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THE MATHEMATICS BEHIND A CARD TRICK 

DANIEL J . ACOSTA AND LAREMY COWART" 

Abstract. This article relates a common "pick a card" card trick and descrihc mathematically 
why it works. 

(1 12 13 ~ (2 15 Is ~ 
(4 15 16 ~ (11 114 117 ~ 
(7 Ys y9 ~ (2o y3 y6 ~ 
(w Y11 l12 ~ (9 l12 y15 ~ 
(13 y14 115 ~ (18 l21 l1 ~ 
(16 117 y18 ~ (4 l7 l10 ~ 
(19 120 y21 ~ (13 y16 l19 ~ 

(s r17 y6 ~ 
(15 y1 Yw ~ 
(19 y2 Y11 ~ 
(2o yg l18 ~ 
(4 l13 J5 ~ 
(14 13 r12 ~ 
(21 17 y16 ~ 

Ftc . 0 . 1. Our card trick where the chosen card is number 18 

1. A Card Trick. A. Deal out twenty one cards face up into seven rows each 
containing three cards. As you complete the first row, from left to right, begin the 
second row so that the new cards slightly overlap the cards in the first row. This will 
make the mechanics of the trick a bit easier. 

B. After dealing out all seven rows in this manner, ask a bystander to silently 
select one of the twenty-one cards, telling you only the column (one, two, or three) 
that contains the card. From top to bottom, scoop up the cards in some other column, 
followed by the cards in the designated column which are stacked underneath the cards 
thus far , and finally the cards in the remaining column. Flip the deck over and repeat 
the dealing process in step A above. 

C. Once more ask your volunteer which column now contains the card previously 
selected. Pick up the cards in the same manner as described above, again with the 
designated column picked up secondly. Repeat dealing one last time. 

D. Inquire about the column one last time. The mystery card will be in the fourth 
position (the middle) of the column identified by your participant. Now what is a 
card trick without any sleight of hand? So instead of identifying the card verbally, 
show the card in grand style by following these steps: Pick up the columns as before 

• Southeastern Lou isiana U ni versi ty 



118 ACOSTA AND COWART 

(the secret card is of course in position eleven (the middle) out of the twenty-one card 
deck) and afterwards lay the first seven cards face down, one on top of the other. The 
next seven are laid atop this stack, each face down but only slightly overlapping one 
another, the cards alternately protruding from the top and bottom of the deck. The 
last seven cards are placed atop these, nice a nd flush just like the first seven. The 
result looks like a deck of cards with some of the middle cards sticking out the top 
and bottom. Picking up this bundle of cards with a firm grasp so that none of the 
protruding cards slip, gently pack the deck a few times on a firm surface allowing the 
middle cards to settle a bit. Pack from the other end now, and repeat this process, 
alternately packing from the bottom and top. All the middle cards should eventually 
settle flush with the rest of the deck with one card still protruding- the secret card 
occupying the middle position. You never even mention the card chosen by your 
patient friend. It appears! 

We now unveil the secret of the trick and describe why the chosen card will always 
end up in the middle spot of the deck. We also generalize and ask what happens when 
the 7 x 3 pattern is replaced by a k x m pattern, k, m 2: 2. We wish to mention another 
article on this topic, recently brought to our attention [1}. 

2. A mathematical translation. Once the cards are dealt and a specific card 
chosen, the vertical position of the card in the designated column is denoted x, with 
1 ::; x ::; k necessarily. When the cards are picked up in the aforementioned manner 
(always with the chosen column picked up next to last) then flipped and dealt, the 
same card is now in slot r k:;.x l of some column, where r y l denotes the smallest 
integer greater than or equal to y. To see this note that after picking up the cards, 
the chosen card occupies position k + x in the deck just before dealing, and by the 
Division Algorithm there is a unique q 2: 0 such that k + x = q · m + r, 0 ::; r < m. 
When r = 0 the card will appear in t he last spot of the qth row after the cards have 
been dealt again. If r > 0, the card appears in the rth spot of the (q+ l)st row. Either 
way, the new row housing the card is given by r k:;.x l , which necessarily lies between 
1 and k, just like x. We have just completed step B of the card trick and have made 
use of the following function. 

f:x ~ rk:xl 
Iterating produces a dynamical system on the set of positive integers { 1, 2, 3, 4, ... , k.} 
We describe the end behavior of this system. For what follows, suppose m~ l tj. IZ, 
hut see comments afterwards. 

1. There is a unique s { 1, 2, 3, ... , k }, called the stable element, with the 

property that f (s) = s . In fact, s = f ,.~ 1 l .This is the slot (in some column 

to be identified by the participant) eventually occupied by the mystery card. 
2. All x E {1 , 2, 3, .. . ,k} with x < s satisfy f(x) > x. Similarly, all x E 

{1,2,3, ... ,k} with x > s satisfy f(x) < x. Therefore all x map to s af
ter a certain number of iterations of f. The system is said to be attracting. 

3. The minimal number of iterations, n, required for all elements to map to s 
depends upon m and k. In fact, flogm k l - 1 ::; n ::; pogm k l + 1. (Exact 
expressions for n are given in the proof.) Note we actually deal the cards 
n + 1 times, as the first deal (step A) is not an iteration of f. Likewise, we've 
asked our participant to identify the column n + 1 times (once after each 
deal). 

.. 
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In the case _]£_1 E /Z , there are two consecutive stable elements, s 1 = _]£_1 and m - m -
82 = m~ 1 + 1, the former attracting all x $ s 1 , the latter attracting all .r 2: s2 . 

3. Examples. We explicitly follow the map for om original 7 x 3 example under 
several iterations of f. 

1 ~ 3 ~4 

2 ~ 3 ~4 

3 ~ 4 ~ 4 

4 ~ 4 ~ 4 

5 4 4 
6~5~4 

7~---+5~---+4 

We thus see that after two iterations off (steps B and C), the original row position 
x is mapped to the middle position, 4, irrespective of the initial value for ;; . Utilizing 
our notation in 2 and 3 of Section 2, we say for k = 7 and m - 3 we have n = 2 and 
s = 4, see Table 3.1. The data for k ::; m can be similarly represented. In fact, n = 1 

k rn s n flogm kl k m s n pogm k l 
7 3 4 2 2 10 5 3 2 2 
8 3 4,5 2 2 11 5 3 3 2 
9 3 5 2 2 12 5 3,4 2 2 
10 3 5,6 2 3 13 5 4 2 2 
11 3 6 3 3 14 5 4 2 2 
12 3 6,7 2 3 15 5 4 3 2 
13 3 7 3 3 16 5 4,5 2 2 

17 5 5 2 2 

100 3 50,51 4 5 
101 3 51 5 5 101 5 26 3 3 

102 5 26 4 3 
1000 3 500,501 6 7 103 5 26 4 3 
1001 3 501 7 7 104 5 26,27 3 3 

7 5 2 2 2 
8 5 2,3 2 2 1000 5 250,251 5 5 
9 5 3 2 2 1001 5 251 5 5 

1ABI.E 3.1 

or 2 for all such cases. 
The examples in Table 3.2 (kmonstrate that the chosen card can be distinguished 

from a large number of cards in relatively few iterations. 

4. Algebra of f y l · For the proofs that follow in section 5 we exploit the following 
properties of the smallest integer function. The proofs are left to the rPader , hut as a 
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k m s n flogm kl 
100000 100 1011 3 3 

1000000 100 10102 3 3 
10000001 1001 100001 3 3 

TABLE 3.2 

hint, prove 3 first, using it in turn to prove 1. 

(4.1) 

(4.2) 

(4.3) 

fx+yl :<:; fxl + fyl . 

rx - yl;::: fxl - fyl . 

fx+nl=fxl + n , n E:£: . 

5. Proofs. 
Proof For the proof of result 1, recall f X ,_. r \!;x l The condition that 

f(x) = x is thus 

r
km+ xl = x<=?x 

k + x 
1 < -- < x m -

=} m x - m < k + x :<:; mx 

=} (m - 1)x < k + m and k :<:; (m - 1)x 

k+m k 
=} x < - - and -- < x 

m - 1 m - 1 -
k k m k 1 

=} -- < X < -- + -- = -- + 1 + -- (1) 
m - 1 - m 1 m - 1 m - 1 m - 1 

To prove that x is uniquely determined by this inequality it suffices, by the very last 

equality, to demonst rate rn 1 1 :<:; r mk_ 1 l - mk_ 1 . In other words, m~ I is too small for 

r mk_ 1l and r mk_ 1 + m~ 1 1 to be different integers. But this follows from: 

--< -- =} -- - --< -- - --k + 1 r k 1 k + 1 k r k 1 k 
m - 1 - m - 1 m - 1 m - 1 - m - 1 m - 1 

=}-- < -- ---. 1 r k 1 k 
m - 1 - m - 1 m - 1 

Note that here we explicitly use the assumption mk_ 1 fj. :£: so that r mk 11 = !~'J. , 
p ? 1. Thus, there is exactly one integer satisfying (1), namely s = r mk_ 11. Note, for 

k = 8, m = 3, we have s = 4, 5. In all such examples where rnk_ 1 E :£: , two consecutive 
integers satisfy the double inequality (1 ). D 

Proof. For the proof of result 2, suppose x < s , in fact , :r = s - t. T hen under our 
map f we observe t he following: 

.r ,_. r k:x l = r k +~- t l 

rk; s- ~.l > r k;s l - r:l = s - r:l ;::: s - t = x . 
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Note this last inequality is strict except fort = 1. Of course we don't need the strict 
inequality since by proof 1 above, f(x) = x only happens for x = s. We also used the 
facts that S is stable under f and the function r X l obeys a triangle inequality (see 
section 4). 
An analogous argument shows f(x) < x for x > s. 
D 

Proof For the proof of result 3 we consider three cases. 

Case 1: m = 2. Here, s = r mk_ 1l = k and t hus after one iteration of f the 

numbers k - 1 and k both map to k. We offer a more concrete interpretation. The 
two cards occupying position k - 1 and k respectively in the column containing the 
selected card will occupy consecutive slots in the kth row upon redealing (step B). 
Composing with f again produces a map that sends k - 3, k - 2, k - 1, and k to k. 
In other words, the two cards sent to row k - 1 after the first iteration are in the 
analogous position as the card in position k - 1 mentioned above and thus will get 
sent to the kth row upon redealing. Of course only one of these two cards actually 
ends up on the kth row, namely the card in the same column as the selected card, but 
both cards have this potential and are thus counted, yielding a total of four original 
positions sent to k under two iterations of f. The next iteration will bring the total 
up to eight: two cards in each of the rows designated by the numbers previously 
mapped to k, namely, k - 3, k - 2, k - 2, and k. In general then, after n iterations, 2n 
elements have mapped to s = k. Solving the inequality 2n ;::: k gives usn ;::: log2 k, so 
n = flog2kl 

Case 2: m = 3. Here, s = f mk_ 1l = f ~l and the same sort of argument as above 

shows that in the case k odd, 3n positions map to position s after n iterations. It is 
important to note that the card occupying positions in the original column cant· ining 
the selected card will be sent to the middle spot (middle row, middle column) in the 
card configuration after the first iteration so that the same number of positions map 
to s from above and below. This makes the calculation easy: n = log3 k 1 . When 
k is even, we see that mk_ 1 E :£: and there are two s as mentioned above (Section 
2). Upon the first iteration (redealing) these two positions of the original column 
now occupy positions (mk_1, 3) and (mk_1 + 1, 1) respectively so that an equa number 

of positions map down to s1 = mk_ 1 as up to s2 = mk_ 1 + 1. After n iterat ions 
then a total of 2 · 3n postions have mapped to either s1 or s2 , so 2 · 3n ;::: k yields 
n = flog3 ~l = flog3 k - log3 21 = fl og3 k l or flog3 k l - 1, (see the table in section 3 
for both occurences.) 

Case 3: m ;::: 4. We first claim that s = r mk_1l :<:; ~. To see this, note mk_ 1 :<:; ~ 
d I . ffi h rkl k N rkl - k k+l k + 2 h f h. I . an tms 1t su ces to sow 3 :<:; 2 .• ow, 3 - 3 , ----:! 'or - 3- , eac o w 1c 1 can 

be handled individually. 

k k 
-<-
3 2 

k + 1 k 1 k 1 2k + 3 3k k 
-- = - + - < - + - = -- < - = - for k > 3. 

3 3 3 3 2 6 - 6 2 
k + 2 k 2 k 2k + 6 3k k 
-- = - + - < - + 1 = -- < - = - for k 6. 

3 3 3 3 6 - 6 2 

T he reader can finish by explicitly checking thc> inequality for k = 2, 3, 4, 5. 
Continuing to use our notation, we will count the number of iterations required 

for the chosen card to map to the s slot starting out at posit ion x - k, i.e. the 
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last card in its column. This card is farthest away from position s (S ~) and, as 
f(k) > f(k - t), requires the most iterations to reach the stable position, thereby 
providing the minimum count n which we are seeking. After one iteration the s-card 
necessarily occupies position (s, r), where, as before, k + s = mq + r, r < m by the 
Division Algorithm. Thus, the l 1 cards in position s, s + 1, s + 2, ... s + l of the 
original column all mapped to row s under one iteration of f. Here l represents the 
quantity m - r·. Under the next iteration then any card in row s, rows + 1, ... and 
rows+ l will all map to positions for a running total of (l + 1)m cards. In general , 
after n iterations a total of (l 1)m"- 1 cards have mapped to position s. We now 
solve for n required for the tally to reach k - s + 1, i.e. the number of cards between 
s and k, inclusive, in the original column. Since k - s + 1 = (l + 1)m" 1 , we have 
n = flogm(k + 1 s ) - logm(l + 1) + 1l S flogm(k) +ll S flogm kl+ 1, asclaimed. 

0 

We can also get a lower bound for n. Claim: n 2: flogm k l - 1. 

n = rlogm(k + 1 - s) - logm(l + 1) + 11 

2: flogm(k + 1 - s) - logm(m + 1) + 11 

= ~logm ( k; ~ ~ s) + 11 = ~log, ( k :,, ~ ~ s) l 1 

r (k + 1 _ k (rn - 2) )1 
> logm m + ~·- 1 

+ 1 (since m 2: 4 and s _ ~ ), 

= llogm ( (k + 1)(m~21~ ~ k(m - 2) ) l + 1 = llogm ( k ;;1~ ~ 1) l + 1 

= pogrn(k + m - 1) logm(m2 - 1)1 + 1 

_ pogm (k + m - 1) - logm(m2 )l + 1 = flogm (k + m - 1) - 21 1 

= flogm ( k + m - 1 )1 - 2 + 1 = flog,. ( k + m - 1) l - 1 

> flogm kl - 1 
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FACTORIZATION OF THE PRIMES 

AYOUB B . AYOUB* 

A prime number p has, by definition, no prime factorization other than the trivial 
one p·l. However, a prime number can be fac tored into numbers which do not belong 
to the ring of integers of the rational field. In this note, we will show that the odd 
prime number p has the factorization: 

- 1 ·227r ·247r ·267r (p - 1)7r 
p = 2P · sm - · sm - · sm - · · · ..:::....__-'--

p p p p 

Although this result is interesting, it is the technique used to prove it, that is more 
significant. Here, the concept of a splitting field, which in this case is the yclotomic 
field, will be used together with some facts from number theory. 

For the proof, we will use the binomial equation xP - 1 = 0. This is an equat ion 
whose roots are the p'th roots of unity. Since xP = cos 27rr i sin 21Tr , then x -

(cos 21rr + isin 27rr) 11P. When De Moivres Theorem is applied, we get 

- 2r7r . . 2r·7r - 2rtr IP l -x - cos -+ zsm- - e , w 1ere r - 1, 2, 3, ... ,p. 
p p 

If we let e271'r / p = w , then the roots of the equation are 1, w, w2, ... , wP- 1. 

Now, xP - 1 can be factored in two different ways, and we have 

(x 1)(xP- 1 + xP- 2 + .. · + x + 1) = (x - 1)(x - w)(x - w2) .. · (x - wp- l) 

from which we get the identity 

(0.1) xP- 1 + xP- 2 + ··· + x + 1 = (:r - w)(:r - w2)···(x - wP 1) 

The polynomial on the left side of (0.1) is called the p'th cyclotomic polynomial 
and is known to be irreducible over the rational field Q . The right side, however, 
represents the factorization of the polynomial over the cyclotomic field Q (w), see [3]. 

Now, if we set x = 1 in (0.1), we get 

Each factor on the right can be shown to be a prime integer of the cyclotomic field 
Q(w), [1]. 

Since {1, 2, 3, ... ,p - 1} is a reduced residue system (mod p), then {2, 4, 6, ... , 2p-
2} is also a reduced residue system (mod p), see [2]. Consequently p = (x - w2 )(x 
w4)(x - w6) · · · (x - w2P 2 ). 

Now, if we divide the factors by w,w2,w3,wP- 1, respectively, and notice that 
w · w2 · w3 · · ·wP- 1 = wP(P- l )/2, we get 

Since p - k = - k(mod p), then to each factor there is another one with opposite 
sign; therefore 

*The Pennsylvania State University, Abington College 
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But wr - w- r = 2i sin 21rr 
p 

So, p = ( - 1)(p- l)/2 (2i sin 27f fp )2 (2i sin 47r fp )2 (2i sin 61r /p)2 · · · (2i sin(p 
After simplifying, we get 

p = 2P 1 sin2 (27r/p) sin2 (47r/p) sin2 (61rjp) · · ·sin2 ((p - 1)7r/ p) 

And now, we verify this result for p = 3 and p = 5. 
If p = 3, we have 22 sin2 (27r /3) = 4( v'3/2) 2 = 3, and if p = 5, we have 

24 sin2 (27r/ 5) sin2 (47r/ 5) = 16((5 + J5)/8)((5 - J5)/8) = 5. 
One should bear in mind that factorization of a prime depends on the extension 

field Q (m) which contains that prime. For example, in the Gaussian field Q(i), the 
rational prime 5 can be factored into two Gaussian primes as 5 = (2 - i)(2 + i) while 
the prime 3 can not be factored because it is a Gaussian prime itself, see [3]. 

More information about this topic may be found in [2]. 
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ELIMINATING FALSE POSITIVES IN A CRYPTOGRAPHIC 
METHOD • 

ANNE MARIE DADDEAt A N D MICHAEL A. JONES 
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Abstract. sing a cryptographic method where two people exchange envelopes containing 
random numbers, it is possible to determine if they share confidential information without revealing 
t he information . However, there is a possibility of a false positive; that is , there is a possibi lity 
that the people believe that they share the same information when they do not . A Monte Carlo 
simulation is used to determine the probability of a false positive. Restricting the random numbers 
can eliminate this problem without considerably comprising the random aspect of the procedure. 
Although the envelope method involves t he addition of random numbers, multiplication could be 
used, as well. 

1. Introduction. Cryptography can be used to determine if two people share 
confidential information without revealing it. This is the case if two people are trying 
to decide if they have the same person in mind while maintaining the confidentiality 
of that person's identity, such as two managers deciding whom to hire or fire. A 
similar situation could arise in a sexual harassment case where both the suspected 
harasser's and the victim's identity cannot be revealed. Likewise, it is important when 
discovering if two business associates know the same password for a computer program 
or two children know the same password for entry into a clubhouse. An article in Th 
Economist [1 ] focuses on one method from an article by Fagin, Naor, and Winkler 2]. 
In their paper, they examine different methods for comparing confidential information. 

Although Fagin, Naor, and Winkler pose several solutions to the problem, the 
technique examined in [2] utilizes only some paper, a pen or pencil, and a supply 
of envelopes - without any large prime numbers. The participants translate their 
information into a sequence of O's and 1 's through the use of a binary code. After 
writing down a set of random numbers, the participants sum the numbers in a subset 
determined by their binary sequences. If the participants' sums are the same, then 
the confidential information is believed to be the same. As discussed in [ 1] and 2], 
there is a possibility of a false positive; the sums are the same, but the information is 
different. 

In Section 2, we review the envelope method and present examples, including 
a false positive. We determine the likelihood of a false positive through the use 
of a Monte Carlo simulation in Section 3. By restricting the set of numbers, we 
mathematically eliminate the possibility of a false positive. Although the numbers 
are no longer random, their arrangement is random. The large number of possible 
arrangements ensures the integrity of the restricted procedure. By noticing that the 
subset of the restricted numbers was more important than the numbers themselves, we 
eliminate the need to add the numbers. Instead, the participants compare two binary 
vectors; if the vectors are the same, then the paricipants share the same information. 
This mathematical development appears in Section 4. The approach in [2] can be 
modified by multiplying random numbers where identical products imply identical 
information. We consider such an approach in Section 5 and again eliminate the 
possibility of a false positive. 

*This work was supported by a Student Faculty Research grant from the Office of Research and 
Sponsored Programs at Montclair State University. 
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2. The Envelope Method. To use the envelope method, the participants con
vert their information into binary form, using the same binary code. For this paper, 
we use the code in Figure 2.1. It consists of 5 binary digits in order to encode the 27 

"" 0 0 0 0 0 I 0 1 0 0 1 R 1 0 0 1 0 
A 0 0 0 0 1 J 0 1 0 1 0 s 1 0 0 1 1 
B 0 0 0 1 0 K 0 1 0 1 1 T 1 0 1 0 0 
c 0 0 0 1 1 L 0 1 1 0 0 u 1 0 1 0 1 
D 0 0 1 0 0 M 0 1 1 0 1 v 1 0 1 1 0 
E 0 0 1 0 1 N 0 1 1 1 0 w 1 0 1 1 1 
F 0 0 1 1 0 0 0 1 1 1 1 X 1 1 0 0 0 
G 0 0 1 1 1 p 1 0 0 0 0 y 1 1 0 0 1 
H 0 1 0 0 0 Q 1 0 0 0 1 z 1 1 0 1 0 

FIG. 2.1. Encoding the alphabet. 

necessary characters, the 26 letters and a "space." We explain the envelope method 
through the following examples. 

EXAMPLE 1. Assume that two managers want to determine if they want to 
hire the same applicant. Before applying the procedure, the managers must agree 
on restrictions on the number of letters to spell the applicants' names. In order to 
simplify the procedure, assume that the names of the applicants are at most three 
letters in length. The managers agree to fill the remaining characters after the name 
as "space" if they want to hire applicants whose names are less than 3 letters. 

Assume that Manager A wants to hire "Rob" while Manager B wants to hire 
"Ed." Each manager translates the name of his top candidate into a binary sequence 
of 15 digits. The manager lists the sequence vertically and places random numbers 
in columns labeled 0 and 1. Both managers' encoded names and random numbers 
appear in Figure 2.2. Obviously, one manager's random numbers and encoded name 

1 

0 
R 0 

0 

0 

0 

0 

0 
B 0 

0 

0 

0 

E 1 
0 

0 

0 
D 1 

0 
0 

0 

0 

"" 0 
0 
0 

69 

77 
18 
26 
35 

74 82 

FIG. 2.2. Manager A's nnmbers (left} and Manager B 's numbers (right) yield distinct sums 
and di tmct names. 
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arc not observed by th<• other manager. Managf'r A and Manager B theu add up the 
random numbers corresponding to their encoded names; these numbers are the boxed 
numbers from their own colmnns in Figure 2.2. Manager A's first sum ·s 627 aud 
Manager B's first sum is 601. 

The managers write their random numbers on separate slips of paper and seal the 
slips of paper ;'1 sepa ·ate envelopes. The managers place their enve opes in two stacks, 
one for each of the O's and 1 's columns of random muub<>rs, and keep the envelope:, 
in sequential order - corresponding to the order in the columnt-.. Hence, MamtgPr A's 
fourth envelope in the 1 's stack contains a slip of paper with the four th number in 
the Ivlanager A's 1 's column. In our example, this envelope would contaiu ·'92. '' 

The two managers exchange their stacks of envelopes. The managers open the 
envelopes that correspond to their binary sequence, returning the remaining envelop<·s 
that are then destroyed, in the presence of both managers. A count of thf' enYelopt>s 
guarantees that the managers took the right number of envelopes. Each manager 
adds up the random numbers in the selected envelopes (as shown by the nmubers in 
bold italics in the other managers' columns in Figure 2.2) and arrives at a second 
sum. Manager A's and :t\Ianager B's second sums are 887 and 647, respectively. After 
adding together both sums the managers reveal only their total sum. Manager ,4's 
grand total 1514 ( 627 + 887) and Manager B 's grand total 1248 ( = 601 + 64 7) an• 
different. Since the totals are different, it follows that the names must be diffPrent , 
too. The managers do not have the same candidate in mind and can continue to 
discuss all of the candidates. 

EXAMPLE 2. Assume the managers use the same random numbers a.<; in Example 
1, however, they both use the name "Ed." Again each party adds up the random 
numbers corresponding to his code as shown by the boxed numbers in Figure 3. 
Manager A's sum is 647 and Manager B's is 601. After sealing and exchanging the 

E 

D 

" " 

0 
0 

0 
1 

0 
0 
1 
0 
0 

0 
0 
0 
0 
0 

16 
82 
40 
22 
6 

0 
0 

E 1 
0 
1 

0 
0 

D 1 
0 
0 

0 
0 

" " 0 
0 
0 74 82 

FIG. 2.3. Manag r A's nurnbPrs {left) and Manager B 's nnmbcrs (nght) yiPld ulrntical sums 
rmd identical names. 

envelopes, they add up the appropriate random numbers (those in hold italics from 
the other managers' columns). Notice that the boxed and hold, italic numbers arc 
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identical. Manager A's second sum is 601 and Manager B 's is 647. Once the two 
totals are combined and they reveal their grand totals, they discover that the grand 
totals are the same, 1248. They believe that the names are the same. And, in this 
case, they are right. 

However, as indicated in [1] and (2], there is a possibility of a false positive. That 
is, it is possible that the grand totals of the managerl:l are the same, but that the 
names are different. Indeed, we know that different subsets of numbers may add to 
the same value. 

EXAMPLE 3. To demonstrate the possibility of a false positive, consider the 
random numbers used in Figure 2.4. Manager A adds the first sum of 627 to the 

0 

0 
0 0 

R 0 E 
1 0 
0 

0 0 
0 

0 D 1 
0 

1 0 

0 0 
0 0 

8 0 , " 0 
0 

0 0 74 82 

FIG. 2.4. Manager A's number·s (left) and Manager B 's numbers (nght) yi ld id ntical sums, 
but different names. 

second sum of 887 to yield 1514. Manager B adds the first sum of 601 to the second 
sum of 913 which also equals 1514. Since the totals are the same, they assume that 
the names are the same; however, in this case, the names are different and the sums 
are coincidentally the same because of the random numbers selected. 

3. The Likelihood of False Positives. Before trying to eliminate the pol:lsibil
ity of a false positive, we wanted to know how frequently false positives occur. If they 
don't occur very often, then we could accept the risk of using the envelope method 
without any modifications. By using a Monte Carlo simulation, we determined the 
likelihood of a false positive. For each iteration of the program, we assigned 2n ran
dom numbers to each manager; these numbers were positioned in two columns as in 
Figure 2.1. We assumed that Manager A had a fixed name, or fixed binary sequence 
of length n; we used the sequence of all O's. We considered every possible binary 
sequence for Manager B. If the grand totals were equal for a sequence other than 
all O's for Manager B, then this was considered a false positive. We ran this simu
lation determining the probability of a false positive for different values of n and for 
restrictions on the set of random numbers. 

The probability of a false positive, as determined by the Monte Carlo simulation, 
appears in Figure 3.1. In Figure 3.1, the rows indicate a fixed range of values from 

·' 
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1 2 3 4 5 6 7 8 9 10 11 12 13 
2 37.19 74.7 93.42 98.23 99.35 99.79 99.94 99.98 99.99 100 100 100 100 
4 17.24 41.19 68.39 88.2 95.93 98.45 99.5 99.8 99 .91 99.94 99.95 99.99 99.99 
8 8.3 21.06 39.74 63.72 83.84 94.28 98.05 99.26 99 .72 99.87 99.91 99.98 100 
16 4.11 10.91 22.38 39.27 59.45 80.1 92.4 97.37 98.93 99.63 99.85 99.94 99.98 
32 2.27 5.58 11.05 21.62 36.29 56.46 76.03 90.57 96.41 98.71 99.41 99.74 99.9 
64 0.97 2.69 5.64 11.42 19.93 34.17 53.62 74.57 89.3 95.75 98.42 99.3 99.73 

128 0.5 1.42 2.96 6.08 10.51 18.95 32.22 51.6 72.19 87.93 95.38 98.33 99.09 
256 0.29 0.73 1.55 2.87 5.04 9.71 17.45 30.14 47.91 69.39 85.85 95.07 97.91 
512 0.16 0.4 0.78 1.56 2.65 4.86 9.43 16.62 29.36 46.25 67.81 85.2 94.4 
1024 0.09 0.18 0.39 0.8 1.38 2.48 4.54 8.46 15.86 27.15 44.01 66.78 83.74 
2048 0.08 0.14 0.25 0.39 0.79 1.31 2.38 4.48 8.07 14.91 26.07 42.64 64.06 
4096 0.01 0.02 0.06 0.22 0.29 0.67 1.18 2.43 4.3 7.7 14.39 25.62 41.76 
8192 O.Dl 0.02 0.06 0.12 0.23 0.44 0.57 1.14 2.11 4.03 7.46 13.83 23.8 
16384 0 0 0.01 0.01 0.06 0.12 0.29 0.58 1.13 2.22 3.8 7.2 13.46 
32768 0 0 O.Dl 0.02 0.02 0.11 0.23 0.38 0.7 1.46 2.69 5.93 11.66 

FIG. 3.1. Monte Carlo simulation results of the percent llkelihood of a false positive for 1 to 1 :J 
bits of information and f or m ndom numbers drown from { 0, 1, 2 . . . . , 2n - 1}. 

which random numbers were selected. In the row denoted 2n, the random numbers 
were selected from the set of 2n numbers, {0, l, ... ,2n - 1}. The columns fix the 
number of binary digits used by each manager. For each entry in Figure 3.1, the 
simulation was run for 10,000 sets of random numberl:l. As expected, the range of 
random numbers and the number of binary digits affects the probability of a false 
positive: increasing the range of the random numbers decreases the likelihood of a false 
positive, while increasing the amount of binary information increases the likelihood 
of a false posit ive. Even for only 13 binary digits, which is just shy of 3 letters in our 
binary code, the probability of a false positive is high for any reasonable restriction 
on the set of random numbers. 

4. Eliminating False Positives. Increasing the range of random numbers does 
decrease the failure rate, but the numbers become too large to be manipulated easily. 
It would be ideal to modify the envelope method, eliminating the possibility of a false 
positive, while keeping the addition manageable. 

To introduce the ideas and simplify the analysis, we examine all possible sums of 
the random numbers for one of the two managers. Our goal is to determine how to 
ensure that the sums generated by all binary sequences are distinct. Once one manager 
has 4n random numbers that guarantee distinct sums for sequences of length 2n, then 
the first n rows of numbers could be used by Manager A while the second n rows 
of numbers could be used by Manager B. Both managers would have 2n random 
numbers and be able to use sequences of length n. This would guarantee that sums 
determined by the random numbers of both managers would be distinct unless the 
binary sequences were identical. 

EXAMPLE 4 . Assume that one person has 8 random numbers, 4 in each column. 
Again, the two columns could be labeled 0 and 1. 

27 44 
10 69 
56 4 
16 81 

T he 16 possible 4 digit binary sequences yield 16 distinct sums: 

57 74, 109, 116, 122,126,133,139,168,174,181,185,191,198,233, and250. 
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There is no possibility of two binary sequences yielding the same sum using this set 
of random numbers. 

To generate the numbers in Example 4, we altered the Monte Carlo simulation 
from Section 3. Is there a more natural way to guarantee that the numbers sum 
to distinct values? Further, is it possible to find "minimal" sums? In the previous 
example, the 16 sums ranged from ~7 to 250. We can ensure distinct sums and reduce 
the range of the sums by restricting the n 1mbers; the numbers will no longer be 
random, but will be placed in a random ordPr. If a manager selects either 0 or a 
different 2k fork = 0 ton - 1 for the entrif's in the n rows, as in Example 5, then she 
can ensure that binary sequences yield distinct sums. This idea is used to eliminate 
false positives by having one managPr use 2k for k = 0 to n - 1, while the other 
manager uses 2k for k = n to 2n - 1. 

EXM.IPLE 5. Assume that a manager places a 0 and a diffi rent 2k for k = 0 to 3 
in each row, as below, 

0 4 
2 0 
0 8 
0 1. 

All possible 4 digit binary sequences yield 16 distinct sums: 

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 12 13, 14, and 15. 

These possible smns are minimal because they consist of the 16 consecutive integers 
between 0 and 15. 

The above example eliminated the possibility of a false positive for a single man
ager; that is, it guaranteed that all possible binary sequences yielded distinct sums 
of the manager's own numbers. Before applying this idea to two managers, as was 
described previously, the example is extended and shown to eliminate false positives 
for any number of bits. 

THEOREl\·1 4.1. For the two columns of number·s 

0 1 
0 2 
0 4 
0 8 

all possible binary sequences of length 11 genemte distinct sums of the consccut.iv 
integers between 0 and 2" 1. 

Proof. This is a proof by mathematical induction on the n binary digits. For 
n = 1, the columns and sums are equal to equal 0 and 1. These sums arc distinct and 
minimal. 

Assume the following n - 1 rows yield sums that are the consecutive integers from 

·' 
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Oto2" - 1 - l : 

0 1 
0 2 
0 4 
0 

Adding another row to accomodate another binary digit is equivalent to adding a 0 
or 211

-
1 to the possible sums from the first n - 1 pieces of binary informat ion. 

If adding 0, then the sums remain the same: 0, 1, 2, 3, ... , and 2n- J - 1. If adding 
271

-
1, then the sums equal 2"- 1, 2"- 1 + 1, 211

-
1 2, 2" - 1 3, ... , and 2" - 1 +2"- 1 - 1 = 

211
- 1. The sums are distinct and minimal. Hence, it is true for every value of n. 0 
Although this is a valid way to eliminate two sequences yielding the same sum, 

restricting the numbers to such an extent damages the random aspect of the nwthod. 
Eliminating the random numbers hurts the integrity of the method, since manager's 
know what numbers the other manager uses. On the other hand, even though the 
numbers are restricted, they can still be arranged in a random order. 

For n rows, there are 2"n! ways to arrange a 0 and a distinct 2k, for 0 :::; k :::; n - 1, 
in every row. Since k is an integer between 0 and n - 1, inclusive, there arc n values 
of k and n! ways to determine which value of k appears in which row. For each row, 
the 0 can appear in either column. Since there are n rows, the O's can be arranged in 
2" ways. Hence, there are 211n! ways to arrange a 0 and a distinct 2k in n rows. 

To emphasize the large number of arrangements, realize that for a 3 letter word 
or 15 binary digits, there are 215 15! or 4.28 x 1016 arrangements of O's and distinct 
values of 2k. And, of course, all arrangements yield distinct and minimal Rums. 

So far the method for eliminating false positives has concentrated only on the 
random numbers of one manager. This idea can be extended to both mauagers if 
different powers of two are assigned to each. For n binary digits , oue manager can 
use integer values for k between 0 and n - 1, while the other manager uses integer 
values between n and 2n - 1. This will ensure distinct and minimal smns. There are 
22"n!n! ways to arrange the numbers. 

EXAMPLE 6. If each manager selects numbers with a 0 and a 2k in each row 
and Manager A selects numbers where 0 :::; k :::; 14 and Manager B selects numbers 
where 15 :::; k :::; 29, they arrange those numbers in a random manner as in Figure 6. 
Manager A's own sum is 22523 and Manager B's is 190644224 (adding the manager's 
own boxed numbers). After sealing and exchanging the envelopes they add up the 
appropriate numbers and Manager A's sum using Manager B's numbers is 272924672 
and l\llanager B's sum using Manager A's numbers is 9153 (adding the other managers 
bold numbers). Manager A adds 22523 to 272891904 which equals 272914427 and 
Manager B adds 190644224 to 9153 which equals 190653377. 

Although this eliminates the false positive by yielding distinct and minimal sums, 
the numbers are large and the sums arc cumbersome. The same idea can be simplified 
using vectors. Rather than writing 2k as an integer in each row, we could leave the 
integers as powers of 2. Therefore, the numbers in Figure 5 could be changed from 
32 to 25 , etc. Adding the boxed numbers of 32 + 2 + 16384 + ... + 256 for Manager A 
can be written as: 1 · 25 + 1· 21 + 1 · 214 + ... + 1 · 28 . Similarly, the sum of Manager 
B's boxed numbers is: 1 · 220 + 0 · 226 + 1 · 210 + ... + 0 · 221 . The coefficient of 0 or 
1 for each 2k indicates whether that power of 2 is part of the sum of their encoded 
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0 0 

1 0 32 0 1048576 0 
0 2 0 0 0 67108864 

R 0 16384 0 E 1 0 524288 
1 0 16 0 33554432 0 
0 128 0 1 32768 0 
0 0 2048 0 0 536870912 
1 0 512 0 134217728 0 

0 1 0 8 D 1 0 4194304 
1 8192 0 0 65536 0 
1 0 4096 0 16777216 0 
0 64 0 0 262144 0 
0 1 0 0 0 131072 

8 0 0 4 "" 0 0 8388608 
1 0 1024 0 0 268435456 
0 256 0 0 0 2097152 

FIG. 1.1. Manager· A's numbers (left) and Manager B 's numbers (right) are distinct powers of 2. 

information. The same is done with the numbers in bold italics so that both Manager 
A and Manager B have their combined sums represented by either a 0 or a 1 times 
2k, for every k. 

The manager's sums are translated into a (0, I)-vector by considering each power 
of 2 as part of a basis. The k1

" entry of the vector indicates whether 2k iH part of the 
sum. To determine whether the names arc the same, the managers need only compare 
their vectors. For Example 6, l\1Ianager A's vector is 

(1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,0, 1,0, 1, 1,0,0, 1,0,0,0, 1, 0,0,0, 0, 0, 1, 0) 

and Manager B's vector is 

(l,l,O,l,O,O,l,O,l,O,O,O,O,l,O,O,l,O,l,l,l,O, l,O,l,l,O,l,O,O). 

Since the vectors are not identical, the names are different. 
In general, a sum looks like a.0 2° + a. 1 21 + a.2 22 + ... + a.2n _ 122n - I where a.; = 0 or 

1. The vector a = (a.o, a.1, ... , a.2n - l) contains the same information as the sum. To 
recap, the managers begin by changing a word into a binary sequence. This binary 
sequence is converted to a sum by adding different powers of 2, which is then converted 
back into a binary sequence! 

The middle process can be eliminated and the managers can flip and permute 
the bits of the original encoded message; flipping and permuting bits is a one-to-one 
function. Manager A's function can be determined given the arrangement of the 
powers of 2 in the two columns. To demonstrate, consider Manager A's columns of 
numbers from Example 6 where a = (a0 , a. 1 , ... , a 1.1) is Manager A's original sequence. 
The process of adding the different values and changing back into a (0, 1 )-vector is 
represented by the map 

where ai.: = 0 if ak = 1 and ai:, = 1 if ak = 0. 
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Additionally, Manager B's random assignment of powers of 2 can lw determined 
by a one-to-one function g. If a and b are Manager A's and l\lanager B's origi
nal sequences then Managers A and B compare the following veetors of length 2n: 
(f(a),g(a)) and (f(b),g(b)). The swapping of envelopes is equivalent to swapping 
functions. Manager A adds up numbers from the Manager B's columns to determine 
the image of a under Manager B's function; Manager B makes a similar computation. 
If the vectors are the same, then the original information iH the same, too. 

5. A Multiplicative Approach. Adding numbers and guaranteeing distin t 
sums is a bit harder than multiplying numbers and guaranteeing distinct products. 
The envelope method can be modified to use the multiplication of random numbers, 
as opposed to the addition of random numbers. If every number is restricted to he 
a distinct prime, then the products are distinct. To restrict the size of the products, 
in every row, a manager places a 1 in one column and a prime in the other column. 
Manager A selects primes below a certain value and Manager B selects primes above 
a certain value. By the fundamental theorem of arithmetic [3], if the products are 
the same then they factor uniquely. Since the primes appear at most once, when tlw 
products are the same, then the names are the same. 

Of course, we need not worry about running out of primes. However, the technique 
to guarantee distinct sums above can be used to guarantee distinct powers of primes 
as in the following example. 

EXAl'viPLE 7. AHsume the following two columns of numbers are used for the 
multiplicative variant of the envelope method. 

1 320 

1 321 

1 322 

1 323 

By Theorem 4.1, all possible binary sequences of length 4 yield 16 distinct produc s: 
3°,31, 32 ... ,314 , and 313

. 

As in the additive approach, the possibility of a false positive has been eliminated. 
And, as in Section 4, there are 2nn! ways to arrange the numbers. 
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THE DETERMINANT OF A (JIJ, N) PRETZEL" 

NITISH DASS, JONATHAN MCGRATH AND ERIN URBANSKI 

Abstract. We prove that the d eterminant of a (m, n ) pretzel kuot or liuk is 111 n wlwn 
n,m 0. 

1. Introduction. For any k-tnple of integers, define a (m1 , m2. · · · , mk-) ]Jl'f'izf•l 

to be the knot or link with lrn1 l + lrn2 l + · · · + lrnk l crossings fon11Pd as illustrated 
below. 

FIG. 1 l. A (2, 3, - 3 ) pretzel. 

The determinant of a knot or link is the absolute value of the detenniuaut of a 
matrix associated with the knot or link. It is well known that the determinant is a 
knot / link invariant [1, Theorem 5, p. 46). In this paper we will prove the following 
result. 

THEOREM 1.1. The determinant of a (m, n) pretzel ism + n. when m, n > 0. 

The proof of the theorem depends on a precise labeling scheme for a ( m., n) pretzel. 
In section 2 we will describe the labeling scheme; in section 3 we will show how to st>t 
up the associated matrix; in section 4 we will compute the determinant of the matrix; 
and in section 5 we conclude with conjectures about other pretzels. 

2. The Knot. We begin with a systematic method for labeling each crossing 
and each arc on an (m, n ) pretzel. To label the crossings, we start with the upper left 
most crossing and assign it the number 1. Then moving counterclockwise, we lahf'l 
successive crossings 2, then 3, and so on up to the final crossing which is labeled rn + n. 
We follow a systematic labeling scheme for the arcs as well. The uppermost arc is 
labeled x 1 . Then at the nth crossing, the overlapping arc is labeled x n 1 · ontiuuP 
in this manner until all arcs have been labeled. See Figure 2. 

3. The Matrix. A k x k matrix can be associated with any knot or link whose 
projection has k crossings. Rows of the matrix correspond to the crossings of the knot 
and columns correspond to the arcs. 

*St. Olaf College 
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xl 

FIG. 2.1. A labeled (2, :i ) pn l1 el. 

Consider the ith crossing. In row i, place a 2 in the column corresponding to the 
overlying arc, place - 1 's in the columns corresponding to the two underlying arcs, 
and place zeros everywhere else. Follow this procedure for each of the k crossings. 

The labeling scheme assures that at the it.h crossing, the overlying arc is Xi+ 1 and 
the underlying arcs are x; and xi+2 . The (m + n) x (m + n) matrix for any (m, n ) 
pretzel with the given labeling scheme basically follows a diagonal pattern of - 1 's on 
the main diagonal, 2's on the superdiagonal, followed by another diagonal of - 1 's. 
All other entries are O's. See Figure 3. 

- 1 2 - 1 0 
0 - 1 2 - 1 0 

0 
- 1 

2 
0 
1 0 

0 
0 

0 - 1 2 - 1 
0 - 1 2 

0 - 1 

F IG. 3.1. The rn.at1-ix Jo1· a (m, n) pretzel. 

4. The Determinant. Now that the matrix has been established the determi
nant can be computed. The determinant of the knot is the absolute value of the 
determinant of the submatrix obtained by eliminating any one row and any one col
unm of the original matrix (1, Theorem 4, p. 45). We will cross off the last row and 
first column of the matrix for a (m, n) pretzel. This gives a (n + m - 1) x (n + m. - 1) 
matrix. For simplicity we will let p = m. - 1 giving a (n + p ) x (n + p) matrix. 

To help us compute the determinant, we will reduce the matrix to echelon form. 
We begin by successively interchangmg the first and second row, then the second and 
third row, etc. This continues n + p - 1 times until the original first row becomes the 
last row. The subsequent matrix is in row echelon form except for the last row, which 
is of the form [2 - 1 0 · · ·OJ. 

·' 
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Let Ri denote row j. Perform the row operation which replaces row Rn+p with 
2R1 + Rn+p so that the last row is of the form [0 3 - 2 0 ···OJ. This process continues: 
successively replace row Rn+p with iRi - 1 + Rn+p so that at each step the last row 
becomes [0 0 · · · (i + 1) ( - i ) 0 · · · 0], where the entry i + 1 is in the (n + p, i) posit ion 
and the entry - i is in the (n + p, i + 1) position. The final operation will replace 
Rn+p with (n + p)Rn+p 1 + Rn+p so the last row becomes [0 0 · · ·0 - (n + m)J. The 
resulting matrix is seen in Figure 4. 

- 1 2 - 1 0 0 
0 - 1 2 - 1 0 

0 
0 

0 
0 

- 1 2 
0 - (n + m.} 

FIG. 4.1. The row reduced rnatr?.X for a (m, n) pretzel. 

The determinant of the matrix in reduced echelon form shown in Figure 4 is the 
product of the entries along the main diagonal, ( - 1)n+p- 1 (n + m ). Row operations 
which replace Rn+p with iR;_ 1 Rn+p do not alter the value of the de erminant. 
Moving the first row to the last changes the value of the determinant by a factor of 
( - 1)" P - 1 . Thus, the determinant of the original matrix is ( - 1)"+p- l ( - l)"+ P- 1 (n + 
m.) = n m , and Theorem 1 is proved. 

5. Conjectures and Problems. CoNJECTURE 5.1. The detennmant of a 
(m., n } pretzel is lm + nl for any m, n =f. 0. 

One ought to be able to label the knot in the more general case using a similar 
scheme to the one we suggested. The computation of the determinant should carry 
through similarly. 

CONJECTURE 5.2. A (m, n) pretzel is a link when both m and n are even or· both 
are odd. Otherwise the pretzel is a knot. 

PROBLEM 5.3. What is the determinant of a general (m1, m2, · · ·, m~.-) pretzel '? 
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Overheard in a Bar. 
So, who was that woman you WP1'e 

talking to ? 
Sorry. .. That's my ex, up to no 
good. 
Oh, I don't mind. 
Hey! I trade 011 the floor. What. do 
you do? 
I wor-k in der-ivatives. 
What a start! I feel likP we' re in the 
same business. 
Not a chance. 
I can't see the difference. 
It's easy to differ-entiate! 
That's pretty nice. 
A bsolut ly not! Things change all 
the time. 
So, what would you like? 
A l-ittle continuity. 
Perhaps something constant? 
Ever7J time I think I've found a 
constant, it vanishes. 
That's rough. 
I know, and I just can't OJlemte 'if 
things ar-en't smooth. 
Think you'll ever make it to the top? 
Why tTy? It just vanishe8 too. 
And if I grasp what you're telling 
me, so does the bottom. 
PTecisely. 
But what happens then? 
Who knows'? I 'm at my li.rnit. 
Which one? 
Top and bottom.. 
How does that make you feel? 
Imte. 
Have you ever thought about chang
ing? 
Constantly. I wish I could. But how'? 

J ust undo it all. 
But how I constantly wish I could. 
Have you ever felt that making a 
change rates just a thought? 
But I'm at my limit. 
Which one? 
Left and r-ight. 
But what happens in between? 
Who knows'? I 'rn. telling you that 's 
w·ecisely why I can't gmSJl it all. 
Why not try to operate more 
smoothly? 
It 's still too mugh. 
Don't think of things as constants ... 
Now what have you found? 
They'r-e vanishing! 
Perhaps you can do this every time. 
That pr·etty nicely sums it up. 
So, do yon like having a little conti
nuity? 
Absolutely! 
Can you see the difference now? 
It 's easy to 'integmte! 
You're back where you started? 
I f eel like ther·e's a chance I 'm done 
with this business. 
I'm floored .. . Hey! What did he just 
do? 
Oh, I should go UTJ, if you don't 
mind, and give that man a talking 
to. 
Why don ' t you? 
Son·y. It wmtld do no good 
Why not? You can differentiate. 
You can integrate. Why wouldn't 
it? 
That 's rn.y x 

- Philip Beaver, United States lVIilitary Academy 

Th nrviE .Jomnal invites those of you who paint, dmw, compose, o1· otherwise use the othe1· 

.;ulc of your brains to submit yom· mathematically inspired compositions. 

·' 
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THE SEARCH FOR TRI-OPERATE FIELDS 

BRETT ALAN ENGE* 

1. Introduction. Iu a first year abstract algebra course one learns ahout finite 
and infinite fields and some of their basic properties such as the characteristic of the 
field . The interest of this research lies in the search for fields whose multiplicative 
group with some llf'W binary operation star ( *) forms a new field. A field whose 
multiplicative group Pxhibits this property is called a tri-operate fiPld. 

DEFINITION 1.1. A t.ri-operate field is a field such that the non-zero multiplicativf' 
structure, p x - F "' {0}. forms the additive structure of a new field with some llf'W 
binary operation *· That is, (F , +. x ) is a fidel and (F x x, *) is a field. 

Analyzing the relationship between nmltiplication and addition provides some 
insight into how the new binary operation must rPlate to multiplication. The definition 
below expresses this relationship. 

DEFINITION 1.2. Let n z+. PoT tmy a F define n. a = a a+ ... a = na. 
"----v--"' 

n t.i11t s 

0 ·a = 0. ifn E Z and n < 0 11 ·a = lnl · ( - a) = na. 

Since x is distr-ibutive over- for- any 11. m Z and n E F it follows that (n ·a) x 
(m ·a) = (nm. ·a) x a. In par-ticular-, (n · 1) x a = na when• 1 is the idfnhty of the 
fi eld (F, +, x). 

DEFINITION 1.3. L t n z+. FaT any a E F defint' 11•a = a X a X . . . X a = a" . 
"----v--"' 

..times 

0 • a = 1. Ijn E Z and n. < 0, n • a = In I• (a- 1
) = n". 

Since * zs distr-ibutive over- x joT a.ny n, m E Z and a F it follows that ( n • 
a)* (m • a) = (nm • a)* a = (a""')* a. In par-ticular·, (n • ~:)*a = a" wher-e ~: is thf 
identity of the field (F x, x, *). 

Before moving on to some general tri-operate field theory we will first look at an 
example of a tri-operate field to show that they do in fact Pxist and to better acquaint 
the reader with what it is we are trying to characterize. We will look at the field 
(Z3 , +, x) and its additive and multiplicative structures. 

The following table is the group table for (Z3 , + ): 

+ 0 2 

0 0 2 

2 0 

2 2 0 

• .James Madison University 
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The next. table i. the group table for (Z[, x ): 

X 0 I 2 

0 0 0 0 

I 0 I 2 

2 0 2 I 

We will now look at the group table for { Zz, +) to observe that ( Z[ , x) ~ ( Zz, ) : 

+ 0 I 

0 0 I 

I I 0 

Now we can use the definition of Dot to create (Zj *): 

* I 2 

I I I 

2 I 2 

Looking at the table below for ( Z2x , X) shows that ( Zj , *) ~ ( Z2x X): 

GID 
~ 

Since ( z: ' X) 9:! ( z2' +) and ( z;' *) ~ ( z2x ' X) we get that ( z: ' X' *) ~ ( z2' , X) 
and therefore ( Z3x , X , *) is a field SO ( Z3, + , X , *) is a tri-operate field. 

Now that it is better understood what a tri-operate field is and what one actually 
looks like we look at some general theorems. 

2. General Tri-Operate Field Theory. We note that any trioperate field 
must have at least three elements because the identities with respect to the three 
operations are necessarily distinct. 

Analyzing the properties of a field and that of dot gives rise to a general lemma 
that later becomes very important. 

LEMMA 2.1. Let (F, +, x) be a field. If there e:rists an lem ent t F, t =/- 0 such 
that p · t = 0, p a ji.Ted integer·, then for· all x F, p · .r = 0. 

Proof: Let t E F, t =1- 0, such that p · t = 0 <utd p is a fixed integer. We can 
write p · f as 0 = p · t = (p · 1) x f . Since F is a field either ]J • 1 = 0 or f - 0. Since 
t =1- 0, p . 1 = 0. 0 

A special case of the above lemma turns out to be vital to the discovery of what 
the characteristic, Chm·F, of a field F must be in order for that field to be tri-operate. 
This special case is: 

LEMMA 2.2. If zem and some f =/- 0 (F, + , x) , a fi ld, are their own addit·ive 
inveTses in ( F, +, x) then Char F = 2. 

·' 
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Pmof Since tits own additive inverse, t+ t = 0, i.P. 2·f = 0. Therefore Char F = 2 
by Lemma 1. 0 

By exploiting the previous result Wf' obtain our first theorem about the charac
teristic of a tri-operate field . 

THEOREM 2.3 . Let (F.+, x , *)be a tTi-operatefield, then Char F =/- 2 if and only 
if Char Fx = 2. 

Proof ( =>) Suppose Char F =/- 2 , then - 1 and 1 are their own multiplicative 
inverses in (Fx, x, *) . By Lemma 2, Char Fx = 2. 

(~) Since (F, +, x, *)is tri-operate, IF! > 2 so F 2 {0, 1, x} where 0,1 and x 
are all different. Suppose Char Fx = 2 and Char F = 2. Since Char F x = 2, then 
'tfy =/- 0, y E F >< , we have y2 = 1. It now follows that 1 = (1 + x)2 = 1 + 2x + x 2 = 
1 + 2:r + 1 = 2 + 2:z: = 0 which is a contradiction. So Char F x and Char F cannot 
both equal 2. 0 

For the rest of this section of the paper we will assume that (F, + , x , *) is a 
tri-operate field. 

The characteristic of (Fx, x, *) is either 2 or it is not 2. We will first look at the 
case where Char F x = 2 . 

LEMMA 2.4. If Char F x = 2, then the characteristic of (F, + , x) must be 3. 
Proof Since Char F x = 2, by Theorem 1 Char F =/- 2 and therefore we know 

that (- 1), the multiplicative group gmera .ed by - 1. has order 2 in F x . So in F , 
{1,-1} is a subgroup of F x in F. We will show that ((1 ), +)has order 3 by showing 
3 ·1 = 0. 

We know that if x Fx, x2 = 1. Since Char F -f. 2, we know 2 E F, 2 =/- 0, so 
2 E F x and (2) (2) = 1. 

We can write 4 · 1 as 1 + 1 + 1 + 1. So 4 · 1 = 1 + 1 + 1 + 1 and therefore 
(4 · 1)(2) = (1 + 1 + 1 + 1)(2) = (2 + 2)(2) = (2)(2) (2)(2) = 1 + 1 = 2, which gives 
us that 2 + 2 + 2 + 2 = 2 and 0 = 2 + 2 + 2 = 2(1 + 1 + 1) = 2(3 · 1). Since 2 =1- 0, 
3 · 1 = 0 and it follows that Char F = 3. 0 

Now we know that if a tri-operate field exists it must have characteristic 2, wl ere 
the exponent of the multiplicative group is not two or it must have characteristic 3, 
where the exponent of the multiplicative group is 2. 

We will now examine the case where Char F = 3 which gives rise to the following 
theorem. 

THEOREM 2.5. The only tri-operatefield, (F, +, x, *)where Chm· Fx = 2 is Z3. 
Proof Since Char F x = 2, x2 = 1, for all x E Fx, x =/- 0. By Lemma 3, 

Char F = 3, so we know 0, 1, 2, E F. Let x E F. Suppose x =/- 0 then eithC'r 
(1 + x) - 0 which implies x = 2, or (1 + x)(1 + x) = 1. Let (1 + x)(1 + x) = 1. We 
have 1 + 2x + x 2 = 1, so 1 2x + 1 - 1 since x =/- 0, :z·2 = l . Thus 2 + 2x = 1, 2x = 2, 
and x = 1. It follows that x is either 0, or 1, or 2. 0 

It is now t ime to depart from the general case ancl look specifically at the finite 
case. We will now use these results to characterize finite tri-operate fields. 

3. Characterization of Finite Tri-Operate Fields. We must first give some 
background information for finite fields. Let (F, +, x) be a finite field , then (F, ) is 
the additive group and is abelian. (Fx, x) is the multiplicative group and is abelian 
as well as cyclic (see e.g. [1], p.267). 

In the example Z:3 we notice that Z3x ~ Z2 . Below is a generalization of this 
isomorphism fact which proves to be the key to characterizing the finite case. 

THEOREM 3.1. (Existence of Isom.oTphisrn) Let F be denoted by GF(q"), a Galois 
Field of oTder- q", q a pr·im.e, and n a positive integer. Then' e:z:ists an isomorphism 
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whidt maps (Zp, ) onto (GF x(q") , x) , wher·e p = q" 1 given by ¢ : Z1, 

G F x(q"), 1/J(:r) n!·, wheTe a is a gencmtor- of the multiplicative gmup GF x(q"). 
Thib isomorphism allows us to define a new binary operation * such that for all 

rc', all E GF x (q"), we have n.·•· * a 11 = aJ· x y = aJ·y and 0 * aY = 0 for ally Zl' and 
a11 E GF x (q" ). 

The following corollary extends the isomorphism to show that ( G F x ( q") , *) ~ 
(Zq" 1 , x ). 

COROLLARY 3.2. If p is pr-ime, the mapping ¢ is also an isomorphism from 
( zl" X) onto ( G F X , *). 

From section 1 we know that ifF is tri-operate it is f'i t lwr GF(2") or Z:1. 

The following two theorf'ms show what the order and <"haractf'ristic of a finite 
field must be iu order for that field to be tri-operatP awl tlwy completely characterize 
the finite case. 

THEOREt-.! 3.3. (Chamcterizat·ion Theor·ern): Let F br a finite field. F ·is tr·i 
opemte 'if and only if the ordrr· ofF is q" such that q" - 1 zs rn·ime, whl're q is rn·irne 
and n E z+. 

Pmof. (=;. )Suppose F is a tri-operate field. (F x , X, *) is a field with prime 
characteristic. (F x , x) is cyclic, so the order and therefore the exponent of (F x , ) 
is q" 1. (F x, x) is also the additive structure of (Fx, x, *) and so the characteristic 
of ( F X , X, *) is rz" 1, which must be prime. 

(~)Suppose q" 1 is prime. Then there exists au isomorphism from (Zq" 1 , +, x) 
onto (F x , x , * ) , as defined above, and (F, +, x , *) is a tri-operate field. 0 

V.fe summarize our findings as follows. 
THEOREt-.! 3.4. (Finite TTi-opemte Firlds): Lrt (F, +, X ) be a finitr field. F is 

fTi-opemte -if and only ifF ·is GF(2"), wheTe 2" 1 is pTime 01' F is Z;j, n z+. 
Note that the previous theorem could have been deduced without section 1 by 

showing that q" 1 , where q is prime, can only be primP if q" 3 or qn = 2", where 
2" - 1 is a 1\Iersenne prime. 

Attempting to characterize the infinite case, we can show that if an infinite tri
operate field exists, it only contains Z2 , but uo other finite suhfield. Moreover, it 
must contain a transcendental extension of Z2 plus an n 1" root for every 11 z+ of 
all of the clements of the field . At this point the question as to whether or not such 
a field is tri-operate or if infinite tri-operate fields even exist is still unanswered. 
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CIRCULAR FUNCTIONS OF MULTIPLE INTEGRAL ANGLES 

rvlATTHEW .J. HALE ' 

1\.Jy desk light kept nw company late that Thursday night. Various pre-calculus 
problems were scattered a<.:ross my desktop as I leaned ow•r thP curreul assignnwnt. 
J\ ·Iy pencil scribbl<'d furiously as I solved for expressions such as cos(8.r) or sin(5x) 
in terms of cos(.r) or sin(.r). As I waded through the intricacies of the prohkm, I 
couldn't help lmt wonder; isu 'I there a simpler way to solve trigonometric functions 
of integral angles? 

As it tunwd out, my curiosity got the best of me. Failing to discovpr any theorem 
which allowed trigonometric functions of integral values to be easily solved, l S<'t out 
to develop such a theorem on my own. The result of my enquiry is the subject of this 
paper. 

Let us return to our example of cos(8x). Using the trigonometric double an
gle identities [1), pp. 428-429, we are able to simplify cos(8.?:) conventionally, using 
algebraic operations. 

cos(8:r) = cos2 (4x) - sin2 (4.r) 

= (cos2 (2x) - sin2 (2:r}f - [2sin(2x) cos(2x)f 

= {[cos2 (x) sin2 (x)f - [2siu(x) cos(x)]2
}

2 

- {2[2 sin(x) cos(:r) J[cm.;2 (:r) - sin2 (x)]} 2 

= cos8 (x) - 28sin2 (:r) c·os6 (:r) + 70sin4 (.r) cos"1(x) 

- 28 sin6 (x) cos2 (:r) + sin8 (.r) 

Our other example, sin(5x), is similar. Aft<'r expansion, we obtain: 

sin(5x) = 5cos 1(.?:) sin(.r) - 10cos2 (.r) sin:1(.r) + sin5 (x) 

Whether the integral angle being solved for is odd or <'Ven, tlw trigonometric 
addition identities [1), pp. 416-422, may be used in expansion. (The douh!P angle 
identities are, aft<'r all, a special case of the addition identities. ) However, there is a 
simpler method. Recall De 1\Ioivre's Theorem [1), pp. 498-501, taught in many high 
school pre-calculus or calculus courses. With little effort, this theorem yields a more 
practical method of simplifying circular functions of integral angles. 

By De 1\'loivre's Theorem, 

cos(nx) + isin(n :r ) = (cos(x) + isin(x))" 

Elaboration of the right side by the Binomial Theorem yields: 

cos(n.r) + isin(n.r) = (cos(:r) + isin(.,;))" = t (~~·) <'os•t.- l.:(.r)ik sink(.,;) 
k = O 

So 

cos(n:r) = t( - 1 )I.: G~) cos (n- 2kl(.1:) sin2k (:t) 
k = O 

• St. Xavier High School 



144 MATTHEW .J. HALE 

with the understanding that UD = 0 for 2k > n. Similarly, 

sin(nx) = i:)-1l(2k~ 1) cos<n- 2k 1l(x)sin(2k+l)(x ). 
k - 0 

Now a trig problem such as cos(8x) is easily done: 

cos(8x) = t( - 1l c8k) cos<8 - 2kl(:r) sin(2hl(x ) 
k=O 

= cos
8

(x) sin°(x) - 28 cosu(:r) siu2 (J·) + 70 cos'\1:) sin 1(x) 

- 28 cos2 (x) sin6 (x) + cos0 (x) sin8 (:c ). 

Try sin(5:r) on your own. 

We are now able to solve cos(n:r) or sin(nx) in terms of cos(x) and sin(x) for 
every natural number n. Since cosine is an even function and sine is an odd function , 
we can easily extend the equations to the case that n is an integer. 

What if n is rational or real? De Moivre's Theorem is usually proven by induc
tion [1], p. 498, from which we can guarantee that it holds true only for the natural 
numbers. However, it is possible to extend De Moivre's Theorem to the rational num
bers, and so there is some hope of generalizing the sigma notation equations when n 
is rational. On the other hand, if n is not rational, De Moivre's Theorem leads to 
nonsense, such as the result in [2]. 
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AN ITERATIVE ALGORITHM FOR SOLVING Q UADRATI C 
EQUATIONS 

S. A. KH URI " 

1. Introduction. "Completing the square" on the quadratic equat- ion 

(1.1) a:r2 + b.r r = 0 

leads to the quadratic fo rmula, 

(1.2) 
2a. 

145 

where a b and care real numbers with a -=1- 0. 
Linds;rom [1] presented alternative ways for deriving the quadrat~c formula _based 

on assuming the solutions to be complex numbers expressed in both tngonom_et_nc and 
rectangular forms. In this paper, we present an iterative technique for denvmg the 
quadratic formula. 

2. Applying the iterative method. The method consists of representing the 
solution of (1.1) as an infinite series of the form 

(2.1) .1: = Xo + J"i £2 + X3 ··· = L :rn 
n - 0 

To solve the quadratic equation (1.1 ), we first rewrite it as 

(2.2) 

where 

(2.3) 
a 

(3 = - 
b 

Upon substituting the solution given in (2 .1) into the quadratic equation (2.2) yields 

2:::7'-o .en = Xo +Xi + .1:2 + .1"3 + · · · ., 
(2.4) = a +f3 (xo +.c! + :I"2+x3+-- -t 

= a + (3 [.r6 + 2x0x 1 +xi+ 2.r 1.c2 + 2xo:I"3 2xo.l:., 2.r Jx3 + .c~ + ... ] 

Upon matching both sides of equation (2.4), results in thC' fol owing iterative algo
rithm, 

.co = Ct 

XI = {J:r5 
.1: 2 = (3 (2.ro:r ) 

(2.5) X3 = (3 (:1·i + 2:1·u•·2) 
x 1 = (J (2xo.ra + 2.r 1-r2) 

')) x 5 = (J ( 2:~·o.c 1 + 2.c 1·~'3 + .r§ 

*American University of Sharjah, UAE 
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Solving equations (2.5) iteratively we get, 

.ro = ex 
:r 1 = /3x6 = (Jex2 

(2.6) X2 = /3( 2x oxl) = (3 [2ex (ex2f3)] = 2(32a-3 

X 3 = /3 (x i + 2xox2) = (3 [f32ex4 + 2ex (2/32ex3 ) ] = 5(33 ex·l 
:l"4 = /3 (2x ox3 + 2:7"!:1"2) = (3 [2ex (5f33 cx'1) + 2ex2(3 (2f32ex3 ) ] = 14(']"10 5 

Thus the infinite series solution of the quadratic equation is given by: 

X = X o + X1 + X2 + X3 + ... 
- ex + (Jex2 + 2(32n 3 + 5(33 cr4 + 14(3'1cr5 + ... 
= 2f [2cr(J + 2(cr(J)2 + 4(o(J) 3 + 10(cr/3) '1 + 28(cr/3)5 + ... ] 
= 2f [1 - 1 + 2cr(J + 2(cr(J)2 + 4(cr(J)3 + 10(crf3)4 + 28(cr/3)5 + ... ] 
= 2!3 - 2~ [1 - 2cr(J - 2(cr(J) 2 - 4(cr(J) 3 - 10(cr(J) 1- 28(cr(J)5 - ... ] 
= 2~ - 2~ J 1 - 4(cr(J) 

(2.7) 

where in the last step of equation (2. 7) we used the Maclaurin series expansion of the 
function .j1 - 4x which is given by 

(2.8) 
)1 - 4x = 1 - 2x - 2.::,.=2 1.3.5 ... (2n - 3) ~; x 11 

The Maclaurin expansion in (2.8) converges for 

l4:rl-l4cr,l31 - 4 -- = - < 1 _ _ I c - a I 4Jacl 
b b b2 

which implies that the technique converges if 

(2.9) b2
- 4JacJ > 0 

For ab > 0, condition (2.9) states that the descriminant is positive, which therefore 
implies that for real roots the method converges. A divergence series may indicate 
repeated roots, complex roots or real roots with ac < 0. 
Upon substituting the values of cr - - ~, (3 = - %given in equation (2.3), the solution 
in (2.6) becomes: 

(2.10) 

= - 2ba + 2~bl.jb2 - 4ac 

The next two cases follow from the solution given in equation (2.10). 
Case 1: If b > 0 then the solution in (2.10) becomes: 

(2.11) x- - b+~ 
' - 2a 

Therefore, the scheme converges to only one root, as for the second solution it can be 
obtained and approximated by factoring. Note that the solution (2.11) implies that: 
• If b > 0 and a > 0 then the method converges to the larger solution. 

·' 

SOLVING QUADRATI ' EQUATIONS 147 

• If b > 0 and a < 0 then the method converges to the smaller solution. 
Case 2: If b < 0 then from equation (2.10) the tedmiquP conwrges to the 

solution: 

(2.12) x --b -~ 
' - 2a 

As for the second solution, it can be approximated by fac:toring the quadratic 
equation. The solution in (2.12) results in the following two conditions: 
• If b 0 and a > 0 then the method converges to the smaller solution. 
• If b 0 and a < 0 then the method converges to the larger solution. 

3. Examples. In this section . the algorithm described in the previous sectiou 
is applied to some examples of the quadratic equation. For convenience, in the next 
numerical comput.atious let the expression 

(3.1) 
11 

Sn = L:r, 
i = !J 

denote the n-th term approximation to the solution :r, wlH're x ;'s arc the iterates. 

EXAMPLE 1. Consider the equation 

(3.2) - .1"
2 - 18:7' + 40 = 0 

whose solutions arc x = - 20 and .r = 2. For this case. 

a = 1, b =-18 and c = 40 

The scheme (2.6) and quation (2.3) give the following iterates and partial sums of 
the approximate solution: 

(3.3) 

(3.4) 

x 0 = 2.2222222222 
X1 = - 0.2743484225 
X2 = 0.06774035123 
X 3 = - 0.02090751581 
X4 = 0.00722728942 
X5 = 0.00267677386 

St = 1.947873800 
s2 = 2.015614151 
s3 = 1.994706635 
S4 = 2.001933925 
s5 = 1.999257151 

According to our previous analysis, for the case where b < 0 and a < 0 the teclmiqu«:> 
converges indeed to the larger solution which is x = 2. 

EXAMPLE 2. Consider the equation 

(3.5) x2 9x + 10 = 0 
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who:;c solutions are 1 d :r = - an x = 10. As before, our scheme yields: 

(3.6) 

(3.7) 

xa = 1.1111111111 
XJ = 0.1371742112 
X2 = 0.0338701756 
X 3 - 0.0104537579 
:c., = - 0.0036136447 
Xs = 0.0013383869 

s1 = - 0.973936899 
s2 = - L007807075 
s3 = - 0.997353318 
s., - - 1.000966962 
Ss = - 0.999628575 

Clearly the scheme converges to the smaller root which 1·s x _ 1 B . 
1 · tl · · . . - - . y our previOus 

ana ysis, 11s IS JUStifie~ by the fact that for this example a 0 and b · · 
EXAMPLE 3. Consider the equation O. 

(3.8) 2.7"2 + 203x + 300 = 0 

whose solutions are x = - 100 and x = - 1 5 v . tl · 
. . . rOI 11s case we get: 

(3.9) 

(3.10) 

xo = 1.477832512 
XJ = - 0.021517132 
x2 = - 0.000626576 
:1"3 = - 0.000022807 
:~ · , = - 0.000000930 
xs = - 0.000000041 

SI = - 1.499349645 
s2 = - 1.499976220 
s3 = - 1.499999028 
s, = - 1.499999957 
Ss = 1.499999998 

~lincle ~ > 0 al n~ b > o_ tl~e method, according to the previous analysis converges to 
1e a~ger so utwn whtch IS x = - 1.5. ' 

These examples show that our scheme converges very fast and only fe ·t .. t 
are needed to obt · f 1 . w I eia es 
a t tl t am an error o ess than 1%. Observe, moreover, that the farther 

par 1C wo solutions are, the faster the scheme converges to the exact solution. 
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A GENERALIZATION OF THE HATCHECK PROBLEM* 

PAUL KLINGSBERG AND GINA M. PANICHELLA 

Abstract. We investigate the question : How many permutations of n lettcrb conlaiu no k- cycle? 

1. Introduction. The problem we have generalized, familiar to all sturlents of 
combinatorics, is the so- called 

Hatcheck Problem. Suppose tl1at eacll of n people cl1ecked a hat 
as lle/ sile entered a theater to watch a play. If, at tile end of the 
play, tl1e person in charge of tile checked hats distributes tile hats at 
random, giving cacli of tile n people one randomly selected ilat, wilat 
is tile probability that 110 wze receives llis or l1er own hat back? 

Less colorfully but more predscly stated: Let Sn denote the group of all n! permu
tations of the set { 1, . . . , 11} . If you c·hoose au dement of Sn uniformly at random 
(i.e., so that each pC:'rmutation has probability 1/ n! of being chosen), what is the 
probability Pn that the permutation you choosP will have no fixed points? It turns 
out (see [1], §6.3) that 

p = ~ 11 ( 1)tn! = 11 ( _ 1)1 
n n! L t! L t! ' 

f = O t = O 

(1) 

so that asymptotically, the probability is 

. . ( n (- 1)t ) oo (- 1)t - 1 
lun Pn = hm L --1 - = L --1 - = e . 

" " 00 t. t. t = O t = O 

(2) 

To sec how to generalize this problem, recall that every element of S n admits a unique 
disjoint cycle factorization (DCF) sec [3 , Ch. 5, for details. For each 1 ~ k <; n , 
we define 

Pn,k := The fraction of elements in Sn whose DCFs contains no k cycles. 

Of course, Pn,l is just P,.; but we could equally well ask for Pn,2, the proportion 
of clements of S11 whose DCF's contain no 2- cycles. (In hatcheck terms, this is the 
probability that no two people receive f'ach ot her's hats.) It is this more general 
question that we address here. 

Generalized Hatcheck Problem. For a.uy 1 ~ k ~ 11 wllat is tile 
value of Pn,k? Wl!at is limn- ex. P11,k? 

2. The Principle of Inclusion- Exclusion. Iu introductory combinatorics, the 
Hatcheck Problem is solved by applying to it the so-called Principle of Inclusion
Exclusion (or PIE) , and this is also the tool we use to solve the generalized problem. 
We state here the version of the PIE we will need; the interested reader will find a 
proof in any introductory combinatorics text, for example [1]. We begin with a finite 
set n of objects and a finite set P of properties, and we suppose that each object 
either does or does not possess each property; in other words, we arc supposing that 
to each object w n, we have an associated set prop(w) <; P of properties that w 
possesses. (In the case of the Hatcheck Problem, one takes n to be Sn ; and, for 

*St . . Joseph's University 
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«'nl'h l _ i :::; n, one takes property i to be that of having i as a fixed point. Thus 
fur any element a Bn, prop(a) is the set of fixed points of a .) Next, for each 
subset S <; P, we put 

N (S) := l{w E !1: prop(w) 2 S} l 

and 

N.., (S) :- l{w !1: prop(w) = S} l 

(where we use )T ) to denote the number of elements in a finite set T) . The PIE, 
then, is the rule that prescribes how to compute the numbers {N~ (S)} from the 
numbers {N>(S)}. We need here only the formula for N_(0), the number of objects 
that possess no properties whatever: 

N= (0) = L(- 1)18 1N> (S) . 
s r; P 

(3) 

3. Applying the PIE to the Generalized Problem. Fix k 2: 1. As in the 
case of the Hatcheck Problem, we take f2 to be Bn. P will be the set of all possible 
k- cycles in Bn; there are (~) ( k - 1)! of these. For a E Bn and C E P, we will say 
that a possesses property C iff a contains C in its DCF. Thus, the numerator of Pn,k 
the number of elements a E Bn such that the DCF of a contains no k cycl~ will be 
N= (0). We cannot use formula (3) to compute it, however, until we have found the 
numbers N _ ( S). This is the content of Theorem 1. 

THEOREM 1 . Let S b a set of k - cycles in Bn. 
(a) If S contains two different k - cycles that hav one or more integers in common 

then N~ (S) - 0. 

(b) Otherwise if the k cycles inS arr. pair-wise disjoint, N (S) = (n - kiS I) !. 
Proof (a) If C1 i= C2 E S are nondisjoint, then Ct and C2 are inconsistent with 

each other and so cannot both appear in the DCF of any permutation a. 

(b) LetS = { C1 , ... , Ct} consist oft pairwise-disjoint k cycles. (Note that these t 
k cycles involve kt different integers, so that necessarily t :::; ln/k j .) A permuta
tion a E Bn will include all of C1, . . . , Ct in its DCF iff a permutes the kt integers that 
appear in these cycles exactly as the cycles do; a may permute the remaining (n - kt) 
integers among themselves in any fashion. Clearly, there arc exactly (n - kt)! such 
permutations a. 0 

We now combin Theorem 1 with some standard counting arguments to obtain a 
simple formula for N~ (0). 

THEOREM 2. The number- of elements a E Bn such that the DCF of a contains 
no k - cycles is giv n by the expr-ession 

Ln/kJ (- !.) t I 
"'""' k n. 
~ ' . t ~o t. 

Pmof By the PIE, as already noted, we have that the number of such a Bn is 

N_(0) = L ( - 1) ISIN _ (S). 
s r;;_ p 

·' 
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By Theorem 1, we can restrict this sum t~ subsets S' <;
1 

P such_ th~t t~e k cycles inS' 
are pairwise disjoint, in which case N _(S) = (n - kiS 1)!. Tlus gives 

N_(0) = L ( 1)18 ' 1 (n - kiS'I)!. (4) 
S' r;;_ P 

Now the summands in equation (4) depend only 011 the sizes of the sets {S'}, soW<' 
can ~ather terms by cardinality t = IB'I: 

_ ln/kJ (number of sets S' <; P such that S') ·( _1)t(n _ kt)!. (5) 
N_ (0) - L contains t pairwise-disjoint k- cycles 

t = O ~-----=-----------' 

The next question is: What docs ( *) equal in equation (5 )? In other w_or~s: F~r. O_ s; 
t :::; ln/kJ, in how many ways is it possibl~ to_ choose a set ~f t patrwi~e-diSJomt 
k- cycles from Sn? The answer to this questiOn IS well-known _(It appears m [2], for 
example), but for completeness, we outline the method of solutwn here. The nu~her 
of such sets of k cycles is equal to the number of ways of doing all of the followmg. 

Step: 
1. Choose kt integers from { 1, ... , n}. 
2. Partition these kt integers into t subsets 
of k elements each. 
3. Arrange each of the t k element sets 
from Step 2 into a k cycle. 

Number of Ways: 
(~1) ways 

(kt)!/(t!(k!)t) ways 

((k - l)!)t ways 

T hus, in equation (5), quantity (*)equals the product of the exprc.o;sious in the 
ber of Ways" column: 

( n) (kt)! t n! 
(*) - kt · t!(k!)t · ((k - 1)!) = t!kt(n - kt)! · 

Finally, substituting expression (6) into equation (5) and simplifying gives 

n/kJ I [n / k J (- l.)t n! 
N (0) = "'""' n. ·( - 1)1(n - kt)! = L k' 

~ t!kt(n - kt)! t = O t. 
t =O ...____....... 

(•) 

'Num-

(6) 

0 
As an immediate consequence, we are able to solve tlw Generalized Hate-heck 

Problem with formulas that generalize (1 ) and (2), namely 

ln/ kJ ( 1)t 
- - - 1 k P k = "'""' __ k - and lim Pn,k = e I . 

n, ~ t! n - oo 
t =O 

4. An extension. The natural question to consider next is the number of pPr
mutations that avoid more than one type of cycle in their DCFs. For example, let 
Pn,k 1 ,k2 (1 :::; k1 < k2 ) denote the probability that a randomly cl~osen clement_o- Bn 
contains no k1 cycles and no kr cycles; in hatcheck terms, Pn,I,2 IS the probabhty that 
no one receives his or her own hat and that no two people receive each other's hats. It 
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t~~~-~~s _out that as~mptotically, such probabilities are mutually independent- not on! ' 
pcm WISe lmt also m larger sets. Thus (for the example) ) 

"lim Pn,k 1 ,k2 = - (-.h' +fl) = (lim P, k) (lim p .. ) n ' 1 
11 

11 ,1\- 2 

so that 

lim P, I 2 = e - ~ . n ., ' 

The details will be set out in a future paper. 
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PROBLEM DEPARTMENT 

EDITED BY CLAYTON W. DODGE 

Tins depar·tment welromes pmblems belic1wd to be new and at a level appmpr-iate for· the r·ea.den. 

of this JO'ILTnal. Old pmblems displaying novel and elegant m ethods of solut ior< are also mvited. 

Proposals should be accompanied by solutions if available and by any infor7nation that will asstst 

the editor-. An ast risk (*) preced-ing a pmblem number indicates that t.h pmpos er did not submit a 

solut.ion. 
All mmrnunications should be addressed to C. W. Dodge, 5752 N eville/Math, Umversity of 

,'v/aine, Omno, ME 04469-5752. Please note my new e-mail address: dodge@maine.edu. 

Plmse. submit each proposal and .solution preferably typed or clear·ly writt en on a separate sheet (one 

s ide only) proper·ly ident ifit:d with nanll', affiliation, and address. Solutions to problems in thts issue 

should lie mailed to arnve by July 1, 2001. Solutwn~ 1.dentijied as by stud nts are given pr-efemnce. 

Problems for Solution. 

994. Proposed by the editor-. 
Although the alphametic BRENNER = (JOEL) 2 has no solution in base ten, 

there is a number !II such that BRENN ER is the square of a positive integer .1: in 
every base greater than or equal to !II. Furthermore, the samP four digits are used 
for B, R, E, and N in each such base. Find these digits, tllf' value of !II, and the 
digits of .r, the square root of BRENNER. 

995. Proposed by Peter- A. Lindstmm, Batavia, New Yor-k . 
a) Consider the geometr-ic-ar-ithmetic recursive sequence f given by 

f(1 ) = a, f(2) = ar + d, aml f(i) = rf(i - 1) + d for i =:: 2, 

where a, d, and rare nonzero constants, ·r i- 1, and i is an integer. Express z:=;'==, f(i.) 
in closed form. 

b) Consider the ar-ithmetic-geometric recursive sequence g given by 

g(1) = a, g(2) = 1·(a + d), and g(i ) = r-(g(i - 1) + d) fori ~ 2, 

where a, d, and r are nonzero constants, r i- 1, and i is an integer. Express z=:~ 1 g( i) 
in closed form. 

n, 

996. Pmposcd by Ice B. Risteski, Skopje, Macedonia. 
If Pi(x) is the Legendre polynomial, givPn by P0 (x) = 1 and for positive int<>gral 

1 d" 
P11 (x) = --

1 
-d (:c2 - 1)", 

2"n. x" 

show that 
n 

nPr,(cosx) = L c-os(mx)P11 - m(c-os.c). 
m ; J 

997. Pmposed by Robert C. Gebhardt, Hopatcong, New Jer-sey. 

Evaluate the integral 

[ 8 ln(9 - x)dx 
}_1 ln(9- x) + ln(x - 3) · 
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998. Pmpos d by David lny, Baltimore, Maryland. 
For nonnegative integers k and n, let 

J - 1 (71.) 
kn - (1 + k)2 0 + ... + -:---'---'---1 (71.) ( - 1)" (71.) 

(2 + k)2 1 (n + k + 1)2 n · 

a) Determine the value of bk such that the limit Lk exists, where 

Lk "lim [(n 1)(n + 2) · · · (n + k + 1)Jkn - bk ln(n 1)). 

b) Evaluate Lk using your value of bk and the definition of Euler's constant -y 
given hy 

'Y = lim [ (~ + ~ + · · · + .!.) - Inn] = 0 577 
n oo 1 2 n · · · · 

c) Using your results of parts (a) and (h), evaluate. if it exists, 

(
Lk ) lim -

1 
+ Ink . 

k 00 k. 

999. Pmposed by the lat Jack Garfunkel, Flushing, New York. 
Prove that 

1' < (1'1 + 1'2 + 1'3 )(3 + V3) 
- 9 , 

with equality when r1 = r2 - r3, where 1' is the inradius of triangle ABC and 1•1 
1·2, aPd r3 are the radii of the mutually tangent circles in tlw Malfatti configuration: 
shown in the accompanying figure. 

A 

B c 

1000. Pmposed by Albert White, St. BonaventuTe UniveTsity, St. BonaventuT , 
New York. 

. Let ABCD be~ parallelogram with LA = 60°. Let the circle through A, B and 
D mtersect AC agam at E and let AC and BD meet at H. See the figure. 

·' 
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Let [PQR] denote the area of triangle PQR. Show that 
a) [DH E ] · (AC)2 = [ADH] · (DBf, 
b) [ADE] [DEC] = 2[DHE], and 
c) 2(H E)· (AC) = (DB)2

. 

1001. Proposed by David Tselnik, FaTgo, North Dakota. 
The Euler numbers En, for n = 0, 1, 2, ... , are defined by 

1 
00 

En ,. 
ech x = - - = """ -x , cosh.,; ~ n! 

n = O 
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so that En = 0 for all odd n, Eo = 1, E2 = - 1, Eo~ = 5, E6 = - 61, etc. Prove the 
following relations: 

2m (4 ) m (4 ) a) f; 2~ IE2j l - 2 {; 4~ E4k form = 1, 2, 3, .. . , 

2
m + l (4m + 2) m (4m + 2) _ ? b) f; 

2
j IE21 I = 2 {; 

4
k E .,k form - 0, 1, ~, . . . , 

2m (4 ) m ( 4 ) c)""" rn IE 2i l = - 2""" m Elk - 2 for rn = 1, 2, 3, . . . , and 
~ 2j ~ 4k - 2 
i ~o k = l 

2
m + l (4m + 2) 111 (4m + 2) d) t; 

2
.i IE2jl = - 2 {; 

4
k + 2 E4k 2 form = 0, 1, 2, . . .. 

1002. Proposed by L. Seagull, Glendale Cornmunif.y Call yc, Glenclal£·, Anzona. 
Let n be a eomposite integer greater than or equal to 48. P rove that between n 

and S(n) there exist at least five primes, where S(n) is the Smarandache function: 
for any positive integer n, k = S( n) if k is the smallest posi tiv<' integer :;uch t lw.t n 
divides k!. Then, for example, S(3) = 3 and S(8) = 4. 

1003. Propo.w:'d by 1. M. Radu, Bucharest, Romania. 
Show that between S(n) and S(n + 1), where S(n) is the Smarandache function , 

there exists at least one prime number. See Problem 1002 for the definition of the 
Smarandache function. 

1004. Pmposf'd by Robert C. GebhaTdt, Hopatcong, N ew Jersey. 
Find the minimum value of fn = x 1 + x2 · · · + Xn if the l"k are all nonnegative 

and 

n 

2:cos2 
Xk = 1. 

k = l 

1005. Proposed by Ayoub B. Ayoub, Pennsylvania State Uni.veTsity Abington 

College, Abington, Pennsylvania.. 
Prove that, if n > 2 is an odd number, 

(n- l )/ 2 4k7r 471" 81r 2(n - 1 )7r 
""" sin - = sin - + sin - + · · · + sin < 0. 
~ n n n n 
k = l 
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*1006. Proposed by Richard I. Hess, Rancho Palos Verdes, California. 
a) How many aces can be served in one game of tennis? 
b) How many consecutive aces can be served in one game of tennis? 
c) You and I are playing a set of tennis. In the last 8 points you have served 7 

aces and I have served 1. What is our score? 
d) In a tennis match you have just served aces on 6 consecutive points. What is 

the score? 

Solutions. 

966. (Fall1999] Proposed by Count Juan Mower, Big Twenty Township, Maine. 
Although there are several solutions to this base eleven addition alphametic in 

which 7 divides S'EV EN or where 8 divides EIGHT, there is only one in which 5 
divides FIVE. Find that solution: 

FIVE + SEVEN EIGHT = TWENTY. 

Curiously, in that unique solution, 5 divides EIGHT, too. 
Solution by Patrick J. Niemczak, Alma College, Alma Michigan. 
Immediately, T = 1. From the units column we see that we cannot have E = 10 

or N = 10. Also 8 =f. 10 since then we would have E = W. From the 113 column, 
F +I = 10 or 11. Because it is more plausible to expect a carry from the 11 2 column, 
we explore F + I = 10. There are seven possibilities for F and I, but only F = 10 and 
I = 0 avoids difficulties. Since a number in base eleven is divisible by 5 if the sum 
of its digits is divisible by 5, then V + E = 10 or 15. None of the four combinations 
that produce the sum of 10 will work, and the combination that produces results is 
V = 6 and E = 9. Now there must be a 1 carried into the 11 column from the units 
column, forcing H = 7 and 2 is carried into the next column. In the 112 column, 
2 + 0 + 6 + G = N + 11. So G = 5 or 8. But G = 5 requires N = 2 and in the units 
column Y = 1, which is not possible. So G = 8 and N = 5 andY = 4. From the 114 

column we now haveS = 3 and W = 2. Using t for ten, om solution looks like 

t069 39695 90871 = 129514. 

Also solved by Charles D. Ashbacher, Charles Ashbacher Technologies, Hiawatha, IA, Ken

neth B. Davenport, Frackville, PA, Mark Evans, Louisvil le, KY, Victor G. Feser , University 

of Mary, Bismarck, NO , Richard I. Hess, Rancho Palos Verdes, CA, Rex H. Wu, Brooklyn, NY , 

and the Proposer. 

967. (Fall 1999] Pmposed by Mohammad K. A zarian, University of Evansvill , 
Evansville, Indiana. 

Let N be a natural number greater than 1 with d distinct positive prime divisors. 
If p and q are the largest and smallest of these divisors, then prove that 

logP N ~ d < log'l N. 

Solution by Alma College Problem Solving Group, Alma College, Alma, 
Michigan. 

~e take the phrase"Let N be a natural number greater than 1 with d distinct 
positive prime divisors" to mean that N = PI · P2 · P3 · · · Pd and i =f. j implies Pi -=f. Pi . 
Clearly 

PROBLEM DEPARTMENT 157 

s•• that 

d ~ log,
1 
N and logP N ~ d, 

bl
. 1 · tl dest'red 1·nequality It should be noted that this proof holds also for 

PsLa ts 1mg 1e · . N · · 1 tl 
I'<ISes in which the Pi are not necessarily distinct, that JS, where IS sunp y te 

product of any d prime . . 
Also solved by David Anderson, University of Virginia, CharlottesvJlle, Fr~nk P. Battles, 

d B S Kanti Das Bhaum1k, Angelo State 
1\hssachusetts Maritime Academy, Buzzar s ay, oumya B . 

'. · S A 1 TX William Chau Primary Knowledge, Inc., New York . 1\'Y, nan 
Umvers1ty, an nge o, ' ' TX M k E ns 
Cl t . Perry GA Jesse Crawford, Angelo State University, San Angelo, , ar va ' 

es er, ' ' . k NO R' hard I Hess Rancho 
L · ·11, KY Victor G. Feser, University of Mary, B1smarc , , IC • ' 

omsvl e, ' M SUNY C liege at 
P·llos Verdes CA Peter A. Lindstrom, Batavia, NY, David E. anes, 

0 
. 

' ' ' · AI c 11 MI Shiva K. Saksena, University of North Carolma 
Oneonta Joseph Martin, rna o ege, , 
at \Vilm;ngton, H.-J. Seiffert, Berlin, Germany, SUNY Fredonia Student Grou~, N~, Le~n 
Vargian, Midland Park High School, N.J. J. Ernest Wilkins, Jr., Clark Atlanta Umvers1ty. GA. 

and Rex H. Wu, Brooklyn, NY. S . I I . · t _ 
Editorial note: I regret the poor wording of the proposal. evera so vers m er 

reted it differently, allowing each "distinct" prime factor to o~cur mor.e than one~ so 
~hat N has more than d factors. The theorem is not true With that mterpretat10n. 
Many solvers proved the result alluded to by the featured solver. 

968. [Fall 1999] Proposed by Doru Popescu Anastasiu, Liceul Radu Greceanu, 

Slatina, Romania. 
Determine all real numbers x and y such that 

16x2 + 21y2 - l2xy - 4:.r - 6y + 1 = 0. 

I. Solution by Soumya Kanti Das Bhaumik, Student, Angelo State Univer-sity, 

San Angelo, Texa.'i. . · 1 
If we complete the square in .r and simplify, the gtven equatwn leeomes 

(8x - 1 - 3y)2 + 3(5y - 1)2 = 0, 

l · 1 · tl at 8.r - 1 - 3y = 0 and 5y - 1 = 0. The solution is x = 1/5, Y = 1/ 5. 
w 11c 1 reqmres 1 . 1 · f · f mbers p 

Similar roblems may be constructed by starting wit 1 a pat.r o posl ~ve mt 

d d 
p · fl' ax+by - c - Oanddx+ey- f = Othatmtersectmexactlyone 

an q an a pa.u o mes - . . . 2 _ !)2 = 
point. Then expand and collect terms m the equatwn p(ax by - c) + q(dx +ey 

0. 
11. Solution by Megan Foster, student, Alma C~llege, Alma, Mic~igan. . . , 
Let f(x, y) denote the left side of the given equatwn. Its first partml denvat1ves 

are 

f x = 32x _ 12y - 4 and fy = 42y - 12:r - 6 

and these are both equal to zero at x = y = 1/5. We find that f(1 / 5, 1/ 5) = 0 and 

at this point the second derivative test yields 

f f - !2 = (32)(42) - (-12)2 = 1200 > 0, 
XX yy XY 

so (1 / 5, 1/ 5) is the absolute minimum of f and hence its only zero. 
G •H Fr nk P Battles, Mas-

Also solved by Alma College Problem Solving roup, " , a · 
sachusctts Maritime Academy, Buzzards Bay, Kenneth B. Davenport, Frackville, PA, George 
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P. Evanovich, Saint Peter's College, Jersey City, N.J, Mark Evans, Louisville, KY, Chris Farmer, 

Northwest ~vlissouri State University, Maryville, Robert C. Gebhardt, Hopa tcong, N.J, Richard 

I. Hess, Ra ncho Palos Verdes, CA, Joe Howard, New :\lexica Highlands University, Las Vegas, 

Murray S. Klamkin, University of Alberta, Canada, Mark Kowal, Alma College, MI, David 

E. Manes, SUNY College at Oneonta , Yoshinobu Murayoshi, Okinawa, .Japan , William H. 

Peirce, Rangeley, ME, Cecil Rousseau, University of Memphis , TN, Shiva K. Saksena, Uni

versity of North Carolina at Wilmington, H.-J . Seiffert, Berlin, Germany, J. Ernest Wilkins, 

Jr., Clark Atlanta Uni versity, GA, Rex H. Wu, Brooklyn, NY, Monte J. Zerger, Adams State 

College, Ala mosa, CO, a nd the Proposer. 

969. [Fall 1999) Proposed by Rob r·t C. Gebhar·dt, Hopatcong, New Jersey. 
Find y(x) if 

( - J") d2y ( "') 
dx2 + e ll = 0. 

Solution by Benjamin Landon, student, Univ .rsity of Central Flori da, Orlando, 
Florida. 

Substitute t = e"' to get the differential equation 

2 d2y dy ') 
t dt2 + t dt + t-y = 0. 

This is Bessel 's differential equation of order 0, whose solution i:-. 

y(t) = CJJo(t) r2lo(t) , 

where CJ and Cz are constants and J0 and Yo arc Bessel fun<'tions of order 0 of thP 
first and second kinds, respectively. Since t = e•·, the solut ion we seek is 

Also solved by Alma College Problem Solving Group, MI , Frank P. Battles, Mas

sachusetts Maritime Academy, Buzzards Bay, Murray S. Klamkin, Un iversity of Alberta, Canada , 

Cecil Rousseau, University of tvlemphis, TN, J. Ernes t Wilkins, Jr., Clark Atlanta University, 

GA, and the Proposer. 

970. [Fall1999, corrected Spring 2000] PmrJOsed by k B. Ristcski, Skopje, Mace
donia. 

Show that 

and 

[

0

7r/•
1 

COS X lnsin x rh: _ 
lo v sin x cos 2x . -

11f / ·
1 cos x ln cos 2x 
---~,--d~· = 

0 (cos 2:r )3/ 1 · 

7r + ln 2 B (~ ~) 
4-Y2 4' 2 

1r 8 (11) 
2v'2 4' 2 ' 

where B(m., n ) = r(m.)r(n) / r(m + n) = J~1 ~; "' 1(1 - x)"- 1 d~· is the Beta function. 
Solution by H.-J. Seiffert, B er·lin, Ger-many. 
Each of t he following integrals holds for all complex numbers m and 11 with 

positive real parts. It is known ([1], p. 570) that 

(0.1) 11 
tm - l (1 - t)"- 1 ln t dt = (lj;(m ) - 1/J(m + n ))B (m , 11 ), 

. ' 
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where 1/J(x) = r'(x)/ r(x) denotes the Diganuna function. The substitution t = 

2 sin2 (x) gives 

r '4 . 2 '1/l(m) - '!j;(m + n) 
Jo sin2m - 1 (x) cosn- 1 (2x) cos(x) ln(2sm (x))dx = 2m +l B(m, n ) 

where we have used the trigonometric relation 1 - 2sin
2
(x) = cos(2x ). 

The same substitution in 

yields 

1
• 0 1 

0 

sin2"'- 1(x)cos" - 1(2x) cos(.r)dx = 2m+l B(m., n ). 

It follows that 

1
7r/ 4 '!j; (rn) - 1/J(m + n) - ln2 

0 

sin2m- 1 (:r) cosn- 1 (2x) cos(x) ln(sin (:r))d.r; = 2m+2 B(m, n). 

Since ([1], p. 954) 1j;(3/4) - 1j;(1/4) = 1r , this formula with m = 1/4 and n = 1/2 

gives 

11r /4 cosx lnsin x dx = _ 1r + ln2 B (~)) , 
0 vsinxcos2x 4VI2 4 2 

the corrected version of the first desired integral evaluation. 
With the substitution t = cos(2x), equation 0.1 becomes 

1
7r / 4 '!jJ (m. + n ) - 1/J(m.) ) 

0 

cos711 - I (2:r) sin2" - I (x) cos(x) ln( cos(2.r;) )dx - - 2n+l B(rn, n • 

where we have used 1 - cos(2x) 2sin2 (x) and sin(2x) = 2sin(x)cos(a:). Taking 
m = 1/4 and n = 1/2, we obtain the second required integral evaluation. 

Reference: 
1. I. S. GRADSHTEYN and I. M. RYZHIK, "Table of Integrals, Series, and Prod-

ucts" 5th ed., Academic Press, 1994. 
~lso solved by Kenneth B. Davenport, Frackville, PA, Cecil Rousseau, University of 

Memphis, TN, J. Ernest Wilkins, Jr., Clark Atlanta University, GA, and the Proposer. 

971. [Fall1999J Proposed by Richard I. Hess, Rancho ~alas Ver~es, California. 
Find an integer-sided obtuse triangle with acute angles m the rat1o 7/5. 
Solution by William H. Peirce, Rangeley, Maine. 
Let ABC be a triangle with acute angles A and B in the ratio 7 to 5. Thus 

A- 78 and B = 58, whence C = 180° - 128, where we measure all angles in ~egrees. 
Because C is obtuse, 0° < () < 7.5° . Since the sides of a triangle are proportiOnal to 
the sines of their opposite angles, there is a constant k such that the sides a, b, and c 

are given by 
6 4 2 ) a = ksin78 = ksin8(64cos 8 - 80cos 8 + 24cos 8 - 1 , 
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b = k sin 50 = k sin 0(16 cos4 fJ - 12 cos2 f) 1 ), 

and 

c = k sin(180° - 120) = k sin 120 

= k sin 0(2048 cos11 
fJ - 5120 cos9 fJ + 4608 cos 7 fJ - 1792 cos5 fJ + 280 cos3 fJ - 12 cos B). 

Let r and s be positive integers, let cos fJ = r / 2s, and let k = s 11 j sin fJ to get 

a = s5 (r6
- 5r4s2 + 6r2s4

- s6 ), 

and 

c = r(r
10

- 10r8s2 + 36r6s4
- 56r4s6 + 35r·2s8 - 6s10) 

= r(r2
- s2 )(r2

- 2s2 )(r2
- 3s2)(r4 - 4r2s2 + s4 ). 

To find rands such that angle Cis obtuse, that is, with 0° < fJ < 7.5°, we must have 
cos 7.5° < r/(2s) < 1. Since cos 7.5° ~ 0.991445, r / (2s) is close to 1, so 1 - r / (2s) is 
close to zero and its reciprocal must be large; greater than 1/ (1 - cos 7.5°) ~ 116.9. 
Thus we take 2s = 118 and r = 117, so s = 59. The sides for this triangle are 21-digit 
integers. They and their factorizations are 

a = 41 · 595 
· 97 · 4507 · 14, 323 = 183,542,735,119,347,169,603, 

b = 5. 597
• 71.241. 661 = 140,737,857,915,018,789,245, 

and 

c = 2
7

.3
3

. 7. 11. 13.29. 312
. 263. 541 . 16, 921 = 232,117,687,881 ,273,946,752. 

Since cosO = r j (2s) = 117/ 118, then f) ~ 7.464553° and the angles for this 
triangle are A~ 52.251871°, B ~ 37.322765°, and C ~ 90.425364°. 

Also solved by Cecil Rousseau, University of Memphis, TN, and the Proposer. One incorrect 
answer was received. 

Editorial note: Both Rousseau and the Proposer used cos fJ = p / q. The Proposer 
used q - 117, the smallest permissible value, and p = 116, obtaining triangle sides 
of length 24 digits, and Roussseau used pj q = 199/ 200 to obtain sides 23 digits long. 
Using an even value for q allows for the division by enough powers of 2 to shorten a, 
b, and c significantly. 

972. [Fall 1999] Proposed by Paul S. Bruckman, Berkeley, California. 
Given three non-collinear points A, B, and C in the complex plane, determine I, 

the incenter of triangle ABC as a "weighted average" of these points. 
Solution by Rex H. Wu, Brooklyn, New York. 
In the accompanying figure let the triangle be ABC and let A, B, and C be the 

complex affixes of the vertices. Let a, b, and c be the (positive real) lengths of the 
sides opposite these vertices. Let the internal bisector of angle C cut the opposite 
side at D and let the internal bisector of angle A cut CD at P. Then Pis the desired 
incenter of triangle ABC. Let the lengths of AD and DB be x and y respectively. 

·' 
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A 

FIG. 0.1. The incenter. 

Since it is known that the bisector of an angle of a triangle cuts the opposite side into 
· d" "d tl £ - AD = £ = D - A and hence segments proportwnal to the a Jacent s1 es, 1en a - DB y B D 

D = aA+bB and x = .!£.... 
w:i":ow apply thi;~ame result to triangle AC D with angle bisector AP to find 

that 

xC + bD a~b C + a~b ( aA + bB) _ _ a_A_+_bB_+_cC_ 
P = x b = .!£..+b - a + b c · 

a +b 

Also solved by Murray S. Klamkin, University of Alberta. Canada, William H. Peirce, 

Rangeley, ME, Cecil Rousseau, nivers ity of Memphis, TN, H.-J. Seiffert, Berlin, Germany, and 

the Proposer. . . 
Editorial comment: Both Klamkin and Seiffert pointed out that th1s result ts_well 

known. It also appears as an exercise in class notes I wrote for a course entitled 
Complex Numbers for Teachers that I first taught in 1973. 

973. [Fall 1999] Proposed by Ayoub B. Ayoub, Pennsylvania State Univcr·sity, 
Abington, Pennsylvania. 

Prove that an+l = 2an + an - 1, given that ao = 0 and 

Solution by William G. Hillegass, Jr., student, Stanton College PreparatoTy 
School Jacksonville Beach, Florida. . 

' · c - 2 + is x2 - 2x - 1 = 0 wluch has The recurrence equat10n 10r an+l - an an - 1 · . . ' n 
zeros u = 1 + J2 and v - 1 - J2. Thus, if an an is any linear combmatwn of u ~nd 
11n, the recurrence equation is satisfied, a fact that is easily checked by mathemattcal 
induction. 

For positive integral n the binomial expansion yields 

(1 x)n = 1+x (~)x2 + (~)x3 + (:)x4 + ···, 

which sum terminates since (~) = 0 whenever k > n. Now replace x by - x in this 
sum and subtract the two equations to get 
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Finally, replace x by ,j2 and divide both sides hy 2,f2 to obtain 

(1 + ,fi)n - (1 - ,fi)n = 1 (n) 2 (n) 22 (n) 23 ... 
2,fi + 3 + 5 + 7 + . 

which is the desired sum. Since the left side is a linear combination of un and vn and 
therefore obeys the desired recursion equation, the proof is complete. 

Also solved by Alma College Problem Solving Group, MI, Frank P. Battles, Mas

sachusetts Maritime Academy, Buzzards Bay, Kenneth B. Davenport, Frackville, PA, Charles 

R. Diminnie, Angelo State University, San Angelo, TX, Mark Evans, Louisville, KY, Murray S. 

Klamkin, University of Alberta, Canada, David E. Manes, SUNY College at Oneonta, William 

H. Peirce, Rangeley, ME, Cecil Rousseau, University of Memphis, TN, Shiva K. Saksena, Uni

versity of North Carolina at Wilmington, H.-J. Seiffert, Berlin, Germany, Rex H. Wu, Brooklyn, 

NY, and the Proposer. 

974. [Fall1999] Proposed by Kenichiro Kashihara, Sagamihara, Kanagawa, 
Japan. 

Given any positive integer n, the Pseudo-Smarandache function Z (n) is the small
est integer m such that n divides 

a) Solve the Diophantine equation Z(x) = 8. 
b) Show that for any positive integer p the equation Z(x) = p has solutions. 
*r) Show that the equation Z(x) = Z(x + 1) has no solutions. 
*d) Show that for any given positive integer r· there exists an integer s such that 

the absolute value of Z(s) - Z(s + 1) is greater than r. 
Editorial note: C. Bryan Dawson, Union University, Jackson, Tennessee, has 

pointed out that this same problem was proposed by the same proposer in the Spring 
1997 issue of The Pentagon as Problem 509. Its solution appears in the Spring 1998 
issue, pp. 56-58. H.-J. Seiffert, Berlin, Germany, found parts (b), (c), and (d) 
as Problem 4625 by the same proposer in School Science and Mathematics 98.5, pp. 
275-276, 1998. 

Also solved by David Anderson, University of Virginia, Charlottesville, William Chau (parts 

(a) and (b)) , Primary Knowledge, Inc., New York, NY, Stephen I. Gendler, Clarion University of 

Pennsylvania, Mark Evans, (parts (a) and (b) ) , Louisville, KY, Richard I. Hess, Rancho Palos 

Verdes, CA, William G. Hillegass, Jr., (parts (c) and (d)), Stanton College Preparatory School, 

Jacksonville Beach, FL, David E. Manes, SUNY College at Oneonta, H.-J. Seiffert, (part (a)), 

Rex H. Wu, Brooklyn, NY, and the Proposer (parts (a) and (b)). 

975. [Fall 1999} Proposed by Doru Popescu Anastasiu, Liceul Radu Greceanu, 
Slatina, Romania. 

For any given fixed positive integer n, determine the positive integers x 1 , x2, ... , 
X n such that 

+ 2( ) + 3( ) ( ) 2n
3 

+ 3n
2 

+ 7n X1 X1 X2 X1 + X2 + X3 + · · · + n X1 + X2 + · · · + Xn = 
6 

. 

I. Solution by Karthik Gopalrtanam, student, Angelo State Univrrsity, San 
Angelo, Texas. 

lf n = 1, the obvious solution is x1 = 2. 

·' 
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For n 2. 2, the right side of the equation become~ 

2n3 + 3n2 + n n(n + 1)(2n 
6 + n = 6 

l) + n = ( 12 + 22 + ... + n 2) n. 

Subtracting this new expression from each side of the given equation produce~; 

or 

If the Xk are all equal to 1, the least positive integer, then each group of terms on the 
left is 0 except for the last group, which equals - n. If :r 71 is increased to 2, then the 
last group becomes 0 and the equation is satisfied. So x1 = x2 = X3 = · · · = Xn - 1 = 1 
and Xn = 2 is a solution. If any Xk > 1 for k < n, or if Xn > 2, then the left side is 
positive. Hence there is no other solution. 

II. Solution by Joe Howard, New Mexico Highlands UniveTsity , Las Vegas, New 
Mexico. 

We determine positive numbers Xk, not necessarily integers, such that the given 
equation is true for every positive integer n. 

By direct calculation, x1 = 2, X2 = 1/ 2, X3 = 5/ 6, X4 = 11 / 12, . .. , X n = 
[n(n - 1) - 1]/[n(n - 1)) for n > 1. Then x 1 + x2 + · · · + Xn = (n2 + 1) / n. The 
induction step to prove this last statement is 

n2 + 1 (n + 1)n 1 
--+~-.:..__,..-

n (n + 1)n 

n 3 + n 2 + n + 1 + n 2 + n - 1 
(n + 1)n 

= 
(n + 1)2 +1 

n + 1 

The given equation then becomes 

(
n2 + 1) 2n3 + 3n2 + 7n 

2 + 5 + 10 + · · · + n -- = . 
n 6 

The following induction step proves this statement and establishes our result: 

2n3 + 3n2 + 7n [(n )2 1) = 2n3 + 3n2 
+ 7n 6n

2 
+ l 2n 

6 + + 1 + 6 + 6 
12 

2n3 + 9n2 + 19n + 12 2(n + 1)3 + 3(n + 1)2 + 7(n 1) = ~--~~--~--~--~--~ 
6 6 

Also solved by Alma College Problem Solving Group, Ml , David Anderson, University 

of Virginia, Charlottesville, Frank P. Battles, Massachusetts Maritime Academy, Buzzards Bay, 

William Chau, Primary Knowledge, Inc., New York, NY, Charles R. Diminnie, Angelo State 

University, San Angelo, TX, George P. Evanovich, Saint Peter's College, Jersey City, N.J , Mark 

Evans, Louisville, KY, Yu Gan, Loch Raven High School, Balt imore, MD, Robert C. Gebhardt, 

Hopatcong, N.J, Steve Haas, Harvey Mudd College, Claremont, CA, Richard I. Hess, Rancho 

Palos Verdes, CA, Murray S. Klamkin, University of Alberta, Canada, Peter A. Lindstrom, 

Batavia, NY, David E. Manes, SUNY College at Oneonta, Yoshinobu Murayoshi, Okinawa, 

.Japan, William H. Peirce, Rangeley, ME, Cecil Rousseau, University of Memphis, TN, Shiva 

K. Saksena, University of North Carolina at Wilmington, H.-J. Seiffert, Berlin, Germany, J. 

Ernest Wilkins, Jr., Clark Atlanta University, GA, Rex H. Wu, Brooklyn, NY, Monte J. 

Zerger, Adams State College, Alamosa, CO, and the Proposer. 
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976. [Fall1999] Proposed by Rajindar S. Luthar, University of Wisconsin Center, 
Janesville, Wisconsin. 

If x + y + z + t = 1r, prove that 

tan(x + y) tan(z + t) > 27 cot x cot y cot z cot t. 

Editorial note: George P. Evanovich, Saint Peter's College, Jersey City, NJ, 
Steven Haas, Harvey Mudd College, Claremont, CA, Richard I. Hess, Rancho 
Palos Verdes, CA, William Hillegass, Stanton College Preparatory School, Jack
sonville Beach, FL, Murray S. Klamkin, University of Alberta, Canada, J. Ernest 
Wilkins, Jr., Clark Atlanta University, GA, and Rex H. Wu, Brooklyn, NY, all 
found values which violate the stated inequality. Hence, the proposed inequality is 
not a theorem and this problem is withdrawn . As partial compensation to our read
ers, perhaps, note that each of the Fall 1999 and the Spring 2000 issues contained 14 
proposals, one more than the usual number. 

977. [Fall1999] Proposed by Rajindar S. Luthar, University of Wisconsin Center 
Janesville, Wisconsin. 

If A, B, and C are the angles of a triangle, then prove that 

A B C 
cot 2 + cot 2 + cot 

2 
> cot A + cot B + cot C. 

Solution by Alma College Problem Solving Group, Alma College, Alma, 
Michigan. 

Proof without words: 

Also solved by Alma College Problem Solving Group (second solution), Miguel Amen

gual Covas, Cala Figuera, Mallorca, Spain, John Boyer, Alma College, MI, Justin H. Brehm, 

Alma College, MI, Kenneth B. Davenport, Frackville, PA, Charles R. Diminnie, Angelo State 

University, San Angelo, TX, George P. Evanovich, Saint Peter's College, Jersey City, NJ, Mark 

Evans, Louisville, KY, Ryan Fowler, Alma College, MI, Yu Gan, Loch Raven High School, Balti

more, MD, Phil Harger, Alma College, MI, Richard I. Hess, Rancho Palos Verdes, CA, William 

Hillegass, Stanton College Preparatory School, Jacksonville Beach, FL, Joe Howard, New Mexico 

Highlands University, Las Vegas, Murray S. Klamkin, University of Alberta, Canada, Peter A. 

Lindstrom, Batavia, NY, Karli Lopez, Alma College, Ml, David E. Manes, SUNY College 

at Oneonta, Justin Modrzynski, Alma College, lVII, Yoshinobu Murayoshi, Okinawa, Japan, 

Jennifer Oglenski, Alma College, MI, Cecil Rousseau, University of Memphis, TN, Shiva K. 

Saksena, University of North Carolina at Wilmington, H.-J. Seiffert, Berlin, Germany, Paul Vi

tantonio, Alma College, MI, Justin Wilcoxen, Alma College, MI, J. Ernest Wilkins, Jr., Clark 

Atlanta University, GA, Rex H. Wu, Brooklyn, NY, and the Proposer. 

·' 
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978. [Fall 1999] Proposed by Richard I. Hess, Rancho Palos Verdes, California. 
In the array below place sixteen digits to form eight not necpssarily distinct 

squares without using the digit zero. The answer is unique. 

Solution by David E. Manes, SUNY College at Oneonta, Oneonta, New York. 
The unique solution is 

2 1 1 6 
1 2 2 5 
1 2 9 6 
6 5 6 1 

All square numbers terminate in 0, 1, 4, 5, 6, or 9. Of the 44 four-digit squares 
not containing a zero, only 1156, 1444, and 6561 can be used for the last column or 
for the last row since they are composed of only the permissible terminal digits 1, 4, 
5, 6, and 9. Since these three numbers have different terminal digits, then the last 
row and the last column are equal. We try each possibility. For the last row and last 
column using 1156, the only possible choices for the first row or column are 1521, 
1681, 3481, 3721, 4761, 6241, 6561, 7921, and 8281. These numbers start with 1, 3, 
4, 6, 7, or 8. Each second digit is 2, 4, 5, 6, 7, or 9. Place one of t hese numbers in 
the first row. The number in the second column must start with the second digit of 
the number in the first row. Then only 1681, 3481 , 3721, 4761 could be used in the 
first row. Since all squares that end in 5 must end in 25, the number in the 3rd row 
and 3rd column is 2. The third column is 2x25, 6x25, or 8x25, none of which is a 
square for a nonzero digit x. Similarly, 1444 is eliminated. Only 6561 remains to be 
considered, and all possibilities but the solution listed above are readily eliminated. 

Also solved by Alma College Problem Solving Group, MI, Charles D. Ashbacher, 

Charles Ashbacher Technologies, Hiawatha, IA, Patrick Costello, Eastern Kentucky University, 

Richmond, Kenneth B. Davenport, Frackville, PA, Charles R. Diminnie, Angelo State Uni

versity, San Angelo, TX, Mark Evans, Louisville, KY, Victor G. Feser, University of Mary, 

Bismarck, ND, Rex H. Wu, Brooklyn, NY, Yeepay Yang, Massachusetts Academy of Math and 

Science, Worcester, and the Proposer. 

Editorial comment: By allowing zeros, Rex H. Wu found fourteen additional 
solutions, only one of which is not symmetric about its main diagonal. The rows of 
that solution are 8281, 1444, 0064, and 0144. Its columns are, of <"ourse, 8100, 2401, 
8464, and 1444. 

*979. [Fall 1999] Proposed by Murray S. Klamkin, University of Alberta, Edmon
ton, Alberta, Canada. 

Dedicated to Professor M. V. Subbarao on the occasion of his 78th birthday. Do 
there exist an infinite number of triples of consecutive positive integers such that one 
of them is prime, another is a product of two primes, and the third is a product of 
three primes? Two such examples are 6, 7, 8 and 77, 78, 79. 

Comments by J. Ernest Wilkins, Jr., Clark Atlanta University, Atlanta, Gear-
gia. 
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Although we do not settle the proposed question rigorously, there is a long out
standing conjecture of Bateman and Horn [1] that implies an affirmative answer. 
Moreover, a negative answer to the proposed question would disprove the Bateman
Horn conjecture. 

Let V1 be the set of all positive integers v such that 4v + 1, 18v + 5, and 36v + 11 
are all primes. Then the triple of consecutive integers x1, x1 + 1, x1 + 2, in which 
Tt = 9(4v + 1), is clearly a triple of the desired kind. With Bateman and Horn we 
define the quantity cl so that 

Ct = rr(l -P- 1) 3[1 - P lw(p)], 
p 

in which w(p) is the number of distinct solutions (mod p) to the congruenc 

(4v + 1)(18v 5)(36v 11) = O(mod p), 

and the produC't extends over all primes p. It is clear that w(2) = 0, w(3) = 1, and 
w(p) - 3 if p > 3. The infinite product converges to a positive limit because no factor 
vanishes, (1 - p- 1 )- 3(1 - 3p- 1) = 1 + O(p- 2), and the infinite series l::Pp- 2 converges. 
The Bateman-Horn conjecture in these circumstances is that the number of elements 
of V that do not exceed a specified integer n is asymptotic for large n to 

(0.2) 

If the conjecture is true, it follows from the divergence of the integral (0.2) and the 
positivity of C1 that V1 has infinitely many elements. Hence, there are infinitely many 
triples of the kind described in the proposed question. 

Let us define Pabc to be the set of triples of consecutive integers x, .c + 1, x + 2 for 
which x, x+ 1, x + 2 are the products of a, b, and c primes, respectively. We have just 
shown that the set .P121 is infinite when the Bateman-Horn conjecture is true. Now 
let V2 be the set of positive integers v such that 4v + 3, 18v + 13, and 36v + 35 are all 
primes, v3 the set where 9v + 5, 12v + 7, and 36v 19 are all primes, and v4 the set 
where 9v + 1, 12v + 1, and 36v + 5 are all primes. Let x2 - 36v + 25, X3 = 36v + 19, 
and X4 = 36v + 3. Then X2, X2 + 1, X2 + 2 is a triple pl23 when vis in v2, :1'3, X3 + 1, 
X3 + 2 is a triple P132 when Vis in V3, and X.(, X4 + 1, X4 + 2 is a triple P231 when V 

is in V4. A repetition of the analysis of the preceding paragraph shows that each of 
the sets V2 , V3, and V4 is infinite when the Bateman-Horn conjecture is valid. Hence 
sets P123 , P132, and P231 are also infinite. 

Nevertheless, the sets P213 and P312 are finite. In fact, the triplex, x + 1, x + 2 
is in P312 if and only if x = 4u, where u is a prime such that 2u + 1 and 4u + 1 arc 
also primes. If u 1 (mod 3), then 2u + 1 = 0 (mod 3), and if u = 2(mod 3), then 
4u + 1 = 0 (mod 3). Hence, only when u = 3 are u, 2u + 1, and 4u + 1 all primes. We 
conclude that P312 consists of the unique triple 12, 13, 14. Similarly, x, x + 1, x + 2 
is in P213 if and only if x 2(2u - 1), where u , 2u - 1, and 4u - 1 are all primes. 
If u = 0 (mod 3), then u cannot be a prime unless u = 3. If u = 1 (mod 3), then 
4u - 1 = 0 (mod 3) and 4u - 1 is not prime because ·u f. 1. If u = 2 (mod 3), then 
2u - 1 = 0 (mod 3). Hence 2u - 1 cannot be a prime unless u = 2. We conclude that 
the only triples in P213 are 6, 7, 8 and 10, 11, 12. 

Of course we do not need the full force of the Bateman-Horn conjecture. That 
conjecture deals with an arbitrary number of polynomials of arbitrary degree, whereas 
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we need only consider three linear polynomials. Moreover, the conjecture states the 
asymptotic formula (0.2), and we need only know that one of the sets vl, \12, v3, and 
V4 has an infinite number of elements. To the best of our knowledge, it is not known 
if even the much weaker conjecture needed for our purposes is true or is false. 
Reference: 1. PAUL T. BATEMAN and RoGER A . HORN, A heuristic asymptotic 
formula concerning the distribution of prime numbers, Mathematics of Computation, 
vol. 16, 79 (1962) 363-367. 

Editorial note: Richard I. Hess, Rancho Palos Verdes, CA, offered an argument 
showing it is highly probable that the conjecture is true, that "testing enough large 
numbers should always produce arbitrarily large triples of consecutive numbers" that 
satisfy the conjecture. 
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The MATHACROSTIC in this issue has been contributed by Dan Hurwitz. 

a . A basic form of valid reasoning 

(2 wds.) 

b. Frequency given by the number of 
occurrences in a sample 

c. Eg. "All Men are mortal ... " 

d. W.ays to represent statements 
by metaexpressions 

e. Onto function (2 wds.) 

f. Originally defined in bronze 

g. First coordinate 

h. The _ _ __ points such that ... 

i. Something true of everything 

(2 wds.) 

j. Injective homomorphism 

k. Type of number sorting 

1. Medium change does this to light 

m. Many have a finite number of states 

n. Estimating an intermediate value 

o. What one does to like terms 

p . Probabilist's experimental technique 

q. Categories with the same objects, 
reversed morphisms 

r. Homological diagram extension 

s. Not in Inn(G) (2 wds.) 

016 096176 052 ill TIO 001 nr; 

t. Great figure in measure theory 10-l 010 O-Il 17-1 077 125 066 089 

u. Fruity union of cycle free graphs ill 
163 071 

m 
05 7 108 

091 

v. Script sometimes used in logic 
186 

w
9 019 134 03

.
1 

o
92 

w. Component in one non-binary universe 102 053 013 
w

7 

·' 

Last month's mathacrostic was taken from "The Historical Roots of Elementary 
tvlathematics" by Lucas Bunt, Philip Jones, and Jack Bedient. The full text of the 
quote is (with the puzzle solution in parentheses): 

"We do know that (the Pythagorean Archytas divided mathematics 
into four parts: music, arithmetic, astronomy, and geometry. These 
subjects, called the quadrivium, were later adopted by Plato and 
Aristotle and became the school curriculum for centuries) - in fact, 
up until the Renaissance". 
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