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THE ROE AND NATURE OF MATHEMATICS

Preston C. Hamme, University of Wisconsin

Introduction.

Mathematics has recently achieved, along with certain other branches
of learning, a new status. The reasons are numerous but they are
associated with the successes of fields formerly confined to the remote
reaches of erudite scholarship in applications of concern to all of
us. The causes which have led us to re-examine the mathematics cur-
riculum are not necessarily those springing from the highest motives
attributed idealistically to science and scientific enterprise. A
central factor is the success of the Russians. It is a sobering fact
that societies will often make the effort to achieve great things only
under duress, for example, in the interest of so-called defense.

Today teachers of mathematics are being called on to teach concepts
which a short time ago were saved for graduate students and research
mathematicians. In retrospect, it can be wondered, how did we under-
estimate so thoroughly the capacity of the young or, conversely, how
did we overestimate equally thoroughly the inherent difficult of mathe-
matics? Whatever mey be the causes, it has become clear that the
principal educational problems concerning mathematics rest on decisions
as to how much should be taught and in what sequence, and not primarily
on the capacity of the pupils to grasp it.

In view of the upheaval in progress it is the more important that
teachers in secondary and elementary schools acquire a broad perspective
of mathematical activity. In this essay | attempt to record some of
the conclusions I have reached in years of activities and thinking
related t o mathematics—--research, computing and teaching. 1 do not
claim to be an authority. "Authorities", who would impose their limited
outlook on others are the principal curse of science and mathematics as
well as other areas. A men who believes that his outlook should be
accepted because he has accepted it should be treated for illness.

There are several attitudes concerning mathematics which have been
indicated as authoritative which will not bear even casual scrutiny.

It is true that many successes have been scored in mathematics by
eminent mathematicians who have seemingly deluded themselves rather
thoroughly concerning the nature of mathematics. Thus one famous mathe-
matician undertakes to present mathematical creativity as a prerogative
principally of a few great men This is not only a false concept, it
reflects ignorance concerning the nature of creativity. |1t reflects
also an attempt to maintain a high priesthood of mathematics based on
false precepts and sheer arrogance.

Nw I an going to put together a chain of statements for your
consideration. | believe that these statements can stand the test of
your thought but you should not accept them without considering quite
carefully their implications.

The most neglected existence theorem in mathematics i s the
existence of people. Mathematics was created by people and it bears
their imprint. 1t is not infallible nor have its precepts always
been wise. Take, for example, the often heard slogan "mathematics
for the sake of mathematics" a paraphrasing of "art for the sake of
art”. A mathematician who claims to work on mathematics for its om
sake does not know what he is doing. There is no sake of mathematics,
nor of art either. | may work on mathematics because it amuses me
because | believe it to be useful, to establish a reputation or any
reason but certainly not for its sakel




Mathematics as a Necessity of Civilization.

Mathematics arose from the needs of organized societies of people.
Imagine a primitive tribe living by hunting and collecting the natural
harvest of forest and field. Rudimentary forms of counting are needed
to communicate numbers important to the tribe. This may be the number
of animals in a herd; the number of people in a hostile tribe. Also
needed are measures of size, strength, distance and time however
crudely formulated they may be. A certain primitive awareness of
similarities of shapes must be present in efforts to duplicate arrow-
heads and implements. It is also important to have some means of
describing location involving both distance and direction. Thus even
in a primitive society certain intuitive concepts wHich |ater developed
into mathematics are necessary. Moreover, this primitive tribe needs
something of virtually all the great branches of specialized mathematics.

If 1 now consider instead an advanced civilization such as Babylonia
or Ancient Egypt, | find that the mathematical necessities have increased
enormously. The counting of large populations, armies, and herds must
lead to the idea of the necessity of extended counting--i.e., the
natural numbers. Distances must be measured systematically and locations
described with some precision. Why? Because there is now private
property—- -real estate which must be surveyed, roads, streets and canals
to be built and these must be planned. Thus metric geometry is necessary.
Calendars are important and astronomy becomes a field of specialization.
We inherit, for better or worse, the Babylonian sexagesimal system of
measuring time and angles.

Geometry is also important in the planning of houses, palaces,
bridges and ships. The mechanics of building, of construction, and
so on, must be planned in advance.

Weights, measures, money all must receive some consideration.
Accounting of some form must be initiated for purposes of taxation and
management of wealth.

Thus in Babylonia, as in Ancient Egypt, there was much demand for
the commodity we know as applied mathematics although the only area
which we might recognize as mathematically developed was that of
calculation with a certain amount of algebra. That these civilizations
could have used much more of modern mathematics is obvious.

Since society was organized, this meant specialization and, for
some, leisure. Thus there are indications that certain Babylonians
delved into mathematical problems out of sheer curiosity rather than
directly to achieve an immediate objective. This spirit of exceeding
the necessities has led throughout the years to much of the signifi-
cant work in mathematics.
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Pythagoras and Euclid.
As a conceivable example of doing mathematical work, 1 select

Pythagoras first and then go on to Euclid. The Theorem of Pythagoras,
stating that in a right triangle the sum of the squares on the sides
is equal to the square on the hypotenuse is one of the best known ones

in mathematics. 1 do not know how Pythagoras actually did the work,
but I will assume that he did it like research is done today.
First of all, how did Pythagoras come to consider such a problem?

The answer might be that he was aware of previous experience with

special forms of the problem. The Egyptians knew, for example, of the

3, 4, 5 right trianqle and used it in surveying. The isosceles right
triangle may also have been part of this experience. However, Pythagoras
was not satisfied with these results for special right triangles, he
wanted a result applying to all right triangles. This endeavor to
achieve completeness marks much of mathematical activity.

What did Pythagoras do? He draws various right triangles; he
becomes convinced that if he knows the lengths of the legs that the
length of the hypotenuse is determined, that is, it is a function of
the lengths of the legs. Perhaps his experiments are carried out over
a period of several years, intermixed with other activities. There
comes a time, however, when Pythagoras guesses the answer. Now he has
a proposition to prove or disprove. His experiments may have already
led him to a method of proof. However, he may have spent much more
time in devising a demonstration which could be used t o convince every-
one of the validity of his conclusion. He tries various procedures,
based on his experience, and finally arrives at a rather short demon-
stration that he presents to his colleagues and students. This demon-
stration takes the form of deductive proof. In a few minutes Pythagoras
convinces his audience of the validity of his theorem. 1t does not
take long since they already have agreed on the background of geometry
assumed by Pythagoras.

I now draw several conclusions from this pseudo-example. The
first is that mathematics, Bertrand Russell to the contrary notwith-
standing, is not deductive science. The selection of what to work on
is not deductive. In this case Pythagoras drew on experience and this
is as true of mathematics today as it was then. Granted the selection
of a problem, the establishment of what conclusion to draw from the
hypotheses is not a deduction. Granted the complete phrasing of the
theorem, the establishment of a demonstration is not done deductively.
Once a "path" has been established from hypotheses to conclusions this
path is not unique and deduction as such did not lead to it. Only
when the work is being cast in the final demonstration does it actually
appear as a deductionl There are some 50 or more different proofs of
the Theorem of Pythagoras. Wy did he select the one he did? Partly
because of his experience and the limitations of his knowledgel

When you present a proposition to pupils you cannot take the same
amount of time as it took to guess and establish it in the first place.
No, not even Pythagoras would go through a full description of his work,
this hopes, fears and elation at achieving the result. Why? Simply
because it would take too long. Our education system is, in part,
supposed to bring the pupil through the important accomplishments of
millenia of hard-working people. He cannot relive these millenia and
must be given them in capsule form. Nevertheless, it is wrong to give
the impression that the work did not take place, that Pythagoras dashed
off his theorem as the exercise it appears. It is also wrong to create
the impression that the pupil himself might not create something or that
the creators of the mathematics were essentially different from himself.

Let ne now go to Euclid. Euclid, in ny estimate, was one of the
most percipient of known mathematicians although his influence, as an
authority after his death," had its enormously detrimental effects.
Euclid was adequately supported and had leisure to work on mathematics.
He was surrounded by learned scholars, a good library, and probably had
assistants in such quantity as he could use. Behind him was already a
large collection of geometrical propositions. Euclid studied this
geometry; he knew it well. He was distressed by the cyclic use of
propositions for proofs. That is, a proposition A might be proved on
the basis of propositions B, C, and D, say. On the other hand, propo-
sition A might have been used in the proof of B, C, or D. The recog-
nition of this and his success in avoiding such circularity in geometry
is the main contribution of Euclid.

What Euclid did was to select, based on his experience with geometry
and other experiences, those propositions which seemed to him correct
but not provable on the basis of simpler propositions. Such propositions
he called axioms. He attempted to introduce enough axioms to characterize
geometry and imply the important results already known. He also attempted
never to introduce as an axiom a proposition which could be proved on
the basis of his previously selected ones. For this reason the famous
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Parallel Axiom was not introduced until rather late, since Euclid was
not convinced that it was necessary although, since he failed to prove
it on the basis of the preceding axioms he did finally include it.

Thus the axiomatic method i n mathematics originated with Euclid and
it has turned out to be a powerful implement of research. Observe that
Euclid's work was primarily not deductive. He could not deduce which
propositions to choose as axioms, nor did he deduce which deductions
to use in making demonstrations. The summary of his achievements were
recorded in his Elements but the work involved was not recorded. Thus
Euclid's Geometry does not reveal how t o do mathematics; it gives a
form of presenting it after it is done. »

The treatment of Euclid's Geometry as a model of reasoning is one
of the reasons for the slow development of mathematics. In effect, it
has been used largely to prevent reasoning by its use as an authority.
The geometry taught as a model of thinking has actually been used as
a mental strait jacket. A heritage can be a curse as well as a blessing.
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Logic, Theorems and Proofs.

In the foreaoina section | may have aiven the impression that a
proof is somewhat independent of people. 1In this section | attempt to
destroy such an illusion. Attempts to suggest that mathematics is part
of a safe, secure, logical structure existing independently of human
experience are erroneous.

Consider a proposition or theorem in the usual sense. It can be
written schematically ® 2 ¢ where H stands for hypotheses, C for
conclusions and the statement reads H is logically stronger than or
equal to C Thus | may write schematically H = C to indicate the
logical difference between Hypotheses and Conclusions. Since only

when H is necessary and sufficient for Cdoes H = C, | have theresult
that almost all mathematical theorems represent a logical lossl Theorem
after theorem represents loss after loss. Is mathematics simply an

accumulation of logical losses? Nol A good theorem provides information
t o people; it contains an element of surprise. What may be logically
true isS not necessarily known to be true. Mathematicians are engaged

in the production of information in establishing that one state of
affairs implies another state of affairs.

Assuming the old-fashioned logic in which H 2 C is either true
or false independent of human capability of establishing either, then
it is easily seen that a proof has no logical function. That is, it
has no effect whatever on the truth or falsity of the theorem. Wy
prove theorems? The answer is to convince people that the theorem is
true. If you read the statements in a "proof" and fail to be convinced
that the theorem is true, it has not been proved to you. On the other
hand, if you are convinced by means however bad of the truth of a theorem,
it is proved to you. Similarly, if you present a proof to pupils, it
is not a proof to those who are not convinced. Efforts to gloss over
this simple fact of life can only result in bad instruction.

Mathematical friends have said to ne "You are right concerning a
proof but how depressing it is". What is right may be depressing but,
as teachers, we should try to know what is right. 1 know of no theorem
established except through human acceptance; by vote, if you like. A
definite unbalance in our reasoning powers is most useful here. A
theorem can be shown to be false by one counterexample; it is true only
if no counterexample can be constructed. We are stronger on negative
than on positive decision. David with a counterexample is stronger
than Goliath with a theorem! Mathematicians attempt to avoid all
counterexamples of their theorems. It is amazing how well they seem
to have succeeded.

Understanding a theorem and its proof requires active participation.
This may take the form of trying to construct counterexamples, of trying
to-formulate a proof yourself, or of trying to improve on the theorem

or its proof. There is generally too much practice in imitating correct 506
statements as compared to practice in detecting errors in false state-
ments. A teacher should & require a student always to give back the
same proof as presented in class. To do so puts a penalty on thinking.

The Generality of Mathematics.

Much fuss has been made over the generality of mathematics.
Jaundiced eyes are cast on generalizations often in the mistaken notion
that mathematics is general enough. What are the facts? Mathematicians
have borrowed the safest part of the language and attempted to construct
a secure structure on it. All attempts to meet further demands must
result in more general systems. Thus ancient mathematics did not
provide models for games of chance but probability theory was initiated
to do so. Euclidean geometry failed to describe effectively rather
simple curves until Descartes introduced coordinates, thus giving a
panorama of curves. Cantor then went further to meet the applications
and introduced a theory of sets which admitted many more objects as
geometrical figures.

Topology, as contrasted with Euclidean geometry, is rather general.
Yet it is not general enough for the demands of computing theory and
numerical analysis.

By reason of its intensive development of certain concepts mathe-
matics has been considered an object language for sciences. However,
the security sought and achieved has its price in the inapplicability
of mathematics to any but comparatively simple situations.

You may quote examples of the applications of mathematics by the
hundreds. | will be impressed but not overwhelmed. 1 know that in
the simple process of attempting to pack as many dishes in a box a house-
wife is trying to solve a problem more difficult than has been solved
in the far reaches of measure theory! |1 also know that when you accept
responsibility for advising a student you have a problem in which mathe-
matics is principally useless, the problem is too difficultl

Mathematics has an expanding area of influence but it can represent
only a small portion of human activity. Mathematics is inherently less
general than the common language!

creativity and Purity in Mathematics.

What is creative activity? Creative activity can occur in many
unsalable forms. The recognition of a pattern, an analogy, the smoothing
over of a quarrel, the phrasing of a sentence are examples of creative
activity. Every normal person does many creative acts, but sometimes
these are ones required of him and he is not specifically rewarded for
them. It is creative to discover a relationship or proof in mathematics
RO matter how many have done it before. However, if a person wants to
be paid for his creations be i1t in recognition, deference, or money
then he has additional conditions to meet.

The tagging of only masterpieces of creativity as being creative
is foolish and misleading. It is important that students be encouraged
in their efforts and that their positive creations be rewarded. Creativity
is not a prerogative of the great, it is almost a necessity of survivall

This brings ne to the schism between pure and applied mathematics
accentuated by great fools. There is no mathematician today who is
pure and known in one sense. Even so-called pure mathematicians
publish their work for the application of receiving recognition and/or
money. Moreover, they are naturally pleased when their results are
used for any worthy purpose. |f mathematics were useless society
would not support it. The applied mathematician, on his part, may
be disdainful of the results achieved by his "pure" colleague since
he can't apply them immediately to his work. Sincere earnest work is
usually going to be beneficial.
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Incidentally, if you should meet someone corroded by the power of
recognition, consider this. I1f he, (the powerful one), achieved his
status because he had superior equipment, for this he deserves no
credit; he had nothing to do with it. On the other hand, if he had
but mediocre gifts but made the most of them would he like to be reminded
of it? The quest for recognition has no merit in itself and it produces
warped personalities in quantity.

Definitions and Axioms.

It is common practice to act as if a set of elements coupled with
a set of propositions presented as axioms define a.mathematical system.
This may be an adequate artifice for research workers but teachers .
should know better. The notion that a set of words define something
independent of the people who read them is destined t o become the
archaism it should long since have been. The axiom system as used
provides a starting point, assuming you read the language in which it
is written, for the unfolding of a subsequent body of theory and con-
cepts. The theory is generally necessary to the understanding of the
axiom system--and hence helps define it. Fram the sterile logical
viewpoint, if the axiom system really described completely a mathe-

matical area there is no point in the subsequent theory since all is
implied by the axioms.
The same is true of definitions. In what sense does a definition

read by two people mean the same thing to both? If it doesn't mean
the same then does it define? The answer is that most of the pat
definitions do not define in any precise sense. Use of a concept is
necessary to grasp its meaning. This should affect our teaching by the
realization that the so-called definitions are merely prologues. What
follows should be the cultivation of an understanding of the meaning

of these concepts. Can anyone define variable, constant, or function
so that their meanings are clear to the reader? Not in any few words
and certainly not without much experience with the concepts.

Attempts to define natural numbers have been rather dismal. Why?
Because, as Euclid observed, you cannot start without assumptions and
you cannot define words in terms of words without starting with some
that are known. These known words have had to be learned by association
and abstraction. In mathematics efforts are made to obtain precision
of meaning and this is done by attempting to sort out proper and
improper responses. The teacher plays a critical role in this endeavor.
What is a number, say 2? It is principally an agreement among people!l
It is neither ink, chalk, nor appropriate sound packets.

Instruction.

It is impossible to consider all the implications of what I have 508
been saying for instruction. Nevertheless perhaps a few paragraphs
will give some opinions for you to disagree with.

First of all I consider the circumstances in which our secondary

and elementary teachers now work tend to make the best in instruction
almost impossible. First, the teachers need more time and opportunity

to learn mathematics and participate in the applications of mathematics.
They also need more time to consider individual pupils to find better
ways for them to approach whatever they are learning. The pupil 1is
supposed to digest in a comparatively short time the heritage of millenia.
He is supposed to learn to communicate i n the language of mathematics.
Almost inevitably, however, he spends most of his time listening and
reading instead of thinking, writing and speaking. This IS partly because
the pupils outnumber the teachers by too great a factor. Thus the
teacher finds it comfortable, if not necessary, to force one point-of-
view on the pupil, to require that he do things in the precise fashion
laid down. This tends to produce good parrots but not good students.

I have heard repeatedly the injunction to parents "Please don't
help your children, it will only confuse them". Actually, it may be
that the teacher cannot cope with ideas and methods with which he is
not already familiar. The modern teacher needs to erase the image of
himself as an oracle. |In any classroom the pupils almost inevitably
know things not known to the teacher. A good teacher should manage to
capitalize on that source of information.

The applications of mathematics have tended to be slighted even
by collegiate instructors. This attitude does not reflect strength but
weakness. Knowing what mathematics does is part of knowing mathematics.
On the other hand, repeated discussions of situations illustrating a
mathematical concept without coming to grips with the concept essentially
denies the reason for the efficiency of mathematics--in expressing the
essence of many situations without actually being any one of them.

Education is, in its very nature, a form of thought and action
control. To minimize the detrimental effects of such control, it is
necessary to permit and encourage challenges. Thus, a mathematics
text-book represents the author's viewpoint and experience and consti-
tutes a form of thought-control. Teacher and pupil alike should not
be reliant on that one source of information. They should compare with
other books, be alert for inaccuracies, for better statements and proofs
and so on. To require a pupil to learn one method is one thing, to
forbid him to learn another is inexcusable.

There is much pressure these days to divert all the so-called
gifted students into channels of science and engineering. |In part, 1
suspect this is because the easiest people to teach are those capable
of learning without instruction. The secondary teachers in particular
need to consider the fact that it may actually not be the best to advise
a pupil to go into such areas however apt he is. One of our greatest
needs now is for better statesmen on all levels of government. Another 509
need is for teachers. I have heard research mathematicians, who would
never advise a good student to become a teacher, lambaste the quality
of teaching. In ny opinion, they have better students than they deservel

Finally, I et ne close this section with an observation on the
economics of teaching. As a guess, | should say that the time of the
pupil is worth $1 per hour on the average. This value of time is too
frequently ignored. Hence, teachers and pupils deserve the best possible
in prepared materials. Yet generally most materials are inadequately
researched and are written by one or two people in their spare timel
The resultant loss is enormous. We can afford to do better.

Conclusion.

Mathematics is not deductive science and neither is logic. There
is no logical excuse either for mathematics or logic. Mathematics was
created by people who, generally speaking, were much concerned about
the durability of their work. They very much need to know what they
are talking about and they have shown a high degree of concern for the
truth of their statements.

Any attempt to separate mathematics from its applications is foolish.
Creative mathematical activity is not a prerogative of a few any more
than creative art is. Mathematics has had amazing successes and yet
remains, in its present state, applicable to principally simple problems.

The good teacher in whatever field returns to society much more
than he or she is paid. Good teaching must be founded on an under-
standing of and appreciation of the subject matter, of the pupils, and
of society. 1 hope these observations, in some way, promote better
teaching in mathematics.

I an indebted to Professor John D. Hancock of Alameda State College
for suggesting that I should write up a lecture on which this paper is
based, and also for improvements he has suggested in the manuscript.
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Appendix. What Others say. 510
In the body of this essay, after some deliberation, | decided against
quoting other people to support ny viewpoint. M/ viewpoint is rather
different from that of most mathematicians who have similar inclinations,
and it seemed a poor policy to suggest a complete accord by restricted
quotations. However, there are several authors wio agree, at least on
the essential features, that mathematics and logic are not simply to
be divorced from the activities of people in society. Amag these men
are Professors Nathan A. Court and George Polya. Another outstanding
thinker on such matters was Professor Gerritt Mannoury, of the University
of Amsterdam, whose books unfortunately have not been®translated into
English. |n the closing paragraph of his book [3] Professor Mannoury
labels as pure superstition the notions of mathematics as absolute,
perfectly exact, general and autonomous or, in short, being true and
eternall This statement nicely puts the finger on mathematical fantasy.
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FIFTY YEARS IN THE Pl MU EPILON FRATERNITY

J. S. Frame, Director General
Michigan State University

1. Incorporation. The Pi M1 Epsilon Fraternity, incorporated on May
25, 1914, under the laws of the State of Nav York, is celebrating its
golden anniversary as a national mathematics honorary fraternity with
nearly 100 active chapters in 39 states and the District of Columbia
It is a non-secret organization whose purpose is the promotion of
scholarly activity in mathematics anong students and faculty in
academic institutions, and among staffs of qualified non-academic
institutions.

Its first Director General, Dr. Edward Drake Roe, Jr., had organized
a Mathematical Club at Syracuse University in the fall of 1903 and had
guided it through ten years of successful endeavor. At the club meeting
on November 17, 1913, he proposed the establishment of a mathematical
fraternity. Details were worked out in committees, and on March 2,
1914, a convention was held and a constitution was adopted. Specific
names for the Fraternity were considered on March 23, and the Greek
letters E™TM, "To promote scholarship and Mathematics", were adopted,
but with the order of letters changed to I"ME., Those present then took
the following pledge and signed their names as charter members of the
Fraternity.

RABEDGE | do solemnly promise to give ny best efforts in the
improvement of ny scholarship in all ny subjects and especially
in mathematics, and to maintain a reserved silence concerning the
obligations of the fraternity, and to cheerfully accept advice
and admonition as long as I an a member of the fraternity. (The
pledge has been altered in subsequent years.)

The fifty charter members included 8 faculty, 2 graduate students,

15 seniors, and 25 juniors and sophomores. The Mathematical Club was

dissolved on April 27 after turning its assets over to the new frater-

nity. Five officers and four additional members of the executive

committee of Pi Mu Epsilon were then elected. These became the

incorporators of the fraternity and signed their names on Mey 20, 1914,

to the certificate of incorporation, which was approved by Justice

P. C. 3 DeAngelis of the Supreme Court of Nav York.

Incorporators of Pi M1 Epsilon
Edward Drake Roe, Jr. (Director) Florence A. Lane
Floyd Fiske Decker (Vice Director) Helen May Barnard
Helen L. Applebee (Secretary) Edward Jay Cottrell
Purley J. Bentley (Treasurer) Adolph Sussman
Olive Evelyn Jones (Librarian)

2. Early Years. The vote to establish the new fraternity might not
have prevailed if high scholastic requirements had been set for charter
members.  Scholarship standards for election of new membes in 1914-15
were discussed on October 3, 1914. Minimum general averages and mathe- 512
matics averages of 75 and 80 for sophomores and of 72 and 75 for juniors
were adopted then, but higher minimum requirements were set at later
meetings. Sophomores must now have an A average in mathematics and be
in the upper quarter of their class in general average to be eligible
for election t o membership.

The young fraternity became a national organization after World
Wa | wien the second chapter was established with 23 charter members
at the Onhio State University in October, 1919. First known as the
Beta chapter," it became the Ohio Alpha Chapter when it was |l ater
decided to include the state name in chapter designations. The next
three charters were granted by the Syracuse chapter to the University
of Pennsylvania (1921), the University of Missouri (1922) and the
University of Alabama (1922).

Records show that General Officers of the Fraternity were nominated
(and they presumably were elected) in December, 1922, as follows:

Director General: Dr. E. D. Rog Jr. (Syracuse)

Vice-Director General: Mr. W. V. Houston (Ohio State)

Secretary General: Dr. Warren G. Bullard (Syracuse)

Treasurer General: Miss Louisa Lotz (Pennsylvania)

Librarian General: Miss Mabel G. Kessler (Pennsylvania).
Under the new national organization chapters were chartered at lowa
State in 1923, at the University of Illinois on the tenth anniversary
date of Mey 25, 1924, and at Bucknell University on March 5, 1925.
Professor #. S. Everett of Bucknell was elected Secretary General in
January, 1927, when Professor Warren A. Lyon withdrew his name after a
tie vote for that office. Professor Everett replaced Professor Bullard,
then on leave of absence because of cancer which soon claimed his life.
Professor John s. Gold succeeded Professor Everett as Secretary in the
fall of 1927. Dr. Roe and Miss Lotz continued as Director and Treasurer.

Dr. Roe expressed his strong feelings about the need for democracy
in Pi Mu Epsilon. Opposing the appointment of a nominating committee.
he suggested that each chapter send its nominations to the Bucknell
chapter, which would serve as teller, and that the two highest candidates
for each office be voted upon by the fraternity. Woriting to Professor



Everett on February 13, 1926, he said, "All along | have endeavored to
keep the management of Pi Mu Epsilon out of the hands of a few. Its
government is democratic and I have aimed to prevent anything like

an oligarchy ...« The chapters have all the legislative powers, the
council is merely executive and advisory ...." To Professor R. C
Archibald he wrote on December 9, 1926, "I have had the conception from
the start of a fraternity uniting faculty and the most advanced students
(normally above sophomore, though an exceptional sophomore may be
eligible) and | have never departed from this ideal. | have always

felt that a merely undergraduate fraternity would be only a half success
. in accomplishing our whole purpose and ideal, the advancement of
mathematics and scholarship.”

A jeweled pin was presented to Dr. Roe by the Fraternity on the 513

occasion of his retirement, just six months before his death in 1929,
as a token of appreciation for his fifteen years of devoted service
as Director General. Since 1949 this pin has been entrusted to the
incumbent Director General, to be worn as a badge of office.

When Dr. Louis Ingold of Missouri became the second Director
General in 1929, the Fraternity had 18 chapters. In 1936, with Professor
John s. Gold of Bucknell as Secretary-Treasurer General, a policy was
instituted of issuing all membership certificates from the national
office. In 1937 the L. G. Balfour Company was designated as the official
jeweler of the Fraternity. Royalties for fraternity jewelry sold to
members have assisted in underwriting some of the expenses of the
national office.

3. The Pi Mu Epsilon Journal. The establishment in 1949 of the Pi Mu
Epsilon Journal was an important milestone in the history of the
Fraternity. This journal aims to publish high quality articles by
undergraduates, graduate students and others, that are of interest to
the undergraduate student in mathematics, in addition to items such

as chapter reports that may be of interest to the chapters. Those

who have served as Editors-in-chief and business managers of the Journal
are

Editors
Ruth Stokes (Syracuse) 1949-55
Franz Hohn (lllinois) 1955-57

1957-63
1963-

Francis Regan (St. Louis Univ.)
Seymour Schuster (Univ. of Minnesota)

Business managers
Howard €. Bennett (1949-54)
Henry W. Farnham (1954-55)
Echo Pepper (1955-57)

J. J. Andrews (1957-63)
Rita Vatter (1963- ) .

4. Affiliate Chapters. In 1957 the Constitution was amended to provide
for the establishment of affiliate chapters of Pi Mi Epsilon at non-
academic institutions, and the first such chapter was established at
the General Electric Company, Evandale, Ohio. Affiliate chapters are
intended to foster and promote an interest in mathematics, but do not
elect persons to regular membership in Pi Mi Epsilon.

5 National Meetings. As the Fraternity has grown from a single club
in 1914, to 18,857 members in 51 chapters in April, 1951, to over
45,000 members in nearly 100 chapters in May, 1964, it has become
increasingly important to provide contacts between the members of
different clubs at national meetings. Such meetings have been held
almost every year since 1923. In 1952 and subsequent years, a session
for student speakers has been arranged at the national meetings, and
the chapters have been urged to send their best student speaker to
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present a paper.
in the Pi M1 Epsilon Journal. Financial assistance by the national
treasury of the Fraternity is given to student speakers (full fare) and
to delegates (half fare) for one representative of each chapter who has
not reached the Master's degree level prior to the commencement
immediately preceding the meeting. The fiftieth anniversary meeting

is scheduled on August 25, 1964, at the University of Massachusetts,

in conjunction with meetings of the Mathematical Association of America

AFFENDIX 1. CGENERAL OFFICERS CF Pl MU EPSILON.

Director Vice-Director Secretary Treasurer Librarian

1914 E.D. Roe,Jdr. F. F. Decker Helen Applebee

Local officers of the Syracuse chapter served as general officers until
1922.

1922 E.D. Roe,Jr. WV. Houston WG
1927 T. Fort HS Everett

" John S. Gold “
1929 Louis Ingold " ! "
1933 F.W. Owens T.M. Putnam " E.R. Smith [Librarian

Secretary—Treasurer office

1936 G.C. Evans W. E. Milne John S. Gold
1939 WE Milne Lincoln LaPaz "
1942 Tomlinson Fort H.H. Downing "
1945 E.H.C. Hildebrandt
1948 C.C. MacbDuffee D.R. Holl

E.H.C. Hildebrandt

Editor— General
1951 W.M. Whyburn
1954 s.s. Cairns J.S. Frame
1957 J.S. Frame Orrin Frink
1960 R. H. Bing
1963 JS. Frame H.T. Karnes

J.S.Frame

R.V. Andree Franz Hohn (55-57)

R.V. Andree

APPENDIX Ir. OOUNCLORS GENERAL OF PI MU EPSLON.
1914 Florence A. Lane, Helen Mary Barnard, Edward Jay cottrell,
Adolph Sussman
1922 E. D. Hedrick,
1926 R D. Carmichael
1929 E. D. Roe, Jr., R. D. Carmichael,
1933 E. R. Hedrick, T. Fort, C. S. Latmin, Louis Ingold
1936 W. C. Brenke, Alan Campbell, b. Lehmer, F w, Owens
1939 H. H. Downing, W. W. Elliott, G ¢C. Evans, R. A. Johnson
1942 wW. C. Brenke, P J. Daus, E, H ¢C€. Hildebrandt, w. P Ott
1945 George Williams, €. A Hutchinson, C H Richardson, E. R. Smith
1948 S S Cairns, T. Fort, J. S. Gold, A H Kempner
1951 S. S Cairns, T. Fort, Sophia L. McDonad, Ruth W Stokes,
H. C Bennett, ex. off.
1954 Wealthy Babcock, R. F Graesser, S L. McDonald, R. W. Stokes,
H. S Thurston, Henry W. Farnham, ex. off.
1957 R. F Graesser, Harriet M. Griffin, E. H €. Hildebrandt,
R. L. San Soucie
1960 J. C Eaves, Marion K. Fort, Jr., lvan Niven, Anqus E. Taylor
1963 Josephine Chanler, Roy Dubisch, Kenneth 0. May. Prancis Regan

Roeven, Rasor

E. R. Hedrick, Mitchell

APPENDIX IIX. Pi Mu Epsilon Chapters installed list was

published with the Constitution and By-laws.

Several of these papers have been subsequently published

P.J. Bentley Olive Jones

Bullard Louisa Lotz Mabel Kessler
Mabel G Kessler

discontinued)

Ruth Stokes (49-55)

Francis Regan (57-63)

Seymour Schuster (63- )
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516 DEFINING THE CHARACTERISTIC ROLYNOMIAL

WITHOUT DETERMINANTS

S. Cater, University of Oregon
(Oregon Alpha)

In this exposition we will give an adequate definition of the
characteristic polynomial of an n by n matrix with entries in an
algebraically closed field F without resorting to determinants, or
to Jordan forms, or to ideals in the ring of polynomials over F.
It will be apparent from our definition that the characteristic

polynomial of (c;;) will be determined in the expected way by the
entries on the main diagonal of any triangular matrix similar to
(c;,). Wewill also define the characteristic polynomial of a linear
operator T on an n-dimensional vector space Vv over F and give a
simple proof of the Cayley-Hamilton equation. Our arguments will rest
primarily on the uniqueness of the dimension of a vector space. W
hope our development will also be of some intrinsic interest. Lemmes

1 and 2 are trivial, but we briefly sketch proofs of them for the
sake of completeness.

Lemma 1. Let 8,, S; be commuting linear operators on V, let W
be the null space of 8,83 and let W, be the null space of §. Then
dmw < dmw, t wW,.

Proof. [(V)S;18; = [(V)Sz18; < (V)S, and Sz maps (V)S, into itself.
Hence dim W = n = dim (V)8;83; = n = [dim (V)§; = dim W; N (V)s;]
=dmw, T dmw, 0 (V)s, < dmw + dim W,.

Lemma 2. There is a basis [z, ..., z,] of V such that for any
i=1 ..., n, thevector ;T is in the span of the vectors
Zys Zy4,10 e+ 2p

Proof. The proof is by induction on n. For n= 0 or 1 there is
nothing to prove. Assume the Lamma is valid on any vector space
over F of dimension < n - 1. Select any nonzero z € V. Then there
are scalars r,, not all 0, such that 2.jr; (2F') = 0. SinceF is
algebraically closed there are scalars c; such that

z[T - ¢ )(T - c) **- (T - ¢, )] = 0. Since the product of nonsingular
operators is nonsingular, it follows that there is a scalar ¢ such
that T - ¢ is singular and dm (V) (T = ¢) < n = 1; setm=

dim (v)(T - ¢). Select a basis [2,, ..., 2z,] of V such that
[Zo-2+1+ ===, 23] constitutes a basis of (V) (T = ¢) satisfying the
desired property relative to the operator T = c. Then [z, aua, 2Z4]
has the desired property relative to T - ¢, and hence relative to T.
This completes the induction.

Observe that the matrix of T relative to the basis [z, «+.+., 2Zal
constructed in Leamma 2 is triangular: i.e., there are only zeros
below the main diagonal. We call a triangular matrix (eyy) a
trianqulation of T if there is a basis of vV which, with (es;), gives
rise to the operator T. Lemma 2 shows that T has at |east one
triangulation.

Theorem 1. For any c € F, | et V., denote the null space of (c - T)®
and let (ey;) be a triangulation of B. Then Ve (0) for all but
finitely many c € F, (en = X)(caa = x) *++ (Cua - X) =

X
TT o - xydim v - pydim Vo _
ceF © x) ¢ and J]F(c T) 0 on\V.

Proof. Let [z, =«s, 2z,] be a basis of V which, with (c;;), gives rise
to the operator T. Let (d;, (s)) be the matrix of the operator

cgg ~ T relative to [z, aws, 23] fOr s =1, .ua, n. Then (4, (s))

is triangular and dgg(s) = 0 for all s=1, ..., n. The first column
of (4, (1)) is zero, the first two columns of (d;, (1)) (4, (2)) are

zero, the first three columns of (d;; (1)} (d;, (2)) (a4 (3)) are zero,

and so on. Finally all the columns of the product (d;; (1)) =<+ (dy, (n))
are zero and (c;; = T){czs = T) *** (cpa~ T) = 0 On V.

Select d ¢ P and suppose d occurs k times on the main diagonal of
(ciy) (possibly k = 0). An inspection-of the matrix of the operator
d - Trelative to the basis [z, ==s, 2,] shows that in the basis
representation of the vector z; (d = T)* the coefficient of z; is
(d = ¢ )® and the coefficient of zg is O for all j < i. Hence the
vectors zy (d = T)* for which ey ¥ d are linearly independent,

dm (V)@ - T)*® >n -k and dm V, < x, Since there areonly n
entries on the main diagonal of (¢;,) it follows that vo = (0) for

all but finitely many c € F and c% dim vg < n. But cl:!:-“ (c—=m"* =0
by the preceding paragraph, and by repeated applications of Lanmma 1

we have cZeLF dim vV, = n. Again because there are only n entries on
the main diagonal of (ec;;) we have k = dim Vq. and clearly

(qir = x) **= (Cau— x) = CTJ,(C - x)3™ Ve This concludes the proof.

The characteristic polynomial of T we define to be p(x) =
_ dim Vg
JJE (c - x) .

and, by Theorem 1, has the same characteristic polynomial. The Cayley-
Hamilton equation p(T) = 0 also follows from Theorem 1. W define the
characteristic polynomial of an n by n matrix with entries in F in

the obvious manner. Clearly the characteristic polynomial of (cy,)

is determined by the entries on the main diagonal of any triangular
matrix similar to (cyy).

Any operator similar to T has the same triangulations

By employing the determinants of n by n matrices with entries in
F[x] and the multiplicative property of the determinant, we can easily
show that our definition of the characteristic polynomial is equivalent
to the conventional definition. Our definition suffers the weakness
of being useless in computing characteristic polynomials.

In conclusion we will employ dimension to show that in Theorem 1, 518

V is the direct sum of all the nonzero V,. Since we know

™

v dmv, =n it suffices to prove that the subspaces V. are

[7]
~

linearly independent. Fix d € F and set W = (v)(d = T)*. Then

. - _ dim Vg .
WT < W, W is annihilated by cgd (e T) and Q;a dim (vc nw >
dmWw = n = dim vd by the proof of Theorem 1. But dim (vc nw) < dim Vc’

cé‘d dim vV, = n = din V4, so dim (Vcﬂ w) =dim voc W for all c # d.

Again by the proof of Theorem 1, c%F dim (Vc N W =dmws=

<:§'d dim (Vg N W), dim (vd N w) =0 and V4 can contain no nonzero vector

in the span of all the Vor C # d. This concludes the proof.
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ARCDUCT AND TOROLOGICAL CONSDERATIONS

Robert J. Buck*, California Institute of Technology

1. INTRODUCTION.

In accordance with a suggestion of A. G Fadell [1}, the vector

(cross) product of two vectors, a= (a ,azras) and b = (b, ,ba,?+ ),
mey be defined as follows:

Definition. a x b = £(a,b), where the function f satisfies the
following conditions:

i, f: E X Ea ~ &, where E; x E; denotes the cartesian product
of Euclidean 3-space with itself.

ii. |f(a,p)] = [(Ja}]Dp])* - (a-b)al%, where
a*b = ab t+ azby t aghy.
iii. £(a,b)ea = £(a,b)*b = O.
{1,0,0), j = (0,1,0), and k = (0,0,1).

v. f is continuous; that is, for every ¢ > 0, there exists a
8 > 0, such that |[a= a| <6 and |b = | < 6 implies
[£(a,b) = £(aghy)! < ¢ for all (ao,bp) in Es x Ea.

iv. f(i,3) = k, where i

W show that the definition above agrees with the usual representation
of the vector product in the sense that a necessary and sufficient
condition that a function, f, satisfies properties i. = v. above, is
that for all pairs, {(a,b), in Ey X E; we have

i 3 x
(1.0) f(a,b) = |&y a, ag| = (agby - asby, ashy - ay by, ayby - azb ).
b, b b

In other words, the class F, of functions satisfying properties i. = v,
consists of precisely one member, namely that function defined by (1.0).

At the expense of being redundant, we formulate our problem as a
theorem:

Theorem 1. A necessary and sufficient condition that f ¢ F, is
that
i j x
£=(((a,b), |a @ a| ): (a,b) € Es x Eg} .
by b by
The proof of the sufficiency follows from a straightforward, algebraic 520
argument, as will be seen. The necessity, however, is |less immediate
and involves topological considerations. It is the proof of the
necessity, then, which will be the main concern of this paper.

T his research was done by the author under an Independent Study
Grant from the National Science Foundation.

2. HROCOF GF THECREM |-

Sufficiency:

Lemma 1. If for all pairs, (a,b),,in Es X Es, we have
i 3 0k
£f(a,b) = |a, a & then f € F.
b b b

Proof: The function, f, obviously satisfies property i. Now, since

(2.0) |f(a,b)| = [(aabs - aaba)® + (aaby - a,bs)® + (aba - aabx)’lﬁ-

= [(aab)? + (aba)® + (ayba)® + (agbhy )? +
+ (agbs)® + (ab ) + (abhs)?® + (asbs)® - (ab)°
- (agbg)® - (asba)® = 2(agbs)(asbs) - 2(a; b ) (ashs)
- 2(ay b ) (agba )} .
[(af + a8 + ad) (¥} +lb§ + 1) - (b + aby + aby)'1?
[(lallp])® - (a-B)*1*,

we see that f satisfies property ii. Further,

i j %
f(a,b)ea = |a, a a| * (33.,23,3)
b by by
= a (sgby - aba) + 3 (asb, - ayby) + a3 (b - aab)
= 0
= by (agbs - asha) + by (aab, - aybs) + ba(ayba - aaby)
i 3 k
= Iy ag as | (b yba,ba) = f(a,b)* b,
b by by

and thus property iii. is satisfied. Condition iv. is obvious. Let
ag = (1:23,%3) and by = (bo1.Poa.bos) be any two fixed vectors
in Eg. By the triangle inequality we have,

|£(a,b) - £(ao.bo)| < |aabe - asbs - asabos + 20sboal
+ |asb, - aybs - asaboy + a0yboal
+ |ayby - 2ab, - aibos + 3oaboy -

W shall show that for any € > 0, there exists a 8§, > 0, such that 521
la- 2| <8 and |b - by| <6, imply that

|agbs - asbs - @abos + @pshoal < €/3,

leaving 63 and 63 for the remaining summands to be found_in the obvious

manner- | et Q = (Jaal * |aal + |boal + |bos]) and 6,
[-30 + (3¢ t+ 24€)'?1/12. Clearly, for 0< d < 6;, we have,

68 *+ 3Qd- ¢ <0, or
(2.1) a(laoal + |acal + |bosl + |kal + 24) < /3.

If j]a - a]| ¥ d<®& and|b- | <d<38§, then it follows that
las| < @+ |2a| and Ibs] < 2 + |boa|s and thus by (2.1),

d{lacal + |boal + las| + |Bs]) < e/3.



But we have,

[agbs - asbs - aggtos + apahoa| = |bs (a3 - 202) + ag (bys = ba)
+ B (bs - bos) + boa(as - a)
< dllaal + [boal + fas| + |Bs|)-

Consequently condition v. is satisfied and the lemma is established.

Necessity:
Lerma II. If f ¢ F, then for all pairs, (a,b), in Ea x E;,
i i ok -~
£f(a,b) = tla, a a|, whee t =+ 1.
b b b
Proof: Let f{a,b) =c = {(¢,,ca,ca). Then by property iii.,

ayc tT ace t ages =0 and
b o + bycg + byecg = O.
If ¢ # (0,0,0), then it follows that:

¢ = t(agby - asby),
ca t(agb, - ay;by), and
cs = t(aaby - agh );

where t is any non-zero real number.
| (errcascs )| = [(lallp))?® - (a-B)*1%,

or by (2.0),
[t [(aabs ~ asba)® + (@b, - 3;1)° + (ay b - ab; )?]

= (agbs - agh;)? + (ash - abs)? + (b - aaby )®.
1 j k

]

By property ii., we must have

Hence we see that t = + 1 and f(a,b) = t|a a3 as|, if f(ab) # 522
b b by
(0,0,0). n the other hand, if we have f(a,b) = (0,0,0), then
|£(a,b)[* = (aabs - asha)® + (ab, - aybs)* + (ayby ~ agh, )?
= 0.

Thus,

agby ~ agb; = t(agby - agh;) =0 = ¢,

23b, - ayby = t(ayb - aby) =0 = ¢, and

ab; - ab = tlab - b)) =0=c

for any real ty and the lemma follows.

Lerma III. Let f ¢ . Then for all pairs, (a,b), in Es X Ea,
f{(a,b) = (0,0,0) if and only if a= (0,0,0) or b = (0,0,0), or else
a = kb, where k is any real number.

Proof: By Lemm I1I, if a= (0,0,0) or b = (0,0,0) or a = kb, then
f (a,b) = (0,0,0). Conversely, suppose a # (0,0,0), b # (0,0,0) and
f (a,b) = (0,0,0). Then by condition ii. and formulas (2.0),

3gbs — aby = O,

asb, - aby = 0, and

ayby; ~ azgb = 0.

It follows from these equations, that if by (i =1, 2, or 3) is not
zero, then a; is not zero. Further, k = a; /b, depending upon which
of 4, by, or by is not zero.

A=

The preceding lemma i s not essential for the proof of Theorem I;

however, since we are interested in the set of vector pairs whose
image under a function in F is not zero, the lenma will be useful in
defining the zero's of members of F.

*%

Let 2 = {(a,b): (a,b) ¢ Es X Ea,
Then by Lenma III, we have,

2= ((a,b): (a,b) € Bs X Ea, (a=0) v (b=20) v (a=kb)],
where it i s understood that k is any real number. We now denote the

(£)(f ¢ Fimplies £(a,b) = 0)} .

set (AE X Es) - 2 by 8. If f is any functioninF, and if
i 3 x
A= {(a,b)s (a,b) €S, £(a,b) = |a, a aa }, and
by by by
i j x 523
B = ((a,b): (a,b) € S, f{a,b) = - |&y a; as|l,
b by by

then it isclear that s =A UB and AN B =g@g. Further, we may prove:

Lemma V. For all pairs, (a,b), in S, there exists a 6 > 0, such

that for all (ec,d) inS, if (a,b) € A, |a- c <6, and b - d <&,
then (e,d) € A.

Proof: Suppose, on the contrary, that there exists a pair, (a,b),
in 8 such that for all 6 > 0, there exists a pair, (ec,d), in s such
that (a,b) ¢ A, |a~-¢c| <6, |[b-4a] <6, and (c,d) ¢ B. Thenin
particular, for each positive integer n, there exists a pair, (c,d),

in 8 such that (a,b) ¢ A, |la=c¢| <1/n, [b - 4] < 1/n, and (c,d) ¢ B.
For each n, |l et us define the set X, by the following:

K = ((x,¥)t (x,¥) € B, |a -x|] <1/n, |b~-y| < 1/n}.

Clearly, each set, X, (n =1, 2, «aa=), contains an infinite number of
points of 8. By the Axiom of Choice [2], there exists a collection,
T, defined as follows:

T={(Kk, {(xy))tned, (xy)¢K,
[{r,s) X, (u,v) K, (r,s) # (u,v) implies K, # K,1},

where J denotes the set of positive integers. Hence, we mey define a
function, C, on J as follows: ¢€(n) = (x,y), where (K, , (x,y)) ¢ T.
Then the set, {c(n): n ¢ J)}, is anet in§ and, by our supposition,
converges to (a,b). In order that f be continuous, it is necessary
and sufficient that if the net {c(n): n ¢ J} converges to (a,b), then
the net {£(c(n)): n ¢ J} converges to f (a,b) [3]. W& shall establish
the lemma by showing that, in fact, {£(c(n): n ¢ J) converges to
-f(a,b). For notational purposes, we let €(n) = (X,,¥a). As in the
proof of Lemm I,

[f(ctn)) + f(a,b)| < [%a¥ez = Xaa¥as + 2abs - aghs|
+ [X1¥na - Xaa¥Ya1 + 2aby - aybal
+ |%a¥a1 - Xa1¥s2 + by - b |,
and for any € > 0, we find an integer & , such that n > N, implies that

Xsa¥az — XaaYaa T aabs — asby| < €/3. Let N, be least integer, greater
than or equal
Here and in the following, the symbols "0O" and "(0,0,0)" are used

interchangeably whenever confusion between the scalar zero and the
zero vector is unlikely.



[9R + (B1R® + 72)*]/2:,
[faa] + |aa| + |ba| + |bs|1. Then for n > N, we have,
en® - 9n - 18 > 0.

Proceeding as in the proof of Lemmma I, we find that, indeed,
(£(c(n)):- n ¢ J) converges to -f(a,b).

where R

Note that Lema IV remains true when the symnol "A" is replaced
by the symbol "B" in the lemma; that is, an argument analogous to that

given for the proof of Lemma IV suffices to prove the following:
w .
Lema 1IvV'. For all pairs, (a,b), in S, there exists a6 > 0, such
that for all (e,d) inS, if (a,b) ¢ B, |a-¢e| <6, and |b - 4] <8,
then (c,d) ¢ B.

By condition iv. of our proposed definition, the set A, as defined
above, is non-empty for every f in F. |f we further assume that for
some function, f, in F, the set B is non-empty, then the discussion
immediately preceding Lamma IV and the lemma itself give us:

Lemma V. Let S have the relativized product topology of E; x Eg.
If there exists a function, f, in F such that the set,

i j x
B = ((a,b): (a,b) € 8, £f(a,b) = - |a, a as|l,
b by by

i s non-empty, then the pair, (A,B), is a separation of S.

Lema VI. Let X and Y be topological spaces, and |l et g be an open,
monotone mapping of X onto Y. |If X is separated, then y is also
separated.

Proof: Let X =A UB whereA# g# B A nB=g, and both A and B are
open in X Further, let A' and B' be defined as follows:

A' (y: yev, g (y) c A}, and

B' = (y: yevY g (y) c B].
Since g is monotone and A N B =g, we must have Y = A' U B' and
A'n B' = @g. Furthermore, if A', say, were empty, then g™ (y) = B,
but this contradicts the fact that A # g. Since neither A nor B is
empty, A* # @ # B'. Clearly, A' ¢ g(a). Conversely, if y ¢ g(a)
andy £ A", then g ({y) c B, and ¢ (y) n A # &, which is a contra-
diction. Hence A' = g(A) and B' = g{(B), from which it follows that
both A' and B' are open in Y. Thus the pair, (A',B'), separates Y.

It is now clear that the assumption that there exists a function,
f, in F such that for at least one pair, (a,b), in S,

i 3j k
f(a,b) = - [a, a aa
b b b
will lead to a contradiction, if we can exhibit an open, monotone

function mapping S onto a connected space.

Let Dy be the projection, P;, restricted to S, of E; E; onto its
first coordinate space, Ea. W then have,

Lemma VII. Dy (S) = Es - ((0,0,0)].
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Next, we may show: 525

Lemma VIIl. The set 8 is open in the product topology of Es X Es.

Proof: Let f be any member of F. Then since Es X Es = 8 = £~ (0,0,0),

which is closed by the continuity of f, 8 must be open in Es « Ea.

Lerma IX. The function, Dy, is an open mapping of 8 onto
B - ((0,0,0)].

Proof: Let V be any open subset of s. Then by Lemma VIIl and the

definition of the relativized topology for S, Visopen in Es X Ea.
Then b, {(v) = P, (V), which is open in E; [3]. Further,

D, (V) © E; - ((0,0,0)} and Es - ((0,0,0)} is open in E;. Hence, D (V)
isopeningE - ((0,0,0)].

Lemma X. The function, By, is monotone.

Proof: Let a € Es = ((0,0,0)} and let (a,x) and (a,y) be any two points
of p* (a). Then by Lemma III, the points, x and y, are elements of
Es - [C: ¢ = ka, k ¢ Reals]. We have two cases. |f y is not coplanar

with x and the line,

L = {c: ¢ = ka, k ¢ Reals},

then we may define a function g as follows: for all u e [0.1],

g(u) = (1= u)x * uy, which is continuous on [0,1]. If for some u and
some real number t, g{u) = ta, then it is clear that x, y, and L are
coplanar, contradicting our assumption. On the other hand, if x, vy,

and L are coplanar, then let g be any point not on plane

P= (c: c = ¥, x + X Vs k, k3 € Reals]. Further, let r be any fixed
point in the open interval (0,1). Then we define the following function:

- [x+ (u/E)(q - x), if u € [0,x]
gl = {q + ((u-2)ly -a))/(1 -r), if u e [r,1],

which is continuous on [0,1]. If for some u in [0,x] or some u in
[r,11, and if for some real number t, g{u) = ta, then

(u/r)g = ta + ({(u/r) - 1)x, or
(1 -u)g/(l -r) =ta+ (r-uwy/(-r1x),

both of which contradict our assumptions. In any event, there exists
a continuous function, g, defined on [0,1], such that, g(0) = x and
g(1) = y and such that, if u ¢ [0,1], then g(u) € Bs - L. W& now
define a function, h, as follows: for all u ¢ [0,1], h(u) = (a,g(u)).
Clearly, h is continuous and hence D, 1S monotone.

Lemmes V - X show that the assumption that F contains more than
one function implies that Es = ((0,0,0)] is separated. But it can be
shown [2], that for each n > 2, the space E. - O is connected, Q.E.D.
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It is apparent from the proof of Lamma X, above, that the inverse
image of a point under Dy is arcwise connected; and that this follows
from the arcwise-connectedness of the space, Es — L. The situation
generalizes to the cartesian product of arbitrarily many spaces.

For - emphasis primarily, we make the following definition: a
function will be called arcwise connected if, and only if, the inverse
image of the function at a point is arcwise connected. Let A be any
indexing set and let x (y_: a ¢ A} denote the cartesian product of
the spaces, Ya. Then we hgve,



Theorem 1I. |If for each a ¢ A, the space Y, is arcwise connected,
then for each a € A,. the projection, PL, of > (Ya: ae A} onto its
a-th coordinate space, Y,, iS arcwise monotone.

Proof: Let c € ¥, and let x and y be any two points of Pl_)l (c)- Since
each coordinate space is arcwise connected, for each a ¢ A, there exists
a continuous function, gz, mapping the closed unit interval onto a
subset of Y5, such that ga(0) = xa and ga(l) = ya, where xa and ya
denote the a-th coordinates of the points x and y. Note that we must
have for all u ¢ [0,1], gp(u) = c. By the Axiom of Choice, we ney
construct the following collection:

G=lggs ae¢ A [gg # go implies d # el ).

Let m be a function defined on the closed unit interval such that, for
all u ¢ [0,1], m(u)a = gy(u), i.e., the a-th coordinate of m(u) is
ga(u). Then it follows that m i s a continuous mapping of [0,1] onto
m([0,1]), which is contained in X [ga([O,I]): a‘¢ A] [3]. Since
g, (10,11) = [e], Pg' (c) is arcwise connected. QED.

It is interesting to note that the proof given for Theorem II mey
be applied to obtain the following result:

Theorem III. A necessary and sufficient condition that the product
space, x (¥,: a € A) be arcwise connected, is that for each a ¢ A,
the space Y, I s arcwise connected.

Proof: We merely outline the proof.
Necessity: For each a ¢ A, the projection P, is continuous [3].

Sufficiency: For each pair of points, x andy, in A [Yag ae Al
we mey form the collection:

Gx,y = {932 a € B, [gg # g implies d # e]],

where g, is a continuous mapping of [0,1], onto a subset of Y_, such
that, g5(0) = x5 and g,(1) = y5. Proceeding as in the proof of

Theorem IX, we find that x[Ya: a € A) is arcwise connected. Q.ED.
527

REFERENCES
Iy Fadell, A. G., Calculus with Analytic Geometry, Part Two,

Preliminary ed., D. Van Nostrand Co., Inc.,
Princeton, Newv Jersey, 1962; p. 49.

2. Hocking, J. G. and Young, G. S. Togologx, Addison-Wesley
Publishing Co.,, Inc., Reading, Massachusetts, 1961:
pp. 25, 16.

3y Kelley, J. L., General Topology, D. Van Nostrand Co, Inc.,

Princeton, Nav Jersey, 1955. pp. 86, 90, 116, 89.

FRCBLEMDERARTMENT 528

Edited by
M. s. Klamkin

State University of Nev York
at Buffalo

This department welcomes problems believed to be new and, as a rule,
demanding no greater ability in problem solving than that of the average
membar of the Fraternity, but occasionally we shall publish problems
that should challenge the ability of the advanced undergraduate and/or
candidate for the Master's Degree. Solutions of these problems should
be submitted on separate, signed sheets within four months after publi-
cation.

An asterisk (*) placed beside a problem number indicates that the
problem was submitted without a solution.

Address all communications concerning problems to Professor M. S.
Klamkin, bivision of Interdisciplinary Studies, University of Buffalo,
Buffalo 14, Nav York.

FRCBLEMS FCR SOLUTION

159.* Proposed by David L. Silverman, Beverly Hills, California.
If A, denotes the largest integer divisible by all the integers
less than its nth root, show that 2 =24 and As = 420. Find
a general formula for A,.

160. Proposed by Sidney Kravitz, Dover, Nav Jersey.
"1 have here,"” said the editor, "a cryptarithm which shows a two
digit number being multiplied by itself. Yau will note that the
subproducts are not shown, only the number being squared and the
final product.”

"Well," said the reader, "l've tried to solve this cryptarithm
but the solution is not unique. It is possible that I might be
able to give you the answer i f you told ne whether the number
being squared is odd or even."

"The number being squared is odd," said the editor.

"Good," said the reader. "1 was nhoping you would say that.

I nowv know the answer. "
What is the solution to this unique cryptarithm?

161.* Proposed by Paul Schillo, University of bBuffalo.
It is conjectured that the smallest triangle in area which can
cover any given convex polygon has an area at most twice the
area of the polygon.

529
162. Proposed by M 8. Klamkin, University of Buffalo.
If a surface is one of revolution about two axes, show that it
must be spherical.



143.

145.

146.

SOLUTIONS

Proposed by M. S Klamkin, University of Buffalo.
If X is a rational approximation to the /¥ (assumed irrational),
find an always better rational approximation.

Solution by David L. Silverman, Beverly Hills, California.

The arithmetic mean of A and N/ will not always be a better
approximation but their harmonic mean A* = 20 /(N T X)) will
be. (Editorial note: To take care of the possibility of A being
negative, replace X by |x[}. - .

Solution by the proposer.
An always better rational approximation is given by

)\,=N+ N + 2){)
N+ 24+ |2 *
Since

- A= - IO - A - VR

Generalizations of this result to a class of always better approxi-
mations and also to the roots of a class of equations other than
¥ = NWill be given in a subsequent paper.

Also solved by Michael Goldberg, H. Kaye and Paul Meyers.

Proposed by David L. Silverman, Beverly Hills, California.
For what integers a and b (0 <a< b) are the roots of

¥ + (a+Db)x* + (a+ ab+ b)X + (a® + b*)x + ab = 0,
integers?
Solution by K« S Murray, Neav York City.
The equation factors into

(* tbx+ta)( +ax +tb) =0

Thus,
b=m+ n = rs,
a=mn=r+s (m, n, r, s > 0).
Assume r2> s, m2»n; then 530

2r 2 mn and 2n 2> rs,
which implies that 4 > ns.
a=6, b= 5 o0r vice-versa.

This leads to the unique solution

Also solved by Bdb Emmett, H. Kaye, Paul Meyers, John Stout,
M. Wagner, F. Zetto and the proposer.

Proposed by C. W. Trigg, Los Angeles City College.

Find a set of three-digit numbers, each of which is a permutation
of the same three digits, which when divided by the sum of the
digits yields two pairs of alternate integers.

147.

148.

CB-BC =2(a+B+0C)
CB~BC =0 (mod 9), and thus also 2(A+ B+ O 50 (md 9).

Solution by the proposer.
¢ ABC/(A+tBtce) =M and AcB/(A+ B+ C) =M+ 2 then
Since ABC S A+ B 1 C=ACB (nod 9),

Thecase A+ B+ C =18 is imposaible. For A+ B+ C =9 the
unique set is1, 3, 5 and the solution is
135/9 = 15, 153/9 = 17 and 513/9 = 57, 531/9 = 59,

There are three other sets of digits, each of which leads to
a single pair of alternate integers: 324/9 = 36, 342/9 = 38;
648/18 = 36, 684/18 = 33, and 702/9 = 78, 720/9 = 80.

Also solved by K S Murray, M Wagner and F. Zetto.

Proposed by Leo Moser, University of Alberta.

Sow that the maximum number of terms of different form in a
polynomial of degree n in k variables is the sane as the madimum
number of terms of different form in a polynomial of degree k in
n variables.

Solution by Frank Bongiovanni, University of Buffalo.

The number of combinations of n things taken r at a time when
each maey be taken as often as we please is the same as the number
of homogeneous products of degree r which can be formed from the
n letterssay a b, ¢, ***, k. The sum of these products is the
coefficient of x' in the expansion of

(L+ax t a®s® t coa)(Xtbxt tFs® + oee) con(ltrx+ ¥F Tt oeo

By setting a = b = === = k = 1, the number of such products is
then the coefficient of x¥ in the expansion of (1t x eee)t

n+r-1 531

or (1~ xy*. This gives the number as {( - ). If We now
add an extra letter z toa, b, *+*, k, thiswill give us all
the terms of different form in a polynomial in z of degree r.

This number is then (" ; T

) which is symmetric in n and r.
Also solved by K. S Murray, David L. Silverman, John Stout,
M. Wagner, F. Zetto, and the proposer.

Proposed by M. S Klamkin, University of Buffalo.
If a convex polygon has three angles of 60 , show that it must be
an equilateral triangle.

Solution by Edward L. Spitznagel, Jr., University of Chicago.

The sum of the interior angles of an n—-gon is 180" (n = 2). Since
all the interior angles of a convex polygon are less than 180°

we have the inequality

3(60°) + (n - 3)(180°) > (n - 2)(180")

unless n = 3. Thus, n = 3 and triangle is equilateral.

Also solved by H. Kaye, K. S. Murray, Paul Meyers, M. Wagner and
the proposer.



Editorial note: A sinple extension of this result is the follow ng:

If n of the interior angles of a convex polygon add up to

(n = 2)(180°), then the polygon must be precisely an n-gon. Put
this way, the result is not particularly surprising. Another
special case is that if a convex polygon has four right angles it
mast be a rectangl e.

532 BOOK REM-EWS _ .
Edi ted by
Franz E. Hohn, University of Illinois
Principles Of Abstract Al gebra. By R. W. Ball. New York; Holt,
Rinehart and Wnston; 1963. ix t 290 pp., $6.00.

The author's preface states: "This book presents an approach to
abstract algebra that is directed to undergraduate students at an
intermediate level. For npst students this would cone after a year of
begi nni ng cal cul us, although it could well be studied earlier." The

reviewer agrees with the author's appraisal of his book.

Considering how carefully this book is witten, the reviewer regrets
that more material is not presented in the chapters on rings and groups.
For exanple, aring is defined and nmany excell ent exanples are given
throughout the text, but little nmore is done with rings. Chapters 9
and 10, devoted to groups, cover the topics of binary operations, groups,
and the |laws of exponents, finite cyclic groups, finite groups, and
reduced groups of residues.

The author gives a good discussion of the real nunber system the
conmpl ex number system and polynom als. Additional chapters treat the
theory of equations, real roots of real polynonial equations, rings
of matrices, and systems of |inear equations. Several of the theorens
in the last ten chapters (11-20) are stated but not proved (for exanple,
the conpl et eness of the real nunber systen).

In view of the choice of topics, this book would be ideally suited
as a text for future high school teachers, or for those students not
yet ready for a nore rapid, nore detailed treatment of these topics.

University of Illinois Hi ram Payley

General Stochastic Processes in the Theory of Queues. By vaclav E
Benev. Reading, Mss., Addison-Veésley, 1963. viii + 88 pp., $5.75.

Principal "results for queues with one server and order of arrival
service-time are deduced by.methods that are relatively newin queueing
theory. Although this cannot be considered an el enentary book on the
subj ect, introductory sections have a fine intuitive presentation.

Later sections contain an el egant nat hematical treatnent of delay
using very general conditions on the interarrival-tinmes and service-
times. Explicit references are given for alnpbst every result in

anal ysis that is used, but results in queueing theory which appear in
ot her recent books on the subject are usually just stated.

University of Illinois Leone Y. Low
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Gavitation: An Introductionto Qurrent Research. By L. Witten, et al.

New York, Wley, 1962. x T 481 pp., $15.00.

This is a collection of articles devoted to the current status of
our know edge and theories about gravitation fromthe point of view of
general relativity. The chapter headings are: 1 Experinments on
Gavitation; 2 Exact Solutions of the Gavitational Field Equations;
3 The Equations of Mtion; 4  The Cauchy Problem & Conservation
Laws in-CGeneral Relativity; 6. Gavitational Radiation; 7. The Dynanics
of General Relativity; 8 The Quantization of Ceometry; 9 A Ceonetric
Theory of the El ectromagnetic and Gavitational Fields; 10. Geometro-
dynamics; 11 Rel ativistic Cosnol ogy.

Chapters 1 and (to a sonewhat |esser extent) 10 are descriptive and
require no specialized background for their conprehension. The reader
wi Il need a command of tensor analysis to pursue profitably the renain-
ing chapters.

The first chapter, which consists of a discussion of recent and
not so recent experinents designed to throw |ight on the nature of
gravitation, is noteworthy for its description of the great observational
difficulties involved in the attenpt to detect at solar eclipse the
predicted outward displacement of star images fromthe sun's disk. Many
appear to be unaware of the fact that unavoi dably |arge observational
errors are inherent in this experinent, rendering the results |ess
reliable than commonly believed. Chapter 10 describes recent attenpts
to formulate classical physics and quantum nmechanics entirely in terns
of geometry--a notion (in the case of classical mechanics) that goes
back as far as R emann.

The remaining chapters represent advances along the nmobre custonary
lines of general relativity theory and are valuable for bringing the
reader up-to-date in this field.

University of Illinois Ray G. Langebartel

Studi-es 4R Mpdern Algebra. A A Al bert, Editor. (Vol. 2, M. A A
Studies in Mathematics.) Englewood Cdiffs, N J., Prentice-Hall, 1963.
190 po, $4.00.

The first half of this book consists of two articles by S. MacLane
on "recent advances.in algebra." It is quite interesting to conpare
these, for a twenty-four year interval separates their dates. Four
papers on non- associative algebra conprise the second half: \What is
a loop?, by R. H. Brucky The four and eight square problem and division
al gebras, by c. Curtis; A characterization of the Cayley nunbers, by
E. Kleinfeld; Jordan algebras, by L Paige. There is also an intro-
duction by A- A Al bert which summari zes these articles.

Each of the authors has written nost lucidly, and this book is
accessible to anyone who enjoys the Mathematics Mnthly.

University of Illinois Joseph Rotman
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Representation Theory of Finite G oups. By ¢. w. Curtis and 1. Reiner.
New York, Wley, 1963. xiv * 686 pp., $20.00.

This is the nost inportant single publication on representation of
finite groups and on the part of the theory of rings and al gebras that
is related to these representations. There is no other book as conpre-
hensive or as instructive. The presentation is nodern; for exanple,
it takes into account the use of the concepts of honol ogical algebra
in the theory of rings and algebras. There are several introductory
chapters which could serve as a basis of a good graduate course in the
subject. The later chapters serve well as an introduction to the .
literature and contain basic material which can be of use to all work-
ing inthis or related fields. The topics covered include on the nore
elenentary level: the Wedderburn structure theory for rings and
al gebras, elenments of al gebraic number theory, group characters, and
their application. Continuing on, Brauer's characterization of gen-
eralized characters and the theory of splitting fields are devel oped.
Nonsem si npl e rings and al gebras, the theories of integral and nodul ar
representations, are other main topics that are covered

This book is suited for the advanced graduate student and for
research workers. Less experienced mathematicians will find the first
chapters accessible.

University of Illinois John H. Valter

An Introduction to Linear Programming and the Theory of Ganes. By M.
dicksman. New York, Wley, 1963. x 131 mp, $2.25 (paper),
$4.95 (cloth).

This well-witten nonograph lives up to the promse of its bright,
eye- catching cover. Basic concepts of convex sets, gane theory, and
l'inear programming are explained in detail and are illustrated with
attractive, sinple figures, graphs, and tableaux. Witten at the
sophonore | evel and using only tools and concepts of algebra and ana-
lytic geormetry, this book should be of interest, not only to the bright
under - graduat e mat hematics student, but also to social scientists who
are interested in a sinple, though rigorous, devel opment of appli-
cations.

El ementary proofs of the fundamental extrene point theorem for
convex polygons, the fundanental duality theorems of Iinear program
nmng, and its corollary, the minimx theorem are included. Definitions
and theorens are nunbered, and their use is illustrated. The sinplex
nethod in linear programming is used to maximze or mnimze functions
subject to constraints, and to solve mx 2 matrix ganes. The anusing
exanmpl es and problens hel p to heighten interest throughout the book.

The only criticisms are the misprints on pages three and four (24
shoul d be substituted for 28) and the author's not discussing dom nated
strategies in matrix ganes.

University of Illinois Leone Y. Low
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Sets, Logic, and Axiomatic Theories. By Robert R Stoll. San Francisco
and London, W H. Freeman and ., 1961. Paper bound, x + 206 pp., $2.25.

This book is presented as a text for a one senester, undergraduate
course for students who plan to study abstract mathematics, and for
prospective high school mathematics teachers. Such students probably
woul d have had no experience with mathematical proofs, except in high
school geonetry. They would be apt to find the proofs and the concise
set notation difficult at first, but these would be valuable to them
later. Certainly a student who knew the material in this book would be
wel | prepared to continue in abstract mathematics. The author suggests
that a good hi gh school student might find the book stinulating. This
seens doubtful. Although no special background is necessary for reading
the book, the level of abstraction used in it requires a certain anount
of maturity.

Nai ve set theory is presented in the first chapter as a prerequisite
tool for further study in abstract mathenmatics. This chapter is
desi gned as an expanded version of the "Chapter 0" which appears in
many textbooks. Besides set operations, it includes functions, equiva-
lence relations, and ordering relations.

Chapter two deals with the statement or propositional cal culus and
the first order predicate or functional calculus in terns of validity.
The concept of a theoremin one of the calculi is not used in this
chapter. The statement calculus is introduced in terms of truth tables
and tautologies. The rules of inference, the regularity theorem and
the deduction theoremare all presented as preserving validity. Quanti-
fiers are introduced with exanples of translation fromordinary English
sentences to fornulas of the predicate calculus. The predicate cal cul us
is then presented in much the same way as the statenent cal cul us,
although in less detail.

Chapter three introduces axiomatic theories. Goups, affine
geonetry, and the Peano axionms are used as exanples. The ideas of
consi stency, conpleteness, and independence are defined. The statenent
and predicate calculi are presented as axiomatic systens, and the
results of chapter two are given in terns of theorems, then the consis-
tency and conpl eteness of these calculi are discussed. Finally, the
concepts of neta-languages and object-|anguages are given.

Chapter four is the reward for the other three chapters, especially
one and three. It treats Boolean algebra as an exanple which ties
together all the ideas presented in the previous chapters. Two different
axiom sets are given, and are shown to be equivalent, for a Bool ean
al gebra. A one-to-one correspondence between the congruence rel ations
and the honmonor phi sns of a Bool ean al gebra is proved. Atoms and ideals
are used to characterize Bool ean al gebras as being isonorphic to al gebras
of sets. As a final achievement in unifying the subject matter of the
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book, a direct relationship between statement cal culi and Bool ean
al gebras is denpnstrated and t he suggestion nade of investigating
validity in a statement calculus in terns of congruence relations in
a Bool ean al gebra.

The book contains many exanpl es and exercises which are interesting
for thenselves as well as illustrating the ideas being presented.
University of Illinois M K Yntema

-

Matrix lterative Analysis. By R. S Varga. Englewod Qiffs, N. J
Prentice- Hal I, 1962. xiii T 322 pp, $7.50 text edition, $10.00 trade
edi tion.

This excellent book is primarily concerned with the anal ysis of
matrix problens arising in the nunerical solution of elliptic partial
differential equations. It is designed for use as a text by first year
graduate students in mathenatics. Mreover it will serve as a valuable
reference book for workers in this field.

The principal enphasis here is on theory, not practice. There is
a thorough treatnent of the convergence of matrix iterative schenes,
with many theorens on this subject being proved, but there are only a
few practical applications discussed. The backbone for a lot of this
work is the Perron-Frobenius theory of non-negative matrices which is
di scussed in Chapter 2

This reviewer was particularly inpressed by the nice way that the
aut hor used graphs for illuminating various discussions. Wth sone very
el ementary ideas fromgraph theory the author characterizes the structure
of matrices arising inthis work, gaining clarity and savi ng words
t her eby.

Anot her inpressive feature of this book is the bibliography and
di scussion that follows each and every chapter. Each of these desserts
contains a short historical account of the devel opnent of ideas presented
in the chapter along with references to the original papers.

A list of chapter headings follows:

Chapter 1 -- Matrix Properties and Concepts

Chapter 2 -~ Non- Negative Matrices

Chapter 3 -- Basic Iterative Methods and Conpari son Theorens

Chapter 4 -- Successive Overrelaxation Iterative Methods

Chapter 5 -- Sem -lterative Methods

Chapter 6 -- Derivation and Solution of Elliptic Difference
Equat i ons

Chapter 7 —- Alternating-Direction Inplicit Iterative Methods

Chapter 8 -- Matrix Methods for Parabolic Partial Differential
Equat i ons
Chapter 9 -- Estimation of Acceleration Paraneters.

University of Illinois LI oyd D Fosdick
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CGeneralized Analytic Functions. By I. N. Vekua. Readi ng, Mss.;
Addi son- Wesl ey, 1962. xxix * 668 pp, $14.75.

The present book is another volume of the distinguished Adiwes
International Series under the editorship of A J. Lohwater. It gives
a systematic and thorough account of the subject of generalized analytic
functions--a subject cultivated by Professor Vekua and his school in
Russia and by Professor Lipman Bers and his students in the United
States. The basic thene is the study of the partial differential
equation

1 i =
> (wx+1.wy)+Aw+Bw-F,

where the coefficients are conplex-valued, and its intimte connection
with the theory of analytic functions. The first part is devoted to
the general theory. The second half treats applications of the theory
to problenms of surface theory and the nenbrane theory of shells.

This treatise presupposes the usual nmaterial of what would generally
be beginning graduate courses on real and conplex analysis. The present
translation has made available to an enlarged group of readers a sig-
ni ficant exposition of this inportant field.

University of Illinois Mauri ce Heins

Under st andi ng the Slide Rule. By R. F Gaesser. Paterson, New Jersey:

Littlefield and Adams; 1963. 141 pp, $1.50 (paper).

This is a carefully witten book reflecting the experience of a
patient, understanding teacher who has taught the use of the slide rule
to engineering students for nany years. It should be w dely useful
to those who wish to learn the use of the instrument.

Those whose mathematical preparation is weak will be particularly
hel ped by the fact that the book presunmes al nbost no previous know edge
of algebra and none at all of trigonometry. All necessary facts are
either reviewed or developed sinply but sufficiently. Even basic facts
of arithmetic are reviewed for those who need such a refresher. Those
whose skills are nore fluent can of course skip such material.

The enphasis here is on understanding and on the devel opnent of
genuine skill, for which latter purpose many exercises, with answers,
are given.

Finally, the fact that the explanations apply equally well to
what ever type of slide rule the student is apt to have, guarantees
the useful ness of this book for self-study or in the classroom under
nearly all conditions.

University of Illinois Franz E. Hohn



Mathematical Diversions. By J. A. H. Hunter and J. S. Madachy. 538
Princeton, Van Nostrand, 1963. vii t 178 pp., $4.95.

This littl e book was written by two well-known puzzle enthusiasts.
As is the case in most such books, many of the problems are well-known,
others are not. The problems include 40 "story teasers" whose solutions
lead to diophantine equations or to the analysis of geometrical figures.
Solutions to most of these are given.

The mathematical naiveté of the authors is revealed in almost every
chapter. Ore regrets to read "as for the fourth dimension, even mathe-
maticians admit they cannot visualize it," which appears to support the
colloquial impression that the higher dimensions belong to some mystical
domain of unreality. The authors say (p. 74) of the equation 01 =1,
"This can be proved, but the rigid proof is outside our scope here".

It is hard to realize that anyone accomplished in mathematical problem
solving would not be aware of the fact that it is necessary to define
01 and convenient to define it as 1

The treatment of inferential problems in Chapter 4 by Boolean algebra
i s particularly poor, as is the treatment of probability problems in

Chapter 10. These chapters will be incomprehensible to the newcomer
and useless to the informed. In Chapter 10 one learns that the proba-
bility zero "... implies quite definitely that it is impossible ..."
and hence that in the case of infinite sets, "infinitely small" and

"zero" must be distinguished. Ore hopes that the authors have only
tried too hard to be informal.

At times facts are stated without proof, even though proofs would
be simple and instructive. Some proofs are so informal as to be
erroneous. For example, one argument assumes that because each of two
sets of lines is infinite. the sets must have a line in common.

Altogether, one arrives at the sad conclusion that this is a hastily
prepared volume, not worthy of either the authors or the publishers. A
careful reading of the manuscript by a competent critic could easily
have eliminated most of the grounds for criticism and meade the book
acceptable as well as interesting. Some kinds of economy are, in the
long run, expensive.

University of Illinois Franz E. Hohn

Differential Equations: Geometric Theory, Second Edition. By Solomon
Lefschetz. Nav York, Wiley-Interscience, 1963. X + 390 pp., $10.00.

This is an advanced text on differential equations which makes
extensive use of topology and matrix methods. A reader who is well
grounded in real analysis and linear algebra will find here a rigorous
and exciting treatment of many important topics. The book begins with
existence theorems and linear systems, treats stability, Liapunov's
direct method, and second order equations and systems of equations.

This volume is essential reading for the serious student of differential
equations, whether he is in pure or applied mathematics.

University of Illinois Franz E. Hohn

539
Generalized Functions and Partial Differential Equations. By A.

Friedman. Englewood Cliffs, Nav Jersey; Prentice-Hall; 1963. xii *
340 pp., $7.50.

The first six chapters of this volume offer a more complete study
of the theory of generalized functions than has hitherto been available
in English. The treatment proceeds from the general to the particular
so, for example, the material on distributions appears only after a
rather abstract treatment of generalized functions. This approach,
while it has the advantage of offering the material in concise form to
those with a knowledge of measure theory, point set topology, and
functional analysis, places the book at the advanced graduate level
and beyond.

Chapters seven to eleven apply the techniques of the first six
chapters to some problems in the theory of partial differential
equations, with emphasis on the Cauchy or initial value problem for
equations with space-independent coefficients. Mudh is presented here
which was recently available only in research journals.
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