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Approximation Formulas For Primes 

Xuming Chen (student) 
University of Alabama 

This note gives two approximation formulas for a prime p when we 
have knowledge ofthe primes p p ... p n+

1 

1' 2' ' n· 

(a) By the definition of the Riemann zeta-function we know 
II(1-p -~-1 =,(s) 

for s > 1, where p goes through all prime numbers. We have 

since 
noo ( -s -1 
1.li=n+2 1-pi ) ~ 1 

for large s. Hence 

and we get 

Pn+1~{1-,(sf1IT=1 (1-p;-sf1} -1ts. 

(b) From 
IJ (1-p -~-1=,(s) 

and 

we get 

where p goes through all prime numbers. Hence we have 
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nco -s)-1 1 
1 li=n+2 {1 +pi ~ 

for large s. Hence, 

1 + -s ~ ~(s) .TT~ (1 +p.-sri 
Pn+l ~(2s) lli=l J 

and 

(2) 

The larger we takes in (1) and (2) the more accurate will be Pn+t' Using 
"MAPLE V" to do the calculation, the approximations are very good for small 
n. For example, wegetp

2
=2.999999999999998 by substituting n =:= 1. an~s = 20 

in formula (1 )(using the 800 digit calculation). Due to computer lnmtattons, we 
cannot get accurate results for large n. The first prime 2, corresponding to 

n = 0 , can be generated by 

and 

P =l;,.J ~(s) -1]-lls . 
1 s::[~(2s) 

In practice, we just take some reasonable large s, since using larger s 
needs more calculation. Remark: In [1 ], Von E. Teuffel gave a similar formula 

Pn=fl+{l-~(k)fl::tt (1-p;-krtlt'kl' (3) 

where fxl denotes the greatest integer less than or equal to x. 

Reference 

I. Teuffel, Von E., Eine Rekursionsformelfur primzahlen, Jber. Deutsch. 
math. Verein. 57, Abt. 1(1954), pp.34-36. 

Regular Sierpinski Polyhedra1 

Aimee Kunnen (student) 
Steven Schlicker 

Grand Valley State University 

Introduction: In the paper entitled Sierpinski N-Gons [I], Kevin Dennis and 
Steven Schlicker constructed Sierpinski n-gons in the plane for each positive 
integer n. In this paper, we extend these constructions to 3-space to build 
regular Sierpinski polyhedra. 

Background: The process we will use to construct Sierpinski polyhedra is the 
following: (See [I] and Michael Barnsley's book Fractals Everywhere [2] 

for more deails ). Let {x, x2, ••• , x.} c R3 with X; =t: the vertices of a regular 

~I 

polyhedro~ A0• For r > 0, we defioo w{~J = ~ ~ + r~ 1 ~:I for 

n 

I ~ i ~ n. DefineAm,lr) = w;(Am_/r)) and letAm+/r) = u Am, ;(r). 
i•l 

For example, let A 0 be the regular tetrahedron, as in figure I, and let 
r = 2. Then, wi, when applied to A0 contracts A0 by a factor of 2 and then 
translates the image of A0 so that the ith vertices of A0 and the image of A0 

coincide. Then A 1,; is the set of all points half way between any point 
inA0 and xi, or A t,i is a tetrahedron half the size of the original translated to the 

ith vertex ofthi.. A0 and A, are shown ~,fi:es 1 ~tively. 

Figure 1 Figure l 

1 This project was supported by a grant from the Sununer Undergraduate Research 
Program (SURP) at Grand Valley State University. · .. 
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We can continue this procedure replacingA0 withA 1• Fori= 1, 2, 3, or 4, let 
A 2,t = wlA 1) and let A2 = uAz,i· A2 is pictured in figure 3. Again, we can 
contiJwe this procedure, each time replacingAi withAi+1• A3 is shown in figure 
4. 

FigureJ 

r=2 

Az 

Figure4 

r=2 

Al 

Note that, for r = 2 the Ai consist of tetrahedra that just touch each other. 
For smaller values of r, the tetrahedra overlap and for larger r the tetrahedra are 
disjoint. See figures 5(A 1, r = 1.5) and 6(A1, r = 3). 

Figure 5 

r= 1.5 

AI 

Figure 6 

r=3 

AI 

If we take the limit as i approaches infinity for the just touching value of r, the 
resulting figure is the Sierpinski terahedron. This algorithm for building the 
Sierpinski tetrahedron is called the deterministic algoithm. 

REGULAR SIERPINSKI POLYHEDRA 609 

Sierpinski polyhedra: In the above discussion, there seems to be no reason 
why we should restrict ourselves to looking at only the regular tetrahedron 
Why not consider the other four regular polyhedra (hexahedron, octahedron, 
dodecahedron, icosahedron)? In this paper, we will determine, for each regular 
polyhedra, the specific value of r that makes Am(r) just touching and we-Will 
determine the fractai dimension of each of the resulting Sierpinski polyhedra. 

Fractal dimension: The figures we will be discussing are all examples of a 
'"ide class of objects known as fractals. Every fractal has a number associated 
to it, the fractal dimension As a consequence of Theorem 3, p. 184 from [2], the 
fractal dimension of a Sierpinski polyhedra with n vertices and a scale factor of 
r is ln(n)lln(r). See [1] for a proof. For example, the fractal dimension of the 
Sierpinski tetrahedron is ln(4)/ln(2) = 2 We begin with the regular hexadron, 
or more commonly, the cube. Figure 7 is a regular hexahedron By inspection, 
we can see that the cube has a scale factor of 2. This is illustrated in figure 8. 
Then, the fractal dimension of the Sierpinski hexahedron is ln(8)11n(2) = 3. Note 
that the Sierpinski hexagon is a cube whose dimension is indeed 3. Next, we 
look at the regular octahedron Figure 9 is a regular octahedron By inspection, 
we note that each face of the Sierpinski octahedron will be a Sierpinski triangle 
and thus the regular octahedron has a scale factor of 2. This can be seen in 
figure 10. The fractal dimension of the regular octahedron is In(6)/ln(2)- 2.585 

-.. 
Figure 7 Figure 8 Figure 9 Figure 10 
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The scale factors for the regular dodecahedron and the regular icosahedron are 
more difficult to find, and we find those scale factors in the remainder of this 
paper. 

Background Information: The following regular pentagons which are 
inscribed in a circle of radius r v~ill aid us in determining the scale factor for the 
dodecahedron and the icosahedron In figure 11, we let the point a represent the 
center of the circle. Let d be the length of any side of the face. we let ac be the 
perpendicular bisector of eb. A little trigonometry shows that 

d=24~).cos(~J =~,ands=~n{7t). 
2s' -

5 

(1) 

In figure 12, we let h represent the length between two vertices which are not 
adjacent. We see that h = 2dco1 ~). 

Figure 11 Figure 12 
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Regular dodecahedron: The regular dodecahedron has 12 faces all of which 
are regular pentagons. It has 20 vertices: 3 edges meet at each vertex. Figure 
13 illustrates a regular dodecahedron. 

Figure 13 level4 

Ievell 
L 

leve12 

Ievell 

A 

The vertices of the dodecahedron can be thought of as four sets of five points 
each of which lie on pentagons parallel to the xy-plane. Each pentagon parallel 
to the ry-plane is assigned a level as is sho\\n in figure 13. We label the points 
(x!f Yr;· ~) where i represents the level and j represents the location of that point 
on that level. More specifically, on level one, we will start with 
A = (x

1
1'y

11
,zJ We will then move in a clockwise direction when labeling the 

remaining points. Thus, B = (x
12

,y12,z1), C = (x13,y13,z1), D = (x14,Y14,Z1), 

and E = (x
1
s,Yts,z1). The remaining points on levels 2, 3, and 4labeled in a 

similar fashion. We will now show how the scale factor can be found for the 
dodecahedron In figw'e 14 we can see how two small dodecahedra will fit into 
a large dodecahedron in the just touching case. 

J------1 
d 

Figure 14 
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We labelth~ just touching dodecah~on as in figure 15. The scale factor in the 
just touching cas(L\Vill th~ ~ dld1• To find d/d1, we will find the angle between 
vectors g and k . We will then be able to find the length of f. Since all 
dodecahedra construct~ are _Ji.milar, it suffices to work with the large 
dodecah~on To find g and k ~we need to explicitly determine the points A, 
B, L, and 0 as labeled in figure 13. 

d 

Figure 15 

W~ will ~ss~~ the b~e is on the xy-plane with center at (0, 0). We will 
assume that this base is inscribed in a circle with radius r. The points B and A 
are illustrated in figur~ 16. We can see from figure 16 that A = (r, 0, 0) and 

B = ( rcos( -~7t), rs.U~ -~7t), 0). Now we must look at the third level for 

~mr other two points. Triangle i, represen~ in figure 18, will aide us in finding 
L and 0. We let the dihedral angle (the angle between two fa~s) of the 

REGULAR SIERPINSKI POLYHEDRA 613 

dodecahedron be represented by 9. Therefore, angle qtv would be 9 - ~. We 
2 

can see from figure ll that ltv! = s + r. Then, z, = (s + r)cos( e - ~). We 

let m be the length of the segment qv. It follows that m=(s+r)mn( li-:~}· 

Note that s + m is the distance that the point 0, as well as L, is away from the 

z-axis. 
Now we project the dodecahedron from figure 17 into the xy-plane. We see 

in figure 19 that 

L = ( (s + m)co{ -~x )• (s + m)s~ -~x) ,(s + r)co{ 9 - I)) and 

0 = ( (s + m)co{ ~) ,(s + m)s~ ~) ,(s + r)co{ 9 - I)). Now that 
.... .... 

we know points B, A, L, and 0, we can find the vectors k and g from figure 18. 

1 

· .. 

figure 16 Figure 17 
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q m 
v 

0 

Z:3 

Figure 18 
Figure 19 

We know that k =A- 0 

_ = (r-(s+m)co{ ~), -(s +m)s~ ~) ,-(s+r)cos( 9 -~)) 
Then, g =B- L, 

=(reo{-;") -(s+m~ -;"),rsn{-;") -(s•m>.u{ -;"),-(s+r~ 9-~)) . 
Next, we used Maple to find the dot product of k and ; . We will let~ be 

the angle between k and ; . From figure 12, we se~ ~t lkl = 1;1 = h. Then, 

. - - - - k•g 
smce k • g = lkl lgl cosfJ, we know that cosfJ = - . We note from figure 

I h2 

I 6 that sin~ = I and thus I= 2hsin~ = 2h ~ I - ~osJJ. So, 

d=2d +2h~ I -cosJJ F"'·'~· . 
t 2 · .uJQ.U.r, our scale factor 1s dld1• For dldb Maple gives 

REGULAR SIERPINSKI POLYHEDRA 615 

I ( f903 ) f903 ) f903 )' 2 +- 14 - 6JS'- 4 co --1t J5 + 20co --1t + 30co --1t 
8 5400 5400 5400 

- . ·-

+lOco{ 1903 ")' y') r y') + ~ 14-6y')- 4co{ 1903 ") y'5 
5400 8 5400 

+20col 19037t) +30co{ 19037t)2 + IOcoj 19037t)2~'lll2 
\ 5400 5400 '1 5400 

To get an approximation for this scale factor, we substituted 9 = ~:~~ x from [3] 

for the dihedral angle. Thus, our scale factor for the Sierpinski dodecahedron is 
approximately 3. 618107807. 

The following figures illustrate an emerging Sierpinski dodecahedron. 
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The fractal dimension of a Sierpinski dodecahedron is ln(20)/ln(dld
1
) -

2.329584755. 

Regular icosahedron: The regular icosahedron is another interesting 
polyhedron It has 20 faces all of which are equilateral triangles. It has 12 
vertices each \\'ith 5 edges meeting. Figure 20 is a regular icosahedron We will 
assume it is inscribed in the unit sphere. 

Level4 

Level3 
Figure20 

Level2 

Levell 

In figure 20, we see that each vertex of the icosahedron lies on one of four 
"levels". The first level contains only one i:x>int, namely A= (0, 0, -1). A$ with 
levell, level4 contains only one vertex, namely M = (0, 0, 1 ). We will label the 
points (xiJ' yiJ' zJ as we did with the dodecahedron. Lastly, G = (0, 0, 0) is the 
center of the icosahedron. We note here that levels 2 and 3 are regular 
pentagons and are represented previously in figures 11 and 12. We let r be the 
radius of these pentagons. 

Figure21 

!~!' r+1~~ / ,, / 
/ ' L-----~ 

t--d;-----t--J--;1---d;----f Figure 22 
~------d------~ 
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We will now show how the scale factor can be found for the icosahedron. 
FJgUre 21 will show us how two icosahedra fit into a larger i~osahedron w~en 
the smaller ones are just touching. We will view figure 21 as if we are looking 
dcmn on the top of the icosahedron From figure 22, our scale factor is did~. : ~ e 

can find did by finding the angle between ~ and t which will allow us to find 
1. We know

1 

the small icosahedra are similar to the larger· one. So, it suffices to 
find the corresponding points on the large icosahedron 

We need to determine the four points I, H, L, and K as labeled in figure 20. 
But, in order to do so, we first mus find r. Let (x3, y3, z3) represent any arbitrary 
\-ertex on level three. Since our icosahedron is in the unit sphere, 

xi + Yi + z; = 1 or r 2 + zi = 1. It follows directly that 

z3 =JI-r2
. 

Since dis the distance from (0, 0, 1) to (x3, Y3 z3), 

(2) 

(3) 

Using (1), (2) and (3), we can use substitution and algebra to determine that 

44 ~) 1 2H/2. Note that Maple r = . i 7t) . Using Map e, we get r= 
5 
-JS 

4sm -
5 

expresses r in radical form. To do this one can solve the equation sin(5x) = 0 by 
expanding sin(5x) using the standard angle sum formul~ (found. in any ~ook ~n 
trigonometry) for the sine and cosine. One of the solutJ.ons to this equatJ.on wtll 

be sn{ ~). 
Now, wecanfindJ, H, L, andK Welmowthat each of these poin~ has.~e 

same z-value, so we need only look at their x andy-values. Now we will proJeet 
level 3 into the xy-plane resulting in figure 23. 
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In figure 23, I= ( reos( 25x) , rs125x)), H = (reo{ ~x) , rs1 ~x)), 

L =(reo{ ~X) ,rsn{ ~X)), a00 K =( rcos( ~X) ,rs1 ~X)) . Th~ 

~=L-K+cos( ~x) -rcos( ~x) ,rs1 ~x) -rs~ ~x) )· Also, 

I =H-I=(rco{ ~x) -rcos( 25x),rs~ ~x) -rs~ 25x)). 

Now we determine the cosine of the angle f3 between ~and t by using the 

dot product. We also note that the magnitude ofboth ~and 7 is d
1

• Thus, we 
have: -- --

u • t = lull t I cos(P) = d1
2 cos(p). 

I 

Now, s~ ~) = ~ or 2d,s1 ~) =I. So, 

d=2d1 +1=2d
1 
+2d s;n( .~!) =2d +2d ~ 1-cos(p) 

I~, 2 l 1 2 ' 

Since d, = 2rsin( f) , we can find cos(P). TI1en, Maple gives . f + ~ - 2. 618 

for the scale factor for the regular icosahedron. 

J 

FiiDJTe 23 
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The following figures illustrate an emerging Sierpinski icosahedron. 

The fractal dim~ion of a Si~rpinski icosahedron is ln(12)/ln(dld1) -~ 

2.581926003. 

References 

l . Dennis, K. and Schlicker, S., Sierpinski n-gons, Pi Mu Epsilon Journal, 
Volume 10, 1995, 81-89. 

2. Barnsley, Micha~l, Fractals Everywhere, A~ademic Press, 1988. 
3. Pearce, P. and Pearce, S., Polyhedra Primer, Van Nostrand Reinhold Co., 

1978. 
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Mauldin-Williams Graphs With Unique Dimension 

Johanna Miller (student), Duke University 
C. Ryan Vinroot (student), North Carolina State University 

1. ~ntroduction. In the past twenty years, fractals have fascinated people 
rangmg from math dorks to fans of psychedelia. This recent explosion has lead 
many to believe that fractals are a new invention, which is not the case. 
Al~ough Benoit Mandelbrot is the modem day beast of fractal geometry, the 
styl~shly goateed Felix Hausdorff and others worked out much of the theory 
behind fractal geometry around the tum of the century. The actual pictures of 
fractals could not be easily calculated until the invention of the computer. 
Combining old theory with new technology, along with new insight Mandelbrot 
cashed in on his book "The Fractal Geometry ofNature"[2] in i982. In that 
b?O~ !"f~del~rot defined a fractal as a metric space whose topological 
dimension ts stnctly less than its Hausdorff dimension. We will not define these 
terms formally in this paper as adequate definitions take more than a few pages. 
(~~~reader is referred to (I].) We will say, however, that topological 
diiD.enston ts what comes to the layman's mind when someone mentions 
"dimension": a non-negative integer (or oo) generalizing the concept of dimension 
of a vector space. The topological dimension of a single point is 0, of a line is 
I, and so on. As one might expect, the topological dimension of the Cantor Set 
(which we will discuss later) is 0. On the other hand, the Hausdorlr dimension 
of a space can be any non-negative real number (or oo ), and is defined via notions 
from measure theory. In section 2, we will present theorems which allow for a 
m~ch. easier calc~ation of the Hausdorff dimension of spaces constructed by 
usmg Iterated :fimcb.on systems. The reader might be familiar with the notion of 
self-similarity of such spaces as the Cantor set or the Sierpmski triangle. The 
focus of the paper, however, will be to generalize this concept to that of graph 
se1f-similarity, a notion of several spaces similar to subsets of one another. The 
relationship between these metric spaces is represented by a Mauldin-Williams 
gra~ named after two mathematicians who have done significant work on the 
~object ([3]~. However, not every Mauldin-Williams graph represents an 
Iterated fimction system with Wlique invariant sets. In section 3, we describe the 
relevant work of Mauldin and Williams, and give some theorems which 
guar~ the existence of ~que invariant sets for a Mauldin-Williams graph. 
In section 4, we extend this work by presenting further conditions that are 
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necessary and sufficient for there to be unique invariant sets. 

2. Definitions And Simple Cases. If(S, p) is a metric space,/: S ... Sis a 
similarity if there is a positive number r such that for any x,y E S, 
p( f (x), f(y)) = rp(x,y). The number r is called the ratio for f An iterated 
function system, or IFS, is a finite set of similarities on S, (/1 ,J;, ... ,fn). The 
corresponding set of ratios of these similarities, (r 1, r 21 ••• , r "), is called the ratio 
list for the IFS. A ratio list is called contracting if each r; < 1. An invariant 
set for an IFS is a nonempty compact set, K~S such that K = flK)u flK) u ... 

f,{K). The following theorem and its proof are found in [1, Theorem 4.1.3]. 

Theorem A. Let Sbe a complete metric space and (h, / 21 ••• /,) an /FS on S with 
corresponding contracting ratio list (r 1, r 2, ... , r n). Then there is a unique 
invariant set for the IFS. 

A common example of an interated function system is the one that has the 
Cantor set as its invariant set. The reader may be familiar with the construction 
of the Cantor set by removing the open middle third of a line segment, and the 
open middle thirds of the remaining segments, and so on. To construct the 

Cantor set as the invariant set of an IFS, we let ft(x) = =.., fz(x) = x+
2 

, with 
3 3 

correspondingratiolist(l/3, 1/3), where.!;: [0,1] ... [0,1). Thereadermaycheck 
that the Cantor set is indeed the invariant set for this IFS. 

Given an IFS with ratio list (r1, r2, ••• , r") where r; < 1 for all i, the similarity 
dimension associated with the ratio list is the unique number s such that 

n 

L r/ = 1 
i=l 

Thus, the similarity dimension of the Cantor set iss= (In 2)/(ln 3) since this s 
satisfies 2(1/3)s = 1. 

An IF'S satisfies Moran's open set condition if there exists a nonempty open 
set U such that,I;(U) n J;(U)=0for i :F j; andft (U) ~ U for all i. It turns out that 

J J . 

if an IFS satisfies Moran's open set condition, then the similarity dimension is 
equal to the Hausdorff dimension. Therefore, since most of the examples ~e 
deal vvith in this paper satisfy Moran's open set condition, a formal definition of 
the Hausdorff dimension is not included. The following theorem [1, Theorem 
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6.3.12] is a formal statement of the relationship between these dimensions. 

Theorem B. Given an.JFS and a corresponding ratio list in which each r; < 1, 
let s be the similarity dimension If K is the invariant set for the JFS, and 
Moran's open set condition is satisfied, then the Hausdorff dimension of K is 
equal to s. 

The Cantor set satisfies Moran's open set condition because the open set 
U=(O,l)satisfiesthecondition:ft(U) = (0, 113), fiU) = (2/3, l)whichare 

disjoint and are both contained in U. Therefore, by Theorem B the Hausdorff 
dimension of the Cantor set is (In 2)/(ln 3). Since the topological dimension of 
the Cantor set is 0, the Cantor set is a fractal by Mandelbrot's definition 

3. Graph Self-Similarity. It is possible to generalize the concept of an IFS 
to apply to two or more nonempty compact sets constructed simultaneously in 
different complete metric spaces. As an example, we consider the golden 
rectangle fractal. The two metric spaces involved will be called S and R 
(Square and Rectangle). As implied in Figure 1 below, there are six similarities 
involved in the construction of the fractal (where fP is the golden ratio): 

J;, f;, ~ : R-+S with ratio fP -2 , 

4 : s--s with ratio (/) -j' 

fs : S-+R with ratio 1, and 
J;, : R--R with ratio ,-I. 

These functions are all rotations (not reflections) with orientations indicated by 
the arrows. For a picture of the invariant set of this system, see [1, Plate 8]. 

BEJ 
~1-l t l 

Figure 1 

·- - - - -
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This kind of generalized IFS can be represented by a directed multigraph called 
a Mauldin-Williams graph, (V, E, i, t, r). In this notation, Vis the set of 
vertices, E is the set of edges, i : E ... Vindicates the initial vertex of an edge, 
t: E ... Vindicates the terminal vertex of an edge, and r: E ... (0, oo) assi8!18 a 
positive reallUJDlber to each edge. The corresponding generalized IFS consists 
of a collection of metric spaces Sv , each corresponding to a vertex v, and 
fimctions fe, each corresponding to an· edge e E E, where if e E EIIV (E.v is the set 
of edges from a vertex u to a vertex v), then fe : Sv .... Su represents a 
similarity with ratio r( e). Note that the direction of a given edge is opposite that 
of its corresponding similarity. However, this is how Mauldin and Williams 
originally set 1hings up, so we will continue the notation. A path in a Mauldin
Williams graph is a sequence of edges, e 1, e2, ... , em, such that 
t( e} = i( ef~ 1), for j = 1, ... , m - 1. Figure 2 is the Mauldin-Williams graph 
associated with the golden rectangle fractal. 

t~"J ---~ -~-1 D ,., ul'--~s _____ ..:...~-~1 .... ..,.. ______ R._~• ~-1 -
,-1 -

Figure 2 

A Mauldin-Williams graph (V; E, i, t, r) is said to be strictly contracting if r(e) 
< 1 for all edges e E E. As was the case for an IFS involving a single metric 
space, certain conditions will guarantee the existence of unique invariant sets for 
the IFS represented by a Mauldin-Williams graph. (See [1, Theorem 4.3.5]). 

Theorem C. Let (V, E, i, t, r) be a strictly contracting Mauldin-Williams graph. 
Let ife)e€ E realize the graph in complete metric spaces Sv . Then there is a 
tmique list (K)vev ofnonempty compact sets (Kv ~ Sv) such that 

for all U E V. . 
Recall that in section 2 we presented equations defining invariant sets of an 

IFS in one metric space. Compare the equations above with those given in 
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section 2. We define the invariant sets above to be graph self-similar. 
We can also calculate the Hausdorff dimension of the invariant sets of a 

Mauldin-Williams graph. We will only consider the case in which the graph is 
strongly connected; that is; for all ordered pairs (u, v) of vertices, there is a 
path from u to v. When the graph is strongly connected, each of the invariant 
sets is similar to a subset of each of the others, so they all have the same 
Hausdorff dimension 

Next we define the dimension of a Mauldin-Williams graph and describe how 
it is related to the Hausdorff dimension of the invariant sets. For a positive real 
numbers, the s-dimensional Perron numbers are positive numbers qv, one 
corresponding to each vertex v E V, so that the following equations are satisfied: 

qus = L r(eY • qrs 
V€V 
eelirw 

for all u E V. The following theorem is found in [1, Theorem 6. 6. 6]. 

Theorem D. Let (V, E, i, t, r) be a strongly connected, strictly contracting 
Mauldin-Williams graph. There is a unique number s ~ 0 such that the s
dimensional Perron numbers exist 

This unique s is called the dimension of the Mauldin-Williams graph. 
Similar to Moran's open set condition in Section 2, there is an analogous open 
set condition for graph self-similar sets. An JFS with corresponding Mauldin
Williams graph (V, E, i, t, r) satisfies the open set condition provided there 
exist nonempty open sets Uv for each v E V such that if u, v E V and e E Euv , 
thenfe(Uv) ~ Uu, and for all u, v, v 'E V, e E Euv, e'E Euv', and e * e',fe(Uv) n 
f., (U v,) = 0 . Once again, we have a theorem that makes calculating the 
Hausdorff dimension easy. For a proof: see [1, Theorem 6. 4. 8]. 

Theorem E. Suppose we have an IFS with a strongly connected, strictly 
contracting Mauldin-Williams graph (V, E, i, t, r), with dimensions, and 
satisfYing the open set condition. Then the Hausdorff dimension of the unique 
invariant sets of the JFS is s. 

4. Contracting and Cycle-Contracting Graphs. Note that the Mauldin
Williams graph for the golden rectangle fractal is not strictly contracting. 
However, its IFS still has a unique invariant set. This is because the metrics in 
the two metric spaces, S and R, may be rescaled so that the resulting graph is 
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strictly contracting. Suppose we redefine the metric in S to be p : = rp · P s , 

where Psis the original metric of S. Now, if e e ESR,we have the following: 
P :(fe(x),fe(y)) = fPPife(x),fe(y)) = rpr(e)pix,y). 

This has the effect of multiplying r(e) by lfJ for all e e ESR and dividing r(e) by fP 
for all e e ERS. Note that r( e) is unchanged if e is a loop (an edge with the sanie 
initial and terminal vertices). Figure 3 illustrates the modified Mauldin
Williams graph, in which all values of r( e) are less than 1. 

Note that the resulting graph would be strictly contracting if we had 
chosen any number between 1 and rp2 as the rescaling number for the metric on 
S. A Mauldin-Williams graph is called contracting if it may be rescaled in this 
way so that it is strictly contracting. In the general case, for a Mauldin-W~lliams 
graph (V, E, i, t, r), with vertices v1, v2, •.. , vn E V, if the 
corresponding metric spaces are rescaled by positive numbers 

,-1 

,-1 
,-J ,-1 

,-1 

Figure 3 

a
1
? a

2
, ... , an, then for e E Ev,v/ r'(e) = a1r(e)laJ' where r'(e) is the rescaled 

ratlo. 
Given a path p consisting of edges el' e2, ... , em, define r(p) to be 

m 

Tir<eJ 
i=l 

Also, define i(p} = i(eJ and t(p) = t(e,). A cycle is a path p such that 

~ =~. ~ 

Lemma 1. For any cycle c, r( c) is invariant under rescaling. 
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Proof: Given a Mauldin-Williams graph with vertices v v v let the 1' 2' · · ., n' 
graph be rescaled by factors al' a2, ... , an. Let c be a cycle consisting of 

edges el' e2, ... , em where e1EE ,e2EE ... e EE with ratios 
VD(l)VD(l) VD(l)VD(3)' ' m VD(m)VD(l)' 

m a 
r'(c) = II a(i) r(e;) 

i=I aa(i+t(modm)) 

it is easy to see that the rescaling factors all cancel out in this product and we 
are left with r(c) = r'(c). • ' 

We say a Mauldin-Williams graph is called cycle-contracting if r( c ) < 1 for 
any cycle c. 

The. next theorem, which is the solution to exercise 4.3 .9 in [1 ], is the key to 
the mam results of the paper. It will lead to a generalization of Theorem D 
by extendin~ the uniqueness of the dimension of Mauldin-Williams graphs 
to those. w~c~ are cycle-contracting. The result is implicit in [3], but our 
method IS significantly different. 

Theor~ 1. A Mauldin .. Williams graph is contracting if and only if it is cycle
contracting. 

Proof. First, if a Mauldin-Williams graph is contracting, then it may be 
res~ed so that it is strictly contracting, and thus cycle contracting. Since the 
ratios of cycles. are invariant under rescaling by Lemma 1, the original graph is 
cycle contracting. 

Fix a cycle-contracting Mauldin-Williams graph with vertices 
v 1, v 2' · · ·, v n· The proof will be by induction on the number of vertices being 
rescaled. Assume we can rescale the vertices in the set U = {v v v } WI.th • • k-1 1' 2''''' k-1 
pos1t1ve nmnbers a 1, a2, ... , ak-l, such that all paths p beginning and ending 
at one of these vertices satisfies r(p) < 1. This is obvious for k = I. Now let 

Mk = max{r(a.):a is a path with i(a)eU"_1 and t(a)=v"} 
and 

m • = min{ r(~) : f3 is a path with l{f3)=v k and t(f3)E UH } . 
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Since there are only a finite number of paths in the graph which do not 
rontain cycles, and since adding a cycle to a path results in a new path whose 
ratio is strictly less than the ratio of the original path, Mk and mk are well-
defined. 

Now let a. and~ be paths such that r( a) = Mk and _I_ = m k. Since t( a) 
r(~) 

= i(~), we may consider the path a~. Since i( a~), t( a~) E Uk_1, we have r( a~) 

M 
= r(a)r{~) < 1. Thus-" < 1, so Mk < mk. Choose a" so th.atMk < ak < mb and 

mk 

rescale vertex vk by ak. 
Consider any path tiS such that i{tiS) E Uk_1 and t(tiS) = vk. Let r(m) be the 

ratio value before rescaling vk by a"' and r'(m) the value afterwards. So, 

r'(tiS) = r(tiS) ~ Mk < M" = 1 
ak ak Mk 

Similarly, for any path m with i(Gl) = vk and t(Gl) E uk-1, we have 

a m 
r'(m) = a"·r(m) ~ _..!_ < -" = 1. 

m" m" 
Finally, if ti.1 is either a cycle or has initial and terminal vertices in Uk_1, then 
r ' ( rd) = r( td) < 1. Thus all paths p with initial and terminal vertices in Uk = { v 1, 

v2' ... , vk} satisfy r(p) < 1. By the Principle of Mathematical Induction, we may 
rescale all of the vertices so that the resulting graph is strictly contracting. • 

The following two lemmas generalize Theorem D, and bring us to our 
conclusion. 

Lemma 2. A strongly connected, contracting Mauldin-Williams graph has 
tmique dimension. 

Proof We will show that the dimension s is invariant under rescaling of a 
single vertex, and thus under any rescaling. Recall that if the vertex v is rescaled 

by a factor of av, then r'(e) = av. r(e) when i(e) = v, r'(e) = r(e) for t(e) = v, 
av 

and r' (e) = r( e) otherwise. We define a new set of Perron numbers by letti:Dg 
qv' = av·qv and qu' =qu for U * V. Then 
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(qv')S = E r'(e)S . qus = E avs . r(e)S • qus=avs . qvs 

uEV uEV 
11e8y, IIEE.n, 

Therefore, the numbers still satisfies the equations for the Perron numbers, and 
so the dimensions is invariant. • 

Lemma 3. A strongly comected Mauldin-Williams graph that has unique 
dimension is contracting. 

Proof. Fix a strongly connected Mauldin-Williams graph (V, E, i, t, r) that is 
not contracting. Then there is some cycle Q such that r(e) ~ 1 by Theorem 1. 

Let the vertices of Q be v1, v2, .•. , v kand the edges be e1,2, e2.31 ••• ,ek,I in the 
obvious mamer. Suppose there exist s-dimensional Perron numbers 
ql' q2, ... , qk corresponding to these vertices. Then we have 
q/ ~ r(ei,i•tY • qi:P where i + 1 is taken modulo k, and by repeated 
substitutions, we have qt ~ r(e)s • qt. Since r(Q) ~ 1, we have qt ~ qt, 
Obviously, qt = qt, which implies r(Q) = 1, and that there are no edges e ~ Q, 

such that i( e) E Q , because otherwise there would be extra terms in the right 
side of the inequality qt ~ r(QY • qt, which would give strict inequality. 
Thus if there were any vertices not in Q, the graph would not be strongly 
connected. If follows that the entire graph is just the cycle Q, in which case 
Perron numbers exist for any value of s, so the dimension is not unique. • 

Theorem 2. A strongly connected Mauldin-Williams graph has unique 
dimension if and only if it is cycle-contracting. This is equal to the Hausdorff 
dimension of the invariant sets provided that the open set condition is satisfied. 

Proof. This result follows directly from Theorem E, Theorem 1 and Lemmas 
2and3 . • 
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Where Do My Sequences Lead? 

Tricia Stone (student) 
John Carroll University 

One of the things I find most exciting about mathematics is that seemingly 
simple ideas often lead to interesting and surprisingly complex results. Heie·is 
one example. Consider the sequence 

1 1+3 1+3+5 1+3+5+7 
3' 5+7' 7+9+11 '9+11+13+15 

' .... 

Notice that the first four fractions in this sequence reduce to 113. I~ would 
seem that these fractions formed by partial sums of consecutive, odd integers 
with an equal number of terms in the numerator and denominator all reduce 
to 1/3. This is in fact the case. To see this, let n be the number of terms in the 
numerator (and in the denominator). Then the terms in the numerator are 

1 +3 +5 +7 + ... +(2n -1) =n 2 (see [1]). 

The denominator is 
(2n +I) +(2n + 3) + .. ·+(2(2n) -I). 

Since 1 + 3 + 5 + ... + (2(2n) - 1) = (2n )2
, the denominator can be found 

by subtracting from this sum the sum of the terms in the numerator: 
(2n )2 - n 2 = 3n 2 . Thus, any term in the sequence has the form 

1 + 3 + 5 + ... + (2n - 1) n 2 1 -------=----=----= -=-
(2n+l)+(2n+3)+ .. ·+(4n-l) 3n 2 3 • 

Other Arithmetic Sequences With Fractions That All Reduce To 1/3 

A logical next step is to consider if this property is special to the odd integers. 
That is, are there other arithmetic sequences that create fractions which all 
reduce to 1/3? To explore this, we will consider arithmetic sequences with 
arbitrary terms. First, consider the terms in the numerator: a, a+ b, a+ 2b, 
a + (n - 1 )b, where a is the starting value and adding consecutive multiples 
of b generates successive terms. Notice that for the odd integers, a = 1 and 
b = 2. We know that these values of a and b result in fractions that reduce to 
I 13 . Which other values of a and b yield a constant 1/3? To answer this 

629 
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question, we will evaluate the terms of the sequence. We can begin by summing 
the terms in the numerator. 

L, (a+bi)=an+b L, i=an+ n n- =n a+~b . 
n-1 n-1 ( 1)b ( 1 ) 

i=O i=1 2 2 

Similarly, each term in the sequence of ratios is 
n-1 

L, (a+ib) ( n-1 ) n a+Tb 
i=O 

( 
2n-1 ) ( n-1 ) 2n a+-

2
-b -n a+Tb 

2n-1 

L, (a +ib) 
i=n 

n-1 
a+-b 

2 

a+~nb _!!_ 
2 2 

2a+nb -b 
2a+3nb -b 

Notice that when b = 2a, this expression reduces to 1/3, so every term in the 
sequence will reduce to 1/3. For example, let a= 2 and b = 2a = 4. Then 

2 2+6 2+6+10 1 
-- -···=-
6 10 + 14 14 + 18 + 22 3 

(Note that this is a constant multiple of the sequence by consecutive odd 
integers.) 

Limits For Any a And b 

Obviously if every term in a sequence reduces to 1/3 then the limit of that 
sequence is 113. Not so obvious, however, is the limit when this is not the 
case. Consider limits of sequences for any a and b. We already saw that the 
nth term in the sequence reduces to: 

2a+bn -b 
2a+3bn -b 

WHERE DO MY SEQUENCES LEAD? 

\1/lten we calculate the limit, we get 

2a +b _!!_ 
lim 2a+bn -b =lim n n 1 
n~oo 2a + 3bn- b n~oo 2a + 3b _ !!_ 3 

n n 

Thus, for any values of a and b * 0, the limit of our sequence is 1/3. 

Think Polynomials And Increase The Degree 

So far we have considered sequences of the form 
a, a+ b, a+ 2b , ... , a+ (n- l)b. 

631 

We can also think of generating this sequence by evaluating a function at the 
negative integers. That is, the ith term is 

f(i} = a + bi where i = 0, 1, 2 , .... 
Noticing that this is a first degree polynomial, we might then consider second 

ee polynomials: 
f(i) = ci2 + bi +a where i = 0, 1, 2, .... 

We can ask the same questions as before. Begin this time by finding the limit 

of this sequence: 
n-1 

L, (ci 2 +hi +a) 
n-1 

L, j{i) 
i=O lim i=O = 

2n-1 n-1 2n-1 n-1 n ... oo 

n~oo L j{i)- L j{i) L, (ci 2 +bi +a)-L, (ci 2 +bi +a) 
i=O i=O i~ i~ 

c(n -l)(n)(2n -1) + b(n -1)(n) +an 
6 2 =lim _____ __::__---:--=----:-:-:::--:-------

n ... oo c(2n - 1 )(2n )( 4n - 1) + b(2n - 1 )(2n) + 2an -numerator 
6 2 

Since this is a limit, we are only interested in the coefficients of the term of 
largest degree. For both the numerator and denominator, this is n

3
• Thus, this 

limit is the ratio of the coefficients ofn3
: 

c 
3 1 1 ---=--=-

8c c 8-1 7 ---
3 3 
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Now we know that the limit for any values of a, b, and cis 117. For what 
special values of a, b, and c will the terms all reduce to 1/7? Let's start with 
the last simplifications we obtained before we started ignoring terms. 

c(n -1)(n)(2n -1) + b(n -1)(n) + an 
6 2 

c(2n -1)(2n)(4n -1) + b(2n -1)(2n) + 2an -[numerator] 
6 2 

c(n -1)(n)(2n -1) b(n -1)(n) __ ............ _..__ ___ + + an 
=--------------~6 __________ ~2 ________________ __ 

_c(:.,_2n_-_l...:...X.:_2n......::X..;..4_n_-_..:l);._-_c(~n--_l~Xn-:.X~2-n_-~l) + b(2n -1X2n) -b(n -lXn) + 2an -an 
6 2 

This fraction reduces to 117 if 

Through simplification we find the identity 36a - 18b + 6c = n(12c - 12b) 
for all values of n. This implies that b = c and 3a =b. Thus, the function 
f(n) = cn2 + bn +a yields a constant 1/7 when 3a = b =c. The constant 
sequence corresponding tof(n) = 3n2 + 3n + 1looks like this: 

1 1+7 1+7+19 
7 ' 19+37 ' 37 +61 +91 , .... 

Summary 

• The limit is 1 if the sequence of fractions is generated by the constant 
polynomialf(n) = a \Ia ~ 0. 
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• The limit is 1/3 if the sequence of fractions is generated by the first degree 
polynomialf(n) = bn +a. 

• The limit is 1/7 if the sequence of fractions is generated by the second 
degree polynomialf(n) = cn2 +bn +a. 

• Every term of the sequence of fractions reduces to 1 when it is generated_by 
the constant polynomialf(n) = a \Ia * 0. · -

• Every term of the sequence of fractions reduces to 1/3 when it is 
generated by nonzero multiples of the first degree polynomial f(n) = 2n + 1. 

• Every term of the sequence of fractions reduces to 1/7 when it is 
generated by nonzero multiples of the second degree polynomial 
f(n) = 3n2 + 3n + 1. 

You might be detecting a pattern. (See if you can convince yourself of the 
following results.) 

Generalization 

• The limit is 1/15 if the sequence of fractions is generated by the third 
degree polynomialf(n) = dn3 + cn2 + bn +a. 

• The limit is 11(21+1 - 1) if the sequence of fractions is generated by the JCh 
degree polynomial/(n) = a1tl + ... + a1n + a0• 

• Every term of the sequence of fractions reduces to 1/15 when it is 
generated by nonzero multiples of the third degree polynomial 
f (n) =4n3 +6n2 +4n+ 1. 

• Every term of the sequence of fractions reduces to 11(21+1 
- 1) when it is 

generated by the k'h degree polynomial j{n) = (n + 1)A:+t - n A:+ I. 
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Equivalent Conditions for Fibonacci and Lucas 
Pseudoprimes To Contain A Square Factor 

PaulS. Bruckman 

Introduction. The Fibonacci Pseudoprimes (or FPP's) are those composite 
positive integers n that are relatively prime to 10 and satisfy the relation: 
F, .= O(mod n); here, {Fn} is the Fibonacci sequence defined by the recurrence 
relation: Fn+2= Fn+1 + F, ,with F0 = 0, F; = 1, n' = n- En, and En represents the 
Jacobi symbol (5/n). We note that En=+ 1 ifn = ± l(mod 10), and En= - 1 if 
n = ± 3(mod 10). 

The lucas Pseudoprimes (or LPP's) are those composite positive integers 
n such that Ln = 1 (mod n), where {Ln} is the Lucas sequence defined by the 
same recurrence relation as the Fibonacci sequence, but with the initial values 
L0 = 2,L1 = 1. 

Both of these sets of pseudoprimes have been studied extensively (see [ 1] -
[ 6]); each set is known to be infinite and intersects with the other set. Tables of 
LPP's have been published [7]; tables ofFPP's are being produced as of this 
writing by the author and his collaborator Dr. Peter G. Anderson of the 
Rochester Institute of Technology, and will be published at a future date. The 
first few FPP's are: 323 = 17·19, 377 = 13·29, 1891 = 31·61, etc. The first few 
LPP's are: 705 = 3·5·47, 2465 = 5·17·29, 2937 = 7·17·23, etc. 

From a study of such tables, it would appear that all of these numbers are 
quadratfrei, that is, contain no square factor (other than one). The author 
commented on this observation in [1], in connection with the LPP's. In that 
paper, it was shown that if a LPP does contain a square factor p 2

, say (where p 
is prime), such p must satisfY the condition Z(JT) = Z(p) (where Z(n) is the entry
pointofn in the Fibonacci sequence, i.e., the smallest positive index m such that 
n I Fm). Indeed, it was demonstrated in [1] that this condition is necessary and 
sufficient for a LPP to contain a square factor. It is easily shown that the same 
condition holds for FPP's. If this condition holds for a given prime p, one may 
easily show that p2 itself is both a FPP and a LPP. 

The aim of this expository paper is to derive certain conditions that are 
equivalent to the condition Z(p2

) = Z(p). It should be remarked that the latter 
condition holds for no known p. As a result indicated on pp. 85 - 86 of [13], 
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H.C. Williams determined that the negative of this condition, namely Z(p2
) = 

pZ(p), which we term the ''Williams condition", is satisfied for allp < 109
• 

Montgomery [9] has extended this result to all p < 232 
• More recently, an 

unpublished result by Mcintosh extends this bound further to 1. 8 · 1012 
• On l he 

basis of this evidence, it is tempting to conjecture that the Williams condition 
holds for all p . However, the statistical evidence, thus far at least, is not 
sufficient to settle this obvious conjecture one way or the other. 

For the pmpose of discussion, we define exceptional primes as those primes 
p (if any) that do not satisfy the Williams condition, i.e. such that Z(p2

) = Z(p ). 
Whether vacuous or not, the equivalent conditions that we will obtain will be 
necessmy and sufficient for primes p to be exceptional (and therefore for FPP's 
and LPP' s to contain square factors). We will express these conditions in terms 
of certain functions of p that are defined below. 

Congruence Results Given an odd prime p, we let RP denote any complete set 
of residues (modp), e.g. RP= {0,1,2, ... ,p-l}. For any x E RP, define the 
polynomial Sp(x) as follows: p-t 

S (x)= 'Lxk/k. (1) 
p k=l 

We are only interested in determining SP(x) (mod p ); in such determination, 
it is of course understood that the terms Ilk refer to the inverses of 
k (k-1(modp)). Consequently, we may regard SP(x) as a polynomial in x with 
integral coefficients . 

We may also extend the domain of Sp(x) to include algebraic integers in 
certain fields, e.g. F({S) or F({7J) . Such extensions would, of course, 
encompass the original domain RP . In some cases, we consider x to be an 
element ofF( {C), where c is a quadratic non-residue (mod p ); that is, x = a + 
b{C, w~ere a and b are in RP. We may also allow c to be a quadratic residue 
(mod p ); in this case, x E RP . Our main result, :from which the others follow, is 
given below. 

Theorem 1 . For all x E F(/C), Sp(x) = {1- xP- (1-x)P}/p (modp). 

p p-1 · .. 

Proof: (1-x)P=L pCn(-x)n, andsol-xP-(1-x)P=-E pCn(-x)n 
n=O n=l 
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~ ~ 
=-p "':.[r1Cn-1 (-x)n ln. Then {1- r'-(1-xY}ljJ =- 1:.<.1>Cn_1 (-xr In (modp) 

-1 -1 

p-1 

=- 1:. ( -l)n-1 (-1)nxn In 
p-1 

1:. xn In = Sp(x). • 
-1 -1 

COROLLARY 1 : Sp(a) = (1 - LP) lp (modp) 

Proof: This follows from Theorem 1 by setting x = a = (1 + {5 )12 , and from the 
Binet expression: Ln = a" + ~n , where ~ = 1 - a = (1 - {5 )12. 

Corollary 2: Sp(x) = Sp(1-x) (modp). 

Proof: This is immediately obvious from Theorem 1. 

Corollary 3: Sp(a) = Sp(~) (modp). 

Proof : This follows from Corollary 2 , by setting x = a . 

p-1 

Corollary 4: L F ,In = O(mod p). 
n=1 

Proof: The Binet expression for Fn is given by (a" - ~n)/ (a-~) = (a" - ~n)/ /5. 
This result, along with that of Corollary 3, implies the stated result, provided 
p * 5. If p = 5, the sum is easily verified to equal35112 = 0 (mod 5). 

Corollary 5: 

Proof: This follows from Corollary 2 and the definition of Sp(x). Note that we 
mayexpresstherelationSp(l) = 0 (modp) as follows: H[r1 = 0 (modp), where 

n 

Hn = 1:. Ilk; this is a well-known number-theoretic result. 
k=l 

As a consequence of Corollary 2, we may make the substitution 
q = x(1 - x) and regard Sp(x) as a polynomial in q, say Up(q). Since the degree 
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p-1 

of S (x) is p -1, that of U (q) is (p - 1)12. Note that dSp(x)ldx = L xk-l = 
p p k=l 

(~1 -1 )l(x-1); as a consequence of Fermat's "Little" Theorem, we see that 
S ' (x) has the zeros 2,3,4, ... ,p-1; that is to say, (xP"1

- 1)/(x-1) = (x- 2)(x-: 3) 
p 

- (x -p+1) (modp). On the other hand, S/(x) = dUp(q)/dq · (l-2x), by the 
chain rule for differentiation. Since r . - X + q = 0 ' we may solve for X in terms 
of q. This yields two roots x1 and x2, say; however, x2 = 1-x1, and in view of 
Corollary 2, there is nothing to choose between these two roots. We choose to 
define x as (1 - 9)/2, where 9 =J1- 4q. Then 1-2x = 9, and we find that UP'(q) 
= (x - xP)/q9, where x = (1-9)/2. Then xP = {(1-9)/2}P = (1- 9P)/2 (modp); 
hence, U/(q) = (9P"1 - 1)/2q (modp), or equivalently: 

UP'(q) = {(1- 4q)<P-1>'2 -1 }12q (modp). (2) 

q 

Since Up(O) = 0 (modp), it follows that Up(q) =I {(1-4t)<P-1
Y

2
- 1} /2t dt; by 

the substitution 1-4t = u, then ° 
1-4q 

U (q) = Y2 I (u<P-l)t2 -1)/(u -1)du (modp). 
p 1 

Now the integrand in (3) is equal to G/(u), say, where 

(p-1)/2 

G (x)= :E xk/k. 
p k=1 

Therefore, we have the alternative expression: 

Up(q) = (Gp(1- 4q)- Gp(1))/2 (modp). 

In particular, ifx =a, then q =a~= -1, and so 

(3) 

(4) 

(5) 

(6) 

We now derive an alternative expression for Up( q) from the integral expression 

in (3). From (2) above, 

~~2 ~~2 
u '(q) = 1/2 L 1/2~-I)Cn(-4)n q<n-1) = 1/2 L -II2Cn(-4t qn-l(mod P} 

p n•l nal 
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(p-1)12 

- 112 L 2nC:;1(mod p). Therefore, 
n=l 

(p-1)/2 
Up(q) = 1/2 :E 2ncn q" In (mod p). (7) 

n=1 

In particular, 

(p-1)/2 
Up( -1) = 'l2 :E 2nCn ( - 1)n In (modp) (8) 

n=1 

Note also from (3) that U/(q) = -2{(u(p-l)l2- 1) /(u- 1)} lu=1_4q; 

since u(p-I)I2 = (ulp) (modp) for all u E RP (Legendre symbol), then UP'(q) = 
-211 (1 -4q-p), the product taken over all quadratic residues p (mod p) * 0 or 

p 

1 (there being (p- 3)/2 such residues). Equivalently: 

(p-1)/2 

U/(q) = -2 IT (1 - 4q- /C) (modp) 
k=2 

(9) 

All of the above derivations are interesting, but it is not yet clear how they 
relate to the original problem of determining exceptional primes. Such 
relationship is clarified in the following section. 

3. EQuivalent Conditions for Exceptional Primes. It was indicated in [1] 
that if n is a LPP, it contains a square factor p 2 iff p is an exceptional prime. 
The same equivalent conditions may easily be shown to hold for a FPP. As 
previously mentioned, it has apparently been verified that there are no 
exceptional primes p with p < 1.8 · 1012. Accepting this statistic as valid, we can 
say with certainty that if n is a LPP (FPP) with n < 3.24 · 1024, it must be 
quadratfrei ; for if p 2ln , then Z(p2) = Z(p) and also r < 3.24 · 1024, or 
p < 1.8 · 1012 , which contradicts the assumed statistic. Incidentally, it is of 
interest to note (and relatively easy to demonstrate) that if p is an exceptional 
prime, then If itself is both a FPP and a LPP. 

We will now demonstrate how these conditions are related to the congruence 
relations given in the preceding section 

It is well-known that for all primes p, LP = 1 (mod p). Thus, the ratio 
(1 - LP) /p given in Corollary 1 is an integer. Now p 2 is a LPP as well as a FPP 
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iff Z(p2) = Z(p), in which case If I (LP- 1) andp2 I FP. , where p' = P- (5/p) 
(we will accept the result attributed to Mcintosh , so that p is a prime greater 
than 1.8 · 1012 ). However, by Corollary 1, we see that this condition is 
equivalent to Sp(a) = 0 (modp). In light of the preceding derivations, we have 

the following equivalent conditions: 
(a) pis an exceptional prime; 

(b) p 2 is a FPP and a LPP; 

(c) Sp(a) = Sp(P) = 0 (modp); 
p-1 

(d) :E Fk_1 /k = 0 (mod p); 
k=1 

p-1 

(e) :E Fk+n /k = 0 (modp) for all n; 
k='1 

(p-1)12 
(f) :E (5k- 1) /k = 0 (modp); 

k='1 

(p-1)12 

(g) :E 2kck (-It lk = o (modp) . 
k=l 

Clearly, (e) implies (d). On the other hand, Corollary 4, (d) and the 
recurrence relation for the F/s imply (e), by induction. Thus (d) and (e) are 
equivalent. Based on our previous comments, the preceding conditions apply 
for any p such thatp2 is a divisor ofn, where n is either a FPP or LPP. 

We should also mention a congruence relation that was proposed as a 
problem [12] by Morgan Ward. Using our notation, Ward's problem was as 

follows: 
(h) Z(p2) = Z(p) iff Gp(5/9) = S/(3/2) /p (modp), i.e. 

(p-1)12 
:E (519)k /k = 2{(3/2y-1- 1} /p (modp). 
k=1 

yet another condition that is easily shown to be equivalent to the preceding one~ 
in (a )-(h) is the following: 
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(i) a!' = (5/p) (modp2
) • 

Also, as indicated in [6],p2 is both a FPP and a LPP iff it satisfies one of the 
following congruences : 

G) p 2
l FP,12 ifp =1 (mod4), or p 2

l LP,12 ifp = 3 (mod 4). 

We would be remiss if we omitted another equivalent condition for 
exceptional primes, also due to H. C. Williams [13]: 

p-1-[p/5] 
(k) :E ( -ll /k = 0 (modp), ifp * 5 . 

k=1 

There are also the two equivalent congruences mentioned previously: 

The relation in (i) is seen to be akin to the condition for Wieferich ~ (a 
Wieferich prime is a prime p such that 2p-1 = 1 (modp2

); the only Wieferich 
primes less than 4·1012 are 1,093 and 3,511). There are also some scattered 
known solutions of the more general congruence mp-

1 = 1 (mod r), where m is 
a given positive integer. See [10] for a list of such solutions, and [8] for a 
related discussion. 

Less is apparently known about such congruences when m is an algebraic 
integer, as is the case when m = a = (1 +JS )/2; note that the exponent p- 1 is 
replaced by p' in that instance . 

Finally, we should include another pair of conditions equivalent to those for 
exceptional primes (and to each other), due to Z.H Sun and Z.W. Sun [11]: 

p-1 

(n) :E llk (modp); 
k=1, 

5l(2p-k) 

--- --
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p-1 

(o) :E llk (modp). 
k=1' 

Sl(p+k) 
-

It is expected that any exceptional primes should be exceedingly rare, if they 
exist at all. We cannot infer from the referenced searches that they are non
existent. It is hoped that this paper will encourage computer scientists and/or 
students to canyon the search for any such exceptional primes, so that the basic 
question of whether there exist FPP's and LPP's containing square factors 
might be settled. Various algorithms have been given in this paper, to determine 
the existence of exceptional primes. Some of these algorithms are more 
computationally efficient than others; it is left to computer scientists and other 
interested researchers to determine the relative merits of the various algorithms 
and to use this information to extend our search for exceptional primes. Of 
course, if there are no exceptional primes, any such search would be fruitless 
(although it would strengthen our faith in the non-existence of exceptional 
primes); in this event, additional theoretical considerations would need to be 
advanced. 

The author is indebted to the anonymous referee, as well as to Dr. L.A. G. 
Dresel, for various helpful suggestions that tended to improve this paper. 
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Symmetric Chromatic Functions 

Michael Wolfe (student) 
Maca/ester College 

A graph G with d vertices has an associate symmetric function of degree· din 
variables x1, X2, ··· , xn. This function is related to the chromatic polynomial of G 
in that if we set x1 = ··· = xn = 1 in the symmetric function, we obtain the 
chromatic polynomial of G evaluated ~t n. The purpose of this paper is to 
investigate the symmetric chromatic polynomials of graphs as expressed in terms 
of the standard bases for the symmetric functions. In particular, express~ons in 
terms of the elementary symmetric functions are examined. New expressions are 
proven for previously characterized graphs, and conjectures are made regarding 
uninvestigated classes of graphs. 

1. Symmetric Chromatic Functions 

Graphs. A graph is a set of vertices V = V(G) = { vb ··· , vn} and a set of edges 
E = E(G) = {e1, ···,em} where each edge is an unordered pair of vertices. If two 
vertices are cormected by an edge, they are said to be adjacent. In this paper we 
will not consider graphs with self adjacent vertices. 

A coloring of a graph G is a map K: V .... { 1, 2, ···}, where we denote a set 
of colors by { 1, 2, ···}. A proper coloring is a coloring in which no two adjacent 
vertices are assigned the same color. Note that this is why we do not want to 
consider self adjacent vertices, as there would be no proper coloring for a graph 
that included one. 

The chromatic polynomial M(nJ of a graph G is the number of proper 
colorings of G using n colors. It is not immediately obvious that MfnJ is a 
polynomial. For a proof of this and other results on chromatic polynomials see, 
for example, Brualdi [Bru]. The chromatic polynomials do not yield any actual 
colorings, so we will describe another way to think about them using symmetric 
functions. 

Symmetric Functions. Denote the set of all polynomials in variables x 1, ... , xn 
with coefficients in the integers, Z, by Z[xb ... , xn]. Under polynomial addition 

:. 

643 
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and multiplication Z[xt, ... , xn] forms a ring. If j{x. , ... ,x. ) =j{x1, ... ,x) for 
11 1n n 

every possible permutation X; ,. .. ,xi ofthevariables x1' ... ,xn, thepolynomialfE 
Z[xb ... , xn] is said to be sYmmetric. For example, the polynomial X + y is 
symmetric in Z[x, y] but 2y +xis not. The set of all symmetric polynomials 
forms a subring of Z[xb ... , xnl denoted A[xb ... , xJ. The set of all symmetric 
polynomials of degree dis denoted Ad= Ad [xb ... ,xn]. The set Ad has ·a finite 
integer basis which we define below. It is important to note that Ad n Ae = {0} 
for all d * e. Also, A= @d~oAd, meaning that every symmetric polynomial p can 
be uniquely written as a finite sump= 'LPd where Pd E Ad. Therefore, a basis 
for the infinite dimensional ring A is the union of the bases for Ad for all d. 

Before we define a basis for Ad, we introduce the notion of integer 
partitions. A partition of n, denoted A. f- n, is a sequence of integers 

A.= (A.b ~, .. . ,1..1) 
where At ~ ~ ~ ... ~ 1..1 > 0 and E!=t A; = n. The length of A. is ~(A.)= 1. An 
alternative notation is to write A. = ( 1°1

, 2°2
, • · · ,n an), where at is the number 

of times i appears in the partition. For example, A.= (4, 4,3, 1, 1, 1, 1, 1) is a 
partition of 16 which is also expressed as A.= (15

, 3\ 42
). Partitions can be 

ordered under lexicographic ordering: i.e., ifJ..t ~ ~ ~ ... ~ 1..1 then the partition 
A. is greater than the partition 'Y if and only if the first non-zero entry of (At - "(1, 

~ - "(2, ... ) is greater than zero. 
Given variables xh ... , xm we define the elementary symmetric functions 

et,. .. ,en E Z[xt,. .. ,xn] the formulas 
et =xt + ... +x, 

e2 = XtX2 + XtX3 + ... + XtXn + X:zX'3 + ... + Xn-tXn 

and for each A. f- n define e). e~ .. · e).. We have the following well known 
property of elementary symmbtnc funhtions, see Sagan [Sag] or MacDonald 
[Mac] for a proof 

Theorem 1.1. 1he sede1JI..f-d,J..1 ~ nJ is a basis for Ad. 

~---~ 
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For a finite graph G with d vertices, Stanley [Stan] defines a homogeneous 
symmetric functionXG of degree din the variables xh x2, ... , xn as follows 

Xa = Xa(X z, x2, ···,x,J = L XK(vl)XK(vl) ... xK(vn>' 
IC 

where the sum ranges over all proper colorings x:: V.... { 1, 2, ... , n}. 1his 
symmetric function is called the symmetric chromatic polynomial of G. If we 
set xt = ... = Xn = 1, then we obtain XD<n> the usual chromatic polynomial of G 
evaluated at n. Each monomial of this polynomial is denoted X', where 
x iC=xK(v >'"x1C(vn>· This is a monomial in which the degree ofx; is the number of 
times color i appears in the coloring K. 

Since the set of elementary symmetric functions {e,JA. f- d, 1..1 ~ nl forms a Z
basis of Ad, we can expandX0 in terms of this basis so that 

(1.2) 

where c;. E Z. The coefficients in this expansion are the main focus of this 
paper. 

2. Stanley's Generating Functions. One way to find the symmetric chromatic 
polynomial for a graph is to use the generating function for that class of graph. 
A generating :function is defined in the following way. Given a sequence ao, ab 
a

2
, ... , the corresponding generating jUnction is the power series 

Define a chain to be a graph Pd with vertex set V = { vh ... , v d} and with edges 
V;Vi+h 1 ~ i .s; d- 1. Define a cycle to be a graph cd with vertex set V= {vh ... 
, vd}, d~ 3 and wi1hedges v;vi+17 1 ~ i ~ d- 1 and vtvd. Richard Stanley [Stan] 
has derived generating functions for the symmetric-chromatic polynomials of 
chains and cycles (see 2.2 and 2.3). In these generating functions, the symmetric 
chromatic polynomial for a graph with n vertices is the coefficient off' . The 
main purpose of this paper is to use these generating functions to find a formula. 
for the coefficient c;. defined in (1.2). 
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Stanley determines the generating functions for the symmetric chromatic 
polynomials of two special kinds of graphs, chains and cycles. 

Theorem 2.1. [Stan, Proposition 5.3] The qenerating jUnction for the 
symmetric chromatic polynomials of chains length dis 

~ ~- oe.t; 
L.J Xp ·t d= L.J,~ I . 

d~o 4 1-~- (i-l)e.t' L...Jz~l I 

(2.2) 

One consequence of this theorem is derived :from the geometric series 
1 ~ k Th . .t:, __ _..: • fthi £'. ' 

I _ r = Lih.o r . e generatmg J.wa;uon IS o s J.Orm, and when we express 

it as a geometric sum it is easy to see that our generating function is e-positive. 
That is, the coefficients are positive for an expansion of the symmetric chromatic 
polynomials for chains in terms of the elementary symmetric functions. 

Theorem 2.3. [Stan, Proposition 5.4] The generating function for the 
symmetric chromatic polynomials of cycles of length dis 

L Xc ·t d = L;~o i(i -l)el; 

cno 4 1 - ~- (j-l)eti 4,....}~1 J • 

(2.4) 

Again, it is easy to see from this generating function that the cycles are e· 
positive. Stanley conjectures e-positivity for many other classes of graphs, 
but fails to find generating functions for them. 

3. Coefficients in the Basis of Elementary Symmetric Functions. 

Chains. The elementary symmetric functions { e AIA.1- d} form a Z-basis of the 
symmetric functions of degree d. Let A. = (1 al' t\ ... ,dad), and let c A denote the 

ffi . f al a2 ad • • • coe ctent o e~. = e1 e2 ... ed m the expansiOn of Xp m terms of the 
elementary symmetric ftmctions. Thus: d 

XP = L c~.e~. (3.1) 
d l.t-d 

It follows from the generating function that c;. ::::: 0 for aliA. t- d. We give an 
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explicit formula for c;. in the following theorem. 

~ ( ( ~::::~a,a~'~'~J ( g (i -J)"i} (i -1)•,-t) 

. . 1 r k Stanl • tmg' Proof. Apply the geometric senes, -- = L.J r , to ey s genera 
function (2.2). This gives 1 - r ho 

LXP ·td= L;:~:o et; = L el·(L (E (j-l)~i)k). (3.3) 
d:~:O d I- ~:1:1 (j -l)el i i~O h.O J~l 

The right side of(3.3) is the product of two sums, one sum over i and one 
over j. We consider two cases in our coefficient formula, i = 0 and i > 0. If i = 

0 then XP is generated entirely by Lho<'4~ 1(j -l)e/J)k. Note ~at in this case, 
if en appea:s in the expansion, it is multiplied by (n - 1). Thus, en n is multiplied 
by(n -lt". If en is not in the expansion, then an= 0 and it follows 

that(n -l)a" = 1. Furthermore, the multinomial coefficient (at+::: +aad] keeps 
al, , d 

. al a2 ad· th . f 
track of the number of different ways to obtam e1 e2 ... ed m e expansion o 

In the case where i * 0, we must generate the coefficient Xp in the same 
way, but as if the partition had one less part of size i. Looking at the right half 
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of size j have a weight of (j - 1) because ei is multiplied by (j - 1 ). However, 
parts of size i have a weight of 1. Therefore if we have a partition, we must 
consider the case in which no part is generated by the sum over i, and each case 
in which exactly one part is generated by the sum over i. We have done the 
former, but in the latter we find the coefficient as if one part of size i has a 
weight of 1 instead of(i- 1). We must do this for each possible i, so we will 
sum over i. First we find the product of all the weights of all of the parts with 
a size not equal to i. This is very simply fL·~tJ"*li -l)ai. Then we multiply by 
the combined weight of the parts of size i, less one part. This neglected part is 
the part generated by the sum over i (the first part of our product), which has a 
weight of one (not affecting the product) and looks like: (i - 1 t; -I . 

Now we are ready to put the whole formula together. We start with the 
product of the weights of the non-i parts fL.~ t,j:t.i(j - 1 ti, and we multiply by the 
weight of the parts of size i to obtain: 

(
(a +a +···+a ) -1) 

If ai - 1 < 0, then 1 2 

1 d is zero. Thus, this is just a sum over 
all a., ... ,at- ' ... ,ad 

possible ways you could substitute a part generated by the i sum in the 
generating function for one generated by the j sum. Finally, we add the case in 
which i = 0 and obtain our formula. 

Figure 3. 4 gives the expansion of X prJ for 1 ~ d ~ 5. 
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• 

-
• • • 

. . 

Figure 3.4. X Pa expanded in the basis of elementary symmetric functions. 

Remarks. (1) If a1 ~ 2, the coefficient ofe;•e;2 
... e;a is zero. This is clear from 

two perspectives. In the generating function, the only place an e1 could come 
from is from the sum over i. A part of size 1 generated by the sum over j has a 
coefficient of zero because j = 1 and there is a factor of} - 1 in that sum. Thus, 
the coefficient of e ; 1e2az ... e ;a is at most zero. Also, if you look at Theorem (3 .2) 
for a partition in which a1 > 1, you will see that the left product and the right 
product each lead to a circumstance in which you get 0", n > 1, which is just 
zero. This is avoided if you have only one e1 because(i -lt1-t = (1 - 1Y-1 = 
0°. Though 0° is undefined, we can assign it the value I from the generating 
function. Thus, if a1 ~ 2, the coefficient is zero. 

(2) If a1 = 1 then the coefficient is just ((at +~~·.+a d)) rrf=2(j- 1 ti. 
a2, ,ad 

This was hinted at in remark ( 1 ). The first product in our formula is just zero, 
because of its (j -1 ti term. The (i - 1 t,-t in the second product is simply 1. 
Finally since a;= a1 = 1, the top half of the multinomial coefficient is 
(at +a2 + ... +ad)- 1 =(I +a2 + ... +ad) -1 = (a2 + ... +ad) and the bottom half is 
(at ... ,a; -}, ... ,ad) =(a1 -1,a2,. .. ,a) = (a2,. .. ,ad) . 

(3) There are a number of patterns that arise in the coefficients of the partitions 
if you modify the partitions in a systematic way. Any partition for which 
an = 1 ,n * 2 will have the coefficient 2. Any partition for which a1 = 1, an>2 = 0 
will have a coefficient of 1. In the former case, you can express the coefficient 
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as ( a2
) (2 -1)~ + ( a2 ~ 1) ·1·(2 -1)"2-1, which is just 2. In the latter case, 

a2 a2 1 

you may invoke the result from (2) and the formula for the coefficient reduces 

to ( (a2 +~~~+ad)] J1~2(j -1)ai = ( a2) (2 -1t2 = 1. 
a2, ,ad a 

2 

Example. Consider the polynomial generated when d = 5. The partitions of 5 
are (5), (1,4), (2,3),(12

, 3), (1,22
), (1\ 2) and (15

). From remark 1 we know that 
the coefficients of e3e1

2,e2e1
3,and ei are zero. Remark 2 tells us that the 

coefficient of e4e1 is just 3. Finally, from remark 3 we know that eie
1 

has a 
coefficient of 1. This leaves us two to work out. The coefficient of e 5 is 

( ! ) · (5 -1)1 + ( ~) · 1 · (1 -l)<HJ = 5. The coefficient of e,e, is 

( 1~1) ·(3-1)1·(2-1)1 + (!) ·(2-1)1·(3-1)(1-l)+ ( u. (3-1)1·(2-1)<1-IJ 

= 2 • 2 + 1 · 1 + 2 ·1 = 7. Thus, the symmetric chromatic polynomial for a chain of 
length 5 is Xp

5 
= 5e5 + 3e4e1 + 7e3e2 + eie1. 

Cycles. The generating function for cycles is like the generating function for 
chains, in that we get a symmetric-chromatic polynomial whose monomial terms 
consist of elementary symmetric functions multiplied by an integer. For a 
partition A. = (1 a 1

, 2a2
, .. ·,d all) of d, let r;., denote the coefficient of 

al ~ ad • th · f · fth I · el = e 1 e2 ... e d m e expansion o x c m terms o e e ementary symmetric 
functions. We give a formula for r;.,: d 
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Proof: The proof is quire simililar to the proof for our formula for chains. Once 
again, we start off by manipulating the original generating function (2.4) 
slightly, using our identity for infinite geometric sums: 

As in the case for the chains, the coefficient is made up of the multinomial 
expansion of the right half. The appropriate terms of this expansion for the 
coefficient Xc are t11~e s~ch that i + {j1 + ... + jk) = d because 
..rJ • j d j l+J + .. ·+Jk iJ 
c = t ' · t 1 

• ... ·t t = t 1 
. The sum over j is raised to the It power 

(
(a +a +· .. +a ~ -1) 

again, so we include the multinomial coefficient, ~ ... 2a _ 1 .. ~a . We 
1' ' i ' ' d 

remove one part of size i to take into accomtt the fact that the sum over i is not 
raised to the Jth power. 

The portion of the coefficient generated by the weights of the sums is exactly 
the same as it was for the chain case, except that the weight for the sum over i 
is no longer 1, it is i · (i - 1). Note that this means that there is always a 
contribution from the sum over i. In the case for the chains, if i = 0 the term in 
the product that involved i was 1, and the coefficient was due entirely to the sum 
over j. In the case of the cycles, if i = 0 then i • (i- 1) = 0 and the whole 
product is 0. Thus, we must first find the product of the weights for all ~,j * i, 
which is just fL~ 1J~i (j - 1 ti. Then we multiply in those parts generated by the 
sum over j for j = i, which are just (i -It;-1

. Finally, we multiply in the 
contribution from the sum over i: i · (i- 1). Putting it all together: 

Now we multiply by the multinational coefficient and sum over all possible 
i. 

((a +a + a ' - 1)) L 1 2 dl ·i· TttV -lti. 
i~1 at, ... ,ai - 1, ... ,ad 

(Once again note that if, as we sum over all i, i is a value that is not fomtd :. 
in the given partition then the multinomial coefficient is zero.) We have the 
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formula we set out to prove. • 

b. 6~ 

0 
0 
0 
0 
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Figure 3. 7. The coefficients for the polynomials of cycles. 

Remarks. (1) The coefficient of e,. is just n · (n - I). If i =/: n, then 

(
(a +a +···+a )-I) 1 2 a · = 0 and the whole product is zero. If i = n, then 

a1, ... ,a; -1,-··,ad 

(
(a +a +···+a ) -I) 

t 
2 

_ a = 1. But ifj =/: n, then ai = 0, and that part of the product 
a1,···,a1 1,-··,ad 

is I. Finally, ifj = i = n then we get (j- I)1 
• i = (n- I)· n. 

(2) The coefficient for a term with a1 2: 1 is zero. If j = I, then Oj = at 2: I. But 
one term of our product is (j- I /i. If j 2: I then ~ 2: 0 and the term of the 
product mentioned is (1 -I /i = Oa.; = 0 making the whole product is zero. 

Example. Consider the polynomial generated for the cycle when d = 5. The 
partitions of 5 are (5), (1, 4), (2, 3), (I 2

, 3), (1, 22
), (I3

, 2), and (1 5
). From 

• 2 2 3 d s remark 2 we know that the coefficients of e4e1,e3e1 ,e2 e1,e2e1 , an e1 are zero. 
From remark I we know that the coefficient of e s is 5 • ( 5 - 1) = 2Q. This just 
leaves e3e2• The coefficient of e3e2 is 

( D ·(2-1)1·(3-1)1·2+( n ·(2-1)1·(3-1)1·3=1·2·2+1·2·3=10. 
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Therefore, the symmetric chromatic polynomial for a cycle of length 5 is 
Xc =20e, + 10e3e2 . 

s 
. 

4. A Graph Basis for the Symmetric Functions. Theorem (3?) lea~ to~ 
interesting consequence. We can define a basis for the symmetnc ftmctions m 
terms of graphs that are single chains and graphs that are disjoint collections of 
chains. The following property is important in showing this. 

Property 4.1. Let G be a graph made up of disjomt subgraphs E and F . Then 
the symmetric chromatic polynomial of G is XG = XE • XF where XE 1s the 
symmetric chromatic polynomial for E and XF is the symmetric chromatic 
polynomial for F. 

Proof. The colorings of E are completely independent of the colorings of F. 
Thus 'XE is completely independent of 'XF, so if you fix a coloring of E, then you 
have 'XF ways to color the whole disjoint graph G. There are XE ways to fix a 
coloring of E, therefore x.a = 'XE • XF and XG = 'XE • 'XF· • 

The basis of the symmetric functions is as follows. 

Theorem 4.2. Let A = (A.b ···, A.1) be a partition of n and let G;. = P ;..
1 

• P;..,. ... P ;..,. 
be the graph consisting of disjoint chains whose lengths form the partition A of 
n. Then{xG IA.rn} is a basis for A"·. 

. A 

Proof. Using Theorem 3.2, if we expandXPd' (the ~etric chroma~c 
polynomial for a single chain) in terms of the elementary fimctions, the result 1s 
a polynomial in which the coefficient of ed is d. The orders of~e elemen~ary 
fimctions form a partition of d, so the polynomial for a single cham of n vertices 
is ne, + M, where M is some sum of terms in which each term is a partition of 
n. Thus, the partition of n that corresponds to a term of M is less than A = (n, 0, 
. .. , O) in the lexicographic ordering. The symmetric chromatic polynomial of 
the graph of disjoint subchains whose polynomials have leading terms e;.,

1
e;..,_ ··· e;.., 

will have a leading term e~...e;..,.···e;..,. 

Every term of M is some product of two or more elementary symmetric 
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functions and a constant coefficient. Again, property (4.1) says that given any 
product of elementaries we can find a graph of disjoint subchains whose 
symmetric chromatic polynomial will have that product of elementaries as its 
leading term. Furthermore, that graph will be the graph of disjoint chains that 
have each of those elementaries as the leading terms in their respective 
polynomials. Thus we can always find a graph whose polynomial has the same 
leading term as X (up to a constant multiple), subtract the two polynomials, and 
end up with a new polynomial that has a smaller leading term. Since the 
lexicographic ordering is a well ordering, we will eventually have a remainder 
of zero. This, the set {X G4 1 f- n} spans all of the elementary functions e;. of a 
given degree d, where A f- d. 

The polynomials for single chains are linearly independent, because the 
polynomials for chains have terms that correspond to partitions of the chain 
length. Thus, no two chains of different lengths will have like terms. The 
symmetric chromatic polynomials of graphs comprised of disjoint chains are also 
linearly independent, because the symmetric chromatic polynomials of any two 
different graphs of disjoint chains will have different leading terms. This is 
because the leading terms are the products of the leading terms of the subchains, 
and if the graphs are different, they have different subchains. 

Therefore, since the set of the symmetric chromatic polynomials of the 
chains and the disjoint chains spans the elementary symmetric functions of 
degree n and is linearly independent, it is a basis for the elementary synunetric 
functions of degree n. In section 1 we showed that { e;.l A f- n} is a basis for An 
thus the set of symmetric chromatic polynomials for graphs of disjoint chains is 
also a basis for An. • 

5. Conjectures about Other Types of Graphs. A cycle with a tail is a cycle 
with chain comected to one of the vertices in the cycles. Only cycles with a 
single tail are considered. The natural first case to consider is the three cycle 
with an arbitrarily long tail. We may attack the problem of finding a generating 
fimction for this symmetric-chromatic polynomial using the method that Stanley 
used on chains. Define La. a 3-cycle with a tail, to ~ave vertex set V = { v1• ••• , 

va} with edges v,vi+t,l ~ i ~ d- 1 and v1v3. Let X~= LK xK summed over all 
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proper colorings K: V .... [ n] of La such that K(v a) = i. Then let us define 

Fi(t)= L x;d·t d. 
d~3 - • -

We index :from d ~ 3 because it does not make sense to talk about a two vertex 
three cycle with a tail. We make the substitution X~= LK x K and we sum over 
the index j,j ~ i. This gives us: 

Fi(t)=(t L L xK'td)xi. 
j~l d~3 K' 

f'toi K'(d-l)o!j 

Now we need to take the first term out of the sum over d. This term is the 
symmetric chromatic polynomial for a 3-cycle in which one of the vertices has 
a fixed color, i. One of the other vertices can be any color except i, and the third 
vertex can be any color except i or the color of the second vertex. Thus, the 
equation with this term pulled out of the sum is 

Fi(t)= t 'i:, xrtxl3 + (ti: E xK.td)xi. 
y=l z=l j~ 1 d~4 'K 

Y*i Z*y,i jo!i K'(d-l) .. j 

by one by substituting d = d + 1. Then,Ld~3 L 1C' xK'td+t =Fi(t)·t,so, 
lC'(d) .. j 

(5.1) 

The solution to this equation yields the generating function for 3-cycles with 
tails. It seems evident that generating similar equations would be easy for any 
cycle with one tail, or even for a simple tree that had one fork. If this function 
can be solved, generating functions for several more classes of graph would be 

easy to find. 
:. 

The following table was computed with help ftom Timothy Chow's C-
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program [Chow]. 

A 6e3 

A- 8e4 + 4e3e1 

1\ I • 10e5 + 6e4e1 + 8e3e2 

L.. • • 12e6 + 8e5e1 + 12e4e2 + 4e3e 2e1 

Figure 5.2. The syrmmetric chromatic polynomials of lariats 

From o~servatio~ of symmetric chromatic polynomials generated by a C 
program \\TJtten by TlDlothy Chow [Chow], we made some conjectures about 
all of the ~lyn~mials generated by this function. First of all, there is a yery 
clo~e relationship between this group of polynomials and those generated for 
chams. .The products of elementary s:ymmetric functions that appear in these 
polynomials. are a subs~t of the products of elementary functions that appear in 
the pol)'nonuals for chams of1he same number of vertices (that is if a term \\ith 
e~2 appears in the symmetric chromatic pol)nomial for a 3-cycle ~th a 3-chain, 
then a term with e4e2 appears in the symmetric polynomial for 6-chain). It 
appears that the only terms that are missing are those which contain no 
elem~tary symmetric function of order greater than two. Furthermore, the 
coeffic1e~ts of products of elementary symmetric functions in the cycle-tail 
polynonnal where no elementary functions of degree two are present seem to be 
exactly twice their counterparts in the polynomial for a chain with the same 
number of vertices. Those terms that do contain e2 have coefficients somewhat 
less than twice those of the same term in the function for chains. That terms 
withe: are somehow different is supported by ( 5 .I). This also seems to support 
a conJectw'e that the other coefficients are very closely related to their 
counterparts in the chains, as ( 5.1) is otherwise very similar to the equation that 
Stanley arrived at in his proofofTheorem 2.1. Other conjectures: 
1. The coefficient of en-2e2 is 4(n- 3) 
2. The coefficient of en-3e2el is 2(n- 4) 
3. The coefficient of en-4e

2 is 4(n - 5) 
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PROBLEM DEPARTMENT 

Edited by Clayton W. Dodge 
University of Maine 

This department welcomes problems believed to be new and at a level 
appropriate for the readers of this journal. Old problems displaying novel 
and elegant methods of solution are also invited. Proposals should be 
accompanied by solutions if available and by any information that will assist 
the editor. An asterisk (*) preceding a problem number indicates (hat the 

proposer did not submit a solution. 
All communications should be addressed to C. W. Dodge, 5752 

Neville/Math, University of Maine, Orono, ME 04469-5752. E-mail: 
dodge@gauss.umemat.maine.edu. Please submit each proposal and solution 
preferably typed or clearly written on a separate sheet (one side only) 
properly identified with name and address. Solutions to problems in this 
issue should be mailed by December 1, 1998. 

Problems for Solution 

~ 927. Proposed by Mike Pinter, Belmont University, Nashville, 

Tennessee. 
In the following base ten alphametic, 

a) find the maximum value for FINAL, 

b) find the minimum value for FINAL, and 
c) can you find a solution yielding any other value for FINAL? 

PASS + THE = FINAL. 

928. Proposed by the late J. L. Brenner, Palo Alto, California. 
Is it true that, as n increases through the integers, the number of primes 

in the open interval (n, 2n) can stay the same, increase by one, or decrease 
by one, but never change by two or more? Student solutions are especially 

invited. 
· .. 
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¥ 929. Proposed by Richard 1 Hess, Rancho Palos Verdes, California. 
On the ground floor of a building there are on the wall three light 

switches of the usual kind that show whether they are on or off. One of them 
controls a lamp with an ordinary incandescent I 00-watt bulb located on the 
third floor. The other two switches are not connected to anything, although 
you have no way of telling which switch is the live one. You are allowed to 
toggle the switches at will before climbing to the third floor, which you can 
do just once. From the ground floor you cannot tell whether the lamp is on 
or off, but you have full access to the lamp when you are on the third floor. 

a) Tell how to determine which switch controls the lamp. 
b) Solve the problem if the switches are not marked with on and off 

positions, but you know that the lamp is initially off. 
c) Solve part (b) if you do not know if the lamp is initially on or off. 

~ 930. Proposed by the late J. L. Brenner, Palo Alto, California. 
By direct calculation, that is, without using published theorems, show 

that the permutation group generated by (127) and (135)(246) contains all of 
the following types (shapes): 31

, 22
, 4121, 32

, 3122
, 7\ and 51, where (127) is 

of type 31 and (135)(246) is oftype 32
• 

931. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, 
Alberta, Canada. 

Determine the maximum value of 

__!_ {S + S + ··· + S } 
T IUUl IUU2 nur Ill ' su 

where the X;, r;, and u all are positive and 

S 
t t t 

t = x1 + ~ + ··· + xn and r = r1 + r2 + ··· + r m ~ 1. 

932. Proposed by David Iny, Baltimore, Maryland. 
a) For 0 < J.1 < £ ~ I, define a sequence recursively by x0 = £, and xn+1 

= sin xn for n ~ 0. Thus {xn} is a monotone decreasing sequence of positive 
numbers. Estimate the smallest value of m such that xm ~ J.l. 

b) Repeat Part (a) using the recursion formula xn+1 = In (I + xn). 

P ROBLEMS AND SOLUTIONS 

933. Proposed by David Iny, Baltimore, Maryland. 
Define for nonnegative integers k and n the sums 

Jkn = 1 ~k(~) + 2~k(~) + ... + n+~ +k(:} 

661 

a) Find closed form expressions for Jkn fork= 0, 1, 2, ... 
b) Let p be any nonnegative real number and [x] the greatest integer less 

than or equal to x. Evaluate 

lim n2-n(J[pn]n). 
n-oo 

~ 934. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, 

Alberta, Canada. 
Evaluate the integral 

1 = £sm( n4
x

2 
+ : 2 )ax. 

*935. Proposed by M A. Khan, Lucknow, India. 
From a deck of n cards numbered 1, 2, ... , n, select m cards (3 ~ m ~ n) 

at random. Show that the probability p that the numbers on the selected cards 

are in arithmetic progression is given by 

p = (q + l)(R + n + 1 - m) 

z(:) , 
where q is the integral quotient and R the remainder when n - m + I is 

divided by m - I. 

936. Proposed by the late Jack Garfunkel, Flushing, New York. 
Given the Malfatti configuration, where three mutually external, mutually 

tangent circles with centers A ~ B ~ C' are inscribed in a triangle ABC so 
that circle (A ') is tangent to the two sides of angle A, circle (B ') is tangent 
to the sides of angle B, and (C') to the sides of C. See the figure. If LA~ 
LB ~ LC and LA< LC, then prove that we have LC'- LA'< LC- LA. 

937. Proposed by R. S. Luthar, Janesville, Wisconsin. 
Let I be the incenter of triangle ABC, let AI cut the triangle's 
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circumcircle (again) at point D, and let F be the foot of the perpendicular 
dropped from D to side BC, as shown in the figure. Prove that D/2 = 
2R•DF, where R is the circumradius of triangle ABC. 

A 

c 

B 

Problem 936 Problem 937 

~ 938. Proposed by R. S. Luthar, Janesville, Wisconsin. 
Find the locus of the midpoints M of the line segments in the first 

quadrant lying between the two axes and tangent to the unit circle centered 
at the origin. See the figure. 

~ 939. Proposed by Khiem Viet Ngo, Virginia Polytechnic Institute, 
Blacksburg, Virginia. 

In the accompanying figure both quadrilaterals ABCD and MNPQ are 
squares, each side of square ABCD has length I, and the five inscribed 
circles are all congruent to one another. Find their common radius. 

Solutions 

901. [Spring 1997] Proposed by Elizabeth Andy, Limerick, Maine. 
Solve this base twelve multiplication alphametic 

PROF x EVES= GEOMETRY. 
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Problem 938 Problem 939 

Answer by the Proposer. 
Using e for eleven, the unique solution is el36 x 9592 = 89379410. 

Alphametics will stimulate int'rest 
When clever solutions are expressed. 

When all institutions 
Send computer solutions, 

Excitement is certainly repressed. 

Also solved by Charles Ashbacher, Charles Ashbacher Technologies, Hiawatha, IA, Mark 
Evans, Louisville, KY, Richard I. Hess, Rancho Palos Verdes, CA. and Rex H. Wu, Brooklyn, NY. 

902. [Spring 1997] Proposed by Bill Correll, Jr., Student, Denison 

University, Granville, Ohio. 
For all positive integers n, prove that 

n + 1 ~ J2tfn(n4f3 + nSf3). 

1. Solution by Mayumi Dubree, Graduate Student, Angelo State 

University, San Angelo, Texas. . 
We have that (I + llnr is a well-known monotone increasing sequence 

(converging to e = 2.718 ... ). Thus, if n is a positive integer, then 
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( 1 + ~ r :1: ( 1 + f r = 2, so that n + 1 :1: 21
'" n. (I) 

Furthermore, since (1 - n113f ~ 0, then we have I - n 113 + n213 ~ n 113 and 

Finally, multiply (1) and (2) side for side and then take square roots of each 
side to get the desired inequality. 

II. Solution by Richard 1 Hess, Rancho Palos Verdes, California. 
We must show that 

is nonnegative for natural numbers x. Let u = x 113 and define 

and 

h(u) = (u 3 + 1i - ~(u 4 + u 5). 
2 

When x > (In 2)/ln(3/2) ~ I .7095, then u > [(In 2)/ln(J/2)] 113 and we have 
g(u) > h(u). To find when h(u) ~ 0, we calculate that 

:: = 6u 2(u 3 
+ 1) - 6u 3 

- ~u4 = iu2(4u 3 
- 5u 2 

- 4u + 4), 

which is zero at u0 = 0, u1 = 0.724, and u2 = 1.467. We find that h '(u) > 0 
for u > u2 and h(u2) = O.I43 > 0 is the minimum on the interval (u1, co), so 
g(u) > 0 andj{x) > 0 for x > 1.7095. Sincej(I) = 0, the desired inequality 
is established. 

Also solved by Paul S. Bruckman, Highwood, IL, Russell Euler and Jawad Sadek, Northwest 
Missouri State University, Maryville, Mark Evans and Matthew Evans, Louisville, KY, and University 
of Nebraska, Lincoln, Joe Howard, New Mexico Highlands University, Las Vegas, Murray S. 
Klamkin, University of Alberta, Canada, Yoshinobu Murayoshi, Okinawa, Japan, Cecil Rousseau, 
The University of Memphis, TN, H.-J. Seiffert, Berlin, Germany, Rex H. Wu, Brooklyn, NY, and the 
Proposer. 
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903. [Spring I 997] Proposed by Peter A. Lindstrom, Batavia, New York. 
Evaluate the indefinite integral 

I xln[x(x - 1)] - ln(x - 1) dx. 
x(x - 1) 

I. Solution by Barry Brunson, Western Kentucky University, Bowling 
Green, Kentucky. 

As Bo Diddley' s song says, "You can't judge a book by lookin' at the 
cover." Rewriting the integrand, using the properties of logarithms, is all that 
is necessary to find the integral. Thus use In [x(x- I)] = lnx + In (x- I) to 
obtain 

I x ln[x(x - 1)] - ln(x - 1) dx = J( 1 lnx + ! ln(x _ 1)) dx. 
x(x - 1) (x - 1) x 

At this point we say "AHA!", recognizing the Hi-de-Ho and Ho-de-Hi 
footprint of the product rule. Hence the anti derivative is 

In x In (x - I) + C. 

II. Solution by Joseph C. Fursch, student, Angelo State University, San 
Angelo, Texas. 

Simplify the integral 

I x ln[x(x - 1)] - ln(x - 1) dx = I 1 lnx dx + J.! In(x - 1) dx. 
x(x - 1) (x - 1) x 

Now use integration by parts with u = In (x - I) and dv = dx/x to get 

Jln(x - 1) dx = (lnx)·Jn (x - 1) - ~~dx + C. 
X X- 1 

Therefore, 

f x ln[x(x - 1)] - ln(x - 1) dx = (lnx)·ln(x _ 1) + c. 
x(x - 1) 

Also solved by Prem N. Bajaj, Wichita State University, KS, Frank P. Battles, Massachusetts 
Maritime Academy, Buzzards Bay, James D. Brasher, Co/sa Corp., Huntsville, AL, Jim Brown, 
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Michigan State University, Laingsburg, Paul S. Bruckman, Highwood, JL, Eleanore Chadderdon, 
Kalamazoo, MI, Kenneth B. Davenport, Pittsburgh, PA, Mayumi Dubree, Angelo State University, 

San Angelo, Texas, Russell Euler and Jawad Sadek, Northwest Missouri State University, Maryville, 

George P. Evanovich, Saint Peter's College, Jersey City, NJ, Mark Evans and Matthew Evans, 
Louisville, KY, and University of Nebraska, Lincoln, Robert C. Gebhardt, Hopatcong, NJ, Stephen 
I. Gendler, Clarion University of Pennsylvania, Richard I. Hess, Rancho Palos Verdes, CA, Joe 
Howard, New Mexico Highlands University, Las Vegas, Murray S. Klamkin, University of Alberta, 

Canada, Michael W. Lanstrum, Kent State University, OH, HenryS. Liebennan, Waban, MA, David 
E. Manes, SUNY College at Oneonta, Yoshinobu Murayoshi, Okinawa, Japan, Kandasamy Muthuvel, 
University of Wisconsin-Oshkosh, Bob Prielipp (2 solutions), University of Wisconsin-Oshkosh, Cecil 
Rousseau, The University of Memphis, TN, Shiva K. Saksena, University of North Carolina at 
Wilmington, Harry Sedinger, St. Bonaventure University, NY, H.-J. Seiffert, Berlin, Germany, 

Skidmore College Problems Group, Saratoga Springs, NY, Leon Varjian, Midland Park High School, 

NJ, Stan Wagon, Maca/ester College, St. Paul, MN, Rex H. Wu, Brooklyn, NY, and the Proposer. 

Comment by the Editor. Other forms for the answer included 

ln[x(x - 1 )]•ln(x - 1) - ln2 (x - 1 ), 

[ln2 x + ln2 (x- 1)- ln2 {x/(x- 1)}]/2, 

and 

[ln2 {x(x- 1)} - ln2 x- ln2 (x- 1)]/2, 

each of which reduces to the answer given above by application of the 
formula lnab =Ina+ lnb or In alb= Ina- In b. 

904. [Spring 1997] Proposed by Bob Prielipp, The University of 
Wisconsin-Oshkosh, Oshkosh, Wisconsin. 

Let n be a positive integer and let cr(n) denote the sum of the positive 
integer divisors of n. If A = {n/cr(n); n is a positive integer}, prove that A is 
dense in the interval (0, 1 ). 

Solution by Cecil Rousseau, The University of Memphis, Memphis, 
Tennessee. 

Given any number a in the interval (0, 1), we shall show a sequence {nk} 
such that {n/cr(nk)} is a monotone nonincreasing sequence converging to a. 
To that end, let p;, i = 1, 2, ... , be the primes in increasing order. If, for 
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some finite subset S of the natural numbers, we have 

n = IIP·, then - = II-- = 1 - -- . n P; II ( 1 ) 
ieS I a(n) ieS P; + 1 ieS P; + 1 

Now choose the nk by the following rule. Let n1 = p;, where P; is the smallest 
prime such that n/cr(n1) ~ a. At each stage nk, if n/cr(nk) = a, then nk+I = nk. 
Otherwise, nk+1 = nkpj, where j > i and pj is the smallest prime such that 
nk+/cr(nk+1) ~ a. Then { n/cr(nJ} is a monotone nonincreasing sequence 

bounded below to a. Since 

~ .!. diverges, then ij (1 - -+-r) 
p prune P p prune P 

diverges to zero. If {n/cr(nk)} converges to a+ E, then every pj >alE would 
be chosen and {n/cr(nk)} would converge to zero. This contradiction 
establishes a as the limit of the sequence. 

Also solved by PaulS. Bruckman, Highwood, JL, and the Proposer. 

905. [Spring 1997] Proposed by the late Charles W. Trigg, San Diego, 

California. 
A permutation of the digits of the four-digit integer 1030 in the decimal 

system converts it to its equivalent 3001 in the septenary system. Find all 
four-digit base-ten numerals that can be converted to their base seven 
equivalents by permuting their digits. 

I. Solution by Paul S. Bruckman, Highwood, Illinois. 
Note that the digits must be between 0 and 6 inclusive with the initial 

digit ~ 1. Let N = abed= (abcd) 10 denote the decimal representation. Let the 
base 7 numeral be N1 = (efgh)7, where the digits e, f, g, and h are a 
permutation of the digits a, b, c, and d. Then 1000 < N < 2400 = (6666)7, 

so we see that 10 ~ ab ~ 24. 
If N = 1 Ocd, then 1000 ~ N ~ 1066 and (2626)7 ~ N7 ~ (3052)7. Hence 

cd = 26 or 62 or that cord is 3. Testing each possibility, we find that 1026 
= (2664 )7, 1 03d = (300 1 )7 + d, 1062 = (3045)7, and 1 Oc3 = (2632?7. + 1 Qc, 
where the 1 Oc must be converted to base 7. We try all possible dtgtts 0 to 
6 for c and ford, finding only the given solution N = 1030 = (3001)7. 
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Similarly, we test ab = 11, 12, 13, 14, 15, 16, 20, 21, 22, and 23. The 
most troublesome case is ab = 14, which requires trying 49 different 
possibilities. In this manner we find all solutions, namely 1030 = (300 1 )7, 

1234 = (3412),, 1366 = (3661),, 1431 = (4113),, 1454 = (4145),, 2060 = 
(6002)7, and 2116 = (6112)7, a total of seven solutions. 

II. Comment by Robert C. Gebhardt, Hopatcong, New Jersey. 
If we allow initial zeros, then obviously 0000, 0001, ... , 0006 are the 

same in both bases and are solutions. Other solutions with initial zeros are 
0023 = (0032)7, 0046 = (0064)7, 0265 = (0526)7, 0316 = (0631)7, and 0641 
= (1604),. 

Also solved by Charles Ashbacher, Charles Ashbacher Technologies, Hiawatha, IA, Mark 
Evans, Louisville, KY, Robert C. Gebhardt, Hopatcong, NJ, Richard I. Hess, Rancho Palos Verdes, 
CA, Yoshinobu Murayoshi, Okinawa, Japan, Rex H. Wu, Brooklyn, NY, Monte J. Zerger, Adams 
State College, Alamosa, CO, and the Proposer. 

906. [Spring 1997] Proposed by Norman Schaumberger, Douglaston, 
New York. 

If a, b, and c are positive real numbers, prove that 

I. Solution by Bob Prielipp, University of Wisconsin-Oshkosh, Oshkosh, 
Wisconsin. 

From four applications of the arithmetic mean-geometric mean (AM
GM) inequality, we have that 

~[(~)' + (~)' + 13] ~ ~·~·1 

~[(~)' + (~)' + 13] ~ ~·~·1 

M(~r + m3 + 13l ~ ~·~·1 

b 
' a 

- a - -, 
c 
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and 

Now add the four inequalities and subtract I from each side to obtain the 

required result. The solution generalizes. 

11. Solution by Murray S. Klamkin, University of Alberta, Edmonton, 

Alberta, Canada. 
More generally, it will be shown that 

S = Ext ~ max{Ex,, E ~} 
where the sums here and subsequently are over i = 0 to n, m ~ n ~ 1, X; > 
O, and xoX

1
···xn = 1. Firstly (here it suffices form~ 1), 

LX;m [LX; lm LX; (1) 
--:=!: -- :=!:--. 
n+l n+l n+l 

The left inequality follows from the power mean inequality 

(:Exr)''P ~ (:Exiq)''•. 
n+l n+l 

where p > q, the X; and all positive, the sums are from i = 0 to n, ~d 
equality holds only when the x; are all equal. se: Theorem 22~ page 64, m 
Analytic Inequalities by N. D. Kazarinov, Holt, RinehCU: and w_ mston, 1961. 
The right inequality in (1) follows from the AM-GM mequahty. 

We now rewrite S in the form 

s = .!.[(S - Xom) + (S - xt) + ... + (S - Xnm)]. 
n 

By the AM-GM inequality fori= 0, 1, ... , n, and then (1), 

S - xt :=!: (.!)m/n' 
n X; 

-.. 
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so that 

s ~I:- ~I:-. 
( 

1 )m/n 1 

X; X; 

The somewhat less general case for m = n was proved in my Olympiad 
Comer 64, Crux Mathematicorum 11 (1985) 118. 

Also solved by Paul S. Bruckman, Highwood, JL, William Chau, A T & T Laboratories, 
Middletown, NJ, Russell Euler and Jawad Sadek (2 solutions), Northwest Missouri State University, 
Maryville, Richard I. Hess, Rancho Palos Verdes, CA, Joe Howard, New Mexico Highlands 
University, Las Vegas, Henry S. Liebennan, Waban, MA, Cecil Rousseau, The University of 
Memphis, TN, H.-J. Seiffert, Berlin, Germany, and the Proposer. One incorrect solution was received. 

Comment by the Editor. The problem is not new, but the featured 
solutions are interesting and well worth publishing. In addition to the Crux 
reference given in Solution II, also mentioned by Euler and Sadek, Chau 
gave Problem 7 .2.4, page 251, of Problem Solving Through Problems by L. 
C. Larson. 

907. [Spring 1997] Proposed by the late J. S. Frame, Michigan State 
University, East Lansing, Michigan. 

Fork~ 0, evaluate the determinant of then x n matrixAn,k whose {iJ)
entry is (i + j + k- 2)!. Denote by n!! the product n:=1 m!. 

Solution by Carl Libis, University of Alabama, Tuscaloosa, Alabama. 
We have 

k! (k + 1)! (k + n - 1)! 

(k + 1)! (k + 2)! ··· (k + n)! 

(k + n - 1)! (k + n)! ··· (k + 2n - 2)! 

1 k + 1 ··· (k + 1)(k + 2)-··(k + n- 1) 

= k!(k + 1)!···(k + n _ 1)! 1 k + 2 ··· (k + 2)(k + 3)···(k + n) 

1 k + n ··· (k+n)(k+n+1)···(k+2n-2) 
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by factoring the first element from each row. Denoting this last determinant 
by Dn.k, we subtract each row but the last from the succeeding row to get 

1 k + 1 (k + 1)(k + 2) ... (k + 1)(k + 2)-··(k + n - 1) 

0 1 (k + 2)(2) (k + 2)(k + 3}··(k + n -1)·(n -1) 
Dn,k = 

0 1 (k + n)(2) ... (k+n)(k+n + 1}··(k+2n-3)·(n -1) 

1 k + 2 ... (k + 2)(k + 3)···(k + n- 1) 

1 k + 3 . .. (k + 3)(k + 4)··-(k + n) 
= (n -1)! = (n - 1)! Dn-l,k+l" 

1 k + n ··· (k+n)(k+n + 1}··(k+2n -3) 

Since we have 

1
1 k + 11 D = =1=1! 

2•k 1 k + 2 

for all k, it follows by mathematical induction that 

Dn,k = (n- 1)!(n- 2)!···1! = (n- 1)!! 

and hence that 

(k + n - 1)!!(n - 1)!! 
IAn,kl = k!(k + 1)!···(k + n -1)!Dn,k = ~----=---=----=-

(k - 1)!! 

Also solved by Paul S. Bruckman, Highwood, IL, Cecil Rousseau, The University of Memphis, 

TN, H.-J. Seiffert, Berlin, Germany, and the Proposer. 

908. [Spring 1997] Proposed by Andrew Cusumano, Great Neck, New 

York. 
Evaluate · .. 

lim[(n + 2)"+2 - (n + l)n+ll· 
n-ao (n + l)n+l n n 
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Solution by Paul S. Bruckman, Highwood, Illinois. 
Let un = (1 + llnr. Then we have 

m( 1 + ~ r = n m( 1 + ~) = n[ ~ 1 1 
+-

2n 2 3n3 

1 - 1 1 1 1 + o(:2} 
+- = 

2n 3n 2 2n 

- ···] 

Thus 

so that 

(n + l)u •• l -nu. =e[n+1-~+om- n + ~ +0(~)] = e + o(~} 
Therefore, the desired limit becomes 

lim [(n + 2)un+l - (n + 1)un] = lim [e + 0(1/n) n-oo + un+l - un] n-oo 

= e + 0 + e - e = e. 

Also solved by Paul Bateman, Urbana, IL, Charles R. Diminnie, Angelo State University, San 

Angelo, TX, Russell Euler and Jawad Sadek, Northwest Missouri State University, Maryville, Joe 
Howard, New_ Mexico Highlands University, Las Vegas, Murray S. Klamkin, University of Alberta, 

Canada, Cecil Rousseau, The University of Memphis, TN, H.-J. Seiffert, Berlin, Germany, and the 

Proposer. Eight incorrect solutions were received. 

Comment by the Editor. Most incorrect solvers wrote to the effect that 

trying to use the theorem that the limit of a product is the product of the 
limits. Of course, the rest of the theorem states, "provided the limits of both 
factors exist." The limit of n does not exist. Hence a discussion similar to 
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that in the featured solution must be given to prove that the displayed limit 
is indeed equal to zero. To see this fact, consider applying the faulty 
reasoning as follows: 

limn(~ - !) =/limn) lim(~ - !) =(lim n)·O =lim 0 = 0. 
n-oo n n \n-oo n-oo n n n-oo n-oo 

The true value of this limit is 1, not 0. 

909. [Spring 1997] Proposed by the late John M Howell, Littlerock, 

California. 
For nonnegative integers n and k, let a(n, 0) = n, a(O, k) = k, and 

a(n + 1, k + 1) = a(n + 1, k) + a(n, k + 1). Find a closed formula for a(n, k). 

Solution by David Vella, Skidmore College, Saratoga Springs, New York. 
We recognize the recursion to be the same as that for Pascal's triangle, 

with slightly different boundary conditions (when n = 0 or k = 0). With 
values of n and k being represented by diagonals reading down, the first few 
rows of our triangle look like this: 

0 
1 1 

2 2 2 
3 4 4 3 

4 7 8 7 4 

We observe that the row sums are 2 less than twice the row sums for the 
Pascal triangle, the index sum n + k is constant in any one row, that the 
boundary diagonal columns appear in the Pascal triangle just inside the 
outermost column of ones, and that a(n, k) = a(k, n). Thus reading the 1 
column down to the right and the 3 column down to the left, we observe that 
a(I, 3) = 7 (the fourth element in row 4). These observations suggest 
superimposing two copies of the Pascal triangle, offset horizontally by two 
elements and adding the superimposed pairs of elements, and then deletipg 

the outside columns of ones. We obtain: 
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1 1 1 1 
1 1 1 1 1 1 1 1 

1 2 1 plus 1 2 1 equals 1 2 2 2 1 
1 3 3 1 1 3 3 1 1 3 4 4 3 1 

1 4 6 4 1 1 4 6 4 1 1 4 7 8 7 4 1 

and finally 

1 1 

2 2 2 
3 4 4 3 

4 7 8 7 4 

If we put a zero on top, we see that the result is our triangle, suggesting that 

a(n,k) = (: : ~) + (: : ~) = (; : ~) + (; : ~} 
For k = 0 we have 

a(n, 0) = ( n ~ 
1

) + ( n : 
1

) = n + 0 = n 

and similarly a(O, k) = 0 + k = k. Thus, in particular, the formula is true for 
n = 0 and for all k. We proceed by induction on n. Assuming the formula is 
true for some fixed n, then we have 

a(n + I, k + I)= a(n + I, k) + a(n, k + I) 

= (n + k + 1) + (n + k + 1) + (n + k + 1) + (n + k + 1) 
n n+2 n-1 n+1 

and the proof is complete. 
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Also solved by Paul S. Bruckman, Highwood, JL, Robert C. Gebhardt, Hopatcong, NJ, Richard 
I. Hess, Rancho Palos Verdes, CA, Murray S. Klamkin, University of Alberta, Canada, Cecil 
Rousseau, The University of Memphis, TN, H.-J. Seiffert, Berlin, Germany, and the Propose~. 

910. [Spring I997] Proposed by William Chau, New York, New York. 
A triangle whose sides have lengths a, b, and c has area I. Find the line 

segment of minimum length that joins two sides and separates the interior of 
the triangle into two parts of area a. and I - a., where a. is a given number 

between 0 and I. 

Solution by Russell Euler and Jawad Sadek, Northwest Missouri State 

University, Maryville, Missouri. 
Let ABC be the given triangle and let MN be the line segment that joins 

sides AB and AC so that triangle AMN has area a.. Let x, y, and z be the 
lengths of AM, AN, and MN respectively. By the law of cosines we have 

:i = r + y - 2xy cosA. 

Since twice the area of triangle AMN is given by xy sin A = 2a., then 

To minimize j(x), we calculate that 

4a cosA 
sin A 

and setf'(x) = 0 and solve to find x = J2afsinA. It follows that x = y and 
z = 2 J a tan(A/2). So, the minimum length of the line segment MN is 

min{2va tan(A/2), 2va tan(B/2), 2va tan(C/2) }. 

The minimum length corresponds to the smallest angle of triangle ABC. 

Also solved by Paul S. Bruckman, Highwood, JL, Cecil Rousseau, The University of Memphis, 

TN, and the Proposer. 
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911. [Spring I997] Proposed by Norman Schaumberger, Douglaston, 
New York. 

If a, b, and care the lengths of the sides of a triangle with semiperimeter 
s and area K, show that 

( S ) s~a ( S ) s~b ( S ) s~c s
4 

-- + -- + -- ~ -. 
s-a s-b s-c K2 

Solution by Joe Howard, New Mexico Highlands University, Las Vegas, 
New Mexico. 

Note that 

a 
s-a 

s s-a s-b +1=-- and--+--
s-a s s 

s - c +--=1. 
s 

We use the weighted arithmetic mean-geometric mean inequality, 

where 'f.m; =I, m; > 0, and X;> 0 for all i =I ton. We let 

and x1 = (-s-) s ~ a, etc. 
s-a 

s-a 

to get that 

(
_s )s~a + (-s )s~b + (-s )s~c 
s-a s-b s-c 

s-a( s )s~a s-b( s )s~b s-c( s )s~c ---- +---- +----
s s-a s s-b c s-c 

s s s = --·--·--
s-as-bs-c 

by Heron's formula. 
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Also solved by Paul S. Bruckman, Highwood, IL, William Chau, A T & T Laboratories, 
Middletown, NJ, Murray S. Klamkin, University of Alberta, Canada, Henry S. Lieberman, Waban, 
MA, Yoshinobu Murayoshi, Okinawa, Japan, Cecil Rousseau, The University of Memphis, TN,_H.-1. 
Seiffert, Berlin, Germany, and the Proposer. 

912. [Spring I997] Proposed.by PaulS. Bruckman, Highwood, Illinois. 
Let p be a prime such that p = I (mod 60). Show that there are positive 

integers r and s with p = r + s2 and 3 divides r or s and 5 divides r or s 0 

Solution by Jim Brown, student, Michigan State University, Laingsburg, 
Michigan. 

There is a theorem due to Fermat that states that a prime pis the sum 
of two positive squares if and only if p = I (mod 4). Since p = I (mod 60), 
then we have p = 1 (mod 3), p = 1 (mod 4), and p = 1 (mod 5). Hence p is 
the sum of two squares, p = r + s2

• 

If 3 divides r, we are done. Otherwise, r = 1 (mod 3). Since r + s2 = 

p , then 1 + s2 = 1 (mod 3), so s = 0 (mod 3). That is, 3 divides s and we are 
done. 

Similarly, if 5 does not divide r, then r = 1 (mod 5) or r = 4 (mod 5). 
Then either 1 + s2 = 1 or 4 + s2 = 1 (mod 5). The first congruence requires 
that 5 divides s and the second is impossible, so we are done. 

Also solved by Charles R. Diminnie, Angelo State University, San Angelo, TX, Stephen I. 
Gendler, Clarion University of Pennsylvania, Richard I. Hess, Rancho Palos Verdes, CA, Henry S. 
Lieberman, Waban, MA, Kandasamy Muthuvel, University of Wisconsin-Oshkosh, Bob Prielipp, 
University of Wisconsin-Oshkosh, Cecil Rousseau, The University of Memphis, TN, H.-J. Seiffert, 
Berlin, Germany, Monte J. Zerger, Adams State College, Alamosa, CO, and the Proposer. 

913. [Spring 1997] Proposed by Kenneth B. Davenport, Pittsburgh, 
Pennsylvania. 

Find a closed formula for the sum 

I. Solution by Joseph C. Furtsch, student, Angelo State University, San 
Angelo, Texas. -.. 

The given series, S", can be thought of as a sum of odd minus even 
cubes. There are two cases, depending upon whether the final term is odd or 
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even. Thus, if n = 2m + I, we have 
m m 

sn = .E [(2k + 1)3 - (2k)3] = .E (12k2 + 6k + 1) 
k=O k=O 

= E.m(m + 1)(2m + 1) + 2-m(m + 1) + m + 1 = !n2(2n + 3) - 1 
6 2 4 4. 

If n = 2m, then we have 
m m 

sn = .E [(2k - 1)3 - (2k?1 .E (-12k2 + 6k + 1) 
k=1 k=1 

-E.m(m + 1)(2m + 1) + 2-m(m + 1) - m 
6 2 

So the general sum is 

S = n 2(2n + 3)(-1)n+1 + (-1)n - 1 
n 4 8 

II. Solution by Jim Brown, student, Michigan State University, 
Laingsburg, Michigan. 

From the equation 
n 

sn = .Ek3(-1)k+1, 
k=O 

it is easy to see that the desired sum can be found by applying elementary 
calculus to the power series 

1 - xn+1 

1 -X 

Differentiate this equation and then multiply both sides of the result by x to 
get 

n x(1 - xn - nxn + nxn+l) 

(x - 1)2 

Differentiate and multiply by x again to obtain 
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E k2xk = x( -1-x+xn +2nxn +n2xn +xn+1_2nxn+1_2n2xn+1 +n2xn+2). 

k=O (x - 1)3 _ 

Now differentiate and multiply by x2
, which yields 

n 3 k x 2 [1 +4x+x2+xn(-1-3n-3n2-n 3 )] E k X +1 = --=------~--------:..:. + 
k=O (x - 1)4 

Finally, replacingx by -1, we get 

-1 + ( -1 )n (1 - 6n 2 - 4n 3) 

8 

Also solved by Avraham Adler, New York, NY, Doru Popescu Anastasiu, Slatina, Romania, 
Frank P. Battles, Massachusetts Maritime Academy, Buzzards Bay, Paul S. Bruckman, Highwood, 
JL, William Chau, A T & T Laboratories, Middletown, NJ, Rob Downes, Plainfield, NJ, Russell Euler 
and Jawad Sadek, Northwest Missouri State University, Maryville, George P. Evanovich, Saint 
Peter's College, Jersey City, NJ, Mark Evans, Louisville, KY, Robert C. Gebhardt, Hopatcong, NJ, 
Stephen I. Gendler, Clarion University of Pennsylvania, Richard I. Hess, Rancho Palos Verdes, CA, 
Joe Howard, New Mexico Highlands University, Las Vegas, Carl Libis (2 solutions), University of 
Alabama, Tuscaloosa, Henry S. Liebennan, Waban, MA, Peter A. Lindstrom, Batavia, NY, David 
E. Manes, SUNY College at Oneonta, Kandasamy Muthuvel, University of Wisconsin-Oshkosh, David 
E. Penney, The UniversityofGeorgia, Athens, Bob Prielipp, University ofWisconsin-Oshkosh, Cecil 
Rousseau, The University of Memphis, TN, Shiva K. Saksena, University of North Carolina at 
Wilmington, Harry Sedinger, St. Bonaventure University, NY, H.-1. Seiffert, Berlin, Germany, 
Michelle J. Sharpe and Mike Baysdell, Alma College, MJ, SUNY Fredonia Student Group, NY, David 
C. Vella, Skidmore College, Saratoga Springs, NY, Stan Wagon, Maca/ester College, St. Paul, MN, 

AI White, St. Bonaventure University, NY, Rex H. Wu, Brooklyn, NY, Monte J. Zerger, Adams State 
College, Alamosa, CO, and the Proposer. 

· .. 



THE RICHARD V. ANDREE A WARDS 

The Richard V. Andree Awards are given atUlually to the authors of the 
three papers written by students that have been judged by the officers and 
councilors of Pi Mu Epsilon to be the best that have appeared in the Pi Mu 
Epsilon Journal in the past year. 

Until his death in 1987, Richard V. Andree was Professor Emeritus of 
Mathematics at the University of Oklahoma. He had served Pi Mu Epsilon for 
many years and in a variety of capacities: as President, as Secretary-Treasurer, 
and as Editor of the Journal. 

Listed alphabetically, the three winners for 1997 are: 

1. Marc Fusaro for his paper "A Visual Representation of the Sequence 
Space", this Joumal10(1994-99)#6, 466-481. 

2. Kerry Smith McNeill for her paper "Rearrangement of Series", this 
Journall0(1994-99)#7, 547-555. 

3. Danica Nowosielski for her paper "Change Ringing: A Connection 
between Mathematics and Music", this Journall0(1994-99)#7, 532-
539. 

At the time the papers were written Mr. Fusaro was at the University of 
Scranton; Ms. McNeill was at Seton Hall University; and Ms. Nowosielski was 
at Russell Sage College. 

The officers and coWtCilors of the Society congratulate the winners on their 
achievements and wish them well for their futures. 
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1997 NATIONAL PI MU EPSILON MEETING 

The Amual Meeting of the Pi Mu Epsilon National Honorary Mathematics 
Society was held at Georgia Tech and the Renaissance Hotel in Atlanta from 
August 2 through August 3. As in the past, the meeting was held in conjunction 
with the national meeting of the Mathematical Association of America's Student 
Sections. 

The J. Sutherland Frame Lecturer was Philip J. Straftin, Beloit College. 
His presentation was on "Excursions in the Geometry of Voting." 

The following thirty-one student papers were presented at the meeting. An 
asterisk (*) before the name of the presenter indicates that the speaker received 
a best paper award. 

Program-Student Paper Pi Mu Epsilon Sessions 

An Introduction to the Fourier Series Michael G. Baker 
Mount Union College 

Ohio Omicron 

Continuing Work on a Mathematical Model of Michael Bice 
Blood Flow in the Abdominal Aorta University of California, Davis 
of a Rabbit California Lambda 

P-Adic Integrals 

Is Cola-Cola an Underachiever? 

A Possible Win for Wile E. Coyote 

The Rolling Ball Problem 
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Christine Carracino 
University of Virginia 

Virginia Kappa 

*Jeff Clouse 
Youngstown State University 

Ohio Xi 

Christy Conn 
Youngstown State University 

Ohio Xi 

Michael DeCoster 
St. Norbert College 

Wisconsin Delta 



Walks on Triangulated Surfaces 

How to Keep the Golden Years Golden 

Thomas Dorsey 
University of Wisconsin-Madison 

Wisconsin Beta 

Jodi Faloba 
Youngstown State University 

Ohio Xi 

Clusters of Soap Bubbles and Immiscible Fluids David Futer 
University of Pennsylvania 

Pennsylvania Alpha 

DNA Computing and Graph Theory Problems Nathan Gibson 

Stable Matchings in the Couples Problem 

Three Dimensional Graphics for Calculators 

Meetings, Bloody Meetings 

Worcester Polytechnic Institute 
Massachusetts Alpha 

Stephen Hartke 
University of Dayton 

Ohio Zeta 

Donald Hixon 
University of South Dakota 

South Dakota Alpha 

*Joshua Horstman 
*Jayme Moore 

Rose-Hulman Institute 
of Technology 

Indiana Gamma 

Sex, Drugs, and Alcohol: How do they relate to 
Upper Level Mathematics? 

Kimberly Johnson 
Siena College 

New York Epsilon 

The Case of the Missing Case: The Completion of a Julie Jones 
Proof by Ron Graham Randolph-Macon College 

Virginia Iota 

682 

Violent Activity in Northeast Ohio High Schools: Lori Kaserman 
University of Akron 

OhioNu 
An Analysis of Survey Results 

Improving Your Golf Game with Mathematics 

Why is 9 Prime? 

BenKeck 
Youngstown State University 

Ohio Xi 

*Vincent Lucarelli 
Youngstown State University 

Ohio Xi 

Aesthetically Pleasing, Acoustically Atrocious Adam Messner 
Youngstown State University 

Ohio Xi 

Vertex Defining Sets of Graphs 

Chaos and Nonlinear Dynamics 

On the Bank of Banlauptcy: A Mathematical 
Model Describing the Social 
Security System in the United States 

Symmetry Structure Analysis of Finite Designs 
and Infinite Patterns in Decorative Art Work: 
Amish Quilt Patterns and Other Rural Designs 

The Dynamics of the Family of Tent Maps 
on the Interval [0, 1] 
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Thayer Morrill 
Miami University 

Ohio Delta 

Michael Van Opstall 
Hope College 

Michigan Delta 

* Michael Perry 
University of Akron 

OhioNu 

*Sheryle Proper 
Allegheny College 

Pennsylvania Sigma 

Brian Raines 
Hendrix College 

Arkansas Beta 

· .. 



And the Winner is: The Cycloid! Fastest 
Path From Point A to Point B 

Game Theory 

Some History and Special Cases of Fermat's 
Last Theorem 

Extensions on the Question" Can You Hear 
the Shape of a Drum?" 

Two Applications of the Theory of 
Diophantine Functions 

Robert Reed 
University of Arkansas 

Arkansas Alpha 

Wendy Rigterink 
Miami University 

Ohio Delta 

John Slanina 
Youngstown State Univeristy 

Ohio Xi 

Greg Sloan 
Western Kentucky University 

Kentucky Beta 

Harry Smith 
St. Joseph's University 

Pennsylvania Xi 

Do You Always Have to Put in What You Get Out? Jessica Thelen 
St. Norbert College 

Wisconsin Delta 

3D Optical ffiustions From a Mathematical Perspective Naomi Yaekel 
Carthage College 

Wisconsin Epsilon 

The American Mathematical Society and the National Security Agency 
have given Pi Mu Epsilon grants to be used as a monetary awards for excellent 
student presentations. The six speakers indicated above each received $100. 
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List of Referees 

The editor wishes to acknowledge the substantial contributions made by 
the following mathematicians who reviewed manuscripts for the Pi Mu Epsilon 
Journal during the past year. 

Brian Bradie, Christopher Newport University 
Marc Brodie, The College of St. Benedict 
Paul S. Bruckner 
Underwood Dudley, DePauw University 
Paul Fishback, Grand Valley State University 
John A. Frohliger, St. Norbert College 
Michael Kinyon, Indiana University South Bend 
Ken McDonald, Northwest Missouri State University 
Cecil Rousseau, The University of Memphis 
Radhakrishnan Sivakumar, Intel Corporation 
Lawrence Somer, The Catholic University of America 
John Stoughton, Hope College 
Osman Yiirekli, Ithaca College 

685 

· .. 



Miscellany 

Andrew Cusumano made the following observation regarding the 
harmonic series 

00 1 
s =I:-. 

o=l n 

Let N be a fixed positive integer. For any positive integer M, 

1 [ 1 1 1 l 
S ~ N + MN - (M -1) + MN- (M- 2) + ... + MN 

+ [M'N -
1
(M 2 -l) + M'N-~M 2 -2) + ... + M~l 

+ [M'N -1
(M 3 -l) + M3N-~M 3 -2) + ... + M~Nl + ... 

1 M M 2 M 3N 
~-+--+--+--+ · ·· 

N MN M~ M 3 

I 1 I I 
=-+-+- +- + ... 

N N N N 

and S diverges. 
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Subscription and Change of Address 

If your address label contains the symbols "S98", then this is the last 
issue in your current subscription We hope that you agree that the Journal 
provides good value and that you will renew your subscription. The rates _are: 

United States: 

Foreign: 

Back issues: 

$20 for 2 years 
$40 for 5 years 

$25 for 2 years 

$5 each 

Complete volumes: $50 (5 years, 10 issues) 

All issues: $400 (9 back volumes and volume IO) 

If you have moved, please let us know. The Journal is not forwarded 
so it is important that we have a current mailing address for you. 

To subscribe or change your address, complete the form below (or a 
copy thereof) and send it, with a check payable to the Pi Mu Epsilon Journal 
for subscriptions, to · 

Joan Weiss 
Department of Mathematics and Computer Science 
Fairfield University 
Fairfield, CT 06430. 

Name: ---------------------- Chapter:-------

Address: -----------------------------------

Address change?------------- Subscription: -----
· ... 

687 



REFEREE APPLICATION FORM 

The contributions of a referee can enhance the quality of any journal. If you would like 
~o volm:tteer to serve as a referee for the Pi Mu Epsilon Journal, please provide the 
inf~tl~ requ~ed below so. that the appropriate manuscripts can be sent to you for your 
consideration Smce manuscnpts are not to exceed ten pages in length, the editor believes 
that a referee's report should be sent back to the editor in at most two months from the date 
of receipt. Please keep this in mind before volunteering your valuable time and expertise. 
Your support of the Journal is appreciated. Please send the completed form to: 

Russell Euler 
Department of Mathematics and Statistics 
Northwest Missouri State University 
Maryville, MO 64468 
(660)562-1229 

(Please type or print neatly) 

Name ---------------------------------------
Affiliation -------------------------------------
Mailing Address---------------------------------

Phone Number ----------------------------------
E-mail Address----------------------------------

Please list the mathematical areas in which you feel competent to referee. 

Please list any specific times of the year that you would prefer NOT to receive a manuscript 
to review. 
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PI MU EPSILON 

T-SHIRTS 

The shirts are \vhite, Hanes:E BEEFY-T·~, pre-shrunk, 
100% cotton. The front has a large Pi Mu Epsilon shield 

(in black), \Vith the line '' 1914 - oo" belo\v it. The back of 
the shirt has a "II l\1 E" tiling, designed by Doris 
Schattschneider,in the PI\·1E colors of gold, lavender, and 
violet. The shirts are available in sizes large and X-large. 
The price is only $10 per shirt, vvhich includes postage and 
handling. To obtain a shirt, send your check or money 
order, payable to Pi Mu Epsilon, to: 

ruck Poss 
Mathematics - Pi Mu Epsilon 
St. Norbert College 
1 0 Grant Street 
De Pere, WI 54115 
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FREE* 

INTERNATIONAL 

TRAVEL!!! 

The 1998 Meeting of the Pi Mu Epsilon National Honorary Mathematics Society will 
be held in Toronto, Ontario, Canada, from July 15-17. The meeting will be held in 
conjunction with the MAA Mathfest, which will run from July 15-18. Pi Mu Epsilon 
will again coordinate its national meeting with that of the MAA student chapters. 

The Pi Mu Epsilon meeting will begin with a reception on the evening of Wednesday, 
July 15. On Thursday morning, July 16, the Pi Mu Epsilon Council will have its 
annual summer meeting. The student presentations will begin later that same day. 
The presentations will continue on Friday, July 17. The Pi Mu Epsilon Banquet will 
take place that evening, followed by the J. Sutherland Frame Lecture. This year's 
Frame lecture will be given by Joe Gallian, of the University of Minnesota - Duluth. 
Pi Mu Epsilon members are encouraged to participate in the MAA Student Chapter 
Workshop and Student Lecture, both of which will take place on Saturday, July 18. 

* TRAVEL SUPPORT FOR STUDENT SPEAKERS 

Pi Mu Epsilon will provide travel support for student speakers at the national meeting. 
The first speaker is eligible for 25 cents per mile, up to a maximum of $600. If a 
student chooses to use public transportation, PME will reimburse for the actual cost 
of transportation, up to a maximum of $600. In case this request exceeds 25 cents per 
mile, receipts should be presented. The first four additional speakers from a given 
chapter are eligible for 20% of whatever amount the frrst speaker receives. In the 
case of more than one speaker from one chapter, the speakers may share the allowance 
in any way that they see fit. If a chapter is not represented by a student speaker, Pi 
Mu Epsilon will provide one-half support for a student delegate. Every Pi Mu 
Epsilon student member ~ encouraged to give a presentation at this summer 
meeting! For further information about attending the meeting, preparing a talk 
to present, and receiving travel support: 

SEE YOUR PI MU EPSILON ADVISOR 

IIME 
St. Norbert College 

Thirteenth Annual 

PI MU EPSILON 

Regional Undergraduate Math Conference 

Featured Speaker: 

Sponsored by: 

November 6-7, 1998 

Marty Isaacs 

University of Wisconsin - Madison 

St. Norbert College Chapter of liME 

and 

St. Norbert College ~Nil Math Club 

The conference will begin on Friday evening and continue through 
Saturday noon. Highlights of the conference will include sessions for 
student papers and two presentations by Professor Isaacs, one on Friday 
evening and one on Saturday morning. Anyone interested in 
undergraduate mathematics is welcome to attend. All students (who 
have not yet received a master's degree) are encouraged to present 
papers. The conference is free and open to the public. 

For information, contact: 

Rick Pass, St. Norbert College 
De Pere, WI 54115 
(920) 403-3198 
FAX: (920) 403-4098. 
e-mail: possrl@sncac.snc.edu 
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