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THE CURVATURE IN A FAMILY OF NESTED CONICS
AYOUB B. AYOUB*

The topics of conic sections and curvature are usually taught independently from
each other. Here we will make a connection between them.

We will consider a family of conics, where all of them have the same vertex A and
the same focus F' as depicted in Figure 1. This figure suggests that the curvature of
the conics at the vertex A decreases when going from the ellipse to the parabola to
the hyperbola. In this article, we will prove that this is indeed the case. Then we will
show why this family of conics is considered nested.

Y

Fic. 1.

1. The Conics Family’s Equation. In order to calculate the curvature, we
need to derive the equation of the family of conics. Let A be the origin, the line
through A and F be the r-axis, and the perpendicular to AF at A be the y-axis. Also
let the directrix corresponding to the focus F meet the r-axis at E. If P is a point
on the conic, let its orthogonal projection on the directrix be D, see Figure 2.
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Fia. 2.

If we denote the eccentricity of the conic by €, then by the definition of the
cccentricity, ¢ = PF/PD. Since A is also a point of the conic, then ¢ = AF/AE. If
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462 AYOUB B. AYOUB

AF = p, then AE — p/e and consequently the equation of the directrix is &+ = p/e .
Now, let P be (&, y), then PD = &+ p/e. Since PF = ¢PD, and F is (p,0), then
Vi =p?2 42 e tple).

After squaring and simplifying, we get:

y? = (e =12+ 2p(e + 1)z (1)

This is the equation of the family of conics, where e is playing the role of a paramecter
while p is fixed.

2. The Curvature. The curvature at a point on a curve can be thought of as
a measure of the rate of deviation of the curve from its tangent at that point. The
greater the curvature, the sharper the curve will be bending away from the tangent.

If the equation of the curve is y = f(r), then the curvature K (., y) at the point
(v, y) can be shown to be:

5 ”L
K(ry) = #w—;
(L (o))

To use this formula for calculating the curvature of the conic y? = (¢2 — 1)a? +
2p(e + 1) at the origin, we nced to know the valuc of the derivative there. Since
the conic has a vertical tangent at the origin, then y' is undefined. To overcome
this hurdle, we rotate the axes 90° and the cquation of the conic becomes 2
(€2~ 1)y? +2p(e+1)y. If we differentiate it twice, we get 20 — 2(e® — 1)yy’ +2p(e + 1)y
and 2 = 2(¢? 1) (yy" + (¢)?) + 2p(e + 1)y". At (0,0), the first cquation gives y' = 0,
then the second equation gives y” = 1/(p(e + 1)) . Substituting the values of y' and
y" in the above curvature formmula, we get

]\'(0, 0) 1)((’1—+1)

3. Conclusion. The rclation K(0,0) = 1/(p(e¢ + 1)) implics that the curvature
K(0,0) decreases as the eccentricity e increases. Sincee < 1, € — 1, or e > 1 according
to whetlier the conic is an ellipse, a parabola, or a hyperbola respectively, see [1], then
the curvature at the vertex A decreases starting with the ellipses whose ¢ < 1, followed
by the parabola whose ¢ = 1 and finally the hyperbolas whose € > 1. The following
table displays the cccentricities and curvatures of some of these conics;

L—(L Equation of Conic | K(0,0) |

(1 (- v>21))<2 y? 1 2 |
| 2 | 4p2 3p? 3p
3| (x—4p)? 5 y? 1 4
4| 16p? p? |
1
1 2 dpr Sl
1 y? = 4 %
3| (x+2p)? P ] 2
| 2 4p? 5p2 5p |
CL 2 2
o O
et P> 3p? 3p |
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There are two limitiug cases for this famnily of conics. The first, when e — 0, the
ellipse becomes a circle of radius p whose curvature is 1/p. The second, when e — oo,
the hyperbola degenerates to a double line 2 = 0 along the y-axis. Of course, the
curvature in this case is zero.

Figure 3 depicts the conics given in the table when p = 1. Also included in the
figure, the two limiting cascs.

[

111G, 3. The arcled values idicate the eccentricily.

To justify the description of this famnily as nested, we consider two of its members
whose equations are:

y2 - (el 1)a? + 2pley + 1)
and
g (63 1?4+ 2pea + 1) .

If we subtract one from the other and simplify the difference, we get (e +ez)a?+2pr

0, the roots of which are &+ — 0 and 2p/(ey + e2). Since the corresponding y
coordinates arc y — 0 and y — £2ip\/(1 + e1)(1 + e2)/(e1 + e2), then the conics of
the family have only the point (0.0) in common and that is where they touch cach
other.

REFERENCES

1] 1. ANron. “Calculus, A New Horizon”, 6th edition, John Wiley & Son, New York. 1999, pp.
T43-744, p. 864, 1999.

Ayoub B. Ayoub, The Pennsylvania State University, Abington College. Abington, PA 19001
Ayoub B. Ayoub received his Ph.D. dregree from Teniple University in 1980. His

primary rescarch interest is algebraic number theory. He is an active contributor to
our problem department and has published extensively on a variety of teaching topics.




464

Can you place the numbers from 1 to 36 in the circles so that the sums along any
of the 9 large arcs of the star are the same!?

While you are contemplating the beauty of this star, you can compare it to the
beauty of the IIME key pins and tee shirts, available as stocking stuffers. Check out
http://www.pme-math.org/membership/merchandise.html

IThe answer and more is to be found in the next issue!
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THE STRONG SHADOWING PROPERTY ON THE UNIT
INTERVAL:
WHEN DO ORBITS STAY CLOSE TO THEIR SLOPPY COUSINS?

JOSEPH H. BROWN , TIMOTHY J. PENNINGS*, AND JAMES O. WARREN'

Abstract. We study the dynamics of continuous maps on the unit interval. We determine
necessary and sufficient conditions so that all pseudo-orbits can be approximated by orbits with the
same initial point.

1. Introduction. When a calculator or computer is used to generate a sequence
of numbers by iterating a function, how close is the computer-generated sequence
to the intended one? Such a situation occurs, for example, whenever the Newton-
Raphson Method is used to find roots of equations. The area of mathematics which
deals with this question is called dynamical systems. It includes terms such as orbit

the true sequence of points generated by iterating a function, pseudo-orbit  the
sequence of points generated by the computer as it attempts to form an orbit, and
shadowing property  the property that every pseudo-orbit stays close to an actual
orbit. In this paper we find necessary and sufficient conditions for the shadowing
property to hold for continuous functions on the unit interval in the special case
when the orbit and the pseudo-orbit begin at the same point which is often the case
in practice. The general argument makes nice use of some standard undergraduate
analysis ideas such as compactness, uniform continuity and uniforim convergence.

In particular consider the functions

glx) =z + 411—71;|si11(27r.1')|,

1
h(z) = a+ in sin(27x), and
3 1 1
k(x) 1% + 3 + 4—7rsm(27r.1)
which are graphed in Figure 1 below. We will presently show that these functions all
have distinct dynamics with regard to the shadowing property.

1 1 1

xr P T
Fia. 1. Graphs of g, h, and k respectively

Let’s begin by making the question precise. We start with any metric space -
such as the unit interval with the distance between two points, & and y, given by

*Hope College
tStanford University




466 BROWN, PENNINGS & WARREN

d(xr,y) = |r — y|. For a metric space X, and a function f : X — X, (X, f,N) is a
dynamical system where N = {0,1,2,...}. For 2 € X, the sequence {f"(x)};%, is
called the orbit of &, where fO(x) = a and f" is the n-fold composition of f. In other
words, cach output of f is fed back into the function to obtain the next point of the
sequence. Orbits are easily pictured graphically by using the cobweb technique. Using
the graph of g above, we find the orbit of rg by alternately drawing a line vertically
to the graph of f which gives the next point of the sequence, and then horizontally to
the line y = .r which in effect positions the point to be fed back into the function. See
Figure 2 for an orbit of g(a) — & + ﬁl sin(2m.r)|. Notice that this dynamical system

1
0.8
0.6

Yy

0.4

0.2

0 0.2 0.4 0.6 0.8 1
x

Fic. 2. Graph of ¢ and orbit

has three fixed points - i.c., points where f(r) = r.

Computers simplify the task of calculating orbits, but round-off error will create
a “sloppy orbit” called a pseudo-orbit. A pseudo-orbit may or may not stay close to
an actual orbit. If every pscudo-orbit of (X, f, 1) stays close to an actual orbit, f is
said to have the shadowing property.

To be precise, for § > 0, a §-pseudo-orbit of (X, f,N) is defined as a sequence
{1} o such that d(r,1, f(a,)) < 6 for all n € N. Furthermore, a dynamical
system (X, f,N) has the shadowing property if for € > 0, there exists § > 0 such that
given a d-pscudo-orbit {r,}5°,, there exists + € X where d(an, f7(x)) < ¢ for all
n€ N,

Notice that this follows the format of a typical £ — § definition. That is, first an
£ is given which sets the tolerance - i.e., how far things can be apart. Once that is
given, a § is determined which keeps the required points within £ of cach other. So
a dynamical system has the shadowing property if given any = > 0, there is a small
enough § > 0, so that every d-pseudo-orbit will be followed £ closely by an actual
orbit. A J-pseudo-orbit being z-shadowed by an actual orbit is shown in Figure 3
where £ is the radius of the large circles and § is the radius of the small circles - all of
which are centered at the points of the pseudo-orbit.

Fic. 3. Diagram of orbit being e-shadowed by a -pseudo-orbit
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It may be the case that an actual orbit must start at a different point than a given
pscudo-orbit in order to shadow it. Consider a pseudo-orbit in g above which begins
at (0,0). Although g(0) = 0, because of the sloppiness of the pseudo-orbit, the next
term may be a positive number. From there the pseudo-orbit can climb away from
(0,0). An orbit starting at (0, 0) on the other hand, has no choice but to stay at (0,0)
forever. Thus the only way to shadow such a pseudo-orbit is for the orbit to start at a
positive value. Necessary and sufficient conditions for any non-decreasing continuous
function on [0, 1] to have the shadowing property are given in [6]. Essentially, each
open interval around cach fixed point between 0 and 1 must contain points where the
graph of the function is both above and below the line y = z.

Applying this result, the function g above does not satisfy the shadowing property,
while the function h does. Imagine how a pseudo-orbit of g might climb up to the
point (1/2,1/2) and then leap over the fixed point and continue up to (1, 1), while the
actual orbit would be trapped at (1/2,1/2). Can you see why h, on the other hand,
does have the shadowing property?

Even though a dynamical system may satisfy the shadowing property, sometimes
a stronger condition is desired. Since a pseudo-orbit is typically generated when trying
to generate an orbit, one may be interested in determining whether the pseudo-orbit
will be sshadowed by an orbit beginning at the same point. This leads us to make
the definition: (X, f,N) has the strong shadowing property if for € > 0, there exists
4 > 0 such that for any é-pseudo-orbit {a,}7% ¢, d(@n, f*(x0)) < € for alln € N. The
purpose of this paper is to characterize all continuous functions on [0, 1] which have
the strong shadowing property.

Given a continuous function f:[0,1] — [0,1}, let gr(f) denote the graph of f
and gr !(f) denotc the reflection of gr(f) about the diagonal y = 2. Also, f has a
k-cycle (k > 2) if there exists a set of & distinct points, {zo, *1,..., 2t 1}, such that
flry) T anod ky We show that the following three conditions are equivalent:

1. f has the strong shadowing property
2. f has no cycles and only one fixed point
3. gr(f) and gr (f) have exactly one point in common.

The equivalence of (2) and (3) is casily seen. If gr(f) and gr '(f) have more than
one point in common, then cither f has a 2-cycle or f has more than one fixed point.
Conversely, if gr(f) and gr '(f) have exactly one point in common, f cannot have
any 2-cycles. The Sarkovskii ordering of cycles then guarantees that f has no cycles
3]. Furthermore, any fixed point of f will be in the intersection of gr(f) and gr '(f),
s0 f has only one fixed point.

2. Preliminaries. Throughout this paper “C” denotes strict containment and
all intervals are intersected with [0, 1].

We begin with three lemmas first proved by Sarkovskii [7]. Drawing diagrams
helps considerably in working through the details of the proofs. The culmination of
the lemmas is that if f:[0,1] —[0,1] is continuous with no cycles, then the orbit of
any point will converge (to a fixed point).

LEMMA 1. Let f:{0,1]—[0,1] be a continuous function with no cycles. For x €
(0,1], if f(x) > «, then f(y) > a for all y € [x, f(x)] (if f(x) <a, then f(y) < for
all y € [f(x),x]).

Proof. We prove this lemma by contradiction. Assume @ € [0,1] with f(a) > a,
and suppose there exists z € [, f(x)] such that f(z) < .. Let y — max{t € [z, f(z)] :
f(t) = x}. Since f(r) > v and f(y) — & < y, f must interscet the diagonal i(t) = t
in [, y]. Thus, there exists at least one fixed point in [z, y]. Let p, = max{t € [a,y] :
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f(t) =t}. There are two cases to be considered.

Case 1: Suppose that f has at least one fixed point p € [y, 1], and let pg = min{t €
ly, 1] : f(t) = t}. Since f(y) = © < pr and f(pr) = pr > pL, there exists s; € (y, pr)
such that f(s1) — pr by the Intermediate Value Theorem. Similarly, there exists
s2 € (y,pr) such that f(se) = s1. Since f2(y) = f(z) > y and f%(s2) = pL < s2
with ¥, s2 € (pL,pr), f? must intersect the diagonal i(t) — t in the interval (pL, pr).
Hence there exists p € (py,, pr) such that f2(p) = p and f(p) # p, so f has at least
one 2-cycle.

Case 2: Suppose that f has no fixed points in [y, 1]. The point y was chosen so
fy) = x, f2(y) = f(x) > y. Since the range of f? is contained in [0, 1], f3(1) < 1.
So f? must intersect the diagonal i(t) — t in the interval [y,1]. Hence there exists
p € [y,1] such that f2(p) = p and f(p) # p, so f has at least one 2-cycle.

Each of these cases contradicted that f has no cycles, so if f(r) > x, then f(y) > «
for all y € [, f(x)]. Similar arguments prove that if f(x) < «, then f(y) < x for all
y€ [f(x),z]. O

LEMMA 2. Let f:[0,1]—[0,1] be a continuous function with no cycles. For all
ny,na,ng € N (ny) < ng < ny) and z € (0,1], if f*2(x) # f*(x), then f*1(x) is not
in the interval with endpoints f"2(x) and f"*(x).

Proof. Choose z € [0,1] and m1,n2,n3 € N (n) < ng < ngz) such that f"2(x) #
f(x). Since f"2(z) # f"*(a), f*'(x) cannot be a fixed point. Without loss of
generality, assume "1 () < f"171(x). We prove this lemma by using strong induction
to show that f*(a) > f"'(z) forn — ny +1,...,n3.

Assume f*(x) > f"1(x) for k = ny +1,...,n where n < ng. If f*(x) = f" Y(x),
then f*!(x) = f* 1(x) > f" (x) by the induction hypothesis. If f*(x) > f" (x),
then f(f*(x)) > f* '(x) by Lemma 1. Thus, f"*1(z) > f" '(x) > f"(x) by the
induction hypothesis. If f"(z) < f* (), let

s =max{k e N,k < n: ffx) < fF1(x)}.

We know s exists since " () < f*11(z), and so s > ny and f*(x) > f* ().

We claim that fé(z) < f"(z) < f*T(x), for suppose f*(r) < f*(xr). By
the definition of s, we have the inequalities f**'(x) > f*2(x) > --- > f"(x).
Hence, there exists p, s + 1 < p < n — 1, such that fP(z) € [f*(x), f#F1(x)] and
P (a) & [f2(x), Ft1(x)]. This contradicts Lemma 1 since f(x) € [T (x), fP(x))
while f(f*(x)) > fP(x). Thus f*(x) < f"(x). Furthermore, since f*(x) < f* '(x)
for k=s+2,...,n, f*(z) < foti(z).

By Lemma 1, f(f"(z)) = f**'(x) > f*(x) > f"1 (x). Thus by induction, f"(z) >
f'(x) form = ny +1,...,ny. Therefore, f™! () is not in the interval with endpoints
fr2(x) and f™3(r). ]

LEMMA 3. Let f:{0,1]—[0,1] be a continuous function. If f has no cycles, then
for any x € [0, 1], the orbit {f*(2)}5° o will converge to a fized point.

Proof. First notice that f"(r) — = implies = is a fixed point of f. Let « € [0, 1].
Since f has no cycles, m # n implies f™ (&) # f"(x) or f" () is a fixed point. We
can assume that f"(r) # f"(r) for m # n. By the Bolzano-Weierstrass Theorem.
{F"(2)};2 ¢ has a cluster point, z. We will show that z is unique.

Suppose that 2’ is another cluster point of { f" ()},5 . Without loss of generality,
let 2 < 2. By Lemma 2, (z,2') cannot contain any points from the orbit of .
Moreover, {f"(£)}S° 4 is the union of two disjoint subsequences: {f"*(x)} 1 = and
{fm*(x)} | 2’. Hence, there exists a subsequence {a;} of {f"*(x)};= ¢ such that

f(aj) — z'. Thus, f(z) — 2’ by continuity. Similarly, f(z') — z, which contradicts
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that f has no cycles. Therefore, the sequence {f™(2)};, must converge to 2, and =z
must be a fixed point of f by continuity. 0

Our initial approach to proving that a function with one fixed point and no cycles
has the strong shadowing property was to determine two arbitrarily small intervals
containing the fixed point with one interval contained in the other. These intervals
would have the property that the image of the larger interval would be contained
within the smaller interval. Then we could determine § such that all §-pseudo-orbits
would eventually be contained in the larger interval, so f would have the strong
shadowing property.

However, we cannot guarantee such intervals for f. For example, a function with
a fixed point which attracts on one side of the fixed point and repels on the other side
cannot have these desired intervals. Nonetheless, we can prove the existence of these
intervals for f2:

LEMMA 4. Let f:[0,1]—[0,1] be a continuous function with no cycles and one
fized point p. For e > 0, there exists 1 > 0, I = (a,b), and I, = (a — 1,b + 1) such
that I C I, C B.(p) withp € I and f?(I,) C I.

Proof. Let ¢ > 0 be given. By Lemma 3, the fixed point p attracts the entire
interval [0, 1]. Since p is the only fixed point of f, then f(x) > z on [0,p) and f(x) < z
on (p, 1]. We begin by finding an interval I; C B.(p) such that f(I,) C I,. There are
two possible cases.

Case 1: If f(B:(p)) € B-(p), then define I} — B.(p) and ¢’ = /2.

Case 2: There exists = € B.(p) such that f(z) € B:(p). Without loss of generality,
assume z € (p,p + ¢€). Since f(z) < z on (p,1] and f(z) € B.(p), we have that
f(z) <p—e. Let my = min{z € [p,z]: f(x) — p ¢}, and define I} = (p — ¢,m,),
=~ my —p. Weclaim that f(,) C I). If » € (p, 1), then f(z) > p—e. Furthermore,
flz) <z <my,so f(x) €(p—e,m). fz € (p &,p), then there exists 2, € (p,my)
such that f(z;) = 2 by the Intermediate Value Theorem. Since f(z) > &, Lemma 2
implies f(z) < ; < my. Thus, f(z) € (z,2,) C (p — &,my), so f(I1) C I.

Construct I for B./(p) as I) was constructed for B. (p). Without loss of generality
we have I = (a,b) such that f(I2) C I. Let J — (¢, d) denote an open interval of
f '(I2) such that Is C J C I,. There are two cases to be considered.

Case 1: ¢ < a, b < d. Taking n = min{a — ¢,d — b}, we have f(I) C Iz, so
f3(1,) C L.

Case 2: ¢ = a, b < d (¢ < a, b = d done similarly). Then there exists ¢ < ¢
such that f((e,d)) C (c,d). We also know that f((c,d)) C (a,b) = I;. By defining
n —min{a — e,d — b}, f3(I,) C L.

In each of these cases I = I and I, are the required intervals. 0

Using this lemma, we will prove that f2 has the strong shadowing property when
f has no cycles and one fixed point p. To show that f itself has the strong shadowing
property, we first establish the uniform convergence of {f*}<, to c(z) = p on [0, 1].
Given £ > 0, by the proof of Lemma 4, there exists an open interval I C B (p) such
that p € I and f(I) C I. We have pointwise convergence of {f*} by Lemma 3, so
for each z € [0,1] there exists N, € N such that f"(2) € I if n > N,. Therefore,
Unen f "(I) is an open cover of [0,1]. By the compactness of [0, 1], we can find
N € N such that fN(x) € I for all 2 € [0,1]. Thus, [f"(z) — p| < ¢ for all x € [0,1]
and n > N, so {f*} , must converge uniformly to c(z) = p.

Finally we show that if f2 has the strong shadowing property, then f has the
strong shadowing property.

LEMMA 5. Let f:(0,1]—[0,1] be a continuous function with no cycles and one fized
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point p. If f* has the strong shadowing property for some k € N, then f" has the
strong shadowing property for all n € 1.

Proof. First we show that if f* has the strong shadowing property, then f has
the strong shadowing property. For arbitrary € > 0, f* having the strong shadowing
property implies there exists 8, 0 < § < /2, such that all §’-pseudo-orbits of f*
are £/2 strong shadowed. Morcover, we know from the uniform convergence of {f"}
that there exists N € N such that if n > N, |f"(z) — p| < ¢/4 for © € [0,1]. Let
K = max{N,k}. From uniform continuity, we have the existence of 0 < §) < d2 <
<o < < 8'/K such that d(a,t) < §; = d(f(x), f(t)) < biyy fori=1,...,K 1.

We constructed this é-chain so that for any é,-pscudo-orbit {x,,}9 o of f, the
sequence {7j1nk}° o is a &-pseudo-orbit of f*, where j € N. To see this, take
an arbitrary j € N. Then d(x;, f(z;) < & = d(f(xj4), () < &2 =
o= d(f N aa), fA(eg)) < Ok Similarly, d(ff 2 (x5 40), f5 N (a00)) < 0k 1 < G,
d(fk 3(.Ej+3),f’”‘ 2(.I'j+2)) < O 2 < dk, v .o d(.l'j+k,f(.lij+k 1)) < 6] < 5/\-. Applying
the triangle inequality,

!
d(.rﬂk,f"'(.rj)) <k & < K- 5, = 4.
K
Therefore {a; 4,4} o is a 8’-pseudo-orbit of f*.

By the construction of the §-chain, d(x,, f"(xg)) < 6§, < €/2 < € for n
L,...,K. If n > K,let r =nmod ', 0 <r < K. If r = 0, then d(x,, f"(xg))
d(Lomp, [ (x0)) < 8" < = since f* has the strong shadowing property. Otherwise,
n = mk + r where » # 0, so d(x 4 r, f"""(.r,.)) < £/2. Since n > K, then mk > K,
which implies mk > N. Thercfore, d(f"**7(x9),p) < £/4 and d(f"*(x,),p) < /4,
so d(f" 47 (ag), % (1)) < 2/2. Applying the triangle incquality again, we have

AU (o), ) = AF" (20),0a) < .

Thus, d(zg, f*(29)) < = for all n € N, so f has the strong shadowing property.
Finally, if f has the strong shadowing property, then so does f" for all n € N,
This follows because the §-pseudo-orbits for f with d(ag, f(xr 1)) = 0 for all k £ 0
mod n are simply the §-pscudo-orbits for f7. 1]
Notice that the last statement is independent of the condition that f has no cycles
and one fixed point. We use this fact in the proof of the main theoremn.

3. Main Result - The Strong Shadowing Property.

THEOREM 6. Given a continuous function f : [0,1] — [0,1], the following are
equivalent:

1. f has the strong shadowing property

2. f has no cycles and one fived point

3. gr(f) and gr (f) have eractly one point in common.

Proof. (1 = 2) Suppose f has more than one fixed point. Notice that f cannot
have an interval of fixed points, otherwise the pseudo-orbit could move about the
whole interval while the actual orbit remains fixed. Morcover, since f is continuous,
the fixed points of f cannot even be dense in an interval by the same argument. Thus,
there must exist fixed points p; < p2 with no fixed points in the interval (p, pa).

Without loss of generality we can assume f(2) > @ on (p1,p2). Given § > 0,
consider the d-pseudo-orbit zo = py, 7y = o +6/2, 4, — f(a,, ) for n > 2. Let
r = min(f(2) — ») on the interval [p; + §/2,p2 — §/2]; r > 0 since f is a continuous
function. Then the consecutive terms of the pseudo-orbit {x,}° , must increase by
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at least 7 until a term is at least as large as p» — §/2. Thus, f does not have the
strong shadowing property since the orbit remains at p;.

We know by Lemma 5 that f having the strong shadowing property implies f"
has the strong shadowing property for all n € N. By the above, f* must have one
fixed point for all n € N. Therefore, f can have no cycles.

(2 = 1) Let g = f2, then g has one fixed point p and no cycles. For arbitrary
¢ > 0, Lemma 4 implies there exist I = (a,b) and I,, C (p—¢/2, p+€/2) withp € I and
g(I,)) C I. Furthermore, the uniform convergence of {g"};° to c¢(z) = p guarantees
the existence of N € N such that gV (z) € I for all z € [0,1].

Since I, € (p — €/2,p+¢€/2), n < £/2. From the uniform continuity of g, we
have the existence of 0 < 6; < &2 < ... < dy < n/N such that d(z,t) < §; =
d(g(x), g(t)) < 8iyq fori =1,..., N. Consider a é,-pseudo-orbit of g, {2} . Thus,

Nl(

d(z1, 9(x0)) < 81 = d(g(z1), 6% (20)) < G2 = -+ = d(g" '(a1), g" (z0)) < dn.

Similarly,

d(g™ *(a2), 9" '(z1)) < dn 1 < N,

d(g™ " (r3), 9" *(22)) <N -2 <On,....d(xn, g(an 1)) < O < N

By applying the triangle inequality,
d(xn, g (x0)) < N-6y < N - % <p<e

Repeating this procedure, we get d(zn, g"(zo)) <eforn=1,...,N.

Since N iterations have occurred, g*(z) € I C I, for all k > N. Furthermore,
the &;-pseudo-orbit {zy;x};", cannot leave I, since § < 7. Since diam I, < ¢,
d(x, g*(ro)) < € for all k > N. Therefore, g = f2 has the strong shadowing property,
so f has the strong shadowing property by 5. 0

Returning to our original functions (Figure 1), although A has the shadowing
property, it does not have the strong shadowing property since it has more than one
fixed point. On the other hand, k does have the strong shadowing property since gr(k)
and gr (k) have exactly one point in common as shown in Figure 4a. In contrast,

1 1

0 1 0 1
a) £ b) L

[1G. 1. Graph of k and ! and their reflections

even though

3 7 1
I(x) —41+§+Es1n(27m)




472 BROWN, PENNINGS & WARREN

has only one fixed point, its graph has three points in common with the graph of its
reflection as seen in Figure 4b, thus it does not have the strong shadowing property.

Finally, a corollary to this theorem is that surjective functions on the unit interval
do not have the strong shadowing property. By the theorem, we need only consider
surjective functions with one fixed point. Let f be such a function with fixed point
p. Therefore, f(2) > x on [0,p) and f(x) < x on (p,1]. In particular, there exists
a € (p,1] so that f(a) = 0, and there cxists b € [0, p) such that f(b) = a. Therefore,
f2(x) < a on some interval of [0,p), so f has at least one 2-cycle. Then f does not
have the strong shadowing property.
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ANOTHER PROOF OF THE STEINER-LEHMUS THEOREM

WILLIAM CHAU*

The Steiner-Lehmus theorem states that if a triangle has a pair of angle bisectors
that are equal in length, then it is isosceles. The converse theorem, that an isosceles
triangle has two cqual angle biscctors, is quite elementary and readily proved by
students of high school gcometry. A direct proof of the Steiner-Lehmus theorem, on
the other hand, is obscure, but many indirect proofs exist. In this note I add another
clementary proof to that collection. For other proofs see [1, 2, 3, 4, 5].

Given AABC with BC = a, AC = b and AB = c. Draw the angle bisectors
from A and B to intersect BC and AC at D and E, respectively. Assume that
AD = BE =t, /BAD = /CAD — o« and LABE — /CBFE = j3.

c

Let A(XY Z) denotes the arca of AXY Z. We sum the area of triangles within
AABC in two different ways to get

A(BAD) + A(CAD) = A(ABF) + A(CBE),
1 1
}(-f sin(a) + %bt sin(a) = écfsin(ﬂ) + 2at sin(3),

2
sinf@) a+c
v sin(8)  b+c
By the Law of Sines,
sin(4)  sin(B)
a b
sin(2c)  sin(2f9)
e b
2 sin(er) cos(av) - 2 sin(f) cos(f)
a N b 3
(2) sin(a) _ acos()

sin(8)  bceos(a)’

Equating (1) and (2), we get
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cos(f) Dbla+c)
cos(a) alb+e)

(3)

To prove that ZA = £ZB, it is sufficient to show that both ZA < ZB and ZA >
Z B lead to contradictions. We also need the fact that

(4) a,f< w2,

for 2a — ZA < 7w and 23 = ZB < 7. Assume ZA < ZB. It follows that a < /3 and
a < b. By (4), the LHS of (3) is less than 1 while the RHS of (3) is greater than 1.

Clearly we have an contradiction. Similarly we cannot have ZA > ZB and it follows
that ZA = ZB.
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A DECOMPOSITION METHOD FOR SOLVING LINEAR SYSTEMS
OF DIFFERENTIAL EQUATIONS

ELIAS DEEBA®*, SUHEIL KHURI', AND JEONG-M! YOON*

1. Introduction. The study of linear systems of differential equations of the
form

(1.1) x(t) = Ax(t) + b(t). x(0) ¢,

where x(t) € R", A an n X n matrix, b(t) € R" a given forcing function, and
x(0) = ¢ € R" the initial condition, is one of the main topics that students study
in the undergraduate curriculum. Indeed, students will frequently encounter linear
systems in Linear Algebra, Differential Equations, Methods of Applied Mathematics
courses and in other applied courses. Equation (1.1) is a mathematical model for
many important applications that range over the spectrumn from social and physical
sciences to engineering. Variation of the parameter method is usually employed to
solve the system in (1.1) (see, for examples, [2]-[4]). This method requires computing
the exponential of the matrix A, e, and then expressing the solution as
Y

(1.2) x(t) :eA'c+/ e AU-Db(r)dr.
J0

The computation of the e is not an easy task but may be achieved by finding

the cigenvalues and eigenvectors of the matrix A. Another approach for solving the
system (1.1) is to decouple it (if possible). Again this approach requires computing
the cigenvalues and eigenvectors of the matrix A and showing that A is similar to a
diagonal matrix D. The solution of the system (1.1) is then deduced from the solution
of the decoupled system. We propose a decomposition method for solving (1.1). This
method, modulo some theoretical background, is accessible to undergraduate students
as it requires only basic knowledge of calculus and matrix algebra [1]. It provides in
many instances a closed form solution and in others it provides an efficient way of
computing a numerical solution. Thus the trade-off is the simplicity of the method
and its suitability for numerical computation.

The decomposition method assumes a series solution; that is, we assume that the
unknown vector x(t) € R" is a serics of the form

(1.3) x(t) = x1(t) + x2(t) + ... — D xi(t)
1=0

and cach iterate xj(t) € R" is to be determined. In many instances few iterates are
needed cither to identify the closed formn solution or to obtain an accurate numerical
solution. We shall describe the decomposition method in Section 2 and illustrate
several examples to clarify the algorithm in Section 3.

2. Description of the Decomposition Method. We will first give a brief
description of the method that is normally employed to solve nonlinear problems of
the form

(2.1) x— L+ f,
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where L is a linear operator acting on an underlying function space H, and f is a

known function in H.
The method assumes a series solution

(2.2) &r=ury+rs+t ... Z.T,,
i=0

where the iterates 2/s are to be determined. Substituting (2.2) into (2.1) yield

(2.3) ) mip= ZLn'i + f.

1=0 =0

If the series converges, we can determine the iterates r; as in
(2.4) rog=f rn = Lry 1,n>0.

Equation (2.4) is the decomposition algorithm that we use to solve (1.1). Indeed, we
shall adapt the decomposition method to solve the linear system

(2.5) x(t) = Ax(t) + b(t), x(0) = ¢,

where x(t) € R", x(0) = ¢ € R", A an n x n matrix, and b(#) € R" is a known
forcing function.
Upon formally integrating (2.5), we get

(2.6) x(t) — x(0) - /(;Ax(f)d§+/(;b(§)d§.

Equation (2.6) is in the form (2.1) with La ]0' Ax(£)dE and f — xo + /(; b(&)dE.
Tle solution vector x(t) is

2.7) x(t) S xi,
i=0

where each x; is a vector in R". Substituting (2.7) into (2.6), we obtain

(2.8) gxi x(0)+§ /0 Axi(g)d§+./0 b(&)dE.

For the series in (2.7) to converge, we set

{

ot
(2.9) Xo = x(0) + / bE)dE,  %n / Axa 1(€)dE, n >0,
JO JO

Equation (2.9) is now the basis of the decomposition algorithm for solving the lincar
system (2.5). Indeed, (2.9) determines all the iterates x;. We shall now demonstrate
the method with some examples.

LINEAR DIFFERENTIAL EQUATIONS 477
3. Examples. In this section we solve several cxamples of linear systems of

differential equations to illustrate the decomposition method.
ExAMPLE 1. Consider

@ =2+ 3, :(0)=1,

(31) .’i'g 2.’1:2, T2 (0) 1.

The systemn can be written in matrix form as:

(3.2) i [(1) ;]x x(0) [}]

Upon formally integrating the system in (3.2), we get

(3.3) x(t) = x(0) + /0 Ax(€)d¢

Assuming the serics solution to (3.2), we obtain

(34) %0 —x(0)- [}] X _/OtAxn L (€)de - [gg’/jﬂ]

Thus the solution is obtained by summing these iterates. It is clear that the sum of

the components of these iterate (1 + 2¢ 4 % ...) add up the exponential function
21

e?!. Thus the solution to the system (3.2) is
. et
(3.5) x(t) [ 2 ]
ExampLE 2. Consider the system
Iy 1+ a3, I (0) =0
(36) L2 = 21 4 2.1'2, .1'2(0) 1,
iy = 8xy + 33, .1'3(0) 0

We can write this system in matrix form as:

1 01 0
(3.7) x=|[1 2 0 |x, x(0) 1
8 0 3 0
Upon formally integrating the system in (3.7), we get
'
(3.8) x(t) = x(0) + / Ax(&)dE.
Jo
Assuming the series solution to (3.6), we obtain
1 t 0
(3.9) xo=| 0|, - / Axic 1 (€)de = | (2t)* /Kt
1 >0 0
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Thus the solution is obtained by summing the iterates. It is clear that the sum of the

second component of these iterates (1 + (22;,)- -+ (23;,)“‘ + ...) adds up to the exponential

function ¢2!. Thus the solution to the system (3.6) is
(3.10) x(t) el

ExaAMPLE 3. Consider the non-homogencous system

11 £ + 1, .I'1(0) 0,

(311) ’12 Ty, ’12(0) 0.

We can write this system in matrix form as:

(3.12) % [‘1) Hxs[” x(0) [8}

Upon formally integrating the system in (3.12), we get

(3.13) x(t) = x(0) + /0 I Ax(&)d§+/0. ' [ h ]dg.

Assuming the series solution (3.12), we obtain x¢ — [#,0], and

[ ( 1)71(7r.+1) 2tn+1/(”+1)!
0

0
[ ( 1)"("*1)‘2?"”/(71 1. 1)! :I, for n odd.

] , for n even,

t
Xn ‘/0 Axyn 1(8)dE

Thus the solution is obtained by summing the iterates. It is clear that the sun of
4 2 1
the first component (* — & + ...) and of the second component (5 — 4 + ...) of these

iterates add up to sint and 1 — cost respectively. Thus the solution to the systemn
(3.12) is

cost

(3.14) (1) [ o ] .

Although the above examples are not that messy, yet they show the case of obtaining
the solution using the decomposition method. The last example that we present
shows that, in the absence of a closed form solution, the decomposition method yields
with relatively few iterates a “reasonable answer” when compared nunerically to the
answer obtained using the Computer Algebra System (Maple V).

ExAMPLE 4. Consider the system

ay &Iy + 3o + 2y, .’I'](O) 1,
(3.15) Io = 2a9 + 33, r2(0) =0,
Iy = x4 2u3, ’1,3(0) 1.

We can write this system in matrix form as:

1 3 2 1
(3.16) x=10 2 3|x x(0=]0
10 2 1
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Upon formally intcgrating the system in (3.16), we get

!
(3.17) x(t) = x(0) + / Ax(€)d.
0
Assuining the series solution of (3.16), we obtain
1
X0 X(O) = 0
1
1 [ 3t
xi— [ Axo(e)dg — | 3
0 | 3t
t 9t2 ]
X2 :/ Axq(&)dE 158212
o | 9t%/2 |
‘ [ 81t3/6 |
(318) X3 / AX2(§)df 19t3/2 =8
g | 18t3/3 |

Therefore we can get the approximate solution by choosing the several terms

143t + 962 + 843 4 2t ...
(3.19) x(t) =xo+ X1 +Xz +... 3t+ 13424 1943 4 374 4.
1+3t+ 512+ 1843 4 Sl 4.

The error is less than 10 2 when we compare the solution of the decomposition method
using only four terms with the solution obtained using Maple V (see Tables 1 - 3).
The accuracy of the method can be improved by adding more iterates.

t | Maple(x;) | Decomp(z;)
.02 | 1.063710 1.063710
.04 | 1.135300 1.135299
.06 | 1.215500 1.215491
.08 | 1.305102 1.305065
.10 | 1.404966 1.404850
12 | 1.516020 1.515727

TABLE 1
The Comparison between the 13t component of the solution obtained numerically using Maple
and of the decomposition method solution in (5.19).

Our goal was to introduce an alternate method for solving linear systems of differ-
ential equations that is accessible to undergraduate students with knowledge of basic
calculus and matrix algebra.
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t | Maple(r2) | Decomp(ra)
.02 630775 .630775
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TABLE 2

The Comparison between the 2™ component of the solution obtained numerically using Maple
and of the decomnposition method solution in (3.19).
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and of the decomposition method solution in (3.19).
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ANALYSIS OF THE SUBTANGENT
DANE A. DORMIO*

In volume five of Readings for Calculus [1], there is a section on Isaac Newton with
an exercise that begins, “In the carly days of Calculus the subtangent was considerably
more important than it is now.” The problem continues with questions about how to
apply the subtangent operator to basic algebraic and trigonometric functions. This
exercise prompted an exploration of the mathematical and historical significance of
the subtangent.

The natural first approach to the subtangent is geometrical. The subtangent of
a curve at a given point is defined as the line segment indicated in Figure 1. It also
refers to the algebraic, or signed, length of this segiment.

f(z)

X

—S(f,z)-

Fic. 1. The subtangent, S(f,x), of [ at x.

Before we can go into more detail about the subtangent, some notation needs
to be defined. I will use S to denote the subtangent operator with cither Sf or
f* representing the subtangent function of f (similar to representing the derivative
function of f by cither Df or f’).

For a case such as that in Figure 1, where y = f(x), the subtangent can be
calculated from the height of the vertical segment, y, and the slope of the tangent
line, y'. From the definition of slope, y' = '/Ii*, 80 y* = 1/—, So for example, the length
of the subtangent of the parabola y — 22 is

£ i
= —=-.
20 2

For y = a3, we have
@3 1
Y = — ==
4 322 3

If this formula works for all cases, then in general, S(x") - il

Like many problems in calculus, questions about the éilbtangcnt have both a
geometrical and an algebraic side, and the two different conceptual approaches can
yield different insights. One of the purposes of this paper is to exhibit this duality.
A gencral argument that the formula for the subtangent given above is valid is casier
with less geometry and more algebra. The argument runs as follows. Let f(x) be a

© *Hendrix College
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function of z, let #(z) be the tangent line to f(z) at xg, and let x; be the « intercept
of t(z), sce Figure 2. Then f*(x¢) will be zg —x;. The point-slope form of the tangent

Yo

Tr )
FiG. 2.
line gives
t(a) — t(wo) = f'(wo)(x — o).

Note that when #(r) = 0 in this formula, # = ., and also that, because #(2') is tangent
to f(a) at xo, t(x9) — f(xg). Putting these two facts together gives us

s f(-l'o)
f'(@o)

which says that the subtangent of a function f(x) is given by Sf(x) = f(x)/f' ().
Note that this implies that the subtangent of a function is undefined when the tan-
gent line is horizontal (that is, when the derivative is 0). It follows that a constant
function’s subtangent is undefined cverywhere.

The historical importance of the subtangent is its direct relationship to the deriva-
tive. Our perspective on the two has changed somewhat over time; we use the deriva-
tive exclusively and have forgotten about the subtangent. However, in the early
development of calculus, the subtangent was primary and the derivative secondary.
Pierre de Fermat’s technique of drawing the tangent line was a precursor to the mod-
ern technique of differentiation. To draw a line tangent to a curve at a given point,
he would first find the subtangent (through geometrical means other than the ones
which we have employed). He would then have the two points (&7, 0) and (g, f(xo))
through which to draw the tangent line [2], which is the reverse of what we just did.
Similar techniques were used by Hudde, Sluze, and Barrow [3]. Even Leibniz, in his
first paper on the differential calculus written in 1684, uses the defining proportion
dy : dx = y : y* .However, we will sce that the derivative turns out to be the simpler
and more useful of the two operators, which is probably why it eventually replaced
the subtangent as the standard slope operator.

Now confident that our initial formula is correct, we can go on to compile a list
of subtangent “rules.” We have already established that S(x") = r/n. Since the
power rule for differentiation is valid for all real n it follows that this rule is as well.
The subtangents of other clementary functions can be calculated in the same manner.
For instance, supposc we want to calculate the subtangent of f(r) = sin(x). Since
f'(z) = cos(z), we have that f*(x) = tan(x). The subtangent of cos(.r) is the negative
reciprocal of this, — cot(z).

A historical document illustrates what happens when we compute the subtangent
of an exponential function. In the years 1676-1677, Newton and Leibniz corresponded

Lo — &}

f (o)
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a number of times to discuss their respective methods of differentiation and integra-
tion. In a letter dated June 21, 1677, Leibniz gave a solution to the problem of finding
a curve whose subtangent is constant [1]. This type of curve turns out to be an ex-
ponential, which can be scen easily with our modern advantages. For example, let
f(x) = ¢e". Since f'(x) = f(a), f*(x) = 1. It turns out that all exponential functions
have a constant subtangent. This means that if you draw the subtangent at any point
on an exponential curve, its length will always be the same, and is a result of the
special characteristic of the exponential function that its growth rate, or slope, grows
in proportion to its height, so that the two always have the same ratio.

While learning calculus, students are often asked to look at how a simple geometric
transformation of a function changes its derivative. Similarly, one can ask how a
transformation of a function changes its subtangent. We next examine various ways
to transform a function, and the effects these transformations have on the subtangent.

First we consider vertically shifted functions of the form f(z) = g(x) + a, where
a is a constant. Since f'(z) = ¢'(x), we have

where we have made use of the fact that f' = f/f*. Thus, the subtangent of a
vertically shifted function is the subtangent of the original function plus a correction
term. We can visualize this geometrically by noting that x; will mmove either to the left
or right as the graph of the function moves up or down, but xy will remain unchanged.

Another simple transformation is a vertical scaling, which corresponds to multi-
plying a function by a constant. In this case, f(x) = ag(z), and f'(z) = ag'(xr). so
the constant cancels out and the subtangent is unchanged:

* ag(,l’) o * T
fa) = Sy = 9@

This can be pictured geometrically as a function being scaled upward along the y-axis;
its height and steepness will increase in the same ratio. It implies that a reflection
about the z-axis, see Figure 3, doesn’t change the subtangent, since this represents

Yo

-Zo -Tr Ty I

F1G. 3. Reflection about the y axis.

a multiplication of the original function by -1. Furthermore, it should be obvious
that if a function is shifted along the z-axis the derivative function will be shifted by
the same amount and the subtangent function will likewise. However, if a function
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is scaled along the -axis the subtangent is changed. Suppose f(r) = g(ar). Then
f(z) = ag'(az), so

P

0 (an)
— — = — o e
ag'(ar) g v

This implies that a reflection about the y-axis, which corresponds to scaling along the
a-axis by 1, will change the sign of the subtangent Figure 4. In all cases the sign of

Yo

Ty o

\

Fic. 4. Reflection about the r ars.

the subtangent is an indication of the direction in which it is measured. If &g is to the
left of .y, the subtangent will be positive; if xy is to the left, the subtangent will be
negative. Reflection about the w-axis doesn’t change this; reflection about the y-axis
does.

A list of subtangent rules must include product and quotient rules. If f(r)

g(x)h(x), then f'(x) = g(a)h' () + h(x)g'(x), so

g(a)h(r) g* ()h* ()

@) = S @) + g (OhG) g () + b

ooy g(a) N hr)g' (1) - g(a)h!(x)
And if f(r) = he)’ then f/(x) = W2 ,
) ~ g()h(z) gt (o)l (x)
. h(x)g () — gle)h/(x)  g*(x) — h*(x)
Two other scenarios we can look at are the sum of two functions and a composition
of functions. In the first case, let f(a) = g(a) + h(r), so that f'(x) = ¢'(x) + I (x).
Then

SO

g(r) + h(e) g ()b (@) (g(e) + h(x))
g(r)

PO = g v @) ™ gt ) + g @)

Note, therefore, that the subtangent is not a lincar operator. To consider a composi-
tion, let f(x) = g(h(x)). Then f'(x) = g'(h(a))M' () and

g(h(@) g (b)) g ()bt (o)

g(heNh'(e) W) h(r)

fr(x) =
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7@) 7() @)
a 0 undefined
z™ A z/n
e e’ 1
a*® a®In(a) 1/In(a)
In(z) 1/z x In(z)
sin(z) cos(x) tan(z)
cos() —sin(z) — cot(z)
tan(x) sec?(x) sin(x) cos(z)
I ey | S @R @) +h@)
sha) | s@ @) i) | LS
9(z) hz)g'(z) — g(z)h' (x) g (@)h* ()
h(z) h(z)? g*(z) — h*(z)
; BN o g* (h(z))h* (z)
o(h(z) ¢ (h@)W(2) i
St - .oy o 29" (%)
9(z) + g9'(z) 9" () + o@)
ag(z) ag'(x) 9" (x)
g(x +a) g'(z +a) g*(z+a)
g(az) ag'(ax) g*(ax)/a
TABLE 1

Rules for the subtangent

Thus we have developed a chain rule for subtangents.

All of the foregoing results are summed up in Table 1.

Having developed the theory of the subtangent thus far, we will now take a step
backwards counceptually to develop an analytical definition of the subtangent, similar
to that of the derivative. We will develop this approach geometrically at first, closely
following Barrow [3] (with the adaptation of limits, of course) and then establish it
directly from the analytical definition of the derivative.

In Figure 5, as before, we have f*(r) = x — x;, and the ratio of the sides of the
larger triangle will be equal to the ratio of the sides of the differential triangle as h
approaches 0. That is,

f (1) — lim I—l = lim h

f(@) h-0oa h—0 f(z) — flx —h)

Therefore,

o flz)h
= e Fw =)
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f(z)
f(z+h)

h

Tr / z+h =z

Fi¢. 5. The differential triangle.

It doesn’t take much to see that this is just an alternate way of stating the
definition of the derivative, for using f*(x) = f(x)/f' () gives us
o) lim ___f(n:)h .
Fl) 20 F@) - @ h)
With the assumption that f(z) # 0, cancelling the f(r) and inverting gives

F(2) = tim J@ =S =)

h—0 h

and we have successfully reinvented the wheel.

The foregoing treatment of the subtangent shows that it is more complicated and
less user-friendly than the derivative. The inclusion of y and the inversion of y' in
the expression for the subtangent avoid what we now view as the heart of the matter,
the slope of the tangent line itself, and makes the subtangent superfluous. However,
the subtangent has managed to find its own usecful niche. To finish up, here is a
way that the subtangent has stuck with us. Although most calculus students never
hear the term “subtangent,” they may recognize the expression y/y’ from Newton’s
method for approximating the intercepts of a function. In Figure 2 it is obvious that
2y is closer to a root of the function than xg. So, having picked a value for g,
you could compute the subtangent at that value by the formula S(x) = y/y’. Then
you could use S(r) = xg — 2y to find 2;. This value could be used for the new .,
which would in turn produce a new subtangent and a new . closer to the root of
the function. Therefore, repeated applications of the formula x, 41 = x, — S(«x,) will
produce numerical values that converge on the root of the function. This is Newton’s
method.
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GEOMETRICAL ASPECTS OF AN OPTIMAL TRAJECTORY

C. W. GROETSCH*

1. Introduction. The best-known fact about projectile motion, as familiar to
high school track coaches as it is to calculus students, is that a launch angle of 45°
produces the maximal horizontal range. Galileo Galilei [2] was the first to prove this
result, which relies on the assumption that the only active agent is a constant vertically
acting gravitational force. His analysis also showed that the projectile’s trajectory is
a parabola with vertical axis at mid-range. The symmetry of the parabolic trajectory
implies that the triangle formed by the horizontal base of the trajectory, that is, the
segment between the launch and impact points, and the tangents to the trajectory
at the launch and impact points is isosceles. Further, in the case of a trajectory
with maximal range, that is, one with a launch angle of 45°, this isosceles triangle is
necessarily right and therefore the side of this triangle that is tangent to the trajectory
at the launch point bisects the angle formed by the ray from the launch point through
the impact point (i.e., the horizontal ray) and the vertical ray through the launch
point.

In a recent note William Chau [1] gave a twist to the standard optimal trajectory
problem. He treated the problem of maximizing the horizontal distance travelled
when the projectile terminates on a given horizontal line y = y; (the case y; = 0 is
then the standard problem). While in this modified problem the optimal launch angle
is not necessarily 45°, we show nevertheless that the two geometrical features of the
standard probleimn noted above continue to hold for the modified problem. Specifically,
the tangents to the optimal trajectory at the launch and impact points, respectively,
are perpendicular, and the launch vector bisects the angle formed by the ray from the
launch point through the impact point and the vertical ray.

2. Optimality Conditions. We begin by recalling the parametric equations for
the trajectory of a point particle of unit mass launched with initial speed v from the
origin at an angle 6 with the positive horizontal axis:

r = (vcosf)t
y = (vsin®)t - (g/2)t?

The first equation is a representation of the law of inertia and the second equation
combines vertical inertial motion with Galileo’s law of fall. As an alternative to Chau's
derivation of the optimal launch angle, we consider the constrained maximization
problem

maximize: x(0,t) = (vcos8)t
subject to:  y(0,t) = (vsinB)t — (g/2)t? = y1.

A quick application of the Lagrange multiplier rule (see e.g., [4]) then gives the fol-
lowing optimality conditions

(vsin@)t = A(vcosb)t
veosf = A(vsinf — gt)

*University of Cincinnati
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and hence, A tand. Substituting this into the second condition gives the impact
time:
v
t= —cscd (1)
g

Putting this into the constraint
(vsin @)t — ‘gf2 =0 (2)

then leads, after a little algebra, to Chau’s characterization of the optimal launch
angle:
v
sinf = ———— (3)

V207~ gm)

The Lagrange multiplier approach is very generous: it gives the impact time (1)
as lagniappe! Alternatively, one could get the impact time (1) by solving for the larger
root of the quadratic equation (2) but this is quite a bit more involved (Try it!).

In the next section (1) and (3) are put to use to derive the two promised geomet-
rical characteristics of the optimal trajectory of the modified problem.

3. Some Geometry. The slope of the tangent line to the optimal trajectory at
the launch point is tan 8, where 8 is given by (3). At the impact time ¢ given by (1),
we have

z'(t) = vcos
and
y'(t)  vsind — gt = v(sinf — csch) = —vcosfcotd

and hence the slope of the tangent line to the optimal trajectory at the impact point
is
dy o (t)
dr  z'(t)

cot 8,

proving that the tangent lines to the optimal trajectory at the launch and impact
points are perpendicular.

Now let B be the intersection point of the tangents to the optimal trajectory
at the launch point O and impact point A, respectively, and let OV and OH be the
vertical and horizontal rays, respectively, through the launch point (see Figure 1). Our
second geometrical claim is that ZAOB = ZBOV. Since /ZHOB — 6, the optimal
launch angle, we have tan (Z/BOV) = cot 8, and the required geometrical condition is
equivalent to

tan (ZAOB) = cot 8.

2
The coordinates of the impact point A are ((vcos8)t,y;) = (L cot 6, yl) and the
g

line through B and A therefore has equation

v2 v,
y—y=—cotf |z ;cot0 = —(cot 8)z + gcot 0.
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Fic. 1. An Optimal Trajectory

But by (3),

2 1
0N v (1 = csc? 0)
g 2

and the line OB has equation y = (tan)r. Making these substitutions we find the
the first coordinate . of the intersection point B satisfies

2 2
v 1 v
(tan @ + cot f)x = p (1 3 csc? 6 + cot? 9) - 2% csc? g
and hence
= cot 8
&r = —coté.
29
2 2

v

i
cot @, — ) and hence
29 29)

The coordinates of B arc therefore (

o
OB csc 8.
29

o> 2 AN
|AB)| cotd) + |y — — cot fcsel.
29 29 29

Finally. since ~ABO is right

Also,

& = cot§ = tan (£ BOV),

A
tan (/ AOB) OB

proving that the ray OB bisccts the angle formed by the rays OA and OV, as
promised.
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4. A Bow to Dr. Halley. While the discussion above is a useful classroom
demonstration of a number of topics from geometry, trigonometry and calculus, the
geometrical characterization of the optimal launch angle also follows from an old result
of Edmund Halley [3]. He treated the slightly different problem of firing up a fixed
sloping battleficld. Halley showed that the optimal launch vector bisects the angle
formed by the battleficld and the vertical (e.g., for a horizontal battleficld the launch
angle would be 457). If we think of the shot giving maximal horizontal range at height
y = iy and consider the ray from the launch point through the impact point to be
the sloping battlefield, then the given shot would also have to be optimal in Halley’s
sensc. For otherwise a shot further up the sloping battleficld would be possible and
this shot would impact on y = ¥, further down range than the original shot which
was assumed to be optimal. So old dogs still do some pretty nice tricks!
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FIBONACCI, LUCAS, AND EIGENVALUES
THOMAS KOSHY™

Fibonacci numbers F;, and Lucas numbers L, are often defined recursively:

Fi=1, F, =1
Fn: nl"Fn 2 77:-_-)_'3

and

Ly=1,L,=3
L,=L, 1+L, 2, n=>3
They are given explicitly by Binet’s Formulas:
a — ﬂn
a—-f8"
where o — (1 + v/5)/2 and 8 = (1 — V/5)/2 are solutions of the quadratic equation
t?-t-1=0.
In 1960, C. H. King studied a 2 x 2 matrix for his masters thesis at then San Jose

State College in California, which he called the Q-matrix, (3, 4]. It is basically the
same as the matrix
01
o |1 1]

Using induction, it can be shown that

Fn L,, -a” 4 ;f”

F F,
n o n o1 n
Q [ Fn Fn+l }

Since |Q"| = |QI™ = (- 1)", this yields the Cassini formnula, (2, 4], F,, F,,; — F2 =
(- 1)", where |A| denotes the determinant of the square matrix A.

The eigenvalues of @ are the solutions of the equation |@ — AI| = 0, where I
denotes the 2 x 2 identity matirx, [1]. They are given by

’Al

that is, A2 - A -1=0;s0 A = o, 3.
The cigenvector X corresponding to A is given by AX — AX, that is,

tHIAEH
8

where

*Framingham State College
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This matrix equation yields y - Ar. Therefore, (@, y) — (&, Ar) — (1, A)a. Thus the

eigenvector corresponding to A is (1, A)x, where x is an arbirary real number.

Geometrically, it represents the line y — Ar. Since a3 1, it follows that the

lines y = ax and y = Jr are indeed perpendicular.
It is well-known that if ¢ is an cigenvalue of A with the corresponding eigen-

vector X, then " is an cigenvalue of A" with the corresponding eigenvector X, [1].

Consequently, A" is an eigenvalue of Q", so |@Q" — AI| = 0; that is,

Fn 1 A Fn l 0
Fn Fn+l A

Expanding this, we get
A (Fy g+ Fay )N+ Fy Fyu - F3=0
Since F,, 4+ F,,41 = L,,, [2, 4], by Cassini’s formula, this yields
A2 — Ly 4 (-1)" =0

Using the quadratic formula,

A\ L,+ /L2 —4(-1)"

5 (1)
Since a > 0 and 3 < 0, it follows that
y Lt/ L2 —4[—1)" 5
a 5 (2)
and
w  In L2 — 4(-1)" _
B 5 1) (3)

For example, a8 = (Ls+/LE + 4/2 = (11+5V5) /2 and 3° = (Ls— /L% +4)/2
(11 — 5v/5)/2. Both may be verified using the actual values of a and £.
Formulas (2) and (3) yield an interesting formula for F), in terms of L,:

a" —B" = /L2 —4(-1)"

(1)

For example,

I3, +4 [199214
il \/ “5+‘ \/ 5+': %

Notice that formula (4) can also be written, [2, 4], as
L% =5F2 +4(-1)"

Formula (4) yields three interesting byproducts:
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e Since F, is an integer, L2 = 4(—1)" (mod 5) = (- 1)"*! (mod 5)
e L2, =4 (mod 5), so Ly, = £2 (mod 5).
e L2,., =4 (mod5), so Lypq1 = £1 (mnod 5).
For example, L2 ~ 324 = (—1)7 (mod 5), Lyp = 123 = -2 (mod 5), and L2
322 = 2 (mod 5).
Properties (2) and (3) raise four interesting questions: Which Lucas numbers are
congruent to +2 modulo 57 Which are congruent to £1 modulo 57
Before we identify them, it is interesting to observe that Ly, Ls, L12, L1g, and Lag
are congruent to 2 modulo 5, whereas Lo, Lg, L1o, L14, and L,g are congruent to -2
modulo 5. So we conjecture that Ly, = 2 (mod 5) and Ly, 412 = —2 (mod 5).
Both can be established fairly easily. Since

1+vB\", (a-v5\"
() (58

it follows by the binomial theorem that

2Ly =2+ m(m — 1)5V5 + -+
=2 (mod 5)

where m > 1.

In particular, 21" Ly, = 2 (mod 5), so Ly, = 2 (mod 5). Also, 2" Ly, ) =2
(mod 5), 50 Ly, 41 = 1 (mod 5); therefore, Ly 2 = Luny1 + Lin =142 = -2 (mod
5); and Lyn+s = Lung2 + Lant1 = -2 +1 = —1 (mod 5).

For example, Lo = 228826127 = 2 (mod 5), Lz = 599074578 = —2 (mod 5),
Ly, — 370248451 = 1 (mod 5), and L,z = 969323029 = —1 (mod 5).
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R Andrej Bauer, 2002.

In this work by Andrej Bauer we sce a scene from the tale of Aladin, as the white
geni hovers on the shoulder of the wizard and magics a lighting bolt. Or do we? The
mathematical equation below the image is not just the unpronouncable title, it is in
fact the mathematical formula for the image.

This example of what Andrej calls “Random Art” was created by having the
computer randomly generate a function whose domain is a region of the complex
plane, and whose range is an RGB vector. The images appear in a web gallery in
which the visitors participate, rating the newest submissious ‘good’ or ‘bad’, with
the bad images being discarded. So cach work in the Random Art Gallery is a triple
collaboration between Andrej, mathematics, and his fans on the web. This is a fruitful
collaboration, with some images having been published as cover art for text books.

You can start your visit to the Random Art Gallery at

http://gs2.sp.cs.cmu.edu/art /random /archive/archive 0208/
where you can view or download a high quality color version of the image above.

The IIME Journal wnvites those of you who paint, draw, compose, or otherwise use the other
side of your brains to submit your mathematically inspired compositions.
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SOME PERFECT ORDER SUBSET GROUPS

STEPHANIE LIBERA* AND PAUL TLUCEK*

1. Introduction. We determine whether or not dihedral, quaternion, semi-
dihedral, and quasi-dihedral groups are perfect order subset groups.

DEFINITION 1. Let G be a finite group and let Q" = {g € G | |g| = r}, where |g|
denotes the order of a group element. G is a perfect order subset (POS) group if and
only if || divides |G| for all positive integers v dividing the order of G.

In [1], C. Finch and L. Jones investigate abelian POS groups. At the end of
the paper they query whether there are any non-abelian POS groups other than the
symmetric group Ss;. In this paper, we look at a few examples of finite non-abelian
groups with two generators — dihedral, quaternion, semi-dihedral, and quasi-dihedral
groups - and determine that only the dihedral groups can be POS groups.

We begin with a useful calculation. The result is likely well known, but we provide
the proof here for completeness.

LEMMA 2. Ifn > 1, then o(n) | n if and only if n = 2*3!, where k > 1 and | > 0.

Proof. Suppose ¢(n) | n. We must show that n = 23! where k > 1. Let
n = pi'py’®...p;" be the prime factorization of n , where the p; are prime, r; > 1 for
all 4, and p; < p2 <--- < p;. Then,

(i) (=) - 0= 2

([2], Theorem 2.16), so

Sk R VN £k
«p(n)n( n ) ( Pt )

e e = 1) (o - 1),

We see that p(n) divides n if and only if (py —1)(p2—1) ... (pr —1) divides pypaps .. . 1.

Since pip2...pr is square-free, A — (py — L)(p2 -~ 1)...(pr — 1) must also be
square-free. If ¢ > 3 then A will be divisible by 4, so t < 2.

If p > 2 then p; — 1 is even, and we must have p;ps...p; even too. Since
p1 < p2 < ---<pg, we have a contradiction. Therefore, p; =2 and k > 1.

Finally, if t > 1 then (p2 — 1) | 2p2. Since p2 — 1 and po are relatively prime, we
sce that (p2 — 1) | 2 and p; = 3. Putting all this together shows that if n > 1 and
n | ¢(n), then n is of the form 23!, with & > 1.

Now, we must show that if n = 23! with & > 1 and [ > 0, then ¢(n) | n.

If I = 0, then @(n) — 5 which certainly divides n.

If I > 1, then

w(n) =n(l —1/2)(1 —1/3) = n/3 = 2¥3!/3 = 2*3! 1,

Clearly 2%3! 1 | 2¥3!, as desired. Thus, ¢(n) | n if and only if we have n = 23!,
where & > 1. ]
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2. Dihedral and Quaternion Groups. Whether or not a dihedral group is a
POS group depends on whether or not its subgroup of rotations is POS. Quaternion
groups turn out not to be POS.

DEFINITION 3. A dihedral group of order 2n, where n > 2, is presented by
generators and relations as follows:

D2" = (7.?f ' " (‘,f2 — F,f’]' — lf)

THEOREM 4. Do, is a POS group if and only if n = 3¢, for some | > 1.

Proof. When we consider Dy, as the group of symmetries of a regular n-gon,
the dihedral group splits into n rotations (by 360°k/n for & — 1,2,...,n) and n
reflections. Each reflection has order 2, while the rotations have order dividing n.

If n is even, the only rotation of order 2 is the rotation by 180°. Since every
reflection also has order 2, |Q2| = n 4 1. If n is odd, only the reflections have order 2,
so Q2| = n.

If ¢ # 2, then Q consists of rotations of order i. Since the subgroup of rotations is
cyclic of order n, the order of a rotation +™ is n/ged(m,n), where ged(m,n) denotes
the greatest common divisor of m and n. So the elements in Q" are all rotations of
the form r° such that 0 < s < n and ged(s,n) = n/i. Let n/i = d, then r* € Q* if
and only if ged(s/d,n/d) = 1 and 0 < s < n. The number of such s is p(n/d) = (i),
where ¢ is the Euler p-function. Thus we have || = ¢(i).

Suppose n = 3!, Since n is odd, |Q2| = n which clearly divides 2n. When i # 2
divides n, we must have ¢ = 37 for some 0 < g <. When ¢ > 0, we have by equation
(1), (i) = ¢(37) = 39(2/3) ~ 2-39 1. Clearly (i) divides 2n. When ¢ — 0,47 — 1
and [Q' — 1. We see that Dy, is a POS group when n = 3.

Now suppose Ds, is a POS group. If n is even, then we need [Q2%| — n 41 to
divide 2n. Since n+ 1 is odd and greater than n, this is impossible. Hence Dy, is not
a POS group when n is even.

Now assume n is odd. In particular, we must have |Q"| | 2n and, hence, ¢(n) | 2n.
Since ged(2,n) = 1 and ©(2) = 1, we know @(n) = o(n)p(2) = ¢(2n) [2]. From
Lemma 2 we know ¢(2n) | 2n if and only if 2n - 2F3! with & > 1. Since n is odd we
must have n = 3' for some [ > 1. 0

DEFINITION 5. A quaternion group of order n — 2", m > 3, is presented as
follows:

0 1 m-—2
Qn=(r,y|2®" =e1y? =2 yx=axy.

THEOREM 6. @, is not a POS group.

Proof. We will show that @, is not a POS group by showing |Q!| { n. First, note
there are n/2 clements of the form 'y, where 0 < i < n/2.

CLAIM 7. |2'y| =4 for all0 < i < n/2.

Proof. We can sce that r'yar'y = 2*(2?) ‘yy = y* = 22" . So, the order of 'y
is not two. Clearly, [2'y| # 3 since 3 does not divide n. Finally. note that

gm 2 )2 gm 1

(a'ya'y)? = (x x e.

Thus, |¢'y| = 4 and we have at least n/2 clements of order 4. 0

Now, let j € Z™ and 0 < j < n/2. There is at least onc element of the form ./
with order 4 since |+"/8| = 4. Let k € Z be the number of clements of the form ./
that have order 4. For @, to be a POS group, we must show that (5 + k) | n.
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There are no divisors of n between n/2 and n, so k = 0 or n/2. We know that
k # 0 since Q! is non-empty. So k = n/2, but there are only (n/2) — 1 elements of
the form x’ with 0 < j < n/2, a contradiction, and @, is not a POS group. 0

3. Semi-Dihedral and Quasi-Dihedral Groups.
DEFINITION 8. A semi-dihedral group of order n — 2™, m > 3, is presented as
follows:

w1 5 m -2
SDn = <S~f|32 ;fqtzzf‘t5332 lt)

THEOREM 9. S§D,, is not a POS group.

Proof. We will show that SD, is not a POS group by showing |Q?| { n.

There are n/2 elements of the form s't, where 0 < i < n/2. Furthermore, half of
these elements have ¢ even, and half have ¢ odd. Thus, there are n/4 elements of the
form s't where i is even, and n/4 clements of the form s't where 7 is odd.

CLaIM 10. |s't| = 2 if and only if i is cven.

Proof. Consider (s't)?:

i I T
S'ts't — stt(n i 1)H, Sisz(n/l I)[ — stm/] i g infd-i _ 8171,4.

Since the order of s is n/2, we sce that s7"/4 = ¢ if and only if in/4 = 0 mod n/2.

The latter equivalence is true if and only if ¢ = 0 mod 2. 0
CrLAIM 11, Let 0 < j < n/2. Then |s?| = 2 if and only if j = n/4.
Proof. If j = n/4 then (s7)> = s"/2 = ¢. Now suppose |s/| = 2 for some

0 < j <n/2. Since /s’ = 5%/ — ¢, we know that 2j = 0 mod n/2. This implies j = 0
mod n/4. Since 0 < j < n/2, we sec that there is cxactly one value for j, namely
J — n/4, which satisfies this condition. a

Claimns 10 and 11 imply that |Q%| = n/4 + 1. Since n = 2™, the divisors of n
that are larger than n/4 are only n/2 and n itself. Now n/4 +1 = n does not have
an integer solution, while n/4 + 1 = n/2 implies n = 4. Since n > 8 by assumption,
we have a contradiction. Thus, |Q2| does not divide n, and SD,, is not a POS group.
]

DEFINITION 12. A quasi-dihedral group of order n = 2™, m > 4, is presented as
follows:

1 "

QD, — (a,b|a®" "=, 02 =¢, ba — a®" t1b).

THEOREM 13. @QD,, is not a POS group.

Proof. We will show that QD,, is not a POS group by showing that |Q2| does not
divide n.

To begin, we will show that for 0 < i < n/2, there is only one element of the
form a* with order 2. If [¢’| = 2, then 2i = 0 mod n/2, so i = 0 mod n/4. Since
0 < i< n/2wemust have i = n/4.

Now, we will show that for 0 < j < n/2, there are exactly 2 clements of the form
a’b with order 2. We sce that

Ao’ ajaj(n H-l)bb gl tin lUf = a](-“r ll'

If |a’b| = 2 then j(2 + n/4) = 0 mod n/2. Now n = 2™, so we can say j(2 + 2™ ?)
0 mod 5, which implies j(1 + 2" %) =0 mod 2™ 2.
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Since 1 + 2™ 3 is clearly relatively prime to 2 2 when m > 3, it has a multi-
plicative inverse mod 2™ 2, and we can say that j = 0 mod 2" 2.

We see that j needs to be a multiple of 2™ 2. Since n = 2™, j needs to be a
multiple of n/4, and 0 < j < n/2. Owr possibilities are j = 0 and j = n/4. Thus, the
number of elements of the form a?b with order 2 is 2.

Finally, |Q22| = 3, and we know that 3 does not divide n since n = 2™. Thus,
QD,, is not a POS group. O

4. Remarks. In [1], the authors query whether a POS group G, whose order
is divisible by an odd prime, must have 3 dividing |G|. Our dihedral group example
provides further support for their conjecture.

The four types of groups we studied are examples of metacyclic groups (groups
which have a cyclic normal subgroup and corresponding cyclic quotient group). A
natural follow-up to this paper would be to study the family of all metacyclic groups,
or at least the metacyclic p-groups.

One can use Theorems 1 and 3 of [1] as well as their Proposition 1 and Corollary
1 (which amount to our Lemma 2) to prove that 7, is a POS group if and ouly if n is
of the formn 2¥3!, where k& > 1 and [ > 0. Now the dihedral group Ds,, is isomorphic to
the semi-direct product Z,, x Zs. The fact that Ds,, is a POS group if and only if Z,, is
an odd order POS group suggests that there might be a semi-direct product version of
the “Going-up” and “Going-down” theorems of [1] (Theorems 1 and 3 respectively).
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CONGRUENCES MODULO A PRODUCT OF PRIMES
JEREMY THIBODEAUX*

Abstract. In this paper, congruences of the form a@ a(mod m) are investigated. Where a is
a natural number, @Q is prime, and m is a product of distinct primes, including Q. The result is a
slight generalization of Fermat’s Little Theorem.

It can be shown with little effort, by use of Fermat’s Little Theorem, that the
congruence a’ = a(mod 42) holds for all natural numbers a. Note that 42 is a product
of distinct primes, namely 2, 3, and 7. The same is also true for a7 = a(mod 1295).
So one natwrally asks what Q and m will allow the congruence a? = a(mod m) to
hold for all natural numbers. Before this question is answered, the case a” = a(mod
42) will be shown as an example.

EXAMPLE: a” = a(mod 42) for all a € N.

Proof. If it can be shown that a” ~ a(mod 2), a” = a(mod 3) and a” = a(mod
7), then we have the result that a” — a(mod 42). By Fermat’s Little Theorem,

a® = a(mod 2)

multiplying by a we have,

again multiplying by a,
a'=a’=ua
therefore,
7 2

a' = a® = a(mod 2).

Also by Fermat’s Little Theorem,

squaring both sides we get,

multiplying by a,
af g = a(mod 3).
And of course,

a’ = a(mod 7).

So what we have found is that 2 | (a” — a), 3 (a” —a), and 7| (a” - a). Since 2,
3 and 7 arc all prime, 2-3-7 | (a” —a), or 42 | (a” — a) and hence a7 = a(mod 42) for
alleeN. O

*University of Louisiana at Lafayctte
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The following lemina will be helpful in proving the general result.

LEMMA 1. Let n be a natural number and p be a prime. Then a™ = a(mod p)
for all a € N if and only if (p — 1) | (n — 1).

Proof. Assume (p — 1) | (n — 1) . Then,

n—1

;I.‘
p 1

for some k € N. Equivalently, n — k(p — 1) = 1.

By Fermat’s Little Theorem we have a” = a(mod p) for all @ € N. Note that
the difference in the exponents of a is p — 1 and that this relationship is clearly
preserved for any muiltiplication of the form a’ where j is a natural number. So for
any natural number m with m > p, we have a™ = a™ Y (mod p). This process can
be continued until we reach ¢ where & is a natural number such that 1 < o < p — 1.
Therefore, we have

a® = a" (p—1) = a" 2(p-1) =...=qg" kip 1) a.

The contrapositive method is used for the converse. Assume (p — 1)t (n — 1).
Then by the division algorithm, n - k(p—1) = 2 +1 for some k& € N and some natural
number x such that 1 < x < p 1. Therefore we have,

no_ on (p—1) n—2(p—1) — n-kip 1) a4l

a -a LR/ a

Since 2 + 1 < p, it is not true in general that a**!

= a(mod p). Thus
a™ = a(mod p) does not hold for some @ € N. Therefore if " = a(mmod p) for all
a€ Nthen (p—1)|(n—1). o

THEOREM 2. Let § = {1,2,3,...,n}. Let m = q1q2q3- - q,Q , where each q; is
a distinct prime and @ is a prime larger than each q;. Then
a® = a(mod m) for alla € N if and only if (g — 1) | (Q — 1) for alli € S.

Proof. Assume (q; — 1) | (@ ~ 1) for all i € S. Then by the lemma, a® = a(mod
gi) for each i € S and a® = a(mod Q) . Thus for cach i € S we have that ¢; | (a? —a)
and Q | (a? —a). Since each ¢; and Q are prime, we have that m | (a¥ —a). Therefore
a® = a(mod m) for all a € N.

Now assume that for some r € S, (¢ — 1) { (@ 1). Then by the lemma,
a® = a(mod ¢,.) does not hold for some a € N. Therefore a® = a(mod m) does not
hold for some a € N. Thus if a? = a(mod m) for all a € N then (g; — 1) | (Q — 1) for
allie S. o

Now if we define an arithmetic function P(n) to be the product of all primes p
less than or equal to n such that (p — 1) | (n — 1), then we can casily conclude that if
Q is a prime then a® = a(mod P(Q)) for all a € N.
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Thas department welcomes problems believed to be new and at a level appropriate for the readers
of this journal. Old problems displaying novel and elegant methods of solution are also inwited.
Proposals should be accompanied by solutions if available and by any information that will assist
the editor. An asterisk (*) preceding a problem number indicates that the proposer did not submit a
solution.

All correspondence should be addressed to Michacl McConnell, 840 Wood Street, Mathematics
Department, Clarion Universily, Clarion, PA 16214, or sent by email to mmeconnell@clarion.edu.
Electronic submassions using BTEX are encouraged. Please submit each proposal and solution prefer-
ably typed or clearly written on a separate sheet (one side only) properly identified with name, affil-

1atzon, and address. Solutions to problems in this 1ssue should be mailed to arrve by | May 1, 200/

Solutions wdentified as by students are given preference.
Problems for Solution.

1062. Proposed by M. Khoshnevisan, Gold Coast, Queensland, Australia

A Generalized Smarandache Palindrome (GSP) is a concatenated number of the
form: ajas---apa, - --aza; or a1as -+ -y 10pQA, 1 - -agay, where all ay, ag, .. .a, are
positive integers of various numbers of digits. Find the number of GSP of four digits
that are not palindromic numbers.

1063. Proposed by Monte J. Zerger, Adams State College, Alamosa, CO.
Find all triples of consecutive integers (a,b,c) such that

a:i + b3 4 63
abe
is integral.
1064. Proposed by Karl David, Milwaukee School of Engineering, Milwaukee, W1
Consider numbers formed by concatenating two or more successive powers of 2

[for example, 816 or 248163264]. Show that no such nunber is itself a power of 2.
That is, show that for n > 0 and & > 1,

DAL . DI L O™ for any L

1065. Proposed by José Luis Diaz-Barrero, Universitat Politécnica de Catalunya,
Barcelona, Spain
For any triangle A ABC, prove that

sin? A+sin®> B sin® B +sin?C , sin? C + sin® A - 33
sinC sin A sin B
and determine when equality holds.

1066. Proposed by Joe Howard, Portales, NM
Let a, b, ¢ be sides of a triangle. Show that

r S
b+e ‘ be atb+ec
/ where s = ————.

@ V (s = b)(s —¢) 2

For which triangles does cquality hold?
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1067. Proposed by Ayoub B. Ayoub, Penn State Abington, Abington, PA
Suppose p is an odd prime number. Show that
(o )
g
r=0
is divisible by p if n is even and not divisible by p if n is odd.

1068. Proposed by William Chau, SoftTechies Corp., East Brunswick, N.J

On pp. 35-39 of On Prime Numbers and Perfect Numbers, Scripta Math, Vol.
19, 1953, Jacques Touchard proved that any odd perfect number must be of the form
12k + 1 or 36k + 9. If an odd perfect number is of the form 36k + 9, prove that it can
be further reduced to the form 108k + 9, 108k + 45, or 324k + 81.

1069. Proposed by Monte J. Zerger, Adams State College, Alamosa, CO.
Show that 17 - 21 + 31 — 444 ... 4 (~1)**n? = (—1)"T;, where T,, is a triangular
number.

1070. Proposed by Ovidiu Furdui, Western Michigan University, Kalamazoo, MI
Determine the convergence of the series

Corrections. In the Spring 2003 issue, problem 1054 should read as:
Let a;,ao,...,a, be integers such that 0 < a; <as <...<a,. If

a, —a; —1 . a,—aj+1
max4§ ———— <mmg-————
k>j k—j k>j k—j

then there exists m and b such that a; = [[mi + b|| for all i.
Solutions.

1043. [Fall 2002 Proposed by Peter A. Lindstrom, Batavia, NY.

The year 2002 is a four digit base ten palindrome as was the year 1991. (a.) Can
1991 be rewritten in a different base as a palindrome with four digits? (b.) Can 2002
be rewritten in a different base as a palindrome with four digits?

Solution by William H. Peirce, Rangeley, ME

Let N > 0 be a base-ten palindrome which is expressed as a four-digit palindrome
ryyx in a base b # 10. 2z and y must satisfy 0 < &,y < (b — 1) except that @ and y
cannot both be zero. N = ab® +yb® +yb+a = (b+ D){(¥* — b + 1)z + by} shows
that the only allowable bases b, finite in number, are those for which b+ 1 divides N.
Henceforth b will be such a base.

By inspection, x is the unique remainder 0 < o < (b — 1) obtained when N =
xb® + yb* + yb + 2 is divided by b, and the integer y is then found from

[N — (b3 + 1))

ys 02 +b)

With z and y so determined, N, = zyyz is an arithmetic palindrome in base b, but
N, may or may not be a valid palindrome since y may or may not be in the range
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0<y<(b-1). Let N = 1991. The divisors of 1991 arc 1,11,181,1991 and the
choices of b, excluding 0 and 10, are 180 and 1990. For b = 180,2 — 11,y = —1969,
and 1991;g0 = 11, —1969, 1969, 11. For b = 1990,z — 1,y = —1989, and 19911999 =
1, -1989, 1989, 1. Both palindromes are arithmetically correct, but ncither is valid
since y in each is not in the proper ranger, 0 < y < (b — 1). Therefore, 1991 cannot
be written as a valid palindrome in a base b # 10. Let N = 2002. The divisors of
2002 are

1,2,7,11,13, 14, 22,26, 77,91, 143, 154, 182, 286, 1001, 2002

and the choices for b, excluding 0 and 10, are 1,6,12,13,21,..., 2001. 2002,
0,1001,1001,0 and 20026 = 4,27,27,4 arc arithmetically correct palindromes but
not valid since y in cach is greater that b — 1. 20022, 200251, 200235, . . ., 2002201 are
not valid palindromes since y in cach is negative. Therefore, N3 = 0,11, 11,0 is the
only valid palindrome for 2002 in a base other than 10.

Also solved by The Cal Poly Pomona Problem Solving Group, Pomona CA, William
Chau, East Brunswick, NJ, Richard I. Hess, Rancho Palos Verdes, CA, David E. Manes,
SUNY College at Onconta, Oneonta, NY Yoshinobu Murayoshi Okinawa, Japan, Mike Pinter,
Belmont University, Nashville, TN, Rex H. Wu, Brooklyn, NY, and the Proposer.

1044. [Fall 2002] Proposed by Thomas J. Pfaff, University of Wisconsin-Superior,
Superior, WL

Evaluate

n—1

. n 1
lim — 5 —
no-x Inn e~ ni — i

Solution by Justin Couchman, Mike Davis, and Whitney Kaczor, SUNY
Fredonia, Fredonia, NY.
Using partial fractions,

Thus we have

Since

-~

n1

11 11 11 11 11

i — _ . il TR . N O ua— e 2
;(i n > (1+71 1)+<2+n 2) +<n 2+2) (71 1*1) 2.

we obtain

n—1

n—1
. n 1 . 2 1
lim — E = lim — E -.
n—x Inn “ni—i n—x Inn i

i i=1

Notice

n-1 n
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and therefore

Taking limits gives

i
Inn 1 —1 In-1)+1
lim — < — E = < ( )
n—ooIlnn — Inn ~ i Inn
By the sandwich theorem,
1
1 €=1
lim — - =1.
n-x Inn 12-; 7

Thus,

n-1

n1

. n 1 . 1

lim — E —— =2 lim — _ =2,

n—x Inn ~oni—i n—oc Inn 4 x
1

Also solved by The Cal Poly Pomona Problem Solving Group, Pomona CA, William

Chau, East Brunswick, N.J, José Luis Dfaz—Barrero, Universitat Politecnica de Catalunya, Barcelona,

Spain, Richard I. Hess, Rancho Palos Verdes, CA, Joe Howard, Portales, NM, David E. Manes,
SUNY College at Oneonta, Oneonta, NY Mike Pinter, Belmont University, Nashville, TN, Rex
H. Wu, Brooklyn, NY, and the Proposer.

1045. [Fall 2002] Proposed by Mohammad K. Azarian, Unversity of Evansville,
Evansville, IN.

Suppose that G is an abelian group with 2n clements, where n is odd. Without
using Sylow Theorems, show that G has exactly one subgroup of order 2.

Solution by Cal Poly Pomona Problem Solving Group, Cal Poly Pomona

Let G be an abelian group with 2n elements, where n is odd. So G has an even
number of elements. Since G is a group, there exists a unique identity e in G, hence
G has an odd number of non-identity elements. We know that for every z in G there
exists a unique » ! in G such that 2.z ! = e. So every clement in G can be “paired”
up with its unique inverse. Since we know that G has an odd number of non-identity
elements, there exists at lcast one element in G, say a, which is its own inverse.
Moreover, this element along with the identity make a subgroup of G, say K.

To show that there only exists one subgroup of order two, assume by contradiction
that there are at least two. So let K = {e,a} and K’ = {¢, b}, where a # b. If this is
the case, we can construct the subgroup M = {e¢,a,b, ab}, where M < G. We know
that |G| = 2n, where n is odd and |M| = 4. Since M < G, |M| divides |G|, which is
a contradiction since 4 doesn’t divide 2n when 7 is odd. Therefore there is only one
subgroup K of G where K| = 2.

Also solved by David E. Manes, SUNY College at Oneonta, Oneonta NY Rex H. Wu,
Brooklyn, NY and the Proposer.

1046. [Fall 2002] Proposed by Paul S. Bruckman, Sacramento, CA.
Let Sy = {z1,22,...,2,}, where the .rjs are positive and not necesarily distinct. Let
Sk denote the set consisting of all Cy possible products of the form xj, 2, x;,
where the ji.s are distinct, k = 1,2,...,n. If G represents the geometric mean of
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the elements of Sy, prove that G, = (Gl)k. Solution by Kathleen E. Lewis, SUNY
Oswego, Oswego NY

First we note each element r;, appears in (z } ) of the products, as it will appear
with every possible k — 1-subset of the other elements. Since the geometric mean Gy
is the ('kf)’th root of the product of these subproducts, cach a;, will be raised to the
power (3 1)/(}). This simplifies to

(n —1)! Flin— k) k

k—1)ln-k)!  nl n’

Thus G, = (122 - --2,)*/™. By substituting 1 for k, we sce that Gy = (2,02 - g

so Gx = (G1)¥, as required.
Also solved by William Chau, East Brunswick, NJ, William H. Peirce, Rangecley Maine
and the Proposer.

1047. [Fall 2002] Proposed by Mohammad K. Azarian. Unversity of Evansville,
Evansuville, IN.
Show that

]

2 2 2 > 8

secZa + csca +sec® acsca >

for 0 < a < w/2. Determine when equality holds.
Solution by The Cal Poly Pomona Problem Solving Group, Pomona, CA
Consider the right triangle with sides a,b, ¢ where ¢ is the hypotenuse and « is
the angle opposite a. Then we can rewrite the inequality as

2 (;2 (;2 (.2 -
T

21
(v

Combining terms we get

a? + 0% 4+ &2 9

202 > 8.
Using the Pythagorean Theorem, we arrive at
1
c
o 2t

Now we take the square root of both sides obtaining

2

— >2&8 2 >2ab e d®+b% > 2ab e (a-b)?2>0.
ab

Clearly this last inequality holds. Strict equality occurs when a = b. That is, when

a = 7/4.

Also solved by William Chau, East Brunswick, NJ, Kelly Chen, 9th grade student, Wayne
Hills H.S., Wayne, NJJ, Paul Dawkins, student, Angelo State University. San Angelo, TX, José Luis
Diaz-Barrero, Universitat Politecnica de Catalunya, Barcelona, Spain, Richard 1. Hess, Rancho
Palos Verdes, CA, Joe Howard, Portales, NN, Kathleen E. Lewis, SUNY Oswego, Oswego, NY,
Peter A. Lindstrom,Batavia, NY, David E. Manes, SUNY College at Onconta, Oneonta, NY,
N.R. Nandakumar, Declaware State University. Dover, DE, Mike Pinter, Belmont University,
Nashville, TN, Dale Wilger, Jennifer Wystup, Katie O’Hara, SUNY Fredonia, Fredonia, NY,
Rex H. Wu, Brooklyn, NY, and the Proposer.
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1048. [Fall 2002] Proposed by Peter A. Lindstrom, Batavia, NY.
Without using the Fundamental Theorem of Calculus, give a geometric argument to

show that
.1
2 T
— dt = —.
,/0 t2+1 2

1. Solution by Peter A. Lindstrom, Batavia, NY.
With the definite integral taken over [0,1] and the result being § possibly suggests
a unit circle is involved in some way or manner. Consider the set of parametric
equations
2 -1 2t

£ 21 and y = o

Eliminating the parameter ¢, we see that

' 212 41 + 442
(12 +1)2

s o J2—1

2t
4y (1’2'1

2+1

2 3
) 1 ( ) o =1,

so that this set of parametric equations represents a unit circle centered at the origin
and for t € [0, 1], this represeuts that circle in the second quadrant. Since the area of
the portion of the circle is not 7, let’s consider the arc length in the second quadrant
which is 5. Using the arc length formula for a curve given in parametric form, we

obtain
d 12 2 d, 2t \* Tr
Sy at, which = —.
/\/df f2+1 +{df(z‘2+1)} » WIS =2

Simplifying, we obtain

VR ED YA
./0 \/{u—zi)z 2+{%}2 %
,

4(t% +1)?
(2 +1)! t2+1

I1. Solution by Mike Printer, Belmont Univeristy, Nashville, TN.
Make the substitution + = tan @, dt = sec?6 df, to obtain

1 arctanl x
2 1 . :
B At =2 —s——sec’§ df = 2 1d6

Jo 41 arctano tan© @+ 1 Jo

This last integral is equal to twice the arca under + = 1 from 6 — 0 to 8 = 7w /4. This
equals twice the area of a 1 by 7 /4 rectangle which is 7/2.
1049. [Fall 2002] Andrew Cusumano, Great Neck, NY. A Fibonacci-type se-

quence is defined by the rules Fy = A, F, = B and F,42 — F, + Fy,4; for n > 1,
where A and B are constants. Show that for each n > 1,

-F;?+F3¢1+FH2 F1M2[2Fn+2Fn+l+FnFn+l]-
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Editors’ note: We incorrectly typed the problem, as shown below.

Solution by Kelly Chen, student, Wayne Hills High School, Wayne NJ

This is a wrong equation, here is a counter-example: Let Fy = 1, Fy — 2, then
F3; — 3. Substitute into the cquation, we get that the left hand side is 36 while the
right hand side is 24, therefore the equality does not hold in general.

Since I believe there is a typo in the journal, I tried to think about what a correct
problem would be. There is a high likelihood that the correct equation is the following
one

Modification of the problem: F3+F3 +F3 , — F, .2[2F°+9F,I+I+F,,F,,+1]

Proof: Using F3 + F3, | +3F2 | F, +3F, 1\ F2 = [F,, + Fa1]® = F3,,, we get

Fo2[2F2 + 2F2 |+ FyFoyp1] = [Fo + Fun)[2F2+ 2F2 | + FF, 1]
2F3 4 2F3 | +3F2 |F, + 3F,F2
Fd.l_FnH +[F11+Fn+l]
F3+F3  +F3,,. a

Also solved by Scott H. Brown, Auburn University, Montgomery AL, William Chau, Soft
Techies Corp., East Brunswick, N.J, Richard Hess, Rancho Palos Verdes, CA, David E. Manes,
SUNY College at Onconta, Onconta NY, Mike Pinter, Belmont University, Nashville TN, Rex H.
Wu, Brooklyn, NY and the Proposer.

1050. [Fall 2002] Ronald Kopas, Clarion University, Clarion, PA.

A lottery uses 31 balls, numbered 1 through 31. Six of these balls are selected
in the drawing, so cach lottery ticket contains six numbers from 1 through 31. Show
that it is possible to buy exactly 31 tickets so that cach pair of numbers appears on
cxactly one of the tickets.

Solution by The Skidmore College Problem Group, Saratoga Springs. NY

Organize the 31 numbers as follows: ng,ny,...,n5,171.1,11,2,...,n55. Now let
ticket Ty = {no,...,ns}. For j — 1,...,5, let ticket To; = {no} U {nji41 i

.,4}. Now, for j, k = 1,...5, define ticket Ty ; = {ne} U {nip1,j4ki 11 =0,...,4},
where m = m  (mod 5),m € {1,...,5}. Notice that this defines 31 tickets, cach
containing (5) = 15 different pairs of numbers. Since there are (%) = 495 = 31 x 15
different possible pairs ainong the 31 numbers, it will suffice to show that no two of
our tickets can have more than one number in common.

PROPOSITION 1. No two tickets have more than one number in common.

Proof. First, note that by design, Ty shares exactly one number with every other
ticket. So suppose To;, M Tp ;. 2 {no,n,s} for some 7, s. Then n,, € Tp ;, implies
r = j1 and n,., € Tp;, implies 7 — ja. Therefore, j, = jo. Next, supposc that
To,;, N Tk jy 2 {nrs,mu}. As above, r = j; and t — j, gives r = t. But now
ney € Ty j, and n,,, € Ty j, gives s = u. Finally, suppose that Ty, ;, N Tk, j, 2
{nrs,miu}. Then r =iy + 1 for some iy = 0,...4. So s = ji +kiiy = jo + koiy.
If t is + 1 for some i 0,...4, then uw = j; + kyig = ja + koia. These give
J1 —Jg2 = iy1(koa — ky) = ia(ka - k). So ecither iy = iz or k) = k2. In either case we
get r— tand s = u. a

Also solved by Paul Dawkins, student, Angelo State University, San Angelo, TX, Richard
1. Hess, Rancho Palos Verdes, CA, Kathleen E. Lewis, SUNY Oswego, Oswego, NY, David E.
Manes, SUNY College at Onconta, Oneonta, NY, Mike Pinter, Belmont University, Nashville,
TN, Rex H. Wu, Brooklyn, NY, and the Proposer.
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1051. [Fall 2002] Monte J. Zerger, Adams State College, Alamosa, CO.

The two squares in the figure below are congruent. In the figure on the left, the
octagon is formed by joining the bisection points of the sides of the square to vertices
as shown. In the second figure on the right, the trisection points of the sides are used
instead.

1. Show that the octagons are similar, equilateral, but not equiangular.
2. Find the ralt;jo of their areas. .

(-1,1) 3 (1,1) (1LY B (11

S Q7 Q1
P7 Pl

o

Po

2

S\ P "

(1¢1) (1,1) (1-1)

15 -1.5%

Solution by William Peirce, Rangeley, ME

Without loss of generality, let the square in which each octagon is placed have
corners (1,1), (1,-1), (-1,-1), (-1,1) and let A = (a,1) and B = (b,1), -1 <a < b <1,
be two points on the top side of the square. These two points define the (convex)
octagons. In this problem, a = 0 and b = 1/3. The octagon vertices and other points
are marked on the problem statement.

By routine analytic geometry using @ = 0 and b = 3, we have P, — (3,3),
P, = (3,0), Pr=(3,-3), P = (0,-3), P = P, etc, and @, — (3,3), Q2 =
(2,0), Qs = (3,-3), Q1 = (0, -2), @s = —Q1, etc. Each side of the left octagon in
v/5/6 units long and side of the right octagon is \/5/18 wnits long, so each octagon
is equilateral.

The segments Py Ps and Pa Py are 2/3 and \/ﬂé units long, respectively, so the
interior angles at P> and P are not cqual, and the left octagon is not equiangular.
Likewise, the segments Q;Q3 and Q2Q; are 1 and \/8_/5 units long, respectively, so
that the interior angles at 2 and @3 are not equal and the right octagon is not
cquiangular.

Now consider triangle Py P, P3, whose sides squared are (55, 3, ) = (5,16,5)/36,

ad triangle Q2Q3Q; whose sides squared are (35,3, %) — (5,16,5)/18. These tri-
angles with their sides squared are similar as are these triangles without their sides
squared. Thus ZPs = ZQ3. Similarly, ZP; = ZQ>. Since the alternate angles of the
two octagons are equal, the octagons are similar.

The area ratio of two similar polygons is equal to the ratio of the squares of
corresponding sides, in this case i;’% = %, larger octagon to smaller.

For general @ and b in the range —1 < a < b < 1, the two octagons are equilateral
but not equiangular. they are similar if and only is (3 — a)(3 — b) = 8, which includes

the case @ — 0 and b = 1/3. The area ratio for similar polygons is

2(1-a)®  (1+0b)°
(1+a)?  2(1-0)2
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larger octagon to smaller.
Also solved by Richard Hess, Rancho Palos Verdes, CA, Gus Mavrigian, Youngstown OH,
Rex H. Wu, Brooklyn, NY and the Proposer.

Polyhedral Maze contributed by Prof. Izidor Hafner from the University of Ljubl-
jana (izidor.hafnerafe.uni-lj.si).
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Whom Isabelle could not disturb

Sustained winds near 140 mph, large ocean swells and dangerous swif disrupted
mail service, caused power outages, frightened people, and damaged property but
could not stop our referces from doing their valuable duty. After all, as one of them
put it, in times of great distress, matheiatics, as it occupies the mind and does not
require clectricity, reveals strengthening and soothing qualities.

Photo courtesy of NOAA

Edward Aboufadel.
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