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Problem 1056 

The IIME Journal 
Volume 11, Number 8 Spring 2003 



The IIME Journal 

Official Publication of the 
National Honorary 
Mathematics Society 

Editor 
Brigitte Servatius, 
Mathematical Sciences 
Worcester Polytechnic Institute 
Worcester MA 01609-2280 
bservat@wpi.edu 

Problem Editors 

Councilors 

Jennifer R. Galovich 
Saint John's University 
jgalovich@csbsju.edu 

Michelle Schultz 
University of Nevada, Las Vegas 
schultzm@unlv.edu 

Michael McConnell & Jon A. Beal David C. Sutherland 
840 Wood Street 
Mathematics Department 
Clarion University 
Clarion, PA 16214 
mmcconnell @clarion. ed u 

Business Manager 
Joan Weiss 
Dept. of l\1ath. and C.S 
Fairfield University 
Fairfield, CT 06824-5195 
weiss@mail.fairfield.edu 

Officers of the Society 

President Robert S. Smith 
Department of 1\.Iathematics 
J\!Iiami University 
Oxford, OH 45056-3414 
SmithRS@MUOhio.Edu 

President-Elect Joan W. Weiss, 
Dept. of Math. and C.S 
Fairfield University 
Fairfield, CT 06824-5195 
weiss@mail.fairfield.edu 

Past-President Doug Faires 
Department of l\1athematics 
Youngstown State University 
Youngstown, OH 44555 
faires@math.ysu.edu 

Secretary-Treasurer 
Leo J. Schneider 
Dept. of Math. and C.S 
John Carroll University 
University Heights, OH 44118 
leo@jcu.edu 

Hendrix College 
sutherlandd@hendrix.edu 

Eve Torrence 
Randolph- Macon College 
etorrenc@rmc.edu 

The IIJVIE Journal is published bian­
nually, once in the spring and once in the 
fall. Each volume consists of ten issues. 

Current rates are as follows: 
United States: $20 for 2 years 

$40 for 5 years 
Foreign: $25 for 2 years 
Back issues: $5 each 
Whole volume: $50 (5 years) 
All back issues: $400 (1st 10 volumes) 

All subscription orders should be sent 
to the business manager. 

Information for authors. Authors 
should send their submissions to the edi­
tor and should be prepared to submit fi­
nal copies of their articles in !5\'!EXformat, 
with all figures as encapsulated postscript. 

All articles are refereed. The TIME 
Journal especially welcomes student writ­
ten papers. Faculty submissions are held 
to the highest standards of interest, clar­
ity and exposition. 

Detailed instructions for authors can 
be found on the IIl\1E web pages at 
www.pme-math.org. 

. ' 

TIME Journal, Vol. 11, No. 8, pp 405 407, 2003. 405 

TRANSLATION AND HOMOTHETY IN A PROBLEM 

ALI R. At-.HR- MOEZ • 

Employing geometric transformations to construct geometrical figures with ruler 
and compass is quite interesting. In this note translation and homothety are used 
to solve a problem in ruler and compass construction. (Of course, after reading the 
problem, it is natural and expected for you to take out your ruler and compass, 
sharpen your pencil, and give the problem a try on your own). 

PROBLEM. Inscribe a regular pentagon in a given 8quare such that the four vertices 
of the pentagon are on four sides of the square and the fifth vertex lies on a d·iagonal 
of the square. 

In order to make the note self-contained, a review of a construction of a regular 
pentagon will be presented first. 

1. Geometric Solution of a Quadratic Equation. An outline of the con­
struction is given. Let 

ax2 + bx + c = 0, a # 0 

be a quadratic equation with real coefficients, and distinct real roots x 1 and x2 . It is 
known that the roots satisfy 

- b 
x1 +x2 = -, 

a 

Consider a rectangular coordinate system, see Figure 1. Let A and B on the x-axis 

FIG. 1. 

correspond to the values x 1 and x2 respectively. We shall construct points C and D 
on the y-axis such that OC = 1 and 0 D = c/ a. Observe that 

c 
(OC)(OD) = - = X!X2 = (OA)(OB) 

a 

This implies that the four points A, B, C, and D all lie on a circle. Since point NI, 
the midpoint of the line segment AB, corresponds to the :c-value 

X1 + X2 - b 
2 2b' 

*Texas Tech University 
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one can construct the circle if the given quadratic coefficients a, b, and c are con­
structible numbers. First construct C, D and M. The center P of the circle is th 
point of intersection of the perpendicular bisector of CD with the line perpendicular 
to the x-axis as M. This constructs A and B, whose x-values are the solution of the 
given quadratic. 

2. T he Regular Pentagon. Consider the polynomial equation 

(1) 

over the complex field. The solutions of (1) are the fifth roots of unity, which form the 
vertices of a regular pentagon inscribed in the unit circle of the complex plane. One 
of the roots, 1, is real. Let the others, in clockwise order, be labelled ZI = XI + YI i, 

2 +. 3 . d 4 ''T' z2 = zi = x2 Y2'l, Z3 = zi = x2 - Y2'l, an Z4 = z1 = XI - YI 'l. .1.0 construct a 
pentagon it would be enough to construct any of the values Xi or Yi· Since ZI is a 
root of z 4 + z 3 + z2 + z + 1 we have 

1 
x1 +x2 = - -. 

2 
(2) 

Since z2 = Zf , we have x2 = xi - YI = 2xi - 1 = 2xl ( - x2 - (1/2)) - 1, so, using (2) 
we have 

(3) 

By (2) and (3) X I and x2 are the roots of the quadratic 

2 1 1 
X + 2' 4 (4) 

Now we can construct the pentagon using the method of the previous sect ion, wit h 

FIG. 2. 

C = (0, 1), D = (0, - 1/4) and P = ( - 1/4, 3/8). See Figure 2. 

3. The Construction. The square ABCD is given. Extend the diagonal BD 
and construct a regular pentagon such that the center of it is on the line BD and one 
side of it is perpendicular to B D. Let E F be the side of the pentagon perpendicular to 
the line BD. On the side EF construct the isosceles right triangle PDF and extend 

Translation and Homothety 407 

FIG. 3. 

P E and P F. Perpendiculars form H to P F and from G to D F intersect at a point 
on the line BD. This way one obtains a square circumscribed about the pentagon. 
Let R be the center of this square. Translate this configuration through the vector 
----7 

RS. Finally, by a homothety of center S and ratio SE / SM enlarge the pentagon, 
and the problem is solved. 

B 
D 

FIG. 4. 
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Official liME Tee Shirts 

Get Yours Today! 

Problem. A painter is high atop a 40 foot ladder leaning against a 60 foot house 
at an angle such that the ratio of the lengths of the legs of the right triangle formed 
is the golden section. If the base of the ladder is moving away from the house at 
at the speed of light divided by Avogadro's number, what are the thoughts of the 
mathematician watching the ensuing disaster? 

j 

V - dh 
- dt 

m o 

dv _ g 
dt -

F = m1meG R 

llll3 
0 r = F x R 

b 1 

a 1 + 1/1 
Ft = J-LkN 

Solution. She hopes that none of t he paint will get on her new IIJ\tiE Tee Shirt. 

IIME Tee shirts are white, Haines, BEEFY-T, pre-shrunk 100o/c cotton. The front 
has a large IIJ\tiE shield. The back of the shirt is decorated with the colorful IIME 
tessellation of the plane designed by Doris Schattschneider, in the II1-IE colors of gold, 
lavender and violet. Shirts are available in large and X-large. The price is only $10 
per shirt, which includes postage and handling. 

To obtain a shirt point your favorite browser to 
http:/ /www.pme-math.orgjl\1erchandisejtshirt.html 
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A NOTE ON RANDOM LINEAR EQUATIONS WITH INTEGER 
SOLUTIONS 

MICHAEL J. BOSSE• AND N. R. NANDAKUMARt 

1. Introduction. All too often, middle and secondary grades Algebra students 
lose sight of the significance of the properties of the real numbers and which of these 
properties are held within each number system. This lack of understanding is often 
exacerbated by countless textbook examples and problem sets that "work" or that 
produce answers within certain number systems. For instance, after countless ex­
amples in which linear equations with integer coefficients produce integer solutions, 
students may naturally induce the notion that the nature of the coefficients determines 
the nature of the solution. 

This paper investigates the probability that a linear equation with randomly 
selected integer coefficients has an integer solution. This paper will demonstrate 
that this probability is zero. Students' experiences, however, will make the findings 
of this investigation seem dubious since so many of the problem that they initially 
experienced produced solution in the integers. 

2. The Investigation. Given the linear equation, ax+ b = 0, where a, b, E Z 
and a and bare randomly selected, what is the probability that the equation has an 
integer solution? Clearly, ax + b = 0 has an integer solution if a divides b. 

Let us assume that a and b are randomly selected positive integers such that 
1 :::; a, b :::; N, where N is a positive natural number. (Although the preceding 
question allows for both positive and negative integers, without loss of generality, we 
will only consider positive values for N.) Then the number of possible ordered pairs 
(a, b) is equal to N 2 . It is only necessary to determine an estimate of the number of 
pairs (a, b) such that alb (which is read a divides b). 

We will begin with an example. Let N = 10. Then the set of all pairs (a, b) such 
that a divides b is a proper subset (denoted by bold faced letters) of the following: 

(1,10) (2,10) (3,10) (4,10) (5,10) (6,10) (7,10) (8,10) (9,10) (10,10) 

(1,9) (2,9) (3,9) (4,9) (5,9) (6,9) (7,9) (8,9) (9,9) 

(1,8) (2,8) (3,8) (4,8) (5,8) (6,8) (7,8) (8,8) 

(1,7) (2,7) (3,7) (4,7) (5,7) (6,7) (7,7) 

(1,6) (2,6) (3,6) (4,6) (5,6) (6,6) 

(1,5) (2,5) (3,5) (4,5) (5,5) 

(1,4) (2,4) (3,4) (4,4) 

(1,3) (2 ,3) (3,3) 

(1,2) (2,2) 

(1,1) 

In each column, the number of pairs such that alb is equal to l10/iJ where i represents 
the column number and l x J denotes the greatest integer less than or equal to x. Thus, 
the total number of pairs such that alb is equal to 

*Indiana University of Pennsylvania 
tnelaware State University 
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Given two positive integers a and N, there exists two non-negative integers k and r 
with r < k such that ( N I a) = k + (rIa). Thus the number of integers which are less 
than or equal toN and divisible by a are exactly equal to k. In other words, for given 
two positive integers a and N the number of ordered pairs (a, b) of integers such that 
alb and b ~ N is equal to LNiaJ. Thus we have for 1 ~ a, b ~ N, the number of 
ordered pairs (a, b) such that alb is equal to 

N 

I: l~ J. 
i = l ~ 

In what follows, PN (a, b) denotes the probability that an ordered pair of randomly 
selected integers such that 1 ~ a, b ~ N and alb and P(a, b) denotes the probability 
that an ordered pair of randomly selected integers such that 1 ~ a, b ~ oo and alb. 
Next we show that limN 00 PN(a, b) = 0 which implies P(a, b) = limN 00 PN(a, b) = 
0. 

Since LNiiJ ~ (Nii), we obtain 

1 N lNJ N N 1 1 N 1 
PN(a b) = N2 ~ i ~ N 2 ~ i = N ~ -;· 

To show that the right hand side approaches 0, first using integrals we get an 
upper bound for the harmonic series and then show that this upper bound goes to 
zero as N approaches infinity. In the Figure 1 the sum of the shaded rectangles is 

2.5~y--~--------------------------------------------~ 

2.0 

1.5 

1.0 

0.5 

0.0~--~----~~~~~~~~~~~~~~~~~~~~~--~ x 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 

FIG. 1. 

bounded by the area under the curve f(x) = 1lx. Since the area of each rectangle on 
each interval [k - 1, k] is 1 · f(1 l k) = 1lk we have 

and hence 

N 1 /,N 1 I:-:-< - dx 
i = 2 ~ 1 :z: 

N 1 I: -:- < 1 + lnN. 
i = l ~ 
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Using this upper bound we obtain 

N 

P(a, b) = lim PN(a , b) ~ lim 2_ L ;_ < lim 1 + lnN = 0. 
N N oo N ~ N oo N 

i = l 

Similarly, we obtain a lower bound for PN (a , b). As discussed earlier we can write 
(Nia) = k (ria) where k and rare positive integers with r <a. It is obvious that 
if a ~ LN 12 J then k ~ 2. Hence we have 

- - + + - - - --+ --- -- + - - -l N J _ k _ ~ _!__ ( k _ r ) _ ak + r ( k r ) _ N ( k r ) 
a 2 2a 2 2a 2a 2 2a 2a 2 2a · 

Since kl2 ~ 1 and (rl2a) < 1 we have kl2 > rl2a. Hence LNiaJ > (NI2a). Observ­
ing that LNiaJ = 1 for a > L(N + 1)12J we obtain 

N lNJ = LN/2J lNJ lN + 1J LN/2J N N - N LN/2J ~ N 
~ i ~ i + 2 > ~ 2i + 2 - 2 I: i + 2 · 
t = l t = l t = l i = l 

Again using the figure above we see that the area under the curve of g(x) = 1l(x + 1) 
is less than the sum of the areas of rectangles from x = 1 to oo. Thus, in particular, 

LN/2J 1 LN/2J 1 
L -:- ~ 1 + /, -- dx = 1 + ln( N 12). 
i = l ~ 1 X+ 1 

Thus 

Combining upper bound and lower bound inequalities we obtain 

N N N 
2 (2 + ln(NI 2)) < L l--:--J < N(1 + lnN). 

i= l ~ 

Dividing by N 2 we obtain 

2 + ln(NI 2) p ( b) 1 + lnN 
2N . < N a, < N · 

The actual probabilities for various values of N comparing with the bounds are given in 
Table 1. The average of upper and lower bounds are close to the actual probabilities. 
Remark. Although an upper bound for th harmonic series is obtained by simple 
calculus techniques, it has been shown that 

lim (~ ~ - InN) 
exists and is denoted by -y. This constant -y, which is approximately equal to 0.577216, 
is called Euler's or Mascheroni s constant. It is unknown whether this constant -y is 
rational or not (see [1]) . If this constant is rational it is known that the denominator 
has more than 244,000 decimal digits as of 2001. 
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Lower Bound Upper Bound Average 
L PN(a, b) u L+U 

~ 

0.1800 0.2700 0.3300 0.2550 
0.1080 0.1650 0.2000 0.1540 
0.0520 0.0800 0.0980 0.0750 
0.0300 0.0487 0.0560 0.0430 
0.0075 0.0128 0.0144 0.0109 
0.0045 0.0071 0.0080 0.0063 
0.0010 0.0017 0.0020 0.0015 
0.0005 0.0009 0.0010 0.0008 

TABLE 1 

3. Student Consideration. Students may be somewhat confused by the find­
ings above. They may question how the probability can be zero if they have so often 
found integer solutions to linear equations with integer coefficients. This misunder­
standing is founded upon students' lack of understanding of the role infinity plays 
within this discussion. This discussion can lead to intuitive understandings of both 
infinity and limits. 

4. Acknowledgements. The authors thank the referee for his valuable sugges­
tions which have helped in the presentation of this paper aiming towards undergradu­
ate students. The authors also acknowledge Michael Bosse, Jr., a high school student, 
for writing a computer program to generate actual probabilities given in the above 
table. 
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ANALYZING T HE AREA OF FRACTAL TILINGS * 

MIYUKI BREEN AND .J DITH PALAGALLOt 

1. Introduction. The Koch island shown in Figure 1 is a classic example of a 
fractal curve that bounds a finite area. Discovered by Helge von Koch in 1904, the 
boundary of the Koch island is an example of a. fractal curve with infinite length. 
The area of the enclosed island has been calculated precisely by exploiting the self­
similarity of the region and summing a geometric series. (See [10],p.167.) In this note, 
we will examine other geometric regions with fractal boundaries and will determine 
the area of these regions. 

FIG . L. Koch island 

Specifically, we will examine geometric shapes with fractal boundaries that tile 
the plane. A tiling of the plane is a family of sets, called tiles, with disjoint interiors 
that cover the plane without gaps. For example, ordinary graph paper suggests that 
a square tiles the plane, since the plane can be covered with congruent copies of the 
square with no overlaps. First we will describe an iterative method to genE'rate tilings 
of the plane with tiles (fractiles) whose boundaries are fractal curves. Then we will 
analyze the area enclosed by these irregular curves of infinite length. Such tiles arise 
in several contexts, including the study of self-similar tilings of the plane [1, 4, 11], the 
study of radix expansions (5, 6], the construction of fractals, and more recently the 
construction of families of orthonormal wavelets of compact support in the plane [9, 
12]. An example of the fractal tiling of a portion of the plane is shown in Figure 2. 

2. Generating the tilings. To generate the fractal tilings, we use an iterative 
process involving repeated compositions of two or more functions constructed from 
2 x 2 integer matrices. The method is best introduced with an example. 

*University of Akron 
t Research funded by Faculty Research Grant 1518, University of Akron. 
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FIG. 2. Tiling the plane 

EXAMPLE 1. Let A [ 
2 - 1 ] 
1 2 

and note m detA 5 and A- 1 

[ _ i ~ ] . Choose 

D = { r~J. r~J . m . r -~ J . r -~ J}. 
Define the mappings 'Pi ( z) = A - 1 ( z + di) for di E D. To initiate the iteration process 
we randomly choose any point zo in the plane and evaluate 'Pi(zo), 1 ~ i ~ 5. Then 
for n ~ 1, we choose recursively and randomly Zn E {'Pi ( Zn- 1), 1 ~ i ::; 5} . After a 
few iterations the generated points lie near the tiling. The generated tiling is shown 
in Figure 3. The figures in this note show the results of several hundred thousands of 
iterations. 

The algorithm for generating the tiling is based on Barnsley's Random Iteration 
Algorithm [2, p.89]. Classical fractals such as the Cantor set (1883), the Koch curve 
(1904) and the Sierpinski triangle (1915) can be constructed using the same algorithm. 

In order to use an integer 2 x 2 matrix A to generate a tiling of the plane, A 
must be an expanding matrix; that is, one with all eigenvalues IAil > 1. If matrix 
A has determinant ldet(A)I = m for some integer m > 1, then we choose D = 

{ d 1, d2, ... , dm} to be a finite set of m vectors in the plane that we will call a digit 
set. (A discussion of the careful selection of set D will follow later.) The linear maps 

'Pi(z) = A- 1 (z + di), 1 ~ i ~ m, (1) 

are all contractions. That is, if z is a vector in the plane, then I A - 1 z I < I z 1. A result of 
Hutchinson [7] states that there exists a unique nonempty compact set T := T(A, D) 

. ' 

THE AREA OF FRA TAL TILINGS 415 

FIG. 3. Fractal Cross 

satisfying t he function equation 

m 

T = U 'Pi (T). (2) 
i = 1 

Using the terminology of Barnsley [2], the collection {'Pi, 1 ~ i ~ m} is an iterated 
function system and T is its attractor. We will denote by fA the transformation 
induced by the matrix A. If we apply fA to the set T, 

m 

fA(T) = U(T + di)· (3) 
i = 1 

Geometrically, the dilated set fA (T) is perfectly tiled by the m translates Tj = T + dj 
ofT. 

EXAMPLE 2. Set A = [ ~ - ; ] with m = detA = 3. Choose 

D = { r~J . r~J m}. 
The attractor T(A, D) is shown in Figure 4. 

For most pairs (A, D) the set T = T(A, D) has area or Lebesgue measure J-L(T) = 
0. This is the case for the Cantor set , the Koch curve and the Sierpinski triangle. 
If T(A, D) has positive measure, we call T(A, D) a self-affine tile. The fundamental 
question addressed in this paper is: Under what conditions can the area of the tile 
T(A, D) be calculated? 

3. The area of the tilings. Let A = [~ !] be a matrix as described above 

with all integer entries and D = { d1, d2, ... , dm} a collection of vectors with integer 
coordinates. Bandt [1] has shown that the attractor T = T(A , D) is a tile when Dis a 
complete set of coset representatives of 71.2/ fA (7l2). In this case such a set T tiles the 
plane by translations using some translation set iJ of vectors with integer coordinates. 
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FIG. 4. Slanted t erdragon 

We will describe a geometric way to identify a complete set of coset representatives 
associated with a matrix A. Let S be the parallelogram formed by the columns of 
matrix A. Define E to be the set of vectors with integer coordinates that lie in or on S 
but not on the two outer edges that do not have the origin as a vertex. Then E contains 
exactly m vectors. The members of E = { ej, j = 1, ... , m} form a complete set of 
coset representatives of Z 2 If A (Z 2

). The plane can be covered with parallelograms 
congruent to S, each containing m points with integer coordinates. Each point e in E is 
equivalent to a pointe' (written e ~=:::::~ e') inside each of these congruent parallelograms. 
In our discussion we will always assume that 0 E D. Thus the digit set D can be any 

collection of points with d1 = [ ~ ] and dj "' ej , j = 2, ... , m. Figures 5 and 6 

show the location of the set E and the congruent set D used in Examples 1 and 2. 

FIG. 5. Location of congruent points 

Reference [4) has a complete discussion of the construction of tilings of the plane with 

0' 
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( -1 ,2) 

(1,1) 

FIG. 6. Congruent parall lograms 

fractal boundaries. 

We will define the set Z[A, D] to be the span, using coefficients in Z , of the sets 
D and fA (D). A digit set D is primitive if Z[A, D] = Z 2 , and the associated tile 
T(A, D) is called a primitive tile. For all expanding integer matrices A there exists 
some digit set D that is a complete set of coset representatives for Z 2 If A (Z 2) and for 
which Z[A, D] = Z 2 , [8 , 9). 

To begin the discussion of t he area enclosed by tiles, we usc a result of Wang [12, 
Theorem 5.3). 

PROPOSITION: Let A be an expanding integer matrix that is irreducible over the 
rationals. Let D be a primitive set of complete coset representatives of Z 21 fA( Z 2 ). 

Then the measure of T(A, D) is 1. 

(We note that A is irreducible over the rationals means that the characteristic 
polynomial of A is irreducible over the rationals.) 

In each of the two examples above, the set Dis clearly a primitive set. Therefore, 
by Wang's result, the tilings shown in Figures 3 and 4 have area (measure) oue. 

EXAMPLE 3. Set A = [ -~ ~ ] with m = det A = 2. Choose D = 

{ [~] , [~] }· Define the mappings \Oi(z) = A - 1 (z + d;) ford, E D. Then fA(D) = 

{ [ ~] , [ _ ~ ]} and Z [A , D] = ~2• The tile 1'( A, D) is shown in Figure 7. If we 

choose S = { [ ~ l , m } th n fA ( S) = { [ ~ l , [ _ i l } and we see that S is a com-

plete set of coset representatives for Z 21 fA(~2 ) but Z[A, S] #- Z2. The tile T(A, S) is 
shown in Figure 8. 

A casual inspection of the tilings shown in Figures 7 and 8 reveals that the areas 
enclosed by the two tilings differ considerably. The shape and size of the tiles are 
clearly affected by the choice of digit sets. 

4. Finding the primitive digit set. Suppose that for an integer matrix A, the 
set D is a complete set of coset representatives of Z 2 If A (Z 2), but Z[A, D ] #- Z 2, as in 
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FIG. 7. Small Twin Dragon 

the second part of Example 3. If we can find a matrix B such that the columns of B 
form a basis of Z[A, D], that is Z[A, D] = fB( 7!.. 2), then there exists an integer matrix 
A and digit set D ~ 71.. 2 such that Z[A, D] = 71.. 2 and T(A, D) = fB(T(A, D)). In other 
words, it is always possible to find an integer matrix A and a digit set D such that 
J.L(T(A, D)) = 1. For any tile Tin the plane, we note that J.L(fB(T)) = ldet Bl J.L(T). 
(This result is a consequence of the change-of-variables theorem for the Lebesgue 
integral. See [3).) Now since in our case, T(A, D) = fB(T(A, D)), 

J.L(T(A, D)) = ldet B l J.L(T(A, D)) = ldet Bl. 

To illustrate, let us return to Example 3 where A = [ -~ ~ ] , S = { [~] , [m 
and !A(S) = { [~] , [ -i ]} . Choose B = [ _i i ] with det B = 5. The columns 

of B form a basis for the set Z[A, S] so that Z[A , S] = fB(2 2
). We want to find 

A so that AB = BA. So A = [ _ ; ~ l· Set S = BD so that D = { [~] , [~]} 
and A(D) = { [~] , [~]}. Then D is a primitive complete digit set for A. Since 

A = BAB- 1 , we conclude that J.LT(A, S) = ldet B l J.LT(A, D) = 5. This is the tile 
shown in Figure 8. 

5. Noninteger tilings. In a slightly more general setting, we can define a tile 
to be a set T(A, D) of positive measure, where A is an expanding real matrix such 
that ldet AI = m E 71.. , and D = {d1, ... , dm} is a set of real-valued vectors. In this 
case, it is necessary that matrix A be similar to an integer matrix. Then the study of 

such :~~M:aL: b4e. r::::ed= t1 t~stu:y ~ r:r::::~::n: :l:ith B = [~ - ~ l 
we find that A = [ _ ~ 6] and A = BAB-1 The tiling T(A, fs(D)) shown in 

0 ~ 
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FIG. 8. Big Twin Dragon 

Figure 9b is derived using the functions iJ ( z) = A - 1 ( z + B dj) with 

D = { [~] , [~] [~] [~]}. 
The area of T(A, D), shown in Figure 9a is one since Z[A, D] = ~2 • Not that A is 
similar to the integer matrix A. So 

and 

T(A, D) = fB(T(A, D)) 

- vii5 J.L(T(A , D) = ldet B l J.L(T(A, D)) = -. 
2 

This is the area of the tiling in Figure 9b. 

6. Similarity Mappings. A similarity map g satisfies jg(x) - g(y) l = r i.e - Yl, 
for r > 0 and all x and y in the plane. If each mapping in our collection {'Pi, 1 :::; i :::; m} 
is a similarity map with 0 < r < 1, then the resulting tiling (attractor) T(A, D) is self­
similar. That is, T(A, D) is the union of m smaller copies of itself. This phenomenon 
appears in Examples 1, 3 and 4, but not in Example 2. We can modify the tiles in 
Example 2 by introducing a change of basis matrix 

B = [~ _J] 
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a) b) 

FIG. 9. Four Tiling 

and defining a similarity mapping 

h = BAB- 1 = 
[ 

3 
2 

- f 1] 3 . 
2 

We then iterate using the functions fJ (z) = h- 1 (z + Bdj ), j = 1, 2, 3. The attractor 
T(A, fB(D)) is shown in Figure 10. However, the measure of the new tiling has 

FIG. 10. Terdragon from similarity map 
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changed with this modification of the mappings. We now have 

T(h, fB(D)) = fB(T(A, D)). 

Therefore 

J-LT(h , fB(D)) = ldet Bl J-LT(A, D) 

So the tiling generated in Figure 10 has measure J3/2. 
We can choose a matrix B such that h = BAB- 1 is a similarity map if th mat rix 

A is diagonalizable over the complex numbers and its eigenvalues have equal modulus. 
(See [4] for details.) 

A final example illustrates this technique. 

FIG. 11. S ev n tiling 

EXAMPLE 5. L t A = [ ; - ~ ] and 

D = { [~] ' [~] ' [~] [ -~ ] [ -~ ] [ -~ ] [ - ~ ] } . 

Since Z[A, D] = ~2 , J-LT(A, D) = 1. To generate the snowflake tiling shown in Fig-

[
1 1 ] ure 11 we must introduce the change of basis matrix B = 
0 
~ and define a 

similarity mapping h = BAB- 1
. The tiling is generated using the iterated function 
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system {cpi( z ) = h- 1 (z + Bdi ), di E D , 1 :::; i :::; 7}. Therefore J-LT(h , fB(D)) 

ldet Bl J-LT(A, D) = '(}. 
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EXPLORING FINITE-TIME BLOW-UP 

DUFF CAMPBELL* AND .JARED WILLIAMS* 

1. Introduction. Given an initial value problem dyjdt = f(t, y), y(to) = yo, the 
Existence Theorem for Ordinary Differential Equations says that if f(t, y) is contin­
uous on an open rectangle R in the ty-plane containing the point (to, Yo), then there 
exists an E > 0 and a function g(t) defined on the interval (to - E, to + E) such that 
g' ( t) = f ( t, g( t)), and g( to) = Yo. While this theorem assures us that a solution exists, 
it does not assure us that it will exist for long. Most differential equations t extbooks 
give examples where the conditions for the Existence Theorem are satisfied but where 
the solution "blows up" in finite time. This is generally demonstrated by analytically 
solving the differential equation. In this paper, we develop a method of determining 
whether the solution to an autonomous, first-order, scalar differential equation blows 
up in finite time without having to analytically solve the differential equation. In fact, 
our method expresses the blow-up time as an improper integral. Additionally, we use 
this result to develop a method for determining whether solutions to DEs go to zero 
in finite time. 

We begin by defining the notion of finite time blow-up. Consider the following 
initial value problem (IVP): 

P(O) = Po > 0, k > 0. 

This can be solved using separation of variables to give P(t) = Poekt. Notice that 
this solution is defined for all t E R. 

A variation of this is the IVP: 

P(O) = Po > 0, k > 0. 

Using separation of variables, we obtain: 

P() _ Po 
t - 1 - ktPo 

Observe that P(t) has a vertical asymptotP at t = 1/ kP0 . This brings us to the 
following 

DEFINITION 1. When a solution to an initial value problem "reaches infinity" in 
finite time, the solution is said to "blow up in finit e time", or buift . That is, if P(t) 
is a solution toP = f(t, P), P(to) = Po , then 

P(t) buift {:::::::? ::3 T > t0 such that lim P(t) = +oo. 
t T 

Generally, this is all that DE textbooks include in their discussions of FTBU. 
l\!Iore specifically, the textbooks simply provide examples of DEs whose solutions blow 
up in finite time (buift), and they show that the solutions buift by solving the DE 
using separation of variables. This method of determining whether the solution to a 
DE buift requires solving the DE and expressing the solution as a function oft. An 
interesting question to ask is whether there exists a method of determining whether 

*Hendrix College 
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the solution to a DE buift without having to actually solve the DE; recall that many 
solutions of DEs cannot be expressed as elementary functions, and therefore another 
method would be necessary to determine whether such solutions buift. This paper 
examines the existence of such a method for the autonomous first order differential 
equation P = f(P). 

2. Examples. First consider IVPs of the form: 

P = kPn , 

For these IVPs, we have: 

P(O) = Po 0, k > 0. 

I p - ndP =I kdt. 

If 0 < n < 1 then let u = - n + 1 so 0 < u < 1. Then, p u / u = kt + C, so 
1 

P(t) = (ukt + P0)'i. 

Because ukt P0 > 0 fort > 0, P(t) is defined for all t ~ 0. Thus the solution does 
not buift. 

If, on the other hand, n 1, then let u = n - 1, so u > 0. Then p - u = - ukt + d , 
where d = P0- u > 0, so 

( 
1 ) 1/ u 

P(t ) = - ukt + d 

This solution is only defined for 0 ::; t < d/uk, and the solution buift. 
Consider these results in dP / dt versus P space. For the case where 0 < n < 1, 

the function f(P) = kPn is concave down, and thus there exists a linear function 
g(P) (e.g. g(P) = kP) passing through the origin that "dominates" f(P). (By this 
we mean that g(P) f(P) for all P P* for some P *. In this example, P* could 
be any value greater than or equal to 1.) 

For the case where n > 1, it can easily be shown that there does not exist a linear 
function g(P) passing through the origin that "dominates" f(P). Note that in tlw 
case where there exists a linear function through the origin which dominates kPn, the 
solution to the IVP 

P = kPn P(O) = Po > 0 

does not buift. :Moreover, in the case where there does not exist a linear function 
through the origin which dominates kPn, the solution to the DE does buift. Thus, 
it appears as though the solution to the IVP 

p = j(P), P(O) = Po 0 

might blow up in finite time if and only if the average rate of change of f(P) is 
infinitely large. Based on the above discussion, it seems reasonable to formulate the 
following 

CoNJECTURE 1. Given P = f(P), P(O) = Po , f(P) 0 for all P 2:: Po , 

P buift <====> lim f(x) - f(Po) = oo. 
x ->= x - Po 

If f(P) = 0 for some P*~ Po, the solution to the DE cannot buift; rather, it 
will be bounded by the equilibrium solution P*, and hence, it cannot even blow up 
in infinite time. Thus, the assumption that f(P) > 0 for all P ~ Po is included. 
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3. Testing the Conjecture. To test this conjecture, first consider the bound­
aries of FTBU, i.e., consider DEs whose solutions buift "slowly" or ones whose 
solutions increase rapidly without exhibiting FTBU. An example of the latter type 
of solution is P(t) = eet. 

An autonomous DE associated with this solution is: df: = PlnP. According to 
the conjecture, the solution will buift because 

x lnx - e ln e . 
lim = hm 1 + ln x = oo, 

x oo x - e x oo 

by l'Hopital's Rule. But it is clear that P = e e t does not buift. Therefore, the 
conjecture is disproven. This seems to happen because the rate of change approaches 
infinity too "slowly" for FTBU to occur. But there does appear to be a connection 
between FTBU and convergence of reciprocals. Note that the solution to 

P(O) = Po> 0, k > 0, 

buift if and only if n > 1, and that, if f(P) = P ln P, the solution does not buift. 
Further, note that the integral J;:(kPn) - 1dP converges if and only if n > 1, and 

that J;:(PlnP) - 1dP diverges. From this, there appears to be a relationship between 

FTBU of the solution to the IVP P = f(P), P(O) = Po > 0, and convergence of 
the integral J;:(J(P)) - 1dP. More specifically, it seems reasonable to formulate the 
following 

THEOREM 2. Given p = f(P), P(O) = Po, f(P) > 0 for all P ~ Po , then P(t) 
"blows up" at time L if and only if J;: f(P) - 1 dP converges to L. 

First, we have 
LEMI\IA 3. If p = f(P), P(O) = Po , then 

J:
P(T) 1 

--du = T 
Po f(u) 

for all T for which the integral is defined. 
Proof. Changing variables u = P(t) , u = P in the integral 

{T 1 dP j·T 
lo f(P) dt dt = o 1 dt 

gives 

J:
P(T) 1 l.T 

-f( ) du = 1 dt = T. D 
Po U • 0 

Proof. [of Theorem 2) Suppose P = f(P), P(O) = Po. If P buift, then, by 
definit ion, there exists a finite T such that limt T P(t) = oo awl by the lemma 

r = 1 rP(t) 1 
} Po j(P) dP = t li~fl- } Po j(P) dP = t li~_ t = T 

which is finite, so the integral converges. 
For the converse, assume that JPo !(~) dP converges to L. Let A be a value of t 

such that (A, P(A)) exists. Then, from the lemma, 

{P(A) 1 r = 1 
A = }Po f(P) dP <}Po f(P) dP = L, 
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because f(P) > 0 for all P :2: P0 . So A is bounded by L. Notice also that P(A) --+ +oo 
as A--+ L - . Hence P buift. Moreover, L represents the time at which P buift. 0 

Now consider the following example: Suppose P = P 2 - P, P(O) = Po > 1. 
We want to know if the solution to this IVP blows up in finite time. We check 
fPo (P2 - P) - 1 dP for convergence. 

Clearly (P2 - P) - 1 < (P2 - I:o P)- 1 = p - 2 P0 /(P0 - 1) when P > P0 • Thus 

r)() 21 dP < r oo ~p-2 dP = _ 1_ 
J Po P - P J p

0 
Po - 1 Po - 1 

so we know that f_p
0 

(P2 - P) - 1 dP converges to a value less than 1/(Po - 1). Thus, 
by the theorem, we know P(t) blows up before t = 1/(Po - 1). To verify this result, 
we solve the DE using separation of variables: 

J dP J 1 
p2 - p = 1 dt ==> p = 1 - A t 

From this, it is clear that P(t) blows up when 1 - A t = 0, i.e., when 

1 Po 
A Po - 1' 

or 

Thus, the theorem was correct in predicting that the solution will buift. To check 
whether or not the theorem gave a valid upper bound for the blow-up time of P, we 
compare ln (Po/(Po - 1)) with 1/(Po - 1). By using the inequality 1 + x <ex for all 
x > 0, it is easily shown that ln (P0 /(P0 - 1)) < 1/(Po - 1) for all Po > 1 (which we 
assumed). Thus, the value obtained from the theorem, 1/(Po - 1) , is a valid upper 
bound for the time of blow-up. 

4. Consequences and an Application. This theorem is much more powerful 
for DEs that cannot be solv d analytically; it allows us to utilize all the calculus 
integral comparison tests to determine whether the solution of an autonomous DE 
buift, and if the solution does buift, the theorem often allows us to find a time by 
which the solution will blow up. 

Consider the IVP iJ = y2 ( 2 + cos (y)), y( 0) = 1. Though the IVP is separable, 
the solution cannot be written in terms of elementary functions. However, using 
Theorem 1, we see that the solution buift between t = 1/ 3 and t = 1: 

1 /,
00 

1 /,
00 

1 -3 2 dy < 2 ( 2 ( ) ) dy < 2 dy = 1. y 1 y + cosy 1 y 

A more striking exampl is the IVP iJ = eY
2

, y(O) = 1. Comparison with 
iJ = 1 + y2 shows that the solution buift, but we can use Theorem 1 to assert that 
the solution will blow up at time 

T = { oo e- y
2 

dy = .j7i (1 - Erf(1)) ~ 0.139403. 
}1 2 

Moreover, this theorem can be used to determine if and when solutions to au­
tonomous DEs go to zero. Consider the autonomous DE P = f(P), P(O) = P0 • To 
determine whether the solution goes to zero in finite time, we should check its recip­
rocal for FTBU. l\iore specifically, P will go to zero in finite time if and only if p - 1 

buift. 

·' 

EXPLORING FINITE-TIME BLOW-UP 427 

To find an efficient method for checking whether p - 1 buift, first let u = p - 1 . 

Then 

u = _ }__p = - -1 
f(P) = - u 2 f(u - 1 ) p2 p2 . 

We check whether u buift. From the theorem, u will buift if and only if 

----- du = du 1.
00 

1 ! 1 
uo - u2 f( u - 1) fto - u2 J( u- 1) 

converges. 
For an example, consider P(t) = 2 - t - 1. An IVP to which this is the solution is 

P = - P - 1, P0 = 1. To determine if and when P goes to zero, we check the integral 
J1

00 
( u + u2) - 1 du for convergence. Using partial fractions, this integral is found to 

converge to ln 2. To test whether the corollary actually worked, we evaluate P at 
t = ln 2; P(ln 2) = 2e- In 2 - 1 = 0. Thus, the corollary accurately predicted when the 
solution to the autonomous DE would go to zero. 

As a further example, this corollary can be applied to autonomous DEs that model 
logistic growth with harvesting. Consider the differential equation P = kP(1 - ~) -
H, where H represents the harvesting rate and N represents the carrying capacity. 
Scaling P and t appropriately, one may assume that k = N = 1, so f(P) = P(1 - P) ­
H. It is then easily verified that, if H > 1/4, then all solutions with P(O) = P0 > 0 
will eventually go to zero. With our corollary, though, we can do better: we can 
obtain a (rough) upper bound for the time at which the population will go to zero. 
It is given by 

!,), 1 !00 

1 ----du = du 
- u2 J( l) _!__ Hu2 - u + 1 

u Po 

!
00 1 1 

< du = ---
1 H u 2 - u + __L H 1 · 

Po 4H Po - 2 

This upper bound is of course only good if 2H > P0 , but it provides a good estimate 
when Po is small, or when His close to 1/4; furthermore, obtaining this estimate was 
fairly easy. A lower bound may be obtained similarly from the integral 

1 ! 00 

1 ----- du > du 
Hu2 - u + 1 1 H u2 + 1 

PO 

The effort involved may be compared with that expended via the method of 
explicit solutions: using separation of variables and completing the square, we can see 
that the general solution to the DE above is 

P( t) = ~ + J H - ~ tan ( C - tJ H - ~) . 
The initial condition shows that 

( 
Po _ l ) C = arctan JH _2

~ 
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so the particular solution to our IVP is 

1 r:;1 ( ( Po -
1 

) r:;l) P(t) = 2 + V H - 4 tan arctan .JH _2~ - tV H - 4 

Finally, this solution equals zero when 

1 ( ( Po - .!. ) t = r;;-1 arctan ~ 
yH - 4 yH - 4 

ructan ( -
2
----

5. Conclusion. Our method for determining whether finite time blowup occurs 
in solutions of first order, autonomous, scalar differential equations is more efficient 
than the method included in DE textbooks: it allows one to use the convergence of an 
improper integral, rather than the evaluation of an indefinite integral, to determine 
whether a solution blows up in finite time. If the solution does blow up in finite time, 
the integral comparison tests often allow us to obtain upper and lower bounds for the 
blowup time. Also, our method is applicable even for DEs whose solutions cannot be 
expressed as an elementary function of the independent variable, whereas the method 
included in DE textbooks is useless for such DEs. Finally, by considering finite time 
blowup of the reciprocal of solutions to DEs, we developed a method for determining 
whether solutions to DEs go to zero in finite time. 
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SOLID CONSTRUCTIONS USING ELLIPSES 

PATRICK HUMl'viEL* 

Over two thousand years ago, the Greeks wondered whether certain geometri 
figures, lengths, and angles could be constructed using only a compass and a straight­
edge. The Greeks even developed nomenclature to describe how easily a construction 
problem could be solved. A problem was called 'plane' if it could be solved using only 
a compass and a straightedge. If a problem required one or more conic sections in 
addition to the compass and straightedge, it was called 'solid'. The Greeks suspected 
that many problems solvable using solid tools were non-planar but were unable to 
prove their suspicions. 

More recently, an algebraic characterization of the set of points constructible from 
a compass and a straightedge has been found. A point (x, y) is constructible if aud 
only if x iy lies in a subfield /{ of C such that there exists a finite sequence of fields, 
Q = f{o C /{1 C ... C f{n = K such that the index [Ki+1 : f{j] at each step is 2 
for all j. From this, it follows that problems such as constructing the cube root of an 
arbitrary length and trisecting an arbitrary angle are not planar in general. However, 
these problems are solid because they can be solved using conics in addition to a 
compass and a straightedge. 

In [3], a characterization of the set of points constructible from conic sections is 
demonstrated. In particular, a complex number z is found to be conic-constructible 
if and only if z lies in a subfield /{ of C such that there exists a finite sequence of 
fields, Q = f{o C /{1 C · · · C f{n = f{ such that the index [I{j 1 : /{j] at each step 
is 2 or 3 for all j. In the same paper, Videla wonders if all points constrncti bl e from 
the set of conics are also constructible using only particular conic sections. He points 
out that all points constructible from parabolas, hyperbolas, and ellipses can also be 
constructed using only hyperbolas and parabolas and leaves whether such points are 
also constructible using only hyperbolas as an open question. In [2], it is shown that 
a single parabola is an equally powerful tool as the set of all conic sections. However, 
it is not possible to draw a parabola freehand. By contrast, ellipses can easily be 
sketched by simply placing two pins at the foci. This paper <lemom;trates that all 
points constructible from conics can also be constructed using only ellipses. 

In using ellipses to solve construction problems, we are bound by certain restric­
tions governing what kind of ellipses can actually be drawn. For an ellipse to be 
constructible it must have constructible foci, and the sum of the dbtanccs between 
any point on the ellipse and the two foci must be constructible as well. 

THEOREM 1. Given an arbitrary cont;truct·ible length, it is always possible to 
construct the cube root of th l ngth ·using a .c;ingle ellipse in addition to a compass 
and a stra·ightedge. 

Proof. Suppose we draw an ellipse with center (a, 0) and vertical major axis such 
that the ellipse goes through the points (0, c) and (a, b), when" a, b, and c are all 
constructible lengths such that a2 b2 - c2 . Such an ellipse can be constructed 

because the foci lie at (a, bjb2~c~d-a2 ) and (a, -bjb2~c~-;_a2 
), both of which are 

constructible, and the sum of the distances between a point on the ellipse and the two 
foci is 2b, facts which are easy enough to verify. 

We can use the compass to draw a circle centered at constructible point, (h., k) 

*California Institute of Technology 
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that intersects (0, c). To show that the cube root of an arbitrary length, say r, can 
always be constructed using these tools, it suffices to show that there are always 
values that can be substituted for the constants such that the x-coordinate of one of 
the points of intersection of the circle and the ellipse is equal to ifF. 

To demonstrate this, consider the equations for the ellipse and the circle, and find 
the x-coordinates of the points of intersection. Note that the ellipse can be represented 
as 

The equation for the circle is given by 

which we can rewrite as 

(1) x2 - 2xh + y2 - 2yk = c2 - 2ck. 

Rearranging the equation for the ellipse, we get 

V 
(b2 - c2)(x2 - 2xa) 

y = ± c2 - -------
a2 ' 

and substituting this in for (1) gives 

(b' - c")(x2 
- 2xa) J (b2 - c2)( .. 2 - 2xa) 

c2 - =f 2k c2 - = c2 - 2ck 
a2 a2 ' 

which simplifies to 

(2) 
( 

') ') ) ( (b2 2) ) 8k2 ~ - 8ck --+ - h 

( 1 - ( b2 :t ) ) 2 

after squaring both sides and doing a little algebra. 
To prove that there are always values for the constants that one can substitute in 

such that ijr is a solution to the equation for any constructible length r , it suffices to 
show that there are constants for which (2) is of the form x 3 = r. This is satisfied if 
the x2 and the x terms on the left-hand side are zero, and the term on the right-hand 
side is equal to T, or if the following system of three equations is satisfied: 

(3) 
( b2 ~ c2 - h) -

4 b" 2 - 0, 
1 - ...:..::::..£ 

a2 

. ' 

(4) 

(5) 

Equation (3) simplifies to 

(6) 
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b2 - c2 
h = ---. 

a 

Using this, we find quat ion (4) simplifies to 

(7) 

With equations (6) and (7) in mind, we find (5) simplifies to 

8c2 
( 1 - h ) 2 

( ¥ ) 
(1 - b2~c2 ) 2 

(8) = 1'. 
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To demonstrate that there are always constants that satisfy this equation, introduce 
a temporary variable d such that 

(9) 

Then, we can rewrite (8) as 

(10) 

8c2 
( 1 -- ~) 

2 

( ~) 
(1 - ;!2)

2 =T, 

C --
ra (1 - -fj) 2 

8d (1 - a: )2
. 

Thus if we choose constructible lengths for a and d such that a2 < d and d > 0, we 
can use (10), (9), (6), and (7) to determine constructible lengths, c, b, k , and h such 
that the x-coordinate of the only other point of intersection is equal to 0-. Therefore, 
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the cube root of any constructible length can always be constructed using an ellipse 
in addition to a compass and a straightedge. D 

EXAMPLE 1. One problem the Greeks were highly cone rned with solving was the 
problem of doubling a cube, or constructing a cube with twice the volume of an already 
given cube. Though unsolvable using only a compass and straightedge, this problem 
can be solved using a single ellipse as an additional tool. 

Solving this problem is contingent on the ability to construct the cube root of 2. 
Selecting a = 1 and d = 2 and using the equations mentioned in the previous proof, 
we find that ij2 can be constructed by drawing an ellipse with center (1, 0) that passes 

through (0, 1') and (1, j"i), and then using the compass to construct a circle centered 

at (2, 1) that intersects the ellipse at (0, 1'). It is easy to verify that the x-coordinate 

of the other point of intersection is ij2. (See Figure 1.} 

FIG. 1. A solid construction of ~. 

THEOREM 2. Given an arbitrary constructible angle, it is always possible to trisect 
the angl using a single ellipse in addition to a compass and a straightedge. 

Proof. First consider the case where the angle is acute. We can trisect a given 
acute angle a if we can construct x = ·ia. / 3 . Note that 

(11) 

Now let w = x + x - 1 = 2 cos(a/3). Then 

' I 
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This means that (11) can be rPwritten in terms of was follows: 

w3
- 3w = 2 cm;a. 

If we can always construct the Holutiom; to this equation, we can always trisect a con­
structible acute angle. To demonstrate this, recall equation (2) for the x-coordinates 
of the points of intersection of a circle with an Pllipse. If we use the same equation for 
this problem, we must demonstrate that there are always solutions to the following 
simultaneous set of equations: 

(12) 

(13) 

(1 4) 

Equation (12) simplifies to 

(15) 

Using this we find equation (13) simplifies to 

c = 
3 ( 1 _ ( b2~c2)) k ( b2~c2) 

4k 1 _ ( b2~c2)' 

(16) 
3(1 - ~) kd 

c = ----
4k a2 - d' 

meaning c is a constructible length whenever k > 0, and a 2 < d. Also, equation (14) 
yields 

4k2 ( b
2 -;;c2

) 

cos Q = -----'-----'--=-
( 1 _ ( b2;;; c2 ) ) 2 ' 

4k2d 
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k = 

Hummel 

a cos a ( 1 - ~) 2 

4d 

Since a is acute, cos a is positive, and we can choose constructible lengths, a and d 
such that k is a constructible length. Then, along with equations (16), (9), and (15), 
we can find lengths for the constants, c, b, and h that are constructible. This means 
that we can use the ellipse to trisect a. 

It is quite simple to prove that a can be trisected if it is obtuse once we know 
it can be trisected if it is acute. Simply divide a up into a right angle and an acute 
angle. A right angle can be trisected using a compass and straightedge, and an acute 
angle can be trisected using a single ellipse, so if a is obtuse it can also be trisected. 
0 

EXAMPLE 2. ~ can us the above result to construct a r gular 9-gon, a figure 
not constructible using only a compass and straightedge. Constructing the regular 9-
gon amounts to nothing more than constructing 2

9rr and then using this to construct 
all the rest of the vertices. To construct 2

9rr , 'it suffices to construct zr. or trisect zr. 
9 ' 3 ' 

and use ~ to construct 2
9
rr . 

FIG . 2. A solid construction of th 11 gular 9-gon. 

To construct -§- , select a = i, a = 1, and d = 2, and 'use the equations m entioned 
in the previous proof. First draw an ellipse centered at (1 , 0) that goes through (0, ~) 

and (1 , V[7). Then use the compass to draw a circle centered at (2 , ~) that int rs cts 
the ellipse at (0, ~). Note that one of the points of intersect'ion is w = 2cos(~). By 
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dropping a perpendicular from this point of intersection to the circle, x 2 + y2 = 4, w 
can then construct an angle of measure ~, which we can in turn use to construct an 
angle of measure 2

9rr, the angle we needed to solve the problem. {See Figure 2.) 
Recalling the first two theorems presented in this paper, we realize that we can 

construct the cube roots of arbitrary lengths, and we can trisect arbitrary angles. 
This implies that we can find the cube root of any constructible complex number. In 
turn, we know that a point (x, y) can be constructed from ellipses if and only if, when 
represented as a complex number, x + iy, it lies in a subfield K of C for which there 
exists a finite sequence of subfields, Ko, K1, ... , Kn satisfying Q = Ko C K 1 C · · · C 

I<n = I<, where [I<j 1 : I<j] is 2 or 3 for all j. (This is demonstrated in Videla's 
paper[3].) In light of Videla's result for the characterization of all points constructible 
from conics, we can use the above results to obtain the following theorem: 

THEOREM 3. All points constructible from conics, a compass, and a straightedge 
are also constructible using only ellipses in addition to a compass and a straightedge. 

Remark. The above results are contingent on the ability to use different el­
lipses for different constructions. Can all points constructible from conics also be 
constructed using the same ellipse in addition to a compass and straightedge? Or, 
perhaps a less restrictive question: We can draw ellipses using a piece of string strung 
between two foci. Is it possible to solve all these construction problems using the 
same string length for all ellipses? 

I am deeply grateful and indebted to Dr. Arthur Baragar for his guidance in many 
aspects of this project . 
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Dear Ghost of Gauss, 

You are the master of all mathematical wisdom. I have studied and computed 
and cannot determin e the answer to this question . Please, with your unsurpassed 
mathematical perspective, settle this question for m e: 

As I was going to St. Ives 
I m et a man with seven wives 
The seven wives had seven sacks 
The seven sacks had seven cats 
The seven cats had seven kits 
Kits, cats, sacks and wives 
How many going to St. Ives? 

Dear B & B 
Both r d and B wild red. 

Those who have learned the formula for the Geometric Series 

n 1 - rn+l 
"""ark = a----
~ 1 - r 
k = O 

know the difference between going to St . Ives and going to the 
riverbank. 

A good way to show that you know where you are going is 
to wear a IlME keypin. Gold clad keypins are available at the 
national office at the price of $20 each. To purchase a k ypin visit 
http:/ / www.pme-mat h.org/I'vierchandise/pin.html G.G. 

Polyhedral .Niaze contributed by Prof. Izidor Hafner from the University of Ljubl­
jana ( izidor. hafner@fe. uni-lj. si). 

~ TIME Joumal , Vol. 11 , No. 8, pp 437 444,2003. 

PASCAL MATRICES AND PARTICULAR SOLUTIONS TO 
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Abstract. In this paper any non-homogeneous differential equation with constant coefficients 
is reduced to a matrix equation ij = cP. For the discussion, if represents a matrix of constant 
coefficients to the differential equation, c a matrix of arbitrary constants to the solution, and P is 
a lower triangular matrix with entries that are derivatives of the characteristic polynomial of the 
different ial equation. After careful development, the task becomes finding a inverse to the matrix P . 
Interestingly enough, Pis a generalized form of what is termed a Pascal1\Iatrix, [1 ]. An inverse for 
certain conditions to such a matrix is proven to exist by the theorem given in the paper. 

This approach was developed in earlier research, [2]. The advantage is that it uses fundamental 
concepts such as the linearity of the derivative, matrix multiplication, and product rule for derivatives. 
Furthermore a precise algorithm to solve a wide variety of differential equations is given with this 
approach. 

1. Demonstration of the Method. How would one find a part icular solution 
to the following differential equation? 

y'" - y' + 3y = (1 + 5t)e4
t (1) 

We begin by defining an operator L so that L = D 3 - D + 3. In this instance Dk is 
the kth derivative of Y wit h respect to t. Note that: 

L(e4t ) = 63e4
t = p(4) 4

t where p(a) = a3 - a + 3. 

Let us assume a part icular solution of y* = (co+ c1t)e4t. Our the strategy will 
be to differentiate the particular solution and compare it to the right hand side of 
Equation 1. 

We can also rewrite the differential equation in matrix format: 

L(y) = [1 5] [!] e4t. 

By applying L toy* we obtain the following: 

By the linearity of L, one can apply L to each entry in the column vector. On the other 
hand, by direct calculation, L(t 4t) = (63t+47)e4t. These results can be subsequently 
written in matrix format: 

[co [
63 

cl] 47 

As a result, this problem easily reduces to a simple matrix equation: 

[co [
63 

cl] 47 5] 

*St. John's University 
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The inverse of the 2 x 2 matrix is easily calculated to find c0 and ·1 . So th 
particular solution to the differential equation is: 

* ( - 172 5 ) 4t 
y = 3969 + 63 t e · 

Certain questions naturally arise from this example. 
1. How was the form of the particular solution determined? 
2. If k and a are any real numbers, are there shortcuts to apply L to tk at?, 
3. Is there an easy way other than the usual techniques to construct the 2 x 2 

matrix that we inverted? 
4. Is that matrix always invertible? What is its inverse? 

Such questions lie at the heart of the method developed in this paper. These questions 
and others will be answered if we consider the problem more generally. 

2. Theory. 

2.1. Transforming the Problem. Consider a n'th order differential equation 
with constant coefficients of the form: 

where n,m 2: 0 and ak and qk represent constant coefficients. 
Define a linear operator L(y) such that: 

n 

L(y) = L akDk(y) , 
k=O 

where Dk is the kth derivative with respect to t. Thus the left hand side of Equa­
tion 2 is represented by L(y). Furthermore, the right hand side of Equat ion 2 can be 
represented in matrix form: 

a i 

So Equation 2 is transformed into th following equation: 

at (3) 

2.2. Finding a particular solution. We assume a particular solution y* of the 
form y* = (co+ c1t + c2t2 + · · · + Cmtm) at. We do this by selecting the order of the 
polynomial c0 + c1t + c2t2 + · · · + cmtm to be of the same order as the polynomial on 
t he right hand side of Equation 3. The plan is to compute L(y*) and then compare it 

·' 
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to the right hand side of Equation 3. This will allow us to determine the coefficients 

Ci· 

Writing y* in matrix format we can see that: 

= [co 

Cm 

L( eat) 
L( t eat ) 

] 
L(t2 eat ) 

em] L 

Now we develop a formula for L(tk at) where 0 ::; k ::; m . ObservP that: 

n n n 

L(eat) = L akDk( at) = L akakeat = at L akak = p(a) at 
k=O k=O k=O 

where p(a) = L~=O akak. 

(4) 

Note that p(a) is the characteristic polynomial to the differential equation. To 
find higher derivatives of L( at) we note two things. First, by considering L( eat) as a 
function of a and t, we can utilize the fact that in this case the order of differentiation 
of mixed partial derivatives can be interchanged. Using this we see: 

Second, from [3] we can invoke Leibnitz's Rule for higher derivatives of the product 
of two functions u and v: 

Thus, to calculate L(tk at) we apply this rule to ak(pci:L "1

) and simplify: 

L(tk "') = ak~~~ "') = t G) [p(a) j<Hl[e"'l(!) 
l=O 

k k 

= £; G)p<k-llt' at = e"' £; G)p<Hl t', (5) 

where p(k - l) signifies the k _ zth derivative of P with respect to a. 
Note that I:7=a (~) p(k- l) t1 is just a polynomial with coefficients involving deriva­

t ives of P. By writing out the terms, we can use a ( m + 1) x ( m + 1) matrix P to 
represent Equation 5. 
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Let Pk+1 represent the k + 1 th row of P. Naturally we would like to organize P 
so that L(eat) = L(t0 eat) = p(a) eat corresponds to entry P 11 of the matrix. Since k 
ranges from 0 to m, L(tkeat) will correspond to row k + 1. Similarly, we order the 
columns by the power oft in Equation (5) which is L. 

Note then that Pis a lower triangular matrix, so Pkt = 0 for k < l , Thus, 

{ 
(k)p(k - l) 

pk+1,l 1 = l 0 
k > l 
k < l where 0 :::; k , l :::; m 

By writing the powers oft as a column vector we have the following: 

eat p 0 0 0 1 
t eat p' p 0 0 t 

L 
t2 eat 

p" 2p' p 0 t2 

tm eat p(m) (7)P(m- l ) (m~1)p' tm p 

Set c = [co C1 C2 em] and if = [qo q1 q2 qm]· 
Comparing Equations 3 and 7 we obtain: 

1 1 
t t 

L(yp) = c'P t 2 
at _ _ if t 2 

a t 

Thus Equation 8 reduces to the matrix equation: 

if = cP. 

at 

(6) 

(7) 

(8) 

(9) 

P is a general from of a Pascal Matrix, a lower triangular matrix with entries that 
correspond to Pascal's Triangle. Reference [1] only discusses Pascal Matrices with 
integer entries. In this situation the entries of P are higher order derivatives of a 
function. With [1] as a guide, we can generalize an inverse to such matrices to find 
an inverse for P, which is what we need to solve the differential equation. 

2.3. Finding a Solution. In order to solve for C, we need to find p - 1 . In 
order for p - 1 to exist, det(P) must be nonzero. Since Pis a lower triangular matrix, 
det(P) = [p(a)]m. For the moment, assume that p(a) # 0. (The case p(a) = 0 will be 
considered later.) 

THEOREM 1. Let P be as in Equation 6 and assume p(a) # 0. Let 

{ 

k ( )(k- l) 
Qk+l ,l 1 = p ~ 

Th n p - 1 = Q. 

k ?.. l 

k < l 

Proof. It is clear from properties of lower triangular matrices that: 

{ 
0 k < l 

(PQ)k l.l+1 = 1 k = l 

(10) 

·' 
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Because when k < l the matrix entry willlw zero in auy case. If k = l, then k - l = 0 
and p(k - l) = p. Similarly, (1/p)(k - l) = 1/p, and the product of the two is 1. 

Now we need to show that (PQ)I, +I,l L = 0 if k > l. Suppose k > l. Then 
k = l + q for some q > 0. We see that: 

q 

(PQ)k +l.l 1 = LPt q+1,l+r+1Ql r + l ,l + l 

r =O 

= ~ G : :.) C l q)p(q- , ) G) <· J (11) 

Expanding the binomial terms, Equation 11 is equivalent to: 

_ ~ (l + q)!(l + r)! (q - r) (~) (r) 

(PQ)k 1,l+1 - ~ (l + r)!(q - r)!r!l!p p 
r = O 

If we multiply both the numerator and denominator hy q! and factor out the 
terms not dependent on r we obtain: 

- (l + q)! q q! (q - r) (~) (r) 
(PQ)k+l,l+1 - ---z!q! L (q - r)!r!p p 

r= O 

(12) 

or: 

Since k = l + q we have, 

(PQ) k+l,l+l = G)~ (;)p(q-•) G) (•) (13) 

Using Leibnitz's Rule for Higher Derivatives of Products once more, Equation 13 
becomes: 

Since q 0, (:) (~ · p) (q) = (:)(1)(q) = 0. Thus, when k > l, (PQ)k 1,l 1 = 0. 

So, (PQ)k +1,l 1 = 1 k = l Showmg that P = Q. D { 
0 k # l . - 1 

For our purposes p is specified as the characteristic polynomial of the differential 
equation, yet this theorem generalizes the results of [2] to include functions, instead 
of integers, as entries in the Pascal Matrix. 

Now that p - 1 is found, Equation 9 can b solved and the coefficients of the vector 
· can be determined. Thus, the particular solution y* to the differential equation is 

obtained, that is: 

c = ifP- 1 andy* = ct at_ (14) 

A good exercise would be to use the methods described and apply them to the 
initial example. As one can see, we used the same method outlined thus far to solve 

t he first example. 
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2.4. Adjusting the Method. The restriction that p(a) =fc 0 is a limitation. 
Note that finding p - I hinged on the assumption that P has a nonzero determinant. 
Consider the following differential equation: 

(15) 

Applying our method to this differential equation reveals that p(4) = 0. This 
gives a matrix P with D's along the main diagonal, which makes its determinant zero. 
Thus the technique seems to fail. 

If pU>(a) = 0 for all 0 :S: j < q < m, this suggests that Yh, the homogenous 
solution to Equation 2 is: 

q- 1 

2:::= r1t1 a t where r1is a constant. 
j = O 

A lower triangular matrix can still be constructed to determine the part icular 
solution. In this case we assume a particular solution of the form: 

To ~nd the value of each Ci we can follow a similar process outlined previously. 
Since p(J)(a) = 0 for j q, the corresponding entries in Equation 7 will be zero. As 
a result, Equation 7 reduces to a ( 1n + 1) x ( m 1) lower triangular matrix: 

p(q) 0 0 0 1 p(q· 1) (qi l )p(q) 0 0 t 
p(q+2) (q i 2)p(q I ) (q 2 2)p(q) 0 t2 a. I 

(q+ m) (q i m)p(q+ m- I) (~+-~)p(q+I ) (q~m)p(q) t m 

Thus, we can extend our previous formulation of matrix P to the following: 

pk+ ll 1 = l p 
{ 

( q k) ( (q)) (k - l ) 

' 0 
k ?_ l 
k l (16) 

where 0 :S: k, l _ m and p (j) = 0 for j < q. Since p(q) =fc 0 det(P) =fc 0 and p - I exists. 
Returning to Equation 15, let's assume a particular solution of the form: 

Since p'(4) = 8, by emphasizing the binomial coefficients, we see that this leads to a 
matrix P: 

[
1. 8 0 0 J [8 
1·2 2·8 0 = 2 
1·0 3·2 3 · 8 0 

0 
16 
6 

OJ 0 . 
24 

One may innocently think that the form of p - I would be similar to (10). Unfor­
tunately, this is not correct. The key to finding an p - I rested in the fact that P had 
the form of a Pascal Matrix. Equation 16 certainly has entries from Pascal's Triangle 

·' 
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yet that is not a strong enough condition to guarantee that in thi~ case p - I can be 
generalized. As a result, we need to find p - I from standard techmques. 

For completion, p - l for Equation 15 is given by: 

[~~~ 
256 

0 
1 

16 
1 

- 64 

So the particular solution to Equation 15 is: 

~]· 
24 

* = (~t - _!:_t2 + _!_t3) e4t. 
y 256 64 24 

2.5. Comments. If the order n of the differential equation is less than the order 
m of the row vector if, then p (j) (a) = 0 for n ::; j ::; rrL Due to the restriction that 
p( a) # 0, it will never be the case that P will be a zero matrix. In fact, if m = 0, the 
particular solution is quite simple: 

* qo l 0 y = p( a) at w 1en m = . 

As Gollwitzer remarks, this method can be used to solve a wide variety of non­
homogeneous equations. If faced with a trigonometric equation ~n the_ rig~1t-hand 
side one can use Euler's identity and set a = iw. The final solutiOn will either be 
the ~·eal or the imaginary part of the particular solution. Table 1 summarizes these 
adjustments to Equation 14: 

Right hand side of Equation 2 Adjustment to Equation 14 
qo + q1t + ... + qmtm a = O 

(qo + q1t + · · · + qmt m) sin(wt) a = iw, Im(Equation 14). 
(qo + q1t + · · · + qmt m) cos(wt) a = iw, Re(Equation 14). 

TABLE 2.1 
Adjustm nts to Equation 14. 

3. Conclusions. Non-homogeneous differential equations with constant coeffi­
cients arise frequently in physics, chemistry, and engineering. For example, forced 
motion of a pendulum and LRC circuits generate such differential equat~o.ns. In pr~c­
tice, this method could be applied to many cases encountered by a physicist , chemist , 
biologist, as well as a mathematician. . . . 

The following procedure can be applied to solve most differential equatiOns of the 
form given in Equation 2: 

1. Identify p( a), the characteristic polynomial and m, the number that deter-
mines the size of P. 

2. Construct Q = p - I from (10). 
3. :rviultiply q and p - I to find C, the coefficients to the particular solution. 
4. lVIake necessary adjustments to Table 1 if needed. 

As it can be seen, this procedure could be implemented by a computer program .. In 
general, computers could solve Equation 2 with less time using this me~l~od than :VIth 
a method such as undetermined coefficients because this method utilizes matnces 
which generally take less computational time. 
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Stardust, M. T. Krasek, 1999. 

In ~tardust we see harmony between light and dark, large and small near and 
far, motwn and rest. ~atjuska Teja Krasek holds a B.A. degree in painting from 
Artho'-:se-C?lle~e for VIsual Arts, Ljubljana, and is a freelance artist who lives and 
':orks m LJublJana, Slovenia. Her works in acrylic on canvas are seen in exhibi­
tions around the wm~ld and several are permanently displayed in the mathematics 
de~art~en~ of the Umversity of Ljubljana, where Teja regularly attends seminars and 
c~l oqma, ~mce she sees symmetry in all its various forms as a linking concept between 
ait and science. Some of her computer graphics can be viewed at 

http:/ /mitpress.mit.edu/ e-journals/Leonardoj galleryjgallery331 / homageescher.htm 

. Th ITME Journal invit s thos of you who paint, draw, compos ' or oth rwis us th oth r 
szde of your brains to submit your math matically inspired compositions. 
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PROBLEM DEPARTMENT 

EDITED BY MICHAEL MCCONNELL, AND JON A. BEAL 

This department welcomes problems believed to be new and at a level appropriate for the readers 

of this journal. Old problems displaying novel and elegant methods of solution are also invited. 

Proposals should be accompanied by solutions if available and by any information that will assist 

the editor. An asterisk (*) preceding a problem number indicates that the proposer did not submzt a 

solution. 
All correspondence should be addr·essed to Michael McConnell, 840 Wood Street , Mathematics 

Department, Clarion University, Clarion, PA 16214, or sent by email to mmcconnell@clarion.e.du . 

Electronic submissions using Y.TpjX are encouraged. Please submit each proposal and solution pr'eje7'­

ably typed or clearly written on a separate sheet (one side only) properly identified with name, affil­

iation, and address. Solutions to problems in this issue should be mailed to arrive by December 1, 

2003. Solutions identified as by students are given pref erence. 

Problems for Solution. 

1052. Proposed by Peter A. Lindstrom, Batavia, NY. 
The previous Problem Editor, Clayton DODGE, was a GREAT EDITOR. Solve 

the following addition alphametic in base ten: 

DODGE 
GREAT 

EDITOR 

1053. Proposed by Robert C. Gebhardt, Hopatcong, NJ. 
Find exactly 

-- du 1= u 

o eu + 1 
and -- du. 1= u3 

o eu + 1 

1054. Proposed by Ronald Kopas Clarion, PA. 
Let a1, a2, ... , an be integers such that 0 :S: a1 :S: a2 :S: ... :S: an. If 

{ 
ak - aJ - 1} . { ak - aJ+l } max . < mm . 

k > j k - J k > j k- J 

then there exists m and b such that ai = [mi + b] for all i. 

1055. Proposed by Robert C. Gebhardt, Hopatcong, NJ. 
Find a function f ( x) E c= ( -oo, oo), such that there are exactly three different 

solutions for f(x) = k for all k E R. In other words, any horizontal line in the 
XY-plane will intersect the plot of f ( x) at exactly three places. 

1056. Proposed by William Chau, SoftTechies Corp., East Brunswick, NJ. 
Given a positive integer n, take the sum of its digits to obtain a different number, 

then take the sum of the digits of the new number to obtain yet another number, and 
so on until the remaining number has only one digit. We call the one digit number 
the digital root of n. Taking the digital roots of the first five even perfect numbers 6, 
28, 496, 8128, and 33550336, we found that they are 6, 1, 1, 1, and 1, respectively. Is 
it true that all even perfect numbers except 6 have digital root 1? 
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1057. Proposed by Mark Snavely, Mathematics Departm nt, Carthage College, 
K en osha, Wisconsin. 

Many book include exercises similar to the following example. 
Prove using induction that 4 divides 5n - 1 for all n E N. 

For natural numbers p, q and r, show that r divides pn - q for all n E N if and 
only if r divides qn - p for all n E N. [Hint: As a first step, characterize all natural 
numbers p, q and r such that r divides pn - q for all n E N.] 

1058. Proposed by P eter A. Lindstrom, Batavia, NY. 

Suppose that 6.ABC has an interior point P. Let D, E, and F be points on sides 
AB, BC, and C A, respectively, so that P D ..l AB, P E ..l BC, and P F l_ CA. Let 
IABI = x, IBCI = y, ICAI = z, IADI = a, IBEI = band jCFI = c. 

1. Show that (x - a) 2 + (y - b) 2 + (z - c) 2 = a2 + b2 + c2 . 

2. Show that if 6.ABC is an equilateral triangle, then a + b + c = ~(perimeter 
of 6.ABC). 

1059. Proposed by Peter A. Lindstrom Batavia, NY. 
Student solutions especially solicited 

Every even perfect number is of the form 2P- 1 (2P - 1) where both p and 2P - 1 
are primes. If X = 2P- 1(2P - 1) is a perfect number, show that 

TI d= XP. 
diX 

1060. Proposed by Ayoub B. Ayoub, Pennsylvania State University, Abington 
College, Abingtion PA. 

Suppose 6.ABC is an equilateral triangle. The points D, E , and F are on AB, 
BC and CA respectively such that IADI = I BEl = jCFj. Show that the circumcircles 
of 6.ABC and 6.DEF are concentric. 

1061. Proposed by Ayoub B. Ayoub, Pennsylvania State Univ rsity Abington 
College, Abingtion PA. 

Let 

x = ~ 2k (2n + 1) . 
~ 2k + 1 
k =O 

x 2 - 1 
Then -

2
- is the product of two consecutive whole numbers. 

Solutions. 

1034. [Spring 2003]Proposed by Norman Schauiuberger, Douglaston, N w York. 
Let a, b, c E Z . Show that 

Solution by Murray S. Klamkin, Univ rsity of Alb rta, Edmon ton, Alb r t a, 
Canada. 

More generally w will show that for positive numbers a 1 , a2 ... , an with sum S 
that 

(§_) 8 
2: (S - an)a"(S - an_1)an.- l ... (S - a1)a

1 

n n - 1 n - 1 n - 1 

·' 
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First we take the sth root of both sides. Then by the weighted AM-GI\1 inequality, 

it suffices to show that 

(
§_) > an(S - an)+ an- 1(S - an- d + ···+ a1(S - at) 
n - (n - 1)S 

which reduces after some algebra to 
n 

i,j = l 

Also solved by Ovidiu Furdui, Kalamazoo, MI, Rex H. Wu, Brooklyn NY and by the 

Proposer 

1035. [Spring 2002] From a problem proposed by Ayoub B. Ayoub, Pennsylvania 

State University, Abington College. . . . . 
It occasionally happens that mistake can have a serendlpltwus outcome, as ~~ tl~e 

case of this problem. The problem, as originally proposed, is now problem 1061 m 
the problems for solution this issue. We incorrectly printed x as 

2n+ 1 ( 2 + 1) - "" 2k- l n X - ~ k . 
k = 1 

x2 -1 
A number of astute readers noticed that, while, for this x, -

2
- doesn't need to be 

x2 - 1 . 
the product of consecutive whole numbers, -

4
- does. We offer our apologies to the 

proposer for the mistake. However, it did provide a second problem for our readers 

to tackle. 2 
1 X -

The solutions below use the x defined above and show that -
4
- is a product 

of two consecutive whole numbers. 
Solution (1) by Ellen M. Ellis and Tracey M. Hagedorn, students, Angelo 

State University, San Angelo, TX. 
By the Binomial Theorem we have that 

2n+ 1 ( 2 + 1) x - "" 2k- 1 n 
- ~ k 

k = 1 

1 
2

n +
1 

k (2n + 1) 1 
= 2L 2 k - 2 

k = O 

= ~ (1 + 2)2n 1 1 
2 2 
32n 1 _ 1 

2 

Then 
1 1 
-(x2 - 1) = -(x - 1)(x + 1) 
4 4 

-- - 1 +1 
1 (32n 1 _ 1 ) (32n+ l _ 1 ) 

- 4 2 2 

= c2n+:- 3) c2n+: + 1) 
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and we must show that are both whole numbers and (
32n+41 - 3) and (32n 41 + 1) 

consecutive. 

By modular arithmetic, we have that 

32n+l = ( _1)2n+l 

= - 1 (mod 4). 

(
32n+l _ 3) 

So 
4 

is always a whole number. 

Further, since 

the two numbers are consecutive. 

Solution {2} by Harry Sedinger, St. Bonaventure University, St. Bonaventure, 
NY. 

1 2 • 
We show that 4(x - 1) IS the product of two consectutive whole numbers. The 

first term for the sum for x is odd, while the rest of the terms are even, so x is odd. 

It follows that x + 1 and x - 1 are both even, and hence ~ ( x + 1) and ~ ( x - 1) are 

consecutive whole numbers. Their product is ~(x2 - 1). 

Also solved by Ovidiu Furdui, student, Western Michigan Unversity Steven Gendler, Clar­

ion University, Murray S. Klamkin, University of Alberta, William Peirce, Rangeley, I'vlaine and 

Rex H. Wu, Brooklyn, NY. 

1036. [Spring 2003] Proposed by Shiva Saksena, Univ. of North Carolina at 
Wilmington, Wilmington, North Carolina. 

Student solutions solicited 

Let f(x) = f1~0 (1 + x2
;), find c such that J; f(x) dx = 1r. 

Solution by Mike Pinter, Belmont University, Nashvill , TN. 
Since 

we have 

f(x) = (1 + x)(l + x2)(1 + x 4
) • .. 

= 1 + x+x
2
+x

3
+x

4
+ .. · = 1 ~ .·' for lx l 1, 

1c 1c 1 1 
7r = f(x) dx = - - dx = In( - - ). 

o 0 1 - x 1 - c 

It follows that c = 1 - - 1r. 

Also solved by Ellen Ellis and Jason Davis, Angelo State University, San Angelo, TX, Ovidiu 

Furdui, Kalamazoo, MI, Richard Hess, Rancho Palos Verdes CA, Murray S. Klamkin, Uni­

versity of Alberta, Edmonton, Alberta, Canada, Skidmore College Problem Group, Saratoga 

Springs, NY, Rex H. Wu, Brooklyn, NY and by the Proposer 

·' 
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1037. [Spring 2003] Proposed by Jim Vandergriff, Austin Peay State University, 
Clarksville, TN. 

Evaluate 

lim { l ( l nx J ) 2 dx 
n oo ./o n 

Solution by Rex H. Wu, Brooklyn, NY. 
Observe that l nx J = i for x E [ t, i~l ) It follows that 

lim ~ f~ (~)
2 

dx = lim (~) ~ i 2 = ~. 
n oo LJ.}i n n oo n LJ 3 

i = O n i = O 

Also solved by Frank P. Battles, Massachusetts Maritime Academy, Buzzards Bay, MA, Rob 

Downes, Rockaway, NJ, Mark D. Evans, Louisville, KY, Ovidiu Furdui, Kalamazoo, l\ll , Steve 

Gendler, Clarion University, Clarion, PA, Richard Hess, Rancho Palos Verdes CA, and by the 

Proposer 

1038. [Spring 2003] Proposed by Dr. Shiva K. Saksena, University of North 
Carolina at Wilmington, Wilmington, North Carolina. 

Find all solutions of the equation 

ln(log x)) = log(ln x) ). 

Solution by Peter A. Lindstrom, Batavia, NY. 
If 

ln(log x)) = log(ln x) ), 

then 

In( (In x) (log e)) = (ln(ln x)) (log e), 

since log( A) = (In A)(log e). It follows that 

Therefore, 

and so 

and 

ln(lnx) + ln(log e) = ln(lnx)(log 

ln(ln x) [log - 1] = ln(log ) 

ln(ln x) = ln(log e) , 
log e - 1 

( (~)) e lo~' e - 1 

x = e 
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But we are not done yet, as all solutions to any equation must be checked in the 
original equation. The left-hand side of the equation becomes 

( 

ln(lo!'; t>) ) 
ln(logx)) = lnlog e e iog" 

1 

( 

ln ( lo)'; f' ) ) 
= ln e log e - 1 log e 

ln(log e) 1 (l ) 
1 

+ n og e 
og e - 1 

ln(log e) 
1 = og e 

log e - 1 

= log ( e( ~:;~'~!';~ ~ )) 

( 
/n(lc•J'; <'l ) 

e o g e - 1 

= logln e , 

which is the right-hand side of the equation. 
Also solved by Ayoub B. Ayoub Penn State Abington College , Abington , PA, Maureen 

P. Cox and Albert White, St. Bonaventure University, St. Bonaventure, NY, George P. 

Evanovich, Saint Peters College Jersey City, NJ, Mark D. Evans, Louisville, KY, Ovidiu Fur­

dui, Kalamazoo, MI, Steve Gendler, Clarion University, Clarion, PA, Richard Hess, Rancho Pa­

los Verdes CA, Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada, George 

W. Rainey, Los Angeles, CA Skidmore College Problem Group, Saratoga Springs, NY, Rex 

H. Wu, Brooklyn, NY and by the Proposer 

1039. (Spring 2003] Proposed by Cecil Ro·usseau, Th University of lvfemphis. 
(Erdos) Let n be a nat ural number. The number of odd divisors of n equals the 

number of representations of n as the sum of consecutive natural numbers. Not : 
Sums with one term are counted. 

Solution by Harry Sedinger, St. Bonav nt'ltr Univ rs'ity, St. Bonav ntur , 
NY. 

Consider the sequence of consecutive natural numbers starting with a and ending 
with b. Let s(a, b) denote its sum and t(a, b) its length. Note that t(a, b) = b - a + 1. 

Let n be a given natural number. If n has an odd divisor 21.:+ 1, then ·n = m (21.: + 1) 
for some natural number 1n. It is easily seen that if m > k, then 11 = s(m,- k, m + k) 
with the length of the sequence being 2k + 1. If m _ k, then 11 = s(h· - m. 1, h· + m) 
with the length of the sequence being 2m. It follows that each odd divisor of 11 

determines a unique consecutive sequence whose sum is 11. 

Conversely, let n = s(a , b). If t(a, b) is odd, then a + b is even and11 = s(a, b) = 
t(a, b) [ (a~b)]. If t(a, b) is even, then a + b is odd and 11 = s(a, b) = [ t(~, b)J (a b). In 
either case, 11 has a uniquely determined odd divisor. 

The desired result follows. 
Also solved by Richard Hess Rancho Palos Verdes CA, Murray S. Klamkin, University of 

Alberta, Edmonton, Alberta, Canada, Kee-Wai Lau Hong Kong China, Mike Pinter, Belmont 

University, Nashville, TN, Skidmore College Problem Group , Saratoga Springs, NY Rex H. 

Wu, Brooklyn, NY and by the Proposer 

1040. [Spring 2003] Proposed by Andrew Cus·umano, Great Neck, N w York. 

Define an = ~ --
1
- .. Show that {an} is a decreasing sequence and lim an > ~. 

L......t n + 2z n • 2 
i = O 

Solution by Kee-Wai Lau, Hong Kong, China. 

·' 
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For n ~ 1, we have 

n 
1 

n + 1 1 
an - an+ 1 = L n + 2i - L n + 1 + 2·i 

i = O ·i= O 
1 1 1 1 

- -+ -
- 2n 2(n + 2n) n + 1 + 2n n + 1 + 2(n 

1 n - 1 1 2 1 
-~(- - + .) 
2 L......t n + 2i n + 1 + 2i n + 2 + 2z 

i = O 
1 1 1 1 

- - -- - --+ 
2n 6n 3n + 1 3n + 3 
n - 1 1 

~ (n + 2i)(n + 1 + 2i)(n + 2 + 2i) 
~=0 

1 1 1 1 
> - + - - - - - = 0, 

2n 6n 3n 3n 

so {an} is decreasing. Also, 

n 1 1 11 
dx 1 1 

lim an = lim L ( 1 2i) = o 1 + 2x = 2 ln 3 > 2 
n n oo i = O n + n 

453 

Also solved by Mark D. Evans, Louisville, KY, Ovidiu Furdui, Kalamazoo, Ml, Steve 

Gendler, Clarion University, Clarion, PA, Richard Hess, Rancho Palos Verdes CA. Shiva K. 

Saksena, University of North Carolina at Wilmington, NC, Rex H. Wu, Brooklyn, NY and by the 

Proposer 

1041. [Spring 2002) Proposed by Leon Bankojj, Los Angeles, California. 
The figure below shows a quarter circle with smaller circles inside. 

1. Prove that the three larger circles have radii of equal length. 
2. Prove the the remaining six smaller circles also have radii of equal length. 

0 

Solution by Ayoub B. Ayoub, Pennsylvania State University, Abingto~ Colle~e 
For the larger circles inscribed in right angle triangles, the area of the tnangle 1s 

A = ~ R(perimeter) 
2 
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where R is the radius of the circle. If r is the radius of the original circle, then 

~. ~. ~ = ~R (~ + ~ + ~J2) 
222 2 2 2 2 

hence 

r r J2 
R = 2(2 + J2) = 4(2 - 2). 

For the larger circle inscribed in the circular segment, we will denote it's radius 
by R', then 2R' = r - (diagonal of the larger square). (See the figure above.) Hence 
2R' = r - ~ J2 which implies R' = ~ (2 - J2) = R. This proves part 1. 

For each of the smaller circles inscribed in the smaller squares, the radius is 
1 ( r) 1 x = 4 2 = 8r. 

For each of the smaller circles inscribed in the circular segment, we will denote its 
radius by x'. Then the sides of triangle 60MN have lengths r - R, r - x', and R - x'. 
This implies that its half perimeter is r. Using Heron's Formula, the area of 60lvf N 

is Jr · R · x'(r - R - x'). Hence the height of 60lvf N from N is 2 Jr·R-:~~-R-x'). 
Applying the Pythagorean Theorem to the triangle whose hypotenuse is M N we 
get (R + x') 2 = 4rR(~~~~-x') + (R - x')2 which implies x' = rR~R2 • Thus x' = 
i (2 - J2) - {6 (2 - J2)2 , which implies x' = ~ = x. This proves part 2. 

Also solved by Mark Evans, Louisville, KY, Richard Hess, Ranch Palos Verdes, CA, Gus 

Mavrigian, Youngstown, OH, Yoshinobu Murayoshi, Okinawa, Japan, Rex H. Wu, Brooklyn, 

NY and the Proposer. 

1042. [Spring 2002] Proposed by Robert C. Gebhardt. 
In a simple roulette game, there are thirty-six numbers, a predetermined half of 

the numbers are black and the the other half are red. 
1. In how many ways cna the numbers be arranged in slots around the wheel if 

no two adjacent slits can have the same-colored number? 
2. European roulette wheels also have a green "0' . Repeat the question from 

part (1) for this situation. 
3. American roulette wheels have a green "0" and a green "00 . Repeat the 

question for this situation. 
Note: This problem shows a subtlety that evaded many, including the poser and 

the editors. This deals with the solution to the third part of the problem. While we 
received correct solutions to parts 1 and 2, the only complete solution is presented 
below. 

Solution by Steve Gendler, Clarion University, Clarion PA 
1. If one of the numbers, say #1, is fixed then 17 numbers of its color and 18 of 

the opposite color are permuted to obtain 

pl = 2(17!)(18!) 

possible arrangements. 
2. If there is a green slot, fix it and allow a red to it's right. Then there are 18 

of each type to permute, giving (18!)(18!) arrangements. But this occurs also 
if there is a black to its right. So there are 

p2 = 2(18!)(18!) 

possible arrangements. 

. ' 
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3. When we add a second green, it cannot be adjacent to the first. If it appears 
an even number of spaces to the right of the first green, then the segment to 
the left of the second green may be reversed (if not for the second green, this 
reversal would have adjacent slots of the same color and so could not have 
been counted). If it appears an odd number of spaces to the right of the first 
green, then a reversal will not create a new arrangement since the segment 
will begin and end with the same color. Since the second green can fall in 35 
locations and 17 of them allow a reversal, we obtain 

p3 = 2(18!)(18!)35 + 2(18!)(18!)17 = 2(18!)(18!)52 

different arrangements. 
Parts 1 and 2 also solved by Mark D. Evans, Louisville, KY, Mike Pinter, Belmont Univer-

sity, Nashville, TN, and the Proposer. 

1043. [Spring 2002] Proposed by Mohd Nadeem Khan, New Abadi, Aligarh, IN­

DIA. 
Find all quadruples of distinct integers x, y, u , and v such that 

xy = UV 

x - y = u + v 

gcd(x, y) = 1 

gcd(u, v) = 1 

x > y and 

u > v. 

Solution by Rex H. Wu, Brooklyn, NY 
Suppose gcd(x , v) = A, gcd(y, u) = D, x = AB, y = DE, u = EF, and v = AC 

for some integers A, B, C, D and E 
Then gcd(x, y) = 1 => gcd(A, D) = gcd(A, E) = gcd(B, D) = gcd(B , E) = 

1. Also gcd(u, v) = 1 => gcd(C, D) = gcd(C, F) = gcd(A, F) = 1. And finally 

gcd(y, u) = D => gcd(E, F) = 1. 
From xy = uv, we have (AB)(DE) = (AC)(DF), or BE = CF. Since gcd(B, C ) = 

1 and gcd(E, F) = 1, we can only have B = F and C = E. 

x - y = u+v 

x - v = y+u 

A(B - C) = D(E + F) 

A(B - C) = D( C + B). 

Since gcd(A, D) = 1 we can only have A divides C + B and D divides B - C. In 
other words if aA = (C B), then (B - C) = aD. 

By adding and subtracting the two equations, we get a(A + D) = 2B and a( A ­
D) = 2C. Then a = 1 or a = 2. If a 2 3, then gcd(B, C) =1- 1, a contradiction. 

Case (i) a = 1 
We have A+ D = 2B and A - D = 2C. Or A = D + 2C. Here C can be any 

positive integer, C = 1, 2, 3, 4, .. .. Since gcd(A, D) = 1, D cannot be even. We also 
know that gcd(D, C) = 1. Therefore, D can be any integer with the restriction that 
gcd(D, 2C) = 1. Let A = D + 2C and B = (A+ D)/2 = C + D. 
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Then x = AB = (D + 2C)(C +D) = D2 + 2C2 + 3CD, y = CD, u = 

max{AC, BD} = max{(D + 2C)C, (C + D)D} = max{ CD + 2C2, CD + D2}, and 
v = min{AC, BD} = min{ C D+ 2C2, CD+ D 2}. (The max and min functions are 
used to satisfy the condition u > v.) We have our first class of solutions: 

X = D 2 + 2C2 + 3C D 

y = CD 

u = max{ CD + 2C2, CD + D 2} 

v = min{ CD + 2C2, CD + D2} 

where C = 1, 2, 3, 4, ... and gcd(D, 2C) = 1. 
Case (ii) a = 2 

We have 2(A +D) = 2B and 2(A - D) = 2C, or A = D + C. Not that A and D 
are of opposite parity, otherwise gcd( B, C) -=1- 1. This implies that C is odd, C = 2i - 1 
fori = 1, 2, 3, 4, .... Then D can be any integer with gcd(C, D) = 1, A = D + C, and 
B = A + D = C+2D. 

Now x = AB = C 2 + 2D2 + 3CD, y = CD, u = max{AC, BD} = max{ CD 
C 2, CD + 2D2}, and v = min{AC, BD} = min{ CD+ C 2, CD 2D2} with C = 
1, 3, 5, 7, ... and gcd(D, C) = 1. 

But this is the exact expression as in (i) with C and D switched. 
In conculusion, 

X = D 2 + 2C2 + 3C D 

y = CD 

u = max{ CD + 2C2, CD + D2} 

u = min{ CD 2C2, CD + D 2} 

where C = 1, 2, 3, 4, ... and gcd(D, 2C) = 1. 
Note: The solver hasn't included it, but it does follow that in these cases 

gcd(x,y) = 1, gcd(u,v) = 1, x > y, and x - y = u + v. 
Also solved by Richard Hess, Ranch Palos Verdes, CA, partial solutions by Mike Pintner, 

Belmont University, Nashville TN and the Proposer. 
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These Mathematics professional MS Degrees provide the graduate 
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The 2002 National Pi Mu Epsilon Meeting 

The Annual Meeting of the Pi Mu Epsilon National Honorary Mathematics So­
eicty was held in Burlington, VT from August 1- 2, 2002. As in the past, the meeting 
was held in conjunction with the national meeting of the Mathematical Association 
of America's Student Sections. 

The J. Sutherland Frame Lecturer was Frank Morgan from Williams College. 
His presentation was entitled "Soap Bubbles: Open Problems" . 

Student Presentations. The following student papers were presented at the 
meeting. An asterisk(*) after the name of the presenter indicates that the speaker 
received a best paper award. 

Tom Wakefield*, Youngstown State University - Ohio Xi 
Factorization and PSL2(13) 

Lorne Fairbairn, SUNY Potsdam - New York Phi 
Carry Groups 

Nicole Miller, Salisbury University Maryland Zeta 
The Evolution Homomorphisms and Classification of Cellular Automata 

Ed Kenney*, University of Richmond Virginia Alpha 
Search for Constructions of Partial Difference Sets 

Eric C. Polley, St. Johns University - Minnesota Delta 
How to Color a Graph 

Christopher Jones, Youngstown State University - Ohio Xi 
Analysis of the Closure and Interior of Topological spaces 

Conrad Miller, Southwestern University Texas Pi 
Implementation of Error Correcting Codes 

James Sloan, Southwestern University - Texas Pi 
Check, Please! 

Michael B. Henry, Augustana College - Illinois Eta 
The Illustrated Analyst 

Elizabeth Fite, Hendrix College - Arkansas Beta 
Binarizing Text Images 

Igor Crk, Carthage College - Wisconsin Epsilon 
Mathematics of High Performance Computer Graphics 

Noorie Han·um, Angelo State University - Texas Zeta 
J\tlathematical Analysis of Computing Algorithms 

Jonathan Moussa, Worcester Polytechnic Institute - Massachusetts Alpha 
Recursive Method for Solving the Many-Body Quantum Problem 

Ben Bla·iszik, Elmhurst College - Illinois Iota 
Kicking the System: The Effect of 4:1 Forcing on Stable Pulse Length 

Valerie Kunde, Aquinas College - :Michigan Lambda 
Delayed Resonance 

Joel Lepak, Youngstown State University - Ohio Xi 
Dynamics of Population Modeling 
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Robert Shuttleworth*, Youngstown State University - Ohio Xi 
Numerical Solutions of PDEs 

Amanda Milby, Southwestern University - Texas Pi 
Driving Mis- Coding 

Philip Busse, St. Norbert College - Wisconsin Delta 
Error-Correcting Codes and Abstract Algebra 

Casey Douglas, Southwestern University - Texas Pi 
A Hamming Code by Any Other N arne ... 

Christian Jason Maier, Alfred University 
New Primality Testing 

Brian Street, University of Virginia - Virginia Kappa 
Uniformly Sweeping Out for Measure Preserving Group Actions 

Catharine Wright, University of Maine Maine Alpha 
Topological Graph Theory 

Elizabeth Donovan*, Worcester Polytechnic Institute - Massachusetts Alpha 
Maximum Chromatic Status of a Graph 

Kelly Wroblewski, University of Houston - Downtown - Texas Nu 
A Look at Triangles with Graffi.ti.pc 

Anupam Bhatnagar and Borislav Mezhericher*, Queens College - New York Alpha 
Graphs that Count: Generalized Catalan Numbers 

Yana Malysheva, University of Illinois - Illinois Alpha 
illi- Tantrix: New Ways of Looking at Knots 

Eman Kunz and Quincy Loney, SUNY Potsdam - New York Phi 
Intrinsically Chiral Graphs 

David Gohlke, Youngstown State University - Ohio Xi 
The Mathematics of Soccer 

John Angelis, Youngstown State University - Ohio Xi 
God Knows Markov 

Teresa Selee*, Youngstown State University Ohio Xi 
The Assumptions and Strategies of Repeated Games 

Brian Wyman*, University of Richmond - Virginia Alpha 
Game Strategy Development 

Tricia H emmesch, College of St. Benedict - Minnesota Delta 
Escalating Behavior in the Dollar Auction? 

Nathan A. Lewallen, North Carolina State University - North Carolina Gamma 
Analysis of Shocks in Granular Material Flows 

F. Ronald Ogborne*, SUNY Fredonia - New York Pi 
Reciprocity Gap and General Linear "Crack" Identification 

Lara Stroud, Meredith College - North Carolina Mu 
Modeling Tricholorethylene 

Carrie Diaz Eaton, University of Maine - Maine Alpha 
Fast- Spiking Cell and Networked Cell Models 

Joseph Boley, University of Houston - Downtown - Texas Nu 
A Numerical Study of the Beta Insulin Glucose I\1odel of Diabetes 

·' 

Fei Sun, Moravian College - Pennsylvania Omicron 
A Smart Measurebot 

Amanda Szymanski, Aquinas College - Michigan Lambda 
Centroids are Central 

Hai He, Hunter College - New York Beta 
The Indeterminate Case [0/0] - A Closer Look 

Mehrdad Khosravi, University of Central Florida - Florida Alpha Mu 
Law of cosines in n Dimensions 

Nicole J. Munden, Southern Illinois University at Edwardsville - Illinois Zeta 
Monte Carlo Integration 
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The next TIME meeting will take place at Mathfest 2003 in Boulder, Colorado, 
July 31 - August 2. See the TIME webpage (http:/ /www.pm math.org/) for appli­
cation deadlines and forms. There will be mathematics talks and social events and 
don't forget, the TIME banquet. See also the MAA webpage for details as well as for 
other activities in the Mile-High State. 

TIME TO RENEW YOUR IIME JOURNAL SUBSCRIPTION? 

You can check when your 
subscription runs out by 
looking at the address 
label. If it says S03 
(that is, Spring 2003) af­
ter your name, then this 
is your last issue! Please 
help support the TIME 
Journal and renew your 
subscription. 

Please send the information on your address label, address changes and your check to 
our Business Manager: 

Joan Weiss, Dept. of Math., Fairfield University, Fairfield, CT 06824-5195. 



Dan Hurwitz, Skidmore College 

a. Numerology 049 139 ill 184 100 011 088 126 

b. Contraversial postulate 050 oo8 066 TI2 128 149 029 162 

(2 wds.) 022 m 096 132 

c. Non-perpendicularity often refers 074 174 125 033 orr 155 024 1o5 

back to this(2 wds.) 190 65 183 

d . Participant in Fibonacci example 037 m 18 7 o8o 147 131 

e. Application area for probability theory 046 194 082 TI9 058 153 102 092 

f. Has good experimental design 060 166 m 012 142 095 002 04 1 025 

and predicted values 

g. Another interest of Russell oo9 173 106 030 057 160 040 069 

and Whitehead 097 188 

h. He found a geometric solution 111 068 013 121 023 193 055 081 

to a cubic (full name) m 093 039 

i. - rectum, runs through a focus 168 048 182 137 110 

j. An authority on repunits 130 TI6 169 143 01 8 

k. Distinguished journal (nickname) 031 oo6 185 103 021 159 052 

1. Space where points can be separated o9o 010 104 176 079 016 061 152 036 

m. Usually indicated by a circular 086 094 113 099 075 032 146 157 019 

arrow ill 056 

n. One joule per second 084 135 145 053 

o. Sums of partialities 122 038 163 021 043 150 oo3 TOT 

p. Slide rule inventor 

q. Function required for Peano axioms 

r. Rotated about minor axis 

s. Raise to covering space 

t. He axiomatized quantum mechanics 

. ' 

u. German number theorist, 133 064 ill 078 035 196 112 167 

Gauss' contemporary(1823-1852) oo5 087 

v. Gives scalars from vectors 051 165 011 108 138 ill 026 067 179 

(2 wds.) 

w. Perpetual Jack Benny birthday 

ordinal (hyph.) 

Last month's mathacrostic was taken from "Archimedes' Revenge" by Hoffman. 

"Pappas observed that, besides the hexagon, the square and th: equi­
lateral triangle are the only other regular polygons that can tile the 
plane. But, for the bee, the hexagon is superior because it encloses 
the most area for a given perimeter." 
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