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SINGLE RATIONAL ARCTANGENT IDENTITIES FOR 1r 

JACK SAMUEL CALCUT III* 

1. Introduction. The most common methods of calculating 1r to large numbers 
of decimal places utilize an infinite sum for the arctangent function. All of these 
infinite sums converge faster when the argument is small. I first began looking at 
rational arctangent identities for 1r in 1991. Except for arctan(1) = 1r I 4, all rational 
arctangent identities for 1r use two distinct angles (e.g., arctan(112) + arctan(1l3) = 
1!"14). I wondered why there was no known identity of the form n * arctan(x) = 1r , 

where n is a large natural number and lxl is a small rational number, and whether such 
an identity existed. The first major step towards generalizing these identities came 
in October, 1995, when I independently discovered the pattern preceding Theorem 2. 
This solved the problem for 1r I 4 only, however. I was convinced I could solve the 
problem for all rational multiples of 1r. The next breakthrough came in September 
1998 (at a bus stop no less). The final piece of the puzzle fell into place. This paper 
contains both of these ideas and all supporting details. 

2. Single Rational Arctangent Identities for 1r. We are interested in iden­
tities for 1r that determine a rational multiple of 1r with only one evaluation of the 
arctangent function where the argument is rational. 

DEFINITION 1. A single rational arctangent identity for 1r is any identity of the 
form narctan(x) = k1r where n is natural, x f=. 0 is rational and k is an integer. 

It follows from the definition that k f=. 0 since n, x f=. 0. Clearly every identity 
of the form "!!i arctan(x) = %1r, where n, m, bare natural, a f=. 0 is an integer, and 
x f=. 0 is rational, reduces to a single rational arctangent identity for 1r, so we need 
only generalize the latter. First, we derive a useful expression for tan(narctan(x)) 
where n = 0, 1, . . . and x is real. Recalling that 

we get: 

( {3) 
tan a+ tan{J 

tan a+ = , 
1 - tan a tan {3 

0 
tan(O * arctan(x)) = l 

X 
tan(1 * arctan(x)) = l 

2x 
tan(2 * arctan(x)) = 

1 
_ x2 

+ 2x 
X~ 

tan(3 * arctan(x)) = -2x 
1- x 1 _ x2 

3x - x 3 

1 - 3x2 

+ 3x-x3 

4 4 3 
X 1-3x2 X - X 

tan ( 4 * arctan ( x)) = 3 _ 3 = 
1 6 

2 4 · 
1 - X X X - X +x 

1- 3x2 

It appears that tan(narctan(x)) = Pn(x)lqn(x), where Pn(x) is the sum of odd power 
terms in binomial expansion with alternating signs, and Qn(x) is the sum of even 
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2 JACK SAMUEL CALCUT III 

power terms in binomial expansion with alternating signs. That is: 

Ln/2J - 1 Ln/2J 
(1) Pn(x) = ~ ( - 1)i (2i: 1)x2i+1 and qn(x) = L ( -1)i (n.)x2i, 

t=O i=O 2~ 

where (~) = k!(:~ k)! (the binomial coefficients). 

Before we prove that equations (1) hold recall that (n+1) = (n) + ( n ) a 
f 

. . . ' . k k k- 1 ' 
undamental mgred1ent of the Pascal tnangle, which can be easily proven by induction 

[2]. 
THEOREM 2. tan(narctan(x)) is defined by equations (1) for all natural n and 

real x. 
Proof We will proceed by induction on n. We have seen that equations (1) hold 

true for n = 1, 2, 3, 4. Assume (1) is true for all n:::; k. We must show (1) is true for 
k + 1. There are two cases to consider: k even and k odd. Suppose k is even. Then 
k + 1 is odd. So 

1 + t(- 1)'+' [( . k ) + ( . k )]x2i+2 
i=O 2~ + 2 2~ + 1 

k t ( _1) i (k ~ 1) x2i 
i=O 2~ 

as desired. The proof for k odd is virtually identical, as the reader may wish to verify. 
0 

Note that Theorem 2 applies to all nonzero integral n, since if n < 0 then -n > 0 
and tan(n arctan(x)) =- tan( -n arctan(x)) = -P- n(x)/q- n(x). 

It is transparent from Theorem 2 that Pn(x) and qn(x) are rational for all integral 
nand rational x. Clearly then, tan(narctan(x)) is rational for rational x provided 
qn(x) # 0. 

We now apply Theorem 2 to rr/4. 
THEOREM 3. lfwe have narctan(x) = rr/4forsome nonzero integraln, then the 

only possible rational values for x are x = ± 1. 
Proof. narctan(x) = "i => tan(narctan(x)) = 1 => Pn(x)/qn(x) = 1 => Pn(x) = 

qn(x) => qn(x)- Pn(x) = 0 => 1- (7)x- G)x2 + · · · ± (n~ 1)xn- 1 ± xn = 0. 

ARCTANGENT IDENTITIES 3 

The only possible rational roots of this polynomial are x = ± 1 by the rational 
root theorem. 0 

Theorem 3 characterizes all single rational arctangent identities for rr /4. 
Before we characterize all single rational arctangent identities for all rational 

multiples of rr, it is necessary that we make some observations. First , we look at 
Pn(1) and qn(1). From (1) we get: P1 (1) = 1, P2(1) = 2, P3 (1) = 2, P4(1) = 0, 
q1(1) = 1, q2(1) = 0, q3(1) = -2 and q4(1) = - 4. 

Further inspection leads one to the following conjecture (where n = 4d + r, r < 4): 

(2) 

Pn(1) = ~ 
0, n = O(mod 4) 

( - 4)d, n = 1(mod 4) 
2( - 4)d, n = 2(mod 4) 
2( - 4)d, n = 3(mod 4) 

n = O(mod 4) 
n = 1(mod 4) 
n = 2(mod 4) 
n = 3(mod 4) 

Proving equations (2) hold is straightforward after we prove the next proposition. 
PROPOSITION 4. Pk+1(1) = qk(1) + Pk(1) and qk+1(1) = qk(1)- Pk(1). 
Proof Case 1. (k is even) Then k + 1 is odd and 

k k 

Pk .(1) = ~{-1)' Gi: ~) = ~( - 1)' [ ci ~ 1) + (;i) J 

k- 1 k 

= t(- 1)i ( . k ) + t(- 1)i (k.) 
i=O 2~ + 1 i=O 2~ 

Also, 

k k 

qk+l(1) = ~( - 1)' e ~ 1) = ~(-1)' [ Gi) + (2i ~ 1) J 

k k 

= ~(-1)'(~) - ~(-1) ' (2i~ 1) 

= qk(1) - Pk(1). 

Case 2. (k is odd) The proof is virtually identical to Case 1, as the reader may 
wish to verify. 0 

THEOREM 5. Equations (2) hold for all natural n. 
Proof We will proceed by induction on n. We have seen that equations (2) 

hold true for n = 1, 2, 3, 4. Assume equations (2) hold for all n :::; k and write 
k = 4 * d + r, r < 4. 

Case 1. k = O(mod4) implies Pk(1) = 0 and qk(1) = ( - 4)d. Proposition 4 implies 
Pk+1(1) = (-4)d and qk+1(1) = (-4)d. 

Case 2. k = 1(mod4) implies Pk(1) = ( - 4)d and qk(1) = ( - 4)d. Proposition 4 
implies Pk+1(1) = 2( -4)d and qk+1(1) = 0. 

Case 3. k = 2(mod4) implies Pk(1) = 2( -4)d and qk(1) = 0. Proposition 4 
impliespk+1(1) = 2(-4)d and qk+1(1) = -2(- 4)d. 
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Case4. k = 3(mod4) impliespk(1) = 2(-4)d andqk(1) = -2(-4)d. Proposition4 
impliespk+I(1) = 0 and qk +t(1) = (-4)d+I. 0 

Now, we notice that for a single rational arctangent identity for 1r narctan(x) = 
k1r if and only if 0 = tan(narctan(x)) = Pn(x)lqn(x), which occurs if and only if 
Pn(x) = 0 and qn(x) =f. 0. We are inclined to conjecture that if Pn(x) = 0 and x is 
rational then x = 0 or ±1, however, it is not at all clear how to prove this straightaway 
for all natural n. The key is to first prove it is true for all prime n > 0. 

THEOREM 6. If we haven > 0 prime and x rational such that Pn(x) = 0 then 
x = 0 or ±1. 

Proof. We first prove the result for n = 2 and then for all n > 2. Assume n = 2, 
then 0 = p2 (x ) = 2x => x = 0 as desired. Now, assume n > 2 and prime, then n is 
odd. So, 

n - 1 

Pn(x) = 0 => t(- 1)i(2i n 1)x2i+l = 0 
i = O + 

( n) 3 (n) 5 ( n ) n - 2 ± n 0 =>nx -
3 

x + 
5 

x - .. ·=f n-
2

x x = 

( n) 2 (n) 4 ( n ) n - 3 ± n- I 0 =} X = 0 Or n -
3 

X + 
5 

X - • · · =f n _ 
2 

X X = 

=> x = ± 1 or ± n 

by the rational root theorem since n is prime. Suppose x = ±n is a root, then 
n± (~)n2 =f .. ·±nn- l = 0 => 1 ± G)n1 =f.· ·±nn- 2 = 0, but t.he only possible .rational 
roots of this polynomial are ± 1 => n = ±1. But this contradicts the assumptiOn that 
n > 2. Hence, x = 0 or ±1. 0 

Next, we show that we can solve the problem for narctan(x) = a1r , where n is 
composite, by "stepping down" by prime factors of n. 

THEOREM 7. If n > 1 natural and x is rational such that tan(n arctan(x)) = 0 
then x = 0 or ± 1. 

Proof n has a prime factorization, say n = s 1 82 · · · 8j, where each 8i > 1 and 
the 8i 's are not necessarily distinct. We will proceed by induction on j. First assume 
j = 1. If x is a rational such that tan(81 arctan(x)) = 0 then Ps 1 (x) = 0 and 
q81 (x) =f. 0 and x = 0 or ±1 by Theorem 6. Now, assume true for all j < h. Let 
n be some natural such that n = 81 82 · · · 8h, where each 8i > 1 and the 8i 's are not 
necessarily distinct. Further, let x be some rational such that tan( n arctan( x)) = 0 
and write¢= 82 · · · 8h arctan(x). Then we have: 

Ps 1 (tan¢) 
0 = tan(narctan(x)) = tan(8182 · · · 8h arctan(x)) = tan(8I¢) = (t "'), 

qs 1 an'f' 

which implies that p81 (tan¢) = 0 and q81 (tan¢) =f. 0. Now, (82 · · ·8h) is a natural 
number and xis rational, so tan(¢) is defined by equations (1) by Theorem 2. Hence, 
tan(¢) is either rational or undefined. If tan(¢) is undefined then Ps 1 (tan¢) =f. 0, a 
contradiction. Therefore, tan(¢) is rational, say y = tan(¢). Then we have Ps 1 (y) = 0 
where y is rational and 81 > 1 is prime, so y = 0 or ±1 by Theorem 1.5. Suppose 
y = ±1, this implies that ±1 = y = tan(¢) = tan(82 .. · 8h arctan(x)). But then 
x = ±1 by the proof of Proposition 4. Therefore, suppose y = 0, this implies 0 = 
y = tan(¢) = tan(82 · · · 8h arctan(x)), where 82 · · · 8h is a natural number composed 
of h- 1 < h primes. Hence, x = 0 or ± 1 by the inductive hypothesis. 0 

. ' 
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Now, we combine our results and generalize all single rational arctangent identities 
for 1r. 

THEOREM 8. The following are equivalent: 
(i) narctan(x) = a1r is a single rational arctangent identity for 1r. 
(ii) x = ±1 and n = O(mod 4), where n is natural. 

Proof First, we prove (i) => (ii). Assume (i) is true. Then by definition n 
is natural, x =f. 0 is rational and a =f. 0 is an integer. Then narctan(x) = a1r => 
tan(n arctan(x)) = 0 and x = ±1 by Theorem7 (x =f. 0 by definition). So, we have 
tan(narctan(±1)) = 0 => tan(narctan(1)) = 0 => Pn(1) = 0. By equations (2), we 
have that n = O(mod 4). 

Now we prove (ii) => (i). 
Assume (ii) is true. If x = -1, then Pn(x) = Pn( -1) = -pn(1) and qn(x) = 

qn( -1) = qn(1) by equations (1). Furthermore, Pn(1) = 0 and qn(1) =f. 0 by equations 
Pn(x) Pn(±1) ±pn(1) 

(2), which implies that tan(narctan(x)) = qn(x) = qn(±1) = qn(1) = 0. Hence, 

narctan(x) = arctan(O) = k1r for some integer k. Since arctan(x) = arctan(±1) = 
±7rl4, we have that ±n7rl4 = k1r => k = ±nl4 =f. 0. 0 

3. Conclusion. We have seen that there does not exist a single rational arct­
angent identity for 1r, hence for any rational multiple of 1r, that converges faster than 
arctan(1) = 7rl4. To obtain faster convergence using rational arctangent identities , 
one must make at least two distinct arctangent evaluations. The logical continuation 
would be to generalize identities for 1r that use two arctangent evaluations. 

After the completion of the work presented here, it was found that Gauss had 
done just that, but only for 1r I 4, 27r I 4, and 37r I 4. Gauss' method is outlined in Wrench 
[4), the key relation being: 

(3) 1 (1 + ix) arctan(x) = 2i ln 
1 

_ ix 

However, using equation (3) to prove the result of this paper only leads one to the 
polynomials in (1). To see this, suppose n arctan(x) = a1r is a single rational arct-

1 ((1 + ix)n) angent identity for 1r. Equation (3) implies that 
2
i ln 

1 
_ ix = a1r. Now, we 

use the fact that: 

to see that: 

_ 1 e2i¢ - 1 _ 2i¢ _ 1 + iz 
tan(¢)-. 2"¢ 1-z=>e -1 ., 

2 e 2 + - 2z 

eln((i~!~t) = 1 +i(tan(a1r)) = 1. 
1- i(tan(a1r)) 

Simplifying gives us ( 
1 

+ ~x) n = 1, which implies that (1 + ix)n- (1- ix)n = 0. 
1 - 2X 

The Binomial Theorem and some simplification shows that (1 + ix)n- (1- ix)n = 0 
is exactly equivalent to Pn(x) = 0. It should be mentioned that even the best rational 
arctangent identities for 1r have their limitations. Using logarithms it is easy to see 
that each iteration of the Gregory series for arctan(x), where lxl < 1 and x =f. 0, 
yields approximately l2log10 (x) l more digits accuracy, which is linear in log10(x) . 
There are recursive formulas for 1r based on elliptic integrals that have quadratic, 
cubic, quadruple, and septet convergence rates. The interested reader may refer to 
Kanada [1). 
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In Memoriam. 

A. D. Stewart. Pi Mu Epsilon notes with sadness the passing of A. D. Stewart, 
Councilor from 1978-1984 from Prairie View A & M University in Prairie View, Texas. 
A. D. Stewart was a gentle man who could always be counted upon as a valuable pres­
ence at Pi Mu Epsilon meetings. His loosely knotted tie and warm smile were always 
recognizable characteristics. Prof. Stewart encouraged his students from Prairie View 
A&M to be active mathematically on campus and to take part in the national PME 
meetings. He was a loyal ITME supporter and will be very much missed. 

Robert G. Kane. Professor Robert G. Kane, Associate Professor of Mathemat­
ics and Computer Science at the University of Detroit Mercy (Michigan Beta chapter), 
died July 12 at age 65. Professor Kane was the moderator of Michigan Beta chapter, 
Pi Mu Epsilon, for many years. He taught mathematics at the University of Detroit 
(pre-merger) since 195 7. 
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LEFT IDENTITIES AND ASSOCIATED SUBNEARRINGS OF THE 
NEARRING OF POLYNOMIALS IN TWO VARIABLES* 

G . ALAN CANNON AND TINA STEPHENS t 

7 

1. Introduction. Polynomials have been studied quite extensively, both as func­
tions and as algebraic structures. With the operations of addition and multiplication, 
the set of all polynomials in one variable with real coefficients forms a ring. A less­
studied approach is to examine the set of polynomials with the operations of addition 
and composition. With these operations we obtain a different algebraic structure 
called a nearring. 

Let N be a nonempty set on which two binary operations called addition,+, and 
multiplication, · , are defined. Then ( N, +, ·) is a (right) nearring with respect to the 
given addition and multiplication provided the following properties hold for all a, b, 
and c inN: 

i) (a+b)+c = a + (b+c); 
ii) There exists a zero element 0 inN such that for each a inN, a+O = O+a = a; 

iii) For each element a EN, there exists an element -a inN such that 
a+ (- a) = (-a)+ a= 0; 

iv) (a·b)·c=a · (b · c); 
v) (a + b) · c = a · c + b · c. 

Every ring is a nearring since rings satisfy all of the above axioms, have commu­
tative addition, and satisfy the left distributive law. An example of a nearring that is 
not a ring can be found by taking the set of all functions mapping the real numbers 
to the real numbers using function addition and composition as the operations. 

If we consider the set of all polynomials in two variables x and y with coefficients 
from the real numbers, we obtain a nearring under polynomial addition and compo­
sition, denoted (JR[x,y], +, o) where composition, suggested by Clay ([1], p. 12), is 
defined by f(x, y) o g(x, y) = f(g(x, y), g(x, y)) for all f(x, y) and g(x, y) in JR[x, y]. 
Clay notes that the nearring lR [x, y] has been virtually ignored in the literature. This 
might be explained by the lack of a two-sided identity and that there are many ways 
in which one could define the composition of these polynomials. 

We are following the suggestion of an Exploratory Problem in Clay ([1], 2.12) 
and determine all left identities of JR[x, y], and for each left identity, i(x, y), we find 
a subnearring of JR[x, y] for which i(x, y) is also a right identity. Then we determine 
the invertible elements in each of these subnearrings. 

2. Main Results. In this section we look at some of the basic properties of 
lR [x, y]. First we show that lR [x, y] is not a ring. Although addition in lR [x, y] is 
commutative, the left distributive law does not hold. To illustrate, let f(x, y) = 2x+2, 
g(x, y) = 2x2 - y, and h(x, y) = x + y. So f(x, y), g(x, y), and h(x, y) are elements 
of JR[x, y]. It follows that [f o (g + h)](x, y) = f((g + h))(x, y) = f((g + h)(x, y), (g + 
h)(x, y)) = f(2x2 + x, 2x2 + x) = 2(2x2 + x) + 2 = 4x2 + 2x + 2 and [(fog) + 
(f o h)](x, y) = (f o g)(x, y) + (f o h)(x , y) = f(g(x, y), g(x, y)) + f(h(x, y), h(x, y)) = 
f(2x2 - y, 2x2 - y) + f(x + y, x + y) = 2(2x2 - y) + 2 + 2(x + y) + 2 = 4x2 + 2x + 4. 
Hence f o (g +h) =J fog+ f o h, and JR[x, y] is not a ring. 

*The authors would like to thank the College of Arts and Sciences at Southeastern Louisiana 
University for an OSCAR grant that provided resources for this research. 
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We also note that .IR[x, y] is not a commutative nearring; in other words, com­
position of polynomials is not commutative. As an example, consider f(x, y) = 
x2 and g(x, y) = x + y. Thus f(x, y), g(x, y) E .IR[x, y]. Then (f o g)(x, y) = 
f(g(x,y),g(x,y)) = f(x+y,x+y) = (x+y) 2 and (gof)(x,y) =g(f(x,y),f(x,y)) = 
g(x2, x2) = x2 + x2 = 2x2. Clearly fog f. go f and .lR [x, y] is not commutative. 

In addition to lacking commutativity of composition, .JR[x, y] does not have a right 
identity. Therefore, there is no two-sided identity either. We verify this in our first 
lemma. 

LEMMA 1. The nearring (.JR [x, y], +, o) does not contain a right identity. 
Proof. Suppose that i(x, y) E .lR [x, y] is a right identity. Then f o i = f for all 

f E .IR[x, y]. In particular, let f(x, y) = x and g(x, y) = y. Then f(x, y) and g(x, y) 
are elements of .IR[x, y]. Sox = f(x, y) = (f o i)(x, y) = f(i(x, y), i(x, y)) = i(x, y) 
and y = g(x, y) = (go i)(x, y) = g(i(x, y), i(x, y)) = i(x, y). Hence i(x, y) = x = y, a 
contradiction. So .JR[x,y] does not have a right identity. D 

Left identities do exist as shown in the next theorem. We use the notation 
f(x, y) = L (aj,k) xiyk to represent an arbitrary polynomial of degree n in 

O$j+k$n 
.lR [x, y], where aj,k E .lR for all j and k. 

THEOREM 2. The following are equivalent: 

(i) i(x,y) = L (aj,k)xiyk is a left identity of.JR[x ,y]; 
O$j+k$n 

(ii) i(x,x)=x; 
(iii) ao,o = 0, a1,0 + ao,l = 1, and L aj,k = 0 for all 2 ~ m ~ n. 

i+k=m 
Proof. Assume condition (i) holds. We show that condition (ii) is true. Since 

i(x, y) is a left identity of .lR [x, y], then (i o f)(x, y) = i(f(x, y), f(x, y)) = f(x, y) for 
all f(x, y) E .IR[x, y]. In particular, let f(x, y) = x. Then x = f(x, y) = (i o f)(x, y) = 
i(f(x, y), f(x, y)) = i(x, x). So condition (i) implies condition (ii). 

Now assume that condition (ii) is true. We show that condition (iii) holds. Then 

x = i(x , x) = L (aj,k)xixk = L (aj,k)xi+k. But x = L (aj,k)xi+k 
O$j+k$n O$j+k$n O$j+k$n 

implies that ao,o = 0, a1,0 + ao,1 = 1, and L aj,k = 0 for all 2 ~ m ~ n. This 
j+k=m 

gives that condition (ii) implies condition (iii). 

It is straightforward to verify that if i(x, y) = L (aj,k)xiyk such that a0 ,0 = 
O$j+k$n 

0, a1,0 + ao,1 = 1, and L aj,k = 0 for all 2 ~ m ~ n, then i(x, x) = x. This gives 
j+k=m 

(iii) implies (ii). 
Finally, assume condition (ii) is true and let f(x, y) E .IR[x, y]. Then (io f)(x , y) = 

i(f(x, y) , f(x , y)) = f(x, y). So i(x, y) is a left identity for .lR [x, y]. D 
By Theorem 2, the polynomial i1 (x, y) = x2 -3y2 +2xy+3x-2y E .IR[x , y] is a left 

identity since the coefficients of the quadratic terms sum to zero, the coefficients of the 
linear terms sum to one, and the constant term is zero. Similarly, i2(x, y) = 14x -13y 
and i3 (x, y) = 4x3 - 3x2y- y3 - 11x + 12y are also left identities in .IR[x, y]. 

While we have shown that there are no right identities in .JR[x, y], there are some 
subnearrings of .lR [x, y] for which a left identity is also a right identity. For each left 
identity i(x,y) E .JR[x,y], define the set si = {f(x,y) E .JR[x,y] If oi = f}. 
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THEOREM 3. For each left identity i(x, y) E .lR [x, y], Si is a subnearring of 
.lR [x, y]. 

Proof. To show that Si is a subnearring of .IR[x, y], we need to show that (Si, + ) 
is a subgroup of (.JR[x,y],+) and that Si is closed under composition ([2], p. 5). 

Let Sl' S2 E si. So S! oi = Sl and S2 oi = S2· Then (sl -s2)oi = (sl oi)- (s2 oi) = 
St - S2· Hence Sl - S2 E si and (Si, +) is a subgroup of (.IR [x, y], + ). 

Also, (sl 0 s2) 0 i = S! 0 (s2 0 i) = Sl 0 S2· Hence, S! 0 S2 E si, and si is closed 
under composition. Therefore, Si is a subnearring of .lR [x, y]. D 

Even though we are not using the operation of standard polynomial multiplication 
in our nearring, it is useful to note that the subnearring Si is also closed under this 
multiplication. 

LEMMA 4. For each left identity i(x, y) E .!R[x, y], Si is closed under standard 
polynomial multiplication. 

Proof. LetS!, 82 E si. So S! oi = Sl and 82 o i = 82. Therefore (sl (x, y). s2(x, y)) 0 

i(x,y) = ((s1 · s2)(x,y)) o i(x,y) = (s1 · s2)(i(x,y),i(x,y)) = s1(i(x,y),i(x,y)) · 
s2(i(x, y), i(x, y)) = [s1 (x, y) o i(x, y)] · [s2(x, y) o i(x, y)] = s1 (x, y) · s2(x, y) and 
s1 . s2 E si. o 

We now completely determine the specific elements in Si. To begin, we first 
notice if f(x, y) = c where cis any real number, then f(x, y) E Si since (f o i)(x, y) = 
f( i(x, y), i(x, y)) = c = f(x, y). Also, i(x, y) E Si since i(x, y) is a left identity for 
.JR[x, y] and (i o i)(x, y) = i(x, y). 

Since Si is closed under addition, then f(x, y) = i(x, y) + c is an element of 
si for any real number c. Furthermore, since si is closed under standard polyno­
mial multiplication, then g(x, y) = c[i(x, y)]n is an element of si for any constant 
c and any integer n ~ 1. It follows that any polynomial of the form h(x, y) = 

n L ( aj) [i( X' y) ]i is an element of si. In fact, these are all of the elements of si since if 
j=O 
f(x, y) = L (aj,k)xiyk E si, then f = f 0 i implies that f(x, y) = (f 0 i)(x, y) = 

O$j+k$n 
n 

f(i(x, y), i(x, y)) = L (aj,k)[i(x, y)]i[i(x, y)]k = L (am)[i(x, y)]m for appropri-
O$j+k$n m=O 

ately chosen values of am. We have just proven the following characterization theorem. 
THEOREM 5. For each left identity i(x, y) E .IR[x, y], 

S, = {f(x,y) E IR[x, y] f(x,y) = ~(a;)[i(x,y)]; for some 0::; n E &: } . 

Now we focus on finding invertible elements in Si. To facilitate this, we first note 
that si is more familiar to us than it might appear. 

THEOREM 6. For each left identity i(x, y) E .lR [x, y], (Si, +, o) is nearring iso­
morphic to (.JR[x], +, o), the nearring of polynomials in one variable. 

n n 

Proof. The mapping w: si---+ .JR[x] given by w(:L:(aj)[i(x,y)]i) = L(aj)Xj is 
j=O j=O 

a nearring isomorphism. The details of the proof are left to the reader. 0 
Thus, to find invertible elements in Si, we only need to look for invertible elements 

in .IR[x]. The following known result answers this question. 
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THEOREM 7. The invertible elements in ~ [x] are exactly the non-constant linear 
polynomials in x. 

Proof Let f(x) E ~[x] such that f(x) is invertible in ~ [x]. Since constant 
polynomials are not invertible, we can assume that f(x) is of degree n with n ~ 1. 

n 

So f(x) is of the form f(x) = 2::)ai)xi where an -=/= 0. Since f(x) is invertible, 
j =O 

m 

then f - 1 (x) exists and is of the form f- 1 (x) = :~:::)bi)xi where bm f= 0 and m ~ 1. 
j =O 

Therefore 

m 

x = (! o f - 1 )(x) = f(f- 1 (x)) = !(L(bj)xi) 
j=O 

Expanding the right-hand side, we see that the term of highest power is anb~xnm. 
Since the right-hand side is equal to x, we conclude that anb~ = 0 or mn = 1. Thus 
mn = 1 since we assumed that an f= 0 and bm f= 0. Hence m = n = 1 and f(x) and 
f- 1 ( x) are non-constant linear polynomials. 

Now assume that f(x) is a non-constant linear polynomial in ~ [x] . T hen f(x) = 
a1x + a0 for some at, a0 E ~ with a1 f= 0. One can easily check that f- 1 (x) = 
a! 1x - aoa! 1 E ~[x]. Hence f(x) is invertible. This completes the proof. D 

Note that while the polynomial function f(x) = x 3 is an invertible real-valued 
function, it is not an invertible element of ~[x] since f- 1 (x) = {lx tf_ ~ [x]. From 
Theorems 6 and 7 we immediately get: 

THEOREM 8. For each left identity i(x, y) E ~[x, y], the invertible elements in Si 
are the non-constant linear polynomials in i. 

In conclusion, we have found all left identities in ~ [x, y] and corresponding sub­
nearrings of ~ [x, y] for which a left identity is also a right identity. In addition, we 
have also found the invertible elements of these subnearrings. These results might 
prove useful in other investigations of this nearring. 
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WHICH GRAPHS HAVE PLANAR SHADOW GRAPHS? 

GINA GARZA AND NATASCHA SHINKEL* 

Abstract. The shadow graph S(G) of a graph G is that graph obtained from G by adding to 
G a new vertex z' for each vertex z of G and joining z' to the neighbors of zinG. All those graphs 
G for which S(G) is planar are determined. 

1. Introduction. One of the most studied numbers associated with graphs is 
the chromatic number and one of most studied properties that a graph can possess 
is that of being planar. The chromatic number x(G) of a graph G is the minimum 
number of colors that can be assigned to the vertices of G (one color to each vertex) 
so that adjacent vertices are colored differently. A graph G is planar if G can be 
embedded (or drawn) in the plane so that no edges cross. These two concepts come 
together in the famous Four Color Theorem where it was shown by K. Appel and W. 
Haken (with J. Koch) [1] that x(G):::; 4 for every planar graph G. 

If a graph G contains a complete subgraph Kk order k (that is, k mutually 
adjacent vertices), then x(G) ~ k, since these k vertices alone require k distinct 
colors. Therefore, if G contains a triangle K3 , then x(G) ~ 3. However, a graph G 
may have chromatic number 3 or more without containing a triangle, that is, G is 
triangle-free. For example, the cycle C5 of order 5 shown in Figure 1 has chromatic 
number 3 but is triangle-free. (A coloring with the three colors 1, 2, 3 is shown in 
Figure 1 as well.) 

u 

y v 

FIG. 1. The cycle of order 5 

Figure 2 shows a triangle-free graph with chromatic number 4. This graph can 
be constructed from the cycle C5 of Figure 1 by adding a vertex z' for each vertex z 
of C5 and joining z' to the neighbors of z (the vertex z' is called the shadow vertex 
of z) and adding a vertex s* (called the star vertex) that is then joined to all shadow 
vertices. In fact the graph that is constructed in this manner is called the star shadow 
graph S*(C5) of C5. 

The star shadow graph S* ( C5 ) is also known as the Grotzsch graph. In 1955, J. 
Mycielski [4] showed that if G is a triangle-free graph having chromatic number k, 
then S* (G) is a triangle-free graph having chromatic number k + 1. Hence Mycielski 's 
result shows that for every integer k ~ 3, there exists a triangle-free graph having 
chromatic number k. Other researchers have established this fact by different methods 
(see [2] for example). 

A graph closely related to the star shadow graph is the shadow graph. The shadow 
graph S(G) of G is obtained from G by adding a shadow vertex z' for each vertex z 

*Western Michigan University 
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u 

G = S*(Cs): 
y 

FIG. 2. The star shadow graph S *(Cs) 

of G and joining z' to the neighbors of zinG. In other words, S(G) is obtained from 
S*(G) by deleting the star vertex (and all incident edges). The shadow graph S(C5 ) 

is shown in Figure 3. 

u 

y v 

FIG. 3. The shadow graph S( Cs) 

It is not difficult to see that x(S(G)) = x(G) for every graph G. Indeed, since G 
is a subgraph of S(G), it follows that x(S(G)) ;::::: x(G). By assigning the same color 
to z' as that assigned to z for every vertex z of G, we obtain a proper coloring of 
S(G). In this paper, however, we are concerned with the planarity of shadow graphs, 
not with their chromatic numbers. Indeed, our goal is to determine all graphs G for 
which S( G) is planar. 

If S(G) is planar, then G too is planar since G is a subgraph of S(G). A well­
known theorem that will be of great use to us is K. Kuratowski's characterization [3] 
of planar graphs. A subdivision of a graph G is a graph obtained from G by inserting 
vertices of degree 2 into one or more edges of G. Figure 4 shows the complete graph 
K 5 , the complete bipartite graph K3,3, and a subdivision of each of these. 

THEOREM 1. (Kuratowski) A graph is planar if and only if it contains no 
subgraph isomorphic to Ks or K3,3 or a subdivision of one of these graphs. 

Since the complete graph K 5 is nonplanar, S(K5 ) is nonplanar as well. However 
both K 4 and S(K4) are planar (see Figure 5). 

. , 
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Ks: 

FIG. 4. Some nonplanar graphs 

4' 

1 

3 2 

FIG. 5. K4 and its shadow graph 

The embedding (drawing) of K4 in the plane shown in Figure 5 has four regions, 
namely three interior regions denoted by A, B, C, and the exterior region D. The 
boundary of a region R in a graph is the subgraph of G consisting of the vertices and 
edges of G incident with R. The boundary of the region D in Figure 5 is the subgraph 
consisting of the vertices 1, 2, 3 and edges 12, 13, 23. It is a fact that every graph 
embedded in the plane can be re-embedded so that any region becomes the exterior 
region. 

Although S(K4) is planar, no connected graph containing K4 as a proper sub­
graph has a planar shadow graph. To see this, we add a pendant edge e at vertex 4 in 
the graph K4 denoting the resulting graph by K 4 +e (see Figure 6). The shadow graph 
S(K4 +e) contains a subdivision of K3,3· Thus by Kuratowski's theorem, S(K4 +e) 
is non planar. 

We now turn to cycles. Every even cycle has a planar shadow graph. This fact is 
illustrated in Figure 7 for C6 and Ca. 

For odd cycles, the situation is quite different. Since K3 is a subgraph of K4 and 
S(K4) is planar, certainly S(K3) is planar. From Figure 3, we can see that S(C5 ) is 
itself a subdivision of K 5 and is therefore nonplanar. We now consider S(C2k+l) for 
k 2:: 3. Figure 8 shows C2k+l and a subgraph of S(C2k+l)· Paths from vertex 1 to 
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1 
1 3 4 

5 4 3 2 4' 2' 

FIG. 6. The nonplanarity of S(K4 +e) 

8' 1 2' 
6' 

1 

7 3 

4' 6' 5 4' 

FIG. 7. The planarity of S(C2k), k ~ 2 

vertex 6 and from vertex 5 to vertex 2k + 1 are shown in Figure 8 as well. Placing these 
paths into the subgraph of S( C2k+l) shows that S( C2k+l) contains another subgraph, 
this one a subdivision of K3,3· Hence S( c2k+I) is nonplanar if and only if k ~ 2. 

1 4 5 1 1 5 

2k+ 1 (): ! (2k + 1)' ! ~' 3' 

2k 2 
2k . 

2' 
. 

1' . 
08 rk-1 

2k+ 1 6 3 t:' (2k)' 

2k+ 1 

FIG. 8. The cycle C2k+l and a subgraph of S(C2k+ I) 

Before presenting our main result, we have a few remarks to make concerning the 
structure of graphs. If G is a graph whose components are G 11 G2, · · ·, Gk, then S(G) 
is planar if and only if S( Gi) is planar for all i (1 ~ i ~ k ). Hence it suffices to consider 
connected graphs only. A vertex v in a connected graph G is a cut-vertex of G if the 
graph obtained by removing v and all incident edges is disconnected. A subgraph B 
of a connected graph G is called a block of G if B is a maximal connected subgraph 
of G such that B itself contains no cut-vertices. A connected graph G containing the 
five blocks B1 , B2 , · · ·, Bs is shown in Figure 9. The graph G has three cut-vertices, 
namely u, v, and w. Necessarily, each block Bi (1 ~ i ~ 5) contains at least one of u , 
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v and w, but, of course, no vertex of Bi is a cut-vertex of Bi itself. 

B1: 

G: 

FIG. 9. A connected graph with five blocks 

If G is a connected graph with a cut-vertex, then G has two or more blocks, each 
of which contains at least one cut-vertex of G. Every two distinct blocks either have 
no vertices in common or exactly one vertex in common. If they have one vertex in 
common, then this vertex must be a cut-vertex of G. An end-block of G is a block 
containing exactly one cut-vertex of G. Every connected graph containing a cut-vertex 
has at least two end-blocks. If B is an end-block of a connected graph G containing 
the cut-vertex v of G, then we write G- B to mean the graph obtained by deleting 
all vertices of B from G except v. If G has k + 1 blocks, then G- B is a connected 
graph with k blocks. 

The simplest type of block contains only a single edge and is therefore K 2 • The 
block B3 in Figure 9 is such a block. A block may consist of a single cycle, as B 1 

and B2 in Figure 9. Otherwise, a block contains two vertices x andy connected by 
at least three paths that have no vertices in common other than x andy. 

We are now prepared to present our main result. 
THEOREM 2. Let G be a nontrivial connected graph. Then S(G) is planar if 

and only if every block of G is K2, K3, K4 - e , K4, or an even cycle and G has the 
following properties: ( 1) every cut-vertex of G has degree at most 2 in every block 
containing it, and (2) if K3 is a block of G, then not all three vertices of the block are 
cut-vertices of G. 

Proof. First, let G be a nontrivial connected graph such that S( G) is planar. As 
we have seen, G contains no odd cycle of length 5 or more and G does not contain K 4 

as a proper subgraph. If G contains a block B that is different from K 2 , K 3, K 4 -e, K 4, 
or an even cycle, then B contains two vertices x and y connected by three paths, all 
of even length or all of odd length, such that no two of these paths have vertices in 
common other than x andy. Assume first that these paths have lengths r, s, t ~ 2. 
This situation is illustrated in Figure 10. Also Figure 10 contains a subgraph of S( G) 
that is a subdivision of K 3 ,3 and so S(G) is nonplanar, a contradiction. 

If one of these paths has length 1, that is, if xy E E(G), then the other two paths 
have odd length. This situation is shown in Figure 11. Here too S( G) contains a 
subdivision of K 3 ,3 and again a contradiction is produced. 

Consequently, the only possible blocks of G are K2, K3, K 4 -e, K 4, or even cycles. 
To show that every cut-vertex of G has degree at most 2 in every block containing it, 
it suffices to show that the shadow graph of the graph obtained by adding a pendant 
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X X y y' 

u~, ~ U2 I VI W2 U! 

V2 . . 
. 

"$• Ur-2 
Ur - 1 Wt - 1 

y Ur-1 Vs-1 Wt - 1 

FIG. 10. A nonplanar subgraph 

Ur- 1 X x' 

Ur-2 

Ur - 1 

y y y' 

FIG. 11. Another nonplanar subgraph 

edge to a vertex of degree 3 in K4- e is non planar. This follows immediately, however, 
since the subdivision of K 3,3 shown in Figure 6 exists in the shadow graph of the graph 
K 4 + e in which the edge joining vertices 1 and 3 is deleted. Thus the shadow graph 
of the graph obtained by adding a pendant edge at a vertex of degree 3 in K4 - e is 
non planar. It is straightforward to show that the shadow graph of the graph obtained 
by adding pendant edges at the two vertices of degree 2 in K4- e is planar however. 

It remains only to show that the shadow graph of the graph obtained by adding 
a pendant edge to each vertex of K 3 is nonplanar. This fact, however, is verified in 
Figure 12. If, on the other hand, only two pendant edges are added to K3, then it 
can be shown that the shadow graph of the resulting graph is planar. 

4 1 2 3 

4 6 

6 5 
1' 2' 3' 

FIG. 12. The nonplanarity of the shadow graph of Kg with three pendant edges 

·' 
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Before considering the converse, we present a definition. Let G be a connected 
graph every block of which is K 2 , K 3, K4- e, K4, or an even cycle such that G satisfies 
(1) and (2). A set U of vertices of G is called an E-set if U consists of 

(a) all cut-vertices of G, 
(b) all vertices in a block that is an even cycle, 
(c) both vertices of degree 2 in a block that is a K4 - e, 
(d) any two vertices of every block that is a K3, where the excluded vertex of K3 

is not a cut-vertex of G, and 
(e) at most one end-vertex of G. 
Then G has a nonempty E-set unless G has exactly one block and G = K4 or 

possibly G = K 2 • In the graph G of Figure 13, U = {a, d, p, r, s, t, u, x, z} is an E-set. 
If we replace x in U by y and/or replace ainU by b or cor delete a altogether, then 
the resulting set is also an E-set. 

a b 

c 

G: 

z 

X y 

FIG. 13. An E-set in a graph 

We now establish the converse. Actually we verify the somewhat stronger result 
that if G is a connected graph every block of which is K2, K3, K4- e, K4, or an even 
cycle such that G satisfies (1) and (2), then for every E-set U of G, there exists a 
planar embedding of S(G) such that for every vertex v E U, there is a v - v' path of 
length 2 (where v' is the shadow vertex of v) that lies on the boundary of some region 
Rv and if u, v E U with u f= v, then Ru f= Rv. A planar embedding of S(G) with this 
property is said to have property P. The proof proceeds by induction on the number 
of blocks of G. 

Assume first that G consists of a single block. We have already seen that S(K4) 
is planar and that K4 has an empty E-set. Then the fact that S(K4) has a planar 
embedding with property P is satisfied vacuously. Therefore, we are left only with 
the cases that G is K 2 , K 3 , K 4 - e, or an even cycle. If G = C2k, k ~ 2, then V(G) 
is the unique E-set of G and there is a planar embedding of S( G) having property 
P. (See Figure 7 for C6 and Cs.) The graphs K2, K3, and K4- e are shown in 
Figure 14 together with planar embeddings of their shadow graphs. The graph K2 
has two possible nonempty E-sets, namely {a} and {b}, and this embedding of S(K2) 
has property P. The graph K 3 has three possible E-sets, namely {a, b}, {a, c}, and 
{b, c}, and the embedding of S(K3 ) shown in Figure 14 has property P for the first 
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two E-sets. (Another planar embedding with property P can easily be given for the 
E-set {b, c}.) The unique E-set of K4- e is {b, d} and the embedding of S(K4 - e) 
shown in Figure 14 has property P. 

a b b' a b a' 

K2: 0 0 S(K2): 0--0---0----0 

a 

·bDc 
a b 

K3: S(K3): 

c' 

lSJ b d 

S(K4- e): 

d c 

a' 

FIG. 14. Planar embeddings with property P 

Assume that if G is a connected graph with exactly k blocks, k 2: 1, each of which 
is a K2, K3, K4- e, K4 or an even cycle such that G satisfies (1) and (2), then for 
every E-set W of G, there exists a planar embedding of S(G) with property P. Of 
courses, K 4 can only be a block of G if k = 1. Let H be a connected graph with 
exactly k + 1 blocks, each of which is a K 2 , K 3 , K 4 - e, or an even cycle such that 
H satisfies (1) and (2). We show that for every E-set W of H, there exists a planar 
embedding of S(H) with property P. Let U be an E-set of H. If there exists an 
end-vertex w E U, let B denote the K 2 block containing w; otherwise, let B denote 
any end-block of H. Let x be the cut-vertex of H in B. 

The connected graph H - B has exactly k blocks, each of which is a K 2 , K 3 , K 4 - e, 
or an even cycle. Furthermore, H -B satisfies (1) and (2). The set U' = UnV(H - B) 
is necessarily an E-set of H- B. By the induction hypothesis, there exists a planar 
embedding of S(H- B) with property P (with respect to the E-set U'). Let Px : 
x, y, x' be the x- x' path of length 2 associated with this embedding, where Px lies 
on the boundary of some region Rx. (Thus for v E U', where v f. x, there is a v - v' 
path Pv of length 2 lying on the boundary of a region Rv distinct from Rx.) We may 
assume that Rx is the exterior region. 

Assume first that there is an end-vertex w E U. Thus B is a K 2 block and we 
can obtain the planar embedding of S(H) shown in Figure 15. If y E U, then there is 
a y - y' path Py of length 2 on the boundary of a region Ry that is not the exterior 
region. In the embedding of S(H) shown in Figure 15, the path Px is on the boundary 
of the region bounded by the 4-cycle x, y, x', w, x; while the path w, x, w' is on the 

·' 
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boundary of the exterior region. Hence this embedding of S(H) has property P. The 
argument is similar if U contains no end-vertex and B is a K 2 block. 

w' 

X 

w 

x' 

S(H - B) S(B) S(H) 

FIG. 15. Producing a planar embedding of S(H) with property P when B = K2 

Thus we may assume that B is an end-block which is a K3, K4- e, or an even 
cycle. The set U" = U n V(B) is an E-set in B and hence there exists a planar 
embedding of S(B) with property P (with respect to U"). Let P~ : x, z, x' be the 
x- x' path of length 2 associated with this embedding, where P~ lies on the boundary 
of a region R~. Again, we may assume that R~ is the exterior region. We can now 
combine the embeddings of S(H - B) and of S(B) to produce the embedding of S(H) 
shown in Figure 16. 

y z 

x' 

S(H- B) S(B) S(H) 

FIG. 16. Producing a planar embedding of S(H) with property P when B =/= K2 

If either y or z belongs to U, then the associated paths Py and Pz lie on the 
boundary of a non-exterior region. In the embedding of S(H) shown in Figure 16, 
both Px and P~ lie on the boundary of the region bounded by the 4-cycle x, y, x', z, x. 
Thus either Px or P~ completes the required condition for this embedding of S(H) to 
have property P, and the proof is complete. D 
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Have you ever wondered 
"What is Art?" A theory 
of neuro-scientists which has 
been seized enthusiasticly by 
popular culture is that the 
left hemisphere of the brain 
is the "mathematical side" , 
governing logic, counting and 
sorting, while the right hemi­
sphere is the "artistic side" , 
governing images and cre­
ativity. Where in this tax­
onomy can we place the "ele­
gant mathematical proof" or 
the "beautiful" mathemati­
cal figure? 
Has the image at the left side 
of this page come from the 
right side of the brain? Is it 
art? It is titled "Mathemat­
ics Kitch" and is an Escher­
Fractal 3D Stereogram, e.g. , 
a 3D stereogram of the Man­
delbrot set based on a tesse­
lation by M.C. Escher. 

The liME Journal invites those of you who paint, draw, compose, or otherwise use 
the other side of your brains to submit your mathematically inspired compositions. 
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WHEN ARE AN - 1 AND AM- 1 AMICABLE? 

FLORIAN LUCA* 

For any positive integer k let a(k) be the divisor sum of k. Two positive integers 
s and t are called amicable if a(s) = a(t) = s + t. A positive integer s which is 
self-amicable is called perfect. 

In [3], we showed that no Fibonacci or Lucas number is perfect. In [4], we showed 
that no Fermat number, i.e. a number of the form 22

n + 1 for some integer n 2: 0, 
can be either perfect or part of an amicable pair. 

Let a> 1 be a positive integer. In this note, we prove the following: 
THEOREM 1. If am- 1 and an- 1 are amicable, then m = n = 1 and a- 1 is 

perfect. 
Let us remark first that: 
LEMMA 2. If s > 1 is a positive integer, then a(s) ::; 3s2 /4. 
Proof Since a(st) ::; a(s)a(t) for any two positive integers s and t, it suffices to 

check the asserted inequality only when s is prime. But if s is prime, then a(s) = 
s + 1 ::; 3s2 /4 with equality if and only if s = 2. D 

Proof of the Theorem. Since the involved expressions are symmetric in m and n , 
we shall always assume that m ::; n. 

Assume first that m = 1. We need to show that n = 1. 
Assume that n > 1. Suppose first that a= 2. Since an -1 = 2n -1 and a - 1 = 1 

are amicable, we get a(2n - 1) = a(l) = a(l) = 1 which forces 2n - 1 = 1, hence 
n = 1. 

Suppose now that a> 2. Since an-1 and a-1 are amicable, we get a(a - 1) = an+ 
a-2. Since by the Lemma, a(a - 1)::; i(a - 1)2 , it follows that an+a - 2::; i(a - 1)2

• 

Since n 2: 2, we get a2 +a- 2 ~ i(a -1)2 , which is equivalent to a2 +lOa::; ll,which 
is certainly impossible for a> 2. 

From now on, we assume n > 1. Suppose first that n = m. In this case, an - 1 
is perfect. It follows easily that a is odd. Indeed, if a is even, then an - 1 is an 
odd perfect number which is congruent to -1 modulo 4. On the other hand, it is 
well-known that if an odd perfect number exists, then it should be of the form px2 

for some prime p = 1 (mod 4). Hence, a is odd. In this case, an - 1 is an even perfect 
number, therefore an - 1 = 2P-l (2P- 1), where 2P- 1 is a Fermat prime. Write 

Since 

an - 1 a2 - 1 
--- > -- = a+l >a-1, 
a-1 - a-1 

it follows easily that the prime 2P -1 divides (an -1)/(a-1). Hence (an -1)/(a-1) = 
2u(2P - l)and a - 1 = 2v where u+v = p-1. When n is odd, the number (an-1)/(a - 1) 
is odd as well, hence u = 0. It follows that a= 2P-l + 1, and 

an -1 a3 - 1 
2P- 1 = -- 2: -- = a2 +a+ 1 = (2P-l + 1)2 + (2p-l + 1) + 1, 

a - 1 a - 1 

*Mathematical Institute, Czech Academy of Sciences 
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which is impossible for p ~ 2. Hence, n is even. Write then 2P- I (2P - 1) = (an/2 -

1)(an12 + 1). Since an/2 + 1 > an/2 - 1 and the greatest common divisor of an/2 - 1 
and an/2 + 1 is 2, it follows that either an/2 + 1 = 2P- 2 (2P - 1) and an/2 - 1 = 2 or 
an 12 + 1 = 2 ( 2P - 1) and an 12 - 1 = 2P-2 . However, it can be seen immediately that 
none of the equations 2P-2 (2P -1)- 2 = 0 and 2(2P -1) 2P- 2 = 0 has any solutions, 
just because the left sides of either one of the two equations above is larger than 0 for 
p~ 2. 

From now on, assume that n > m > 1. If a is even, then a(an - 1) =a( am -1) = 
an+ am - 2 is divisible with 2 but not with 4. Hence, it follows that both an- 1 and 
am -1 should be of the form px2 for some odd x and some prime p = 1 (mod 4). But 
since a is even, both such numbers are congruent to -1 modulo 4. Thus, a cannot be 
even. 

Finally, assume that a is odd. In this case, both numbers an - 1 and am - 1 
are even. In particular, (an - 1)/2 is a divisor of an- 1. Hence, an - 1 +am- 1 = 
a(an- 1) ~an- 1 + an

2
_ 1 , which implies am- 1 ~ (an - 1)/2. Since a~ 3 (because 

a is odd) and n ~ m+ 1, we have 

an - 1 am+1 - 1 a 1 m - ( m ) m a - 1 > -- > = -
2

- a + ... +a+1 >_ a + ... +a+1, - 2 - 2 

which is again impossible. 0 
We conclude with a few student research problems. 
Problem 1. Find all triples of positive integers (a, m, n) such that (an -1)/(a -

1) and (am - 1)/(a - 1)are amicable. 
Problem 2. Solve the equation 

(
an -1) _am - 1 

(j --- - ---

a-1 a - 1 

in positive integers a, m, n. 
For Problem 2, the reader might want to consult [1] and [2] where similar type of 

equations were investigated for the function a replaced with the Euler function ¢. 
Problem 3. Let (Fn)n2::0 be the Fibonacci sequence. Find all pairs of positive 

integers (m, n) such that Fm and Fn are amicable. 
For Problem 3, the reader might want to consult [5] where the above problem was 

solved for the Fibonacci sequence replaced by the Pell sequence. 
Problem 4. Recall that a repdigit number n is a number having only one distinct 

digit when written in base 10. That is, n = a· (1om - 1)/9 for some m ~ 1 and 
a E {1, ... , 9}. Recall also that a number n is multiply perfect if n divides a(n). 

Determine all multiply perfect repdigits. 
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THE ARITHMETIC-GEOMETRIC AND LOGARITHMIC MEANS* 

ANATOLY SHTEKHMANt 

Abstract. We present the Gauss Arithmetic-Geometric Mean and study its relationship with 
the Logarithmic Mean. In particular we discuss a problem by Vamanamurthy and Vuorinen, [7). 

1. Introduction. The Arithmetic-Geometric Mean was discovered and studied 
by Lagrange and Gauss almost 300 years ago. In this note we consider related prob­
lems, some of which are still open. 

It is well known that if x and y are positive numbers, then the Arithmetic Mean 
(A) and the Geometric Mean (G) are defined as follows: 

x+y 
A(x,y) = -

2
- and G(x,y) = vxy 

It is less known that these means may be combined to define the Arithmetic­
Geometric Mean (AG) [7]: 

AG(x, y) = lim Xn = lim Yn 
n --.oo n->oo 

where Xo = x, Yo = y, Xn+1 = A(xn, Yn), and Yn+1 = G(xn, Yn)· 
The reader is encouraged to follow Exercise 69, p.608 of [6] to prove that indeed 

the sequences Xn and Yn converge to the same limit. The truth is that Xn and Yn 
converge to the same number, say a, very rapidly. So if we could find x and y 
such that a is an interesting number, like 1r, AG could be useful to compute that 
number very accurately. Using Maple software we have established that it takes only 
14 iterations to calculate A(2,5) to 10,000 decimal places. Here is an algorithm that 
was discovered by Eugene Salamin and Richard Brent in 1976 [2] p . 688 that uses 
AG to compute 1r : 

Set ao = 1, go = .)2 and so = ~. 
Fork = 1, 2, 3, ... compute 

ak - 1 + gk-1 
ak = 

2 
gk = ...;,..-a-k--1-.-g-k---1 

2 2 Ck = ak - gk 

Sk = Sk - 1 - 2kCk 

2a2 

Pk=-k 
Sk 

It can be proved, [5] that Pk converges quadratically to 1r i.e., 

number iterations 
decimals of 1r 

*This paper presents results obtained during the Faculty- Student Reasearch Project with Dr. 
Jakub Jasinski at the University of Scranton. 
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The main purpose of our paper is to introduce the AG and to give a partial 
solution to an open problem posed by M.K. Vamanurthy and M. Vuorinen [7] p. 165. 
We will use some definitions from [3], [7], and [2]. 

DEFINITION 1. Let x, y > 0. The logarithmic mean (L) is defined as, 

x-y 
L(x,y) = ----=----

logx - logy 

for x # y and L(x, y) = x for x = y. 

2. AG and L are continuous. Since L(x, y) is a piecewise defined function 
and AG ( x, y) is defined recursively we would like to take a moment to prove their 
continuity. This will support our conjecture below. 

THEOREM 1. A(x, y) is a continuous function on [0, oo)2. 
Proof Define a function f by 

1 
f( X, y, Z) = ---;::::====::::::;;:= 

y' x2 cos2 z + y2 sin2 z 

f is a continuous function on ~2\ {(0, 0)} x ~. Gauss proved [2] p.484 that for x, y > 0 

AG(x, y) = ~ 1" f(x, y, z)dz. 

For any (x, y) # (0, 0) and any sequence (xn, Yn) ---+ (x, y) the sequence f( x n, Yn, z) 
uniformly converges to f(x, y, z) Hence by the interchange theorem (see e.g., [4], 
Theorem II, p. 461) it follows that the AG(x, y) is continuous at (x, y). To prove 
that the AG(x, y) is continuous at (0, 0) let us pick c > 0 and let 8 = c. Assume that 
y'x2 + y2 < 8. We have 

iAG(x, y)- AG(O, O)i = iAG(x, y)i 

< max{ ixi , iYi} 

max{fx2,Vij2} 

< y'x2 +y2 = c 

That concludes that the AG is continuous function for any x, y ~ 0. D 
THEOREM 2. L is a continuous function on (0, oo)2. 
Proof L is piecewise defined so we shall have two cases: 
Case 1 - when the point (xo, Yo) is on the diagonal {(x, x) : x > 0}. We must 

show that for every c > 0 there is a corresponding number 8 > 0 such that whenever 
x,y > 0 

y'(x - xo) 2 + (y- xo) 2 < 8 =====> iL(x, y) - L(xo, xo) i < c 

If x = y then the above implication holds with 8 = c. If x # y then by the mean 
value theorem, [6] 

I 
x-y I I x - y I iL(x, y) - L(xo, xo)i = 

1 1 
- xo = 1 ( ) - xo = ic - xo l 

og x - og y c x - y 
(1) 

where cis between x andy. 

ic - xoi = ic - x + x - xo i ~ ic - x i + ix - xoi (2) 

·' 
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since 

ix- xoi, iY- xoi < 8 and ic- xi < ix- Yi 

we obtain 

ic- xi+ ix- xoi ~ ix- Yi + 8 ~ ix- xoi + ixo - Yi + 8 ~ 38 

Therefore ic- x 0 i ~ 38. Hence by 1 and 2 it is clear that if we take 8 < ~ the 
implication 

y'(x- x 0 )2 + (y- xo)2 < 8 =====> iL(x, y)- L(xo, xo)i < c 

holds for all x, y > 0. 
Case 2 - when the point is not on the diagonal. In this case L(x, y) is continuous 

as a composition of continuous functions such as xjy, x-y, and log(x). That concludes 
the proof. D 

3. Is AGt ~ L for some t E (0, 1). It is well known that A(x, y) ~ G(x, y). 
This can be generalized to a weighted mean inequality 

whenever w 1 , w2 ~ 0 and w1 + w2 = 1. To read more about weighted and modified 
inequalities we suggest [1]. In 1991 B.C. Carlson and M. Vuorinen proved that 

AG(x, y) ~ L(x, y) (3) 

More recently inequalities similar to 3 have been studied involving means "modified" 
in the following way: 

DEFINITION 2. For real numbers t # 0, we define 

t t 1 
Mt (X' y) = M (X ' y ) t ' 

where M can be any of the means: G, AG, or L. 
For example, 

t t 1 
AGt = AG ( x , y ) t , 

t t 1 
Lt (X' y) = L (X ' y ) t • 

AGt has many properties of AG. In particular since the function xt is continuous for 
x > 0 so composed with Theorems 2 and 3 we obtain the following result: 

COROLLARY 3. Ift > 0 then AGt(x, y) and Lt(x, y) are continuous functions on 

(0, oo)2 . 

However, if we modify AG in the inequality 3, its behavior is not entirely clear: 
PROBLEM 4. Does there exists a t E (0, 1 ) so that AGt dominates L, i.e. so that 

AGt(x, y) ~ L(x, y)for all x, y > 0 ? 
THEOREM 5. For positive x andy both AGt(x, y) and Lt(x, y) are continuous, 

strictly increasing functions oft. 
Proof See Theorem 1.2 of [7]. D 
THEOREM 6. AGt(x, y) < L(x, y) for all t E (0, ~) and x, y E ~+. 
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Proof. From [7] Theorem 3.6 we know that the inequality AG(x, y) ~ L:1 (x, y) 
2 

2 

holds for all x, y > 0. From our Definition 2, L~ (x, y) = L ( x~, y~) 3 , so we obtain 
2 

AG(x, y) ~ L ( x~, y~) 3 
and AG(x, y)~ ~ L ( x~, y!). Now, let us substitute p = x~ 

and q = y~, then AG (pt,qt) ~ = AGf(p,q) ~ L(p,q). By Theorem 8 AGt(x,y) < 
L(x, y) holds for all t E (0, ~). 0 

Therefore we can exclude any values oft between 0 and ~'since ACt and Lt are 
strictly increasing functions oft E (0, 1 ). 

For the rest of a problem i.e., where t E [~, 1) we have the following conjecture. 
CONJECTURE 7. For every number t E [~, 1) there exists a constant m > 0 such 

that if y > mx > 0 then AGt(x, y) < L(x, y). 
Our conjecture is based on computer calculations. To illustrate our results we 

present "matrices" where x andy play the role of the indices and if AGt(x, y) 2: L(x, y) 
then we have a white dot, otherwise we have a black dot. Now we are ready to take 
a look at the matrices fort= 0.6667, 0.67, and 0.7, Figures 1- 3. 

100 100 
100 r 

80 80 80 ~ 

60 60 60 ~ 

40 40 40 

20 20 20 

0 0 0 
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 

FIG. 1. 

As we can see from these graphs, that the slope m of the line separating the 
vertical black region from the white area is increasing rapidly as we increase t. We 
almost cannot see the black area when t = 0. 7 because the slope is approximately 
m = 87. We created another Maple program that would calculate the slopes for other 
values oft and here are the results: 

t slope m 
0.68 13 
0.7 87 
0.75 1.16 X 104 

0.8 1.40 X lQM (4) 

0.85 7.10 X 1020 

0.9 1.10 X 10107 

0.95 3.4 X 1010210 

As we can see from table 4, the slope m increases, and increases very rapidly. Since 
both functions that we are working with are continuous functions oft, x, andy we 
conjecture that there is no such t E (0, 1) that will satisfy AGt(x, y) 2: L(x, y) for all 
x, y E (0, oo). 
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A Note on Infinite Harmony. 

n 1 
2:::-:-=00 

'l 
i=1 

The divergence of the Harmonic Series may be considered a "classic" among the 
basic results of calculus. There are many different proofs of this fact and it might be 
a nice exercise for students to find their own proofs before looking up the standard 
proof in the their Calculus Book. Here is a proof by ANDREW CUSUMANO of Great 
Neck, New York: 

We start with the observation that 

1 1 2x 2 
x - c + x + c = x 2 - c2 > ;; 

from which we easily deduce that the sum of any string of 2k + 1 terms of the harmoni 
series centered about 1/(2k + 1) is 

The following 3(2k + 1) = 2(3k + 1) + 1 terms will be centered about the term 

1 1 
~----~~----~ = -------
(3k+2)+(3k+l) 3(2k+l) 

and so will also sum up to a number greater than 1, and so on. It follows immediately 
that the harmonic series diverges. 

The asymptotics of these estimates could be investigated. 
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Be prepared for Y2K. When the year 2000 comes around, stride boldly into 
the future with a TIME lapel pin. 

The gold clad keypins are available at the national office at the price of $12 each. 
To purchase a keypin, write to the secretary-treasurer: 

Robert M. Woodside 
Department of Mathematics 
East Carolina University 
Greenville, NC 27858 

.. 
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COLORFUL PATHS IN GRAPHS 

EUGENE SPIEGEL* 

A proper coloring of a graph is a coloring of the vertices of the graph in which 
vertices which are connected by an edge. have different colors. The chromatic number 
of the graph is the smallest number of colors needed to have a proper coloring. For 
example, the complete graph on n vertices has chromatic number n, while a cycle 
on n vertices has chromatic number 2 if n is even and 3 if n is odd. Certainly the 
most renown theorem on the chromatic number of a graph is the 1976 theorem of 
K. Appel and W. Haken (1, 2] which states that the chromatic number of a planar 
graph is at most 4. A graph is planar if it can be drawn in the plane without any 
two edges crossing. The result of Appel and Haken answered in the affirmative the 
question, posed by F. Guthrie in 1852, of whether it is possible to color the countries 
of any map with just four colors. Not all graphs are planar. For example, neither the 
complete graph on 5 vertices K5, nor Ka,a, the graph having three utilities and three 
houses as vertices and edges only between utilities and houses, is planar. 

In the following G will denote a finite simple graph with vertex set V(G), edge set 
E(G), and chromatic number x(G). A sequence, VI, e1, v2, e2, ... , Vn, with viE V(G), 
Vi =/=- Vj fori=/=- j, and ei E E(G), an edge from Vi to Vi+l, is called a path of length 
n. Sometimes we will omit the edges in the description of this path. A well known 
result of Gallai [3] tells us that there is a path of length x( G) in G. 

Suppose that G has been properly colored using the colors { 1, 2, ... , x( G)}. We 
will .call the path v1, v2, ... , Vn colorful if each vertex has been colored a different 
color. In this note we show that there are many colorful paths of length x(G) in G. 
More precisely, with Sn denoting the symmetric group on {1, 2, ... , n}, we prove 

THEOREM 1. Suppose G is colored using the colors { 1, 2, ... , x( G)} and u E 

Sx( G). Then there exists a path v1, e1, v2, ... , Vx( G) in G with Vi of color u( i) for 
1 ~ i ~ x(G). 

To verify the theorem we show that the given coloring can be altered to obtain 
a coloring in which the result easily holds, and then show that the alteration process 
does not change whether a particular path is colorful or not. Further, it is sufficient 
to verify the result for u the identity element of Bx(G)· 

Let us call the ordered partition A1, A2, ... , An of V(G) a coloring partition, if, 
for each i, no two distinct elements of Ai are connected by an edge of G. By coloring 
the elements of Ai color i we then have a proper coloring of G. Conversely, any proper 
coloring, C, of G gives rise to a coloring partition of V(G), where Ai consists of the 
vertices in the coloring which have been colored i. Refer to this latter partition as the 
partition of C. 

We say the coloring partition A1, A2, ... , An is special if, for 1 < i and v E Ai, 

there exists awE Ai-l with v and w connected by an edge of G. In general, a coloring 
partition need not be special. However, if the partition of a coloring is special, then 
we easily obtain a colorful path, v1, v2, · · ·, Vn· Indeed, we can select Vn to be any 
element of An and if Vi E Ai has been selected, let Vi-1 be an element of Ai- l which 
is edge-connected to Vi. 

The following describes a procedure for associating a special partition to a given 
coloring partition. Suppose that A1, A2, ... , An is a coloring partition of V(G). We 

*University of Connecticut 
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first move each element of A2 which is not edge-connected to any element of At into 
A1 . This results in a new coloring partition Bt, B2, ... , Bn. Then move each element 
of B3 which is not edge-connected to any element of B2 into B2. Again a new partition 
arises. Continue this until each element of the highest numbered set in the current 
partition is not edge-connected to any element of the previous set. 

We then obtain a partition, say, Ct, C2 , ... , Cm, with m ~ n. We continue re­
peating this entire process until we have arrived at a coloring partition Dt, D2, ... , Dr 
in which no additional changes can take place inn consecutive allowable moves. It 
must then be the case that for, 2 ~ i :::; r, each element of Di is edge-connected to 
an element of Di- l· This partition is then a special partition of V(G). Call this 
special partition the induced partition of At, A2, ... , An. Of course if n = x(G), then 
r = x(G), since the induced partition is still a proper coloring of G. In general, 
however, x(G) can be smaller than r. (If G is the chain Vt, v2, ... , Vn and we color Vi 
with color i then r = n. But, what happens if we reorder the colors?) The proof of 
the theorem now follows immediately from the following lemma. 

LEMMA 2. Let G be a finite graph, C a proper coloring ofV(G) using x(G) colors 
, and C' the induced partition of the coloring C. Suppose Vt, v2, ... , Vx(G) is a path 
in G. Then this path is a colorful path for C with C(vi) = i if and only if the path is 
a colorful path for C' with C' (Vi) = i. 

Proof Let Ai = {v E V(G) I C(v) = i} and Bi = {v E V(G) I C'(v) = i}. Then 
A1 , A2, ... , Ax(G) and Bt, B2, ... , Bx(G) are each colorful partitions of V(G) with the 
latter one the induced partition of the former one. Suppose that Vt, v2, ... , Vx(G) is a 
colorful path for C with C(vi) E Ai. If i > 1, Vi is edge connected to an element of 
Ai - l· In every step of the process to obtain the induced partition C' of C, it follows 
that Vi always remains in the i'th set of each intermediate partition. Hence Vi E Bi 
and v1, v2, ... , Vx(G) is a colorful path for C'. 

Conversely, suppose v1 , v2 , .•. , Vx(G) is a colorful path for C' with C'(vi) E Bi. 
Suppose Vi E At(i)· As Vi and Vi+l are edge-connected we have t(i) =I t(i + 1). 
Also, we can not have t(i) > t(i + 1) since Bt, B2, ... , Bx(G) is obtained by the 
induction process from the partition At, A2, ... , Ax(G)· Hence t(i) < t(i + 1) and 
1 ~ t(1) < t(2) < · · · < t(x(G)) ~ x(G). We conclude that, for each i, t(i) = i and 
Vt, v2, ... , Vx(G) is a colorful path for C with C(vi) = i. D 

When we have a coloring of G with x( G) colors, the theorem finds different chains 
in G for distinct elements of Bx(G). This observation, which is stated in the following 
corollary, can then be considered an extension of Gallai's result. 

COROLLARY 1. If G has chromatic number x(G), then there are at least (x(G))! 
different chains in G of length x( G). 

The interested reader can find material on the chromatic number of a graph in 
many books on combinatorics or graph theory. 
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BISECTING A TRIANGLE 

ANTHONY TODD* 

1. The Problem. The problem of bisecting a shape into equal areas (or vol­
umes) has been studied for quite some time. Direct applications of the solutions that 
exist in two and three dimensions have been found in the study of image enhancement 
and hydrostatics. In both fields it is desirable to know which lines (or planes) bisect 
a given figure. We wish to do a similar inquiry in two dimensions for triangles with 
the added condition that the perimeter is also bisected by the line which bisects the 
area. 

DEFINITION 1. A line which bisects the area and perimeter of a given triangle 
shall be called a B-line. 

THEOREM 2. Given ~ABC, if any two of the following statements hold about a 
line A which intersects ~ABC, then the third statement also holds: 

1. A is concurrent with the incenter I of ~ABC (recall that I is the point of 
concurrence of the three interior angle bisectors). 

2. A bisects the perimeter of ~ABC. 
3. A bisects the area of ~ABC. 

Verification of Theorem 2 can be obtained by constructing ~CY' I, ~CIX', 
~AIY', ~AlB, ~BX' I as seen in Figure 1, and utilizing the fact that the incenter is 

FIG.l. 

equidistant from the edges of the triangle. Let us examine the properties of a B-line 
in relationship to the triangle and the proportion of its angles. 

2. Bisecting Envelopes. 

2.1. Area Bisectors. In order to further examine the solutions to our triangle 
problem let us return our attention to the lines that bisect the area of a triangle. We 
shall explore the ideas of Dunn and Pretty in their article, Halving a Triangle [DP, 
pp. 105-108]. 

*Abilene Christian University 
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We will begin with the definition of an envelope. 
DEFINITION 3. A curve which is tangent to every member of a family of curves 

is called an envelope for that family of curves. 

Let ll.ABC be given. We can choose our coordinate system to be the lines AC -and AB to describe the plane in which ll.ABC lies. Let us assign the origin of this 
coordinate system to be A with B and C being at (0, c) and (b, 0) Solving for the 

FIG. 2. 

envelope for the lines which bisect the area of a triangle yields Bxy = be, which is an 
equation for a hyperbola. Thus any line tangent to this hyperbola within the proper 
domain will bisect the area of that triangle. 

We now note that there are three such hyperbolas for every triangle which are 
asymptotic to the extended sides of the triangle. These three hyperbolas are tangent 
to one another at the medians of ll.ABC. (For convenience (and fun) we shall call 
this figure a tri-perbola). Thus, all lines tangent to the tri-perbola of ll.ABC bisect 
the area of ll.ABC. Figure 3 shows the tri-perbola for an equilateral triangle with its 

0.8 
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FIG. 3. 

medians and Figure 4 shows the tri-perbola for a 3-4-5 right triangle (the incenter I 
is denoted by the circle). 

[ 

·' 
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FIG. 4. 

An immediate consequence of this discussion is that a line tangent to the tri­
perbola and concurrent with the incenter is then also a B-line. We now have in our 
power the ability to determine the number of B-lines that exist for a given triangle. 

THEOREM 4. Suppose we have ll.ABC, the hyperbolic envelope (tri-perbola} of 
area bisectors for ll.ABC, and the incenter I of ll.ABC. 

1. If I lies outside of the hyperbolic envelope of ll.ABC or at the point of tan­
gency of the envelope to a median of ll.ABC, then there exists exactly one 
E-line for ll.ABC. 

2. If I lies on the hyperbolic envelope of ll.ABC except at the point of tangency 
of the envelope to a median of ll.ABC, then there exist exactly two B-lines 
for ll.ABC. 

3. If I lies inside of the hyperbolic envelope of ll.ABC, then there exist exactly 
three B-lines for ll.ABC. 

The proof can be seen as one keeps track of the number of times that a line 
tangent to the envelope sweeps out a given area as you move its point of tangency 
around the envelope. 

2.2. Perimeter Bisectors. Let us now turn our attention to the envelope for 
the family of lines which bisect the perimeter of a triangle. Following a similar coor­
dinate system as described earlier, the envelope for perimeter bisectors from a vertex 
is then defined by the following equation: 

(1) y = s- 2y'SX + x, 

where s is the semi perimeter of ll.ABC. 
(An interesting note about equation ( 1) is that this equation is the curve that is 

hinted at in string art. See Figure 5.) 
The envelope for the perimeter bisectors has a form similar to the area bisec­

tors only in the case of the equilateral triangle (see Figure 6). We must carry the 
construction of the envelope one step further. While it is true that Figure 6 shows 
the envelopes of perimeter bisectors, in a non-isosceles triangle these curves do not 
always intersect, as in Figure 7. In order to close the figure they must be connected 
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by the splitters (the lines which extend from the vertex of a triangle and bisect the 
perimeter of a triangle) of the triangle as seen in Figure 8. In order to complete the 
picture we shall show the envelopes for a 3-4-5 right triangle which has only one B-line 
solution. In Figure 9 is plotted the incenter (denoted as a small circle) and the one 
B-line solution. 

3. Picture Time. We know the maximum number of B-line solutions that any 
triangle could have is three. It would appear that the number of two B-line solution 
triangles are small in comparison to the one and three B-line solution triangles since 
they occur only when I is concurrent with the curve which defines one of our two 
envelopes. What we do not know is what the triangles look like that produce one, 
two, or three B-line solutions. 

In Figure 10, is the plot of the number of B-line solutions given angle measure-

. ' 
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ments a and 1 ( in degrees). We see from Figure 10, as stated earlier, that there are 
a maximum of three solutions with the majority of triangles having only one solution. 
The long extensions of the surface that represents three B-line solutions follows the 
lines that define isosceles triangles ( a = 1, a = 1r- 21, and 1 = 1r - 2a). Note 
that Figure 10 also shows that the solutions for the two B-line triangles is in fact the 
boundary of the three B-line solution surface. 

With the equations to the boundary of the three B-line solutions, we then are 
able to show what the triangles look like that have one, two, or three B-line solutions. 
Since we have the solutions to the angle measures, given a side AC of length 1, we 
can solve for the position of B to yield one, two, or three B-line solutions. To do 
this we need only to use the case for two solutions since we know that they form the 
boundary between one and three B-line solutions. 

Let AC be of length 1 with A at (0, 0) and C at (1, 0). The vertex B then lies 
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4 

2 3 4 

at the intersection of the lines 

y = (tana)x andy= -(tan')')x +(tan')'), 

0 

where (a,'!') is an element of the boundary curves defining two B-line solutions. 
Solving for the point of intersection of these two lines gives (in parametric form) 

[ 
tan')' tan')'tana ] 

tan a+ tan')'' tan a+ tan')' · 

. ' 
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Thus given side AC and vertex B above AC, if B lies in the shaded region under 
the outer arc and above the two inner arcs as seen in Figure 11, fiABC has three 

1.4 

1.2 

A c 
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FIG. 11. 

B-line solutions. If B lies on one of the three arcs (the boundary of the shaded region) 
then there are two B-line solutions for fiABC. Lastly, if B lies anywhere else not in 
nor on the figure formed by the three arcs, then there is only one B-line solution for 
fiABC. 
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Official IIME Tee Shirts 

Get Your's Today! 

Problem. A painter is high atop a 40 foot ladder leaning against a 60 foot house 
at an angle such that the ratio of the lengths of the legs of the right triangle formed 
is the golden section. If the base of the ladder is moving away from the house at 
at the speed of light divided by Avagadro's number, what are the thoughts of the 
mathematician watching the ensuing disaster? 

j 

v = dh 
dt 

dv _ g 
dt -

F = mzmeGR 

11ll
3 

0 r> =FxR 
b 1 

= ----:---
a 1+1+11 

Ft = J.tkN 

Solution. She hopes that none of the paint will get on her new IIME Tee Shirt. 

IIME Tee shirts are white, Haines, BEEFY-T, pre-shrunk 100% cotton. The front 
has a large IIME shield. The back of the shirt is decorated with the colorful IIME 
tesselation of the plane designed by Doris Schattschneider, in the IIME colors of gold, 
lavender and violet. Shirts are available in large and X-large. The price is only $10 
per shirt, which includes postage and handling. 

To obtain a shirt, send your check or money order, payable to IIME, to: 
Rick Poss, 
Mathematics- IIME 
St. Norbert College 
100 Grant St. 
DePere, WI 54115 

·' 
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PARTITIONS AND YOUNG'S LATTICES 

DAVID WARREN* 

An earlier paper in this journal [2] explored the relationships between partitions 
and their Young lattices. The purpose of this article is to expand that work. We 
begin with a review of partitions, lattices, and Hasse diagrams. 

A partition of a natural number N is a finite sequence of natural numbers n1, n2, 
... , nm in non-increasing order such that l::i=l mni = N. We will represent partitions 
by Ferrer's diagrams as shown in the first example. See [1] for details. 

Example 1. Ferrer's diagram for the partition (4, 2, 1) of seven is shown in Fig­
ure 1. 

FIG. 1. 

A lattice is a partially ordered set that has the property that any two elements 
x and y have a least upper bound (join) and a greatest lower bound (meet). If we 
order the set of all partitions of a set P by containment, the resulting poset is a lattice 
called Young's lattice. We will represent the resulting lattices as a Hasse diagram. 

The bottom element in a Hasse diagram is assigned a rank of one. The rank of 
a subpartition in Young's lattice is the number of squares in Ferrer's diagram of that 
partition. 

In [2] it was shown that Young's lattice for the partition (n) is a single chain as 
shown in Figure 2, and Young's lattice for the partition (n, 2) (with n > 2) is shown 

n D 

(1) 

FIG. 2. 

in Figure 3. 

*Hendrix College 
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(n,2) 

(n,1) 

(n) 

(1 ,1) 

(1) 

THEOREM 1. Young 's lattice for the partition (m, n), where m > n, is the lattice 
shown in Figure 4. 

FIG. 4. 

~n) 

vs<>{~·n-1) 
, .. 

': ~ (m,1) .. , 
.... ,' , (m) 

(1,1) 8>/ 
(1) 

Proof Let n be a fixed integer. The proof is by induction on n. From [2] we know 
that Figure 4 is Young's lattice for the partitions (m, 1) and (m, 2). Assume that the 
portion of Figure 5 with the solid lines is Young's lattice for (m, n) with n < m- 1. 

The only subpartitions of ( m, n + 1) that are not subpartitions of ( m, n) are 
(k,n+ 1) for n+ 1::; k::; m. Since (k,n+ 1) ~ (k+ 1,n+ 1) and (k,n) ~ (k,n+ 1) 
for n + 1 ::; k ::; m, to draw Young's lattice for (m, n + 1) we need only add the 
dashed lines shown in Figure 5 to Young's lattice for (m, n). Therefore, Figure 4 does 
represent Young's lattice for (m, n). 0 

FIG. 5. 

(~,n+1) , .. , .. 
,'t' " (m,n) , .. 

(n+2,n+1) ,,,(: .. , 

(n+l,n+l) (.
1 

' 

.... , 

(n,n) 

(1,1) 

(1) 

(m) 
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The following theorem is another extension of a theorem found in [2]. 
THEOREM 2. Young's lattice for the partition (m, 1, 1, ... , 1) with n rows is as 

shown in the lattice in Figure 6. 

(1, ... ,1) (m) 

(1) 
FIG. 6. 

Once we found the general forms of partitions with two-dimensional Young's 
lattices, we began looking at the conjugates of these partitions and their representative 
lattices. The conjugate partition of a given partition is the partition obtained by 
switching the rows and columns of Ferrer's diagram for the given partition. To switch 
between a lattice and its conjugate we developed different numbering grids. The two 
dimensional lattices are obtained from three general types of partitions. The first is 
a partition with exactly one row or its conjugate with exactly one column in Ferrer's 
diagram. Since Young's lattices of these partitions are single chains, they can be 
drawn on any of the following grids. 

The second type of partition is one with exactly two rows and any number of 
columns or its conjugate with exactly two columns and any number of rows. In this 
case, we need two different labelings (grids) when converting between a lattice and 
its conjugate. 

First, consider the partition with exactly two rows. We will label the spine of 
the lattice as the line connecting the subpartitions of the form ( n, n - 1). The origin 
of the lattice is the position of the subpartition (1). Labeling from the origin, each 
time we move one position up and to the right, we add one to the first row of the 
subpartition. Each time we move one position up and to the left, we add one to the 
second row of the subpartition (as long as in the partition ( x, y), x 2: y) as shown in 
Figure 7. 

(5) 

FIG. 7. 

Now we will consider the conjugate, the partition with exactly two columns. The 
spine of this lattice is the line connecting the subpartitions of the form (2, 2, ... , 2, 1) 
with n rows. The origin of this lattice is also the position of the subpartition (1). 
Labeling from the origin, each time we move one position up and to the left we add 
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another row to the subpartition. Each time we move one position up and to the right, 
we add one to the highest row which does not have a 2 (two squares) in it as shown 
in Figure 8. 

FIG. 8. 

The third type of partition which has a two dimensional lattice is a partition of 
the form (m, 1, 1, ... , 1) with n rows. With this lattice, we only need to define one 
grid system, but this grid is different than either of the previous two. The spine of this 
lattice is the line connecting the subpartitions with the number of rows and number 
of columns being equal (i.e.: (2, 1), (3, 1, 1), (4, 1, 1, 1), etc.). Again, the origin is the 
position of the subpartition (1). Labeling from the origin each time we move one 
position up and to the right, we add one to the first row of the subpartition. Each 
time we move one position up and to the left, we add another row to the subpartition. 
This can be seen in Figures 9 and 10. 

(5) 

FIG. 9. 

FIG. 10. 

Once we defined the grids needed to convert between conjugates, we developed 
an algorithm to convert a specific subpartition into its conjugate. 

Consider the partition (x, y) where x ~ y. The first step is to take the first 
entry, x, and form an x-tuple with a one in each position. This gives us the partition 

1 2 3 X 

(1, 1, 1, ... 1). Since each position in a partition represents a row, and columns change 
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to rows in the conjugate, we can see that this step gives us the correct number of entries 
in the conjugate partition. 

The second step is to take the second entry, y, and add one to each of the first y 
1 2 3 y-1 Y y+1 X 

entries of the x-tuple. This gives us the partition 2, 2, 2,... 2 , 2, 1 , ... 1. This step 
takes they elements in the second row of the original partition and changes them into 
they elements in the second column of the conjugate. Here again we get the correct 
number of entries in the conjugate partition. 

Note that this pattern holds for every position in ann-tuple partition. 
With this algorithm, we can determine the conjugate of any subpartition in a 

lattice. Using the appropriate grid, we can then develop the conjugate lattice. 
THEOREM 3. The conjugate of a particular lattice is found by reflection about the 

spine. 
As we were trying to find all the general forms of partitions and their lattices, 

we ran into a little problem when we looked at the partition (3, 2, 1) As it turned 
out, this is the basic partition with a three dimensional lattice. The lattice for this 
partition is shown in Figure 11. 

Working with this partition, we noticed a general pattern that led us to the 
following theorem. 

FIG. 11. 

THEOREM 4. Young's lattice for the partition (m, 2, 1, . .. , 1) with n rows is shown 
in Figure 12. 

(1,1,1, ... ,1) 

(1) 

FIG. 12. 

Proof. We first show that Young's lattice of the partition (m, 2, 1) is displayed 
in Figure 13 by the thicker lines. We proceed by induction on m. By Figure 11, 
this is true for (3, 2, 1). Now assume that the lattice for the partition (m, 2, I) is as 
shown in Figure 13 by the thicker lines. The only subpartitions of (m + 1, 2, 1) that 
are not subpartitions of (m, 2, 1) are (m + 1), (m + 1, 1), (m + 1, 2), (m + 1, 1, 1), 
and (m + 1, 2, 1). As pictured by the dashed lines in Figure 13, these subpartitions 
connect, as desired, to the lattice for (m, 2, 1). 
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... (m+1,2,1) 
~#~ : '•, 

•• ' .. v•l (m+1,2) 
• • .~~ .... (m+1,1) 

.• ) (m+1) .. 
(m) 

(1) 

FIG. 13. 

Next we prove that the lattice for the partition (m, 2, 1, ... , 1 ) is as shown in 
Figure 12 by inducting on k, the number of ones in the partitio~. In the previ­
ous paragraph we have shown this for k = 1. Assume that the diagram in Fig-
ure 12 is correct for k > 1. The subpartitions of the partition (m, 2, 1, ... , lk 

1
) 

that are not subpartitions for (m, 2, 1, ... , lk) are (1, 1, 1, ... , llc+1), (j, 1, 1, ... , lie+~) , 
and (j, 2, 1, ... , lk+1) for 2 ~ j ~ m. Now (1, 1, ... , lk+1) ~ (1, 1, 1, ... , lle+

1
) ~ 

(2, 1, 1, ... , lle+1), and for 2 ~ j < m, (j, 1, 1, ... , lk+1) ~ (j + 1, 1, 1, ... , lle+
1

) , 

(j, 1, 1, ... , lk+1) ~ (j, 2, 1, ... , lk+1), and (j, 2, 1, ... , lk+1) ~ (j + 1, 2, 1, ... , lie 
1

) , 
Thus the connections displayed in Figure 14 are correct and the theorem is pro~ed. 
0 

FIG. 14. 

(2,2,~+1) 

(1,1,~) 
(1,1,~+1) 
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CRANKS, COMPUTERS, AND FERMAT'S LAST THEOREM 

JOHN A. ZUEHLKE* 

In 1995 Andrew Wiles proved Fermat's Last Theorem [2) which states that the 
equation 

has no solutions for x, y, z, and n positive integers with n > 2. 
Yet to this day, in Internet articles and letters to math department professors, 

people still claim to have found positive integers that actually satisfy the Fermat 
equation for n > 2. Some of these people have the temerity to state that their triplet 
satisfies the Fermat equation for infinitely many values of n. 

Let's suppose that someone claims to have found a counter-example to Fermat's 
Last Theorem on their computer with one of the terms being 

12345678910111213141234567891011121315. 

Clearly you know this person is wrong. But now you have a decision to make. Do 
you respond by saying: 

a) It is time for a computer upgrade. 
b) All semi-stable elliptic curves over Q are modular. 
c) So what do you know about Heeke algebras, Euler systems, and finite fiat 

group schemes? 
d) Here are some simple inequalities that show your "counter-example" is incor­

rect. 
Answer "a" might be correct, but it is not enlightening. Answers "b" and "c" 

are good choices if the person you are dealing with is an expert in Algebraic Number 
Theory. However if you are not dealing with such an expert answer "d" is probably 
the best response. 

THEOREM 1. If xn + yn = zn for x, y, z, n positive integers with n 2:: 2, then: 

(1) x > n and y > n ( so z > V'2 n), 

(2) 

Statement (1) is due to Gruenert [1). 
Proof Proof of (1). If xn +yn = zn we can assume x 2:: y. Let z = x +u for some 

positive integer u. Then xn + yn = zn = xn + nxn- 1u + ... + un, so yn > nxn- 1u, 
and 

( )

n - 1 

y > n ~ u. 

Since x 2:: y, this implies y > n and x > n. So zn > 2nn or z > V'2 n. 

*Columbia University 
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Proof of (2). If xn + yn = zn for x, y, z, n positive integers with n ~ 2, fix z and 
consider the graph of the function y = yl zn - xn 

(0, z- 1) 

(0, 0) 

,; 

I Q," 
I 
I ," ___________ ~<:_ __ _ 

"I 
," I 

,; I 
," I 
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,; I 

," I 
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(z- 1, 0) 
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-- (z, z- 1) 

(z,O) 

in the first quadrant. The function strictly decreases for x E [0, z] and the graph 
passes through the points 

(0, z), Q = ( ~, ~) , and (z, 0). 

It is clear from the graph that if z- 1 < ~' there can be no integer solutions. 
This implies (2). 0 

It is an interesting exercise to show that J2 > V'2 n for n > 1 that V'2 n is 
2-1 ' 

t t . t d V'2 · · n asymp 0 lC 0 n, an n/n lS asymptotic to --. 
v2 -1 log2 

The inequalities in the Theorem do not rule out all possible "counter-examples" , 
but they can be useful in many cases. In particular, the next time someone tells you 
that they found a counter-example on their computer with one of the terms being 

14131211109876543211513121110987654321, 

first show them the inequalities and then tell them that it is time for a computer 
upgrade. 
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PROBLEM DEPARTMENT 

EDITED BY CLAYTON W. DODGE 

This department welcomes problems believed to be new and at a level appropriate for the readers 
of this journal. Old problems displaying novel and elegant methods of solution are also invited. 
Proposals should be accompanied by solutions if available and by any information that will assist 
the editor. An asterisk (*)preceding a problem number indicates that the proposer did not submit a 
solution. 

All communications should be addressed to C. W. Dodge, 5752 Neville/Math, University of 

Maine, Orono, ME 0446g-5752. E-mail: dodge@gauss.umemat.maine.edu. Please submit each 

proposal and solution preferably typed or clearly written on a separate sheet {one side only) properly 

identified with name and address. Solutions to problems in this issue should be mailed to arrive by 

July 1, 2000. Solutions by students are given preference. 

Problems for Solution. 

966. Proposed by Count Juan Mower, Big Twenty Township, Maine . 
Although there are several solutions to this base eleven addition alphametic in 

which 7 divides SEVEN or where 8 divides EIGHT, there is only one in which 5 
divides FIVE. Find that solution: 

FIVE +SEVEN +EIGHT = TWENTY. 

Curiously, in that unique solution, 5 divides EIGHT, too. 

967. Proposed by Mohammad K. Azarian, University of Evansville, Evansville, 
Indiana. 

Let N be a natural number greater than 1 with d distinct positive prime divisors. 
If p and q are the largest and smallest of these divisors, then prove that 

logP N ::; d ::; logq N . 

968. Proposed by Doru Popescu Anastasiu, Liceul Radu Greceanu, Slatina, Ro­
mania. 

and 

Determine all real numbers x and y such that 

16x2 + 21y2 - 12xy - 4x - 6y + 1 = 0. 

969. Proposed by Robert C. Gebhardt, Hopatcong, New Jersey. 
Find y(x) if 

d2y 
e-x_ +yex = 0. 

dx2 

970. Proposed by Ice B. Risteski, Skopje, Macedonia. 
Show that 

[1r/4 cos(x) ln(sin(x)) dx = 
} 0 sin(x)cos(2x) 

1r + ln 2 B ( ~ ~) 
4~ 4'2 

{1rl
4 

cos(x) ln(cos(2x)) dx = _ _!!_B (!, ~) 
} 0 cos314 (2x) 2.J2 4 2 

where B(m, n) = r(m)r(n)jr(m + n) = f0
1 

xm- 1(1- x)n- 1dx is the Beta function. 
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971. Proposed by Richard I. Hess, Rancho Palos Verdes, California. 

Find an integer-sided obtuse triangle with acute angles in the ratio 7/5. 

972. Proposed by PaulS. Bruckman, Berkeley, California. 

Given three non-collinear points A, B, and C in the complex plane, determine I, 
the incenter of triangle ABC as a "weighted average" of these points. 

973. Proposed by Ayoub B. Ayoub, Pennsylvania State University, Abington, 
Pennsylvania. 

Prove that an+l = 2an + an-b given that ao = 0 and 

974. Proposed by Kenichiro Kashihara, Sagamihara, Kanagawa, Japan. 

Given any positive integer n, the Pseudo-Smarandache function Z(n) is the small­
est integer m such that n divides 

m 

a) Solve the Diophantine equation Z(x) = 8. 

b) Show that for any positive integer p the equation Z(x) = p has solutions. 
*c) Show that the equation Z(x) = Z(x + 1) has no solutions. 
*d) Show that for any given positive integer r there exists an integers such that 

the absolute value of Z(s) - Z(s + 1) is greater than r. 

975. Proposed by Doru Popescu Anastasiu, Liceul Radu Greceanu, Slatina, Ro­
mania. 

For any given fixed positive integer n, determine the positive integers x1, x 2 , •• • , 

Xn such that 

( ) ( 2n3 + 3n2 + 7n 
X1 + 2 X1 + X2 + 3 X1 + X2 + X3) + ... + n(xl + X2 + ... + Xn) = 

6 
. 

976. Proposed by Rajindar S. Luthar, University of Wisconsin Center, Janesville, 
Wisconsin. 

If x + y + z + t = 1r, prove that 

tan(x+y)tan(z+t) > 27cotxcotycotzcott. 

977. Proposed by Rajindar S. Luthar, University of Wisconsin Center, Janesville, 
Wisconsin. 

If A, B, and C are the angles of a triangle, then prove that 

cot(A/2) + cot(B /2) +cot( C /2) > cot(A) + cot(B) +cot( C). 

978. Proposed by Richard I. Hess, Rancho Palos Verdes, California. 

. ' 
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In the array below place sixteen digits to form eight not necessarily distinct 
squares without using the digit zero. The answer is unique. 

*979. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Al­
berta, Canada. 

Dedicated to Professor M. V. Subbarao on the occasion of his 78th birthday. 
Do there exist an infinite number of triples of consecutive positive integers such 

that one of them is prime, another is a product of two primes, and the third is a 
product of three primes. Two such examples are 6, 7, 8 and 77, 78, 79. 

Correction. Frank Battles of Massachusetts Maritime Academy, Buzzards Bay, 
Massachusetts, reported that the web address given in the solution to Problem 914 
[Fall 1998, page 744] should have a dot "." instead of a slash "/" between "index" 
and "html." He further stated that the alphametic solver at that website could solve 
neither Problem 745 (ENID+ DID = DIN E) nor 940. The correct address is 
http:/ jwww.ceng.metu.edu.tr/"'selcuk/alphametic/index.html. 

Solutions. 

924. [Fall1997, Fall1998] Proposed by George Tsapakidis, Agrino, Greece. 
Find an interior point of a triangle so that its projections on the sides of the 

triangle are the vertices of an equilateral triangle. 
III. Comment and solution by Paul Yiu, Florida Atlantic University, Boca Ra­

ton, Florida. Solution I, given by W. H. Peirce, computes the barycentric coordinates 
of the desired point P as 

(
a2 sin(A ± 60°) b2 sin(B ± 60°) c2 sin( C ± 60°)) 

D± sin(A) ' D± sin( B) ' D± sin( C) ' 

where D± = a2 + b2 + c2 ± 4-/3H, H being the area of the triangle. If we homogenize 
these coordinates, we find surprisingly simple descriptions of the point P. There 
are two such points P ±, with homogeneous barycentric coordinates a sin( A ± 60°) : 
bsin(B ± 60°) : csin(C ± 60°). Then one recognizes P± as the isogonal conjugates of 
the points 

a b c 
F± = . ·-----

sin(A ± 60°) · sin(B ± 60°) · sin(C ± 60°)' 

which are the isogonal centers of the triangle. [If one erects equilateral triangles 
outwardly (respectively inwardly) on the sides of triangle ABC, the three lines from 
each vertex of triangle ABC to the third vertex of the equilateral triangle erected on 
the opposite side are concurrent at the isogonal center F + (respectively F _)]. 
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Denote by 0 and K the circumcenter and the symmedian point of triangle ABC. 
It is easy to see that the points P± divide the segment OK harmonically, in the ratio 
a2 + b2 + c2 : ±4V3H. 

Solution. Without restriction to the interior of the triangle, there are two such 
points, one of which always lies outside the triangle and the other is an interior 
point if and only if every angle of the triangle is less than 120°. These points are 
the isodynamic points of the triangle, the two points common to the three Apollonian 
circles of the triangle. The Apolonian circle for side AB of triangle ABC has diameter 
X X', where X and X' are the points on the line BC such that C X and C X' bisect 
angle C. It is well known that that circle is the locus of all points P in the plane 
such that AP : BP = b : a. It is clear that the three Apolonian circles for the three 
sides of a triangle pass through two common points, the isodynamic points I± of the 
triangle. Kimberling [1] has given the trilinear coordinates of the isodynamic points 
as I± = sin(A ± 7r/3): sin(B ± 7r/3): sin(C ± 7r/3). 

If P is a point in the plane of the triangle, its pedal triangle (the triangle whose 
vertices are the projections of P on the sides of the given triangle) has side lengths 
APsin(A), BPsin(B), and CPsin(C). This triangle is equilateral if and only if 

1 1 1 1 1 1 
AP : BP: CP = -.- : -.- : -- = - : - : -. 

smA smB sinG a b c 
Thus AP: BP = b: a, BP: CP = c: b, and CP: AP =a: c and the desired result 
follows. 
Reference: 

1. C. KIMBERLING, Central points and central lines in the planes of a triangle, 
Math. Mag. 67 (1994) 163-186. 

940. [Fall 1998] Proposed by Mike Pinter, Belmont University, Nashville, Ten­
nessee. 

In the following base ten alphametic determine the maximum value for MONEY: 

DAD +SEND= MONEY. 

Solution by Daniel Hermann, student, Angelo State U., San Angelo, Texas. 
We must have M = 1, 0 = 0, and S = 9. Further, D + E(+lperhaps) = N + 10 
and D + E + 1::; 7 + 8 + 1 = 16. So we try N = 6. From the tens column we have 
A + N + 1 = 17 or 18, which is not possible with the unused digits. Thus we try 
N = 5. Since A cannot be chosen large enough to provide a carry into the hundreds 
column, then D and E are 8 and 7 or 7 and 8. From the units column, then Y = 6 
or 4 and there is a carry to the tens column. Thus 1 +A+ 5 = E. We must have 
A = 2, so E = 8, D = 7, andY= 4. This yields a maximum of 10584 for MONEY. 
Specifically, 727 +9857 = 10584. There are two smaller solutions, 727 + 9637 = 10364 
and 636 + 9846 = 10482. 

Also solved by Charles D. Ashbacher, Charles Ashbacher Technologies, Hiawatha, IA, Frank 

P. Battles, Massachusetts Maritime Academy, Buzzards Bay, Karl Bittenger, Austin Peay State 

University, Clarksville, TN, Scott H. Brown, Auburn University at Montgomery, AL, Paul S. 

Bruckman, Berkeley, CA, Mark Evans, Louisville, KY, Victor G. Feser, University of Mary, 

Bismarck, ND, Stephen I. Gendler, Clarion University of Pennsylvania, Richard I. Hess, Rancho 

Palos Verdes, CA, Carl Libis, Granada Hills, CA, Yoshinobu Murayoshi, Okinawa, Japan, 

Michael R. Richardson, Jr., Austin Peay State University, Clarksville, TN, H.-J. Seiffert, 

Berlin, Germany, Kevin P. Wagner, University of South Florida, Saint Petersburg, Katie Wibby, 

Alma College, MI, Rex H. Wu, Brooklyn, NY, Adrien Chun Yiu Au Yeung, Stanford University, 

Palo Alto, CA, and the Proposer. 

. ' 
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941. [Fall 1998] Proposed by Ayoub B. Ayoub, Pennsylvania State Univ rsity, 
Abington College, Abington, Pennsylvania. 

Let a1 = 1, a2 = k > 2, and for n > 2, an= kan-1- an- 2· 
a) Show that the general term an is given by 

Bn - B-n k + Jk2 - 4 
an = 1 , where B = 

2 
. 

B - B-

b) Find a suitable expression for the sum Sn of the first n terms. 
Solution by Kandasamy Muthuvel, University of Wisconsin Oshkosh, Oshkosh, 

Wisconsin. 
a) Since (2B- k)2 = k2 - 4, then k = B + B-1, so B-1 = (k - vk2 - 4)/2. Now, 

by mathematical induction, we have 

B-B- 1 B 2 - B - 2 
-1 

a 1 = B _ B - 1 = 1, and a2 = B _ B - 1 = B + B = k , 

so the formula for an is true for n = 1 and n = 2. Next suppose the formula is true 
for n = m - 2 and n = m - 1. Then we have 

k(Bm-1 _ B-(m- 1)) Bm- 2 _ B - (m-2) 
kam- 1 - am- 2 = B _ B-1 - B _ B - 1 

(B + B - 1 )(Bm- 1 _ B - (m - 1)) Bm- 2 _ B - (m- 2) 

B - B-1 B - B - 1 

Bm - B - m 
- B - B- 1 

b) We have that 

n n Bi - B - i 1 ( n n ) 
Sn=t;a;=t;s-B-1- B- B-1 t;s' - t;s-' 

- 1 (Bn+l - B - B - (n+1)- B-1) = _B_ (Bn+I - B- B-n -1) 
- B- B - 1 B - 1 B - 1 - 1 B2 - 1 B - 1 1 - B 

Bn+2 _ B2 + B-n+l _ B (Bn+l - l)(Bn -1) 

(B + l)(B- 1)2 (B + l)(B- 1)2 Bn - 1. 

Also solved by Frank P. Battles, Massachusetts Maritime Academy, Buzzards Bay, Paul 

s. Bruckman, Berkeley, CA, Kenneth B. Davenport, Frackville, PA, Charles R. Diminnie, 

Angelo State University, San Angelo, TX, Russell Euler and Jawad Sadek, Northwest Missouri 

State University, Maryville, George P. Evanovich, Saint Peter's College, Jersey City, NJ, Stephen 

I. Gendler, Clarion University of Pennsylvania, Richard I. Hess, Rancho Palos Verdes, CA, Joe 

Howard, New Mexico Highlands University, Las Vegas, Carl Libis, Granada Hills, CA, David 

E. Manes, SUNY College at Oneonta, NY, Yoshinobu Murayoshi, Okinawa, Japan, William 

H. Peirce, Rangeley, ME, Shiva K. Saksena, University of North Carolina at Wilmington, H.-J · 

Seiffert, Berlin, Germany, Kevin P. Wagner, University of South Florida, Saint Petersburg, Rex 

H. Wu, Brooklyn, NY, and the Proposer. 

Another form for Sn is (1- an+1 + an)/(2 - k), correct since k =f. 2. 
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942. [Fall 1998] Proposed by John S. Spracker, Western Kentucky University, 
Bowling Green, Kentucky. 

Calculate the following "sums" of the form E~=l an for each given sequence {an} 
and given addition EB • To deal with non-associative operations define S1 = a1 and 
8n+l = 8n EBan+l for n > 0. [Editor's note: Several solvers kindly pointed out that the 
original formula was incorrectly printed as 8n+l = 8n EBan. If the originally published 
formula is used, the values of an will vary somewhat, but the limits are unchanged.] 

a) On R+ let aEBb = 1/a+1/b and take an= n. Then 81 = 1, 82 = 1+1/2 = 3/2, 
83 = 2/3 + 1/3 = 1, .... 

b) On R+ let a EBb = abj(a +b) and take an = 1/n. 
c) On R+ let a EBb = .../OiJ and take an = 1/n. 
d) On R let a EBb= cos( a+ b) and take an= 27rn. 
Solution by Richard I. Hess, Rancho Palos Verdes, California. 
a) We have 84 = 1/1 + 1/4 = 5/4, and in general, 8n = 1 for odd n and 

8n = (n + 1)/n for even n. Thus 8 = limn-+oo 8n = 1. 
b) Here 81 = 1, 82 = (1)(1/2)/(1 + 1/2) = 1/3, 83 = (1/3)(1/3)/(1/3 + 1/3) = 

1/6, 84 = (1/6)(1/4)/(1/6 + 1/4) = 1/10, and in general, 8n = 2/(n(n + 1)). There­
fore, 8 = 0. 

c) Now 81 = 1, 82 = )(1)(1/2) = 1//2, 83 = V(1//2)(1/3) < 1/v'a, and in 
general, 8n < 1/ vfn. Again, 8 = 0. 

d) In this case, 81 = 271" , 82 = cos(27r + 47r) = 1, 83 = cos(1 + 67r) = cos(1) , 
84 = cos(cos(1)), 8s = cos(cos(cos(1))), etc. For 0 < x < 1 we have 0 < cosx < x, so 
the 8n form a bounded decreasing sequence and 8 exists and is the number x such 
that cos x = x. That is, 

8=0.7390851332151606416553120876738734040134 .... 

Also solved by Paul S. Bruckman, Berkeley, CA, Charles R. Diminnie, Angelo State 

University, San Angelo, TX, Carl Libis, Granada Hills, CA, David E. Manes, SUNY College at 

Oneonta, NY, H.-J. Seiffert, Berlin, Germany, Kevin P. Wagner, University of South Florida, 

Saint Petersburg, Rex H. Wu, Brooklyn, NY, and the Proposer. 

943. [Fall1998] Proposed by PaulS. Bruckman, Berkeley, California. 
Let a= (1 + VS)/2 and let Fn denote the n'th Fibonacci number, so that F1 = 

F2 = 1 and Fn+2 = Fn + Fn+1 for n > 0. For n = 1, 2, ... define 

U - n IIn F2k d V. - n IIn F2k- 1 
n-a P. an n-a P. . 

k=1 2k+1 k=1 2k 

Prove that U = limn-+oo Un and V = liiDn-+oo Vn exist. If possible, evaluate U 
and V in closed form. 

Solution by Rex H. Wu, Brooklyn, New York. 
Since a= (1 + VS)/2, then a-1 = ( J5- 1)/2 and also, F2k/ F2k+1 ::; a - 1. We 

know furthermore that Fn =[an- (-a- 1)n]!J5. 
Observe that Un is strictly decreasing, with a maximum at n = 1, or U1 = a/2. 

If there is a nonzero lower bound, then liiDn-+oo Un = U exists and, as we shall see, 
the limit of Vn also exists. Now we look for a lower bound. 

n n F2k n a2k - ( -a-1 )2k n a2(2k+l)- a2 
Un =a II p2k+1 = II a a2k+1 _ ( -a-1 )2k+1 = II a a2(2k+1) + 1 

k=1 k=1 k=1 

. ' 
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n (a2(2k+l) _ a2)(a2(2k+l) _ 1) _ n a8k+4 _ a4k+4 _ a4k+2 + a2 =!! (a2(2k+I) + 1)(a2(2k+l) _ 1) -!! aBk+4 - 1 

n a8k+4 _ a4k+4 _ a4k+2 + a2 n ( 1 1 1 ) 
> II a8k+4 = IT 1 - a4k - a4k+2 + a8k+2 

k=1 k=1 

n ( 1 1 ) n ( 1 + a - 2) 
> II 1 - a4k - a4k+2 = II 1 - (a4)k · 

k=l k=1 

Since 1 + 1/a2 ~ 1.382 and a 4 ~ 6.854, we can conclude that 

n ( 1) n 1 2 
Un > II 1 - 4k > 1 - L 4k = 3' 

k=1 k=l 

All of the above just showed a/2 2:: Un > 2/3. With the fact that Un is strictly 
decreasing, limn 

00 
Un = U exists and is greater than zero. To show the limit of Vn 

exists, note that Vn is strictly decreasing. If we multiply Un and Vn, we get 

F a2n a2n J5 
Un Vn = a2n F2n1+1 = F2n+l = [a2n+l - ( - a - 1 )2n+l]/ J5 = a+ a - (4n+l). 

Then limn 00 Un Vn = JSja. Since a/2 2:: limn oo Un = U > 2/3, then 
(3J5)/(2a) >limn 00 Vn = V 2:: (2J5)/(a2). 

Addendum: Another way to prove the existence of V is to use the fact that 
limn 

00
(1 + a)(1 + a2)(1 + a3) ... (1 + an) exists (and is nonzero) if 0::; a< 1. This 

is true since Vn is strictly increasing and 

n p.
2

k _
1 

n n,2k + r"/n,2k - 1 n n,2k + aja2k - 1 n ( ) 

II II u. u. u. II u. =II 1 + a - (4k - 2) . 
Vn = a~ = a2k -1ja2k < a2k 

k=1 2k k=l k=l k=l 

Also solved by Richard I. Hess, Rancho Palos Verdes, CA, and the Proposer. 

944. [Fall1998] Proposed by David Iny, Baltimore, Maryland. 

Evaluate 

Solution by Frank P. Battles, Massachusetts Maritime Academy, Buzzards Bay, 

Massachusetts. 
Denote by I the given integral, which clearly exists, and recall that, for non-

negative integal n, 

so that 
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For x E [0, oo ), we have xe- x < 1, whence 

Also solved by Paul S. Bruckman, Berkeley, CA, Kenneth B. Davenport, Frackville, PA, 

Russell Euler and Jawad Sadek, Northwest Missouri State University, Maryville, Robert C. 

Gebhardt, Hopatcong, NJ, Richard I. Hess (who gave a 42 decimal place answer), Rancho Palos 

Verdes, CA, Joe Howard, New Mexico Highlands University, Las Vegas, and the Proposer. 

*945. [Fa111ggs] Proposed by the late Jack Garfunkel, Flushing, New York. 
Let A, B, C be the angles of a triangle and A' ,B' , C' those of another triangle 

with A 2: B 2: C, A > C, A' 2: B' 2: C' , and A' > C' . Prove or disprove that if 
A- C 2: 3(A' - C'), then E cos(A/2) ~ E sin( A'). 

Solution by Paul S. Bruckman, Berkeley, California. 
We shall show that the coefficient 3 is unnecessary, that the stated conclusion is 

true whenever A- C 2: A'- C' and the rest of the hypothesis is true. Let U, V, W 
be arbitrary numbers and define R(U, V, W) = cos(U /2) + cos(V /2) + cos(W/2) and 
S(U, V, W) = sin(U) + sin(V) + sin(W). 

We prove the following identity by using t rigonometric formulas on its product 
term to replace the product of two sine factors by a sum and then the resulting two 
products of a sine and a cosine by sums, 

(1) S(U, V, W) = sin(U + V + W) + 4sin(U; V )sin( V ~ W )sin( W; U ). 

Note that 

R(A, B, C) = cos ('' - ~ - C) + cos ('' - ~ - A) + cos ('' - ~ - B) 

=S(B+C C+A A+B) 
2 ' 2 ' 2 

= sin( A+ B +C) + 

= sin,- +4 sin (";A) sin (";B) sin (";C) = S(A, B, C) 
by identity 1. 

LetS = S(A, B, C) and S' = S'(A', B', C'). We need to show that S ~ S' under 
the revised hypotheses. Set A- C = 6D, so that 0 < D < 1r /6. Then there is a B with 
- 1 ~ B ~ 1 such that A= 7r/3 + (3- B)D, B = 7r/3 + 2BD, and C = 7r/3- (3 + B)D. 

Let F(D, B) = S(A, B , C). It suffices to show that Fv(D, B) < 0 for all permissible 
D and B. Since F is analytic in either variable, we have 

FD(D, B) = (3- B) cos( A) + 2B cos(B) - (3 +B) cos( C) 

and 

Fvv(D, B) = -(3 - B)2 sin(A) - 4B2 sin(B) - (3 + B)2 sin( C). 

. , 
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Clearly, Fvv < 0 in its permissible domain. For any fixed B , since FD is a decreasing 
function of D, it suffices to show that limD-+O+ Fv(D, B) ::; 0. We have 

lim Fv(D, B)= (3- B + 2B- 3 - B) cos(7r/3)) = 0. 
D-+O+ 

This implies that Fv(D, B) < 0 for all permissible D and B. Therefore, S::; S' . 

946. [Fall 1ggs] Proposed by Ayoub B. Ayoub, Pennsylvania State University, 
Abington College, Abington, Pennsylvania. 

Let M be a point inside (outside) triangle ABC if LA is acute (obtuse) and let 
mLM BA + mLMCA =goo . 

a) Prove that (BC · AM)2 = (AB · CM? + (CA · BM)2
• 

b) Show that the Pythagorean theorem is a special case of the formula of part 
(a). 

Solution by the Proposer. 
We consider the case where LA is acute. From point M drop perpendiculars M X, 

MY, and M Z onto sides BC, AB, and C A respectively, as shown in the figure. Now 
M, X, B, andY lie on a circle with diameter d = BM. Then 

(2) XY = dsinB = BMsinB 

and similarly, 

(3) ZX = CMsinC and YZ = AMsinA. 

c 

A y B 

Recall that the law of sines, as applied to triangle ABC, states 

(4) 
sin A 
BC 

sinB sinC 
CA AB 

Since LMBY = LMXY and LMCZ = LMXZ, as shown in the figure by the spotted 
angles and the triangle-marked angles, then LYXZ = LMBY +LMCZ = goo . Hence 
(YZ)2 = (XY)2 + (ZX)2, into which we substitute equations 2 and 3, and then 4 
and simplify to get 

(AMsinA)2 = (BMsinB)2 + (CMsinC)2 
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and 

(BC · AM)2 = (CA · BM) 2 + (AB. CM) 2
. 

Also solved by Paul S. Bruckman, Berkeley, CA, Murray S. Klamkin, University of 

Alberta, Canada, and William H. Peirce, Rangeley, ME. 

947. [Fall1998] Proposed by PaulS. Bruckman, Berkeley, California. 
In the card game of hearts, a regular deck of 52 cards is dealt to four players. An 

assigned player leads off, and tricks are taken by rules that need not concern us here. 
Each heart-suit card is assigned a value of 1 point, and the queen of spades has a 
value of 13 points; thus, the total value of each hand is 26 points. Your score for any 
hand is the sum of the points in the tricks you have taken. If one player, however, 
takes all 26 points in any hand, then that player is awarded 0 points and each of the 
other players is burdened with 26 points. The object of the game is to accumulate the 
fewest points. Hands continue to be played until at least one player has 100 or more 
points, at which time the player with the fewest points is declared the winner of the 
game. Ties are possible. Suppose the winner's total gain after a game is the total of 
the differences between his score and that of each other player. At $1 a point, what 
is the winner's maximum possible total gain per game? 

Solution by Katazyrna Potocka, Catherine Holl, and Kevin Weis, students, 
The College of New Jersey, Ewing, New Jersey. In order to maximize the winner's 
gains, it is necessary to maximize the points of the other players while keeping the 
winner's points to a minimum. Ideally, then, if player A is to be the winner over 
players B, C, and D, the next to the last hand should leave the scores (0, 99, 99, 99) 
for (A, B, C, D), which is impossible since there is a total of 26 points per round. It is 
possible to achieve the scores (0, 97, 97, 92) by arriving at (0, 78, 78, 78) and having 
two hands with scores (0, 13, 6, 7) and (0, 6, 13, 7). In the last round, if A takes all 
26 points, the final scores will be (0, 123, 123, 118) and A will win $364. Another 
scenario would be for each loser to have 99 points at the end of the next to the last 
round, so that the scores would have to be (15, 99, 99, 99). The final scores could 
then become (15, 125, 125, 125) if again A takes all 26 points. Here A would win 
only 3 x (125- 15) = $330. That is, a higher penultimate score for A leads to lower 
winnings. So the maximum winnings would be $364. 

Also solved by Mark Evans, Louisville, KY, Victor G. Feser, University of Mary, Bismarck, 

ND, Stephen I. Gendler, Clarion University of Pennsylvania, Grand Valley State University 

Problem Solving Group, Allendale, MI, Richard I. Hess, Rancho Palos Verdes, CA, Carl 

Libis, Granada Hills, CA, Tracy MacLake, Alma College, MI, Harry Sedinger, St. Bonaventure 

University, NY, Jeremy TerBush, Alma College, MI, Allison Topham, Alma College, MI, Kevin 

P. Wagner, University of South Florida, Saint Petersburg, Rex H. Wu, Brooklyn, NY, Kathleen 

Zellen, Alma College, MI, and the Proposer. 

948. [Fall 1998] Proposed by Robert C. Gebhardt, Hopatcong, New Jersey. All 
six faces of a cube 4 inches on a side are painted red. Then the cube is chopped into 
64 smaller l-inch cubes. The "inside" faces are left unpainted. The 64 small cubes 
are put into a box and one is drawn at random, and tossed. Find the probability that 
when it comes to rest its upper face will be red. 

I. Solution by the Skidmore College Problem Group, Skidmore College, 
Saratoga Springs, New York. 

There are 8 little cubes which lie totally inside the large cube and hence have no 
red faces, 24 (the center 4 cubes on each of the 6 faces) with just one red face, 24 

. ' 
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(the center 2 cubes on each of the 12 edges) with just 2 red faces, and 8 (the 8 corner 
cubes) with three red faces. The probability of obtaining a red face is thus 

8 0 24 1 24 2 8 3 1 
-·-+-·-+-·-+ - ·-=-
64 6 64 6 64 6 64 6 4 

II. Solution by Amy Kuiper, student, Alma College, Alma, Michigan. 
This is a two-step process, drawing and then rolling. You need only look, however, 

at the probability of selecting a painted face out of the total number of faces. Since 
there are 64 cubes, there are 384 total faces. There are 16 faces per side times 6 sides 
to the original cube, so 96 faces are painted. Therefore, the probability of rolling a 
painted face is 96/382 = 1/4. 

III. Generalization by Grand Valley State University Problem Solving 
Group, Grand Valley State University, Allendale, Michigan. 

This problem may be generalized to ann x n x n cube chipped into n3 small 
cubes. Then (n-2)3 small cubes have 0 red sides, 6(n-2)2 have 1 red side, 12(n-2) 
have 2, and 8 have 3 red sides, yielding a total of 6n2 red sides out of 6n3 total sides. 
The probability of rolling a red face is therefore 6n2 /6n3 = 1/n, which yields 1/4 for 
the 4 by 4 by 4 cube. 

All solvers used one of the methods in the featured solutions. Numerals following each name 

indicate which method(s) that solver used. Also solved by Alma College Problem-Solving 

Group, I, MI, Charles D. Ashbacher, I, Charles Ashbacher Technologies, Hiawatha, IA, Frank 

P. Battles, I, Massachusetts Maritime Academy, Buzzards Bay, PaulS. Bruckman, I, Berkeley, 

CA, George P. Evanovich, I, Saint Peter's College, Jersey City, NJ, Mark Evans, II, Louisville , 

KY, Victor G. Feser, I, University of Mary, Bismarck, ND, Stephen I. Gendler, II, Clarion 

University of Pennsylvania, Nitin Goil, I, Northwest Missouri State University, Maryville, MO, 

Grand Valley State University Problem Solving Group, I, Allendale, MI, Richard I. Hess, 

II, Rancho Palos Verdes, CA, Paul R. Krueger, I, Alma College, MI, Peter A. Lindstrom, 

I, Batavia, NY, Kevin Metz, I, Alma College, MI, Yoshinobu Murayoshi, I, II, Okinawa, 

Japan, Katazyrna Potocka., Catherine Holl, and Kevin Weis, I, The College of New Jersey, 

Ewing, Mike Reed, I, II, Alma College, MI, Shiva K. Saksena, I, University of North Carolina 

at Wilmington, Harry Sedinger, I, St. Bonaventure University, NY, H.-J. Seiffert, I, Berlin, 

Germany, Jamie Shirely, I, II, Alma College, MI, Skidmore College Problem Group, II, 

Saratoga Springs, NY, Jeremy TerBush, I, Alma College, MI., Kevin P. Wagner, II, University 

of South Florida, Saint Petersburg, Dana Weston, I, Alma College, MI, Rex H. Wu, I, Brooklyn, 

NY, and the Proposer. 

949. [Fall 1998] Proposed by Charles Ashbacher, Decisionmark, Cedar Rapids, 
Iowa. 

In a collection of problems edited by Dumitrescu and Seleacu [1] a positive integer 
is said to be a Smarandache pseudo-odd{even) number if some permutation of its 
digits is odd(even). For example, 12345678 is both Smarandache pseudo-even and 
pseudo-odd since 12456783 is odd. A positive integer is said to be a Smarandache 
pseudo-multiple of the positive integer k if some permutation of its digits is divisible 
by k. 

a) Prove that if a positive integer is chosen at random, the probability that it is 
Smarandache pseudo-odd is 1. 

b) Prove that if a positive integer is chosen at random, the probability that it is 
Smarandache pseudo-even is 1. 

c) Prove that if a positive integer is chosen at random, the probability that it is 
a Smarandache pseudo-multiple of 3 is 1/3. 
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d) Prove that if a positive integer is chosen at random, the probability that it is 
a Smarandache pseudo-multiple of 5 is 1. 
Reference: 

1. C. DUMITRESCU AND V. 8ELEACU, Some Notions and Questions in Number 
Theory, Erhus University Press, 1994. 

Solution by Stephen I. Gendler, Clarion University, Clarion, Pennsylvania. 
Any base ten numeral of n digits has the probability (9/10)n that it does not 

contain the digit d. As n ~ oo, (9/10)n ~ 0. Hence we have the following lemma. 
LEMMA. The probability that a number does not contain a specific digit dis 0 and 

hence the probability it does contain that digit is 1. 
a, b, d) An integer is pseudo-odd if it contains at least one odd digit, it is pseudo­

even if it contains at least one even digit, and it is a pseudo-multiple of 5 if it contains 
at least one 0 or 5. By the lemma the probability of any of these three events is 1. 

c) The sum of the digits of a number is 0, 1, or 2 (mod 3), each with equal 
probability 1/3. A number is pseudo-divisible by 3 if and only if it is divisible by 3 if 
and only if the sum of its digits is 0 (mod 3), so that probability is 1/3. 

Also solved by PaulS. Bruckman, Berkeley, CA, Mark Evans, Louisville, KY, Richard 

I. Hess, Rancho Palos Verdes, CA, Harry Sedinger and Doug Cashing, St. Bonaventure 

University, NY, Rex H. Wu, Brooklyn, NY, and the Proposer. 

951. [Fall1998] Proposed by Richard I. Hess, Rancho Palos Verdes, California. 
An ant crawls along the surface of a dicube, a 1 x 1 x 2 rectangular block. 
a) If the ant starts at a corner, where is the point farthest from it? (It is not the 

opposite corner!) 
b) Find two points that are farthest apart from each other on the surface of the 

dicube. 
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Figure for Problem 951a by Meagan Tripp 

Solution to part (a) by Meagan Tripp, Alma College, Alma Michigan. Let us 
start from point A in the dicube ABCDEFGH, where G is the opposite corner. Cut 
the dicube open as shown in the figure, showing the various positions, 1, 2, 3, and 4, 
of the opposite end CDGH in relation to each of the four sides. Thus we can see all 
possible direct paths to any point on the opposite end. We know that the distance 
from A to G, 2y'2 according to position 1 or position 4, is not the farthest. Since 
the corners H (see position 4), D (position 2), and C (position 1) and the edges GC, 
CD, D H, and H G are closer to A than G is, we are left to consider points along the 
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diagonal DG. Since in positions 1 and 4 angle AG D is a right angle, points near G 
on diagonal DG are farther from A than 2J2. Using positions 2 and 3 we find that 
distance AG is v'IO, which is greater than 2v'2, verifying that points along DG that 
are close to G are indeed further from A than G is. The distance AP from A to a 
point P on diagonal DG, as shown in the flap end 2, is y'(2 + x) 2 + x2 , where x is 
the distance from D to the projection of P on DH. As x increases, the distance AP 
increases from 2y'2. Similarly, the distance AP, using position 1, is )+2(1- x)2 

since GP = (1- x)J2. Here, as x increases from 0 to 1, AP decreases from 10. The 
point of longest distance from A along DG is the point where these two distances AP 
are equal, which occurs at x = 0. 75. From positions 1 and 4 we see that points near 
P but off the diagonal DG are closer to A than P is. Therefore, the point on the 
surface of the dicube furthest from A lies 1/4 of the way from the opposite vertex G 
along the end diagonal GD. That distance is v'2.752 + .752 :::::: 2.85044. 

II. Solution to part {b) by Rex H. Wu, Brooklyn, New York. 
Observation: Let [a, b] be an interval and xo a point in [a, b]. Let f(x) be an 

increasing function and g(x) a decreasing function on [a, b] such that f(x0 ) = g(x0 ). 

Then on the interval [a, b] min{f, g} = f(x) for x < x0 and min{j, g} = g(x) for 
x ?:: xo. Furthermore, max{min{f, g}} = f(xo). That is, the smaller off and g has 
its largest value at the point where the two curves meet. The centers of the two 1 x 1 
squares are exactly 3 units apart traveling on the surface of the dicube. Likewise, 
consider a rectangle that is the intersection of a horizontal plane and the dicube. Any 
point on the unit edge of the rectangle has just one other point on that rectangle 
that is 3 units away, traveling on the edges of the rectangle, the point symmetrically 
located in the opposite edge. No point on the rectangle is further away. Two points 
more than 3 units apart, then, cannot lie in one horizontal plane. 
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FIG. 1. 

Label the vertices of the dicube A, B, C, D, A' , B' , C' , D' so that ABCD is 
one square, A' B' C' D' is the other square, and AA', BB', CC', DD' are edges each 
two units long. See Figure 1, which shows the ends and one side of the sliced-open 
dicube. Let the points we are seeking be M and N, with M on the ABC D square. 
Divide that square into four ! by ! subsquares. Point M must lie in or on one of 
those subsquares. We may assume without loss of generality that it is the subsquare 
containing A. Label the vertices of the subsquares as shown in the figure. 

There are three cases to consider. We start with Case 1, in which point N is in 
t he subsquare A' R' S' D'. Using Figure 1, draw four circular arcs R'V', S'U', RV, and 
S'U, centered at points R, S, R', and S', each of radius 3. Figure 2 shows those arcs 
i11 just that portion of Figure 1 in which the two subsquares containing M and N lie. 
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D' s S' 
T' 

X w W' 

B B' 

R u A A' U' R' 

FIG. 2. 

(Note that the actual distance RU, for example, is less than 0.042 units, although for 
the sake of clarity it is drawn much larger in the figure.) If M and N lie inside or on 
those circles, they are no more than 3 units apart. Hence we must take at least one 
of them, say M, outside a circle, that is, within a circular "triangle," say RSU. Then 
N must lie within the "pentagon" R'S'V'W'U'. 

Figures 1 and 2 show the orientation of the squares when rectangle ADD' A' is left 
attached to them. Figure 3 shows the orientation of the subsquares of Figure 2 when 
rectangle ABB' A' is left attached to them. If M lies inside "quadrilateral" RUW X 
or if N lies inside R'U'W' X', then the distance M N is less than 3 units. Hence M 
lies in "triangle" SW X and N must lie in "quadrilateral" S' X'W'V' . From Figure 3 
we see that M must lie within about 0.01 of Sand N must lie close to S'V'. Figure 2 
shows that such points are less than 3 units apart. Hence N does not lie in subsquare 
A' R'S'T'. 

D T A A' T' D' 

v u U' V' 

w W' 

s R R' X' S' 
B' 

FIG. 3. 

Case 2 has point N in the subsquare D'Q'S'T' of Figure 1. We draw circular 
arcs of radius 3 in these subsquares, arc V'W' centered at R and arc UV centered 
at Q', as shown in Figure 4. Figure 5 shows the three other orientations of these 
two subsquares. By an argument similar to that of Case 1, we see that the optimum 
locations forM and N are at Rand 1/6 unit from Q' toward D'. The distance MN 
then is 

MN = j32 + (1/6)2 ~ 3.0046. 
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FIG . 4. 

In Case 3, point N lies in the subsquare C' P' S' Q'. Consider points M~ an~ N1 
with distances w, x, y, and z from the sides of their subsquares, as show~ m Figure 
6. Note the distances D1, D2 , D3 , and D 4 , which show some of the poss1ble routes 
the ant might take. Note that the top two orientations duplicate the bottom two. To 
maximize the horizontal distances at 3 units, distances D1 and D2 show that we must 
have w = x andy= z. Furthermore, x, y E [0, ~]. 
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We have the distances 

Dr = (1 - 2y)2 + 32
, 

D~ = (2x)2 + 32
, 
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D5 = (312 + x - y)2 + (512 + y - x) 2, and 

D~ = (7 12 +X - y) 2 + ((112) - x + y)2. 

Using our Observation, we see that the optimum distance occurs when D 1 = D 2, when 
x + Y = ~. Thus M and N will lie on the diagonals through A and C' respectively. 
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FIG . 6. (by Rex Wu) 

Substitute x = ~ - y into the expression for D3 to get D1 = 8y2 + 8. 
Again use our Observation to set D 1 = D 3 to get 2y2 + 2y - 1 = 0, so that 

y = ( v'3 - 1) 12 and x = 1 - v'312. 
Finally, 

Di = (1 - 2y)2 + 32 = (2 + VJ)2 + 32 = 16 - 4VJ, 

so that D1 = J16 - 4J3 ~ 3.011942358. 
We can use this same technique in a 1 x 1 x n box to get that the final coordinates 

for NI and N are 

(x ) = (n - Jn2=l 1 - n + Jn2=1) 
,y 2 ' 2 

Also solved by Rex H. Wu, part (a) , Brooklyn, NY, and the Proposer. Two incorrect 

solutions were also received. The proposer has written an unpublished paper entitled "Kotani's Ant 

Problem," which generalizes the problem to a 1 x ax b box with rather interesting results. 
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952. [Fal11998] Proposed by Peter A. Lindstrom, Batavia, New York. 
Let A, B, C denote the measures of the angles and a, b, c the lengths of the 

opposite sides of a triangle. Show that 

sin A sin B + sin B sin C + sin C sin A 
(a + b + c) ( b + c - a) ( c + a - b) (a + b - c) (be + ca + ab) 

4a2b2c2 

I. Solution by Kevin P. Wagner, student, University of South Florida, Saint 
Petersburg, Florida. 

By the laws of sines and cosines, we have (sin A) I a = (sin B) I b = (sin C) I c and 
cosC = (a2 + b2 - c2 )12ab, so that 

. 2c 1 a+ -c 
(

2 b2 2)2 
Slll = - b 

(a+ b + c)(a + b- c)(a + c- b)(b + c- a) 

4a2b2 2a 

Substituting this value into the right side RHS of the desired equation yields 

RHS = ab + ac +be sin2 C = absin
2 

C + asin
2 

C + bsin
2 

C = LHS 
c2 c2 c c 

by using the law of sines. 
II. Solution by Grand Valley State University Problem Group, Grand Val­

ley State University, Allendale, Michigan. 
The area K of the triangle is given by K = (ll2)bcsinA, so that 

. A 2K 
sm =bc 

and two similar expressions for sin B and sin C. Recall Heron's formula , 

Now we have 

K 2 = (a + b + c) (a + b - c) ( b + c - a) ( c + a - b) 
16 

sin A sin B + sin B sin C + sin C sin A 
4K2 4K2 4K2 

= a2bc + ab2c + abc2 

4K2 (ab +be+ ac) 
a2b2c2 

(a + b + c) (a + b - c) ( b + c - a) ( b + c - a) ( ab + be + ac) 

4a2b2c2 

Also solved by Miguel Amengual Covas, Cala Figuera, Mallorca, Spain, Scott H. Brown, 
Auburn University at Montgomery, AL, Paul S. Bruckman, Berkeley, CA, William Chau, 
AT&T Laboratories, Middletown, NJ, Chantel Cleghorn, Hardin Dunham, and Daniel 
H ermann, Angelo State University, San Angelo, TX, Erin Cooper, Alma College, MI, Russell 
Euler and Jawad Sadek, Northwest Missouri State University, Maryville, George P. Evanovich, 
Saint Peter's College, Jersey City, NJ, Mark Evans, Louisville, KY, Richard I. Hess, Rancho 
I ,alas Verdes, CA, Joe Howard, New Mexico Highlands University, Las Vegas, Edward John 
K oslowska, Southwest Texas Junior College, Eagle Pass , Henry S. Lieberman, Waban, MA, 
D avid E. Manes, SUNY College at Oneonta, NY, Yoshinobu Murayoshi, Okinawa, Japan , 
William H. Peirce, Rangeley, ME, Shiva K. Saksena, University of North Carolina at Wilm­
iugton, H.-J. Seiffert, Berlin, Germany, Rex H. Wu, Brooklyn, NY, Monte J. Zerger, Adams 
Sl.atc College, Alamosa, CO, and the Proposer. 

Late solution to Problem 934 by Andrew Ostergaard, student, Hopatcong, NJ. 



64 

The MATHACROSTIC in this issue has been contributed by Gerald Liebowitz. 

a. An ancient people 

b. Rose lover 

c. Author of "direct method" 

d. Type of integral 

e. B2 - 4AC 

f. Parabola (right?) 

g. Memo 

h. Staff reduction method 

i. See word x. 

j. x = 3 when t = 0, (with k.) 

k. See j. 

I. Not easily perturbed. 

m. With "to", perfectly. 

n. Ephermeral publication. 

183 166 047 094 176 132 194 150 

225 153 084 163 

187 030 024 174 073 180 042 055 

012 021 167 o39 o82 178 m 103 

089 006 031 044 216 017 204 192 147 

161 209 224 

202 033 164 050 179 064 029 231 ill 

072 014 197 099 213 115 

043 059 157 127 

205 058 070 170 079 ill 093 066 128 

092 087 134 199 156 025 222 

227 219 207 011 074 019 191 

041 002 162 212 220 230 154 201 193 

049 020 195 226 155 215 

010 131 100 141 

102 186 097 069 057 107 114 159 003 

125 140 129 053 081 ill 

o. Spread of fluid. TBT 076 061 149 165 120 101 083 110 

p. Name associated with Poincare. 068 056 124 106 oo8 130 048 189 211 

q. Attack verbally. 091 142 022 184 091 032 126 

r. Wj/2rr. 160 060 036 013 105 188 221 ill 135 

s. One to whom all has value. 

t. Solution. 

u. Where to search for a missing 

tangent plane. 

071 138 

172 182 210 228 109 009 158 086 052 

045 123 067 116 095 144 

196 143 175 ill 

005 185 145 037 122 136 098 075 

198 133 218 088 206 

. , 

v. Risk measuring adverb. 

w. See x. 

x . Jacobian result . (with i. and w.) 

y. Iteration paths. 

z. Traveling Salesmen stop here 

*· Non-tangled smooth subset. 

004 040 139 080 152 200 ill 015 090 

104 028 

001 ill 063 208 038 096 217 

229 035 046 007 168 051 203 018 

148 078 169 021 214 054 

177 146 108 023 

223 ill 077 173 026 085 137 190 034 

016 065 
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