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A CYCLOTOMIC DETERMINANT 

AYOUB B. AYOUB* 

In this article, we will evaluate an interesting determinant whose entries are re­
lated to equally spaced points on the unit circle, hence the name cyclotomic determi­
nant. We denote the determinant whose order is (p;

1
) by l:ip, where 

1 cos 2
71" cos 4

71" cos (p- 3)11" 
p p p 

1 cos 4
71" cos B1r cos 2(p- 3)7r 

p p 
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l:ip = 1 cos 6
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71" cos---
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and p is an odd prime number. 
We will show that the absolute value of this determinant is ( ~) ~. The reader 

may try to verify the following two special cases: 
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Now, we will proceed with the proof. First we will express each entry in terms 
of w, a primitive p'th root of unity, i.e., wP = 1 while wr -=/=- 1 for r < p. Then w 
satisfies the cyclotomic equation wP- 1 +wP- 2 +wP- 3 + · · · + 1 = 0, [1]. If we consider 
w = cos 2

71" + i sin 271" then cos 271" = l(w + w- 1) and cos 21rr = l(wr + w- r) 
P P ' p 2 ' p 2 . 

Using these notations, the cyclotomic determinant /:ip takes the form 

1 

1 

1 

1 

~(w+w- 1 ) 
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~(w3 + w- 3) 

1 ( E=.!. E=.!. ) 
2 w 2 + w- 2 

but then 
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where 
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1 w2 +w- 2 
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2 w 2 + w 2 
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!:ip = (- ) 2 A 
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1 ( (p - l)(p - 3) 

2 w 4 +w 

~ -~ w 2 +w 2 
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3(p- 3J 3(p - 3) 
w-2- +w- -2-
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To evaluate the determinant A, we will consider a larger determinant B of order ~ 
where 

1 2 2 2 

1 w + w - 1 w2 + w - 2 
R.:::.!. _ R.:::.!. 

w 2 + w 2 

1 w2 + w - 2 w4 + w - 4 
2(p 1) 2(p 1) 

w-2- + w - -2-

B = 1 w3 + w- 3 w6 + w- 6 
3(p - 1) 3(p 1) 

w-2- + w - -2-

1 E.=-!. - E::.!. 2(p- 1) - 2(p - l) (p - 1)2 (p - 1)2 
w 2 + w 2 w - 2- + w 2 w - 4- + w - - .-, -

Now we will evaluate B 2 in two different ways from which we will get IAI. To that 
end, we will need the following: 

Since wP- 1 + wP- 2 + wP- 3 + · · · + w + 1 = 0, then dividing by wCP- 1/ 2 ), we 

get L~~~ l) / 2 (wt + w- t) + 1 = 0. And because 1, 2, 3, · · ·, (p - 1) is a residue system 
modulo p, then x, 2x, 3x, · · · , (p - 1 )x is also a residue system modulo p, assuming 
that x-=/=- 0 mod p, (see [2]). Consequently, 

(p- 1) / 2 

L (wxt + w- xt) + 1 = 0. 
t = 1 

If we mult iply B by itself, the result is: 

p 0 0 
0 p 0 

0 
0 

(2) B 2 = 0 0 p 0 = p (p 1)/2 

0 0 0 p 

That is because the entries a(x+1)(y 1 ) of B 2
, with each x and y assuming the values 

0, 1, 2, · · ·, P;1, are calculated as follows: 
1. When x = y = 0, 

(
p -1) au = 1 + 2 -

2
- = p. 

2. When x = 0, y -=/=- 0, 

(p- 1) / 2 

a1(y + 1 ) = 2 + 2 L (wYt + w- Yt) = 2 + 2( - 1) = 0, 
i = 1 

3. When x = y -=/=- 0, 

(p 1) / 2 (p 1) / 2 

a(x+1)(x 1) = 2 + L (wxt + w- xt)2 = 2 + L (w2 xt + w- 2xt + 2). 
i = 1 i= 1 

Hence a(:1·+ J )(x+ l ) = 2 + ( -1) + 2( P; 1 ) = p; and 

,, 
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4. When 0 -=/=- x -=/=- y -=/=- 0, 

{p- 1) /2 

a(x+I)(y+I) = 2 + L (wxt + w - xt)(wyt + w- yt) 
i = l 

(p - 1) / 2 (p- 1)/2 

= 2 + :z::::: (w(x+y)t + w- (x+y)t) + :z::::: (wcx - y)t + w- (x - y)t) 

i = 1 i = 1 

Thus a(x+1)(y+l) = 2 + ( - 1) + ( - 1) = 0. 
Now we go back to Band add all the columns to the last one to get 

1 2 2 2 p 

1 w + w - 1 w2 + w- 2 £.=..:! ~ 0 w 2 +w 2 

1 w2 + w - 2 w4 + w- 4 
2(p- 3) 2(p 3) 

0 w-2- + w - -2-

B = 1 w3 + w- 3 w6 + w- 6 
3(p- 3) 3(p- 3) 

0 w---r- +w- -2-

1 
R.:::.!. R.:::.!. 2(p- 1) 2(p - 1) (p - 1)(p- 3) (p- 1)(p- 3) 

0 w 2 + w- 2 w - 2 - + w - -2- w 4 + w- 4 

Therefore B = pA and so B 2 = p2 A2 . If we use (2), we get p(P+1) / 2 = p2 A2 from 
which A2 = p(P- 3)12. Thus IAI = p(P- 3)14. But (1) implies that I~PI = (~)(P-3 ) /2 I AI. 
Hence 

A byproduct of the previous proof is the following result: If we denote the underlying 
matrix of the determinant B by lvf, then equat ion (2) implies that M 2 = pi, where I 
is the P~ 1 by Y identity matrix. But this means that M/ y'P is a square root of I. 
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MORLEY'S TRIANGLE 

MARCUS EMMANUEL BARNES* 

Abstract. In the course of some of Frank Morley's other geometrical researches around the 
turn of the century, a rather surprising special case of a more general result , now known as Morley's 
theorem, appeared: The three (appropriately chosen) intersections of the internal angle trisectors of 
a triangle form an equilateral triangle. After a short and incomplete look at who Frank Morley was, 
we will then look at three geometrical proofs of this most spectacular theorem. 

1. Frank Morley. Frank Morley was born September 9th, 1860, in Woodridge, 
Suffolk, England. Morley entered King's College Cambridge in 1879, where he studied 
mathematics. He graduated with a B.A. in 1884. After teaching for three years 
at Bath College in England, he moved to the United States. He found work as 
an instructor at Quaker College, Haverford, Pennsylvania. At Haverford, he was 
quickly promoted to professor. Around 1900 he moved to Johns Hopkins University 
to head their mathematics department. Morley was the President of the American 
Mathematical Society from 1919 to 1920, and the editor of the American Journal of 
Mathematics from 1900 to 1921 [3] [7] [6]. 

Frank Morley was known mostly for his work in geometry. But he was also an avid 
problem proposer, and over the course of fifty years he published over 60 mathematical 
problems in the Educational times. He was also a superb chess player, even beating 
the algebraist Lasker on one occasion, who was then the World Chess Champion. 
Frank Morley died at the age of 77 on October 17th 1937 in Baltimore, Maryland [3] 
[7]. 

2. Morley's Triangle. Morley's theorem is implicit in the many general theo­
rems of Morley's paper of 1900 "On the Metric Geometry of the Plane n-line" which 
appeared in the first issue of the Transactions of the American Mathematical Society 
[4] [6]. Morley's theorem has spawned many proofs and generalizations. For some one 
hundred and fifty references see [6]. 

When I first heard of Morley's theorem, I was overcome with excitement. Anyone 
who appreciates beautiful theorems, especially those of a geometric nature, will see 
why this jewel of elementary geometry has intrigued so many. 

THEOREM 1 (Morley). The three {appropriately chosen) intersections of the 
internal angle trisectors of a triangle form an equilateral triangle. 

"Appropriately chosen" means: If the triangle has vertices A, B, and C, choose 
the intersection of the trisectors at A and B that lies nearest side AB, the intersection 
of the trisectors at B and C that lies nearest side BC, and the intersection of the 
trisectors at A and C that lies nearest side AC. 

3. Proofs. We will now look at three different proofs of Morley's theorem. You 
may find one clearer or more appealing than the others. The three proofs will use 
basic geometric techniques. It should be noted that Morley's theorem is still true for 
the exterior angle trisectors of a triangle - for example see [8]. 

The following proof is due to H.D. Grossman and can be found in original form 
in [2]. The approach taken is to begin with an arbitrary triangle, then, by choosing 
points and angles and constructing lines, construct a triangle, which we finally show 
is in fact the Morley triangle. 

*York University 
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Proof. Let a triangle ABC have interior angles 3a, 3b, and 3c at A,B, and C 
respectively. On the angle trisectors at Band C, we pick points D, E, F, H, and K 
as shown, and as explained in the following text. The point D is the intersection of 
trisectors nearest BC. Let E be the point made when we let <S..CDE = 60° + b, and 
let F be the point determined by letting <S..BDF = 60° +c. 

B 

Then 

Also, 

<J.EDF = 360°- <S..BDC - <S..CDE - <S..BDF 

= 360° - (180° - b - c) - (60° +b) - (60° +c) 

= 60°. 

<S..BF D = 180°- ( <J.BDF + b) 

= 180° - (60° + b +c). 

= 60° + a 

= (similarly) <S..CED. 

c 

Note that D is the incenter of 6.BGC because it is the intersection of the angle 
bisectors of <S..GBC and <S..GCB. An incenter has the property that it is equidistant 
from the sides of a triangle. So D is equidistant from B F and C E, hence D F = DE 
and so 6.DEF is equilateral. 

The point H is the intersection of the angle trisector of A nearest side AB and 
the angle trisector of C nearest BC. The point K is the intersection of the angle 
trisector of A nearest side AC and the angle trisector of B nearest BC. <f.. a = 
<J.BDF - <S..HDB = (60°+c)-(180° - <S..BDC) = (60°+c)-(180° - (180°- b- c)) = 
(60° +c)- (b +c) = 60° - b, and similarly <5..(3 = 60° - c. Through F draw the liner 
so that <f.. a = a', thus making isosceles triangle 6.F H D. Similarly, through E draw 
the line s so that <5..(3 = (3', thus making isosceles triangle 6.EKD. We then have 
<S..-y = <S..BFD - <S..a' = (60° +a)- (60°- b)= a+ b. 

The angle formed by the intersection of the lines m and r equals 180° - (180° -
-y) - b = 180° - ( 180° - (a+ b))- b = a. Similarly, the angle formed by the intersection 
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of the lines s and n equals 180° - (180°- (a c)) - c = a. The lines m and n meet 
at A, hence meet at an angle 3a. 

Now all we need to do to complete the proof is to show that the lines m, n, r, and 
s, meet at a point. The line K F joins the vertices of two isosceles triangles (6.DK E 
and 6.DF E) and therefore bisects <S..DK E. Then in the triangle formed by the lines 
m, s and the points B, K, the angle bisector of the angle of intersection of the lines m 
and s passes through F, since the angle bisectors of a triangle always meet at a point. 
Since this bisector is parallel to the line r, it coincides with it. A similar argument 
works for the lines in the triangle formed by the lines r, nand the points H, C. Thus 
we conclude from the preceding that the lines m, n, r, and s meet at a point. D 

The next proof will look at is one given by D.J. Newman in [5]. The proof works 
by using data from the given triangle to start with an equilateral triangle and build 
what turns out to be a triangle that is similar to the given one, and its internal angle 
trisectors. The main tool used in the proof is the law of sines. 

Proof. Ip. this proof we will switch to radians for angle measure. Let a, b, and c 
be the interior angles of an arbitrary nondegenerate triangle T. Draw an equilateral 
6.PQR, which we normalize to have side length 1. Construct the points A, B, and C 
using a, b, and c to direct rays outward from the vertices of 6.PQ R, in the manner 
shown in the diagram. 

FIG. 1. 

Apply the law of sines to 6.AQR to get 

AR 1 

sin [(c + 7r)/3] sin (a/3) 

So 

AR = sin [(c + 7r)/3] 
sin (a/3) 

Applying the law of sines to 6.BP R gives 

BR 1 

sin [(c + 7r)/3] sin (b/3) 
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So 
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BR = sin [(c + 7r)/3] . 
sin (b/3) 

Also <S.ARB = 27r - (a + 7r)/3 - (b + 7r)/3 - 7r/3 = (c + 27r)/3. 
Thus we know two sides of !J.ARB and the included angle, so the two remain­

ing angles are determined, and they must be a/3 and b/3, at the points A and B 
respectively. One can verify this using the law of sines. 

R 

FIG. 2. 

sin((c+ rr) / 3 ) 
sin(b / 3) 

Now a similar procedure can be carried out to determine the unknown angles for 
!J.BPC and !J.CQA. We then see that they are the angle trisectors of <S.A, <S.B, and 
<S.C from the given equilateral triangle. Now take !J.PQR and !J.ABC and scale by 
an appropriate scale factor to get a scaled !J.ABC which is congruent to our original 
T. The resulting scaled !J.PQ R is still equilateral, and is the Morley triangle of the 
original T. D 

The last proof we will look at is a bit more involved then the previous proofs, 
but I believe that you will feel a sense of satisfaction after going through this proof 
by R.F. Davis given in [1]. What is interesting about the proof is that Davis uses an 
arbitrary circle as the base for the needed geometrical constructions. 

Proof Let a+,8+1 = 60° and mark off an arc ZY of an arbitrary circle such that 
the chord ZY subtends the acute angle a at the circumference. Now draw parallel 
cords FE, WU, and QP to ZY such that the arcs Y E, EU, and UP are of lengths 
a, ,8 + 1 - a, and a respectively; and divide the arc PQ (which is of length ,8 + 1) at 
a point A such that arc AP = ,8 and arc AQ = 1. 

The angles WUY and UWZ standing on arcs of a+,B+! are each 60°. If UY and 
W Z are produced to meet at a point X, then !J.XY Z and !J.XUW are equilateral 
triangles. 

Since arc W Q AU = 2a + ,8 + 1 = W F ZY E, we therefore have <S.W FE = 
<S.W AU = <S.U EF. Produce AF and U Z to meet at a point B; and AE and WY to 
meet at a point C. Then <S.ABZ = <S.AZU - <S.F AZ = (a+ ,8) - a = ,8. Similarly, 
<S.ACY = 1· 

As U F = UN = U X and the line segments BFA and B ZU are secant through B 
to the circle, AB : AZ = BU : U F = BU: U X, and <S.BAZ = <S.BU X. Hence 6BAZ 
and 6BU X are similar, and <S.U BX = <S.ABZ = ,8. Thus 6BFU is congruent to 
6BXU and BX = BF. Similarly <S.WCX = 1 and CX = CE. 

Now <S.BXC = <S.BAC + <S.ABX + <S.ACX = 3a + 2,8 + 21 = 120° +a = QAP. 
Since <S.F BZ = ,8 = <S.PZA and <S.FZB = <S.F AU = 2a + ,8 + 1 = <S.PAZ, 6FZB is 
similar to !J.PAZ and BF: ZF = ZP: AP. In the same manner 6EYC is similar 
to 6QAY and EY : CE = QA : YQ. Hence BF : CE = BX : CX = QA : AP 
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p 

because 2F = EY and 2P = Y Q. Thus 6X BC is similar to 6AQ P, and <S.X BC = 

<S.AQP = ,8 and <S.XCB = <S.APQ = 1· 
We therefore have !J.ABC with angle measures 3a, 3,8, and 3! whose angle tri­

sectors form a equilateral triangle, 6XY Z. Since the circle was arbitrary and hence 
the triangle, we conclude that the preceding property must hold for all triangles. D 

We have seen three geometric proofs of Morley's theorem of varying difficulty. If 
you are interested, you can find proofs that use different techniques, such as proofs 
heavy in trigonometry, proofs that use complex numbers, or that use projective geom­
etry. A good place to look for references to such proofs is in the large list of references 
given in [6). 

The fact that Morley's theorem was only found in the early part of this century, 
even after millennia of work in plane geometry, leads one to wonder if there are still 
many simple and beautiful results of plane geometry that are still hidden. Will you 
be the next person to find a most beautiful geometrical theorem? 

Acknowledgements. I would like to thank Richard Ganong for his helpful sug­
gestions. 
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How to Learn 

While trying to learn some knowledge or lore 
Enjoying yourself I truly confess 
Has never been proven to teach anymore 
But never suspected of teaching you less 
In fact you may also learn other things 
The pleasure of hearing your heart as it sings 

Donald Moiseevich Solitar 

Donald Solitar, Professor of Mathematics at York University is the author, along 
with Wilhelm Magnus and Abraham Karrass, of "Combinatorial Group Theory", the 
classic text in that subject. Besides being a member of IIME, he is a Fellow of the 
Royal Society of Canada, and a recipient of the Ontario Teaching Award. 

This poem appeared in his "Reason, Rhyme and Rhythm: A Fight against Fash­
ion". There is no punctuation throughout the volume, not even in the entry entitlerl 
"A Fat and Kind Professor". 

The TIME Journal invites thos e of you who paint, draw, compose, or otherwise us th otheT 

8ide of youT br·ains to submit your mathematically in8pired compositions. 
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CYCLES IN RANDOM PERMUTATIONS 

WENDY L. CORP*, THERESA L. FRIEDMANt , AND PAUL KLINGSBERG t 

Abstract. For each 1 ~ kt < k2 < · · · < kr ~ n, we determine the joint probability dist ribution 
of the number of k1 - ,k2- , · · ·,kr cycles in a permutation chosen uniformly at random from Sn. We 
also determine the asymptotic joint distribution as n -t oo. 

1. Introduction. In this paper, we generalize results reported in [3]; and, as is 
done there, we introduce this circle of ideas by reminding the reader of the well-known 
HATCHECK PROBLEM: Let Sn denote the group of all perm·utations of the set [n] = 

{1, . . . , n}. If an element a is chosen uniformly at random from Sn, what is the 
probability Pn that a will have no fixed points? Also, what is limn Pn? 
The answer to this problem is part of the folklore of mathematics and may be found 
in any introductory combinatorics text (e.g. [1]). This paper treats some extensions 
of this problem, which are quite natural, provided one views the Hatcheck Problem as 
as a question about the disjoint cycle factorization (or DCF) of a permutation a. We 
will explain the DCF, which is for many purposes the most useful way to specify a, 
by means of an example; a more complete and formal discussion may be found in [2]. 
Suppose that a class with eight students holds a pollyanna. Each student draws the 
name of a student out of a hat. This determines the "pollyanna permutation" a of 
the eight students; if student i draws the name of student a( i), then i must buy a 
present for a(i). For the purposes of this example, we must allow the possibility that 
a student might draw his or her own name (i.e., that a(i) = i), although this would 
be rather strange for a pollyanna. 

A cycle of a is now obtained by choosing a student, asking whose name (s)he has , 
then going to that student and asking whose name ( s) he has, and proceeding this way 
until you get back to the original student. Of course, when you get back to the first 
person, there will very likely be people you have not included; these people belong to 
other cycles, and the list of all of these cycles is the DCF of a. Thus, if a is given by 
the array 

( ~ 2 
6 

3 4 5 
3 7 8 

6 7 
5 4 

then 1 must buy a present for 2, who must buy one for 6, who must buy one for 5, who 
must buy one for 8, who must buy one for 1. This is one cycle of the permut ation a: 

8 ~ 1 , 

which is wmally indicated simply (12658). (This is called a 5- cycle, since it includes 
five people.) The other two cycles of a are the 2- cycle ( 4 7) , since these two students 
must exchange presents, and the 1- cycle (3), since person 3 must buy a present for 
him/herself. The complete DCF of a is the list of all three of these cycles: 

a = (12658)(47)(3). 

"' Benedictine University. Ms. Corp's work was supported by HHMI and by the Luce Foundat ion 
for Women in Science Scholars Program at Benedictine University. HHMI#71196 - 528602. 

t Benedictine University 
t st . .Joseph's University 
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In this paper, we discuss the probabilities of obtaining cycles of various lengths in ran­
domly chosen permutations. (For instance, exactly 1/5 of the 8! possible eight-person 
pollyanna permutations contain a 5- cycle; see Theorem 3, below.) In these terms 
the Hatcheck probability Pn is the probability that a randomly chosen permutation 
will have no 1- cycles. In [3), Klingsberg and Panichella treat Pn;k, the probability 
that a will have no k- cycles. Here, we extend the discussion in [3). We find the full 
distribution of the random variable X~(a), the number of k- cycles in the DCF of a ; 
we calculate, for each 1 ~ k1 < k2 < · · · < kr ~ n, the probability that a contains no 
cycles of any of the lengths k1 through kr in its DCF; we use this probability to de­
termine the joint distribution of the random variables {Xk\, ... , Xkr.}; and we obtain 
asymptotic expressions in each case. 

2. The Principle of Inclusion- Exclusion. In order to make this paper more 
self-contained, we include a short account of the Principle of Inclusion- Exclusion (or 
PIE), which is an essential tool here. (This is the same account that appears in [3).) 
We state here the version of the PIE we will need; the interested reader will find a 
proof in any introductory combinatorics text, for example [1). We begin with a finite 
set n of objects and a finite set P of properties, and we suppose that each object 
either does or does not possess each property; in other words, we are supposing that 
to each object w E n, we have an associated set prop(w) ~ P of properties that w 
possesses. (In the case of the Hatcheck Problem, one takes n to be Sn; and, for 
each 1 ~ i ~ n, one takes property i to be that of having i as a fixed point. Thus 
for any element a E Sn , prop (a) is the set of fixed points of a.) Next, for each 
subset S ~ P, we put 

N;:: (S) := i{w E 0: prop(w) 2 S} l 

and 

N=(S) := i{w E 0: prop(w) = S}l 

(where we use "ITI" to denote the number of elements in a finite set T). 
The PIE, then, is the rule that prescribes how to compute the numbers {N=(S)} 
from the numbers {N;:: (S)}. We need here only the formula for N=(0), the number of 
objects that possess no properties whatever: 

N=(0) = L (- 1)18 1N _(S). (1) 
s c;;, P 

(Note that for the Hatcheck Problem, N=(0) is the number of permutations with no 
fixed points.) 

3. The probability of no cycles of the prescribed lengths. 
DEFINITION 1. For any choice 1 ~ k1 < k2 < · · · < kr ~ n, let Pn;k1 , .. . ,kr denote 

the probability that an element a chosen uniformly at random from Sn contains no 
cycles of any of the lengths k1, k2, ... , kr. 

Our first main result is a formula for Pn;k1 , ... ,kr· We employ the PIE, taking n to 
be Sn and P to be the set of all possible cycles of length .e, where .e E { k1, ... , k,.}. 
For each a E Sn and C E P, we say that a possesses property C if and only if C is part 
of the DCF of a. We state Proposition 1 without proof; it is a routine generalization 
of Theorem 1 in [3). 

·' 
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PROPOSITION 2. Let S ~ P contain exactly ti ki cycles for each 1 ~ i ~ r. Then 

if any two cycles in S have an integer in common; 

if th cycles in S are pairwise disjoint. 

THEOREM 3. For any choice 1 ~ k1 < k2 < · · · < kr ~ n , 

t 1 2: 0, t2 ;::o, ... , tr ~O 
k1 t1 + k2t2 + · ··+krtr ::; n 

( IT(-~)'' ). 
i = l 't 

Proof. Obviously, Pn;k1 , ... ,kr = N=(0)/n!; and, by equation (1 ), 

N=(0) = L ( - 1)18 1N ;:: (S). 
s c;;, P 

Proposition 1 then allows us to restrict the sum above to subsets S* ~ P such that 
all of the cycles in S* are pairwise disjoint: 

N =- ( 0) = L ( - 1) Is . IN 2: ( S*); 
s• c;;, P 

and, if S* has ti cycles of length ki for each 1 ~ i ~ r, this becomes 

N=(0) = L (- 1)t1 +···+tr (n - (k1t1 + ··· + krtr))! 
S* c;;, P 

(2) 

Now, since the summands in (2) depend only on the parameters t1, .. . , tr, we can 
gather terms: 

t 1 ;:: o, ... , t r ;::o 
k1t1 · · krtr _ n 

(3) 

where ( *) stands for the number of sets S* ~ P with t i ki cycles, 1 ~ i ~ r, and with 
all cycles pairwise disjoint. 

Next we compute ( * ). For each choice of parameters t1, ... , tr, each subsetS* ~ P 
described in ( *) can be uniquely constructed by doing each of the following: 
Step 1. Choosing the elements of [n) to be used in the cycles of S* . There are 

ways to do this. 
Step 2. Dividing the elements chosen in Step 1 into r subsets of sizes ( k1 t1, ... , krtr) 

respectively. The elements of the ith subset (1 ~ i ~ r) will be included in 
some ki- cycle. There are 

(k1t1 + · · · + krtr)! 
(k1tl)! · · · (krtr)! 

ways to do this, since this is an ordered choice. 
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Step 3. Partitioning each of the sets of size kiti chosen in Step 2 into ti classes, each 
containing ki elements. There are 

ways to do this, since each of these partitions is an unordered partition into 
classes of equal size. 

Step 4. Arranging each subset chosen in Step 3 into a cycle. Since there are ( ki - 1)! 
ways to do this for each ki-element subset, there are in all 

r 

IT ( (ki - 1)!) ti 
i = l 

possibilities for Step 4. 
Multiplying all of these together and simplifying now gives the expression we need 
for ( * ): 

1 
r 

IT k~iti! 
i = l 

Substituting ( *) into (3) and simplifying yields 

and dividing by n! then gives the result. D 
A consequence of this theorem is the asymptotic behavior of Pn;k 1 , •.• ,kr: 
COROLLARY 4. For any choice 1 ::; k1 < k2 < · · · < kr, 

4. The full joint distribution. We next consider probabilities of obtaining 
positive numbers of cycles of various lengths. We continue to consider the experiment 
of choosing an element 0' uniformly at random from Sn. 

DEFINITION 5. For each 1 ::; k ::; n, let XJ: be the random variable 

XJ:(O') := the number of k - cycles in the DCF of 0'. 

Thus, in terms of these random variables, 

Pn;k 1 , •.. ,kr = P[(XJ:1 = 0) 1\ (XJ:2 = 0) 1\ · · · 1\ (Xt = 0)]. 

We now consider the full distributions of these random variables, both singly and 
together. 1 

1 In [4], an argument similar to our proof of Theorem 3 is used to obtain a closed form for the 

generating function Gk'(t) := L P[Xk' = m]tm. 
m _ O 

·' 
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THEOREM 6. For any 1 ::; k ::; n and any 0 ::; m ::; Ln / k J, 
l n - mk J 

P[Xn = ] = _1_ ~ ( / / )t 
k m m!km ~ t! . 

t=O 

(4) 

(Note that when mk > n, sum in (4) is empty, so that (4) gives the correct answer 
zero in this case.) 

Proof. Each element 0' E Sn that contains exactly m k- cycles can be uniquely 
constructed by performing each of the following steps. 
Step 1. Choosing m pairwise disjoint k- cycles for the DCF of O'i and 
Step 2. Choosing a permutation containing no k- cycles for the remaining ( n - mk) 

elements of [n]. 
By a counting argument very similar to that in the proof of Theorem 1, the number 
of ways to carry out Step 1 is 

( 
n ) . ( mk)! . ( ( k _ 1) 1) m = n! 

mk m! (k!)m · km m! (n - mk)! · 
(5) 

The number of choices for performing Step 2 is (n - mk)!P(n- mk);ki and Theorem 2 
of [3} gives that 

L n - kmk J 

(n - mk)!P(n- mk);k = (n - mk)! L 
t = O 

Multiplying (5) by (6) and dividing by n! then gives the theorem. 
Again, it is easy t o find the asymptotic probability: 
C oROLLARY 7. 

lim P[XJ: = m] = e- <t) (~)~. 
n 00 m. 

(6) 

D 

Observe that this says that asymptotically, Xk has a Poisson distribution with mean 
\ = l 
/\ k" 

Our final two results deal wit h the full joint distribution of the random vari-
ables { XJ:

1 
, ••• Xt}. The proof of Theorem 5 combines elements of the proofs of 

Theorems 1 and 3. 
T HEOREM 8. Fix 1 ::; k1 < · · · < kr , and for any ordered choice ( m1, ... , mr·) of 

nonnegative integers, let ( = k1 m1 + · · · + krmr. Then for any n ~ (, we have that 
P [(XJ:

1 
= ml) 1\ (XJ:

2 
= m2) 1\ ···I\ (Xt = mr)] is equal to 

(7) 

Proof. If 0' E Sn contains exactly mi cycles of length ki, 1 ::; i ::; r, then 0' can be 
uniquely constructed by doing each of the following. 
Step 1. Choosing (elements from (n] out of which to construct mi cycles of length ki , 

1 ::; i ::; r; this can be done in (() ways. 
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Step 2. Dividing all elements chosen in Step 1 into r subsets of sizes (k1m 1 , ... , krmr) 
respectively. The elements of the ith subset (1 :::; i :::; r) will be included in 
some ki cycle. There are 

(! 

ways to do this, since this is an ordered choice. 
Step 3. Partitioning each of the sets of size kimi chosen in Step 2 into mi classes, 

each containing ki elements. There are 

ways to do this, since each of these partitions is an unordered partition into 
classes of equal size. 

Step 4. Arranging each subset chosen in Step 3 into a cycle. Since there are ( ki - 1)! 
ways to do this for each ki-element subset, there are in all 

T 

IT ( ( ki - 1)!) m i 

i = l 

possibilities for Step 4. 
Step 5. Choosing for the remaining (n - () elements of [n] a permutation that has 

no cycle of any of the lengths k1 through kr . By Theorem 1, this can be clone 
in exactly 

t 1 ~o , .. . , tr ~O 
k 1 t1 · ·· + k1· tr _ n - c; 

(n - ()! ( 

ways. 
Multiplying all of these toget her, simplifying, and dividing by n! now gives the theo-
rem. D 

Taking the limit as n oo of (7) simply removes the condition 

from the sum there. Then, a routine series manipulation gives Corollary 6, below. It 
says, that asymptotically, the random variables { x;:. . .. , x;:r} are independent (and 
Poisson). 

COROLLARY 9. With 1 :S: k1 < · · · < kr and (m1, ... , mr) as in Theor m 5 we 
have 

lim P [(XJ:
1 
= mi) 1\ (XJ: = m2) 1\ · · · 1\ (Xk7

• = mr)] = IJ t • 

r ( e- ( ~) ) 
n CXJ 2 r .lkm1 

i = I mt. i 
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AN INFINITE-DIMENSIONAL LUCAS MATRIX 

THOMAS KOSHY* 

In 1966, D. M. Bloom proposed the following problem [1]: Determine 

L FiF]Fk 
i,j,k 0 

i + j + k = n 

where Fn denotes the nth Fibonacci number, defined recursively as follows: 

F1 = F2 = 1 

Fn = Fn - 1 + Fn - 2,n ~ 3 
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This definition can in fact be extended by defining Fo = 0 and F - 1 = 1. In the 
following year, C. Libis provided an interesting solution to the problem [2]. 

Fibonacci numbers and Lucas numbers Ln, named after the French mathemati­
cian Franc;ois-Edouard-Anatole Lucas (1842-1891), share many similar properties. 
They are defined by 

£1 = 1,£2 = 3 

Ln = Ln- 1 + Ln- 2,n ~ 3 

This definition also can be extended by letting £ 0 = 2 and £ _ 1 = - 1. A study of 
Lucas numbers, similar to Bloom's, yields some interesting and rewarding dividends. 

To this end, consider the infinite dimensional matrix K = (kij): 

K = 

Ko,n 
K1,n 

where each element ki,j is defined recursively as follows fori, j ~ 0. 

(1) ko,j 0 
(2) k1,1 1 
(3) kj ,j - 1 2, j ~ 1 
(4) k·. 

~.J 0, j < i - 1 
(5) k·. 

~.J k i ,j - 2 + ki,j - 1 + ki - 1,j - 1, i ~ 1,j ~ 2 

Condition (1) implies that row 0 consists of zeros; conditions (2) and (3) imply the 
first two elements in row 1 are 2 and 1; by condition (3), the diagonal below the main 
diagonal consists of twos; and by condition (4), every element below this diagonal is 
zero. Condition (5) can now be employed to compute the remaining elements kij of 
K: add the two previous elements ki,j - 2 and ki,j - 1 in row i, and then add this sum 
to the element ki - 1,j - 1 just above ki,j - 1: 

"' Framingham State College 

ki - 1,j - 1 

+ 
ki,j - 2 + ki,j - 1 
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Thus 

i"'-.j 0 1 2 3 4 5 6 7 8 
0 0 0 0 0 0 0 0 0 0 
1 2 1 3 4 1 11 18 29 47 

2 0 2 3 ~ 15 ~ 56 104 189 

K = 3 0 0 2 5 15 35 80 171 355 
4 0 0 0 2 7 24 66 170 407 
5 0 0 0 0 2 9 35 110 315 
6 0 0 0 0 0 2 11 48 169 

Using the recursive formula, we have: 

k1,n = k1,n - 2 + k1,n - 1 + ko,n - 1 

= k1,n- 2 + k1,n- 1 + 0 

= k1,n - 2 + k1,n - 1 

+-- Lucas Numbers 

Since k1,0 = 2 and k1,1 = 1, it follows that k1,n = Ln, so row 1 consists entirely of 
Lucas numbers. 

Here is an interesting observation: 

k2,7 = 104 = 1. 18 + 1. 11 + 2. 7 + 3. 4 + 5. 3 + 8. 1 + 13. 2 
7 

= l:Fjk1,7- j = L FjLk 
j =1 j ,k _ O 

j k = 7 

More generally, we have the following result, which we establish using strong 
induction. 

(1) 

THEOREM 1. With ki,j defined as above, 

k2,n = L FjLk 
j,k ?; O 

j + k = n 

Proof. When n = 0, each side equals zero, so the result is true. 
Now assume that it is true for every nonnegative integer less than or equal tom: 

k2,m = L FjLk 
j,k _ O 

i + k = m 

Then 

m+1 
L FjLk = L FjLm+1- j 

j , k _ O j=O 
j + k = m 1 

m 

= L Fj(Lm- j + Lm- j - 1) + Fm+1Lo 
j=O 

. ~ 
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m m 

= LFiLm- i + LFiLm- J- 1 Fm+1Lo 
j=O j=O 
m m- 1 

= L FjLm- j + L FjLm- j - 1 + FmL- 1 + Fm+1Lo 
j=O j=O 

= k2,m + k2,m- 1 + 2Fm+1 - Fm 

= k2,m + k2,m- 1 + k1,m, (since 2Fm 1 - Fm = Lm) 

= k2,m+1, (by the recurrence relation.) 

Thus, by strong induction, the formula holds for every n 2: 0. 0 

(2) 

Since k1, s = L 8 , formula (1) can be written as 

k2,n = L Fjk1,t 
j,t _ O 

j + t = n 
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In words, every element k2,n can be obtained by multiplying the elements k1,n - 1, 
k1,n- 2, · · · k1,0 in the previous row with weights F1, F2, · · ·, Fn respectively, and then 
adding up the products, as we observed earlier. 

(3) 

As in Theorem 1, it can be proved that 

For example, 

n 

k3,n = L Fik2,n - i = L FiFjLk 
i = O i ,j , k '?; O 

i i + k = n 

k3,s = Fok2,s + F1k2,4 + F2k2,3 + F3k2,2 + F4k2,1 + Fsk2,o 

= 0 . 30 + 1 . 15 + 1 . 8 + 2 . 3 + 3 . 2 + 5 . 0 

= 35 

Formulas (1) and (3) are in fact special cases of the following result , which also 
can be established using strong induction. 

(4) 

THEOREM 2. With ki,j defined as above, 

n 

km,n = L Fikm- 1,n- i , m 2: 2 
i = O 

Proof. By Theorem 1, the result is true when m = 2, so we assume that m 2: 3. 
Keeping m fixed, we shall prove that formula ( 4) works for all n 2: 0. Since km,o = 

0 

0 = E Fikm- 1,- i, the result is true when n = 0. It is also true when n = 1. 
i = O 
Now assume the result is true for all nonnegative integers less than or equal to 

an arbitrary integer t, where t 2: 2: 

t 

km,t = L Fikm- 1,t - i 
i = O 
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Then: 

t+1 
L Fikm- l,t 1- i 
i=O 
t- 1 

= L Fikm- 1,t 1- i + Ftkm- 1,1 + Ft+1km- 1,0 
i=O 
t- 1 

= L Fi[km- 1,t- i- 1 + km- 1,t- i + km- 2,t - i] + Ftkm- 1,1 + Ft 1km- 1,0 
i=O 

i=O i=O i=O 
t- 1 t - 1 

= L Fikm- 1,t- i- 1 + L(Fikm- 1,t - i + Ftkm- 1,0) + · · · 
i=O i=O 
t- 1 
L(Fikm- 2,t - i + Ftkm- 2,o) + R 
i=O 
t- 1 t t 

= L Fikm- 1,t - i- 1 + L Fikm- 1,t - i + L Fikm- 2,t - i R 
i=O i=O i=O 

= km,t - 1 + km,t + km- 1,t + R 

where R = Ftkm- 1,1 + Ft+1km- 1,0 - Ftkm- 1,0 - Ftkm- 2,0· 

If m = 3, then: 

R = Ftkm- 1,1 + Ft+1km- 1,o - Ftkm- 1,o - Ftkm- 2,o 

= Ftk2,1 + Ft+1k2,o - Ftk2,o - Ftk1,o 

= 2Ft + 0 - 0 - 2Ft = 0 

On the other hand, if m > 3, then R = 0 + 0 - 0 - 0 = 0. Thus, in both cases, R = 0. 
So 

t+1 
"""'Fikm- 1 t+1- i = km t- 1 + km t + km- 1 t + 0 = km t+1 ~ ' ' ' ' ' 
i=O 

Therefore, by strong induction, formula ( 4) is true for all m ~ 3 and hence true for 
all m ~ 2. D 

For example, 

i=O i=1 
= F1k3,4 + F2k3,3 + F3k3,2 + F4k3,1 

= 15 + 5 + 4 + 0 = 24 
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Explicit Formulas for k2,n and k3,n· Row 2 of matrix K contains an intriguing 
pattern: 

k2,0 0 1· Fo 
k2,1 2 2 · F1 
k2,2 3 3 · F2 
k2,3 8 4 · F3 
k2,4 15 5 · F4 

where Fn is the n'th Fibonacci number. So we conjecture that k2,n = (n + 1)Fn. The 
next theorem in fact confirms it using strong induction. 

THEOREM 3. With ki,j defined as above, 

(5) k2,n = (n + 1)Fn 

Proof Since k2,0 = 0 = (0 + 1)Fo, the result is true for n = 0. Now assume it is 
true for all nonnegative integers ::; t, where t is greater than or equal to 0. Then: 

(t + 2)Ft+1 = (t + 2)(Ft + Ft- 1) 

= tFt - 1 + (t + 1)Ft + Ft + 2Ft - 1 

But Ft + 2Ft - 1 = Ft+1 + Ft- 1 = Lt [3]. Therefore, 

(t + 2)Ft 1 = tFt - 1 + (t + 1)Ft + Lt 

= k2,t - 1 + k2, t + k1,t = k2,t 1 

Thus, by strong induction, formula (5) is true for all n ~ 0. D 
Formula (5) can also be established by assuming that k2 ,n is of the form (an + 

b)Fn + (en+ d)Fn - 1, as in [2]. 
Again, as in [2], k3,n must be of the form (an2 + bn + c)Fn (dn2 +en+ f)Fn _ 1. 

Using the initial values of k3,o through k3,5 , it can be seen that a = 1/10 = b, c = 
- 1/5 = - d, e = 2/5, and f = 0. This yields 

k _ (n2 + n - 2)Fn + 2n(n + 2)Fn- 1 
3,n - 10 

Since Fn + 2Fn- 1 = Ln , this can be rewritten as 

(6) 
k _ (n + 2)(nLn - Fn) 

3,n - 10 

For example, k3,7 = 9(7£7 - F7)/10 = 9(7 · 29 - 13)/10 = 171 as expected. 
As a byproduct, it follows from (6) that (n + 2)(nLn - Fn) = O(mod 10); tlms if 

n + 2 and 10 are relatively prime, then nLn = Fn(mod10). For example, 7£7 = 3 = 
F7(mod 10). 

More generally, suppose we construct a new matrix G which also satisfies condi­
tions (1), (4) and (5), and two new conditions: 

(2') G1,1 
(3') G1,2 

a 
b, 
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where a and b are arbitrary integers, and G1,0 = b - a. Then G is 

i""'j 0 1 2 3 4 5 6 
0 0 0 0 0 0 0 0 
1 b - a a b a + b a + 2b 2a + 3b 3a + 5b GFNs 
2 0 b - a b 3b - a 5b lOb 2a + 18b 
3 0 0 b - a 2b - a 6b- 3a 13b - 4a l29b- 7a I 

Row 1 of G consists of the generalized Fibona ci numbers (GFN's) Gn; when a = 1 = 
b, Gn = Fn; and when a = 1 and b = 3, Gn = Ln. 

Formula (4) can be extended toG, as the next theorem shows. Its proof follows 
along the same lines as in Theorem 2, so we skip it. 

(7) 

and 

THEOREM 4. With Gm,n defined as above, 

For example, 

n 

Gm,n = L FiGm- 1,n- im ~ 2 
i= O 

5 4 

G3,5 = L FiG2,5- i = L FiG2,5- i 
i = O i=1 

= F1G2,4 + F2G2,3 + F3G2,2 + F4G2,1 

= 5b + (3b - a) + 2b + 3(b - a) = 13b - 4a 

In particular, when m = 2 and m = 3, formula (7) yields 

n n 

G2,n = L FiG1,n- i = L FiGn- i 
i= O i= O 

n 

G3,n = LFiG2,n- i = L FiFjGk 
i = O i ,j , k ~O 

i i+ k=n 
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THE PROBABILITY OF RANDOMLY GENERATING A FINITE 
GROUP 

KIMBERLY L. PATTI* 

1. Introduction. This article considers the problem, given a finite group G with 
11. generators, what is the probability that n randomly chosen elements will generate 
:. From Deborah L. Massari we know that the probability that a randomly chosen 

'·h'ment from a cyclic group is a generator of this group depends only on the set of 
prime divisors of the order of the group, rather than the size of the group [3]. In 
t.his article we investigate this problem for some specific finite cyclic and non-cyclic 
~roups. Examples for these specific groups are also provided. 

We will consider the following groups: 
1. Cyclic groups of order p1

1 p~2 
• • • p~\ where the Pi are prime and the i are 

positive integers 
2. Zp EB Zp EB · · · EB Zp, where p is prime 
3. Dn, the dihedral groups. 

T hroughout this paper, we consider the event that n randomly chosen elements in an 
11. generated group generate the group. We refer to this as event A, and we investigate 
t.hc probability of A. 

2. Cyclic Groups. Let G be a cyclic group such that G = (a) and IG I = n , 
where n = p~ 1 p22 • • • pkk. G = (ai) if and only if gcd(j, n) = 1 (see, for example, 
12, Theorem 4.2]). Generators of G are elements of order n, so we need to find all 
such elements. The number of elements of order n in a cyclic group is determined 
hy the Euler phi function, ¢, where ¢(n) equals the number of positive integers less 
than n and relatively prime to n (see, for example, [2, Theorem 4.4]). In this case, 
(/>(p~ 1 p2 

2 
• • • p k k) = ¢(p1

1 )¢(p~2 ) • • • ¢(pkk), since Pi and Pi are relatively prime for i =f. j 
(see, for example, [1, p.7]). Thus, 

"'( 1 ez k) 1 (1 1 ) ez (1 1 ) k (1 1 ) 'P P1 P2 · · · Pk = P1 - - P2 - - · · · Pk - - · 
P1 P2 Pk 

So 

(1) 

= (1 - _!_) (1 - ~) ... (1 - _!_) . 
P1 P2 Pk 

Notice that this formula does not depend on the powers of Pi· So, for example, for 
G = ~21oo = Z 2z.3 .sz.g and H = ~29160 = Z 23.32.s.gz, P(A) is the same. 
E XAMPLE: Let G = z 6 EB ~35 EB ~143 EB ~323 EB z 667· For this group, P(A) would 
be incredibly difficult to calculate by simple observation. We can use the previous 
formula, however, to simplify the process. Since 6, 35, 143, 323, and 667 are relatively 
prime, we have that G is isomorphic to the cyclic group Z 6469693230. Also, we know 
that IGI = (6)(35)(143)(323)(667) = (2)(3)(5)(7)(11)(13)(17)(19)(23)(29). So, by 
formula (1), P(A) is given by 

(1- ~)(1- !)(1 - k)(l - ~)( 1 - 1\)(1 - {3)(1 - {7)(1 - {g)(l - 2~)(1 - ig)· 

*Saint Louis University 
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Thus P(A) ~ .1579. 

3. The Group 'llp EB 'lL p EB · · · EB 'llp, where p is prime. We first consider th<• 
group 7L p EB 'llp. This group can be generated by two elements. For a, b, c, d E 7L1n 

((a, b), (c, d)) generates 'llp EB 'll p if and only if there exist r 1, r 2, r3, r 4 in 7L such that 
r1(a, b)+ r2(c, d) = (1 , 0) and r3(a, b) + r4(c, d) = (0, 1). Thus, we need to solve the 
system 

In order to solve these systems, we must take the inverse of A, which exists if and 
only the columns of A are independent. The first column, (a, b), can be anything 
except the zero vector. Thus, there are p2 - 1 choices for (a, b) . The next column 
must be chosen so that it is not a multiple of (a, b). Since we are in 'll p EB 'llp, there 
are p such ordered pairs. Thus, given (a, b), there are p2 - p choices for the column 
(c, d). Therefore, the number of choices for the pair (a, b), (c, d) is (p2 - 1)(p2 - p)/2. 
We divide by 2 here since order does not matter. So there are (p2 - 1)(p2 - p)/2 ways 
to choose (a, b) and ( c, d) such that ( (a, b), ( c, d)) generates 'lLp EB 'llp. Thus, 

(2) P(A) = (P;) _, (p2 - l)t - p) = P; 1_ 

It is interesting to notice that this formula is the same as the one for 7Lp. 
Similarly, we can find P(A) for 'llp EB 'llp EB · · · EB 'llp, where the direct product of 

'llp is taken n times. Notice that we can again set up a system of equations in matrix 
form. As before, we want the columns of our n x n matrix to be independent, which 
happens if and only if our matrix has rank n. In the ith column, there are pn - pi- 1 
ways to choose an n-tuple so that the ith column is linearly independent of the first 
i - 1 columns. Thus, there are 

ways to choose our n-tuples so that they generate the group. Therefore, 

(3) 

EXAMPLE: Let G = 'll7 EB 'll7 EB '1L 7 EB 'll7 EB 'll7. Then IGI = 75 = 16807. Using formula 
(3), we see that 

4. Dn, the Dihedral Groups, where n is a positive integer. Let Dn denote 
the group of symmetries of a regular n-gon, where n = p1

1p2
2 · · ·p/. The dihedral 

groups are composed of a subgroup of rotations and a subset of reflections. Although 

. , 
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t.hc dihedral groups are not cyclic, they can be generated by two elements. There 
are two possible combinations of reflections and rotations that generate Dn. In the 
first, we need one reflection and one rotation of order n. Another possibility occurs 
when choosing two reflections. The reflections must be chosen so that together they 
produce a rotation of order n. Thus, we can generate the dihedral groups by choosing 
one reflection and one rotation, or by choosing two reflections. Let B be the event 
of randomly choosing a reflection, and let C be the event of randomly choosing a 
rotation of order n. Let D be the event of randomly choosing a second reflection that , 
together with the first, will generate all of Dn. Then P(BnC) gives us the probability 
of our first possible way to generate Dn, and P(B n D) will gives us the probability 
of our second possible way to generate Dn. Thus, P(A) = P((B n C) U (B n D)). 

Since there are n reflections and ¢( n) rotations of order n we have 

( ) P(B n C) = (2n) -
1 (n) (¢(n)) = (2!(2n - 2)!)n¢(n) = ¢(n) . 

2 1 1 ( 2n)! 2n - 1 

Now we need to find P(B n D) = P(B)P(DIB). The elements in Dn can be denoted 
by { e, a, a2 , .•. , an- 1 , b, ab, a2b, ... , an- 1b }, where a is a rotation of order n, b is a 
reflection, and baJ = a- jb for 1 :::;; j S n - 1. Thus, P(B) = 1/2. If event B 
occurs, we can denote the selected reflection by b. If the second element we choose 
i:; a reflection, we can denote it by aJb. To find P(D I B), we need to find the 
probability that these two reflections produce a rotation of order n . Multiplying our 
two reflections together we have baJb = a- Jb2 = a- i. Thus, we need to know when 
a- j is a rotation of order n. This occurs when j is relatively prime ton. Thus, we can 
once again use the Euler phi function. Notice also that event B has already occurred, 
:;o there are only 2n - 1 elements to choose from. So 

(5) P(B n D) = _ _ 'fJ__ = 1 Pl 2 P2 k Pk . 
1 

( 
A..(n) ) p 1(1 - .l.)pe2(1 - .l.) .. ·p k(1 - .l. ) 

2 2n - 1 2(2n - 1) 

Now P(A) = P((BnC)u(B n D)) = P(BnC) + P(BnD) since P(BnCnD) = 0. 
Thus, 

(6) 

5. A Fun Example. Let G = 7l6 and let H = 7l16983563041· One might assume 
that the probability of randomly choosing a generator for G would be greater than 
the probability of randomly choosing a generator for H since H is so much larger 
than G. The results, however , are surprising. Notice that IGI = 6 = (2)(3) and 
IHI = 16983563041 = 198 . Using formula (1) we obtain the following probabilities: 

Pc(A) = (1- !)(1 - !) =! ~ .333, 

PH(A) = (1 - 1
1
9) = i~ ~ .947. 

Thus, the probability of randomly choosing a generator in H is actually much greater 
than the probability of randomly choosing a generator in G. Notice also that for any 
given t: < 1 there exists a group such that P(A) > t: since P(A) = 1 - 1/p for G a 
cyclic group of prime order p. Using the previous example, we can find a group K 
where P(A) is greater than that in H by choosing a prime larger than 19. So for 
K = 7l23, P(A) > .947. This method can be used for any of the prime numbers , with 
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the limit of P(A) approaching 1. So for any cyclic group G, there exists a cyclic group 
H such that the probability of randomly choosing a generator in H is greater than 
the probability of randomly choosing a generator in G. 
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DO YOU WANT TO DEAL? 

ALLAN J. ROSSMAN* AND BARRY TESMANt 

Abstract. This article presents a simple two-person card game and the counter-intuitive con­
clusion to the question "Do you want to deal?''. 

1. Introduction. The dealer seems to have the advantage in many popular card 
games. Did you ever think about why you are not allowed to deal blackjack in the 
casinos of Las Vegas or Monte Carlo? In this article we describe a very simple two­
person card game where the answer to the question, "Do you want to deal?," is not 
immediately apparent. The analysis of this game, which involves elementary aspects of 
combinatorics, probability, decision theory, infinite series, and game theory, provides 
some surprising results and instructive lessons concerning competitive strategies. 

2. Description of the game. The dealer (a man) deals one card, from an 
ordinary, 52-card deck, to his opponent (a woman) and then one to himself. The 
object of the game is to end up with the higher card, where an Ace is considered low 
so that a King is the highest possible card. Each player looks at his/her card. First, 
if either player is dealt a King, that player must reveal it immediately. Next, the 
opponent has the option of trading her card with the dealer's, provided that neither 
card is a King. If she decides to trade, both players look at their new cards as the 
trade is made. Then, the dealer has the option of trading his card with the top card 
(unseen to him) from the remaining deck. Finally, both players reveal their cards, 
and the one with the higher card is declared the winner. In the event of a tie, the 
game is replayed until one player wins . 

The dealer seems to hold two advantages in this game: 
• If the opponent elects to trade, the dealer instantly knows (since he will have 

seen both cards) whether he is a sure winner (and need not trade with th 
deck) or a potential loser (and therefore must trade with the deck). 

• The dealer enjoys the possibility, which the opponent does not, of trading and 
receiving a King. The opponent cannot trade for a King because if the dealer 
has a King, he reveals it immediately and precludes the opponent's trading 
with him. It is possible, however, for the top card of the remaining deck to 
be a King, for which the dealer could trade. 

The answer to the title question, "Do you want to deal'?," would seem to be a re­
sounding "Yes!" 

3. Naive strategies. What strategy should each player adopt, i.e., when should 
one trade or keep one's card? One reasonable (but naive) approach might be for each 
player to trade only when the probability of bettering his/her card is greater than or 
equal to that of worsening it. Since the opponent has no chance of trading for a King 
(as mentioned above), her naive strategy is to trade with a Six or below, to stick with 
a Seven or above. To see this, note that if she has a Six, there are 24 cards ( 4 for each 
of the Seven through Queen) that would better hers and only 20 ( 4 for each of the 
Ace through Five) that would worsen it; with a Seven there are 20 cards that would 
better hers and 24 that would worsen it. 

*California Polytechnic State University 
t Dickinson College 
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The dealer, on the other hand, has the built-in advantage, for if he reveals a King 
or if the opponent trades or reveals a King, the dealer instantly knows whether or 
not he holds a winning card. If the dealer receives from the opponent a better card 
than he gave up, he should certainly not trade, for he is a sure winner. If he receives 
a worse card than the one he gave up or if the opponent reveals a King, he should 
certainly trade, for he is otherwise a sure loser. If he receives the same card or if the 
opponent does not trade (and does not reveal a King), the dealer's naive strategy is 
still different from that of the opponent, for the dealer has the possibility of trading 
for a King from the deck. The dealer's naive strategy is to trade with a Seven or 
below, to stick with an Eight or above. To see this, note that if he has a Seven, there 
are 24 cards ( 4 for each of the Eight through King) that would better his and also 
24 ( 4 for each of the Ace through Six) that would worsen it; with an Eight there are 
only 20 cards ( 4 for each of the Nine through King) that would better his and 28 ( 4 
for each of the Ace through Seven) that would worsen it. 

Thus, the opponent's naive strategy is to trade with a Six and below, stick with 
a Seven and above. For the dealer, the naive strategy is to trade with a Seven and 
below, stick with an Eight and above, unless he has an obvious choice determined by 
the opponent's trading or revealing a King. 

4. Analysis of naive strategies. To determine the probabilities of each player's 
winning the game using these naive strategies, we first calculate the probabilities con­
ditional on the pair of cards that is dealt. For example, if the opponent is dealt a 
Four and the dealer a Three, the opponent (not knowing that she had the higher 
card) would trade, and the dealer (seeing that he received a higher card than he gave 
up) would stick, thus winning the game. Therefore, the conditional probabilities of 
winning the game given this particular deal are 0 for the opponent and 1 for the 
dealer. 

As another example, suppose that the opponent is dealt a Five and the dealer an 
Eight. Then the opponent would trade (receiving the Eight), and the dealer (having 
received a worse card than he gave up) would trade with the remaining deck. The 
dealer would then win only if the top card from the remaining deck is a Nine or 
above; since there are 20 such cards ( 4 for each of the Nine through King) and 50 
cards remaining in the deck (since a Five and an Eight were already dealt), this 
probability is ~g. The opponent would win if the top card of the remaining deck is 
a Seven or below; since there are 27 such cards ( 4 for each of the Ace through Four 
and for the Six and Seven, 3 for the Five), this probability is ~~. The probability of 
a tie is then 5

3
0 (corresponding to the top card from the remaining deck being one of 

the 3 remaining Eights). 

For a third example, suppose that the opponent is dealt a Jack and the dealer a 
Seven. The opponent would keep her Jack, and the dealer would trade his Seven. The 
dealer would win if the top card from the remaining deck is a Queen or a King; there 
are 8 such cards, so the probability is 5

8
0 • The opponent would win if the top card is 

below a Jack; there are 39 such cards ( 4 for each of the Ace through Ten, except only 
3 for the Seven), so the probability is ~~· The players would tie if the top card is one 
of the 3 remaining Jacks, which has probability 

5
3
0

• 

Table 4.1 contains the conditional probabilities of each player's winning the game 
given the pair of cards dealt. The entries in each cell of the table represent, for that 
pair of cards dealt, the number of cards (of the 50 remaining in the deck) for which 
the dealer would win (top), the opponent would win (middle), and the players would 
tie (bottom). The conditional probabilities of these events, given the pair of cards 
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dealt, are therefore found by dividing these tabled entries by 50. 

Dealer's Card 
A 2 3 4 5 6 7 8 9 10 J Q K 

48 44 40 36 32 28 24 20 16 12 8 4 50 
A 0 3 7 11 15 19 23 27 31 35 39 43 0 

2 3 3 3 3 3 3 3 3 3 3 3 0 
50 44 40 36 32 28 24 20 16 12 8 4 50 

2 0 4 7 11 15 19 23 27 31 35 39 43 0 
0 2 3 3 3 3 3 3 3 3 3 3 0 

50 50 40 36 32 28 24 20 16 12 8 4 50 
3 0 0 8 11 15 19 23 27 31 35 39 43 0 

0 0 2 3 3 3 3 3 3 3 3 3 0 
50 50 50 36 32 28 24 20 16 12 8 4 50 

4 0 0 0 12 15 19 23 27 31 35 39 43 0 
0 0 0 2 3 3 3 3 3 3 3 3 0 

50 50 50 50 32 28 24 20 16 12 8 4 50 
5 0 0 0 0 16 19 23 27 31 35 39 43 0 

0 0 0 0 2 3 3 3 3 3 3 3 0 
50 50 50 50 50 28 24 20 16 12 8 4 50 

6 0 0 0 0 0 20 23 27 31 35 39 43 0 
0 0 0 0 0 2 3 3 3 3 3 3 0 

24 24 24 24 24 24 24 50 50 50 50 50 50 
7 23 23 23 23 23 23 24 0 0 0 0 0 0 

3 3 3 3 3 3 2 0 0 0 0 0 0 
20 20 20 20 20 20 20 0 50 50 50 50 50 

8 27 27 27 27 27 27 27 0 0 0 0 0 0 
3 3 3 3 3 3 3 50 0 0 0 0 0 

16 16 16 16 16 16 16 0 0 50 50 50 50 
9 31 31 31 31 31 31 31 50 0 0 0 0 0 

3 3 3 3 3 3 3 0 50 0 0 0 0 
12 12 12 12 12 12 12 0 0 0 50 50 50 

10 35 35 35 35 35 35 35 50 50 0 0 0 0 
3 3 3 3 3 3 3 0 0 50 0 0 0 
8 8 8 8 8 8 8 0 0 0 0 50 50 

J 39 39 39 39 39 39 39 50 50 50 0 0 0 
3 3 3 3 3 3 3 0 0 0 50 0 0 
4 4 4 4 4 4 4 0 0 0 0 0 50 

Q 43 43 43 43 43 43 43 50 50 50 50 0 0 
3 3 3 3 3 3 3 0 0 0 0 50 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 

K 47 47 47 47 47 47 47 47 47 47 47 47 0 
3 3 3 3 3 3 3 3 3 3 3 3 50 

TABLE 4. 1 
Conditional probabilities of winning given the pair of cards dealt 

To determine the (overall) probabilities of each player's winning the game using 
these naive strategies, one simply multiplies each of these conditional probabilities by 
the probability of that pair being dealt, and sums over all possible pairs (the law of 
total probability; see, (2], for example). The probab~lity of any p~ir b~ing d~alt is 
..!. x ..!. = _L for pairs in which the two cards are different and 52 x 51 = 663 for 52 51 663 
pairs in which the two cards are the same. 
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In symbols, let W D represent the event that the dealer wins the game, W 
0 

that 
the opponent wins, T that a tie occurs, and Cij that card i is dealt to the opponent 
and j to the dealer. Then 

where 

Pr(WD) = L Pr(WD I cij ) X Pr(Cij) 
i,j 

Pr(Wo) = L Pr(Wo I cij ) X Pr(Cij) 
i,j 

Pr(T) = L Pr(T I cij) X Pr( cij) 
i,j 

4 
663 

3 
663 

for i f= j 

fori = j. 

These probabilities, of the dealer winning the game, of the opponent winning t he 
game, and of tieing, assuming that each player uses his/her naive strategy, are as 
follows: 

Pr(WD) = 0.4654 

Pr(W o) = 0.4685 

Pr(T) = 0.0661 

Dealer 's Winning 

Opponent's Winning 

Tieing 

Since ties are to result in the game being replayed until one player wins, a player 
(eventually) wins the game by either winning after the first deal OR tieing and then 
winning the second deal OR tieing twice and then winning the third deal OR .... 
Thus, the probability of each player's (eventual) winning is found by determining t he 
convergence of an infinite sum. In symbols, let W.zj represent the event that the dealer 
eventually wins the game and W0 that the opponent eventually wins. Then 

Pr (W.zj ) = Pr (WD) + Pr (T) Pr (WD) + Pr (T) Pr (T) Pr (WD) + · ·. and 

Pr (W0) = Pr (Wo) + Pr (T) Pr (Wo) + Pr (T) Pr (T) Pr (Wo) + . · .. 

These are geometric series whose leading terms are Pr (W D) = 0.4654 and Pr (W 
0

) = 
0.4685, respectively, with a ratio of Pr (T) = 0.0661. Thus, these probabilities are: 

Pr (W* ) = Pr (WD) = 0.4654 = and 
D 1 - Pr (T) 1 - 0.0661 °·4983 

Pr (W* ) = Pr (Wo) = 0.4685 _ 
0 1 - Pr (T) 1 - 0.0661 - 0·5017· 

In spite of the apparent advantages to the dealer, the opponent has a higher proba­
bility of winning the game than the dealer! The opponent's advantage, which slightly 
outweighs those for the dealer, comes from the fact that she never has to surrender 
a good card (since the initial decision to trade or not is hers), while the dealer may 
have to give up a good card if the opponent elects to trade. Note that the opponent 
has the advantage in both the upper right (where the opponent is dealt a good and 
the dealer a poor card) and the lower left (where the opponent is dealt a poor and the 

·' 
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dealer a good card) portions of Table 4.1. In fact, of the 13 x 13 = 169 possible pairs 
of cards to be dealt (which are not all equally likely, remember), the opponent has 
the advantage over the dealer in 87, the dealer over the opponent in 75, and neither 
has the advantage in 7. The answer to the "Do you want to deal?'' question seems 
less obvious in light of this analysis. 

5. Other strategies. We have just seen that the opponent enjoys a slight ad­
vantage over the dealer if each player adopts the naive strategy of trading only when 
the probability of bettering one's card is at least as great as the probability of wors­
ening it. Perhaps other strategies are better, though. For instance, maybe the dealer 
should be willing to trade with cards higher than a Seven if the opponent does not 
trade, for the opponent's action of not trading may indicate that she has a reasonably 
good card. 

For the opponent, we consider all strategies of the form: trade with cards at and 
below N (for N = Ace, Two, . . . , Jack, Queen), stick with cards above N . For the 
dealer we consider all strategies of the form: trade with cards at and below M (for 
M = Ace, Two, ... , Jack, Queen), stick with cards above M. (Of course, we continue 
to assume that the dealer will do the only sensible thing if the opponent trades or 
has a King.) We consider these twelve different strategies for each player and conduct 
the analysis described above to determine the probability of each player's (eventual) 
winning of the game with that particular pair of strategies being used . Table 5.1 
contains these probabilities for each of the 144 pairs of strategies. These are the 
probabilities of each player's (eventual) winning, so the entries in one table are simply 
1 minus those in the other. 

6. Analysis of different strategies. How should the players usc the results 
in Table 5.1 to guide them in selecting strategies? One might start by eliminating 
dominated strategies; i.e., strategies which result in a lower probability of winning than 
another strategy no matter which strategy the other player selects (see, [1] or [3], for 
example). For the dealer, strategies M = Ace, Two, Three, Four, Five, and Queen 
are all dominated. (Remember that the form of the strategy is to trade with cards at 
and below M, stick with cards above M.) To see this, note that strategy M = Six 
dominates M = Ace, Two, Three, Four and Five, in that the probability of the dealer 
winning with strategy M = Six exceeds that for each of the other dominated strategies 
for every strategy that the opponent might use. Also, dealer strategy M = Queen 
is dominated by strategy M = Jack. For the opponent, strategies N = Ace, Two 
Three, Four, Eight, Nine, Ten, Jack, and Queen are all dominated by strategy N = Six 
(for example) . Thus, the principle of dominance eliminates from consideration many 
of the strategies available to each player. The dominated strategies are not worth 
considering since one can find a better strategy (i.e., one with a higher probability of 
winning) regardless of the other player's strategy. 

The non-dominated strategies are M =Six, Seven, Eight, Nine, Ten, and Jack for 
the dealer, and N = Five, Six, and Seven for the opponent. Restricting consideration 
to these strategies results in the winning probabilities displayed in Table 6.1 . Reap­
plying the dominance principle to these strategies allows us to eliminate the dealer's 
M = Six, Nine, Ten, and Jack strategies. Each of these is dominated by strategy 
M = Eight (for example). Once these dealer strategies are eliminated, the opponent 
should choose an N = Seven strategy. The dealer's best strategy against such an 
opponent is to play an M = Eight strategy. This pair of strategies is also the unique 
game-theoretic minimax strategy or Nash equilibrium for the game (see, [1] or [3]). 

With the minimax approach, each player identifies, for each possible strategy, the 
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N'\,Al 

A 
2 
3 
4 
5 
6 
7 
8 
9 
10 
J 
Q 

N'\,J\.1 

A 
2 
3 
4 
5 
6 
7 
8 
9 
10 
J 
Q 
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A 2 3 4 
Dealer's Strategy: M 
5 6 7 8 9 

.5061 .5384 564 2 .5835 

.4744 .5047 .5313 .5514 

.4504 .4753 .5 003 . . '5217 

.4347 .4547 .4747 .4949 

.4278 .4 434 .4591 .4748 

4301 .4419 .4538 .4656 

5963 .6027 .6026 .5 961 .5831 

.5650 .5721 .5727 .5669 .5547 

.5366 .5 449 .5468 . r. 422 . 5312 

.5116 .5217 .5254 .5226 .5133 

.4907 .5031 .5090 .5085 .5015 

.4776 .4896 .4983 .5 006 .4964 
.4421 .4506 .4592 .4678 

.4643 .4702 .4760 .4819 

.4977 . . '5013 .5050 .5087 

.5427 .5446 .5466 .5485 

.4764 .4850 .4937 .4993 .4984 

.4878 .4937 .4996 .5056 .5084 

.5123 .5160 .5197 .5234 .5271 

.5505 .5525 .5544 .5564 .5584 
.5997 .6005 .6012 .6020 .6027 .6035 .6042 .6050 .6057 
.6694 .6694 .6694 .6694 .6694 .6G94 .6694 .6694 6694 

Dealer's probability of winning 

A 2 3 4 
Dealer's Strategy: M 
5 6 7 8 9 

.4939 .4616 .4358 .4165 

.5256 .4953 .4687 .44 8 6 

.5496 .5247 .4997 .4783 

.5653 .5453 .5253 .505 1 

.5722 .5566 .5409 .5252 

.5699 .5581 .5462 .5344 

.5579 .5494 .5408 .5 322 

.5357 .5298 .5240 .5181 

.5023 4987 .4950 .4913 

.4573 .4554 .4534 .4 5 15 

.4037 .3973 .3974 4039 .4169 

.4350 .4279 .4273 .4331 .4453 

.4634 .4551 .45 32 .4578 .4688 

.4884 .4783 .474 6 .4774 .4867 

.5093 .4969 .4910 .4915 .4985 

.5224 .5104 .5017 .4994 .5036 

.5236 .5150 .506:! .5 007 .5016 

.5122 .5063 .5004 .4944 .4916 

.4877 .4840 .4803 .4766 .4729 

.4495 .4475 .4456 .443G .4416 
.4003 .3995 .3988 .3980 .3973 .3965 .3958 .3950 .3943 
.3306 .3306 .3306 .3306 .3306 .3306 .3306 .3306 .3306 

Opponent's probability of winning 
TABLE 5.1 

Probabiliti s of winning with various strategies 

10 J Q 
.5638 .538 1 .5060 

.4797 

.4600 

.4474 

.4425 

.4458 

.4576 

.4787 

.5100 

.5518 

.6048 

.6694 

.5360 .5110 

.5138 .4901 

.4977 .4 757 

.4882 .4685 

.4858 .4689 

.4911 .4775 

.5049 .4949 

. 5278 .5220 

.5604 .5593 

.6064 .6072 

.6694 .6694 

10 
.4362 

.464 0 

.4862 

.5023 

.511 8 

.5142 

. 5089 

.4951 

.4722 

.4396 

.3936 

.3306 

J Q 
.4619 .4940 

.4890 .5203 

.5099 .5400 

.5243 .55 26 

.5315 .5575 

.5311 .5542 

.5225 .5424 

.5051 .5213 

.4780 .4900 

.4407 .4482 

.3928 .3952 

.3306 .3306 

worst ("mini-") that he/she can do with that strategy. Then each player chooses the 
~trategy corresponding to the highest ("max") of these minimum probabilities. That 
Is, each. p~ayer choose~ the best of the worst-case scenarios available to him/her. If 
t~ese mmimax strategies for each player coincide, they are said to achieve an equilib­
n~m. In general, the equilibrium need not exist and need not be unique when it does 
exist. 

TABLE 6.1 
Probabilities of winning with non-dominated strategies 

Opponent's 
Strategy: 

N 

Opponent's 
Strategy: 

N 

5 
6 
7 

5 
6 
7 

6 
.5031 
.4896 
.4850 

Dealer's Strategy: M 
7 8 9 10 

.5090 .5085 .5015 .4882 

.4983 .5006 .4964 .4858 

.4937 .4993 .4984 .4911 

Dealer's probability of winning 

6 
Dealer's Strategy: M 
7 8 9 10 

.4969 .4910 .4915 .4985 .5118 

.5104 .5017 .4994 .5036 .5142 

. 5150 .5063 .5007 .5016 .5089 

Opponent's probability of winning 

J 
.4685 
.4689 
.4775 

J 
.5315 
.5311 
.5225 
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With this pair of strategies, the opponent has a .5007 probability of winning the 
game; there is no other strategy that assures her of a higher probability of winning 
regardless of the dealer's strategy. Likewise, there is no other strategy for the dealer 
that assures him of a higher probability of winning than .4993 regardless of the op­
ponent's strategy. Notice that with these equilibrium strategies, the game still favors 
the opponent, but her advantage is less than that with the naive strategies, where her 
probability of winning is .5017 . 

One should not necessarily assume that the other player will play his/her equi­
librium strategy, however. For example, if one knows that the other player is playing 
the naive strategy, a better strategy might be available. Table 5.1 reveals that if the 
opponent is playing her naive strategy (N = Six), the dealer's best strategy isM = 
Eight, which gives him a .5006 probability of winning. Thus, if the opponent plays 
her naive strategy, the dealer can actually have the advantage in the game by playing 
a better strategy than his naive one! On the other hand, if the dealer is known to 
be playing his naive strategy (M = Seven), Table 5.1 reveals that the opponent's 
best strategy is N = Seven, which gives her a .5063 probability of winning. Thus, 
the opponent can also do better than playing her own naive strategy against a naive 
dealer . 

Finally, one can also discern from Table 5.1 that, while the game favors the 
opponent slightly, the worst that the opponent could possibly do is worse than the 
worst that the dealer could possibly do. By playing a ridiculous N = Queen strategy 
(i.e., trading even with a card as good as a Queen), the opponent's probability of 
winning could plummet to as low as .3306. However, the dealer's probability of 
winning cannot sink below .4278, which would be achieved by adopting an M = Ace 
strategy (i.e., trading with an Ace but sticking with a Two or higher). Of course, the 
dealer's probability of winning could sink lower if he failed to make the only sensible 
decision when the opponent trades with him or reveals a King. 

'Do you want to deal?'' Probably not! A player armed with these results can 
achieve a higher probability of winning in the opponent's position, rather than in the 
dealer's position. If one believes, however, that his/her competitor will play ridiculous 
strategies, one can better exploit that foolishness from the dealer s position than from 
the opponent's position. 

7. Conclusions. We believe that this card game, despite being very simple to 
describe and to play, yields some surprising results and intriguing lessons about com­
petitive strategies. The most surprising result has been that the game actually favors 
the opponent (an intelligent opponent, anyway) despite the rules which seem to offer 
several advantages to the dealer. More interesting, perhaps, is that the naive, short­
sighted goal of seeking to improve one's card is not necessarily the best strategy to 
adopt. In fact, either player can have the advantage in the game by using a non-naive 
strategy if the other player is known to be using a naive one. 

We recently discovered that this game goes by the name "le Her" and has been 
presented in some game theory books. (See [4].) 
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Correction. In the last issue, due to a printer error, these diagrams 

were unreadable. They are Figures 2 and 3 in General Flip-Shift Games by Jae Gyun 
Cheong, Michael A. Jones and Kei Kaneko (ITME Journal, Vol. 11, No. 5, pp 229- 239, 
2001). 
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PROBLEM DEPARTMENT 

EDITED BY MICHAEL MCCONNELL, JON A. BEAL, AND CLAYTON W. DODGE 

This department welcomes problems believed to be new and at a level appropriate for the readers 

of this journal. Old problems displaying novel and elegant methods of solution are also invited. 

Pmposals should be accompanied by solutions if available and by any information that will assist 

the editor. An asterisk ( *) preceding a problem number indicates that th proposer did not submit a 

solution. 
All correspondence should be addressed to Michael McConnell, 840 Wood Str·eet, Mathematics 

Department, Clarion University, Clarion, PA 16214, or sent by email to mmcconnell@clarion.edu. 

Electr·onic submissions using YTE;X are encoumged. Please submit each proposal and solution prefer­

ably typed or clearly written on a sepamte sheet (one side only) properly identzficd Mth name, affil­

iation, and addr·ess . Solutions to problems in this issue should be mail d to arrive by December· 1, 

2002. Solutions identzfied as by students are given prefeTence. 

Problems for Solution. 

1034. Proposed by Norman Schaumberger, Douglaston, New York 

Let a, b, c E IE+ . Show that 

(a + b + c) a + b+e > (a + b r ( b + c r ( c + a) b 

3 - 2 2 2 

1035. Proposed by Ayoub B. Ayoub, Pennsylvania State University -Abington 

College, Abington, Pennsylvania 
Prove that if 

2n+ l (2n + 1) 
:r = "'""' 2k - 1 

L..-t h: 
k = l 

then ~(x2 - 1) is the product of two consecutive whole numbers. 

1036. Proposed by Shiva Saksena Univ. of North Carolina at Wilmington , 

Wilmington, North Carolina 
Student solutions solicited. 

Let 

Find c such that 

00 

f(x) =IT (1 + x2;). 
i = O 

{c f(x) dx = 1r. 
.fo 

1037. Proposed by Jim Vandergriff, Austin Peay State University, Clarksville 

TN 
Evaluate 

lim {I (lnxJ)2 dx 
X oo ./0 n 
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1038. Proposed by Dr. Shiva K. Saksena, University of North Carolina at Wilm­
ington, Wilmington, North Carolina 

Find all solutions of the equation 

ln(log x) = log(ln x). 

1039. Proposed by Cecil Rousseau, The University of Memphis 
(Erdos) Let n be a natural number. The number of odd divisors of n equals the 

number of representations of n as the sum of consecutive natural numbers. Note: 
Sums with one term are counted. 

1040. Proposed by Andrew Cusumano, Great Neck, New York 
n 1 

Define an = L --
2
- .. Show that {an} is a decreasing sequence and lim an > ~. 

i = O n + ~ n oo 2 

1041. Proposed by Leon Bankoff, Los Angeles, California 
The figure below shows a quarter circle with smaller circles inside. 

1. Prove the three larger circles have radii of equal length. 
2. Prove that the remaining six smaller circles also have radii of equal length. 

1042. Robert C. Gebhardt, Hopatcong, N.J. 
In a simple roulette game, there are thirty-six numbers, a predetermined half of 

t he numbers are black and the the other half are red. 
1. In how many ways can the numbers be arranged in slots around the wheel if 

no two adjacent slits can have the same-colored number? 
2. European roulette wheels also have a green "0". Repeat the question from 

part (1) for this situation. 
3. American roulette wheels have a green "0" and a green "0". Repeat the 

question for this situation. 
The poser writes: "In the small roulette wheel I own, presumably a 'standard' 

arrangement of the numbers, green 0 and green 00 are diametrically opposite each 
other. Also, adjacent numbers are diametrically across from each other: red 1 is 
opposite black 2, then black 13 is opposite red 14, then red 36 is opposite black 35, 
and so on- so the actual arrangement is more complicated than just avoiding having 
adjacent numbers of the same color". 

·' 
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1043. Mohd Nadeem Khan, New Abadi, Aligarh, India 
Find all quadruples of distinct integers x, y, u, and v such that 

Solutions. 

xy = UV 

x - y = u + v 

gcd(x, y) = 1 

gcd(u, v) = 1 

x > y 

u > v . 

and 
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1007. [Spring 2001] Proposed by the editor. 
As children, my siblings and I would eat great quantities of peanut butter . A 

favorite treat was (and still is) peanut butter on a banana. (Peel the banana first! 
Then put on the peanut butter.) Thus solve this base ten alphametic 

PEANUT = BUTTER + BAN AN A. 

Solution by Cindy Mounce, student, Angelo State University , San Angelo, 

Texas. 
Writing the alphametic vertically, we have 

BUTTER 
+ BANANA 

PEANUT 

There are eight possibilities for the carries involved in the hundreds and thousands 
columns. Suppose first we have no carries, that T + A = N and T + N = A. By 
subtracting these two equations, we find that A = N, which is not possible. Similarly, 
if 1 + T + A = N + 10 and 1 + T + N = A + 10, then again A = N. 

If 1 + T +A = N and T + N = A, then by subtracting we get that N - A = 1/2, 
which is impossible in integers. Similarly, we cannot have T +A = N + 10 and 
1 + T + N = A, T + A = N + 10 and 1 + T + N = A + 10, or 1 + T + A = N and 

T + N = A+ 10. 
If 1 + T +A = N + 10 and 1 + T + N = A, then T = 4 and N = A - 5. From the 

tens and ten thousands columns we have that E + N = U + 10 or 1 + E + N = U + 10, 
and U +A= E or U +A = E + 10. If 1 + E + N = U + 10 and U +A = E , then 
U = E - 7, A = 7, and N = 2. Also R = 7, a contradiction. 

Finally, we take T+A = Nand T+N = A+ 10. Here T = 5 and N = A+5. As 
above all possibilities lead to contradictions except E+N = U and 1+U +A = E+10. 
Now U = E + 7, A = 2, and R = 3, so E < 2. Since E = 0 yields U = N, we have 
E = 1 and U = 8. Since only 0, 4, 6, and 9 remain unused forB and P, then B = 4 

and P = 9. We have 912785 = 485513 + 427272, or 

485513 
+ 427272 

912785 

Also solved by Charles D. Ashbacher, Charles Ashbacher Technologies, Hiawatha, IA, Paul 

s. Bruckman, Sacramento, CA, Rochelle Call, Viterbo University, Lacrosse, WI, Kenneth B. 
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Davenport, Frackville, PA, Mark Evans, Louisville, KY, Doug Faires, Youngstown State Uni­

versity, OH, Yu Gan, Loch Raven High School, Baltimore, MD, Robert C. Gebhardt, Hopatcong, 

NJ, Richard I. Hess, Rancho Palos Verdes, CA, Brendan LeFebvre, Providence College, Wind­

sor, CT, Peter A. Lindstrom, Batavia, NY, Yoshinobu Murayoshi, Okinawa, Japan, H.-J. 

Seiffert, Berlin, Germany, Skidmore College Problem Group, Saratoga Springs, NY, Ken­

neth M. Wilke, Topeka, KS, Rex H. Wu, Brooklyn, NY, and the Proposer. 

1008. [Spring 2001] Proposed by Ice B. Risteski, Skopje,Macedonia. 
There exist polynomials with integer coefficients that are irreducible over the field 

of rational numbers but are reducible over the field of residues with respect to any 
prime modulus p. Prove that f(x) = x 4 - 10x2 + 1 is such a polynomial. 

I. Solution by H.-J. Seiffert, Berlin, Germany. 
If f(x) is reducible over the rationals, then it is reducible over the integers since 

its leading coefficient is 1. Since f(x) has no integral zero, we must consider only 
the case J(x) = (x2 +ax+ u)(x2 + bx + u), where a and bare integers and u = ±1. 
If u = 1, then a = 2J3. If u = - 1, then a = 2J2, so f(x) is irreducible over the 
rationals. 

We prove f(x) is reducible over Zp, the field of residues with respect to any prime 
p. It is easily checked that f(x) = (x2 + 1)2 in Z 2[x] as well as in Z 3[x]. So suppose 
p > 3. 

If 2 is a quadratic residue modulo p, then a2 = 2 (mod p) for some integer a and 
f(x) = (x2 +2ax - 1)(x2 - 2ax- 1) in Z p[x]. Similarly, if 3 is a quadratic residue modulo 
p, then a 2 = 3 (mod p) for some integer a and J( x ) = (x2 + 2ax + 1)(x2 - 2ax + 1) 
in Zp[x]. 

If neither 2 nor 3 is a quadratic residue modulo p, then their product 6 is a 
quadratic residue, so a2 = 6 (mod p) for some integer a and f(x) = (x2 + 2ax -
5)(x2 - 2ax - 5) in Z p[x ]. 

II. Comment by Rex H. Wu, Brooklyn, New York. 
Lindsay Childs, in Problem E2578, The American Mathematical Monthly; Vol. 

84, No. 5; May 1977, pp. 390-1, provided a proof to the theorem: Given any prime p 
and integers a and b, the polynomial P(x) = x 4 + ax2 + b2 is reducible mod p. 

Also solved by PaulS. Bruckman, Sacramento, CA, Koopa Tak-Lun Koo, Boston College, 

MA, J. Ernest Wilkins, Jr. , Clark Atlanta University, GA, Rex H. Wu, and the Proposer. 

1009. [Spring 2001] Proposed by Ice B. Risteski, Skopje, Macedonia. 
a) Prove that if the polynomials f ( x) and g( x) with integer coefficients are rela­

tively prime over the field Zp of residues with respect to the prime modulus p and at 
least one of the leading coefficients is not divisible by p, then these polynomials are 
relatively prime over the field of rational numbers. 

b) Show by way of an example that for any prime p the converse assertion does 
not hold. 

Solution by the Proposer. 
a) Suppose f(x) and g(x) are polynomials with integral coefficients and where at 

least one leading coefficient is not divisible by the prime p, and suppose they have a 
common divisor d(x) of positive degree over the field of rationals. Then the leading 
coefficient of dis not divisible by p, f(x) = d(x)a(x) and g(x) = d(x)b(x), where a, b, 
and d are polynomials with rational coefficients. Since any polynomial with integral 
coefficients that factors over the field of rationals also factors over the integers, we may 
assume that all the coefficients are integers. Furthermore, since the leading coefficient 
of f or of g is not divisible by p, then neither can the leading coefficient of d be 

·' 
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divisible by p. Passing to the field of residues modulo p, we see that d(:r) is of positive 
degree and is a divisor of J(x) and g( x ) over that field. . 

b) The polynomials x and x + p are relatively prime over thP field of rationals but 
actually equal over the field of residues modulo p. 

1010. [Spring 2001] Proposed by Peter A. Lindstrom, Batavia, New York. 

Show that 

~ - el < ~ 
2 2 

Solution by Doug Faires, Young.'itown State University , Youngstown, Ohio. 
The given inequality can be reexpressed as 

L
ac en 

- 1 < -------:- < e 
(n + 1)71 

n = O 

or, by multiplying bye aud adjusting the index, as 

(1) 

00 1L 

2 L e 2 - e< - < e . nn 
n=l 

To show the left inequality in (1) , consider the increasing function f(x) = 1~.-r; , f?r 
x E {1,n], and the sequence {ln i} fori = 1, 2, . . . ,n. Since lni > f(x) for x E [t - 1,t), 

we have 
n · n n 

/," In xd1: = t; 1~ 
1 
In xdx < t; In i = 8 In i = Inn!. 

Completing the int 'gratiou and simplifying gives ln nn - ln Fn + In F < ln n! and 
ejn! < (e/n)n. Summing the convergent series gives 

00 1 00 en 
e2 - e = e( F - 1) = e L 1 < L ----;; · 

i=l n. n=l n 

To show the right inequality in (1), first verify that 

When n > 5, en 2 < (n/2)n implies that 

n- l (n) n n (n)n _ (::)n+l e <e- <- - - < 
2 2 2 2 

(n;l r+l 
Hence, for all n "2: 1, and with strict inequality for n # 2, 

and 

Also solved by Brian Bradie, Christopher Newport University, Newport News, VA, Paul S. 

Bruckman, Sacramento, CA, Charles R. Diminnie, Angelo State University, San Angelo, TX, 
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Russell. Euler. and Ja":'ad Sadek, Northwest Missouri State University, Maryville, George P. 

Ev~nov1ch, Samt Peters College, Jersey City, NJ, Mark Evans, Louisville, KY, Ovidiu Fur­

dm, Western Michigan University, Kalamazoo, Robert C. Gebhardt, Hopatcong, NJ, Richard 

I. ~ess, Rancho Palos Verdes, CA, Joe Howard, Portales, New Mexico, Yoshinobu Murayoshi , 

~kmawa, Japan, H.-J. Seiffert, Berlin, Germany, J. Ernest Wilkins, Jr., Clark Atlanta Univer­

sity, GA, Rex H. Wu, Brooklyn, NY, and the Proposer. 

1011. [Spring 2001] Proposed by Maureen Cox and Albert W. White, St. Bonaven­
ture University, St. Bonaventure, New York. 

Find a closed form expression for 

n2 - n - 1 

~ (n+1)! · 

Solution by Arnab Bhattacharyya, student, Chelmsford High School, Chelms­
ford, Massachusetts. 

Observe that 

00 00 00 

"'"' n "'"' n L....- I = L....- I = L 1(n - 1)! = 
i = l n. i = O n. n = l 

and 

00 2 00 2 00 00 

~:! = ~ :, = ~ (n: I)! = ~ (n~l) = f;:, + ~~! = 2 

Now apply these results to get 

00 2 ? 

"'"' n - n - 1 "'"' n- - 3n + 1 
~ (n + 1)! = ~ n! = (2e - 1) - 3(e - 1) + ( - 2) = 0. 

Also solved by Ayoub B. Ayoub, Pennsylvania State University, Abington College, Frank 

P. ~at~les, Massachusetts Maritime Academy, Buzzards Bay, Brian Bradie, Christopher Newport 

Umvers1ty, Newport News, VA, Paul S. Bruckman, Sacramento, CA, Jesse Crawford, Angelo 

State University, San Angelo, TX, Charles R. Diminnie, Angelo State University, San Angelo, 

TX, R~b D~wnes, Mountain Lakes High School, NJ, Russell Euler and Jawad Sadek, North­

w~st M1ssoun State University, Maryville, George P. Evanovich, Saint Peter's College, Jersey 

Clty, NJ,_ No~l D. Eva~s,. Angelo State University, San Angelo, TX, Doug Faires, Youngstown 

State Umvers1ty, OH, Ov1dm Furdui, Western Michigan University, Kalamazoo, Robert C. Geb­

har~t, Hopatcong, NJ, Richard I. Hess, Rancho Palos Verdes, CA, Joe Howard, Portales, New 

Mexico, Koopa ~ak-Lun Koo, Boston College, MA, Carl Libis, Assumption College, Worcester, 

M~, Peter A. Lmdstr.om, _Batavia, NY, Henry Ricardo, Medgar Evers College, Brooklyn, NY, 

Sh1va K. Saksena, Umvers1ty of North Carolina at Wilmington H J Seiffert B 1· G S · ' ·- · , er 1n, ermany, 
k1dmore Co.lle~e Problem Group, Saratoga Springs, NY, Kenneth M. Wilke, Topeka, KS, 

J. Ernes~ W1lkms, Jr., Clark Atlanta University, GA, Rex H. Wu, Brooklyn, NY, Yongzhi 

Yang, Umversity of St. Thomas, St. Paul, MN, and the Proposers. 

1?12. (Spring 2001] Proposed by William Chau, New York, New York. 
Fmd each perfect number p such that the product of the proper divisors of p is 

equal top. 
Solution by Charles Ashbacher, Charles Ashbacher Technologies Hiawatha 

Iowa. 
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Let q be a perfect number. The square of a prime p has only the one proper 
divisor p and p < p2 . Any other positive integer n > 1 must have for proper divisors 
at least one pair a and b such that n = ab. So, if q has more than 2 proper divisors, 
their product is greater than q. Suppose q is odd. It is not known if such a number 
exists, but in "Unsolved Problems in Number Theory", 2nd edition, edited by Richard 
K. Guy, it is stated that there must be at least 29 (not necessarily distinct) prime 
factors, which of course are all greater than or equal to 3. It is then clear that the 
product of all the proper divisors of q is greater than q. Therefore, no odd perfect 

number can satisfy the conditions. 
If q is an even perfect number, then it is well known that q = 2p- l (2P - 1) where 

both p and 2P - 1 are primes. If q has any proper divisors other than 2p- l and 2P -1, 
which occurs whenever 2p- l is composite, the conditions of the problem cannot be 
satisfied. Now, 2p- l is prime only when p = 2, so the only perfect number equal to 

the product of its proper divisors is 6 = 22
-

1 (2
2

- 1). 
Also solved by Paul S. Bruckman, Sacramento, CA, Charles R. Diminnie, Angelo State 

University, San Angelo, TX, Mark Evans, Louisville, KY, Noel Evans, Angelo State University, 

San Angelo, TX, Doug Faires, Youngstown State University, OH, Richard I. Hess, Rancho Palos 

Verdes, CA, Peter A. Lindstrom, Batavia, NY, Yoshinobu Murayoshi, Okinawa, .Japan, H.­

J. Seiffert, Berlin, Germany, Kenneth M. Wilke, Topeka, KS, J. Ernest Wilkins, .Jr., Clark 

Atlanta University, GA, Rex H. Wu, Brooklyn, NY, Monte J. Zerger, Adams State College, 

Alamosa, CO, and the Proposer. 

1013. [Spring 2001] Proposed by Wu Wei Chao, He Nan Normal UniveTsity, X in 

Xiang City, He Nan Province, China. 
Observe that 77 x 88 = 6776, 77 x 858 = 66066 , 777 x 858 = 666666, 7777 x 8558 = 

66555566, 707 x 8558 = 6050506, etc. Prove that there exist infinitely many triples 

of palindromic natural numbers x, y, z such that xy = z. 
I. Solution by Mark Evans, Louisville, Kentucky. 
Let k be a positive integer and x a palindrome of length exactly k digi ts. Let 

n 

Y = L10kn 
i = O 

for any nonnegative integer n. Then z = xy is simply the digits of x repeated n + 1 
t imes. This proves not only the problem posed, but goes further to prove that for 
any given palindrome x, there exist infinitely many palindromes y such that .1:y is a 

palindrome. 
For example, if x = 858 and n = 2, then z = 858858858. 
II. Solution by William H. Peirce, Rangeley, Maine. 
Let x be the n-digit palindrome 111 ... 111 and let y = 11. The product z = x y = 

1222 ... 2221, an (n+ 1)-digit palindrome. Any such product of palindromes that does 
not involve carrying, produces another palindrome. The more difficult problem is to 
find such palindrome-producing products of palindromes where carrying is involved. 

Ill. Solution by Proposer. 
Let x = 99 ... 9 have n ~ 2 nines and y = 55. Then xy = (10n - 1)(55) = 

5500 ... 0 - 55 = 549 ... 945, for example. Also, since 7 x 858 = 6006 and 700 x 858 = 
600600, it is easily seen that 70707 ... 0707 x 858 = 60666 ... 6606. 

Also solved by Charles D. Ashbacher, Charles Ashbacher Technologies, Hiawatha, IA, Paul 

S. Bruckman, Sacramento, CA, Doug Faires, Youngstown State University, OH, Richard I. 

Hess Rancho Palos Verdes, CA, H.-J. Seiffert, Berlin, Germany, and Rex H. Wu, Brooklyn, NY 

and the Proposer. 
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1014. [Spring 2001]Proposed by Miguel Amengual Covas, Santanyi - Mallorca, 
Spain. 

Given in lR 3 an elliptic paraboloid, find the locus of the centers of the spheres 
which cut the paraboloid in two circles. 

Solution by Proposer, with translation from the original Spanish by Gregorio 
Fuentes, Orono, Maine. 

Place the paraboloid in the Cartesian plane so that it has the equation 

and a ~ b > 0. It is a paraboloid of revolution if and only if a = b. Otherwise, a> b 
and we let c2 = a2 - b2. A plane perpendicular to the axis of the paraboloid, the 
z-axis, is in general an ellipse with major axis parallel to the x-axis, so in order to 
make that intersection a circle, it is necessary to tip the plane, leaving that major 
axis fixed. It follows that all circular sections of the paraboloid lie in two systems 
of parallel planes that coincide in case the paraboloid is of revolution. The plane of 
any such circle will be parallel to the x-axis and its center will lie in the yz-plane. It 
follows that the center of any sphere containing that circle also lies in the yz-plane. 
Of course, the intersection of a sphere and a plane always is a circle. 

For the case a = b, the plane of any circle lying on the paraboloid is parallel to 
the xy-plane and its center is on the z-axis, the axis of the paraboloid, so the centers 
of all spheres that cut the paraboloid in two such circles lie on that axis. Since the 
radius of curvature of a plane curve y = j(:1·) is given by 

r = 
(1 + (y')2Y3/ 2 

y" 

we see that for the parabola 2z = :r2 
/ a2 , the radius of curvature at x = 0 is r = a2. 

For the sphere to cut the paraboloid twicE:', its center must lie above the point (0, 0, a 2) 
and its radius must hE' greater than a2, greater than the distance from the center to 
the paraboloid, hut less than its height above the vertex. All such centers lie on the 
open halfiine on the axis of the paraboloid originating at (0, 0, a2), and contained 
inside the paraboloid. 

So we assume a > b. If two distinct surfaces f(x, y, z) = 0 and g(x, y, z) = 0 
intersect in a curve and if c is a constant, then f + cg = 0 is the equation of a surface 
through that curve of intersection. Consider the surface 

X
2 

Y
2 

2 2 2 2 - + - - 2z - S(x + y + (z - q) - r ) = 0 
a2 b2 

that one obtains from the intersection of our paraboloid and a sphere with appropri­
ately chosen values for q and r. By choosing S = 1/a2, we eliminate x , and with a bit 
of algebra one finds that thE' equation reduces to a pair of planes ( cy + bz) ( cy - bz ) = 0 
when r = q = a2. Then any plane that cuts the paraboloid in a circle must be parallel 
to one of these planes. Figure 1 shows the cross section in the plane x = 0 of the 
paraboloid and the planes cy+bz = 0 and cy - bz = 0. The segment of each line cut off 
by the parabola is a diameter of a circle cut from the paraboloid by the corresponding 
plane. 

Since these two planes will not in the general case pass through the origin, their 
equations will be of the form cy + bz + A = 0 and cy - bz + J..L = 0 for some constants 
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z 
') 2 

y- = 2zb 

bz = -cy 

y 

FIG . l. 

A and 1-L· Also, in the general case we let (O,p, q) be the center and r the radius of t he 

sphere and we set 

x
2 + Y2 

_ 2z _ __!:_ (T2 + (y _ p)2 + (z _ q)2 _ r2) = ~b2 (cy + bz + A)(cy - bz + J..L) 
a2 b2 a2 a 

Since this equation is an identity, we can derive the following equalities by first mul­
tiplying through by a2b2 and then equating the coefficients of y and of z, and the 

constants: 

c(A + J..L) = 2b2
p 

b(J..L - A) = 2b2q - 2a2b2 

AJ..L = - b2p2 _ b2q2 + b2r2 

2 b . These equations we solve for A, JL, and r to o tam 

(
bp 2) A = b -z - (q - a ) , 

(2) (
bp 2) J..L = lJ -z + (q - a ) ' 

Since the sphere is real, the square of its radius must be positive, so 

(3) p2 + 2c2q - a2c2 > 0 

See Figure 2 for the tracE' in the yz-plane of the original p~raboloid au~l t~he hound~.n~ 
parabola of Equation 3. Now, the points (0, p, q) of ~nequal~ty 3_ deterr111~1e th~ ~xte~IOI 
region of a parabola of axis OZ and vertex (0, 0, a /2), lymg m the ~la~e x - 0 ~nd 
opening downward. We notice that this par~bola cuts ~he paraboloid 1~ the pomts 
(0, ±be, c2 /2). On the other hand the normahz 'd. equatiOns of the planes of the two 
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2 2 2 2 
y + 2c z =a c 

FIG. 2. 

circle~ common to the sphere and the paraboloid are 

0 = ( cy + bz + .X)/ a 

O= (cy-bz+J.L)/a 

For these planes to cut the sphere, the distance from the center of the sphere to the 
planes is less than r, and we recall that the distance from a point (p, q) to each of 
these lines is given by 

l(cy + bz + -X)/al, i(cy - bz + J.L)/a j. 

By setting each expression less than r, we derive that 

0 < - 2bp + 2cq - c(c2 + b2
) 

0 < +2bp + 2cq - c(c2 + b2
) 

In the plane x = 0, these inequalities determine the interior in the positive z-direction 
of the angle whose vertex is (0, 0, (a2 + b2 )/2) and whose sides have the slopes ±bjc. 
The lines bounding this angle are shown in Figure 2. The solution region that they 
determine is shown shaded. 

Conversely, to any point (0, p, q) inside that angle there corresponds a sphere 
which has center at that point and radius given by the third formula of 2 and which 
cuts the paraboloid in two circles contained in the planes cz + bz + .X = 0, and 
cy - bz + f-l = 0, with .X, f-L given by formula 2. We note that the lines containing the 
~ides of the angle are tangent to the mentioned parabola at the points (0, ±be, c2 /2). 
Therefore, the locus we are looking for is the interior of the angle whose vertex is 
(0, 0, (a2 + b2 )/2), contained in the plane x = 0, and with sides of inclination zjy = 
±bjc. 

1015. [Spring 2001]Proposed by Richard I. Hess, Rancho Palos Verdes, Califor­
nia, and Robert T. Wainwright, New Rochelle, New York. 

. ' 
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As shown in Figure (a), the X pentomino can be 90% covered with six congruent 
tiles. (The shaded area is not covered by these tiles.) Design a tile so that three of 
them cover at least 85% of the X pentomino. Any of the tiles may be turned over , 
but they must not overlap each other or the border. 

I 

I I 

a) b) 

Solution by the Proposers. 
The cross in Figure (b )above shows the best we could do, covering 85.3858% of 

the given pentomino. The shaded regions are not covered. 

1016. [Spring 2001] Proposed by Brian Reid, student, County College of Morris, 
Randolph, New Jersey. 

A regular n-gon is inscribed in a circle of radius r. Then a circle is inscribed in 
that n-gon and a similar n-gon is inscribed in that circle, and so on forever. The 
accompanying figure shows the situation for n = 3. 

a) Find the ratio of the sum of the areas lying inside each circle and outside its 
inscribed n-gon for n = 3 to the area of the original circle. This area is shaded in the 
figure. 

b) Find the limit of that ratio as n --+ oo. 
I. Solution by Sam and Janet Eve Enning, Bali Hai, Indonesia, South Pacific. 
Consider the annulus between the outside circle and the next circle in the given 

figure. The ratio of the area of the shaded region in that annulus to the total area of 
the annulus is the same as the ratio of the corresponding areas for any annulus in the 
figure. Since the sum of the areas of all the annuluses is the area of the original circle, 
then the ratio in the first annulus is equal to the desired ratio. So we shall work inside 
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that a~n~lus only. Let us consider the annulus formed by the circumcircle of radius 
r and mc1rcle of a regular n-gon. Let the common center be 0, a side of the n-gon 
be AB and the foot of the apothem to that side be F, as shown in the accompanying 
figure. · 

a) Since there an~ n sides, then LAOF = LFOB = e = 1rjn and the apothem 
OF) = 1".COR e. The area_ K of the annulus then is K = 7rr2 - 7r(r cos e)2 = 7T"T2 sin2 e. 
The area_ o~ the n-gou It; n · r cos e · r sine: so the area of the region outside the n­
gon and mstde the outer circle is R = 1rr2 - nr2 sine cos e. The desired rat1•0 · tl Rl K ( 2 2 . . . IS 1en 

= 7r r - nr sm e cos e) I ( 1rr·2 sin2 e) = ( 1r- n sine cos e) I ( 1r sin2 e). When n = 3, 

is 

R _ 1r - 3( J312)(112) 
/( - 7r( J312)2 

47r - 3J3 4 v'3 = == - - -
37r 3 7r 

b) Letting :z· = 1rl 11 , we see that~;----> 0 as n ----> 00
1 

so that the desired limit L 

L 1. R 
1
. x - sin x cos x 

= Inl - = Hll ----=----
n = K :r --.0 x sin2 x 

which is indeterminate, so we apply L 'Hopital'H rule to get 

1 + . 2 2 
L 1. fnn x - cos x 2sinx 

= un . . = lim ------
x - ·0 2x sm :L' cos :1: + sm2 x x o 2x cos x + sin x 

by replacin~ 1 - cos
2 

x by sin
2 

x and dividing out a factor of sin x from numerator 
and denommator. One more application of L'Hopital't:) rule then yields 

L = lim 2 cos x _ ~ 
x o - 2xsin x + 2 cos x + cos x - 3 

II. Comment by Elizabeth Andy, Lim erick, Maine. 

After some twenty-odd years, 
Time for a change now appears. 

New editors lodge, 
Replacing old Dodge. 

Let's give them both twenty-odd cheers! 

Though Dodge has written the column 
And edited problems for all 'em, 

The best praise is due 

·' 

PROBLE~lDEPARTMENT 

To each one of you 
Who sent work from your cerebellum. 

So stand, b counted, be bold, 
And release the editor old. 

Let's welcome the new 
Men from Clarion who 

Have settled down into the fold. 
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Also solved by Paul S. Bruckman, Sacramento, CA, Kenneth B. Davenport, Frackville, PA, 

Rob Downes, Mountain Lakes High School, NJ, Russell Euler and Jawad Sadek, Northwest 

Missouri State University, Maryville, Doug Faires, Youngstown State University, OH, Richard I. 

Hess, Rancho Palos Verdes, CA, G. Mavrigian, Youngstown State University, OH, Yoshinobu 

Murayoshi, Okinawa, Japan, Rex H. Wu, Brooklyn, NY, and the Proposer. 

Editorial note. All other solvers found the area R of the featured solution noted 
that the area of each successive such region was cos2 e times that of the preceding 
region, and summed the resulting infinite series to obtain an expression for the total 
shaded area. They then divided by the area 1rr2 of the original circle, obtaining the 
same ratio as above or an equivalent form. 

1017. [Spring 2001] Proposed by Peter A. Lindstrom, Batavia, New York. 
Consider Pascal's triangle with the rows numbered 0, 1, 2,.... If the sum of all 

the elements above the n 'th row is a prime, characterize the number of elements in 
row n - 1. 

Sol'Ution by Monte J. Zerger, Adams State College, Alamosa, Colorado. 
Since the sum of the elements in row k of Pascal's triangle is 2k, it follows that 

the sum of all the elements above row n is 2n - 1. If this number is a prime, it is a 
Mersenne prime and hence the exponent n, which also is the number of elements in 
row n - 1, is a prime. 

Also solved by Frank P. Battles, Massachusetts Maritime Academy, Buzzards Bay, Brian 

Bradie, Christopher Newport University, Newport News, VA, Paul S. Bruckman, Sacramento, 

CA, George P. Evanovich, Saint Peter's College, Jersey City, N.J, Mark Evans. Louisville, KY, 

Doug Faires, Youngstown State University, OH, Ovidiu Furdui, Western Michigan University. 

Kalamazoo, Richard I. Hess, Rancho Palos Verdes, CA, Kenneth M. Wilke, Topeka, KS, Rex 

H. Wu, Brooklyn, NY, and the Proposer. 

1018. [Spring 2001] Proposed by Robert C. Gebhardt, Hopatcong, New Jersey. 
For a fixed number k, 0 < k < 1, at each toss of a fair coin a gambler bets the 

fraction k of the money he has at the moment. In the long run, what percentage of 
the tosses must he win in order to break even? 

Sol'Ution by Brian Bradie, Christopher- Newport University, Newpor-t News Vir­
ginia. 

Each victory multiplies the gambler's money by the factor 1 + A:, while each loss 
multiplies it by 1 - k. Let p denote the gambler's long-term winning percentage. To 
break even, the gambler needs to have 

(1 + k:)P(1 - k)l - p = 1. 

Solving this equation for p yields 

ln(1 - k) 
p = -----------------

ln(1 - k) - ln(1 + k) 
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It is interesting to note that as k ~ 0, p ~ 1/2, and as k -----7 1, p ---. 1. 
Also solved by Paul S. Bruckman, Sacramento, CA, Mark Evans, Louisville, KY, Doug 

Faires, Youngstown State University, OH, Richard I. Hess, Rancho Palos Verdes, CA, J. Ernest 

Wilkins, Jr., Clark Atlant a University, GA, and the Proposer. 

1019. [Spring 2001] Proposed by Kenneth B. Davenport, Frackville, P ennsylva­
nia. 

Eduoard Lucas showed 

15 - 35 +55 - ... + (- 1)n+l(2n - 1)5 

1 -3 + 5- ... +(-1)n 1(2n-1) 

is always a square number for every positive integer n but never a fourth power. Show 
that 

(1 7 - 37 + 57 - ·· · + (- 1)n+1 (2n - 1)7 ) - 28(13 - 33 + 53 - · · ·+ (- 1)n 1(2n - 1)3) 
1 - 3 + 5 - .. . + ( - 1 )n 1 (2n- 1) 

is always a cube, but almost never a sixth power. 
Solution by George P. Evanovich, Saint Peters College, Jersey City, New J er­

sey. 
Let 8n denote the given expression. We shall prove that 8n = (4n2 - 7)3, which 

clearly is a cube for all integers n. The difference between the two adjacent squares 
(k + 1)2 and k2 is the odd number 2k + 1. Thus for 4n2 - 7 to be a square, then 7 
has to be an odd number or the sum of adjacent odd numbers, which occurs only for 
k = 3, that is, when n = 2, and then 82 = 93 = 36 = 729. So 8n is never a sixth 
power except for n = 2. 

We use mathematical induction to show that Sn = (4n2 - 7)3 for all posit ive 
integers n. To that end, we have 81 = (1 - 28)/1 = - 27 and [4(1)2 - 7]3 = ( - 3)3 = 
- 27, so the statement is true for n = 1. Observe that 

n 

L(- 1)i+1(2i - 1) = (- 1t+1n . 
i = 1 

For the induction step we assume that 8n = ( 4n2 - 7)3 for some posit ive integer n 
and show that 8n+1 = [4(n + 1)2 - 7] 3. Thus 

by straightforward but rather tedious algebra 
Also solved by Paul S. Bruckman, Sacramento, CA, Charles R. Diminnie, Angelo State 

University, San Angelo, TX, Richard I. Hess, Rancho Palos Verdes, CA, Yoshinobu Murayoshi, 

Okinawa, Japan, H.-J. Seiffert , Berlin, Germany, Kenneth M. Wilke, Topeka, KS, J. Ernest 

Wilkins, Jr. , Clark Atlanta University, GA, Rex H. Wu, Brooklyn, NY, and the Proposer. 
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1020. [Spring 2001] Proposed by M. V. Subbarao, University of Alberta, Edmon­

ton, Alberta, Canada. 
Dedicated to friend and colleague Murray S. Klamkin on his 80th birthday. 

[ Klamkin ably edited this Problem Department for 10 years until 1968 - ed.] 
Let p1, P2, ... , Pr be r distinct odd primes and let a be any fixed integer. You 

are given that (p1 + a)(P2 +a)··· (Pr +a) - 1 is divisible by (p1 +a - 1)(p2 + a-
1) .. · (Pr +a - 1), which is trivially true for r = 1. Can it hold for any r > 1? If 
so, give a specific example. A $100 award will be given for the first received valid 

example. 
Remark 1. For a= 0, this is a known unsolved problem of D. H. Lehmer, Bull. 

Amer. Math. Soc. 38 (1932) 745-751. For a = 1, this also is an unsolved problem 
of mine in A Companion to a Lehmer Problem, Colloq. Math. Debrecen 52 (1998) 

683-698. 
Remark 2. One can also consider the more general problem obtained by replacing 

the primes p1, p2, ... , Pr by their arbitrary powers p~1 ,p~2 , ••• p~r. My conjecture here 
is that at least for the cases a = 0 or 1, we must haver = 1. See my joint paper with 
V. Sivaramaprasad, Some analogues of a Lehmer problem, Rocky Mountain J. Math. 

15 (1985) 609-629. 
Solution by Chetan Offord and Robert Wentz, Saint John's University, Col-

legeville, Minnesota. 
We have a general solution for the case where r = 2. Consider any two primes P1 

and p2 such that P2 = P1 + 2 and let a = -P1· Then 

and 

Of course, -1 is divisible by -1. 
For a specific example let r = 2, p1 = 3, P2 = 5, and a = - 3. Then, as above, 

(P1 + a)(P2 +a) - 1 = (3 - 3)(5 - 3)- 1 = -1 

and 

(P1 + a - 1) (p2 + a - 1) = ( 3 - 3 - 1) ( 5 - 3 - 1) = ( - 1) ( 1) = - 1. 

Also solved by Paul S. Bruckman, Sacramento, CA, and Carl Libis, Assumption College, 

Worcester, MA. 
Editorial note. A check for $100 was sent to Offord and Wence. 
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The 2000 National Pi Mu Epsilon Meeting 

The Annual Meeting of the Pi Mu Epsilon National Honorary I\1athematics So­
ciety was held in Madison, WI from August 2-3, 2001. As in the past, the meeting 
was held in conjunction with the national meeting of the Mathematical Association 
of America's Student Sections. 

The J. Sutherland Frame Lecturer was Thomas F. Banchoff from Brown Uni­
versity. His presentation was entitled "Twice as Old, Again, and Other Found Prob­
lems". 

Student Presentations. The following student papers were presented at the 
meeting. An asterisk(*) after the name of the presenter indicates that the speaker 
received a best paper award. 
Miyuki Breen, Ohio Nu- University of Akron 

Analyzing the Area of Fractal Tilings 
Tanya Kim and Nancy Nichols, Virginia Iota- Randolph-Macon College 

Can you Follow our "Train" of Thought? 
Bob Shuttleworth, Ohio Xi - Youngstown State University 

Quaternions 
Lorna Salarnan, via Illinois Alpha- University of Puerto Rico 

Kairomone 
Alison Ortony, Illinois Alpha- University of Illinois 

Narnia 
Torn Wakefield*, Ohio Xi - Youngstown State University 

Factorizable Groups 
Laura Hitt, Alabama Gamma- Samford University, 

Divisibility Algorithms for Euclidean Rings 
Barbara Chervenka, Texas Nu- University of Houston, Downtown, 

Exploring Graph Theory through Conjectures of "Graffiti" 
Enyinda Onunwor, Ohio Xi - Youngstown State University 

Graph Theory: Decompositions 
Carnillia Smith, Michigan Alpha- Michigan State University 

The Optimal Oriented Diameter of the 3x5 Torus and Joins of GraphH 
Mohammed Abouzaid, Virginia Alpha- University of Richmond 

On the Number Theory of Quaternions and Octonions 
Teresa Selee, Ohio Xi- Youngstown State University 

International Parity Relations and Real Interest Rates 
Kathy Woodside*, North Carolina Gamma- North Carolina State Universi ty 

Protecting the Public Health: Predicting Pl\1 Fine in Forsyth County 
Joel Lepak, Ohio Xi- Youngstown State University 

Cook's Theorem 
Nicole Miller, Maryland Zeta- Salisbury University 

Periodicity and Long Term Evolution of Cellular Automata 
Neda Khalili and Jancen Peretin, Pennsylvania Upsilon - Duquesne University 

From Mathematics to Krypton: The Pursuit of Random Numbers 
Eric Appelt*, Ohio Delta- Miami University 

Bandwidth of a Product of Cliques of Uneven Size 
TTacy PiTkle, Ohio Delta- 1\tliami University 

Non-Euclidean Geometry from 1820 to 1920 
Amy Joanne Herron, Ohio Delta- l\1iami University 

Exploring Melodic Patterns in Diatonic and Chromat ic Music 

John T. Griesrner, Ohio Delta - Miami University 
The Erdos Sum of Reciprocals Conjecture 

Dave Gerberry*, Ohio Xi - Youngstown State niversity 
Scheduling Tournaments with Combinatorial Designs 

Steve Mehlo Ohio Xi - Youngstown State University 
Tracing 'a Stirling Approximation- Derivations of Stirling's Fo~mul~ 

Brenda Johnson*, South Dakota Gamma- South Dakota State Umverstty 

Disjunctive Rado Numbers 
Jared Williams, Arkansas Beta- Hendrix College 

Exploring Finite Time Blow-Up . 
Elissa Pfannenst in, l\1innesota Delta - College of St. Benedict 

Modelling Positive Assortative Mating 
Adam Singleton, Florida Lambda- Jacksonville University 

Reconsidering the Anderson and May Macroparasitic Model 
Yakov Kronrod*, Massachusetts Alpha- Worcester Polytechnic Institute 

Pattern Formation in Biological Systems 
Jonathan Moussa*, Massachusetts Alpha - Worcester Polytechnic Institute 

New Methods for Collision Detection 
Erin M. Bergman*, Wisconsin Delta- St. Norbert College 

Origami and Mathematics 
Sarah Grove, Ohio Xi- Youngstown State University 

Save a Lot or a Little? 
Abby Mroczenski, Wisconsin Delta- St. Norbert College 

Authorship of The Federalist Papers 
Brian Muscia, Illinois Iota - Elmhurst College 

Binomial Basketball: Success String Probabilities 
Julie Jones, Pennsylvania Omicron- Moravian College 

Dissections: Plane and Fancy 

Call For Papers. 
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The next TIME meeting will t ake place in Burliuton, Vermont, August 1 3, 2002. 
See the TIME webpage (http:/ j www.pme-math.org/) for application deadlines at~d 
forms. Social events will include a tour of the Shelburne 1\1usenm, a Lake Champlam 
dinner cruise, and, of course, the Til\IE banquet. See also the 1\tlAA wcbpage for 
details and for other activities in the Green Mountain State. 
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The MATHACROSTIC in this issue has been contributed by Dan Hurwitz. 

a. A type of ellipsoid 

(2 wds.) 

b. A technique to determine when 

two polynomials are identical 061 081 208 150 192 042 145 

(3 wds.) 130 180 172 099 017 TI6 

c. The theorem may follow from this 084 194 040 226 136 010 077 110 
(2 wds.) 

d. The clumsiest algorithm for 138 015 186 163 214 TI2 045 065 

ordering a set is to compare 177 097 203 018 o8o 158 167 
- all others ( 3 wds.) 

e. His test concerns infinite series convergence 005 187 049 091 076 

f. Difference between prediction and perfection 142 19o 069 053 013 036 216 106 

g. Favorite sequence of algebraists 034 102 157 143 166 

h. Probabilist with a difficult name to spell o3o IT9 185 o5o 169 082 021 140 176 

i. Function defined on any domain, for 188 011 128 o6o 195 o23 220 110 

example (2 wds.) 051 ill 095 147 

j. You can measure this only if your scale 057 014 093 225 ill 101 047 182 

is continuously calibrated (2 wds.) m 153 

k. Positions for the "internal clock" 129 020 202 TI3 056 222 
of a Turing machine 

1. Result of applying a function 218 104 022 135 224 

m. Statistical measure of spread 046 ill 137 012 152 o32 201 059 

n. Greek who calculated the earth's ill 149 021 211 ill ill 001 075 

circumference 

o. Ancient method for solving 

practical problems 

p. Pi is an - the area of polygons 

inscribed in the unit circle (3 wds.) 

q. Used to approximate roots of a 

function (2wds.) 

·' 

r. A step to be verified 039 089 141 019 210 

s. Euclidean subgroup 183 096 164 123 OTT 062 134 048 

083 115 ill 139 

t. Type of differentiation 070 2i5 197 016 098 160 043 124 

u. Before edge identification, the form of 024 219 125 078 100 oo6 055 

the connected sum of two tori 

v. Curriculum, half a century ago 038 026 094 156 103 068 213 

w. Usual spelling of "prove" on exams 033 002 205 ill 179 154 073 108 

Last month's mathacrostic was taken from "Ten Misconceptions (about mathe-
matics and its History)" by (Michael J.) Crowe. 

"An entity, be it man or machine, possessing the deductive rules of 
inference and a set of axioms from which to start , could gener~te .an 
infinite number of true conclusions, none of which would be s1gmfi­
cant. We would not call such results mathematics. ' 

Jeanette Bickley was the first solver. 
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