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TH E OFFICIAL PU BLICATION 

OF THE HONORARY MATHEMATICAL FRATERNITY 

MANAGEMENT SCIENCE: 
A NEW FIELD FOR APPLIED MATHEMATICIANS* 

By William Prager 
Division of Applied Mathematics 

Brown University 

AS the title indicates, my talk is concerned with a new field 
of scientific endeavour called "Management Science. * I shall not 
attempt to define this term a t  this time; rather, I will discuss 
some typical problems from this field and indicate the type of 
analysis that is used in their solution. 
. . 

When I began organizing this talk, I remembered an advertise- 
ment which I had repeatedly seen in some scientific journal. This 
advertisement stated that a certain company was looking for a 
special kind of mathematician and was willing to pay especially 
well for his services. It went on to specify more precisely the 
educational background and scientific inclinations of this special 
kind of mathematician and finally stated that he would work a s  
toplevel consultant to business executives. Among the scien- 
tific inclinations which the advertisement enumerated was a liking 
for mathematical puzzles. 

Of course, no sooner had I decided that this advertisement 
would make an ideal starting point for this talk, than the company 
stopped running it, and despite several attempts I have not been 
able to locate the journal where I had seen it. Thus, I cannot pro- 
ject this advertisement onto the screen, a s  I should have liked to 
do, but I will nevertheless use i t  a s  a spring board. 

What strikes us a s  curious in this advertisement is that a 
liking for, and presumably skill in dealing with mathematical puz- 
zles should be listed a s  one of the qualifications of this mathe- 
matical consultant to management. Actually, this is not a s  strik- 
ing a s  it may appear at  first sight. Consider, for instance, the 
following well-known puzzle, which is attributed to Alcuin, the 
teacher of Charlemagne. 

* Lecture given before the Brown Chapter of the Society of the 
Sigma Xi on April 19, 1956. 
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A farmer who i s  bringing a goat, a basket of cabbage, and of 
all dungs, a wolf to the market town has to cross a river using a 
boat that accommodates, in addition to himself, only one of his 
three commodities. How will he manage to ferry these across the 
river in view of the fact that the goat must not be left alone with 
either the wolf or the cabbage? 

You probably have come across this puzzle before and may 
wonder whether the mathematical consultant could do much to help 
the fanner, short of trying various courses of action and discard- 
ing those that do not work, until he finally stumbles upon one that 
does work. While this procedure is  quite adequate for the simple 
problem considered here, a systematic survey of all possibilities 
i s  indicated for more complex problems. In the present case, such 
a survey can be made a s  follows. 

Using the initials F, C, G, and W to indicate farmer, cabbage, 
goat, and wolf, specify a 'statew of the system by listing the in- 
itials of those items that are on the near side of the river, and 
employ 0 to denote the desired final state in which all items are 
on the far side. Our task then i s  to make the system pass from the 
initial state FCGW through some intermediate states to the final 
state 0. Disregarding all restrictions, we would have the 16 
states listed in Fig. 1. 

FIG. I 

MANAGEMENT SCIENCE 

Now, states containing the letter groups CG or GW without 
also containing the letter F can be ruled out, because the goat 
would be on the near side with either the cabbage or the wolf 
without the supervision of the farmer. Similarly, states containing 
F without containing either G or CW can be ruled out, because the 
goat would then be on the far side with either the cabbage or the 
wolf without the supervision of the farmer. We see that these con- 
ditions rule out the 6 states that are enclosed in parentheses in 
Fig. 1. 

We now connect two of the remaining states by a line i f  the 
system can be made to pass from one to the other by a single trip 
of the boat. Since the farmer operates the boat, states so con- 
nected must differ by the letter F. Also, since the farmer can 
transport at most one commodity at a time, states so connected 
differ at most by one letter in addition to the letter F. Following 
these rules, we obtain what the topologists call a linear graph 
(Fig. l) ,  which has the states of the system a s  vertices and the 
possible managerial actions as arcs. This action graph shows 
that there are two ways of accomplishing the task, each requiring 
seven crossings of the river. 

Linear graphs of this kind, indicating all possible actions 
and their results will obviously be useful in many management 
problems. Of course, the action graph for any real problem is 
likely to be much more complex than that for our artificial 
problem. 

The following are typical questions that may be asked with 
respect to a given action graph. What is the number of paths 
leading from the given initial state to the desired final state? 
Are there essential states or essential actions in the sense that 
all solutions involve these states or actions? For the graph of 
our simple problem such questions can be answered by inspection, 
but computation may be required for a realistic action graph. For 
this purpose, the structure of the graph i s  described by a square 
array of zeros and ones. To each state there corresponds a row 
and a column of this array. If X and Y are two arbitrary states, a 
one or a zero i s  entered at the intersections of row X with column 
Y (and also at the intersection of column X with row Y) according 
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to whether X and Y are joined by a single arc of the action graph 
or not. The square array of numbers obtained in this manner is 
called the structural matrix of the graph. Figure 2 shows a sim- 
ple graph and its structural matrix. 

Since the structural matrix gives a complete description of 
the graph, many questions regarding the graph can be answered by 
performing numerical operations on this matrix. As an example, 
we mention the computation of the distance matrix in which the 
number a t  the intersection of row X and column Y indicates the 
smallest number of steps by which one can pass from one of these 
states to the other. The structural matrix M, i ts  square M2, and 
its cube M- are shown in Fig. 3. Unfortunately, time does not 
permit me to discuss the manner in which these powers are com- 
puted; die important point i s  that this computation can be per- 
formed without reference to the graph represented by the matrix M. 
Having computed these powers, we are ready to construct the dis- 
tance matrix D. Firstly, we put zeros into all cells of the main 
diagonal (i.e. the diagonal joining the top left and bottom right 
comers). We then write ones where the matrix M has ones. We 
next write a two into any still open cell in which the matrix M 2 

has a non-zero element. Finall , we write a three into any still ? open cell in which the matrix M has a non-zero element. In our 
example all cells in the distance matrix are now filled. Had there 
still been any open cells, we would have had to compute M̂  and 

4 write a four into any still open cell in which M has a non-zero 
element, etc. 

FIG. 2 

MANAGEMENT 

In Alcuin's problem, each of the crossings may be assumed 
to take the same time. In more complicated problems, different 
costs in terms of time or money may be attributed to die various 
managerial actions, and we may wish to find the solution of 
smallest total cost. 

Alcuin's problem may be described a s  a problem of transpor- 
tation with rather artificial constraints. The following more 
realistic transportation problem has been thoroughly discussed in 
recent years. A homogeneous product i s  produced in specified 
amounts a t  several production centers and consumed in specified 
amounts at several consumption centers, the rota1 consumption 
equalling the total production. The cost of shipping a unit amount 
from a given production center to a given consumption center i s  
supposed to be independent of the amount shipped between these 
centers. This specific transportation cost i s  known for all  pairs 
of production and consumption centers. The shipping program that 
minimizes the total cost of transportation i s  to be determined. 

Let i t  be asserted that a specified program is optimal. How 
can we test this assertion? 
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The discussion of this question is facilitated by the use of a 
linear graph that represents the given shipping program. The 
vertices of this graph are arranged in two columns, the vertices 
on the left representing the production centers and those on the 
right representing the consumption centers (Fig.4). If the given 
program involves a shipment from a given production center to a 
given consumption center, these centers are joined by an arc of 

the graph. 

Let us assume that this graph is connected, i.e., that any two 
vertices are joined by a chain of arcs of the graph. We wish to 
find out how a change of the given program affects the total trans- 
portation cost. Suppose we try to increase the shipment along AB 
by an amount x. Since this would bring more of the product to B 
than will be consumed there, we must, a t  the same time, decrease 
the shipment along CB by the amount x. While we now have re- 
stored the balance a t  B, we have disturbed it at A and C, since 
more is shipped from A and less from C than is produced at these 
centers. We can restore the overall balance by decreasing the 
amount shipped along AD by x and, a t  the same time, increasing 
die amount shipped along CD by x. The total change of the pro- 
gram can then be interpreted a s  the superposition of a circular 
flow of intensity x along the circuit ABCD. The resulting change 
C in the total cost is 

c = ( C ^  - c * +  c3 - c 4 )  x, 

where c,, c2, c3, and c4, are the specific costs for AB, CB, CD, 
and AD. The contents of the parentheses in the expression for C 
will be called the specific cost for die considered circuit. It is 
worth noting that x cannot be chosen arbitrarily large. Since the 
flows along CB and AD are decreased by x each, and since we 
cannot have negative shipments in any program, x must not ex- 
ceed the smaller of the amounts that are shipped along CB and AD. 

It is readily seen that any admissible change of a program 
amounts to the superposition of a circular flow along some circuit. 
Two kinds of circuits must be distinguished with respect to the 
given program. A circuit of die first kind exclusively consists of 
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routes that are used in the given program. A circuit of the second 
kind contains at least one route that i s  not used in the given 
program. 

The circuit ABCD in Fig. 4 i s  of the first kind. While x has 
been taken a s  positive in the preceding discussion, there is  no 
objection against negative values of x provided that the absolute 
value of x does not exceed the smaller one of the amounts that 
are shipped along AB and CD. If the specific cost for the circuit 
ABCD does not vanish, i t  i s  therefore always possible to choose 
the sign of x so that the change C in total cost i s  negative. In 
other words, the given program cannot be optimal if i t  contains a 
circuit of the first kind with non-vanishing specific cost. 

Because the specific cost for any circuit of the first kind 
must vanish for an optimal program, it i s  possible to assign to 
each center an accounting price for the unit amount of the product 
in such a manner that the specific cost for any route used in the 
program equals the difference of the accounting prices at the con- 
sumption and production ends of the route. Since the program is  
supposed to have a connected graph, this rule furnishes unique 
accounting prices at all centers once the accounting price at an 
arbitrary reference center has been chosen. 

Let us now consider a route that i s  not used in the given 
program, e.g. the route FG in Fig. 4. Since the graph of the 
program i s  supposed to be connected, it contains a chain of arcs 
(GC, CE, EF) leading from the end to the origin of the unused 
route. This route and this chain therefore form a circuit of the 
second kind. The intensity of any circular flow along this circuit 
that can be superimposed on the given program must be positive, 
because the resulting shipment along the previously unused route 
FG must be positive. If the specific cost for this circuit were 
negative, a decrease in transportation cost would result from the 
superposition of the circular flow. If the given program i s  opti- 
mal, the specific cost for the considered circuit must therefore be 
non-negative. When this condition i s  expressed in terms of the 
accounting prices at the vertices of the circuit, it i s  found that 
the difference of the accounting prices at the end and origin of 
the unused route cannot exceed the specific cost for this route. 
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In other words, the profit that could be obtained from shipping 
along this route does not suffice to pay for the shipping. We thus 
have the following result: If the given program is optimal, an ac- 
counting price can be associated with each center in such a man- 
ner that the specific cost for any route used in the program equals 
the difference of the accounting prices at the endpoints of the 
route, and the specific cost for any route not used in the program 
is not smaller than the difference of the accounting prices a t  the 
endpoints of the route. It can be shown that this theorem remains 
valid if the graph of the shipping program i s  not connected. 

To include this route into a revised program, we superimpose a 
circular flow involving the two topmost vertices in each column. 
The intensity of this flow is chosen a s  large as  i s  possible with- 
out leading to negative shipments. The resulting program is 
shown in the lower right. Its accounting prices are worked out in 
the lower left, and tested in the lower center diagram. It is found 
that the price differentials for all unused routes exceed the ship- 
ping costs. The program at the lower right is therefore optimal. 

Let us now modify our problem slightly by assuming that the 
transportation cost for the bottom route is 10 instead of 8. This 
means that the accounting price at the lower right vertex should 
be 0 instead of 2. Testing the unused routes we then find that for 
two of these routes the price differential just equals the shipping 
cost. This means that the program shown in the lower right can 
be modified by including shipments along these routes without 
changing the total transportation cost. For the modified problem, 
we therefore do no longer have a unique optimal program. This 
lack of a unique solution i s  frequently encountered in this type of 
problem. 

Figure 5 illustrates the practical use of this theorem. There 
are three production centers and three consumption centers. The 
circled numbers in the diagram at the upper left indicate the a- 
mounts produced and consumed, and the numbers in squares indi- 
cate a feasible shipping program. In the next diagram, accounting 
prices are worked out from the specific transportation costs of the 
routes used in the program. In the diagram a t  the upper right, the 
price differentials for the unused routes are compared to the 
specific shipping costs for these routes. Only for one route i s  
the price differential found to exceed the (circled) shipping cost. 

Capacity restrictions for the shipping routes would not com- 
plicate the solution of our problem. For an optimal program any 
route used to capacity may then have a price differential that ex- 
ceeds the shipping cost, because even such a favorable price 
differential cannot attract more traffic to a route that is already 
used to capacity. 

We may render our problem somewhat more realistic by as- 
suming that the total productive capacity of the plants exceeds 
the total demand and that the manufacturing costs differ from 
plant to plant. We must then decide how much to produce a t  each 
plant and how to ship from each plant in order to minimize the 
total cost of production and distribution. This problem may be 
reduced to the previous one by the following tricks. Firstly, we 
increase the specific shipping cost along any route by the spe- 
cific manufacturing cost a t  its origin. This takes care of the 
differentials in manufacturing cost. Secondly, we add a fictitious 
consumption center called the "dump" and list a s  its demand 
figure the excess of total productive capacity over total demand. 
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This restores the balance between production and consumption. 
Finally, we connect each plant to the dump by a route whose 
specific transportation cost is set equal to zero. Indeed, the 
goods that are dumped in our artificial system with balanced pro- 
duction and consumption are not produced at all in the actual sys- 
tem and therefore cause neither production nor transportation 
costs. 

It i s  a common experience in the physical sciences that a 
mathematical method proves useful far beyond the field for which 
it was first devised. To show that this i s  also true in manage- 
ment science, let us consider a number of problems that can be 
treated along the lines developed for the transportation problem. 

The Quartermaster Corps must often evaluate the most eco- 
nomical way of awarding contracts to a number of suppliers of 
military equipment. The simplest situation that can arise in this 
connection i s  this: specified quantities of a certain item are 
needed a t  each of a number of depots, and each bidder states the 
prices at which he can deliver the item to the various depots. In 
this form, the problem can be solved by a straightforward appli- 
cation of the method discussed above. Of course, since the total 
manufacturing capacity of all bidders may exceed die total demand, 
a dump has to be included in the model. A bidder may state, how- 
ever, that he i s  not interested in any award that does not cover a 
stated minimum number of items. In this case, the first solution 
i s  worked out a s  before, ignoring this bidder's minimum figure. If 
this first program should award the bidder more than his stated 
minimum, we have the solution of our problem. If, however, the 
first program awards less  than the stated minimum to this bidder, 
we have to explore two alternatives: remove this bidder com- 
pletely from the program or increase his award to his minimum 
figure. The costs of these two alternative programs have to be 
determined so that the cheaper program can be selected. If there 
are many bids with minimum figures, an exhaustive survey of all 
possibilities may require a considerable computing effort, but 
there i s  no short cut to the solution known a t  present. 

Another problem that falls into the same class is the so- 
called assignment problem. A number of men are to be assigned 
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to an equal number of jobs in such a manner that each job is 
handled by a single man. Each man qualifies for each job; a 
man's efficiency in handling a given job is rated by the cost of 
having this job performed by him. What is the most efficient as- 
signment of the men to the jobs? Clearly, this problem has the 
same pattern a s  the transportation problem. Each man may be 
considered a s  a center producing work and each job a s  a center 
consuming work, each man producing one unit and each job con- 
suming one unit of work. An assignment policy may then be 
treated a s  a shipping program for work, the efficiency ratings 
corresponding to the specific transportation costs. Since each 
job i s  to be handled by a single man, the "assignment graph" has 
a s  many disconnected branches a s  there are jobs. This fact, 
however, does not prevent us from using the pricing method de- 
veloped for the transportation problem. A variation of this prob- 
lem concerns the assignment of machine tools to the jobs that 
have to be performed in a shop. Here the number of tools that 
are suitable for a given job will be limited, on the other hand, a 
given tool can be assigned to various jobs in succession. 

Another problem that can be cast into the mold of the trans- 
portation problem concerns production scheduling for a manu- 
facturing company with a seasonally fluctuating sales pattern. 
These fluctuations in sales must cause some fluctuations in pro- 
duction rate or inventory. The problem is to find the program 
that minimizes the total expense for overtime pay and storage. 
We can treat this a s  a transportation problem in which amounts 
are shipped from the initial inventory and from the regular pro- 
duction or the overtime production of each month to the sales of 
any later month or to the final inventory. The specific transpor- 
tation cost along any route includes not only the cost of pro- 
ducing the unit amount on regular time or overtime, but also the 
cost of carrying the unit amount in inventory from the month in 
which it is produced to the month in which it i s  sold. To create 
a uniform basis for the comparison of prices that have to be paid 
a t  various times, all costs are best discounted to the starting 
date of the schedule. Since nothing can be sold before i t  has 
been produced, an infinite cost must be attributed to any route 
that leads back in time. Since the total capacity for regular and 
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overtime proh-tion will esceeil the total ilemanil if die solution 
of the problem i s  not to be trivial, a ciunip must be included in 
the nioJeI. For .i schedule covering 13 months, we may thus have 
25 production centers (initial inventory and regular and overtime 
proiiuction for e.ic11 month) d 14 consumption centers (sales for 
each month, final inventory, and dump). 

MANAGEMENT SCIENCE 

a linear function of non-negative unknowns, which must satisfy a 
number of equations, the number of unknowns (9 in our example) 
exceeding that of equations (6). Problems of this type are known 
a s  linear programming problems. The following i s  an example of 
a linear programming problem that is  more complex than the trans- 
portation problems considered so  far. 

An oil refinery has given quantities of three different crudes 
available and wishes to meet given demands for three products as  
far and a s  profitably a s  i s  possible. The product yields and the 
profit for each crude are known, and so  i s  the loss (in customer 
good will) caused by the failure to  meet the demand for each 
product. What i s  the most profitable production program? 

F I G .  6 

Before leaving this group of problems, let us briefly con- 
sider their mathematical characteristics taking the transportation 
problem of Fig. 5 a s  a typical example. The data of this problem 
are presented in Figure 6. The three rows of the central part of 
this table correspond to the three origins, and the three columns 
of this part correspond to the three destinations. The quantities 
available at each origin are indicated at the end of each row, and 
the quantities required a t  each destination are given at the 
bottom of each column. The specific shipping costs for the vari- 
ous routes are written in the upper left corners of the nine cells. 
The problem demands that we write non-negative numbers into the 
bottom right corners of the cells in such a manner that the num- 
bers in each row or column add up to the prescribed total and that 
the sum of the products of the two numbers in each cell i s  a s  
small a s  possible. Mathematically speaking, we wish to minimize 

Net Profit = .t5x + 2 0 y  + 102 - 3(100-.Sx-.3y - 2 2  

FIG.  7 

Figure 7 contains the numerical data for a specific problem 
of this kind. The rows labeled 1, 2, 3 correspond to the three 
crudes and the columns labeled 1, 2, 3 correspond to the three 
products. The available amount of each crude (in some appropri- 
ate unit, e. g. thousands of barrels) is given in the column 
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labeled Av. and the amount required of each product is listed in 
the row labeled Reg. The numbers in the upper left corners of the 
cells indicate the yields of the various crudes (in barrels per bar- 
rel). Profit and loss figures are given in the last column and the 
last row. 

A solution of the problem i s  specified by three positive num- 
bers x, y, and z specifying the amounts used of each crude. 
These numbers are subject to six restrictions, three of which 
stem from the limited availability of crudes and three from the 
limited market capacity for products. We wish to find positive 
numbers x, y, and z satisfying these availability and capacity 
restrictions and maximizing the net profit stated a t  the bottom of 
Figure 7. 

Mathematically, the availability and capacity restrictions are 
stated by inequalities. For instance, the availability restriction 
for die first crude reads x 5 100. With three unknowns, we must 
expect that for the optimal program only three of the six restric- 
tions will be fulfilled in the form of equalities, e.g. only two 
crudes may be fully used and only one of the products made in 
sufficient quantity to meet the demand. If we knew which of the 
six restrictions are fulfilled in this manner, all that the detenni- 
nation of the optimal program would require would be the solution 
of three simultaneous linear equations with three unknowns. 
Actually, even in our extremely simple problem, there are 20 ways 
of choosing three of the six restrictions. To try all possibilities 
and find the one which yields the greatest profit without leading 
to a violation of some of the remaining three restrictions, would 
be very time-consuming. For a more realistic example, this pro- 
cedure would involve a prohibitive amount of computing, even for 
a modem electronic computer. The so-called simplex method of 
linear programming progresses in a systematic manner from one 
admissible combination to another that yields a larger profit; 
after a finite number of steps an optimal solution i s  reached. In 
recent years an amazing number of practical problems have been 
discovered that are reducible to problems in linear programming. 
Many of these have been successfully treated by the simplex 
method. In other cases, the number of unknowns has been so  
great that the computational effort required by the simplex meth- 
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od proved to be prohibitive. Much of the current research in this 
area i s  directed towards special methods that do not possess the 
generality of the simplex method but take full advantage of the 
special features of the problem and so reduce the amount of com- 
putation required for its solution. 

The programming considered so far is  called "linear" be- 
cause the quantity (cost or profit) that i s  to be minimized or maxi- 

mized i s  assumed to be a linear function of the unknowns. For 
many problems this assumption would represent an oversimplifi- 
cation of the actual situation. For instance, if we deal with a 
transportation problem in which the "costn of shipping along a 
route i s  the time it takes the shipment to reach its destination, 
congestion on a route would increase the "costn of shipping 
along this route. Whereas we had a linear programming problem 
when the shipping cost was independent of the amount shipped, 
we have a non-linear programming problem when this cost depends 
on the amount shipped. While some general principles of non- 
linear programming have been established, no general and power- 
ful method is a s  yet available for the solution of large scale 
problems of this kind. 

Another important feature of practical programming problems 
should be mentioned at this time. In all preceding examples, the 
demands have been treated a s  known with certainty. Actually, 
such certainty i s  possible only under exceptional conditions; in 
many practical problems the demand for a certain product can only 
be described in a statistical manner. A given program then i s  no 
longer associated with a definite profit but only with a certain 
profit expectation. The task of maximizing the expected profit 
i s  a problem in stochastic programming. 

In attempting to give you an idea of mathematical problems 
in management science, I had to restrict myself to a few examples 
that could be discussed with a minimum of formal mathematics. 
While these may, to some extent, have conveyed an oversimplified 
picture of the field, I hope that they have brought out two im- 
portant facts. Firstly, the applied mathematician will find a 
fruitful area of research in management science. Secondly, his 
acquaintance with the applications of mathematics to the physical 
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sciences will be of limited usefulness in this new area which 
often requires a radically different approach. 

The last  remark i s  worth elaborating. The fact that mana- 
gerial action i s  often directed towards minimizing cost or maxi- 
mizing profits would seem to suggest calculus a s  one of the 
principal mathematical tools of management science. Actually, 
none of the management problems considered in this talk could 
be solved by the usual techniques of calculus. In the transpor- 
tation problem, for instance, the cost  of the optimal program is a 
minimum not because the amounts shipped along the various 
routes could not be modified to yield a program of still smaller 
cost, but because such modifications would violate the availa- 
bility and requirement restrictions a t  some centers of production 
or consumption. Mathematically speaking, the linear cost 
function admits a minimum only because the variables are re- 
stricted to a convex domain. 

In the history of mathematics, the requirements of the appli- 
cations have often led to the development of new mathematical 
disciplines. The outstanding example for this is ,  of course, 
calculus which stems from Newton's work on celestial mechanics. 
While calculi~s has  proved invaluable in the physical sciences, 
i t  does not seem to be destined to take the same dominant po- 
sition in the social sciences. As management science can be 
said to straddle the fence between physical and social sciences, 
i t  may well provide the impetus for the development of the kind 
of mathematics that meets the needs of the social sciences. 

* * * * * 

The department devoted to chapter activities shows that some 
chapters have a most commendable program. Do the others just 
not bother sending in reports? 

OVERHEARD ON THE BUS 

"My brother is a mathematician and I think he's crazy. He 
works for hours and is happy when he gets nothing for an answer." 

OBJETS DE MATH 

by Albert Wilansky 
Lehigh University 

A. Examination questions culled from fiction: 

1. In Booth Tarkington: "The Lorenzo Bunch, " Chapter 11, 
Arlene says: "I stayed on ... five years after Roy and I were 
married, ...; but I quit when little Ola was four years old ... 
Ola's going on thirteen now. I was only twenty when Roy and I 
were married, ... Roy's almost thirty-four now ... ." How old is 
Arlene? 

2. In Mark Twain: "Tom Sawyer,* Chapter IX, we read: 
"It (the graveyard) had a crazy board fence around it, which 
leaned inward in places, and outward the rest of the time, but 
stood upright nowhere." Prove that the fence is discontinuous. 

B. Theorems from fiction: 

1. In Robert Louis Stevenson: "The Bottle Imp," we read of 
a bottle which (a) is extremely advantageous to own, (b) must be 
sold by each owner for l e s s  than he paid, (c) brings damnation to 
anyone who dies owning the bottle. Theorem: Nobody would 
buy this bottle. Proof by induction: Nobody would buy i t  for It#. 
Suppose that nobody would buy it for kt# or less. Then nobody 
would buy it for (k + I)# since he could not se l l  it. 

C. Some grading problems. 

1. One of my students gave the infinite series expansion for 
sine x with exactly one term wrong. I wish to weight each term 
in the series equally, what should be his grade? 

2. I recently gave my class  the problem of writing the 
largest possible number in 5 seconds. Here are the entries 
written by the various members of the class: 

* * * * * 

Professor W. S. Beckwith, former corresponding secretary of 
the Georgia Alpha Chapter of P i  Mu Epsilon, has retired and is 
now teaching temporarily at the University of Tennessee. 
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Smi th: 10000000 

Fall 

Jones: 10'' 
10 lo 

Robinson: 2! !!!!!! 
Johnson: OB - 1 
Jackson: a million, million million 
Brown: n + 1, where n is the largest gotten by the others 
Hill: n + 2, where n i s  the largest gotten by the others 
Simson: the largest number which can be written in 5 

seconds. 

Who is the winner? 

STORIES OF FAMOUS MATHEMATICIANS 

SCRATCH THIS ONE 

For years we've enjoyed telling this story: 

"Queen Victoria was so  pleased on her first reading of 
Lewis Carroll's Alice in Wonderland that she requested that the 
author send her, without fail, a copy of his next book. In due 
course, she received a copy of his Treatise on the Theory of 
Determinants. 

Now Warren Weaver, writing abour Lewis Carroll in the 
Scientific American, indicates that this story is  not true. While 
we have a lot of respect for the truth, we nevertheless regret 
being obliged to abandon one of our favorite mathematical 
anecdotes. The article, in the April, 1956, issue, page 116, is  
worth looking up in case you haven't read it. The title i s  
"Lewis Carroll: Mathematician. " 

STORIES 

BIRKHOFF'S STATURE 

The following paragraphs are reprinted with permission from 
"MY TILT WITH ALBERT EINSTEIN,' as related by Professor 
Carlos Graef Fernandez, Director of Physics in the National 
University of Mexico, and former Professor of Relativity at 
Harvard, to Samuel Kaplan. 

This story concerns the late Professor George D. Birkhoff, 
although the article itself is  principally about Dr. Einstein. We 
wish we had space to reprint the entire article, which appeared 
in American Scientist, V. 44, 1956, pp. 204-211. 

"Einstein i s  dead. How that profoundly sad event carries the 
memory back to my unforgettable meeting with the supreme 
scientist of our time! 

*My heart beat fast as I stood before 112 Mercer Street in 
Princeton, New Jersey. I was going to defend the ideas of my 
dead friend, Prof. George D. Birkhoff, against those of Prof. 
Albert Einstein. But perhaps you do not know who Birkhoff was. 
Know then that Birkhoff, chairman of the Department of Mathe- 
matics, Harvard University, was one of the ten greatest mathe- 
maticians of all time! 

"And permit me to say that Birkhoff did not minimize the im- 
portance of his extraordinary powers, as  you may judge from this 
exchange between him and Prof. Luis Enrique Erro, Director of 
the National Astrophysics Observatory of Mexico. 

"'Prof. Birkhoff' said Erro, 'I hope that in the future the 
United States Government will continue to send us savants of 
your stature.' 

"'Prof. Erro,' was Birkhoff's surprising answer, 'in the States 
1 am the only one of my stature.' 

"To which I might add the words of Dr. Norbert Wiener, the 
present greatest American mathematician who, when making his 
obituary address before Birkhoff's body in Harvard University's 
chapel, said: 'He was the first among us and he accepted the 
fact. He was not modest."' 



AREA OF A TRIANGLE - AMBIGUOUS CASE A R E A  OF A T R I A N G L E  

by G. D. Thaxton 
(Freshman class,  University of Richmond) 

IV. If a < b and a 2  - b2 sin2 A < 0, the imaginary value of the 
radical indicates &at no triangle satisfying the conditions 
exists. 

V. If angle A i s  90Â and a > b, choosing the plus sign in (1) 
gives the area of the right triangle solution. 

VI. If angle A is > 90' and a > b, then choosing the negative 
sign in (1) gives the area of the obtuse triangle solution. 

A survey of several books on plane trigonometry reveals that 
they give no formula for the area which will cover all aspects of 

~ - 

the ambiguous case  of two sides and the angle opposite one of 
them. This note gives a formula which will do this. 

SOUNDS FUNNY, BUT IT'S TRUE 

"A zero of order zero is a regular point at which the function 
is not zero." (From a book on complex variables.) 

In the following discussion we use "B" to refer to either B, 
or B in the above figure. 

The area of triangle ACO is % b2 sin A cos A. 

In order to determine the area of triangle COB, we note that 
by the law of s ines  b sin A = a sin B from which we obtain cos  B 

= Â /a2 - b2 sin2 A. Using this value for cos B, we obtain 
a 

the area of triangle COB a s  % b sin A da2 - b2 s in2 A and the 
area of triangle ACO a s  

"A thing i s  obvious mathematically after you s e e  it. " 
- Dean R.  D. Carmichael 

g b 2  sin A cos A Â ± g  sin A d 2 - b 2  sin2 A. 

We may now summarize the cases  a s  follows: 

If a > b, then choosing the plus sign in (1) gives the area 
of the single solution. 

If a < b and a2 - b2 sin2 A > 0, then (1) gives the areas of 
the two solutions. 

If a < b and a 2  - b2 sin2 A = 0, then (1) gives the area of the 
one right triangle solution. 

Presumably one shouldn't end a sentence with a preposition. 
But what about two or more? A little boy, who had wanted to be 
read to before going to sleep, asked his mother when she came 
upstairs, "What didn't you bring that book I wanted to be read to 
out of up for?" 



PROBLEM DEPARTMENT 

Edited by 
Leo Moser, University of Alberta 

This department welcomes problems believed to be new and, 
a s  a rule, demanding no greater ability in problem solving than 
that of the average member of the Fraternity, but occasionally we 
shall publish problems that should challenge the ability of the 
advanced undergraduate and/or candidate for the Master's Degree. 
Solutions of these problems should be submitted on separate, 
signed sheets within five months after publication. Address all 
communications concerning problems to Leo Moser, Mathematics 
Department, University of Alberta, Edmonton, Alberta, Canada. 

PROBLEMS FOR SOLUTION 

88. Proposed by A. R. Aumalis and R. B. Wright, University 
of Nebraska 

A mathematics professor witnessed a hit and run accident. 
The police asked whether he recalled the license number of the 
fleeing car. The professor said, "No, but I did observe that the 
last  four digits constituted the cube of the first two digits and 
that the sum of all s ix  digits was odd." 

At this point a student with die professor piped up, "But sir, 
did you not also observe that the greatest prime divisor was less  
than one hundred! * 

Would this information enable you to obtain the license 
number ? 

89. Proposed by R. B. Wright, University of Nebraska 

Evaluate the product 

n t 1  
2 + i (-1) sin - 

n = l  

where i2 = -1. 

PROBLEM DEPARTMENT 

90. Proposed by Vern Hoggatt, San Jose State College 

Prove that 

91. Proposed by Nathaniel Grossman, California Institute of 
of Technology 

Prove that 

where T(n) denotes the number of divisors of n, u (n) is the sum 
of the divisors of n and 4 (a) is the Euler Totient function. 

92. Proposed by Leon Bankoff, Los Angeles, California 

It has been said that algebra is but written geometry and 
geometry is but diagramatic algebra. (Sophie Germain, Memoire 
sur l e s  Surfaces Elastiques). In the spirit of this quotation, 
show geometrically that 

86. Proposed by C. A. Grimm, South Dakota School of Mines 
and Technology 

For a, b, and a; integers ( b  > a )  show that 

Solution by the proposer 

The left  hand side can be written in the form 

x t = . 
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Since a and b are integers and b > a this is just Format's 
equation with n = 3 for which the non-existence of solutions is 
well known. 

Also solved by N. Grossman. 

26. 

For 
fined by 

SOLUTIONS 

Proposed by Pedro A. Piza, San Juan, Puerto Rico 

positive integers and 5, let  the number [n:c] be de- 
the relation 

Show that the numbers [n:c] satisfy the recurrence relation 

2(2n-c) 
[n:cl = 7 [n-1 : c-11 

and the formula 

Solution by J .  R. Pounder, University of Alberta 

The first result follows directly from 

To prove the second result we equate coefficients of xZnt1  
in the MacLaurin expansions of each side of the identity 

This gives 

PROBLEM DEPARTMENT 

Transferring the first term to the left hand side, dividing by 
2, and using (11, we get the required result. 

Also partially solved by M. Lieber. 

79. Proposed by C. W .  Trigg, Los Angeles City College 

Find the bounding values of the ratio of the sides a and c 
of a triangle in order that the median to one side and the 
symmedian to the other side may be concurrent with the internal 
bisector of the included angle. 

Solution by the Proposer 

Say the median is drawn t o  a, thus bisecting a, and the 
symmedian is drawn to c thereby dividing i t  in the ratio a2:b2.  
Then the internal bisector of B divides b in the ratio c:a. 
Hence, if the lines are to be concurrent, by the converse of 
Ceva's theorem, a2c = b2a. Thus the necessary condition is 
b2 = ac. NOW b > 1 c - a I, s o  b = ac > c 2  - 2ac + a ,  or 5aY4 > 
c 2  - 3ac + 9 ~ 7 4 ,  and 6 a / 2  > \ c  - 3a/2 I. It follows that 
Vt (3  + 6) > c / a  > '/ (3 - 6). 

This is equivalent to 

log (1 - 2x) + log (1 + x) = log (1 - x - 2x2) . 



PI MU EPSILON JOURNAL Fall 

81. Proposed by Leon Bankoff, Los Angeles, California 

Show that 

1 + 1/22 + 1/32 + 1 / 4 ~  + . . . = 2 (1 -1 /2~  + 1/32 - 1/42 + . . .) ,. 

Solution 'by B. Lachapelle, Come1 1 University 

Hence 

from which the required result follows. 

Solution by C. L. Gape, University of Buffalo 

Consider the Fourier expansion of f(x) = x in the interval 
-77'5 x .̂ 77, namely: 

Letting x = 0 we have 

Letting x = -n we have 

The required result follows from (1)  and (2). 

PROBLEM DEPARTMENT 

Also solved by 1. C. Mathews, L. Miller, S. Robinson, 
C. R. B. Wright, and the proposer. 

84. Proposed by C. A. Nicol, University of Texas 

If n i s  a positive integer,does there exist a positive integer 
k such that the sequence k + 1, 2k + 1, 3k + 1, . . ., nk + 1 
consists only of composite integers? 

Solution by the proposer 

Let k = ( n t l )  ! + 1 . 
Then k + 1 = ( n t l ) !  + 2 

2k + 1 = ( 2 ) ( n + l ) !  + 3 

3k + 1 = (3 )  (n+1) ! + 4 

. . . . . . . . . . . . . . . . . . . . 
nk + 1 = ( n )  (n+l)  ! + n+1, 

and these are obviously each composite. 

REMARK. Calculations indicate that the value of k given 
here i s  much larger than i s  necessary. It would be interesting 
to find the smallest value of k for which this sequence would 
consist only of composite integers. 

Q: "What i s  an expert?'' 
A: "Well, as  everybody knows, x stands for an unknown, and 

a spurt i s  a drip under pressure.'' 
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BOOK REVIEW 

B. E. Meserve, Fundamental Concepts of Geometry. Addison- 
Wesley, Cambridge, Mass. 1955. 9 + 321 pp. $7.50. 

According to  the Preface, this book is based upon the geo- 
metrical part of a course entitled "Fundamental Concepts of 
Mathematics" which was founded by J. W. Young and carried on 
by successive generations of other professors, including the 
author. It is the result of "selecting, modifying and expanding 
sequences of topics from the two volumes of Projective Geometry" 
by Veblen and Young. The topics selected are essentially the 
same a s  those in The Foundations of Geometry by G .  de B. 
Robinson (Toronto, 1940); but the reviewer is disappointed to 
find the modifications and expansions less  satisfactory. The 
modifications sometimes consist in omitting an essential step in 
a proof (e.g., in the proof on p. 84 that R(ABC) = R(ABT); cf. 
Veblen and Young I, p. 85). The author tacitly assumes (on pp. 
64-66) that the tangents of a point conic form a line conic. He 
repeats (on p. 59) the one serious error of Veblen and Young 
(p. 41): the use  of duality to prove the converse of Desargues' 
Theorem (cf. Coxeter, The Real Projective Plane, 2nd. edition, 
p. 13, Theorem 2.26). 

In the introductory section on logic, the author rightly stres- 
s e s  the distinction between contrary and contradictory. Unhappily 
he gives a new and complicated definition for "contradictoryn on 
p. 5, although he reverts to the simple and adequate definition in 
his  statement of Aristotle's second law on p. 6. On p. 8, and 
again on p. 10, he declares that i t  i s  "desirable" that no two 
postulates be contrary; but surely the word "desirablen should 
have been "essential." 

To  establish the equivalence of synthetic and analytic ge- 
ometries, i t  i s  necessary to derive each from the other. But he  
has  reduced the synthetic introduction of coordinates to the 
barest sketch. The fascinating idea of adding and multiplying 
points on a line (or on a conic) is discarded a s  being "long and 
tediousn (p.89). His nearest approach to  a proof that a line has 
a linear equation is "the assumption that on a plane the points 
(0, O), (b, l) ,  (2b, 2), ... , (ab, a), ... are collinear" (p. 95). He 
i s  on surer ground when dealing with analytic geometry a s  a self- 
contained subject; but the proof given for Desargues' Theorem 
(p. 127) could have been more elegant (cf. Coxeter, op. cit., 
p. 191, 4 12.3). 

Some misunderstandings in connection with homothetic 
transformations (p.166) could have been avoided by giving first 
a brief account of the projective theory of homologies and 
elations. For instance, on p. 151 the author correctly points 
out that, in affine geometry, "the principles of duality do not 
apply;" but on p. 174, and again on p. 182, he declares that 
"the plane dual of a point reflection i s  a line reflection." Inci- 
dentally, it is unfortunate that the well established term 
"dilatation" has been contracted to "dilation." 

Chapter 7 provides a well written outline of the history of 
geometry. However, i t  does not seem quite fair (on p. 231) to 
accuse Euclid (who proved that there i s  no greatest prime) of 
tacitly assuming that "all s e t s  of objects are finite." Again, 
Euclid's explicit assumption that a line i s  not re-entrant ( (ii) 
on p. 232) has  somehow become confused with his "tacit as- 
sumption that a straight line containing a vertex B and an 
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interior point of a triangle ABC must also contain a point of the 
line segment AC" (p. 253), which remains valid not only in hy- 
perbolic geometry but also in elliptic. Apart from these minor 
blemishes, the treatment of non-Euclidean geometry, though 
admittedly brief, i s  satisfactory. For instance, the remark is 
well made (on p. 283) that "Euclidean geometry of three-space 
imposes an elliptic geometry on the ideal plane x4 = 0. In this 
sense, a thorough understanding of Euclidean geometry in three- 
space requires an understanding of elliptic plane geometry. '' 

In the chapter on Topology, the treatment of surfaces i s  
misleading. We read (on p. 299) that "Any closed connected 
surface with a boundary is homeomorphic to a disk with b holes 
... and is said to have Betti number b. " But how can this des- 
cription be applied to such a surface as a torus with a hole? 
Having used the word "surfacen in the sense of "orientable sur- 
face," the author goes on to describe the  obiu us strip, which 
thus inevitably appears as a surface that is not a surface. An 
accurate classification of both orientable and nonorientable sur- 
faces could have been given in the same number of pages (cf. 
Lefschetz, Introduction to Topology (Princeton, 1949), pp. 
73-78). 

The printing has been well done, the figures are clear, and 
there is a full index. One of the remarkably few misprints i s  
"Grassman* on p. 262 (and again on p. 315). 

H. S. M. Coxeter 

WE NEED ADS 

It costs a good deal to publish an issue of the P i  Mu Epsilon 
Journal. Whereas we obtain some money from subscriptions, much 
of our bill must be paid by the Secretary-Treasurer General. If 
those of you who are authors would encourage your publishers to 
place ads with us, that would help a great deal. The rates are 
reasonable: $25 for a full page, $15 for a half page. Can you 
help us ? 

BOOKS RECEIVED FOR REVIEW 

Brixey, J. C. and Andree, R. V.: Fundamentals of College 
Mathematics, New York, Holt, 1954, $6.25. 

Brixey, J. C. and Andree, R. V: Modern Trigonometry, 
New York, Holt, 1956, $3.50. 

Friedman, B.: Principles and Techniques of Applied Mathematics, 
New York, John Wiley and Sons, 1956, $8.00. 

Graves, L. M.: The Theory of Functions of Real Variables, 
New York, McGraw-Hill, 1956, $7.50. 

Meyer, H. A. (Editor): Symposium on Monte Carlo Methods, 
New York, McGraw-Hill, 1956, $7.50. 

Miller, K. S.: Engineering Mathematics, 
New York, Rinehart & Co., 1956, $6.50. 

Neilson, K. L.: Methods in Numerical Analysis, 
New York, Macmillan, 1956, 

Newell, H. E., Jr.: Vector Analysis, 
New York, McGraw-Hill, 1956, $5.50. 

Niven, I. : Irrational Numbers, 
New York, John Wiley and Sons, 1956, $3.00. 

We would appreciate offers from our readers to review the 
books in the above (and future) lists. 

- t h e  Editor 

Q: What i s  a lemma? 
A,: A lemma i s  3 (dilemma). 
An: No. The idea is,  "If you lemma prove this first, then I 

can prove the main theorem. * 




