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THE MATHEMATICS BEHIND A CARD TRICK
DANIEL J. ACOSTA AND LAREMY COWART"

Abstract. This article relates a common “pick a card” card trick and describes mathematically
why it works.
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FiG. 0.1. QOur card trick where the chosen card is number 18

1. A Card Trick. A. Deal out twenty one cards face up into seven rows each
containing three cards. As you complete the first row, from left to right, begin the
second row so that the new cards slightly overlap the cards in the first row. This will
make the mechanics of the trick a bit easier.

B. After dealing out all seven rows in this manner, ask a bystander to silently
select one of the twenty-one cards, telling you only the column (one, two, or three)
that contains the card. From top to bottom, scoop up the cards in some other column,
followed by the cards in the designated column which are stacked underneath the cards
thus far, and finally the cards in the remaining column. Flip the deck over and repeat
the dealing process in step A above.

C. Once more ask your volunteer which column now contains the card previously
selected. Pick up the cards in the same manner as described above, again with the
designated column picked up secondly. Repeat dealing one last timme.

D. Inquire about the column one last time. The mystery card will be in the fourth
position (the middle) of the column identified by your participant. Now what is a
card trick without any sleight of hand? So instead of identifying the card verbally,
show the card in grand style by following these steps: Pick up the columns as before

*Southeastern Louisiana University




118 ACOSTA AND COWART

(the secret card is of course in position eleven (the middle) out of the twenty-one card
deck) and afterwards lay the first seven cards face down, one on top of the other. The
next seven are laid atop this stack, each face down but only slightly overlapping one
another, the cards alternately protruding froin the top and bottom of the deck. The
last seven cards are placed atop these, nice and flush just like the first seven. The
result looks like a deck of cards with some of the middle cards sticking out the top
and bottom. Picking up this bundle of cards with a firm grasp so that none of the
protruding cards slip, gently pack the deck a few times on a firm surface allowing the
middle cards to settle a bit. Pack from the other end now, and repeat this process,
alternately packing from the bottom and top. All the middle cards should eventually
settle flush with the rest of the deck with one card still protruding-the secret card
occupying the middle position. You never even mention the card chosen by your
patient friend. It appears!

We now unveil the secret of the trick and describe why the chosen card will always
end up in the middle spot of the deck. We also generalize and ask what happens when
the 7 x 3 pattern is replaced by a k xm pattern, k, m > 2. We wish to mention another
article on this topic, recently brought to our attention [1].

2. A mathematical translation. Once the cards are dealt and a specific card
chosen, the vertical position of the card in the designated column is denoted z, with
1 € & < k necessarily. When the cards are picked up in the aforementioned manner
(always with the chosen column picked up next to last) then flipped and dealt, the
same card is now in slot ["#] of some column, where [y] denotes the smallest
integer greater than or equal to y. To see this, note that after picking up the cards,
the chosen card occupies position & + z in the deck just before dealing, and by the
Division Algorithm there is a unique ¢ > O suchthat k+z =q-m+7r, 0<r < m.
When r = 0 the card will appear in the last spot of the ¢*" row after the cards have
been dealt again. If r > 0, the card appears in the 7" spot of the (¢+1)%* row. Either
way, the new row housing the card is given by ["—;f] , which necessarily lies between
1 and &, just like z. We have just completed step B of the card trick and have made
use of the following function.

fize "k + z'l
m

Iterating produces a dynamical system on the set of positive integers {1, 2,3,4,...,k.}
We describe the end behavior of this system. For what follows, suppose —7;’9—1 ¢ 7,
but see comments afterwards.

1. There is a unique s € {1,2,3,...,k}, called the stable element, with the
k

m—1
to be identified by the participant) eventually occupied by the mystery card.

2. All z € {1,2,3,...,k} with z < s satisfy f(r) > z. Similarly, all z €
{1,2,3,...,k} with z > s satisfy f(z) < z. Therefore all £ map to s af-
ter a certain number of iterations of f. The system is said to be attracting.

3. The minimal number of iterations, n, required for all elements to map to s
depends upon m and k. In fact, [log,, k] —1 < n < [log,, k] + 1. (Exact
expressions for n are given in the proof.) Note we actually deal the cards
n+1 times, as the first deal (step A) is not an iteration of f. Likewise, we've
asked our participant to identify the column n + 1 times (once after each
deal).

property that f(s) = s. In fact, s = 1 .This is the slot (in some column
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In the case -"ﬁ € Z, there are two consecutive stable elements, s; =
ok
52 = 5O

ko,
= and

+ 1, the former attracting all x < s;, the latter attracting all x > s5.

3. Examples. We explicitly follow the map for our original 7 x 3 example under
several iterations of f.

1—-3—4
2— 34
3—4—4
44— 4
S5r+4rs 4
6—5m—4
7T—5—4

We thus see that after two iterations of f (steps B and C), the original row position
z is mapped to the middle position, 4, irrespective of the initial value for r. Utilizing
our notation in 2 and 3 of Section 2, we say for £ = 7 and m — 3 we have n = 2 and
s — 4, see Table 3.1. The data for & < m can be similarly represented. In fact, n =1

k| m E n | {log,, k| E |m s n | [log,, k]
7 |3 4 2 2 10 [ 5 3 2 2
8 | 3 4,5 2 2 11 | 5 3 3 2
9 |3 5 2 2 12 |5 3.4 2 2
10 |3 5,6 2 3 13 | 5 4 2 2
11 |3 6 3 3 14 |5 4 2 2
12 |3 6,7 2 3 15 | 5 4 3 2
13 | 3 7 3 3 16 | 5 4,5 2 2
17 | 5 5 2 2
100 | 3 | 50,51 |4 5 : ] ; : :
101 | 3 51 5 5 101 | 5 26 3 3
g : : : : 102 | 5 26 4 3
1000 | 3 | 500,501 | 6 7 103 | 5 26 4 3
1001 | 3 501 | 7 7 104 | 5| 2627 |3 3
7 |5 2 2 2 - : :
8 |5 2,3 2 2 1000 | 5 | 250,251 5
9 |5 3 2 2 1001 | 5 251 5 5

TABLE 3.1

or 2 for all such cases.
The examples in Table 3.2 demonstrate that the chosen card can be distinguished
from a large number of cards in relatively few iterations.

4. Algebra of [y]. For the proofs that follow in section 5 we exploit the following
properties of the smallest integer function. The proofs are left to the reader, but as a
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k m s n | [log,, k|
100000 100 1011 | 3 3
1000000 | 100 | 10102 | 3 3
10000001 | 1001 | 100001 | 3 3
TABLE 3.2

hint, prove 3 first, using it in turn to prove 1.

(4.1) [z+y] < [z] +[y].

(4.2) [z -yl > [z] - [y].

(4.3) [z+n]=[z]+n, nezZ.

5. Proofs.

Proof. For the proof of result 1, recall f : =z — [%1 The condition that
f(z) =z is thus

[k+x k+z

-lza:@z l<« — <=z
m

m
>mr-m<k+zx<mz
=>(m-1zr<k+m and k< (m 1)z

k+m
=< ——— and
m—1

<
l_.'L

k k m k 1
= —— < < = 1+ 1
m—l_z m 1+m—1 mfl+ m—1 (1)

To prove that z is uniquely determined by this inequality it suffices, by the very last

equality, to demonstrate —15 < "m—’“—i-’ — k. In other words, —1 is too small for

lrﬁ-' and "ﬁ + ﬁ} to be different integers. But this follows from:

k+1 k k+1 k k k
<_ R = - < —
m—1 m-—1 m—-1 m -1 m—1 m-—1
= 1 < k _ k
m-1_"|m-1 m—1"

Note that here we explicitly use the assumption ﬁ ¢ 7Z so that {#—1—] = fkip

m—1?
p > 1. Thus, there is exactly one integer satisfying (1), namely s = [;l—'”:ﬂ . Note, for

k =8 m = 3, we have s = 4, 5. In all such examples where T—Hk—l € Z, two consecutive
integers satisfy the double inequality (1). O

Proof. For the proof of result 2, suppose & < s, in fact, # = s —t. Then under our
map f we observe the following:

o~ [5] = |]

S N RE BB
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Note this last inequality is strict except for t = 1. Of course we don’t need the strict
inequality since by proof 1 above, f(z) = = only happens for z = s. We also used the
facts that s is stable under f and the function [z] obeys a triangle inequality (see
section 4).

An analogous argument shows f(z) < z for z > s.

1]

Proof. For the proof of result 3 we consider three cases.

Case 1: m = 2. Here, s = [m—k—f = k and thus after one iteration of f the

numbers k — 1 and k both map to k. We offer a more concrete interpretation. The
two cards occupying position k — 1 and k respectively in the column containing the
selected card will occupy consecutive slots in the &*" row upon redealing (step B).
Composing with f again produces a map that sends k — 3,k - 2,k — 1, and k to k.
In other words, the two cards sent to row k — 1 after the first iteration are in the
analogous position as the card in position k& — 1 mentioned above and thus will get
sent to the k*" row upon redealing. Of course only one of these two cards actually
ends up on the k*" row, namely the card in the same column as the selected card. but
both cards have this potential and are thus counted, yielding a total of four original
positions sent to k under two iterations of f. The next iteration will bring the total
up to eight: two cards in each of the rows designated by the numbers previously
mapped to k, namely, k — 3,k — 2,k — 2, and k. In general then, after n iterations, 27
elements have mapped to s = k. Solving the inequality 2™ > k gives us n > log, k, so
n = [logy k].

Case 2: m = 3. Here, s =

rm"_l = [%] and the same sort of argument as above
shows that in the case k odd, 3" positions map to position s after n iterations. It is
important to note that the card occupying position s in the original column containing
the selected card will be sent to the middle spot (iniddle row, middle column) in the
card configuration after the first iteration so that the same number of positions map
to s from above and below. This makes the calculation easy: n = [logz k| . When
k is even, we see that ﬁ € Z and there are two s as mentioned above (Section
2). Upon the first iteration (redealing) these two positions of the original column
now occupy positions (ﬁ, 3) and (RA_—I +1, 1) respectively so that an equal number
of positions map down to s = mL_l as up to s = Trnkj + 1. After n iterations
then a total of 2 - 3™ postions have mapped to either s; or sa, so 2-3" > k yields
n = [logs 5] = Mogs k — logz 2] = [logs k] or [logs k] — 1, (see the table in section 3
for both occurences.)

Case 3: m > 4. We first claim that s = "-—"—] < % To see this, note ;ﬁ < %

and thus it suffices to show [£] < £ Now, [5] =%, &, or .22, each of which can
be handled individually.

k&

3 2
k+1 k 1 k 2k+3 3k k :
_— = P — e < —_ = = > 2D
3 3+3<3+2 5 5 2fork 3
k+2 k 2 k 2k 4+ 6 k k
_— — - = < — = : > 0.
2 3+3<3+1 c <% 5 for £k >6

The reader can finish by explicitly checking the inequality for k = 2,3, 4, 5.
Continuing to use our notation, we will count the number of iterations required
for the chosen card to map to the s slot starting out at position z — k, i.e. the
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last card in its column. This card is farthest away from position s (< %) and, as
f(k) > f(k —t), requires the most iterations to reach the stable position, thereby
providing the minimum count n which we are seeking. After one iteration the s-card
necessarily occupies position (s, r), where, as before, k + s = mq + 7, r < m by the
Division Algorithm. Thus, the [ + 1 cards in position s,s + 1,5+ 2,...s + [ of the
original column all mapped to row s under one iteration of f. Here ! represents the
quantity m — r. Under the next iteration then any card in row s, row s+ 1,... and
row s + [ will all map to position s for a running total of (I + 1)m cards. In general,
after n iterations a total of (I + 1)m™ ! cards have mapped to position s. We now
solve for n required for the tally to reach k — s+ 1, i.e. the number of cards between
s and k, inclusive, in the original column. Since k — s +1 = (I + 1)m™ !, we have
n = [log,(k+1 - s) —log,, (I +1)+1] < [log,, (k) + 1] < [log,, k]+1, as claimed.

We can also get a lower bound for n. Claim: n > [log,, k] — 1.

n = [log, (k+1—s) —log,, (I+1)+1]
> [log,,(k+1—s) —log,,(m +1)+1]

~ [tog (FT125) 1] = [iog,, (X1 7%)] 41
= | 1%6m m+1 OB m+1

i fi ] = Hrnd)
7 |t (T;L—L +1 (sincem >4 and s < %),

[log,,(k+m — 1) — log,,(m* — 1)] + 1

[log,, (k+m — 1) — log,,(m?)| + 1 = [log,, (k+m —1) — 2] + 1
= [log,,(k+m —1)] — 241 = [log,,(k+m —1)] — 1

> [log,, k] — 1

Il

IV
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FACTORIZATION OF THE PRIMES
AYOUB B. AYOUB*

A prime number p has, by definition, no prime factorization other than the trivial
one p-1. However, a prime number can be factored into numbers which do not belong
to the ring of integers of the rational field. In this note, we will show that the odd
prime number p has the factorization:

2 4 -1
p=2F I.SmQ%.SmQ?W.Sin?G_W...(p__E

p p
Although this result is interesting, it is the technique used to prove it, that is more
significant. Here, the concept of a splitting field, which in this case is the cyclotomic
field, will be used together with some facts from number theory.
For the proof, we will use the binomial equation £? — 1 = 0. This is an equation
whose roots are the p’th roots of unity. Since zP = cos2ar + isin2nr, then » =
(cos 277 + isin 27r7)1/P. When De Moivres Theorem is applied, we get

2rT 2rma
T = €08 — + isin — e/ where r =1,2,3,...,p.
p
If we let e2™™/P =  , then the roots of the equation are 1,w,w?,...,wP L.

Now, zP — 1 can be factored in two different ways, and we have
(z - DEP 4272+ 4+ D) =(z-1)(z—w)(z —w?) - (z—w )
from which we get the identity
(0.1) P P 4t l=(r—w)(z—-w?) - (x—wP )

The polynomial on the left side of (0.1) is called the p’th cyclotomic polynomial
and is known to be irreducible over the rational field (. The right side, however.
represents the factorization of the polynomial over the cyclotomic field (J(w), see [3].

Now, if we set x = 1 in (0.1), we get

p=(r-w)z-w?) (@ —w )

Each factor on the right can be shown to be a prime integer of the cyclotomic field
Q(w), [1]-

Since {1,2,3,...,p- 1} is a reduced residue system (mod p), then {2,4,6,...,2p—
2} is also a reduced residue system (mod p), see [2]. Consequently p = (z — w?)(zx —
wh(z —wb) - (z —w?P2).

Now, if we divide the factors by w,w?,w?

,wP~ 1 respectively, and notice that

w .w2 . ws .. .wp 1 — wp(p' 1)/2’ we get
p= (" —w)w? ) P ) (P ).
Since p — k = —k(mod p), then to each factor there is another one with opposite

sign; therefore
p = (_1)(;1 1)/2(w _— 1)2(w2 w 2)2(0.)3 - w—3)2 . .(w(p—l)/? _ w(,l —p)/2)2

*The Pennsylvania State University, Abington College




124 AYOUB
Butw —w ™ = 2isin2%

So, p = (—1)®~1/2(2isin 27 /p)?(2isin 47 /p)*(2isin 67 /p)? - - - (2isin(p - 1)7/p)?
After simplifying, we get

p =27 'sin®(2n/p) sin’(4n/p) sin®(67/p) - - -sin®((p — 1)7/p)

And now, we verify this result for p =3 and p = 5.

If p = 3, we have 22sin*(27/3) = 4(v/3/2)> = 3, and if p = 5, we have
24sin?(27/5) sin?(4n/5) = 16((5 + v/5)/8)((56 — v/5)/8) = 5.

One should bear in mind that factorization of a prime depends on the extension
field Q(m) which contains that prime. For example, in the Gaussian field Q(i), the
rational prime 5 can be factored into two Gaussian primes as 5 = (2 — i)(2 + 1) while
the prime 3 can not be factored because it is a Gaussian prime itself, see [3].

More information about this topic may be found in [2].
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ELIMINATING FALSE POSITIVES IN A CRYPTOGRAPHIC
METHOD *

ANNE MARIE DADDEA! AND MICHAEL A. JONES®

Abstract. Using a cryptographic method where two people exchange envelopes containing
random numbers, it is possible to determine if they share confidential information without revealing
the information. However, there is a possibility of a false positive; that is, there is a possibility
that the people believe that they share the same information when they do not. A Monte Carlo
simulation is used to determine the probability of a false positive. Restricting the random numbers
can eliminate this problem without considerably comprising the random aspect of the procedure.
Although the envelope method involves the addition of random numbers, multiplication could be
used, as well.

1. Introduction. Cryptography can be used to determine if two people share
confidential information without revealing it. This is the case if two people are trying
to decide if they have the same person in mind while maintaining the confidentiality
of that person’s identity, such as two managers deciding whom to hire or fire. A
similar situation could arise in a sexual harassment case where both the suspected
harasser’s and the victim’s identity cannot be revealed. Likewise, it is important when
discovering if two business associates know the same password for a computer program
or two children know the same password for entry into a clubhouse. An article in The
Economist [1] focuses on one method from an article by Fagin, Naor, and Winkler [2].
In their paper, they examine different methods for comparing confidential information.

Although Fagin, Naor, and Winkler pose several solutions to the problem, the
technique examined in [2] utilizes only some paper, a pen or pencil, and a supply
of envelopes - without any large prime numbers. The participants translate their
information into a sequence of 0’s and 1’s through the use of a binary code. After
writing down a set of random numbers, the participants sum the numbers in a subset
determined by their binary sequences. If the participants’ sums are the same, then
the confidential information is believed to be the same. As discussed in [1] and [2],
there is a possibility of a false positive; the sums are the same, but the information is
different.

In Section 2, we review the envelope method and present examples, including
a false positive. We determine the likelihood of a false positive through the use
of a Monte Carlo simulation in Section 3. By restricting the set of numbers, we
mathematically eliminate the possibility of a false positive. Although the numbers
are no longer random, their arrangement is random. The large number of possible
arrangements ensures the integrity of the restricted procedure. By noticing that the
subset of the restricted numbers was more important than the numbers themselves, we
eliminate the need to add the numbers. Instead, the participants compare two binary
vectors; if the vectors are the same, then the paricipants share the same information.
This mathematical development appears in Section 4. The approach in [2] can be
modified by multiplying random numbers where identical products imply identical
information. We consider such an approach in Section 5 and again eliminate the
possibility of a false positive.

*This work was supported by a Student Faculty Research grant from the Office of Research and
Sponsored Programs at Montclair State University.
tMontclair State University




126 DADDEA AND JONES

2. The Envelope Method. To use the envelope method, the participants con-
vert their information into binary form, using the same binary code. For this paper,
we use the code in Figure 2.1. It consists of 5 binary digits in order to encode the 27

“’10 0 0 O O IO 1 0 O 1}JR|1 0 0 1 O
AJoO 0O 0 O 1|J]JO0O 1 0 1 0fS|1 0 0 1 1
B|o o o0 1 0)|JK|(o 1 0 1 1}|T|1 0 1 0 O
clio o o0 1 1fjLjo 1 1 0 OffU |1 0 1 0 1
bDjo o1 0 OfM|(O0O 1 1 0 1}Vl 0 1 1 0
E|0O 0 1 0 1f|N|O 1 1 1 O|WJ|1 0 1 1 1
F|0 0 11 0}O|0 1 1 1 1(|X|1 1 0 0 0
G|0 0 1 1 1||Pf1 0 0 O O|Y|1 1 0 0 1
H{0O 1 0 0 0}jQf1 0 0 0O 1}jZ|1 1 0 1 0

Fi1G. 2.1. Encoding the alphabet.

necessary characters, the 26 letters and a “space.” We explain the envelope method
through the following examples.

EXAMPLE 1. Assume that two managers want to determine if they want to
hire the same applicant. Before applying the procedure, the managers must agree
on restrictions on the number of letters to spell the applicants’ names. In order to
simplify the procedure, assume that the names of the applicants are at most three
letters in length. The managers agree to fill the remaining characters after the name
as “space” if they want to hire applicants whose names are less than 3 letters.

Assume that Manager A wants to hire “Rob” while Manager B wants to hire
“Ed.” Each manager translates the name of his top candidate into a binary sequence
of 15 digits. The manager lists the sequence vertically and places random numbers
in columns labeled 0 and 1. Both managers’ encoded names and random numbers
appear in Figure 2.2. Obviously, one manager’s random numbers and encoded name

0 1 0 1
1| 4 |56 o |[18] 73
o| | 76| =24 o} |85] 54
R o [16] 72 E 1| 30 |18
1| 81 [92 ol [5] 54}
0 11 1| 92 [o]
ol [1] 5 o| [73] 23
1| 25 |64 0| [41] 99
o 1| 19 |21 D 1| 87 |60
1| 70 |48 o| [28] 9
1{ 83 |37 0| [15] 69
ol [71] 16 ol [32] 77
0| |68] 82 o| [95] 18
B 0| [24] 40 "woof | 7] 26
1| 12 [22] 0| |55] 35
o| [28] 6 o| [74] 82

FiG. 2.2. Manager A’s numbers (left) and Manager B’s numbers (right) yield distinct sums
and distinct names.
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arc not observed by the other manager. Manager A and Manager B then add up the
random numbers corresponding to their encoded names; these numbers are the boxed
numbers from their own columns in Figure 2.2. Manager A’s first sum is 627 and
Manager B’s first sum is 601.

The managers write their random numbers on separate slips of paper and seal the
slips of paper in separate envelopes. The managers place their envelopes in two stacks,
one for each of the 0’s and 1’s coluinns of random numbers, and keep the envelopes
in sequential order - corresponding to the order in the columns. Hence, Manager A’s
fourth envelope in the 1’s stack contains a slip of paper with the fourth number in
the Manager A’s 1’s column. In our example, this envelope would contain “92.”

The two managers exchange their stacks of envelopes. The managers open the
envelopes that correspond to their binary sequence, returning the remaining envelopes
that are then destroyed, in the presence of both managers. A count of the envelopes
guarantees that the managers took the right number of cnvelopes. Each manager
adds up the random numbers in the selected envelopes (as shown by the mumbers in
bold italics in the other managers’ columns in Figure 2.2) and arrives at a second
sum. Manager A’s and Manager B’s second sums are 887 and 647, respectively. After
adding together both sums the managers reveal only their total sum. Manager A’s
grand total 1514 (— 627 + 887) and Manager B’s grand total 1248 (= 601 + 647) arc
different. Since the totals are different, it follows that the names must be different,
too. The managers do not have the same candidate in mind and can continue to
discuss all of the candidates.

EXAMPLE 2. Assume the managers use the same random numbers as in Example
1, however, they both use the name “Ed.” Again each party adds up the random
numbers corresponding to his code as shown by the boxed numbers in Figure 3.
Manager A’s sum is 647 and Manager B’s is 601. After sealing and exchanging the

0o 1 0 1
o [4] 56 of [13] 73
o| [76] 24 o| [85] 54
E 1| 16 [72 E 1| 30 [18]
0 92 o| [5] 54
1| 3 [11] 1] 92 [o0]
o| [1] 55 of [73] =23
o| [25] &4 o| [41] 99
D 1| 19 |21 D 1| 87 |60
o| [70] 48 o| [28] o
o| [83] 37 o| [15] 69
ol [71] 16 of [32] 77
o| [68] 82 o| [95] 18
"ol [24] 40 mrol| [7] 26
o| [12] 22 o| [s5| 35
o| [28] & ol [74] 82

FiG. 2.3. Manager A’s numbers (left) and Manager B’s numbers (right) yield identical sums
and identical names.

envelopes, they add up the appropriate random numbers (those in bold italics from
the other managers’ columns). Notice that the boxed and bold, italic numbers arc
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identical. Manager A’s second sum is 601 and Manager B’s is 647. Once the two
totals are combined and they reveal their grand totals, they discover that the grand
totals are the same, 1248. They believe that the names are the same. And, in this
case, they are right.

However, as indicated in [1] and [2], there is a possibility of a false positive. That
is, it is possible that the grand totals of the managers are the same, but that the
names are different. Indeed, we know that different subsets of numbers may add to
the same value.

ExAMPLE 3. To demonstrate the possibility of a false positive, consider the
random numbers used in Figure 2.4. Manager A adds the first sum of 627 to the

0 1 0 1

1| 94 |56 o (18] 73

o| [76] 24 o| |85] 54
R o| [16] 72 E 1| 30 |18
1| 81 [92 ol [5] 54

0 87 1| 92 [o]

ol 1] 55 o |73] 23

11 75 |64 o| [41] 99
o 1| 19 |21 D 1| 87 |60
11 70 |48 of |28] 9

1| 83 [37 o| [15] 69

ol [71] 16 o |32] 77

0| |68] 82 o |95] 18
B 0| [24] 40 el | 7] 26
1| 62 [22] o| [55] 35

of{ [28] & o| [74] 82

FiG. 2.4. Manager A’s numbers (left) and Manager B’s numbers (rght) yield identical sums,
but different names.

second sum of 887 to yield 1514. Manager B adds the first sum of 601 to the second
sum of 913 which also equals 1514. Since the totals are the same, they assume that
the names are the same; however, in this case, the names are different and the sums
are coincidentally the same because of the random numbers selected.

3. The Likelihood of False Positives. Before trying to eliminate the possibil-
ity of a false positive, we wanted to know how frequently false positives occur. If they
don’t occur very often, then we could accept the risk of using the envelope method
without any modifications. By using a Monte Carlo simulation, we determined the
likelihood of a false positive. For each iteration of the program, we assigned 2n ran-
dom numbers to each manager; these numbers were positioned in two columns as in
Figure 2.1. We assumed that Manager A had a fixed name, or fixed binary sequence
of length n; we used the sequence of all 0’s. We considered every possible binary
sequence for Manager B. If the grand totals were equal for a sequence other than
all 0’s for Manager B, then this was considered a false positive. We ran this simu-
lation determining the probability of a false positive for different values of n and for
restrictions on the set of random numbers.

The probability of a false positive, as determined by the Monte Carlo simulation,
appears in Figure 3.1. In Figure 3.1, the rows indicate a fixed range of values from
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1 2 3 4 5 6 7 8 9 10 11 12 13
2 37.19 74.7 93.42 98.23 99.35 99.79 99.94 99.98 99.99 100 100 100 100
4 17.24 41.19 68.39 88.2 95.93 98.45 99.5 99.8 99.91 99.94 99.95 99.99 99.99
8 8.3 21.06 39.74 63.72 83.84 94.28 98.05 99.26 99.72 99.87 99.91 99.98 100
16 4.11 10.91 22.38 39.27 59.45 80.1 92.4 97.37 98.93 99.63 99.85 99.94 99.98
32 2.27 5.58 11.05 21.62 36.29 56.46 76.03 90.57 96.41 98.71 99.41 99.74 99.9
64 0.97 2.69 5.64 11.42 19.93 34.17 53.62 74.57 89.3 95.75 98.42 99.3 99.73

128 0.5 142 296 6.08 10.51 18.95 32.22 51.6 72.19 87.93 95.38 98.33 99.09
256 0.29 0.73 1.55 2.87 5.04 9.71 17.45 30.14 47.91 69.39 85.85 95.07 97.91
512 0.16 0.4 0.78 1.56 2.65 4.86 9.43 16.62 29.36 46.25 67.81 85.2 94.4

1024 | 0.09 0.18 0.39 0.8 1.38 2.48 4.54 8.46 15.86 27.15 44.01 66.78 83.74

2048 | 0.08 0.14 0.25 0.39 0.79 1.31 2.38 4.48 8.07 14.91 26.07 42.64 64.06

4096 | 0.01 0.02 0.06 0.22 0.29 0.67 1.18 243 4.3 7.7 14.39 25.62 41.76

8192 | 0.01 0.02 0.06 0.12 0.23 044 0.57 1.14 2.11 4.03 7.46 13.83 23.8

16384 0 0 001 001 006 012 029 058 1.13 222 3.8 7.2 13.46

32768 0 0 0.01 0.02 002 011 0.23 0.38 0.7 1.46 2.69 5.93 11.66

Fi1G. 3.1. Monte Carlo simulation results of the percent hikelihood of a false positive for 1 to 13
bits of information and for random numbers draum from {0,1,2....,2" —1}.

which random numbers were selected. In the row denoted 2", the random numbers
were selected from the set of 2" numbers, {0,1,...,2" — 1}. The columns fix the
number of binary digits used by each manager. For each entry in Figure 3.1, the
simulation was run for 10,000 sets of random numbers. As expected, the range of
random numbers and the number of binary digits affects the probability of a false
positive: increasing the range of the random numbers decreases the likelihood of a false
positive, while increasing the amount of binary information increases the likelihood
of a false positive. Even for only 13 binary digits, which is just shy of 3 letters in our
binary code, the probability of a false positive is high for any reasonable restriction
on the set of random numbers.

4. Eliminating False Positives. Increasing the range of random numbers does
decrease the failure rate, but the numbers become too large to be manipulated easily.
It would be ideal to modify the envelope method, eliminating the possibility of a false
positive, while keeping the addition manageable.

To introduce the ideas and simplify the analysis, we examine all possible suins of
the random numbers for one of the two managers. Our goal is to determine how to
ensure that the sums generated by all binary sequences are distinct. Once olie manager
has 4n random numbers that guarantee distinct sums for sequences of length 2n, then
the first n rows of numbers could be used by Manager A while the second n rows
of numbers could be used by Manager B. Both managers would have 2n random
numbers and be able to use sequences of length n. This would guarantee that sums
determined by the random numbers of both managers would be distinct unless the
binary sequences were identical.

EXAMPLE 4. Assume that one person has 8 random numbers, 4 in each column.
Again, the two columns could be labeled 0 and 1.

27 4
10 69
56 4

16 81

The 16 possible 4 digit binary sequences yield 16 distinct suins:
57,74,109,116,122,126,133,139, 168,174,181, 185, 191, 198, 233, and 250.
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There is no possibility of two binary sequences yielding the same sum using this set
of random numbers.

To generate the numbers in Example 4, we altered the Monte Carlo simulation
from Section 3. Is there a more natural way to guarantee that the numbers sum
to distinct values? Further, is it possible to find “minimal” sums? In the previous
example, the 16 sums ranged from 57 to 250. We can ensure distinct sums and reduce
the range of the sums by restricting the numbers; the numbers will no longer be
random, but will be placed in a random order. If a manager selects either 0 or a
different 2* for k = 0 to n — 1 for the entries in the n rows, as in Example 5, then she
can ensure that binary sequences yield distinct sums. This idea is used to eliminate
false positives by having one manager use 2* for & = 0 to n — 1, while the other
manager uses 2* for k =n to 2n — 1.

EXAMPLE 5. Assume that a manager places a 0 and a different 2* for & — 0 to 3
in each row, as below,

oo NO
=00 O

All possible 4 digit binary sequences yield 16 distinct sums:
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14, and 15.

These possible sums are minimal because they consist of the 16 consecutive integers
between 0 and 15.

The above example eliminated the possibility of a false positive for a single man-
ager; that is, it guaranteed that all possible binary sequences yielded distinct sums
of the manager’s own numbers. Before applying this idea to two managers, as was
described previously, the example is extended and shown to eliminate false positives
for any number of bits.

THEOREM 4.1. For the two columns of numbers,

R e B e i )
0 W= BN =

6 211' 1

all possible binary sequences of length n generate distinct sums of the consecutive
integers between 0 and 2™ — 1.

Proof. This is a proof by mathematical induction on the n binary digits. For
n = 1, the columns and sums are cqual to equal 0 and 1. These sums are distinct and
minimal.

Assume the following n — 1 rows yield sums that are the consecutive integers from
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Oto2" ' - 1:
0 1
0 2
0 4
0 8
0 2n 2

Adding another row to accomodate another binary digit is equivalent to adding a 0
or 2% 1 to the possible sums from the first n — 1 pieces of binary information.

If adding 0, then the sums remain the same: 0,1,2,3,..., and 2" ! — 1. If adding
271 then the sums equal 27 1,27 141,27 142 27143 and2™ '4+2" 1-1=
2™ — 1. The sums are distinct and minimal. Hence, it is true for every value of n. 0

Although this is a valid way to eliminate two sequences yielding the same sum,
restricting the numbers to such an extent damages the random aspect of the method.
Eliminating the random numbers hurts the integrity of the method, since manager’s
know what numbers the other manager uses. On the other hand, even thouglh the
numbers are restricted, they can still be arranged in a random order.

For n rows, there are 2"n! ways to arrange a 0 and a distinct 2%, for 0 < k <n—1,
in every row. Since k is an integer between 0 and n — 1, inclusive, there are n values
of k and n! ways to determine which value of k appears in which row. For each row,
the 0 can appear in either column. Since there are n rows, the 0’s can be arranged in
2" ways. Hence, there are 2"n! ways to arrange a 0 and a distinct 2* in n rows.

To emphasize the large number of arrangements, realize that for a 3 letter word
or 15 binary digits, there are 2!1%15! or 4.28 x 10!¢ arrangements of 0’s and distinct
values of 2¥. And, of course, all arrangements yield distinct and minimal sums.

So far the method for climinating false positives has concentrated only on the
random numbers of one manager. This idea can be extended to both managers if
different powers of two are assigned to each. For n binary digits, one nanager can
use integer values for & between 0 and n — 1, while the other manager uses integer
values between n and 2n — 1. This will ensure distinct and minimal suins. There are
227n!n! ways to arrange the numbers.

EXAMPLE 6. If each manager selects numbers with a 0 and a 2* in each row
and Manager A selects numbers where 0 < & < 14 and Manager B selects numbers
where 15 < k < 29, they arrange those numbers in a random manner as in Figure 6.
Manager A’s own sum is 22523 and Manager B’s is 190644224 (adding the manager’s
own boxed numbers). After sealing and exchanging the envelopes they add up the
appropriate numbers and Manager A’s sum using Manager B’s numbers is 272924672
and Manager B’s sum using Manager A’s numbers is 9153 (adding the other manager’s
bold numbers). Manager A adds 22523 to 272891904 which equals 272914427 and
Manager B adds 190644224 to 9153 which equals 190653377.

Although this eliminates the false positive by yielding distinct and minimal sums,
the numbers are large and the sums are cumbersome. The same idea can be simplified
using vectors. Rather than writing 2* as an integer in each row, we could leave the
integers as powers of 2. Therefore, the numbers in Figure 5 could be changed from
32 to 25, etc. Adding the boxed numbers of 3242+ 16384 +. ..+ 256 for Manager A
can be written as: 1-2% + 1.2 +1-2" 4. .+ 128 Similarly, the sum of Manager
B’s boxed numbers is: 1220 40-226 4+ 1.219 4+ .+ 022! The coefficient of 0 or
1 for each 2* indicates whether that power of 2 is part of the sum of their encoded
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0 1 0 1
1 0 32 0| 1048576 0
0 2 0 0 0 67108864
R O 16384 0 E 1 0 524288
1 0 16 0| 33554432 0
0 128 0 1 32768 0
0 0 2048 0 0 536870912
1 0 512 0] 134217728 0
o1 0 8 D1 0 4194304
1 8192 0 0 65536 0
1 0 4096 0| 16777216 0
0 64 0 0 262144 0
0 1 0 0 0 131072
B O 0 4 ""o 0 8388608
1 0 1024 0 0 268435456
0 256 0 0 0 2097162

Fic. 1.1. Manager A’s numbers (left) and Manager B’s numbers (right) are distinct powers of 2.

information. The same is done with the numbers in bold italics so that both Manager
A and Manager B have their combined sums represented by either a 0 or a 1 times
2% for every k.

The manager’s sums are translated into a (0, 1)-vector by considering each power
of 2 as part of a basis. The k' entry of the vector indicates whether 2% is part of the
sum. To determine whether the naines are the same, the managers need only compare
their vectors. For Example 6, Manager A’s vector is

(1,1,0,1,1,1,1,1,1,1,1,0,1,0,1,1,0,0,1,0,0,0,1,0,0,0,0,0,1,0)
and Manager B’s vector is
(1,1,0,1,0,0,1,0,1,0,0,0,0,1,0,0,1,0,1,1,1,0,1,0,1, 1,0, 1,0,0).

Since the vectors are not identical, the names are different.

In general, a sum looks like ag2° +a,2' +a22% +. ..+ aa, 122" ! where a; = 0 or
1. The vector a = (ag,ai,...,a2, 1) contains the same information as the sum. To
recap, the managers begin by changing a word into a binary sequence. This binary
sequence is converted to a sum by adding different powers of 2, which is then converted
back into a binary sequence!

The middle process can be eliminated and the managers can flip and permute
the bits of the original encoded message; flipping and permuting bits is a one-to-one
function. Manager A’s function can be determined given the arrangement of the
powers of 2 in the two columns. To demonstrate, consider Manager A’s columns of
numbers from Example 6 where a = (ag, a, - - ., a14) is Manager A’s original sequence.
The process of adding the different values and changing back iuto a (0, 1)-vector is
represented by the map

- * * * %
f(a) = (ai;, a1, @12, a7, as, ap, ajg, a1, a1y, Go, A13, A5, Ag, Ag, A3)

where a; =0ifay =1 and a;, = 1ifa =0.
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Additionally, Manager B’s random assignment of powers of 2 can be determined
by a one-to-one function g. If a and b are Manager A’s and Manager B’s origi-
nal sequences then Managers A and B compare the following vectors of length 2n:
(f(a), g(a)) and (f(b),g(b)). The swapping of envelopes is equivalent to swapping
functions. Manager A adds up numbers from the Manager B’s columns to deterinine
the image of a under Manager B’s function; Manager B makes a similar computation.
If the vectors are the same, then the original information is the same, too.

5. A Multiplicative Approach. Adding numbers and guaranteeing distinct
sums is a bit harder than multiplying numbers and guaranteeing distinct products.
The envelope method can be modified to use the multiplication of random numbers,
as opposed to the addition of random numbers. If every number is restricted to be
a distinct prime, then the products are distinct. To restrict the size of the products,
in every row, a manager places a 1 in one column and a prime in the other column.
Manager A selects primes below a certain value and Manager B selects primes above
a certain value. By the fundamental theorem of arithmetic (3], if the products are
the same then they factor uniquely. Since the primes appear at most once, when the
products are the same, then the names are the same.

Of course, we need not worry about running out of primes. However, the technique
to guarantee distinct sums above can be used to guarantee distinct powers of primes,
as in the following example.

EXAMPLE 7. Assume the following two columns of numbers are used for the
multiplicative variant of the envelope method.

1 3%
1 32
1 32
1 3%

By Theorem 4.1, all possible binary sequences of length 4 yield 16 distinct products:
30,31,32...,3" and 31

As in the additive approach, the possibility of a false positive has been eliminated.
And, as in Section 4, there are 2"n! ways to arrange the numbers.
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THE DETERMINANT OF A (A, N) PRETZEL"

NITISH DASS, JONATHAN MCGRATH AND ERIN URBANSKI

Abstract. We prove that the determinant of a (m,n) pretzel knot or link is m + n when
n,m > 0.

1. Introduction. For any k-tuple of integers, define a (my,ma. - -, my) pretzel
to be the knot or link with |my| + |ma2| + - - + |mu| crossings formed as illustrated
below.

Fic. 1 1. A (2,3, -3) pretzel

The determinant of a knot or link is the absolute value of the determinant of a
matrix associated with the knot or link. It is well known that the determinant is a
knot/link invariant [1, Theorem 5, p. 46). In this paper we will prove the following
result.

THEOREM 1.1. The determinant of a (m,n) pretzel is m + n when m,n > 0.

The proof of the theorem depends on a precise labeling schee for a (m, n) pretzel.
In section 2 we will describe the labeling scheme; in section 3 we will show how to set
up the associated matrix; in section 4 we will compute the determinant of the matrix;
and in section 5 we conclude with conjectures about other pretzels.

2. The Knot. We begin with a systematic method for labeling each crossing
and each arc on an (m, n) pretzel. To label the crossings, we start with the upper left
most crossing and assign it the number 1. Then moving counterclockwise, we label
successive crossings 2, then 3, and so on up to the final crossing which is labeled m+n.
We follow a systematic labeling scheme for the arcs as well. The uppermost arc is
labeled z;. Then at the nth crossing, the overlapping arc is labeled z,,4;. Continue
in this manner until all arcs have been labeled. See Figure 2.

3. The Matrix. A k x k matrix can be associated with any knot or link whose
projection has k crossings. Rows of the matrix correspond to the crossings of the knot
and columns correspond to the arcs.

*St. Olaf College
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x1

x3 x5

Fic. 2.1. A labeled (2,3) pretzel.

Consider the ith crossing. In row i, place a 2 in the column corresponding to the
overlying arc, place —1’s in the columns corresponding to the two underlying arcs,
and place zeros everywhere else. Follow this procedure for each of the k crossings.

The labeling scheme assures that at the ith crossing, the overlying arc is ;4 and
the underlying arcs are z; and z;42. The (m + n) x (m + n) matrix for any (m,n)
pretzel with the given labeling scheme basically follows a diagonal pattern of - 1’s on
the main diagonal, 2’s on the superdiagonal, followed by another diagonal of —1’s.
All other entries are (’s. See Figure 3.

1 2 -1 0 - - - - 0
0 -1 2 -10 - - 0
0 0 -1 2 -1
-1 0 - 0 -1 2

2 1 0 0 1|

Fi1G. 3.1. The matric for a (m,n) pretzel.

4. The Determinant. Now that the matrix has been established the determi-
nant can be computed. The determinant of the knot is the absolute value of the
determinant of the submatrix obtained by eliminating any one row and any one col-
umn of the original matrix (1, Theorem 4, p. 45). We will cross off the last row and
first column of the matrix for a (m, n) pretzel. This givesa (n+m—1)x (n+m—1)
matrix. For simplicity we will let p = m — 1 giving a (n + p) x (n + p) matrix.

To help us compute the determinant, we will reduce the matrix to echelon form.
We begin by successively interchanging the first and second row, then the second and
third row, etc. This continues n + p — 1 times until the original first row becomes the
last row. The subsequent matrix is in row echelon form except for the last row, which
is of the form [2 —10---0].
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Let R; denote row j. Perform the row operation which replaces row Ry, with
2Ry + Rp4p so that the last row is of the form [03 —20---0|. This process continues:
successively replace row R,,4p, with iR, ) + Rn4p 5o that at each step the last row
becomes [00---(¢ + 1) (—¢)0---0], where the entry i + 1 is in the (n + p, ) position
and the entry —: is in the (n + p,¢ + 1) position. The final operation will replace
Ry 4p with (n + p)Rnip 1+ Rayp 50 the last row becomes [00:--0 — (n + m)]. The
resulting matrix is seen in Figure 4.

[ -1 2 -1 0 0 0 1
0 -1 2 -1 0 0
0 TR -1 2

| 0 S 0 —(n+m) |

FI1G. 4.1. The row reduced matrz for a (m,n) pretzel.

The determinant of the matrix in reduced echelon form shown in Figure 4 is the
product of the entries along the main diagonal, (—=1)"*?~!(n + m). Row operations
which replace R,p with ¢R; 1 + R,4p do not alter the value of the determinant.
Moving the first row to the last clianges the value of the determinant by a factor of
(—1)**P-1, Thus, the determinant of the original matrix is (—1)"*? !(—1)""? (n+
m) =n + m, and Theorem 1 is proved.

5. Conjectures and Problems. CONJECTURE 5.1. The determinant of a
(m,n) pretzel is |m + n| for any m,n # 0.

One ought to be able to label the knot in the more general case using a similar
scheme to the one we suggested. The computation of the determinant should carry
through similarly.

CONJECTURE 5.2. A (m,n) pretzel is a link when both m and n are even or both
are odd. Otherwise the pretzel is a knot.

PROBLEM 5.3. What is the determinant of a general (my, mg,---,my) pretzel?
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Overheard in a Bar.
So, who was that woman you were
talking to?
Sorry... That’s my ex, up to no
good.
Oh, I don’t mind.
Hey! I trade on the floor. What do
you do?
I work in derivatives.
What a start! I feel like we're in the
same business.
Not a chance.
I can’t see the difference.
It’s easy to differentiate!
That’s pretty nice.
Absolutely not!  Things change all
the time.
So, what would you like?
A little continuity.
Perhaps something constant?
Every time I think I've found a
constant, it vanishes.
That’s rough.
I know, and I just can’t operate if
things aren’t smooth.
Think you’ll ever make it to the top?
Why try? It just vanishes too.
And if T grasp what you're telling
me, so does the bottom.
Precisely.
But what happens then?
Who knows? I'm at my limit.
Which one?
Top and bottom.
How does that make you feel?
I rate.
Have you ever thought about chang-
ing?
Constantly. I wish I could. But how?

sbié 3dzif 9d) mo1

Just undo it all.

But how I constantly wish I could.
Have you cver felt that making a
change rates just a thought?

But I'm at my limit.

Which one?

Left and right.

But what happens in between?

Who knows? I'm telling you that’s
precisely why I can’t grasp it all.
Why not try to operate more
smoothly?

It’s still too rough.

Don’t think of things as constants...
Now what have you found?

They’re vanishing!

Perhaps you can do this every time.
That pretty nicely sums it up.

So, do you like having a little conti-
nuity?

Absolutely!

Can you see the difference now?

It’s easy to integrate!

You're back where you started?

I feel like there’s a chance I'm done
with this business.

I’'m floored... Hey! What did he just
do?

Oh, I should go up, if you don't
mind, and giwe that man a talking
to.

Why don’t you?

Sorry. It would do no good

Why not? You can differentiate.
You can integrate. Why wouldn’t
it?

That's my ¢*.

- Philip Beaver, United States Military Academy

The TIME Journal wnvites those of you who paint, draw, compose, or otherunse use the other

sude of your brains to submit your mathematically inspired comnpositions.
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THE SEARCH FOR TRI-OPERATE FIELDS

BRETT ALAN ENGE*

1. Introduction. In a first year abstract algebra course one learns about finite
and infinite fields and some of their basic properties such as the characteristic of the
field. The interest of this research lies in the search for fields whose multiplicative
group with some new binary operation star (*) forms a new field. A field whose
multiplicative group exhibits this property is called a tri-opcrate field.

DEFINITION 1.1. A tri-operate field is a field such that the non-zero multiplicative
structure, F* — F ~ {0}. forms the additive structure of a new field with some new
binary operation *. That is, (F, +. x) is a field and (F*, x, %) is a field.

Analyzing the relationship between multiplication and addition provides some
insight into how the new binary operation must relate to multiplication. The definition
below expresses this relationship.

DEFINITION 1.2. Letn€ Z*. Foranya € F deflnen-a=a +a+---+a = na.

n tumnes

0:a=0. ifneZandn<0,n-a=|n|-(-a) = na.

Since X is distributive over + for any n.m € Z and a € F it follows that (n-a) x
(m-a) = (nm-a) x a. In particular, (n-1) x a = ne where 1 is the identity of the
field (F,+, x).

DEFINITION 1.3. Letn € Z*. Foranya € F definenea —axax---xa=a".

ntimes

Oea=1.Ifne Zandn<0,nea=|nje(a ') =a".

Since * 15 distributive over X for any n,m € Z and a € F ut follows that (1. e
a)*(mea)=(nmea)xa — (a"™)xa. In particular, (n @ €) *x a = " where € s the
identity of the field (F*, x, *).

Before moving on to some general tri-operate field theory we will first look at an
example of a tri-operate ficld to show that they do in fact exist and to better acquaint
the reader with what it is we are trying to characterize. We will look at the field
(Zs, +, xX) and its additive and multiplicative structures.

The following table is the group table for (Z3, +):

12
0 (1 ]2
1j1 (210
212410 1}1

* James Madison University
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The next table is the group table for (Z3, x):

0112
01000
10 |1 ]2
2 (021

We will now look at the group table for (Z;,+) to observe that (Z3, x) = (Za, +):

Since (Z35', X) = (Z2,+) and (Z3, *) = (Z5°, x) we get that (Z,, x,x) = (Za, +, x)
and therefore (Z3°, x, ) is a field so (Z3, +, x, #) is a tri-operate field.

Now that it is better understood what a tri-operate ficld is and what one actually
looks like we look at some general theorems.

2. General Tri-Operate Field Theory. We note that any trioperate field
must have at least three elements because the identities with respect to the three
operations are necessarily distinct.

Analyzing the properties of a field and that of dot gives rise to a general lemma
that later becomes very important.

LEMMA 2.1. Let (F,+, x) be a field. If there exists an element t € F,t # 0 such
that p-t = 0,p a fived integer, then for allx € F, p-x = 0.

Proof. Let t € F,t # 0, such that p-t = 0 and p is a fixed integer. We can
write p-tas 0 =p-t = (p-1) x t. Since F is a field cither p-1 =0 or ¢t — 0. Since
t#0, p-1=0.0

A special case of the above lemma turns out to be vital to the discovery of what
the characteristic, CharF, of a field F' must be in order for that field to be tri-operate.
This special case is:

LEMMA 2.2. If zero and some t # 0 € (F, +, X) , a field, are their own additive
wnverses in (F,+, x) then Char F = 2.
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Proof. Since t its own additive inverse, t+t = 0, i.e. 2-t = 0. Therefore CharF = 2
by Lemma 1. O

By exploiting the previous result we obtain our first theorem about the charac-
teristic of a tri-operate field.

THEOREM 2.3. Let (F.+, %, *) be a tri-operate field, then Char F # 2 if and only
if Char F* = 2.

Proof. (=) Suppose Char F # 2, then —1 and 1 are their own multiplicative
inverses in (F'*, x,*) . By Lemma 2, Char F'’* = 2.

(<=) Since (F,+, x, *) is tri-operate, |F| > 2so F D {0,1,z} where 0,1 and z
are all different. Suppose Char F'* = 2 and Char F' — 2. Since Char F’* = 2, then
Vy # 0,y € F*, we have y° = 1. It now follows that 1 = (1 + z)? = 1+ 2z + 2% =
14 22+ 1 =2+ 2z = 0 which is a contradiction. So Char F* and Char F cannot
both equal 2. O

For the rest of this section of the paper we will assume that (F,+, x, ) is a
tri-operate field.

The characteristic of (F*, x, =) is either 2 or it is not 2. We will first look at the
case where Char F'* = 2.

LEMMA 2.4. If Char F* =2, then the characteristic of (F, +, X) must be 3.

Proof. Since Char F* = 2, by Theorem 1 Char F # 2 and therefore we know
that (—1), the multiplicative group generated by 1. has order 2 in F*. So in F,
{1,-1} is a subgroup of F'* in F. We will show that ((1), +) has order 3 by showing
3-1=0.

We know that if 2 € F*,2% = 1. Since Char F # 2, we know 2 € F, 2 # 0, so
2 € F* and (2)(2) =1.

We can write 4-1as1+1+1+1. Sod-1 =1+1+1+1 and therefore
4-1)(2)=(Q1+1+1+1)(2) =(2+2)(2) =(2)(2) + (2)(2) = 1+ 1 = 2, which gives
usthat 2+24+24+2=2and 0=2+2+2=2(1+1+1) =2(3-1). Since 2 # 0,
3-1 = 0 and it follows that Char FF = 3. 0

Now we know that if a tri-operate field exists it must have characteristic 2, where
the exponent of the multiplicative group is not two or it must have characteristic 3,
where the exponent of the multiplicative group is 2.

We will now examine the case where Char F' = 3 which gives rise to the following
theorem.

THEOREM 2.5. The only tri-operate field, (F, +, X, *) where Char F* = 2 is Z3.

Proof. Since Char F* = 2, 22 = 1, for all z € F*, z # 0. By Lemma 3,
Char FF = 3, so we know 0,1,2,€ F. Let z € F. Suppose x # 0 then either
(1+2) — 0 which impliecs x =2, or (1 +z)(1+2z) =1. Let (1 +z)(1+z)=1. We
have 14+ 22x4+22=1,s01+2z+1=1sincex #0, 22 =1. Thus 242z =1, 2z = 2,
and z = 1. It follows that z is either 0, or 1, or 2. O

It is now time to depart from the general case and look specifically at the finite
case. We will now use these results to characterize finite tri-operate fields.

3. Characterization of Finite Tri-Operate Fields. We must first give some
background information for finite fields. Let (F,+, x) be a finite field, then (F, +) is
the additive group and is abelian. (F*, x) is the multiplicative group and is abelian
as well as cyclic ( see e.g. [1], p.267).

In the example Z3 we notice that Zg‘ = 7Z,. Below is a generalization of this
isomorphism fact which proves to be the key to characterizing the finite case.

THEOREM 3.1. (Euzistence of Isomorphism) Let F be denoted by GF (¢"), a Galots
Field of order q",q a prime, and n a positive integer. There erists an isomorphism




142 ENGE

which maps (Z,, +) onto (GF*(q"),x) , where p = ¢ 1 given by ¢ : Z, —
GF*(q"), ¢(x) — a*, where a is a generator of the multiplicative group GF*(q").

This isomorphism allows us to define a new binary operation * such that for all
a', a¥ € GF*(q"), we have a” x a¥ = a**¥ — a"¥ and 0 xa? = 0 for all y € Z, and
a¥ € GF*(¢").

The following corollary extends the isomorphism to show that (GF*(¢"),*) =
(an 1, X )

COROLLARY 3.2. If p is prime, the mapping ¢ is also an isomorphism from
(Z,, x) onto (GF™, *).

From section 1 we know that if F' is tri-operate it is cither GF(2") or Z3.

The following two theorems show what the order and characteristic of a finite
field must be in order for that field to be tri-operate and they completely characterize
the finite casc.

THEOREM 3.3. (Characterization Theorem): Let F be a finate field. F is tri-
operate if and only if the order of F is q" such that ¢" — 1 1s prime, where q is prime
and n € Z*.

Proof. (=) Suppose F is a tri-operate field. (F*, x,*) is a field with prime
characteristic. (F'*, x) is cyclic, so the order and therefore the exponent of (F*, x)
is ¢" 1. (F*, x) is also the additive structure of (F*, x, *) and so the characteristic
of (F*, x,*) is ¢" — 1, which must be prime.

(«<=) Suppose ¢" - 1is prime. Then there exists an isomorphism from (Zgn 1, +, x)
outo (F'*, x, %), as defined above, and (F,+, x, #) is a tri-operate field. O

We summarize our findings as follows.

THEOREM 3.4. (Finite Tri-operate Fields): Let (F,+, x) be a finite field. F is
tri-operate if and only if F is GF(2"), where 2" — 1 is prime or F is Zy,n € Z*.

Note that the previous theorem could have been deduced without section 1 by
showing that ¢" — 1, where ¢ is prime, can only be prime if ¢"* — 3 or ¢" = 2", where
2" — 1 is a Mersenne prime.

Attempting to characterize the infinite case, we can show that if an infinite tri-
operate field exists, it only contains Zs, but no other finite subfield. Morcover, it
must contain a transcendental extension of Zy plus an n'”
all of the clements of the ficld. At this point the question as to whether or not such
a field is tri-operate or if infinite tri-operate fields even exist is still unanswered.
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CIRCULAR FUNCTIONS OF MULTIPLE INTEGRAL ANGLES
MATTHEW J. HALE'

My desk light kept me company late that Thursday night. Various pre-calculus
problems were scattered across my desktop as I leaned over the current assignment.
My pencil scribbled furiously as I solved for expressions such as cos(8x) or sin(5z)
in terms of cos(r) or sin(x). As I waded through the intricacies of the problem, I
couldn’t help but wonder; isn’t there a simpler way to solve trigonometric functions
of integral angles?

As it turned out, my curiosity got the best of me. Failing to discover any theorem
which allowed trigonometric functions of integral values to be easily solved, 1 set out
to develop such a theorem on my own. The result of my enquiry is the subject of this
paper.

Let us return to our example of cos(8z). Using the trigonometric double an-
gle identities [1], pp. 428-429, we are able to simplify cos(82) conventionally, using
algebraic operations.

cos(8x) = cos?(4x) — sin’(4r)

[cos®(2z) — qmz(

)] — [2sin(2x) cos(22)]?
3~ 25111(z)cos(1)] )2
{2(2sin(z) cos(x)][cos?* (2) — sin’(z)]}?
- cos®(2) — 28sin?(7) cos®(2) 4 70sin’ () cos’ ()
28 sin®(x) cos?(x) + sind(x)

= {[cos®(z) - sin®(z

Our other example, sin(5z), is similar. After expansion, we obtain:
sin(5z) = 5 cos’(2) sin(x) — 10 cos? () sin®(xr) + sin®(z)

Whether the integral angle being solved for is odd or even, the trigonometric
addition identities [1], pp. 416-422, may be used in expansion. (The double angle
identities are, after all, a special case of the addition identities.) However, there is a
simpler method. Recall De Moivre’s Theorem (1], pp. 498-501, taught in many high
school pre-calculus or calculus courses. With little effort, this theorem yields a more
practical method of simplifying circular functions of integral angles.

By De Moivre’s Theorem,

cos(nz) + isin(nr) = (cos(z) + isin(z))"

Elaboration of the right side by the Binomial Theorem yields:

n

cos(nr) + isin(nr) = (cos(a) + isin(x))" = Z (;) cos™ K (2)i* sin® ()

k=0
So
cos(nz) = Z( l)"( )cos(" 2K) () sin?* ()
k=0

B St;.r giwier High School
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with the understanding that (Q'Z) = 0 for 2k > n. Similarly,

n

sin(nx) = Z( Ty (ZA-ri 1) cos{n—2k l)(m)si11(2'”"“)(:v).

k=0
Now a trig problem such as cos(8z) is easily done:

cos(8a’) Z( 15% (QSk) cos®2M)() sin®*) (2
k=0
= cos®(z) sin®(z) — 28 cos®(z) sin®(x) + 70 cos'(x) sin'(x)
—28 cos®(x) sin® () + cos®(z) sin®(x).

Try sin(52') on your own.

We are now able to solve cos(na) or sin(nz) in terms of cos(z) and sin(z) for
every natural number n. Since cosine is an even function and sine is an odd function,
we can easily extend the equations to the case that 7 is an integer.

What if n is rational or real? De Moivre's Theorem is usually proven by induc-
tion [1], p. 498, from which we can guarantee that it holds true only for the natural
numbers. However, it is possible to extend De Moivre’s Theorem to the rational num-
bers, and so there is some hope of generalizing the sigma notation equations when n

is rational. On the other hand, if n is not rational, De Moivre’s Theorem leads to
nonsense, such as the result in [2]
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Reviewer’s Note: Even though this result seems obvious to anyone who has
taken a course in Complex Analysis using the definitions of Re(e’) and Im(e*?), tex-
tual references to the method are quite sparse. Marsden, “Basic Complex Analysis”,
Freeman, 1973, p. 40, says that all trigonometric identities can be deduced in this way.
Levinson & Redhoffer, “Complex Variables”, Holden Day, 1970 discusses the issue in
his section on harmonic functions and gives some examnples in his exercises. Nehari,
“Complex Variables”, Allyn and Bacon, 1961 also uses the method to evaluate some
trigonometric series. But the reviewer could find this beautiful relationship nowhere
in a dozen or more textbooks. That fact makes this discovery hy a student still in high
schooi even more meaningful. Dr, Dipendra Bhattacharya, however, noted that the
result in question is found in Loney’s “Complex Variables”, part 2, p. 32 published
in New Delhi by S. Chand & Co. in 1893 (reprinted in 1988).
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AN ITERATIVE ALGORITHM FOR SOLVING QUADRATIC
EQUATIONS

S. A. KHUR!"

1. Introduction. “Completing the square” on the quadratic equation
(1.1) ar’ +br+c=0

leads to the quadratic formula,

b+ Vb? — dac

(1.2) A= %

where a, b, and ¢ are real numbers with a # 0. ‘ 1

Lindstrom [1] presented alternative ways for deriving the quadratic formula 'basm
on assuming the solutions to be complex numbers expressed in both trlgonom'et'rlc and
rectangular forms. In this paper, we present an iterative technique for deriving the
quadratic formula.

2. Applying the iterative method. The method consists of representing the
solution of (1.1) as an infinite series of the form

=0
(2.1) r=x9+ay trotazt..= Z T,
n=0

To solve the quadratic equation (1.1), we first rewrite it as

(2.2) r=a+ fa?
where

C a
(2.3) a:*l_)' ﬂ:_b

Upon substituting the solution given in (2.1) into the quadratic equation (2.2) yields

Zzo otn =Totar+x2+ a3+ .. .,
(24) 'CY+/3(.’L‘0+.L‘1+.’I'2+.’153+..)“ ‘
—a+ 0 [.I'g + 220z + zf + 2r1e9 +2xory + 2z + 20123 + L% -+ ]

Upon matching both sides of equation (2.4), results in the following itcrative algo-
rithm,

g =&
T = 51'(";
2o = B (2rpxy)
(2.5) x3 =0 (ai’ + 2x9712)

T4 = ﬂ (2.’1}().1'3 + 22 [.I’g) ,
Ty = [3 (27‘0.(}1 + 2.1)].1'3 + I?j)
k ey

W ’;AlxlcriCilll University of Sharjah, UAE
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Solving equations (2.5) iteratively we get,

Ty =@
wes B = Pad
(2.6) { *2 =B (220m1) = [2a (a®B)] = 2670
z3 = f3 (23 + 22022) = [ + 20 (28%a3)] = 543!
vy = B (2zoxs + 2m122) = 8 20 (58%a!) + 2028 (28%3)] = 14p1a®

Thus the infinite series solution of the quadratic cquation is given by:

T=xg+x1+22+ 23+ ...
al + Ba? + 2320 + 58%! + 1485 + ...
- % (208 + 2(aB)? + 4(aB)® + 10(aB)! + 28(af) + .
=15 [1 = 1+ 208 + 2(af)? + 4(af)® + 10(af)! + 28(aB)® + -
2 2 [1 - 208 - 2(aB)? — 4(af)® - 10(af)’ — 28(af)® — )
— 35V 1—4(af)

(2.7)

&
3l

where in the last step of equation (2.7) we used the Ma i i i
: . claurin series expansion of tl
function /1 — 4z which is given by P *

25} Vi-dz=1-22-37,135..(2n—3) L gn

=1 —2x — 222 — 42 — 102* — 2825
The Maclaurin expansion in (2.8) converges for

_ 4|ac| <1

[4.7" —= :4&:*[ — 4
b2

c—a
b

b

which implies that the technique converges if
(2.9) b% — 4lac| > 0

For qb > 0, condition (2.9) states that the descriminant is positive, which thercfore
implies that for real roots the method converges. A divergence series may indicate
repeated roots, complex roots or real roots with ac < 0. .

Upon substituting the values of - —¢» B = —$% given in equation (2.3), the solution
n (2.6) becomes:

_ 1 1 )
T =25~ 5V1-4aB) =+ /T 45F
b
=~ + zapy V07 — dac

The next two cases follow from the solution given in equation (2.10).
Case 1: If b > 0 then the solution in (2.10) becomes:

2a

(2.10)

Ther.efore, the scheme converges to only one root, as for the second solution it can be
obtained and approximated by factoring. Note that the solution (2.11) implies that:
eIf b>0anda >0 then the method converges to the larger solution.
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e If b > 0 and a < 0 then the method converges to the smaller solution.
Case 2: If b < 0 then from equation (2.10) the technique converges to the
solution:
(2.12) p = —b=vb® dac
* 2a
As for the second solution, it can be approximated by factoring the quadratic
equation. The solution in (2.12) results in the following two conditions:

o If b < 0 and a > 0 then the method converges to the smaller solution.
e If b < 0 and a < 0 then the method converges to the larger solution.

3. Examples. In this section, the algorithm described in the previous section
is applied to some examples of the quadratic equation. For convenience, in the next
numerical computations let the expression

n
(3.1) Saree ) i
=0
denote the n-th term approximation to the solution 2;, where x;’s are the iterates.

ExamMmPLE 1. Consider the equation
(3.2) r’—18r+40=0
whose solutions are x = —20 and r = 2. For this case.

a= 1, b=-18 and ¢=40

The scheme (2.6) and equation (2.3) give the following iterates and partial sums of
the approxiniate solution:

xg = 2.2222222222

1 = —0.2743484225
xg = 0.06774035123
z3 = —0.02090751581
zy = 0.00722728942
x5 = —0.00267677386

Il

Sy = 1.947873800
S, = 2.0156141561
(3.4) S3 = 1.994706635
Sy = 2.001933925
S5 = 1.999257151

According to our previous analysis, for the case where b < 0 and a <0 the technique
converges indeed to the larger solution which is z = 2.
ExaMPLE 2. Consider the equation

(3.5) o i+ 100
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whose solutions are r = -1 and 2 — 10. As before, our scheme yields:
zo = ~1.1111111111

) = 0.1371742112
(3.6) T2 = - 0.0338701756
23 = 0.0104537579
vy = —0.0036136447
x5 = 0.0013383869

$1 = ~0.973936899
. Sy = —1.007807075
(3.7) S3 = -0.997353318

S1 = —1.000966962
S5 = —0.999628575

Clearly the scheme conver i
h ges to the smaller root whichis 2z — —1. B i
. . . . . N ) i OUI‘ . :
analysis, this is justified by the fact that for this example a < 0 and b)> 0 previows
EXAMPLE 3. Consider the equation o

(3.8) 22 4 2032 + 300 = 0
whose solutions are + = 100 and z — ~1.5. For this casc we get:

o = —1.477832512
2y = —0.021517132
(3.9) 3 = —0.000626576
3 = ~0.000022807
21 = ~0.000000930
x5 = —0.000000041

Sy = —1.499349645
Sy = —1.499976220
(3.10) S3 = —1.499999028
Sy = ~1.499999957
Ss = -1.499999998

Since a > 0 and b > 0 the m i
p ethod, according to the previou alysis, ¢
the larger solution which is z — - 1.’5. ¢ g " nanlysis, converges to

These example_s show that our scheme converges very fast and only few iterates
Zr? I;eelded to obtm‘n an error of less than 1%. Observe, moreover, thézt the farther
part the two solutions are, the faster the scheme converges to the exact solution
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A GENERALIZATION OF THE HATCHECK PROBLEM*
PAUL KLINGSBERG AND GINA M. PANICHELLA

Abstract. We investigate the question: How many permutations of n letters contain no A cycle?

1. Introduction. The problem we have generalized, faniiliar to all students of

combinatorics, is the so-called

Hatcheck Problem. Suppose that each of n people checked a hat

as he/she entered a theater to watch a play. If, at the end of the

play, the person in charge of the checked hats distributes the hats at

random, giving cach of the n people one randomly selected hat, what

is the probability that no oue receives his or her own hat back?
Less colorfully but more precisely stated: Let S, denote the group of all n! permu-
tations of the set {1,...,m}. If you choose an clement of S, uniformly at random
(i.e., so that each permutation has probability 1/n! of being chosen), what is the
probability P, that the permutation you choose will have no fixed points? It turns

out (see (1], §6.3) that

1 & (1)t N (-1) 4
Pnzmg t! =ZT , (1)

t=0

so that asymptotically, the probability is

noo at 0 ot
lim P, = lim (Z (-t}—)—> =Z—# —e 1. (2)

n—o0 n-—oo
t=0
To sce how to generalize this problem, recall that every element of S,, admits a unique
disjoint cycle factorization (DCF) sec 3], Ch. 5, for details. For each 1 < k < n,

we define

P, i := The fraction of elements in S,, whose DCFs contains no £ cycles.

Of course, P, is just P,; but we could equally well ask for P, 2, the proportion
of clements of S, whose DCF’s contain no 2-cycles. (In hatcheck terms, this is the
probability that no two people receive each other’s hats.) It is this more general
question that we address here.

Generalized Hatcheck Problem. For any 1 < k < n, what is the

value of P, ;;? What is lim, . P, 17

2. The Principle of Inclusion—-Exclusion. In introductory combinatorics, the
Hatcheck Problem is solved by applying to it the so-called Principle of Inclusion
Exclusion (or PIE), and this is also the tool we use to solve the generalized problem.
We state here the version of the PIE we will need; the interested reader will find a
proof in any introductory combinatorics text, for example [1]. We begin with a finite
set 1 of objects and a finite sct P of properties, and we suppose that each object
cither does or does not possess each property; in other words, we are supposing that
to each object w € Q, we have an associated set prop(w) C P of properties that w
possesses. (In the case of the Hatcheck Problem, one takes €2 to be S,; and, for

*St. Joseph’s University
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each | < i < n, one takes property i to be that of having i as a fixed point. Thus

for any clement o € S,,, prop(o) is the set of fixed points of ¢.) Next, for each
subset S C P, we put

N>(8) := {w € Q: prop(w) D S}

and
N_(S) := [{w € Q: prop(w) = S}H

(where we use |T| to denote the number of elements in a finite set T). The PIE,
then, is the rule that prescribes how to compute the numbers {N _(S)} from the
numbers {N.(S)}. We need here only the formula for N (@), the number of objects
that possess no properties whatever-

N-(0) = Y (- )N (8). (3)

scp

3. Applying the PIE to the Generalized Problem. Fix k > 1. Asin the
case of the Hatcheck Problem, we take Q to be Sn. P will be the set of all possible
k-cycles in S,;; there are () (k — 1)! of these. For ¢ € Sn and C € P, we will say
that o possesses property C iff o contains C in its DCF. T hus, the numerator of P,
the number of elements o Sy such that the DCF of ¢ contains no k cycle  will be
N_ (). We cannot use formula (3) to compute it, however, until we have found the
numbers N (S). This is the content of Theorem 1.

THEOREM 1. Let S be a set of k-cycles in S,,.

(a) If S contains two different k-cycles that have one or more integers in common
then N~ (S) = 0.

(b) Otherwise, if the k cycles in S are parrwise disjoint, N.(S) = (n E[S|)!.

Proof. (a) If C; #Cs € S are nondisjoint, tlien C; and Co are inconsistent with
each other and so cannot both appear in the DCF of any permutation o.

(b) Let S = {Cy,...,C,} consist of ¢ pairwise-disjoint k cycles. (Note that these ¢
k- cycles involve kt different integers, so that necessarily ¢ < [n/k]|.) A permuta-
tion ¢ € S, will include all of Ci,...,C inits DCF iff & permutes the kt integers that
appear in these cycles exactly as the cycles do; o may permute the remaining (n — kt)
integers among themselves in any fashion. Clearly, there are cxactly (n — kt)! such
permutations o. 0

We now combine Theorem 1 with some standard counting arguments to obtain a
simple formula for N_().

THEOREM 2. The number of elements o € S,, such that the DCF of o contains
no k-cycles is given by the ezxpression

[n/k) (_L)t il

Proof. By the PIE, as already noted, we have that the number of such o € S, is

N®= (15N

scp
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o

By Theorem 1, we can restrict this sum to subsets S’ C P such that the k- cycles in S
! 7 . . 1
are pairwise disjoint, in which case N.(5') = (n — k|S’|)!. This gives

N.@) = (-1 (n -k (4)

s'CP

: A
Now, the summands in equation (4) depend only on the sizes of the sets {S’}, so we
! .
can gather terms by cardinality ¢ = |5’|:

0) — '“%J number of scts S’ C P S}lch that S’) (~Dn—kt).  (5)
Hall]= contains ¢ pairwise-disjoint k cycleL

v~

(*)

t=0

The next question is: What does (x) equal in equation (5)7 In other v&(orcl's: i(.)r' O'St
t < |n/k], in how many ways is it possiblelz to. choose a set qf t pairwise- ;S]J();nr
k-cycles from S,?7 The answer to this question is well-known .(1t appearrI?l in [ ,bor
example), but for completeness, we outline the method of sol.utlon here. uilnul'n e
of such sets of k& cycles is equal to the number of ways of doing all of the following.

Number of Ways:

Step: d ‘
1. Choose kt integers from {1,...,n}. () ways

2. Partition these kt integers into t subsets

of k elements each. (kt)! /(£ (k)) ways
3. Arrange each of the ¢t k£ element sets .

from Step 2 into a k-cycle. ((k— 1)) ways

Thus, in equation (5), quantity (*) equals the product of the expressions in the “Num-
ber of Ways” column:

kt)! ' n! .
() = (l:zt) ' t!((k!))‘ (k=D = e (6)

Finally, substituting expression (6) into equation (5) and simplifying gives

i 280 ()" s

n! = A

N (@) = Z m( D) (n—kt)! = ,Z:(, T
=0

(*)

0 . -
As an immediate consequence, we are able to solve the Generalized Hatcheck

Problem with formulas that generalize (1) and (2), namely

n/k] 1yt .
P, ;= Z ( t"”) and nlh};o P =e
t—0

4. An extension. The natural question to consider next is the number of per-
mutations that avoid more than one type of cycle in their DCFs. For example, fs(,at
Pk, 1, (1 < k) < ko) denote the probability that a randomly cl}osen elemer;)tl o Cth ,Z
('01‘1ta,ins no k; cycles and no ks -cycles; in hatcheck terms, Pn,l. 2 1s the proba, ity eIL
no one receives his or her own hat and that no two people receive each other’s hats. It
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turns out that asymptotically, such probabilities are mutually independent —not only

pairwise but also in larger sets. Thus (for the example)

1 1
lim iy ) = (h i
R -XPH,]”,LE ¢ ( 1 -’) = { lim P, 4, lim P,,Yk.,)
T +00 i

n =20

so that
. 3
lim P,10 e 2,
n = T

The details will be set out in a future paper.
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PROBLEM DEPARTMENT
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This department welcomes problems believed to be new and at a level appropriate for the readers
of this journal. Old problems displaying novel and elegant methods of solution are also mvited.
Proposals should be accompanied by solutions if available and by any information that will assust
the editor. An asterisk (*) preceding a problem number indicates that the proposer did not submit a
solution.

All communications should be addressed to C. W. Dodge, 5752 Neuville/Math, Unwversity of
Maine, Orono, ME 04469-5752. Please note my new e-mail address: dodge@maine.edu.
Please submit each proposal and solution preferably typed or clearly written on a separate sheet (one
side only) properly identificd with name, affiliation, and address. Solutions to problems in this issue
should be mailed to arrive by July 1, 2001. Solutions wdentified as by students are given preference.

Problems for Solution.

994. Proposed by the editor.

Although the alphametic BRENNER = (JOEL)? has no solution in base ten,
there is a number M such that BRENNER is the square of a positive integer x in
every base greater than or equal to A. Furthermore, the same four digits are used
for B, R, E, and N in each such base. Find these digits, the value of M, and the
digits of .r, the square root of BRENNER.

995. Proposed by Peter A. Lindstrom, Batavia, New York.
a) Consider the geometric-arithmetic recursive sequence f given by

f(1)=a,f(2) =ar+d, and f(i) =rf(i ~1) +dfori=>2,

where a, d, and r are nonzero constants,  # 1, and 7 is an integer. Express Y. | f(i)
in closed form.
b) Consider the arithmetic-geornetric recursive sequence g given by

9(1) = a,g(2) = r(a + d), and g(i) =r(gli ~1) +d) fori>2,

where a, d, and r are nonzero constants, 7 # 1, and i is an integer. Express > ., g(4)
in closed form.

996. Proposed by Ice B. Risteski, Skopje, Macedonia.

If P;(x) is the Legendre polynomial, given by Po(z) =1 and for positive integral
n,

1 a
© 2npl dan

P, (z) ('E2 -1

show that

nP,(cosz) = Z cos(mz) Py _m(cos ).

m=1

997. Proposed by Robert C. Gebhardt, Hopatcong, New Jersey.

Evaluate the integral
/ 8 (9 — z)dz
y In(9—z)+In(z - 3)
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998. Proposed by David Iny, Baltimore, Maryland.
For nonnegative integers & and n, let

o=l (l) () ()

a) Determine the value of by, such that the limit Ly, exists, where
Ly nli{l;[(n +1)(n+2)---(n+k+1)Jgn — b In(n + 1)].
b) Evaluate Ly using your value of by and the definition of Euler’s constant 0!

given hy

1 1 1 1
L I Kl e i e —lnn]:O.577...

c) Using your results of parts (a) and (b), evaluate. if it exists,

. L
kll{lgo (I._' +In k> .

999. Proposed by the late Jack Garfunkel, Flushing, New York.
Prove that

B (11 +72 +73)(3+ V3)
9 :
with equality when r; = ro — r3, where » is the inradius of triangle ABC and 7,

72, and 3 are the radii of the mutually tangent circles in tl ] ;
. \ 1w Malfatti con,
shown in the accompanying figure. i

B

1000. Proposed by Albert White, St. Bonaventure University, St. Bonaventure
New York. } ’

' Let ABCD be a parallelogram with ZA = 60°. Let the circle through A, B, and
D intersect AC again at E and let AC and BD meet at H. See the figure.

L
N
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Let [PQR) denote the area of triangle PQR. Show that
a) [DHE]- (AC)? = [ADH]- (DB)?,
b) [ADE] - [DEC] = 2[DHE], and
c¢) 2(HE) - (AC) = (DB)%.

1001. Proposed by David Tselnik, Fargo, North Dakota.
The Euler numbers E,,, forn =0,1,2,..., are defined by

1 E
sech x = ——— = E ",
coshi .k

so that E, = 0 for all odd n, Ey = 1, E2 = —1, Ey =5, E¢ = —61, ctc. Prove the
following relations:

. 4m‘E _2m 4mEf 199
a)z 9 1 25| = Z o ) Bax form =1,2,3...,
j=o v pa
2m+1 m
b) Z < 2j )|E2J|=2Z< Ak )E]k form=0.1,2,..,
J=0 k=0

S~ (Y gy = oS (2 VBg g frm=1,2,3 i
C)Z 2j | 2j| = — kz 4k -2 k-2 Iorm = 1,2,95,..., a1
i=0 t—=1

2m+1 5
4m + 2 4m + 2
Byl =2 Eapso form=0,1,2,.. .
d) JZ;) ( 2j )| 2] 2 0(4k+2) i for m =0,1,2,

1002. Proposed by L. Seagull, Glendale Communaty College, Glendale, Arizona.

Let n be a composite integer greater than or equal to 48. Prove that between n
and S(n) there exist at least five primes, where S(n) is the Smarandache function:
for any positive integer n, k = S(n) if k is the smallest positive integer such that n
divides k!. Then, for example, S(3) = 3 and S(8) = 4.

1003. Proposed by I. M. Radu, Bucharest, Romania.

Show that between S(n) and S(n + 1), where S(n) is the Smarandache function,
there exists at least one prime number. See Problem 1002 for the definition of the
Smarandache function.

1004. Proposed by Robert C. Gebhardt, Hopatcony. New Jersey.
Find the minimum value of f, = 2, + 2 + - -+ + , if the xy; are all nonnegative
and

7
Zcos2mk =]
k=1

1005. Proposed by Ayoub B. Ayoub, Pennsylvania State University, Abington
College, Abington, Pennsylvania.
Prove that, if n > 2 is an odd number,

it . 4kw . 4w . 8w . 2(n—1)mw
Z sin —— = sin — 4+ sin — + « -+ + sin ———— < 0.
== n n n n
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*1006. Proposed by Richard I. Hess, Rancho Palos Verdes, California.

a) How many aces can be served in one game of tennis?

b) How many consecutive aces can be served in one game of tennis?

¢) You and I are playing a set of tennis. In the last 8 points you have served 7
aces and I have served 1. What is our score?

d) In a tennis match you have just served aces on 6 consecutive points. What is
the score?

Solutions.

966. [Fall 1999] Proposed by Count Juan Mower, Big Twenty Township, Maine.
Although there are several solutions to this base eleven addition alphametic in

which 7 divides SEV EN or where 8 divides EIGHT, there is only one in which 5
divides FIV E. Find that solution:

FIVE + SEVEN + EIGHT =TWENTY.

Cluriously, in that unique solution, 5 divides EIGHT, too.

Solution by Patrick J. Niemczak, Alma College, Alma Michigan.

Immediately, T = 1. From the units column we see that we cannot have E - 10
or N = 10. Also S # 10 since then we would have E = W. From the 11% column,
F 41 =10or 11. Because it is more plausible to expect a carry from the 112 column,
we explore F'+1 = 10. There are seven possibilities for F' and I, but only F' = 10 and
I = 0 avoids difficulties. Since a number in base eleven is divisible by 5 if the sum
of its digits is divisible by 5, then V 4+ E = 10 or 15. None of the four combinations
that produce the sum of 10 will work, and the combination that produces results is
V =6 and E = 9. Now there must be a 1 carried into the 11 column from the units
column, forcing H = 7 and 2 is carried into the next column. In the 112 column,
2+04+6+G=N+11. So G=>5or 8 But G = 5 requires N = 2 and in the units
column Y = 1, which is not possible. So G =8 and N =5 and Y = 4. From the 11*
column we now have S = 3 and W = 2. Using ¢ for ten, our solution looks like

1069 + 39695 + 90871 = 129514.

Also solved by Charles D. Ashbacher, Charles Ashbacher Technologies, Hiawatha, IA, Ken-
neth B. Davenport, Frackville, PA, Mark Evans, Louisville, KY, Victor G. Feser, University

of Mary, Bismarck, ND, Richard I. Hess, Rancho Palos Verdes, CA, Rex H. Wu, Brooklyn, NY,
and the Proposer.

967. [Fall 1999] Proposed by Mohammad K. Azarian, University of Evansville,
Evansville, Indiana.

Let N be a natural number greater than 1 with d distinct positive prime divisors.
If p and q are the largest and smallest of these divisors, then prove that

log, N <d <log, N.

Solution by Alma College Problem Solving Group, Alma College, Alma,
Michigan.

We take the phrase“Let N be a natural number greater than 1 with d distinct
positive prime divisors” to mean that N = p; -p2 - p3---pq and i # j implies p; # p;.
Clearly

g <N and N < p?,
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su that
d<log, N and log, N < d,

establishing the desired inequality. It should be noted th;}t this proof %xolc‘ls also f;)r
cases in which the p; are not necessarily distinct, that is, where N is simply the
i d primes.
mOd:lcst; (s)cflj(:lyby lI;avid Anderson, University of Virginia, Charlottesville, Fr?nk P. Battles,
Massachusetts Maritime Academy, Buzzards Bay, Soumya Kanti Das Bhaumik, Angelo St.ate
University, San Angelo, TX, William Chau, Primary Knowledge, Inc., New York. NY, Brian
Clester, Perry, GA, Jesse Crawford, Angelo State University, San Angelo, TX, Mark Evans,
Louisville, KY, Victor G. Feser, University of Mary, Bismarck, ND, Richard I Hess, Rancho
Palos Verdes, CA, Peter A. Lindstrom, Batavia, NY, David E. Manes, SUNY College.at
Oneonta, Joseph Martin, Alma College, MI, Shiva K. Saksena, University of North Carolina
at Wilmington, H.-J. Seiffert, Berlin, Germany, SUNY Fredonia Student Grou;f, NY_, Le‘o:
Vargian, Midland Park High School, NJ, J. Ernest Wilkins, Jr., Clark Atlanta University. GA,
. Wu, Brooklyn, NY. .

e 1:I:‘ji’;tlc—)lrial n’ote: I :egret the poor wording of the proposal. Several solvers inter-
preted it differently, allowing each “distinct” prime factor to oceur more than once so
that N has more than d factors. The theorem is not true with that interpretation.
Many solvers proved the result alluded to by the featured solver.

968. [Fall 1999] Proposed by Doru Popescu Anastasiu, Liceul Radu Greceanu,

Slatina, Romania.
Determine all real numbers z and y such that

1622 + 21y — 120y — 4z — 6y + 1 =0.

L Solution by Soumya Kanti Das Bhaumik, Student, Angelo State University,

San Angelo, Tezxas. . . -
If we complete the square in and simplify, the given equation becomes

(8z — 1 - 3y)* +3(5y — 1) =0,

which requires that 8z —1- 3y =0 and 5y —1 = 0 Th.e solutipn isx .:.1 /5,y =l 1/5.
Similar problems may be constructed by starting with a pair of pos1t§ve numl)ers P
and ¢ and a pair of lines ar +by—c = 0and dr+ey f =0that 1nte2rsect in exactly ;)li?
point. Then expand and collect terms in the equation p(az +by—c) +q(dz+ey—f)* =
> 1I. Solution by Megan Foster, student, Alma qulege, Alma, Micf‘ngan. .
Let f(z,y) denote the left side of the given equation. Its first partial derivatives
are

fo =32z 12y 4and f, =42y - 122 — 6

and these are both equal to zero at * =y = 1/5. We find that f(1/5, 1/5) = 0 and
at this point the second derivative test yields

Fralyy — f2, = (32)(42) — (7127 =1200>0,

so (1/5,1/5) is the absolute minimum of f and hence its only zero.
Also solved by Alma College Problem Solving Group, MI, Frank P. Battles, Mas-
sachusetts Maritime Academy, Buzzards Bay, Kenneth B. Davenport, Frackville, PA, George
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P. Evanovich, Saint Peter’s College, Jersey City, NJ, Mark Evans, Louisville, KY, Chris Farmer,
Northwest Missouri State University, Maryville, Robert C. Gebhardt, Hopatcong, NJ, Richard
1. Hess, Rancho Palos Verdes, CA, Joe Howard, New Mexico Highlands University, Las Vegas,
Murray S. Klamkin, University of Alberta, Canada, Mark Kowal, Alma College, MI, David
E. Manes, SUNY College at Oneonta, Yoshinobu Murayoshi, Okinawa, Japan, William H.
Peirce, Rangeley, ME, Cecil Rousseau, University of Memphis, TN, Shiva K. Saksena, Uni-
versity of North Carolina at Wilmington, H.-J. Seiffert, Berlin, Germany, J. Ernest Wilkins,
Jr., Clark Atlanta University, GA, Rex H. Wu, Brooklyn, NY, Monte J. Zerger, Adams State
College, Alamosa, CO, and the Proposer.

969. (Fall 1999] Proposed by Robert C. Gebhardt, Hopatcong, New Jersey.
Find y(z) if
(( )m-l’(? )'I/: 0.
Solution by Benjamin Landon, student, University of Central Florida, Orlando,
Florida.
Substitute ¢t = ¢* to get the differential equation
d*y dy 2
2 e — = -~ ——
i +fdt +t7y = 0.

This is Bessel’s differential equation of order 0, whose solution is
y(t) = erdo(t) + e2Yo(2),

where ¢; and ¢p are constants and Jy and Yy are Bessel functions of order 0 of the
first and second kinds, respectively. Since t = €, the solution we seek is

t

y(f) = Cng(eJ.) + CQY()(( T).

Also solved by Alma College Problem Solving Group, MI, Frank P. Battles, Mas-
sachusetts Maritime Academy, Buzzards Bay, Murray S. Klamkin, University of Alberta, Canada,

Cecil Rousseau, University of Memphis, TN, J. Ernest Wilkins, Jr., Clark Atlanta University,
GA, and the Proposer.

970. [Fall 1999, corrected Spring 2000] Proposed by Ice B. Risteski, Skopje, Mace-
donia.
Show that

w4 cosmlnsin:vdT_ Tt 11123(1 1)
o Vsinzcos2z 12 4’2

and

/"“wd?_ m (11
0 (cos2x)3/t 7 9,2 4'2 )"

where B(m,n) = I(m)I'(n)/T'(m +n) = jol 2™ (1 — 2)" da is the Beta function.
Solution by H.-J. Seiffert, Berlin, Germany.
Each of the following integrals holds for all complex numbers m and n with
positive real parts. It is known ([1], p. 570) that

(0.1) /(;l tm 11— t)" tnt dt = (Y(m) — p(m + n))B(m, n),
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where ¥(z) = I'(z)/T(z) denotes the Digamma function. The substitution ¢ =
25sin’(z) gives

L ) + 71)
/ " sin?™ 1(z) cos™ *(2z) cos(z) In(2 sin’(z))dz = ¥im) 2:{1(:” B(m,n),
0

. . 2 A s "
where we have used the trigonometric relation 1 — 2sin®(z) = cos(2z).
The same substitution in

1
/ tm_l(l _t)n 1dt= B(m,n)
0
yields
M ame n-1 _ b B(m,n)
/ sin®™ "' (z) cos (2z) cos(r)dz = om+1 s
0
It follows that

g - - In2
/ F sin2™ () cos™ *(2z) cos(z) In(sin(z))dz = W) ¢§T+2 n)—In B(m,n).
0

Since ([1], p- 954) ¥(3/4) — ¥(1/4) =, this formula with m = 1/4 and n = 1/2
gives

/4 coszlnsinzdz__w+ln2 (_1_ _1_)
o  Vsinzcos2z 42 4°2

the corrected version of the first desired integral evaluation.
With the substitution ¢ = cos(2z), equation 0.1 becomes

" +n) —$(m)
/ g cos™ !(2x)sin®" " (z) cos(z) In(cos(2z))dx = - i 21:)+1 B(m,n),
0

where we have used 1 — cos(2z) = 2sin?(z) and sin(2z) = 2sin(z) fzos(a'). Taking
m = 1/4 and n = 1/2, we obtain the second required integral evaluation.

Refirelr.lcse.: GRADSHTEYN and I. M. RyzHIK, “Table of Integrals, Series, and Prod-

ucts.” 5th ed., Academic Press, 1994. - o
’Also solve(; by Kenneth B. Davenport, Frackville, PA, Cecil Rousseau, University of
Memphis, TN, J. Ernest Wilkins, Jr., Clark Atlanta University, GA, and the Proposer.

971. (Fall 1999] Proposed by Richard I. Hess, Rancho }?alos Verd.es, C;alzforma.
Find an integer-sided obtuse triangle witlh a.cx/fte.angles in the ratio 7/5.
] illi H. Peirce, Rangeley, Maine.
g:iuiogc? ybzv;utlr?:rllgle with ax:\,lte angles A and B in the ratio 7 to 5. Thus
A — 76 and B = 50, whence C = 180° — 120, where we measure all angles in ('leg‘rflaes.
Because C is obtuse, 0° < 8 < 7.5°. Since the sides of a triangle are [?rOpOI‘thIld dto
the sines of their opposite angles, there is a constant k such that the sides a, b, and ¢

are given by

o — ksin78 = ksin (64 cos®§ — 80 cos* 6 + 24 cos> 9 - 1),




160 CLAYTON W. DODGE
b= ksin50 = ksin6(16 cos? § — 12 cos? 6 + 1),
and

¢ = ksin(180° — 126) = ksin 126

= ksin 6(2048 cos'! 6 — 5120 cos” 6 + 4608 cos”  — 1792 cos® 6 + 280 cos® 0 12 cos 8).

Let r and s be positive integers, let cosd = r/2s, and let k - 5! /sin® to get

a=s(r® —5rs? + 6r2st - s%),

b=s"(r* — 3r2s? + s =s"(r? —rs— )% +rs %),
and

(5

Il

r(r'? — 10r8s? 4 36r5s* — 561156 + 35028 - 6s'%)
=7r(r® — §%)(r? — 25?)(r? - 3s%)(r! — 4r25% + 5).

To find r and s such that angle C is obtuse, that is, with 0° < 6 < 7.5°, we must have
cos7.5° < r/(2s) < 1. Since cos 7.5° ~ 0.991445, 7/(2s) is close to 1, s0 1 — 7/(2s) is
close to zero and its reciprocal must be large; greater than 1 /(1 — cos7.5°) =~ 116.9.
Thus we take 25 = 118 and r = 117, so s = 59. The sides for this triangle are 21-digit
integers. They and their factorizations are

a =41-59°.97.4507 - 14,323 - 183,542,735,119,347,169,603,

b=5-597.71.241-661 — 140,737.857,915,018,789,245,

and
c=27-3%.7.11-13.29.312.263 - 541 - 16,921 = 232,117,687,881,273,946,752.

Since cosf = r/(2s) = 117/118, then 6 ~ 7.464553° and the angles for this
triangle are A ~ 52.251871°, B ~ 37.322765°, and C ~ 90.425364°.

Also solved by Cecil Rousseau, University of Memphis, TN, and the Proposer. One incorrect
answer was received.

Editorial note: Both Rousseau and the Proposer used cosf — p/q. The Proposer
used g = 117, the smallest permissible value, and p = 116, obtaining triangle sides
of length 24 digits, and Roussseau used p/q = 199/200 to obtain sides 23 digits long.

Using an even value for ¢ allows for the division by enough powers of 2 to shorten a,
b, and c significantly.

972. [Fall 1999] Proposed by Paul S. Bruckman, Berkeley, California.

Given three non-collinear points 4, B, and C in the complex plane, determine I,
the incenter of triangle ABC as a “weighted average” of these points.

Solution by Rex H. Wu, Brooklyn, New York.

In the accompanying figure let the triangle be ABC and let A, B, and C be the
complex affixes of the vertices. Let a, b, and ¢ be the (positive real) lengths of the
sides opposite these vertices. Let the internal bisector of angle C' cut the opposite
side at D and let the internal bisector of angle A cut CD at P. Then P is the desired
incenter of triangle ABC. Let the lengths of AD and DB be z and y respectively.
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A

Fi1G. 0.1. The incenter.

Since it is known that the bisector of an angle of a triangle cuts the opposite side into

; : b _ AD _ x _ D_A "
segments proportional to the adjacent sides, then & = 55 = ' = g p and henc
_ aA+bB . _be
D=1 andz = 25,

We now apply this same result to triangle AC'D with angle bisector AP to find
that

_aC+bD  F5C+ g5(@A+bB)  aA+bB+cC

== = = = ;
z+b ajb+b a+b+tec

Also solved by Murray S. Klamkin, University of Alberta, Canada, William H. Peirce,
Rangeley, ME, Cecil Rousseau, University of Memphis, TN, H.-J. Seiffert, Berlin, Germany, and

the Proposer. ‘ . . . I

Editorial comment: Both Klanikin and Seiffert pointed out that this result is we
known. It also appears as an exercise in class notes I wrote for a course entitled
Complex Numbers for Teachers that I first taught in 1973.

973. [Fall 1999] Proposed by Ayoub B. Ayoub, Pennsylvania State Uniwversity,
Abington, Pennsylvania.
Prove that ap 41 = 26, + a@n-1, given that ap — 0 and

i (’11) +2(§) +22(Z) +23(’71) Lo

Solution by William G. Hillegass, Jr., student, Stanton College Preparatory
School, Jacksonville Beach, Florida. ‘ .

Tl;e recurrence equation for an41 = 2a, +an-1 18 9.32 — 2z 1 = .0, wlnc'}ll has
zerosu=1++v2andv =1— V2. Thus, if an a,, is any linear combination of u z‘md
v™, the recurrence equation is satisfied, a fact that is easily checked by mathematical

+
induction. . '
For positive integral n the binomial expansion yields

n n
Q1+a)"=1+z+ (Z)x2+ (3)x3+ (4)_’54 s s

which sum terminates since (Z): 0 whenever k > n. Now replace x by —x in this
sum and subtract the two equations to get

1+ (1-2)" =2+ (g)& 4 (;’)& ¥ ('_:,):7 s s
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Finally, replace x by v/2 and divide both sides by 2v/2 to obtain

L o (e (s (-

which is the desired sum. Since the left side is a linear combination of «™ and v™ and
therefore obeys the desired recursion equation, the proof is complete.

Also solved by Alma College Problem Solving Group, MI, Frank P. Battles, Mas-
sachusetts Maritime Academy, Buzzards Bay, Kenneth B. Davenport, Frackville, PA, Charles
R. Diminnie, Angelo State University, San Angelo, TX, Mark Evans, Louisville, KY, Murray S.
Klamkin, University of Alberta, Canada, David E. Manes, SUNY College at Oneonta, William
H. Peirce, Rangeley, ME, Cecil Rousseau, University of Memphis, TN, Shiva K. Saksena, Uni-
versity of North Carolina at Wilmington, H.-J. Seiffert, Berlin, Germany, Rex H. Wu, Brooklyn,
NY, and the Proposer.

974. [Fall 1999] Proposed by Kenichiro Kashihara, Sagamihara, Kanagawa,
Japan.

Given any positive integer n, the Pseudo-Smarandache function Z(n) is the small-
est integer m such that n divides

m
> k.
k=1

a) Solve the Diophantine equation Z(z) = 8.

b) Show that for any positive integer p the equation Z(z) = p has solutions.

*c) Show that the equation Z(z) = Z(z + 1) has no solutions.

*d) Show that for any given positive integer r there exists an integer s such that
the absolute value of Z(s) — Z(s + 1) is greater than r.

Editorial note: C. Bryan Dawson, Union University, Jackson, Tennessee, has
pointed out that this same problem was proposed by the same proposer in the Spring
1997 issue of The Pentagon as Problem 509. Its solution appears in the Spring 1998
issue, pp. 56-58. H.-J. Seiffert, Berlin, Germany, found parts (b), (c), and (d)
as Problem 4625 by the same proposer in School Science and Mathematics 98.5, pp.
275-276, 1998.

Also solved by David Anderson, University of Virginia, Charlottesville, William Chau (parts
(a) and (b)), Primary Knowledge, Inc., New York, NY, Stephen I. Gendler, Clarion University of
Pennsylvania, Mark Evans, (parts (a) and (b)), Louisville, KY, Richard I. Hess, Rancho Palos
Verdes, CA, William G. Hillegass, Jr., (parts (c) and (d)), Stanton College Preparatory School,
Jacksonville Beach, FL, David E. Manes, SUNY College at Oneonta, H.-J. Seiffert, (part (a)),
Rex H. Wuy, Brooklyn, NY, and the Proposer (parts (a) and (b)).

975. [Fall 1999] Proposed by Doru Popescu Anastasiu, Liceul Radu Greceanu,
Slatina, Romania.

For any given fixed positive integer n, determine the positive integers z;, z2, ...
T, such that

2nd +3n24+7n
21+ 2(21 + T2) + 3(x1 + T2 + 23) + -+ (2 +m2+-~-+zn)=i—6——.

I. Solution by Karthik Gopalrtanam, student, Angelo State University, San
Angelo, Tezxas.

1f n = 1, the obvious solution is xr; = 2.
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For n > 2, the right side of the equation becomes

3 2 [y 1 s
2n +I;n +n+n=n(n+1)6(2n t 1)+n=(lz+22+--~+n2) b

Subtracting this new expression from each side of the given equation produces

(1 -1)+[2(z: +x2)— 2%+ [3(@ 1422 +23) -2+ - +[n(z1+T2+ txn)—(n*4n)| =0
or

(1 —1)+2(z1 +72 —2)+3(21 + 22+ 23— 3) +- ctn(zy 12+, n—1)=0.

If the z are all equal to 1, the least positive integer, then each group of terms on the
left is 0 except for the last group, which equals —n. If r,, is increased to 2, then the
last group becomes 0 and the equation is satisfied. Soz) =22 =23 =+ =ZTn-1 1
and z,, = 2 is a solution. If any z; > 1 for k < n, or if z, > 2, then the left side is
positive. Hence there is no other solution.

11. Solution by Joe Howard, New Mezico Highlands University, Las Vegas, New
Mezico.

We determine positive numbers z, not necessarily integers, such that the given
equation is true for every positive integer n.

By direct calculation, z; = 2, 23 = 1/2, z3 = 5/6, 4 = 11/12, ..., z, =
[n(n — 1) —1)/[n(n — 1)] for n > 1. Then 21 + 22 + -+ + Tn = (n? +1)/n. The
induction step to prove this last statement is

n2+1 (+Un 1 nd+n+n+l+n’+n-1 (n+1)y°+1
n (n+)n (n+1)n n+1

The given equation then becomes

6

241 2n3 + 3n% 4+ Tn
2+5+10+---+n("n+ ): .

The following induction step proves this statement and establishes our result:

2n3 +3n% +Tn

23 +3n2 + Tn N 6n2 +12n + 12
6

+(n+1)+1)= : ;

M3+ 9t 4+19n+12 2n+ 12 +3(n+1)2+7(n + 1)
- 6 - 6 ’

Also solved by Alma College Problem Solving Group, MI, David Anderson, University
of Virginia, Charlottesville, Frank P. Battles, Massachusetts Maritime Academy, Buzzards Bay,
William Chau, Primary Knowledge, Inc., New York, NY, Charles R. Diminnie, Angelo State
University, San Angelo, TX, George P. Evanovich, Saint Peter’s College, Jersey City, N.J, Mark
Evans, Louisville, KY, Yu Gan, Loch Raven High School, Baltimore, MD, Robert C. Gebhardt,
Hopatcong, NJ, Steve Haas, Harvey Mudd College, Claremont, CA, Richard I. Hess, Rancho
Palos Verdes, CA, Murray S. Klamkin, University of Alberta, Canada, Peter A. Lindstrom,
Batavia, NY, David E. Manes, SUNY College at Oneonta, Yoshinobu Murayoshi, Okinawa,
Japan, William H. Peirce, Rangeley, ME, Cecil Rousseau, University of Memphis, TN, Shiva
K. Saksena, University of North Carolina at Wilmington, H.-J. Seiffert, Berlin, Germany, J.
Ernest Wilkins, Jr., Clark Atlanta University, GA, Rex H. Wu, Brooklyn, NY, Monte J.
Zerger, Adams State College, Alamosa, CO, and the Proposer.
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976. [Fall 1999] Proposed by Rajindar S. Luthar, University of Wisconsin Center,
Janeswmlle, Wisconsin.
If t+y+2z+1t=m, prove that

tan(z + y) tan(z + t) > 27 cot z cot y cot z cot £.

Editorial note: George P. Evanovich, Saint Peter’s College, Jersey City, NJ,
Steven Haas, Harvey Mudd College, Claremont, CA, Richard I. Hess, Rancho
Palos Verdes, CA, William Hillegass, Stanton College Preparatory School, Jack-
sonville Beach, FL, Murray S. Klamkin, University of Alberta, Canada, J. Ernest
Wilkins, Jr., Clark Atlanta University, GA, and Rex H. Wu, Brooklyn, NY, all
found values which violate the stated inequality. Hence, the proposed inequality is
not a theorem and this problem is withdrawn . As partial compensation to our read-
ers, perhaps, note that each of the Fall 1999 and the Spring 2000 issues contained 14
proposals, one more than the usual number.

977. [Fall 1999] Proposed by Rajindar S. Luthar, University of Wisconsin Center,
Janesville, Wisconsin.
If A, B, and C are the angles of a triangle, then prove that

A B C
cotE +cot5 + cot 3 > cot A + cot B + cot C.

Solution by Alma College Problem Solving Group, Alma College, Alma,
Michigan.
Proof without words:

f(x/2)
0
f(x)

Also solved by Alma College Problem Solving Group (second solution), Miguel Amen-
gual Covas, Cala Figuera, Mallorca, Spain, John Boyer, Alma College, MI, Justin H. Brehm,
Alma College, MI, Kenneth B. Davenport, Frackville, PA, Charles R. Diminnie, Angelo State
University, San Angelo, TX, George P. Evanovich, Saint Peter’s College, Jersey City, NJ, Mark
Evans, Louisville, KY, Ryan Fowler, Alma College, MI, Yu Gan, Loch Raven High School, Balti-
more, MD, Phil Harger, Alma College, MI, Richard I. Hess, Rancho Palos Verdes, CA, William
Hillegass, Stanton College Preparatory School, Jacksonville Beach, FL, Joe Howard, New Mexico
Highlands University, Las Vegas, Murray S. Klamkin, University of Alberta, Canada, Peter A.
Lindstrom, Batavia, NY, Karli Lopez, Alma College, MI, David E. Manes, SUNY College
at Oneonta, Justin Modrzynski, Alma College, MI, Yoshinobu Murayoshi, Okinawa, Japan,
Jennifer Oglenski, Alma College, MI, Cecil Rousseau, University of Memphis, TN, Shiva K.
Saksena, University of North Carolina at Wilmington, H.-J. Seiffert, Berlin, Germany, Paul Vi-
tantonio, Alma College, MI, Justin Wilcoxen, Alma College, MI, J. Ernest Wilkins, Jr., Clark
Atlanta University, GA, Rex H. Wu, Brooklyn, NY, and the Proposer.
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978. [Fall 1999 Proposed by Richard I. Hess, Rancho Palos Verdes, California.
In the array below place sixteen digits to form eight not necessarily distinct
squares without using the digit zero. The answer is unique.

Solution by David E. Manes, SUNY College at Oneonta, Oneonta, New York.
The unique solution is

[=2] Ead ol B\
G Do D
DO N =
=l oS

All square numbers terminate in 0, 1, 4, 5, 6, or 9. Of the 44 four-digit squares
not containing a zero, only 1156, 1444, and 6561 can be used for the last column or
for the last row since they are composed of only the permissible terminal digits 1, 4,
5, 6, and 9. Since these three numbers have different terminal digits, then the last
row and the last column are equal. We try each possibility. For the last row and last
column using 1156, the only possible choices for the first row or column are 1521,
1681, 3481, 3721, 4761, 6241, 6561, 7921, and 8281. These numbers start with 1, 3,
4, 6, 7, or 8. Each second digit is 2, 4, 5, 6, 7, or 9. Place one of these numbers in
the first row. The number in the second column must start with the second digit of
the number in the first row. Then only 1681, 3481, 3721, 4761 could be used in the
first row. Since all squares that end in 5 must end in 25, the number in the 3rd row
and 3rd column is 2. The third column is 2x25, 6x25, or 8x25, none of which is a
square for a nonzero digit x. Similarly, 1444 is eliminated. Only 6561 remains to be
considered, and all possibilities but the solution listed above are readily eliminated.

Also solved by Alma College Problem Solving Group, MI, Charles D. Ashbacher,
Charles Ashbacher Technologies, Hiawatha, IA, Patrick Costello, Eastern Kentucky University,
Richmond, Kenneth B. Davenport, Frackville, PA, Charles R. Diminnie, Angelo State Uni-
versity, San Angelo, TX, Mark Evans, Louisville, KY, Victor G. Feser, University of Mary,
Bismarck, ND, Rex H. Wu, Brooklyn, NY, Yeepay Yang, Massachusetts Academy of Math and
Science, Worcester, and the Proposer.

Editorial comment: By allowing zeros, Rex H. Wu found fourteen additional
solutions, only one of which is not symmetric about its main diagonal. The rows of
that solution are 8281, 1444, 0064, and 0144. Its columns are, of course, 8100, 2401,
8464, and 1444.

*979. [Fall 1999] Proposed by Murray S. Klamkin, University of Alberta, Edmon-
ton, Alberta, Canada.

Dedicated to Professor M. V. Subbarao on the occasion of his 78th birthday. Do
there exist an infinite number of triples of consecutive positive integers such that one
of them is prime, another is a product of two primes, and the third is a product of
three primes? Two such examples are 6, 7, 8 and 77, 78, 79.

Comments by J. Ernest Wilkins, Jr., Clark Atlanta University, Atlanta, Geor-

gia.
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Although we do not settle the proposed question rigorously, there is a long out-
standing conjecture of Bateman and Horn [1] that implies an affirmative answer.
Moreover, a negative answer to the proposed question would disprove the Bateman-
Horn conjecture.

Let V; be the set of all positive integers v such that 4v+1, 18v+ 5, and 36v + 11
are all primes. Then the triple of consecutive integers z;, z; + 1, z; + 2, in which
1 = 9(4v + 1), is clearly a triple of the desired kind. With Bateman and Horn we
define the quantity C; so that

a=fla-p" *1-p 'wp),
p

in which w(p) is the number of distinct solutions (mod p) to the congruence
(4v + 1)(18v + 5)(36v + 11) = 0(mod p),

and the product extends over all primes p. It is clear that w(2) = 0, w(3) = 1, and
w(p) = 3 if p > 3. The infinite product converges to a positive limit because no factor
vanishes, (1-p 1)"3(1-3p ') = 1+0(p ?), and the infinite series 3, p~* converges.
The Bateman-Horn conjecture in these circumstances is that the number of elements
of V that do not exceed a specified integer n is asymptotic for large n to

(0.2) C /2 n(log y) 2dy.

If the conjecture is true, it follows from the divergence of the integral (0.2) and the
positivity of C; that V) has infinitely many elements. Hence, there are infinitely many
triples of the kind described in the proposed question.

Let us define P, to be the set of triples of consecutive integers z, x+1, 2+ 2 for
which z, 41, +2 are the products of a, b, and ¢ primes, respectively. We have just
shown that the set Pjp; is infinite when the Bateman-Horn conjecture is true. Now
let V5 be the set of positive integers v such that 4v + 3, 18v + 13, and 36v + 35 are all
primes, V3 the set where 9v + 5, 12v + 7, and 36v + 19 are all primes, and Vj the set
where 9v + 1, 12v + 1, and 36v + 5 are all primes. Let x5 — 36v + 25, 23 = 36v + 19,
and x4 = 36v+ 3. Then z9, 22+ 1, 22 + 2 is a triple Py23 when v is in V3, 73, 13+ 1,
z3 + 2 is a triple Py32 when v is in V3, and 24, z4 + 1, 24 + 2 is a triple Pa3; when v
is in V4. A repetition of the analysis of the preceding paragraph shows that cach of
the sets V2, V3, and Vj is infinite when the Bateman-Horn conjecture is valid. Hence
sets Pia3, Pi3s, and Pa3; are also infinite.

Nevertheless, the sets Py13 and Ps;9 are finite. In fact, the triple z, z + 1, z + 2
is in Py;9 if and only if z = 4u, where u is a prime such that 2u + 1 and 4u + 1 are
also primes. If © — 1 (mod 3), then 2u+ 1 = 0 (mod 3), and if u = 2(mod 3), then
4u+1 =0 (mod 3). Hence, only when u = 3 are u, 2u + 1, and 4u + 1 all primes. We
conclude that P3;5 consists of the unique triple 12, 13, 14. Similarly, z, x + 1, = + 2
is in Pp3 if and only if z — 2(2u — 1), where u, 2u — 1, and 4u — 1 are all primes.
If u = 0 (mod 3), then u cannot be a prime unless v = 3. If u = 1 (mod 3), then
4u —1 = 0 (mod 3) and 4u — 1 is not prime because u # 1. If w = 2 (mod 3), then
2u—1 = 0 (mod 3). Hence 2u — 1 cannot be a prime unless u = 2. We conclude that
the only triples in Ps;3 are 6, 7, 8 and 10, 11, 12.

Of course we do not need the full force of the Bateman-Horn conjecture. That
conjecture deals with an arbitrary number of polynomials of arbitrary degree, whereas
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we need only consider three linear polynomials. Moreover, the conjecture states the
asymptotic formula (0.2), and we need only know that one of the sets V1, V2, V3, and
Va4 has an infinite number of elements. To the best of our knowledge, it is not known
if even the much weaker conjecture needed for our purposes is true or is false.
Reference: 1. PauL T. BATEMAN and ROGER A. HORN, A heuristic asymptotic
formula concerning the distribution of prime numbers, Mathematics of Computation,
vol. 16, 79 (1962) 363-367.

Editorial note: Richard I. Hess, Rancho Palos Verdes, CA, offered an argument
showing it is highly probable that the conjecture is true, that “testing enough large
numbers should always produce arbitrarily large triples of consecutive numbers” that
satisfy the conjecture.
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The MATHACROSTIC in this issue has been contributed by Dan Hurwitz.

001k{002¢c 003h|004s|005n(006a|007i 08m(009d

012r|013w|014j|015i|016s|017n{018q[019v[020g[021b 022¢
a. A basic form of valid reasoning N

(2 wds.) oo e

026e 027n|0281|0299|0300|031¢|032r| 033] [034v|035h| 036f

0391|040s|041t|042n|043i |044d{045r 046g{047bP48m 049k

b. Frequency given by the number of -
occurrences in a sample 052s053w]0540|055; [056¢ 057u|058n|059f 060g[061i

c. Eg. “All Men are mortal ...” @ — - __ ___ ___ ____________

056 002 031 101 122 022 082 116 070 0650|066t [067sP68m069b 070c|071n(072i|073d 074u|075e|076j
d. Ways to represent statements 073 T79 009 087 011 103 153 120 077t|0784]0790|080s [081b|082c P83 0841 [085¢ N 036k(057a J0&3x | 089t
by metaexpressions
i 090a/091r|092v| 093] (094u 95m096s 097q|098b{099i [1000[101c[102w
e. Onto function (2 wds.) 166 195 45 111 138 075 536
ioi i i i(114n|115
f. Originally defined in bronze 187 636 110 055 103d{104t[105n(106k|107i [108u[L09m(110s|111e 112r|113i(114n|115g
i i j 5| 124i 125t 1261(127h|128
g. First coordinate 030 TT5 16T 060 178 137 085 015 116h|117a|118j(119q 120d{121k{122¢|123s|124i 1 1|128a
h. The points such that ... 116 137 035 003 153 137 770 129¢(130p 31m{132n|133j 134v|135q|136s|137h|138e|139b|140f|141i
i. Something true of everything 007 184 061 107 015 172 072 113 028 TiT 142u|143] | 144g|145a| 146 N 1475|1481 | 129|500 R 15 11520 I 1534
(2 wds.) 013 099 121 168 154s(155b 156j [157m|158a(1590| 1601 161g{162s|163u| 1641[165n|166e
- Meiye Eomii pis 093 T18 156 08 014 133 143 076 033 167w 1651 (N 169+ 1700 R T71s| 172: |173q| 174¢ | 1750|1765 |17 7b |1 788[170d
k. Type of number sortin 5T FI8 AT SRR FaS A
P & 121 049 001 086 037 106 180r|181u|182n|183p[184i|185q|186v
1. Medium change does this to light 196 051 01T 035 167 160 063

m. Many have a finite number of states e mm e

n. Estimating an intermediate value 151 058 027 017 088 182 111 012 071 Last month’s mathacrostic was taken from “The Historical Roots of Elementary

Mathematics” by Lucas Bunt, Philip Jones, and Jack Bedient. The full text of the
quote is (with the puzzle solution in parentheses):

o. What one does to like terms 051 030 079 175 159 065 100 “We do know that (the Pythagorean Archytas divided mathematics
ilist’ i i s s into four parts: music, arithmetic, astronomy, and geometry. These
p. Probabilist’s experimental technique 550 183 185 136 _ p y Arahn ) 1 ,d e b Py ¥
subjects, called the quadrivium, were later adopted by Plato an
q. Categories with the same objects, 185 097 029 135 119 061 018 173 Aristotle and became the school curriculum for centuries) - in fact,
reversed morphisms up until the Renaissance”.
r. Homological diagram extension 115 013 0% 138 035 067 755
s. Not in Inn(G) (2 wds.) 310 025 T62 080 023 T71 T23 T7 067
016 096 176 052 151 110 001 136
t. Great figure in measure theory 101 010 01T 171 077 125 066 689
u. Fruity union of cycle free graphs TR T TR e p——

v. Script sometimes used in logic 186 155 715 131 o5

w. Component in one non-binary universe =5 ==z 71z Tror

— S - = = ———
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