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THE PROBABILITY T H AT TWO ELEMENTS IN AN 
EXTRASPECIAL P-GROUP COMMUTE 

MARK AFDAHL, GRETCHEN CHRISTIANSON, JILL DIETZ, KIRSTIN KNUDSON, 

ALFRED FURTH AND SARAH VOLKENANT* 
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Abstract. We find a formula for the probability that two elements in a central product of 
groups commute, and use it to compute the probability that two elements in an extraspecial p-group 
commute. 

The paper is organized as follows. In Section 1 below, we give the necessary 
background information for determining the probability that two elements in a group 
commute. In Section 2 we show the computations for extraspecial groups of order 
p3 . In Section 3 we discuss central products of groups. In Section 4, we apply the 
theory to extraspecial p-groups of any order. Finally, in Section 5 we discuss some 
computations and open problems. 

1. Background Information. Given a group G, we are interested in the prob­
ability that two elements picked randomly from G commute. This question is only 
interesting when G is not abelian! 

We will use the following notation in this paper: 
• G is a group 
• Pr( G) is the probability that two elements in G commute 
• Clc(x) = Cl(x) = {gxg- 1 I g E G} is the set of conjugates of x in G (where 

X E G) 
• C(x) = {g E G I gx = xg} is the centralizer of x in G (where x E G) 
• Z (G) is the center of G 
• [ G, G] is the commutator subgroup of G 
• [x, y] = xyx- ly- 1 for x, y E G 

There are two approaches to this question, both of which will be utilized in this 
paper. First, one can directly compute 

Pr( G) = # commuti.ng pairs. 
# pa1rs 

The number of elements which commute with a given x E G is equal to IC (x)l. 
Thus the total number of commuting pairs is LxEG I C ( x) I· The total number of pairs 
of elements in G is IGI 2, thus we get 

P (G) = LxEG IC(x)l 
r IGI2 . 

Second, it is well established that one can use the theory of group actions to get 
a different formulation for Pr( G). Below we present a discussion of this based on the 
work in [3]. 

Let G act on itself by conjugation. The orbit of an element x E G under this 
action is called the class of x and is denoted Cl(x). The theory of group actions 
tells us that ICI(x)l = [G: Gx], where Gx is the stabilizer of x. Under the action of 
conjugation, the stabilizer of x equals C ( x), the centralizer of x in G. 

*St. Olaf College 
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If x, y E G are conjugate elements, then Cl(x) = Cl(y). Thus we have 

ICl(x)l 
===> [G:Gx] 
:::::> [G: C(x)] 
:::::> IC(x)l 

ICl(y) I 
[G:Gy] 
[G: C(y)] 
IC(y)l. 

Let ti be the number of conjugates of the element Xi. Then we have 

where the right hand sum runs over a set I containing one element from each distinct 
conjugacy class. 

Now ti = ICl(xi)l = [G: C(xi)] so we have 

Finally, LaGrange's theorem tells us that [G: C(xi)]IC(xi)l = IG I, so the numer­
ator in the fraction above is equal to rniGI where m = III is the number of distinct 
conjugacy classes of elements in G. Let n = IGI then we see that 

Pr(G) = rn. 
n 

2. Extraspecial Groups of order p3 • If G is a group then the Frattini sub­
group of G, denoted ~(G) is the intersection of all th maximal subgroups of G. A 
group G is extraspecial if Z(G) = [G, G] = ~(G) ~ Z/kZ for some k E Z. There are 
two non-isomorphic extraspecial groups of order p3 , for each odd prime p. We give 
them below in terms of their generators and relations. 

• M = {x, y I xP
2 = yP = 1, [x, y] = xP, xP E Z(M)} 

• E = {a, b I aP = bP = 1, [a, b] = n, n E Z(E)} 

PROPOSITION 1. Pr(M) = P2 ; tr- l. 
Proof. We will use the first method mentioned in Section 1 to compute Pr(M). 
We can use the relations in the group to write every element of 1\11 as xiyj for 

some i = 0, 1, ... , p2 - 1 and j = 0, 1, ... , p - 1. Note that the commutator relation 
implies ykxl = xl- klpyk. 

We want to count the number of elements in IC(m) l for all m E M. Write 
m = xiyj then an element xr ys E 1\11 commutes with m if and only if 

xiyj xrys 
{:} x i+r- jrpyr+s 

xrysxiyj 
x i+r- sipyj+s. 

This is true if and only if jrp = sip mod p2. Thus, xrys commutes with m whenever 
is - jr = 0 mod p. 

Suppose i = 0 mod p and j = 0 mod p, then is - jr is always equivalent to 0 mod 
p, so r can be any integer between 0 and p 2 - 1, and s can be any integer between 
0 and p - 1. Thus, p3 elements commute with m under these conditions. Moreover, 
there are p elements of the form xiyj with i, j = 0 mod p. (Note that this makes sense 
since such an element must be in Z ( M).) 
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Suppose i = 0 mod p and j =/= 0 mod p, then is - jr = - j r = 0 mod p implies 
- j - l jr = r = 0 mod p, while s can be anything. Thus, p 2 elements commute with 111 

under these conditions. Moreover, there are p(p - 1) elements of the form xi yj with 
i = 0 mod p and j =/= 0 mod p. 

Suppose i =/= 0 mod p and j = 0 mod p, then is - j r = is = 0 mod p implies 
s = 0 mod p, and r can be anything. Thus, p 2 clements commute with m under thes 
conditions. Moreover, there are p2 - p elements of the form :1·iyJ with i ;f= 0 mod p 
and j = 0 mod p. 

Suppose i =/= 0 mod p and j =/= 0 mod p. If r = 0 mod p then is = 0 mod p implies 
s = 0 mod p. If r =/= 0 mod p then is - jr = 0 mod p implies s = i - 1 jr mod p. Thus, 
p + (p2 - p) elements commute with m under these conditions. Moreover, there are 
(p2 - p) (p - 1) elements of the form xiyj with i =/= 0 mod p and j =/= 0 mod p. 

Putting all this information together, we see that 

2:: IC(m)l 

Thlls Pr(M) P
3

CP
2 +p- I) p

2
+ p- l d th "t" . d D , = p6 = p3 an e propos1 1011 IS prove . 

PROPOSITION 2. Pr(E) = P
2 

~- 1. 
Proof. We will use the seccind method mentioned in Section 1 to determine 

Pr(E) = !f!-, where m is the number of distinct conjugacy classes in E, and n is 
the order of E. 

Every element of E can be written uniquely in the form aiiJlnk where i,j, k = 
0, 1, .. . p - 1. Recall that n E Z(E) and note that bkal = albkn- kl. We need to 
determine the conjugacy class of each element in E, then count the number of distinct 
classes. 

Let x = aiiJlnk E E. Cl(x) = {gxg - 1 I g E E} where g = arbsnt for some 
r, :-; , t = 0, 1, ... , p - 1. Now 

arbsntaiiJl nkn - tb- s a - r 
arbsaiiJlb- sa - rnk 
arbsaiiJl a - rb- snk- r·s 
arbs ai - riJl - snk- rs+rj 
ar+i - rbs+j - sn- s(i - r) k- rs+rj 

aiiJlnk+rj - is. 

If both i = 0 and j = 0, then Cl(x) consists of the single element nk. Otherwise, 
the exponent k + rj - is can take on any value between 0 and p - 1. In this case, 
Cl(x ) = {x, xn, xn2 , xn3 , ... , xnP- 1 }. There are p distinct classes consisting of a 
single element , and there are p2 - 1 distinct classes consisting of p elements. The total 

number of distinct conjugacy classes is p2 + p - 1 and we see that Pr(E) = P2~~- 1 . D 

3. Central Products of Groups. Let G1, G2, ... , Gs be normal subgroups of 
a group G . G is the central product of the Gi, written G = G1 o G2 o · ·. o Gs if 

• G = G1G2 · · ·Gs, 
• [Gi, GJ ] = 1 fori =F j, 
• Gin(G1G2···Gi- 1Gi 1···Gn) ~ Z(G) 

THEOREM 3. Let G = G 1 o G2 be a central product of subgroups of G , then 

Pr(G) = 71L1 + m2 + (m1 - z)(m2 - z) - z 
n2 
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where rni is the number of distinct conjugacy classes in Gi , z = jZ(G) I, and n = jGj. 
We will determine the conjugacy class of each x E G in each of three cases: 

x E G1, x E G2, x E G but x (j. G1 and x (j. G2. 
CLAIM 4. If x E G1 then Clc(x) = Clc1 (x). 
Proof. Let y E G, then there exist g1 E G1 and g2 E G2 such that y = g1g2. 

C . d - 1 - 1 - 1 - 1 - 1 - 1 · [ ] 1 Th ons1 er yxy = g1g2xg2 g1 = g1xg2g2 g1 = g1 x g1 smce x, g2 = . us, 
Clc(x) = Clc1 (x) and the claim is proved. 0 

By a similar proof, Clc(x) = Clc2 (:r) when x E G2. 
Now if x E Gi then the G-conjugacy class of x consists only of elements in Gi. 

The claims also show that the number of distinct conjugacy classes corresponding to 
elements of G which come from either G1 or G2 is equal to m 1 + m2 - l, where l is 
the number of conjugacy classes common to G1 and G2. G1 n G2 = Z(G) and each 
element of Z(G) is its own conjugacy class. Thus, l = jZ(G)I = z. 

Now we must count the number of conjugacy classes of elements of G which are 
a non-trivial product of elements from each of G1 and G2. 

CLAIM 5. Let x E G but x (j. G 1 and x (j. G2. The number of distinct conjugacy 
classes of s·uch elements in G is equal to ( m1 - z) ( m2 - z). 

Proof. Let x be as above. Since G = G1G2, there exist g1 E G1 and g2 E G2 such 
that x = g1g2. We know that x (j. G1 and x (j. G2, so we must have g1, g2 (j. Z(G). 

Let y be any element of G, and let y = h1h2 for some h1 E G1 and h2 E G2. 
Consider yxy- 1 = h1h2g1g2h2 1 h11 = h1g1h! 1 h2g2h:;1. We can see that for every 
distinct conjugacy class in G1 of the form {h1g1h1 1 j h1 E GI}, there are m2 - z 
conjugacy classes in G of the form given above. Note that since g2 (j. Z(G), we need 
to subtract z conjugacy classes from the total number of the form h2g2h2 1 in G2. 

Similarly, for every distinct conjugacy class in G2 of the form {h2g2h2 1 I h2 E G2} 
there are m 1 - z conjugacy classes in G of the form given above. 

We get a total of ( m1 - z) ( m2 - z) conjugacy classes of elements in G which are 
in neither G1 nor G2. Thus the claim is proved. 0 

The two claims together prove Theorem 3 

4. Application to Extraspecial Groups. Every extraspecial p-group is of 
order p28+1 for some integer s 2:: 1. The center of an extraspecial p-group is cyclic of 
order p. Furthermore, such a group is one of the two types listed below [2]. 

• G = E1 o E2 o · · · o Es where each Ei is a copy of the extraspecial group E of 
order p3 , 

• G = E 1 oE2o· · ·oE8 _ 1 oM where the Ei ~ E and M is the other extraspecial 
p-group of order p3 . 

THEOREM 6. If G is an extraspecial p-group of order p28 1, then Pr(G) = 
p2.•+p- 1 

p2·•+ 1 . 

Proof. We will prove by induction on s that the number of distinct conjugacy 
classes of elements in G is equal to p28 + p - 1, then the result follows. If s = 1, then 
the theorem holds by Propositions 1 and 2. Assume the theorem holds for groups of 
order p2k+1 where k < s. We know that G = E 1 o E 2 o · · · o Es- 1 oF where F is a copy 
of either MorE, and each Ei ~ E. Let H = E1 o E2 o · · · o Es- 1· From the proof 
of Theorem 3 we know that the number of distinct conjugacy classes in G = H oF 
is equal to mH + mp + (mH - z)(mp - z) - z where mH is the number of distinct 
conjugacy classes in H, mp is the number of distinct conjugacy classes in F, and 
z = jZ(G)j. By the inductive hypothesis, mH = p2(s - 1) + p - 1. By Propostions 1 
and 2, mp = p2 + p - 1. Thus the number of distinct conjugacy classes in G is equal 
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to p2(s- 1) + p - 1 + p2 + p - 1 + (p2(s - 1) - 1)(p2 - 1)- p = p2s + p - 1. Now we see 

that Pr( G) = P
2

;2~!~ 1 and the theorem is proved. 0 

5. Computations and Questions. While it was stipulated that p be an odd 
prime, it is easy to see that when p = 2 the group M is isomorphic to D 8 , the dihedral 
group of order 8. In this case, our computation Pr(M) = 

22t5-1 = ~ matches that of 
Gallian in [1] . In general, the probability that two elements in an extraspecial p-group 
commute is barely better than ~. Certainly lims-oo Pr( G) = ~. 

There are many open problems in this area for students to study. Take your 
favorite non-abelian group or family of groups and start determining conjugacy classes 
of elements. 

A nice extension of the results of this paper might be to finite p-groups that are 
given as cyclic-by-elementary abelian central extensions. That is, consider a group G 
given by the following short exact sequence: 

where N is cyclic of order p and is contained in Z(G) , and Vis elementary abelian. 
It turns out that all such groups are central products of extraspecial p-groups with 
certain abelian p-groups. See [4] for a more complete description. 
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Official IIME Tee Shirts 

Get Yours Today! 

Problem. A painter is high atop a 40 foot ladder leaning against a 60 foot house 
at an angle such that the ratio of the lengths of the legs of the right triangle formed 
is the golden section. If the base of the ladder is moving away from the house at 
at the speed of light divided by Avagadro's number, what are the thoughts of the 
mathematician watching the ensuing disaster? 
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v = dh 
dt 

mo 

dv _ g 
dt -

J1 - v2jc2 F = mtmeG R 
1Ill3 

0 r= FxR 
b 1 

a 1+ 1+
1

1 

Ft = J-lkN 

Solution. She hopes that none of the paint will get on her new TIME Tee Shirt. 

TIME Tee shirts are white, Haines, BEEFY-T, pre-shrunk 100o/c cotton. The front 
has a large TIME shield. The back of the shirt is decorated with the colorful TIME 
tesselation of the plane designed by Doris Schattschneider, in the TIME colors of gold, 
lavender and violet. Shirts are available in large and X-large. The price is only $10 
per shirt, which includes postage and handling. 

To obtain a shirt, send your check or money order, payable to TIME, to: 
Rick Poss, 
Mathematics - TIME 
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100 Grant St. 
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D OUBLE SUBSTITUTION TECHNIQUE FOR INTEGRATING 
POLYNOMIALS IN sinO AND cosO 

MICHAEL .J. BOSSE AND N. R . NANDAKUMAR • 
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Abstract. 'fraditionally, the integral J sinm 0 cosn (} where m and n nonnegative even integers . 
is valuated by the repeated use of double angle formulas. In this paper, an algebraic technique is 
provided which simplifies evaluating these integrals and avoids the couvcutioual approach. 

1. Introduction. Let P(sin, cos B) be a trigonometric polynomial in sin() and 
cos e. Let our assigned task be to evaluate J P(sin B, cos B) d() where each term in the 
integrand is of the form of a constant times sinm () cosn B where m and n are positive 
integers. For instance 

I sin6 () cos4 () d() or I [sin4 ()cos~~() + 3 sin6 
() cos4 

() - sin4 
() + 2 cos·1 

()] d(). 

In any term within the integrand, if one of m or n is an odd integer, the integration is 
relatively simple. For example, say m = 2k + 1, then using the Pythagorean identity 
sin2 

() = 1 - cos2 () with the substitution cos() = z the term will be reduced to a 
polynomial in z. If m and n are even, the traditional method repeatedly employs 
double angle formulas to simplify the integral. This brief investigation considers an 
algebraic technique which can readily simplify these integrals and avoid the repeated 
usc of double angle formulas. 

2. Technique. This technique begins with the substitutions. Let 

u = cos () + i sin () and v = cos () - i sin (). 

With this substitution it is easy to see that du = iu d() and dv = - iv d(). Therefore, 

u + v 
cos() = -

2
- and 

u - v 
sin() = 2i' 

Since lW = cos2 () + sin2 
() = 1, the integral can be written as 

I P(sin(),cos())d() = - i I Q(u)du+i I R(v)dv C I d() , 

where Q and R are polynomials in one variable and C is a constant. Notably, if in 
each term of the polynomial P(sin(), cos()), m and n of sin() and cos() are even, then 
it is easy to recognize that Q = R, since the substitution for sin() and cos() will be 
symmetric in u and v. The following example illustrates when P has one term with 
m = 4 and n = 2 that Q = R. 

. . (u+v)
2 

(u - v)
4 

COH
2 

() sm4 
() = -

2
- 2i 

= 2- 6 (u2 + 2uv + v2 )(u4
- 4u3v + 6u2v2

- 4uv3 + v4
) 

= 2- 6 (u2 + 2 + v2 )(u4
- 4u2 + 6 - 4v2 v4

) 

• Delaware State University 
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Hence, Q = R. 

- BOSSE AND NANDAKUMAR 

= 2- 6 
( u6 

- 4u4 + 6u2 
- 4 + v2 

+2u4 
- 8u2 + 12- 8v2 + 2v4 

+u2 
- 4 + 6v2 

- 2v4 + v6
) 

= 2- 6
( u6 

- 2u4 
- u2 + 4- v2 - 2v4 + v6 ) 

= 2- 6 [(u6
- 2u4

- u2
) + (v6

- 2v4
- v2

) + 4] 
= Q(u) + R(v) +C. 

Thus, when m and n are even, substitutions can be made which will allow each 
term of the polynomial in sin B and cos B to be written in cos B (or sin B if desired) using 
Pythagorean identities. Since, as noted previously, cos B = utv, a substitution can be 
made to eliminate the use of double angle formulas. The following specific example 
demonstrates (although not in the general case) that since cosm B = ( utv) m, by 
expanding the right hand side using binomial theorem we obtain a straight forward 
expression which is easy to integrate. Since 

we have 

Since by DeMoivre's theorem um = cos mB + i sin mB and vm = cos mB - i sin mB, we 
obtain 

j cos4 B dB = 
3

1
2 

sin 4B + ~ sin 2B + ~ B + K. 

Similarly, with this new substitution the integral J cosm B dB is readily evaluated with­
out the conventional and repeated use of double angle formulas. 

3. Extending the Technique. A natural extension of this method arises from 
first assuming that 

N 

P(x, y) = L CijX2iy2j. 

i+j = O 

·' 
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When exponents are even, by using Pythagoras' identity, we can write sin2
i B cos2J B 

as a polynomial in cos B only. Thus the polynomial P(sin B, cos B) can be written as 

This leads to 

N 

P(sinB, cos B) = L aj cos2
j B. 

j = O 

N j P(sin B, os B) dB = L aj j cos2
j B dB , 

j = O 

where each term in the sum on the right hand side is in the form of a constant times 
cos2J B. By using the substitution above, and observing that uv = 1 and ed) = ( 2f~k), 
we obtain 

Thus 

j cos2i IJdiJ = T 2i [~CD j u2(j ~k)- l du + j (j) diJ 

-~ C~) j ifU~k)- ! dv] 

= - 2j [j - 1 (2j) u2( j - k) - j - 1 (2j) v2(j - k) (2j) ] 2 2::::: k 2(j - k)i 2::::: k 2(j-- k)i+ j B 
k=O k =O 

= - 2j [j - 1 (2j) u2(j - k) - v2(j - k) (2j) B]. 2 2::::: k 2u- k)i + j 
k =O 

2(j - k) 2(j - k ) 
Again, by DeMoivre's theorem it follows that u ~v = sin[2(j - k)BJ. 

Hence we obtain 

J cos
2
i IJ diJ = 2-

2
i [~ en sin[2(j - k )IJ] + Cf) IJ] + K , 

where K is the constant of integration. 
Associating the first technique with its extension leads to the following obser­

vation: To evaluate J P(sin B, cos B) dB where P is a polynomial in sin B and cos B, 
and each term in the integrand is of the form sinm B cosn B with even non-negative 
integers m and n, the integrand can be reduced to a polynomial in cos2 B by using 
Pythagorean identity. Since the integration is linear, the rule 

J cos2
i IJdiJ = 2-

2
i [~en sin[2(j - k)IJ] + (j)o] + K, 

can be employed to evaluate the integral. Therefore, if the above conditions are met, 
one rule can be used to integrate any such trigonometric polynomial, regardless of its 
seeming complexity. 
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4. Conclusion. Although there is nothing novel in this discussion, Pythagorean 
identities together with algebraic techniques of substitution demonstrate utility in 
integrating trigonometric polynomial::,. With today's concern for individualizing in­
struction according student learning style, this technique may prove pedagogically 
beneficial to some who currently struggle with more traditional techniques. Addi­
tionally, this investigation bridgE's algebra with trigonometry in the realm of calculus. 
College calculus students are no less in need of making connections across mathemat­
ical disciplines in order to observe and cognitively internalize topical interconnections 
in mathematics. 
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RESULTS INVOLVING CONTINUITY OF THE DERIVATIVE AT A 
POINT AND ON AN INTERVAL 

.JOHN GHIESMER • 

1. Motivation. When calculus is applied to other areas of study, the standard 
derivative of a real-valued function of a real variable is often assumed to be continuous. 
Some simple examples show that the derivative of a function may fail to be continuous, 
even when it exists everywhere on an interval. Furthermore, certain pathological 
functions have a derivative at a point, and yet behave in a way that would indicate 
that the graph of the function has no unique tangent line at that point. This paper 
will characterize continuity of the derivative by reformulating the standard definition 
of derivative, and also prove further results using this new definition. 

Here is an example which shows that a function may he differentiable everywhere 
and have a discontinuous derivative. 

Example 1. Consider the function f : :. :~ gi ven by 

f( x ) = x 
{ 

.r 2 sin ( .l) , :c l~ \ { 0} 

0 ,:r = 0 

f is continuous on JR \ {0}, being the composition of continuous functions, and using 
the squeeze theorem it is easy to show that f is continuous at 0, so f is continuous 
everywhere. Differentiating f on L \ { 0}, we use the chain rule and the product rule 
to obtain f' (x) = 2x sin ( ~) - cos ( ±). Differentiating f at 0 using the definition 
of derivative yields f' (0) = 0. The derivative is discontinuous at 0, however, since 
f' (0) = 0, while 

lim f' ( 
1 

) = lim ( 
1 

) sin((2n + 1)1r) - os((2n + 1)7r) = 1. 
n (2n + 1)7r n ->oo 2n + 1 7r 

This shows that the derivative of a function may be discontinuous at a point, while the 
derivative exists everywhere in a neighborhood of that point. The reader should keep 
in mind the result of Baire's which states that when a derivative exists everywhere, 
the set of its discontinuities is at most first category. (See [2]) 

Here is an example which shows that the existence of the derivative of a function 
at a point gives little information about how the function behaves near that point. 

Example 2. The function g : JR -t JR given by 

{ 
x2

, x is rational 
g(x) = 0 · · t" 1 , x 1s 1rra wna 

is continuous at 0, but discontinuous everywhere else, since the rational numbers are 
dense in JR . One can visualize this function as a parabola joined with its tangent line 
at x = 0, which is the x - axis. It is then easy to see that g'(O) = 0. This shows that 
the existence of the derivative of a function at a point implies very little about the 
behavior of the function near that point. 

*Miami University 

---------------------------------------------------------------------- - - - ----------------------------------
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2. Redefining the Derivative. Now let us formulate a modified definition of 
the derivative. 

DEFINITION 1. For an open interval I ~ IR , f : I ---+ IR , let 

f'( x ) = lim f(x +h) - f( x ) 
h 0 h 

j*(x) = lim f(x +h) - j(x + k) 
(h ,k) - (0 ,0) h - k 

h::j;k 

If f*(a) exists, it must be equal to f'(a), since 

lim f (a + h) - f (a + k) = c ===? lim 
(h,O) (0,0) 

f(a + h) - f(a) 
h = c. (h,k) (0,0) h - k 

hi=k hi=k 

Note that the second expression is the definition of f' (a). We refer to f * as the 
"strong derivative of f." 

If we interpret these definitions graphically, we may consider the traditional 
derivative as approximating the slope of the line tangent to the graph off at (x, f(x)) 
by secant lines through (x, f(x)). The strong derivative, in contrast, approximates 
the slope of the tangent line through (x, f(x)) by every secant line near (x, f(x)), 
including those which pass through (x, f(x)). 

The following theorem characterizes the continuity off' in terms of the existence 
of f*, provided f' exists everywhere. 

THEOREM 2. Let f be defined on an interval I = (a, b) ~JR. , and suppose f'(x) 
exists for all x in I. Then f* exists at c {::::::::=} f' is continuous at c. 

Proof ( ===? ) 

Let an be a sequence such that limn-+oo an = c, and f' (an) exists for all n. For 
each an choose bn =I an such that ian - bnl < 1/n, and 

Let hn = an - c, and let kn = bn - c. Then limn oo hn = limn-+oo kn = 0 and 

I. J'( ) _ 1. f(an) - f(bn) _ 1. f(c + hn) - f( c + kn) _ j*( ) _ J'( ) Im an - Im - Im - c - c . 
n oo n-+oo an - bn n-+oo hn - kn 

Since this is true for every sequence an that converges to c, lirnx c f' ( x) = f' (c). 
( ¢=) Let c > 0 be given. We have that f' is continuous at c, so there is a 8 > 0 

such that IJ'(x) - f'(c)l < c whenever lx - cl < 8. Let lhl < 8, lkl < 8, and without 
loss of generality, assume h < k. The mean value theorem implies that there exists 

f(c+h) - f(c+k) 
y E (c + h, c + k) such that h _ k = f'(y). Since !hi , lkl < 8, we have 

ic- Yl < 8, so 

I f( c + h~ = ~(c + k) - f'(c) l = lf'(y) - f'(c)l < c. 

T his implies that 

I. f(c +h) - f( c + k) _ !'( ) 
Im - c' 

(h,k) (0,0) h - k 
h::j;k 
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which shows that f * (c) exists. D 
Note that in the ( ===? ) portion of the proof, we made no use of the fact that f' 

exists everywhere. We may as well have assumed that a is a cluster point of the set 
{ x : f' ( x) E JR. } without changing the proof significantly. The ( ¢=) proof, in contrast, 
uses the mean value theorem, which makes the assumption that f' exists everywhere 
in I quite necessary. It would be interesting to find a weaker condition that implies 
the same result. 

To express the following corollary, we need the concept of category. A set A ~ ~~ 
is nowhere dense if, for all x E JR. \ A, there exists a neighborhood U of x, such that 
U ~ (JR. \ A). A set E ~ JR. is said to be of first category if E is the union of countably 
many nowhere dense sets. A set is said to be of second category if it is not of first 
category. A trivial example of a set of first category is the set rational numbers, being 
a countable set. In rough terms, a first category set may be considered "small" and 
second category sets may be considered "large." Every second category set is dense 
in JR. , and every interval in IR is of second category. Finally, a function is of first class 
if it is the limit of a sequence of continuous functions. For a further discussion of 
category, see [2]. 

CoROLLARY 3. Iff' exists everywhere on an open interval I, f* must exist on a 
set which is the complement of a set of first category. 

Proof Baire's Theorem on Functions of First Class (see [2]) implies that if !' 
exists everywhere on an open interval, the set A of discontinuities off' is at most first 
category. By theorem 1, f* will exist on I\ A, which is the set of points where f' is 
continuous. 0 

Example 2 revisited. To seP that the existence of the strong derivative implies 
more about the behavior of a function than does the existence of the traditional 
derivative, let us return to the second example from section 1: the function 

g(x) = . . . { 

x2
, x is rational 

0 , x IS IrratiOnal 

g' (0) = 0, but since g is discontinuous everywhere except 0, g' does not exist on any 
open interval around 0, so we cannot use the theorem proved above to deduce any 
information about g*(O). 

We know that if g* (0) exists, g* (0) = 0, since g' (0) = 0. Consider the sequences 
an = 1/n, bn = 1/n- 1/('rrn2

). Then limn 00 an= limn 00 bn = 0, so 

if g*(O) exists. However, g(an) = 1/an2 for all n EN, since an is always rational, and 
g(bn) = 0 for all n EN, since bn is always irrational. Then 

This contradicts the fact that g*(O) = 0, so g*(O) does not exist. 
This example is interesting in that it shows that the existence of the derivative!' 

at a point a implies very little about how the function f behaves near a. In the next 
section we show that the existence of f* (a) implies a great deal about how f behaves 
near a. 
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3. Further Results. Given a function f, the existence of f*(a) implies that f 
must be Lipschitz in some neighborhood of a. 

DEFINITION 4. Let I ~ ~ be an interval. A function f : I ----* JR. is Lip8chitz on I 
if there exi8t8 c > 0 8uch that for all x, y E I, lf(x) - f(y) l ~ clx - Yl· 

Lipschitz functions are very well behaved: they are uniformly continuous, abso­
lutely continuous, and differentiable almost everywhere (see [1]). Suppose f: lR ----* ~~ 
and f* (a) = L E JR. . To see that f is Lipschitz near a, note that 

lim f (a + h) - f (a + k) = L 
(h,k) - (0,0) h - k 

implies that for all E > 0, there exists 8g > 0 such that 

I f(a + h~ ='(a+ k) - Ll < c, whenever .jh2 + k2 < 8, 

Which implies 

-E + L < f(a +h) - f(a + k) < c + L, whenever Vh2 + k2 < 8~ 
h-k " 

Letting E < I ~ I , we have 

_!:_ < - E + L < f(a +h) - f(a + k) 3L 
2 h - k < E + L < 2' 

so that 

I 
f (a + h) - f (a + k) I 13£ I 

h-k < 2 ' 

which implies 

If( a + h) - f(a + k)l < ~ 3~ l l(a + h) - (a + k) l, whenever .)h2 + k2 < 8, 

This shows that f is Lipschitz in some neighborhood of a. Since every Lipschitz func­
tion is the difference of two increasing functions , this implies that f is differentiable 
(in the traditional sense) almost everywhere in a neighborhood of a (see [1], p. 104). 
The reader not familiar with measure theory might like to know that this implies that 
f* exists on a dense set in I iff' exists everywhere on I. 

Note that in the ( ====? ) portion of the proof of Theorem 1, we made no use of 
the fact that f' exists everywhere. Thus, we have the stronger statement 

COROLLARY 5. If .f*(a) exi8t8, then limx a f'(x) = .f'(a) 
Seeing that the existence off* at a point implies that f is Lipschitz on an interval, 

it is natural to ask iff being Lipschitz on an interval implies that f* exists somewhere. 
In fact, there is a Lipschitz function f such that f* exists nowhere, but such a function 
is very difficult to construct directly, and the author would be very interested in 
a construction of such a function using elementary methods, with no reference to 
measure theory or category. 
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Exarnple 3. Here we construct a Lipschitz function J, such that f * exists 
uow here. Iu our construction of j, we will use the fact that there exists a set, A, 
which is a. Lebesgue measurable subset of [- 1, 1], such that for all open U C [- 1, 1], 
bot.h A n U and U \ A have positive measure. For a construction of A see [3). Let 
F .J;;" XA dt, where XA(x) = 1 for x E A, XA(x) = 0 elsewhere. Then F is Lipschitz, 
Aince 

IF(y) - F(x)l = It XA dtl S IY - xi-

Also, F'(x) = XA(x) for almost all x E ( - 1, 1), by ([1], 107). This implies that for 
n.ny open interval U in [-1, 1], there exist a, bE U such that F'(a) = 0 and F'(b) = 1, 
sin<:<' otherwise, the set 

has posit ive measure (see [1]). Thus, 

lim F'(x) 
x a 

doc::; not exist for any a E [-1, 1], so f*(a) does not exist for any a E [- 1, 1]. As a 
corollary to this, we know that F' cannot exist everywhere on an interval in [- 1, 1], 
since F' would then be continuous on a set of second category, so F * would exist on 
a set of second category, by Theorem 1. This inspires another observation: 

Observation. Let 0 < c < 1. There is no measurable set A c [0, 1] such that 
'111.(1 n A) = cm(I) for every interval I~ [0, 1] 

Proof. Let A be such a set. Then J; XA dt = ex, so 

d rx 
dx Jo XA dt = c 

for all x E (0, 1), a contradiction. 0 
We can use the function F, constructed in example 3, to construct a function 

which has a strong derivative at only one point, which shows that the existence of 
the strong derivative at a point does not imply the existence of the strong derivative 
elsewhere. Consider f = xF. Then 

hF(h)- kF(k) = h(F(h) - F(k)) + (h - k)F(k) = h(F(h) - F(k)) + F(k), 
h - k h - k h - k 

so we can compute f*(O) as 

lim hF(h)- kF(k) < 
(h,k)~ (O,O) h- k 

h#k 

< 

lim h(F(h) - F(k)) + 
(h,k) -+ (0,0) h- k 

h#k 

lim h + 
(h,k) (0,0) 

h#k 

lim F(k) 
(h,k) -+ (0,0) 

h#k 

= 0, 

lim F(k) 
(h,k) (0,0) 

h#k 
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since limk-.o F(k) = 0, so f *(O) = 0. But f *(a) does not exist for any a =I= 0, since, for 
a=/= 0, J'(a) = F(a)+aF'(a), so for all a=/= 0, for all8 > 0, there are x, y E (a - 8, a+8) 
such that f'(x) = F(x), while f'(y) = F(y) + y, so, if f*(a) exists, then 

lim f' ( .r) = lim F ( x) + :r: = lim F ( x), 
x -+ a :r a x a 

which is a contradiction, since a =I= 0. It is interesting to note that multiplying F by 
x produces a function f for which f * exists at 0, just as multiplying x sin ( ~ ) by x 
yields a function whose derivative exists at 0. 

The author wishes to thank Dr. Patrick Dowling and Dr. Christopher Lennard 
for their helpful conversations on the topics in this paper. 
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ERROR BOUNDS INVOLVING ALMOST-BINOMIAL 
APPROXIMATIONS OF HYPERGEOMETRIC PROBABILITIES 

ABU I. M . .JALAL* 

1. Introduction. Problems involving sums of several Hypergeometric random 
variables generally involve complex calculations which are beyond the grasp of most 
undergraduate students, and even beyond what a trained statistician would be com­
fortable with, armed with only a standard scientific calculator. Straightforward ap­
proximations have been developed using the Poisson distribution, the Binomial distri­
but ion, and a variant of the Binomial distribution, the Almost-Binomial distribution. 
The purpose of this paper is to perform an error-bound based comparison of the 
Almost-Binomial approximations with the Binomial approximations. 

We will use the following notation: 
1. X rv Hypergeometric (N1 , N2, k), means that X has pdf (probability density 

function) 

x ::::; k, x ::::; N 1 , and k - x S N 2 . For this distribution E(X) = klfJ- and 

Var(X) = k Iff !f; \~-=-~J, where N = N 1 + N2 . 
- >. A x 

2. X rv Poisson (.A) , means that X has pdf f(x) = ~, x = 0, 1, 2, 3, . ... For 
this distribution E(X) = .A and Var(X) = .A. 

3. X rv Binomial (n, p) , means that X has pdf f( x ) = C)px(l- p)n- x, x = 
0, 1, 2 . .. , n. For this distribution E(X) = np and Var(X) = np(1 - p) . 

4. X rv Almost-Binomial ( n , p), means that X has pdf 

x = 0, 1, 2, .. . , [n] 

x = [n] + 1, 

where [n] =the greatest integer less than or equal ton. The Almost-Binomial 
dist ribut ion is a generalization of the Binomial distribution where n is allowed 
to take on non-integer values. For this distribution E(X) ~ np and Var(X) ~ 
np(1 - p). (Thompson, 1999). 

For example, X rv Almost-Binomial (n = 3.4, p = 0.2). The pdf of the Almost-
Binomial (3.4, 0.2) is 

X = 0, 1 2, 3 

x = 4 

We get the following probability values: Note thatE(X) = 0.68001(np = 0.68) 

*Wabash College. 
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X F(x) 
0 0.46828 
1 0.39804 
2 0.11941 
3 0.01393 
4 0.00034 

TABLE 1.1 

Almost-Binomial {3.4, 0.2) 

and Var(X) = 0.544076(np(1- p) = 0.544). 

Suppose, Y = X1 +X2 +X3 + .. . +Xr, where X1, X 2, X3, ... , Xr are independent 
and Xi rv Hypergeometric (Nil , Ni2, ki), Ni 1 + Ni2 = Ni. Then, 

E(Y) = k Nu + k N21 + k N31 + + k NTI _ ~ k _ Ni1 
lN 2N 3N .. . rN-~tN· 

1 2 3 r i=l t 

2. Approximation Methods. In this section, we will discuss various approxi­
mations to probabilities involving sums of independent Hypergeometric random vari­
ables. All four schemes are method-of-moments based. 

1. Poisson Approximations: Set 

A = ~k- Nil 
~ tN·· 
i=l t 

We can find individual probability approximations by plugging in the values 
of A and x into the pdf of the Poisson Distribution. 

2. Binomial Approximations (1): Set 

r """"~ k ·& n _ """ k· d _ L.n= l t N i 
- ~ t an p - ""'r . . 

i=l L..,i=l kt 

We can compute individual probability approximations by plugging in the 
values of n and pinto the pdf of the Binomial Distribution. 

3. Almost-Binomial Approximations: Set 

r Nil r N· N · (N k ) 
np = L ki N and np(1 - p) = L ki ~ ~ i - i 

i=l t i=l Nt Nt (Ni - 1) . 
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Solving for n and p gives, 

and 

We can plug in these values into the pdf of the Almost-Binomial Distribution 
and get approximations for the probabilities. Lorry Lenvoy (1996) introduced 
this method to approximate probabilities involving a single Hypergeometric 
random variable. She compared it to the Normal distribution and Binomial 
approximation ( 1), recommending the use of Almost-Binomial approximation 
for situations where -fJ ~ 0.2 and !fJ- ~ 0.3. 

4. Binomial Approximations (2): Shift the non-integer n from the Almost­
Binomial approximat ions to the closest integer value n*. Then, we set 

* * Lr k Nil np = i-
N · i=l t 

to obtain the value of p*. Again, we can compute individual probability 
approximations by plugging in the values of n* and p* into the pdf of Bino­
mial distribution. Sandiford (1962) proposed this technique to approximate 
probabilities involving a single Hypergeometric random variable. 

We present an example. Suppose, X 1, X 2 are X3 independent. X 1 rv Hypergeo­
metric (4, 11, 4), X 2 rv Hypergeometric (3, 9, 3), and X 3 "' Hypergeometric (3, 10, 3) . 
Let Y = X 1 + X 2 + X 3 . We get the table of probabilities shown in Table 2. 

We should note that the performance of the Almost-Binomial approximation rel­
ative to all the other approximations here should come as no surprise. The first and 
second moments of the approximating Almost-Binomial most closely match those of 
the sum of the Hypergeometric random variables. 

3. Theoretical Bounds on the Errors:. At this point we could continue with 
a series of representative examples to compare the Almost-Binomial approximation 
with the other approximations. Sandiford (1962) and Lendvoy (1996) are both col­
lections of examples. However, the purpose of this paper is a more mathematical 
comparison based on theoretical bounds on the errors in the approximations. 

The theoretical bounds on the errors we give below are based on work done in 
a more general setting that involves errors in approximating probabilities concerning 
sums of independent Bernoulli random variables. (X rv Bernoulli (p), if P(X = 0) = 
1 - p and P( X = 1) = p). 

THEOREM 1. If X rv Hypergeometric (Nl , N2, k), where k ~ Nl 1\ N2, then the 
dis tribution of X is equivalent to that of a sum of k independent Bernoulli random 
variables. 
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Almost 
Binomial 

Binomial ( 1) (0.3947, Poisson Binomial(2) 
y Exact (0.2509,10) 6.3562) (2.509) (04181.6) 
0 .038731 .055641 .041118 .081352 .038823 
1 .170829 .186363 .170443 .204109 .167368 
2 .303619 .280887 .297682 .256052 .300639 
3 .282076 . 250878 .281895 .214143 .288015 
4 .149241 .147049 .154249 .134319 .155206 
5 .046252 .059102 .047404 .067401 .044607 
6 .0083564 .0164961 .0069879 .0281845 .005342 
7 .0008487 .0031572 .0002319 .0101020 0 
8 .0000453 .0003965 0 .003168 0 
9 .0000012 .0000295 0 .0008832 0 
10 0 0 0 .0002216 0 

Total I error I 0.1122437 0.0170828 0.2607799 0.0239916 
TABLE 2.1 

A comparison of true probabilities for Y with approximate probabilities 

Proof See Vatutin and Mikhailov (1982). D Although in complex cases it may 
be impossible to get exact solutions for the p's of the Bernoulli random variables, 
one can get approximate solutions by having a computer algebra system factor the 
probability generating function of the Hypergeometric random variable. In simple 
cases one can solve exactly for the p's. We give an example: If X rv Hypergeometric 
(N1 = 6, N2 = 10, k = 2), we get the following table for the pdf of X, J(x): 

X f(x) 
0 0.375 
1 0.5 
2 0.125 
TABLE 3.1 

Hypergeometric (6, 10, 2) 

It is easy to show that this distribution is equivalent to t he sum of two independent 
Bernoulli variables, one with p = 0.25, and the other with p = 0.5. 

The significance of Theorem 1 for us is that we can use the error bounds derived 
for sums of independent Bernoulli variables for our situation. For the results that 
follow, X1, X2, X3, ... , Xs are independent Bernoulli (Pi) random variables, 

~s 2 
Lii= l Pi 

p = ~s ' 
Lii=l Pi 

and [n] denotes the greatest integer ~ n. Let n* be the closest integer to n and let 
p* = sp / n * . Let P be a random variable with 

i = 1, 2, 3, ... ' s. 
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Suppose that A c {0, 1, 2, .. . . [n]}. Let 

Binl(A) = ~ (:)rp' (l - Prx , 

Bin2(A) = L C}p•)'(l - p• )n"- x , and 
Xt: A 

AlBin(A) = L (:) (p) x(l - p)n- x . 
XEA 

THEOREM 2. Bin1(A) satisfies 

. ( 1 _ ps 1 _ ( 1 _ p )s 1) s _ 
2 

IP(X E A) - Bm1(A)I ~ ( 1) - (1 - _) L(Pi - P) · 

Proof. See Ehm (1991). D 
THEOREM 3. Bin2(A) satisfies 

IP(X E A) - Bin2(A)I ~ 

s + p p i= l 

_4_VarC) + _1_ pin - n*l + (k _ [n] _ 1) P(X 2: [n] + 2) _1_. 
1 - p* p 1 - p* n* 1 - p [n] + 1 

Proof See Barbour, Holst, and .Janson (1992) (pp. 188 - 191) and Thompson 
(1999). D 

THEOREM 4. AlBin(A) satisfies 

4 P(X > [n] + 2) 1 
IP(X E A) - AlBin(A)I ~ 1 _ p Var(p) + (k - [n] - 1) l - p [n] + 1 · 

Proof See Thompson (1999). D 
Before applying these results to the Hypergeometric set up we note that the third 

term on the right in Theorem 3 (and the second term on the right in Theorem 4) tend 
to be either 0 or so extraordinarily small that they have essentially no impact on the 
bound. In the comparisons we make later, we take these terms to be 0. 

s ~s 2 d ~s 3 I b · Note that, Var(jj) depends on L:i= l Pi, Lii=l Pi, an Lii= l Pi. t can e wntten 
as 

V ( -) _ Lii= l Pi _ Lii= l Pi ~s 3 (~s 2)2 
ar p - s ~s 

l:i= l Pi Lii= l Pi 

Next, suppose Y1, Y2, Y3 , •.. , Yr are independent Hypergeometric random vari­
ables. Let , 
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(Johnson, Kotz and Kemp, 1993, p. 250). 
Set s = L~=l ki. Equating moments with our sum of Bernoulli's we get (from 

Johnson, Kotz and Kemp, 1993, p. 131) 

s s 

/-L2 = LPi(l- Pi), andp,a = LPi(l - pi)(l - 2pi)· 
i=l l = l 

Through some algebraic manipulat ion we get 

4 _ 2J-La 4J-L2 
--Var(p) = 2 + - - - . 
1 - p /-L2 /-Ll 

4. A Single Hypergeometric Random Variable. For a single Hypergeomet­
ric random variable, 

2 (kf::!.l. !:!:;._ (N2 - NI) (N - k) (N - 2k)) 
4 _ N N N (N- 1) {N'=2f 

1-=-Var(p)- 2 + !::!.1. !:!:l.. ~ 
p k N N (N- 1) 

4(JV1 - l)(k- 1) 
= (JV - l)(JV - 2) . 

4 (kf::!.l. !:!:;._ (N - k)) 
N N (N- 1) 

For Binomial(!) approximations, the error bound simplifies down to [See Ehm 
(1991 )] 

_k (1- (}Vl)k+l- (JV2)k+l) ~. 
k + 1 fV fV }Vl 

From the results we see that the theoretical bounds for the Binomial(!) approx­
imation and the Almost-Binomial are about the same when fV1 ~ 1 fV. If fV1 is 
dramatically less than 1 fV, we expect the Almost-Binomial bound to be much less 
that Binomial(!) bound. We can look at the following example: 

Suppose JV1 = 1, 000, N2 = 999,000, and k = 1, 000. Then, the bound on the 
error of the Almost-Binomial approximation is 0.00000399. On the other hand, the 
bound on the error of the Binomial (1) approximation is 0.0000959. 

5. Sums of Independent Identically Distributed Hypergeometric Ran­
dom Variables. Suppose X 1 , X2, X3 , ... , Xr are r independent and identical Hy­
pergeometric (!VI? JV2, k) random variables. Then, 

_4_Var(p) = 2 + 2rJ-La _ 4rJ-L2 = 2 + 2J-La _ 4J-L2, 
1 - p r J-L2 r J-L 1 /-L2 J-L 1 

the same as the single variable case. 

Ehm's error bound is (1 - prk+l - (1 - pyk+l) (r;!l) ( ~-=-i) 
Let's consider the following example: 
Suppose X1, X2, X 3 , X 4 , X5 are 5 identical and independent Hypergeometric ran­

dom variables with !Vn = fV21 = fVa1 = fV41 = fVs = 1000, fV12 = fV22 = fVa2 = 
JV42 = fVs2 = 999, 000, and kl = k2 = ka = k4 = ks = 1000. X = L~=l xi . Then, 
the bound on the error of the Almost-Binomial approximat ions is 0.00000399. On the 
other hand, the bound on the error of the Binomial (1) approximations is 0.0099881. 

·' 

ERROR BOUNDS 193 

Almost Binomial 
X Exact (2502.5, 2/1001) 
0 0.006704330 0.006704330 
1 0.033588761 0.033588761 
2 0.084106393 0.084106393 
3 0.140345 702 0.140345702 
4 0.175572614 0.175572614 
5 0.175642913 0.175642913 
6 0.146369094 0.146369093 
7 0.104507 492 0.104507492 
8 0.065264876 0.065264876 
9 0.036214711 0.036214711 
10 0.018078355 0.018078355 

Total IErrorl 0.000000001 
TABLE 5.1 

A comparison of true probabilities for X with Almost-Binomwl approximations 

We can look at the true and approximate probabilities for the significant values 
to demonstrate that the claimed accuracy of the Almost-Binomial approximations is 
correct. 

Note that the bound on the error and the Almost-Binomial approximations can 
both be easily found with a standard scientific calculator. Whereas, it is necessary to 
resort to a computer program to find the exact probability values. 
Acknowledgements: The author is grateful to the referee, the editor, and Peter 
Thompson (Professor of Mathematics, Wabash College) for their careful reading of 
t he paper and their helpful comments. 
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A FAMILY OF POLYNOMIAL FUNCTIONS 

THOMAS KOSHY* 

1. Introduction. This short article investigates a cla.ss of polynomials Kn ( :r) 
with integral coefficients. They are defined by 

Kn(x) = Kn- l(x) + xKn - 2(x) 

where 

K 1 (x ) = 1 and K2(x) = x. 

The first ten members of this family are: 

K1(x) = 1 

K2(x) = x 

K3(x) = 2x 

K4(x) = x 2 + 2x 

K5(x) = 3x2 + 2x 

K5(x) = x 3 + 5x2 + 2x 

K7(x) = 4x3 + 7x2 + 2x 

K 8 (x) = x 4 + 9x3 + 9x2 + 2x 

K 9 (x) = 5x4 + 16x3 + 11x2 + 2x 

K 10 (x) = x5 + 14x4 + 25x3 + 13x2 + 2x 

The polynomials Kn(x) have several interesting properties: 

(1) 

• The degree of Kn(x) is ln/2J, so K2n(x) and K2n+I(x) have the same degree, 
where l x J denotes the floor of x. 

• The leading coefficient of K n ( x) is 

Kn(x) = { l(n +11)/2J 

• xiKn(x) for every n 2:: 2. 
• The coefficient of x is always 2. 

if n is even 
otherwise. 

When n = 1, (1) yields Kn(1) = Kn- 1(1) + Kn- 2(1), where K1(1) = 1 = K2(1). 
This is precisely the recursive definition of the nth Fibonacci number Fn , so Kn(l) = 
Fn. 

Fibonacci numbers can also be defined explicitly by Binet's formula [1): 
an _ {3n 

Fn = ---
a-{3 

1 + J5 1 - J5 l l . f h d . t' where a = --
2
- and {3 = --

2
- are t 1e so utwns o t e qua ratlc equa wn 

x2 = x + 1. 
Since Kn(1) = Fn, it follows that the sum of the coefficients in every polynomial 

Kn (x) is a Fibonacci number. In other words, every row sum in the array of coefficients 
in Figure 1 is a Fibonacci number. 

*Framingham State College 
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\ j 
n\ 0 1 2 3 4 5 

1 1 
2 1 
3 2 
4 1 2 
5 3 2 
6 1 5 2 
7 4 7 2 +-- row sum = 13 = F7 
8 1 9 9 2 
9 5 16 11 2 

10 1 14 25 13 2 

Figure 1 
Let K(n,j) denote the element in row nand column j, where n 2: 1 and j 2: 0. 

It can be defined recursively as follows: 

K(n, 0) = { l(n +\)/2J 
if n is even 
otherwise, 

K(n ·)={ K(n-1,j-1)+K(n ~ 2 , j) 
,J K(n - 1,j) + K(n - 2,J) 

if n is even 
otherwise, 

where n 2: 3 and j ::; L(n - 2)/2J. K(n,j) may be considered 0 if j > L(n- 2)/2J. 

2. Jacobsthal Polynomials. There is a close relationship between the poly­
nomials Kn(x) and the Jacobsthal polynomials Jn(x), as we will see shortly. The 
Jacobsthal polynomials are defined by 

where J1 (x) = 1 = J2 (x) [2]. The first ten members of the Jacobsthal family are: 

Notice that Jn(1) = Fn. 

J1(x)=1 

J2(x) = 1 

J3(x)=x+1 

J4(x) = 2x + 1 

J5(x) = x 2 + 3x + 1 

J6 (x) = 3x2 + 4x + 1 

J7 ( x) = x3 + 6x2 + 5x + 1 

Js(x) = 4x3 + 10x2 + 6x + 1 

J9 (x) = x4 + 10x3 + 15x2 + 7x + 1 

ho(x) = 5x4 + 20x3 + 21x2 + 8x + 1 

3. A Polynomial Expansion of Jn(x). The coefficients of the Jacobsthal poly­
nomials lie on the rising diagonals of the left-justified Pascal's triangle, but in the 
reverse order, as Figure 2 shows. Using this observation, we can derive the following 
explicit formula for Jn(x). 

·' 
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1 
1 1 
1 2 1 coefficients of J6 ( x ) 
1 3 3 1 
1 4 6 4 1 
1 5 10 10 5 1 
1 6 15 20 15 6 1 

Figure 2 
THEOREM 1. 

L(n - 1) / 2J ( n/2J + 1. ) 
J ( ) """"' .-.. (n - 1) / 2J- j 

n x = 6 l ( n - 1) /2 J - j '" 
j = O 

This formula can be established by showing that Jn(x) satisfies the initial condi­
tions and the recurrence relation ( 1). 

For example, 

Js(x) = ~ ( i ~ ~ ) x3-J 

= ( i ) x 3 + ( ~ ) x2 + ( ~ ) x I + ( ~ ) x" 

= 4x3 + 1 Ox2 + 6x + 1 

4. Binet's Formula for Jn(x). Let rands be the solutions of the characteristic 

equation t 2
- t - x = 0 of the recurrence relation (2) [3]. Then r = 

1 + yT+4x, s = 
2 

1 - J1 + 4x 
2 

, r + s = 1, rs = - x, and r - s = J1 + 4x. Using the techniques of 

solving recurrence relations [3], it can be shown that Jn(x) can also be defined by the 
Binet's formula 

where n 2: 1. 

The next theorem shows the link between the polynomials Kn(x ) and Jn(x). 
THEOREM 2. 

Kn(x) = x[Jn- l(x) + Jn - 2(x)], where n 2: 2. 

(3) 

Proof. Since Kn(x) satisfies the same recurrence relation as Jn(x), it follows that 
Kn(x) = Arn + Bsn, where the expressions A and Bare to be determined subject 
to the initial conditions K 1 (x) = 1 and K2(x) = x [3]. These two conditions yield the 
equations 

Ar+Bs = 1 

Ar2 + Bs2 = x. 



198 KOSHY 

x-s r-x 
Solving this system, we get A = ~and B = ~·Therefore 

rv 1 + 4x sy 1 + 4x 

x-s r - x 
Kn(x ) = ·Tn+ ·Sn 

r·J1 + 4x svf1 + 4x 
(x- s)rn - l + (T - x)sn - 1 

vf1 +4x 
x(rn- 1 _ 8n- 1) _ (rs)(rn- 2 _ 8 n- 2) 

= 
vf1 + 4x 

= x [Jn- 1(x ) + Jn - 2(x )], 

by formula (3). 0 
Thus, to find any polynomial Kn(x), it suffices to multiply the sum of the con­

secutive members Jn - 1 (x) and Jn- 2(x) of the Jacobsthal family by x, where n 2: 3. 
For example, 

Kg(x) = x[Js(x ) + J7(x )] 

= x[(4x3 + 10x2 + 6x + 1) + (x3 + 6x2 + 5x + 1)] 

= 5x4 + 16x3 + 11x2 + 2x 

Since Km(1) = Fm = Jm(x) , Theorem 4.1 yields the familiar Fibonacci recurrence 
formula. 

COROLLARY 3. 

5. A Polynomial Expansion for Kn(x). Theorems 3.1 and 4.1 can be em­
ployed to derive a polynomial formula for Kn(x). 
Case 1 Let n = 2k + 1 be odd. By Theorem 4.1, 

J ( ) J ( ) ~ ( k + j ) k - j - 1 ~ ( k + j - 1 ) k- j - 1 
n- 1 X + n-2 T = La' k- j - 1 X + La' k - j - 1 X 

= ~ [ ( k ~; ~ 1 ) + ( ~ ~ ; = ~ ) ] xk-i - 1 

= ~k+3j + 1 ( k+j - 1 ) x k- j - 1 
La' 2j + 1 k - j - 1 

Case 2 Let n = 2k be even. Then: 

J ( ) + J ( ) = ~ ( k + j - 1 ) k - j - 1 + ~ ( k + j - 2 ) k- j - 2 
n- 1 X n- 2 X ~ k . 1 X ~ k . 2 X 

0 - ] - 0 - ] -

= ~ ( k + ~ - 1 ) x k- j - 1 + ~ ( k + ~ - 2 ) xk- j - 1 
~ k - ] - 1 ~ k - ] - 1 

0 1 

= ~[( k+~ - 1 ) + ( k + ~ - 2 )]xk- j - 1 + xk- 1 
~ k - ] - 1 k-] - 1 

1 

= xk - 1 + ~ k + 3~- 1 ( k + ~ - 2 ) xk - j - 1 
~ 2] k - J - 1 

1 
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Thus we have the following result. 
THEOREM 4. 

~ 2] k - J - 1 
Kn(x)jx = k- l 

1 

if n = 2k is even 

\ 

xk - 1 + ~ k + 3~ - 1 ( k + ~ - 2 ) xk - j - 1 

"""' k + 3 j + 1 ( k + ~ - 1 ) xk - j - 1 

~ 2j + 1 k - J- 1 
if n = 2k 1 is odd. 

0 

For example, 

KB(x)jx = x 2 + t 2 ;/j ( ; ~ ; ) x2-i 
1 

= x
2 + ~ ( i ) x + ~ ( ~ ) 

= x2 + 5x + 2 

therefore K 6 (x) = x3 + 5x2 + 2x 

Likewise, 

so 

~ 4 + 3j ( 2 + j ) 2 - . 2 K7(x)/x=~-.- 2 . x 1 = 4x +7x+2, 
0 2] + 1 - J 

Since Kn(1) = Fn, the next result follows from Theorem 5.1. 
COROLLARY 5. 

1) 
nL- 1 

n + 3j - 1 ( n + j - 2 ) 
An = 1 + · · 1 2J n- J-

1 

1) p. _ ~ n + 3j + 1 ( n + j - 1 ) 
2n+1 - ~ 2j n- j- 1 

0 

For example, 

F = ~ 6 + 3j ( 4 + ~ ) 
11 ~ 2j + 1 4- J 

0 

= ~ ( ! ) + ~ ( ~ ) + 1: ( ~ ) + 1: ( ~ ) + 1: ( ~ ) 
= 6 + 30 + 36 + 15 + 2 = 89 

5 
5 + 3j ( 4 + j ) and F 12 = 1 + L ~ 5 _ j = 144. 

1 

(4) 

(5) 
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Lucas numbers Ln are very closely related to Fibonacci numbers. They are defined 
by Ln = Ln- 1 + Ln- 2, where L1 = 1 and L2 = 3 (1]. 

Since F2n = FnLn [2], it follows that the sum on the right-hand side of (4) has 
non-trivial factors when n 2: 3. For example, 

~ 13 + 3j ( 12 + j ) 
1 + ~ 2j 13 _ j = 377 = F14 = 13 · 29 = F1 L 7 . 

Besides, since F2n+1 = F~ + F~+ 1 it follows that the sum in (5) is the sum of two 
(Fibonacci) squares. For example, 

+ 3] 4 + j 2 2 
4 

6 . ( ) ~ 2j + 1 4 _ j = F11 = 89 = 25 + 64 = F5 + F6 • 

We now turn our attention to constructing a generating function for Kn(x). 

6. A Generating Function for Kn(x). The polynomials Kn(x) can be realized 
as coefficients in a power series expansion. To see this, first notice that 

1 1 A B 
-1---t---xt-2 + (1 - rt) (1 - st) = -1 --rt + -1 --st 

r s 
where A = JI+4X and B = - JI+4X, using partial fractions. So 

1 + 4x 1 + 4x 

Then 

Therefore, 

That is, 

00 

= L:Jn+1tn, by(3) 
0 

00 

= L Jn(x)tn, since Jo(x ) = 0. 
0 

00 

= L[Kn(x)jx]tn, by Theorem 4.1. 
2 

x(1 + t)t2 00 

_.:._______.:__ = "' K n (X )tn. 
1-t -xt2 ~ 

2 
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In other words, 

f(t) = t + (x - 1)t2 = ~ Kn(x)tn. 
1- t - xt2 ~ 

1 

Thus, the function f ( t) generates the polynomials K n ( x) as coefficients of tn, where 
n 2: 1. 

In particular, the function 

00 

g(t) = 1 -:- t2 = L Fntn 
1 

generates the Fibonacci numbers. 
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In Memoriam. 

Josephine Gardner Good. It is with deepest sympathies that we report the 
passing of Josephine Gardner Good, the beloved wife of Richard A. Good. Dr. Richard 
(Dick) Good served Pi Mu Epsilon from 1975 to 1993 as Secretary-Theasurer and 
Councilor. Dick is Professor Emeritus of Mathematics of the University of Maryland 
and lives in Hyattsville, Maryland. Dr. Josephine Good, or "Jo" to her friends , 
received a Ph.D. with a joint major in nutrition and biochemistry from the University 
of Wisconsin at Madison. She served on the faculties of the University of Rhode 
Island and Oregon State University before marrying Dick in 1946. When Dick became 
involved with Pi Mu Epsilon, Jo would attend the Summer Meetings with him. She 
loved square dancing, bridge, and sewing. In fact, there was a time when she had 
made Dick so many shirts that he taught an entire semester without wearing the same 
shirt twice! 
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The 2000 National Pi Mu Epsilon Meeting 

The Annual Meeting of the Pi Mu Epsilon National Honorary Mathematics Soci­
ety was held in Los Angeles, CA from August 3-4, 2000. As in the past, the meeting 
was held in conjunction with the national meeting of the Mathematical Association 
of America's Student Sections. 

The J. Sutherland Frame Lecturer was John H. Ewing from the American Math­
ematical Society. His presentation was entitled "The Mathematics of Computers" . 

Student Presentations. The following student papers were presented at the 
meeting. An asterisk(*) after the name of the presenter indicates that the speaker 
received a best paper award. 
What Does a 40% Chance of Rain Really Mean? 

Katie Fleming 
Ohio Xi - Youngstown State University 

Statistical Analysis of Mastery Learning 
Jodie Matulja 
Ohio Xi- Youngstown State University 

Mark McGwire Meets Mathematicians 
David Gerberry 
Ohio Xi -Youngstown State University 

A Risky Algorithm: The Relative Risk vs. the Odds Ratio 
John Slanina 
Ohio Xi - Youngstown State University 

Virtual Visualizations 
Robert Shuttleworth 
Ohio Xi - Youngstown State University 

Properties of Positive Semi-Definite Operators 
Anthony D. VanHoy 
North Carolina Delta- East Carolina University 

Fractal Tilings with Radial Symmetry Adam Roberts 
Ohio Nu - The University of Akron 

Irregular Sierpinski Triangles 
Matthew Palmer 
Ohio Nu - The University of Akron 

Manifolds: They're Not Just For Cars 
Duane K. Farnsworth 
Ohio Omicron- Mount Union College 

Fundamental Groups and the Manifolds in Your Cereal Bowl 
Judy Maendel * 
Ohio Omicron- Mount Union College 

The Best Seat in the House 
Sarah Grove 
Ohio Xi- Youngstown State University 

Separated at Birth? 
Ryan Siskind 
Ohio Xi - Youngstown State University 

Convergence of Infinite Series 
Sara LaLumia* 
Ohio Xi - Youngstown State University 

17oulette with a Twist 
Marie Artesse 
California Nu - Sonoma State University 

7hgonometric Functions of Matr·i ces 
Rachael Floit 
Illinois Eta - A ugustana College 

{ nderstanding the Finite Element Method for Solving Differential Equations 
Jonathan Moussa 
Massachusetts Alpha - Worcester Polytechnic Institute 

Sla.tistics in the World of Civil Services 
Yakov Kronrod * 
Massachusetts Alpha - Worcester Polytechnic Institute 

Application of Sampling Techniques in a Gambling Survey 
Bethany Bray 
Michigan Zeta- University of Michigan at Dearborn 

Searching for a Perfect Voting System 
Joel Lepak* 
Ohio Xi - Youngstown State University 

The Irrationality of E and 1r 

Thomas Wakefield* 
Ohio Xi- Youngstown State University 

Xero Sum Rado Number for X 1 + X2 + C = X3 
Kathryn Rendall 
Wisconsin Delta- St. Norbert College 

Investigating the Irregularity Strength of Trees 
David Kravitz 
Delaware Alpha- University of Delaware 

Finite Division Rings are Fields 
Todd Horne 
New York Beta- Hunter College 

S:t;m.m.etric Exponential Equations 
David Kurzynski 
Wisconsin Delta- St. Norbert College 

Energizer Fractions: They Keep Going and Going and ... 
Erin M. Bergman* 
Wisconsin Delta- St. Norbert College 

Pollution Dispersion in Large Indoor Places 
Jeffrey Housman 
California Nu- Sonoma State University 

Pr·icing the American Call Option 
Michelle Swenson 
Nebraska Alpha - University of Nebraska at Lincolm 

!ln Introduction to Traffic Flow 
Lori McMenamin 
Michigan Zeta - University of Michigan at Dearborn 

RSA Cipher System: What Is It and Why Is It So Safe? 
Hai He 
New York Beta- Hunter College 
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Braess' Paradox in Computer Networks 
Abhiram Shandilya 
Texas Zeta- Angelo State University 

Women in the History of Mathematics 
Elizabeth Evans 
South Carolina Alpha- University of South Carolina 

Figure It Out: The Mathematics Behind Figure Skating Scores 
Abby Mroczenski 
Wisconsin Delta- St. Norbert College 

Radial Checkers: A New Twist To An Old Game 
Heather A. Olm 
Wisconsin Delta- St. Norbert College 

Sam Loyd's Fifteen Puzzle: The Even, The Odd and The Solvable 
Stacy A. May 
Illinois Zeta- Southern Illinois University at Edwardsville 

Fun with Flexagons 
Jeffrey Dumont 
Pennsylvania Tau - Lafayette College 

Which is the Right Path For Me 
Rosemary Tomase 
Wisconsin Delta- St. Norbert College 

Continuity of the Derivative at a Point and on an Interval 
John T. Griesmer* 
0 hio Delta - Miami U ni versi ty 

An Adaptation of the Improved Euler's Method for 2-Dimensional Hamiltonian Sys­
tems 

Dzuan K. Nguyen 
Nebraska Alpha- University of Nebraska at Lincoln 

The SI Realization of Forces at the Nano-Newton Level 
Laura A. Feeney 
Ohio Delta- Miami University 

Call For P apers. 

The next liME meeting will take place in Madison, Wisconsin, August 2- 4, 2001. 
See the liME webpage (http:/ /www.pme-math.org/) for application deadlines and 
forms. See also the MAA webpage 
(http:/ /www.maa.org/meetings/mathfestOL.frontpage.html) for other activities in the 
Badger State. 
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CATASTROPHIC CANCELLATION ON THE HIGH SEAS 

AMY LANGVILLE* 

Captain Bob is the captain of a large cruise ship which is currently leaving the 
port of Baltimore, Maryland. The first destination on this Mediterranean Cruise is 
Athens, Greece. The crew will be at sea for seven consecutive days until its first 
stop. Captain Bob, a recent Weight Watchers member, is in a predicament. Each 
week he must attend a Weight Watchers meeting, updating the group on his diet and 
weight loss progress. Weight Watchers has agreed to allow Captain Bob to condu~t 
t. his week's meeting over the phone. Captain Bob's problem lies in the fact that h1s 
cruise ship has no personal scales and none are available at the port in Athens. The 
ship's engineer has persuaded Captain Bob to weigh himself using the large scales 
which all major ports have to weigh the ship and its cargo. The engineer explains 
that when they reach Athens, and after the passengers have disembarked, they could 
simply weigh the ship with the captain aboard. The captain could step off the ship, 
and the ship alone could then be weighed. A simple subtraction of the weight of 
the ship and the captain together minus the weight of the ship alone would give the 
captain's weight. The scales are known to be accurate to six digits. By the engineer's 
reasoning that should be plenty enough to accurately capture the captain's weight. 

On the seventh day, after all the passengers had disembarked from the ship, the 
captain went through with the procedure. The engineer reported the weight of the 
ship plus the weight of the captain to be 1.000004 · 108 pounds and the weight of the 
ship to be 1.000001·108 pounds. After the simple subtraction, the captain must then 
weigh .000003 · 108 = 300 pounds. 

The captain was shocked, "300 lbs! Just last week I weighed 200 lbs!" 
"But this is a cruise ship and the cook did serve filet mignon and cheesecake all 

week," countered the engineer. 
Still in disbelief, the captain postponed his call to the Weight Watchers club until 

he got to the bottom of this mystery. Since the ship had docked for the day in Athens, 
the captain decided to take the engineer's latest piece of advice and visit the numerical 
analysis professor of a nearby university. By lunch, Captain Bob had caught up with 
one of the world's most renowned numerical analysts, Dr. Socrates. 

"Ahh, I see. Such a common problem- the problem of catastrophic cancellation," 
Dr. Socrates remarked. 

"Great! So you can explain this to me," said the captain excitedly. 
"Sure, but it may take some calculations and fiddling." And so begins the profes­

sor's explanation of catastrophic cancellation. 
"I'll explain exactly what catastrophic cancellation refers to in just a bit, but 

first, here's an intuitive explanation for it. It happens when we are subtracting two 
numbers of the same sign and the two numbers are in error. Specifically, when the two 
operands are in error and the result of the subtraction is much 1 smaller than the two 
operands, we can encounter this problem because then the result of the subtraction 
is of the same magnitude as the error. Scales, just like computers, do not always 
represent measurements exactly. In your situation, Captain, you used a scale that 
was accurate to 6 digits to represent your approximate weight and you subtracted the 
weight of the ship from the weight of the ship plus yourself, two numbers of equal 

*North Carolina State University 
1The mathematical meaning of "much" will be clarified in the next section. 
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magnitude. Therefore, catastrophic cancellation, the loss of accuracy in a subtraction, 
has occurred. Your weight as recorded on the scale may be completely wrong. 

"Let's be more specific. A scale gives an approximation to your actual weight. 
Naturally, with any approximation, we are interested in how close the approximation 
is to the actual value. We call w(x) the approximation of the actual value, x. In your 
case, Captain Bob, we will let 

w(b) = approximate weight of both the ship and the captain = 1.000004. 108 , 

w(s) = approximate weight of the ship = 1.000001 · 108 . 

Then w(b) - w(s) = approximate weight of the captain 
= 1.000004. 108

- 1.000001· 108 = .000003. 108 . 

By the engineer's calculation, you weigh 300 pounds. The engineer did the sub­
traction properly; there is no error in the subtraction operation. Yet you claim the 
resulting answer from the subtraction is still in error. You are right. The problem lies 
in the last digit of the subtraction. While it may be true that 4 - 1 = 3, we are not 
sure that the 4 and the 1 are accurate. The scale you used only guarantees 6 digits of 
accuracy. The leading 5 zeros in the mantissa of the result are accurate. However, the 
3 may not be accurate. Therefore, we have no idea whether the result of 300 pounds 
is accurate. 

"Consider the weight of the ship plus Captain Bob. The seventh digit, 4, may be 
inaccurate. Suppose the next time we weigh the ship plus the captain the scale reads 
1.000003·108

. Then w(b) - w(s) = .2000000·103 = 200 pounds. You, Captain, would 
be much happier with this answer. Yet every digit is still in error. Now suppose we 
do the procedure one more time. The ship plus the captain weighs 1.000007. 108 this 
time. Then you would weigh 600 pounds. Preposterous? Yes. But this teaches you 
to compare the magnitude of the error in the operands with the magnitude of the 
result." 

"So I should just call Weight Watchers and tell them that I don 't know my 
weight this week. I weigh so much less than the ship that catastrophic cancellation 
has occurred," said Captain Bob. 

"Yes, and if your next stop is Rome, I know they have personal scales there." 
"Thanks for all your help, Dr. Socrates," said the captain with relief. 
"Sure!" 

The captain departed for Rome thoroughly satisfied with Dr. Socrates' explana­
tion of his phony weight, yet Dr. Socrates continued to ponder the precise nature of 
catastrophic cancellation. In fact, later that day Dr. Socrates sat at his desk and 
revised the notes he planned to present to his class that evening. Some excerpts from 
his lecture on "Catastrophic Cancellation and the Captain Bob Story" follow. 

An Analysis of Catastrophic Cancellation. The absolute error of a measure­
ment is the difference between the measured value and the actual value. The absolute 
error in the weight of the ship is I w ( s) - s I· In two different scenarios an absolute error 
of .1 units might have contrasting meanings. For example, in measuring the distance 
from a point in Athens to a point in Rome an absolute error of .1 inches would be 
laudable, while in a heart surgery procedure, which requires a .2 inch incision, an 
absolute error of .1 inches would be unacceptable2 . 

To remedy this problem, we need to consider relative error, that is, we talk about 
the error relative to the magnitude of one of the values involved. There are two ways 
to make an absolute error relative. One type of relative error starts with the absolute 

2The idea for this example is due to Carl Meyer. 
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error and makes it relative by dividing by the actual value, resulting in I w(s; - s 1. The 
other type of relative error divides the absolute error by the approximated value, 
giving I w~()s)s I· Both relative errors normalize the absolute error. Therefore, the .1 

inch absolute error in the measurement of the distance from Athens to Rome (646 
miles) gives a relative error of 4093~560 = .0000000244, a minuscule value and thus an 
excellent result. On the other hand, the .1 inch absolute error in the heart surgery 
gives a relative error of~ = .5. The error in the size of the incision is half the size of 
the actual incision! Looking at relative error as opposed to absolute error can often 
tell us whether an error is acceptable in a particular context . 

Let's take this notion of relative error and get back to Captain Bob. Recall 
that w(s) represents the approximate weight of the ship and s represents the actual , 
yet unknown, weight of the ship. Let's use the first type of relative error. Let 8 
represent this relative error, i.e., 88 = I w(s} - si. Similarly, 8b represents the relative 

. . h . Th J: iw(b) - bi W'tl error associated w1th the sh1p plus t e captam. us, ub = -b- . 1 1 any 
measuring device, we would like to know just how "good" its approximations are, 
compared to the actual values. Let's assume that the scale is calibrated and its 
relative errors do not exceed U. Therefore, l8bl ::; U and l8sl ::; U. In Captain Bob's 
case, U = .5 · 10- 6 . Hence the scale guarantees 6 digits of accuracy. 

Now we have all the machinery in place to analyze the relative quality of an 
approximation such as the captain's weight. Specifically, how well does w(b) - w(s) 
approximate b - s? Consider the relative error associated with the captain's weight: 

where 

iw(b) - w(s) - (b - s)i 
ib - sl 

i(w(b)- b)- (w(s) - s)i 
ib - sl 

< lbl · 8b + lsi · 8s 
ib - si 

::; I bl + lsi . U = A . U, 
ib - si 

A = lbl +lsi. 
ib - sl 

A is called the amplification factor or the condition number of the subtraction. 
A condition number for a mathematical problem indicates how much the input error 
is amplified in the final result. Here the input error is U, the error in the operands. 
The error in the captain's weight can be as large as A · U. From the formula for A, 
we observe that the condition number for subtraction is large when the result of the 
subtraction, b - s, has much smaller magnitude than the individual operands, b and 
s. If this is the case, the subtraction is ill-conditioned. This is what happens in the 
captain's example. In that example, lb - si is on the order of 102 and lbl + lsi is on 
the order of 108 , hence lb - sl << lbl + lsi, since the captain's weight is so small in 
comparison to the weight of the ship. Therefore, A is large, approximately 106 , and 
the relative error associated with the captain's weight could be large. This means the 
error that occurs when weighing the ship can be amplified by as many as six orders 
of magnitude in the subtraction that approximates the weight of the captain. This 
explains the loss of digits of accuracy in the resulting answer of 300 pounds. 

Catastrophic cancellation is not limited to Captain Bob's scale. The same con­
siderations apply when we subtract two numbers, x andy, on a computer, such as a 
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calculator or PC. The mere process of entering the numbers can cause errors. For in­
stance, a computer might represent ~ as .3333. To account for this rounding, let fl( x ) 
denote the floating point representation of a number x. For example, fl(~) = .3333. 
Since only 4 digits are used in the decimal representation of ~, U = .5 · 10- 4 , where 
U represents the unit roundoff of the computer. In a floating point subtraction, 
fl(x) - fl(y), the relative error associated with this difference is 

where 

lfl(x) - fl(y) - (x- y) j :::; A. U, 
lx - yj 

A = lxl + IYI 
lx-yj 

is the amplification factor. 
Now it should be clear why subtraction of floating point numbers of almost equal 

magnitude should be avoided. The result of the subtraction has a magnitude similar 
to the error in the operands. In this case, the subtraction is ill-conditioned and th 
relative error can be large. The computed difference can be completely wrong. Un­
fortunately, catastrophic cancellation cannot be blamed the next time the bathroom 
scale registers an unsightly number, unless, of course, the Captain Bob procedure is 
used. 
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A CONDITION FOR THE EXISTENCE OF INFINITELY MANY 
FERMAT PRIMES 

FLORIAN LUCA * 

Abstract. In this note, we give a condition for the existence of infinitely many Fermat primes 
in terms of the irrationality of the series of all the reciprocals of the numbers n for which the regular 
polygon with n sides can be constructed with ruler and compass. 

Let (an)n~o be a strictly increasing sequence of positive integers. Assume that 

the series 

1 
Lan 
n~O 

(1) 

is convergent. The first natural question which arises is whether the sum of the series 
given by (1) is a rational or an irrational number. There are several papers in the 
literature (see, for example, [1], [2] and [3]) in which various criteria are given for the 
sum of the series ( 1) to be irrational. 

In this short note, we investigate the irrationality character of a series of the form 
(1) in which the sequence (an)n~o is connected with the Fermat primes. Recall that 
for n > 0 the number Fn = 22

n + 1 is called the nth Fermat number. It is known 
- ' that Fn is prime for 0 :::; n :::; 4 and that Fn is composite for 5 :::; n :S 30. It is also 

known that Fn is composite for some other values of n beyond 30, and it is now a 
popular belief that there are only finitely many Fermat primes, and maybe even that 
the only Fermat primes are the first five of them. 

In this note, we give a criterion for the existence of only finitely many Fermat 
primes in terms of the rationality of a sum of the type (1). For any positive integer 
n, let ¢( n) be the Euler function of n. Let C be the set of all the positive intege~s n 
such that ¢(n) is a power of 2. We use the notation C from the word construct'tble, 
since by a well-known theorem of Gauss, if n 2: 3, then the regular polygon with n 
sides can be constructed with the ruler and the compass if and only if n E C. 

(1) 

We have the following result. 
THEOREM 1. The sum of the series 

is rational if and only if there are only finitely many Fermat primes. 
We also recall that the irrationality of the series (1) when an = Fn for all n 2: 0 

follows as a special case from a result in [4]. 
Proof Let C1 c C be the subset of all the odd numbers in C. Let also 0 :::; m1 < 

m
2 

< ... < mk < ... be the set (possibly finite) of all the non-negative integers n 

such that Fn is prime. Clearly, 

(3) 

and 

C 1 = 1 U { n I n = F m i 
1 

• F m,
2 

• ••• • F mit t 2: 1 and 1 :S i1 < i2 < ... < it}. ( 4) 

*Instituto de Matematicas de Ia UNAM 
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Hence, it is easy to see that 

(5) 

It therefore suffices to investigate the irrationality of the product 

(6) 

I.f ~here exist only finitely many Fermat primes, then the product (6) consists of only 
fimtely many factors; hen e, it is rational. 

Assume now that there are infinitely many Fermat primes. We denote by a the 
product appearing in formula (6) and for n ::::: 1 we set 

and 

n 

Xn = II (1 + Fmk) 
k = l 

n 

Yn =II Fmk· 
k = l 

We first notice that a < 2. Indeed, 

a < II (1 + _!___) < IT (1 + _1 ) = "'"'"' _1 = 2. 
Fn 22" L..t 2m 

n 2:0 n 2: 0 m 2:0 

We now find an upper bound for the error of approximating a by Xn. Notice that 
Yn 

(7) 

However, 

(8) 

Thus, from formulae (7) and (8) we get 

(9) 

For the rightmost inequality (9) we used the fact that ex < 1 + 2x for x E (0, 1). 

Assume now that a is rational and write it as a = ~ where a and b are coprime 

positive integers. From inequality (9), it follows that b 

(10) 

At this point, we distinguish two cases: 

·' 

FERMAT PRIMES 

Case 1 There exist infinitely many n 's with mn+l > mn + 1. 
Suppose that n satisfies the above property. In this case, 

With such n's, inequality (10) becomes 

12byn 12b 
0 < ayn - bxn < --2 - = -. 

Yn Yn 
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(11) 

(12) 

If n is large enough, then the right hand side of inequality (12) becomes smaller than 
1, which is impossible because ayn - bxn is a positive integer. This case is therefore 

settled. 
Case 2 There exists ko such that Fn is prime for all n > ko. 
In this case, there are only finitely many Fermat numbers which are not prime. 

Since the product 

(13) 

and the product (6) differ only by finitely many rational factors, it suffices to prove 
that the product given by formula (13) is irrational. We keep the previous notations 
with the convention that mk = k for all k ::::: 0. With this notation, inequality (10) 

becomes 

Since 

it follows that 

12byn 
0 < ayn - bxn < z;;--· 

rn+l 

0 < ayn - bxn < 12b. 

(14) 

(15) 

Let s = 12b. By inequality (15) and the pigeon hole principle, it follows that there 
exist infinitely many pairs (n, t) with n > 0 and 1 ~ t < s such that the equation 

is satisfied for all su h pairs. Equation (16) can be rewritten as 

t t 

bxn(IT (Fn+j + 1) - 1) = ayn(fi Fn+j - 1). 
j = l j = l 

In particular, equality (17) implies that 

t 

Fn + 1 I Xn and Xn I ayn(IT Fn+j - 1). 
j = l 

(16) 

(17) 

(18) 
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S. 2n 1 I mce 2 - + 1 Fn + 1, it follows that 

t 

22n_1 + 1 :S; a· gcd(22
n - I + 1, Yn) · gcd(22n_1 + 1, n Fn+i - 1) 

j = 1 

or 

n t 

22
7< _

1 + 1:::; an gcd(22n_1 + 1, Fk) · gcd(22n_1 + 1, n Fn+i - 1). 
k = O j = 1 

It is well-known that if a, m and n are positive integers with a even, then 

gcd( am + 1, an + 1) = a ' 
{ 

gcd(m,n) + 1 

1, 
if J-L2(m) = J-L2(n), 
otherwise. 

(19) 

(20) 

In ~he above_ formula, for a positive integer k we have denoted by J-L2(k) the order at 
which the pnme number 2 appears in the prime factor decomposition of k. From the 
above formula (20), we deduce easily that 

gcd(22n- 1 + 1, Fk) = { 3, if k = 0, 
1, if k > 0. 

Hence, inequality (19) becomes 

j = l 

(21) 

(22) 

Let D = gcd(22"- 1 + 1, rr~= l Fn+j - 1). Since D I 22n_1 + 1, it follows that 22n = 
2 ( d D) H 2n+j 2j 

- mo . ence, 2 = 2 (mod D) for all j > 0, therefore Fn+j = Fj (mod D) 
for all j > 0. However, since 

t 

D I n Fn+j - 1, 
j = 1 

it follows that 

In particular, 

t t 

D :::; n FJ - 1 < n Fi = 22t+l - 1 < 22s. 
j = 1 j = O 

Combining inequalities (22) and (23), it follows that 

22n - 1 + 1 < 3a22s' 

which is impossible because n can assume infinitely many values. 
This disposes of Case 2 and concludes the proof of Theorem 1. 0 

(23) 
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Remark In many instances, the irrationality of a product of the form (6) (or 
(13)) can be inferred from an old criterion of V. Brun (see (2]). Unfortunately, the 

convergents Xn of the products (6) or (13) do not satisfy the hypothesis from Brun's 
Yn 

criterion. However, one can use Brun's criterion to prove the following result. 
THEOREM 2. Let a, b and q be three integers such that q 2: 2, a > b > 0, and 

(a, b)=/=- (2, 1) and let (mk)k_1 be any strictly increasing sequence of positive integers. 
Then, the infinite product 

is irrational. 
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. A~tero~d Space. As a mathematics major at the Courant Institute, while study­
mg e~1cyclmds and hypocycloids, Rex. H. Wu created Asteroid Space. Mathematical 
form IS complemented by the artist's choice of color, size and arrangement. 

Rex H. Wu is a physician who still loves mathematics and finds time to contribute 
to our Problems Department after taking care of patients and teaching residents at the 
~YU Downtown Hospital. In fact, working on problem 971 of this Journal inspired 
h1m to "A Proof without Words" on the law of tangents, which will appear in the 
College Mathematics Journal. For Dr. Wu, art and mathematics always go together. 

The IIME Journal invites those of you who paint, draw, compose, or otherwise use the other 

side of your brains to submit your mathematically inspired compositions. 
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PROBLEM DEPARTMENT 

EDIT ED BY CLAYTON W. DODGE 

This department welcomes pmblem. b lievcd to be n ew and at a lev l appropriat f or the r·eadrr 

of this journal. Old problems d·isplaying novel and elegant methods of solution are also mvzted. 

Proposals should be accompanied by solutions if available and by any information that will asszst 

the editor. An asterisk (*)preceding a problem number indicates that the proposer did not submit a 

solution. 
All communications should be addressed to C. W. Dodge, 5752 NevzllejMath, Universzty of 

Maine, Orono, ME 04469-5752. Please note my new e-mail address: dodge@maine.edu . 

Please submit each proposal and solution pr·eferably typed or clearly written on a separate sheet 

(one side only) properly identified with name, affiliation, and address. Solutions to problems in this 

issue should be mailed to arrive by December· 1, 2001 . Solutions identified as by students are gwen 

preference. 

Problems for Solution. 

1007. Pr·oposed by the editor. 
As children, my siblings and I would eat great quantities of peanut butter . A 

favorite treat was (and still is) peanut butter on a banana. (Peel the banana firs t! 
Then put on the peanut butter.) Thus solve this base ten alphametic 

PEANUT = BUTTER+ BANANA. 

1008. Proposed by Ice B . Risteski, Skopje,Macedonia. 
There exist polynomials with integer coefficients that are irreducible over the field 

of rational numbers but are reducible over the field of residues with respect to any 
prime modulus p. Prove that f(x) = x 4 - 10x 2 + 1 is such a polynomial. 

1009. Proposed by Ice B . Risteski, Skopje, Macedonia. 
a) Prove that if the polynomials f ( x) and g( x) with integer coefficients are rela­

tively prime over the field 'J:.p of residues with respect to the prime modulus p and at 
least one of the leading coefficients is not divisible by p, then these polynomials are 
relatively prime over the field of rational numbers. 

b) Show by way of an example that for any prime p the converse assertion does 

not hold. 

1010. Proposed by P ter A. Lindstrom, Batavia, New York. 

Show that 

+--e <-
I 

00 

en 1 I 1 
~ (n + 1)n+l 2 2 

1011. Proposed by Maureen Cox and Albert W. White, St. Bonaventure Univer·­

sity, St. Bonaventure, New York. 
Find a closed form expression for 

00 2 
2:=n - n - 1 
n = l (n + 1)! . 



216 CLAYTON W. DODGE 

1012. Proposed by William Chau, New York, New York. 
Find each perfect number p such that the product of the proper divisors of p is 

equal top. 

1013. Proposed by Wu Wei Chao, He Nan Normal University, Xin Xiang City, 
He Nan Province, China. 

Observe that 77 x 88 = 6776, 77 x 858 = 66066, 777 x 858 = 666666, 7777 x 8558 = 
66555566, 707 x 8558 = 6050506, etc. Prove that there exist infinitely many triples 
of palindromic natural numbers x, y, z such that xy = z . 

1014. Proposed by Miguel Amengual Covas, Santanyi - Mallorca, Spain. 
Given in IR 3 an elliptic paraboloid, find the locus of the centers of the spheres 

which cut the paraboloid in two circles. 

1015. Propo8ed by Richard I. Hess, Rancho Palos Verdes, California, and Robert 
T. Wainwright, New Rochelle, New York. 

As shown in the accompanying figure, the X pentomino can be 90% covered with 
six congruent tiles. (The shaded area is not covered by these tiles.) Design a tile so 
that three of them cover at leas~ 85% of the X pentomino. Any of the tiles may be 
turned over, but they must not overlap each other or the border. 

I 

1 
' 

1016. Proposed by Brian Reid, student, County College of Morris , Randolph, 
New Jersey. 

A regular n-gon is inscribed in a circle of radius r. Then a circle is inscribed in 
that n-gon and a similar n-gon is inscribed in that circle, and so on forever. The 
accompanying figure shows the situation for n = 3. 

a) Find the ratio of the sum of the areas lying inside each circle and outside its 
inscribed n-gon for n = 3 to the area of the original circle. This area is shaded in the 
figure. 

b) Find the limit of that ratio as n --+ oo. 
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1017. Proposed by Peter A. Lindstrom, Batavia, New York. 
Consider Pascal's triangle with the rows numbered 0, 1, 2, .... If the sum of all 

the elements above the n 'th row is a prime, characterize the number of elements in 
row n - 1. 

1018. Proposed by Robert C. Gebhardt, Hopatcong, N ew Jersey. 
For a fixed number k, 0 < k < 1, at each toss of a fair coin a gambler bets the 

fraction k of the money he has at the moment. In the long run, what percentage of 
t he tosses must he win in order to break even? 

1019. Proposed by Kenneth B. Davenport, Frackville, Pennsylvania. 
Eduoard Lucas showed (1 5 - 35 +55 - · · ·+( - 1)n+1 (2n-1)5 )/(1-3+5- ... +(2n- 1)) 

is always a square number for every positive integer n but never a fourth power. Show 
that 

(17 - 37 +57- ... + (-1)n+1(2n -1)7)- 28(1:3- 33 +53 - ... + (- l)n+1(2n -1)3) 

1-3 + 5- ... + (2n - 1) 

is always a cube, but almost never a sixth power. 

1020. Proposed by M. V. Subbarao, University of Alberta, Edmonton, Alberta, 
Canada. 

Dedicated to friend and colleague Murray S. Klamkin on his 80th birthday. 
[ Klamkin ably edited this Problem Department for 10 years until 1968 - ed.] 

Let p1 , p2, ... , Pr be r distinct odd primes and let a be any fixed integer. You 
are given that (Pl + a)(P2 +a)··· (Pr + a) - 1 is divisible by (Pl +a - 1)(P2 +a-
1) · · · (Pr +a- 1), which is trivially true for r = 1. Can it hold for any r > 1? If 
so, give a specific example. A $100 award will be given for the first received valid 
example. 

Remark 1. For a = 0, this is a known unsolved problem of D. H. Lehmer, Bull. 
Amer. Math. Soc. 38 (1932) 745-751. For a= 1, this also is an unsolved problem 
of mine in A Companion to a Lehmer Problem, Colloq. Math. Debrecen 52 (1998) 
683-698. 

Remark 2. One can also consider the more general problem obtained by replacing 
the primes p1, P2, ... , Pr by their arbitrary powers p~1 ,p~2 , • •• p~r. My conjecture here 
is that at least for the cases a = 0 or 1, we must have r = 1. See my joint paper with 
V. Sivaramaprasad, Some analogues of a Lehmer problem, Rocky Mountain .J. Math. 
15 (1985) 609-629. 

Solutions. 

980. [Spring 2000] Proposed by the editor. 
The addition alphametic 

HALF+ HALF = WHOLE 

has unique solutions in both bases 7 and 8. Of course, in any base WHOLE must be 
an even number. It is curious that in base 9 there are three solutions, two of which 
have HALF even. Find that base 9 solution in which HALF is an odd number. 

Solution by Frank P. Battles , Mas8achusetts Maritime Academy, Buzzards Bay, 
Massachusetts 

Clearly W = 1, so we must have H = 8 with a carry from the previous column. 
Now L = 0 with no carry from the units column, so F::; 4. Since A+ A > 9, then 
A 2: 5. Because 0 cannot be 1, then A=/=- 5, so A= 6 or 7. 
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If A = 6, then 0 = 3 and F must h~ odd to make HALF odd. Since 1 and 3 
are already used, we cannot have A - 6. Thus A = 7. Then 0 = 5 and F must be 
even to make HALF odd. Since 0 is already used and F = 4 requires E = 8, then 
we must have F = 2 and E = 4. Thus our unique solution is 8702 + 8702 = 18504. 

Also solved by Charles D. Ashbacher, Charles Ashbacher Technologies, Hiawatha, IA, Scott 

H. Brown, Auburn University, AL, Paul S. Bruckman, Berkeley, CA, Joshua Duncan, Jack­

sonville University, FL, Mark Evans, Louisville, KY, Stephen I. Gendler, Clarion University of 

Pennsylvania, Richard I. Hess, Rancho Palos Verdes, CA, Carl Libis, Richard Stockton College 

of N.J, Pomona, Yoshinobu Murayoshi, Okiuawa, Japan, William H. Peirce, Rangeley, ME, 

H.-J. Seiffert, Berlin, Germany, Robert A. Stump, Richmond, VA, and the Proposer. 

Editorial comment: Our long-retired kindly old friend, Professor Euclide Paracelso 
Bombasto Umbugio, eminent numerologist of Guayazuela, asked me to propose this 
alphametic for him. He has been enjoying his retirement in seclusion and felt that 
attaching his name to the problem would bring too much attention to him and cause 
many interruptions of his research into the distribution of even primes. When it was 
pointed out to him that the telephones Guayazuela installed 20 years ago still had 
not been connected up, he agreed to let me acknowledge his authorship. 

Four of the listed solvers failed at first to see the twist in this problem. There 
are three base 9 solutions, HALF = 8602, 8702, and 8703, two of which terminate in 
an even digit and only one in an odd digit. The test for oddness in base 9, however, 
is not the oddness of the last digit, but rather the oddness of the sum of the digits. 
Therefore, 8602 aud 8703 in base 9 represent even numbers, and 8702 is the odd one. 
Professor Umbugio sends his congratulations to those solvers who obtained the correct 
solution unaided. (He said it took him only four tries to find the right answer.) 

Hess pointed out that the unique base 7 and base 8 solutions are respectively 
HALF = 6502 and 7503. 

981. (Spring 2000] PToposed by Cecil Rousseau, The UniveTsity of Memphis, 
Memphis, Tennessee. 

Show that the set { l /2J, l2/2J, l3v'2J, ... , lnv'2J, ... }, where n is a natural 
number and l x J is the greatest integer in x, contains infinitely many powers of 3. 

Solution by Paul S. Bruckman, Berkeley, California. 
Given any positive integer n, let m = m(n) = llog3 (nv'2)J. Then 

(1) 

Let an = (n/2 - 3m)/(2 · 3m), n = 1, 2, .... Then 0 < an < 1 for all n. Also the 
sequence {an} is dense in (0,1). In particular, 0 < an < 1/(2 ·3m) for infinitely many 
n. Equivalently, for infinitely many n, 3m < nJ2 < 3m + 1. Therefore there exist 
infinitely many n such that Lnv'2J = 3m. 

Also solved by Angelo State Problem Group, Angelo State University, San Angelo , TX 

Mark Evans, Louisville, KY, Richard I. Hess, Rancho Palos Verdes, CA, Murray S. Klamkin, 

University of Alberta, Canada, Rex H. Wu, Brooklyn, NY, and the Proposer. 

982. [Spring 2000] Proposed by Charles Ashbacher, Charl s Ashbacher Technolo­
gies, Hiawatha, Iowa. 

In his book "Comments and Topics on Smarandache Notions and Problems", K. 
Kashihara defines for any positive integer n, the Smarandache Inferior Square Part 
SISP(n) to be the largest square less than or equal ton and the Smarandache Superior 
Square Part SSSP(n) to be the smallest square greater than or equal ton. Now define 

sn = \/SSSP(O) + .. · + SSSP(n) 

. ~ 
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and 

tn = y'SISP(O) + · · · + SISP(n) 

a) Find the value of limn oo (sn - tn). 
b) Find the value of limn oo sn/tn. 
Solution by Mark Evans, Louisville, Kentucky. 
We have that n = ( .Jii)2 < SSSP( n) < ( .Jii + 1? = n + 2n 1/

2 + 1. It follows that 

~ < i/n(n
2
+l) = ¥'0+1 + 2+·-- + n:Ssn 

and 

rn n2 3 lo (x + 2v'x + 1)dx = n 2 + 2n:3/2 + n 

712 ( 8 2) ~2 n_ 1+- + - = n-(1+E) 
2 3y'n n 2 

where E ---+ 0 as n ---+ oo . Thus Sn 
as n ---+ oo. So we have 

(n2 /2) 1/n as n ---+ oo. Similarly tn ---+ (n2 /2) 1 /n 

a) limn_.00 (Sn - tn) = 0 and 
b) limn_.=(sn/tn) = 1. 
Also solved by Paul S. Bruckman, Berkeley, CA, Richard I. Hess, Rancho Palos Verdes , 

CA, Robert A. Stump, Richmond, VA, Rex H. Wu, Brooklyn, NY, and the Proposer. 

983. (Spring 2000] Proposed by Rex H. Wu, Brooklyn, New York. 
Evaluate the integrals 

17r/2 1 + sinx 
a) and ln( ) 

0 1 + cosx 

17r 12 ( 1 + cos x + sin x) 
b) ln . 

0 1 + cosx 
Solution by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, 

Canada. 
a) Let 

I = [ ln(b + f(x))dx . 

On replacing x by a - x, we get that 

1" ln(b + f(x))dx = -1° ln(b + f(a - x))dx = 1" ln(b + f(a- x))dx 

It follows that 

ln( + smx )dx = ln(1 + sin x)dx- ln(1 +cos x)dx 
1

7r/2 1 . 17r/2 17r/2 
0 1 + cosx 0 0 

since cos x = sin ( 1r /2 - x). 
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b) By letting x = a - t in the integral 

J = fa ln(b + f(x) + f(a- x) )dx 
lo b+f(x) 

where [f(x )] 2 + [f(x - a)] 2 = b2, we obtain an equal integral. Adding these two 
integrals together, we get 

2J = 1" ln2dx = aln2 

The given integral corresponds to the case where f(x) = bcosx, a = 1rj2, and b = 1, 
so 

1rr /
2 

1 ( 1 + cos x + sin x ) _ 1r In 2 
n dx- --. 

0 1 + cosx 4 

Also solved by Frank P. Battles, Massachusetts Maritime Academy, Buzzards Bay, Diana 

Beck, UniversityofWisconsin- Superior, PaulS. Bruckman, Berkeley, CA, Kenneth B. Daven­

port, Frackville, PA, Charles R. Diminnie, Angelo State University, San Angelo, TX, George P. 

Evanovich, Saint Peter's College, Jersey City, NJ, Ovidiu Furdui, Western Michigan University, 

Kalamazoo, MI, Robert C. Gebhardt, Hopatcong, NJ, Joe Howard, Portales, New Mexico, 

Yoshinobu Murayoshi, Okinawa, Japan, N. R. Nandakumar, Delaware State University, Dover, 

Shiva K. Saksena, University of North Carolina at Wilmington, H.-J. Seiffert, Berlin, Germany, 

Trey Smith, Angelo State University, San Angelo, TX, J. Ernest Wilkins, Jr., Clark Atlanta 

University, GA, Yongzhi Yang, University of St. Thomas, St. Paul, MN, and the Proposer. 

984. [Spring 2000] Proposed by Peter A. Lindstrom, Batavia, New York. 
Test for convergence the infinite series 

oo n 

L n~en' 
n = l 

Solution by H.-J. Seiffert, Berlin, Germany. 
This series is divergent. More generally, we show that if a is a fixed real number, 

then the infinite series 

(1) 
00 n - a 

L:!en' 
n = l 

converges if a > 1/2 and diverges if a :::; 1/2. 
From Stirling's formula we have 

y'2;;,nne- n < n! < y'2;;,nne- nel / I2n, n E N. 

Since e- x > 1 - x for all real x, it follows that 

_1_(1 - -1) 
v'2n:na+l / 2 12n 

nn - a 1 

< n!en < ~ 1/2'n EN. Y L.7rna+ 

(2) 

Since, as is well known, 

Ln~ 
n = l 

. ' 
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converges for p > 1 and diverges for p:::; 1, inequality (2) establishes the desired result 
for series (1) and hence the divergence of the given series. 

Also solved by PaulS. Bruckman, Berkeley, CA, Charles R. Diminnie, Angelo State Uni­

versity, San Angelo, TX, George P. Evanovich, Saint Peter's College, Jersey City, NJ, Mark 

Evans, Louisville, KY, Ovidiu Furdui, Western Michigan University, Kalamazoo, MI, Robert C . 

Gebhardt, Hopatcong, NJ , GVSU Math/Stat Problem Solving Group, Grand Valley State 

University, Allendale, MI, Richard I. Hess, Rancho Palos Verdes, CA, Joe Howard, Portales , 

New Mexico, Murray S. Klamkin, University of Alberta, Canada, Yoshinobu Murayoshi, Oki­

nawa, Japan, Shiva K. Saksena, University of North Carolina at Wilmington, Dennis P. Walsh, 

Middle Tennessee State University, Murfreesboro, J. Ernest Wilkins, Jr., Clark Atlanta University, 

GA, Rex H. Wu, Brooklyn, NY, and the Proposer. 

Two incorrect solutions were received. 
Howard pointed out that this proposal appears as problem 3, p. 432 of G. Klam­

bauer, "Aspects of Calculus," Springer-Verlag, 1g86. 

985. [Spring 2000] Proposed by Ayoub B. Ayoub, Penn State Abington College, 
Abington, Pennsylvania. 

Extend the sides A1A2 and A2Aa of a regular n-gon A1A2Aa ···An to A~ and A~ 
respectively such that A2A~ = A3A~ and m \ A2A~A~ = goo. Show that m \ A1 0 A~ = 
goo, where 0 is the center of the n-gon. 

Solution by Yoshinobu Murayoshi, Okinawa, Japan. 

Draw lines from 0 to A2, A~, and A~, and let a = J OA1A~ and {3 = ] OA~A~, 
as shown in the figure. 

We see that 60A1A~ ~ 60A2A; and OA~ "' OA~ by construction. (A rota­
tion about 0 carries one triangle into the other.) Then 60A~A~ is isosceles and 
J OA~A~ = {3. Since J OA2A1 = ] OA2Aa = a, then J A~A2A~ = 180° - 2a. Now 

which reduces to a = {3. Then J OA~A1 =goo - {3 = goo- a, so A~OA1 = goo. 
Also solved by PaulS. Bruckman, Berkeley, CA, Mark Evans, Louisville, KY, Richard I. 

Hess, Rancho Palos Verdes, CA, H.-J. Seiffert, Berlin, Germany, Rex H. Wu {two solutions), 

Brooklyn, NY, and the Proposer. 

Bruckman and Seiffert each pointed out that this proof holds only for n 2: 5. For 
n = 4 Seiffert observed that A~ = A2 and A~ = A3 and 0 is the intersection of the 
diagonals of the square, so the theorem is true in that case, too. It makes no sense to 
try n < 4. 
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986. [Spring 2000] Proposed by Robert C. Gebhardt, Hopatcong, New Jersey. 
Find a triangle in the plane that can be dissected into five triangles all similar to 

itself. 
I. Composite of solutions by Paul S. Bruckman, B erkeley, California, Ovidiu 

Furdui, Western Michigan University, Kalamazoo, MI, S. Gendler and J. Gendler , 
Clarion University of Pennsylvania, Richard I. Hess, Rancho Palos Verdes , Cali­
fornia, Yoshinobu Murayoshi, Okinawa, Japan, Robert A. Stump, Richmond, 
VA, and Rex H. Wu, Brooklyn, New York. 

Any right triangle can be so dissected in many ways. Two examples appear in 
the figure. 

II. Composite of solutions by Monte J. Zerger, Adams State College, Alamosa, 
Colorado, and the Proposer. 

The figure below shows a 30° - 30° - 120° t riangle so dissected. 

987. [Spring 2000] Proposed by Kenneth P. Davenport, Frackville, Pennsylvania. 
For a given positive integer n find for what positive integers b > n and a there is 

a solution to the Diophantine equation 

1 + 2 + +n = b + ( b + 1) + +( b + a). 

Solution by Rex H. Wu, Brooklyn, New York. 
We have n(n + 1)/2 = [b + (b + a)](a + 1)/2, so n(n + 1) = (a + 1)(2b + a). From 

the last expression, it is obvious that (a+ 1) I n(n + 1) and 2b = n(n + 1)/(a + 1) - a. 
Since b >n, we must have 

whence 

n(n + 1) 
1 

- a > 2n 
a+ 

v'8n2 + 1 - (2n + 1) 
a < 2 . 

Lastly, since 2b = n(n + 1)/(a + 1) - a, we must have 2 I n(n 1)/(a + 1) - a. 
Therefore 

b = n(n + 1) _ ~ 
2(a + 1) 2· 

In conclusion, given a positive integer n, we can characterize the positive integers 
a and b with b > n as (a + 1) I n(n + 1), a [V8n2 + 1 - (2n + 1)]/2, and 2 1 

n(n + 1)/(a + 1) - a. 
Also solved by Frank P. Battles, Massachusetts Maritime Academy, Buzzards Bay, Paul S. 

Bruckman, Berkeley, CA, Mark Evans, Louisville, KY, Robert C. Gebhardt, Hopatcong, N.T, 

and Richard I. Hess, Rancho Palos Verdes, CA. 

. , 
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988. [Spring 2000] Proposed by Kenneth P. Davenport, Frackville, Pennsylvania. 
For what values of n is this sum the square of an integer: 

13 - 23 + 33 + ... + (-1t +ln3 . 

Solution by GVSU Math/Stat Problem Solving Group, Grand Vall y State 

University, Allendale, Michigan. 
We show that n = 2m( m - 1) + 1 for any natural number m . Let Sn denote 

t. he stated sum. Since Sn < 0 for n even, it cannot then be the square of an int ger . 

Suppose then that n is odd. Then 

Sn = 13 + 33 + · · · n 3
- [23 + 43 + · · · + (n - 1)

3
] 

= 13 23 33 + 43 + · · · + n3
- 2[23 + 43 + · .. + (n- 1)

3
] 

= 13 + 23 + 33 + 43 + .. · + n 3
- 16[13 + 23 + · · · + ((n- 1)/2)

3
] 

= ( n( n 
2
+ 1) y _ 4 ( n ; 1 . n ; 1 y 

=(n;1y{2n -l). 
We see that 2n- 1 must be a perfect square, say k2

, son = (k2 + 1)/2, where k is 
odd, say k =2m - 1. Then, for any positive integer m we have 

n = k2 + 1 = (2m - 1? + 1 =4m
2

- 4m + 2 = 2m(m _ 1) + 1. 
2 2 2 

Also solved by Frank P. Battles, Massachusetts Maritime Academy, Buzzards Bay, Paul 

S. Bruckman, Berkeley, CA, Charles R. Diminnie, Angelo State University, San Angelo, TX, 

George P. Evanovich, Saint Peter's College, Jersey City, NJ, Mark Evans, Louisville, KY, 

Robert C. Gebhardt, Hopatcong, NJ, Richard I. Hess, Rancho Palos Verdes, CA, Joe Howard, 

Portales, New Mexico, Murray S. Klamkin, University of Alberta, Canada, Peter A. Lind­

strom, Batavia, NY, Yoshinobu Murayoshi, Okinawa, Japan, William H. Peirce, Range­

ley, ME, Shiva K . Saksena, University of North Carolina at Wilmington, Harry Sedinger, 

St. Bonaventure University, NY, H.-J. Seiffert, Berlin, Germany, Skidmore College Problem 

Group, Saratoga Springs, NY, Robert A. Stump, Richmond, VA, J. Ernest Wilkins, Jr., Clark 

Atlanta University, GA, Rex H. Wu, Brooklyn, NY, Monte J. Zerger, Adams State College, 

Alamosa, CO, and the Proposer. 

989. {Spring 2000] Proposed by Joel Brenner, Palo Alto, California. 
a) In the set of all primes find the density of the primes p such that the greatest 

common divisor of all the divisors of p- 1 is 1. Note that a statistical experiment 
would lead to a wrong answer since three of the first six primes have this property. 

b) In the set of all positive integers find the density of those integers n > 1 such 
that the greatest common divisor of all the divisors of n - 1 is 1. 

I. Solution to Part (a) by Rex H. Wu, Brooklyn, New York. 
a) Only Fermat primes, primes of the form p = 2q + 1, have the property that 

the greatest common divisor (gcd) of all divisors of p - 1 # 1. Thus the number of 
Fermat primes less than or equal to 2m + 1 is certainly less than or equal to m. Since 
the number of primes less than or equal to x, 7r(x), is given by 7r(x) ~ xj ln x , then 
the proportion of primes p with gcd of p - 1 to all primes p, for p ~ 2m+ 1 is given 

by 

m 
0 ( m) ~ --=2-m-+.,..-1 -

ln(2m + l) 
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a.c;; m---+ oo. Therefore, the density of all primes p such that the gcd of all divisors of 
p - 1 is not 1 is 1 - lim 8 ( m) = 1 - 0 = 1. 

II. Solution to Part (b) by Paul S. Bruckman, Berkeley, California. 
Note that the problem is incorrectly stated. The words "all the divisors" should 

read "all the proper divisors" since 1 is a divisor of every number. 

b) For any given prime q and any natural number n, let f(q, n) denote the num­
ber of natural numbers less than n that are powers of q. Then f(q, n) ::; logq n = 

(l.n ~) / ln q. ~he~ th~ number of numbers k < n for which the gcd of all the proper 
divisors of k Is lis given by L f(q, n), where the summation is taken over all primes 
q::; n. The density of these numbers kin the natural numbers, where q is a prime, is 
thus 

8 = lim L f ( q' n) = lim "' ln n < lim ln n "' _1_ 
n --+oo n n --+oo 6 nlnq - n oo n 6 lnq 

q~n q~n q~n 

. lnn (ln n)2 
::; hm - · (2ln n) = 2 lim -- = 0 

n --+oo n n --+oo n 

by. two a~plicatio~s .of L'Hopital's rule. The density we want is the complement of 
this density, thus It Is 1; that is, almost all positive integers have 1 for the gcd of all 
their proper divisors. 

Also solved by PaulS. Bruckman (Part (a)) , and the Proposer. 

990. (Spring 2000) Proposed by R. S. Luthar, University of Wisconsin Janesville 
Wisconsin. ' ' 

Identify all triangles ABC such that cos2 A + cos2 B + cos2 C = 1. 

Solution by Charles R. Diminnie, Angelo State University, San Angelo Texas. 
Since C = 180°- A- B then ' 

' 

cos
2 
A+ cos

2 
B + cos2 C = cos2 A+ cos2 B + cos2(A +B) 

= cos
2 
A+ cos

2 
B + cos2 Acos2 B - 2cosA cosB sinAsinB + sin2 Asin2 B 

= cos
2 

A + cos 
2 

B + cos
2 

A cos
2 B - 2 cos A cos B sin A sin B + ( 1 - cos2 A) ( 1 - cos2 B) 

= 1 + 2[cos2 A cos2 B- cos A cos B sin A sin B] 

= 1 + 2cosAcosBcos(A +B)= 1 - 2cosAcosBcosC. 

It follows that the left side is one if and only if cos A cos B cos C = 0 that is if and 
only .if one of the angles of the triangle is a right angle. Thus the gi~en equ~tion is 
true If and only if the triangle is a right triangle. 

Also solved by Miguel Amengual Covas, Cala Figuera, Mallorca, Spain, Scott H. Brown, 

Auburn University at Montgomery, AL, PaulS. Bruckman, Berkeley, CA, George P. Evanovich, 

Saint Peter's College, Jersey City, NJ, Mark Evans, Louisville, KY, Ovidiu Furdui, Western 

Michigan University, Kalamazoo, MI, Robert C. Gebhardt, Hopatcong, NJ , Richard 1. Hess, 

Rancho Palos Verdes, CA, Joe Howard, Portales, New Mexico, Murray S. Klamkin, University 

of Alberta, Canada, Yoshinobu Murayoshi, Okinawa, Japan, William H. Peirce, Rangeley, ME, 

Shiva K. Saksena, University of North Carolina at Wilmington, H.-J. Seiffert, Berlin, Germany, 

Trey Smith, Angelo State University, San Angelo, TX, Rex H. Wu, Brooklyn, NY, and the 
Proposer. 

991. [Spring 2000) Proposed by Mike Pinter, Belmont University, Nashville, Ten­
nessee. 
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EiJ!, Itt J><'ople play ro1mu~ of golf in two foursomes at a time. Thus, for example, 
OIH' ruund tllit-!:ht, hav<' t.he foursomes ABCD and EFGH. They desire to have each 
pair of play<·rs playing together in a foursome exactly the same number of times. 

a) Is this possible in six rounds? 
h) Is it possible in seven rounds? 
c) Explain why your answers to the above questions differ. 
I. Solution by Mark Evans, Louisville, Kentucky. 
'l'he following array of seven rounds puts the golfers in foursomes so that each 

•olfer is paired with each other golfer exactly three times. Since there are six possible 
pairs in any foursome: each round generates twelve pairings. Since each player must 
I><! paired the same number of times with each of the other seven players, the total 
nmnber of pairings must be a multiple of 7. Since 12 is not a multiple of 7, then the 
number of rounds must be a multiple of 7. Hence it is impossible with six or fewer 
rounds. Our example demonstrates that seven rounds suffice. 

Round 
1 
2 
3 
4 
5 
6 
7 

Foursome 1 
ABCD 
ABEF 
ABGH 
ACEG 
ACFH 
ADEH 
ADFG 

Foursome 2 
EFGH 
CDGH 
CDEF 
BDFH 
BDEG 
BCFG 
BCEH 

II. Comment by Richard I. Hess, Rancho Palos Verdes, California. 
Mark the seven points B, C, D, E, F, G, H in order and equally spaced on 

the circumference of a circle and draw a triangle connecting the points B, C, and E. 
Leaving the vertex labels fixed on the circle, rotate the triangle about the center of 
the circle and read the vertices at each position to obtain the foursomes that contain 
A for the seven rounds thus: ABCE, ACDF, ADEG, AEFH, ABFG, ACGH, and 
ABDH. 

Also solved by PaulS. Bruckman, Berkeley, CA, Charles R. Diminnie and Trey Smith , 

Angelo State University, San Angelo, TX, Richard I. Hess, and the Proposer. 

992. [Spring 2000] Proposed by Mark Evans, Louisville, Kentucky. 
Consider three statistical distributions f, g, and h such that, for 0 < k < 1, 

h = kf + (1 - k)g. 

a) Express the variance of h as a function of k, the variances of f and g , and the 
means of f and g. 

b) Use the expression derived in (a) to show that the variance of h equals the 
variance off when f = g. 

*c) Explain the results of (a). 
Solution by Paul S. Bruckman, Berkeley, California. 
Let (ah)2, (a1)2, and (a9)2 denote the variances of h, f , and g, respectively. Also 

let p = PJg denote the correlation coefficient off and g. If mf9 , mf, and m 9 represent 
the means of fg , f, and g, respectively, then we have 
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It then follows by expansion and definition that 

(1) 

Iff = g, we note that p = 1 (f and g are perfectly correlated); in this case, since 
a! = a9 , we obtain 

or 

The formula in (1) is a natural consequence of applying the definitions of variance 
and of the correlation coefficient, and hardly requires explanation. 

Also solved by Richard I. Hess, Rancho Palos Verdes, CA, and the Proposer. 

993. [Spring 2000] Proposed by Les Wood, Forest City, Maine. 
Determine which stacks in less space, logs or split wood. Assume the logs are 

uniformly perfect cylinders of radius r and constant length. Assume these logs are 
split with no waste into perfect quarters, that is, their cross sections are circular 
sectors of central angle 90°. 

Solution by Rex H. Wu, Brooklyn, New York. 
I assume we are stacking the logs and the split logs in an infinite 3-D space. Since 

logs are cylindrical, we can just consider the cross sections, namely, a circle and a 
quarter circle. And we will pack the 2-D space with circles and quarter circles to see 
which takes less space. 

The most compact way of packing 2-D space with circles is to have every circle 
touching six other circles, shown in Figure 993a. Figure 993b is an enlargement of 

FIG. 993A. 

t he shaded area in Figure 993a and contains the area of two whole circles of radius r. 
A little calculat ion shows the width to be 2r and the height to be 2rJ3. Therefore 

FIG. 993B. 

the average space occupied by a circle packed this way is (2r)(2rv'3)/2 = 2r2J3 ~ 
3.46410r-2 . 

A compact way of packing the 2-D space with quarter circles is shown in Fig­
ure 993c. Figure 993d shows a basic packing unit which contains the area of half 
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F'IC:. 993 . 

FIG. 993D . 

a circle of radius r. Its width is rJ2 and its height is 7'[ J772 - /172]. The aver­
age space occupied by a circle in this packing with quarter circles is r 2 

( J2) [ J772 -
/172]/(1/2) = 2( v'7 - 1)r2 ~ 3.29150r2

• 

Therefore, splitting the logs into quarters will save us nearly 5% of the space 
required by full logs. 

Also solved by Richard I. Hess, Rancho Palos Verdes, CA, and the Proposer. 

Editorial comment: When Les was interviewed in his wood lot, he commented 
that the packing of Figure 993c becomes increasingly expeditious as the number of 
congruent sectors into which each log is cut escalates, and there is no desolate space 
whatsoever in the limit as that number becomes unfathomable. In fact, this basic 
maneuver of dissecting a circle of radius r into n sectors and accumulating the sectors 
on top of one another in an alternating fabrication and then suffering n to appreciate 
without demarcation shows commencing geometry students that the area of a circle 
is equivalent to that of a rectangle whose dimensions are r by 7r7', which is half the 
circumference of the circle. He added, "If 'tweren't for that pedagogy, I wouldn't 
trouble m'self to split 'em 'tall." 
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The MATHACROSTIC in this issue has been contributed by Dan Hurwitz. 

a. In the large 

b. A local coordinate system 

c. Bases for systems of logarithms 

d. Between right and straight 

· e. Seem 

f. Cantor symbol 

g. Member of Brouwer's 

school 

h. Parallel lines do this 

i. It is as smooth as its 

inverse 

j. Congruent maps are this 

k. Map onto 

1. Number of binary trees 

m. Followed by E., a way to determine 
convergence of a series 

n. Partitions should be this 

o. Error whose size is denoted by f3 

p. He made an early attempt to calculate 

the earth's circumference 

q. Next to the big toe on the first foot 
in G reenlandic 

r. A Prime Number Theorist 

s. A circuit zero 

t. Distribution with expected value (b - a)/n 

u. His questions in a letter have been 
examined for centuries 

v. Mathematicians do it 

w. Geometry teachers' frequent symbol 

x. Statistical diagram showing distribution 112 006 099 137 153 054 037 
of paired random variables 

002u 003o 

015e 016v 023p 

026s 027g 028t 

044v 

056n 057f 0581 

063j 069n 

075i 081b 082t 083k 

094c 095n 

105u 

121e 

128k 134q 

146n 147a 

158i 

174p 

1771 178b 181h 182k 

024m 025n 

111u 

125p 

137x 138v 

1501 151b 

162g 163j 

175d 176i 

The solution to the MATHACROSTIC in last issue was taken from "Algebraic 
Topology", a classic text by W. S. Massey: 

By using the fundamental group, topological problems about spaces 
and continuous maps can sometimes be reduced to purely algebraic 
problems about groups and homomorphisms. This is the basic strategy 
of algebraic topology. 

Charles R. Diminni was the first solver, immediately followed by Jeanette Bickley and 
Paul S. Bruckman. 
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