PI MU EPSILON JOURNAL

THE OFFICIAL PUBLICATION OF
THE HONORARY MATHEMATICAL FRATERNITY

VOLUME 3 NUMBER 1

CONTENTS

Relations as Models of Physical Systems — Franz E. Hohn . . . 1

Definition of a Topology by Means of a Separation Relation

DeanZ.Douthat .. ... .......... ... ....... 12
Problem Department . .................000uu.nv.... 17
BoOk ReVIEWS . . . . v v v it et it et e e e e e e e, 21

Frank L. Wolf, Lawrence A. Weller, Robert L. Gallawa,
Edwin J. Purcell, John D. Elder, Kenneth O. May,

T. A. Yancey, E. J. Scott, Robert L. Davis,

Murray S. Klamkin

Books Received forReview . ...................... 28
Operations Unlimited . . . . .. ...................... 29
News and Notices . .............. ..., 37
Department Devoted to Chapter Activities .. ............ 40
ISEEES 0 6 60 6600006000000 000066000000000000 00 47
FALL 1959

Copyright 1959 by Pi Mu Epsilon Fraternity, Inc.




Pl MU EPSILON JOURNAL

THE OFFICIAL PUBLICATION
OF THE HONORARY MATHEMATICAL FRATERNITY

Francis Regan, Editor

ASSOCIATE EDITORS

Mary Cummings Franz E. Hohn
R. B. Deal H. T. Karnes
H. H. Downing M. S. Klamkin

John J. Andrews, Business Manager
GENERAL OFFICERS OF THE FRATERNITY

Director General: J. S. Frame, Michigan State University
Vice-Director General: Orrin Frink, Pennsylvania State University
Secretary-Treasurer General: R. V. Andree, University of Oklahoma

Councilors General:
R. F. Graesser, University of Arizona
Harriet M. Griffin, Brooklyn College
E. H. C. Hildebrandt, Northwestern University
R. L. San Soucie, Sylvania Electric

Chapter reports, books for review, problems for solution and solutions
to problems, and news items should be mailed directly to the special
editors found in this issue under the various sections. Editorial cor-
respondence, including manuscripts should be mailed to THE EDITOR
OF THE PI MU EPSILON JOURNAL, Department of Mathematics, St.
Louis University, 221 North Grand Blvd., St. Louis 3, Mo.

PI MU EPSILON JOURNAL is published semi-annually at St. Louis
University.

SUBSCRIPTION PRICE: To Individual Members, $1.50 for 2 years;
to Non-Members and Libraries, $2.00 for 2 years. Subscriptions,
orders for back numbers and correspondence concerning subscriptions
and advertising should be addressed to the PI MU EPSILON JOUR-
NAL, Department of Mathematics, St. Louis University, 221 North
Grand Blvd., St. Louis 3, Mo.

RELATIONS AS MODELS
OF PHYSICAL SYSTEMS

FRANZ E. HOHN
llinois, ‘37

1. The Postulational Method and its Application to the Study of
Nature.

It is the purpose of this paper to outline briefly the philosophy of
the construction of abstract mathematical systems and of the appli-
cation of these to the study of systems occurring in nature. We shall
then illustrate the principles we present with some simple but signi-
ficant examples.

It is important at the outset to recognize that because one cannot
define every word in terms of simpler words, the formal construction
of every mathematical system necessarily begins with some unde-
fined terms. Similarly, because one cannot deduce every theorem from
more primitive theorems, every mathematical system must also con-
tain unproved theorems or postulates. These postulates relate the
undefined terms and give them such mathematical meaning as they
possess.

For example, in Euclidean geometry, the undefined terms might
include point, line, and pass through. Then one of the possible
postulates is: Through two distinct points there passes one and
only one line.

From the undefined terms and postulates, one deduces theorems
by means of the rules of logic. When this process has yielded all the
useful conclusions it can, one introduces definitions of new con-
cepts in terms of the undefined ones and then states more postu-
lates and proves more theorems. For example, in Euclidean geome-
try, having defined parallel lines in terms of point, line, and pass
through, one might state the postulate: Through a given point not on
a line there passes one and only one line parallel to the given line.
Then one could prove the theorem: If a line passes through exactly
one point of one of two parallel lines, it passes through exactly one
point of the other.

The choice of the undefined terms and of the postulates of a
mathematical system is by no means simple. Those of Euclidean
geometry are the outgrowth of several thousand years’ experience
with experimental and intuitive geometry in ancient Babylonia,
Egypt, and Greece. In all other examples of postulational systems
— and there are many — the postulates are likewise selected, on the
basis of appropriate experience, in such a way as to yield useful
results,

1 This paper was presented as the initiation lecture of the Missouri Gamma
Chapter in April, 1958 and also before Sigma Xi at Southern Illinois University,
Carbondale in April, 1958,
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When mathematics is applied to the world of nature, it is relatively

rare that any very extensive natural system being studied is well-
enough understood that even a reasonably complete set of undefined
terms and postulates can be stated formally. To illustrate, no such
system has ever been given for the science of electricity; we simply
do not know enough about the physical aspects of the subject to
reduce it to a simple, formal, postulational kind of mathematical
scheme. Hence we must, at present, be content with several inde-
pendent and not always consistent systems which explain different
aspects of the subject.

Often, however, it is possible to construct a formal mathematical
system which is a useful description of a suitably restricted part of
nature. This involves first of all abstracting from our experience
with nature a set of undefined terms, postulates, and definitions for
a mathematical system which describes to a suitable degree of ap-
proximation the part of nature we wish to study. Such a system is
called a mathematical model of the part of nature it represents. We
then manipulate this mathematical system according to known laws
of logic and mathematics and draw such mathematically valid con-
clusions as we can.

The next step is to interpret these mathematical conclusions as
conclusions about the part of nature under study. If these conclu-
sions can be verified by experiment, then our model is a good one,
at least to the limits of our ability to detect, for we can then use
the model to make physically valid and useful predictions about
the part of nature being observed.

On the other hand, no mathematical model has ever provided all
the answers to all the problems concerning its corresponding physi-
cal system. This is because it does not — and in fact cannot — take
into account all of the conditions which affect the physical system
in question. Normally one ignores all but what appear to be the most
vital factors when one is constructing a model. Taking these most
vital factors into account, one builds a mathematical model which,
if it is cleverly constructed, produces theorems which correlate
closely with what is observed in nature. When this is the case, the
model is a useful one. When the correlation is not good, the model
is unsatisfactory and at least one additional factor must be added
to the list of vital ones.

Newtonian mechanics provides the classic example of this latter
situation. Adequate to explain the mechanical phenomena of ordinary
experience, it is inadequate to explain all observable phenomena at
either the sub-atomic or the astronomical levels. Hence the theory
of relativity, a generalization of Newtonian mechanics which in-
cludes the latter as a special case, was invented by Einstein to
account for the apparently irregular observations.

An interesting sidelight on the history of science is related to
the fact that Einstein also derived at one time a formula for the
potential of an ion in solution. He assumed that electrical forces of
attraction or repulsion between the ions were not significant be-
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cause the distances between the ions appeared large compared to
their radii. The formula did not agree with what was observed in
experiment. It remained for Nernst, who recognized that these same
electrical forces are indeed significant, to derive the correct
equation.

The most characteristic aspect of modern mathematics is its ex-
ploitation of the postulational method described above to create
new mathematical systems and to analyze familiar ones. Properly
used and understood, the method yields a level of rigor and a degree
of insight not otherwise attainable. Moreover, the mathematical sys-
tems obtained by these abstract methods are with increasing fre-
quency found to be well-adapted to the analysis of physical, social,
and biological systems that have not been mathematized before.

We shall now illustrate these matters with some examples. All
these examples are based on the mathematical concept of a relation.
1 have chosen this mathematical concept not only because it is a
fundamental one, but also because it is applicable in a very simple
way to a wide variety of problems. However, by employing the
concept of a relation here, I do not mean to ascribe to it an undue
significance. It is just one of a large number of basic mathematical
tools,

2. The Concept of a Relation.

The most familiar example of a relation is that of family relation-
ship in a group of people. If x is father or brother, mother, aunt,
cousin, etc., of y, we say x and y are ‘‘related.” If flipping a cer-
tain switch customarily has the consequence of turning on a cer-
tain light, we say these two events are ‘‘related’’. Rainfall and
grain yield are also ‘‘related’’, though in a more complex way. In
each example, however, we are concerned with certain special
pairs: pairs of people, pairs of events, pairs of numbers, and also
in each case the first member of the pair bears a certain relation to
the second.

This familiar notion of a relation can be made mathematically
precise as follows. Let X and Y be arbitrary sets of objects, where
Y is not necessarily different from X. We define first the Cartesian
product Xx Y of X and Y to be the set of all ordered pairs ¥,
that is, the set of all pairs (x,y) whose first member x belongs to
X and whose second member y belongs to the set Y.

It is customary to write the symbol ‘‘€’’ for the words ‘‘belongs
to”, ““belong to’’ or ‘‘belonging to’’ so that ‘‘x belongs to X'’ is
written simply ‘‘xeX’’. Then we write

XxY={ Ax.vo_ x€X, yeY}

to mean “X x Y is the set of all ordered pairs (x,y) such that x € X
andy € Y.”

It should be noted that Y x X, which is { (y,%) } ye¥, xeX}, is
not ordinarily the same thing as X x Y because the orders of the
elements in the pairs are opposite in the two cases. When Y is the

3



4 Pl MU EPSILON JOURNAL

same set as X, then X x Y and Y x X are of course the same,

As an example, let X and Y each denote the set of all real num-
bers so that X x Y is the set of all ordered pairs of real numbers
(x,y). This set has as one geometrical representation the familiar
system of rectangular Cartesian coordinates in the plane where x
is the abscissa and y is the ordinate of the point (x,y). This exam-
ple is of course responsible for the name ‘‘Cartesian product.”’

As another example, let X denote the set of all male human be-
ings living in a certain township and let Y denote the set of all
female humans living in that township., Then X x Y denotes the set
of all possible pairs (x,y) of where x is a man and y is a woman from
this township. This particular Cartesian product is of course a
major object of masculine concern.

Our earlier examples of relations now suggest the following defi-
nition: An abstract relation from the set X to the set Y, more simply
a relation in X x Y is any subset of the set of all ordered pairs
(%,y). For given sets X x Y, some of the relations in X x Y may
have familiar meanings; others may correspond to no familiar rela-
tion at all, thus simply having a formal mathematical meaning. To
illustrate, in the example given above, of male and female humans
in a certain township, we might select from X x Y those pairs (x,y)
such that x is the husband of y, thereby obtaining a familiar rela-
tion. On the other hand, we could select 10 males at random and
likewise 10 females, pair these in some arbitrary order, and obtain
thus a perfectly valid but probably useless example of a relation
inXxY.

The set of all x’s in the pairs of a relation ® is called the
domain of & and the set of all y’s in the pairs of ®& is called
the range of ¥ . To illustrate further, when X and Y are both the

set of all real numbers, we could obtain a subset of X x Y by re-
quiring that x and y simultaneously satisfy the restrictions

0<x<1

NN A%Am.

The requirement x2 < y means that the point (%,y) is above the para-

bola with equation x2 = y. The requirement y < §'x means that the
point (x,y) is below the parabolic arc represented by y = ¥X. The
region to which the pairs (x,y) of the relation are restricted by these
requirements is shown shaded in Figure 1.
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FIGURE 1.

Here for each x belonging to the domain 0 < x < 1 of the relation,
there are infinitely many y’s of the range 0 < y < 1 such that the
pair (x,y) € W .

In many physical situations, to each possible value of one varia-
ble x (e.g., rainfall) there corresponds a range of possible values of
a second variable y(e.g., grain yield) so that a graphical represen-

tation of the relation between the two variables is a two-dimensional
region, often roughly similar to that shown in Figure 1.

A more restricted example of a relation is given by the following
definition: Again let X and Y each be the set of real numbers. We
shall say that a given pair (x,y) belongs to a relation &F

if and only if
yz2 0
x2 + %m =1,
These conditions imply further that

-1<x<1

0<y<1

which give respectively the domain and the range of this relation.
This relation is representable geometrically as the upper half of a
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unit semi-circle (Figure 2).

-1 X 1

L4

FIGURE 2

In this case, for each x belonging to the domain of Q , there
exists exactly one y such that the pair (x,y) belongs to F -

Any relation ® in which to each x of the domain of 2R, there
corresponds exactly one y of the range of W  is an example of
what is called a (single-valued) function. Thus the very general
concept of a relation includes the concept of a function as a
special case.

The sets X and Y do not need to be sets of numbers for a relation
in X x Y to be a function. The function concept extends in fact to
arbitrary sets. The only requirement is that to eack x in the domain
of R there should correspond exactly one y of the range of R
such that (x,y)e uﬂ . We might, for example, let Y denote the set of
positive numbers but let X denote the set of all women in this coun-
try. We could then say that (x,y) belongs to a relation W if and
only if y is the weight in pounds of x. This well-known relation is
a function which has been subjected to largely irrelevant but highly
profitable study by many manufacturers of “‘reducing aids.”’

If the elements of each of X and Y can be put into one-to-one
correspondence with subsets of the set of all real numbers,
two-dimensional graphical representation of a relation in X x Y is
always possible. However, if X itself consists of ordered pairs
Axp.xnv which can be represented on a 2-dimensional graph, then a

3-dimensional graph of a relation in X x Y is possible. In this case
the graph may consist of a 3-dimensional region, a two-dimensional
region, a 1-dimensional region (curve) or just some isolated points.

3. Arithmetic Representation of a Finite Relation
Now let us consider a relation ® in X x Y where X and Y are
finite sets with elements XysXyseee, ¥p and y |,y ,eee, o respectively.

We can give such a relation a uniquely defined arithmetic represen-
tation by constructing an array of n rows (one for each element x,)
and m columns (one for each element wh.v. In the ith row and jth

column of this array, we record a ‘“1’’ if era:v € W , otherwise
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we record a ‘‘0’’, The resulting array of 0’s and 1’s, stripped of
the row and column headings, but enclosed in brackets, we call the

matrix R of the relation & .

To illustrate, let X n.?u.xn.xuv where x ,x,,x, are dormitory
roommates, Suppose X, likes X, and X, and that the feeling is

reciprocated. Suppose on the other hand that x, detests x 3 and

vice versa, Finally, suppose x ' likes himself, but that X, and Xy,

subconsciously regarding themselves as rascals, do not like them-
selves. Then we have the following array and the matrix L of a

liking relation & in X x X:

X, X, X5
% |1 1 1 1 1 1
X, 1 0 0 L=]1 0 0
X 1 0 0 1 0 0

Conversely, given any n x m matrix R of zeros and 1’s, we may
interpret it as representing a uniquely defined abstract relation in
X x Y where X and Y are arbitrary sets having n and m elements
respectively and where, given any pair (x,,y _v. a 1 in the i,j-position
of R is taken to mean that (x;,y;) belongs to W and a “‘0”’ is taken
to mean that it does not.

Now of what use are these matrices of 0’s and 1’s? There is a
good deal of information available about the algebraic properties of
such matrices. These properties may often be interpreted as proper-
ties of relations corresponding to the matrices in question. Thus the
algebra of matrices affords computational means of deducing proper-
ties of relations.

To illustrate, a relation ® in X x X is called reflexive if and

only if every pair (x,x) € @ where x € X. If a relation 8 ona
finite set is reflexive, then its matrix R will have 1’s down the
main diagonal and conversely.

A relation R in X x X is called symmetric if and only if when-
ever (x_,x.) € &, (x,,x,) € R also. If X is finite and R is
symmetric, the corresponding matrix R will have a 1 or 0 in the a,b-

position whenever it has a 1 or (tespectively) O in the b,a-position,
and conversely.

7
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The matrix L of the liking relation given above shows that L is,
in this instance, not reflexive but that it is symmetric. The relation
of liking is not always a symmetric one, however, as many a frus-
trated lover has discovered.

The quantitative study of various relations which appear in rela-
tively small groups of individuals is currently of great interest to
psychologists and sociologists. In these studies the 0’s and 1’s we
have used above are often replaced by numbers from a scale with

which it is attempted to measure the intensity of the relation in
question.

Another possible property of a relation in X x X is that of
asymmetry: If (%,,%,), a #b, belongs to 8] , then (x,,x,) does not

belong to ¥ . In this case, if X is finite, the b,a-entry of R is 0
whenever the a,b-entry is 1.

Finally, there is the property of transitivity: a relation RN in
X x X is called transitive if and only if whenever Axn.xvv € N and
(x,,x.) € & , then (x,,x ) e O also.

A simple example of an asymmetric, transitive relation is the an-
cestral relation in a group of people: If x_ is an ancestor of x,, then

X, is not an ancestor of x,. Ifx, is an ancestor of %, and x, is an
ancestor of x_, then x_ is an ancestor of X .

4. Relations and Switching Circvits.

We now turn to a totally different kind of application of the rela-
tion concept. The basic element of many telephone and computing
circuits is a switch which has the property of being open or closed.
Consider a switch S in a conducting wire from a point p, to a point
Py

ﬁﬁl\ m L.ﬁn

FIGURE 3

If S is closed the vertices p, and p, are electrically connected to
each other; if S is open they are not. We represent this symboli-
cally by means of a variable s such that s =1 if § is closed but
s =0if S is open. This is a symmetric relation if the switch is such
that current can flow through it in either direction.

Now consider the circuit shown in Figure 4 which contains
switches S 155083:5,¢ (The two switches labeled S, are assumed to

open and close simultaneously).

RELATIONS AS MODELS OF PHYSICAL SYSTEMS
P2
N Sy
P3
S1 89
S3
P S
~N
Ps
FIGURE 4

We examine the relation of electrical connectedness between the
terminals p,,p,,P3:P4 8S controlled by the conditions of the four

switches. We shall always regard a terminal as being connected
to itself electrically. However, the connection of one terminal to
another, by means of a path not passing through a third terminal,
is ordinarily a variable relation depending on the closed or open
condition of a switch. We therefore write in the matrix for this

connection relation not 0 or 1 but rather a variable S which takes

on the value 0 or 1 according as §; is open or closed. The result
is the matrix

_- S, s, s, 1 ]

Here the entry in the 1,3-position is 0 because there is no wire from
P, to p; in the circuit. For any given set of values of the circuit

variables s ,,S,,53,S,, this matrix indicates which vertices are con-
nected to which others through a closed switch.

9
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Many switching circuits may be analyzed completely and may
often be simplified with the aid of suitable computations on ma-
trices like these. Moreover, from verbally stated requirements for
the operation of a circuit, one can often develop a simple matrix
similar to the one above by means of systematic techniques. From
the matrix one can then draw a circuit which meets the given re-
quirements. It should be added that the purely mathematical study
of these matrices and of similar algebraic systems is highly re-
warding, In the study of such circuits and matrices, it is con-
venient to regard the variables s ,s,,...s_ which appear, as ele-
ments of a Boolean algebra.

5. Relations and Computing Machines

As a simple example of the kind of machine we have in mind,
consider a box with an input wire and two lights, one labeled E,
one labeled & . The box is set so that initially the light labeled
E is on. (Figure 5.) Via the input wire we now send pulses of
voltage, say high voltages of brief duration, into the box.

VIl

INPUT WIRE

FIGURE 5

The circuits inside the box are so constructed that whenever such
a pulse is applied, the light which is on goes off and the light
which is off goes on. Evidently then, when an even number of
pulses has come into the box, light E will be on and when an odd
number has come in, light @ will be on. Such a machine is called

a binary counter and circuits which perform essentially these opera-
tions are basic components of every electronic computer.

Now this machine may be thought of as being in an ‘‘E-state’’ or
an ‘‘&-state.’’ The vital relation between the two states is one of
transition: There is a transition from one state to the other when an
input pulse, represented below by the symbol H, comes along. The
transition is from a state back to itself, i.e., really no transition at
all, if no input pulse, represented below by the symbol L, comes
along.

RELATIONS AS MODELS OF PHYSICAL SYSTEMS n

These facts suggest the following graph as an abstract picture of
the machine. (Figure 6.)

E H Q

State State
FIGURE 6

Here we have selected one point called a vertex for each possible
state of the machine. Since a transition is directed from a state to
a state we now draw one arrow, called a branch, from one vertex to
another vertex corresponding to each possible transition of the
machine. With each arrow we associate the input symbol H or L
which accounts for the transition.

A matrix which summarizes all this information is the transition
matrix T of the machine:

E L H
o H L

In this generalization of a relation matrix we have a powerful ﬁo_o_
for the systematic study of abstract relations in computers and in
other automata.

1.—.‘”

6. Conclusion

The examples indicate only sketchily the fact that the concept
of a relation underlies much of modern mathematics and its applica-
tions. Moreover, this concept and the devices for computation asso-
ciated with it have led to many useful models of systems in the
physical, biological, and social sciences. In turn, the study of
these applications has led to the study of more general, abstract
mathematical systems that had not been investigated before. This
situation is a revealing illustration of the perpetual interplay be-
tween mathematics and its applications.

University of Illinois



12 DEFINITION OF A TOPOLOGY
BY MEANS OF A SEPARATION RELATION

DEAN Z. DOUTHAT S

Missouri Gamma ‘56

One aspect of point set topology is a generalization of some con-
cepts encountered earlier in mathematical studies, such as ‘‘arbitrar-
ily near’’, “‘sufficiently small’’, ‘‘however large’’, etc. The usual
definition of a topology brings out this aspect, but the connection is
not ordinarily apparent to the young topologist. Thus, there would
seem to be a need for a definition that would be more appealing to
the intuition and would reveal the important connections between
topology and its academic and historical predecessors. The defini-
tion of a topology by means of the separation relation is offered
herein as one answer to this need.

In order to bring this definition by separation relation to light, the
ordinary definition is first recalled; then the elementary results and
definitions following upon the usual definition are presented and
then the definition by the separation relation is introduced. The
equivalence of these two definitions is proven, showing their same-
ness, while they are then contrasted to show their differences.

The usual definition of a topology is as follows.

Definition O.
Let X be an arbitrary set and let T be a family of subsets of X;
T = {A;:A,C€X} . Ian index set.

Then T is a topology for X if and only if the following hold:
O-1. The union of any number of members of T is again a member

of T, or symbolically, , m_wLﬂu?mq. for any J€1I,

0-2. If A and B are members of T, (AMB)eT.

The definitions and theorems listed below will be used throughout
this discussion.

1) A set A is open if and only if A€T.

2) A set B is closed if and only if B’ €T, [Here B’ denotes the
complement of B in X.]

3) A set A is a neighborhood of a point x if and only if there exists
an open set V such that xeV CA.

4) A point x is an accumulation point of a set A if and only if for
every neighborhood V of x, VN (A-{x) # 8.
Let h(A) = {x: x is an accumulation point of A} and A = A Uh(A).

5) A necessary and sufficient condition that T be a topology for a
set X is that the family F = A>~“ A’ mq.vpmm satisfy:

DEFINITION OF A TOPOLOGY BY MEANS OF 13
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C-1. The intersection of any number of members of F is again a

member of F; that is, N A,¢ F for any JCIL
1eJC1

C-2. If A and B are members of F, (A UB)eF.
This theorem may be proved by applying DeMorgan’s theorem to
the usual definition.

6) An open set is a neighborhood of each of its elements.
The definition of a topology by the separation relation may now

be introduced.

Definition S.
Let X be an arbitrary set and let a binary relation s be defined on
the set P(X) of all subsets of X. This relation will be denoted by
AsB (A is separated from B) where A and B are subsets of X. Let
A#B mean that A is not separated from B and let xsA mean that
the singleton set {x} is separated from A. A set function k:
P(X) »P(X) is defined by : k(A) = {x: x#A} for all AeP(X).

The following axioms are assumed to characterize the relation and
the function:

. AsP for every non-empty subset A of X;

. AsB if and only if BsA;

If AsB and CCA, then CsB;

If AsB, then ANB = O;

. If AsC and BsC, then (AUB)sC;

. k(A)'sA; [k(A)' again denotes the complement of k(A) in X]

7. If xsA, then xsk(A).

With s and k so characterized, a topology may now be defined for X.
Let F_ be a family of subsets of X defined by F, = {A: A =k(a)}.

Then the family T of subsets of X defined by T = {B: B’ mm,uv is a
topology for X,

In order to show the equivalence of the last definition of the
topological space and the usual one, the last definition will be
shown to imply C-1 and C-2 and the relation of topological separa-
tion under the usual definition will be shown equivalent to the
separation relation as used in the last definition. With these shown,
the definition by separation relation implies the usual definition
while the usual definition implies the characterizing axioms of the
last definition, so the equivalence is shown. A few lemmas will
first be proved.

Lemma A. 1f ACB, then k(A)Ck(B).

Proof: Let ACB and suppose that x#k(B). If x£k(B), xsB; but xsB
and ACB implies, by axiom 3., that xsA, that is, x¢k(A). Hence,
x£k(B) implies that x4k(A), so k(A)Ck(B).

Lemma B. 1f ACB and A #(J, then A£B.

Proof: Suppose ACB and AsB. Then, by axiom 3, AsA, which would
mean that ANA =@, by 4. But this is impossible since A £, so
ACB implies AZB.

U‘IA?)ND—‘

[=)]
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%miin C. For Mﬁw@ ACX, ACK(A).

roof: If xeA, {x}CA, which means, by B, that xgA, that i .
T ACkt, y at xgA, that is xek(A)
Lemma D. k(k(A)) Ck(A).

Proof: Suppose x\xg . If x#k(A), then xsA, which implies, by 7,
that xsk(A), that is x£k(k(A)). Therefore, k(k(A)) S k(A).

Lemma E. k(k(A)) = k(A); that is k(A)<F,.

Proof: By lemma D, k(k(A)) € k(A). By lemma C, ACk(A); so, by
lemma A k(A) € k(k(A)). Therefore, k(k(A)) = k(A).

Lemma F. k(AUB) = k(A) U k(B).

Proof: Suppose x\_A>va. Then xs(AUB). Since ACAUB and
BCAUB, by 3, xsA and xsB, that is, x#k(A) and x#k(B); hence
x4k(A) UK(B). Therefore, k(A) U k(B)C k(AUB). Now suppose
%4k(A) Uk(B). Then xsA and xsB so, by 5, xs(AUB), that is,
x4k(AUB). Hence k(AUB)C k(A) Uk(B). Therefore, k(AUB)
=k(A)Uk(B).

Lemma G. k(@) = @; that is, &mm,n.

Proof: By 1, Bsx for any xeX, which means that x for all xeX
that is, k(@) u&. \_A&v ’
With these results of the definition by separation, it may now be
proved that:

Theorem: The family F, satisfies C-1 and C-2.

Proof: C-1. Consider A n3>p. where A, &F, for each ieJCL

i€]
If A =@, C-1is satisfied by lemma G. If A43, ACA; for each ie].
Thus, by A, k(A)Ck(A,) =A | for each i€]; hence rA>vﬂD>_ = A.

i€]

Also, by C, ACk(A); hence A =k(A), that is, AeF. and C-1 is
satisfied. °
C-2. Suppose A and B are members of Fg. Then A = k(A) and B =k(B).

Since k(AUB) = k(A) Uk(B), by F, k(AUB) = AUB.
Thus k(AUB) € F_ and C-2 is satisfied.

W< ﬁ_maamm C, E, F, and G, k is a function from P(X) into P(X) such
at;

L k(@) =90

2. ACk(A) for every ACX;

3. k(k(A)Ck(A);

4. k(AUB) =k(A)UKk(B).

But these are exactly Kuratowski’s closure axioms so k(A) = A,
Hence, ANB) U (ANB) = k(A)NB) U (ANK(B)). We will show,
therefore, that:

Theorem: AsB if and only if (k(A)NB) U (ANK(B)) = 2.
Proof: First, suppose that AsB and let xeB. Then, since AsB and
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{x} € B, xsA, by 3. This means that x¢k(A), that is xek(A)'.
Hence BCk(A)' or k(A)NB =@. Now let yeA. Since AsB and {y}ca,
ysB, that is, y/£k(B), so ACk(B)'. Therefore, AfVk(B) = Q
Thus AsB implies that (k(A)1B) U (A Nk®) =gUg = 4.
Now suppose that (k(A)[} B) U (ANk(B)) = @. Then k(A)NB = [
and ANk(B) = 0.
a) k(A)NB =@, If xeB, x£k(A), that is, xek(A)' . Thus BCk(A)',
but k(A) 'sA, by 6, so, by 3, BsA, that is AsB.
b) ANK(B) =@. If yeA, yek(B)'; hence ACKk(B)'. But k(B) 'sB,
by 6 so, by 3, AsB. Therefore, AsB if and only if A and B are
topologically separated. This completes the proof of the mathemati-
cal equivalence of the two definitions.

In order to see how the definition of a topology by the separation
relation more clearly emphasizes the connection of topology to ear-
lier mathematics and how it is more intuitive than the usual defini-
tion, a definition important to topology will be formulated under
each definition and then proved equivalent. But first some prepara-
tion is needed.

Lemma H. LetK =) {A,: A,¢F, and ACA }. Then K = k(A).
iel

Proof: Since F, satisfies C-1, KeF,, that isK = k(K). Also ACA,
for each id, so ACK; hence, by A, k(A) Ck(K) =K. Further,
k(A)eF , by E, and A Ck(A), by C, so k(A) =A, for some iel. But
KCA, for every iel, so KCk(A).

Thus k(A) =K = J {A,: A,cF, and ACA,}.
i€
Applying DeMorgan’s theorem to H yields k(A)' =
m {A,": A ¢F, and ACA L.
That is, k(A)' = L {A,":A"eT and ANA' =¢};
1€

Hence, k(A)' = C ﬁw_" B,eT, and >3wm =g}
iel

The usual definition of an accumulation point x of a set A (a point
which is arbitrarily close to the set) is repeated as follows: A point
x is an accumulation point of a set A if and only if for every neigh-
borhood V of x, V N(A-{x}) # 2.

The definition of an accumulation point x of a set A is:
A point x is an accumulation point of a set A if and only if xg(A-{x}.

In order to show the eguivalence of these two definitions, the fol-
lowing lemma is proved:
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Lemma I. A necessary and sufficient condition that xsA is that
there be a neighborhood V of x such that VNA = @.
Proof: First suppose that xsA. Then xsA implies that x£k(A), that
is, xek(A)’. Also k(A)¢F,, so that k(A)'eT,, so k(A)' is a neigh-
borhood of x. But, by axiom 6, k(A)’ sA; hence, by 4, k(A)' N A =@.
Thus k(A)' satisfies the conditions. - .
Now suppose that there is a neighborhood V of x such that V1A = a.
Then there is an open set V such that xeV,CV, and so <oD A=¢.
Then, by the remark after lemma H, V, Ck(A)'; hence xek(A)', that
mm.x\mwgv. So xsA.
If ““A- {x}*’ is substituted for A in the last lemma and if both
implications are contraposited, the result is:
xZA- {x}) if and only if for every neighborhood V of x,
VN(A- {x}) #@. This proves the equivalence of the two definitions.
Contrasting these two definitions (and implicity the respective
basic definitions of a topology) from the viewpoint of the beginning
student in topology, the advantage would seem to accrue to the
separation method. It clearly indicates the connection between
topology and the familiar notion of ‘‘arbitrarily near’’. It is intuitively
logical and the intervention of the notion of a neighborhood is not
needed, which enhances its directness., Although it may seem some-
what rambling to the professional, the more succinct fomulations may
be introduced as necessary and sufficient conditions and, of course,
more advanced notions may be approached more concisely.

St. Louis University and
McDonnell Aircraft, St. Louis, Mo.

PROBLEM DEPARTMENT 17

Edited by M. S. Klamkin,

Avco Research and Advanced Development Division

This department welcomes problems believed to be new and, as a
rule, demanding no greater ability in problem solving than that of the
average member of the Fraternity, but occasionally we shall publish
problems that should challenge the ability of the advanced under-
graduate and/or candidate for the Master’s Degree. Solutions of
these problems should be submitted on separate, signed sheets with-
in four months after publication. Address all communications con-
cerning problems to M. S. Klamkin, Avco Research and Advanced
Development Division, T-430, Wilmington, Massachusetts.

112. Proposed by J. S. Frame, Michigan State University.
Find all real analytic functions F such that

F(x4y) Fx-y) = [F&x) + F@)] [F&) -T].

113. Proposed by Leo Moser, University of Alberta.

Prove that it is impossible to enter the integers 1,2,...10, on
the 10 intersections of 5 lines of general position in such a way that
the sum of numbers on every line is the same (22).

114. Proposed by D. J. Newman, Brown University.
Solve the four simultaneous equations

x ty =a,
b,
uZx +vly =g,

u

ux +vy
udx +viy =d,

for x, y, u, and v.

115. Proposed by Francis L. Miksa, Aurora, Illinois.
What is the smallest integral set for which

(10a +b)2 + (10b +a)? + (10c +d)? + (10d +¢c)? = R2,



18 Pl MU EPSILON JOURNAL

116. Proposed by M. S. Klamkin, AVCO RADD.

Problem No. 147, due to Auerbach-Mazur, in the ‘“Scottisch’’ book
of problems is to show that if a billiard ball is hit from one corner
of a billiard table having commensurable sides at an angle of 45°
with the table, then it will hit another corner. Consider the more
general problem of a table of dimension ratio m/n and initial direc-
tion of ballof & = tan ~! a/b (m, n, a, and b, are integers). Show that

an + bm
(an, bm)

( (%,y) as usual denotes the greatest common divisor). Furthermore,
determine which other corner the ball will strike.

the ball will first strike another corner after - 2 cushions

Solutions

103. Proposed by Lawrence Shepp, Princeton University.
If

EMV..M,@ u m&.wlm.kv

for all x and y in a bounded interval, then F(x) = ax?2 + bx +c.

Solution by Norman Padnos, University of Rochester.

By differentiating

x+<u

Fe) ~F@y) = -y F' (X

with respect to x and then with respect to y, we obtain

-?léxé
Ol
7 ma > v

Whence, F ” (x) = 0, and F(x) = ax? + bx +c. Also solved by
H. Kaye, Paul Myers, M. Wagner and the proposer.

104. Proposed by D. ]. Newman, Brown University.

If Xosy =aX +bX _
where a,b 2 0,
m=+~v= = H«

find a necessary and sufficient condition on the a_, b_such

PROBLEM DEPARTMENT
that mxnv converges for all initial conditions.

Solution by Paul Myers, New York, N.Y.
X - X, = b, X,-X_-,). Thus,

X4, - X, = (-1 (X,;~x) I (1-a).
r=1

In order for X, | -X_  — 0, the infinite product must diverge

@ .
to zero or equivalently that S a_ diverge.
1

Also, solved by L. Shepp, J. Thomas, M. Wagner and the proposer.

105. Proposed by C. D. Olds, San Jose State College.
Show that
] V2

(x* - 2%2 + Ddx = (x? - 2x+2)"dx.
1 Nw=+n { um=+n

Solution by Norman Padnos, University of Rochester.
2
By letting z = x,

Vo 2
®x*-2x? +2*dx = 1/2 ) (z-2 +mv=hm.
, NND.: i
Now we need only show that
Va2 2
(z-242dz = (z-2+z)"dz
2z 1%
[]
vz

19
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But this follows by letting w = 2/z.
Also solved by Paul Myers, D. J. Newman and the proposer.

Editorial note:

a - - a
This problem is a special case of ‘—.m,?wvuh = F(x)dx
H X ] X,

provided that F(a?/x) = F(x).

y* - 96a2y2 + 100a2x? - x*=0
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Edited by
Franz E. Hohn, University of lllinois

Introduction to Statistical Reasoning. By Philip J. McCarthy. New York,
McGraw-Hill, 1957. xiii + 402 pp., $5.75.

Intended for a ‘‘one-semester, nonmathematical course in statistics’’,
this book is not strikingly different from several other such books on the
market. The topics discussed are what one has come to expect in such a
course, except that the xN and Student’s distribution are not covered.
Many examples are given from the social sciences. The problems seem
adequate but answers for them are not given. There are quite a few errors
such as in the table on page 18 where an interval must have been omitted.
The author’s idea of emphasis on ‘‘probability models’’ in the last half of
the book is a good one. While the pace seems slow, it may well be the
correct one for students approaching statistics for the first time.

Carleton College Frank L. Wolf

Engineering Mathematics. By Kenneth S. Miller. New York, Rinehart,
1956. 417 pp., $6.50.

This book has been written to strengthen the mathematical training of
the typical engineering student who has had only the calculus and some
differential equations. The author, an Associate Professor of Mathematics
at New York University, has selected six mathematical topics and devoted
a chapter to each of them. The remaining chapter utilizes much of the
mathematics developed and applies it to electrical network theory.

The subjects chosen for exposition are determinants and matrices, inte-
grals, linear differential equations, Fourier series and integrals, the
Laplace transform, and random functions. The book is well-printed and
this reviewer found few errors.

Professor Miller’s book is a book on mathematics for engineering stu-
dents and is devoted primarily to presenting the mathematical development
of his chosen subjects. Readers may have some difficulty with it in some
places due to a lack of simple, concrete examples. It is a well written
book aside from the extremely condensed three appendices. The exercises
are not cases of numerical substitution but are genuinely mathematical
problems whose solution adds to the theoretical developments and are really
an integral part of the text.

The selection of subjects and application make this a fine mathematics
text for electrical engineering students. Other engineering students may find
they will need to supplement it. It lacks such topics as vector analysis,
numerical methods, and complex variable theory. However, it is the opinion
of the reviewer that the reader will find that he is challenged, will learn
much mathematics, and will come in contact with some recent developments
in the field of communication engineering that are not usually included in
an engineering mathematics book.

Monsanto Chemical Co. Lawrence A. Weller
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Engineering Mathematics. By Robert E. Gaskell. New York, Holt-Dryden,
1958, xvi + 462 pp., $7.25.

In engineering curricula, the trend seems to be to follow the student’s
study of calculus with a course in mathematics as applied specifically to
engineering rather than with a course, as has been the custom, in differ-
ential equations. The engineering mathematics course is intended, then,
to border on two fields, being most certainly a course in mathematics but
at the same time being intended for the express benefit of thé engineering
student.

In this book, which is newer than most of the many books on the subject,
the author realizes the difficulties of attempting to treat the subject of
engineering mathematics adequately and to the complete satisfaction of
both the engineer and the mathematician. The author chooses to make the
subject as clear as possible to the student and as a result the mathema-
tician ‘“will find rigor sacrificed on many occasions. He may see repetition,
tautology, triviality interspersed with strained interpretations, and ques-
tionable demonstrations based on plausibility.”’

The reviewer finds that the author treats the general subject of engineer-
ing mathematics quite thoroughly, being quite complete in both his presenta-
tion and range of topics covered.

The author has included in his book a section on dimensional analysis,
indeed a welcome addition to the list of topics generally covered in a text
of this nature. Admittedly, the discussion is not complete, being intended
only to serve as a supplementary illustration of matrices. Nevertheless,
teacher and student alike will find the treatment adequate for the purpose
of the book.

The book includes an ample number of examples and exercises. The
exercises for solution, particularly the ‘“word problems’’, are relevant
to modern engineering and should serve well to make the usefulness of
mathematics apparent to the engineering student.

To further aid the student, a convenient list of references is included
and the answers to exercises are given at the end of each chapter.

Robert L. Gallawa

An Introduction to the Foundations and Fundamental Concepts of
Mathematics. By H. Eves and C. V. Newsom. New York, Rinehart, 1958.
xv + 363 pp., $6.75.

The purpose of this book is ‘‘... to make available to advanced under-
graduate students an introductory treatment of the foundations of mathema-
tics and of concepts that are basic to mathematical knowledge.’’ The
authors have been highly successful in accomplishing their aims.

The excellence of the exposition, at the sophomore and junior level,
makes this book particularly useful for prospective teachers of secondary
school mathematics as well as for others seeking an early orientation in
modern mathematics,

The treatment is strongly historical and the order of topics is “... in a
rough way a chronological development of the basic concepts that have
made mathematics what it is today.’’

Starting with an historical survey of ancient empirical mathematics, the
authors then compare Euclid’s ‘‘Elements’’ with Hilbert's ‘‘Grundlagen’’.
The long search for a proof of Euclid’s parallel postulate, which culminated
in the non-Euclidean geometries of the nineteenth century, is shown to have
motivated some of the early critical examination of the foundations of
geometry.

The problem of how to base the irrational numbers on the rationals is
sketched from Pythagoras to Dedekind and Cantor. The latter’s set-theory
and his transfinite numbers are introduced, and the ptesent crisis in the
foundations of set theory is touched upon.

Finally, symbolic logic as developed in the propositional calculus of the
“‘Principia’ is explained very clearly and simply.
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Some might prefer that the first hundred pages, mostly historical, be con-
siderably compressed so that the topics introduced in the last three chap-
ters could be further developed. In this reviewer’s opinion the book gets
better with each passing chapter.

There are very many exercises at the end of each chapter, those in the
later chapters contributing more to the stated purpose of the book than
those in the earlier.

Altogether, this is an excellent book.

University of Arizona Edwin J. Purcell

Mathematics of Physics and Modern Engineering. By J. S. Sokolnikoff and
R. M. Redheffer. New York, McGraw-Hill Book Company, 1958. ix + 810
pp., $9.50.

In effect this book offers in one volume nine brief texts on those
branches of mathematics which, in the authors’ judgment, give the minimum
mathematics needed by the modern engineer or physicist. The areas covered
are roughly indicated by the chapter headings: Ordinary Differential Equa-
tions; Infinite Series; Functions of Several Variables; Algebra and Geometry
of Vectors; Matrices; Vector Field Theory; Partial Differential Equations;
Complex Variable; Probability; Numerical Analysis. There are appendices
on Determinants, the LaPlace Transform, Comparison of Riemann and
Lebesgue Integrals. The book ends with a one page table of the probability
integral, answers, and an index.

Each chapter is sectioned, with most of the sections ending with a set
of exercises. These are usually formal applications, but in the more ad-
vanced topics lead to a deeper insight into the ideas involved. As typical
of the scope of the text, consider the chapter on series. After treating the
usual topics of a first calculus course, the authors discuss uniform con-
vergence, series of complex terms, series solutions of differential equa-
tions, and in the last twenty-five pages of the hundred page chapter,
present an introduction to Fourier series, integrals, and transforms, which
includes a discussion of mean and pointwise convergence, termwise inte-
gration and differentiation. Some proofs are given.

The chapters are self contained, and independeat. Thus several courses
can be taught from this book, and it is also well adapted to self study. The
exposition is in general clear, and the format attractive. Some users might
wish additional references, and the purist may take exception at some
places. But the reviewer feels the authors accomplish, in a thoroughly
satisfactory manner, their objectives, and warmly recommends this book
to the audience for whom it is written.

Saint Louis University John D. Elder

Linear Programming and Economic Analysis. By Robert Dorfman, Paul A.
Samuelson, and Robert M. Solow. New York, McGraw-Hill, 1958. ix + 527
pp., $10.00.

This new book in the RAND series is a general exposition of the rela-
tionship of linear programming to standard economic analysis. The book
is designed primarily for the economist who knows some mathematics but
‘‘does not pretend to be an accomplished mathematician’’. It should be of
interest also to the mathematician who knows only a little economics and
would like to see the significance of linear programming in economic
theory. Of course some economists will find the mathematics too difficult,
and mathematicians may find the economics obscure. But on the whole the
authors seem to have succeeded fairly well in determining the level of
presentation so as to reach those to whom the book may be most useful.
Mathematicians may find it necessary to refer to books on intermediate
economic theory or mathematical economics in order to appreciate the
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meaning of some of the discussion. Perhaps the best chapters are those

on the algebra of linear programming, the linear programming analysis of
the firm, elements of game theory, and interrelations between linear pro-

gramming and game theory. The simplest ideas of matrix theory are given
in an appendix.

The book is marred somewhat by an occupational disease of economists
— the irresistible impulse to play the smart aleck. For example, in pre-
senting the basic concepts of linear programming in Chapter II, the
authors lead the reader through two pages of calculatiofis and then remark
‘“‘We have laboured hard to get the best solution. The only trouble with our
solution is that it is wrong.’’ Such manoeuvres are calculated to intimidate
the reader and convince him that he is not as smart as the authors, but
they are of doubtful expository value. There are several other places in
the book where the authors seem to be playing a game with the reader in
which their own superiority and the reader’s supposed ignorance is the
main source of amusement. This reviewer did not notice any mathematical
errors more serious than an occasional misleading statement.

The basic difficulty in writing a book of this kind is the lack of common
mathematical background among economists. Let us hope that the day will
come when writers may assume that a well trained economist is familiar
with the elements of analysis and linear algebra. Then books on economics
could deal with their subject without having to instruct in mathematics at
the same time.

Carleton College Kenneth O. May

Introduction to Mathematical Analysis with Applications to Problems of
Economics. By P. H. Daus and W. M. Whyburn. Reading, Mass., Addison-
Wesley, 1958. viii + 244 pp., $6.50.

This book is designed as a text for a one-semester terminal course in
mathematics for students of economics and business. It presumes one
course in college mathematics as a prerequisite and would work best if
used concurrently with or following a course in principles of economics.

The title contains the phrase ‘‘Mathematical Analysis,’’ and after an
introductory chapter on economic models, the book turns to a good intro-
duction of the analysis of real variables. The pace is not maintained,
however, and after Chapter Two no formal statement of theorems and
proofs is given, and the discussion becomes largely one of hueristic
explanations for the remainder of the book. This tends to make the level
of the book somewhat uneven.

The content of the book breaks down into about 30 to 35 per cent
mathematical economics, 55 to 60 per cent mathematics and 10 per cent
descriptive statistics. The mathematical economics is a discussion em-
phasizing economic definitions and analyses which utilized topics from
mathematics to achieve more power and rigor. The approximately 110
pages of mathematics cover a very abridged version of the usual topics
in mathematics through the sophomore level plus two topics, Lagrange
multipliers and least squares, which usually appear in advanced calculus.
The emphasis is on curve tracing, conic sections, and differential cal-
culus, including partial differentiation and maxima and minima problems,
and there is a very brief treatment of integration.

On the whole the authors have succeeded admirably in their aim to write
a text for a terminal course emphasizing mathematical topics which are
extensively used in economic theory. The book is well written and it con-
tains very few typographical errors. Considering the limitations outlined
above, the text deserves serious consideration for a course which is in
line with the book’s objective. It does, however, pose problems of reentry
into the usual mathematics sequence for students who change their minds

after selecting a terminal course and then decide to go further in mathe-
matics.

University of Illinois T. A. Yancey
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Ordinary Differential Equations, By Wilfred Kaplan. Addison-Wesley,
Reading, Mass., 1958. xii + 529 pp., $8.50.

Books on differential equations vary in content from those which list
methods to be used when encountering a specific differential equation to
those which are concerned primarily with existence and uniqueness
theorems. The present text lies between these extremes. While not
eschewing formulas and methods, since these have their value, the author
treats differential equations from the point of view of ‘‘functional analy-
sis’’. That is, a differential equation is looked upon as specifying certain
functions whose properties are sought from the differential equation itself.
A means of acquiring a deeper insight into differential equations is
achieved by considering the notions of input and output as well as sta-
bility which were suggested to the author by that branch of engineering
known as systems analysis or instrumentation.

The less difficult theorems are proved in the main body of the text,
whereas the more difficult ones are relegated to the last chapter. It is
there that uniform convergence, the Weierstrass M-test, Lipschitz condi-
tion, Picard’s method of successive approximations, complete solution,
uniqueness theorems for systems of first order equations as well as
order n, and dependence of solutions on initial conditions are considered.

The first two chapters deal with basic definitions, the isocline method,
the step by step method of solving first order differential equations, level
curves, systems of equations, separation of variables, homogeneous equa-
tions, exact equations, orthogonal trajectories, the first order linear equa-
tion and applications to physical problems. The notion of input and output
is introduced in the third chapter for the first time and applied extensively
to the first order linear differential equation. In the fourth chapter the
author considers linear equations of arbitrary order with emphasis on those
equations with constant coefficients. The notions of input, output, stability
and transients are used to study the properties of solutions of linear differ-
ential equations in chapter five. Chapter six is devoted to the study of
simultaneous linear equations. An appendix to chapter six applies the
notion of matrices to simultaneous linear differential equations. Exact
differential equations, special methods for linear equations together with
applications are treated in chapter seven. Equations not of the first de-
gree, envelopes and singular solutions are taken up in chapter eight.
Chapter nine gives in some detail the method of solving differential
equations in terms of power series. Numerical methods suitable to digital
computers are considered in chapter ten. The analysis of non-linear equa-
tions by the phase-plane method is the subject matter of chapter eleven.

This excellent text of over five hundred pages covers a wide range of
topics that will be useful to engineer and physicist alike. The format is
pleasing and the drawings are extremely well done.

University of Illinois E. J. Scott

Introduction to Difference Equations. By Samuel Goldberg. New York,
1958. xii + 260 pp., $6.75.

If one important stimulus to the currently reviving interest in difference
equations is modern machine computation, surely another is the recent
development of many discrete ‘‘models’’ in all branches of science, and
particularly in the social sciences. Machine methods lead to vastly ex-
tended concepts of ‘‘solution’’ and thus bring back within the range of
active investigation many hitherto abandoned problems. New social science
models contribute ta the reawakening interest differently, by posing new
questions in difference equations and reinforcing our interest in other old
questions.

Professor Goldberg’s book is a sign of the generally reviving interest in
difference equations which places special emphasis on social science
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applications. Fundamentally a very elementary book, it is nevertheless
distinguished by several unusual features. One of these is the great care
with which the author introduces each idea and explains even extraneous
pieces of theory if he wants to use them. Within the main line of the
book’s development — difference calculus, general properties of difference
equations, linear equations with constant coefficients, stability and equi-
librium of solutions — he gives very full and clear treatment to the logical
unfolding of the basic concepts. In constant interplay with the formal
theory is a barrage of examples from economics, vm<nrmﬁom<..m00mo—ow<.
inventory analysis, communication theory, and even one from anthropology.

A remarkable last chapter offers fascinating glimpses of several deeper
pieces of mathematics: boundary-value problems and eigenfunction of a
second-order linear operator, generating functions and transform methods,
matrix operators and their application to some simple problems in Markov
chains. This discussion is necessarily restricted to some very special
cases so that all difficulties but those essential to the underlying con-
cepts can be stripped away; nevertheless, it should afford a fine appetizer
for the more ambitious reader.

All of this has been prepared for students with no training beyond
freshman mathematics. The book is said to be ‘‘primarily intended for
social scientists who wish to understand the basic ideas and techniques
involved in setting up difference equations’’. In this it should be a suc-
cess. It should also make excellent supplementary reading for students
just finishing calculus or beginning differential equations.

University of Virginia Robert L. Davis

Introduction To Advanced Dynamics. By S. W. McCuskey. Reading, Mass.,
Addison-Wesley, 1959. viii + 263 pp., $8.50.

This book is designed for a one-semester course on the advanced under-
graduate level. Its aim, according to the author, is to familiarize students
of science and mathematics with some of the ideas of classical dynamics
not ordinarily treated in courses in elementary mechanics, thus bridging
the gap between the latter course and a graduate-level course in theoretical
physics. Prerequisites are given as differential equations and advanced
calculus including some vector analysis. A knowledge of matrices and
tensors is not assumed or used; consequently the discussions of rigid-
body motion and oscillatory systems are somewhat more cumbersome than
necessary. The mathematical tools used have not been elaborated upon
and, again according to the author, if the student is forced to seek some
supplementary mathematics, so much the better. However, in such cases
there are footnotes with the appropriate references.

The outline of the book is similar to that of Goldstein’s Classical
Mechanics but it is written at a lower level in keeping with its aim. In
the reviewer’s opinion, the author has achieved his aim in a well written
text containing quite a few interesting topics (i.e., motion of a spinning
projectile, motion of a rocket, phase plane analysis, relativistic dyna-
mics, the Wall continued fraction alternative to the Routh-Hurwitz sta-
bility criterion, etc.). However, there are some minor criticisms and these
are as follows:

1. In the reviewer’s opinion, more space should have been alloted to
some of the mathematical preliminaries, especially since dynamics, no
matter how physical one gets, is still a highly mathematical subject.

In view of the importance of variational principles for the physicist, the
two page (pp. 49-50) preliminary on variational techniques hardly seems
sufficient. Furthermore, the author mistakenly treats the case of the
fixed length hanging cable problem for the case of the free coiled hanging
cable problem.

2. In the discussion of the trajectory of a particle being attracted by
a central force (p. 81), it is claimed that on physical grounds the motion
is planar and is determined by the initial velocity and the initial force
since ‘‘there is no force component, and hence no motion, perpendicular
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to this plane’’. This is an argument cmcmn_ in many texts and is fallacious.
Just consider2? =vZ, where t = 0, z =z = 0. One solution is z = 0 but

there is another one, z = ﬁé\ut. and the motion is unstable (see note of
O. D. Kellog, Amer. Math. Monthly, 37, p. 521). It should be noted,
however, that previous to this argument the author did establish mathe-
matically that the motion was planar from the equations of motion.

3. If the author feels that it is necessary to give a reference for the

solution of the on:mnmoa.m + mmx = Oon p.93, then he should have given

it previously on p.7.

4. The typography and many diagrams are excellent as is to be expected
from Addison-Wesley, but the price of $8.50 for a 263 page undergraduate
book on dynamics seems a little high.

Avco Research & Advanced

Murray S. Klamkin
Development Division

Yo -1DE-2)=xx?-1)(x-2)
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Science needs you

x %

You need science

° UNLIMITED

This section of the Journal is devoted to encouraging advanced
study in mathematics and the sciences. Never has the need for
advanced study been as essential as today.

Your election as members of Pi Mu Epsilon Fraternity is an
indication of scientific potential. Can you pursue advanced study
in your field of specialization?

To point out the need of advanced study, the self-satisfaction
of scientific achievement, the rewards for advanced preparation,
the assistance available for qualified students, etc., it is planned
to publish editorials, prepared by our country’s leading scientific
institutions, to show their interest in advanced study and in you.

Through these and future editorials it is planned to show the
need of America’s scientific industries for more highly trained
personnel and their interest in scholars with advanced training.

A CENTENNIAL SALUTE TO THE OIL INDUSTRY

One hundred years ago in August 1859 Edwin L. Drake succeeded
in drilling America’s first oil well at Titusville, Pennsylvania.
This, however, was not the discovery of oil. As long ago as 3500
B.C. asphalt was used as an adhesive agent. This form of ‘‘rock
oil’’ implemented the development of public building in the early
empires. Oil drilling to depths of 3500 feet by the use of bamboo
poles and crude brass bits had been achieved by the Chinese in
200 B.C. Natural gas too was used by the Chinese for illumination
and heat in the pre-Christian era. It was over 2000 years later that
the Drake well signaled the start of the oil industry in this country.

The next fifty years was the AGE OF KEROSENE. The expensive
whale oil and the coal oil (an oil extracted from coal) that had been
used for illumination was now replaced by a relatively cheap
kerosene distilled from crude petroleum. Illumination was the main
use of oil in this period. By-products, however, were rapidly
developing.
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With the automobile came the AGE OF GASOLINE, a forty-year
struggle of production, marketing, distribution, and transportation.
This period was spurred by technological developments. Today
crude oil yields approximately 45% gasoline, 4% kerosene, 35%
fuel oil, 3% jet oil, 2% lubs, 3% asphalt, and 8% other products
including today’s miracle makers, the petrochemicals. In the
United States 318 refining plants have a capacity for processing
9,000,000 barrels of crude oil daily. The never ending flow of oil
and gas provides two-thirds of the total power of the most highly
industrialized nation of all times.

No review of these developments would be possible without
reference to some of the men and companies who played important
roles in this one-hundred-year story of oil. Here in this country the
names John D. Rockefeller and Standard Oil were synonymous with
“oil industry”’. Standard interests dominated the early development
of the industry in the United States. Meanwhile on the other side
of the world The Royal Dutch Company and the Shell Transporta-
tion & Trading Company were experiencing similar struggles. In
1902 they combined to form Royal Dutch-Shell. In 1912 the
predecessors of Shell Oil Company began business on the Pacific
Coast and in the Midwest as American Gasoline Company and
Roxana Petroleum Company. Shell Oil Company and subsidiary
companies are today among the leaders in the oil industry.

We are most pleased to publish in this issue an editorial from
Shell Development Company, Emeryville, California, one of
Shell’s six research centers in the United States.

The following lists contributing corporations with the issue in
which their editorials appeared.

Army Ballistic Missile Agency Vol. 2, No. 10
AVCO, Research and Advanced Development Vol. 2, No. 10
Bell Telephone Laboratories Vol. 2, No. 10
Bendix Aviation Corporation Vol. 2, No. 8
Emerson Electric Company Vol. 2, No. 7
General American Life Insurance Company  Vol. 2, No. 9
Hughes Aircraft Corporation Vol. 2, No. 9
International Business Machines Corporation Vol. 2, No. 8
McDonnell Aircraft Corporation Vol. 2, No. 7
Monsanto Chemical Company Vol. 2, No. 7
North American Aviation, Inc. Vol. 2, No. 9
Olin Mathieson Corporation Vol. 2, No. 7
Shell Development Company Vol. 3, No. 1
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RECENT DEVELOPMENTS
IN

APPLIED MATHEMATICS

By J. B. ROSEN
Shell Development Company
Emeryville, California

The front page of your daily newspaper gives convincing evidence
of the phenomenal advances in technology that have taken place in
the last 15 years. This progress has been matched by, and to a con-
siderable extent is the result of, equally great strides that have been
made in the application of mathematical and statistical methods to
the solution of applied problems. It is now not only possible but
practical as well to develop accurate mathematical models of many
technological problems and to obtain useful solutions by means of
these models. When successful, such a mathematical approach can
result in substantial savings in the time and money normally required
for research and development of new and improved products and
processes for industrial or military use. Such savings are possible
because a valid mathematical model will permit a great reduction in
the amount of time-consuming and expensive experimental work. The
behavior of the actual system under many different conditions is
studied by means of the model, with only a minimum amount of exper-
imental data required for confirmation. On the other hand, for many
important industrial situations the only possible experiment may be
to actually carry out the operation itself (for example, the oil pro-
duction problem described below). An incortect decision in such a
case can be very costly. A mathematical model, verified by past
experience, is therefore extremely valuable, and permits the effect
of alternative decisions to be investigated prior to carrying out the
actual operation. The formulation and solution of a problem of this
type often lies in the area of operations research, and uses techniques
associated with such subjects as game theory, statistical decision
theory, simulation and mathematical programming.

It seems likely that the single most important reason for this
greatly increased usefulness of applied mathematics is the appear-
ance on the scene of the high speed computer and the new math-
ematical techniques which have been developed specifically for its
use. In this connection it is significant that the rapid development
of high speed computers and related mathematical methods is due in
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large measure to the late John von Neumann, who is believed by
many to have been the outstanding applied mathematician of this
century.

Prior to these recent developments it was usually necessary to
make many simplifying assumptions in order to obtain equations
which could be solved. Two such assumptions or simplifications are:
(1) the problem is linear, and (2) the number of variables or unknowns
is small. For many problems in basic science, physics in particular,
these assumptions are valid, and the solutions obtained do in fact
accurately represent the physical system being investigated. These
problems motivated much of the development of applied mathematics
and the field of analysis as well as some other branches of pure
mathematics. A considerable portion of the work in linear ordinary
and partial differential equations was carried out in order to solve
problems arising in mathematical physics and celestial mechanics.
Series solutions of differential equations in terms of orthogonal
functions, transform methods, and power series in terms of small
parameters are among the tools developed in this connection. These
analytic methods are most valuable when they show clearly the
behavior of the solution for a range of equation parameters and a
variety of initial and boundary conditions. Limiting cases and.
asymptotic behavior can also be determined by these analytic meth-
ods in many cases. To be of use for comparison with experiment or
for prediction of behavior, a solution must be in form suitable for
the calculation of numerical results. An analytic solution in the
form of a slowly convergent infinite series may be of no more than
the original formulation as a differential equation for which an
existence theorem is known. In either case, all that is known is the
existence of a solution to the stated mathematical problem. The
value of a solution to an applied problem is therefore largely

determined by the ease with which numerical results om/n be obtained.

The success of these analytic methods in physics has unfortunately
not been matched by their equal success in the mathematical solu-
tion of problems in many other fields of technology. Important prob-
lems arising in industry are frequently such that inherent nonline-
arities cannot be neglected without destruction of an essential
aspect of the problem. Furthermore, certain important problems in
operations research and economics require formulation in terms of a
large number of variables, several hundred in some cases. For such
problems the essential nonlinearity or the large number of variables
makes pre-computer methods of solution totally inadequate (these
difficulties may even occur together in some particularly trouble-
some problems). More powerful methods are therefore required which
utilize fully the capabilities of a modern high speed computer. The
remainder of these remarks will be devoted to a discussion of such

methods, the need for a rigorous analysis of them and to some typical .

industrial problems which are being solved by these modern tech-
niques.
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Most successful high speed computer methods consist essentially
of the repetitive application of a basic computational procedure or
algorithm. Such an iterative procedure is started with an initial set
of numbers, for example, the given initial values for a differential
equation. The computational algorithm is carried out with these
numbers, the result being a new set of corresponding numbers. This
procedure is repeated as many times as necessary to obtain answers
with the desired accuracy. A large number of such iterations is
often required.

The two main difficulties (the nonlinearity of the problem and
the large number of variables) can often be handled by such methods,
with the additional advantage that the desired numerical solutions
are obtained directly. A good numerical process, developed for a
particular type of problem, should not require a change in the basic
v.—.oommﬁm as the number of variables increases. The practical
limitation on size is usually determined by the machine time (and
cost) required to obtain a solution. Numerical methods capable of
solving nonlinear problems are often extensions of those suitable
for linear problems. One of the most effective such extensions is
based on successive local linearizations of the nonlinear problem.
A sequence of linear problems is solved and this sequence con-
vergers to the solution of the original problem.

Important requirements for a satisfactory numerical method are
.mnmmmmnmm by the previous remarks. First, since a large number of
iterations may be required, it is essential that any errors introduced
are decreased in subsequent iterations. If this is not the case small
errors, due for example to truncation or round-off, may build up to
the point where the computed results are meaningless. A method is
called stable if errors do not increase as a result of many iterations.
The second and closely related requirement is that the approximate
numerical solution approaches the true solution as the number of
iterations increases. Provided the approximation converges to the
true solution in this way, any desired accuracy may be obtained.
Furthermore, the accuracy of the approximation can usually be
estimated and the iteration procedure continued only until the de-
sired accuracy is achieved.

In order to apply a numerical method with confidence it is
essential to know that it is a valid one for the type of problem to
be solved. This has given impetus to important theoretical work in
numerical analysis, where a particular numerical method is studied
from the point of view of stability, convergence and certain other
related questions. Once its validity has been established for a
certain type of problem. A method can be used with confidence for
any problem of that type. These investigations require the same
kind of rigorous mathematical analysis typical of pure mathematics.
In this sense then, the use of high speed computers has reempha-
sized the need for rigorous analysis in applied mathematics, in

Moﬁwwnmmﬁ to the heuristic approach of much of the earlier work in this
ield.
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The preceding remarks will be illustrated by a brief statement
of two important applied problems which arise in the petroleum in-
dustry, together with some discussion of the numerical methods by
which they are being solved. The first problem, logically enough,
arises in getting oil out of the ground. Oil is found in large under-
ground reservoirs where the pressure may be as high as 10,000 psi.
When one or more wells are drilled into a reservoirthe gas pressure
is usually sufficient to drive the oil through the porous sand and ~
out of the wells. Important factors in determining the total amount
of oil which will be obtained from a given reservoir are the number
of wells drilled, their location, and the rate of production of oil at
each well. After a number of years the reservoir pressure may de-
crease to the point where secondary recovery is advantageous. This
can be carried out by pumping water into some of the wells in the
reservoir, thereby forcing more of the remaining oil out of other
wells. In addition to the basic decision to proceed with secondary
recovery, the choice of wells and the rate of injection of water into
the chosen wells are important factors in the success of the operation.
It is clear that improved methods for predicting the effect of these
and other factors on total recovery are of great value since incorrect
decisions may either be impossible or very costly to remedy.

This general problem of two-phase flow through a porous medium
has been formulated mathematically in terms of a system of two non-
linear partial differential equations subject to various initial and
boundary conditions. The time-dependent solutions in one, two or
three space dimensions are desired, depending on the geometry of
the particular problem. Satisfactory numerical methods have been
developed for solving these equations in one and two dimensions,
although considerable amounts of machine time are still required for
two-dimensional cases. The methods are based on a finite difference
approximation to the original partial differential equations. Since
the original equations are nonlinear the implicit method used to
solve the finite difference equations requires the solution of a set
of simultaneous nonlinear algebraic equations at each time step.
This is done by the iterative solution of approximating linear
equations. A much simpler explicit method of solving the finite dif-
ference equations is not practical because the method is stable only
for very small time steps. The accuracy of the solution depends on
the number of spatial grid points and time steps used. Greater
accuracy can be achieved by using more grid points and smaller time
steps, but only at the cost of a considerable increase in the com-
puting time required. This illustrates clearly the need for a careful
study of the accuracy required and the grid size needed to achieve
this accuracy, so as to minimize the computer costs. Some of these
problems may require ten or more hours of machine time at a cost of
approximately $300 per hour. These methods have been examined
for certain types of problems in one and two dimensions, and shown
to be stable and convergent. Considerable work still remains to be
done before satisfactory three-dimensional methods are available.
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The second problem, arising farther along the road to the ultimate
consumer of oil industry products, is concerned with the operation
of an oil refinery. Specified amounts of many different products
(premium and regular gasoline, aviation fuels, fuel oil) must be
blended from various components. These blending components may
either be purchased or come from a number of refinery processing
units. Each product must meet a set of specifications (octane num-
ber, vapor pressure, viscosity) which can be written in terms of the
blending component properties. The operating conditions of each
refinery unit determine the amount and the properties of each com-
ponent, as well as the cost of operation. It is desired to operate
the units and blend the available or purchased components so as
to make the required specification products at the lowest cost.

A typical mathematical model of such an operation may involve
over a hundred unknown quantities. The quantity and quality
specifications will be represented by equations or inequalities
involving the unknown variables. Most of these constraints will be
linear, but some nonlinear constraints may be required. The total
cost of carrying out the operation depends on how the processing
units are operated and how much material it is necessary to purchase,
Thus, the cost is a known linear or nonlinear function of the
variables. The mathematical problem therefore consists of determin-
ing the variables so as to minimize the cost, and still satisfy all of
the constraints. This situation differs basically from the classical
problem of minimizing a function subject to auxiliary equations. The
difference is that some or all of the constraints are inequalities, so
that for example, certain variables must be greater than or equal to
zero.

This mathematical programming problem may be stated in geometric
terms. Assume that the problem consists of N variables which form a
Euclidean N-dimensional space. Those points satisfying the con-
straints form a convex region R in the space. It is desired to find a
point in R at which the objective function attains its minimum value.
If both the constraints and the objective function are linear in the
variables the problem is one in linear programming, and the desired
minimum point will be a vertex of R, Very efficient machine programs
are now in use for the solution of linear programming problems. If
either the objective function or some of the constraints are nonlinear,
a more difficult nonlinear programming problem must be solved. A
practical method has been developed for this situation based on
following the steepest descent path subject to constraints. The path
follows the gradient of the objective function, or its projection on
a sequence of appropriately chosen intersections of constraint
hyperplanes, until the minimum point is reached. A satisfactory
computer program is being used for problems with a nonlinear objec-
tive function and linear constraints. Further work on this, as well
as the nonlinear constraint problem is being carried out.

Mathematical programming techniques are now being used for many
different kinds of problems. The refinery optimization discussed
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