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TIME AND ITS INVERSE 

S 'Orl' .J . BESLIN AND ROBERT LEDET* 

1. Introduction. The minute hand on a clock is redundant, since in principlP 
the position of the hour hand determines the time. The angle between the minute 
hand and the 12 o'clock mark is always twelve times the angle between the hour hand 
and the position of the preceding hour mark. For example, at 2:24, the angle betwePn 
the minute haiHl and 12 o'clock is ~~ (360°) = 144° , and the angle between the hour 
hand and tlw 2 o'clock mark is ~~(30° ) = 12°. A class discussion of clock arithmetic 
in an abstract algebra class led to the following intriguing question: At what times can 
the positions of the clock hands be switched and the new configuration also repTesent 
a possible clock tim ? Other teachers may find this problem useful for reviewing the 
main results about finite groups in a typical undergraduate course on abstract algebra. 

Let denote the additive group of real numbers and 12U.:: the subgroup consisting 
of integers that are multiples of 12. The factor group G = ~/12U.:: may be thought of 
as a "cloc·k" group whose elements correspond to times on a 12-hour clock and whose 
addition is real "clock addition" modulo 12. Hence if tEG, t may be expressed as 

i X 

where if{O, 1, 2, ... , 11} and 0 < x < 1. 
In other words, t = 0 corresponds to "12 o'clock," and i ltJ, the integer fluor 

oft, represents the "hour" part oft as time. For example, the time t = 2.8 has i = 2 
and .r = .8, and may be realized as 2:48:00 on a 12-hour clock. 

Two elements of G are added modulo 12. For example, 

(3 + .99) (8 + .98) 

= (3 + 8) + (.99 + .98) 

= 11 + 1.97 

= (11 + 1) + .97 

= 0 + .97 

The symbol ffi represents addition in G. 
Re-interpreting this chain of equalities on a 12-hour clock, we have that 

3: 59: 24 8: 58: 48 = 12: 58: 12. 

In general , if t = ·i + x and T = j + y are two elements of G, then 

{ 

i + j + (x + y) 
t ffi T = (i + x) ffi (j + y) = 

i + j + 1+ (x+ y - 1) 

if X+ y < 1 

if :r+ y > 1 

Here the vinculum or overbar indicates integer addition modulo 12 .. 
In the remainder of this note, we will investigate an interesting subgroup of G 

and exhibit its direct sum decomposition. Our investigation begins with the question 
stated earlier: how many times can the positions of the hour and minute hands of a 

*Nicholls State University 
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clock be reversed and still define a possible clock time? We choose to call such times 
"invertible" times, whence the title of this article. For example, the time 12:00:00 is 
an obvious "fixed point" invertible time. 

We will show that the set S of all such invertible times is a finite subgroup of G. 
We will then determine its structure. 

2. Representation. The angles (in radians) with 12 o'clock formed by the hour 
(h) and minute (m) hands of a clock at time t = i + x are h = 1l't j 6 and m = 
211'(t- ltJ) = 211'(t - i) = 27!'x. If the hands are switched, yielding new hour (H) 
and minute (M) positions which correspond to time T = j + y, then H = 1l'T / 6 and 
M = 211'(T - j) = 27l'y. If such a switch results in an accurate time, then H = m. So 

(1) 
71' T 6 T = 27l'x, or "6 = 2x. 

Similarly, h = lvi; hence 

(2) 
t 6 = 2y. 

Using t = i + x and T = j +yin (1) and (2), and solving, we obtain 

(3) 
i + 12j 12i + j 

x = ~andy = ~· 

The symmetry in these solutions is understandable since if t is an invertible time, 
then so is its inverted timeT. 

Fixed point solutions, when switching the hands produces not just a possible time 
but the same time, occur when i = j. In these cases x = y = 1i1 , from (3). Thus fixed 
points correspond to times t = i + 1i1 . For example, 2 + 1

2
1 (approximately 2:10:54 

on the clock) is the fixed point solution between 2 o'clock and 3 o'clock. There are 
obviously eleven fixed point solutions. 

For non-fixed point solutions, select jc:{O, 1, 2, ... , 11}, suppose i < j , and apply 
(3). Indeed, 

when j = 1, i = 0 yielding one solution from (3); 

when j = 2, i = 0 or 1, yielding two solutions from (3); 

when j = 3, i = 0, 1, or 2, yielding three solutions from (3); 

when j = 11, ic:{O, 1, 2, ... 10}, yielding eleven solutions from (3) . 

So the total number of solutions in which i < j, is 1 + 2 + 3 + ... + 11 = 66. 
Similarly, by symmetry, there are 66 solutions for i > j, yielding 66 + 66 + 11 = 

143 total solutions, fixed and non-fixed. 
For instance, consider the non-fixed point solution obtained by letting j = 1 and 

i - 0. Then x = 1
1
4
2
3 and y = 1!3 . Hence, t - 1

1
4
2
3 hours and T = 1 1!3 hours. 

Approximate clock times are 12:05:02 and 1:00:25. 
As another example, suppose we wish to find the solut ion corresponding to the 

missing blanks 
7:_ :_ and 5:_:_. 

Then j = 7 and i = 5. Calculating x andy from (3) and then approximating, we get 

7 : 28 : 07 and 5 : 37 : 21. 

.. 
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3. The SubgroupS. Amazingly enough, the setS of 143 invertible times forms 
a finite subgroup of G. Moreover, since 143 = 11 · 13, the product of two distinct 
primes, and since G is abelian, the group S must be cyclic! 

To see that S is a subgroup, observe from (3) that an element of S may be 
expressed as an ordered pair (i, j)c:{O, 1, 2, ... , 11 }{0, 1, 2, ... , 11 }; namely, (i, j) rep­
resents the time i + ii!ij hours. The inverted t ime of pair (i, j) is the pair (j, i). 
Note that the pair (0, 0) is equivalent to the pair (11, 11). [Hence S has 143 elements.] 
From the addition ED in G described in Section 1, we obtain 

THEOREM 1. Suppose (i,j) and (c, d) are inS. Let u = j + d + l it;c J. Then: 

ifu :::; 11; 

{ 

(i+c,u) 
(i, t) ED (c, d) = (i + c + 1, u - 12 if i + c < 11 ' ( u > 11) 

if i + c = 11 ' ( u > 11) (0, u - 11) 

The proof of the theorem is lengthy, but involves writing i +c as i + c + 12 l i{2c J 
and then further using the division algorithm when necessary. We illustrate the 
technique with four examples. 
Example 1. (2, 5) ED (10, 9). 

Here u = 5 + 9 + l 2ti0 J = 15 > 11 and i + c = 0. Therefore the sum is (1,3). To 
see this, note that 

(2 5) ( 0 9) = ( 2 2 + 5(12) ) (w 10 + 9(12)) 
' ED 1 ' + 143 E9 + 143 

= 210 2 + 10 + 14(12) 
+ ED 143 

- 0 15(12) 
- ED 143 

- 0 ( 15(12) - 143) 
- ED 1 + 143 

- 0 ( 15(12) - 12(12) + 1) 
- ED 1 + 143 

= (0 1) 12(15 - 12) + 1 
EB EB 143 

= 1 1 + 3(12) = (1 3) 
ED 143 ' . 

In other words, the approximate clock times 2:26:01 and 10:49:31 sum to the approx­
imate time 1:15:32. 
Example 2. (2, 3) ED (1, 4). 

Here u = 7 ::=; 11, so the sum is (3, 7). Clearly ( 2 + 2+131~ 2 ) ) ED ( 1 + 1+1~~2 ) ) = 

3 + 3+7(12) 
143 . 

Example 3. (5, 6) E9 (6, 5). 
The summands are time inverses. Note u = 11, and hence the sum is (11, 11) = 

(0, 0). 
Example 4. (3, 6) EB (8, 7). 

Here u = 13 > 11 and i + c = 11. Observe 

(
3 3+6(12)) (8 8+7(12)) 

+ 143 ED + 143 
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11 11 + I3(I2) 
E8 I43 

- 11 ( 11 I3(I2) - I43 ) 
- E8 I43 + 143 + 1 

= (11 E8 I) E8 (_!2_ I3(I2) - 11(I2) - 11) 
I43 + I43 

= 0 E8 (0 + 2(I2) ) = (0 2) 
I43 ' . 

Since fixed points may be represented as (i, i), it is easy to verify 
THEOREM 2. The set F of eleven fixed points inS is a cyclic subgroup of S. 
At this point, we emphasize that group inverses in S are not necessarily time 

inverses. The group inverse of (i,j) is (11 - i, 11 - j) since (i,j) (11 - i, 11 - j) = 
(11,11) = (0,0). From (3), the time inverse of (i,j) is (j,i). Hence a non-identity 
element of S whose group inverse coincides with its time inverse has the form ( i, II - i) 
for iE{O, I, 2, ... , 11 }. 

THEOREM 3. The set E = {(i, 11 - i) I i = 0, I, 2, ... , 11} U { (0, 0)} consisting of 
the 13 elements of S whose group inverses are time inverses is a cyclic subgroup of 
s. 

Proof Consider the cyclic subgroup H of S generated by (11, O)EE. It is easy 
to verify via Theorem I and finite induction that, for n = I , 2, 3, ... , I2, n(11, O) = 
(11, 0) E8 (11, 0) E8 ... E8 (11, 0) (with n summands) is equal to (11 (n - I), n - I). 
Further, (0, 11) E8 (11, 0) = (0, 0). Thus H = E. D 

From elementary abelian group theory (see (I], Sylow's Theorem, or the Funda­
mental Theorem of Finite Abelian Groups), a cyclic group of order I43 = 11. I3 has 
a unique subgroup of order 11 and a unique one of order I3. In the case of S, these 
are F and E, respectively. Hence we have 

THEOREM 4. The groupS is the internal direct product of its subgroups F and 
E. 

Thus it may be said that S is generated by its fixed points and by elements whose 
inverses are time inverses. 

Finally, we pose the following problem as a student exercise: Is there a meaningful 
operation * on S such that ( S, *) is a group, and group inverses coincide with time 
inverses for all elements of S? 
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SQUARE ROOTS AND CALCULATORS 

CLAYTON W. DODGE " 

Have you ever wondered just what happens inside a pocket calculator when you 
press the square root key? What formula does a calculator use to compute .,fii? It is 
tempting to believe t.hat there a little person who rapidly looks up the desired value 
in a tiny table and then displays the result. Besides, then we can blame him or her 
when we get a wrong answer. 

Alas! There is no such little person; only some very tiny electronics. And all of 
this is powered by about I / 1000 of the electrical energy required to light a flashlight. 
We shall examine how square roots are found in calculators, but first we shall review 
two square root algorithms, the long division method some of us learned in high school 
and Newton's divide and average method which is taught in many calculus classes. 

First we calculate VI8468.8I by the long division method. We group the digits 
by twos in both directions from the decimal point, obtaining VI 84 68.81. Now find 
the largest square number that does not exceed the number formed by the leftmost 
group (or two groups). Here we have I32 = I69 < I84 < I96 = I42

. We write the I3 
in the quotient space above the I84 and subtract the I69 below thus: 

I 3 
vi 84 68.8I 

I69 
I5 

We have found that I30 < VI8468.8I < I40. 
Letting n = I8468.8I and a = I30, we seek b such that (a+ b)2 = n. The division 

process so far indicates that 

n - a 2 = (a+ b)2
- a2 = 2ab + b2 = I568.81. 

So we now seek a suitable value for b. We find just one digit at a time, so we take b 
to be just a single digit filling the next decimal place. Thus we look for the largest 
digit b such that (I30 + b) 2 :::; I8468, that is, we find b such that 

2ab + b2 = b(2a +b) :::; I568. 

Because b is relatively small compared to a = I30, we solve the simpler inequality 

b(2a + 0) = 2ab :::; I568 , 

which should introduce very little error. To that end, bring down the next group 68 
of two digits, double the divisor I3 (which is actually I30) and write the resulting 26, 
leaving space for the missing digit zero (in the 260) as a trial divisor for the I568, as 
shown in the display below: 

"University of Maine 

I 3 
vi 84 68.8I 

169 
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Now 260 will go into 1568 (or 26 into 156) six times, so we try b = 6. Write the 6 
in the quotient over the 68, beside the 26 and directly below to use as a multiplier. 
Thus we arrive at (2a + b) x b. We obtain: 

1 3 6 
y'184 68.81 

169 

Now 266 x 6 = 1596, which is too large, as happens occasionally because of our trial 
divisor (260) was smaller than the actual final divisor (266). T hus we must reduce 
our guess for b from 6 to 5. So replace the three sixes with fives multiply the 265 by 
the 5, and subtract to get: 

We now know that 

1 3 5 
y'1 84 68.81 

169 

265115 68 
5 13 25 

243 

1352 < 18468.81 < 1362
' 

so we take a = 135 and search for b as a digit in the tenths place, repeating the 
process again. We wrote the 265 and 5 in convenient places for multiplying, but their 
locations are perfect also for adding to obtain the new value of 2a. Then bring down 
the next group of two digits, thus: 

1 3 5. 
v' 1 84 68.81 

169 

265115 68 
5 13 25 

27091 2 43 81 

Now 270 divides 2438 nine times, so we try b = 9, and the process terminates, as we 
see below: 

1 3 5. 9 
v'1 84 68.81 

169 

265115 68 
5 13 25 

27091 2 43 81 
9 2 43 81 

0 

We have found that \1'18468.81 = 135.9 by the long division method, a technique that 
seems quite long and arduous. The interested reader might develop the corresponding 
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algorithm for finding cube roots using the formula 

(a + b) 3 = a3 + 3a2b + 3ab2 + b3
. 

Newton's divide-and-average method uses the simple idea that since 2 x 3 6, 
then the square root of 6 must lie between 2 and 3 and the best linear approximation 
to /6 is the arithmetic average of 2 and 3, that is, 2.5. Since (2.5)2 = 6.25 and not 
exactly 6, we divide 6 by 2.5 to find that 2.5 x 2.4 = 6. The average of 2.5 and 2.4 
is 2.45. Then (2.45) 2 - 6.0025. Now divide 6 by 2.45 and average the quotient and 
divisor to get our next approximation 

6/ 2.45 + 2.45 = 2.448797592 + 2.45 = 2 4494879 
2 2 . 6' 

and (2.449489796)2 = 6.000000261. We have obtained a very good approximation to 
/6 in just four applications of Newton's method. We write /6 - 2.449490, correct to 
seven decimal digits, since the square of 2. 449490 equals 6.000000. Similarly, 2.45 is 
correct to three decimal digits because its square is 6.00. It is true in general that the 
number of digits of accuracy approximately doubles with each application of Newton's 
method. 

To summarize Newton's method, starting with a first approximation r- 1 for .jn, 
we calculate the second approximation r-2 by the formula 

njr·1 + r·1 
7"2 = 2 ' 

and 1"2 will have twice the accuracy of 1·1 . Here we have a simple formula that is easily 
applied and quickly gives a high degree of accuracy. It seems reasonable to concludP 
that, if one needed to calculate by hand a square root to say ten-place accuracy, 
Newton's method would be the easier of the two techniques to use. But mac-hines are 
not people. 

Newton's method requires several divisions, and a multiplication or a division 
requires about 100 times as much computing time in a calculator as an addition or a 
subtraction uses, so designers of calculators try to eliminate as many multiplications 
and divisions as possible. In an attempt to learn how calculators find square roots, 
some years ago I wrote to three well-known calculator manufacturers. One did not 
reply. Another did reply but warned me that I was asking for an industrial secret 
and therefore they could not divulge their secret formula. The third manufacturer, 
Hewlett-Packard, replied that they had recently published an article [4] on that very 
topic and they sent me a copy of it. The following is the essence of that article. 

Curiously, it is the old, long division method that turns out to be simpler for a 
calculator and is built into its chip. We illustrate the technique by finding \1'54756. 
We first write 54756 in sc-ientific notation, but with an even exponent, as 5.4756 x 104 . 

We examine only the mantissa 5.4756, which of course lies between 1 and 100. First, 
subtract squares of successive integers from the mantissa until a negative diffprenc-e 
appears, and then restore the immediately preceding value. Thus we have 

5.4 756 - 12 = 4.4 756, 

5.4756 - 22 = 1.4756, 

5.4756 - 32 = - 3.5244. 

So 2 is the first digit of the square root and we restate the next to the last equation 

5.4756 - 22 = 1.4756. 
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To avoid multiplication in calculating these squares, recall that 

n 2 = 1 + 3 + 5 + .. · + (2n - 1). 

Then only additions and subtractions need to be performed if we subtract successive 
terms of the series for n 2 . Thus the calculations become 

5.4756 1 = 4.4756 , 

4.4756 - 3 = 1.4756, 

1.4756 - 5 = - 3.5244. 

The differences thus calculated are identical to those found earlier. Using the last 
positive difference, shift the decimal point one group of two places to the right, so the 
partial root 2 becomes 20 and the remainder is 147.56. As in finding the squares, we 
utilize another series, specifically 

(2a + b)b = (2a + 1) + (2a + 3) (2a + 5) + .. · + (2a + [2b - 1]), 

so we subtract successive terms of this series from the remainder until we reach a 
negative difference, obtaining 

147.56 41 = 106.56, 

107.56 - 43 = 63.56, 

63.56 - 45 = 18.56, 

18.56 - 47 = - 28.44. 

The third subtraction is the last one with a nonnegative remainder, so the next digit 
in the root is 3 and the new remainder is 18.56. Again shift the decimal point two 
places to the right in the remainder and one place in the root, obtaining a remainder 
of 1856 and root 230. We repeat the algorithm to find that 

1856 - 461 = 1395, 

1395 - 463 = 932, 

932 - 465 = 467, 

467 - 467 = 0, 

0 - 479 = - 469. 

Hence the third and last digit is 4, and the required square root is 2.34 x 102 = 234. 
Of course, the exponent 2 is just half the even exponent 4 obtained by writing the 
given number in scientific notation. 

One delightfully clever modification simplifies the procedure greatly: multiply 
everything by 5. The two series become 

5n2 = 5 + 15 + 25 + .. ·+(!On 5) 

and 

5(2a + b)b = (lOa + 5) +( lOa+ 15) +(lOa+ 25) · · · + (lOa + [lOb - 5]). 

Now the modified algorithm starts with 5 x 5.4756 = 27.3780, and we have 

27.3780- 5 = 22.3780, 

22.3780- 15 = 7.3780, 

7.3780- 25 = -17.6220. 

·' 
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The next to the last remainder is restored and the first digit in the root is the 2 
in the 25 just subtracted. For successive stages we shift the decimal point in the 
remainder two places to the right, and to get the required lOa + 5 for the next series 
of subtractions, we insert a zero before the terminal 5 in the last minuend 25, obtaining 
205. Then we calculate 

737.80 - 205 = 532.80, 

532.80 - 215 = 317.80, 

317.80 - 225 = 92.80, 

92.80 - 235 = - 142.20. 

The 23 from the last minuend gives the first two digits of the root, and the next to 
the last difference 92.80 becomes the new remainder. Another decimal point shift 
prepares us for the next iteration. We get 

9280 - 2305 = 6975, 

6975 - 2315 = 4660, 

4660 - 2325 = 2335, 

2335 - 2335 = 0, 

0 - 2345 = - 2345. 

Discard the terminal digit 5 from the last minuend to get the root 234. The remainder, 
if needed, is the next to the last difference 0. The decimal point is placed in the root 
as it was earlier. 

Hewlett-Packard calculators use this modification of the long division square root 
algorithm to calculate the mantissa, generally to two places more than necessary, 
and then round back to the number of places they can display. So, a process that 
at first glance seems more tedious and time-consuming is actually faster and easier 
for a machine. In this case, we require just one division (to divide the exponent by 
2), only one multiplication (to multiply the mantissa by 5) and then just additions, 
subtractions, and decimal point shifts, a fast, simple process for a calculator. 

It is highly likely that all makes of calculators use the modified long division 
algorithm for finding square roots. When calculators first appeared with a square root 
key, I performed an informal test on three calculators, one unit from each of three 
different brands. If the long division algorithm is used, then calculating v'99999999 = 
9999.99995 takes more time than does finding v'lOO.OOOOl = 10.0000005 since it 
requires 10 subtractions to find the digit 9 in a root, but only 1 subtraction to get 
a zero. Even then it required a quick eye to see the difference in time, but all three 
calculators did take less time for the latter root than for the former. Newton's method 
should consume the same length of time no matter what root is sought. 

Subsequent articles in the Hewlett-Packard Journal gave calculator algorithms 
for other functions, such as trigonometric and exponential. All such algorithms were 
carefully chosen to minimize multiplications and divisions, using clever techniques 
such as the multiplying by 5 that was done here. No, there is no little person sitting 
inside a chip, just some clever mathematicians and engineers and computer scientists 
who did some careful thinking nearly half a century ago. 
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1. Introduction and Definitions. The important role of spectral graph theory 
in current research is well explained in Fan Chung's recent book (2]. Of particular 
interest may be applications to modern communication networks. 

There are several matrices which encode a graph G; for instance the incidence ma­
trix, the adjacency matrix, or the Laplacian. Spectral graph theory is concerned with 
answering the question which graph theoretic properties of G can be reconstructed 
from the spectrum of a matrix associated with G. We illustrate this by considering the 
Laplacian matrix of G and drawing conclusions concerning the algebraic connectivity 
of the endline graph of G. 

We begin with a few definitions and some notation. We consider finite undirected 
graphs without loops or multiple edges. We let 

V(G) = {VI,···, vp} and E(G) be the set of vertices and set of edges of a graph, 
respectively. 

Let A = A( G) = (aij) be the adjacency matrix of G, so a ij = 1 if Vi and Vj are 
adjacent and aij = 0 otherwise. 

Let L(G) = D(G) - A( G) = D - A, where D = diag(di, · · ·, dp) and di = d(vi) 
is the degree of vertex vi, i = 1, · · · ,p. Following (4] we will refer to L(G) as the 
Laplacian matrix of the graph G. 

Let n 2: 2 and 0 = o:I :S 0:2 = a( G) :::; 0:3 :::; · · • :::; O:p be the eigenvalues of the 
matrix L( G). It is well known that the second smallest eigenvalue a( G) is zero if and 
only if G is not connected, {3]. This observation led M. Fiedler to think of a( G) as 
a quantitative measure of connectivity, (3]. Following him, we call a( G) the algebraic 
connectivity of the graph G. 

For example, let Pp and Cp be the circuit graph of order p, p 2: 2, and the 
path of order p, p 2: 3 respectively, see Figure 1, Then a( Pp) = 2 ( 1 - cos( 1r / p)) and 

VI V2 V3 Vp - I Vp V3 Vp - I Vp 

Pp ••---<~•--• -- - ------ --....--. ·---- --------==' 
FIG. 1. 

a(Cv) = 2(1 - cos(27r/ p)), see (3]. 
The edge-connectivity of the graph G is the minimal number of edges whose 

removal disconnects the graph G, and is denoted by ~~:I(G). The vertex-connectivity 
is defined analogously (vertices together with adjacent edges are removed) and is 
denoted by ~~:(G). Note that it is convenient to put ~~:(Kp) = p- 1, where Kp is the 
complete graph of order p, p 2: 1. It is well known, (3], that a( G) :::; II: I (G) for any 
graph G. 

Let G be a graph and V(G) = {VI,···, vp}· We add p new vertices, {ui, ···,up}, 
toG and p new edges, { ui, vi}, i = 1, · · ·, p. Note the Ui are different from any vertex 
of G and from each other. We obtain a new graph a+ with 2p vertices. Following (5], 
we call this graph the endline graph of the graph G. We also call an edge { ui, vi} 
an endline of G, see Figure 2. The endline graph of a graph is used, for example, to 

*Fuijishiro High School, Ibaraki, Japan 



76 NIHEI 

G 

FIG. 2. 

study the middle graph, see [5] or [6] for more details. 
Now, let us calculate the edge-connectivity and the vertex-connectivity of the 

endline graph of a connected graph. By the definition, we immediately see that 
liJ (G+) = li(G+) -= 1 for any connected graph G. On the other hand, we easily 
see that a(G ) is not always the same value for any connected graph G. Therefore, 
it may be worth while studying the algebraic connectivity of the endline graph of a 
connected graph. 

The purpose of this paper is to give the algebraic connectivity of the endline graph 
of a graph. 

TPrminology not defined here follows that in [1). 

2. Results. Let us denote the identity matrix of order p by I 11 and the deter­
minant of a square matrix A by detA. The characteristic polynomial of L( G) will be 
denoted by <J>(L(G); ..\). Then we have the following result: 

THEOREM 1. Let G be a graph of order p. Then 

<I>(L(G+ ); ..\) = ( ..\ - 1)P <J> (L(G ); ..\ - 1 - 1/ (..\ - 1)). 

Proof. By the definition of the endlinc graph of a graph G, without loss of 
generality we may write 

[ 
0 Ip l [ Ip A(G+) = and D(G ) -
~ A(G) 0 

where 0 is the zero matrix of order p. Hence 

D 

<I>(L(G+); ..\) = det(..\hp - (D(G ) - A(G ))) -I (..\ _ 1)Ip Ip I 
- Ip (..\ - I)I11 - (D(G) - A(G)) 

= det((..\ - 1)Ip) det((..\ - 1)Ip - L(G) - Ip((..\ - 1)I11 ) 
1 I11 ) 

= det((..\ - 1)Ip) det((..\ - 1)Ip - L(G) - (1 / (..\ 1))Ip) 

= (..\ - 1)11 det((..\ - 1 - 1/ (..\ - 1))Ip - L(G)) 

= (..\ - 1)P<J>(L(G); ..\ - 1 - 1/ (..\ - 1)). 

From Theorem 1, we immediately obtain the following result: 

·' 
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COROLLARY 2. Let G be a graph of order p and let us denote a( G) by a. Th n 

a(G+) = (a + 2 J a 2 + 4) / 2. 

Pr·oof. Let n ~ 2 and 0 = a 1 < a2 = a( G) :::; a 3 :::; · · · :::; ap be the eigenvalues of 
the matrix L(G). Then , by Theorem 1, we have 

p 

<I> (L(G +); ..\) = (..\ - 1)P IT(..\ 1 - 1/ (..\ - 1) - a;). 
i = l 

Therefore, in order to get the eigenvalues of the matrix L(G+), we may solve t lw 
following equations: 

(1 ) x - 1 - 1/(x - 1) - ai, (i = 1, · · · ,p) 

Let f3i and (3,+11 , f3i < !3i+P• be the solutions of Equation 1. Then, since the 
function f (x) = x - 1- 1/(x - 1) is a monotone increasing func-tion on the open interval 
(- oo , 1) U(1, oo), we can easily check that if ai :::; aj, then f3i < 1 < (31+p :::; f3J+v• see 
Figure 3. 

FIG. 3. 

Therefore, to get a (G+), we may solve the following equation: 

x - 1 - 1/ (x - 1) = a, a ~ 0. 

Solving this equation, we obtain 

x = (a + 2 ± Ja2 + 4) / 2. 

Since a(G ) is the second smallest eigenvalue and 0 is an eigenvalue of L(G+), we 
obtain the desired result. D 

COROLLARY 3. If a graph G is connected then 
(1} 0 < a(G+) < 1 
(2} a(G+) < a(G) 
{3} If a( H) :::; a( G), then a(H+):::; a(G+). 
Pmof. Since (1) is clear, we need only prove (2) and (3). 
We first prove (2). To prove (2), we need show that 

a( G) - a(G+) = (a - 2 + J a2 + 4)/2 > 0. 
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By the way, the function g(x) = (x - 2 + v'x2 + 4) / 2 is a monotone increasing 
function when x ~ 0 and g(O) = 0. This implies that a(G+) < a( G). 

Next, noting that h(x) = (x + 2 - v'x2 + 4) / 2 is a monotone increasing function 
when x ~ 0 and h(O) = 0, we easily see that (3) holds. 0 

Let I<p be the complete graph of order p ~ 2. Then, since a(I<p) = p, see [3], we 
have the following formulas: 

COROLLARY 4. Let Cp = 2(1 - cos(27r/p), then 

(1) a(I<;;) = (p + 2 - ..jp2 + 4) / 2, for p ~ 2, and 

(2) a(c;n = (cp + 2 - Jc~ + 4) / 2, for p ~ 3. 

For example, a(I<t ) = (7 - J29)/2, see Figure 2, and a(Cri") = (3 - ¥'5) / 2, see 
Figure 4. 

c+ 
6 

FIG. 4. 

Since the function a( G) is nondecreasing for graphs with the same set of vertices 
(i.e., a(H) :::; a( G) if E (H ) <;;; E(G ) and V(H ) = V( E ), see [3], by Corollary 2 we also 
have the following: 

COROLLARY 5. Let G be a Hamiltonian graph of order p ~ 3 and let Cp = 
2(1 - cos(27r/ p), then 

(cp + 2 - Jc~ + 4) / 2 S a(G+) :::; (p + 2 - ..jp2 + 4) / 2. 

Let G be a graph and V(G) = {v1,···,vp}. We add knew vertices, ui, and k 
edges, { ui, vi}, to G, 0 < k < p, where the ui are different from any vertex of G and 
from each other. Then we obtain a new graph Gk with p + k vertices. We call this 
graph a partial endline graph of a graph G, see Figure 5. 

FIG. 5. 

Note that the partial endline graph of a graph G depends on the labelling of the 
vertices of G. 

For example, let G ~ P3. Then, according to the labelling of the vertices, Gt ~ P4 

or 1<1,3, see Figure 6, where the symbol G ~ H means the two graphs are isomorphic, 
and I<1,r denotes the star graph of order (r + 1). 

Now, let us consider the algebraic connectivity of the partial endline graph of a 
graph. In order to simplify the argument, from now on we suppose that G is labelled. 
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Vt vz V3 vz '!!] V ;j 

G • • • • • • 
a + 

1 I • • • I • 

FIG. 6. 

VI 7 :3 V2 

G: 

FIG. 7. 

For example, let G be the labelled graph shown in Figure 7. Then Gi ~ P 1 and 
Gi (;;: Ps. Hence we have a(Gi) = 2 - ..j2 and a (G2 ) = 2(1 - cos(7r/ 5)) . T his implies 
that a(Gt) < a(Gi) . In gen<>ral, the following result holds. 

THEOREM 6. Let G be a graph of order p and k be a positiv intPge1·, 1 < k < p. 
Then 

In oder to prove Theorem 2, we need the following lemma, which is well known 
as the interlacing theorem (see [3, p.19]) . 

LEMMA 7. Let A be a real symmetric matrix with eigFnvalues .X 1 :::; .X2 :::; · · · < Ap, 
and B be one of its pri:n.cipal submatrices; Let B have eigenvalues Jlt :::; Jlz :::; ... :::; /lq. 
Then the inequalities Ai :::; Jli :::; Ap- q+i , for i = 1, · · · , q, hold. 

Proof. From the definition of the partial endline graph of G, without of gPnerality 
we may write 

0 

- 1 

0 
00··· - 1··· 0 1 

with one - 1 occurring the k'th row and the other in the k'th column. 
This shows that L(Gk _1 ) is a principal submatrix of L(Gt). Hence, from the 

above Lemma, we have the desired result. 0 
Theorem 2 shows that the algebraic connectivity of the partial endline graph of 

a graph decreasps with th number of endlines. 
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Masakuzu Nihei teaches High School in lbaraki, Japan. He is also active in graph 
theory research. 

The Richard V. Andree Awards. The Richard V. Andree A wards are given 
annually to the authors of the three papers, written by undergraduate students, that 
have been judged by the officers and councilors of Pi Mu Epsilon to be the best that 
have appeared in the Pi Mu Epsilon Journal in the past year. 

Until his death in 1987, Richard V. Andree was Professor Emeritus of Mathemat­
ics at the University of Oklahoma. He had served Pi Mu Epsilon for many years and 
in a variety of capacit ies: as President, as Secretary-Treasurer, and as Editor of this 
Journal. 

The awards for papers appearing in 1999 are announced on the next page. The 
officers and councilors of the Society congratulate the winners on their achievements 
and wish them well for their futures. 
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ANDREE AWARDS 

The Richard V. Andree Awards 

First Prize: Xialong Ron Yu, 
"Curious Numbers", 
Pi Mu Epsilon Journal, Vol. 10, No. 10, Spring 1999. 

Second Prize: Jack Samuel Calcut III, 
"Single Rational Arctangent Identities for Pi", 
Pi Mu Epsilon Journal, Vol. 11, No. 1, Fall 1999. 

Third Prize: Gina Garza and Natascha Shinkel, 
"Which Graphs have Planar Shadow Graphs?", 
Pi Mu Epsilon Journal, Vol. 11, No. 1, Fall 1999. 
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A LETTER FROM THE PRESIDENT 

Dear Members and Friends: 
As you have undoubtedly noticed, the Pi Mu Epsilon Journal got a jump on the 

new millennium this past fall by changing to a completely new format. We have been 
most gratified by the positive comments on this new Journal, which is work of the 
Brigitte Servatius, the new Pi Mu Epsilon Journal Editor. The Journal maintains 
the traditional features but conforms more closely to the style and layout of other 
professional mathematical publications. We hope this new format will encourage more 
students to submit articles to the Journal. This can be a great first step to a career 
in mathematics and help to develop the communication skills that are important to 
success in so many areas. 

There are a number of other areas that Pi Mu Epsilon is developing to try to 
make the organization more responsive to the need of the membership. Our web site 
at 

http:/ jwww.pme-math.org/ 
figures prominently in many of these, and we want to make this the primary vehicle 
for communication for the organization. 

I am regularly asked for ideas that will help ensure a vibrant Chapter. I can 
speak from my limited experience based on some of the successful Chapters that I am 
familiar with, bnt things that work well at one institution and for one group of people 
may not be at all useful at others. Also, I have found over the years that students 
tend to have much better ideas about interesting activities than I have and that they 
more actively engage in activities that they have developed. 

Beginning this Spring, the Pi Mu Epsilon web site we have a prominent area for 
Chapter News, which we hope will make liS all better aware of some of the sHccessful 
activities of our Chapters. Advisors and Permanent Faculty Correspondents will be 
asked to have their Chapter Officers submit a brief (or not so brief) report on Chapter 
activities at least once each year using a simple form that is located at the web site. 
Chapters can also use the report provide a link to a local Pi Mu Epsilon web site. If 
you have other suggestions for ways in which we can make the web site, or any other 
activity of Pi Mu Epsilon, more useful, please let me or one of the other National 
Officers know. All of our addresses are listed on the web site. 

I would also like to take this opportunity to strongly encourage you to attend 
the Annual National Meeting of Pi Mu Epsilon this summer. The National Meeting 
is part of the MathFest at the University of California in Los Angeles, and will be 
held from August 3 to August 5. Keep in mind that Pi Mu Epsilon will support full 
transportation expenses for a Student Delegate from each Chapter who gives a talk 
at the meeting, and half transportation expenses for a Student Delegate who does 
not present a talk. In addition, we expect to be able to support a portion of the 
subsistence expenses of Student Delegates who give talks, due to a generous grant 
from the National Security Agency. More information about the details of funding 
will soon be sent to each Faculty Advisor, as well as being available at the Pi Mu 
Epsilon web site. I have found that students attending the MathFest often come back 
with a much clearer view of the mathematics community and their place in it. 

Doug Faires 

llME Journal, Vol. 11, No. 2, pp 83- 85, 2000. 83 

RODICA SIMION 
JANUARY 18, 1955 - JANUARY 7, 2000• 

RICHARD P. STANLEYl 

The mathematical world lost one of its most enthusiastic and dedicated adherents 
with the tragic death of Rodica Simion on January 7, 2000. Rodica received her B.S. 
degree from the University of Bucharest in 1974. She came to the U.S. from Romania 
in 1976 and obtained her Ph.D. at the University of Pennsylvania in 1981 under the 
direction of Herbert Wilf. Her thesis was entitled "On Compositions of Multisets" 
and included a very influential result1 which asserted that certain combinatorially 
defined polynomials have only real zeros. She taught at Southern Illinois University 
and Bryn Mawr College before coming to George Washington University (GWU) in 
1987. She moved up the career ladder at GWU, culminating in an appointment to 
Professor in 1997. Just last year she wa.'i awarded a prestigious Columbian School 
Professorship at GWU in recognition for her many contributions to mathematics. 

Rodica had a passionate love for mathematics and labored completely selflessly 
to develop and promote all aspects of the subject, from original research to making 
deep mathematical results accessible to the general public. Her research remained 
in the area of combinatorics, where she made many outstanding contributions. As 
an example of Rodica's research, we mention one pretty re.sult2 which requires little 
mathematical background to understand. Let An be the set of all permutations 
a 1a 2 ···an of 1, 2, ... , n with no decreasing subsequence of length 3, i.e., there do not 
exist i < j < k such that ai > aj > ak. For instance, 

A3 = {123, 132,213,231, 312}, 

the only excluded permutation being 321. Similarly let Bn be the set of all pernm­
tations a1a2 ···an of 1, 2, ... , n such that there do not exist i < j < k satisfying 
a; > ak > ai. For instance, 

Bn = {123, 132, 213,231, 321 }, 

this time the only excluded permutation being 312. It had been known that An and 
Bn had the same number of elements, namely, 

IAni = IBnl=- · 1 (2n) 
n+ 1 n 

(This number is a Catalan number, but this fact is not relevant here.) Rodica (to­
gether with her long-time collaborator Frank Schmidt) "explained" this seeming co­
incidence by exhibiting an elegant one-to-one correspondence (bijection) between A,. 
and Bn. This bijection of Rodica's was just one of many results in the seminal paper 
in which it appeared. It was the first paper to systematically investigate the theory 
of "permutations with forbidden patterns," currently a highly active area of research. 

*Partially supported by NSF grant DMS-9500714. I am grateful to Joseph Bonin for providing a 
wealth of useful information. 

t Massachusetts Institute of Technology 
1See her paper "A multiindexed Sturm sequence of polynomials and unimodality of certain 

combinatorial sequences," J. Combinatorial Theory (A) 36 (1984), 15- 22. 
2See Proposition 19 of "Restricted partitions," Europ. J. Combinatorics 6 (1985), 383- 406. 
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A topic which fasciuated Rodica (as well as many other mathematicians, including 
myself) throughout her career was the theory of noncrossing partitions. A partit·ion 
of a set S is a collertion of nonempty pairwise disjoint subsets of S whose union is 
S. For instance, one of the partitions of the set {1, 2, . . . , 9} consists of the subsets 
{1, 2, 4, 6} , {3} , {5}, {7, 9}, and {8}. We can represent this partition geometrically 
by arranging the elements 1, 2, ... 9 clockwise around a circle, and drawing polygons 
whos vertices are the subsets of S defining the partition: 

9 

8• II 2 

7 •3 

I 

6 

5 

If the polygons do not intersect , as is the case here, then we call th partition noncmss­
ing. Noncrossing partitions have a multitude of beautiful properties and unexpected 
applications. The most basic result is that the number of noncrossing partit ions of 
the set {1, 2, . .. , n} is the Catalan number 71 ~ 1 (~;'). As an example of the wide appli­
cability of noncrossing partitions, they play a fundamental role in the theory of "free 
probability" developed by Dan-Virgil Voiculescu and his students. Rodica wrote sev­
eral fundamental papers on noncrossing partitions and was perhaps the world 's leading 
authority on this topic . She was in the process of writing another paper involving 
noncrossing partitions at the time of her death. 

I wrote one joint paper with Rodica alone3 . T he basic idea for this paper was 
Rodica's . We were both visiting 1\ISRI (the Mathematiral Sciences Research Institute 
in Berkeley, California) in the fall of 1996 when she walked into my office one day with 
the question "Did you know that the poset of shuffles is locally rank-symmetric?" I 
had earlier developed a general theory of certain creatures known as "locally rank­
symmetric posets," but few examples were known. Rodica and I spent many stim­
ulating weeks applying the theory of locally rank-symmetric posets to the poset of 
shuffles. 

Altogether Rodica published well over 30 papers. Most of these were original 
research papers, but a few were expository and ex mplify Rodica's strong desire to 
reveal the beauty of mathematics to as wide an audience as possible. One paper 
that does not appear in her list of publications but deserves to be a joint paper with 
me is her write-up4 of my lecture series given at the Capital City Conference on 
Combinatorics, held at GWU in 1989. With characteristic modesty Rodica refused 
to receive any credit for the arduous job of converting my lectures to a survey paper. 

The Capital City Conference was actually organized entirely by Rodica and was 
but one of many events which she helped to arrange. For instance, she was a member 
of the organizing committee for the Combinatorial Year at MSRI during the 1996 97 
academic year. She was a long-standing member of the Permanent Committee for 

3Flag-symmetry of the poset of shuffles and a local action of the symmetric group, Disc'T' t Math. 
204 (1999), 369-396. 

4 Some applications of algebra to combinatorics, Discrete Applied Math . 34 (1991), 241 - 277. 
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the Formal Power Series and Algebraic Combinatorics (FPSAC) conference held earh 
summer in different cities throughout the world. Most recently, she and I were the 
co-organizers of a Special Session in Memory of Gian-Carlo Rota held January 20 22, 
2000, at the annual meeting of the American Mathematical Society in Washington, 
DC. Gian-Carlo Rota, who died in April of 1999, was perhaps the most influential 
combinatorialist of his time and was greatly admired by Rodica. It is especially tragic 
that Rodica passed away less than two weeks before the start of this Special Session. 
The time scheduled for her own talk was devoted to a series of touching remembrances 
before an overflow audience. 

The research, expository, and organizational activities I have mentioned, together 
with normal teaching and administrative duties at GWU, would have been full-time 
work for an ordinary person, but Rodica actually accomplished much more. For 
instance, around 1990 Rodica became concerned that there wasn't a solid mathematics 
exhibit anywhere on the east coast. With the help of three of her colleagues and a 
Master's student in museum studies at GWU she organized an exhibit at GWU, 
supplying about 25o/t of the ideas for the content herself, as well as contributing 
tremendous organizational and fund-raising skills. Meanwhile the Maryland Science 
Museum in Baltimore had contacted the National Science Foundation about building 
a mathematics exhibit. To make a long story short, the 6,000 sq ft exhibit Beyond 
Numbers opened at the Maryland Science Museum in 1995, with Rodica putting in 
the majority of the work. Topics include graph theory, topology (including knot 
theory), tilings, chaos, minimal surfaces, and much more. The exhibit is still open 
at the Maryland Science Museum, and a copy is traveling to science museums across 
the United States5 . The museum estimates that by the end of 2000 over four million 
people will have seen the exhibit. 

A second program in which Rodica played a major role is the Summer Program 
for Women in Mathematics, held each summer at GWU for sixteen talented under­
graduate women. Rodica was the person most responsible for obtaining funding and 
for designing the program, which began in 1995. One innovation due to Rodica was 
basing the program on four short courses in different areas of mathematics that are 
not typically covered in the undergraduate curriculum. The success of the program 
is confirmed by the many of its participants who go on to graduate school and who 
return to the program as counselors. 

Rodica had a consistently upbeat, cheerful, and caring personality. She was the 
kind of person who could light up a room as soon as she entered. She never had a 
harsh word for anyone and worked tirelessly to counsel any person in need of advice or 
guidance. She was exceptionally modest about her own accomplishments and would 
artfully deflect any praise directed toward her. She will be dearly mi::~sed by her 
countless friends throughout the world. 

Richard P. Stanley, MIT, Cambridge MA, 02139-4307. rst.an@math.mit.edu 

Richard P. Stanley is professor of mathematics at Massachusetts Institute of Tech­
nology. A summary of his work can be found in his two volume opus "Enumerative 
Combinatorics". Volume I appeared in 1986 and volume II in 1999. 

5 See www.mdsci.org for a schedule. 
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@ Rodica Simian, 1999. 

The late Rodica Simion, Professor of Mathematics at George Washington Uni­
versity, painted this picture to congratulate Richard Stanley on the publication of 
his new book "Enumerative Combinatorics". Some of the design elements are typical 
objects in combinatorial geometry: a Ferris diagram, a Young lattice, and a polytope 
with its face poset. She has placed these objects among a colorful array of blooming 
flowers which delightfully spill over the margin, an effect that could not be reproduced 
here. It reminded me of a beautiful sentence in Eduard Morike's novel "Mozart auf 
der Reise nach Prag" which, foreshadowing Mozart's early death, speculates that the 
earth was, in reality, not able to bear the abundance spilling from his being. Rodica 
and Mozart have more than a short life in common. 

The IIME Journal invites those of you who paint, draw, compose, or otherwise use the other 

side of your brains to submit your mathematically inspired compositions. 
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TAXICAB ANGLES AND TRIGONOMETRY 

KEVIN THOMPSON AND TEVIAN DRAY * 

Abstract. A natural analogue to angles and trigonometry is developed in taxicab geometry. 
This structure is then analyzed to see which, if any, congruent triangle relations hold. A nice 
application involving the use of parallax to determine the exact (taxicab) distance to an object is 
also discussed. 

1. Introduction. Taxicab geometry, as its name might imply, is essentially the 
study of an ideal city with all roads running horizontal or vertical. The roads must 
be used to get from point A to point B; thus, the normal Euclidean distance function 
in the plane needs to be modified. The shortest distance from the origin to the point 
(1,1) is now 2 rather than J2. So, taxicab geometry is the study of the geometry 
consisting of Euclidean points, lines, and angles in ~ 2 with the taxicab metric 

A nice discussion of taxicab geometry was given by Krause [1, 2], and some of its 
properties have been discussed elsewhere, including taxicab conic sections [3, 4, 5, 6], 
and the taxicab isometry group (7]. 

In this paper we will explore a slightly modified version of taxicab geometry. 
Instead of using Euclidean angles measured in radians, we will mirror the usual def­
ini tion of the radian to obtain a taxicab radian (a t-radian). (A similar approach 
was used by Euler [8] to discuss the value of 1r for a class of generalized circles which 
includes the taxicab circle.) Using this definition, we will define taxicab trigonometric 
functions and explore the structure of the addition formulas from trigonometry. As 
applications of this new type of angle measurement, we will explore the existence of 
congruent triangle relations and illustrate how to determine the distance to a nearby 
object by performing a parallax measurement. 

Henceforth, the label taxicab geometry will be used for this modified taxicab 
geometry; a subscript e will be attached to any Euclidean function or quantity. 

2. Taxicab Angles. There are at least two common ways of defining angle mea­
surement: in terms of an inner product and in terms of the unit circle. For Euclidean 
space, these definitions agree. However, the taxicab metric is not an inner product 
since the natural norm derived from the metric does not satisfy the parallelogram law. 
Thus, we will define angle measurement on the unit taxicab circle which is shown in 
Figure 1. 

DEFINITION 1. At-radian is an angle whose vertex is the center of a unit {taxicab) 
circle and intercepts an arc of (taxicab) length 1. The taxicab measure of a taxicab 
angle (} is the number of t-radians subtended by the angle on the unit taxicab circle 
about the vertex. 

It follows immediately that a taxicab unit circle has 8 t-radians since the taxicab 
unit circle has a circumference of 8. For reference purposes the Euclidean angles 7r /4, 
1r /2, and 1r in standard position now have measure 1, 2, and 4, respectively. The 
following theorem gives the formula for determining the taxicab measures of some 
other Euclidean angles. 

*Department of Mathematics, Oregon State University. 
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y 

-1 

FIG. 1. The tc=cab uni t circl . 

THEOREM 2. An acute Euclidean angle ¢, in standard position has a ta:ricab 
measure of 

2 2sine cf>e 
() = 2 - ---- = -:-----:-----'---:-

1 + tane c/Je sine c/J._ + COSc c/Jc 

Proof The t axicab measure () of the Euclidean angle cf>e is equal to the taxicab 
distance from (1,0) to the intersection of the lines y = - x + 1 andy = x tan, cf>e· The 
x-coonlinate of this intersection is 

1 
xo = , 

1 +tan, ¢ , 

and thus the y-coordinate of P is y0 = - x 0 + 1. Hence, the taxicab distance from 
(1,0) toP is 

() = 1 - xo + Yo - 2 
2 

1 + tane cf>e • 

0 
DEFINITION 3. The reference angle of an angle ¢ is the smallest angle between ¢ 

and the x-axis. 
Theorem 2 can easily be extended to any acute angle lying ent irely in a quadrant . 
COROLLARY 4. If an acute Euclidean angle cf>c with Euclidean ref erence angle ·1/Je 

is contained entirely in a quadrant, then the angle has a ta:ricab measure> of 

() = 2 
1 + tane '1/Je 

2 

1 + tane(cf>e + '1/Je ) 
2sinc c/Je 

(cos, (¢e + '1/Je ) + sin,.(¢c + '1/Je) )(cose '1/Je + sine 1/J,.) 

This corollary implies the taxicab measure of a Euclidean angle in non-standard 
position is not necessarily equal to the taxicab measure of the same Euclidean angle 
in standard position. Thus, although angles are translation invariant, they are not 
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rotation invariant. This is an important consideration when dealing with any triangles 
in taxicab geometry. 

In Euclidean geometry, a device such as a cross staff or sextant can be used 
to measure the angular separation between two objects. The characteristics of a 
similar device to measure taxicab angles would be very strange to inhabitants of 
a Euclidean geometry; measuring the taxicab size of the same Euclidean angle in 
different directions would usually yield different results. Thus, to a Euclidean observer 
the taxicab angle measuring device must fundamentally change as it is pointed in 
different directions. Of course this is very odd to us since our own angle measuring 
devices do not appear to change as we point them in different directions. 

The taxicab measure of other Euclidean angles can also be found. Except for a 
few cases, these formulas will be more complicated since angles lying in two or more 
quadrants encompass corners of the unit circle. 

LEMMA 5. The taxicab measure of any Euclidean right angle is 2 t-radians. 
Proof Without loss of generality, let () be an angle encompassing the positive y­

axis. As shown in Figure 2, split () into two Euclidean angles Ge and {3 with reference 
angles 1r / 2 - Ge and 1r / 2 - f3e , respectively. Using Theorem 2, we see that 

() = 2 sine Ge 2 Sine f3e 
COSe Ge + Sine Ge + COSc f3e + Sine f3e 

2 Sine Ge 2 COSe Ge 
. +. 

COSe Ge + Slne Ge Sme Ge + COSe Ge 
= 2 

since Ge + f3e = 1r / 2. 0 
We now state the taxicab version of the familiar result for the length of an arc 

from Euclidean geometry and note that its proof is obvious since all distances along 
a taxicab circle are scaled equally as the radius is changed. T his result will be used 
when we turn to congruent triangle relations and the concept of parallax. 

y 

FIG. 2. Taxicab right angles are precisely Euclidean right angles. 

THEOREM 6. The lengths of the arc intercepted on a (taxicab) circle of radius r 
by the central angle with taxicab measure () is given by s = r(). 

From the previous theorem we can easily deduce the following result. 
COROLLARY 7. Every taxicab circle has 8 t-radians. 
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3. Taxicab Trigonometry. We now turn to the definition of the trigonometric 
functions sine and cosine in taxicab geometry. From these definitions familiar formulas 
for the tangent, secant, cosecant, and cotangent functions can be defined and results 
similar to those below can be obtained. 

DEFINITION 8. The point of intersection of the terminal side of a taxicab angle 
() in standard position with the taxicab unit circle is the point (COSt () , sint 0). 

It is important to note that the taxicab sine and cosine values of a taxicab angle 
do not agree with the Euclidean sine and cosine values of the corresponding Euclidean 
angle. For example, the angle 1 t-radian has equal taxicab sine and cosine values of 
0.5. The range of the cosine and sine functions remains [- 1, 1], but the period of 
these fundamental functions is now 8. It also follows immediately (from the distance 
function) that I sint 01 + I cost 01 = 1. In addition, the values of cosine and sine vary 
(piecewise) linearly with 0: 

{ 
1 - !() 0 < () < 4 

COSt() = - 3 2 !lJ 4 < () < 8 
2 , - { 

!O , 0 ::; () < 2 
sint () = 2 - ~() , 2 ::; () < 6 

- 4 + ~() , 6 ::; () < 8 

Table 3.1 gives useful straightforward relations readily derived from the graphs 
of the sine and cosine functions which are shown in Figure 3. The structure of the 
graphs of these functions is similar to that of the Euclidean graphs of sine and cosine. 
Note that the smooth transition from increasing to decreasing at the extrema has 
been replaced with a corner. This is the same effect seen when comparing Euclidean 
circles with taxicab circles. 

FIG. 3. Grophs of the taxicab sine and cosine functions. 

sint ( - {}) = - sint () sint(() + 2) = COSt() 
COSt ( - {}) = COSt () COSt(() - 2) = sint {) 

sint(O - 4) = - sint () sint(O + 8k) = sint (), k E 0:: 
COSt(() - 4) = - COSt() COSt(()+ 8k) = COSt(), k E 0:: 

TABLE 3 . 1 

Basic Taxicab Trigonometric Relations 

As discussed below, and just as in the standard taxicab geometry described in 
[2], SAS congruence for triangles does not hold in modified taxicab geometry. Thus, 
the routine proofs of sum and difference formulas are not so routine in this geometry. 
The first result we will prove is for the cosine of the sum of two angles. The formula 
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given for the cosine of the sum of two angles only takes on two forms; the form used 
in a given situation depends on the locations of a and fJ. The notation a E I will be 
used to indicate a is an angle in quadrant I and similarly for quadrants II, III, and 
IV. 

THEOREM 9. cost(a+fJ) = ±( -1+1 cost a±cost fJI) where the signs are chosen to 
be negative when a and fJ are on different sides of the x-axis and positive otherwise. 

Proof Without loss of generality, assume a, fJ E [0, 8), for if an angle() lies outside 
[0,8), 3k E 0:: such that (0 + 8k) E [0, 8) and use of the identity cost(()+ 8k) = cost() 
will yield the desired result upon use of the following proof. 

All of the subcases have a similar structure. We will prove the subcase a E I I, fJ E 
I I I. In this situation 6 ::; a+ f3 ::; 10 and we take the negative signs on the right-hand 
side of the equation. Thus, 

0 

1 1 
1 - I COSt Q - COSt f31 = 1 - 11 - -a - ( -3 + -(3)1 

2 2 
1 

= 1 - 14 - -(a+ f3)1 
2 

_ { - 3 +!(a+ (3), for 6::; a+ f3 < 8 
- 5 - ~ (a + (3), for 8 ::; a + f3 ::; 10 

= COSt( a+ (3) 

COROLLARY 10. COSt(2a) = - 1 + 21 COStal. 
The curious case structure in Theorem 9 is due to the odd combinations of quad­

rants that determine which sign to choose. The reason for the sign change when a 
and f3 are on different sides of the x-axis lies in the fact that a corner of the cosine 
function is being crossed (i.e. different pieces of the cosine function are being used) 
to obtain the values of the cosine of a and (3. Table 3.2 summarizes which form of 
cost(a + (3) should be used when. 

a f3 
same quadrant 

cost(a + (3) = -1 +I cost a+ cost f31 I II 
III IV 
I III 

COSt(a + (3) = 1 - I COSt a - COSt f31 
I IV 
II III 
II IV 

TABLE 3.2 
Forms of cost(a + {3) and Regions of Valid~ty 

We can use Theorem 9 and the relations in Table 3.1 to establish a pair of corol­
laries. 

COROLLARY 11. sint(a+f3) = ±( - 1 + l sinta±costf31) where the signs are 
chosen according to Table 3. 3. 

Proof First, note sint () = cost(() 2). As with the cosine addition formula, all 
cases are proved similarly. We will assume a E I and f3 E IV. We have a - 2 and f3 
in the same quadrant, and thus 

sint(a + (3) = cost((a + (3) - 2) 
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= COSt((a 2) + /3) 
= - 1 +I COSt(O 2) +COSt /31 
= -1 + I sint a + cost /31 

COROL~ARY 12. sint(2a) = 1 + 21 COSt(a - 1)1 
Proof Slllt(2a) = COSt(2a - 2) = COSt(2(a- 1)) = - 1 + 21 COSt(a _ 1)1 0 

Q /3 
I III 

sint (a + /3) = - 1 + I sint a + COSt /31 I IV 
II II 
IV IV 
I I 
I II 

sint(a + /3) = 1 - I sint a - cost /31 II III 
II IV 
III III 
III IV 

TAB LE 3.3 
Forms of shit (a + /3) and Regions of Validity 

(2,2) 

4 
2 (O.O)v(2.0) 

(1 ,-1) 

(0,0) 2 (2,0) 

FIG. 4. Thangles satisfying ASASA that are not congruent. 

. . 4. Congruent Triangles. In Euclidean geometry we have many familiar con­
ditions that ensure two triangles are congruent. Among them are SAS ASA d 
AAS. In m_odified taxicab geometry the only condition that ensures two t~iangl~s ::e 
congruen~ IS SASAS. O~e example eliminates almost all of the other conditions. 

Cons1der the two tna~gles shown in Figure 4. The triangle formed by the points 
(0,0): (2,0), and \2,2) has s1des of lengths 2, 2, and 4 and angles of measure 1, 1, and 2 
t-rad1ans. The tnangleformed by the points (0,0), (2,0), and (1,-1) has sides of length 
2 and angles of measure 1, ~,and 2. _These two triangles satisfy the ASASA condition 
but are not congruent. Th1s also ehminates the ASA SAS and AAS d 't· 

11 th ·b·1· c ' ' con 1 1ons as we e poss1 11ty •or a SSA or AAA condition. 
The triangle formed by the points (0,0), (0.5,1.5), and (1.5, 0.5) has sides of length 

2 and an~les 1, .1.5, and 1.5 t-radians. Thus, it satisfies the SSS condition with the 
second tnangle m the previous example. However, the angles of these triangles and 
not congruent. Hence, the SSS and SSSA conditions fail. 

f The last re~ain~ng condition, SASAS, actually does hold. Its proof relies on the 
act that even m this geometry the sum of the angles of a triangle is a constant 4 
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t-radians, which in turn relies on the fact that, given parallel lines and a transversal, 
altPrnate interior angles are congruent. We begin by noting that opposite angles are 
congruent. This leads immediately to the following rP.sult. 

LEMMA 13. Given two pamllel lines and a f.ransvcTsal, th altemat intF1'i01' 
angles are congruent. 

Proof. Using FigurP 5 translate a along the transversal to become an angle 
opposite {3. By the note above, a and /3 are congruent. 0 

FIG. 5. Alternate interior angles formed by parallel linP.s an d a transversal are congment. 

Q 

p 

FIG. 6. Th sum of the angles of a taxica/1 tr-iangle ts alway~· 4 t-radians. 

THEOREM 14. The surn of the angles of a tnangle in modified tcL.I:icab geom etry 
is 4 t-radians. 

Proof. Given the triangle in Figure 6, we can translate tll<' angle "( from Q to R 
and by the congruence of alternate interior angles conclude the sum of the angles of 
the triangle is 4 t-radians. 0 

Therefore, given two triangles having all three sides and any two angle..c; congruent , 
the triangles must be congruent. Howevt>r, as we have seen, this is tlw only congruent 
triangl(' relation in taxicab geometry. 

5. Parallax. Parallax, the apparent shift of an object due to the motion of 
the observer, is a commonly used method for estimating the distance to a nearby 
object. ThP method of stpllar parallax was used extensively to find the distances 
to nearby stars in the 19th and early 20th centuries. We now wish to explore the 
method aud rP.sults of parallax in taxicab geometry and examine how these differ 
from the Euclidean method and results. We will discover that the taxicab method 
yields the smne formula commonly used in the Euclidean case with the exception that 
the taxicab formula is exact . 
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(N) 
y 

Q' 

" ' 

y=-X 

FIG. 7. A parallax diagram in taxicab geometry. 

Suppose that as a citizen of Modified Taxicab-land you wish to find the distance 
to a nearby object Q in the first quadrant, and that there is also a distant reference 
object P "at infinity" essentially in the same direction as Q with reference angle () 
(Figure 7). The distant reference object should be far enough away so that it appears 
stationary when you move small distances. We may assume without loss of generality 
that the object Q does not lie on either axis, for if it did, we could move a small 
distance to get the object in the interior of the first quadrant . 

Initially standing at A, measure the angle o: between Q and P using the taxicab 
equivalent of a cross staff or a sextant. Now, for reasons to be apparent later, you 
should move a small distance (relative to the distance to the object) in such a way 
that the distance to the object does not change. This can be accomplished by moving 
in either of two directions, and, provided you move only a small distance, the object 
remains in the interior of the first quadrant. Furthermore, exactly one of these di­
rections results in the angle between Q and P being increased, so that the situation 
depicted in Figure 7 is generic. 

You have therefore moved from A to B in one of the following directions: NW, 
NE, SW, or SE. Now measure the new angle {3 between the two objects. With this 
information we can now find the taxicab distance to the object Q. Construct the point 
Q' such that QQ' is parallel to AB and f(QQ') = f (AB) = s. The angle \ PAQ' has 
measure {3 since it is merely a translation of \ QBP. Thus, \ QAQ' has measure 
{3 - o:. Now, the lengths of AQ and BQ are equal since the direction of movement 
from A to B was shrewdly chosen so that the distance to the object remained constant. 
Since translations do not affect lengths, this implies AQ and AQ' have equal lengths. 
Hence, the points Q and Q' lie on a taxicab circle of radius d centered at A. Using 
the formula for the length of a taxicab arc in Theorem 6, 

d = -s-(1) {3 - 0: 

where s and d are taxicab distances and {3 - o: is a taxicab angle. This formula 
is identical to the Euclidean distance estimation formula with d and s Euclidean 
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distances and {3 - o: an Euclidean angle. However, as we shall now see, the commonly 
used Euclidean version is truly an approximation and not an exact result. This 
realization is necessary to logically link the commonly used Euclidean formula and 
the taxicab formula. 

(N) 
y Q' 

" I ' 

FIG. 8. A parallax diagram in Euclidean geometry. 

Using Figure 7 but with all distances and angles now Euclidean, we isolate l:::,.QAB. 
Using the law of sines and the fact that 'Y = 3rr/4 - (f:Je + (),.),we have 

(2) d., = Se(cose(f3e +.()e)+ sinP(fJe + (Je)) 
J2 Sllle ({3., - o:,J 

This formula can be simplified by moving from A to B in a direction perpendicular 
to the line of sight to Q from A rather than in one of the four prescribed directions 
above. In this case m( \ QBA) = rr / 2 - ({3 ... - o:.,) (Figure 8) . Thus, the law of sine.-; 
gives the Euclidean parallax formula 

d _ Se 

e - tan,! ({3, - o:, ) 

If we now apply the approximation tane. (f3e - O:e) ~ (f3e - o:,.) for small angles we 
obtain the commonly used Euclidean parallax formula 

d 
~ s., 

e ~ {3 e -o:,. 

which is not exact. 
It is interesting to note the quite different movement requirements in the two 

geometries needed to obtain the best possible approximations of the distm1ce to the 
object. This difference lies in the methods of keeping the distance to the object a~ 
constant as possible. In the Euclidean case, moving small distances on the line t angent 
to the circle of radius d centered at the object (i.e. perpendicular to the radius of this 
circle) essentially leaves the distance to the object unchanged. In taxicab geometry, 
moving in one direction along either y = x or y = - x keeps the distance to the object 
exactly unchanged. 

We are now in a posit ion to justify the link between results (1) and (2). Since the 
line segment QQ' of taxicab length s lies on a taxicab circle, s = v'2s, .. The distance 
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d to the object is given by d = dc(cosc(ac + 8,.) + sin,. (ac + 8c)) since the Euclidean 
angle between the line of sight AQ and the x-axis is (a,.+ 8,. ). Using Corollary 4 with 
¢ = (f3c - a,.) and '1/J = ( O'c + 8c), the taxicab measure of {3 - a is given by 

{3 _ _ 2sin,.({3,. - a c) 
a - (cos,.({3,. + 0,.) + sin,. (f3c + 8,. ))(cosc.(O'c + 8,.) + sin,. (ac + 8,. )) 

Using these substitutions, formula (1) becomes formula (2). 

6. Conclusion. With this natural definition of angles in taxicab geometry, some 
of the same difficulties arise as with Euclidean angles in taxicab geometry. Congruent 
triangles are few and far between. Only with the strictest requirements, namely that 
all three sides and two angles are congruent, are we able to conclude that two triangles 
must be congruent. 

In addition to creating a natural definition of angles and trigonometric functions, 
we have also unwittingly created an environment in which a parallax method can be 
used to determine the exact distance to a nearby object rather than just an approxi­
mation. This is not too surprising a result since there exist directions in which one can 
travel without the distance to an object changing. With this result, and taxicab and 
Euclidean angle measuring instruments, the exact Euclidean distance to the object 
can now be found (up to measurement error of course). The trick is to build your 
own taxicab cross staff or sextant. 
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Abstract. This note giv s a demonstration of how th Beruoulli polynomials can he usec.l to 
derive analytical expressions for t he sums :E;'=l f i f p 1"' and }_::~ 1 l i f p j'n, where m is a non-negative 
integer. 

1. Introduction. Given a real number :r , denote by r.T l the least integer that 
is no less than x , and denote by lx J the greatest integer that is no larger than x . 
The functions r.rl and l X J are often referred to as the ceiling- and floor values of 
:r, respectively. Recently, the sums l::~', 1 ri/pl and l::~'- 1 li / pJ, where nand pare 
arbitrary positive integers have been studied. Sivakumar, Dimopoulos and Lu [8] 
derived analytical expressions for these smns, and a simplified derivation was given 
by Tuenter [9], using the well-known formula I:: ~':... 1 i = tn(n 1). It turns out that 
the latter approach is readily generalized, and it is relatively straightforward to derive 
expressions for the sums of the title, where m. is an arbitrary positive integer, using 
the known formulae for the sums of powers of the integers, as one can fincl in, for 
instance [4, p. 269). The derivation given here is different , and might be used in 
an undergraduate course on number theory to give another application for, and to 
illustrate the elegance of the Bernoulli polynomials. 

2. Bernoulli polynomials and Power sums. The Bernoulli poly11omials [1] 
discovered by Jacob Bernoulli (1654 1705), and christened as such by Leonard Eu­
ler [7], arise in the study of the sums of powers of the first natural numbers: 

a,(n ) O"' + 1111 + · · · + n"', 

and the desire to find closed forms expressions for tlwse smns. Bernoulli was not 
the first to study the problem of summing powers; before him Johann Faulhaber of 
Ulm (1580- 1635) had already published [3] the formulae for the sums of powers up to 
and including the exponent 17, and indicated that he had <"Omputed the formulae for 
sums of powers as far the exponent 25. These formulae were derived hy a process of 
intense computation, heuristic reasoning and indu<"tion [5, 7]. Bernoulli was the first , 
however to study the sums of powers in a more structured manner and doC'ument how 
he arrived at his results. A modern day account of how Bernoulli approached the 
problem and arrived at the polynomials that bear his name', is given in [2, pp. 278 
283 . The first few Bernoulli polynomials, as can he found in for instance [6], are 
given by 

and share t he property 

1 
B2(:r ) - x

2 
x + G' 

B:1(:r) :z:3 - ~x2 + ~ x, 

B ( ·) - x4 2x3 + x2 1 ·I .r - - . . - 30 ' 

B,.(x + 1) - Bm(x) = m.rm- l. 

·schulich School of Business, York University. 
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Indeed, apart from the constant term, this property uniquely defines the Bernoulli 
polynomials. Although the value of the constant term plays no role in the subsequent 
derivations, we mention that is determined by the requirement that the integral of 
each of the Bernoulli polynomials over the interval [0, 1] is 0. An expression for the 
sum of powers in terms of the Bernoulli polynomials is now easily determined as 

n - 1 n - 1 

L xm- 1 = ..!_ L [Bm(:r + 1) - Bm(x)] = ..!_ [Bm(n) Bm(O)], 
x = O m x - 0 m 

and gives the familiar ao(n) = n 
and a3 (n) = tn2(n + 1)2. 

1, a1(n) = ~n(n + 1), a2(n) = in(n + 1)(2n + 1), 

3. Bernoulli polynomials and the sums I:li/pJm and I:fi/p m. One can 
derive closed form expressions for the sums of the title in almost exactly the same 
manner as was done for the sum of powers of the integers. Let n = qp + r·, where 
0 ::::; r < p, so that q is the quotient and r is the remainder in the division of n by p. 
Now use the property of the Bernoulli polynomials, take li/pJ in lieu of x, split the 
summation into two separate sums, and cancel the common terms to obtain: 

pq- 1 1 pq 1 

L li/pJm- 1 
= - L [Bm (lijpj + 1) - Bm (li/pj)] = · · · = ]!_ [Bm (q) - Bm (0) ] . 

~ m ~ m 

Now add the sum of the remainder I:f!!; li/pf"- 1 = (r + 1)qm 1 , and one obtains 
the desired closed form expression 

n 

L li/pjm 1 
= J!... [Bm(q) - Bm(O)] + (r + 1)qm- 1 . 

i = O m 

It is now possible to derive a closed form expression for the ceiling sum by using 
the result for the floor sum, the relation rxl = 1 + lxJ (for non-integer values of x), 
and the binomial theorem. However, a moment's reflection will make one realize that 
the two sums have a similar structure, and that it is more straightforward to simply 
repeat the method of proof for the floor sum, and derive 

The first few of these sums are tabulated below, and the expressions for the sums 
I: li/p J and I: fi/p 1 are, of course, in agreement with the results derived by Sivakumar 
et al. [8]. 

n 
1 Lli/pJ = 2q(n-p+r+2) 

i - 1 
n 

1 L fi/pl = 2(q + 1)(n + r) 
i = 1 

t li/pj 2 
= ~(n - r)(2q - 1)(q - 1) + (r + 1)q2 

i = 1 

t fi/pl 2 = ~(q + 1)(2qn + n + 4rq + 5r) 
i = 1 

6 
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1L • 1 ') . L li/pj'1 = 4(n - r·)q(q - 1)- + (r· + I )qJ 
i = l 

n l I: rifpl 3 
= 4<q + 1f(qn + 3r-q + 4r-) 

i = 1 

4. Discussion. As was mentioned in the introduction , th<• sums of thf' t.itle can 
also be expressed in terms of the power sums over the integers: 

11 11 

L li/pj"' = pam(q - 1) 1)q"' d an I: li/pr " = pa,.(q) + r-(q + t)"', 
i = O i= l 

where the first expression is valid for all non-negative integers m., and the second 
for all positive integers m. This is not difficult to show by breaking up tho sums 
into segment~:> of length p. It also follows directly by substitution of the exprPssions 
for Bm(q) B,(O), and Bm(q 1) - B111 (1), derived in the previous ~:>ectiou. The 
formulation in terms of the Bernoulli polynomials has the advantage of beiug more 
practical in the environment of computer algebra pack.:'tges, as most of these have the 
Bernoulli polynomials built in. 
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PROBLEM DEPARTMENT 

EDITED BY CLAYTON W. DODGE 

This department welcomes problems believed to be new and at a level appropriate for the readers 

of this journal. Old problems displaying novel and elegant methods of solution are also invited. 

Proposals should be accompanied by solutions if available and by any information that will a.~sist 

the editor. An asterisk ( *) preceding a problem number indicates that the proposer did not subrmt a 

solution. 

All communications should be addressed to C. W. Dodge, 5752 Neville/ Math, University of 

Maine, Orono, ME 04469-5752. E-mail: dodge@gauss.umemat.maine.edu. Please submit each 

proposal and solution preferably typed or clearly written on a separate sheet (one side only) properly 

identified with name and address. Solutions to problems in this issue should be mailed to arrive by 

December 1, 2000. Solutions by students are given preference. 

Problems for Solution. 

980. Proposed by the editor. 
The addition alphametic 

HALF+ HALF = WHOLE 

has unique solutions in both bases 7 and 8. Of course, in any base WHOLE must be 
an even number. It is curious that in base 9 there are three solutions, two of which 
have HALF even. Find that base 9 solution in which HALF is an odd number. 

981. Proposed by Cecil Rousseau, The University of Memphis , Memphis, Ten­
nessee. 

Show that the set 

{L hJ, l2v'2J, l3v'2J, · · ·, lnhJ, · · ·}, 
where n is a natural number and l x J is the greatest integer in x, contains infinitely 
many powers of 3. 

982. Proposed by Charles Ashbacher, Charles Ashbacher Technologies, Hiawatha, 
Iowa. 

In his book "Comments and Topics on Smarandache Notions and Problems", 
K. Kashihara defines for any positive integer n , the Smarandache Inferior Square 
Part, SISP(n), to be the largest square less than or equal ton and the Smarandache 
Superior Square Part, SSSP ( n) to be the smallest square greater than or equal to n. 
Now define sn = ylSSSP(O) + · · · + SSSP(n) and tn = yfSISP(O) + · · · + SISP(n). 

a) Find the value of lim Sn - tn. 
n oo 

b) Find the value of lim Sn . 
n oo tn 

983. Proposed by Rex H. Wu, Brooklyn, N ew York. 
Evaluate the integrals 

a) 17r12
ln ( 1 +sin(x))dx and 

0 1 + cos(x) 

b) 11r/2 
ln ( 1 + cos(x) + sin(x)) dx. 

o 1 + cos(x) 
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984. Proposed by Peter A. Lindstrom, Batavia, New York. 
Test for convergence the infinite series 

~ (n~;n) · 
985. Proposed by Ayoub B. Ayoub, P nn State Abington College, Abington, 

Pennsylvania. 

Extend the sides A1A2 and A2A3 of a regular n-gon A1A2A3 ... A, to A~ and A~ 
respectively such that A2A~ = A3A~ and mLA2A~A~ = goo. Show that m A1 0A~ = 
goo, where 0 is the center of the n-gon. 

A' .I 

986. Proposed by Robert C. Gebhardt, Hopatcong, New Jersey. 
Find a triangle in the plane which can be dissected into five triangles all similar 

to itself. 

987. Proposed by [( nneth. P. Davenport, Fmckvill , Pennsylvania. 
For a given positive integer n find for what positive integers b n and a there is 

a solution to the Diophantine equation 

1 + 2 + · · · + n = b + (b + 1) + · · · + (b +a). 

988. Proposed by Kenneth P. Davenport, Frackville, Pennsylvania. 
For what values of n is this sum the square of an integer: 

989. Proposed by Joel Brenn r, Palo Alto, California. 
a) In the set of all primes find the density of the primes p such that the greatest 

common divisor of all the divisors of p - 1 is 1. Note that a statistical experiment 
would lead to a wrong answer since three of the first six primes have this property. 

b) In the set of all positive integers find the density of those integers n 1 such 
that the greatest common divisor of all the divisors of n - 1 is 1. 

990. Proposed by R. S. Luthar, University of Wisconsin, Janesville, Wisconsin. 
Identify all triangles ABC such that cos2 A cos2 B + cos2 C = 1. 

991. Proposed by Mike Pinter, Belmont University, Nashville, Tennessee. 
Eight people play rounds of golf in 2 foursomes at a time. Thus, for example, one 

round might have the foursomes ABCD and EFGH. They desire to have each pair 
of players playing together in a foursome exactly the same number of times. 

a) Is this possible in six rounds? 
b) Is it possible in 7 rounds? 
c) Explain why your answers to the above questions difi'er. 

.. 
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992. Proposed by Mark Evans, Louisville, Kentucky. 
Consider three statistical distributions f, g, and h such that, for 0 < k < 1, 

h = kf + (1 - k)g. 

a) Express the variance of has a function of k, the variances off and g, and the 
means of f and g. 

b) Use the expression derived in (a) to show that the variance of h equals the 
variance off when f = g. 

*c) Explain the results of (a). 

993. Proposed by Les Wood, Forest City, Maine. 
Determine which stacks in less space, logs or split wood. Assume the logs are 

uniformly perfect cylinders of radius r and constant length. Assume these logs are 
split with no waste into perfect quarters, that is, their cross sections are circular 
sectors of central angle 90°. 

Corrections. Cecil Rousseau of The University of Memphis pointed out that the 
denominator in the first integral in Problem 970 [Fall1999, p. 47] should be under a 
radical. That is, the correct integral is 

("/
4 cos(x) ln(sin(x)) dx. 

Jo Jsin(x) cos(2x) 

Rex H. Wu found three errors in his solution to Problem 943 [Fall1999] . There should 
not be an a in front of the fraction in the very last product in the displayed equation 
at the bottom of page 52. About 1/3 of the way down page 53 the phrase "Vn is 
strictly decreasing" should read "V., is strictly increasing." Finally, at the very end of 
the solution, about 2/ 3 of the way down page 53, the right side of the last displayed 
inequality, from the < sign on, should be replaced by 

n ( 0 2 + 1 ) n ( ( 0 2 + 1) k) 
= !! 1 + a4k - 1 < !! 1 + ~ . 

In the figure for the solution to Problem 946 [Fall 1999, page 55] reorder the 
letters A, B, C, X, Y, Z respectively by B, C, A, Z, X, Y . 

Solutions. 

953. [Spring 1999] Proposed by Mike Pinter, Belmont UniveTsity, Nashville, Ten­
nessee. 

Since we want to enjoy our cake with a minimum amount of guilt, find the solution 
to the following base 10 alphametic that yields the minimum value for ICING. 

ICING+ CAKE = YUMMY. 

Solution by Rex H. Wu, Brooklyn, New York. 
Since I i= 0, then try I = 1 andY = 2. To minimize C, C = 5. Then U = 0 

since U i= I. So far we have (I, Y, C, U) = (1, 2, 5, 0). Now (G, E) can be one of 
{(3,9),(9,3),(4,8),(8,4)} . Again, to minimize G, we take (G,E) = (3,9) or (4,8). 
Then N can be one of {3, 4, 6, 7, 8, 9}. 

If N = 3, then G = 4 and E = 8. And N +I<+ 1 = K + 4 = M(mod 10). Then 
A, I<, and M have to be taken from {6, 7, 9}, which is not possible. 
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If N - 4, then G = 3 and E = 9. We also haveN +K + 1 = /( +5 = ./\!(mod 10). 
Here the choices for A, K, and Mare {6, 7, 8}. Again it is impossible. 

Next try N = 6. Then (G, E) can be (3, 9) or (4, 8). If (G, E) = (3, 9), then 
N + [( + 1 = J( + 7 = ./IJ(mod 10). Again it is impossible to assign 4, 7 and 8 to A, 
J( and ./II. If (G, E ) = (4, 8) , then N + /( + 1 = /( + 7 = ./IJ(mod 10). Once more, 
there is no way we can assign 3, 7 and 9 to A, /(and !vi. 

Finally, if N = 7, then (G, E) = (3, 9), J( = 8, ./II = G and A 4. 
Therefore ICING = 15173, CAKE = 5489 and YU./IIMY = 20662. 
Editorial note: There is one other solution 37318 7906 = 45224 to this al-

phametic. In either solution, the values of G and E can be interchanged, as can also 
the values of Nand K. 

Also solved by Charles D. Ashbacher, Charles Ashbacher Technologies, Hiawatha, lA, Frank 

P. Battles, Massachusetts Maritime Academy, Buzzards Bay, Mark Evans, Louisville, KY, Step­

hen I. Gendler, Clarion University of Pennsylvania, Richard I. Hess, Rancho Palos Verdes, CA, 

Yoshinobu Murayoshi, Okinawa, Japan, H.-J. Seiffert, Berlin, Germany, Kevin P. Wagner, 

University of South Florida, Largo, and the proposer. 

954. [Spring 1999] Proposed by Florian Luca, Syracuse University, Syracuse, 
New York. 

For any real number y let [y] be the largest integer less than or equal to y . Suppose 
./\1 is a set. of positive integers with the following property: if x > 1 is an element 
of M, then both [x ln(x)] and [Jx] are elements of M. Show that , if ./II contains a 
positive integer greater than 3, then 111 contains all positive integers. 

Solution by Richard I. Hess, Rancho Palos Verdes, California. 
Since [3ln3] = 3, [2ln2] = 1, and [J3] = [J2] = 1, then possible sets ./II are {1}, 

{1, 2}, {1, 3} , {1 , 2, 3} , and N, the set of all natural numbers. We show no other sets 
are possible. 

If M contains an integer x > 3, then repeated application of [ Jx] (possibly 0 
times) will get. you to one of the numbers 4 through 15. Application of the two given 
functions, perhaps several times, on any of the numbers 5 through 15 will get you to 
4. For example, [5ln5] = 8, [8ln8) = 16, and [ Jf6] = 4, so both 5 and 8 lead to 4. It 
is easy to check that all other numbers from 6 to 15 also lead to 4. Clearly, numbers 
16 or larger lead eventually to 4 through 15 by means of [Vx]. Thus, if ./II contains 
any number greater than 3, it contains the number 4. 

Suppose there is a number m > 3 not in !vi. Then 111 does not contain any integer 
in any of the intervals 

h = [m2, (m+ 1)2 - 1), 

I2 = [m4
, ( m + 1 )4 

- 1), .. . , 
2" 2" h = [m , (m + 1) - 1), .... 

Otherwise, repeated application of [ Jx] would produce m. 
Consider xo = 4, X1 = [4ln4), ... , Xn +l = (xn lnxn]· We show that the Xn cannot 

miss all the intervals h . That is, if, for a given k , n is the largest integer such that 
Xn ::; m2" then Xn 1 ::; [m2

k· ln m2k], so we show that, when k is large enough, 

and Xn+l lies in h. To that end we show 

·' 
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)
2k 

2k ln - 1 2" (m + 1 - 1 - (1 2_)2" - _ 1_ 
m - n m < 2" - + 2" · m rn rn 

Since lnm < m and (1 + 1/ m)m > 2, it suffices to show that 

2km ::; 22" /m = (21/m)2". 

105 

Since 2k is a factor on the left and an exponent on the right and 21/m > 1, then 
the inequality clearly holds for large enough k . Hence Xn 1 is in the interval h and 
therefore m is in ./II. 

Also solved by Rex H. Wu, Brooklyn, NY, and the proposer. 

955. [Spring 1999] Proposed by Peter A. Lindstrom, Batavia, New York. 
Let G be a finite geometric series whose terms are all positive integers. If G has 

a sum that is a prime number, then prove that the first term is 1 and the number of 
terms of the series is a prime. 

Solution by Skidmore College Problem Group, SkidmoTe College, Samtoga 
SpTings, New YoTk. 

A counterexample is the series 4 + 6 + 9 whose sum 19 is a prime but whose 
initial term is not 1. Similarly, a series of just one term violates the theorem. We 
shall show that the theorem is true if the ratio T is a positive integer and the number 
of terms is greater than 1, but first we prove the following generalization. Let G be a 
finite geometric series of n > 1 positive integral terms and whose ratio Tis the positive 
rational number sft in lowest terms. If G has a sum that is a prime number, then the 
first term is t" 1 and the number of terms of the series is a prime. 

Let G = a + aT + ar·2 + · · · + aT" - 1, so that 

G · tn - 1 = at" 1 + ast"- 2 + +as" 1 = a(tn- 1 + st" - 2 + · · · + sn- 1 ). 

Since G is a prime and (s, t) = 1, and t divides all terms up to the last one, then 
t must divide that term, too, so divides a. Divide by t and repeat the argument n - 1 
times to show that t" - 1 divides a. If a contains any other prime factor, then G also 
contains that factor and is not prime because the sum of the terms in the parentheses 
is greater than 1. Hence, a = tn - 1 and G equals the quantity in parentheses. 

If n = uv is composite, then the terms in parentheses can be grouped in 1 groups 
of u terms each and thereby factors with the first group of u terms as one factor. 
Since u and v are each greater than 1, each factor is greater than 1 and the value> in 
the parentheses is composite. This is impossible since G is prime. Thus n is prime 
and our generalization is established. 

If T is a positive integer and n > 1, then t = 1 and the corrected theorem follows. 
Also solved by Frank P. Battles, Massachusetts Maritime Academy, Buzzards Bay, Paul S. 

Bruckman, Berkeley, CA, George P. Evanovich, Saint Peter's College, Jersey City, NJ, Joyce 

Gendler and Stephen I. Gendler, Clarion, PA, Richard I. Hess, Rancho Palos Verdes, CA, 

Murray S. Klamkin, University of Alberta, Canada, HenryS. Lieberman, Waban, MA, H.-J. 

Seiffert, Berlin, Germany, Kenneth M. Wilke, Topeka, KS, Rex H. Wu, Brooklyn, NY, Monte 

J. Zerger, Adams State College, Alamosa, CO, and the proposer. 

Editorial note: Most solvers explicitly assumed the series had more than one term 
and that the ratio was a positive integer. Seiffert also provided the same counterex­
ample as in the featured solution. 
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956. [Spring 1999] Proposed by Charles Ashbacher, Decisionmark, Cedar Rapids, 
Iowa. 

For any positive integer n, the value of the Smarandache function S(n) is the 
smallest positive integer m such that n divides m!. Thus, for example, S(1) = 1, 
S(2) = 2, S(6) = 3, and S(8) = 4. Let p be an odd prime. Prove that the following 
summation diverges: 

00 1 

L S(pk)" 
k= I 

Solution by Kevin P. Wagner, student, University of South Florida, Largo, 
Florida. 

Actually the summation diverges whenever p is any natural number n. For any 
natural numbers nand k, nk divides (nk)! And therefore S(nk) s; nk. Then 

which diverges whenever n is nonzero. 
Also solved by Paul S. Bruckman, Berkeley, CA, Mark Evans, Louisville, KY, Stephen I. 

Gendler, Clarion University of Pennsylvania, Grand Valley State University Problem Solv­
ing Group, Allendale, MI, Richard I. Hess, Rancho Palos Verdes, CA, Murray S. Klamkin, 
University of Alberta, Canada, Carl Libis, Antioch College, Yellow Springs, OH, H.-J. Seiffert, 
Berlin, Germany, Rex H. Wu, Brooklyn, NY, and the proposer. 

957. [Spring 1999] Proposed by the late Jack Garfunkel, Flushing, New York. 
Triangle ABC is inscribed in a circle. The angle bisectors of ABC are drawn 

and extended to the circle to points A', B', C'. Triangle A' B' C' is drawn. Prove 
that sir ~ s' lr' where s, s', r, r' are respectively the semiperimeters and inradii of 
triangles ABC and A' B' C'. 

Solution by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, 
Canada. 

Note first that by replacing r by F Is, etc., where F is the area of ABC, the 
inequality becomes the isoperimetric one F' I s'2 ~ F I s2 • Also, A' = ( B + C) 12, 
B' = (C + A)l2, and C' = (A+ B)l2. 

Much more general results are given in [1]. It is shown there that if ABC and 
A'B'C' are two triangles such that A'= wiA+w2B+w3C, B' = wiB+w2C+w3A, 
and C' =wiG+ w2A + w3B, where WI, w2, w3, are nonnegative weights whose sum 
is 1, then 

(1) 
(2) 

(3) 
(4) 

F'ls'2 ~ Fls2, 

r' IR' ~ riR, 

s'IR' ~ siR, 

F'IR'2 ~ F I R 2. 

If, additionally, A' B'C' has the same circumradius R as ABC, then (2), (3), and 
(4) become r' ~ r, s' ~ s, and F' ~ F. There is equality in these inequalities if and 
only if ABC is equilateral. 

The given inequality corresponds to the special case WI = 0, w2 = w3 = 112. 

·' 

PROBLEM DEPARTMENT 107 

Reference 1. M. S. KLAMKin, Notes on inequalities involving tr-iangles or tetra­
hedrons, Publ. Electrotechn. Fak. Ser. Mat. Fiz. Univ. Beograd, No. 330 (1970)4-7. 

Also solved by Paul S. Bruckman, Edmonds, WA, Yoshinobu Murayoshi, Okinawa, 
.Iapan, Rex H. Wu, Brooklyn, NY, and the proposer. 

958. [Spring 1999] Proposed by George Tsapakidis, Agrinio, Greece. 
In a triangle ABC the length of the bisector AD is equal to the length of the me­

dian Alii , both drawn from the same vertex A. Prove that triangle ABC is isosceles. 
I. Solution by Murray S. Klamkin, University of Alberta, Alberta, Ontario, 

Canada. 
The contrapositive theorem is that if AB :f. AC, then AD :f. A.l\!I and is contained 

in the more general result that ha s; ta s; rna with equality if and only if AB = AC. 
For the sake of completeness, we include the proof. 

Let E be the foot of the altitude. Assuming, without loss of generality, that c s; b, 
then we show that the order of the feet on BC is [EDMC]. If B is non-acute, then 
clearly E is first. ForB acute, BAE = 90° - B s; Al2 since B ~ C. This gives the 
order [BED]. Since D divides BC in the ratio clb, then BD = acl(b + c) s; al 2 and 
we have the order [BEDMC]. This, together with the Pythagorean theorem, gives 
the desired results. 

II. Solution by Yoshinobu Murayoshi, Okinawa, Japan. Since 

v2b2 + 2c2 - a2 Jbc(b + c + a)(b + c - a) 
AM = and BM = b , 

2 +c 

then (A.l\1) 2 = (AD) 2 reduces to (b - c)2 [2(b + c) 2 - a2] = 0. Since b c > a, then we 
must have b = c and the triangle is isosceles. 

Also solved by Miguel Amengual Covas, Cala Figuera, Mallorca, Spain, Dipendra Bhat­
tacharya and Stephen I. Gendler, Clarion University of Pennsylvania, Paul S. Bruckman, 
Berkeley, CA, Mark Evans, Louisville, KY, Richard I. Hess, Rancho Palos Verdes, CA, Henry 
S. Lieberman, Waban, MA, William H. Peirce, Rangeley, ME, H.-J. Seiffert, Berlin, Ger­
many, Kevin P. Wagner, University of South Florida, Largo, Kenneth M. Wilke, Topeka, KS, 
Rex H. Wu, Brooklyn, NY, and the proposer. 

959. [Spring 1999] Proposed by Robert C. Gebhardt, Hopatcong, New Jersey. 
Find in closed form the sum 

I. Solution by Karthik Gopalratnam, student, Angelo State University, San 
Angelo, Texas. 

For positive integral n the binomial theorem yields 

Differentiating both sides with respect to x, we get 
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Now set x = 1 to obtain 

II. Solution by Kenneth M. Wilke, Topeka, Kansas. 
Since 

(
n) k·n! n(n - 1)! (n - 1) 

k k = (n - k)!k! = (k - 1)!((n 1) - (k - 1))! = n k - 1 ' 

we have 

III. Solution by George P. Evanovich, South River, New J rsey. 
We have that 

Now take the average of the first and last expressions to obtain 

Also solved by Miguel Amengual Covas, Cala Figuera, Mallorca, Spain, Frank P. Battles, 

Massachusetts Maritime Academy, Buzzards Bay, PaulS. Bruckman, Berkeley, CA, Pat Costello, 

Eastern Kentucky University, Richmond, Kenneth B. Davenport, Frackville, PA, Rob Downes, 

Plainfield, NJ, Richard I. Hess, Rancho Palos Verdes, CA, Murray S. Klamkin, University 

of Alberta, Canada, Carl Libis, (two solutions) Antioch College, Yellow Springs, OH, Henry S. 

Lieberman, Waban, MA, Peter A. Lindstrom, Batavia, NY, William H. Peirce, Rangeley, ME, 

Shiva K. Saksena, University of North Carolina at Wilmington, H.-J. Seiffert, Berlin, Germany, 

Skidmore College Problem Group, Saratoga Springs, NY, Kevin P. Wagner, University of 

South Florida, Largo, Rex H. Wu, Brooklyn, NY, Monte J. Zerger, Adams State College, 

Alamosa, CO, and the proposer. 

960. (Spring 1999] Proposed by Timothy Sipka, Alma College, Alma, Michigan. 
A triangular number is any number of the form n(n + 1) / 2, where n is a positive 

integer. Prove that the units digit of any triangular number is 0, 1, 3, 5, 6, or 8. 
I. Solution by Kenneth M. Wilke, Topeka, Kansas. 
Let n(n + 1)/2 = k. Then (2n + 1)2 = 8k + 1. Since odd squares in base ten 

terminate only in 1, 5, or 9 (never 3 or 7), then 8k + 1 = 1, 5, or 9 (mod 10) and 
k = 0 or 5, 3 or 8, 1 or 6 (mod 10) respectively. That is, n(n + 1)/ 2 ends only in 0, 
1, 3, 5, 6, or 8. 

II. Solution by Monte J. Zerger, Adams State College, Alamosa, Colorado. 
Let T(n) = n(n + 1)/2. Because 

T(20 + n) = T(20 - n) = T(n) (mod 20), 

·' 

PROBLEM DEPARTMENT 109 

it is sufficient to check that the units digit of each of the first ten triangular numbers 
is one of 0, 1, 3, 5, 6, and 8. These values are actually assumed by T(4), T(1), T(2), 
T(5), T(3), and T(7) respectively. 

Also solved by Charles D. Ashbacher, Charles Ashbacher Technologies, Hiawatha, lA, Paul 

S. Bruckman, Berkeley, CA, Mark Evans, Louisville, KY, Stephen I. Gendler, Clarion Uni· 

versity of Pennsylvania, Daniel Hermann, Angelo State University, San Angelo, TX, Richard 

I. Hess, Rancho Palos Verdes, CA, Danner Hodgson, Belmont University, Nashville, TN, Carl 

Libis, Antioch College, Yellow Springs, OH, HenryS. Lieberman, Waban, MA, Peter A. Lind­

strom, Batavia, NY, William H. Peirce, Rangeley, ME, Mike Pinter, Belmont University, 

Nashville, TN, H.-J. Seiffert, Berlin, Germany, Skidmore College Problem Group, Saratoga 

Springs, NY, Kevin P. Wagner, University of South Florida, Largo, Rex H. Wu, Brooklyn, NY, 

and the proposer. 

961. (Spring 1999] Proposed by Charles Ashbacher, Charles Ashbacher Technolo­
gies, Hiawatha, Iowa. 

Given any positive integer n, the value of the Pseudo-Smarandache function Z(n ) 
is the smallest positive integer m such that n exactly divides 

fk = m(m2+1). 

k = l 

Thus Z(1) = 1, Z(2) = 3, Z(3) = 2, Z(4) = 7, etc. 
a) Prove there is an infinite family of integers n such that 3 · Z(n) = n. 
b) Prove that there are an infinite number of pairs (m, n) such that m · Z (n ) -

n · Z(m). 
I. Solution by Paul S. Bruckman, Berkeley, California. 
a) We show that if n = 3p, where pis a prime and p :::: - 1(mod 6), then Z(n) = 

p = n/3. Let T(n) = n(n 1)/ 2 for all n, and suppose pis a prime and p = 6u - 1. 
Then T(p) = p(p + 1) / 2 = 3pu, so that 3p divides T(p). Note that T(p - 1) = 
p(p - 1)/2 = p(3u - 1) is not divisible by 3 and T(n) is not divisible by p for any 
smaller positive n. Therefore Z(3p) = p, which shows that 3Z(3p) = 3p. Since there 
are infinitely many primes p with p = - 1(mod 6), we see there are infinitely many n 
with n = 3Z(n). 

b) An obvious and trivial solution is provided by setting m = n. We may also 
generate infinitely many solutions by setting m = 3p and n = 3q, where p and q are 
arbitrary primes satisfying the conditions of part (a). 

There are infinitely many other solutions. If p is an odd prime of the form 4k + 3, 
then T(p - 1) = (4k+2)(4k + 3)/ 2 = (2k+ 1)(4k + 3) and T(p) = (4k+3)(4k+4)/2 = 
(4k+3)(2k+2), so Z(2p) = p. (For primes of the form 4k+ 1, Z(2p) = 2p - 1.) So, if 
p and q are two primes each congruent to 3 modulo 4, then m = 2p and n = 2q yield 
mZ(n) = nZ(m) = 2pq. 

These are not the only solutions. In general we require that m/Z(m) = n/Z(n). 
This ratio need not be an integer. For example, Z(12) = 8 and Z(3) = 2, so that 
3Z(12) = 12Z(3). 

II. Solution by Murray S. Klamkin, University of Alberta Edmonton, Alberta, 
Canada. 

First, part (b) follows trivially from part (a). 
a) Let p be an odd prime. By Dirichlet's theorem, there are an infinite number of 

integers m such that 2pm - 1 is a prime. It now follows that Z (p (2pm - 1]) - 2pm - 1, 
so that Z(p{2pm - 1]) / (p{2pm - 1]) = 1/ p. 
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Also solved by Stephen I. Gendler, Clarion University of Pennsylvania, H.-J. Seiffert, 

Berlin, Germany, Kevin P. Wagner, University of South Florida, Largo, Kenneth M. Wilke, 

Topeka, KS, Rex H. Wu, Brooklyn, NY, and the proposer. 

962. [Spring 1999] Proposed by Richard I. Hess, Rancho Palos Verdes, California. 
Shoelace clock. You are given a shoelace, some matches, and a pair of scissors. 

The shoelace burns like a fuse when lit at either end and takes exactly 60 minutes to 
burn. The burn rate may vary from one point on the shoelace to another, but it has 
a symmetry property in that the burn rate a distance x from the left end is the same 
as the burn rate the same distance x from the right end. 

a) Find the shortest time interval you can measure. 
b) Find the shortest time interval you can measure if you have two such laces 

that are identical. 
c) Repeat part b if the two laces, which still burn for 60 minutes each, are not 

identical and not symmetric. 
Solution by Rex H. Wu, Brooklyn, N ew York. 
I will solve part (c) first. 
c) Label the two laces AB and CD. Light each end of AB and also one end of 

CD, say C, at the same instant. When AB burns out, put out the fire on CD. If we 
burn the remaining segment from both ends at the same time, it will take 60/ 4 = 15 
minutes. 

a) Cut the lace AB at its midpoint to get two identical 30-minute laces AAI and 
BN, which are identical but not symmetrical. Lay the laces beside one another so A 
and B align and !II and N align. Light ends A and !l.f at the same instant. When 
it burns out 15 minutes later, cut lace BN at that same exact point, obtaining two 
non-identical 15-minute laces. Now we can apply part (c) to measure 15/ 4 = 3.75 
minutes. 

b) Suppose we have three laces that each burn in the same time t, two laces AB 
and CD that are identical but not symmetrical, and a third lace UV. Line up laces 
AB and CD so A and C align and Band D align. Now light ends A, U, and Vat 
the same time. At the instant UV burns out, we put out the fire on AB. Call its 
remaining segment AI B and cut CD at the point N that aligns with !II. Now we have 
three laces MB, CN, and ND that each burn time t / 2, and with the two laces MB 
and ND identical. We are back to the situation we began with. The physicists among 
us will soon find they are burning atoms or quarks while the mathematicians among 
us can carry out the process ad infinitum. This method can measure time intervals 
in the form of t / 2" . 

To solve the case of two identical and symmetrical laces, then, we can cut each 
lace at the mid-point, obtaining four identical segments. Throw away any one of them 
and apply the method of the preceding paragraph. There is no minimum time that 
can be measured. 

Also solved by t he proposer. 

Editorial note: These puzzles are from the proposer's booklet Shoelace Clock 
Puzzles, prepared for the Gathering for Gardner, January, 1998.The proposer credits 
Carl Morris of Harvard University for the original idea. 

963. Spring 1999] Proposed by Peter A . Lindstrom, Batavia, N w Yor-k. 
Consider the functions 

f( x ) = sin(cos x ) + cosx and g(x) = sin(cos :r) - cosx 

·' 
PROBLEM DEPARTMENT 111 

on the interval 0 < x :=:; 1r. Without using the calculus, 
a) show that their graphs are each symmetric about the point (11/2, 0). 
b) show that f is always decreasing, so that f(7r) :=:; f( x ) :=:; f(O). 
c) show that g is always increasing, so that g(O) :=:; g(x) :=:; g(1r) . 
I. Solution to parts (a) and (b) by Kevin P. Wagner, Univer-sity of South 

Florida, Largo, Florida. 
a) Clearly f(?r / 2) = g(?r/2) - 0, cos(1r - x) = - cosx and sin(- x) = - sinx. 

Hence f(7r - x) = f(x) and g(1r - x) = g(x), so f and g are both symmetric about 
the point (?r/ 2,0). 

b) Let 0 :=:; x :=:; y :=:; 1r. Then 1 2:: cos x 2:: cos y ~ - 1. If -1 < u :=:; v :=:; 1, then 
sinu :=:; sinv. Therefore, sin(cosx) ~ sin(cosy), so f(x) 2:: f(y) and f is decreasing 
on the interval [0, 1r]. 

II. Solution to part (c) by Shiva K. Saksena, Univer-sity of North Carolina at 
Wilmington, North Carolina. 

c) Let 0 :=:; x < y ::; 1r / 2, so that 0 :=:; 2x < 2y ::; 1r . It thus suffices to show that 
g(2y) - g(2x) > 0. To that end we have that 

g(2y) - g(2x) 

= sin( cos 2y) - cos 2y - sin( cos 2x) + cos 2x 

= [sin(cos 2y) - sin( cos 2x)] - (cos 2y - cos 2x ) 

= 2 cos[(cos 2y + cos 2x) / 2] sin[(cos 2y - cos 2x) /2] + 2 sin(y + x ) sin(y - x) 

= 2 cos[cos(y + x) cos(y x)] sin[- sin(y + x ) sin(y - x)J + 2 sin(y + x ) sin(y - x) 

- 2 cos[cos(y + x) cos(y - x )][sin(y + :r) sin(y - x )] + 2 sin(y + x) sin(y - x) 

= 2 sin(y + x ) sin(y - x){ - cos[cos(y + x ) cos(y - x)] + 1} > 0 

since sin( - u) > - u when u > 0 and since 0 < y - x < y + x < 1r. Therefore, g(x) is 
increasing on [0, 1r] . 

Also solved by Paul S. Bruckman, Berkeley, CA, Mark Evans, Louisville, KY, Richard 

I. Hess, parts (a) and (b), Rancho Palos Verdes, CA, Shiva K. Saksena, University of North 

Carolina at Wilmington, Rex H. Wu, Brooklyn, NY, and the proposer. 

*964. [Spring 1999] Proposed by Ice B . Risteski, Skopje, Macedonia. 
There are nk balls of color k for k = 1, 2, . .. , r. The total number of balls is 

n1 + n 2 + · · · + nr = 2m, where m is a positive integer. 
a) In how many ways can these balls be separated into unordered color pairs? 
b) Find the probability of selecting a particular color pair. 
I. Solution to Part (a) by Mark Evans, Louisville, K entucky. 
The basic approach is to construct an upper triangular square matrix of order 

1" for each partition of the balls into pairs. In this matrix row k and column k each 
represent color k and a number s in the i, j position represents s pairs of colors i and 
j. For instance, the matrix 

represents the partition into the pairs 11 , 22, 23, 33, 34, 44, 44 of the following 14 
balls: two of color 1, three of color 2, four of color 3, and five of color 4. Clearly the 
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number of balls of color k is equal to the sum of the elements in row k plus those in 
column k. 

A computer program and spreadsheet was designed to handle up to 100 colors 
in theory, however the intensity of the calculation rapidly becomes prohibitive. Some 
solutions include 

956 ways for 1, 2, 2, 3, 4, 4 balls of each of 6 colors, 
913 ways for 5, 6, 7, 10 balls of each of 4 colors, 
1065 ways for 2, 3, 4, 5, 6 balls of each of 5 colors, 
73 ways for 2 2, 2, 2, 2 balls of each of 5 colors, and 
58 ways for 2, 3, 4, 5 balls of each of 4 colors. 

Editorial note. Upon request the problem department editor will send to any 
reader a copy of Evans' program and complete output for the last listed case. 

II. Solution to Part (b) by the Problem Department Editor. 
Since we wish to pick just one unordered color pair, this part apparently is in­

dependent of Part (a). With 2m balls, there are (2m)(2m - 1) / 2 ways to select an 
unordered pair. Of these, there are n1nk/2 ways to pick a pair of distinct colors j and 
k and there are nk(nk - 1)/2 ways to choose a pair of color k. Hence their probabilities 
are respectively 

njnk d nk(nk - 1) 
an )" 2m(2m - 1) 2m(2m - 1 

965. [Spring 1999] Proposed by David Iny, Baltimore, Maryland. 
Evaluate the integral 

1
oo e- x 

--dx. 
0 1 X 

Solution by Andrew Ostergaard, high school student, Hopatcong, New Jersey. 
The exponential integral of x, Ei(x), is given by 

1oo et ( x x 2 x
3 

) 
Ei(x) = x tdt =-r-lnx+ 1·1! - 2·2! + 3·3!···, 

where 1 is Euler's constant, given by 

1 = lim (1 + ~+···+.!. - Inn) = 0.5572156 ... 
n oo 2 n 

Now 

--dx = du = e - du = eEi(l ) = 0.596347 ... 1
oo e- x 1oo e-(u 1) 1oo e-u 

0 1+x 1 u 1 u 

Also solved by PaulS. Bruckman, Berkeley, CA, Kenneth B. Davenport, Frackville, PA, 

Richard I. Hess, Rancho Palos Verdes, CA, Murray S. Klamkin, University of Alberta, Canada, 

and the proposer. 

.. 
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The 1999 National Pi Mu Epsilon Meeting 

The Annual Meeting of the Pi M u Epsilon National Honorary Mathematics society 
was held in Providence, RI. from July 31 to August 2 1999. As in the past, the meeting 
was held in conjunction with the national meeting of the Mathematical association of 
America's Student Sections. 

The J. Sutherland Frame Lecturer was V. Frederick Rickey from the US Mil­
itary Academy at West Point. His presentation was entitled "The Creation of the 
Calculus: Who, What, When, Where, Why". 

Student Presentations. The following student papers were presented at the 
meeting. An asterisk (*) after the name of the presenter indicates that the speaker 
received a best paper award. 

Constructing Graphs from Digraphs, 
Mark Crawford and Oscar Neal 
Michigan Epsilon Western Michigan University 

Number of Spanning Trees of a 1 x n Grid Graph 
Melissa Desjarlais 
Michigan Theta Alma College 

Construction of Bond Lattices for Trees, Unions of Trees, and other Graphs 
Ben Goodwin 
Arkansas Beta Hendrix College 

Seeing the Trees Through the Forest 
Tammylynne Johnson 
Wisconsin Epsilon - Carthage College 

Characteristics of Graphs with Linked and Dzsjoint Cycles 
Jennifer Hespen, Trent Lalonde, Katherine Sharrow and Nathan Thomas 
New York Omicron Clarkson University 

Strong Selectivity, Monochromatic, and Zero-Sum Solutions to Equations 
Kate Rendall 
Wisconsin Delta St. Norbert College 

Normalizability of the Moore-Penrose Inverse 
Don Hixon 
South Dacota Alpha - University of South Dakota 

Methods of Solutions of Linear Equations 
Anna Pietrusinska 
New Jersey Gamma - Rutgers University 

Rings of Integer Valued Polynomials 
Sanjai Kumar Gupta* 
North Carolina Beta - University of North Carolina at Chapel Hill 

Divisibility Tests for Large Numbers 
Michael Nasvadi 
Ohio Epsilon - Kent State University 

How Does a Bouncy Ball Bounce? 
Teresa Selee* 
Ohio Xi Yougstown State University 
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The Goat and the Silo 
Tom Wakefield 
Ohio-Xi - Youngstown State University 

Invariant Subspace Problem 
Emilie Wiesner 
Virginia Theta - Washington and Lee University 

The Running of the Bulls; When Will it End'? 
Robert Shuttleworth 
Ohio Xi - Youngstown State University 

Making Music: the Scientific Bonification and Vizualization of data 
Libby Wiebel* 
Wisconsin Delta - St. Norbert College 

Mathematical Modeling of Warfare 
Ben Jantson* 
Ohio Xi Youngstown State University 

Is that Body a Perfect 1 0'? 
Kim Ramsey and Sarah Clippinger 
Ohio Delta- Miami University 

Using Integration to Measure the Volume of Oil Tanks 
Matthew Palmer 
Ohio Nu - The University of Akron 

Sound Investments 
Ben Keck 
Ohio Xi Youngstown State University 

Mathematics at the Market 
Sara LaLumia* 
Ohio Xi - Youngstown State University 

Leak Detection in Pressurized Pipe Lines 
Brian Ball and Paul Dostert 
Massachusetts Alpha - WPI, Virginia Delta -JMU 

The Mathematics Behind Microscopic Temperature Sensors 
John Slanina 
Ohio Xi - Youngstown State University 

Helicity and Writhing for Non-closed Curves 
David Futer 
Pennsylvania Alpha - University of Pennsylvania 

An Introduction to Fractals and some Real World Applications 
Scott Fallstrom 
Washington Zeta - Eastern Washington University 

An Exploration of Life in Two Dimensions 
Pace Petty 
Texas Delta - Stephen F. Austin State University 

A Subset of R 2 that Intersects Every Circle Exactly 3 times 
Ben Byer 
Ohio Delta - Miami University 

·' 

The Mother Worms Blanket Problem 
Robin Driesner* 
Illinois Zeta - Southern Illinois University at Edwardsville 

The Perona-Malik Model in Computer Vision 
James Tripp 
Virginia Alpha - University of Richmond 

Chaotic Attractions near Forbidden Symmetry 
Jeffrey Dumont* 
Pennsylvania Tau Lafayette College 

The Cinese Remainder Theorem 
Judy Maendel 
Ohio Omicron - Mount Union College 

The Moebius Problem 
Duane Farnsworth 
Ohio Omicron Mount Union College 

The Structure of an Odd Perfect Number 
Matthew Konicki 
Virginia Zeta - Mary Washington College 

Waring's Problem in Number Theory 
Katarsyna Potocka 
New Jersey Theta - The college of New Jersey 

Carmichael, Pseudo-primes, and Sigma-Phi Theta 
Kevin Weis 
New Jersey Theta The College of New Jersey 
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The use of Three Branches of Mathematics on the General Term of the Pell Sequence 
Louis Richard Camara 
Florida Epsilon - University of South Florida 

Call For Papers. 

The next liME meeting will take place in Los Angeles, California, August 3 5, 
2000. See the liME webpage (http: / j www.pme-math.org/) for application deadlines 
and forms. See also the MAA webpage (http:j j www.maa.org/meetingsj mathfestOO) 
for other activities in the Golden State. 
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The MATHACROSTIC in this issue has been contributed by Dan Hurwitz. 

a. Fermat wrote in the margin of this book 

b. A maximal base determined by nets 

c. Assigned quantities 

d. They help visualize conditional 

probabilities (2 words) 

e. "J:,wKpanc; did this 

f. English Number Theorist (187-1947) 

g. Classmates 

probabilities (2 words) 

h. He proved the Prime Number Theorem 

i. B~ed on predecessor 

j. A property of Pascal's Triangle 

k. Slight amplitude variation 

I. Approximated 1r with 355/ 113 circa 1573 

m . A conjecture about ( 

n. Exists between congruent triangles 

o. Path analysis used for resource allocation o58 176 149 165 041 102 013 125 

p. Used by Gerbert to replace counters o5o 133 ill 039 093 070 

q . Author of "Theorie Analytique des 105 126 139 173 015 179 oo3 

Probabilites". 

r. Made an error of the first kind 087 128 097 082 174 062 135 023 

s. To stand in the way of a function extension 044 137 195 153 051 095 161 032 

t. One group having order 24 132 o99 142 021 oo9 o46 157 1o3 I8T 

u. Did definitive work on associative systems 

v . Interesting property of 370 (5 words) 

014i 

083v 084k 085c 086u 

096a 097r 098g 099t 

Ll9u 128r 

131a 

153s 

163j 

175v 179q 

1851 188d 189a 190v 191i 192b 

The solution to the 1\IATHACROSTIC in last issue was taken from "Dynamics 
and Bifurcations", by Jack Hale and Huseyin Kocak: 

To fac ilitate qualitative analysis, geometric concepts such as vectoT 
field, oTbit, equilibrium point, and limit set aTe included in this dis­
cussion. The next top1:c is the notion of stability of an equilibrium 
point and the role of lineaT approximation in deteTmining stability. 

Jeanette Bickley and Charles R. Diminni where the first solvers to submit solu­
t ions. 
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