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THE CURVATURE IN A FAMILY OF NESTED CONICS 

AYOUB B. AYOUB* 

The topics of conic sections and curvature are usually taught independently from 
each other. Here we will make a connection between them. 

We will consider a family of conics, where all of them have the same vertex A and 
the same focus F as depicted in Figure 1. This figure suggests that the curvature of 
the conics at the vertex A decrea.c;cs when going from the ellip::;e to the parabola to 
the hyperbola. In this article, we will prove that this is indeed the case. Then we will 
show why this family of conics is considered nested. 

A 

Fie:. 1. 

1. The Conics Family's Equation. In order to calculate the curvature, we 
need to derive the equation of the family of conics. Let A be the origin, the line 
through A ancl F be the .r-axis, and the perpendicular to AF at A be the y-axis. Also 
let the directrix corresponding to the focus F meet the :r-axis at E. If P is a point 
on the conic, let its orthogonal projection on the directrix be D, see Figure 2. 

• y 

X 

FIG. 2. 

If we denote the eccentricity of the conic by , then by the definition of the 
eccentricity, = PF/ PD. Since A is also a point of the conic, then P =- AFjAE. If 

• Pennsylvania State University 



462 AYOUB B. AYOUB 

AF = p, then AE pj P and consequently the equation of the directrix is .r = pj P . 

Now, let P be (.r , y ), then PD = .c pje . Since PF = ePD, and F i::; (p, O), then 
(.r - 11 )2 y2 P( .r pj P ). 

After squaring and simplifying, we get: 

•) 2 2 
.IF = (e - 1).r + 2p(r 1).r (1 ) 

This is the equation of the family of conics, where P is playing the role of a parameter 
while p is fixed. 

2. The Curvature. The curvature at a point on a curve can be thought of as 
a measure of the rate of deviation of the curve from its tangent at that point. The 
greater t he cnrvatnrc, the sharper the cnrve will be bending away from the tangent. 

If the equation of the cnrvc is y = f(.r), then the cnrvatnrc 1\ (.r, y) at the point 
( .r, y) can be shown to be: 

lu"l I\ ( .r , y) = ----'-'----'--::-" 
(y' )2) 'J (1 

To usc this formula for calculat ing the cnrvatnrc of the conic .1/ = ( e2 
- 1 ).r2 + 

2p( P 1 ).r at the origin. we need to know the value of the derivative there. Since 
the conic has a vertical tangent at the origin, then y' is undefined. To overcome 
this hnrdlc, we rotate the axe::; 90° and the equation of the conic become::; .r2 = 
(P2 - 1):tP + 2p(e+ 1)y. If we differentiate it twice, we get 2.r = 2( 2 - 1)yy' + 2p(e+1)y' 
and 2 = 2(c2 - 1)(yy" + (y') 2

) + 2p(P + 1)y". At (0, 0), the first equation givPs y' = 0 
then the second equation gives y" = 1/ (p(P + 1)) . Substituting the values of y' and 
y" in the above curvature formula, we get 

J\(0,0) = ( 
1 

) [JP + 1 

3. Conclusion. The relation J\(0, 0) = 1/ (p(c + 1)) implies that the curvature 
J\(0, 0) decreases as the eccentricity f' increases. Since P < 1, 1, or P 1 according 
to whether the conic i::; au ellip::;c, a parabola, or a hyperbola resp0ctiwly, sec [1j, then 
the cnrvatnrc at the vertex A decreases ::;tartiug with the ellipses who::;e e < 1, followed 
by the parabola whose P = 1 and finally the hyperbolas whose e 1. The following 
table displays the ccccntricitic::; and cnrvaturcs of some of the::;c couics; 

I e I Equation of Conic I K (O 0) I 
' 

1 (:t; - 2p)2 + Jf_ = 1 2 
- -
2 4p2 3p2 3p 
3 (:I: - 4p)2 + Jf_ = 1 4 
- -
4 16p2 7p2 7p 

1 y2 =- 4p.r 
1 

-
2p 

3 (:t; + 2p)2 :tl 2 
- - - = 1 -
2 4p2 5p2 5p 

2 
(:t: + p)2 :tl 1 

p2 - - = 1 -
3p2 3p 
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There are two limiting ca::;e::; for thi::> family of conics. T he first , when e 0, the 
ellipse become::; a circle of radiu::; p whose curvature i::; 1/ p. T he ::~econd, when e oo , 
the hyperbola degenerate::; to a double line .r2 = 0 along t he y-axis. Of course, t he 
curvature in this case i::; zero. 

Figure 3 depicts the conic::; given in the table when p = 1. Also included in the 
figure, the two limiting cases . 

-8 

FIG . :~ . T lw c'/.n ·lpd ualues '/:TI.rltcal r the rcr·r.11lnnt.y. 

To justify th descript ion of this family as nested, we consider two of its members 
whose equations arc: 

and 

:t/ (P~ 1).r2 + 2p(e2 + 1).r . 

If we subtract one from the other and simplify the difference, we get ( e1 +e2 ).r2 + 2p.r 
0, the roots of which arc .r 0 and .r 2p/(P 1 + e2 ) . Siucc the corresponding y 
coordinates ar • y 0 andy ±2ip J (1 + e1 )(1 + e2 ) / (e1 + e2 ) , then the conics of 
the family havP only the point (0. 0) in common and that is where they touch each 
other. 
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Can you place the numbers from 1 to 36 in the circles so that the smns along any 
of the 9 large arcs of the star arc the same1? 

While you arc contemplating the beauty of this star, yon can compare it to the 
beauty of the Ill\'lE key pins and tee shirts, available as stocking stuffcrs. Check out 
http://www.pme-math.org/membership/merchandise.html 

1The answer and more is to he found in the next issue! 

·' 
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THE STRONG SHADOWING PROPERTY ON THE UNIT 
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WHEN DO ORBITS STAY CLOSE TO THEIR SLOPPY COUSINS? 

JOSEPH H. BROWN , Tll\IOTHY .J. PENNINGS*, AND .JAMES 0. WARREN t 

Abstract. We study the dynamics of continuous maps on the unit interval. We determine 
necessary and sufficient conditions so that all pseudo-orbits can be approximated by orbits with the 
same initial point. 

1. Introduction. When a calculator or computer is used to generate a sequence 
of numbers by iterating a function, how close is the computer-generated sequence 
to the intended one? Such a situation occurs, for example, whenever the Newton­
Raphson Method is used to find roots of equations. The area of mathematics which 
deals with this question is called dynamical systems. It includes terms such as orbit 

the true sequence of points generated by iterating a function, pseudo-orbit the 
sequence of points generated by the computer as it attempts to form an orbit, and 
shadowing ]JTO]Jerfy the property that every pseudo-orbit stays close to an actual 
orbit. In this paper we find necessary and sufficient conditions for the shadowing 
property to hold for continuous functions on the unit interval in the special case 
when the orbit and the pseudo-orbit begin at the same point which is often the case 
in practice. The general argument makes nice use of some standard undergraduate 
analysis ideas such as compactness, uniform continuity and uniform convergence. 

In particular consider the functions 

g(.r) x + _!_ I sin(2rr.r) l, 
47r 
1 . 

h(:r) :r + 
4

7r sm(2rrx), and 

3 1 1 
k(:r) = 4x + B + 

4
7r sin(2rr.T) 

which arc graphed in Figure 1 below. We will presently show that these functions all 
have distinct dynamics with regard to the shadowing property. 

!I !I !I 

0 0 
.r 

FIG . 1. Gm phs of g, h, and k n !spect.ively 

Let's begin by making the question precise. We start with any metric space -
such as the unit interval with the distance between two points, .r and y, given by 

• Hope College 
t Stanford University 
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d(:r, y) = 1-r - yf. For a metric space X, and a function f :X --+ X, (X, J, f'll ) iH a 
dynamical system. where N = {0, 1, 2, ... }. For :r X, the sequence {!" (.r)}~=o is 
called the orbit of .r, where _rD(.r) = :rand f" is then-fold composition of f. In other 
words, each output of .f is fed back into the function to obtain the next point of the 
sequence. Orbits arc easily pictured graphically by using the cobweb technique. Using 
the graph of g above, Wf' find the orbit of .r0 by altcnmtcly drawing a line vertically 
to the graph off which gives the next point of the sequence, and then horizontally to 
the line y = .r which in effect positions the point to be fed back into the function. Sec 
Figure 2 for an orbit of g(.r) .r + -/rr I sin(27r.c) f. Notice that this dynamical system 

1 

0.8 

0.6 

!I 
0.4 

0.2 

0 ,,. 

FIG. 2. Gmph of .11 and orb1l 

has three fixed points - i.e., points where f(.r) = .r. 
Computers simplify the task of calculat ing orbits, but round-off error will create 

a '·sloppy orbit" called a pseudo-orbit. A pseudo-orbit may or may not stay close to 
an actual orbit. If every pseudo-orbit of (X, J, N) stays close to an actual orbit, f is 
said to have the shadowing property. 

To be precise, for 8 > 0, a 8-psFudo-oTirit of (X, J, N) is defined as a sequence 
{.r,}~-O such that d(.rn +I,f(.r ,.) ) :S 8 for all 'II E F\1 . Furthermore, a dynamical 
system (X, f, N) has the shadowing property if for E > 0, there exists 8 > 0 such that 
given a 8-pscudo-orbit {.r,} ;;"- 0 , there exists .r E X where cl(.r,,f"(.r)) < c for all 
n N . 

Notice that this follows the format of a typical E- 8 definition. That is, first an 
E is given which sets the tolerance - i.e., how far things can be apart. Once that is 
given, a £5 is determined which keeps the required points within E of each other. So 
a dynamical system has the shadowing property if given any E 0, there is a small 
enough J 0, so that every 8-pscudo-orbi t will be followed E closely by an actual 
orbit. A £5-pscudo-orbit being c-shadowed by an actual orbit is shown in Figur 3 
where e: is the radius of the large circles and 8 is the radius of the small circles - all of 
which arc centered at the points of the pseudo-orbit. 

FIG . 3. Dwgmm of m·bi l being e -sharlowed by a 8 -ps r.w lo-or·bil 

·' 
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It may be the case that an actual orbit must start at a different point than a given 
pseudo-orbit in order to shadow it. Consider a psPudo-orbit in g above which begins 
at (0, 0). Although g(O) = 0, because of the sloppiness of the pseudo-orbit, the next 
term may be a positive number. From there the pseudo-orbit can climb away from 
(0, 0). An orbit starting at (0, 0) on the other hand, has no choice but to stay at (0, 0) 
forever. Thus the only way to shadow such a pseudo-orbit is for the orbit to start at a 
positive value. Necessary and sufficient conditions for any non-decreasing continuous 
function on [0, 1] to have the shadowing property are given in [6]. Essentially, each 
open interval around each fixed point between 0 and 1 must contain points where the 
graph of the function is both above and below the line y = x. 

Applying this result, the function g above does not satisfy the shadowing property, 
while the function h. does. Imagine how a pseudo-orbit of g might climb up to the 
point (1 /2, 1/ 2) and then leap over the fixed point and continue up to (1, 1), while the 
actual orbit would be trapped at (1 / 2, 1/ 2). Can you see why h, on the other hand, 
does have the shadowing property? 

Even though a dynamical system may satisfy the shadowing property, sometimes 
a stronger condition is desired. Since a pseudo-orbit is typically generated when trying 
to generate an orbit, one may be interested in determining whether the pseudo-orbit 
will be t:-shadowed by an orbit begi.nning at the sarne point. This leads us to make 
the definition: (X, J, ) has the strong shadowing property if for E > 0, there exists 
8 0 such that for any £5-pscudo-orbit { 3' 71 } n =O' d(x,, f" (.co )) < E for all n N. The 
purpose of this paper is to characterize all continuous functions on [0, 1] which have 
the strong shadowing property. 

Given a continuous function f: [0, 1] [0, 1], let gr(f ) denote the graph of f 
and gr- 1 (f) denote the reflection of gr(J) about the diagonal y = x. Also, f has a 
k- cycle ( 1.· 2: 2) if there exists a set of 1.~ distinct points, { .c0 , 1· 1, ... , x k _I}, such that 
f(.rJ) = ·''J +1 (mod k)' We show that the following three conditions arc equivalent: 

1. f has the strong shadowing property 
2. f has no cycles and only one fixed point 
3. gr(f) and gr- 1 (f) have exactly one point in common. 

The equivalence of (2) and (3) is easily seen. If gr(f) and gr- 1 (f) have more than 
one point in common, then either .f has a 2-cycle or .f has more than one fixed point. 
Conversely, if gr(f) and gr 1 (f) have exactly one point in common, f cannot have 
any 2-cycles. The Sarkovskii ordering of cycles then guarantees that f has no cycles 
3]. Furthermore, any fixed point of f will be in the intersection of gr(J) and gc 1 (f), 

so f has only one fixed point. 

2. Preliminaries. Throughout this paper "C" denotes strict containment and 
all intervals arc intersected with [0, 1]. 

We begin with three lemmas first proved by Sarkovskii [7]. Drawing diagrams 
helps considerably in working through the details of the proofs. The culmination of 
the lemmas is that if .f: [0, 1] [0, 1] is continuous with no cycles, then the orbit of 
any point will converge (to a fixed point). 

LEl\-1!\IA 1. Let f: [0, 1] [0, 1] be a continuous funct ion with no cycles. For .c 
[0, 1], if f(.c) .r , then .f(y) > 3' for· all y [.r, .f(x)] (if f(x) < 1·, then f(y) < 3' for 
all y [j(.1:), 1·]). 

Pmof We prove this lemma by contradiction. Assume .c [0, 1] with j(1·) > 1·, 
and suppose there exists z E [:r f(.c )] such that .f(::; ) :S .1'. Let y = ma.x{t E [x, j(1·)]: 
f(t) = .r}. Since .f(.r) .c and f(y ) .1: y, f must intersect the diagonal ·i(t) = t 
iu [.r,y]. Thus, there exists at least one fixed point in [:r,y]. Let PL = max{t E [1·,y]: 
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f(t ) = t}. There are two cases to be considered. 
Case 1: Suppose that f has at least one fixed point ]J E [y, 1 , and let p R = min { t 

[y, 1] : f(t) = t}. Since f(y) = .r < PL and f(pn) = PR > ]JL, there exists s 1 (.tJ,]JR) 
such that f(si) PL by the Intermediate Value Theorem. Similarly, thorP exists 
s2 (y, pn) such that f(s2) = s,. Since j2(y) = j(.1·) > y and j2(s2) = PL s2 
with y, s2 E (p L, p n), P must intersect the diagonal ·i( t) t in the interval (p L, p R). 
Hence there exists p (pL,PR) such that f 2 (p) = p and f(p) p, so f has at least 
one 2-cyclc. 

Case 2: Suppose that f has no fixed points in [y, 1]. The point y was chosen so 
f(y) = .r, J2(y) = f(.r) y. Since the range of P is contained in [0, 1], j2(1) 1. 
So P must intersect the diagonal i(t) t in the interval y, 1]. Hence there exists 
p [y, 1] such that j2(p) = p and f(p) "1- p, so f has at least one 2-cycle. 

Each of these cases contradicted that f has no cycles, so if f(.r) > .r, then f(y) .r 
for ally [x, f(.r)]. Similar arguments prove that if f(.r) .r, then f(y) x for all 
y E [f(x), x]. D 

LEI\HviA 2. Let f: [0, 1] --+ [0, 1] be a continuous funct·ion w·ith no cycles. Fm· all 
77t,712,n3 ~ (nt < 112 < '113) and x [0, 1], ·if f" 2 (.r) "1- f" 3 (.r), then f" 1 (.r) is not 
in the interval with endpo·int s f"2 ( x) and f" ·1 ( :r). 

Proof Choose x E [0, 1] and n 1, n 2 , n 3 E N (n1 < n 2 < n3) such that f"2 (:r) "l­
f"·1(x). Since j"2 (x) "1- f" 3 (:r), j"1(.r) cannot be a fixed point. Without loss of 
generality, assume /"1 (:r) < f" 1 +I (.r). We prove this lemma by using strong induction 
to show that f"(:r) > /" 1 (x) for n n 1 + 1, ... , n 3 . 

Assume Jk(x) > /"1 (x) for ~· = n 1 + 1, ... , n where n < n3 . Iff" (.r) = f" - 1 (.r), 
then r +1 (.r) = r -1 (. -,; ) > f" 1(.r) by the induction hypothesis. If f"(:r) > !" 1(:r ) 
then f(f"( :r)) > f" - 1(:r ) by Lemma 1. Thus, !"+1(.-,;) > f" - 1(.r) 2:: f" 1(.r) by the 
induction hypothesis. If f" (x) < f" 1 (.r ), let 

s = max{k E N, k < 11: fk(.r) < f~' + 1 (.r )}. 

We knows exists since f"·1 (.r) < f" 1+l (x), and so s 2:: n 1 and .f"'(.r) 2: f" 1 (x). 
We claim that .f"'(:r) < .f"(x) < _rs+I (.r) , for suppose f"(.r) < .f"'(.r). By 

the definition of s, We have the inequalities r +l (.T) > .f"'+2(.r) > ·. · > f" (.r). 
Hence, there exists p, s + 1 ::; p < ., - 1, such that f"(.T) E [.f"'(.r), _rs +1 (.r) J and 
fl' 1 (:r) fl. [.f"'(:r),.f"'+l (:c)]. This contradicts Lemma 1 since .f"'(.r) E (.fP+1 (.r),fl'(:r) ] 
while f(.f"'(:r)) > .f"(:r). Thus .f"'(:r) < f"(.r). Furthermore, since Jk(:r) < f~· - 1 ( .r ) 
for~· = s + 2, ... , n, f" (.r) < _rs+1 (:r). 

By Lemma 1, f(f" (.r )) = r +l (:r) > r (:r) - .f" I (.r). Thus by induction, f" (.r) 
!" 1 (.r) for 11 = 111 + 1, ... , ·n3. Therefore, f" 1 (.r) is not in the interval with endpoints 
f" 2 (:r) and f"j (.r). D 

LEI\11\IA 3. Let f: [0, 1] [0, 1] be a conf'i.nno'Us fnncti.on. Iff has no cycles, fh(' n 
for any x [0, 1], the orbit {.f"(:r)} ;;"'=o w·ill con:11e1:qe to a fired ]Joint. 

Pmof. First notice that f" (.r) :; implies :; is a fixed point of f. Let .r [0, 1]. 
Since f has no cycles, m i- n implies .{111 (.r ) # f" (:r) or .f'" (.r) is a fixed point . w~ 
can assume that .f111 (.r ) "1- f"(.r) form. "1- 11. 13y the Bolzano-Weierstrass Theorem, 
{f"(:r)},_0 has a cluster point, z. We will show that z is unique. 

Suppose that z' is another cluster point of {.f" (.r )} 11 =o· Without loss of generality, 
let z < z'. By Lemma 2, (z, z') cannot contain any points from the orbit of .r. 
1\Ioreovcr, {! 11 (.t) };;"'=0 is the union of two disjoint :mbsequences: {.f" •· (.r)} f :; and 
{f, k (.r)} .L z'. Hence, there exists a subsequence {a j} of {1' 11 ' (.r)} II =O such that 
f(aj) --+ z'. Thus, f( z) = z' by continuity. Similarly, f( z') = :;, which contradicts 
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that f has no cycles. TherPfore, the sequence {f"(:r)}n =O must converge to z, and z 
must be a fixed point off by continuity. D 

Our initial approach to proving that a function with one fixed point and no cycles 
has the strong shadowing property was to determine two arbitrarily small intervals 
containing the fixed point with one interval contained in the other. These intervals 
would have the property that the image of the larger interval would be contained 
within the smaller intPrval. Then we could determine o such that all 8-pseudo-orbits 
would eventually be contained in the larger interval, so f would have the strong 
shadowing property. 

However, we cannot guarantee such intervals for f. For example, a function with 
a fixed point which attracts on one side of the fixed point and repels on the other side 
cannot have these desired intervals. Nonetheless, we can prove the existence of these 
intervals for P: 

LEMMA 4. Let f: [0, 1]--+ [0, 1] be a continuous function with no cycles and one 
fixed point ]J. For E: > 0, there exists TJ > 0, I = (a, b), and ['1 = (a - TJ, b + TJ) such 
that I C I,1 <:;; Be(P) with p E I and j2(I'1) <:;; I. 

Proof Let E: > 0 be given. By Lemma 3, the fixed point p attracts the entire 
interval [0, 1]. Since pis the only fixed point off, then f( x ) > x on [0, p) and j(.1·) < x 
on (p, 1]. We begin by finding an interval It <:;; B~ (p) such that f(lt) <:;; ft. There are 
two possible cases. 

Case 1: If f(BE(p)) <:;; Be(p), then define It BE(p) and c1 = c/2. 
Case 2: There exists z E Be(P) such that f( z ) fl. BE(p). Without loss of generality, 

assume z E (p,]J +c). Since f(x) < x on (p, 1] and f(z) fl. BE(p), we have that 
f(z) < p - E: . Let mt = min{x E [p, z] : f (:r) p - c} , and define It = (p - € , mi), 
c' mt - p. We claim that f(JI) <:;; ft. If .r E (p, mt), then f(x) > p- E: . Furthermore, 
f(x) < x < mt, so f(x) E (p - E: , mt). If x E (p E: ,p), then there exists .1: 1 E (p, mt) 
such that f(.-rt) = :r by the Intermediate Value Theorem. Since f(x) > x , Lemma 2 
implies f(x) < Xt < mt. Thus, f(x) E (x, :rt) <:;; (p - c,mt), so f(h) <:;; I 1. 

Construct I2 for BE' (p) as ! 1 was constructed for BE (p). Without loss of generality 
we have I2 = (a, b) such that !(12) <:;; h. Let J (c, d) denote an open interval of 
f 1 (I2) such that h C J C I 1 . There are two cases to be considered. 

2 
Case 1: c < a, b < d. Taking TJ = min{ a - c, d - b}, we have f(I'1) <:;; I2, so 

f (11)) c h 
Case 2: c = a, b < d (c < a, b = d done similarly). Then there exists e < c 

such that f((e, d)) <:;; (~, d). We also know that f((c, d)) <:;;, (a, b) = h By defining 
TJ min{ a - e, d - b}, j2(J,1) C h 

In each of these cases I = h and I'1 are the required intervals. D 
Using this lemma, we will prove that f 2 has the strong shadowing property when 

f has no cycles and one fixed point p. To show that f itself has the strong shadowing 
p1:operty, we first establish the uniform convergence of {fk h.·=O to c( x) = p on [0, 1]. 
Gtven E: > 0, by the proof of Lemma 4, there exists an open interval I <:;; BE(p) such 
that p E I and f(J) <:;; I. We have pointwise convergence of {fk} by Lemma 3, so 
for each x E [0, 1] there exists N x E ~ such that f"(x) E I if n 2: Nx. Therefore, 
Un 1\1 ! - "(I) is an open cover of [0, 1]. By the compactness of (0, 1], we can find 
N E ~ such that [N (.r) E I for all x E [0, 1]. Thus, lf"(x) - PI < E: for all x [0, 1] 
and n 2:: N, so {! ·h=o must converge uniformly to c(x ) = p. 

Finally we show that if P has the strong shadowing property, then f has the 
strong shadowing property. 

LEMI\IA 5. L t f:(O,l] --+[0,1] be a continuous function with no cycles and one fixed 
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point p. If fk has the str-ong shado·uring property for som.F k N, then f" has th 
str-ong shadowing pmpFrty for all n E N. 

Pr-oof. First we show that if fk has the strong shadowing property, then f has 
the ::;trong shadowing property. For arbitrary c > 0, fk having the strong ::;hadowing 
property implic::; there exist:; 8', 0 < 8' < c/2, such that all 8'-pseudo-orbit::; of Jk 
arc c/ 2 strong shadowed. 1\Iorcover, we know frorn the uniform convergence of {f"} 
that there exists N N such that if n ~ N, lf"(.r) - PI < E/ 4 for .r E [0, 1]. Let 
[{ = max{ N, k}. From uniform continuity, we have the existence of 0 < 81 < 82 < 
· · · < 81\ < 8' / J( such that d(.r, t) < 8i =? d(.f(.r), f(t)) < 8;+1 for 'i = 1, ... , J( 1. 

We constructed this 8-chain ::;o that for any 81-pscudo-orbit {.r111 };;';'=o off, the 
sequence {:~·J+,k}~_0 is a 8'-pscudo-orbit of Jk, where j E 1':1 . To ::;ec thi:;, take 
an arbitrary j E 1':1 . Then d(.Tj+ 1 ,.f(:~·j )) < 81 =? d(f(.rJ+ 1),f2 (.rj)) < 82 =? 

· · · =? d(.fk - J(:~·J+ I), fk(.rj)) < 8k. Similarly, d(.fk· - 2 (:~·J +2), Jk· - J(.rJ+ J)) < 8k- J elk, 
d(.fk- 3(.rJ+3), fk - 2(.rJ+2)) < 8k 2 < 8k, ... d(.rJ+ k·, .f(.I:J+ k·- d) < 81 < 8k. Applying 
the triangle inequality, 

T herefore { .rj , d, _0 i::; a 8'-p::;eudo-orbi t of fk. 

J\. ~ = s;l I\ u . 

By the construction of the 8-clmin, d(.r ,, f" (.r0 )) < 8, < c/2 < c for .,, = 

1, .. . ,!\. If 11 > K, let 1· = 11mod /\ , 0 ::; r· !\. If r = 0, then d(.r11 ,f" (.~:0 )) 
d(.l:mk, f"'k(xo)) < 8' £ ::;incc fk ha::; the strong shadowing property. Othcrwi::ic, 
·11 = mk + 1· where r· -1- 0, :;o d(.Emk +r·, f'"k(.r, .)) £/ 2. Since 11 K, then mk _ !\, 
which implies m.k > N. Therefore, d(J111 k+r(.r0 ),p) £/4 and d(.f"'k' (.r,.),p ) £/ 4, 
so d(.f"'k ,.(x0 ),f"'k·(.r,.)) £/2. Applying the triangle inequality again, we have 

d(.f"' k+'·(.ro), .rmk+r ) = d(.f" (.ro), .r,) £ . 

Thus, d(xo, f"(:~·o)) £ for all n 1':1, so f has the strong shadowing property. 
Finally, if f 1m:; the strong shadowing property, then so does f" for all n 1':1 . 

This follows bccau::;e the 8-p::;cudo-orbit::; for f with d(.rk , f(.~:k - J)) = 0 for all k =f:. 0 
mod n arc simply the J-p::;cmlo-orbit::; for f". 0 

Notice that the last ::;tatcmcnt i::; independent of the condition that f has no cycles 
and one fixed point. We usc thi::; fact in the proof of the main theorem. 

3. Main Result - The Strong Shadowing Property. 
TIIEOREI\1 6. G-iven a cont-inuous function f : [0, 1] [0, 1). the follo'll ing ar·p 

equivalent: 
1. f has the str-ong shadowing proper-ty 
2. f has no cycl s and one fired point 
3. gr(.f) and gr· 1 (.f) have F.ractly onr point ·in common. 
Pr-oof. (1 =? 2) Snppo::;c f has more than one fixed point. Notice that f cannot 

have an interval of fixed point:;, othcrwi::;c the pseudo-orbit could move about the 
whole interval while the actual orbit remains fixed. 1\Iorcovcr, since .f is continuous, 
the fixed points off cannot even be dcn::;c in an interval by the same argument. Thus, 
there mu::;t exist fixed points p 1 < p2 with no fixed points in the interval (p1,p2 ). 

Without loss of generality we can assume f(:~:) > :~: on (p1,p2). Given 8 0, 
consider the 8-pscudo-orbit x 0 = p1, :~· 1 = x 0 + 8/ 2, :~·, .f(.r, _ J) for n ~ 2. Let 
r = min(!(:~·) - .r) on the interval [PI + 8/ 2,p2 8/ 2]; r > 0 since f is a continuous 
function. Then the consecutive terms of the p::;eudo-orbit {:~·,} ~_0 must increase by 

·' 
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at lca.st r until a term is at least as large as p2 - 8/ 2. Thus, f does not have the 
::;trong shadowing property since the orbit remains at p1. 

We know by Lemma 5 that f having the strong shadowing property implies f" 
has the strong shadowing property for all n E 1':1. By the above, f" must have one 
fixed point for all n 1':1. Therefore, f can have no cycles. 

(2 =? 1) Let g = p, then g has one fixed point p and no cycles. For arbitrary 
£ > 0, Lemma 4 implies there exist I = (a, b) and I,1 ~ (p - £/2, p+c/2) with p E I and 
g(/,1) C I. Furthermore, the uniform convergence of {g"}~=O to c(x) = p guarantees 
the existence of N 1':1 ::;uch that gN (x) E I for all x E [0, 1 J. 

Since I,., ~ (p - £/2, p + c/2), ry < £/2. From the uniform continuity of g, we 
have the existence of 0 < 81 < 82 < ... < 8N < ry j N such that d(x, t) < 8i =? 

d(g(:~·), g(t)) < 8i+l for ·i = 1, ... , N. Consider a 81-pscudo-orbit of g, { x, }~=O· Thus, 

d(xJ.g(xo)) < 81 =? d(g(xJ),l(.ro)) < 82 =? · · · =? d(gN - 1(.rJ),gN (xo)) < 8N. 

Similarly, 

d(gN -3 (:~·3), gN- 2(:r2)) < clN - 2 < 8N, ... , d( XN,g(.TN- 1)) < 81 < bN. 

By applying the triangle inequality, 

d( :~:N,gN(xo)) < N · clN < N · ~ ::; f/ <c. 

Repeating this procedure, we get d(x,, g"(x0 )) <£ for n = 1, ... , N. 
Since N iterations have occurred, gk(x) E I ~ I,1 for all k > N. Furthermore, 

the 81-pseudo-orbit {xN k}k=l cannot leave I,., since 8 < ry. Since diam I" < <, 
d(.rk, gk(.~:0 )) <£ for all k > N. Therefore, g = P has the strong shadowing property, 
so f has the strong shadowing property by 5. 0 

Returning to our original functions (Figure 1), although h has the shadowing 
property, it does not have the strong shadowing property since it has more than one 
fixed point. On the other hand, k does have the strong shadowing property since gr( k) 
and gr- 1 ( J.·) have exactly one point in common as shown in Figure 4a. In contrast, 

11 y 

0 0 
a) b) 

FIG. I. Gmph of/.; and l and their· r·efiections 

even though 

3 7 1 
l(x) = 4 x + S + 

4
7r sin(2rrx) 
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has only one fixed point, its graph has three points in common with the graph of its 
reflection as seen in Figure 4b, thus it does not have the strong Hhadowing property. 

Finally, a corollary to thiH theorem is that surjective functions on the unit interval 
do not have the strong shadowing property. By the theorem, we need only consider 
surjective functionH with one fixed point. Let f be such a function with fixed point 
p. Therefore, f(:r) > :t: on [O,p) and f(.r) < .ron (p, 1]. In particular, there exiHts 
a (p, 1] so that f(a) = 0, and there exiHts b [O,p) Huch that J(b) = a. Therefore, 
P(:t:) < :ron some interval of [O,p), HO f has at leaHt one 2-cycle. Then .f doeH not 
have the Htrong shadowing property. 

4. Acknowledgements. The authors would like to thank Furman UniverHity 
Electronic Journal of Undergraduate 1\Iathematics for making an earlier Hhortened 
version of thiH paper available. 
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ANOTHER PROOF OF THE STEINER-LEHMUS THEOREM 

WILLIAM CHAU* 

The Steiner-Lehmus theorem states that if a triangle has a pair of angle bisectors 
that are equal in length, then it iH isosceles. The converse theorem, that an isosceles 
triangle has two equal angle bisectors, is quite elementary and readily proved by 
HtudentH of high school geometry. A direct proof of the Steiner-Lehmus theorem, on 
the other hand, is obscure, but many indirect proofs exist. In this note I add another 
elementary proof to that collection. For other proofs see [1, 2, 3, 4, 5]. 

Given 6 ABC with BC = a, AC = b and AB = c. Draw the angle bisectors 
from A and B to intersect BC and AC at D and E, respectively. Assume that 
AD = BE = t, LBAD = L.CAD = a and L ABE = L.CBE = (3 . 

c 

A 

Let A(XY Z) denoteH the area of 6 XY Z. We sum the area of triangles within 
6 ABC in two different ways to get 

(1) 

(2) 

A(BAD) + A( CAD) = A(ABE) + A(CBE), 

~ ctsin(a) + ~ btsin(a) = ~ ctsin(f3) + ~atsin(.B) , 
2 2 2 2 

By the Law of Sines, 

sin(a) a + c 
sin(f3) = b + c · 

sin(A) sin(B) 
- a- = - b-

sin(2a) sin(2(3) _...:...._....:... = - -:--:-....:... 
a 

2sin(a) cos( a ) 

a 
sin( a) 
sin(/1) 

b 
2 sin(f3) cos(/1) 

b 
a cos(/1) = -:---c"--7-
bcos(a) · 

Equating (1) and (2), we get 

• SoftTechics Corp 
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(3) 
cos(/1) 
cos( a) 

CHAU 

b(a + c) 
a(b + c)" 

To prove that L A = L B, it is sufficient to show that both L A < L B and L A 
L.B lead to contradict ions. We also need the fact that 

(4) a, /1< 1f/ 2, 

for 2a L A < 1r and 2/3 = L B < 1r. Assume L A < L B. It follows that a < /1 and 
a < b. By (4), the LHS of (3) is less than 1 while the RHS of (3) is greater than 1. 
Clearly we have an contradiction. Similarly we cannot have L A > L B and it follows 
that L A = L B. 
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A DECOMPOSITION METHOD FOR SOLVING LINEAR SYSTEMS 
OF DIFFERENTIAL EQUATIONS 

ELIAS DEEBA *, SUHEIL KHURit, AND .JEONG-MI YOON* 

1. Introduction. The Htudy of linear systems of differential equationH of the 
form 

(1.1) x(t) = Ax(t) + b(t) , x(O) = c, 

where x(t) R", A an n. x n matrix, b(t) E R" a given forcing function, and 
x(O) = c R" the initial condition, is one of the main topicH that studcntH study 
in the undergraduate curriculum. Indeed, students will frequently encounter linear 
systems in Linear Algebra, Differential Equations, l\llcthods of Applied Mathematics 
courses and in other applied courses. Equation ( 1.1 ) is a mathematical model for 
many important applications that range over the spectrum from social and physical 
sciences to engineering. Variation of the parameter method is usually employed to 
solve the system in (1.1) (sec, for examples, [2]-[4]) . This method requires computing 
the exponential of the matrix A, eA , and then expressing the solution as 

(1.2) x(f) = CAt C + l' C- A(t - T)b(T)dT. 
.fo 

The computation of the eAt is not an easy task but may be achieved by finding 
the eigenvalues and eigenvectors of the matrix A. Another approach for solving the 
system (1.1) is to decouple it (if possible). Again this approach requires computing 
the eigenvalues and eigenvectors of the matrix A and showing that A is similar to a 
diagonal matrix D. The solution of the system (1.1 ) is then deduced from the solution 
of the decoupled system. We propose a decomposition method for solving (1.1). This 
method, modulo some theoretical background, is accessible to undergraduate students 
as it requires only basic knowledge of calculus and matrix algebra [1]. It provides in 
many instances a closed form solution and in others it provides an efficient way of 
computing a numerical solution. Thus the trade-off is the simplicity of the method 
and its suitability for numerical computation. 

The decomposition method assumes a series solution; that is, we assume that the 
unknown vector x(t ) E R" is a series of the form 

(1.3) x (t) = Xt(f) x2(t) 

and each iterate Xi (t ) R" is to be determined. In many instances few iterates are 
needed either to identify the closed form solution or to obtain an accurate numerical 
solution. We shall describe the decomposition method in Section 2 and illustrate 
several examples to clarify the algorithm in Section 3. 

2. Description of the Decomposition Method. We will first give a brief 
description of the method that is normally employed to solve nonlinear problems of 
the form 

(2.1) 

*University of Houston, Downtown, 
t American University of Sharjah , 

.r = L.r + J, 
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where L is a linear operator acting on an underlying function space H , and f is a 
known function in H. 

The method assumes a series solution 

(2.2) l::::r, 
i~O 

where the iterates :r~s are to be determined. Substituting (2.2) into (2.1 ) yield 

(2.3) LX; = l:::Lr; f. 
i = O i - 0 

If the series converges, we can determine the iterates .r; as in 

(2.4) .ro = f .r, = L.r, 1 , 'II 0. 

Equation (2.4) is the decomposition algorithm that we usc to solve (1.1). Indeed, we 
shall adapt the decomposition method to solve the linear system 

(2.5) x(t) = Ax(t) + b(t), x(O) = c, 

where x(t ) R", x(O) = c R", A an n x n matrix, and b (t ) R" is a known 
forcing function. 

Upon formally integrating (2.5), we get 

(2.6) x (t) - x(O) = .f Ax(~)d~ .f b(~ ) d~ . 

Equation (2.6) is in the form (2.1) with L.1· = ./~ Ax(Od~ and f x 0 .J;: b(~ )d~. 
The solution vector x(t) is 

(2.7) 

where each Xi is a vector in R" . Substituting (2. 7) into (2.6), we obtain 

(2.8) LXi = x(O) 
i = O 

For the series in (2. 7) to converge, we set 

(2.9) x 0 = x(O) + .f b(~)d~, 

t b(~) d~. 
.fo 

I
· I 

Xn = Axn 1 (~ )d~, 11 
.o 

0, 

Equation (2.9) is now the basis of the decomposition algorithm for solving the linear 
system (2.5). Indeed (2.9) dctcnnincs all the iterates Xi. \Vc shall now demonstrate 
the method with some examples. 

·' 
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3. Examples. In this section we solve several examples of linear systems of 
differential equations to illustrate the decomposition method. 
EXAl'viPLB 1. Consider 

(3.1) 
:h = :I'J :1'2, 
i·2 = 2x2 , 

:~· 1 (0) = 1, 
:1'2(0) = 1. 

The system can be wri tten in matrix form as: 

(3.2) . [ 1 1 ] 
X = 0 2 X, x(O) - [ i ] . 

Upon formally integrating the system in (3.2), we get 

(3.3) x(t) = x(O) + .f Ax(~)d~ 

A~:>smning the series solution to (3.2), we obtain 

(3.4) xo = x(O) = [ i ] , t _ [ (2t)" / n!] 
Xn = .fo Axn 1 (~ )d~ - (2t)" / n! . 

Thus the solution is obtained by summing these iterates. It is clear that the sum of 

the components of these iterate (1 + 2t + <2;t + ... ) add up the exponential function 
e21 . T hus the solution to the system (3.2) is. 

(3.5) x (t ) = 

EXAl\IPLE 2. Consider the system 

.i·l = .I:J .'r3, ,l; J (0) = 0, 
(3.6) ,i;2 = .I"J 2.1:2, .r2(0) = 1, 

. i·3 = 8:~·1 3:~·3, .r3(0) = 0 . 

We can write this system in matrix form as: 

(3.7) 
[ 

1 0 1 l X = 1 2 0 X 

8 0 3 
x (O) 

Upon formally integrating the system in (3.7), we get 

(3.8) x(t) = x(O) + .f Ax(~ )d~. 

A~:>snming the series solution to (3.6), we obtain 

(3.9) 
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Thus the solution is obtained by summing the iterates. It is clear that the sum of the 
(21) 2 (21 )3 

second component of these iterates (1 + ----¥- + ~ + ... )adds up to the exponential 
function e21 . Thus the solution to the system (3.6) is 

(3.10) x(t) 

EXAI\·IPLE 3. Consider the non-homogeneous system 

(3.11) 
.i·1 = - .1:2 1, .rt(O) = 0, 
i·2 = Xt, a:2(0) = 0. 

We can write this system in matrix form as: 

(3.12) 

Upon formally integrating the system in (3.12), we get 

(3.13) r ;·I. [ 1 ] x(t) = x(O) .fo Ax(~)d~ + . 
0 0 d~. 

Assuming the series solution (3.12), we obtain x 0 [t, OJ, and 

1 
{ [ ( l)n ( n + l ) /2~n +l / ('II + 1)! ] 

1 

Xn = .£ Axn-1(0d~ = [ O ] 

( - 1f'(n+ l) /2tn +l / (n 1)! ' 

for n even, 

for n odd. 

Thus the solution is obtained by summing the iterates. It is clear that the sum of 
the first component ( t - ~ + ... ) and of the second component ( ~ - ~ + ... ) of these 
iterates add up to sin t and 1 - cost respectively. Thus the solution to the system 
(3.12) is 

(3.14) [ 
sin t ] 

x(t) = 1 - cost · 

Although the above examples arc not that messy, yet they show the case of obtaining 
the solution using the decomposition method. The last example that we present 
shows that, in the absence of a closed form solution, the decomposition method yields 
with relatively few iterates a "reasonable answer" when compared nmncrically to the 
answer obtained using the Computer Algebra System (lVIaplc V). 
EXAI\IPLE 4. Consider the system 

(3.15) 
.i·1 = .r1 + 3.1'2 + 2.r3, 
.i·2 = 2a·2 + 3.c3, 
.i·3 = X t + 2xa, 

We can write this system in matrix form as: 

(3.16) 

:l't (0) = 1, 
. r2(0) = 0, 
xa(O) = 1. 

.. 
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Upon formally integrating the system in (3.16), we get 

(3.17) x(t) = x(O) + 11 

Ax(~)d~. 
Assuming the series solution of (3.16), we obtain 

Xo ~ x(O) ~ [ n 
x1 = 11 

Axo(~)d~ = [ill 
x2 = 11 

Ax1(0d~ [ 91' l 15t2 / 2 
9t2 / 2 

xa = 11 

Ax2(0d~ [ Blt'/6] 
(3.18) 19t3 / 2 

18t3 / 3 

Therefore we can get the approximate solution by choosing the several terms 

[ 

1 + 3t + 9t2 + 861 t3 + 227 t I . . . l 
(3.19) x(t) = XQ + X 1 + X2 ... - 3f + 1

2
5t2 + ~t3 + 3

4
7 t4 + · · · . 

1 + 3t + Qt2 + 18{3 + 5lt4+ ··· 
2 3 8 

The error is less than 10- 3 when we compme the solution of the dec·ompositionmethod 
using only four terms with the solution obtained using l\Iaple V (see Tables 1 - 3). 
The accuracy of the method can be improved by adding more iterates. 

t Maple(.cJ) Decomp(x1) 
.02 1.063710 1.063710 
.04 1.135300 1.135299 
.06 1.215500 1.215491 
.08 1.305102 1.305065 
.10 1.404966 1.404850 
.12 1.516020 1.515727 

T ABLE 1 
The Comparison between the 1 s t component. of the solution obtain ed numerically using Jvlaple 

and of the d composition m ethod solution in (3.1.9}. 

Our goal was to introduce an al ternate m >thod for solving linear systems of differ­
entia.! equations that is accessible to undergraduate students with knowledge of bas ic 
calculus and matrix algebra . 
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t Maplc(.r2) Dccomp(.r2) 
.02 .630775 .630775 
.04 .132632 .132632 
.06 .209178 .209172 
.08 .293269 .293243 
.10 .385506 .385425 
.12 .486538 .486334 

TABLI> 2 
The Companson between the 2"c/ component of the solulwn o/Jimncd uumrnmlly u.~mg lllaple 

and of /.he dt•com.JWS7.tum. m ethod solution in {3.19). 

t Maplc(.r:l ) Decomp(.r:l) 
.02 1.061849 1.061849 
.04 1.127601 1.127600 
.06 1.197583 1.197579 
.08 1.272151 1.272133 
.10 1.351694 1.351638 
.12 1.436632 1.436490 

TABLE 3 
The Companson between the 3''c/ component of the solution oblamccl numeri mlly 'ILS1.n!J lllaple 

and of the dccomposit.ion m ethod solut ion in {3.1fJ) . 
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ANALYSIS OF THE SUBTANGENT 

DANE A. DOR!\110* 

In volume five of Readings for Calculw; [1], there iH a section on Isaac Newton with 
an cxcrciHc that begins, "In the early dayH of Calculus the subtangent was considerably 
more important than it iH now." The problem continueH with questions about how to 
apply the Hubtangent operator to basic algebraic and trigonometric functions. This 
exercise prompted an exploration of the mathematical and hiHtorical significance of 
the Hubtangcnt. 

The natnral first approach to the subtangcnt is geometrical. The subtangcnt of 
a curve at a given point iH defined as the line segment indicated in Figure 1. It also 
refers to the algebraic, or signed, length of this segment. 

FIG . I. The su/Jtangent, S(J,x ), off at .c. 

Before we can go into more detail about the subtangent, some notation needs 
to be defined. I will use S to denote the subtangcnt operator with either Sf or 
r representing the subtangcnt function of f (similar to representing the derivative 
function off by either V f or f'). 

For a caHc such as that in Fignrc 1, where y = f(.c), the :mbtangcnt can be 
calculated from the height of the vertical segment, y, and the slope of the tangent 

line, y'. From the definition of Hlopc, y' = y , so y* = .IJ • So for example, the length 
y* y' 

of the subtangcnt of the parabola y = :~·2 is 

,r;2 .1' 
y* =- =-

2.1' 2 

For y = .r3 , we have 

* ,,.3 .1' 
lJ = - = - . . 3:~· 2 3 

If thiH formula works for all cases, then in general, S( .'r") = ~ . 
11 

Like many problems in calculus, questions about the subtangcnt have both a 
geometrical allCl an algebraic side, and the two different conceptual approaches can 
yield different inHights. One of the purpoHes of this paper is to exhibit this duality. 
A general argnment that the formnla for the subtangent given above is valid is easier 
with less geometry and more algebra. The argument runH as followH. Let f (.r ) be a 

• Hendrix College 
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function of x, let t(x) be the tangent line to J(a;) at :~:0 , and let .I:J be the .r intercept 
of t(x), sec Figme 2. Then .f* (x0 ) will be x 0 - XJ. The point-slope form of the tangent 

Yo 

X[ Xo 

FIG. 2. 

line gives 

t(a·) - t(xo) = J'(a·o)(.T - .ro). 

Note that when t(.r) = 0 in this formula, a· = .I'J, and also that, because t(a·) is tangent 
to f(a·) at .To, t(.ro) = f (.ro). Putting these two facts together gives us 

f(.l·o) *( 
.ro - .I'J = -f ( ) = f .ro) 

' a·o 

which says that the subtangcnt of a function f(.r) is given by Sf(.r) = j'(.1:)j J'(.r). 
Note that this implies that the subtangent of a function is undefined when the tan­
gent line is horizontal (that is, when the derivative is 0). It follows that a constant 
function's subtangent is undefined everywhere. 

The historical importance of the subtangent is its direct relationship to the deriva­
tive. Our perspective on the two has changed somewhat over time; we use the deriva­
tive exclusively and have forgotten about the subtangent. However, in the early 
development of calculus, the subtangent was primary and the derivative secondary. 
Pierre de Fermat's technique of drawing the tangent line was a precursor to the mod­
ern technique of differentiation. To draw a line tangent to a curve at a given point, 
he would first find the subtangent (through geometrical means other than the ones 
which we have employed). He would then have the two points (.rJ,O) and (.ro , f(.ro)) 
through which to draw the tangent line [2], which is the reverse of what we just did. 
Similar techniques were used by Hudde, Sluze, and Barrow [3]. Even Lcibniz, in his 
first paper on the differential calculus written in 1684, uses the defining proportion 
dy : da· = y : y• .However, we will sec that the derivative turns out to be the simpler 
and more useful of the two operators, which is probably why it eventually replaced 
the subtangent as the standard slope operator. 

Now confident that our initial formula is correct, we can go on to compile a list 
of subtangent "rules." We have already established that S(.r") = .r /'n. Since the 
power rule for differentiation is valid for all real n. it follows that this rule is as well. 
The subtangents of other elementary functions can be calculated in the same manner. 
For instance, suppose we want to calculate the subtangcnt of f(.r) = sin(.r). Since 
J'(x) = cos(x), we have that J*(:c) = tan(x). The subtangcnt of cos(.r) is the negative 
reciprocal of this, - cot(x). 

A historical document illustrates what happens when we compute the subtangent 
of an exponential function . In the years 1676-1677, Newton and Lcibniz corresponded 

·' 
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a number of times to discuss their respective methods of differentiation and integra­
tion. In a letter dated June 21, 1677, Lcibniz gave a solution to the problem of finding 
a curve whose subtangent is constant [1]. This type of curve turns out to be an ex­
ponential, which can be seen easily with our modern advantages. For example, let 
f(.r) = e-r. Since f'(x) = f (.T ), r (.r ) = 1. It turns out that all exponential functions 
have a constant snbtangent. This means that if you draw the subtangcnt at any point 
on an exponential curve, its length will always be the same, and is a result of the 
special characteristic of the exponential function that its growth rate, or slope, grows 
in proportion to its hf'ight, so that the two always have the same ratio. 

While learning calculus, students are often asked to look at how a simple geometric 
transformation of a function changes its derivative. Similarly, one can ask how a 
transformation of a function changes its subtangent. We next examine various ways 
to transform a function, and the effects these transformations have on the subtangent. 

First we consider vertically shifted functions of the form f (.r ) = g(:r) + a, where 
a is a constant. Since J'(:c) = g'(x), we have 

! *( ·) = g(.r) + a = *( ·) 
X '( ) g X g X 

a * ag* (x) 
- ,() = g (a·) + - ( -) , g X g X 

where we have made use of the fact that J' = f / f* . Thus, the sub tangent of a 
vert ically shifted function is the subtangent of the original function plus a correction 
term. We can visualize this geometrically by noting that .1.:1 will move either to the left 
or right as the graph of the function moves up or down, but x 0 will remain unchanged. 

Another simple transformation is a vertical scaling, which corresponds to multi­
plying a function by a constant. In this case, J(.r) = ag(x), and J'(x) = ag'(.r). so 
the constant cancels out and the subtangent is unchanged: 

f*(:r) ag(x) = g*(a'). 
ag'(x) 

This can be pictured geometrically as a function being scaled upward along the y-axis; 
its height and steepness will increase in the same ratio. It implies that a reflection 
about the a·-axis, sec Figure 3, doe:m't change the subtangent, since this represents 

FIG. :3 . Reflection about the y a:cis. 

a multiplication of the original function by -1. Furthermore, it should be obvious 
that if a function is shifted along the x-axis the derivative function will be shifted by 
the same amount and the subtangent function will likewise. However, if a function 
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is scaled along the .c-axis the subtangcnt is changed. Suppose f(.r) = g(a.r). Then 
f'(x) = ag'(ax), so 

! *( ) g(a:r) 1 *( ) :r = = - g a:r 
ag'(a .. r) a 

This implies that a reflection about the y-axis, which corresponds to scaling along the 
:r-axis by 1, will change the sign of the subtangcnt Figure 4. In all cases the sign of 

Yo 

FIG. -1. Reflection ILboul. lhr .1· ll.r.'IS . 

the subtangcnt is an iudicatiou of the direction in which it is lllcasurcd. If .r 0 is to the 
left of .c 1, the subtangent will be positive; if .r I is to the left, the sub tangent will be 
negative. Reflection about the .r-axis doesn't change this; reflection about they-axis 
does. 

A list of subtangent rules must include product and quotient mlcs. If f( .r ) = 
g(.r)h(:r), then f'(.c) = g(:r)h'(.r) + h(.r)g'(.r), so 

f*(.r) = g(.r)h(.r) 
g(.r)h' (x) g'(.r)h (.r) 

g*(.r)h*(.r ) 
g* (.r) h* (.r ) · 

A l 'f f( ·) _ g(.r) 1 !'( ·) _ h.(.r)r/( .r) - g(.r)h'(.r) 
nc I .1. - - ( - ) 1 t lCll .1 - ( ) 2 1 SO 

" ,/' h ,/' 

j'*(r) _ g(r)h(x) 
h(.r)g'(.r) - g(.r)h'(.r) 

g*(.r)h*(.r) 
g*(.r) - h*(.r )' 

Two other scenarios we can look at arc the snlll of two functions ami a composition 
of functions. Iu the first case, let .f(.r) = g(.r) h(.r) , so that f' (.r ) = g1(.r ) h' (.r ). 
T hen 

t (:r) = g(.r ) + h(.r) = g*(.r)h*(.r)(g(.r ) + h(.r )) . 
· g' (.r) + h' (.r) g(.r )h.* (.r) + g* (.r )h(.r) 

Note, therefore, that thC' snbtaugcut is not a linear operator. To consider a composi­
tiou, let f(.r) = g(h(.r )). Thcu f'(.r ) = g'(h(.r))h'(.r) and 

f*(.r) = g(h(.r)) 
· g'(h(.r))h'(.r) 

g*(h(.r)) 
h' (.r) 

g*(h(.r))h*(.r ) 

h(.r) 

·' 
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J(:r) f'(:r) J*(x) 
a 0 undefined 

xn nxn- J xjn 
e·r e..c 1 
a..c a..cln(a) 1/ln(a) 

ln(:r) 1/x xln(x) 

sin(x) cos(x) tan(x) 

cos(x ) - sin(x) - cot(x) 

tan(x) sec2 (x) sin(x) cos(x) 

g(x) + h(x) g'(x) + h' (x) 
g*(x)h*(x)(g(x) + h(x)) 
g(x)h*(x) + g*(x)h(x) 

g(x)h(x) g(x)h'(x ) + h(x)g'(x) 
g*(x)h*(x) 

g*(x) + h*(x) 

g(x) h(x)g'(x) - g(x)h'(x) g*(x)h*(x) 
h(x) h(x) 2 g*(x) - h*(x) 

g(h(x)) g'(h(x))h'(x) 
g* (h(:r) )h* (x) 

h(x) 

g(x) +a g'(x) *( ·) ag*(x) 
gx +-( -) gx 

ag(x) ag' (x) g*(x) 

g(:r +a) g'(:r +a) g * (x + a) 
g(ax) ag'(ax) g• (a:~.;)ja 

TABLE 1 

Rules for the subtiLngent 

Thus we have developed a chain rule for subtangents. 
All of the foregoing results are summed up in Table 1. 
Having developed the theory of the subtangent thus far, we will now take a step 

backwards conceptually to develop an analytical definition of the subtangent, similar 
to that of the derivative. We will develop this approach geometrically at first, closely 
following Barrow [3] (with the adaptation of limits, of course) and then establish it 
directly from the analytical definition of the derivative. 

In Figure 5, as before, we have J*(.t) = x - X[, and the ratio of the sides of the 
larger triangle will be equal to the ratio of the sides of the differential triangle as h 
approaches 0. That is, 

f*(x) . h . h 
- - = lun - = hm . 
j(x) h 0 a IH O j(x) - j(.T - h) 

Therefore, 

! •( ) 1. f(x)h 
X = Jm 

11 ~0 f(x ) - f(x - h) 
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f(x) 

f(x+h) 

DANE A. DORMIO 

Ftc. 5. The differ-ential triangle. 

It doesn't take much to see that this is just an alternate way of stating the 
definition of the derivative, for using f*(.r) = f(.T )/ f'(.r) gives us 

f(.r) = lim f(:r)h . 
f'( :r) h- o f(.r) - f(.r - h) 

With the assumption that f(.r) -1- 0, cancelling the f( .r) and inverting gives 

!
'( ) 1. f(.r) - .f(.r - h) .); = lm ~.....:...._.::......:. __ ...:... 

It- o h ' 

and we have successfully reinvented the wheel. 
The foregoing treatment of the subtangcnt shows that it is more complicated and 

less user-friendly than the derivative. The inclusion of y and the inversion of y' in 
the expression for the subtangent avoid what we now view as the heart of the matter, 
the slope of the tangent line itself, and makes the subtangcnt superfluous. However, 
the subtangent has managed to find its own useful niche. To finish up, here is a 
way that the subtangent has stuck with us. Although most calculus students never 
hear the term "subtangent," they may recognize the expression yj y' from Newton's 
method for approximating the intercepts of a function. In Figure 2 it is obvious that 
:r1 is closer to a root of the function than :r 0. So, having picked a value for .r0 , 

you could compute the subtangent at that value by the formula S(.r) = yjy'. Then 
you could usc S(.r) = .r0 - :~·, to find :~·,. This value could be used for the new .r0 , 

which would in turn produce a new subtangent and a new .r, closer to the root of 
the function. Therefore, repeated applications of the formula ·~"n + l = .r, - S(.r 11 ) will 
produce numerical values that converge on the root of the function. This is Newton's 
method. 
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GEOMETRICAL ASPECTS OF AN OPTIMAL TRAJECTORY 

C. W . GROETSCH* 

1. Introduction. The best-known fact about projectile motion, as familiar to 
high school track coaches as it is to calculus students, is that a launch angle of 45° 
produces the maximal horizontal range. Galileo Galilei [2] was the first to prove this 
result, which relies on the assumption that the only active agent is a constant vertically 
acting gravitational force. His analysis also showed that the projectile's trajectory is 
a parabola with vertical axis at mid-range. The symmetry of the parabolic trajectory 
implies that the triangl formed by the horizontal base of the trajectory, that is, the 
segment between the launch and impact points, and the tangents to the trajectory 
at the launch and impact points is isosceles. Further, in the case of a trajectory 
with maximal range, that is, one with a launch angle of 45°, this isosceles triangle is 
necessarily right and therefore the side of this triangle that is tangent to the trajectory 
at the launch point bisects the angle formed by the ray from the launch point through 
the impact point (i.e., the horizontal ray) and the vertical ray through the launch 
point. 

In a recent note William Chan [1] gave a twist to the standard optimal trajectory 
problem. He treated the problem of maximizing the horizontal distance travelled 
when the projectile terminates on a given horizontal line y = y1 (the case y1 = 0 is 
then the standar-d problem). While in this modified problem the optimal launch angle 
is not necessarily 45° , we show nevertheless that the two geometrical features of the 
standard problem noted above continue to hold for the modified problem. Specifically, 
the tangents to the optimal trajectory at the launch and impact points, respectively, 
arc per-pend·icular-, and the launch vector bisects the angle formed by the ray from the 
launch point through the impact point and t.he vertical ray. 

2. Optimality Conditions. We begin by recalling the parametric equations for 
the trajectory of a point particle of unit mass launched with initial speed u from the 
origin at an angle () with the positive horizontal axis: 

.r = (ucos())t 
.11 = ( v sin ())t - (g/ 2)t2 

The first equation is a representation of the law of inertia and the second equation 
combines vertical inertial motion with Galileo's law of fall. As an alternative to Chan's 
derivation of the opt imal launch angle, we consider the constrained maximization 
problem 

maximize: 
subject to: 

x ((), t) = (v cos())t 
y((), t) = (v sin(J)t - (g/ 2)t2 = Yl· 

A quick application of the Lagrange multiplier rule (sec e.g., [4]) then gives the fol­
lowing optimality conditions 

• University of Cincinnati 

- (vsin(J)t 
ll cos() 

>.( v cos ())t 
>.(v sin() - gt ) 
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and hence, .X = - tan B. Substituting this into the second condit ion gives the impact 
time: 

Putting this into the constraint 

v 
t = - esc{} 

g 

(vi:iinB)t - ~t2 = Yt 

(1) 

(2) 

then leads, after a little algebra, to Chan's characterization of the opt imal launch 
angle: 

v 
sin {} = -..jr.:2:=;:( 1=i2<=_=9=Yt=:=) (3) 

The Lagrange multiplier approach is very generous: it gives the impact time (1) 
as lagniappe! Alternatively, one could get the impact time (1) by solving for the larger 
root of the quadratic equation (2) but this is quite a bit more involved (Try it!). 

In the next section (1) and (3) are put to use to derive the two promised geomet­
rical characteristics of the optimal trajectory of the modified problem. 

3. Some Geometry. The slope of the tangent line to the optimal trajectory at 
the launch point is tanB, where{} is given by (3). At the impact timet given by (1), 
we have 

x' ( t) = v cos {} 

and 

p' (t) v sin{} - gt = v(sin {} - esc B) = - v cos{} cot{} 

and hence the slope of the tangent line to the optimal trajectory at the impact point 
is 

dy - y'(t) -- {} 
dx - x'(t) - cot ' 

proving that the tangent lines to the optimal trajectory at the launch and impact 
points are perpendicular. 

Now let B be the intersection point of the tangents to the optimal trajectory 
at the launch point 0 and impact point A, respectively, and let OV and OH be the 
vertical and horizontal rays, respectively, through the launch point (see Figure 1). Our 
second geometrical claim is that LAOB = LBOV. Since LHOB = B, the optimal 
launch angle, we have tan (L BOV) = cot B, and the required geometrical condition is 
equivalent to 

tan( LAOB) = cotB. 

The coordinates of the impact point A are ( ( v cos B)t, y 1 ) = ( 
1~
2 

cot B, y 1 ) and the 

line through B and A therefore has equation 

y - Y1 = - cot B ( x 
v2 ) v2 
- cotB = - (cotB)x + - cot2 B. 
g g 

·' 
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v B 

0 
H 

Fie:. 1. An Optimal Tmjecto1y 

But by (3), 

Yt = ·~ ( 1 - ~ csc
2 B) 

and the line OB has equation y = (tanB).r. :t\Iaking these substitutions we find the 
the firi:it coordinate .c of the intersection point B satisfies 

(tan{} 

and hence 

u2 1 
cot B):r = - (1 - - csc2 

{} 
g 2 

12 
.r = -

2 
cot B. 

g 

The coordinates of B arc therefore ( 
v2 12) - cotB -
2g I 2g 

and hence 

Also , 

JABJ 

v2 
JOBJ = - esc B. 

2g 

( 
"

2 
cot o) 2 

+ (y1 - v
2 

) 

2 

= ~ cot BcscB. 
2g 2g 2g 

Finally, since LABO ii:i right 

tau( / AOB) ~ ~: : = cot{} = tau ( BOV) , 

proving that the my OB bisects the angle formed by the rayi:i OA and 0\ , as 
promised. 
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4. A Bow to Dr. Halley. While the discussion above is a useful classroom 
demonstration of a number of topics from geometry, trigonometry and calculus, the 
geometrical characterization of the optimal launch angle also follows from an old result 
of Edmund Halley 3]. He treated the slightly different problem of firing up a fixed 
sloping battlefield. Halley showed that the optimal launch vector bisects the angle 
formed by the battlefield and the vertical (e.g., for a horizontal battlefield the launch 
angle would be 45°). If we think of the shot giving maximal horizontal range at height 
y = y 1 and consider the ray from the launch point through the impact point to be 
the sloping battlefield, then the given shot would also have to be optimal in Halley's 
sense. For otherwise a shot further up the sloping battlefield would be possible and 
this shot would impact on y = y1 further down range than the original shot which 
was assumed to be optimal. So old dogs still do some pretty nice tricks! 

REFERENCES 

[1] \V. CIIAU, Optmwl initial angl to fir n projecti le, Pi 1\lu Epsilon .Journal, 11, 3G3-3G4, 2002. 
[2] G. GALILEI, "Two New Sciences" (Elzivirs, Leyden, 1G38), A New Translation with Introduc­

tory Notes by Stillman Drake, University of Wisconsin Press, 1\ladison, l!J74 . 
[3] E. !·lALLEY, A pmposition of ,g neml u.5 in tltr nrt of gtmtte77J, showiny lltr nlle of lnyin!J n 

mortar· t.o pass, in ot·der· to strik any object abotJe or below the hor"!zon, Philosophical 
Transactions of the Royal Society, 19, GS-72, 1G!J5. 

[4] .J. STEWAR'I, "Calculus: Concepts and Contexts", 2nd Edition, Brooks Cole, Pacific Grove, 
CA, 2000. 

C. W. Groetsch, Department of Mathematical Sciences, nivcrsity of Cincinnati , C incinnati , 011 

45221-0025. groetsch(cyuc .edu 

Chuck Groctsch's chief pedagogical interest is the integration of history, physical 
science and mathematics in the classroom. He is the author of InvrTse Pmblems 
(Mathematical Association of America, 1999) and war; a recipient of the l\IAA's George 
Polya Award for mathematical exposition in 1994. 

TII\.JE Journal, Vol. 11 , No. !J , pp 4!)1 493 , 2003. 491 

FIBONACCI, LUCAS, AND EIGENVALUES 

THOI\IAS KOSHY* 

Fibonacci numbers F,. and Lucas numbers L,. are often defined recur ively: 

F1 = 1, F2 = 1 

F, = F,. _ , F, 2, n 2: 3 

and 

L 1 = 1, £2 = 3 

L, = L 11 1 + L,. - 2, n 3 

They arc given explicitly by Binet's Formulas: 

a.rt - (3" 
F, = (3 , a -

L, = a 11 (3" 

when• n: - (1 + VS) /2 and (3 = (1 - VS)/2 arc solutions of the quadratic equation 
t 2 - t - 1 = 0. 

In 1960, C. H. King studied a 2 x 2 matrix for his masters thesis at then San Jose 
State College in California, which he called the Q-matrix, [3, 4]. It is basically the 
same as the matrix 

Q = [~ ~] 
Using induction, it can be shown that 

Q" = [ 
F, 1 

F, 

Since IQ" I = IQI" = ( 1)" , this yields the Cassini formula, 2, 4], Fn 1F,,+1 - F,; = 
( - 1 )", where IAI denotes the determinant of the square matrix A. 

The eigenvalues of Q are the solutions of the equation IQ - .XII = 0, where I 
denotes the 2 x 2 identity matirx, [1]. They are given by 

that is, .X2 .X - 1 = 0; so .X = a, (3 . 
The eigenvector X corresponding to A is given by AX = .XX, that is, 

where 

[ 
:r ] X = 
y 

• Framingham State College 
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This matrix equation yields .11 - >..r. T herefore, (.1:, y) (.r, >..r) (1, >.).1:. Tlms th<' 
eigenvector corresponding to >. is (1, >. ):r;, where :r is an arbirary real number. 

Geometrically, it represents the line y >..r. Since o:[') - 1, it follows that the 
lines .11 = a .r and !J = f3.r arc indeed perpendicular. 

It is well-known that if t is an eigenvalue of A with the corresponding eigen­
vector X, then t" is an eigenvalue of A" with the corresponding eigenvector X , [1]. 
Consequently, >." is an eigenvalue of Q", so IQ" - >.II = 0; that is, 

F, _, - >. 
F, F,. I = 0 

Fn +l - A 

Expanding this, we get 

>.2" (F ,. _ , Fn+l )>." F, _ lFn I - F,7 = 0 

Since F, _1 + F u+J = L ,, [2, 4], by Cassini's formula, this yields 

>.2" L, >." (- 1)" = 0 

Using the quadrat ic formula, 

>." 
Ln J L;, - 4( - 1)" 

2 

Since o 0 and 0, it follows that 

n" 

and 

f3" 

L 11 + J L;, - 4(- 1)" 
2 

Ln - JL~ - 4(- 1)" 
2 

(1) 

(2) 

(3) 

For example, n 5 = (£ 5 + JL~ + 4/ 2 = (11 5v'5)/ 2 and /:15 = (£ 5 - L~ + 4)/ 2 = 
(11 - 5 5) / 2. Both may be verified using the actual values of n and f3. 

Formulas (2) and (3) yield an interesting formula for F11 in terms of L ,. : 

n" - f3" = JL~ - 4( - 1)" 

n" - f311 
o - f3 

L~ - 4( - 1)" 
5 

Using Binet's formula, this gives an explicit formula for F, : 

F , = 

For example, 

L~ - -1{ - 1 ) " 

5 

F
11 

= JLr 15+4 = J 199: + 4 = 89 

Notice that formula (4) can also be written, [2, 4], as 

£ 2 = 5F2 + 4(- 1)" n n 

Formula (4) yields three interest ing byproducts: 

( ) 

·' 
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• Since Fn is an integer, L;, = 4( - 1)" (mod 5) = ( 1Y' 1 (mod 5) 
• L~n = 4 (mod 5), so L2n = ± 2 (mod 5). 
• L~n+ J = - 4 (mod 5), so L2n+I = ± 1 (mod 5). 

For example, L~ = 324 = ( - 1)7 (mod 5), Lw = 123 = - 2 (mod 5), and £ 12 = 
322 = 2 (mod 5). 

Properties (2) and (3) raise four interesting questions: Which Lucas numbers arc 
congruent to 2 modulo 5? Which are congruent to ± 1 modulo 5? 

Before we identify them, it is interesting to observe that L_~, L8 , £ 12 , LJ6, and L2o 
arc congruent to 2 modulo 5, whereas £ 2, £ 6 , Lw, L 14 , and L 1s arc congruent to -2 
modulo 5. So we conjecture that L.J n = 2 (mod 5) and L4n+2 = - 2 (mod 5). 

Both can be established fairly easily. Since 

L = (1 + J5)m ((1 - J5)m 
Il l 2 + 2 

it follows by the binomial theorem that 

where m 1. 

2111 L 111 = 2 + 111(111 - 1)5J5 

= 2 (mod 5) 

In particular, 24"L4n = 2 (mod 5), so£.,, = 2 (mod 5). Also, 2-ln+I L411 +J = 2 
(mod 5), so L.J, +J = 1 (mod 5); therefore, L4n+2 = L.ln+I + £ .111 = 1 + 2 = - 2 (mod 
5); and £.1, +3 = £ .111 +2 + £4 11 +1 = - 2 1 = - 1 (mod 5). 

For example, L.1o = 228826127 = 2 (mod 5), £ 42 = 599074578 = - 2 {mod 5), 
£ 11 = 370248451 = 1 (mod 5), and £ .13 = 969323029 = - 1 (mod 5). 
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Andrej Bauer, 2002. 

In this work by Andrej Bauer we see a scene from the talc of Aladin, as the white 
geni hovers on the shoulder of the wizard and magics a lighting bolt. Or do we? The 
mathematical equation below the image is not just the unprouonncablc title, it is in 
fact the mathematical formula for the image. 

This example of what Andrej calls "Random Art" was created by having the 
computer randomly generate a function whose domain is a region of the complex 
plane, and whose range is an RGB vector. The images appear in a web gallery in 
which the visitor:,; participate, rating the newest submis:,;ious 'good' or 'bad', with 
the bad images being discarded. So each work in the Random Art Gallery is a triple 
collaboration between Andrej, mathematics, and his fans on the web. Thi:> b a fruitful 
collaboration, with some images having been published as cover art for text books. 

You can :>tart your visit to the Random Art Gallery at 
http: // gs2 .sp.cs.cmu.edu/ art/ random/ archive/ archivc_0208 / 

where you can view or download a high quality color version of the image above. 

The TIME .Jou17!Ul invites those of you who paint, rlmw, compo.~e, 01· ot.h 1·wisc 'lt.~ e the other 

sid of yom· bmins to s11brnit yom · mathemat.ically inspi1·ed compositions. 
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SOME PERFECT ORDER SUBSET GROUPS 

STEPHANIE LIBERA* AND PAUL TLUCEK* 

1. Introduction. We determine whether or not dihedral, quaternion, semi­
dihedral, and quasi-dih dral groups are perfect order subset groups. 

DEFINITION 1. L t G be a finite group and let fl'" = {g G 1191 = T}, wher-e !gl 
denotes the or-der- of a group element. G is a per-fect or-der- subset (POS) group if and 
only if lfY I d·ivides IGI for- all positive integer-s 1· dividing the or-der- of G . 

In [1], C. Finch and L. Jones investigate abelian POS groups. At the end of 
the paper they query whether there are any non-abelian POS groups other than the 
symmetric group S3 . In this paper, we look at a few examples of finite non-abelian 
groups with two generators dihedral, quaternion, semi-dihedral, and quasi-dihedral 
groups - and determine that only the dihedral groups cau be POS groups. 

We begin with a useful calculation. The result is likely well known, but we provide 
the proof here for completeness. 

LEI\IMA 2. /fn > 1, thPn cp(n) In if and only ifn = 2k31, wher-e k :::: 1 and l > 0. 
Proof Suppose cp(n) I n. We must show that n = 2k3l, where k > I. Let 

11 = p';' p;~ ... p;·, be the prime factorization of n , where the p; are prime, -;.i :::: 1 for 
all i, and Pt < P2 < · · · < p,. Then, 

(1) 

([2], Theorem 2.16), :,;o 

cp(n ) = n (PIP~ 1) ... (Ptp~ 1) 
p;·, 1 · · .p;·, - I(PI - 1) ... (Pt - 1). 

We see that <p( n) divides n if and only if (PI - 1 )(p2 - 1) .. . (p1 - 1) divides p 1p2p3 .. . ]Jt. 

Since 7JIT'2 ... p, is square-free, A = (p1 - 1 )(p2 1) ... (p1 - 1) must also be 
:>quare-free. If t :::: 3 then A will be divisible by 4, so t 2. 

If PI > 2 then PI - 1 i:> even, and we must have p 1 P2 . . . p1 even too. Since 
Pt < 1'2 < · · · < p,, we have a contradiction. Therefore, Th = 2 and k :::: I. 

Finally, if t > 1 then (P2 - 1) I 2P2· Since P2 - 1 and P2 arc relatively prime, we 
sec that (P2 - 1) I 2 and P2 = 3. Putting all this together shows that if n 1 and 
n I cp( n), then n is of the form 2k3l, with k :::: 1. 

Now, we must show that if n = 2k3l with k :::: 1 and l _ 0, then cp(n) l n. 
If l = 0, then cp(n) ~ which certainly divides n. 
If l ~ 1, then 

Clearly 2k31 1 I 2"31, as der;ircd. Thus, cp( n) I n if and only if we have n = 2k31, 

where k 1. D 

*St. Olaf College 
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2. Dihedral and Quaternion Groups. Whether or not a dihedral group i~ a 
POS group depend~ on whether or not its subgroup of rotations is POS. Quaternion 
groups turn out not to be POS. 

DEFINITION 3. A dihedral group of oTdeT 2n, wh Te n _ 2, is ]J1' sent d by 
gen eratoTs and Telations as follows: 

THEOREM 4 . D2n is a POS group if and only if n = 31, joT some l > 1. 
Proof When we consider D2n as the group of symmetries of a regular n-gon, 

the dihedral group splits into n rotations (by 360°k/n for !.· = 1, 2, ... , n) and ·n 
reflections. Each reflection has order 2, while the rotations have order dividing n. 

If n is even, the only rotation of order 2 is the rotation by 180°. Since every 
reflection also has order 2, 1021 = n + 1. If n is odd, only the reflections have order 2, 
so 0 2 1 = n. 

If i :f 2, then n i consists of rotations of order i . Since the subgroup of rotations is 
cyclic of order n, the order of a rotation 1'111 is n/ gcd(m, n) , where gcd(m., n) denotes 
the greatest common divisor of m and n. So the elements in ni arc all rotations of 
the form 7's such that 0 < s < n and gcd(s, n) = n/i. Let n / i = d, then 1·'" Oi if 
and only if gcd(s/d, n/d) = 1 and 0 < s < n. The number of such sis cp(n/ d) = cp(i ), 
where <pis the Euler <p-function. Thus we have 10;1 = cp("i). 

Suppose n = 31
. Since 11 is odd, ji12 1 = n which clearly divides 2n. When i :f 2 

divides n, we must have ·i = 3'1 for some 0 ~ q ~ l. When q > 0, we have by equation 
(1), cp(i) = cp(3'~) = 3'~(2/3) = 2 · 3'~- 1 . Clearly cp("i) divides 2n. When q = 0, i 1 
and 1011 = 1. We see that D211 is a POS group when n = 31. 

Now suppose D2n is a POS group. If n is even, then we need 1021 = 11 + 1 to 
divide 2n. Since n + 1 is odd and greater than n, this is impossible. Hence D2n is not 
a POS group when n is even. 

Now assume n is odd. In particular, we must have IO" II 2n and, hence, cp (n) 1211. 
Since gcd(2,77) = 1 and cp(2) = 1, we know cp(n) = cp(n) cp (2) = cp(2n) [2]. From 
Lemma 2 we know cp(2n) I 2n if and only if 2n = 2k3l with !.· 2: 1. Since 11 is odd we 
must have n = 31 for some l 1. 0 

DEFINITION 5. A quatern·ion group of orde1' 11 = 2"' , m 2: 3, is pTesrnted as 
follows: 

( I 
2 "•- 1 2 2 m- 2 1 ) Q 1l = .I' y .1' = ) y - .I' !P-' = .1' - y . 

TIIEOREt.I 6. Q, is not a POS grou]J. 
Proof. We will show that Q,. is not a POS group by showing 10·11 f n. First, note 

there arc n / 2 clements of the form :r iy, where 0 _ i < n / 2. 
CLAIM 7. lx1y l = 4 for all 0 i n / 2. 
Proof We can see that .~: 1 y.r'y = :~·i(:~·i ) - 1 yy = y2 = .r2 '" ., So, the order of .riy 

is not two. Clearly, I xi vi :f 3 since 3 does not divide 11. Finally, note that 

Thus, j.r;yl = 4 and we have at least 11 / 2 clements of order 4. 0 
Now, let j E z+ and 0 < j < n / 2. There is at least one element of the form .rJ 

with order 4 since j.r" /8 1 = 4. Let k E Z be the number of clements of the form .ri 
that have order 4. For Q, to be a POS group, we must ~how that ( ~ + k) I n. 

·' 
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There are no divisors of n between n / 2 and n , so k = 0 or n / 2. We know that 
k :/: 0 since n 1 is non-empty. So k = n / 2, but there are only (n / 2) - 1 elements of 
the form .~:i with 0 < j < n / 2, a contradiction, and Qn is not a POS group. 0 

3. Semi-Dihedral and Quasi-Dihedral Groups. 
DEFINITION 8. A sem i-dihedral group of order 11 = 2m , m 2: 3 , is presented as 

follows: 

SD ( t I 2 '" - 1 t2 t 2"' lt} . ., = S, • S = f' = , S = S 

THEOREt.I 9. SD11 is not a POS group. 
Proof We will show that SD,. is not a POS group by showing 102 1 f n. 
There arc n/ 2 elements of the form sit, where 0 ~ i < n/2. Furthermore, half of 

these elements have i even, and half have i odd. Thus, there are n / 4 elements of the 
form sit where i is even, and n / 4 clements of the form .'h wlwre i is odd. 

CLAit.l 10. sit ! = 2 if and only ifi is even. 
PToof. Consider (.s't) 2 : 

Since the order of s is n / 2, we sec that si" / 4 = if and only if ·in/ 4 = 0 mod n/ 2. 
The latter equivalence is true if and only if i, = 0 mod 2. 0 

CLAit.I 11. L t 0 j n / 2. Then jsi l = 2 if and only if j = 77 / 4. 
Proof. If j = n / 4 then (si )2 = s" / 2 = e. Now suppose lsJ I = 2 for some 

0 < j < n / 2. Since si si = s2i = e , we know that 2j =:- 0 mod 11 / 2. This implies j = 0 
mod n / 4. Since 0 j n/ 2, we sec that there is exactly one value for j, namely 
j 11 /4, which satisfies this condition. 0 

Claims 10 and 11 imply that 102
1 = n / 4 1. Since n = 2m , the divisor~ of n 

that arc larger than n / 4 are only n/ 2 and n itself. Now n /4 + 1 = 11 does not have 
an integer solution, while n / 4 + 1 = n / 2 implies 11 = 4. Since n _ 8 by assumption, 
we have a contradiction. Thus, 1021 does not divide n, and SD 11 is not a POS group. 
0 

DEFINITION 12 . A qnasi-dilt dml group of order n = 2111
, m ~ 4, is prPsented as 

follows: 

2 m- l 2 
QD,. = (a, b I a = e b = e, ba 

THEOREt.I 13. QD, is not a POS gmnp . 
Pmof We will show that QD11 is not a POS group by showing that 1021 docs not 

divide 11. 

To begin, we will show that for 0 < i 11 / 2. there is only one element of the 
form ai with order 2. If jc/ I = 2, then 2i = 0 mod n / 2, so i = 0 mod n / 4. Since 
0 i n / 2 we mu~t have i. = n / 4. 

Now, we will show that for 0 _ j < n / 2, there arc exactly 2 clements of the form 
aJb with order 2. We sec that 

If jai bl = 2 then j(2 n / 4) = 0 mod n / 2. Now u = 2'" , so we C'an say ) (2 2111
-

2 ) = 
0 mod 5, which implic~ j (1 + 2111 - :l) = 0 mod 2111

-
2 • 
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Since 1 + 2m- a is clearly relatively prime to 2"'- 2 when rn > 3, it has a multi­
plicative inverse mod 2"' 2 , and we can say that j = 0 mod 2111

-
2 . 

We see that j needs to be a multiple of 2m - 2 . Since n = 2m, j needs to be a 
multiple of n / 4, and 0 ~ j < n / 2. Onr possibilities arc j = 0 and j = n / 4. Thus, the 
number of elements of the form a.ib with order 2 is 2. 

Finally, f!2 = 3, and we know that 3 does not divide 11. since 11 = 2"'. Thus, 
QDn is not a POS group. D 

4. Remarks. In [1], the authors query whether a POS group G, whose order 
is divisible by an odd prime, must have 3 dividing jG j. Our dihedral group example 
provides further support for their conjecture. 

The four types of groups we studied are examples of metacyclic groups (groups 
which have a cyclic normal subgroup and corresponding cyclic quotient group). A 
natural follow-up to this paper would be to study the family of all mctacyclic groups, 
or at least the metacyclic p-groups. 

One can use Theorems 1 and 3 of [1] as well as their Proposition 1 and Corollary 
1 (which amount to our Lemma 2) to prove that ll , is a POS group if and only if 11 is 
of the form 2k3l, where /..: 2: 1 andl > 0. Now the dihedral group D 2 , is isomorphic to 
the semi-direct product &::, )cl :q;;2. The fact that D2 11 is a POS group if and only if &:: " is 
an odd order POS group suggests that there might be a semi-direct product version of 
the "Going-up" and "Going-down" theorems of (1] (Theorems 1 and 3 respectively). 
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CONGRUENCES MODULO A PRODUCT OF PRIMES 

.JEREMY THIBODEAUX* 

Abstract. In this paper, congruences of the form aQ = a( mod m ) are investigated . Where a is 
a natural number, Q is prime, and m is a product of distinct primes , including Q. The result is a 
slight generalization of Fermat's Little Theorem. 

It can be shown with little effort, by use of Fermat's Little Theorem, that the 
congruence a7 = a(mod 42) holds for all natural numbers a. Note that 42 is a product 
of distinct primes, namely 2, 3, and 7. The same is also true for a37 = a(mod 1295). 
So one natmally asks what Q and rn will allow the congruence aQ = a(mod rn) to 
hold for all natural numbers. Before this question is answered, the case a 7 = a( mod 
42) will be shown as an example. 

EXAt-.IPLE: a7 = a(mod 42) for all a N. 
Proof If it can be shown that a7 a(mod 2), a7 = a(mod 3) and a7 = a(mod 

7), then we have the result that a 7 _ a( mod 42). By Fermat's Little Theorem, 

a2 = a( mod 2) 

multiplying by a we have, 

again multiplying by a., 

therefore, 

a7 = a 2 = a (mod2 ). 

Also by Fermat's Little Theorem, 

a3 = a (mod 3) 

squaring both sides we get, 

multiplying by a, 

7 - 3 - ( 13) a = a. = a. 1noc . 

And of course, 

a? = a (mod 7). 

So what we have found is that 2 (a7
- a), 3 (a7 - a), and 71 (a7 - a). Since 2, 

3 and 7 arc all prime, 2 · 3 · 7 I (a7 - a.), or 42 J (a7 - a) and hence a.7 = a( mod 42) for 
all a E N. D 

*University of Louisiana at Lafayette 
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The following lemma will be helpful in proving the general result. 
LEl'\'ll\IA 1. Let n b a natuml n·urnber and p be a primP. Then a" 

for all a E N if and only if (p - 1) I ( n - 1). 
Proof. Assume (p - 1) I (n - 1) . Then, 

n. - 1 
--= k 
TJ 1 

for some k EN . Equivalently, n - k(p - 1) = 1. 

= a(mod p) 

By Fermat's Little Theorem we have a~' = a.(mod p) for all a E . Note that 
the difference in the exponents of a is p - 1 and that this relationship is clearly 
preserved for any multiplication of the form ai where j is a natural number. So for 
any natural number m with m. _ p, we have a"' = am- (IJ- l l (mod p). This process can 
be continued until we reach a:" where .r is a natural muubcr such that 1 _ .r _ 'P - 1. 
Therefore, we have 

a" = a" - (p- 1) = an- 2(p- l) = ... = an - k(p I ) a. 

The contrapositivc method is used for the converse. Assume (p - 1) f (n - 1). 
Then by the division algorithm, n k(p - 1) = x + 1 for some k N and some natural 
number x such that 1 :r p 1. Therefore we have, 

a" = an - (p- 1) _ an - 2(p- 1) = ... = a••- k(p t ) = a·r+ l. 

Since :r 1 < p, it is not true in general that a:c+I = a(mod p). Thus 
a" = a( mod p) docs not hold for some a N. Therefore if a" = a( mod p) for all 
a E N then (p - 1) I ( n - 1). D 

THEOREl\1 2. LetS = {1, 2, 3, ... , n}. Let m = q1q2q3 · · · q,.Q , wherP each q; is 
a distinct prime and Q is a ]Jrirne larger than each q;. Then 
aQ = a( mod m) for all a N if and only if (q; - 1) I (Q - 1) for all i S. 

Proof. Assume (q; - 1) I (Q 1) for all i. S. Then by the lemma, a9 = a(mod 
q; ) for each 'i Sand aQ = a(mod Q) . Thus for each ·i S we have that q; I (aQ a) 

and Q I (aQ - a). Since each q; and Q are prime, we have that m I (aQ - a). Therefore 
aQ = a.(mod m) for all a. N. 

Now assume that for some 7' S, (q, . - 1) f (Q 1). Then by the lemma, 
aQ = a(mod q,.) docs not hold for some a E N. Therefore aQ = a(mod m.) does not 
hold for some a EN. Thus if a9 = a(mod m) for all a N then (q; - 1) I (Q - 1) for 
all i E S. D 

Now if we define an arithmetic function P( 11) to be the product of all primes p 
less than or equal to 11 such that (p - 1) I ( n - 1), then we can easily conclndc that if 
Q is a prime then aQ = a(mod P(Q)) for all a N. 
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PROBLEM DEPARTMENT 

EDITED BY l'v!ICHAEL MCCONNELL AND .JON A. BEAL 

This dl']Jar·tml'nt welcomes ]Jroblems believed to be n ew and at a lev el appmpriate for· the r-eade1·s 

of thi.~ jounwl. Old pmblems displaymg novel and elegant methods of solution arl' 1Ll.~o imnted. 

Pm]JOsaL~ should be accmn]Janied by solutions if available and by any information that will assist 

till' editm·. An a.ster"isk (*) 1l1'f'cl'diny a pmblcrn number i.ntlicates that the pmposer· did not submit. a 

solutwn. 

All eor7·es7J01tdcn cc should be addn;ssed to Michael McConnell, 840 Wood Street, Mathematics 

D pm·tment, Clar"ion Univl'1'sity, Clar"ion, PA 16214, or sent by email to mmcconnell@clarion. edu. 

Elcdmnic sulnnissions uszny l!,ITFJK am encoumyed. Plmse submit each pmposal and solutwn prefer­

ably typed o1· clearly 1mi.Uen on a .~ epamte sheet ( onl' side only) prope1'ly identified with name, affil­

wtion, and addr-ess. Solutions to pmblerns in this issue should be mailed to anive by I May 1, 2004j 

Solutions ident.ified as by student .. ~ are gi1Jen pr-eferf'nce. 

Problems for Solution. 

1062. Pmposed by !vi. Klwshne"Uisan, Gold Coast, Q"Ueensland, Austmlia 
A Generalized Smarandache Palindrome (GSP) is a concatenated munber of the 

form: n1 a2 · · ·an an· · · a2a1 or a1 a2 · · ·a, _ I a" a" 1 · · · a2a1, where all a1, a2, ... an are 
positive integers of various numbers of digits. Find the number of GSP of four digits 
that arc not palindromic mnnbcrs. 

1063. Proposed by Monte J. ZergeT Adarns State College, Alamosa, CO. 
Find all triples of consecutive integers (a,b,c) such that 

aa + ba ca 

abc 

is integral. 

1064. Propos d by Ka1'l Da"U·id, Mi.Z.waukee School of Engi.n epr·ing, Milwaukec>, WI 
Consider numbers formed by concatenating two or mon• successive powers of 2 

[for example, 816 or 248163264]. Show that no such number is itself a power of 2. 
That is, show that for 11. _ 0 and k _ 1, 

2,.2"+1 · · · 2n +k: ::/= 2"' for any m .. 

1065. Proposed by Jose Luis Diaz-Bar"Tem, Uni"Urrsitat Polit i:cnica d Catalunya, 
Bru·c lana , Spain 

For any triangle 6 ABC, prove that 

sin2 A + sin2 B sin2 B + sin2 C sin2 C + sin2 A 
. + . + . > 3J3 

Sill c sm A Sll1 B -

and determine when equality holds. 

1066. Propos d by Jo HowaTd, Por·tal s , NAI 
Let a, b, (' be sides of a triangle. Show that 

b + c be 

(s - b)(s - c) 

For which triangles docs equality hold? 

a + b c 
where s = ----

2 
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1067. Propos d by Ayoub B . Ayoub, Penn State Abi.ngton, Abington, PA 
Suppose pis an odd prime number. Show that 

is divisible by p if n is even and not divisible by p if n is odd. 

1068. Pmposed by William Chau, SojtTechies Cor-p. , East Bmnsw·ick, N.J 
On pp. 35-39 of On Pr-ime Numbers and P erfect Numbers, Scripta 1\Iath, Vol. 

19, 1953, Jacques Touchard proved that any odd perfect number must be of the form 
12k 1 or 361.: + 9. If an odd perfect number is of the form 361.: + 9, prove that it can 
be further reduced to the form 1081.: + 9, 108k + 45, or 324k 81. 

1069. Pmposed by Monte J. Zer-ger, Adams State College, Alamosa, CO. 
Show that 14 - 24 + 34 - 44 + · ·· + (- 1)"+ 1n 4 = (- 1)"Tm whcreT,11 is a triangular 

number. 

1070. Pmposed by Ov·id·iu F'U1·du·i, Westem Michigan Univer·sity, Kalamazoo, MI 
Determine the convergence of the series 

Corrections. In the Spring 2003 issue, problem 1054 should read a.o:; : 

Let a 1 , a2, . . . , a,. be integers such that 0 $ a 1 .$ a2 ~ . .. < a11 • If 

{ 
ak - a · - 1 } { ak - a · + 1 } 

max k 1 
. < mi1~ k 

1 
. 

k > J • J k > J • - J 

then there exists 111. and b such that a; = [[mi + b]] for all i. 

Solutions. 

1043. [Fall 2002]Pmposed by Peter A . L1:ndstrorn, Bafauia, NY. 

The year 2002 is a four digit base ten palindrome as was the year 1991. (a.) Can 
1991 be rewritten in a different base as a palindrome with four digits? (b.) Can 2002 
be rewritten in a different base as a palindrome with four digits? 

Solution by William H. Peirce, Rangeley, ME 
Let N > 0 be a base-ten palindrome which is expressed as a four-digit palindrome 

.ryyx in a base b f 10. x and y must satisfy 0 ~ .1: , y $ (b - 1) except that .r andy 
cannot both be zero. N = x b3 + yb2 + yb + .r = (b + 1){ (b2 - b + 1).r + by} shows 
that the only allowable bases b, finite in number, arc those for which b + 1 divides N. 
Henceforth b will be such a base. 

By inspection, x is the unique remainder 0 _ :r (b - 1) obtained when N = 
xb3 + yb2 yb x is divided by b, and the integer y is then found from 

[N - .r(b3 + 1)] 
y = (b2 + b) . 

With .r and y so determined, Nb - xyyx is an arithmetic palindrome in base b, but 
Nb may or may not be a valid palindrome since y may or may not be in the range 

.. 
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0 _ y _ (b - 1). Let N = 1991. The divisors of 1991 arc 1,11 ,181,1991 and the 
choices of b, excluding 0 and 10, are 180 and 1990. Forb = 180, :r = 11 , y = - 1969, 
and 1991Jso = 11, - 1969, - 1969, 11. Forb = 1990, x 1, y = - 1989, and 1991} 99o = 
1, - 1989, 1989, 1. Both palindromes arc arithmetically correct, bnt neither is valid 
siucc yin each is not in the proper ranger, 0 ~ y ~ (b - 1). Therefore, 1991 cannot 
be written as a valid palindrome in a bal:ic b f 10. Let N = 2002. The divisors of 
2002 arc 

1, 2,7,11,13, 14,22,26,77,91,143,154,182,286,1001 , 2002 

a))(l the choices for b excluding 0 and 10, arc 1,6,12,13,21 ,... 2001. 20021 -

0 , 1001, 1001 , 0 and 2002G = 4, 27, 27, 4 arc arithmetically correct palindromes but 
not valid since yin each is greater that b - 1. 2002 12,20022 1,200225 , ... , 20022001 are 
not valid palindromes since y in each is negative. Therefore, N 1:3 = 0, 11, 11,0 is the 
only valid palindrome for 2002 in a base other than 10. 

Also solved by The Cal Poly Pomona Problem Solving Group, Pomona CA, William 

Chau, East Brunswick , N.J , Richard I. Hess, Ra ncho Palos Verdes, CA, David E . Manes, 

SUNY College at Oneonta, Oneonta, NY Yoshinobu Murayoshi Okinawa, .Japan , Mike Pinter, 

Belmont University, Nashville, TN, Rex H. Wu, Brooklyn, NY, and the Proposer. 

1044. [Fall 2002 Pmposed by Thomas J. Pfaff, Uniuer·s'ify of Wisconsin-Superior, 
Super-ior, WI. 

Evaluate 

11 - 1 
'/1. 1 

lim -- "" --­
" - In n L....t n i. ·i2 

i = l 

Solution by Justin Couchman, Mike Davis, and Whitney Kaczor , S UNY 
Fr-edon·ia, Fr·edonia, NY. 

Using partial fractions, 

1 1 ( 1 1 ) - - +-- . 
Tl i. n - i. i.(n - i )) 

Thus we have 

/1. ILI-I 1 . 1 ILl-] (1 1 ) 
lim -- --- = lnn -- - + --

11 • In n ni - i 2 ~~~ ln 11 . i 11 - i · 
i = 1 t = l 

Since 

~. ~ I(~ L ;, 
i - 1 

II ~ i) (~ ... +(-1 + ~) 
n - 2 2 

1 ) (1 1 ) -- + - + --
n - 1 2 n - 2 ( n ~ 1 ~) 

we obtain 

·n u - l 1 2 Il - l 1 
lim -- "" --- = lim "" ~~ ~ Inn. L....t n i - i2 ~~~ ln 11 L....t -;: · 

i = J i = l 

Notice 

1• 11 1 u - 1 1 i" 1 
- d.r ~ "" -:- ~ --d.r + 1 
:r L....- 1. :r - 1 . I i = l . 2 
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and therefore 

n - 1 
1 

Inn _ L i _ ln(n 1) 1. 
i = 1 

Taking limits gives 

Inn 1 n 
1 1 ln(n - 1) +1 

lim -- < -- "' - < ----''----:--'------
, oo Inn - Inn ~ ·i - Inn 

; - J 

By the sandwich theorem , 

1 n - 1 1 
lim -- L - = 1. 

" Inn . i •- 1 

Thus, 

n n - J 1 1 71 1 1 
lim -- "' --- = 2 lim -- "' - = 2. 
n~oo Inn~ ni - i 2 ~~ ~ Inn~ i 

i = J i - 1 

Also solved by The Cal Poly Pomona Problem Solving Group, Pomona CA, William 

Chau, East Brunswick, N.J , Jose Luis Dlaz-Barrero, Universitat Politccnicade Catalunya, Barcelona, 

Spain, Richard I. Hess , Rancho Palos Verdes, CA, Joe Howard, Portales, NM, David E. Manes, 

SUNY College at Oneonta, Oneonta, NY Mike Pinter, Belmont University, Nashville, TN, Rex 

H. Wu, Brooklyn, NY, and the Proposer. 

1045. [Fall 2002 Proposrd by Mohammad K. Azar"ian, Unver·sity of Evansvill , 
Evansville, IN. 

Suppose that G is an abelian group with 2n elements, where n is odd. Without 
using Sylow Theorems, show that G has exactly one subgroup of order 2. 

Solution by Cal Poly Pomona Problem Solving Group, Cal Poly Pomona 
Let G be an abelian group with 2n elements, where n is odd. So G has an even 

number of clements. Since G is a group, there exists a unique identity in G, hence 
G has an odd number of non-identity elements. We know that for every x in G there 
exists a unique .1· 1 in G such that :r.r: - 1 = e. So every clement in G can be "paired" 
up with its unique inverse. Since we know that G has an odd number of non-identity 
elements, there exists at least one element in G, say a, which is its own inverse. 
l'vloreover, this element along with the identity make a subgroup of G, say K. 

To show that there only exists one subgroup of order two, assume by contradiction 
that there are at least two. So let /( = { , a} and /(' = { e, b}, where a f. b. If this is 
the case, we can construct the subgroup A/ = { e, a., b, ab}, where AI _ G. We know 
that JG = 2n, where n is odd and JAil= 4. Since AI < G, JAi l divides JGJ, which is 
a contradiction since 4 doesn't divide 2n when 11 is odd. Therefore there is only one 
subgroup J( of G where JKI = 2. 

Also solved by David E. Manes, SUNY College at Oneonta, Oneonta NY Rex H. Wu, 

Brooklyn, NY and the Proposer. 

1046. [Fall 2002] Pmposed by Paul S. Bruckman Sacmmento, CA. 
Let S 1 = {x 1, xz, ... , x, }, where the .rjs are positive and not neccsarily distinct. Let 

Sk denote the set consisting Of all C~ possible products of the form X j 1Xh · · · .l' jk 

where the j£s are distinct, k = 1, 2, ... , n. If Gk represents the geometric mean of 

·' 
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the elements of Sk, prove that Gk = (G1)k. Solut·ion by Kathleen E. Lewis, SUNY 
Oswego, Oswego NY 

First we note earh element .rj; appears in (~ = ~) of the products, as it will appear 
with every possible k - 1-subset of the otlwr elements. Since the geometric mean Gk 
is the (~) 'th root of the product of these subproducts, each a·j, will be raised to the 

power (~=D / (~l This simplifies to 

(n - 1)! k! (n - k)! 

(k - 1}!(n - k)! n! n 

Thus Gk = (.r: 1.r:2 · · -:r,,>k'~". By substituting 1 fork, we see that G1 = (x 1.r2 · · · .r,. )11" , 

:;o G~.- = (Gt)k, as required. 
Also solved by William Chau, East Brunswick, N.J, William H. Peirce, Rangeley t.laine 

and the Proposer. 

1047. [Fall 2002]Pmposed by Mohammad I<. A zarian. Urwersity of Evansuill , 
Evansville, IN. 
Show that 

for 0 < a < 1r / 2. Determine when equality holds. 
Solution by The Cal Poly Pomona Problem Solving Group, Pomona, CA 
Consider the right triangle with sides a, b, c where c is the hypotenuse and a is 

the angle opposite a. Then we can rewrite the inequality as 

Combining terms we get 

Using the Pythagorean Theorem we arrive at 

c·' 

a2b2 
4. 

Now we take the square root of both sides obtaining 

('2 ') 
- > 2 ¢? c- 2ab 
ab -

Clearly this last inequality holds. Strict equality occurs wheu a = b. That is, when 
o = 7r/ 4. 

Also solved by William Chau, East Brunswick , N.J , Kelly Chen, !Jth grade student , Wayne 

Hills H.S., ·wayne, N.J, Paul Dawkins, student , Angelo State University. San Angelo, TX, Jose Luis 

Dlaz-Barrero, Universitat Polilecnica de Catahmya, Barcelona, Spain, Richard I. Hess, Rancho 

Palos Verdes, CA, Joe Howard, Portales, Nt.l , Kathleen E. Lewis , SUNY Oswego, Oswego, NY, 

Peter A. Lindstrom,Batavia, NY, David E. Manes, SUNY College at Oneonta, Oneonta, NY, 

N.R. Nandakumar, Delaware State University. Dover, DE, Mike Pinter, Belmont University 

Nashville, TN, Dale Wilger, Jennifer Wystup, Katie O'Hara, S NY Fredonia . Fredonia, NY, 

Rex H. Wu, Brooklyn, NY, and the Proposer. 
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1048. [Fall 2002]Proposed by Peter A. Lindstrom, Batav·ia, NY. 
Without using the Fundamental Theorem of Calculus, give a geometric argument to 
show that 

/

·1 2 1f 
- - dt =­

. 0 t 2 + 1 2. 

I. Solution by Peter A. Lindstrom, Batavia, NY. 
With the definite integral taken over [0,1] and the result bciug ~ po:-;:-;ibly ::mggests 

a unit circle is involved in some way or manner. Consider the-set of parametric 
equations 

t 2 - 1 2t 
.1: = - - and 'If = --

t2 + 1 . t2 1 

Eliminating the parameter t , we see that 

2t 2 t-1 - 2t2 + 1 4t2 

(t2 + 1) = (t2 + 1)2 = 1, 

so that this set of parametric equations represents a unit circle centered at the origin 
and for t E [0, 1], this represents that circle iu the second quadrant. Since the area of 
the port ion of the circle is not I• let 's consider the arc length in the :;ccond quadraut 
which is I . Using the arc length formula for a curve given in parametric form , we 
obtain 

/

·I 

.o { 
d t 2 - 1 }

2 
{ d 2t }

2 

( ) + ( ) dt which 
dt t 2 + 1 dt t 2 + 1 , 

Simplifying, we obtain 

{ 
d (t2 - 1) }

2 
{ d ( 2t ) }

2 

dt t2 + 1 + dt t2 + 1 dt 

{ 
4t }

2 
{ 2 2t2 }

2 

(t2 + 1)2 + (t2 + 1)2 dt 

4(t2 + 1)
2 

/'
1 

2 
(t2 + 1)•1 dt = . 0 t2 + 1 dt . 

II. Solution by Mike Printer, Belmont Uu:iver'i.sty, Na.sh:trill , TN. 
!\lake the substitution t = tan 8, dt = :;cc2 (J d(J, to obtain 

£1 2 1arc lau l 1 /' T 
-- dt = 2 2 SCC2 (J d(J = 2 1 d(J 

. 0 f 2 1 arcl au 0 tan (J + 1 . 0 

This last integral is equal to twice the area under t = 1 from (J 
equals twice the area of a 1 by 1r / 4 rectangle which is 1r / 2. 

0 to (J = 1r / 4. This 

1049. (Fall 2002] AndT w Ou.mrnano. Great N ck. NY. A Fibonacci-type se-
quence is defined by the rules F1 = A, F2 = B and Fn+2 F, F, +1 for n _ 1, 
where A and B are constants. Show that for each n ;::: 1, 

·' 
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Editor:;' note: We incorrectly typed the problem, as shown below. 
Solution by Kelly Chen, student, WaynP Hills High School, Wayne NJ 

507 

This is a wrong equation, here is a counter-example: Let F 1 = 1, F2 = 2, then 
F;1 = 3. Substitute into the equation, we get that the left hand side is 36 while the 
right hand side i:; 24 , therefore the equality docs not hold in general. 

Since I believe there is a typo in the journal , I tried to think about what a correct 
problem would be. There h; a high likelihood that the correct equation is the following 
one 

• • 3 3 3 [ ') 2 l Modlficatlonoftheproblem: F, + F, 1+ F,+2 = Fn+2 2F17+ 2F,+1+ FnFn+l 
' : .· ' 3 3 2 2 [ ] 3 :3 P10oj. Usmg F11 + F11 +1 + 3F,+1F, + 3F, +1F, F, + Fn +I = Fn +2, we get 

Also solved by Scott H. Brown, Auburn University, .fllontgomery AL, William Chau, Sort­

Tcchies Corp. , Eas t Brunswick , N.J , Richard Hess, Ra ncho Palos Verdes, CA, David E. Manes, 

SUNY College at Oneonta, Oneonta NY, Mike Pint er, Belmont Univers ity, Nashville TN, Rex H . 

Wu, Brooklyn, NY and t he Proposer. 

1050. [Fall 2002]Ronald Korms, ClaTi.on Unive1·sity, ClaTion, PA. 
A lott.Pry uses 31 ball:;, numbered 1 through 31. Six of these balls arc selected 

in the drawing, so each lot tery ticket contains six numbers from 1 through 31. Show 
that it is possible to buy exactly 31 t ickets so that each pair of numbers appears on 
exactly one of the tickets. 

Solution by The Skidmore College Problem Group. Samtoga SrJrin_q.s. NY 

Organize the 31 numbers as follows: n 0 ,n1 , ... , n 5,n1,1, 1t 1,2, ... ,ns,5· Now let 
ticket 1(1 = {n0 , ... , 115 } . For j 1, ... ,5, let ticket To ,) = {no} U { ni.HI : ·i 
0, . .. , 4}. Now, for j , k = 1, ... 5, define ticket n .. i = {nk} U {n;+ 1,j+b : ·i = 0, ... , 4} , 
where m = m. (mod 5), ill {1, ... , 5}. Notice that this defines 31 tickets, each 
containing (~) = 15 different pairs of numbers. Since there are e21

) = 495 = 31 X 15 
different possible pairs among the 31 numbers, it will snfficc to show that no two of 
our tickets can have more than one number in common. 

PROPOSITION 1. No two tickets have mm·p than one n:ttmbeT i.n common. 

Pmof. First , note that by design, To shares exactly one number with every other 
ticket. So suppose To,J1 n To.h 2 {no, n,.,,, } for some 1·, s. Then n,.,_. To ,h implies 
r = .h and n,.,,, TcJ,h implies 1' .h · Therefore, ) 1 = )2. Next, suppose that 
To,J1 n Tk ,h _ {n, ..• , ·n, ,,} . As above, r = .i1 and t = )I gives 1' = t. But now 
11,., ,, n .,h ami 'llr,IL T k,h gives s = 'll. Finally, suppose that n.l ,) l n Tkl ,h 2 
{n,.,,.,n1,,}. Thcu r = i1 1 for some i.1 = 0, .. .4. So s = J1 + /,:I'l l = h /,·2·i1. 
If t = i 2 + 1 for some i2 0, ... 4, then n = ) 1 + k 1i2 = )2 + k2i2. These give 
)I - J2 = i1 (k2 - k1) = i2(k2 - k1 ). So either i 1 = i2 or k1 = k2. In either case we 
get ·r = t and s = 11 . 0 

Also solved by Paul Dawkins, student Angelo Sta te University, San Angelo, TX, Richard 

I. Hess, Rancho Pa los Verdes, CA, Kathleen E. Lewis, SUNY Oswego, Oswego, NY, David E. 

Manes, SUNY College at Oneonta, Oneonta, NY, Mike Pinter, Belmont Universi ty, Nashville, 

TN, Rex H. Wu, Brooklyn, NY, a nd t he Proposer . 
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1051. [Fall 2002] Monte .!. Zer,qer, Adams State College, Alamosa, CO. 
The two squares in the figure below are congruent. In the figure on the left, the 

octagon is formed by joining the bisection points of the sides of the square to vertires 
as shown. In the second figure on the right, the trisection points of the sides are used 
instead. 

1. Show that the octagons are similar, equilateral, but not equiangular. 
2. Find the ratio of their areas. 

Lr 

H.-I) {1,-1) 

I 5 - l.f 

Solution by William Peirce, Rangeley, ME 
Without Joss of generality, let the square in which each octagon is placed have 

corners (1,1), (1,-1), (-1,-1) , (-1,1) and let A = (a, 1) and B = (b, 1), - 1 a < b < 1, 
be two points on the top side of the square. These two points define the (convex) 
octagons. In this problem, a = 0 and b = 1/3. The octagon vertices and other points 
are marked on the problem statement . 

By routine analytic geometry using a = 0 and b = k, we have P1 ( k, k), 
P2 = (~,0), Pt = (k, - f), P2 = (0, - ~), Ps = - P,, etc., and Q, a, ~), Q2 = 
(~, 0), Q3 = a, - ~), Q,, = (0, - ~) , Q5 = - Q1, etc. Each side of the left octagon in 
../5/6 units long and side of the right octagon is J57l8 units long, so each octagon 
is equilateral. 

The segments P1P3 and P2P1 arc 2/3 and Jf72 uni ts long, respectively, so the 
interior angles at P2 and P3 are not equal, and the left octagon is not equiangular. 
Likewise, the segments Q 1Q3 and Q2Q.1 are 1 and v'8f9 units long, respectively, so 
that the interior angles at Q2 and Q3 are not equal and the right octagon is not 
equiangular. 

Now consider triangle P1P2P3, whose sides squared arc ( }1, ~' ; 6 ) = (5, 16, 5) / 36, 
ad triangle Q2Q3Q., whose sides squared arc ( 1

5
8, &, ?a ) = (5, 16, 5)/ 18. These tri­

angles with their sides squared are similar as arc these triangles without their sides 
squared. Thus L.P2 = L.Q3. Similarly, L.P3 = L.Q2. Since the alternate angles of the 
two octagons are equal, the octagons are similar. 

The area ratio of two similar polygons is equal to the ratio of the squares of 
corresponding sides, in this case ~~~: = f, larger octagon to smaller. 

For general a and bin the range - 1 < a < b < 1, the two octagons are equilateral 
but not equiangular. they are similar if and only is (3 - a)(3 - b) = 8, which includes 
the case a - 0 and b = 1/ 3. The area ratio for similar polygons is 

2(1 - a) 2 

(1 + a) 2 

(1 + b)2 

2(1 - b)2 
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larger octagon to smaller. 
Also solved by Richard Hess, Rancho Palos Verdes, CA, Gus Mavrigian, Youngstown OH, 

Rex H. Wu, Brooklyn, NY and the Proposer. 

Polyhedral :Maze contributed by Prof. lzidor Hafner from the University of Ljubl­
jana ( izidor. hafner1Qlfe.uni-Jj .si ). 
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Whmn Isabelle could not disturb 

Sustained winds near 140 mph, large ocean swells and dangerous surf disrupted 
mail service, caused power outages, frightened people, and damaged property but 
could not stop our referees from doing their valuable duty. After all, as one of them 
put it, in times of great distress, mathematics, as it occupies the mind and docs not 
require electrici ty, reveals strengthening and soothing qualities. 
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a . T he __ Principle relate~ 

genotypes in succeeding 

generations 

b. __ stroke, meaning the 
negation of a conjunction 

c. Calculus in which partial 

derivatives are us -d. 

d. ratio test 

e. Frisco to LA (2 wds) 0-15 ou1 108 oo8 089 017 14 12 1 

f. Greek mathematician, long time 08 1 065 o .12 099 145 wu 192 ow 

head of the Academy m 18 9 

g. Famous graphic artist 051 078 ill 020 157 TIN 

h. They follow from the axioms 012 126 199 03·1 159 1·1U 100 05U 

1. Battles around Ivloscow didn't stop 150 057 110 028 125 ill 202 TIT 

publication of Laplace's seminal 010 oo5 wo 035 102 13U 

work on probability this year. 

j. The greatest or least on 1·12 155m 019 022 ou3 115 TiiT 

an interval 127 TIIT 180 187 038 iJ1 133 oou 

k. Used in Gau~ian elimination o33 177 IU3 138 015 

l. Having excess ma~s 175 201 031 010 148 103 001 075 1:JO 088 

m. False usc of probability to 076 o9u 198 TT9 TiiT 029 ITO 18U 

predict frequency (3wds.) m TIO 087 1uo o.w 

n. One half when used to make 

a continuity correction on a 

chi-square te~t (3 wds.) 

o. Linem- transformation not 

including a rotation 

p. Optional for conditional 

·' 

q. Not in agreement 039 023 052 Tim JU4 074 002 085 

r. How Germans read numerals from on5 IU7 17fl 044 12n 194 083 066 

21 through 29 (3 wds. ) orr 13fl TIS 

~. Preserving collinearity 

Last bsue's mathacrm;tic w~ taken from "How to Solve it", by George Polya. 

Setting up equations is like translation from one language into an­
other. This comparison, used by Newton in his Arithmetica Univer­
salis, may help to clarify the nature of certain difficulties often felt 
both by students and by teachers. 
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