more than one position from one change to the next~ 
( 4) no bell remains in the same position for more than two consecutive 

changes; 
( 5) each bell does the same amount of work; 
(6) the method used is palindromic. (White, 1983) 

Change ringing societies began to form in the 1400's and competitions used 
to be quite popular (Hatch, 1964). Churches had peals of bells, thus allowing 
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the bells to be used for both religious purposes and change ringing (Coleman, 
1971). 

"The church bell is usually hung in a frame on an axle. The bell is~.itmg by 
pulling on a rope that goes around a wheel fastened securely to the axle" (Hatch. 
1964, p. 32). Such a setup allows control over when the bell is rung in relation 
to others and thus is suitable for change ringing. There are change ringing teams 
that practice and perform, ·with generally one person for each bell and at times 
an additional person to conduct (P. Price, 1983). The ringers are allowed no 
memory aids to assist in their ringing (White, 1983). The ptu])ose of the 
conductor, therefore, is to instruct modification of the ringing pattern at the 
appropriate time (White, 1987). 

Change ringing is almost exclusively an English sport. Because of this 
England has been called the "Ringing Isle." There are a few churches that 
change ring in Australia, Africa, Canada, and the United States. All the bells 
used, however, were imported from England (Camp, 1974). 

In the Eighteenth Century, change ringing in England ranked as a popular 
sport with both hunting and football. It is used as both a form of entertainment 
and exercise. Change ringing uses the same number of muscles as rowing. 
While it is tiring, it does not overtax the muscles (Coleman, 1971). 

Since change ringing is also a sport that can cause thirst, churches used to 
provide jugs of beer in the bell tower to sustain the ringers (P. Price, 1983). 
The presence of refreshment is often necessary as peals can take some time to 
perform. In common, seven bells are used and the resulting 5040 changes take 
slightly more than three hours to ring. In 1767, a peal on eight bells lasted 
twenty-seven hours (Tufts, 1961). This record was broken in 1923 when a peal 
was nmg at the Church of St. Chad in Chesire, England by the Chester Diocesan 
Guild on eight bells. The peal of Kent Treble Bob Major rang 17,280 changes 
and took ten hours to complete. A ten bell peal (3,556,800 changes) is estimated 
at 105 days of continuous ringing. A peal on twelve bells (479,001,600 
changes) would take 137 years to ring (Hatch, 1964). 

GENERAL INFORMATION 
A full peal on n bells produces n! changes. These changes can be prod~ced 

in many different ways. The easiest way to begin creating changes is to use a 
plain htmt. In the plain hunt, the first or lead bell moves through each position 
from one change to the next until it reaches the back position or is behind where 
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it remains for another change. It then returns to the lead by reversing its path. 
For n bells, the plain hunt produces 2n changes with each bell ringing twice in 
every position (Wilson, 1965). 

The speed (or frequency of repetition) with \Vhich a bell is rung varies 
depending on where it is within the hunt. When it is hunting up from the lead. 
there are n other bells rung between each strike. While going down to the lead. 
n-2 bells are struck between rings of the same bell. Thus. a bell hunting do,,n 
moves "faster" than a bell hunting up from the lead. When rounds are rung over 
and over (round ringing), there are n-1 bells ringing between each strike so a 
bell in round ringing moves \\lith intermediate speed (Wilson, 1965 ). 

The plain hunt on three bells produces all the possible changes (2n = n! for 
n = 3 only). The resulting changes with the first bell hunting are as follows: 

123 
213 
231 
321 
312 
132 

A return to rounds ( 123) at this point would complete the peal (DeSimone, 
1992). 

For groups of more than three bells it is necessary to vary the plain hunt in 
order to avoid a premature return to rounds and produce more of the possible 
changes. An example of the types of variations is easily illustrated by the four 
bell case. With four bells, the variations used are called making second place 
(a specific bell rings twice in the second position) and dodging (two bells 
interchange places in ringing order from one change to the next). Beginning as 
always vvith rounds, the four bells are taken through a plain hunt by the lead 
bell. When the lead bell returns to the first position, it remains there for the next 
change while the second bell makes second place. The third and fourth bells 
dodge at this point. The resulting change is called a lead end and is produced in 
order to avoid returning to rounds before all the possible changes have been 
nmg. Then, the first bell plain hunts once again. Second place is made and the 
last two bells dodge at the hunt's conclusion to make the second lead end. This 
process is repeated a third time to return to rounds and complete the full peal of 
4! or 24 changes (Wilson, 1965). 

This example shows that there are n-1 lead ends produced by this type of 
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method on n bells. For four bells the method is called Plain Bob Minimus and 
on more than four (such as six) bells it is Plain Bob Minor. With six bells, five 
leads are produced with the fifth and sixth bells dodging at the same time .as the 
third and fourth. In the Plain Bob method, n-1 of n bells are working bells (bells 
that dodge and make place in addition to plain hunting) which corresponds to the 
number of lead ends produced (Wilson, 1965). 

The Plain Bob Minor method on six bells produces five leads of twelve 
changes each or only sixty of the full 720 changes associated with a full peal on 
six bells. Therefore, other variations are necessary to obtain the other 660 
changes. Bobs and singles are two other variations which can be used to 
procure more changes. 

The bob alters the position of three bells. The lead bell remains in the lead 
while bells two and three continue in their respective hunting courses. The bell 
in position four remains there, making fourth place. The remaining bells (five 
and six for the six bell case) dodge in pairs (Wilson, 1965). 

The use of bobs in Plain Bob Minor on six bells, however, produces a 
maximum of360 out of the possible 720 chances. The use of singles increases 
this number. The single affects only two bells and has the second, third, and 
fourth bells making place. The lead bell remains at the front and the remaining 
bells (five and six in this example) dodge in pairs. As the peal continues, the 
third place bell ,vill hunt to the back without going to lead (Wilson, 1965). 

THE MATHEMATICS OF CHANGE RINGING: GROUP 
THEORY 

A permutation is a rearrangement of elements in a set. It must be both one­
to-one and onto. A function mapping elements from one set to another is called 
one-to-one if distinct elements in the first set are assigned to distinct elements in 
the second set. A function is onto if for all elements in the second set, a 
corresponding element in the first set can be found. 

The set of all permutations on a given set with n elements is called the 
symmetric group on n letters and generally denoted by Sn. This group has n! 
elements. The symmetric group has many subgroups, one of which is the 
dihedral group denoted by Dn. Dn is the nth dihedral group and conta~ as 
elements the symmetries of a regular n-gon. The order of dihedral groups is 2n 
whereas the order ofthe symmetric group is n!. These two orders will be equal 
only for n = 3 (Fraleigh, 1994). 



536 PI MU EPSILON JOURNAL 

If H is a subgroup of a given group G, then the left and right cosets of H are 
subsets ofG defined as follows: for left cosets, a given element ofG is multiplied 
on the left of every element in H to generate the new subset ( aH = { ahlheH}). 
Likewise, right cosets are generated by multiplying every element in H on the 
right with a given element from G (Ha = {halheH} ). 

Change ringing can be used to generate dihedral groups out of a set of 
permutations. On is called the hunting group and is generated by a simple plain 
hwlt. It gives a block of 2n changes. A move such as making second place and 
dodging remaining bells is used to get out of the hunting group and link various 
hunting groups together (White, 1983 ). 

Table 1: The set of changes on four bells 

1 2 3 4 1 3 4 2 1 4 2 3 
2 1 4 3 3 1 2 4 4 I 3 2 
2 4 1 3 3 2 I 4 4 3 I 2 
4 2 3 1 2 3 4 I 3 4 2 1 
4 3 2 I 2 4 3 1 3 2 4 1 
3 4 1 2 4 2 I 3 2 3 I 4 
3 l 4 2 4 l 2 3 2 l 3 4 

l 3 2 4 1 4 3 2 I 2 4 3 

1 2 3 4 

Transposition Rule: [(AB)3(AC)]3 

with A= (12)(34) B = (23) C = (34) 

Table 1 shows the full set of changes on four bells. The first colwnn of 
eight changes represents. the dihedral subgroup 0 4, also called the octic group, 
which holds the symmetries of a square (Fraleigh, I994 ). We use transposition 
C to get out of that group into two more subgroups before returning to rounds 
and completing the sequence. If the first eight changes are denoted as the set H, 
a subset ofS4, then the second column of eight changes forms the right coset of 
H using (243) as the element from S4• Likewise, the final eight changes form the 
right coset ofH using the element (234) from S4 (Budden, 1972). If the entire 
group of changes on four bells is denoted as S4, then we can represent the 
changes on four bells as a decomposition into the following disjoint right cosets: 
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S4 = 0 4 1_, 0£243) u OJ234). In fact, the methods used by change ringers 
decompose symmetric groups into LaGrange cosets (Fletcher, I956 ). Change 
ringers were doing this t) pe of coset decomposition into S) nnnetric groups .a full 
century before LaGrange (White, 1983). Similarly, change ringing on five or 
more bells can be represented as right cosets of the initial dihedral subgroup 

formed using the plain hunt. 
From Table 1, we see that (AB)3AC = (243) corresponds to the change 1342 

at the top of the second colunm. If we denote 1342 by wand recall that the first 
eight changes on four bells (Table 1, first column) represent 0 4• then the two 
subsequent sets of eight changes can be denoted by the left cosets wO 4 and 
"y204. The interested reader may fmd a discussion of left cosets in Budden's The 
Fascination Qf Groyps. 

The transpositions denoted by A= (12)(34), B = (23), and C = (34) for the 
four bell case are also used as the generators for the symmetric group on four 
letters. The word denoted by w = (AB)3AC is a plain lead end as it takes the 
bell in the treble position from the lead and returns it there after a number of 
changes. It can be used successively to form the plain course of the extent. 
Such a course is denoted by w = roWlds for the plain bell case. In general w n-

1 

\\'ill given- 1 plain leads on n bells (White, 1987). 

CONCLUSION 
The evolution of bells from hand held rattles to the modern day inverted cup 

shape mounted on a wheel led to many interesting discoveries not only in bell 
making, but also in bell ringing. Mounting the bell on a full wheel instead of a 
half wheel allowed the ringer to use a rope and have better control over both the 
swinging of the bell and the speed of such a swing. Because of this, it was found 
that a bell could be kept upright and therefore allowed different ringers to change 
the place in which their bell sounded. This led directly to the art and science of 
change ringing. 

As bells are rung through their various changes according to the rules of 
change ringing, various mathematical concepts take shape. Perhaps the most 
interesting mathematical connection to change ringing is in the area of group 
theory. Changes can be used effectively to find dihedral subgroups of the 
symmetric group on n letters as well as produce left and right cosets of various 
groups within the set of all permutations on n letters. 

There are other mathematical connections not discussed in this article. 
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Since bells may move only one place in ringing order, changes may be 
represented easily as a string of transpositions which correspond to pairs of bells 
which swap places. In addition, change ringing also provides an algorithm by 
which a Hamiltonian circuit can be found on a Cayley graph. It is one of the few 
ways in which such a circuit can be found quickly and simply. 
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The Periods of the Digits of the Fibonacci Numbers 

,\

1he rwood Washburn 
S1eton Hall University 

The present paper is a record of the work in the Junior Seminar of the 
Department of Mathematics and Computer Science at Seton Hall University in 
the Spring Semester of 1996. The pariticipants were Jennifer Aigner, Patricia 
Hegarty, Thin Due Nguyen, Deanna L. Rusnak, Keith Sadlowski, Daniel 
Stewart, Amy Troy, and Sherwood Washburn. 

The topic of the Seminar was the paper by Dov J arden, ··on the Periodicity 
of the Last Digits of the Fibonacci Numbers", in the Fibonacci Quarterly [41. 
In this paper J arden stated the Theorem below without proof, and the Seminar 
was devoted to working out the proof. 

The paper of Wall [ 6] is an excellent reference for the sort of questions we 
shall discuss. One could also consult [ l ] , [ 2], [ 3], and [ 5]. 

This paper was much improved by the comments of the referee, who 
deserves my wannest thanks, and the thanks of all the participants in our 
Seminar. 

The Fibonacci sequence is defined as follows: the initial values are 
F0 =0 and F1 = l 

with the recursion 
F =F + F n n-1 n-2 

ifn >- 2. 
Here is the statement of J arden's Theorem: 

Theorem 1. The period of the last digit of the Fibonacci nwnbers is 60~ the 
period of the last two digits is 300; and if d ~ 3, the period of the last d digits is 
15 · 1od-l. 

The following Theorem was proved by Lagrange. 

Theorem 2. The Fibonacci sequence in Zn is periodic, for every positive 
integer n. 

The Theorem is easily proved by applying the Pigeon-Hole Principle to 
consecutive pairs of congruence classes in the Fibonacci sequence to show that 
some pair of consecutive classes in~ must recur, and then running the recursion 
forward and backwards. 
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Wall [[6], Theorem 1, 525-526] gives the same proofofthis result. Let us 
compute the Fibonacci sequence in Z2~ Z3• and in Z4. 
The Fibonacci sequence in Z2,;, 0, 1. l, 0. 1, 1, .... The period in Z2 is 3: 
The Fibonacci sequence inZ3,;, 0, 1, 1. 2, 0. 2, 2, 1, 0, l, 1, .... The peri(}d in 

~ is 8. 
The Fibonacci sequence in~: 0, l, l, 2, 3, l, 0, I, 1. .... The period in Z4 is 6. 

In general we may ask 
What is the period of the Fibonacci sequence in Z/ 
Our question is 
What is the period of the last d digits of the Fibonacci numbers? 

Or equivalently, 
What is the period of the Fibonacci numbers in Z 10d? 
Recall·the 
Chinese Remainder Theorem 3. If m and n are positive integers and if 
g.c.d.(m. n) =I, then the mapping zmn-+ zm X zn which sends [k] to ([k], [k]) is 
a ring isomorphism. 

Lemma 4. If A(n) is the period of the Fibonacci sequence in Zn. and if 
s1 s2 5y 

n= Pt Pz "'Pr 

IS the prime factorization 0! fl. the~ /_ 
51

) /_ 
52

) /_ Sy)~ 
A(n) - l.c.m.lA\Pt .A\P2 , ... ,A\Pr r 

Wall ([6], Theorem 2, p. 526] gives a proof of this result. 
In the problem of finding the periods of the digits we are concerned with 

finding the periods of the digits modulo powers of ten. so our problem can be 
reduced to the following: 

What is the period of the Fibonacci sequence in Z2d and in Z!!d? 
We can solve this problem in two steps if we make a simple observation 

about the period of the Fibonacci sequence in Zn for any positive integer n: 
namely that the elements of Zn in a period can be arranged in the follo\\'-ing way: 

0 l I 2 m 

0 m m 2m m2 

0 m1 m2 2m2 mJ 

· .. 
0 mr-1 mr-1 2mr-1 mr= 1 

0 
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We shall call the integer m the multiplier of the Fibonacci sequence in Z
0

• 

Notice that m must be a unit in Z0 , and if r is the order of m in Zn ·, and if a(n) is 
the length of any row in the array above, then the period of A(n) satisfies the 
equation A(n) = r · a(n). 

The concept of the multiplier seems to be due to Carmichael [[2], pp. 354-
355], who also proved the fonnula which we have just stated. 

We shall use this equation to compute the period. First consider two 
representative examples. 

The Fibonacci sequence in Z8 : 

0 1 I 2 3 5 
0 5 5 2 7 
0 

The Fibonacci sequence in Z5: 

0 1 1 2 3 
0 3 3 l 4 
0 4 4 3 2 
0 2 2 4 
0 

Notice that each of these arrays has the general form which we have 
described, and also that the multiplier in Z8 has order 2 and that the multiplier 
in Z5 has order 4. The period in Z8 is 12 and the period in Z., is 20. 

Using the isomorphism 
Z10 -. Z2 x Z5 

and the facts above we see that the period of the Fibonacci sequence in Z10 is 
l.c.m.(3,20) = 60 

In general, we can find the period of the Fibonacci sequence in Zn for any 
n if we can solve two problems: 
The Divisibility Problem: 

9iven a positive integer n. what is the smallest positive integer a(n) such 
that n divides F a<n>? 
The Multiplier Problem· 

If m is the multiplier for the Fibonacci sequence in Zn, what is the order r of 
min zn•? 

Before \Ve solve these two problems in the case where n is a power of 2 or 
a power of5, and hence solve the problem of the digits, let us find the period of 
the first two digits of the Fibonacci numbers. We will use the isomorphism. 

n BONACCI NUMBERS, WASHBURN 

Z100 ... z~ x Z2'i 
and since we know that the period in Z4 is 6 \Ve need the period in Z::'i· 
\\C have 

0 1 2 3 5 8 13 21 9 
5 14 19 8 2 10 12 22 9 6 
15 21 11 7 18 0 18 18 11 4 
15 19 9 3 12 15 2 17 19 19 
5 16 21 12 8 20 3 23 24 
0 24 24 23 22 20 17 12 4 16 
20 11 6 17 23 15 13 3 16 19 
10 4 14 18 7 () 7 7 14 21 
10 6 16 22 l3 10 23 8 6 14 
20 9 4 13 17 5 22 2 24 
0 I 

We see that the period in Z25 is 100. Therefore the period in Z100 is 
l.c.m.(6JOO) = 300 
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Solutions to the Divisibility Problem and the Multiplier Problem can be 
found in the papers of J.H. Halton (3] and J. Vinson [ 5]. We shall give our O\\on 

solutions to these problems, first in the case of a power of 2. We have given 
solutions for n = 2 and n = 4 above, so asswne that 

n = 2d where d ' 3 
The solution is given by the following Theorem. 

Theorem S. If d ? 3 then 
(i). 2d divides FHd-2,2d+I does not divide this Fibonacci number, and 2d 

does not divide any smaller Fibonacci number. 
(ii). The multiplier for the Fibonacci sequence in Z2d is congruent to 2d-t + 

l (mod 2d). 
In order to prove this Theorem we need to recall a few facts about Fibonacci 

numbers and several identities. 
First recall that the Lucas numbers are a companion sequence to the 

Fibonacci numbers. The Lucas numbers are defined by the initial values 
L0 = 2 and L1 = 1 · .. 

and the recursion 
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ifn :::: 2. 

The Fibonacci numbers and the Lucas numbers are expressed by the 
following. 

Binet's Formula 6. If th = I + /5 and th' = I - /5 then 
't' 2 't' 2 ' 

F = ( <P )D - ( <P, )D 
n {5 

Ln = (<j>)" + (<j>'t. 
The following two formulas follow easy from Binet's Formula. 

F2n = FnLn 

We will need one other formula: 
Fg.c.d.(rn,n) = g.c.d.(F m,Fn) 

Carmichael [[I], Theorem VI, p. 38] ga-ve a proof of this. 
Now assume that d 2 3. First we must prove that 2d divides F

3
.
2

d -2, and that 
the same Fibonacci number is not divisible by 2d+J. and we shall prove this by 
induction on d. Notice that F6 = 8: this starts the induction. 
No\v 

F 3.2d- I = F 3-2d-2 • L3.2d -2 

By induction 2d divides the Fibonacci number on the right hand side, and 
2d+ 1 does not. The identity 

2 2 L
0 

- 5F 
0 

= ( -1)0 
• 4 

with n = 3 · 2d-2 shows that Ln is divisible by 2 but not by 4, and this completes 
the proof by induction. 

We must also prove that 2d does not divide F n for any index smaller than n 
= 3 · 2d-z. To prove this. apply the identity 

Fg.c.d .. (rn,n) = g.c.d.(F m' Fn) 
with m < 3 · 2d-: and n = 3 · 2d-z. Then the conclusion is obvious by induction if 
3 divides g.c.d(m, n). If not, a separate inductive argument, using the identities 
above, proves that F zd is always odd and this fmishes the solution of the 
Divisbility Problem for powers of two. 

Finally we must prove that if d 2 3, then the multiplier in Z2d is congruent to 
2d-l + l(mod 2d). Notice that this implies that the multiplier has order in 2 in Z

2
d. 
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Once again we start the induction \vith d = 3, and since we have seen that the 
multiplier is 5 = I + 22

, this starts the induction. Now assume the statement by 
mduction: the binary expansion of the multiplier is 

m = 1 +2d-t + ··· 
Now remember that in Z2d+l 

Using the identity 

We have 
F = F 2 + F 2 = (2d)2 + (2d-t + 1)2 -= 0 + 2d + 1(mod 2d+t) 

3·zd-1+1 3·zd-2 3·zd-2 +t 
which completes the proof 

In paticular we have proved that for d ~ 3, 
ifn = 2d, thenA(n) = 2a(n) = 3 · 2d-1

• 

It remains to solve the Divisibiliy Problem and the Multiplier Problem for 
powers of5. 

Theorem 7. For all positive integers d 
(i). The Fibonacci nwnber F

5
d is divisible by 5d but not by 5d+ J ~ and 5d does 

not divide any smaller Fibonacci number. 
(ii). The multiplier m for the Fibonacci sequence inZ5d has order 4. 
To prove the first part of this Theorem we will use the Second Form of 

Binet's Formula, which follows easily by applying the Binomial Theorem to 
Binefs Formula as stated above. 
Binet's Formula, Second Form 8. We have 

We shall use this formula with n = 5d: clearly the first term of the sum is 
equal to 5d. A formula of Lucas implies that ifO < k < 5d then the binomial 

coefficient ( ~) is divisible by 5<1-e, where e = L k/5 J , and this implies that all 

the terms of the above sum except for the first are divisible by 5d+ l_ It follows 
thatF

5
d is divisible by 5d but not by 5d+t. 

Using the formula 
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F d< > = g.c.d.(F ,F ) g.c. m.n m n 
with n = 5d and I ~ m < 5d we see that Fm cannot be diYisible by 5d. 

To prove that the order of the multiplier m inZy~ is 4, consider the identity 
F n + 1 F n -1 - F: = ( -l)n . 

We have proved that 5d I F5d, and it follows that 5 d I F2.~d· Now use the 
identity. with n = 2 · 5d, and notice that m2 = F2.5d_1 = F2.5d+1 . It follo\vs that 

so 
m 2 ~ ± l(mod5d) 

To show that the order of m is 4, we must prove that the sign is -1. 
Remember that the order ofm is Z5 is 4, and consider the exact sequence 

0 (5)Z5a - -+ Z5a --+ Z~ - -+ 0 
The definition of the multiplier involves only additions and multiplications, 

and so the multiplier is preserved by the maps in this sequence. Since the order 
of the multiplier in z5 is 4' it must be 4 in z5d. This completes the proof 

Now suppose that d ~ 3. Then 
A(lOd) = l.c.m.(A(2d),A(5d)) = l.c.m.(3·2d-I,4·5d)=l5·10d-1 

Finally let us remark that checking this formula for small values of d makes 
an excellent computer exercise. 
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I. Introduction. 

Rearrangement of Series 

Kerry Smith McNeill (student) 
Seton Hall University 

CommutativitY of addition for a finite number of summands is a fundamental 
rrrrv'V"'"h.r of real n~bers. It was therefore naturally assumed by mathematicians 
that commutativity of addition also held for infinitely many summands, i.e .. 
mfinite series. In other words, it was commonly believed that no matter how the 
terms of an infinite series were rearranged, the sum would not be altered. As G. 
Aurelio noted in her article "On the Rearrangement of Infinite Series" [ 1, p. 
641 ], this assumption was shown to be false by A. Cauchy in 1833. Since that 
bme, the ideas and generalizations concerning rearrangements of the terms of an 
infinite series have piqued the interest of mathematicians. 

B. Riemann proved what some consider to be the ultimate result on 
rearranging series of real numbers. In a paper published in 1866 on representing 
fimctions by trigonometric series, Riemann demonstrated that every conditionally 
convergent infinite series of real numbers can be rearranged to converge to any 
real number [8~ p. 97]. For a concrete example of this, consider rearranging the 
alternating harmonic series 

t (-l)n 

n=1 n 

to converge to an arbitrary number, say 2. One simply adds positive terms of the 
series until the sum is greater than 2, then adds on negative terms until the sum 
is less than 2, etc. The reader can verify that the following rearrangement of the 
alternating harmonic series is converging to 2: 

( i + ± + ... + :2) + (-I) + ( 6~ + ... + 4~4) + ( ~I) + .... 

These results are summarized in the following theorem (Rearrangement 
theorem for real numbers). 

00 

Theorem 1. Let L xk be a series of real numbers. The set of all sums of 
k=l 

"" 
rearrangements of L "tc is either 0 (the empty set), a single real number, or .. all 
real numbers. k=1 

547 
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It took 39 years for a similar result to be obtained for infinite series of 
complex numbers. P. Levy proved the result in a paper published in 1905. E. 
Steinitz proved the result for rearranging infinite series of vectors in finite 
dimensional spaces in a paper published in 1913. 

While Theorem 1 is generally known to mathematicians, the post-1866 
results on rearranging infinite series are not as \\tidely known. P. Rosenthal 
published an article in 1987 on the results of Levy and Steinitz with the intention 
of making them more well-kno\\tn in mathematical circles [9, p. 342]. He 
presents a very polished and refmed version of their results as stated in the 
following theorem (Rearrangement theorem for finite-dimensional spaces), 
[9, p. 342]. 

00 

Theorem 2. Let X be a finite-dimensional vector space and L xk an 
k=l 

infinite series of vectors from X. Then the set of all sums of rearrangements of 
co 

L xk is either 0, a linear manifold, or the whole space X. 
k=l 

However, this result is somewhat WlDlotivated, and Rosenthal 's work leaves 
the follo\\ing questions unanswered: How did Levy and Steinitz approach the 
problem of rearranging infinite series? Is there any connection between their 
works? The purpose of this paper is to answer these questions by examining the 
original works ofle\-y and Steinitz to detennine how they arrived at their results 
and to explore the connection between them. 

II. Levy's Results 

Levy's results on conditionally convergent series were published in 1905. 
In the first paragraph of his paper, he states that it is known that a conditionally 
convergent series of complex numbers may take on an infinite number of values 
when the terms are rearranged. Levy then raises the question of whether a series 
of complex nwnbers may be rearranged to have any complex number as its sum 
[6, p.506] and essentially proves the following result. 

00 

Theorem 3. Let L Xtc be an infinite series of complex numbers. Then the 
k=l 
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00 

set of all sums ofrearrangements of L Xtc is either 0, a single complex number, 
k=l 

a line in the complex plane, or the entire complex plane. 
Le"y alludes to the algorithm in Riemann's theorem for rearranging series 

by distinguishing the terms ''1th positive real parts from those with negative real 
parts. Noting this technique is not applicable to complex numbers, he carries the 
idea one step fiuther. He decomposes the original series into three partial series 
and sets up a procedure based on a special case [6, p. 507]. 

The following is an example applying Levy's procedure modified for R2
, i.e., 

representing complex numbers as' ectors in R2
. 

Let i = (1, 0) andj = (0, 1) and consider the following series: 

t _i + t i + j + t -j 
n=l n n=l n n=l n 

Let S= -i + j = (-1, 1) be the desired sum of the series. Using Levy's approach, 
a rearrangement of the given series which converges to S is obtained in the 
following manner. 

Begirming with the vectors Ox= (1, 0), Oy = (0, 1), and Oz = (-1, -1), three 
half lines are dra\\n originating from S, parallel to these vectors. This partitions 
the plane into three regions Ex, Ey, and Ez as indicated on the diagram below. 

y (0,1) 

X 

x (110) 

Diagram 
Le\'y' s procedure is to start with a vector from the series, say the first one 
parallel to Ox in region Ex, and to add on vectors parallel to Ox nntil the lin~ of 
Yectors fomted enters another region, say Ez. Once inEz, start adding on vectors 
parallel to Oz until another region is reached (see Diagram). Continuing in this 
fashion will yield a rearrangement of the original series whose sum is 
s = (-1, 1). 
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By proceeding in the manner described in the preceding paragraph, the 
follo\ving rearrangement of the given series is obtained: 

1 1 1 l 
-1 (l '0)- 2 ( 1. 0)- 3 (l' 0)- 4 ( 1 '0)- 1 ( -1.-1) -2 (-I' -1)- 1(0, 1) 

- _!_( l , 0) - _!_( 1, 0) - _!_( 1 , 0) - _!_( 1, 0) - _!_( 1 , 0) - _I (1 , 0) - - 1 ( 1, 0) 
5 6 7 8 9 10 11 
l 1 l l 1 1 -3( -1, -1)- 4( -1, -1)- 2(0, 1) -12(1,0) -13(1,0) -14(1,0) 

1 I l I l 
-15(1,0)- 16(1,0) -17(1,0) -18(1,0) -19(1,0)- ···, 

which appears to be converging to S = (-1, 1). Levy then uses a complicated 
geometric approach to show that the rearranged series actually converges to S 
= (-1, 1). 

In the last paragraph of his paper, Levy claims that his method may be 
generalized to consider rearrangements of infinite series of vectors in n­
dimensional space [6, p. 511]. His main idea is to decompose the series under 
consideration into n + 1 partial series. This corresponds to the idea of 
decomposing a series of complex numbers, or equivalently a series in R2

, into 
three partial series. Levy does not, however, elaborate on exactly how this 
procedure would work. 

Levy's article is very concise. It offers neither proofs nor examples, and is 
somewhat poorly written. Knopp [5, p. 398] and Kadets [4, p. 1] state that Levy 
proved the result on the description of the set of all rearrangements of a series of 
complex numbers but they make no mention of the fact that he at least 
conjectured the result for n-dimensional space. Rosenthal claims [9, p. 342] that 
it was Levy who first proved the result for n-dimensional space. The fact is that 
Levy did not prove the result, but he was at least aware of it. 

III. Steinitz' Results. 

Steinitz begins the introduction to his paper on conditionally convergent 
series in convex systems by briefly tracing the history of the study of the 
rearrangement of series of real numbers. He introduces the term "summation 
range" of a series. 
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finition 1. Let X be a finite dimensional vector space. The summation 
00 

of the series L ~ where ~ E X, is the set of all vectors x E X such that 
k=l 

L "-..(k> converges to x where L "-n(k> is a rearrangement of L xk. 
t:l k=l k=l 

Steinitz then restates Riemann's result as follows: The summation range of 
conditionally convergent series of real numbers is the set of all real numbers 

[10, p. 128]. Next he considers the summation range of a complex series ~nd 
gJ\'es two brief examples in the complex plane [10, p. 128-129]. The followmg 
example, Steinitz first, demonstrates that the summation range of a complex 
series may be a line in the complex plane. 

Let g be any line in the plane, a a point on g, and w =I= (0, 0) any point 
co 

on the line through the origin parallel to g. Let L 3n be any conditionally 
n=l 

convergent series of real numbers. Using standard vector addition it is easy to 
see that any number of the form a + rw, where r is a real number, will be a point 

00 

on the line g. By Riemann's theorem, the series L 3n can take on any real 
n=l 

value r. Hence the complex series a + a1 w + ~ w + ··· can take on every complex 
value of the form a +rw. Thus the line g is the summation range of the complex 
senes. 

Steinitz second example demonstrates that a series of complex numbers can 
be rearranged to converge to any point in the complex plane. He begins 

00 00 

\\i th two conditionally convergent series of real numbers L 3n and L bn. 
n=l n=l 

00 

Again using Riemann's theorem, L 3n can be rearranged to converge to any 
n=l 

00 

real number a, and L bn can be rearranged to converge to any real number b. 
n=l 

Thus the series formed from the numbers a1, b1i, ~' b2i, ···can be rearranged .. to 
converge to any point in the complex plane. 

Steinitz makes two assertions in his introduction: first, that the summation 
range of a conditionally convergent series of complex numbers will always be 
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either a line in the complex plane or the entire plane; second, that the summation 
range of a conditionally convergent series in n-dimensional space will always be 
a linear manifold or the whole space [10, p. 129]. 

Steinitz initial work was read by E. Landau who informed him of Levy's 
work and expressed some doubt about the correctness of Levy's results. In the 
introduction to his paper, Steinitz states that he arrived at his results in 1906 and 
was totally unaware of Levy's work [10, p.130]. This is obviously the case, as 
the reader will see, for his approach to determining the set of all sums of a 
conditionally convergent series is somewhat different from and more modem 
than Levy's. 

Levy's work, according to Steinitz, is brief, disconnected, and unclear. He 
says the work is incomplete, especially in the higher dimensional cases. He 
acknowledges that Levy must be given credit for proving the result for 
conditionally convergent series of complex numbers, but says that, although 
Levy stated the result for series in n-dimensional space, an actual proof requires 
morethanjustgeneralizinghis (Levy's) procedure [10, p. 130]. In section Vof 
his paper Steinitz gives his original proof for n-dimensional space and 
specifically indicates which points can be deduced from Levy's work and which 
cannot. 

In section VI of his paper Steinitz offers a proof using an entirely different 
approach, one which is shorter and more direct. In order to do this Steinitz 
develops an extensive and cumbersome amount of material on convex systems 
of rays and convex bodies. However, one gains some insight into his general 
approach when he discusses a series rearrangement theorem for a vector space 
of complex numbers with n units [ 10, p. 173]. Steinitz discusses in detail how 
certain conditionally convergent series of complex numbers may be rearranged 
to converge to any given complex number in the vector space. A slight 
modification ofhis approach leads to the following ideas for an. 

Let L xk be a conditionally convergent series of vectors in an with 
k=l 

the following property. Ifr ={xk};=I and r* is the set of all possible partial sums 

of elements from r, then r* is totally unbounded, i.e., unbounded in all 
00 

directions. Now let a be any vector in an. To obtain a rearrangement of L xk 
k=l 

which converges to a , Steinitz proceeds in the following manner. Define 
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gk = lubhk{llxJII}. 
Using the dyadic number system, Steinitz defines an ordering on the partial sums 
as follows. Given any partial sum II, replace each summand xk by 2k . . This 
detemtines a natural number for each partial sum, and thus also an orde"i·mg on 
the set of partial sums. 

Using results proven earlier in his paper, Steinitz shows that based on this 
orderu· m one can obtain a partial sum II which has x1 as a summand and which 
satisfies the condition 

1111 - a II - ngl . 
where n is the dimension of the space. He chooses the first partial sum II (using 
the ordering above) that satisfies this condition and calls it 111• 

Now let r 1 denote the set of vectors which remain when the vectors 
occurring in 111 are removed from r. Then one can choose a partial sum II 
from r; which contains the first element from r 1 as a summand and satisfies 
the condition 

II III+ II- (J 11 - ng2. 
Steinitz chooses the first such partial sum (using the ordering above) and defines 
n2 =II1 + rr. 

Continuing in this fashion yields a sequence of partial sums Ilk-+ a and 

thus a rearrangement of L xk which has sum a. 
k=l 

The following example demonstrates Steinitz procedure. In a2
, let r be the 

sequence 

( I.O),(O,l)( -
2
1 ,o) .( o, ~1 ) .( ~o) ( o.~) .( ~1 .o) .( o, ~1) ,. .. , 

and let a= (-1, 1). In this case, g1 = 1, so ng1 = 2. We want to fmd the first 
partial sum II such that 1111 - a II s 2. Taking the first vector from the sequence 
~1elds 11(1, 0)- (-1, 1)11 = 11(2, -1)11 which is greater than 2, so another partial sum 
must be found. Consider the partial sum consisting of the first two vectors in r, 
1 e. , (1, 0) and (0, 1). Then 11(1, 0) + (0, I)- (-1, 1)11 = 11(2, 0)11 s 2. Since this 
IS the first partial sum (using Steinitz dyadic ordering scheme) that satisfies the 
condition 1111- all s 2, 111 =(I , 0) + (0, 1 ). 

Now r 1 is the set 
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In this case, ng2 = 2. If we begin by taking the frrst vector from r 1 we have 

II<I.0)+(0,1)+( -;.o) -(-1,1)11=11(% o) I 
wilich is less than 2. Thus IT1 = (l, 0) + (0, 1) + ( -±· 0) = ( ±· I) . 

Continuing in this fashion, we find that 

IT3 = ( 1, 0) + (0, I) + ( -
2

1 0) + ( 0, ~ ) + ( 0, ~) + ( ~I , 0) + ( 0, ~) 

+ -0 +- 0 =--(-1) (-1 ) (-1 31) 
6 ' 8 ~ 24' 30 ' 

and II4 is 

(l,0)+(0,1)+( ~1 , o) +( o, ~1 ) +( o,~) +( ~1 .o) +( o,~) +( -
6
1 ,o) 

+( -=!.o) +( _!_ o) +( o -=!) +(-=! o) + (-=! o) +(,-=.! o) + 
8 3 ' ' 4 10 ' 12 ' 14, 

+(--1 o)=(~47) 
16' 1680' 60 . 

IV. Conclusion. 

There is a marked contrast between the works of Levy and Steinitz. 
Although the two arrived at the same conclusions for rearranging infinite series 
of complex numbers and infinite series of vectors in finite dimensional vector 
spaces, their approaches are quite different. Levy's approach is very geometric, 
using the geometry of the plane. Steinitz' approach, while also geometric, is 
more analytic in nature, using norms, convergence, etc. Levy proves the result 
for complex numbers while Steinitz fully investigates the case for finite 
dimensional spaces. 
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The works of Levy and Steinitz essentially expanded the results of Cauchy 
Riemann on rearranging series. As noted previously the results on 

rearranging series of real numbers, complex numbers, and vectors in a-finite 
chmensional space are completely kno\\-n. The natural extension to a 

ideration of rearranging series of vectors in infinite dimensional spaces was 
begwt by Orlicz and continued byDvoretsk-y, Rogers and others. A perusal of 

Mathematical Reviews indicates that research is continuing in this area. 
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Partitions of n into Prime Parts 

Michael Last (Student) 
Davis .. S'enior High School 

The nwnber of partitions of a number n is the number of \vays that n can be 
divided into unordered parts that are positive integers. For example, 5 = 3 +I 
+ l is the same as 5 = I + 3 + 1. and other partitions of 5 include 5, 4 + I , 3 + 
2, 2 + 1 + I + I, 2 + 2 + L and I + I+ I + l + I. To make things more 
interesting, one can look at specific types of partitions, such as those where all 
parts are odd, or all parts are distinct. One of the main things mathematicians 
investigate about partitions is the attempt to define for which types of partitions 
the number of partitions of n are equal for both types of partitions for all n. That 
is~ they ask \vhether there exists a one-to-one correspondence between partitions 
of n from two different types of partitions (for example. the famous 18th century 
mathematician Euler proved a classical theorem that the number of partitions 
into odd parts is equal to the number of partitions into distinct parts for all n). 

Generating functions are a way of representing the number of partitions. 
Consider the infinite series :E aix i. When each ~ is the number of partitions of 
i, then the series is the generating function for the number of partitions of i. 

This paper investigates the consequences of restricting the partitions to prime 
parts, such as 5 = 5, and 5 = 3 + 2, but disregarding 5 = 2 + 2 + l, because I is 
not a prime. Four theorems are proven that demonstrate several properties of 
partitions of n into prime parts. At the end of the paper is a listing of all the 
prime partitions of the integers 2 through 11. 

Theorem 1 : The sequence of the number of partitions of n into prime parts 
is non-decreasing for all n. 

Proof: For every partition of n~ we will find a unique partition of n + I. Write 
the parts in non-increasing order. Each partition of n has 2 as a part or it does 
not. If it does not have a 2, then add I to the last number, divide that number by 
2, and replace the last number by that many 2's. For example, 22 = 7 + 7 + 5 
+ 3 ------ 23 = 7 + 7 + 5 + 2 + 2. 

Note that the new partition has at least t\vo 2's and if the new partition has 
a 3, then it has exactly two 2's. If the partition has one or two 2's, then change 
the last 2 into a 3. Since there is at most one 2~ this is a unique partition. If the 
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non has exactly three 2's. then change two of the 2's into a 5. and keep the 
2. Again. as it has only one 2, thus it is a unique partition. Finally. if there 
four or more 2's. then change a 2 into a 3. There are at least three 2!s~ hence 
partition is again unique. 
A problem arises, however, when you consider the case where your partitions 

n mclude ... 5 + 3 + .. . + 3 + 2 + 2 and ... 3 + .. . + 3 + 2 + 2 + 2, as these will 
p to the same thing. However. this is solved by the follo·wing trick. In the 

c:ase \\here you have ... 3 + ... + 3 + 2 + 2 + 2, let the number of times 3 appears 
be called y. Either y is even or it is odd. If y is odd, then 3 + .. . + 3 + 2 + 2 + 
2 1s odd and divisible by three. thus not a prime number. Add one to this 

ber, and then divide it into a bunch of 2's. For example, .. . + 3 + 3 + 3 + 3 
T 3 + 2 + 2 + 2 would map to ... + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2. 
Smce if there is anything in the . . . (where . . . denotes the list of the numbers 
_ _,.--.......· n. g those written explicitly) of this partition of n + I it is at least 5, this 
as guaranteed not to be generated by one of our previous cases. In the case 
where the ... is empty, we still have a unique partition because the only numbers 
that will map to a partition of all 2's are prime, and 3 + 3 + 3 + 3 + 3 + 2 + 2 + 
2 is not prime. lfy is even, theny < 5 or y > 5. Ify > 5, then map .. . + 3 + ... + 
3 + 2 + 2 + 2 to .. . + 7 + 5 + 2 + .. + 2. This is guaranteed to generate a unique 
partition of n + I because 5 will only appear followed by one or two 2's in the 
absence of3's. Ify < 6, theny = 2 or y = 4. Ify = 2, then map ... + 3 + 3 + 2 + 
2 + 2 to ... + II + 2, which is not generated in any of the above cases. Likewise, 
when y = 4, map ... + 3 + 3 + 3 + 3 + 2 + 2 + 2 to ... + 17 + 2, which is not 
generated by any of the above cases. Note that every new partition has at least 
one 2 or one 3. 

Theorem 2: For n > 8, the sequence of the number of partitions of n into 
prime parts is strictly increasing. 

Proof: The partitions of 8 are 5 + 3, 3 + 3 + 2, and 2 + 2 + 2 + 2. The 
partitions of9 are 5 + 2 + 2, 3 + 3 + 3, 3 + 2 + 2 + 2, and 7 + 2. Hence, there 
are more partitions of9 then of8. For n > 9, we will find a partition of n that we 
have not observed from n - I by Theorem I. To do this, we will find partiti<;!ns 
" ithout 2's or 3's. For 10 ::;; n < 14, 10 = 5 + 5, II = 11, 12 = 7 + 5, 13 = 13, 
and 14=7+7. 

For n > 14, add an appropriate number of 5's to one of the above partitions. 
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We can do this for any number, as the above numbers are congruent to 0, 1, 2, 
3, and 4 modulo 5. As none of these partitions has a 2, or a 3, it is a partition 
we did not form from n - 1 by Theorem l. Therefore, for n > 8, the sequence of 

the number of partitions of n is strictly increasing. 

Theorem 3: The sequence of the nwuber of partitions of n into prime parts 

increases by arbitrarily large amounts. 

Proof: We will derive an algorithm for finding a number n such that the 

number of partitions of n into prime parts is at least k greater than the number 

of partitions ofn- 1 into prime parts. 
Consider multiples of35. There are several partitions without any 2's and 

3's: 5 + 5 + 5 + 5 + 5 + 5 + 5, 7 + 7 + 7 + 7 + 7, 19 + 11 + 5, 17 + 13 + 5, 13 
+ 7 + 5 + 5 + 5, 11 + 7 + 7 + 5 + 5 .. . . If we let h = [n/3 5], where [x] is the 
greatest integer less than or equal to x, there are at least 6h partitions that did not 
come from the techniques of Theorem 1. Hence if you want a jump of at least 
kin the sequence of partitions into prime parts, consider n = 35([k- 1)/6] + 1). 

Note that this means there is a minimum difference in the number of partitions 
of n and n - 1. In other words, there is a minimum number m where, or all 
numbers greater than or equal tom, the difference is arbitrarily large. 

Theorem 4: The number of partitions of n into prime parts is equal to the 
number of partitions of n into parts that are powers of primes, pk, repeated no 
more thanp- 1 times. (For example, 2, 4, 8, 16, ... are powers of 2 repeated no 
more than 1 time; 3, 9, 27, 81, ... are powers of 3 repeated no more than 2 times; 

etc.) 

Proof Examine partitions of the form n into parts that are powers of primes, 
~,repeated no more thanp- 1 times. To find the corresponding partition into 
purely prime parts, take every power pc, and express it in its prime factorization. 
Then, write1his as a sum of the prime. For example, 25 = (5)(5) = 5 + 5 + 5 + 
5 + 5. This gives you a unique partition of n into purely prime parts. This is 
unique because prime factorizations are unique. The same process works 
backwards. For example, 2 + 2 + 2 + 2 + 2 + 2 = (2)(2)(2) + (2)(2) = 8 + 4 
since 12 can be written in the binary system as a sum of powers of 2 in only one 

way. 
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Ahemate Proof The generating function for the number of partitions of n 
mto parts that are powers of primes, pk. but no part repeated more thanp- l 
times is given by 
( I + x2)(l + x3 + x6)( l + x.t)(l + x5 + x10 + x15 + xz0) ... = (l + x2)(1 + x4)(l + 
~ .. . (1 + x3 + x6)(1 + x9 + x1s)(l + x:1 + x54) .. . (1 + xs + x1o + x1s + xzo) 

1 -x 4 1 -x 8 I - x 16 1 - x 9 l - x 27 --- . __ ,, __ . 
1-x 2 1-x4 1-x 8 1-x 3 1 - x 9 

1 -x 8t 

1 -x 21 

1 _ X 25 l _X 125 1 _X 625 

1 -X 5 I -X 25 I -X 125 

1 I I =--·--·--··· 
1-x2 l-x 3 1-x5 

" hich is simply the generating function for the nwnber of partitions of n into 
prunes. 

In summary. we have deduced and proven four theorems with regards to 
partitioning an integer n into prime parts. While we have only looked into 
partitions of n into prime parts thus far, further lines of inquiry could include 
partitions of n into parts that satisfy some polynomial expression, or any other 

class of natural numbers. 
Acknowledgment. I would like to thank Dr. Henry Alder, Professor of 

Mathematics at UC Davis, for introducing me to Number Theory and the 

concept of partitions. I also thank Dr. Alder for his helpful discussions with 

regard to the present paper. 

Prime Partitions of the integers 2 through 11 
2: 2 
3: 3 
4: 2+2 
5: 2+3, 
6: 2 + 2 + 2, 
7: 2 + 2 + 3, 
8: 2 + 2 + 2 + 2, 
9: 3 + 2 + 2 + 2, 

10: 2 + 2 + 2 + 2 + 2, 
11: 3+2+2+2+2 

5 
3+3 
5 +2, 7 
3 + 3 + 2, 5 + 3 ~ 

3 + 3 + 3, 5 + 2 + 2, 7 + 2 
3 + 3 + 2 + 2, 5 + 3 + 2, 5 + 5' 7 + 3 
3 + 3 + 3 + 2, 5 + 2 + 2 + 2, 5 + 3 + 3' 7 + 2 + 2, 11. 



Power Series and Inversion of an Integral Transform 

At/ike Oehrtman, University of Texas at Austin 
Lisa A . Mantini. Oklahoma State University 

Introduction. An integral transform is a transfonnation of the form 
(T{)(s) = j' j(t)K(s.t)dt 

D 

which transforms a given function/ on a domain lJ into a function Tf .- T(f) on 
some other domain. The function K(s. t) is called the kernel of the 
transfonnation For example, if[) is the real line andK (s. t) =( 11 /27t )e rst then T(f) = j 
is the Fourier transform off. and if Dis the positive real line and K (s. t) =e-M 
then T(f) = J is the Laplace transfonn off Integral transforms have been 
studied for over 200 years and are of interest both for their intrinsic beauty and 
for their numerous applications to the study of solutions of differential equations 
and other topics throughout science and engineering (see [2]). An important 
problem in connection with the study of integral transforms is the inversion 
problem, that is, the problem of finding the function/ (t) when its image (Tf) (s) 
under the transform is known. 

A slightly different type of transform~ called the Radon transform (see [6]), 
begins with a function f on Rn and gives a new function on the set of affine 
subsets of Rn of some dimension k < n. If n = 3 and k = 1, for example, we start 
with a function/ on R3 and then form a new function Rf on the space A of all 
affine lines in R3 by saying that, for a line ;, the value Rf (;) should be the 
integral of the original function,{ over ;, 

(RJ)(;) = I .f = I I ~~-
~ IR 

as long as this integral converges for all ; E A. The Radon transform has 
applications in the field of medical x-ray tomography, since the intensity of the 
spot of light on an x-ray is actually an integral of the density of the body being 
x-rayed along the line followed by the x-ray's beam. Thus the problem of 
figuring out the three-dimensional shape of organs inside the body from a t\vo­
dimensional x-ray is the problem of inverting a Radon transfomt. A modem 
generalization of the Radon transform, called the Penrose transform (see [12]), 
applies to functions of complex, instead of real, variables and involves 
integration over complex subspaces of the original space. The Penrose transform 
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used to study the differential equations of mathematical physics such as 
ta~well's equations and the waye equation. 

In this paper we consider a special case of an integral transfomt sin)il~~ to 
Penrose or Radon transform [10] . The problem we wish to solve is to 
ermine the image of the transform, that is ~ to somehow characterize which 

funct ions will occur in the image, and to find an inversion fommla for the 
form. The special case involves functions f(z1, z2) of two complex 

-anables. The beauty of complex analysis is that a differentiable function 
atically is expressible in terms of a convergent power series. enabling us 

use power series as a major tool. 
Our paper begins "ith the presentation of background material on complex 

hers and complex functions which will be used later. ln the second section 
we develop the spaces of functions on which the transfomt will act. Then in 
Section 3 we study the geometry of the one-dimensional subspaces of C2 to 
\\iuch our functions will be restricted. Section 4 contains the definition of our 

egral transform. Section 5 contains the inversion formula for the transform 
a characterization of the functions in the image of the transform. 

I. Preliminaries. We begin with some facts and useful lemmas about 
lex numbers. Recall that a complex number z E C is a number z = x + iy. 

where x and y are real numbers. The complex conjugate of z is the number 
: = x - iy, and the norm, or absolute value, of z satisfies lzl2 = x 2 + y 2 = zz. 
By z E C2 we mean an ordered pair z = (z1, z2) of complex numbers with 
Z

1 
=X

1 
+iy

1 
and Z2 =x2 +iy2. The norm ofz E C2 is then given by 

I 1
2 I 

1
2 I 

1
2 2 2 2 2 z = Z1 + Z2 = X1 + Yt + X2 + Yz · 

In integrating functions of a complex variable, we use the identification of 
:; with ~2 and a scaling factor. Thus, for z = x + iy c C we let dm(z) 

l 
= - dx dy and for z = (z1 z2) E C 2, as above, we letdm(z) = dm(z1)dm(z2) = 

1t 

~ dx 
1 
dy 

1 
dx2 dy 

2
. The next two lemmas explain the scaling factor and give 

n-

mtegration formulas that will be very useful in later sections. 
:. 
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Lemma 1. For n =I~ 2, 

f. '12 e -,= dm(z) = 1. 

C'' 

Proof In evaluating then -- 2 case. the integral breaks into a product ofnvo 

integrals .f e -!:1
2 

dm(z) = I e -I=/ dm(z
1

) I e -l=212 dm(z
2
), and so we need 

c2 c c 
just prove the case n -- I. We usc polar coordinates, lettingz = r e '6 , so that 

lz12 
- r 2 and dm(z) I 

- r dr de . The integral again breaks up into a 
1t 

product, as follows: 
2n · "' 

j. I 12 I j' j' 2 j' I e -= dm(z) = -:; de e -r r dr = e -u du = 1. 
c 0 0 0 

Lemma 2. If), k are nonnegative integers, and if ex :. C has positive real part. 
then 

l' :;=k . ' 
j=k. 

Proof. We use polar coordinates. as above. The case for j ~ k is obtained 
2n 

immediately by noticing that I e l(k-;)6 de = 0. However, for j ~ k, we have 

2n 2n 
0 

I e'<k-;)6 c~e = I de = 21t. For this case we must proceed with the 
0 0 

evaluation of the r-integral 

I r;•ke -ar 2 r dr = I ,u·e -ar 2 r dr = ~ k! cx-<k•1>. 

0 0 

by induction and integration by parts. I 

Before discussing differentiation offimctions of a complex variable~ we note 
that, since z x + iy, a function/ (z) may be expressed in terms of the hvo 
independent real variables x andy or in tenns of the hvo variables z and 

-. I :;\ d I :;\ h h Ia z • smce x = -(z + z J an v = -(z - z J . We t en use t e operators 0 z 
2 . 2i 
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pfoz instead of tl/loc and 0/iJy. We say that the functionf(z) is holomorphic 
z if (lj!Dz = 0 and anfiholomorphic in z if cl.flclz - 0. We know that a 
lomorphic function .f may be expressed as the sum of a convergent power 
es in z and that an antiholomorphic function f is the sum of a cor{yergent 
:er series in z (see (II]). 
Now we discuss the inner product structure on C:!. The standard inner 

·;z, w) = z1w1 + z2w2 on ;C2is bothhennitian, since z. w> = <w, z;. and 
ttiYe definite~ since \z, z I ~ 0 for all z t: C'.? with equality only when 

- 0. Other hermitian forms may be negative defmite~ satisfying (z, ·z~ ~ 0 for 
z with equality only for z ~~ 0, or may satisi): that •:z, z'; is positiye for some 
tors and negative for others. Hermitian forms with mixed signs arise 

ally in physics and are also interesting mathematically (see [I 0], [7]). In 
our case we defme the hermitian form h on C2 by h(z, w) = zl wl - ZzWz. The 

etry resulting from the use of this form will be discussed further in Section 

3 helm·"· 

2. The Function Space. Our goal in this section is to define the spaces 
X of complex-valued functions on C:! on which our integral transform will act. 

U'St \Ve need an inner product on functions/(z) =f(z1~ z:J For functions/and 
g on C2

, we define 
( f.gl l = I j{z)g(z) e -!=1

2 
dm(z). 

c2 
This fonnula differs from the standard inner product on functions by the addition 
of the exponential weighting factor. We \vish to compute this inner product in 
some specific examples. Let/y denote the monomial ly.(z) = z1' zf. , where i and 

are non-negative integers. 

Lemma 3. For non-negative integers i, j, k. and/, with/,1 and.h, as defmed 
above, then 

i .1- k or j ~ I. 
i = k and j = I. 

Proof. To calculate 

' t r r )) - j' '7 ; ;;j ;;k '7 I e -1=12 tlm('7) 
\ v ;p lkf- ""'1 "'2 "'1"'2 ... , 

cz 
we apply Lemma 2 to the resulting integrals in z1 and z:! separately. I 

· .. 
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We may now define the space of functions 1-f to be 

1-f = {j{z) = j{z . z ) ' a.!_ = 0. a[ = 0. if. f; : < ~} . 
1 2 l~ ~~ 

( "'t l'.w2 

The space 1-fis sometimes called the Bargmann-Segal-Fock space. first studied 
in [3 ]. The occurrence of the mixed differential operators <l/(1~ and 0/0z2 

corresponds to our choice of hermitian form h of mixed signature (I. 1) (see [ 41 
for more details). Note that 1-fconsists offtmctionsfwhich are holomorphic in 
z 1, antiholomorphic in z 2, and for which the integral \f fi :. converges. From 
Lemma 3, we note that any monomial or any pol)nomial in z1 and z2 will be in 
1-f. In fact, these polynomials in z1 and z; are dense in 1-f f3] . The other 
functions f in 1-f are expressible as infrnite power series in Z1 

and z2 • j{z1.z2) = :E :E a
1
k zi -zt, where the condition that <<t /1> < ov 

j =O k=O 

controls the gro\\1h of the coefficients a1" [3]. 
We are interested in the subsets of 1-f given for each integer m t- Z by 

1{ = if E j{ I j{e -'6z) = e'mO j{z) for all z - c~. 8 .- R}. (I) 
m 

Lemma 4. The power series expansion of any f c 1{ m has the form 

l 
~ 1- J+m () L- c

1
z1 z2 • rn -. ~ 

j{., ~ ) - J =O 
"'1'"'2 - . 

~ c ,.J+mi;;J m < 0 
L- ] ... 1 "'2· • 
J=O 

(2) 

where the coefficients c1 are uniquely detennined and satisf)' 

\'.f. fl > = L j!(j + lml)!l~? < rx:J . (3) 
j=O 

Proof. Any monomial J;k satisfies 

Thus a monomial J;k E 1-f m if and only if k- j =- m. or k = j + m. If m - 0. 
then the degree of z; is greater than the degree of z 1, so the monomial of least 
degree is z1°z;'. Ifm < 0, then we must writej = k- m k lm!, and the 
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COOOIJ[)l. al of least degree is z t 1 Z:. Now condition (I) implies that any f f:.. 1-f m 

II satisfy < \f,J;.k>) = 0 if k - j ~ m, and so the only mono~al.s J;k th~t can 
ar in the power series expansion off E 1-f m are those satisfying k -J = m. 
power series expressions in (2) and the uniqueness of the c1 now follow from 

theory of complex power series. 
w e know from ( I ) that any .r E 1{ m satisfies II f w = (<f. fj > < ov . In the 

'" 

taSe m 2. 0 we rewrite the po\ver series for f asj{z) = L c1 J;~;+m(z). Applying 
j=O 

Lemma 3 to the expression for (\{, f; gives equation (3). The case m ·:: 0 is 
logous. I 

Any .f E 1{ may be expressed uniquely as a sum of functions in }{. rn· by 
grouping the terms in the power series for f according to their "homoge~eity 

ee" k- j. This says that 1-f is the direct sum of the subspaces 1-f m' wntten 
as 1{ = EE>m€.71{ m· 

3. Subspaces of CZ. In this section we discuss a family of subspaces o~ C2
• 

These will be used in the construction of our integral transform. Of course, smce 
the complex dimension of <C2 is two. the only non-trivial complex subspaces of 
'"': are one-dimensional, or complex lines. The set of all one-dimensional 
subspaces of <C2 is called complex projective space, written <CP1

. Any line in <C2 

has a basis consisting of a single non-zero vector z = (z1, z2). As long as we can 
-1 

find such a vector with z2 :F 0, we may multiply by the complex scalar Z2 to 
obtain a basis vector of the fonn ((, 1), where ( E <C. Two different choices of 
( now clearly determine different lines. The only line this parameterization 
misses is the line L E <CP1 consisting of all vectors (z1, 0), with zt E C. Notice 
that we have parameterized <CP1 by the set of all ( E <C together with the single 
bne L, which may be thought of as a "point at infmity." This gives the 
correspondence of C P 1 with a sphere, usually called the Riemann sphere. 

We now investigate the restriction of our hermitian form h to each of the 
hnes in <CP 1• There are three possibilities for the restrictriction of h to a one­
dimensional subspace of <C2

: it will be either positive definite, negative definite, 
or identically zero. Such lines are called positive, negative, or null, respectively. 
First, for the line L. note that h((z, 0), (z, 0)) = lzl2 0, with equality only if 
z = 0. Thus h restricted to L is positive definite, so L is positive. 

We now calculate the restriction of h to the complex line V( () spanned by 
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the vector ( (, 1 ). that is, 
V(() = {(w(. w) I w E C}. (4) 

Lemma 5. Let V( () be described above. Then V( () is positive, null, or 

negative when (satisfies, respectively, Kl > 1, Kl = 1, or Kl < 1. 

Proof. Fix ( E C, and consider the point ( w(. w) E V( (). Then 

h((w(, w), (w( , w)) = lw(l2 -l~f = lwl2 (1(12
- 1). 

Thus the restriction of h to V( () is now positive definite exactly when 

1(12 
- I > 0, identically zero exactly when Kl2 

- 1 = 0, and negative definite 

exactly when Kf- 1 < 0. I 

We are interested particularly in the space M_ of negative lines in CP1
• 

Lemma 5 implies that the space M _ is parameterized by the set 
D = { ( E Cl Kl < 1}. This is exactly the unit disk in the complex plane. 

4. Construction of the Integral Transform In this section we 

construct the integral transform W m on ~· First we choose f E Hm and restrict 

fto a line V(() eM~ where (ED. From (4) we may think off!~~'> as a function 
ofw E <.C whereflr'f'l(w) =j((w, w). We begin with a lemma concerning these 
restricted functions. 

Lemma 6. Consider the monomialJ;k(z) = z(z:, as before, and let n E Z, 

n 0. Then ~ 
J
. r , n - w12 ..1 ( ) = 0, n * k - j, 
c ~k("", w) w e um w ! (i, n = k _ j. 

Proof. The result follows by applying Lemma 2 to the integral 

We now define a family of integral transforms W m on Hm, for each 
m 2 0. For any monomialJ;k E ~.it follows from the proof of Lemma 4 that 
k -J is constant, with k -J = m. It follows that the integral in Lemma 6 is now 
nonzero exactly when n = m. Thus for any f E Hm we define W ,[ by 

(5) 
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·ce that we are first restricting our function/to the one-dimensional subspace 
{) before integrating. The resulting function W ,[may now be considered to 
a fi.mction on the space M_ of negative lines in C2

, or it may be thought of as 
fimction on the parameter space D forM_, the unit disk in the complex plane. 
IS this latter interpretation which is most helpful. 

Lemma 6 allows us to use power series to compute the effect of the 
form wm on any function/€ 1{m· 

Lemma 7. Let m ;? 0 As in equation (2), let/E 1{m have power series 
expans10n 00 00 

j( ) - ~ j -j+m - ~ z1'z2 - Lt c1 z1 z2 - Lt c1 J;"J+m(z). 
j=O j=O 

Then the image cfJm(j) may be expressed as a power series in ( ED by 

"" 
(Wm })(() = L c/j + m)! (f. 

j=O 

(6) 

This series converges for Kl < 1 and so determines a holomorphic function of 
{E D. 

Proof Lemma 6 says that ( W m ~. 1 +m)( () = (j + m)! (i. Therefore the power 
series expression in ( 6) would follow from Lemma 6 and the linearitv of(/) if • m 

we knew that we could interchange the order of summation and integration. 

Thus we must show that the series (6) converges. We use the root test (see [5]). 

00 

We showed in (3) that the series L j! (j + m)! lc f converges. The root test 
j=O J 

applied to series (3) implies that 
p = limsup(j!(j + m )! lc f) 1lj $; 1 . 

. J 
j .. OO 

The radius of convergence of the series (6) is R = 1/r, where 

r = l~sup(lc)(J +m)!)1
lj. 

Now, J .... "" 

:.. 

= p • 1 $; 1, 
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since lim((j + l)·· ·(i + m))1
1.J = l. Thus r .:S. 1, so R = 1 r...:. 1, so the series 

j-o oo 

(6) converges for alll(l < 1. That the resulting function of (is holomorphic on 
D fo1lows from complex analysis. 

As is customruy, we let O(D) denote the space of all holomorphic functions 
on the unit disk D. The main result concerning the transform <)m is now the 
following. 

Theorem 1 .. The transform <)m:1-Cm O(D) as defined in (5) is well-defined 
and injective form .2:. 0. 

Proof That <)"'is well-defined was sho,,n in Lemma 7. The injectivity ofc)m 
follows from the power series expression ( 6). We know from complex analysis 
that two power series are equal if and only if their coefficients are equal. Thus 
if two power series of the form (6) are equal. their coefficients are equal. Hence, 
by the uniqueness of the coefficients ci in the series (2) the original functions 
must be equal, so c)"' is injective. I 

5. Inversion of the Transform and Description of the Image. 
Now we turn our attention to the development of an inversion process for this 
integral transform. We develop this process prior to describing the image of the 
transform. The reason for this is that, with the inversion process already 
established, we may apply it to an arbitral)' function in <)"'(1-fm). To the result, 
we apply the restrictions that come from the definition of the domain X. These 
restrictions are then translated into information about the image. 

Theorem 2. Let m 2 0. For f E X. if (c)m ./)(() = g(() where g has 

power series expansion g( () = L ai ( i , then we may recover the function 
j=O 

.fas 

J -j+m 
Zt Zz . 

Proof. This result follows immediately from Lemma 7. I 

We have demonstrated a process for inverting the operator if we already 
know that a given function is in the image. This creates a need for a criterion 
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at will determine whether or not a given function g E O(D) satisfies 
~ <)m (1-fm) for any m 2: 0. This criterion is given in the follo\\IDg theorem. 

Theorem 3. Let g c O(D) have power series expansion g(() = E a.(i. 
j=O J 

let m ~ 0. Theng € <)"'(1-fm) if.and only if the coefficients a. satisfy 
J -

00 ., 

L J. laJ2 < oo (7) 
J=O (j + m)! 1 · 

Proof A function lies in the image of c)"' if and only if we may apply the 
·ersion process given in Theorem 2 and obtain a function in the domain ~ 

m· 
Thus, for an arbitrmy g E O(D) we will apply the inversion process, then check 

three conditions: 
1. 
2. 

3. 

The resulting power series must converge for all z E C2• 

This power series must represent a function j{z
1
, 

holomorphic in z1 and antiholomorphic in z
2

. 

The function f ( z1, z2) must satisfy (\f. j)) < oo. 

We will prove that criteria 1 and 2 hold for any g and that criterion 3 is 

(.Q 

equivalent to (7). So we assume that g( () = La .(i is holomorphic on the unit 
j=O J 

cbsk D and that (<)~1 
g)(z) = j{z1,z2) = L c1z{~+m, where ci = aj(i + m)!. 

j=O 

Since g is holomorphic on D, we know that we may apply the root test to its 
power series, concluding that limsup Ia .11(i = 1/R where R 2 1 is the 

. J 
} ... "" 

radius of convergence (if the series is convergent everywhere, then the lim 
sup is zero). Applying the root test to the coefficients of/yields 

limsup lc J11.J. = limsup Ia pij l'"'( 1 ) II.J 
j ... oo J j ... oo J )~ (j + m)! 

:. 

_ I . ( ( I J ll(j+m)) (j+m)lj 
--hm =0 

R i ... "" (i + m)! 
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if R is finite (if R is not finite. then both limits in the product above tend to zero, 
and thus so does their product). Hence if we were to create a power 

series L c1 f/, it would converge for all ~ E C. Now consider f (z1, z2) = 
j=O 

't"' j=i+m 
~ C .Z1 Z.2 . 

j=O J 
For any (z1, z2) E C2

, we may rewrite the series above as 
00 

j{zl' z2) = z2"' L ciz1 z2Y 
j=O 

where the final summation may now be considered as one in a single variable 
~ =z1 z2, and thus it converges for all z., z2. It is clearly holomorphic in z1 and 
antiholomorphic in z2. Thus criteria 1 and 2 are satisfied. For criterion 3, we 
computed in Lemma 4 that 

00 00 ., 

((f, Ji) = L J!(j + m)! lc)2 = L J. la)2
. 

j=O j=O (/ + m)! 

Thus the finiteness of this norm is exactly equivalent to (7). 1 

Theorem 3 gives a characterization of the image of <I> m via power series, but 
we also would like a simpler and more easily computable criterion for when a 
functiong E O(D) satisfies g E <I>m(}{,). The next theorem gives a preliminary 
result along these lines. 

Theorem 4. Let g E O(D)be holomorphic on the closed unit disk. Then 
g E <I>m(}{,) for every m 2: 0. 

00 

Proof Let g have power series expansion g( () = L a
1 

(i. Since g is 
j=O 

-
holomorphic on the closed disk D, we know that g is actually holomorphic on 
a larger disk D' with radius R > 1. We apply criterion (7) to this series, using 
the root test. We compute that 

Iimsup( Ia f J! ) 
1

/j = Iimsup Ia f'ilim( (j + 1) .. · (j + m) ro(J) - -1-
J-"" J (j + m)! J-'" J J-"" R 2 

if R is finite (the limit is 7..ero if R is not finite). Since R > I , then 11 R2 < 1, so the 
series converges by the root test. Theorem 3 thus implies that g E <I> m( 1-fm) for 
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any m 2 0. 1 
Notice that Theorem 3 implies that if g F. <I> m< ~~) for some m, then 

g '= <I>J ~) for any k 2: m. This follows from (7) and the comparison test, since 
1/(j + k)! s 1/(j + m)!. Theorems 3 and 4 thus show that 

The question now arises as to which of these containments are proper. We 
m,·estigate this question in the following examples. 

Example 1. Consider the holomorphic function g E 0(/J) given by 

g(( ) = -ln(1- () = i: ~(i. By (7) the nonn of the pre-image <1>~,\g) satisfies 
j=1 J 

1 
= !: --------------

1= 1 j 2
(/ + m) .. · (j + 1 ) 

This converges for every m 2: 0, so g E <l>m( 1-fm) for all m 2: 0. However, the 
function g is undefined at (=I and so does not extend to the boundary of D. 
Thus g (£ O(D). 

Example 2. For any n 2: I we consider the function 

( () = !: + n - · (i. (n ( (j' 1)') l /2 

gn j=O (j + 1)! 

By the ratio test, the series converges for Kl < 1, so gn E O(D). However, the 
series diverges for ( = 1 and so gn (£ O(D). By (7), the pre-image <I> ~1 

(gn), if 
1t exists, has norm given by 

<1>-1 ll2 _ i: (j+n-l)!i! 
II mgn - . (j 1)1(j )I ;=o + . + m . 

"' (i + n - 1)! 
~ --------------

j=O (i + 1 ) (j + m)! 

By comparing the degrees of numerator and denominator we see that this series 
converges if and only if m > n - I, and diverges if m :S n - 1. Thus, if m 2: I is 
fixed, we choose n = m. Then 11<1>~1g,ll is finite, but 11<1>~~ 1g,ll is not. This 
unplies that g, E <I> ,(1-f,), but g, (£ <I> ,_1(1!,_1). 
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Example 3. Consider the function g defined by 

We compute that 

g( () = E e ..;; ,i. 
j=O 

limsup(e W) 11.i = limsupe tty'j = 1. 

Thus, by the root test, g has radius of convergence 1, so g E O(D). However, 
for a fixed non-negative integer m, applying (7) yields that 

(Ifm = 0, the last denominator is 1.) Notice that the numerator is an exponential 
in /.i, while the denominator is a pol)nomial of degree 2m in /}. By 
L 'Hopitars rule we know that 

ez../J 
lim-----­
j-ooc (j + 1 ) ... (j + m) 

= +oo. 

Thus the terms do not approach zero. so the series diverges for every m ~ 0. 
Example 1 shows that the contaimnent O(D) c Wm(1-fm) is proper for all 

m 2 0. Example 2 shows that the contairnnent W m-1 (1-fm_1) c W m(1-fm) is proper 
for each m 2 1, and it follows that the containment W m(1-fm) c O(D) is proper 
for all m 2 0. Example 3 shows that there exists a function in O(D) which is not 
in W m(1-fm) for any m. Thus the union of all the sets W m(1-fm) is properly 
contained in O(D). Therefore, we may write 

O(D) c c1>0(~) c c1> 1(~) c cl>z(~) c ... c O(D). 

6. Further Study. There are three main areas where further study could 
be concentrated. First, the image space of the transform should be characterized 
in a more "global" way, without using power series. A precise formula such as 
an integral norm would be much easier to apply in practice. The second area 
concerns developing a closed form expression such as an integral operator for the 
inverse of the transform. Both of these questions are answered in [1]. Finally, 
this paper has considered a special case of a more general problem. The 
transform may be considered for higher dimensions, that is, for functions of 
p + q complex variables, where p 2 1 and q 2 1. This, of course, introduces 
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many interesting complexities but may also facilitate the discovery of important 
patterns. The inversion problem for the generalized transform is addressed in [ 8 J 
and [9]. 
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PROBLEM DEPARTMENT 

Edited by Clayton W. Dodge 
University of Maine 

This department welcomes problems believed to be new and at a level 
appropriate for the readers of this journal. Old problems displaying novel 
and elegant methods of solution are also invited. Proposals should be 
accompanied by solutions if available and by any information that will assist 
the editor. An asterisk (*) preceding a problem number indicates 'that the 
proposer did not submit a solution. 

All communications should be addressed to C. W. Dodge, 5752 
Neville/Math, University of Maine, Orono, ME 04469-5752. E-mail: 
dodge@gauss.umemat.maine.edu. Please submit each proposal and solution 
preferably typed or clearly written on a separate sheet (one side only) 
properly identified with name and address. Solutions to problems in this 
issue should be mailed to arrive by July 1, 1998. Solutions by students are 
given preference. 

Problems for Solution 

914. Proposed by Peter A. Lindstrom, Batavia, New York. 
Solve this base ten addition alphametic, dedicated to the memory of the 

late Leon Bankoff: 

FRIEND + INDEED = BANKOFF. 

*915. Proposed by the late John Howell, Littlerock, California. 
Prove or disprove that, if n ~ 0, k ~ 0, and n + k ~ 1, then 

n! = (n + kr- (:)<n + k- tr + (;)<n + k- 2r- ••• +(-Irk". 

916. Proposed by Morris Katz, Macwahoc, Maine. 
Prove these two formulas: 

577 
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12(2n- Ii- 22(2n- 2)2 + ••• + (-l)n+1n2n2 = ..!.n[l - (-1rn3
]. 

2 

917. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, 
Alberta, Canada. 

Determine necessary and sufficient conditions on the real numbers w1, 

w2, ... , wn so that for all vectors V; in Em, 

918. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, 
Alberta, Canada. 

Evaluate the integral 

(n/3 Pi 
I = lo ln(l + y3 tanx)dx. 

919. Proposed by the Editor. 
Erect directly similar nondegenerate triangles DBC, ECA, FAB on sides 

BC, CA, AB of triangle ABC. At D, E, F center circles of radii k•BC, k•CA, 
k•AB respectively for fixed positive k. Let P be the radical center of the three 
circles. If P lies on the Euler line of the triangle, show that it always falls on 
the same special point. 

*920. Proposed by Richard 1 Hess, Rancho Palos Verdes, California. 
The sorted Fibonacci sequence is produced by starting with the first two 

terms 1 and 1 and defining each succeeding term as the sum of the prior two 
terms with the digits sorted into ascending order. Thus we have 1, 1, 2, 3, 
5, 8, 13, 12, 25, 37, 26, ... This sequence eventually falls into a repeating 
cycle. 

a) Are there any two initial terms that produce a diverging sequence? 
b) How many different repeating cycles can you find? 

*921. Proposed by Richard l Hess, Rancho Palos Verdes, California. 
Place 13 three-digit square numbers in the spaces in the accompanying 

grid. (The solution is unique.) 
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922. Proposed by David Iny, Baltimore, Maryland. 
Suppose that j{f{x)) = 0 for all real x. Show that a necessary and 

sufficient condition that ensures thatj{x) = 0 for all xis thatfbe infinitely 
differentiable on the real line. · 

923. Proposed by A. Stuparu, Valcea, Romania. 
Let S(n) denote the Smarandachefunction: ifn is a positive integer, then 

S(n) = kif k is the smallest nonnegative integer such that k! is divisible by 
n. Thus S(l) = 0, S(2) = 2, S(3) = 3, and S(6) = 3, for example. Prove that 
the equation S(x) = p, where p is a given prime number, has just 2p- 1 

solutions between p and p!. 

*924. Proposed by George Tsapakidis, Agrino, Greece. 
Find an interior point of a triangle so that its projections on the sides of 

the triangle are the vertices of an equilateral triangle. 

925. Proposed by Richard A. Gibbs, Fort Lewis College, Durango, 
Colorado. 

Given positive integers s and c and any integer k such that 0 ::;; k ~ s, 
prove that 

(-l)Jct(c+j-l)(j) = E<-tY( s~c )(s+~-k)· 
j=lc C -l k j=O S +}- k } 

926. Proposed by Tom Moore, Bridgewater State College, Bridgewater, 
Massachusetts. 

Students were asked the question, "How many times is x:= x + 1 
executed in the following nested loop? 

Fori= 2 ton 

For j = 1 to L ~ J 
x:= x + 1 

Nextj 
Next i 

:. 
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Discover which of the following ten actual student answers are correct, 
where L J is the floor function and r l is the ceiling function cso that bd 
= 3 and r 1t l = 4): 

~
' n even 

a(n) = _ 
1 --, n odd. 

4 

c(n) 
fi, n even 

= l(T)(LiJ + t), n odd. 

e(n) = LiJ + LiJ. 
g(n) = LiJ(LiJ + [n (mod 2)1). 

i(n) = L:2J. 

t , n even 

b(n) = ~Jl!!...:1.J 
2 2 , n odd. 

d(n) = LiJL n; lj. 

j{n) = LiJiil· 
h(n) = Ln2 4+ 2j. 

n 

j(n) = I: LiJ. 
k=2 

Solutions 

881. [Spring 1996, 
Spring 1997] Proposed by 
Andrew Cusumano, Great 
Neck, New York. 

Let ABC be an 
equilateral triangle with 
center D. Let a be an 
arbitrary positive angle 
less than 30°. Let BD meet 
CA at F. Let G be that 
point on segment CD such 
that angle CBG = a, and 
let E be that point on FG 
such that angle FCE = a. 
Prove that DE is parallel to BC. 

A 

B c 
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II. Solution by HenryS. Lieberman, Waban, Massachusetts. 
Since triangle ABC is equilateral and D is its center, then LBDC = _1 ?~o, 

so LFDC = 60°. Since LFBC = 30°, it will suffice to prove that DE bisects 
LFDC. To that end we have, where M.BC denotes the area of triangle ABC, 

FE 
EG 

Similarly, 

AFCE (1f2)FC·CE·sin a FC sina 

aECG (V2)GC·CE·sin(30o -a) GC sin(30° -a) 

DG = BD. sin(30° -a) = y'3. sin(30° -a) 

GC BC sin a 3 sin a 

because BD = ( {3!3)BC. Since FDIFC =tan 30° = {3!3, then 

FE FC GC {3 FC FD FD 
EG = CG.DG.J = DG.FC = DG. 

Thus DE is the bisector of LFDG in triangle FDG since it divides the 
opposite side in segments proportional to the adjacent sides. This completes 
the proof. 

888. [Fall 1996] Proposed by the Editor. 
In 1953 Howard Eves' book An Introduction to the History of 

Mathematics was first published. It quickly became the definitive 
undergraduate text in mathematics history. It still is today. To honor this 
outstanding text and its equally outstanding author, solve this base nine 
alphametic, finding the unique value of HEVES: 

MATH+ HIST = HEVES. 

Amalgam of essentially similar solutions submitted independently by 
Heidi Barek, Alma College, Alma, Michigan, Karen Ellison, Oxford, Ohio, 
and Corie Kreps, Oxford, Ohio. 

Clearly H= 1 and, from the 93 column, M + 1 +(carry)~ 109, so M= 
7 or 8 and HE = 1 09 since HE = 11 9 is not possible. We now have 

MATl. 
+ liST 

lOVOS. 

· .. 
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In the ones column we have I + T = S because T = 8 would make S = 
0 and S =FE. From the 9' column we have T+ S = I09, soT= 4 and S = 5. 
Thus we have 

1 1 

MA41 
+ 1I54 

10V05. 

Now 2, 3, 6, and one of 7 and 8 are left for A, I, V, and M. If M = 7, 
then I + A + I = I 09 + V :?: I29, which requires I + 8 + 6 = I69, I + 8 + 3 
= I39, or I + 8 + 2 = I29, all of which are not possible since then V would 
equal either A or I. 

We are left with M = 8 and I +A +I= V using only 2, 3, 6, and 7. 
Then A and I are 2 and 3 and V = 6. There are two solutions, in each of 
which HEVES = I 0605, specifically 

8241 
+ 1354 

10605 

8341 
+ 1254 

10605. 

Also solved by Avraham Adler, New York, NY. Charles Ashbacher, Charles Ashbacher 

Technologies, Hiawatha, /A, Laura Batt, Reno, NV. Scott H. Brown, Auburn University, AL, Paul S. 
Bruckman, Highwood, IL, William Chau, New York, NY. Lynette J. Daig, Alma College, Ml, Kenneth 
B. Davenport, Pittsburgh, PA, Josh Delbacker, Alma College, Ml, Jen Ditchik, SUNY College at 

Fredonia, NY. Russell Euler and Jawad Sadek, Northwest Missouri State University, Maryville, Mark 
Evans, Louisville, KY, Victor G. Feser, University of Mary, Bismarck, ND, Robert C. Gebhardt, 
Hopatcong, NJ, Stephen I. Gendler, Clarion University of Pennsylvania, Richard I. Hess, Rancho 
Palos Verdes, CA, Carl Lib is, University of Alabama, Tuscaloosa, HenryS. Lieberman, Waban, MA, 

Peter A. Lindstrom, Batavia, NY. Glen R. Marr, University of Florida, Longwood, Jill McEachin, 
Alma College, Ml, Yoshinobu Murayoshi, Okinawa, Japan, Shannon Nielsen, Alma College, MJ, 

William H. Peirce, Delray Beach, FL, Michael R. Pinter; Belmont University, Nashville, TN, H.-J. 
Seiffert, Berlin, Germany, University of Central Florida Problems Group, Orlando, Kenneth M. 
Wilke, Topeka, KS, Rex H. Wu, Brooklyn, NY. and the Proposer. 

889. [Fall I996] Proposed by M S. Klamkin, University of Alberta, 
Edmonton, Alberta, Canada. 

Prove that 
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where a > I and x > y > 0. 

Solution by Joe Howard, New Mexico Highlands University, Las Vegas, 
New Mexico. 

By the mean value theorem withj{x) = (d- I)/x we have 

a 1 - 1 
X y ca c In a - a c + 1 

------- for some c between x andy. 
c2 x-y 

Now let g(x) = xd In a - d + I - (x2/2)(ln a)2 for x :?: 0. Then g(O) = 0 and 

g'(x) = xd(lna)2
- x(lna)2 = x(lna)2(d- I)> 0, 

so it follows that 

ca c In a - c c + 1 (lnal 
-------- > ----. 

c2 2 

Finally we show that In a > (a - I)/a for a> I. For an easy proof of this 
fact, define h(x) = x In x- x + I. Then h(l) = 0 and h'(x) = lnx > 0 for x > 
I. Hence h(x) > 0 when x > I. The result follows by putting these results 
together. 

Also solved by Avraham Adler, New York, NY. Dip Bhattacharya and S. Gendler, Clarion 

University, PA, Paul S. Bruckman, Highwood, IL, Russell Euler and Jawad Sadek, Northwest 

Missouri State University, Maryville, Richard I. Hess, Rancho Palos Verdes, CA, David Iny, 
Baltimore, MD, HenryS. Lieberman, Waban, MA, H.-J. Seiffert, Berlin, Germany, and the Proposer. 

890. [Fall I996] Proposed by Peter A. Lindstrom, Irving, Texas. 
Express the following sum in closed form, where real number a ::P I: 

II 

~ • 11-i 
LJ za . 
i=l 

Solution by SUNY Fredonia Problem Group, SUNY at Fredonia, 
Fredonia, New York. 

Differentiate the known formula 

1 - x 11
•

1 
----, where x :~:. I, 

1 -X 

· .. 
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to obtain 
n 

L ixi-l 

i=l 

(1 - x)[-(n + 1)]xn + 1 - xn•l 

(1 - x)2 
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nxn+l - (n + 1)xn + 1 

(1 - x)2 

Thus we have 

n n n L ian-i = an-l L ia l-i = an-l L i(!)i-1 
i=l i=l i=l a 

Also solved by Avraham Adler, New York, NY, Ayoub B. Ayoub, Pennsylvania State University, 

Ogantz Campus, Abington, PaulS. Bruckman, Highwood, IL, William Chau, New York, NY, Kenneth 
B. Davenport, Pittsburgh, PA, Charles R. Diminnie, San Angelo, TX Russell Euler and Jawad Sadek, 
Northwest Missouri State University, Maryville, George P. Evanovich, Saint Peter's College, Jersey 

City, NJ, Mark Evans, Louisville, KY, Amanda J. Gambino, Alma College, MJ, Jayanthi Ganapathy, 
University of Wisconsin-Oshkosh, Robert C. Gebhardt, Hopatcong, NJ, Stephen I. Gendler, Clarion 

University of Pennsylvania, Richard I. Hess, Rancho Palos Verdes, CA, Joe Howard, New Mexico 

Highlands University, Las Vegas, Michael K. Kinyon, Indiana University South Bend, Carl Libis, 
University of Alabama, Tuscaloosa, Henry S. Lieberman, Waban, MA, David E. Manes, SUNY 

College at Oneonta, Kandasamy Muthuvel, University of Wisconsin-Oshkosh, William H. Peirce, 
Delray Beach, FL, Bob Prielipp, University of Wisconsin-Oshkosh, John F. Putt, Alma College, MJ, 

Henry J. Ricardo, Medgar Evers College, Brooklyn, NY, Shiva K. Saksena, University of North 

Carolina at Wilmington, H.-J. Seiffert, Berlin, Germany, George Tsapakidis (two solutions), Agrinio, 

Greece, University of Central Florida Problems Group, Orlando, Stan Wagon, Maca/ester College, 

St. Paul, MN, Lamarr Widmer, Messiah College, Grantham, PA, Kenneth M. Wilke, Topeka, KS, 
Rex H. Wu, Brooklyn, NY, Monte J. Zerger, Adams State College, Alamosa, CO, and the Proposer. 

891. [Fall 1996] Proposed by John Wahl, Mt. Pocono, Pennsylvania, 
and Andrew Cusumano, Great Neck, New York. 

Solve for d the equation 

bed + cda + dab + abc = J abed. 
a+b+c+d 

Solution by Edward J. Koslawska, graduate student, Angelo State 
University, San Angelo, Texas. 
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By squaring both sides of the equation and collecting like terms, we 
obtain 

We factor to get (da- bc)(db- ac)(dc - ab) = 0, which yields the solutions 

be ca ab 
d = - d = - and d = -, 

a' b' c 

provided be > 0 and a '* 0, ca > 0 and b '* 0, or ab > 0 and c '* 0, 
respectively. These conditions are necessary since substitution of these 
solutions into the original equation yields be = I be I , ca = I ca I , and ab = 
I ab I, respectively. 

If a= 0, then bcd/(b + c +d)= 0, which implies b + c + d '* 0 and bed 
= 0. There are two possibilities: first, d = 0 and b + c '* 0. Otherwise, dis 
arbitrary, b = 0 or c = 0 or both, and b + c + d '* 0. 

A similar set of conditions holds if either b = 0 or c = 0. 

Also solved by Avraham Adler, New York, NY, Dip Bhattacharya and S. Gendler, Clarion 

University, PA, PaulS. Bruckman, Highwood, JL, Russell Euler, Northwest Missouri State University, 

Maryville, George P. Evanovich, Saint Peter's College, Jersey City, NJ, Mark Evans, Louisville, KY, 
Todd Fischer, Oxford, OH, Robert C. Gebhardt, Hopatcong, NJ, Richard I. Hess, Rancho Palos 

Verdes, CA. Murray S. Klamkin, University of Alberta, Canada, Peter A. Lindstrom, Batavia, NY, 

William H. Peirce, Delray Beach, FL. University of Central Florida Problems Group, Orlando, Stan 
Wagon, Maca/ester College, St. Paul, MN, Rex H. Wu, Brooklyn, NY, David W. Yunghans and Eric 
M. Smith, SUNY College at Fredonia, NY, Monte J. Zerger, Adams State College, Alamosa, CO, and 

the Proposers. 

892. [Fall 1996] Proposed by Bill Correll, Jr., student, Denison 

University, Granville, Ohio. 
Prove that the average of the eigenvalues of a real, symmetric, 

idempotent matrix is at most one. 

I. Solution by Michael K. Kinyon, Indiana University South Bend, South 

Bend, Indiana. :. 
If A is an idempotent matrix, A is an eigenvalue, and xis an eigenvector 

corresponding to A, then A.x = Ax = A2x = A2x. Thus A2 = A, so A = 0 or A 
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= I. Therefore, the average of the eigenvectors is no less than 0 nor more 
than I; the upper bound being achieved by the identity matrix. The 
hypotheses that A is real and symmetric are not needed. 

II. Solution by Bob Prielipp, University of Wisconsin-Oshkosh, Oshkosh, 
Wisconsin. 

By hypothesis A is an n x n idempotent matrix. Therefore, the trace of 
A equals the rank r of A. (See Exercise 4(ii) on p. 239 with solution of p. 
426 of Daniel T. Finkbeiner II, Introduction to Matrices and Linear 
Transformations, 3rd ed., W. H. Freeman, I978.) Since the sum of the 
eigenvalues of A is equal to the trace of A and r ~ n, then the average of the 
eigenvalues equals rln ~ I. 

Also solved by Paul S. Bruckman, Highwood, IL, Russell Euler and Jawad Sadek, Northwest 

Missouri State University, Maryville, Joe Howard and John Jeffries, New Mexico Highlands 
University, Las Vegas, Murray S. Klamkin, University of Alberta, Canada, Henry S. Lieberman, 

Waban, MA, David E. Manes, SUNY College at Oneonta, Kandasamy Muthuvel, University of 

Wisconsin-Oshkosh, William H. Peirce, Delray Beach, FL, Henry J. Ricardo, Medgar Evers College, 

Brooklyn, NY, H.-J. Seiffert, Berlin, Germany, and the Proposer. 

893. [Fall I 996] Proposed by Peter A. Lindstrom, Irving, Texas. 
Show that the sequence {xn} converges and find its limit, where x1 = 2 

and, for n ~ I, 

2x
11 

sinx + sinx + cosx
11 X = II II 

11+l 2 . smx
11 

I. Solution by Michael K Kinyon, Indiana University South Bend, South 
Bend, Indiana. 

Ifj{x) = e·.r(sinx + cosx), then observe that 

-x 
_ e "(sinx

11 
+ cosx

11
) f(x

11
) 

X
11

+l - X
11 

- = X - --. 
-2e -x,. sinx

11 

11 
/

1
(X

11
) 

Thus the recurrence is just the Newton-Raphson method applied to the 
function f. If it converges at all, it must converge to one of the zeroes of J, 
which are (k + 3/4)1t, k an integer. In this case the method starts at 2 and 
converges to 37t/4. Note thatf(x)f''(x) > 0 on the open interval joining the 
initial point 2 to the appropriate zero of J, a sufficient condition for 
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convergence. Here f(x)f''(x) = -2e-2.r cos 2x and is positive on the interval 
(7t/4, 37t/4), which contains 2. . . . ·-

It is perhaps somewhat intellectually dishonest to pretend to cleverly pull 
f out of thin air. Observing the recursion formula in the form 

sinx
11 

+ cosx
11 

xll+l = x,. -
2sinx

11 

I guessed the problem had been constructed by application of the Newton­
Raphson method to a function of the form j{x) = g(x)(sinx + cosx). Then 
differentiatej{x) and substitute into the equation 

j{x) = sinx + cosx 

f'(x) 2sinx 

Equating coefficients yields the differential equations 

g'(x) - g(x) = -2 and g'(x) + g(x) = 0. 
g(x) g(x) 

The solution to the second equation is g(x) = ce·.r for some constant c, which 
also satisfies the first equation. I took c = I. 

II. Solution by Lisa M Croft, Messiah College, Grantham, Pennsylvania. 
The recursion equation can be written in the form 

X X + .! + !cotx
11

, 
n+l = 11 2 2 

so define 

1 1 g(x) = x + - + -cotx. 
2 2 

Now g(x) and g'(x) are continuous and 0 ~ g'(x) ~ 1/2 on the interval [ap] 
= [7t/4, 37t/4]. Furthermore a ~ g(x) ~ b on [a, b]. Then the contraction 
mapping theorem (Elementary Numerical Analysis by Kendall Atkinson, p. 
84) guarantees a unique point a. such that a.= g(a.) in the interval [a, b]. In 
addition, for any initial x0 in that interval, the iterates xn will converge to _a.. 
We find that fixed point by solving the equation x = g(x), which reduces .. to 
cotx = -I, so x = 37t/4. Hence the sequence {xn} converges to 37t/4. 
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Ill. Solution by Richard l Hess, Rancho Palos Verdes, California. 
Since xn+1 = xn + (1 + cotxn)/2, we take xn = 3n/4 - En. Then 

1 + tan~1t tane 
4 n 2 tan en 

= -1 + ----
1 + tan en' 

so that we have 

3 tan~ tan~ 
.l'n+l = 41t - en + 1 and en+l = en - 1 

+ tan en + tan en 

We find that, if x 1 = 2, then E1 = 0.356, ~ = 0.0850, E3 = 0.00649, and in 
general, for small En, En+1 :::::: E~. Hence limn-+CXJ En = 0 and the sequence 
converges to 3n/4. 

IV. Solution and comment by Robert C. Gebhardt, Hopatcong, New 
Jersey. 

If the sequence converges, then as n ~ oo, xn+1 - xn ~ 0. If indeed x = 
limn-+oc; xn, then we must have cotx = -1, sox= (k + 3/4)7t for some integer 
k. A pocket calculator shows that when x 1 = 2, then the sequence converges 
to 3n/4. 

There are some values of x1 (e.g., 0) for which the sequence does not 
converge. The sequence has curious properties. A plot of the limit x, when 
that limit exists, vs. x 1 shows a sort of stair-step pattern, with a scattering of 
many different values in the vicinity of certain values of x 1• All such limits 
x satisfy the equation x = (k + 3/4)7t for some integer k. 

Also solved by Paul S. Bruckman, Highwood, /L, Russell Euler and Jawad Sadek, Northwest 
Missouri State University, Maryville, Mark Evans, Louisville, KY, Joe Howard and John Jeffries, New 
Mexico Highlands University, Las Vegas, David Iny, Baltimore MD, H.-J. Seiffert, Berlin, Germany, 
Lamarr Widmer, Messiah College. Grantham, PA, and the Proposer. 

Comment by the editor. The accompanying figures show the graph of the 
damped sine curve function f(x) = e·x(sinx + cosx) of Solution I and the 
limit x vs. the initial value x 1 of Solution IV. The domain of each graph is 
[-4, 4]. the ranges are [-25, 5] for the first graph and [-40, 40] for the second 
one. The long tic mark on the second graph shows y = 0 and the other tic 
marks show y = (k + 3/4)7t for k = -3, -2, ... , 3. Notice that the erratic 
behavior in the second graph occurs (not surprisingly) at the horizontal 
tangents of the first graph. 
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i 

894. [Fall 1996] Proposed by Andrew Cusumano, Great Neck, New 

York. 

Let us take P
2 

= 4V2 - fi, P3 = 8V2 - V2 + fi, P4 = 

16J2 - V2 + V2 + {i, and so forth. Find the value of lim n-+CXJ n(Pn- Pn_.). 

and 

Solution by H.-J. Seiffert, Berlin, Germa~y. . 
We will use the well-known trigonometnc relattons 

2 COS_:! = J2 + 2 COSX, 0 ~ X ~ 1t, 
2 

2 sin_:! = V2 - 2 COS.l', 0 ~ X ~ 1t, 
2 
. 

2 
. X X 

smx = sm- cos-, 
2 2 

X E R, 

lim sin 1tX = 1t. 
x-0 X 

Using ( 1 ), it is easy to prove by mathematical induction that 

2 cos.2:. = J2 + V2 + J. .. + fi, 
2n 

where there are n - 1 twos on the right side. Hence, by (2), 

2n+l · 1t 2 pn = sm --, n ~ · 
2n+l 

(I) 

(2) 

(3) 

(4) 

-... 
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Now, from (2) and (3) we obtain 

4n(P - P ) = 4n(2n•lsin_2!_ - 2nsin~) = 23n+l sin_2!_ (1 -cos~) 
n n-1 2n+l 2n 2n+1 2n+1 

23n+2 · 1t • 2 1t _ 1 (2n+1 · 1t )(2n+2 • 1t )
2 

= sm-- sm -- - - sm-- sm-- , 
2n+1 2n+2 8 2n+1 2n+2 

so that by ( 4), 

lim 4n(Pn - pn-1) 
n- ... 8 

It follows that the required limit is zero. 

Also solved by Paul S. Bruckman, Highwood, IL, Kenneth B. Davenport, Pittsburgh, PA, 

Charles R. Diminnie, San Angelo, TX. Russell Euler and Jawad Sadek, Northwest Missouri State 
University, Maryville, Richard I. Hess, Rancho Palos Verdes, CA, David Iny, Baltimore MD, 
Kandasamy Muthuvel, University of Wisconsin-Oshkosh, Khiem V. Ngo, Virginia Polytechnic 

Institute and State University, Blacksburg, and the Proposer. 

895. [Fall 1996] Proposed by Andrew Cusumano, Great Neck, New 
York. 

Let ABC be an isosceles right triangle with right angle at C. Erect 
squares ACEH and ABDI outwardly on side AC and hypotenuse AB. Let C/ 
meet BH at 0 and AB at K, and let AO meet BC at J. Let DE cut AB at F 
and AC at G. It is known (Problem 817, Fall 1994, page 72) that DE passes 
through 0. Let JF meet AH at Sand let JG meet BHatT. Finally, let BH 
and AC meet at M and let JM and C/ meet at L. See the figure. 

a) Prove that 
i) ST is parallel to DOE, 
ii) JK is parallel to AC, 
iii) JG is parallel to AB, 
iv) AI passes through T, 
v) JF passes through/, 
vi) EK passes through M, and 
vii) BL passes through G. 

*b) Which of these results generalize to an arbitrary triangle? 
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Solution by William H Peirce, Delray Beach, Florida. 
With no loss of generality, let triangle ABC be given by A(a,b), B(-1,0), 

and C(1,0). The outward squares on AC andAB have verticesD(-1- b, 1 +a), 
E(1 +b, 1-a), H(a+b, 1-a+b), and l(a-b, 1 +a+b) (which are inward 
squares if b < 0). 

a) Since LACB = 90° and AC = BC, we have A(1, 2), D(-3, 2), E(3, 0), 
H(3, 2), and /(-1, 4). From the defining intersections we get 0(3/5, 4/5), 
K(I/3, 4/3), J(l/3, 0), F(O, 1), G(1, 2/3), S(-1/3, 2), T(5/3, 4/3), M(1, 1), and 
L(517, 417). 

Letting m AB denote the slope of line AB, it is easy now to see that 

1 "h "t m -1 msr = m00E = --, nett er m;K nor mAc exts s, m;a = AB- , 
3 

so we see that (i), (ii), and (iii) are satisfied. 
Three points (x1,y1), (x2,y2), (x3,y3), in the plane are collinear if and only 

if the determinant 

1 XI Yt 

1 x2 y2 = 0. 

1 x3 y3 

For each of the following four sets of points, it is readily checked that the 
associated determinant does indeed vanish: 
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1 1 2 1 I 0 1 3 0 1 -1 0 
3 5 4 

AIT: 1 -1 4 , JFI: EKM: 1 l 4 
, and BLG: 1 -

1 0 1 , - 7 7 3 3 

1 5 4 - - 1 -1 4 1 1 1 1 1 2 
3 3 

3 

This completes the proof of part (a). 
b) It is necessary here to use the general triangle A( a, b), b > 0, B( -1, 0), 

C( 1, 0), in which there are many degenerate cases where points are either 
coincident or not defined. (For example, if A lies on the circle whose 
diameter is side BC, then points A, 0, K, F, G, S, T, M, and L all coincide.) 
We shall ignore these special cases. 

Following part (a), develop the coordinates for the thirteen points D, E, 
H, L 0, K, J, F, G, S, T, M, and L. Then, as in Part (a), equate the three 
pairs of slopes and set each of the four determinants to zero. We omit the 
rather tedious details. 

i) We have ST parallel to DOE if and only if 

( 1 + a + b - cl + ab - a3 
- ab2

)( -a + b + cl + b2
) = 0. 

This equation is the product of two factors, the first of which we shall call 
Z and return to in part (iv), and the second factor, which when set to zero, 
represents a circle of radius 1//2 and center (112,-112) in the ab-plane. 

ii) Line JK is parallel to AC if and only if -3 + 2a - 2b + cl + b2 = 0, 
a circle of radius {5 and centered at ( -1, 1) in the ab-plane. 

iii) Lines JG and AB are parallel if and only if -2 - a - b + cl + b2 = 0, 
a circle of radius {5fi and center ( 1/2, 1/2) in the ab-plane. 

iv and v) Points A, L Tare collinear and J, F, I are collinear if and only 
if the expression Z of part (i) is zero. 

vi) Points E, K, M are collinear if and only if -1 + a = 0, that is, when 
triangle ABC has a right angle at C. 

vii) Finally, B, L, G are collinear for all triangles ABC. 
Thus the answer to part (b) is that property (vii) is the only property that 

generalizes to all triangles. 

Also solved by Paul S. Bruckman, Highwood, IL, Mark Evans, Louisville, KY. Victor G. Feser, 
University of Mary, Bismarck. ND, and partially by the Proposer. 

896. [Fall 1996] Proposed by Peter A. Lindstrom, Irving, Texas. 
For arbitrary positive integers k and n, find each summation: 
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II 

a) L (i)(i + 1)(i +2) .. ·(i +k). 
i=l 

II 

b) L (i)(i -1)(i -2)···{i -k), where n ~ k + 1. 
i=l 

II 

c) L (i -k)(i -k+ l) .. ·(i -1)(i)(i + 1)(i +2)-··(i +k), 
i=l 

where n ~ k + 1. 

Amalgam of essentially identical solutions by SUNY Fredonia Student 
Group, Fredonia, New York, and University of Central Florida Problems 
Group, Orlando, Florida. 

a) For all positive integers n and nonnegative integers k, we claim that 

E (l)(i + 1){i + 2) .. ·(i + k) = (n + k + 1)! , 
i=l (n- l)!(k + 2) 

which we prove by mathematical induction. The case for n = 1 is clear, so 
assume the statement is true for some positive integer n. Then, for n + 1 we 

have 

E (i){i + l)(i + 2) .. ·{i + k) = (n + k + 1)! + (n + k + 1)! 
i=l (n- 1)!(k + 2) n! 

(n + k + l)!n 
+ 

n!(k + 2) 

(n + k + l)!(k + 2) 

n!(k + 2) 

(n + k + 2)! 

n!(k + 2) ' 

and the proof is complete. 
b) We use part (a) and note that the first k terms of this series are zero, 

yielding 

II II 

E (i)(i - 1)(i - 2> .. ·<i - k) 
i=l 

E (i)(i - 1)(i - 2)· .. <i - k> 
i=k+l 

11-k ( 1)1 · .. 
= L (i)(i + l)(i + 2) .. ·{i + k) = n + · . 

i=l (n - k - l)!(k + 2) 
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c) Using the same technique as in Part (b), we see that the first k terms 
vanish and we have 

II 

L (i - k)(i - k + 1) .. ·(i)(i + 1)(i + 2)···<i + k> 
i=l 

n-k 

= L (i)(i + 1)(i + 2)···<i + 2k) 
i=l 

(n + k + 1)! 
(n - k - 1)!(2k + 2) 

Also solved by Ayoub B. Ayoub, Pennsylvania State University, Ogontz Campus, Abington, 

PaulS. Bruckman, Highwood, IL, William Chau, New York, NY, Kenneth B. Davenport, Pittsburgh, 

PA, Charles R. Diminnie, San Angelo, TX, Russell Euler and Jawad Sadek, Northwest Missouri State 
University, Maryville, George P. Evanovich, Saint Peter's College, Jersey City, NJ, Mark Evans, 
Louisville, KY, Murray S. Klamkin, University of Alberta, Canada, Carl Libis, University of Alabama, 

Tuscaloosa, David E. Manes, SUNY College at Oneonta, William H. Peirce, Delray Beach, FL, H.-J. 
Seiffert, Berlin, Germany, Kenneth M. Wilke, Topeka, KS, Rex H. Wu, Brooklyn, NY, and the 
Proposer. 

897. [Fall 1996] Proposed by J. S. Frame, Michigan State University, 
East Lansing, Michigan. 

Show that all non-negative integral solutions of the Diophantine equation 

are given by consecutive terms of an infinite sequence of integers x1 with x0 

= 0, x 1 = 1, and x1+l = ax1 + bx1_1• Find a and b and the first seven terms of 
the sequence x1• Generalize this procedure and determine the solution x1 for 
the equation 

Solution by Kenneth M Wilke, Topeka, Kansas. 
Let p 1 = x1 - x1_1 and q1 = x1 + x1_1, so that x1 = (p1 + q1)12. Then p1 and q1 

are solutions of the Fermat-Pell equation 

3P2
- 2~ =1. (1) 

All solutions in positive integers are given by the equation 
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where p 1 = q
1 

= 1 is the solution of (1) in smallest nonnegative integers and 
5 + 2/6, that is, x = 5 andy= 2, is the fundamental solution of the Ferrnat­
Pell equation x2 

- 6/ = 1. The first few solutions and corresponding x1 are 
given in the Table 1. 

2 

3 

4 

5 

6 

7 

Table 1. Solutions to the Original Problem. 

9 

89 

881 

8721 

86329 

854569 

II 

109 

1079 

10681 

105731 

1046629 

10 

99 

980 

9701 

96030 

950599 

Substituting x0 = 0, x1 = 1, x2 = 10, and x3 = 99 into the equation X;+t = 

ax1 + bx1_1, we obtain 10 =a+ 0 and 99 = lOa+ b, so a= 10 and b = -1. 
More generally, the equation (2c + 1)(x1 - x1_1)

2 = 2c(x1 + x1_1)
2 + I is 

equivalent to the Fermat-Pell equation 

(2c + l)P2
- (2c)~ = 1, (2) 

where p1 and q1 are defined as above. The solutions to (2) are given by 

P; {2c + 1 + q; ffc = ({iC+T + ,fiC)[(4c + 1){2c + 1 + (4c + 3)/2Ct, 

where ( 4c + I) + 2 {2c(2c + 1) is the fundamental solution of the equation 

x2 
- [2c(2c + I)JI = 1. 

The first few solutions and corresponding x1 are given in Table 2. As 1n 
the first case, we solve for a and b, obtaining a = 8c + 2 and b = -1, so that 

Xn+l = (8c + 2)xn - Xn-l in the generalized case. 
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2 

3 

4 
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Table 2. Solutions to the Generalized Problem. 

X; 

8c + I 8c + 3 8c + 2 

64c2 + 24c + I 64c2 + 40c + 5 64c2 + 32c + 3 

5I2c3 + 320c2 5I2c3 + 448c2 5I2c3 + 384c2 

+ 48c + I + II2c + 7 + 80c + 4 

Also solved by Paul S. Bruckman, Highwood, /L, Russell Euler and Jawad Sadek, Northwest 

Missouri State University, Maryville, Mark Evans, Louisville, KY, Richard I. Hess, Rancho Palos 
Verdes, CA, Murray S. Klamkin, University of Alberta, Canada, William H. Peirce, Delray Beach, 

FL. H.-J. Seiffert, Berlin, Germany, and the Proposer. 

Klamkin referred to his article "Perfect Squares of the form (m2 
- I)~ 

+ 1," Math. Mag., 40(I969)III-113. 

898. [Fall 1996] Proposed by PaulS. Bruckman, Edmonds, Washington. 
An n-digit number N is defined to be a base 10 Armstrong number of 

order n if 

n-1 n-1 

N = E dklok = E dk", 
k=O k=O 

where the dk are decimal digits, with dn-J > 0. (See Miller and Whalen, 
"Armstrong Numbers: I 53= I3 +53 + 33

," Fibonacci Quarterly30.3, (I992), 
pp. 22I-224.) Prove that there are no base ten Armstrong numbers of order 
2; that is, prove the impossibility of the equation 

I Oy + x = x2 + y, 

where x and y are integers with 0 :$;; x :$;; 9 and I :$;; y :$;; 9. 

I. Solution by Charles R. Diminnie, San Angelo, Texas. 
By completing the squares, we reduce the equation to 

(2x- I)2 + 4(y- 5)2 = IOI. 
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Since I 0 I can be written as a sum of two squares in exactly one way, I 0 I 
= 100 + I, and since 2jy- sj is even, then we must have 2jy- sj := IO 
and hence y = 0 or y = I 0. Therefore, there are no integer solutions with 
I:$;; y ~ 9. 

II. Solution by Bob Prielipp, University of Wisconsin-Oshkosh, Oshkosh, 

Wisconsin. 
Since I Oy - x(x - 1) = y, then y is even, so y is even. Thus y ~ 2, 4, 6, 

or 8. If y = 2 or 8, then the given equation becomes 

r =X+ I6, that is, (2x- I)2 = 65. 

When x = 4 or 6, the equation becomes 

x2 = x + 24, that is, (2x- I)2 = 97. 

Since neither 65 nor 97 is a square number, there is no solution with the 
given constraints. 

III. Solution by James Campbell, University of Missouri, Columbia, 
Missouri. 

We must have (10- y)y = x(x- I). Now 9 S (10- y)y ~ 25 whenever 
1 :$;; y :$;; 9 and x(x - 1) is an increasing function, so if there is a solution, 
x = 4 or x = 5. Substituting these values in for x, we get the equations 

y - 1 Oy + 12 = 0 and y - 1 Oy + 20 = 0. 

In neither case is the discriminant a perfect square, so no integer solution 

exists. 

IV. Solution by Robert C. Gebhardt, Hopatcong, New Jersey. 
By the quadratic formula, 

y = 5 ± V25 - x2 + X. 

The radicand, 25 - x2 + x, is a perfect square only if x = 0 or x = I. Therr y 
= 0 or y = 10, neither of which is permitted. Thus there is no solution. 
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V. Solution by Rex H. Wu, Brooklyn, New York. 
The given equation can be written in the form 

X _ 10 - y 
J - X - 1 ' 

so therefore, x = k(10- y) andy= k(x- 1), where k = 1, 2, ... , 9, or perhaps 
k = lim, where m is such a digit. Eliminate y between these two equations 
and solve for x to get 

Ilk 11m 
x= or x= 

1 + k2 m2 + 1 

For x to be an integer, either (1 + ,tl) or (m2 + 1) must divide 11, which is 
impossible since this occurs only when k = 10 or m = 10. 

Also solved by Avraham Adler, New York, NY. Charles Ashbacher, Charles Ashbacher 

Technologies, Hiawatha, /A, Russell Euler and Jawad Sadek, Northwest Missouri State University, 
Maryville, Mark Evans, Louisville, KY, Victor G. Feser, University of Mary, Bismarck, ND, Stephen 
I. Gendler, Clarion University of Pennsylvania, Richard I. Hess, Rancho Palos Verdes, CA, Carl 
Libis, University of Alabama, Tuscaloosa, HenryS. Liebennan, Waban, MA, Peter A. Lindstrom, 

Batavia, NY. David E. Manes, SUNY College at Oneonta, William H. Peirce, Delray Beach, FL. H.­
J. Seiffert, Berlin, Germany, Kenneth M. Wilke, Topeka, KS, and the Proposer. 

Editor's comment. Although it may seem wasteful to publish five 
solutions to a rather simple problem, it is the very variety and cleverness of 
the solutions that make the problem interesting. 

899. [Fall 1996] Proposed by Robert C. Gebhardt, Hopatcong, New 
Jersey. 

Find the average number of times an ordinary six-sided die must be 
tossed in order that each of its six faces comes up at least once. 

I. Solution by PaulS. Bruckman, Highwood, Illinois. 
Let n denote the number of times a normal die is cast in order for each 

face to turn up at least once. Thus n ~ 6. Let Pn denote the probability that 
exactly n casts of the die are required to fulfill this requirement. Clearly, p6 

= 6!/66 = 5/324. If n ~ 6, we see that Pn is the probability that exactly five 
different faces have turned up in n - 1 casts and that the sixth face has come 
up in the nth cast. There are 5C6 = 6 ways to select the first five faces that 
turn up, and with such a choice, there are 5 possible outcomes for the first 
cast, 5 for the next cast, and so on, for a total of 5n-t outcomes. We must, 
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however, subtract from this the number of ways in which only four faces 
turn up in then- 1 casts, and this can happen in 5·4n-t ways, except for the 
cases where only 3 faces turn up, which can happen in 10·3n-t ways;and so 
on. Thus the net number of ways to have exactly 5 faces turn up in n - 1 
casts is equal to 

say. Therefore, Pn = A,./6n, n = 6, 7, .... It is easily verified that "};~~ Pn = 1 
and also that A 5 = 720 = 6!. 

We seek the expectation E of the distribution, namely E = "J;n~ npn. We 
find, using Ln<!O r' = 11(1 - r) and Ln<!O nr' = r/(1 - r)2 when I r I < 1, that 

(n + 1)(5" - 5 ·4" + 10·3" - 10·2" + 5) E = E ~_....:....;....___ _______ _ 
n~s 6" 

• ~(5)n+S (4)n+S (3)n+S (2)n+S ( l)n•S] L (n + 6) - - 5 - + 10 - - 10 - + 5 -
n=O 6 6 6 6 6 

= (%)
5

(62 +5-6) - 5(~r{32 + 5·3) + lO(~r {2
2 

+ 5·2) 

exactly. 

II. Solution by Richard 1 Hess, Rancho Palos Verdes, California. 
With k (= 1 to 6) faces yet to come up, the expected number of rolls to 

get one of the k to appear is 

E = ! + 2·!. 6 - k + 3·!·(6 - k)2 + ... 
k 6 6 6 6 6 

=~[~ +2·6~k +3·(6~kr +···l .. 
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k 1 

6 (1 - 6 ~Icy 

k 36 -·-
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6 

k 

Now the expected number of turns to get all 6 faces to appear at least once 
is 

E - 6 6 6 6 6 6 
- E6 + Es + E4 + ... + El = 6 + S + 4 + 3 + 2 + l = 14.7. 

Also solved by Avraham Adler, New York, NY, Mark Evans, Louisville, KY. David Iny, 
Baltimore MD, Corie Kreps and Karen Ellison, Oxford, OH, Shiva K. Saksena, University of North 

Carolina at Wilmington, University of Central Florida Problems Group, Orlando, Monte J. Zerger, 
Adams State College, Alamosa, CO, and the Proposer. One incorrect solution was received. 

Zerger pointed out that this problem is an example of the famous 
"coupon problem" which is mentioned in many probability books, as well as 
in Fifty Challenging Problems in Probability by Mosteller, Dover, I 965. 

900. [Fall I 996] Proposed by Howard Eves, Lubec, Maine. 
Given the lengths of two sides of a triangle and that the medians to those 

two sides are perpendicular to each other, construct the triangle with 
Euclidean tools. 

I. Solution by Ben Smith, Miami University, Oxford, Ohio. 

c 

Let the given lengths be a and b. Construct a segment AC of length b. 
Construct its midpoint B' and the midpoint X of segment B ~C. Draw the 
circle on AX as diameter and swing an arc of length a/2 from C to cut the 
circle at A ~ See the accompanying figure. Extend CA ' its own length to 
point B. Then CB =a. Now ABC is the desired triangle. 

PROBLEMS AND SOLUTIONS 60I 

Proof: Clearly LAA X = 90° since it is inscribed in a semicircle. Since 
X and A ' are the midpoints of -two sides of triangle CB 'B, then A .X is 
parallel to B 'B, so the medians AA ' and BB' are perpendicular. Since ·.Ac 
= b and BC = a, the proof is complete. 

The construction can be carried out if and only if a > b/2 and b > a/2. 

I I. Solution by the Problems Editor. 
Referring to the figure in Solution I, where G is the intersecti<;>n of the 

medians, recall that G trisects each median. Let ma and mb denote the lengths 
of medians AA 'and BB' respectively. From right triangles AGB' and BGA' 

we get the equations 

These equations can be solved simultaneously to find that 

The lengths of the medians are constructible, so triangle AGB' is readily 
constructed and its sides extended to locate points A~ C, and B. Also 

which also is readily constructed with Euclidean tools. 

Also solved by Paul S. Bruckman, Highwood, /L, William Chau, New York, NY, George 
Tsapakidis, Agrinio, Greece, University of Central Florida Problems Group, Orlando, Rex H. Wu, 

Brooklyn, NY, and the Proposer. 

Corrections 

HenryS. Lieberman, Waban, MA, was inadvertently overlooked as an 
also-solver for problems 875, 878, and 880. 
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Chapter Reports 

Professor Joanne Snow reported that the INDIANA EPSILON Chapter 
(Saint Mary's College) was addressed by John Emert (Ball State University) 
at the department's amual Open House. The chapter performed various service 
activities during the year. 

It was reported that three talks were presented to the NEW YORK 
OMEGA Chapter (Saint Bonaventure University) during the 1995-96 
academic year. David Tascione, chapter Secretai)'-Treasurer, was awarded the 
Mathematics Medal, and the Myra J. Reed Award (Pi Mu Epsilon Award) went 
to graduating President Nicole Giovanniello. 

Professor Cathy Talley reported that the TEXAS ZETA Chapter 
(Angelo State University) was addressed by Mr. Trey Smith at the fall 
induction ceremony and by Dr. Charles Diminnie at the spring induction 
ceremony. The chapter co-sponsored three mathematics forms during the year. 

Dr. David Sutherland reported that the ARKANSAS BETA Chapter 
(Hendrix College) was addressed by five speakers during the year. Their 
Undergraduate Research Program was very active. The McHenry-Lane 
Freshman Math Award was given to Zachary Manis. The Hogan Senior Math 
Award was given to Diana Hua and Jennifer Powell. The Phillip Parker 
Undergraduate Research Award was given to Jac Cole. Graduating with 
Distinction was Jac Cole, Diana Hua, and Jennifer Powell. 

602 

Subscription and Change of Address 

If your address label contains the symbols • 'F97' '. then this is the last 
issue in your current subscription. We hope that you agree that the Journal 
provides good value and that you ~viii renew your subscription. The rates are: 

United States: $20 for 2 years 
$40 for 5 years 

Foreign: $25 for 2 years 

Back issues: $5 each 

Complete volumes: $50 (5 years, 10 issues) 

All issues: $400 (9 back volumes and volume 1 0) 

If you have moved, please let us know. The Journal is not forwarded 
so it is important that we have a current mailing address for you. 

To subscribe or change your address, complete the form below (or a 
copy thereof) and send it, with a check payable to the Pi Mu Epsilon Journal 
for subscriptions, to 

Joan Weiss 
Department of Mathematics and Computer Science 
Fairfield University 
Fairfield, CT 06430. 

Nrune: ------------------------ Chapter:-------

Address: ___________________________________ ___ 

Address change? ------------------ Subscription: -----------.....--

603 



REFEREE APPLICATION FORM 

The contributions of a referee can enhance the quality of any journal. If you 
would like to volunteer to serve as a referee for the Pi Mu Epsilon J ournal, please 
provide the infonnation requested belov; so that the appropriate manuscripts can be sent 
to you for your consideration. Since manuscripts are not to exceed ten pages in length, 
the editor believes that a referee's report should be sent back to the editor in at most two 
months from the date of receipt. Please keep this in mind before volunteering your 
valuable time and expertise. Your support of the J ournal is appreciated. Please send 
the completed form to: 

(Please type or print neatly) 

Russell Euler 
Department of Mathematics and Statistics 
Northwest Missouri State University 
Maryville, MO 64468. 
(816)562-1229 

Noote ______________________________________________ ___ 

Affiliation-----------------------------------

Mailing Address--------------------------­

Phone Number------------------------------
E-mrulAddress ____________________________________ ____ 

Please list the mathematical areas in which you feel competent to referee. 

Please list any specific times of the year that you would prefer NOT to receive a 
manuscript to review. 

604 

PI MU EPSILON 

T:..SHIRTS 

The shirts are \\·hite, Hanes·ID BEEFY-T-R:, pre-shrunk, 
100% cotton. The front has a large Pi Mu Epsilon shield 

(in black), \Vith the line '' 1914 - oo" belo\v it. The back of 
the shirt has a "II 1\1 E" tiling, designed by Doris 
Schattschneider,in the Pl\lE colors of gold, lavender, and 
violet. The shii1s are available in sizes large and X-large. 
The price is only $10 per shirt, \Vhich includes postage and 
handling. To obtain a shirt, send your check or 1noney 
order, payable to Pi l\1u Epsilon, to: 

Rick Poss 
Mathematics - Pi Mu Epsilon 
St. Norbert College 
10 Grant Street 
De Pere, WI 541 1 5 



Biographical Sketches of the Authors ............... ·........................... 575 

Problem Department 
Clayton Dodge, editor ..................................................... 577 

Miscellany ...................................................................................... 602 

Subscription and Change of Address .......................................... 603 

Referee Application Form ........................................................... 604 

li 
:1 




