
Is there a point to bi-tri-angling? 

Problem 1030 

The TIME Journal 
Volume 11, Number 5 Fa112001 



The TIME Journal 

Official Publication of the 
National Honorary 
Mathematics Society 

Editor 
Brigitte Servatius, 
Mathematical Sciences 
Worcester Polytechnic Insti tute 
Worcester MA 01609-2280 
bservat@wpi.edu 

Problem Editor 
Clayton W. Dodge 
Mathematics Department 
5752 Neville Hall 
University of Maine 
Orono, ME 04469 
dodge gauss.umemat.maine.edu 

Business Manager 
Joan Weiss 
Dept. of Math. and C.S 
Fairfield University 
Fairfield, CT 06430 
weiss fairl.fairfield.edu 

Officers of the Society 

President: Doug Faires 
Department of Mathematics 
Youngstown State University 
Youngstown, OH 44555 
faires@math.ysu.edu 

President-Elect: Robert S. Smith 
Department of Mathematics 
Miami University 
Oxford, OH 45056 
rssmith muohio.edu 

Past-President Rick Poss 
Department of Mathematics 
St. Norbert College 
De Pere, WI 54115 
possrl mail.snc.edu 

Secretary-Treasurer 
Robert Woodside 
Department of Mathematics 
East Carolina University 
Greenville, NC 27858 
mapme ecuvm.cis.ecu.edu 

ll lflm : L_______, ') 

Councilors 

Jennifer R. Galovich 
Saint John's University 
jgalovich@csb~ju . edu 

Leo J. Schneider 
John Carroll University 
leo@jcu.edu 

David C. Sutherland 
Hendrix College 
sutherlandd@hendrix.edu 

Joan W. Weiss 
Fairfield University 
weiss fairl.fairfield. edu 

The liME Journal is published bian­
nually, once in the spring and once in the 
fall. Each volume consists of ten issues. 

Current rates are as follows: 
United States: $20 for 2 years 

$40 for 5 years 
Foreign: $25 for 2 years 
Back issues: $5 each 
Whole volume: $50 (5 years) 
All back issues: $400 (1 st 10 volumes) 

All subscription orders should be sent 
to the business manager. 

Information for authors. Authors 
should send their submissions to the edi­
tor and should be prepared to submit fi­
nal copies of their articles in H\TEXformat, 
with all figures as encapsulated postscript. 

All articles are refereed. The liME 
Journal especially welcomes student writ­
ten papers. Faculty submissions are held 
to the highest standards of interest, clar­
ity and exposition. 

Detailed instructions for authors can 
be found on the liME web pages at 
www.pme-math.org. 

·' 

TIME Journal, Vol. 11, No. 5, pp 229- 239, 2001. 229 

GENERAL FLIP-SHIFT GAMES 

JAE GYUN CHEONG, MICHAEL A. JONES AND KEI KANEKO* 

Abstract. We examine two puzzles by thinking of the movements as permutations. We then 
generalize the puzzle as a "flip-shift" game and determine generalizations which yield all permutations 
of the pieces, as well as some that do not yield all possible permutations. 

1. Introduction. Mathematics has often been at the heart of puzzles, including 
the sliding piece puzzle known as the 14-15 puzzle (Fig. 1). This puzzle has been 
sold with the 14 and 15 in their correct positions. However, the variation in Fig. 1 
was made popular by Sam Loyd, who in the late 1800's offered a cash prize to the 
first person who could place the square tiles in order. Loyd never had to pay out the 
cash prize because the pieces of the puzzle in Fig. 1 cannot be put in order by legal 
moves (sliding a piece into the empty space). (For a history of sliding piece puzzles, 
see Hordern [1].) 

Mathematicians have analyzed this puzzle (including Johnson [2] in 1879) and its 
variations, e.g., Liebeck [3] . Other puzzles have generated mathematical interest as 
well, including Rubik's cube. A mathematical generalization of Rubik's cube, called 
Rubik's tesseract, is analyzed in Velleman [4]. 

1 2 3 4 

5 6 7 8 

9 10 11 12 

13 15 14 

FIG. 1. Sam Loyd's 14-15 Puzzle. Goal: Switch the 14 and 15. 

We begin by examining two puzzles, Xex No. Crunch and the Saturn Puzzler. 
These puzzles are similar to the 14-15 puzzle in that numbered pieces can be moved 
and arranged in different orders. However, unlike the 14-15 puzzle, there is no empty 
space limiting the next move. For this reason, Xex No. Crunch and the Saturn Puzzler 
are similar to Rubik's cube. There are two possible moves, shifts and flips. We show 
that all permutations of the pieces are possible in the Saturn Puzzler and Xex No. 
Crunch puzzles. 1 For certain generalized flip-shift games, the solution technique used 
for the two specific puzzles can be extended to generate all permutations. However , 
we prove that not all permutations of the puzzle pieces are possible for all generalized 
flip-shift games. 

2. Two Flip-Shift Puzzles. Xex No. Crunch consists of 20 movable disks 
arranged along an oval track. The pieces can be rotated or shifted in the left or right 
direction (Fig. 2). A "shift" changes the location of all the pieces, but preserves their 

*Montclair State University 
1The packaging that comes with Xex No. Crunch includes techniques on how to move disks in 

certain ways to help yield solutions to its variations. 
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order; specifically, a left shift moves all disks one disk in the counterclockwise direction, 
while a right shift moves all disks one disk clockwise. The oval track intersects a 
turnstile that can be used to "flip" the ordering of four of the disks (Fig. 3). 

One variation of Xex No. Crunch is to place the 20 disks in numerical order, as 
pictured in Fig. 2. We do not designate the orientation of the turnstile and consider 
a question that Sam Loyd would find of interest: Are all 20! permutations of the 
disks possible? If the answer is "yes," then any initial arrangement of the 20 disks 
can be transformed through a sequence of flips and shifts to the numerical ordering. 
Of course, this means that Sam Loyd cannot pre-order the disks into an arrangement 
that cannot be ::;olved! We show that all 20! permutations are possible. 

5 '6 

16 
15'''·'14 '13 12 11 10 .· 9 

7 

·8 

FIG. 2. Left and right shifts for Xex No. Crunch consist of 'shifting' the disks along the oval 
tmck. 

5 
·, tjl I 

/18 

\17 I 8 
1•16 9 ,, 
.. '.'15 )•,14 :·13 1'12 11 ''110 

FIG. 3. Flip for Xex No. Crunch consists of 'flipping' along the turnstile. 

Before explaining how to arrive at all 20! permutations, we develop notation to 
effectively describe the puzzle mathematically. It is convenient to use two different 
equivalent notations of permutations to represent the flip and shifts ofXex No. Crunch 
and generalizations of the puzzle. We are less concerned with the numbering of the 
disks than the positioning of the disks. Let position 1 be the position on the oval 
track that is at the left of the turnstile. In Fig. 2, disk 1 is in position 1. Let position 
2 be one disk clockwise from position 1. Define positions 3-20 accordingly. 

Flip and shifts are merely permutations of the disks on the oval track. We define 
a flip and left and right shifts according to how these operations affect the disks in 

.. 
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positions 1-20. The flip permutes the disk in position 1 with the disk in position 4, 
and vice versa, as well as transposes the disks in positions 2 and 3. 

DEFINITION 1. For Xex No. Crunch, the flip permutation is 

F _ ( 1 2 3 4 5 6 7 · · · 19 20 ) = (1 4)(2 3). 
.- 4 3 2 1 5 6 7 . . . 19 20 

I 

DEFINITION 2. For Xex No. Crunch, the left-shift permutation is 

(
1234567 

L = 20 1 2 3 4 5 6 

and the right-shift permutation is 

R- ( 1 2 3 4 5 6 7 
- 2 3 4 5 6 7 8 

19 20 
) = (1 20 19 18 ... 3 2) 

18 19 

19 20 
) = (1 2 3 4 ... 19 20). 

20 1 

Realize that L 19 = R and R19 = L and that R20 = L 20 = F 2 = I, where 
I is the identity permutation. Before proving that all 20! permutations of Xex No. 
Crunch's puzzle pieces are possible, we define a permutation S, the swap permutation, 
and relate its existence to generating all permutations. The following definition and 
lemma are valid for all nand are needed later for values other than n = 20. However, 
we do not consider the general definitions of the left and right shift permutations until 
the next section. 

DEFINITION 3. The swap permutation permutes the disks in positions 1 and 2: 

s-(123456 
- 2 1 3 4 5 6 

... n-1 n)-( ) - 12 . ... n-1 n 

LEMMA 4. If we can 7prite S as a sequence of flips and shifts, then all n! permu­
tations are possible. 

Proof. All m! permutations of the disks in the first m positions are possible if 
every permutation of the first m disks, leaving positions m + 1 through 20 fixed, can 
be written as a sequence of shifts and flips. We proceed by induction. Realize that S 
permutes the first two positions; hence, all 2! permutations of the disks in the first 2 
positions are possible. 

Assume that all m! permutations of the disks in the first m positions are possible. 
Then, we show that all ( m + 1)! permutations of the disks in the first m + 1 positions 
are possible. Begin by using a left shift to move the disks in positions 2 through m+ 1 
into positions 1 through m. By assumption, the disks in positions 1 through m can be 
arranged in any order by a sequence of shifts and flips, leaving the other disks fixed 
in their positions. End by using a right shift to move the disks back into positions 2 
through m + 1. There are m! such permutations. 

The disk in position 1 by successive use of the swap permutation and the left shift 
can be placed between any two of the disks between 2 and m + 1. Indeed, (SL)k Rk 
moves the disks in positions 2 through k + 1 into positions 1 through k, respectively, 
moves the disk in position 1 into position k + 1, and leaves the other disks fixed. Thus, 
we achieve an additional m · m! permutations of the first m + 1 disks. And, we have 
accounted for all (m + 1)! = m! + m · m! permutations of the disks in the first m + 1 
positions. D 
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THEOREM 5. All 20! permutations of the 20 pieces in Xex No. Crunch are 
possible. 

Proof By the above lemma, all 20! permutations of the pieces of Xex No. 
Crunch are possible if the swap permutation can be written as a product of flip and 
shift permutations. 

The product of permutations F LF RF LF R or (F LF R)2 keeps the disks in po­
sitions 2-20 in order, but places the disk in position 1 into the 5th position. Notice 
that 

F LF R = (1 4)(2 3)(1 20 19 · · · 3 2)(1 4)(2 3)(1 2 3 · · ·19 20) 

= (1 3 52 4) 

and (F LF R) 2 = (1 3 52 4)(1 3 52 4) = (1 54 3 2). Hence, the disk in position 1 
has moved to position 5, while all of the other disks remain in their same order. 
Realize that the disks in positions 2 through 5 have moved into positions 1 through 
4, respectively. 

To use this operat ion repeatedly, we must first "put" the disk in position 5 back 
into position 1. This is achieved by repeated left shifts. And, 

2 3 4 5 6 7 
17 18 19 20 2 3 

16 17 18 19 20 ) 
12 13 14 15 16 . 

Hence, successive uses of (F LF R) 2 L4 keeps all disks except the disk in position 
1 in order and marches this disk until it lands behind the disk that was originally in 
position 2. This takes five iterations because [(F LF R)2 £ 4]5 = (3 2 20 19 18 · · · 6 5 4). 
The swap permutation is (12) = [(FLFR) 2L4 ]5 R. Since the swap permutation is 
written as a product of flips and shifts, then all 20! permutations of the pieces of Xex 
No. Crunch are possible. 0 

Before we define generalized flip-shift games, there exists another puzzle that 
consists of permuting pieces by flips and shifts. The Saturn Puzzler is similar to Xex 
No. Crunch, except that it consists of only 8 "disks" or numbered pieces (Fig. 4). 

FIG. 4. Flip {left) and shift {right) for the Saturn Puzzler. 

The movements of the Saturn Puzzler are shifts and flips, as in Xex No. Crunch. 
Shifts consists of rotating the rings of Saturn around the planet in either the clockwise 
or counterclockwise directions. The flip is achieved by rotating half of the sphere 
through a plane that intersects the sphere through a great circle. Both of these 
movements are pictured in Fig. 4. The mathematical definitions appear below. 

GENERAL FLIP-SHIFT GAMES 

DEFINITION 6. For the Saturn Puzzler, the flip permutation is 

( 
1 2 3 4 5 6 7 8 ) 

F = 4 3 2 1 5 6 7 8 = (1 4)(2 3)· 

DEFINITION 7. For the Saturn Puzzler, the left-shift permutation is 

L = ( 1 2 3 4 5 6 7 8 ) = (1 8 7 6 ... 3 2) 
8 1 2 3 4 5 6 7 

and the right-shift permutation is 

R = ( ~ ~ ~ : ~ ~ ~ ~ ) = (1 2 3 4 · .. 7 8). 

233 

The same technique from Xex No. Crunch can be used to show that all 8! permu­
tations of the pieces of the Saturn Puzzler are possible. As before, we want to show 
that the swap permutation can be written as a sequence of flips and shifts. 

THEOREM 8. All 8! permutations of the 8 pieces in the Saturn Puzzler are 
possible. 

Proof Since the flip size of the Saturn Puzzler and Xex No. Crunch are the 
same, (F LF R) 2 has the same effect. That is, (F LF R)2 keeps the disks in positions 
2 through 8 in order, but moves the disk in position 1 into the fifth position. Because 
there are 8 pieces, it does not take as many iterations of (F LF R)2 L4 to yield the 
swap permutation. Indeed, [(FLFR) 2L 4

]
2 R = (12). 0 

3. General F lip-Shift Puzzles. The puzzles in the previous section can be 
generalized to any number of pieces n with flips of any size k where k < n. The shift 
and flip permutations for the general (n, k)-puzzle are defined below. 

DEFINITION 9. Let Ln and Rn be the left-shift and right-shift permutations on n 
elements, respectively. Define Ln and Rn by 

and 

( 
1 2 3 ... n - 1 n ) 

Ln = n 1 2 . . . n - 2 n - 1 = (1 n n - 1 ... 3 2) 

( 
1 2 ... n - 2 n - 1 n) 

Rn = 2 3 .. . n _ 1 n 1 = {1 2 3 .. · n - 1 n ). 

DEFINITION 10. Let Fn,k be the flip permutation of size k on n elements, then 

( 
1 2 ... k - 1 k k+1 k+2 

Fn,k = k k - 1 · · · 2 1 k + 1 k + 2 

= (1 k)(2 k - 1) · · · (s - 1 s + 2)(s s + 1). 

... n -1 n) 

... n - 1 n 

Assume that the number of disks is always n and that the flip size is always k. 
For this reason, we eliminate the subscript notation, e.g., let R = Rn, unless it is 
pertinent. The results that follow often put restrictions on the values of nand k. 
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3.1. When does the solution technique generalize?. For Xex No. Crunch 
and the Saturn Puzzler, we used a particular sequence of flips and shifts to yield the 
swap permutation. We determine below how and when this sequence of flips and shifts 
yields the swap permutation for general (n, k)-puzzles. The following proposition 
extends the technique used to solve Xex No. Crunch and the Saturn Puzzler from 
the previous section. The idea is to be able to move one disk while keeping the other 
disks in order. 

PROPOSITION 11. For k = 2s, the sequence of flips and shifts (F LF R) 8 yields 
the permutation (1 k + 1 k k - 1· · · 3 2). 

Proof Using the general definitions of the shift and flip permutations, basic 
multiplication yields 

FLFR = ( ~ 2 3 k 2 k - 1 k k 1 k 2 . . . 
~). 4 5 k k 1 1 2 k 2 ... 

Notice that it becomes easy to repeat this operation. For example, (F LF R)2 is 

( ! 2 k - 4 k - 3 k - 2 k - 1 k k + 1 k + 2 ... 
~). 6 k k + 1 1 2 3 4 k + 2 ... 

Since k = 2s and the operation F LF R only changes the positions of the disks in 
positions 1 through k + 1, it follows that (F LF R) 8 is 

2 3 
1 2 

k - 2 k - 1 k 
k - 3 k - 2 k - 1 

or (1 k + 1 k k - 1 · · · 3 2). 0 

k + 1 
k 

k + 2 
k + 2 

n - 1 
n - 1 

By repeated application of sequence of shifts and flips from the above proposition, 
it is possible to move the disk in position 1 while keeping the other disks in order. 
This technique yields the swap permutation if successive iterations of (F LF R)s Lk 
moves the 1 disk behind the 2 disk. The following theorem indicates the necessary 
relationship between k and n for this to happen. 

THEOREM 12. The technique used to solve Xex No. Crunch and the Saturn 
Puzzler can be extended for a flip size of k = 2s and n disks when k and n - 1 are 
relatively prime. 

Proof The permutation (F LF R)s moves the disk in position 1 into position k + 1, 
keeps the disks in positions k + 2 through n fixed, and moves the disk in position j to 
j - 1 for j = 2 to k + 1. We can continue to move the disk that was initially in position 1 
by returning it to position 1 using the left shift k times and then repeating ( F LF R) s. 
The permutation (F LF R) 8 Lk(F LF R) 8 will move the disk originally into position 1 
behind the disk that was originally in position 2k 1, as long as n > 2k+ 1. It follows 
that [(FLFRYLk ]m I(FLFR)s moves the disk originally in position 1 behind the 
disk that was originally in position mk + 1. Realize that following this permutation 
by Lk returns the disk that was originally in position 1 back to position 1. Of course, 
there is an m such that mk + 1 > n. We ar concerned with where the disk originally 
in position 1 lands relative to the other disks. As the disk originally in position 1 will 
follow one of the disks in originally in positions 2 through n, we compute (mk + 1) 
modulo n - 1 to yield which disk the disk originally in position 1 will follow. 

To yield the swap permutation, we want to move the disk originally in position 
1 behind the disk that was originally in position 2, if possible. Therefore, we want to 
find an m such that mk + 1 is congruent to 2 modulo n - 1. This means that after 

·' 
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m iterations of [(F LF R) 8 Lk]m the disk that was originally is position 1 now follow:> 
the disk that was originally in position 2, while keeping all of the other disks in their 
original order. 

Finding m such that mk + 1 = 2 mod (n - 1) is equivalent to finding an m such 
that mk = 1 mod (n - 1). This is equivalent to finding an m such that there exists 
an integer a such that mk = a(n - 1) + 1 or mk - a(n - 1) = 1. By the Euclidean 
algorithm, mk a(n - 1) = 1 implies that the greatest common divisor of k and 
n - 1 is 1 (e.g., see [6, p.ll]). Equivalently, [(F LF RY Lk]rn R can only yield the swap 
permutation when k and n - 1 arc relatively prime. 0 

The Euclidean algorithm can be used to determine the minimum m such that 
[(F LF R)s Lk]rn R = (1 2). These value:> appear in the following table; m represents 
the number of forward iterations of [(FLFRYLk]ueces:>ary to yield the swap per­
mutation. For example, as discovered in the proof that all permutations of Xex No . 
Crunch's pieces are possible, the entry in the column 4F (k = 4) and the row 20 
(n = 20) of the table in Fig. 5 i:> 5. All entries in the "forward" columns of t.he 
table in Fig. 5 can be determined by the following algorithm, based on the Euclidean 
algorithm. When n - 1 and k are relatively prime, construct the following sequence 
of remainders until ri +l = k - 1: 

( n - 1) mod k = 7'I 

[(n - 1) + ri] mod k r2 

[(n - 1) + r2] mod k - r3 

[(n - 1) + 7'i] mod k - 1'i+I 

We can compute m by m = (i+I )(~- I ) +l where [(F LF R )8 Lk']m R = (1 2). This 
follows since we can add the equalities above to yield: 

{(i + 1)(n - 1) + ri + 1·2 + · · · + ri} mod k = h + r2 + · · · + Ti + T;+l} mod k . 

Canceling r i for j = 1 to i from both sides yields 

(i + 1)(n - 1) mod k = 1'i+I mod k 

= k - 1. 

Therefore, there exists a b such that ( i + 1 )( n - 1) = bk + k - 1. But, a little rearranging 
yields 1 = - (i + 1)(n - 1) + (b + 1)k which implies that k and n - 1 are relatively 

• . . c db (b 1) (•+l )( n - I )+ I pnme. And, our m IS (b + 1) which can be toun y m. - + = k . 

is 
EXAMPLE 1. For the puzzle where n = 22 and k = 8, the sequence of remainders 

21 mod 8 = 5 

26 mod 8 = 2 

23 mod 8 = 7. 

· · h · d ft 3 · · d (i+I)(n- I )+ I 3·21+1 8 S Thzs algont m tenmnate a F1' tteratwns an m = k = - 8- = . o, 
8 is the entry in the table for the SF column for n = 22. 

However, it is possible to work "backwards" by moving the disk in position 1 to 
the left instead of to the right, while keeping the other disks in order. By reversing 
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n\k 4F 4B 6F 6B SF SB lOF lOB 12F 12B 14F 14B 16F 16B 
8 2 5 
10 7 2 
12 3 8 2 9 
14 10 3 11 2 
18 4 11 X X 2 13 
18 13 4 3 14 15 2 
20 5 14 16 3 12 7 2 17 
22 16 5 X X 8 13 19 2 
24 6 17 4 19 3 20 7 16 2 21 
26 19 6 21 4 22 3 X X 23 2 
28 7 20 X X 17 10 19 8 X X 2 25 
30 22 7 5 24 11 18 3 26 17 12 27 2 
32 8 23 26 5 4 27 28 3 13 18 20 11 2 29 
34 25 8 X X 29 4 10 23 X X 26 7 31 2 
36 9 26 6 20 22 13 X X 3 32 X X 11 24 
38 28 9 31 6 14 23 26 11 34 3 8 29 7 30 
40 10 29 X X 5 34 4 35 X X 14 25 22 17 
42 31 10 7 34 36 5 37 4 24 17 3 38 18 2 3 
44 11 32 36 7 2 7 16 13 30 18 25 40 3 35 8 
46 34 11 X X 17 28 X X X X 29 16 31 14 
48 12 35 8 30 6 41 33 14 4 43 37 10 3 44 
60 37 12 4 1 8 43 6 5 44 45 4 X X 46 3 
62 13 38 X X 32 10 46 5 X X 11 40 16 3 6 
64 40 13 9 44 20 33 16 37 3 1 22 17 3 6 10 4 3 
66 14 41 46 9 7 48 X X 23 32 4 51 31 24 
68 43 14 X X 50 7 40 17 X X 53 4 25 32 
60 15 44 10 40 37 22 6 53 5 54 42 17 48 11 
62 46 15 51 10 23 38 55 6 56 5 48 13 42 19 
64 16 47 X X 8 55 19 44 X X X X 4 ~9 
66 49 16 11 54 57 8 X X 38 27 14 51 61 4 
68 17 50 56 11 42 25 47 20 28 30 20 47 21 4 0 
TO 5 2 17 X X 26 43 7 62 X X 5 64 13 56 
T2 18 53 12 59 0 62 64 7 6 65 06 5 40 31 
T4 55 18 61 12 64 0 22 51 67 6 53 20 32 41 
TO 10 56 X X 47 28 X X X X 50 16 61 14 
T8 58 19 13 64 29 48 54 23 45 32 X X 53 24 
80 20 59 66 13 10 60 8 71 33 46 17 62 5 74 
82 6 1 20 X X 71 10 73 8 X X 23 58 76 ; 
84 21 62 14 69 52 31 25 58 7 76 6 77 26 57 
86 64 21 71 14 32 53 X X 78 7 79 6 16 69 
88 22 65 X X 11 76 61 26 X X 64 23 40 38 
90 67 22 15 74 78 11 " 80 52 37 70 19 30 50 
9:ol 23 68 76 15 57 34 82 9 38 53 X X 74 17 
94 70 23 X X 35 58 28 65 X X 20 7 3 64 29 
96 24 71 16 79 12 83 X X 8 87 2 6 6 0 6 80 
98 73 24 81 16 85 12 68 29 80 8 7 9 0 91 6 

100 25 74 X X 6 2 3 7 10 89 X X 92 7 31 68 

FIG. 5. The minimum number of "moves" to yield the swap permutation. 

the order of operations, Rk(LF RF)8 moves the disk in position 1 behind the disk in 
position ( - k + 1) mod (n - 1). This follows because [(FLFR) 8 LkJ[Rk(LF RF)8 J = I 
the identity permutation. The swap permutation can also be achieved by finding the 
minimum j such that [Rk(LF RF) 8 Jl places the disk originally in position 1 into the 
position behind the disk originally in position 2 while leaving the other disks in their 
original order. This j can be determined by solving - jk + 1 = 2 mod (n - 1) for 
the minimum j. This value can easily be determined since j and m, as described, 
must add to n - 1. This follows from k and n - 1 being relatively prime. The table 
contains the number of iterations of [Rk(LF RF) 8 J necessary to achieve the swap 
permutation. For example, the entry in column 8B and row n = 18 is 2 and indicates 
that [R8 (LF RF)4 j2 swaps the order of the disks in position 1 and 2. Comparing this 
to the entry of 8F and row n = 18, which is 15, indicates that it is more efficient to 
use sequences of [Rk(LF RF) 8 Ji than [(F LF R) 8 LkJm to yield the swap permutation. 

3.2. When can we guarantee that not all permutations are possible?. 
Determining whether or not every one of the n! permutations of the n pieces are pos­
sible under a shift and a flip of size k often reduces to a question of parity. That is, 
whether or not the shift and flip permutations are odd or even becomes paramount. 
First, we review the definition of odd and even permutations. Recall that a trans­
position is a permutat ion that transposes two elements and leaves all other elements 
fixed. Indeed, the swap permutation from the previous section is an example of a 
transposition. 
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DEFINITION 13. A permutation is odd if it can be written as the product of an odd 
number of transpositions. A permutation is even if it can be written as the product of 
an even number of transpositions. 

Realize that a permutation cannot be both odd and even. Indeed, although an 
odd permutation can be written as the product of an odd number of transpositions, 
it is the case that every such product of transpositions must contain an odd number 
of transpositions, as indicated in the following theorem. 

THEOREM 14. {Hillman and Alexanderson, [5, p.92}} If a permutation (} is a 
product of transpositions, (} = a 1 a 2 · · ·Or = (31 fJ2 · · · f3s, then r and s are both even or 
both odd. 

Next, we determine the values for which the general flip and shift permutat ions 
are odd and even. 

PROPOSITION 15. The shift permutations on n elements are even ifn is odd and 
are odd if n is even. 

Proof. Both shift permutations on n elements can be written as a product of n - 1 
transpositions. Specifically, 

Ln = (1 2)(2 3) · · · (n- 2 n - 1)(n - 1 n) 

and 

Rn = (1 2)(1 3) · · · (1 n - 1)(1 n). 

The proposition is proved because n - 1 is even when n is odd and n - 1 is odd when 
n is even. D 

PROPOSITION 16. The flip Fn ,k is even if k is congruent to 0 or 1 mod 4. 
Otherwise, Fn,k is odd. 

Proof. We consider each of the four possibilities of k mod 4 separately. For ease 
of presentation, represent 

Fn,k = ( ~ 2 k - 1 k k 1 k+2 n - 1 
k - 1 2 1 k 1 k+2 n - 1 

by 

Fn,k = ( ~ 2 k - 1 ~) k - 1 2 

since all of the elements from k + 1 to n are fixed under FJ:. 
Let k be equal to 4l for some nonnegative integer l . Then, Fn,4l is 

2 
4l - 1 

2l 
2l + 1 

2l + 1 
2l 

4l - 1 
2 

4l ) 
1 0 

n ) n 

The flip Fn,4l can be written as the product of 2l transpositions; specifically, 

Fn,4l = (1 4l)(2 4l - 1)(3 4l - 2) · · · (2l2l + 1). 

Hence, Fn,4l is an even permutation. 
Let k = 4l + 1 for some nonnegative integer l. Then, Fn,4l 1 is 

( 4l ~ 1 
2 
4l 

2l 
2l +2 

2l + 1 
2l + 1 

2l + 2 
2l 

4l 
2 

4l + 1 
1 )· 
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The flip Fn, 4t 1 is an even permutation because it can be written as the product of 
2l transpositions: 

Fn,4l 1 = (1 4l + 1)(2 4l)(3 4l - 1) · · · (2l 2l + 2). 

If k = 4l + 2 for some nonnegative integer l, then Fn,4l 2 is 

( 
1 2 

4l + 2 4l 1 
3 
4l 

2l 
2l 

1 2l + 2 
2 2l + 1 

4l 
3 

4l + 1 
2 

4l + 2 ) 
1 . 

The flip Fn,4l 2 can be written as a product of 2l + 1 transpositions; indeed, 

Fn,4l+ 2 = (14l + 2)(2 4l + 1)(3 4l) · · · (2l2l + 3)(2l + 1 2l + 2). 

It follows that Fn,4t+2 is an odd permutation. 
If k = 4l + 3 for some nonnegative integer l. then Fn,4l 3 is 

( 
1 2 

4l + 3 4l 2 
2l + 1 
2l + 3 

2l +2 
2l + 2 

2l 3 
2l + 1 

Writing Fn,4l 3 as a product of transpositions yields: 

4l + 2 
2 

4l + 3 
1 )· 

Fn,4l+3 = (1 4l + 3)(2 4l + 2)(3 4l + 1) · · · (2l 2l + 4)(2l + 1 2l + 3). 

And, Fn,4l 3 is an odd permutation because it can be written as the product of 2l + 1 
transpositions. 0 

THEOREM 17. All n! permutations are not possible for flip-shift puzzles with 
flip-size k congruent to 0 or 1 modulo 4 and an odd number of pieces, n. 

Proof. For k congruent to 0 or 1 module 4, the flip permutation is even. Similarly, 
for n odd, the shift permutations are even. All products of shifts and flips are even 
permutations. Therefore, none of the odd permutations are possible. 0 
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CAN MAKE INTEGRATION EASIER 
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Abstract. We study the dynamics of the map :F(R(x)) = (R(fx) - R( - Vx)/(2Vx) on the 
space of rational functions, in the context of a new method of integration. We give a recursive 
formula for the iterates of a model family of rational functions, which is closed under the action of 
:F. We give a class of rational functions that are mapped to zero by two iterations of :F. 

We prove that all polynomials are eventually mapped to even functions by :F, and we determine 
the number of iterations required for a given polynomial. We use power series representation to 
determine which rational functions are eventually mapped to even functions by :F. 

1. Introduction. The integration of rational functions is one of the central tasks 
in calculus. The classical method of partial fractions reduces the problem to that of 
solving an algebraic equation. If P(x) and Q(x) are polynomials, the evaluation of 

(1) I = 1oo P(x) dx 
o Q(x) 

requires factorization of the denominator 

(2) Q(x) = (x - Xt)n1 (x- x2)n2 
• • • (x - Xjti 

= (x - Xt)n1 (x- x2t2 
• • • (x - Xktk X 

(x2 + 2atX +a~ + b~)m1 
• • • (x2 + 2apX +a~+ b~)mv . 

where x 1 , ... , Xj are the roots of Q(x) = 0, and the factorization is converted to a 
real form by combining any non-real roots in conjugate pairs . 

The difficulty associated with this method is that, as Abel showed, it is impossible 
to solve the general equation of degree 5 or more by radicals. Exact formulas for the 
roots of a polynomial are not always available. Therefore an interesting question is to 
classify the rational functions R for which the integral (1) can be evaluated without 
factoring the polynomial Q. 

The integration of even rational functions seems to be an easier problem. Two 
examples are the classical Wallis formula [5] 

(3) 100 

(x2 :~)m+l = 22:+1 C:) 
and the evaluation in [1] of 

(4) 

where 

(5) 

*Mills College 
tuniversity of Puerto Rico 
~Harvey Mudd College 

m E N, 

m E N, 
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The special ease 

1r 
No .J (a; 0) = ---:;::::=:== 

' 2y'2(a 1) 
(6) 

of ( 4) will be employed in Section 3. See [3) for many more examples. 

(7) 

Recall that the even and odd parts of a function are defined as, respectively, 

R (x) = R(x) + R( - x) 
2 

and Ra(x) = R(x) -2R(- x). 

We can rewrite J
0
CX) R(x) dx as 

(8) 1 R(x) dx = 1CX) R,.;(x) dx + 1 R 0 (x ) dx. 

The first integral on the right has an even integrand, and so is likely to be easier 
to evaluate than the original. The change of variables t = x2 in the second integral 
yields the identity 

(9) {ex> R(x) dx =lex> Re(x) dx + ~ { :F(R(x )) dx, 
lo u 2 lo 

where the map :F is defined by 

(10) :F(R(x)) = R( JX) - R( - JX) 
2JX 

If the nth iterate .r<n>(R(x)) is even for some n, then the integral J0 R(x) dx re­
duces to an integral of even functions. In this paper we give necessary and sufficient 
conditions on the rational function R(x) for this to occur. 

The paper is organized as follows. In Section 2 we show that the map :F preserves 
rationality of the function R(x). Sections 3 and 4 contain examples. In Section 3 we 
show that :F preserves the family of rational functions 

(11) ( ) 
Gm(a) 

Rm a, X = 2 H ( ) ' X+ rn ax+1 
Go(a) = 1, Ho(a) = 2a, 

and we give recursive formulas for Grn(a) and Hrn(a). We also discuss analogous 
results for the family of rational functions 

(12) 
1 R( X) - --;;---;,---,---;:--­

- x3 + ax2 + bx3 + 1 ' 
a, bE~ , 

where we now include a substitution x ----. - x in our mapping function :F. 
In Section 4 we show that the rational functions of the form 

(13) 
xP(x4) + x 2Q(x2) 

R(x) = V(x4) , 

where P, Q, and V are polynomials, are mapped to even functions by one iteration 
of :F. 

In Section 5 we establish a necessary and sufficient condition for a rational function 
R(x) to be mapped to an even function by n iterations of :F. The condition is that 
certain coefficients in the power series for R(x) about zero must vanish. In Section 6 
we prove that all polynomials are eventually mapped to even functions by :F, and we 
determine the number of iterations required. 

·' 
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2. :F preserves rationality. In this section we prove that the map :F preserves 
the class of rational functions. 

(1) 

PROPOSITION 1. If R(x) is a rational function, then :F(R(x)) is also rational. 
Proof. Write R(x) = P(x) / Q(x). A direct calculation shows that 

:F(R(x)) = P(JX)Q( JX) - P( Vx)Q(.jX). 
Q( JT)Q( - JX)2JX 

Now observe that Q(t)Q( - t) is an even polynomial in t = JX, so it is a polynomial 
in t2 = x. Similarly P(t)Q( - t) - P( - t)Q( - t) is an odd polynomial in t, so the 
numerator in (1) is also a polynomial in x, after cancellation with the fi in the 
denominator. 0 

3. Examples of the dynamics of :F. Consider the rational function 

(1) 
1 

R(a x) - ----
, - x 2 + 2ax + 1 ' 

a E ~ . 

The even part of R( a, x) is 

(2) 
1 + x 2 

R .,(a, x) = x4 + (2 - 4a2)x2 + 1 

Integrating the even part, we obtain 

(3) --,-- .,...,...----,---;::-;--;;:--:- dx - 2 d:r 
1

CX) 1 + x 2 l ex> 1 

0 
:r4 + (2 - 4a2)x2 + 1 - . 0 x4 + (2 - 4a2)a·2 + 1 ' 

using the change of variables x ,_. 1/x. The resulting integral can be evaluated using 

(6) to produce 

(4) 1 Re(a, x) dx = 2No,4(1 2a2 ,0) = 
2v1 - a2 . 

TUrning to the odd part of R(a, x), we evaluate the rational function :F(R(J·)). Dirert 
calculation suggests that the iterates of R under :F have the form 

(5) 
(rn ) ( ( ·)) _ Gm(a) 

:F R a, x - 2 H ( ) 1 X + max+ 
= Grn(a) X R (Hrn(a)/2, x) , 

where Grn (a) and H m (a) are polynomials in a. This is established in the next propo­

sition. 

(6) 

PROPOSITION 2. The functions Hm(a) and Grn(a) satisfy the recur8ionfommlns 

Hm t(a) = 2 - Hm(a)2 , 

Gm+l (a) = - Gm(a)Hm(a), 

G~n+ l (a) G ( ) 
Grn 2(a) = G~(a) - 2 rn + l a , 

with initial conditions G0 (a ) = 1 and H0 (a) = 2a. In particular, H,.(a) and Gm(a ) 
are polynomials in a. 

Proof. The proof is by induction. 
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Base Case: For G0 (a) = 1 and H0 (a) = 2a a direct computation shows that 

(7) 
(1) _ - 2a 

F (R(x)) - x2 +(2 - 4a2)x + 1' 

as desired. 
We assume that 

(8) ;:(m)(R(x)) = Gm(a) , 
x 2 + Hm(a)x + 1 

and evaluate ;:(m+l )(R(x)) to obtain the indicated recursion. 
Define Rm(x) = ;:<ml(R(x) ) and compute the odd part 

(9) Rm 1 ( Gm(a) Gm(a) ) 
,odd(x) = 2 x2 + Hm(a)x + 1 - x 2 - Hm(a)x + 1 · 

Substitute x ---+ .jX, divide by .jX and combine the two fractions to produce 

;:(m+l)(R(x)) = - 2Gm(a)Hm(a).jX 
(x2 + (2- H~(a))x + 1)2.jX 

- Gm(a)Hm(a) 
= ~~~~~~~--~ 

(x2 + (2 - H~(a))x + 1) · 
(10) 

It follows that ;:< m+l) ( R( x)) has the required form and that the functions H m (a) and 
Gm(a) satisfy the recursion stated above. 

Since Hm(a) = - Gm+l (a)/Gm(a), the second recursion for Gm(a) now follows 
from the recursion for Hm(a) . The fact that Gm+2(a) is necessarily a polynomial can 
be proved by induction. D 

We summarize our discussion in a theorem: 
THEOREM 3. The family of functions 

(11) 
Gm(a) 

R(a, x) := 2 H ( ) 1 ' x+ max+ 
a E~ , 

is closed under the action ofF, and the following integral formula holds: 

(12) ('" Gm(a) dx = 11'Gm(a) + ~ ('" Gm+l (a) dx 

Jo x 2 + Hm(a)x + 1 J1 - H~(a) 2 Jo x 2 + Hm+l (a)x + 1' 

where Hm(a) and Gm(a) are as defined in (6). 
For rational functions of the form R( a, x) = 1/ ( x 2 + 2ax + 1) we are able to 

determine which rational functions are eventually mapped to even functions. Simply, 
the solution a to Hm(a) = 0 will give particular rational functions R(a,x) that map 
to an even function after m applications ofF, because when Hm(a) = 0 the resulting 
rational function ;:<m- l)(R(a,x)) is even. 

Turning our attention to rational functions of the form R(x) = 1/ (x3 + ax2 +bx3 + 
1) we can obtain similar, more complicated, recursive equations for the coefficients. 
There F must be slightly modified in order for iterations ofF to preserve the structure 
of R(x). If we add a second substitution x ---+ - x to F, then this modified map g 
allows similar results. 

So far we have note considered the convergence of our integrals. It is shown 
in [4] that J0

00 
1/(x3 + ax2 + 2bx + 1) dx converges if a and b satisfy the condition 

·' 
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4a3 - 18ab + 4b3 + 27 > 0. It is an open question whether one can find condi­
tions on a for convergence of f

0
00 ;:<m) (1/(x2 + 2ax + 1)) dx. Similarly, it is an 

open question whether one can find conditions on a and b for the convergence of 
J

0
00 g(m) (1/(x3 + ax2 + 2bx + 1)) dx. 

4. Mapping rational to even functions by ;:(m). If a rational function R(x) 
is mapped to an even function by applying F finitely many times, then R(x) can 
be integrated in finitely many steps, provided one has an efficient algorithm for the 
integration of even functions. The beginnings of such an algorithm are described in 
[3]. 

Recall that R is an even function if and only if F(R(x)) = 0. We now describe 
a family of rational functions R(x) that become even after one application of F. In 
other words, ;:<2 )(R(x)) = 0. 

THEOREM 4. Let P , Q , and V be polynomials in x, and consider the rational 
function 

(1) 

F(R(x)) is an even function. 

(2) 

Proof. The odd part of R(x) simplifies to 

(
xP(x4) + x 2Q(x2)) 

V(x4) odd 

xP(x4) + x 2Q(x2) 
= 

V(x 4 ) 

2xP(x4) 
= V(x4 ) · 

( - x)P(( - x)4
) + ( - x)2Q(( - x)2) 

V(( - x )4 ) 

The substitution x -+ .jX and division by 2vfx result in 

2.jXP(( .jX)4 ) P(x2) 

2.jXQ((.jX)4 ) = V(x2 ) ' 
(3) 

and this function is even. D 
Observe that the resulting even function is independent of Q. 

Example. Consider the case P(x) = bx + c, Q(x) = dx + e and V(x) = x 2 + 2ax + 1. 
We wish to evaluate the integral 

(4) roo x(bx4 +c)+ x 2(dx 2 +e) dx = roo bx5 + dx 4 + ex2 +ex dx . 
} 0 xB + 2ax4 + 1 } 0 x8 + 2ax4 + 1 

The even part reduces to the integral 

5 R xdx = dx= dx. 1
00 100 

dx4 + ex2 (d + e)11' 
( ) 0 e( ) 0 x8 + 2ax4 + 1 23/2(1 + a)l /2(4 + J8(1 + a))l /2 

F converts the odd part to an even function, which can be integrated: 

(6) 
r roo bx2 +c (b+c)11' 

Jo F(R(x))dx = Jo x4 + 2ax2 + 1 dx = 23/2(1 + a)l /2. 
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For both integrals we have used equations from [3], 

(7) roo bxs ~ dx: +.~x2 + ex dx = roo R e(x) dx + _21 roo .F(R(x)) dx 
} 0 x + ax + 1 Jo Jo 

= 
( ) 

1/ 2 
21r(d +e) + 1r 4 + J 8(1 + a) (b +c) 

( ) 

1/ 2 
23/2(1 + a) 1/ 2 4 + J 8(1 + a) 

5. The power series condition for .F(n ) (R) = 0. The power series expansion 
R(x) = L::~-oo a1xi about J ; = 0 of a rational function has only a finite number of 
non-zero terms with negative powers of z [6, Section 5.6]. The coefficients satisfy a 
periodicity condition: there exists an m E N such that a1 = a1 m for all j. This 
property of a rational function is key to finding a necessary and sufficient condition 
on R(x) to ensure that some .F(n)(R(x)) is even. 

THEOREM 5. Consider the rational funct·ion 

(1) R(x) = L aixi. 
j =-m 

Th nth iterate .F(nl(R(x)) is even if and only if a 2 .. lj 2, I _ 1 = 0 for all integers 
j 2: - m. First we state a simple Lemma. 

(2) 

(3) 

LEMMA 6. The power series for the nth iterate of R(x) is given by 

Proof. Apply .F to equation (1) and use induction. 0 
Now we can prove Theorem 5. We use induction on the number of iterations. 
Proof. Base Case: n = 1. First assume .F(ll(R(x)) is even; then 

1 ~ +! 
= 2vfx .~ a2j IXJ 

2 

J - - m 

00 

~ L a2J+1x1 

J - - m 

1 ~ 2 '+1 1 ~ 
= 2 ~ a4J+3X 

1 + 2 ~ 
j - - m j - - m 

But we know that .F(ll(R(x)) is even, which can only occur if the odd part of 
.r< 1l (R(x)) vanishes. Therefore a22i+3 = 0 for all j E /Z , as required. 
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Now suppose a4i 3 = 0 for all j N. The function R(.c) can be express •d in the 
form 

j --m 

00 00 00 

= L a4ix41 + L a4i+1x.Ji+ I + L a4J +2x4i +2 + L a4j+3x'11+
3

. 
j =-m .i =-m J = m j =-m 

But we know that 
oc 

(5) 
j --m 

and 

(6) :F'" (~ .. "'' 
because the arguments are even functions. So the substitution x 
by 2 JX lead to 

(7) _21 """ a x2i ~ 4j +1· ' 
j =- m 

which is even. This establishes the base case. 

= 0, 

JX and division 

Assume Theorem (5) holds for some n, and suppose .F(n 1 l(R(:r)) is even. Now 
by Lemma 5.1 

But .F(n 1l(R(x)) is even, so each coefficient a2 .. +'j + 2" + ' 1 must be 0. 

(9) 

Now suppose a2 .. 2i+2" +' 1 = 0 for all j ;:: - m. By our lemma, 

1 DC , 

.F(n)(R(x)) = 
2

n L a2"i+2" - l ·'L.J 
j =-m 

X 
lj t 1 

I - 1· 
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Also, 

(10) Fe: f: a2n+2j +2" - tX4j) = 0, 
j =-m 

because both sums in 10 are even and by assumption a2nt2J+2" 2_ 1 = 0. Therefore 

(11) 

which is even, as required. 0 
This result is useful because now we can take any rational function, express it as 

a power series and determine whether it will ever result in an even function. It also 
implies that R( vx) - R( - vx) = iR( - ivx)- iR(ivfx) if and only ifF maps R(x) 
to an even function. Now we have a closed form test for whether a rational function 
will be mapped to an even function under F on the next iteration. 

6. A special property of mapping polynomials. By definition, F maps 
every even function to 0. The converse is also true: if F(R(x)) = 0, then R(x) is 
even. An interesting open problem is to classify all functions R for which there exists 
an integer n such that F(nl(R(x)) = 0. 

All polynomials are eventually mapped to 0 by repeated application of the map 
F. Further, the number of iterations required can be exactly determined from the 
exponents present in the polynomial. 

THEOREM 7. Let P(x) be a polynomial. Then there exists a non-negative integ r 
n such that 

(1) F (n)(P(x)) = 0. 

Proof Let P(x) = ao + a1x + a2x2 + · · · + amxm. Any monomial of even degree 
is mapped to zero after one iteration ofF: 

(2) '7::( 2k) - x2k - x2k - 0 
.r X - 2vfx - . 

So it suffices to look at powers of x of the form x2"'p- l, where m is a positive integer 
and pis odd, and to show that there is a positive integer n sucl1 that F(nl(x2"'p - l ) = 0. 
Notice that 

(3) 

and so on. Iterating this procedure yields 

(4) 

Notice that xP 1 is an even power of x. Therefore 

(5) F(m+l) (x2'"p 1) = F(xp- l) = 0. 0 

·' 
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COROLLARY 8. LetP(x) = atx2k'P1 1 +a2x2
k

2
p 2 - 1 · ··· + anx2 k" Pn - l , where pi 

is odd, and 1 :::; i $ n. Define 

1 :::; i :::; n. 

Then 

F (k+l) (P(x)) = 0 , 

and this is the first iterate that vanishes. 
Proof This is the situation of Theorem (7) with m = k. 0 

7. Open Questions. Finding other particular classes of functions such as ( 1) for 
the second, third and nth iterations ofF would be very useful for recognizing which 
rational functions R(x) eventually map to even functions. Currently, our general 
Theorem 5 can tell us this by looking at the power series expansion, but specific cases 
would also be interesting. 

Unfortunately, many rational functions will never map to even functions. Describ­
ing the behavior of these rational functions under the map F becomes complicated. 
In the case of the reciprocal of the quadratic, applying our mapping function results 
in a standard formula (5) for the iterates. An idea related to the integrability over 
[0, oo) is to use these recursion formulas to classify the behavior of the zeroes of a 
rational function under iteration ofF; we have started to consider this. 

We have used Mathematica and Maple to study the behavior of F on rational 
functions, to find fixed points ofF, to find periodic points ofF, and to measure the 
length of their orbits. We have also found functions that are pre-periodic under F. 
The fact that a large class of functions have periodic behavior under F allows us to 
map our functions back to themselves resulting in expressing these functions as a sum 
of other even functions. 

The fixed points ofF have recently been found [2] and they are of the form 

(1) 
xm- l 

R(x) = --, 
xm - 1 

where m E N and m is odd. Unfortunately, these fixed points are not integrable on 
[O,oo). 

Finally, we continue to study the dynamics ofF on the space of rational functions , 
following [2]. It is an open question whether the fixed points of F are attracting or 
repelling, and how one might define the multiplier of F. 
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HYPERPERFECT NUMBERS 

.JOHN C. M . NASH 

Abstract. A new formula for hyperperfect numbers is demonstrated and nnw examples of 
hyperperfect numbers are given. 

A number n is called perfect it is equal to the sum of its devisors. For example, 
6 = 1 2 + 3 is perfect . In [1], p. 49, this concept was generalized n to be k­
hyperperfect if n = 1 k'£d; where the di are the proper divisors of n, 1 < d1 < n. 
T he following theorem can be used to generate examples of hyperperfect numbers. 

THEOREM 1. If n = pk (pk 1 - (p - 1)) and pk + I - (p - 1) is prime, p prime, 

then n is p - 1-hyperperfect. 
Proof: 

1 + (p - 1)'£d; = 1 + (p - 1)[p + p2 + 0 0 0 + pk + (pk+! - (p - 1))(1 J> + 0 0 0 + pk- l) ] 

[ 

k+l k 1] 
= 1 + (p - 1) p p _ ~ p + (pk+ 1 

- (p - 1)) pp ~ 
1 

= 1 + pk+l - p + pkpk+l + p - 1 - pk(p - 1) - pk+ ! 

= pk (pk+l - (p - 1)) 0 0 

Examples: 54(55 - 4), 56 (57 - 4) and 514(515 - 4) are 4-hyperperfect. 301,49 x 
337, and 75(76 - 6) are 6-hyperperfect. 112 (113 - 10) and 11 16(11 17 - 10) are 10-
hyperperfect. 133 (134 - 12), 134 (135 - 12), and 135(136 - 12) are 12-hyperperfcet. 
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The Klein Bottle Elves 
You will probably never meet one of 

the creatures represented here face to face. 
This is a rare look at some of the dreaded 
Gremlins of Academia. 

Eric Hemmingsen, former chair of 
the Mathematics Department at Syra­
cuse University, was famous for drawing 
these mysterious figures on dinner nap­
kins, when napkins were made of stiff pa­
per. Now, at long last, he has confessed 
that he often had a particular dean in 
mind. That might explain why the elf is 
often drawn when he has tied himself into 
knots and is picking his own pocket, or 
why his head has non-trivial homology. 

The dean is long gone, 
and paper napkins are 
soft , but the Math­
ematics Library at 
S.U. is named the Eric 
Hemmingsen Library. 
It is located right 
in the mathematics 
department and is by 
virtue of its collection, 
as well as its location, a 
most valuable resource. 
Did the Klein Bottle 
Elves help to keep the 
library in the math 
building? 

The IIME Journal invites those of you who paint, draw, compose, or otherwise use th other 

side of your brains to submit your mathematically inspired compositions. 
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FIBONACCI PERIODS IN SYMMETRIC GROUPS 

CHRISTOPHER NOONAN* AND ALAN KOCHt 

Abstract. The Fibonacci Sequence is generalized so that the entries are not integers but 
permutations of a finite set. For any choice of initial conditions the resulting sequence is periodic. 
The concept of period is defined and computed for all Sn, n :5 6. Additional properties are also 
shown, and many questions concerning Fibonacci periods are posed. 

1. Introduction. One of the best known sequences that is usually defined recur­
sively is the Fibonacci sequence. This sequence dates back to the thirteenth century 
and was originally used by Leonardo Fibonacci to study rabbit populations. The 
Fibonacci sequence, denoted Un}, is given by 

fo = 0 

/I = 1 

fn = fn 1 + fn - 2 

Since that time there have been numerous applications of the Fibonacci sequence. In 
1960 D.D. Wall [6] considered the Fibonacci sequence modulo m. He observed that, 
mod m, the Fibonacci sequence would cycle, that is it would repeat itself over and 
over. For example, if m = 4 the sequence is 

0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1 ... 

Notice that f6 = fo and h =: /I (mod4). Since the next term is always the sum of 
the two previous ones, once the initial two terms arise again the sequence must cycle. 
He said that the period of the Fibonacci sequence is 6 mod 4, which is written as 
k(4) = 6. 

The period of the Fibonacci sequence mod p for p a prime has been studied both 
theoretically (for example [1],[2]) as well as computationally (for example [5]). Some 
of the properties of k(p) are 

1. If p > 2 then k(p) is even. (In the case p = 2 we have k(2) = 3.) 
2. If p = ±1 (mod 10) then k(p) divides p - 1. 
3. If p = ±3 (mod 10) then k(p) divides 2(p + 1) but not p + 1. 
4. If p = ±3 (mod 10) then k(p) divides 4. 

Proofs of these facts originally appeared in [6]. See also [4] for proofs using linear 
algebra. The period when pis a prime has been computed up top = 415,993 ([2]). 

A natural generalization of this problem is to change the initial conditions from 
0 and 1. Perhaps surprisingly, this change usually does not change the length of the 
period mod p , although for p congruent to ±1(mod 10) there are sometimes choices 
for initial conditions where the period is exactly one-half of k(p)[4, Th. 3.8c]. 

Of course, there is no reason why the notion of a "Fibonacci sequence" cannot 
be extended to other number systems. It is quote easy to extend the concept to any 
algebraic structure that has both an additive and a multiplicative identity, for example 
fields and matrices. If we drop the usual initial conditions, all that is needed to have 
a Fibonacci sequence is a set with a binary operation. In this paper, we will construct 
Fibonacci sequences where the terms are not real numbers but permutations, and 

*St. Edward's University 
t Agnes Scott College 
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instead of adding the terms we will compose them. Much like when working mod m., 
these permutations will also cycle, and the lengths of these periods can be computed. 

While some preliminary rPsults are given in section 4, the purpose is not to 
completely answer all of the questions concerning Fibonacci periods over symmetric 
groups. Instead, it is to inform the reader of the concept, describe a few basic facts 
about these periods, and provide unsolved problems that are accessible to any second­
year undergraduate student. 

The authors would like to thank M. Jean McKemie for her input during the 
preparation of this paper. 

2. Symmetric Groups. We will briefly describe what a symmetric group is. 
The reader who is already familiar with symmetric groups and their properties may 
skip to the next section. 

Let Sn be the set of all permutations of the set { 1, 2, 3, ... , n }. In other words , 
an element a E Sn is a bijection of the set. We will represent a using cycle notation. 
For example, if a E 86 is given by 

a(1) = 3 
a(4) = 1 

a(2) = 6 
a(5) = 5 

a(3) = 4 
a(6) = 2 

then we write a = (134)(26). To determine how a permutes an element of the set, 
simply find the element, and if it is not adjacent to the right-hand parenthesis, a 
maps this element to the element listed to its right. If it is adjacent to a right-hand 
parenthesis, then a maps this element to the left-most element in the same set of 
parentheses. If the element does not appear at all, it is fixed. 

As another example, if T = (152)(367)(89), then r(1) = 5, r(5) - 2, and r(2) = 1. 
The triple (152) is called a cycle as repeated applications of T cycle through these 
elements. Since it has length three is is called a 3-cycle. Similarly, r(3) 6, r(6) = 7, 
and r(7) = 3. Also, T interchanges 8 and 9 (and so (89) is a 2-cycle). Finally, r(4) = 4 
since 4 does not appear in the cycle notation. 

If a and T are permutations of the set { 1, 2, 3, ... , n}, then so is the composition 
aT, thus aT E Sn· We refer to this as the product of a and T. This can be computed 
using cycle notation by reading right to left. For example, if a = (124) and T = (1324) , 
then aT = (124)(1324). If we wish to find ar(3), the cycle on the right says that 
r(3) = 2. The cycle on the left gives a (2) = 4. Thus ar(3) = 4. Below is a table of 
ar(i) fori = 1, 2, 3, and 4. 

ar(1) = a(r(1)) = a(3) = 3 

ar(2) = a(r(2)) = a(4) = 1 

ar(3) = a( r(3)) = a(2) = 4 

ar(4) = a(r(4)) = a(1) = 2 

This tells us that aT = (124)(1324) = (1342). 
Any element can be written as a product of 2-cycles. (A 2-cycle is also called 

a transposition.) For example, (12345) = (15)(14)(13)(12). While the decomposition 
into transpositions is not unique (notice that (12345) = (15)(14)(13)(12)(12)(12)), 
the number of transpositions in the decomposition for an element is always even or 
always odd ([3, Th. 2.2.15)) . An element a E Sn is called even if it can be written as 
a product of an even number of transpositions. If it can be written as product of an 
odd number of transpositions, then a is called odd. Given a and T we can determine 

·' 
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whether aT is even or odd it works like addition of numbers: 

a T aT 
Even Even Even 
Even Odd Odd 
Odd Even Odd 
Odd Odd Even 

It is not too hard to show that the multiplication works in this manner: the element 
aT can be decomposed into transpositions by decomposing a and T individually. Thus 
if a decomposes into t 1 transpositions and a2 decomposes into t2 transpositions, then 
one decomposition of aT uses t 1 + t2 transpositions. 

The permutation that fixes every element will be denoted e. This element has 
the unique property that ea = ae = a for all a E Sn. 

3. Fibonacci Sequences. It makes sense to define the Fibonacci sequence {an} 
by the recurrence relation 

However, there is no natural choice of initial conditions. While E Sn is analogous 
to 0, there is no element in Sn analogous to 1. It is for this reason that we will 
study Fibonacci sequences with different choices of initial conditions. We will see 
that different choices of initial conditions will give us different period lengths, and 
that there are many more period lengths for Sn than there are in the mod p problem. 
The notation k(Sn, a0 , a 1) will be the length of the period with initial conditions 

ao, a1 E Sn· 
Example. The following calculations show that k(S3, (12), (123)) = 6: 

ao = (12) 
a, - (123) 
a2 = (12)(123) = (23) 
a3 = (123)(23) = (12) 

a4 = (23)(12) = (132) 
a5 = (12)(132) = (13) 
a6 = (132)(13) = (12) 
a7 = (13)(12) = (123) 

To illustrate how the initial conditions can make a difference in the period, notice 
that k(S3, e, (12)) = 2: 

ao = e 
a1 = (12) 

Some natural questions are: 

a2 = (12)(12) = e 
a3 = (12)e = (12) 

1. Given n, what choice of initial conditions gives the largest period? 
2. Given n, what is the maximum value of k (Sn, ao, a,)? 
3. More generally, what are some properties of k(Sn, ao, a1)? 

Let us denote by k(Sn) the longest period using any initial conditions in Sn· 
Those familiar with abstract algebra may ask: why use the group Sn rather than 

any other? By Cayley's Theorem [3, 2.1.16], every finite group of order n can be viewed 
as an subgroup of Sn· In other words, if we know k(Sn) then for any group of order 
n we have an upper bound: k(G) ~ k(Sn)· Furthermore, k(G, ao, a , ) = k(Sn, ao, at), 
where a 0 , a 1 E G ~ Sn, so to answer the question over Sn is to answer the question 
for any two elements picked from any finite group. 
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4. Results. So what is known about k(Sn, cro, cri)? 
1. k(S2) = 3, k(S3) = 8, k(S4) = 18, k(Ss) = 96, and k(S6 ) = 216. 

These have been computed with the help of two MAPLE procedures that 
are given in the appendix. 

2. k(Sn) :5 (n!)2
. 

There are (n!)2 possible ordered pairs of elements in Sn. It is impossible for 
an ordered pair to appear twice without completing a period. 

3. For all i, k(Sn, cro, cri) = k(Sn, cr;, CT;+J ). 
In other words, if you pick any two consecutive terms in a period, then the 

period they generate has the same length as the original period. (In fact, 
it generates the exact same period!) 

4. If either cro or cr1 is an odd permutation (or both) , then k(Sn, cr0 , cri) is a 
multiple of 3. 
This can be shown by considering the three cases. Consider the table below, 

where "E" and "0" represent even and odd permutations. 

CTo CTJ 
Case 1 0 0 
Case 2 0 E 
Case 3 E 0 

CT2 CT3 0"4 CT5 0"6 

E 0 0 E 0 
0 0 E 0 0 
0 E 0 0 E 

CT7 crs 
0 E 
E 0 
0 0 

CTg 

0 
0 
E 

Notice that, in the first case, if the sequence repeats starting with cr; then 
cr; and CTi+J must both be odd. This only occurs when i is a multiple of 
3. The other two cases are similar. 

In the case where cro and cr1 are both even, of course, a; is even for all i, so 
no such conclusion can be drawn. 

5. k(Sn, CT, T) = k(Sn, T, a) if n :5 4. 
This again was determined using the MAPLE procedures. The result is false 

for n 2: 5: k(S5, {12345), {123)) = 12 and k(S5, {123), {12345)) = 14. 
Clearly, equality will always hold if aT = TCT. 

5. Questions. Finally, here are some unsolved problems. 
1. Is there a formula for k(Sn)? There does not seem to be an obvious pattern 

in the results above. There may be a nicer pattern if only k(Sp) is considered 
only when p is a prime the study of Fibonacci sequences modulo m was 
simplified in the case where m was prime. 

2. Is there a better upper bound for k(Sn) than (n!)2? In the examples computed 
above, the actual k(Sn) was nowhere near this bound. In fact, for n :5 6, 
k(Sn) :5 n3. 
Generally, there are clearly better bounds for k(Sn) than (n!)2. For example, 
since Sn- 1 is contained in Sn in a natural way, any period starting with 
two elements in Sn is bounded by k(Sn- d · By the third result, if there are 
two consecutive terms in a Fibonacci period that come from Sn- l , then this 
period is also bounded by Sn. Using the bound k(Sn - d :5 ((n - 1)!)2 gives 

k(Sn) :5 max{ {n!)2 - ((n - 1)!)2 , k(Sn- d 

:5 max{((n - 1)!)2 (n2 - 1), ({n - 1)!)2} = ((n - 1)!)2 (n2 - 1) 

3. If k(Sn, cro, cri) > 3, must k(Sn, cro, cr1) be even? Evidence from n :5 6 seems 
to suggest that this is so. By (7, Cor. 5], if there is a period of odd length 
greater than three then the period cannot contain the identity element. The 
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converse, however, is not true, as no pair of initial conditions cro, cr1 E S6 give 
an odd period of length greater than three. 

Why would knowing k(Sn) be important? One application is in the field of 
cryptology. Every element a E S26 can be thought of as a rearrangement of the 
alphabet. If cro, cr 1 E S26, we can encode a message as follows: to encode the i t h 

letter, use the rearrangement given by cr; , the ith term in the Fibonacci sequence 
given by these initial conditions. This polyalphabetic substitution could be very hard 
to break if k{S26, cro, cr1) were extremely large. 

To demonstrate this cryptological application, here is an example of the idea 
applied only to the vowels. Suppose we want to send the message: AOAU EEE. 
Number the vowels A = 1, E = 2, I = 3, 0 = 4, and U = 5. Pick cro = (13452) and 
cr1 = (1243). The encryption is shown in the following table 

Letter Number CTi Encoded Number Encoded Letter 
A 1 (13542) 3 I 
0 4 (1243) 3 I 
A 1 (45) 1 A 
u 5 (12453) 3 I 
E 2 (1253) 5 u 
E 2 (145)(23) 3 I 
E 2 (14352) 1 A 

so the encoded message is II AIU I A. Why is this difficult to break? For starters, a 
frequency count technique does not work - each letter gets coded differently. Since 
k(S5 , (13452), (1243)) = 54, the pattern will not reemerge until the 55th character. 
Also, if the breaker has a little bit of information, it cannot be used to get more -
for example if someone knew that the first letter was A all that person would know 
is that cr0 (1) = 3 - very little knowledge is obtained about cro itself. In practice it is 
a good idea to pick cro and cr1 so that the cr~s do not have many fixed points. One 
way to do this is to let cro be a 26-cycle and let CTJ be some power of cro. In most cases 
k(S25, cro, crb) = 84. Picking cr1 to be a power of cro decreases the number of usable 
combinations, and hence a person attempting to crack the code has fewer things to 
check. However the number of ways of picking cr0 is still 25!, which is greater than 
1.5 X 1025. 

Appendix: Maple Procedures. This first procedure computes the period 
given the two initial conditions. 

> with(group): 
> period:=proc(a,b) local i,sigma; 
> sigma[O] :=a; 
> sigma[1] :=b; 
> for i from 2 to length(mulperms(a,b))-2 while 

sigma [i-1] <>sigma[O] or mulperms (sigma[i-1] , sigma [i-2]) <>sigma [1] do 
> sigma[i]:=mulperms(sigma[i-1],sigma[i-2]); 
> od; 
> (i-1); 
>end; 
This second procedure computes the maximum period when cro is taken from 

"list" and cr1 is any element of Sn. If "list" consists of one of each cycle type in Sn , 
then maxperiod will give k(Sn)· To use this, you will also need the "period" procedure 
from above. 
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> 
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maxperiod:=proc(n,list) local i,j,s,max,temp,top; 
max:=O; 
s:=elements(permgroup(n,{[[1,2]], [[seq(i,i=1 .. n)JJ})); 
top:=nops(list); 
for i from 1 to top do 
for j from 1 to n! do 
temp:=period(list[i],s[j]); 
if temp>max then max:=temp fi; 
od; 
print (i ,max); 
od; 
max; 
end; 
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THE SUM OF THE K'TH POWERS OF THE FIRST N POSITIVE 
INTEGERS 

A. SALEH-JAHROMI • AND .JULIEN DOUCETt 

Many different methods for calculating the sums of the k'th powers have been 
developed and many articles have been published in this area. For some history of 
the subject, and for a selection of these articles, we mention [1), [2], [3), [4), [5), [6), 
[7), and [8). In this paper we give a new approach to computing the sum, which is 

n 

Sk(n) = "L>k = 1 k + 2k + 3k + 4k + 5k + ... + (n - 1)k + nk, where k ~ 0. (1) 
i = l 

This sum often occurs in computing areas [9) and in analyzing the number of oper­
ations needed to solve linear equations by Gauss elimination [10). We will derive a 
formula for Sk(n) which is recursive ink. 

For the base if the recursion, we note that So(n) = n. For illustration, we compute 
S1 (n) in terms of S0 (n). We start with the formula 

(1+x)2 = 1 2x + x 2
. 

Substituting values for x in this formula, the following table can be created: 

X = 1, 

X = 2, 

x = 3, 

x = 4, 

X = 5, 

(1 + 1)2 = 1 + 2(1) + 12 

(1 + 2)2 = 1 + 2(2) + 22 

(1 + 3)2 = 1 + 2(3) + 32 

(1 + 4)2 = 1 + 2(4) + 42 

(1 + 5)2 = 1 + 2(5) +52 

By adding the left and right-hand sides of these equalities and simplifying, we obtain 

(1 + n)2 = n + 2(1 + 2 + 3 + 4 + 5 + ... + n) + 1. 

Rearranging this and combining it with (1) gives 

n 

St(n) =I> = 1 + 2 + 3 + 4 + 5 + ... + n 

(l + n? - (1 + n) 
= 2 

Now, to compute Sk(n) we start with 

k + l 

(1 + x)k+l = L (k t t)xi 
i = O 

*Loyola Marymount University 
tLouisiana State University in Shreveport 

[1 + So(n)J2 - [1 + So(n)] 
2 

(2) 
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b 
As we did in determining 81 (n), we substitute values for x and create the following 

ta le: 

(I + I)k+1 = (kci1)I + (ki1)I + (k~1)I2 + ... + (kt1)Ik + Ik+1 

(I + 2)k+1 = (kci1)I + (ki1)2 + (k~1)22 + ... + (kt1)2k + 2k+1 

(I + 3)k+l = (kci1)I + (ki1)3 + (k~1)32 + . .. + (kt1)3k + 3k+1 

Again we add the left and right-hand sides of the equalities and in this case we obtain: 

(I + nl+l = (k;j1)n + 
(k+l) ( 1 I+ 2 + 3 + ... + n) + 

(k~1)(I2 + 22 + 32 + ... + n2) + ... + 

(~+1) (I k- 1 + 2k- 1 + 3k 1 + k- 1) k- 1 ... +n + 
(kt1)(Ik + 2k + 3k + ... + nk) +I 

So we get 

[I+ So(n)Jk+l = I + (k;j1)So(n) + (ki1)S1(n) + (k 2 1)S2 (n) + ... + (k .1)Sk(n) 
k- 1 k 

= I + L (k11)Si(n) + (kt1)Sk(n) 
i = O 

Then 

[I+ So(n)jk+1 _ [I + "'~ - 1 (k +1)S·( >] Sk(n) = L-t= O i , n 
k+I (4) 

If~ = I , then equation (4) becomes Si(n) = (Hn? {1+n) = n{1 +nJ . I . h 
vahdity of equation (4). 2 2 1mp ymg t e 

. Equation (4) is an iterative formula. Knowing Sk(n) we can determines. ( ) 
m terms of S, ( ) S ( ) s ( ) S ( ) k+1 n , 
k . o n ' 1 n ' . 2 n , · · ·, k n . Clearly Sk(n) is a polynomial of degree 

+I m n , and can be wntten as 

1 . 1 . 
Sk(n) = k + 1 kk+l + 2nk + a polynomial of degree k - 1, 

when~ the coefficients must sum to 1. The series terminates at n or n2 according 
as k 1

S even_ or ~d~, except for 81 (n). This formula is particularly appropriate for 
computers smce ~t 1s a generlization process for Sk 1 (n). Using MAPLE it is possible 
to calul~te equatw_n (4), for any positive k and n, in the following form: 
S_k(n)-(( ((1+n) (k+1) )-1)-Su.m( 'sum( • i •- 'J' • • 1· '=1 ) • *b' · a1 
( ( ) , .. n 1.nom1. 

k+ 1 , 'j ' ) , \ 'j '=0 .. (k-1) ) ) I (k+ 1) ; 

Ac~owledgement: We would like to thank professor Michael C. Berg of the Math­
~mattcs Depart~ent_, and professor D.C. Moebs of the Physics Department of Loyola 

arymount Umvers1ty for reading this paper and making suggestions. 
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Dear Ghost of Gauss, 
You are the master of all mathematical wisdom. I have studied and computed and 

cannot determine the answer to this question. Please, with your towering mathemat­
ical perspective, settle this question for me: "May I, or may I not, wear a ITME Lapel 
Pin on my ITME Tee Shirt"? 

Frustrated and Anxious. 
Dear F & A, 

In general , no. The Tee shirt's lack of lapels is not an insurmoutable difficulty, nor 
are the cannons of good taste. Yet one further condition is needed. The ITME lapel 
pin must be yours. Going around, taking other people's ITME lapel pins and sticking 
them on your tee shirt will not make you popular in the mathematical community. 

I have spoken. 
P .S. The gold clad keypins are available at the national office at the price of $12 

each. To purchase a keypin, write to the secretary-treasurer: 

Robert M. Woodside 
Department of Mathematics 
East Carolina University 
Greenville, NC 27858 
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FACTORIAL AS A CONTINUOUS FUNCTION 

SEAN EFFINGER-DEAN* 

Experimenting with the program Derive, I came upon an interesting phenomenon. 
When I asked Derive to graph the function y = x!, the program presented a smooth 
line, as if factorial were a continuous function. But, I could not see how something 
like . 7! could even be determined, since factorial, in my mind, was only defined for 

whole numbers! 
However, triangular numbers are defined as 1 + 2 + 3 + ... + n where n is a whole 

number. Gauss, as a schoolboy, found that this is the same as n(n + 1) / 2 which, 
as you will notice, makes sense for all numbers, not just whole numbers. My goal 
was established then: to find a continuous function that was equal to factorial for all 
whole numbers. After days of work (and many failed attempts), I finally discovered 
a very interesting solution to my question, which, I have since learned, is a classic 
result known as Stirling's formula. Be aware that my goal was not to find a proof 
for this formula; it was simply to investigate and, possibly, discover something about 
factorial. Therefore, some of the series I have used are not convergent, and must be 
considered "formal" series instead. Here is what I did to reach my solution, step by 

step. 
Starting with n! = 1 · 2 · 3 · · · n, we take logarithms and use Taylor series to get: 

ln(n! ) = t ln(i) = t I) - 1)k+1 (i - .1)k 
. . k t- 1 t- 1 k=1 

These terms are rearranged, (even though most of these series are not convergent.) 

( )
k+1 n oo ( 1)k+1 n - 1 

1 ( ') ""' - 1 ""'(. 1)k ""' - ""' ·k n n. = ~ k ~ z - = ~ k ~ z 
k = l i = 1 k = l i = l 

We denote Z:7=
1 

ik by fk(n), so, setting u = n- 1, we have 

1 1 1 
ln(n! ) = J.(u) - - h(u) +- fa (u) - - j4 (u) + · · · 

2 3 4 

Using formulas for fk( u) see for example the previous article, 
1 

we get 

Hmmmmm ... let's take the derivative! 

•saratoga Springs High School 
1 Editorial Note: The author derived the formulas for the sums of the k 'th powers of the integers 

quite differently from methods in previous article. He establishes the recursion 

and reports on interesting patterns for the value of the constant c as k increases. 
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Regrouping by first terms, second terms, etc .... 

d ln n! u2 u3 1 2 1 2 ~ = [u - 2 + 3 - · · ·] + 2 [ 1 - u + u - ... ] -
12 

[ 1 - 2u + 3u - ... ] + ... 

These are all Taylor expansions! 

d ln n! 1 1 1 
~ = ln(n) + 2n - 12n2 + 120n4 - · • · 

where we have replaced ( u + 1) by n. Integration yields 

ln(n) 1 1 1 1 
ln n! = b + n ln(n) - n + -2- + 12n - 360n3 + 1260n5 - 1680n7 + ... 

where b is simply a constant. Hence we get: 

n! = (B)nn/Tiexp ( - n + -
1
- - -

1
- + -

1
- - -

1
- + · · ·) 

12n 360n3 1260n5 1680n7 

where B = eb. Using large integral values for n to approximate B, we find that B -
2.5066282746310005 .... This constant doesn't look familiar, but some experimentation 
with a calculator seems to show that B = J21T. 

My formula turns out then to be what I'm told is Stirling's formula! 

n! = nnJ21mexp ( - n+ _1_- _1_ + __ 1_ - __ 1_ + .. ·) 
12n 360n3 1260n5 1680n7 

The graph below shows plots both of Mathematica's y = x! and of my result, 
which appear to correspond nicely after about x = 0.6. 

,. I 
.. 
I 

··I 

Sean Effinger-Dean , Saratoga Springs High School, Saratoga Springs, NY, 12866. 

seffinge skidmore.edu 

Sean Effinger-Dean is currently a senior at Saratoga Springs High School. His 
main interests include mathematics, physics, and music, especially musical theater. 

Editor's Comment. This paper is a brilliant example of how far a student can 
get using modern tools with mathematical insight. Sean rediscovered a classical result 
several years before he is scheduled to see it in a good undergraduate curriculum, 
where it would most likely be stated without proof. The reader is encouraged to 
compare Sean's approach with a combinatorial proof of Stirling's formula (see e.g. 
Bogart, Introductory Combinatorics, Harcourt Brace) in order to justify the use of 
formal power series. 
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SOME PROPERTIES OF THE EQUATION S(X) = K 

REX H. WU* 

265 

In 1979 Florentin Smarandache introduced a number theoretic function. :or 
any positiv~ integer n, the Smarandache function S(n) is defined as S(n~ = k I! k 
is the smallest positive integer such that n divides k!. Since then, some mterestmg 
properties have been discovered about this function. Just one example, for x > 4, the 

expression 

1r(x) = - 1 + t [S~)] • 
k =2 

where [x] is the greatest integer function, gives the exact number of primes less than 

or equal to x, [1]. · · h h 
In this note, we will look at some elementary properties associated wtt t e 

equation S(x) = k. 
First let's see how we can solve the equation S(x) = k. Suppose 

' 

T
h k' <>t +.Bt <>2 +.82P<>3 fh ... p<>1 +.8; p~1+ t ... pf', for some prime Pi and nonneg· 

en . = PI P2 (3 3 . h . 1J 2 3 J+I. t Here j is used as the number 
ative integers a i and i; Wit z = ' ' ' · · · 'J, · · · ' · . . 1 
of prime factors of k. Note that if Pi is a prime that divides k but not (k - 1)., 
then take ai = 0. If xo were a solution to S(x) = k, then Xo I k!. Furthermore, 
xo f (k - 1)!. Obviously x0 contains some factor ~7', where ai < "Yi S ai + f3i, for 
some i = 1, 2 3, ... , j. So we have our first concluswn. . h 

THEOREM 1. x0 is a solution to S(x) = k if and only if xo = M NQ, w ere 

M = I1P7', 
i EI 

where I can be any nonempty subset of { 1, 2, 3, . · · , j} and 1 S Ai S f3i; 

rr a · 
N = Pi', 

i EI 

h · 'fp · •s a prime that divides k but not (k - 1)!, then take ai = 0; and Q w ere, agazn, z , • 
is any factor of (k - 1)! / N. 

Proof. We have 

MN = I1Pf 1+>- •. 
iEI 

S. . <~ . +\ .< a·+ (3 · we know MN 1 k! but MN f (k - 1)!. For N, using the 
Ince a, ._., "'• - • " · MN d. · d 

h. h t ent ~ . so that p~ · 1 (k - 1)! is essential. Otherwise, may IVI e 
Ig es expon ._., • . . . (k 1)' / N th 

(k - 1)! and rendering M N not a solution. Furthermore, If Q divides · - · , en 

*NYU Downtown Hospital 
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MNQ divides M(k - 1)! which in turn divides k!. Therefore, MNQ is a solution to 
S(x) = k. 

Observe that using all the nonempty subsets of { 1, 2, 3, . .. , j } for M would 
generate all the factors of k. In combination wit h all the factors of (k - 1)! / N, we 
have all the solutions to S(x) = k. 

Suppose there is a solution xo to S(x) = k , we are going to show xo is of the 
form M NQ. Let x0=p~ 1 p~2p~3 

• • • p;;- . Note that S(xo) - k = max{S(p~ ' )} for 
i = 1, 2, 3, ... , m; with m ~ t . Obviously, if Pi is not a factor of k, S(p~ ·) < k. Even if 
Pi is a factor of k, if C:i ~ o:i, then S (p~') < k because S (p~ ' ) I (k - 1)!. If C:i > o: ; + f3i 
S(p~' ) > k. Therefore, we have Pi I k and o:i < C:i ~ o:, + fk Notice that there can 
be more than one such pi's such that S(p~· ) = max {S(p~ ' )} if k has more than one 
prime factor . This shows if Xo were a solution, then Xo contains M N = nt=l p~ 1 ' for 
some subset I of {1, 2, 3, ... , j} and o:i < C:i ~ O:i + fk Also notice that any multiples 
of MN, say MNQ, is a solution to S(x) = k, provided MNQ I k!. The question is 
what can Q be? 

Obviously, MNQA = k!, for some integer A. QA = k! / MN = (k / M)((k - 1)! / N). 
From the previous expression, Q can be any factor of (k - 1)! / N. What if Q contains 
a prime factor Pq such that pq is also a factor of k? Then Pq must have an exponent 
cq ~ o:q, in which case p~• is a factor of (k - 1)!/N. Otherwise, S(p~•) = k if 
o:q < C:q ~ o:q + {3q , but then this factor would be part of M N. Or S(p~• ) > k if 
cq > O:q + /3q· Therefore, we can only have Q I ((k - 1)!/N). D 

An example would best illustrate this theorem. Lets solve S(x) = 12. Here 
k = 12 = 22 x 3, (k - 1)! = 11! = 28 x 34 x 52 x 7 x 11. Let's look at the number of 
solutions instead of each individual solution. Obviously, the number of solutions for 
any particular M is r (Q), where r(n) is the number of factors for the positive integer 
n. If n = pg0pr ' P~? · · · P~" , then r(n) = (o:o + 1) (o:t + 1) (o:2 + 1) · · · (o:n + 1). 

M N Q = 11!/N r(Q) = number of solutions 
2 28 factors of 34 x 52 x 7 x 11 60 
3 34 factors of 28 x 52 x 7 x 11 108 
22 28 factors of 34 x 52 x 7 x 11 60 
2 x 3 28 X 34 factors of 52 x 7 x 11 12 
22 X 3 28 X 34 factors of 52 x 7 x 11 12 

Adding up the last column gives a total of 252 solutions. 
While the above t heorem works, it gets cumbersome if k gets large. Let's explore 

a little bit and look for a simpler method. We will also switch our attention to look 
for the number of solutions rather than all the specific solutions to S(x) = k. 

THEOREM 2. x o is a solution to S(x) = k if and only if xo I k! and k f (k! / xo) . 
Proof Suppose x o is a solution to S(x) = k , then by definition, x o I k! and for any 

n < k, xo f n!. It suffices to show the case n = k - 1, since if .ro f (k - 1)! then x o f n! 
for any n < k - 1. Therefore, for n = k - 1, x o f n! implies k x o f k! or k f (k! / xo) . 

Let's say xolk! but k f (k!/xo). Since k f (k! / xo) is equivalent to kxo f k!, or 
Xo f (k 1)!. Obviously, if xo f (k - 1)! , then x o f n! for any n ~ k - 1. This is the 
very definition of the Smarandache function. Therefore, S(x0 ) = k. 0 

Theorems 1 and 2 are actually equivalent. To see if !vi NQ is a solution or not, 
all we need to do is to see if k divides k! / (MNQ ) or not. Suppose Pm is one of the 
primes used in M N , i.e. 1 ~ m ~ j, then M N Q = p~"' +A m A, for some integer 
A and 1 ~ Am ~ !3m· So k!/(MNQ) = p~· >. ,.. B for some integer B. Obviously, 
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k f (k! / (M NQ)) because k has a factor p~r· and p~· f p~,;" >. m.B . 
COROLLARY 3. If k is zwime, then there are r(k!)/2 solutwns tv S(x) = k . 

Proof Let 's pair up the divisors of k! such that the product of ('ach pair is k! , 
i.e., if x o 1 k!, tlwn .r0 is paired up with k! / x0 • k is prime implies k f ( ~ - 1)!. Then 
either k 1 xo or k 1 (k! /xo) but not both. If k f xo, then k!/xo is a solut10~1 to S(x) = 
k. Otherwise, xo is. T his shows exactly half of the factors of k! are solut10ns to S(.c) 

= k if k is prime. D 
Once W f!' know theorem 2, we can look for the number of solut ions to S(x) = k 

with ease. Let's denote w(k) the number of solutions to S(x) = k. 
COROLLARY 4. There are w(k) = r(k!) - T ((k - 1)!) solutions to S(x) = k. 

Proof According to Theorem 2, this is to look for the number of factors of k! 

that are not divisible by k. 
Let's look at the factors of k!, in particular, we are interested in the ones that are 

not divisible by k. To look for those, we will find out the numb~r of factor~ that are 
divisible by k , i.e. , factors of the form kA , for some integer A. Smce kA I k. , we have 
A 1 (k _ 1)!. There is a total ofT ((k - 1)!) such A's. Since tl~e~e. are r(k!) factors of 
k! , there are w(k) = r(k!) - r ((k - 1)!) factors that are not chvtstble by k . ~ . 

Corollary 2 gives another proof to corollary 1. If k is prime, then k = Po Is a pnme 
different from all the primes less than or equal to (k - 1). If there are T ((k - 1_}!) 
factors for (k - 1)!, then,r(k!) = T (k(k - 1)!) = r{k )r ((k - 1)!) = 2r ((k - 1)!), wlnch 

is the same as w(k) = r(k!) / 2. 
Now let's look at the first 15 values for w(k). Note that w(12) confirms the result 

we obtained using theorem 1. 

k r (k!) w(k) 

1 1 1 
2 2 1 
3 4 2 
4 8 4 

5 16 8 
6 30 14 
7 60 30 
8 96 36 
9 160 64 
10 270 110 

11 540 270 
12 792 252 
13 1584 792 
14 2592 1008 
15 4032 1440 

Pay attention to the r(k!)'s and w(k)'s where w(k) = r(k!) / 2 = ~ ((k - 1)!). Also 
look at the corresponding k . A pattern seems to arise. The k's are pnme except when 
it is 4. One may wonder if this pattern would be true for all . 

Before we go onto proving the above statement, we need to utilize a function , 
E(n,p) , which gives the largest exponent of a prime p such that PE(n,p) I n!. 
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gives the numerical value of E(n, p), where [x] is the greatest integer function. In 
particular, if n = pm, 

E( ) 1 + + 2 m- 1 Pm - 1 
n , p = P P + ··· + p = ---. 

p - 1 

Also observe that 
(i) if n = Np, for some positive integer N, then N = ~ S E(n,p) with equality 

only when N < p and 
(ii) if P1 > P2, then E(n,p1) S E(n,p2 ). 

LEMMA 5. If n = Qpm for some prime p and some integers Q and m , then 
E(n,p) = Q E(pm,p) E(Q,p). 

Proof 

E(n,p) = L [~] 
i=1 p 

=2.:: -i [
Qpm] 

i=1 p 
m oo 

= L Qpm- i + L [ Qpm- i] 

i=1 i=m 1 

= Q(1 + p+ p2 + ... + pm- 1) + f [~] 
i=1 p 

= QE(pm,p)+E(Q,p) D 

THEOREM 6. If ther are r(k!)l2 solutions to S(x) = k, then k is prime or 
k = 4. 

Proof. Here, w(k) = r(k!) - T ((k - 1)!) = r(k! )l2. Or equivalently, if r(k!) = 
2r ((k - 1)!) then k is prime or k = 4. If we could show that k is a composite number 
other than 4 implies r(k!) =/:- 2r((k - 1)!) and we are done. 

Again, let's write k and (k - 1)! in their canonical prime factorization forms, 

k = P~1 Pg2P~3 
• • ·p~i and (k - 1)! = pf'p~2pg3 

• • ·p;1 P?1' · · ·p~'· Then, E(k,pi) = 
ai + /3i and E(k - 1, Pi) = ai. 

Next, we will look at the inequality /3i S ~, for some positive integer i S j. In 
particular, we a!e interested in whether r(k!) = 2r ((k - 1)!) or not when f3i S ~ 
and when /3i > ~. 

If w~rewrite k = Qpf' , then from the lemma, we have E(k,pi) = E(Qpf' ,p;) 

= QE(pi • ,p;) E(Q,p;). Furthermore, a; = E(k,pi) - /3; = QE(pf' ,p;) E(Q,pi) ­
/3;. Suppose /3i > a;/2j, then a substitution for ai and some rearrangements give 
2j + 1 > ( Q E(pf' , p;) + E(Q, p;))l /3;. And finally, 

(1) 2j + 1 > Q pf• - 1 + E(Q,p,) 
/3i (p; - 1 ) /3; 

Case (I). k has only one prime factor, k = pf3 with (3 > 1. 
From the assumption, we have j = 1 and Q = 1. From Equation (1) we have 

pf3- 1 
3> . 

f3(p - 1) 

·' 
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Note that E( Q, p) I /3 = E( 1, p) I /3 = 0 . There are only a few cases that this inequality 
is true, namely, (p, /3) = (2, 2), (2, 3) and (3, 2), corresponding to k = 4, 8 and 9, 
respectively. By assumption k =f. 4. It is easy to check that r(8!) =/:- 2r(7!) and 

r(9!) =f. 2r(8!). 
Case (II). k has 2 distinct prime factors, k = p~1 pg2 with /3i > 0. 
Here, j = 2 and without loss of generality, Q = p~1 • Again, we have 

f32 1 E(Q ) 
2j + 1 = 5 > Q P2 - + , P2 . 

/32 (P2 - 1) /32 

The inequality is true if (Q,p2, 132) = (2, 3, 2), (2,p2, 1), (22,p2 , 1) for some prime P2 2: 
3 and (3,p2, 1) for some prime P2 2:5. 

For (Q,p2 ,(32 ) = (2,3,2), we have k = 18. A little computation shows that 

r(18!) =f. 2r(17!). 
For (Q,p2 , /32) = (2, p2, 1), or k = 2p2, ifT((k - 1)! ) = (a1 + 1) (a2 + 1) ···(at+ 1), 

then r(k!) = (a1 + 1 + 1)(a2 + 1 + 1)(a3 + 1) ···(at + 1). If r (k!) = 2r((k - 1)!), 
we have (a1 + 1 + 1)(a2 + 1 + 1) = 2(a1 + 1)(a2 + 1). Simplifying the last equation 
gives 2 = a 1a 2. Therefore (a1, a 2) = (1, 2) or (2, 1). From observation (ii), we know 
(a1, a 2) = (1, 2) is not possible. It is also impossible for (a1, a2) = (2, 1) because 

a 1 = 2 =/:- E(2P2 - 1, 2) for any prime P2· 
The argument is identical for (Q,p2,/32) = (3,p2,1). When we reach (a1,a2) = 

(2, 1), we have a 1 = 2 = E(3p2 - 1, 3). Here, we have 3p2 - 1= 6, 7 or 8. But then 
there is no p2 > 3 satisfying this condition. 

Similarly, for (Q,p2 ,(32 ) = (22,p2, 1), we have 4 = (a1- 1)a2 after equating 
r((22p2)!) = 2r((22p2 - 1)!). Solving 4 = (a1 - 1)a2 to get (a1, a2) = (2, 4), (3, 2) 
and (5, 1). Again, by observation (ii), (a1, a2) = (2, 4) is impossible. (a1, a2) = (3, 
2) is also impossible because a 1 = 3 = E(22p2 - 1, 2) implies 22p2 - 1 = 4 or 5. But 
there is no such a p2. For (a1, a2) = (5, 1), a1 = 5 =1- E(22p2 - 1, 2) for any P2· 

Case (III). k has 3 distinct prime factors, k = p~1 pg2 p~3 with /3; > 0. 

Here, j = 3 and Q = p~1 pg2 2: 2 x 3 = 6. The inequality 

f33 1 E(Q ) 
2j + 1 = 7 > Q P3 - + , P3 

/33(p3 - 1) /33 

holds if (Q,p3 ,(33 ) = (6,p3, 1) for some prime P3 2: 5. That is k = 2 x 3 x P3· 
Again, setting T(k!) = 2r((k - 1)!) yields 2(a1 + a2 + a3 + 3) = a1a2a3. From 
observation (i), we know a 1 = E(6p3, 2) > 3p3 2: 15, a2 = E(6p3, 3) > 2p3 2: 10 
and a 3 = E(6p3,p3) ;::: 6. It is easy to verify that under these conditions a1a2a3 > 
2(a1 + a2 a3 + 3). 

Case (IV). k has 4 or more distinct prime factors. 
We have j 2: 4 and 

j - 1 

Q = 11 pf• 2: 2 X 3 X 5 = 30. 
i=1 

Since 2j + 1 < Q, we have 
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N ~e ,ha~e just shown 1(k!) f:. 21((k - 1)!) for the special cases when /3· > a-j2j 
k iw

4 
~~ f3s s ~ow_ 1~;~!)H< Ve r((k - 1)!) < 2:((k - 1)!) for any other composi~e nu~1bp1: 

' - ~·. J .. ere e = 2.71828 ... Is the Euler number. 
/3i _:::::: a;/2J Implies /3i < (ai + 1)/2j. We also know 

r(k!) = (a I+ f3I + 1)(a2 + fJ2 + 1) · · · (aj + /3j + 1)(aJ+I + 1) ... (a
1 

1) 

and 

rW· - 1)!) = (a I+ 1)(a2 + 1) · · · (aj + 1)(a H I 1) . .. (a
1 

+ 1). 

Since all factors after the (j + 1)'st term are the same, it suffices if we just look at 
(a! +/31 + 1)(a2 +/32+ 1) · · · (aj+/3j +1) and (a1 + 1)(a2+ 1). · ·(a ·+1) S b tl 
we have J • u sequen y, 

(a! + 1 + /31) . .. (aj +I+ /3j) < (al + 1 + a I -: 1) ... (a . + 1 + aj + 1) 
2] J 2j 

= (ai + 1) ... (aj + I) ( 1 + 2~ r 
Since lim (1 + ..!...)j - . (;; d ·t · t · 1 · · 2j - v e an I IS a s net y mcreasmg function, we have 

(ai + 1 + /h) (a2 + 1 + 132) · · · (aj + 1 + /3j) < v'e(ai + 1)(a2 + I) ... (aj + 1) 

< 2(ai + 1)(a2 + 1) · · · (aj + 1). 

In other ~01:ds , r(k!) < .je1((k - I)!) < 2r(( k _ I)!). 0 
Combmmg corollary I and theorem 3, we have: 

or k ~H:~REM 7. There are r(k!)/2 solutions to S(x) = k if and only if k is prim 

COROLLA~Y 8. r(k!) = 2r((k - I)!) if and only if k is prime or k = 4. 

Proof This follows from Theorem 7 if we let r(k!) / 2 = r(k!) _ r((k _ 1)!). 0 
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Rex H. Wu , NY Downtown Hospital, Department of 1\lcdicine, 170 William Street New York NY 
10038, rexhwu aol.com ' ' 

~ex !f· Wu is a physician at NYU Downtown Hospital who saw the airplane 
crashmg mto the World Trade Center on September 11 2001 He co ld 't · · 

1 ld d · . ' · u n 1magme 
reo~ e ~ou d . 0 ~uch VICIOUS acts. Only blocks away, he and his colleagues treated a 
s~~ tmn re VIctuns at NYU ~owntown Hospital that day. He also volunteered on­
r ~le n~xt _couple days. He Wishes to express his deepest sorrow to all the innocent 
Ives ost urmg the attack. And his greatest respect goes to all the heroes on ground 

zero. 
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CLAYTON W. DODGE RECEIVES THE C. C. MACDUFFEE AWARD 
FOR DISTINGUISHED SERVICE 

On August 4, 2001, at the annual meeting of Pi Mu Epsilon in Madison, Wiscon­
sin, the C. C. MacDuffee Award for Distinguished Service was presented to Clayton 
W. Dodge, Professor Emeritus of Mathematics at the University of Maine. The lo­
cation of this presentation was of historic significance, because Cyrus C. MacDuffee, 
seventh president of Pi Mu Epsilon, was Professor at the University of Wisconsin. 
The Award, established in 1966, honors the memory of this superb teacher and al­
gebraist, whose dedication and service profoundly influenced our society. Previous 
award recipients are J . Sutherland Frame, Richard V. Andree, JohnS. Gold, Francis 
Regan, J. C. Eaves, Houston Karnes, Richard Good, Milton D. Cox, and Eileen L. 
Poiani. 

Professor Clayton Dodge was an active student at Miss Blakeslee's Kindergarten 
in Malden, Massachusetts, and his later education was "all downhill from there". In 
1949, he graduated from Browne and Nichols School in Cambridge, Massachusetts, 
spent a semester at Harvard and eventually graduated from the University of Maine in 
1956, majoring in mathematics with minors in electrical engineering and psychology. 

He labored to teach arithmetic, algebra, and science for a whole six months at 
Brecksville Junior-Senior High School in Ohio and joyfully returned to teach at the 
University of Maine as an instructor of mathematics. In 1960 he received a master's 
degree in mathematics under Howard Eves, who inspired him to work in geometry and 
problems. He did graduate work in mathematics at Brown University in 1960-I961. 

For two years in the early 1960's, he assisted Howard Eves in editing the Elemen­
tary Problems Department of the American Mathematical Monthly. Later, he served 
on the University of Maine Problems Group for the seven years that it edited that 
department. In 198I he assumed the editorship of the Problem Department of the Pi 
Mu Epsilon Journal. 

With the current issue, Clayton Dodge has completed a remarkable 20 years as 
Problems Editor of this Journal. Starting with problem #462, (Spring 1980, Vol­
ume? No2) problem proposals were sent to Clayton Dodge, while Leon Bankoff was 
still problems editor. Transition from Leon Bankoff to Clayton Dodge took place over 
the period of a year. With the spring 1982 issue his apprenticeship had ended. All 
problem proposals and solutions were received, handled with care, formulated, pol­
ished, checked and corrected by Clayton Dodge, until problem #1006, which was the 
last problem whose solution was to be sent to the by now so familiar address. The 
Fall 2000 issue was the start of a new transition. More than half of all the problems 
published thus far in this Journal have gone through the hands of Clayton Dodge. 

He has written five published textbooks, two others that were duplicated for use 
in his classes and has written several articles primarily on pedagogy, geometry, and 
calculators. A strong advocate of the use of calculators and computers by students, 
he wrote text material and taught several courses in their use, emphasizing the under­
standing of their workings so as to maximize their usefulness and make their results 
meaningful, see for example [1) . When color came to computers, because there was a 
great lack of appropriate software, he wrote software for graphing functions in both 
2 and 3 dimensions, for demonstrating basic concepts of the calculus, and for grade 
books, software that gained wide acceptance during the DOS years. 

Since retirement he has helped build houses for the local chapter of Habitat for 
Humanity and he serves on its board of directors. He sings in a choir and an oratorio 
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society, and he has taken up the sport of scuba diving in warm tropical waters. He 
dabbles in stained glass and enjoys working around the house. 

For a mathematical project, he is editing notes for a book on the arbelos, written 
by the late Victor Thebault of France and the late Leon Bankoff of Los Angeles, for 
60 years a practicing dentist and PMEJ problems editor from 1968 to 1981. The 
arbelos is the figure formed as follows. Draw two mutually tangent circles, external 
to one another and not necessarily the same size. Surround these circles by another 
circle just tangent to them both. These circles all share a common diametral line. 
Cut the figure along this line and throw away one half, including the line. The figure 
that remains, looking like a bent two-tined fork, is the arbelos, also known as the 
shoemaker's knife. It may also be described as a triangle whose sides are semicircles 
and whose angles are all zero degrees. 

FIG. 1. Professor Dodge never goes anywhere without his arbelos. 

We hope that after the transition to the new problems editors is complete, Clayton 
Dodge will quickly complete his arbelos task, the impatient reader may enjoy a preview 
in [2J. 
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PROBLEM DEPARTMENT 

EDITED BY MICHAEL MCCONNELL, JON A. BEAL, AND CLAYTON W. DODGE 

This department welcomes problems believed to be new and at a level appropriate for the readers 

of this journal. Old problems displaying novel and elegant m ethods of solution are also invited. 

Proposals should be accompanied by solutions if available and by any information that will assist 

the editor. An asterisk (*) preceding a problem number indicates that the proposer did not submit a 

solution. 
All correspondence should be addressed to Michael McConnell, 840 Wood Street, Mathematics 

Department, Clarion University, Clarion, PA 16214, or sent by email to mmcconnell@clarion.edu. 

Electronic submissions using Iffi.Tp;X are encouraged. Please submit each proposal and solution prefer­

ably typed or clearly written on a separate sheet (one side only) properly identified with name, affil­

iation, and address. Solutions to problems in this issue should be mailed to arrive by July 1, 2002. 

Solutions identified as by students are given preference. 

Problems for Solution. 

1021. Proposed by Tom Moore, Bridgewater State College, Bridgewater, Mas­

sachusetts 
Student solutions solicited 
Let D(n) be the sum of the (base 10) digits of the positive integer n. Are there 

twin primes p and p + 2 such that D(p) = D(p + 2)? 

1022. Proposed by William Chau, Middletown, New Jersey 

Find an ordered pair (n, m) where n and m are composite numbers such that 

n! = m2 , or prove that there is none. 

1023. Proposed by Albert White, St. Bonaventure University, St. Bonaventure, 

New York 
If U1 = 16 and Un+l = Un + 8n + 12, find 

1024. Proposed by Clayton W. Dodge, University of Maine, Orono. Maine 
Find the largest positive integer b and an integer c such that 

J 2002 + b.jC + J 2002 - b.jC = 64. 

1025. Proposed by Ayoub B. Ayoub, Pennsylvania State University - Abington 

College, Abington, Pennsylvania 
Find the following in simplest form; 

1026. Proposed by Ayoub B. Ayoub Pennsylvania State University - Abington 

College, Abington, Pennsylvania 
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Express the value of the following (n 1) x (n + 1) determinant as a product 
involving linear factors of x ;'s and a;'s. 

(x1 + ai)n 
(x2 + ai)n 

(xl + a2)n 
(x2 + a2)n 

(xl + Cln+J )n 
(x2 + Cln+J )n 

1027 . .James Chew, North Carolina Agricultural and Technical State University, 
Greensboro, North Carolina 

Student solutions solicited 

Let a jar contain 1 green marble and 9 red marbles, thoroughly mixed. One 
marble is randomly drawn, and its color is noted. A second jar contains 2 green 
marbles and 8 red marbles. One marble is drawn from the second jar and again the 
color is noted. The next jar contains 3 green marbles and 7 red marbles. One marble 
is drawn from the third jar and again the color is noted. Repeat this process until a 
fifth marble has been drawn from the jar containing 5 green and 5 red marbles. Let 
X = the number of green marbles drawn. Calculate P(X = i), i = 0, 1, 2, ... , 5. 

A local newspaper gives probabilities of rain for the next 5 days as: lOo/c , 20o/c , 
30% , 40% ,50o/c . Use the marbles-in-the-jar model to determine the probability of 
getting a) exactly two days of rain, b) at least two days of rain. 

1028. Proposed by Editors. 
As a modification of #1027, explain how to modify the model in problem 1027 so 

that the assumption of independence is removed. Based on your new model, determine 
the probability of getting a) exactly two days of rain, b) at least two days of rain. 

*1029. Proposed by Ice B. Risteski, Skopje, Macedonia. 
If P and Q denote the linear differential operators 

m n 

(D = _!!_) 
dx 

P = L:>;(x)Di, 
i = O 

Q = Lqi(x)Di, 
j =O 

show that 

m +n 

QP = L r8 (x)D 8
, 

s - O 

where 

n { [ min(s,m) . l } 
rs(x) = L L s J i P~ i j - s)(x) Qj(x) 

j = max(O,s - m ) i = max(O,s - j) ( ) 

1030. Proposed by Ayoub B. Ayoub, Pennsylvania Stat University Abington 
College, Abington, Pennsylvania 

On the sides of an arbitrary triangle ABC, three equilateral triangles, A1BC, 
AB1C, and ABC1 are drawn outward. Then on the sides of the triangle A1B1C1 , 

another three equilateral triangles A2B1C1, A1B2C1, and A1 B1C2 are drawn out­
ward relative to the triangle A1B1C1. Show that each set of points {A2 , A, A1}, 

·' 
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{B
2

, B, B1 } , and { C2 , C, Cd lie on a straight line and that the three lines meet in 

one point. 

and 

Bz c, 

1031. Proposed by Andrew Cusumano, Great Neck, New York 

Notice that 

1161 + v'25920 + 1161 - v'25920 = 7. 

Generalize this by showing that 

3 x3 - 3x (x2 - 1)v'x2 - 4 3 x 3 - 3x (x2 - 1)JX2=4 _ ---+ + - - X. 
2 2 2 2 

1032. Proposed by Robert C. Gebhardt, Hopatcong, New Jersey 
Consider an equilateral triangle with sides of length 1 unit, as shown ~elow. From an 
arbitrary interior point P, draw perpendiculars PQ, PR and PS. Fmd the sum of 
the lengths of PQ, PR, and PS. 

Q 

1033. Proposed by K enneth B. Davenport Frackville, Pennsylvania 
Student solutions solicited 

Show that 

2 sin(20) - 3 sin(O) _ _ tan (~) 
1 - cos(O) - 2 cos(20) - 2 

for all values of 0 where both sides are defined. 
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Solutions. 

994. [Fall 2000] Proposed by the editor. 
Although the alphametic BRENNER = (JOEL) 2 has no solution in base ten, 

there is a number M such that BRENNER is the square of a positive integer x in 
every base greater than or equal to M. Furthermore, the same four digits are used 
for B, R, E, and N in each such base. Find these digits, the value of M, and the 
digits of x, the square root of BRENNER. 

I. Solution by William H. Peirce, Rangeley, Maine. 
In a computer search of over 36,000cases in bases ten or greater, eighteen instances 

were found where BRENNER was the square of a 4-digit number. In each such 
BRENNER in a given base M where a carry occurred in squaring x, the number 
formed by that BRENNER was not a square in base M + 1. It is easy to see that, in 
fact, since BRENNER is to be a square in every base larger than M, no carry can 
occur in the squaring; carries will not occur when the base becomes large enough. In 
the six cases where BRENNER was a square and no carry occurred in the squaring, 
BRENNER was a square in all larger bases. 

Thus if the four-digit number x is abed in base !vi and if there are no carries in the 
squaring, we must have B = a2 , R = 2ab, E = 2ac+b2, N = 2ad+2bc, N = 2bd + c2 , 

E = 2cd, and R = d2 . We must therefore have 2ab = d2 , 2ac + b2 = 2cd, and 
2ad + 2bc = 2bd + c2 , whose unique solution in positive integers is b = c = d = 2a. 
Then we have, for any base !vi;::::: 12a2 + 1, 

The smallest solution is x 2 = (1, 2, 2, 2)2 = (1, 4, 8, 12, 12, 8, 4) = BRENNER in 
all bases M ;::::: 13. 

II. Comment by Kenneth M. Wilke, Topeka, Kansas. 
Note that (1,2,2,2) in base M is equal to (1,5,9,7) in base M - 1, so we can say 

that we do have the pseudo-solution (BRENNER) = (1, 4, 8, 12, 12, 8, 4) in base M 
is the square of (JOE' L) = (1, 5, 9, 7) in base M - 1, where, unfortunately, E =I E' . 

III. Comment by Mark Evans, Louisville, Kentucky. 
I found the following solutions to the equation (JOEL) 2 = BRENNER: 

(4, 1, 7, 6)2 = (16, 10, 7, 12, 12, 7, 10) in base 26, 

(3, 51, 27, 8)2 = (15, 6, 27, 44, 44, 27, 6) in base 58, 

(6, 5, 52, 26)2 = (36, 68, 52, 35, 35, 52, 68) in base 76, 

(5, 81, 68, 27)2 = (35, 57, 68, 53, 53, 68, 57) in base 84, and 

(8, 41, 24, 81)2 = (70, 21, 24, 60, 60, 24, 21) in base 109. 

Also solved by Paul S. Bruckman, Sacramento, CA, Richard I. Hess, Rancho Palos Verdes, 

CA, H.-J. Seiffert, Berlin, Germany, Kenneth M. Wilke, Topeka, KS, and the Proposer. 

995. [Fall 2000] Proposed by Peter A. Lindstrom, Batavia, New York. 
a) Consider the geometric-arithmetic recursive sequence f given by 

f(l) = a,f(2) = ar+ d, and f(i) = rf(i - 1) d fori 2::2, 

where a, d, and rare nonzero constants, r =/1, and i is an integer. Express E~-l f(i ) 
in closed form. 

.. 
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b) Consider the arithmetic-geometric recursive sequence g given by 

g(l) = a, g(2) = r(a d), and g(i) - r(g(i - 1) +d) fori 2:: 2, 

where a, d, and rare nonzero constants, r =/1, and i is an integer. Express L:~=l g(i) 
in closed form. 

Solution by Ovidui Furdui, student, Western Michigan University, Kalamazoo, 
Michigan. 

a) From the recursion formula we see that 

n n n I 

L f(i) = r L f(i - 1) + d(n - 1) = r L f(i) + d(n - 1), 
i = 2 i = 2 i = l 

from which it follows that 

(1 - r) L f(i) = f(l) - r f(n ) + d(n - 1). 
i = l 

It is easy to observe and prove by mathematical induction that 

rn - 1 - 1 
f(n) = arn- 1 + d + dr + dr2 + · · · + drn 2 = arn - ! + d - - ­

r - 1 

We combine these latter two equations to find that 

n 1 [ ( rn - 1 - 1) ] ~ f(i) = - - a - r arn- J + d + d(n - 1) , 
~ 1 - r r - 1 
i= l 

which reduces to 

~ f(i) = - - a - arn - dr r + d(n - 1) . n 1 [ n-1 1 ] 
~ 1 - r r - 1 
i -=1 

b) If one replaces d byrd in the definition formulas of part (a), one obtains the 
formulas for part (b). Hence the solution is found to be 

~g(i) =-- a - arn - dr2 + dr(n - 1) . n 1 [ (rn-1 -1) ] 
~ 1 - r r - 1 
i = l 

Also solved by Frank P. Battles, Massachusetts Maritime Academy, Buzzards Bay, Brian 

Bradie, Christopher Newport University, Newport News, VA, Paul S. Bruckman, Sacramento, 

CA, William Chau, East Brunswick, NJ, Kenneth B. Davenport, Frackville, PA, Amelia 

Dunst, Becky Lindstrom, James Luterek, Krista McConnaughey and Pamela Patrie, 

SUNY College at Fredonia, NY, Russell Euler and Jawad Sadek, Northwest Missouri State 

University, Maryville, George P. Evanovich, Saint Peter's College, Jersey City, NJ, Mark Evans, 

Louisville, KY, Robert C. Gebhardt, Hopatcong, NJ, Richard I. Hess, Rancho Palos Verdes, 

CA, Joe Howard, Portales, New Mexico, Koopa Tak-Lun Koo, Boston College, MA, Carl Libis, 

Richard Stockton College of NJ, Pomona, Peter A. Lindstrom, Batavia, NY, David E. Manes, 

SUNY College at Oneonta, William H. Peirce, Rangeley, ME, Shiva K. Saksena, University of 

North Carolina at Wilmington, H.-J. Seiffert, Berlin, Germany, Rex H. Wu, Brooklyn, NY, and 

the Proposer. 
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996. (Fall2000] Proposed by Ice B. Risteski, Skopje, Macedonia. 
If Pi(x) is the Legendre polynomial, given by Po(x) = 1 and for positive integral 

n, 

show that 

(1) 

n 

nPn(cosx) = L cos(mx)Pn - m(cos x). 
m = l 

Solution by Paul S. Bruckman, Sacramento, California. 
The generating function of the Legendre polynomials is 

00 

o-1 = L Pn(x)tn, where B = B(t , x) = (1 - 2tx t2) 112. 
n=O 

We also note that 

l - tcosx 1 - tcosx 1( 1 1) -:------.,. - - + ------,-
1 - 2tcosx+t2 - B2 (t,cosx) - 2 1 - teix 1 - te - ix 

1 00 00 

= 2 L:<einx + e inx)tn =I: tn cosnx. 
n- 0 n=O 

Therefore, letting r.p = r.p(t,x) = B(t , cosx), we see that r.p- 1 = En_0tnP
11

(cos x ) and 

~ n 

(1 - tcosx)r.p- 3 
= L tn cosnx L tn Pn(cosx) = L tn L Pn - m(cosx) cosm:r. 

n- 0 n=O n=O m = O 

On the other hand, by differentiating r.p- 1 = 2:~_0 tn Pn(cos x) with respect to t, w' 
obtain 

00 

(t cos x - t2)r.p- 3 = L ntn Pn(cos x) . 
n=O 

Note that 

n 

= L:tn L Pn m(cosx)cosmx. 
n=-0 m = O 

By comparison of coefficients we get 

n 

(2) (n + 1)Pn(cos x) = L Pn- m(cosx) cosmx. 
m = O 

Now subtracting Pn(cosx) from both sides of (2), which is the term form = 0 in the 
right side of (2), we obtain the desired identity. 

Also solved by Brian Bradie, Christopher Newport University, Newport News , VA, Ovidui 

Furdui, Western Michigan University, Kalamazoo, H.-J. Seiffert, Berlin, Germany, and the Pro­
poser. 

·' 
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997. (Fall 2000] Proposed by Robert C. Gebhardt, Hopntc;ong, New JerM'Y· 
Evaluate the integral 

['~ ln(9 - x )dx 

} 4 ln(9 - x) + ln(x - 3) · 

279 

I. Solution by Sophie Trawalter, student, Univer-sity of Nor-th Carolina at Wilm­
ington, Wilmington, North Carolina. 

Let I denote the given integral. Making the successive substitutions x = y + 6, 
so dx = dy, and then u = - y, so du = - dy, we find that 

/

2 ln(3 - y)dy !2 ln(3 + u)du 
I = 2 ln(3 - y) + ln(3 + y) = _2 ln(3 + u) + ln(3 - u)" 

Now the integral I must equal the average of these two integrals. That is, 

1 !2 I =- dx = 2. 
2 - 2 

II. Solution by Kristen Klingensmith, Danielle Quinn , Thomas Renken 
James Slayton, and Sheri Webber , jointly, students, SUNY Fredonia, Fredonia, 
New York. 

From its graph, the integrand appears to be symmetric about the point (6, 1/ 2). 
So make the substitution y = x - 6, obtaining the first integral shown in Solution 
I above. Let f(y) denote the new integrand Jess 1/2. We show that f is an odd 
function. Thus 

ln(3 + y) 1 ln(3 + y) + ln(3 - y) - ln(3 - y) 1 
f( - y) = ln(3 + y) + ln(3 - y) - 2 = ln(3 y) + ln(3 - y) 2 

ln(3-y) 1 
= 1 - ln(3 - y) + ln(3 + y) - 2 = - f(y). 

Hence f is symmetric about the origin and therefore the integral is equal to 2, the 
area of a rectangle with base 4 and height 1/2. 

Also solved by Frank P. Battles, Massachusetts Maritime Academy, Buzzards Bay, Brian 

Bradie, Christopher Newport University, Newport News, VA, Paul S. Bruckman, Sacramento, 

CA, William Chau, East Brunswick, NJ, Brian Clester , Perry, GA, Jos Luis Diaz-Barrero, 

Universitat Politecnica de Catalunya, Barcelona, Spain, Charles R. Diminnie, Angelo State Uni­

versity, San Angelo, TX, Russell Euler and Jawad Sadek, Northwest Missouri State University, 

Maryville, George P. Evanovich, Saint Peter's College, Jersey City, NJ, Mark Evans, Louisville, 

KY, Ovidui Furdui, Western Michigan University, Kalamazoo, Christian K. Hansen , East­

ern Washington University, Cheney, WA, Richard I. Hess, Rancho Palos Verdes, CA, Gerald A. 

Heuer, Concordia College, Moorhead, MN, Joe Howard, Portales, New Mexico, Koopa Tak-Lun 

Koo, Boston College, MA, Benjamin Landon, University of Central Florida, Orlando, Peter A. 
Lindstrom, Batavia, NY, David E. Manes, SUNY College at Oneonta, David Urman, Califor­

nia State University, Sacramento, CA, J. Ernest Wilkins, Jr., Clark Atlanta University, GA, and 

the Proposer. 

Bradie, Evans, and Hess each independently cut the interval of integration in half 
and then used the idea of Solution I to show that, after an appropriate substitution 
in the second integral, the two half-integrands added to the constant 1 over half the 
interval, thus arriving at the correct answer 2. 



280 McCONNELL, BEAL, and DODGE 

998. [Fall 2000] Proposed by David lny, Baltimore, Maryland. 
For nonnegative integers k and n, let 

1 (n) 1 (n) ( - l)n (n) 
Jkn = (1+k)2 0 - (2+k)2 1 + .. ·+ (n+k+1)2 n · 

a) Determine the value of bk such that the limit Lk exists, where 

Lk = lim [(n + 1)(n + 2) · · · (n + k + 1)Jkn - bk ln(n + 1)]. 
n oo 

b) Evaluate Lk using your value of bk and the definition of Euler's constant "Y 
given by 

c) Using your results of parts (a) and (b), evaluate, if it exists, 

kli~ ( ~~ +Ink). 

Solution by H.-J. Seiffert, Berlin, Germany. 
If r(x) denotes the gamma function, r(x) = fo00 e- ttx- ldt, so that r(n + 1) = n! 

for positive integral n, then (see R. L. Graham, D. E. Knuth, and 0. Patashnik, 
"Concrete Mathematics," 2nd ed., Addison-Wesley, 1994, p. 188, eqn. 5.41) 

t (.- 1)i (~) = n!r(x) , x > O. 
j = O J +X J r(n +X+ 1) 

Differentiating with respect to x and multiplying the result by - 1 yields 

~ (-1)i (n) n!r(x) 
L...,(j+x)2 j = r(n+x+1)(1P(n+x+1) - 1P(x)), x>O. 
J= O 

where 1P(x) = r'(x)jr(x) is the digamma function. Taking X = k 1, we find 

'k' Jkn = n. . (Hn k 1 - Hk) 
(n + k + 1)! ' 

where Hm = 2:;'=1 1/r is the m'th harmonic number; empty sums have the value 
zero. 

a) We have 

(n+1)(n+2)···(n+k+1)Jkn - bkln(n 1) 
(n+k+1)! 

= 
1 

Jkn - bkln(n + 1) 
n. 

= k!(Hn+k+l- Hk) - bk ln(n + 1) 

= k! [Hn+k+l -ln(n + k + 1) - Hk] + k! ln (n + k + 
1

) + (k! - bk) ln(n + 1). 
n+1 

Hence, the limit Lk exists only when bk = k!. 
b) If bk = k! , then Lk = k!("Y - Hk)· 

'. 
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c) We have 

lim (Lk +lnk) = lim("Y - Hk+lnk) = r - / = 0. 
k 00 k! k 00 

Also solved by Paul S. Bruckman, Sacramento, CA, Ovidui Furdui, Western Michigan 

University, Kalamazoo, and the Proposer. 

999. [Fall2000] Proposed by the late Jack Garfunkel, Flushing, New York. 
Prove that 

(r1 + r2 + r3)(3 + J3) 
r ~ 9 ' 

with equality when r 1 = r2 = r3, where r is the inradius of triangle ABC and r1, 
r2, and r3 are the radii of the mutually tangent circles in the Malfatti configuration, 
shown in the accompanying figure. 

A 

B c 

Solution by Miguel Amengual Covas, Gala Figuera, Mallorca, Spain. 
Using the relation 

~(y'rl + ylr2 + ylr3 + Jr1 + r2 + r3) 
r = 

JT1T2 + JT2T3 + JT3T1 
(Example 2.3 in H. Fukagawa and D. Pedoe, "Japanese Temple Problems", The 
Charles Babbage Research Centre, 1989), and the known inequality 

(x + y + z) (.!. + .!_ + .!.) 2:: 9 with x = ylrl, y = ylr2, z = vfr3, 
X y Z 

which is equivalent to 

we have 

(1) 
( y'ri + ylr2 + yfrJ)( y'ri + ylr2 + yfrJ + Jr1 + r2 + r3) 

r< . - 9 

Finally, using Cauchy's inequality (ax+ by+ cz)2 ~ (a2 + b2 + c2)(x2 + y2 + z2) 
with a = b = c = 1 and x, y, z as above, we see that 

(2) 

By combining (1) and (2) we have the desired result. It is easy to see that equality 
holds if and only if r1 = r2 = r3. 

Also solved by Paul S. Bruckman, Sacramento, CA, Yoshinobu Murayoshi, Okinawa, 

Japan, and the Proposer. 
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1000. [Fall 2000] Proposed by Albert White, St. Bonaventure University, St. 
Bonaventure, New York. 

Let ABCD be a parallelogram with L A = 60°. Let the circle through A, B, and 
D intersect AC again atE and let AC and BD meet at H. See the figure. 

D c 

Let [ PQ R] denote the area of triangle PQ R. Show that 
a) [DH E] · (AC) 2 = [ADH) · (DB) 2, 
b) [ADE] - [DEC] = 2[DH E), and 
c) 2(H E) · (AC) = (DB)2

. 

I. Solution to parts (a) and (c) by Ovidui Furdui, student, Western Michigan 
University, Kalamazoo, Michigan. 

We note that the size of angle A is irrelevant. 
a) We observe that AC and DB bisect one another, so that AH = AC/ 2 and 

DH = HB = DB/ 2. Also (HE)(AH) = (DH)(HB) because AE and DB are 
intersecting chords of the circle. Then HE = (DH)(H B)/(AH) = (DB) 2 / 4(AH). 
Since the two triangles DH E and ADH have the same altitude from vertex D, we 
have [DH E)/[ADH) = (H E)/(AH) = (DB) 2 /4(AH)2 = (DB) 2 /(AC)2, which yields 
the desired equation. 

c) From part (a) we have HE = (DB)2 /4(AH), so 2(H E)(AC) = 4(H E)(AH) = 
(DB) 2 . 

II. Solution to part (b) by Brian Bradie, Christopher Newport University, New­
port News, Virginia. 

b) Since [ADH] = [DHC] - [DHE] +[DEC], then [ADE] - [DEC] = [ADH] + 
[DHE] - [DEC] = 2[DHE]. 

Also solved by Miguel Amengual Covas, Cala Figuera, Mallorca, Spain, Brian Bradie, 

Christopher Newport University, Newport News, VA, Scott H. Brown, Auburn University of 

Montgomery, AL, Paul S. Bruckman, Sacramento, CA, William Chau, East Brunswick, NJ, 

Ovidui Furdui, Western Michigan University, Kalamazoo, Joe Howard, Portales, New Mexico, 

Koopa Tak-Lun Koo, Boston College, MA, Henry S. Lieberman, Waban , MA, David E. 

Manes, SUNY College at Oneonta, Yoshinobu Murayoshi, 2 solutions, Okinawa, Japan, William 

H. Peirce, Rangeley, ME, Kenneth M. Wilke, Topeka, KS, Rex H. Wu, Brooklyn, NY, and the 

Proposer. 

1001. [Fall 2000] Proposed by David Tselnik, Fargo, North Dakota. 
The Euler numbers En, for n = 0, 1, 2, ... , are defined by 

1 
sech x = -­

coshx 
'""'En n 
~-,x, n. n=O 

so that En = 0 for all odd n, Eo = 1, E2 = - 1, E 4 = 5, E 6 = - 61, etc. Prove the 
following relations: 

·' 
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2m (4 ) m (4 ) a)~ 2~ IE2jl = 2 t; ;; E4k for rn = 1, 2, 3, . .. , 

2
m+l (4m + 2) m (4m + 2) b)~ 

2
j IE2jl = 2f; 

4
k E4kform = 0,1,2, ... , 

2
m (4m) m ( 4m ) c) f; 

2
j IE2j l = - 2 ~ 

4
k _ 

2 
E4k - 2 for m = 1, 2, 3, ... , and 

2m 1 (4 + 2) m (4m + 2) d) f; rr;j IE2j l = - 2 t; 
4

k + 2 E4k +2 form. = 0, 1, 2, .... 

Solution by Paul S. Bruckman, Sacramento , Californw. 
a) For convenience we define en = [1 + ( - 1)n]/2 as the characteristi<: func:ion of 

the even integers. Since cosh x = 2:::"=o enxn /n!, it follows by convolutiOn w1th the 
series for sech x that 

t en-k(~)Ek = O , n = 1, 2, ... 
k=O 

(1) 

The functions cosh x and sech x, however, are even, which implies that 

(2) n (2n) L 2k E2k = 0, 
k - 0 

n = 1,2, ... 

It is also known that IE2k l = ( - 1)k E2k· Note that (2) implies 

2m (4m) 
2
m+l (4m 2) L 

2
. E2 j = L 

2
j E2j = 0, m = 1, 2, ... 

j - 0 J J=O 

Now we have 

which is part (a). 
b) If m ~ 0, then we have 

m (4 2) 2
m (4 + 2) 

2 L ~: E -l k = 2 L n;k E2k k 
k - 0 k = O 

2
m (4m 2) 

2
m . (4m + 2) 

= L 2 . E2j + L ( - 1 F 2j E2j 
j - 0 J J=O 

2
m ( 4m 2) = - E4m+2 + 0 + L 2 . IE 2jl 

j -=0 J 
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2m 1 ( 4 + 2) = E4m+2 + L n; . IE2j l + E 4m+21 

j = O J 

which reduces to part (b). 
c) Next, let On = 1 en [1 - (- l)n]/2 be the characterist ic function of the odd 

integers. Note that 

m ( 4 ) 2m- 1(4 ) 
- 2 L 4k: 2 E4k- 2 = - 2 L 2~ E2j0j 

k=1 j = l J 

2m- 1 ( 4m) 2m- l ( 4m) 
= L 2 . IE2j l - L 2 . E2j 

] = 1 J ] = 1 J 
2

m (4m) 
2
m (4m) =?; 2j IE2j l -?; 2j E2j - lEo I+ Eo - IE4m l + E4m 

2

m (4m) = L 2 . IE2jl - 0, 
j = O J 

which is part (c), form ~ 1. 
d) Finally, if m ~ 0, we have that 

2I:1 

(4m. 
j = O 2] 

2m 1 (4m+ 2) 
= L 2 ' E2j - 0, 

j - 0 J 

which is part (d). 
Also solved by Ovidui Furdui , Western Michigan University, Kalamazoo, and the Proposer. 

1002. [Fall2000] Proposed by L. Seagull, Glendale Community College, Glendale, 
Arizona. 

Let n be a composite integer greater than or equal to 48. Prove that between n 
and S(n) there exist at least five primes, where S(n) is the Smarandache function: 
for any positive integer n, k = S(n) if k is the smallest positive integer such that n 
divides k!. Then, for example, S(3) = 3 and S(8) = 4. 

Comment by H.-J . Seiffert, Berlin, Germany. 
This result was posed by the same proposer and proved by N. J . Kuenzi and B. 

Prelipp in Problem 4541, "School Science and Mathemat ics," vol. 96, no. 7, 1996, p. 
392. 

Also solved by Paul S. Bruckman, Sacramento, CA, Rex H. Wu, Brooklyn, NY, and the 
Proposer. 

·' 
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1003. [Fall 2000) Proposed by I. M. Radu, Bucharest, Romania. 
Show that between S(n) and S(n + 1), where S(n) is the Smarandache function , 

there exists at least one prime number. See Problem 1002 for the definition of the 
Smarandache function. 

I. Comment by Paul S . Bruckman, Sacramento, California. 
As it stands, the conjecture is false. We find the following counterexamples for 

n ~ 100: n = 2, 3, 4, 5, 9, 14, 15, 20, 21, 27, 32, 35, 51, 54, 55, 63, 65, and 99. For 
example, S(54) = 9, S(55) = 11, and S(56) = 7 and there are no primes between 9 
and 11 or between 11 and 7. It may be conjectured that the conjecture is false for 
infinitely many n, although this has not been established. It is not clear what the 
proposer had in mind. 

Editorial comment. The proposer assumed weak inequalities in the comments he 
made about his conjecture, which this editor overlooked, so the prime 11 would count 
for him in both cases n = 54 and n = 55. He stated that he checked and found the 
conjecture true for all n up to 4800. Your editor gets 5 nights without his teddy bear 
for not checking the wording more carefully. 

II. Disproof by Rex H. Wu, Brooklyn, New York. 
Assuming weak inequalities were intended in the proposal , all the counterexamples 

up to 1,000,000 are given on pages 52 and 53 in the book "An Introduction to the 
Smarandache Function" by Charles Ashbacher, which can be downloaded at 
http://www.gallup.unm.edu/~smarandache/Ashbacher-SmFu.pdf. 

They are S(224) = 8, S(225) = 10; S(2057) = 22 and S(2058) = 21; S(265225) = 206 
and S(265226) = 202; and S(845637) = 302 and S(845638) = 298. 

1004. [Fall 2000] Proposed by Robert C. Gebhardt, Hopatcong, New Jersey. 
Find the minimum value of f n = x 1 + x2 + · · · + Xn if the X k are all nonnegative 

and 
n 

L:cos2 x k = 1. 
k = l 

Solution by William H. Peirce, Rangeley, Maine. 
Clearly the X k can be restricted to angles in the first quadrant. Both the constraint 

and the function fn are symmetric functions of the Xk, and when this symmetry exists, 
any internal extremum of fn occurs at a point where the X k are all equal to, say, x. 
Therefore n cos2 x = 1, so x = arccos(l/ y'n) and fn = n arccos(l / y'n) is a candidate 
for an extremum of fn · It is easily verified that any perturbation of the X k from x 
produces a larger value for fn , so we have indeed found the minimum for any n > 2. 

If n = 2, then x 1 and x2 can be any angles whose sum is 1r / 2, so h = 1r / 2. If 
n = 1, then x 1 = 0. We see that in all cases, then, we have fn = n arccos(l / y'n) . 

Also solved by Brian Bradie, Christopher Newport University, Newport News, VA, Paul 

S. Bruckman, Sacramento, CA, Russell Euler and Jawad Sadek, Northwest Missouri State 

University, Maryville, Mark Evans, Louisville, KY, Ovidui Furdui, Western Michigan University, 

Kalamazoo, Richard I. Hess , Rancho Palos Verdes, CA, Joe Howard , Portales, New Mexico, 

Rex H. Wu, Brooklyn, NY, and the Proposer. 

1005. [Fall 2000] Proposed by Ayoub B. Ayoub Pennsylvania State University, 
Abington College, Abington, Pennsylvania. 

Prove that , if n > 2 is an odd number, 

(n - 1) /2 

L 
. 4k7r . 47r . 81r . 2( n - 1 )1r 

0 sm -- = sm -+ sm -+ ··· + sm < . 
k=1 n n n n 
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I. Solution by Kim Thielke, student, Alma College, Alma Michigan. 
For any natural number m it is easy to show that 

f sin kx = cos(x/2) - cos((2m + 1)x/2) 
k =

1 
2 sin( x /2) · 

Now let n be an odd number greater than or equal to 3. We find that 

(n 1)/2 
"'"' . (4k /) cos(27r/n) - cos(27r) L..... sm 1r n = _ _:....___,___,_ __ _:....___,_ 

2sin(27r/n) 
k = 1 

cos(27r/n) - 1 
2sin(27r/n) 

Since n 2: 3, the denominator is positive and the numerator negative. The theorem 
follows. 

II. Solution by J. Ernest Wilkins, Jr., Clark Atlanta University, Atlanta, Geor­
gia. 

Let n = 2p + 1, where pis a positive integer and define x = 471" /n, y = 271" - x / 2 = 
px, and z = exp(ix) . Then the indicated sumS is the imaginary part of 

Therefore, 

~ z k = zP - 1 
L..... 1 - z 1 
k = 1 

eiy - 1 
1 - e - ix. 

2
S = sin(x) + sin(y) - sin(x + y) 

1 - cos(x) · 

Because x - 471" - 2y, it is clear that sin x = - sin 2y = - 2 sin y cosy, that sin(x y) = 
- siny, and that (1 - cosx)S = (1 - cosy)siny. It follows that 

1 y 
S = 2 tan 2. 

We conclude that S < 0 because 0 < x ::; 47!"/ 3 and 271" / 3 < yf 2 < 7!". 
Also solved by Brian Bradie, Christopher Newport University, Newport News, VA, Paul S. 

Bruckman, Sacramento, CA, Kenneth B. Davenport , Frackville, PA, George P. Evanovich, 

Saint Peter's College, Jersey City, NJ, Mark Evans, Louisville, KY, Ovidui Furdui, Western 

Michigan University, Kalamazoo, Robert C. Gebhardt, Hopatcong, NJ, Richard I. Hess, Rancho 

Palos Verdes, CA, Joe Howard, Portales, New Mexico, Gerald A. Heuer, Concordia College, 

Moorhead, MN, David E. Manes, SUNY College at Oneonta, Yoshinobu Murayoshi, Okinawa, 

Japan, William H. Peirce, Rangeley, ME, H.-J. Seiffert, Berlin, Germany, and the Proposer. 

1006. [Fall2000] Proposed by Richard I. Hess, Rancho Palos Verdes , California. 
a) How many aces can be served in one game of tennis? 
b) How many consecutive aces can be served in one game of tennis? 
c) You and I are playing a set of tennis. In the last 8 points you have served 7 

aces and I have served 1. What is our score? 
d) In a tennis match you have just served aces on 6 consecutive points. What is 

the score? 
Solution by Skidmore College Problem Group, students, Saratoga Springs, 

New York. 
a) . In principle a game at deuce could see an infinite number of alternating 

aces and points lost by the server. 
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b) 5. Since tie-breakers are not referred to as gamef>, a single game has one player 
serving. If this player trails 0-40, 5 consecutive aces will win the game. In every other 
circumstance, less than 5 consecutive aces will have this effect. 

c) 6-6. Player A has just served 5 consecutive aces (cf. b) to make the score 6-6. 
Player B then served an ace to start the tie-breaker, and then A served two aces, 
making the tie-breaker score 1-2 and B will serve next. 

d) 0-1. Player A must have served two aces in the tie-breaker to end the last set. 
Who serves the first game of this set depends only on who served the last game of 
the last set, not on who served the tie-breaker. So, if B served that game, then A 
serves the first game of this set. If A now serves 4 aces to beat B at love, the stated 
conditions have been satisfied. 

Also solved by Mark Evans, Louisville, KY, William H. Peirce, Rangeley, ME, Rex H. 

Wu, Brooklyn, NY, and the Proposer. 

Corrections .. In the Spring 2001 issue please make these corrections. On page 
217, problem 1019, in each of the two denominators the term (2n - 1) should be 
multiplied by ( - 1)n 1 . In the solution to problem 983, in the last displayed line on 
Page 219, please append "= 0" after the difference of the integrals. 
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The MATHACROSTIC in this issue has been contributed by Dan Hurwitz. 

a. Belief in third powers 085 153 oo9 TI4 139 194 

b. Doing Gauss-Jordan Steps 011 o95 m 122 o37 175 048 2o3 

(2 wds.) 006 167 099 

c. Thumbless C.S. conversion 144 129 ill 200 049 038 100 179 054 

(2 wds.) 018 166 154 

d. British philosopher/ mathematician ffi 036 011 105 o5o 

(1861 1947) 150 029 001 098 

e. One-to-one correspondence 059 o23 184 013 121 079 

with the natural numbers 195 168 148 ill 064 

f. A prime date, when 093 146 039 138 196 oo8 

available (hyph.) 033 162 o6o 069 186 

g. Function on larger domain 102 073 178 062 108 051 ill 088 140 

h. Empty ill 118 181 174 

i. Ten per cent o76 022 133 182 

j. Proof introductory 136 o9o 067 096 on 053 159 061 128 

k. Planes including a given point 028 086 198 104 163 

1. Round the clock calculations 149 016 176 160 058 134 010 002 042 068 

(2 wds.) 019 092 109 087 197 081 157 012 032 185 

m. They depart from the general pattern 07o 173 043 097 164 024 126 189 

n. Fixed point subscripts 142 066 190 034 083 oo7 158 

o. Juxtaposed 

p. Doable procedures are this 

q. Needed at Monte Carlo 

(hyp.) 

r. Singular example of 

exponential growth (3 wds.) 

s. Translated Euclid into Arabic 

·' 

t. Switching circuits state 026 056 ill 

u. Found on inner product spaces 004 130 187 199 

v. Properly contained in the set of all sets 183 041 156 132 191 014 089 031 

Last month's mathacrostic was taken from "Indiscrete Thoughts" by Gian-Carlo 
Rota. 

The full text of the quote is: 

"Mathematicians have to attend (secretly) physics meetings in order 
to find out what is going on in their fields. [Physicists have the 
P.R., the savoir-faire, and the chutzpah to write readable, or at least 
legible accounts of subjects that are not yet obsolete, something few 
mathematicians would dare do, fearing expulsion from the A.M.S.]" 

Jeanette Bickley was the first solver. 
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