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THE ROLE AND NATURE OF MATHEMATICS 

Preston C. Hammer, University of Wisconsin 

Introduction. 
Mathematics has recent ly  achieved, along with c e r t a i n  other branches 

of learning, a new s ta tus .  The reasons a re  numerous but  they a re  
associated with the  successes of f i e l d s  formerly confined t o  the  remote 
reaches of e rud i t e  scholarship i n  appl ica t ions  of concern t o  a l l  of 
us. The causes which have l ed  us t o  re-examine the  mathematics cur- 
riculum a re  not necessari ly those springing from the  h ighes t  motives 
a t t r i b u t e d  i d e a l i s t i c a l l y  t o  science and s c i e n t i f i c  enterprise.  A 
c e n t r a l  f ac to r  i s  the success of the Russians. I t  i s  a sobering f a c t  
t h a t  soc i e t i e s  w i l l  o f ten  make the  e f f o r t  t o  achieve grea t  things only 
under duress, f o r  example, i n  the i n t e r e s t  of so-called defense. 

Today teachers of mathematics a re  being ca l l ed  on t o  teach concepts 
which a sho r t  time ago were saved fo r  graduate students and research 
mathematicians. In  re t rospect ,  it can be wondered, how did  we under- 
estimate so thoroughly the capaci ty  of the young or,  conversely, how 
did  we overestimate equally thoroughly the inherent  d i f f i c u l t  of mathe- 
matics? Whatever may be the  causes, it has become c l e a r  t h a t  the 
pr inc ipal  educational  problems concerning mathematics r e s t  on decisions 
a s  t o  how much should be taught and i n  what sequence, and not  primarily 
on the  capacity of the  pupils  t o  grasp it. 

In  view of the  upheaval i n  progress it is the  more important t h a t  
teachers i n  secondary and elementary schools acquire a broad perspective 
of mathematical ac t iv i ty .  I n  t h i s  essay I attempt t o  record some of 
the  conclusions I have reached i n  years of a c t i v i t i e s  and thinking 
r e l a t ed  t o  mathematics--research, computing and teaching. I do not  
claim t o  be an authority. "Authorities", who would impose t h e i r  l imited 
outlook on o thers  a re  the p r inc ipa l  curse of science and mathematics as  
wel l  a s  other areas. A man who believes t h a t  h i s  outlook should be 
accepted because he has accepted it should be t r ea t ed  fo r  i l l nes s .  

There a re  severa l  a t t i t u d e s  concerning mathematics which have been 
indicated a s  au tho r i t a t ive  which w i l l  not bear even casual  scrutiny. 
It is  t r u e  t h a t  many successes have been scored i n  mathematics by 
eminent mathematicians who have seemingly deluded themselves r a the r  
thoroughly concerning the  nature of mathematics. Thus one famous mathe- 
matician undertakes t o  present  mathematical c r e a t i v i t y  as  a prerogative 
pr inc ipal ly  of a few g rea t  men. This i s  not  only a f a l s e  concept, it 
r e f l e c t s  ignorance concerning the  nature of c rea t iv i ty .  It r e f l e c t s  
a l s o  an attempt t o  maintain a high priesthood of mathematics based on 
f a l s e  precepts and sheer arrogance. 

Now I am going t o  put together a chain of statements fo r  your 
consideration. I bel ieve  t h a t  these statements can stand the  t e s t  of 
your thought but  you should not  accept them without considering qu i t e  
ca re fu l ly  t h e i r  implications. 

The most neglected existence theorem i n  mathematics i s  the 502 
existence of people. Mathematics was crea ted  by people and it bears 
t h e i r  imprint. It  is not i n f a l l i b l e  nor have i t s  precepts always 
been wise. Take, fo r  example, the of ten  heard slogan "mathematics 
f o r  the  sake of mathematics" a paraphrasing of " a r t  fo r  the  sake of 
a r t " -  A mathematician who claims t o  work on mathematics f o r  i ts  own 
sake does not  know what he is doing. There is no sake of mathematics, 
nor of a r t  e i ther .  I may work on mathematics because it amuses me, 
because I believe it t o  be useful ,  t o  e s t ab l i sh  a reputat ion o r  any 
reason but  ce r t a in ly  not fo r  i ts  sake1 



Mathematics g Necessi ty  g C l v l l l z a t i ~ n .  
Mathematics a rose  from t h e  needs of  organized s o c i e t i e s  of  people. 

Imagine a p r i m i t i v e  t r i b e  l i v i n g  by hunt ing  and c o l l e c t i n g  t h e  n a t u r a l  
h a r v e s t  of f o r e s t  and f i e l d .  Rudimentary forms of counting a r e  needed 
t o  communicate numbers important  t o  t h e  t r i b e .  This  may be  t h e  number 
of animals i n  a herd; t h e  number of people i n  a h o s t i l e  t r i b e .  Also 
needed a r e  measures of s i z e ,  s t r e n g t h ,  d i s t a n c e  and time however 
c rude ly  formulated they  may be. A c e r t a i n  p r i m i t i v e  awareness of 
s i m i l a r i t i e s  of shapes must be  p r e s e n t  i n  e f f o r t s  t o  d u p l i c a t e  arrow- 
heads and implements. It is a l s o  important  t o  have some means of  
d e s c r i b i n g  l o c a t i o n  involv ing  both d i s t a n c e  and d i r e c t i o n .  Thus even 

i n  a p r i m i t i v e  s o c i e t y  c e r t a i n  i n t u i t i v e  concepts  wKich l a t e r  developed 
i n t o  mathematics a r e  necessary.  Moreover, t h i s  p r i m i t i v e  t r i b e  needs 
something of v i r t u a l l y  a l l  t h e  g r e a t  branches of  s p e c i a l i z e d  mathematics. 

I f  I now cons ider  i n s t e a d  an advanced c i v i l i z a t i o n  such a s  Babylonia 
o r  Ancient Egypt, I f i n d  t h a t  t h e  mathematical n e c e s s i t i e s  have increased  
enormously. The counting of l a r g e  populat ions,  armies, and h e r d s  must 
l e a d  t o  t h e  idea  of  t h e  n e c e s s i t y  of  extended counting--i.e., t h e  
n a t u r a l  numbers. Distances must be  measured s y s t e m a t i c a l l y  and l o c a t i o n s  
descr ibed  wi th  some prec i s ion .  Why? Because t h e r e  is  now p r i v a t e  
property- - real  e s t a t e  which must be surveyed, roads, s t r e e t s  and c a n a l s  
t o  be  b u i l t  and t h e s e  must be planned. Thus met r ic  geometry is necessary. 
Calendars a r e  important  and astronomy becomes a f i e l d  of  s p e c i a l i z a t i o n .  
We i n h e r i t ,  f o r  b e t t e r  o r  worse, t h e  Babylonian sexagesimal system of 
measuring time and angles .  

Geometry is a l s o  important  i n  t h e  planning o f  houses, palaces,  
b r idges  and sh ips .  The mechanics of  bu i ld ing ,  of  cons t ruc t ion ,  and 
s o  on, must be planned i n  advance. 

Weights, measures, money a l l  must r e c e i v e  some cons idera t ion .  
Accounting of  some form must be i n i t i a t e d  f o r  purposes o f  t a x a t i o n  and 
management of  wealth. 

Thus i n  Babylonia, a s  i n  Ancient Egypt, t h e r e  was much demand f o r  
t h e  commodity we know a s  app l ied  mathematics although t h e  only a r e a  
which we might recognize a s  mathematical ly  developed was t h a t  o f  
c a l c u l a t i o n  w i t h  a c e r t a i n  amount of  a lgebra.  That t h e s e  c i v i l i z a t i o n s  
could have used much more of modern mathematics is obvious. 

Since s o c i e t y  was organized,  t h i s  meant s p e c i a l i z a t i o n  and, f o r  
some, l e i s u r e .  Thus t h e r e  a r e  i n d i c a t i o n s  t h a t  c e r t a i n  Babylonians 
delved i n t o  mathematical problems o u t  of  sheer  c u r i o s i t y  r a t h e r  than 
d i r e c t l y  t o  achieve an immediate ob jec t ive .  This  s p i r i t  of exceeding 
t h e  n e c e s s i t i e s  h a s  l e d  throughout t h e  years  t o  much of  t h e  s i g n i f i -  
c a n t  work i n  mathematics. 

Pythaqoras and Euclid. 
A s  a conceivable example of  doing mathematical work, I s e l e c t  

Pythagoras f i r s t  and then  go on t o  Euclid. The Theorem of Pythagoras, 
s t a t i n g  t h a t  i n  a r i g h t  t r i a n g l e  t h e  sum of t h e  squares  on t h e  s i d e s  
i s  equa l  t o  t h e  square on t h e  hypotenuse i s  one of t h e  b e s t  known ones 
i n  mathematics. I do not  know how Pythagoras a c t u a l l y  d i d  t h e  work, 
b u t  I w i l l  assume t h a t  h e  d i d  it l i k e  research  is  done today. 

F i r s t  of a l l ,  how d i d  Pythagoras come t o  cons ider  such a problem? 
The answer might be  t h a t  he  was aware of previous experience with 
s p e c i a l  forms of  t h e  problem. The Egyptians knew, f o r  example, of  t h e  
3. 4. 5 r i q h t  t r i a n q l e  and used i t  i n  surveying. The i s o s c e l e s  r i g h t  . . 
t r i a n g l e  may a l s o  have been p a r t  of  t h i s  experience. However, Pythagoras 
was not  s a t i s f i e d  with t h e s e  r e s u l t s  f o r  s p e c i a l  r i g h t  t r i a n g l e s ,  he  

wanted a r e s u l t  applying t o  all r i g h t  t r i a n g l e s .  This  endeavor t o  
achieve completeness marks much of mathematical a c t i v i t y .  

What d i d  Pythagoras do? He draws var ious  r i g h t  t r i a n g l e s ;  h e  
becomes convinced t h a t  i f  h e  knows t h e  leng ths  of  t h e  l e g s  t h a t  t h e  
length of t h e  hypotenuse is  determined, t h a t  is, it .is a func t ion  of  
t h e  l eng ths  of t h e  legs.  Perhaps h i s  experiments a r e  c a r r i e d  o u t  over 
a per iod  of  s e v e r a l  years ,  intermixed wi th  o t h e r  a c t i v i t i e s .  There 
comes a time, however, when Pythagoras guesses  t h e  answer. Now h e  h a s  
a p ropos i t ion  t o  prove o r  disprove.  H i s  experiments may have a l ready  
l e d  him t o  a method of proof. However, he  may have spen t  much more 
time i n  dev is ing  a demonstration which could be used t o  convince every- 
one of t h e  v a l i d i t y  of  h i s  conclusion. He t r i e s  var ious  procedures, - 
based on h i s  experience,  and f i n a l l y  a r r i v e s  a t  a r a t h e r  s h o r t  demon- 
s t r a t i o n  t h a t  he  p r e s e n t s  t o  h i s  co l leagues  and s tudents .  This  demon- 
s t r a t i o n  takes  t h e  form of  deduct ive proof. I n  a few minutes Pythagoras 
convinces h i s  audience of  t h e  v a l i d i t y  of  h i s  theorem. It does no t  
t ake  long s i n c e  they a l ready  have agreed on t h e  background of  geometry 
assumed by Pythagoras. 

I now draw s e v e r a l  conclusions from t h i s  pseudo-example. The 
f i r s t  i s  t h a t  mathematics, Bertrand Russe l l  t o  t h e  c o n t r a r y  notwith-  
standing,  is n o t  deduct ive science.  The s e l e c t i o n  of what t o  work on 
i s  not deduct ive.  I n  t h i s  c a s e  Pythagoras drew on experience and this 
is a s  t r u e  o f  mathematics today a s  it was then. Granted t h e  s e l e c t i o n  
of a problem, t h e  establ ishment  of what conclusion t o  draw from t h e  
hypotheses i s  no t  a deduction. Granted t h e  complete phras ing  of  t h e  
theorem, t h e  es tab l i shment  of  a demonstration is  no t  done deduct ively.  
Once a "path" h a s  been e s t a b l i s h e d  from hypotheses t o  conclusions t h i s  
path is no t  unique and deduct ion a s  such d i d  no t  l ead  t o  it. Only 
when t h e  work is be ing  c a s t  i n  t h e  f i n a l  demonstrat ion does it a c t u a l l y  
appear a s  a deduction1 There a r e  some 50 o r  more d i f f e r e n t  proofs  of 504 
t h e  Theorem of  Pythagoras. Why d i d  he s e l e c t  t h e  one h e  d id?  P a r t l y  
because of  h i s  experience and t h e  l i m i t a t i o n s  of  h i s  knowledge1 

When you presen t  a p ropos i t ion  t o  p u p i l s  you cannot  t a k e  t h e  same 
amount of time a s  it took t o  guess  and e s t a b l i s h  it i n  t h e  f i r s t  place. 
No, no t  even Pythagoras would go through a f u l l  d e s c r i p t i o n  of  h i s  work, 
\h i s  hopes, f e a r s  and e l a t i o n  a t  achieving t h e  r e s u l t .  Why? Simply 
because it would t a k e  t o o  long. Our educat ion system is, i n  p a r t ,  
supposed t o  b r i n g  t h e  p u p i l  through t h e  important  accomplishments of 
m i l l e n i a  of  hard-working people. He cannot  r e l i v e  t h e s e  m i l l e n i a  and 
must be given them i n  capsu le  form. Nevertheless, it is wrong t o  g ive  
t h e  impression t h a t  t h e  work d i d  not  t ake  place,  t h a t  Pythagoras dashed 
o f f  h i s  theorem a s  t h e  e x e r c i s e  it appears. It is  a l s o  wrong t o  c r e a t e  
t h e  impression t h a t  t h e  p u p i l  himself  might n o t  c r e a t e  something o r  t h a t  
t h e  c r e a t o r s  of  t h e  mathematics were e s s e n t i a l l y  d i f f e r e n t  from himself .  

Let  me now go t o  Euclid. Euclid, i n  my es t imate ,  was one of  t h e  
most p e r c i p i e n t  of  known mathematicians al though h i s  in f luence ,  a s  an 
a u t h o r i t y  a f t e r  h i s  death, '  had i ts  enormously d e t r i m e n t a l  e f f e c t s .  
Euc l id  was adequately supported and had l e i s u r e  t o  work on mathematics. 
He was surrounded by lea rned  schola rs ,  a good l i b r a r y ,  and probably had 
a s s i s t a n t s  i n  such q u a n t i t y  a s  h e  could use. Behind him was a l r e a d y  a 
l a r g e  c o l l e c t i o n  of  geometr ical  proposi t ions.  Euc l id  s t u d i e d  t h i s  
geometry; h e  knew it well .  He was d i s t r e s s e d  by  t h e  c y c l i c  use of 
p ropos i t ions  f o r  proofs. That is, a p ropos i t ion  A might be  proved on 
t h e  b a s i s  of  p r o p o s i t i o n s  B, C, and 0, say. On t h e  o t h e r  hand, propo- 
s i t i o n  A might have been used i n  t h e  proof of  B, C, o r  D. The recog- 
n i t i o n  of this and h i s  success  i n  avoiding such c i r c u l a r i t y  i n  geometry 
is  t h e  main c o n t r i b u t i o n  of  Euclid. 

What ~ u c l i d  d i d  was t o  s e l e c t ,  based on h i s  experience wi th  geometry 
and o t h e r  experiences,  those  propos i t ions  which seemed t o  him c o r r e c t  
b u t  n o t  provable on t h e  b a s i s  of  s impler  p ropos i t ions .  Such propos i t ions  
he  c a l l e d  axioms. He at tempted t o  introduce enough axioms t o  c h a r a c t e r i z e  
geometry and imply t h e  important  r e s u l t s  a l ready  known. He a l s o  attempted 
never t o  in t roduce  a s  an axiom a propos i t ion  which could be  proved on 
t h e  b a s i s  of  h i s  p rev ious ly  s e l e c t e d  ones. For t h i s  reason t h e  famous 



P a r a l l e l  Axiom was no t  introduced u n t i l  r a t h e r  l a t e ,  s i n c e  Euc l id  was 
no t  convinced t h a t  it was necessary al though,  s i n c e  h e  f a i l e d  t o  prove 
it on t h e  b a s i s  of t h e  preceding axioms h e  d i d  f i n a l l y  inc lude  it. 

Thus t h e  axiomatic  method i n  mathematics o r i g i n a t e d  wi th  Euc l id  and 
it h a s  t u r n e d  o u t  t o  b e  a powerful implement of  research.  Observe t h a t  
Euc l id ' s  work was p r i m a r i l y  n o t  deductive. He could no t  deduce which 
propos i t ions  t o  choose a s  axioms, nor d i d  he  deduce which deduct ions 
t o  use i n  making demonstrations. The summary of  h i s  achievements were 
recorded i n  h i s  Elements b u t  t h e  work involved was no t  recorded. Thus 
Euc l id ' s  Geometry does n o t  r e v e a l  a t o  do mathematics; it g ives  a 
form o f  u r e s e n t i n g  it a f t e r  it i s  done. 

The t rea tment  of  Euc l id ' s  Geometry a s  a model of  reasoning  is  one 
of  t h e  reasons  f o r  t h e  s low development o f  mathematics. In  e f f e c t ,  it 
h a s  been used l a r g e l y  t o  p revent  reasoning  by i ts use  a s  an a u t h o r i t y .  505 

The geometry t a u g h t  a s  a model of  t h i n k i n g  h a s  a c t u a l l y  been used a s  
a mental s t r a i t  jacket .  A h e r i t a g e  can  be  a c u r s e  a s  w e l l  a s  a b less ing .  

Logic, Theorems and Proofs. 
I n  t h e  fo reao ina  s e c t i o n  I may have a iven  t h e  impression t h a t  a - - 

proof is somewhat independent o f  people. 1 n  t h i s  s e c t i o n  I a t tempt  t o  
d e s t r o y  such an i l l u s i o n .  Attempts t o  sugges t  t h a t  mathematics is  p a r t  
of a s a f e ,  secure,  l o g i c a l  s t r u c t u r e  e x i s t i n g  independently of  human 
experience a r e  erroneous. 

Consider a p r o p o s i t i o n  o r  theorem i n  t h e  u s u a l  sense. It can b e  
w r i t t e n  schemat ica l ly  H 2 C where H s t a n d s  f o r  hypotheses, C f o r  
conclusions and t h e  s ta tement  reads  H is l o g i c a l l y  s t r o n g e r  than  o r  
equa l  t o  C. Thus I may w r i t e  schemat ica l ly  H - C t o  i n d i c a t e  t h e  
l o g i c a l  d i f f e r e n c e  between Hypotheses and Conclusions. S ince  on ly  
when H is  necessary and s u f f i c i e n t  f o r  C does H = C, I have t h e  r e s u l t  
t h a t  a lmost  a l l  mathematical theorems r e p r e s e n t  a l o g i c a l  l o s s 1  Theorem 
a f t e r  theorem r e p r e s e n t s  l o s s  a f t e r  loss .  Is mathematics simply an 
accumulation of  l o g i c a l  l o s s e s ?  No1 A good theorem provides information 
t o  people; it c o n t a i n s  an element of  s u r p r i s e .  What may b e  l o g i c a l l y  
t ~ e  is  no t  n e c e s s a r i l y  known t o  be  t r u e .  Mathematicians a r e  engaged 
i n  t h e  product ion of information i n  e s t a b l i s h i n g  t h a t  one s t a t e  of 
a f f a i r s  impl ies  ano ther  s t a t e  of  a f f a i r s .  

Assuming t h e  old- fashioned l o g i c  i n  which H 2 C i s  e i t h e r  t r u e  
o r  f a l s e  independent of  human c a p a b i l i t y  of e s t a b l i s h i n g  e i t h e r ,  then  
it is  e a s i l y  seen t h a t  a proof h a s  no l o g i c a l  funct ion.  That is, it 
h a s  no e f f e c t  whatever on t h e  t r u t h  o r  f a l s i t y  of  t h e  theorem. Why 
prove theorems? The answer is t o  convince people t h a t  t h e  theorem i s  
t rue .  I f  you read  t h e  s ta tements  i n  a "proof"  and f a i l  t o  be  convinced 
t h a t  t h e  theorem is t r u e ,  it h a s  n o t  been proved t o  you. On t h e  o t h e r  
hand, i f  you a r e  convinced by means however bad of t h e  t r u t h  of  a theorem, 
it is proved t o  you. S i m i l a r l y ,  i f  you p r e s e n t  a proof t o  pupi l s ,  it 
is no t  a proof t o  t h o s e  who a r e  no t  convinced. E f f o r t s  t o  g l o s s  over  
t h i s  simple f a c t  of  l i f e  can only r e s u l t  i n  bad i n s t r u c t i o n .  

Mathematical f r i e n d s  have s a i d  t o  me "You a r e  r i g h t  concerning a 
proof b u t  how depress ing  it i s " .  What i s  r i g h t  may be depress ing  b u t ,  
a s  t eachers ,  we should t r y  t o  know what i s  r i g h t .  I know of  no theorem 
e s t a b l i s h e d  except  through human acceptance; by vo te ,  i f  you l i k e .  A 

d e f i n i t e  unbalance i n  our  reasoning  powers is most u s e f u l  here.  A 
theorem can be shown t o  be  f a l s e  by one counterexample; it is t r u e  only 
i f  no counterexample can b e  cons t ruc ted .  We a r e  s t r o n g e r  on nega t ive  
than on p o s i t i v e  decis ion.  David wi th  a counterexample is s t r o n g e r  
than Goliath w i t h  a theorem1 Mathematicians a t t empt  t o  avoid a l l  
counterexamples o f  t h e i r  theorems. It is  amazing how w e l l  they  seem 
t o  have succeeded. 

Understanding a theorem and i t s  proof r e q u i r e s  a c t i v e  p a r t i c i p a t i o n .  
This  may t a k e  t h e  form of t r y i n g  t o  c o n s t r u c t  counterexamples, of  t r y i n g  
to- formula te  a proof yourse l f ,  o r  of t r y i n g  t o  improve on t h e  theorem 

o r  i t s  proof. There i s  g e n e r a l l y  t o o  much p r a c t i c e  i n  i m i t a t i n g  c o r r e c t  506 
s ta tements  a s  compared t o  p r a c t i c e  i n  d e t e c t i n g  e r r o r s  i n  f a l s e  s t a t e -  
ments. A t eacher  should @ r e q u i r e  a s t u d e n t  always t o  g ive  back t h e  
same proof a s  p resen ted  i n  c l a s s .  To do s o  p u t s  a p e n a l t y  on thinking.  

The Genera l i ty  of Mathematics. - 
Much f u s s  h a s  been made over t h e  g e n e r a l i t y  of mathematics. 

Jaundiced eyes a r e  c a s t  on g e n e r a l i z a t i o n s  o f t e n  i n  t h e  mistaken no t ion  
t h a t  mathematics is genera l  enough. What a r e  t h e  f a c t s ?  Mathematicians 
have borrowed t h e  s a f e s t  p a r t  of  t h e  language and at tempted t o  c o n s t r u c t  
a secure  s t r u c t u r e  on it. A l l  a t t empts  t o  meet f u r t h e r  demands must 
r e s u l t  i n  more genera l  systems. Thus a n c i e n t  mathematics d i d  n o t  
provide models f o r  games of  chance b u t  p r o b a b i l i t y  theory  was i n i t i a t e d  
t o  do so. Eucl idean geometry f a i l e d  t o  d e s c r i b e  e f f e c t i v e l y  r a t h e r  
simple curves  u n t i l  Descartes  introduced coord ina tes ,  t h u s  g iv ing  a 
panorama of  curves.  Cantor then went f u r t h e r  t o  meet t h e  a p p l i c a t i o n s  
and introduced a theory  of  s e t s  which admit ted many more o b j e c t s  a s  
geometr ical  f i g u r e s .  

Topology, a s  c o n t r a s t e d  wi th  Eucl idean geometry, is  r a t h e r  general .  
Yet it is  no t  g e n e r a l  enough f o r  t h e  demands of computing theory  and 
numerical a n a l y s i s .  

By reason of  i ts  i n t e n s i v e  development of  c e r t a i n  concepts  mathe- 
matics  h a s  been considered an o b j e c t  language f o r  sc iences .  However, 
t h e  s e c u r i t y  sought and achieved h a s  i ts p r i c e  i n  t h e  i n a p p l i c a b i l i t y  
of  mathematics t o  any b u t  comparat ively simple s i t u a t i o n s .  

You may quote examples of  t h e  a p p l i c a t i o n s  of  mathematics by t h e  
hundreds. I w i l l  b e  impressed b u t  n o t  overwhelmed. I know t h a t  i n  
t h e  s imple p rocess  of  a t t empt ing  t o  pack a s  many d i s h e s  i n  a box a house- 
w i f e  is t r y i n g  t o  s o l v e  a problem more d i f f i c u l t  than h a s  been so lved  
i n  t h e  f a r  reaches of  measure theory1 I a l s o  know t h a t  when you accep t  
r e s p o n s i b i l i t y  f o r  a d v i s i n g  a s t u d e n t  you have a problem i n  which mathe- 
mat ics  is p r i n c i p a l l y  u s e l e s s ,  t h e  problem is t o o  d i f f i c u l t 1  

Mathematics has an expanding a r e a  of in f luence  b u t  it can r e p r e s e n t  
on ly  a small  p o r t i o n  of  human a c t i v i t y .  Mathematics i s  i n h e r e n t l y  l e s s  
g e n e r a l  than t h e  common language! 

c r e a t i v i t y  @ P u r i t y  & Mathematics. 
What i s  c r e a t i v e  a c t i v i t y ?  Crea t ive  a c t i v i t y  can occur i n  many 

unsa lab le  forms. The r e c o g n i t i o n  o f  a p a t t e r n ,  an analogy, t h e  smoothing 
over  of a q u a r r e l ,  t h e  phras ing  of  a sentence a r e  examples of  c r e a t i v e  
a c t i v i t y .  Every normal person does many c r e a t i v e  a c t s ,  b u t  sometimes 
t h e s e  a r e  ones requ i red  of him and h e  is  n o t  s p e c i f i c a l l y  rewarded f o r  
them. I t  is  c r e a t i v e  t o  d i scover  a r e l a t i o n s h i p  o r  proof i n  mathematics 
no mat te r  how many have done it before.  However, i f  a person wants t o  --- 
be pa id  f o r  h i s  c r e a t i o n s  be  it i n  recogni t ion ,  deference,  o r  money 
then  h e  h a s  a d d i t i o n a l  c o n d i t i o n s  t o  meet. 

The tagg ing  of only masterpieces of  c r e a t i v i t y  a s  be ing  c r e a t i v e  
is f o o l i s h  and misleading. It i s  important  t h a t  s t u d e n t s  be  encouraged 
i n  t h e i r  e f f o r t s  and t h a t  t h e i r  p o s i t i v e  c r e a t i o n s  be  rewarded. C r e a t i v i t y  
is  no t  a p re roga t ive  of  t h e  q r e a t ,  it is almost a n e c e s s i t y  of  surv iva l1  

This  b r i n g s  me t o  t h e  schism between pure and a p p l i e d  mathematics 507 
accen tua ted  by  g r e a t  fools .  There is no mathematician today who i s  
pure and known i n  one sense. Even so- cal led pure mathematicians 
publ i sh  t h e i r  work f o r  t h e  a p p l i c a t i o n  o f  r e c e i v i n g  recogni t ion  and/or 
money. Moreover, they  a r e  n a t u r a l l y  p leased  when t h e i r  r e s u l t s  a r e  
used f o r  any worthy purpose. I f  mathematics were u s e l e s s  s o c i e t y  
would no t  suppor t  it. The a p p l i e d  mathematician, on h i s  p a r t ,  may 
be  d i s d a i n f u l  of  t h e  r e s u l t s  achieved by  h i s  "pure"  co l league  s i n c e  
he  c a n ' t  apply them immediately t o  h i s  work. S incere  e a r n e s t  work is 
u s u a l l y  going t o  b e  b e n e f i c i a l .  



I n c i d e n t a l l y ,  i f  you should meet someone corroded by t h e  power o f  
recogni t ion ,  cons ider  t h i s .  I f  he,  ( t h e  powerful one) ,  achieved h i s  
s t a t u s  because h e  had s u p e r i o r  equipment, f o r  t h i s  h e  deserves 
c r e d i t ;  h e  had nothing t o  do w i t h  it. On t h e  o t h e r  hand, i f  h e  had 
b u t  mediocre g i f t s  b u t  made t h e  most of them would h e  l i k e  t o  be reminded 
of i t ?  The q u e s t  f o r  recogni t ion  h a s  no m e r i t  i n  i t s e l f  and it produces 
warped p e r s o n a l i t i e s  i n  quant i ty .  

D e f i n i t i o n s  and Axioms. 
I t  is common p r a c t i c e  t o  a c t  a s  i f  a s e t  of  elements coupled wi th  

a s e t  of  p ropos i t ions  p resen ted  a s  axioms d e f i n e  aimathematical system. 
This may be an adequate a r t i f i c e  f o r  research  workers b u t  t eachers  . 
should know b e t t e r .  The no t ion  t h a t  a s e t  of words d e f i n e  something 
independent of  t h e  people who read  them i s  d e s t i n e d  t o  become t h e  
archaism it should long s i n c e  have been. The axiom system a s  used 
provides a s t a r t i n g  po in t ,  assuming you r e a d  t h e  language i n  which it 
is w r i t t e n ,  f o r  t h e  unfolding of  a subsequent body of  theory  and con- 
cepts .  The theory  is g e n e r a l l y  necessary t o  t h e  understanding of t h e  
axiom s y s t e m ~ a n d  hence h e l p s  d e f i n e  it. F r m  t h e  s t e r i l e  l o g i c a l  
viewpoint,  i f  t h e  axiom system r e a l l y  descr ibed  completely a mathe- 
m a t i c a l  a r e a  t h e r e  is no p o i n t  i n  t h e  subsequent theory  s i n c e  a l l  is 
implied by t h e  axioms. 

The same is t r u e  of d e f i n i t i o n s .  In  what sense does a d e f i n i t i o n  
read  by two people mean t h e  t h i n g  t o  both? I f  it d o e s n e t  mean 
t h e  same then does it def ine?  The answer i s  t h a t  most of t h e  p a t  
d e f i n i t i o n s  do no t  d e f i n e  i n  any p r e c i s e  sense. Use of  a concept  is 
necessary t o  g r a s p  i t s  meaning. This should a f f e c t  our t each ing  by t h e  
r e a l i z a t i o n  t h a t  t h e  so- cal led d e f i n i t i o n s  a r e  merely prologues. What 
fol lows should b e  t h e  c u l t i v a t i o n  of an understanding of t h e  meaning 
of  t h e s e  concepts. Can anyone d e f i n e  v a r i a b l e ,  cons tan t ,  o r  func t ion  
s o  t h a t  t h e i r  meanings a r e  c l e a r  t o  t h e  reader? Not i n  any few words 
and c e r t a i n l y  n o t  wi thout  much experience with t h e  concepts. 

Attempts t o  d e f i n e  n a t u r a l  numbers have been r a t h e r  dismal. Why? 
Because, a s  Eucl id observed, you cannot s t a r t  wi thout  assumptions and 
you cannot  d e f i n e  words i n  terms of words without  s t a r t i n g  with some 
t h a t  a r e  known. These known words have had t o  be lea rned  by a s s o c i a t i o n  
and abs t rac t ion .  I n  mathematics e f f o r t s  a r e  made t o  o b t a i n  p r e c i s i o n  
of  meaning and t h i s  is  done by at tempting t o  s o r t  out  proper and 
improper responses. The teacher  p lays  a c r i t i c a l  r o l e  i n  t h i s  endeavor. 
What is  a number, say 27 It is p r i n c i p a l l y  an agreement among people1 
It i s  n e i t h e r  ink,  chalk,  nor appropr ia te  sound packets .  

I n s t r u c t i o n .  
It is  impossible  t o  cons ider  a l l  t h e  impl ica t ions  of  what I have 
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been saying f o r  i n s t r u c t i o n .  Nevertheless  perhaps a few paragraphs 
w i l l  g ive  some opinions f o r  you t o  d i sagree  with. 

F i r s t  of a l l  I cons ider  t h e  circumstances i n  which our  secondary 
and elementary t e a c h e r s  now work tend t o  make t h e  b e s t  i n  i n s t r u c t i o n  
almost impossible. F i r s t ,  t h e  t eachers  need more time and oppor tun i ty  
t o  l e a r n  mathematics and p a r t i c i p a t e  i n  t h e  a p p l i c a t i o n s  of mathematics. 
They a l s o  need more time t o  cons ider  i n d i v i d u a l  p u p i l s  t o  f i n d  b e t t e r  
ways f o r  them t o  approach whatever they a r e  learning.  The p u p i l  i s  
supposed t o  d i g e s t  i n  a comparat ively s h o r t  time t h e  h e r i t a g e  of mi l len ia .  
He is supposed t o  l e a r n  t o  communicate i n  t h e  language of mathematics. 
Almost inev i tab ly ,  however, h e  spends most of  h i s  time l i s t e n i n g  and 
read ing  i n s t e a d  of th ink ing ,  w r i t i n g  and speaking. This  is  p a r t l y  because 
t h e  p u p i l s  outnumber t h e  teachers  by t o o  g r e a t  a f a c t o r .  Thus t h e  
teacher  f i n d s  it comfortable, i f  no t  necessary,  t o  f o r c e  one point-of- 
view on t h e  pupi l ,  t o  r e q u i r e  t h a t  h e  do t h i n g s  i n  t h e  p r e c i s e  fash ion  
l a i d  down. This t ends  t o  produce good p a r r o t s  b u t  n o t  good s tudents .  

I have heard  repea ted ly  t h e  i n j u n c t i o n  t o  paren ts  "Please d o n ' t  
h e l p  your c h i l d r e n ,  it w i l l  only confuse them". Actual ly,  it may b e  
t h a t  t h e  t eacher  cannot  cope with ideas  and methods with which he  is  
no t  a l ready  f a m i l i a r .  The modern teacher  needs t o  e r a s e  t h e  image of  
himself  a s  an oracle .  I n  any classroom t h e  p u p i l s  almost i n e v i t a b l y  
know t h i n g s  no t  known t o  t h e  teacher .  A good teacher  should manage t o  
c a p i t a l i z e  on t h a t  source o f  information. 

The a p p l i c a t i o n s  of  mathematics have tended t o  be s l i g h t e d  even 
by c o l l e g i a t e  i n s t r u c t o r s .  This  a t t i t u d e  does no t  r e f l e c t  s t r e n g t h  b u t  
weakness. Knowing what mathematics does is p a r t  of  knowing mathematics. 
On t h e  o t h e r  hand, repea ted  d i scuss ions  of s i t u a t i o n s  i l l u s t r a t i n g  a 
mathematical concept wi thout  coming t o  g r i p s  wi th  t h e  concept e s s e n t i a l l y  
den ies  t h e  reason f o r  t h e  e f f i c i e n c y  of  mathematics--in express ing  t h e  
essence of  many s i t u a t i o n s  wi thout  a c t u a l l y  b e i n 5  any one of  them. 

Education is ,  i n  i ts very  na ture ,  a form of thought  and a c t i o n  
cont ro l .  To minimize t h e  de t r imenta l  e f f e c t s  of such c o n t r o l ,  it i s  
necessary t o  permit  and encourage chal lenges.  Thus, a mathematics 
text-book r e p r e s e n t s  t h e  a u t h o r ' s  viewpoint and experience and cons t i-  
t u t e s  a form of  thought- control.  Teacher and p u p i l  a l i k e  should no t  
be  r e l i a n t  on t h a t  one source of information. They should compare with 
o t h e r  books, be  a l e r t  f o r  inaccurac ies ,  f o r  b e t t e r  s ta tements  and proofs  
and s o  on. To r e q u i r e  a p u p i l  t o  l e a r n  one method is  one th ing ,  t o  
f o r b i d  him t o  l e a r n  another  is inexcusable. 

There i s  much p r e s s u r e  t h e s e  days t o  d i v e r t  a l l  t h e  so- cal led 
g i f t e d  s t u d e n t s  i n t o  channels  of  sc ience  and engineering.  In  p a r t ,  I 
suspec t  t h i s  i s  because t h e  e a s i e s t  people t o  teach a r e  those capable 
of  l e a r n i n g  wi thout  i n s t r u c t i o n .  The secondary teachers  i n  p a r t i c u l a r  
need t o  cons ider  t h e  f a c t  t h a t  it may a c t u a l l y  no t  be t h e  b e s t  t o  advise 
a p u p i l  t o  go i n t o  such a r e a s  however a p t  he is. One of  our g r e a t e s t  
needs now is  f o r  b e t t e r  statesmen on a l l  l e v e l s  of government. Another 509 
need i s  f o r  teachers .  I have heard  research  mathematicians, who would 
never advise a good s t u d e n t  t o  become a t eacher ,  lambaste t h e  q u a l i t y  
of teaching. I n  my opinion,  they  have b e t t e r  s t u d e n t s  than they deserve1 

Final ly,  l e t  me c l o s e  t h i s  s e c t i o n  wi th  an observat ion on t h e  
economics of teaching. A s  a guess, I should say t h a t  t h e  time of  t h e  
p u p i l  is worth $ 1  per-hour on t h e  average. This  va lue  of time i s  too 
f requent ly  ignored. Hence, t eachers  and p u p i l s  deserve t h e  b e s t  poss ib le  
i n  prepared mate r ia l s .  Yet genera l ly  most m a t e r i a l s  a r e  inadequately 
researched and a r e  w r i t t e n  by one o r  two people i n  t h e i r  spare  time1 
The r e s u l t a n t  l o s s  is enormous. We can a f f o r d  t o  do b e t t e r .  

Conclusion. 
Mathematics is no t  deduct ive sc ience  and n e i t h e r  is  logic .  There 

is no l o g i c a l  excuse e i t h e r  f o r  mathematics o r  logic .  Mathematics was 
c r e a t e d  by  people who, g e n e r a l l y  speaking, were much concerned about  
t h e  d u r a b i l i t y  of  t h e i r  work. They very  much need t o  know what they 
a r e  t a l k i n g  about and they have shown a h igh  degree of  concern f o r  t h e  
t r u t h  of t h e i r  s ta tements .  

Any a t tempt  t o  s e p a r a t e  mathematics from i t s  a p p l i c a t i o n s  i s  f o o l i s h .  
Crea t ive  mathematical a c t i v i t y  i s  n o t  a p re roga t ive  of a few any more 
than c r e a t i v e  a r t  is. Mathematics h a s  had amazing successes  and y e t  
remains, i n  i t s  p r e s e n t  s t a t e ,  app l icab le  t o  p r i n c i p a l l y  simple problems. 

The good teacher  i n  whatever f i e l d  r e t u r n s  t o  s o c i e t y  much more 
than  h e  o r  she i s  paid. Good teach ing  must be  founded on an under- 
s tanding  of  and a p p r e c i a t i o n  of t h e  s u b j e c t  matter ,  of t h e  pupi l s ,  and 
of  soc ie ty .  I hope t h e s e  observat ions,  i n  some way, promote b e t t e r  
t each ing  i n  mathematics. 

I am indebted t o  Professor  John D. Hancock of  Alameda S t a t e  College 
f o r  sugges t ing  t h a t  I should w r i t e  up a l e c t u r e  on which t h i s  paper i s  
based, and a l s o  f o r  improvements h e  h a s  suggested i n  t h e  manuscript. 
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Appendix. What Others Say. 

I n  the body of t h i s  essay, a f t e r  some del ibera t ion ,  I decided agains t  
quoting other people t o  support my viewpoint. My viewpoint is r a the r  
d i f f e r e n t  from t h a t  of most mathematicians who have s imi lar  inc l ina t ions ,  
and it seemed a poor policy t o  suggest a complete accord by r e s t r i c t e d  
quotations. However, there  a r e  severa l  authors who agree, a t  l e a s t  on 
the  e s s e n t i a l  fea tures ,  t h a t  mathematics and logic  are  not  simply t o  
be divorced from the a c t i v i t i e s  of people in  society. Among these men 
a re  Professors Nathan A. Court and George Polya. Another outstanding 
thinker on such matters was Professor Ger r i t t  Mannoury, of the University 
of Amsterdam, whose books unfortunately have not beenotranslated i n t o  
English. I n  the  c los ing  paragraph of h i s  book [3] Professor Mannoury 
labels  a s  pure supe r s t i t i on  the  notions of mathematics a s  absolute, 
pe r f ec t ly  exact ,  general  and autonomous or, i n  short ,  being t rue  and 
e ternal1  This statement n ice ly  puts the  f inger  on mathematical fantasy. 

FIFTY YEARS I N  THE PI MU EPSILON FRATERNITY 

J. S. Frame, Director General 
Michigan S ta t e  University 

1. Incorporation. The Pi  Mu Epsilon Fra tern i ty ,  incorporated on May 
25, 1914, under the  laws of the  S t a t e  of New York, is  ce lebra t ing  i ts  
golden anniversary a s  a na t ional  mathematics honorary f r a t e r n i t y  with 
nearly 100 ac t ive  chapters i n  39 s t a t e s  and the D i s t r i c t  of Columbia. 
I t  is  a non-secret organization whose purpose is the promotion of 
scholarly a c t i v i t y  i n  mathematics among students and facul ty  i n  
academic in s t i t u t ions ,  and among s t a f f s  of qua l i f i ed  non-academic 
in s t i t u t ions .  

Its f i r s t  Director General, D r .  Edward Drake Roe, Jr., had organized 
a Mathematical Club a t  Syracuse University in  the f a l l  of 1903 and had 
guided it through ten years of successful  endeavor. A t  the  c lub  meeting 
on November 17, 1913, he proposed the  establishment of a mathematical 
f r a t e rn i ty .  Deta i l s  were worked out  i n  committees, and on March 2, 
1914, a convention was he ld  and a cons t i t u t ion  was adopted. Speci f ic  
names fo r  the  F ra t e rn i ty  were considered on March 23, and the Greek 
l e t t e r s  ETM, "To promote scholarship and Mathematics", were adopted, 
but  with the  order of l e t t e r s  changed t o  ITME. Those present  then took 
the  following pledge and signed t h e i r  names a s  cha r t e r  members of the  
Fraternity.  

PLEDGE: I do solemnly promise t o  give my bes t  e f f o r t s  i n  the  
improvement of my scholarship i n  a l l  my subjec ts  and especia l ly  
i n  mathematics, and t o  maintain a reserved s i l ence  concerning the 
obl iga t ions  of the f r a t e rn i ty ,  and t o  cheerfu l ly  accept advice 
and admonition a s  long a s  I am a member of the  f ra tern i ty .  (The 
pledge has been a l t e r ed  i n  subsequent years.) 

The f i f t y  cha r t e r  members included 8 faculty,  2 graduate students,  
15 seniors,  and 25 juniors and sophomores. The Mathematical Club was 
dissolved on Apr i l  27 a f t e r  turning i t s  a s se t s  over t o  the new f r a t e r-  
nity. Five o f f i c e r s  and four addi t ional  members of the executive 
committee of P i  Mu Epsilon were then elected.  These became the  
incorporators of the  f r a t e r n i t y  and signed t h e i r  names on May 20, 1914, 
t o  the c e r t i f i c a t e  of incorporation, which was approved by J u s t i c e  
P. C. J. DeAngelis of the Supreme Court of New York. 

Incorporators of P i  Mu Epsilon 
Edward Drake Roe, Jr. (Director)  Florence A. Lane 
Floyd Fiske Decker (Vice Director)  Helen Mary Barnard 
Helen L. Applebee (Secretary) Edward Jay C o t t r e l l  
Purley J. Bentley (Treasurer) Adolph Sussman 
Olive Evelyn Jones (Librarian) 

2. Earlv Years. The vote t o  es tabl i sh  the  new f r a t e r n i t y  might not  
have prevailed i f  high scholas t ic  requirements had been s e t  fo r  cha r t e r  
members. Scholarship standards fo r  e l ec t ion  of new members i n  1914-15 
were discussed on October 3, 1914. Minimum general averages and mathe- 512 
matics averages of 75 and 80 fo r  sophomores and of 72 and 75 for  juniors 
were adopted then, but  higher minimum requirements were s e t  a t  l a t e r  
meetings. Sophomores must now have an A average i n  mathematics and be 
i n  the  upper quar ter  of t h e i r  c l a s s  i n  general  average t o  be e l i g i b l e  
f o r  e l ec t ion  t o  membership. 

The young f r a t e r n i t y  became a na t ional  organization a f t e r  World 
War I w en the  second chapter  was es tabl i shed with 23 cha r t e r  members 
a t  the  \ 0 i o  S ta t e  University i n  October, 1919. F i r s t  known a s  the  
Beta chapter," it became the Ohio Alpha Chapter when it was l a t e r  
decided t o  include the  s t a t e  name i n  chapter designations. The next 
three  char ters  were granted by the Syracuse chapter t o  the University 
of Pennsylvania (1921), the University of Missouri (1922) and the 
University of Alabama (1922). 

Records show t h a t  General Officers of the F ra t e rn i ty  were nominated 
(and they presumably were e lec ted)  i n  December, 1922, as  follows: 

Director General: Dr. E. D. Roe, Jr. (Syracuse) 
Vice-Director General: Mr. W. V. Houston (Ohio S ta t e )  
Secretary General: D r .  Warren G. Bullard (Syracuse) 
Treasurer General: M i s s  Louisa Lotz (Pennsylvania) 
Librarian General: Miss Mabel G. Kessler (Pennsylvania). 

Under the  new nat ional  organization chapters were chartered a t  Iowa 
S ta t e  i n  1923, a t  the Universi ty of I l l i n o i s  on the tenth  anniversary 
date of May 25, 1924, and a t  Bucknell University on March 5, 1925. 
Professor H. S. Everett  of Bucknell was e lec ted  Secretary General i n  
January, 1927, when Professor Warren A. Lyon withdrew h i s  name a f t e r  a 
t i e  vote f o r  t h a t  office.  Professor Everett  replaced Professor Bullard, 
then on leave of absence because of cancer which soon claimed h i s  l i f e .  
Professor John S. Gold succeeded Professor Everett  a s  Secretary i n  the 
f a l l  of 1927. Dr .  Roe and Miss Lotz continued as  Director and Treasurer. 

D r .  Roe expressed h i s  s t rong fee l ings  about the  need fo r  democracy 
i n  Pi  Mu Epsilon. Opposing the appointment of a nominating committee. 
he suggested t h a t  each chapter send i t s  nominations to the Bucknell 
chapter, which would serve as  t e l l e r ,  and t h a t  t he  two highes t  candidates 
fo r  each o f f i ce  be voted upon by the  f ra tern i ty .  Writing t o  Professor 



E v e r e t t  on February 13, 1926, he  s a i d ,  " ~ l l  a long I have endeavored t o  
keep t h e  management of P i  Mu Epsi lon o u t  o f  t h e  hands o f  a few. Its 
government is  democratic and I have aimed t o  prevent  anything l i k e  
an o l igarchy  . . . . The chapte rs  have a l l  t h e  l e g i s l a t i v e  powers, t h e  
c o u n c i l  i s  merely execut ive and advisory  ...." To Professor  R. C. 
Archibald h e  wrote on December 9, 1926, " I  have had t h e  conception from 
t h e  s t a r t  of a f r a t e r n i t y  u n i t i n g  f a c u l t y  and t h e  most advanced s t u d e n t s  
(normally above sophomore, though an excep t iona l  sophomore may be  
e l i g i b l e )  and I have never departed from t h i s  idea l .  I have always 
f e l t  t h a t  a merely undergraduate f r a t e r n i t y  would be only a h a l f  success  . i n  accomplishing our  whole purpose and i d e a 1 , t h e  advancement of  
mathematics and scholarship."  

A jeweled p i n  was presen ted  t o  D r .  Roe by t h e  F r a t e r n i t y  on t h e  513 
occasion of h i s  re t i rement ,  j u s t  s i x  months before  h i s  death i n  1929, 
a s  a token of a p p r e c i a t i o n  f o r  h i s  f i f t e e n  y e a r s  o f  devoted s e r v i c e  
a s  D i r e c t o r  General. Since 1949 t h i s  p i n  h a s  been e n t r u s t e d  t o  t h e  
incumbent Di rec tor  General, t o  be  worn a s  a badge of  o f f i c e .  

When D r .  Louis Inqold of Missouri became t h e  second Di rec tor  
General i n  1929, t h e  F r a t e r n i t y  had 18 chapters .  I n  1936, with Professor  
John S. Gold of Bucknell a s  Secretary- Treasurer  General, a p o l i c y  was 
i n s t i t u t e d  of  i s s u i n g  a l l  membership c e r t i f i c a t e s  from t h e  n a t i o n a l  
o f f i c e .  I n  1937 t h e  L. G. Balfour Company was des igna ted  a s  t h e  o f f i c i a l  
jeweler  of  t h e  F r a t e r n i t y .  Roya l t i es  f o r  f r a t e r n i t y  jewelry s o l d  t o  
members have a s s i s t e d  i n  underwri t ing some of  t h e  expenses of  t h e  
n a t i o n a l  o f f i c e .  

3. The P i  Mu Epsi lon Journal .  The es tab l i shment  i n  1949 of t h e  P i  Mu 
Epsi lon Journa l  was an important  milestone i n  t h e  h i s t o r y  of  t h e  
F r a t e r n i t y .  This  journa l  aims t o  publ i sh  high q u a l i t y  a r t i c l e s  by 
undergraduates, graduate  s t u d e n t s  and o thers ,  t h a t  a r e  of i n t e r e s t  t o  
t h e  undergraduate s t u d e n t  i n  mathematics, i n  a d d i t i o n  t o  i tems such 
a s  c h a p t e r  r e p o r t s  t h a t  may be  of i n t e r e s t  t o  t h e  chapters .  Those 
who have served a s  Editors- in- chief  and bus iness  managers of  t h e  J o u r n a l  
a r e  

4. 
f o r  

E d i t o r s  
Ruth Stokes (Syracuse) 1949-55 
Franz Hohn ( I l l i n o i s )  1955-57 
Franc is  Regan (St.  Louis Univ.) 1957-63 
Seymour Schus te r  (Univ. o f  Minnesota) 1963- 

Business managers 
Howard C. Bennett (1949-54) 
Henry W. Farnham (1954-55) 
Echo Pepper (1955-57) 
J. J. Andrews (1957-63) 
R i t a  V a t t e r  (1963- ) . 

A f f i l i a t e  Chapters. I n  1957 t h e  C o n s t i t u t i o n  was amended t o  provide 
t h e  es tab l i shment  of  a f f i l i a t e  chap te rs  of  P i  Mu Epsi lon a t  non- 

academic i n s t i t u t i o n s ,  and t h e  f i r s t  such chapte r  was e s t a b l i s h e d  a t  
t h e  General E l e c t r i c  Company, Evandale, Ohio. A f f i l i a t e  c h a p t e r s  a r e  
intended t o  f o s t e r  and promote an i n t e r e s t  i n  mathematics, b u t  do n o t  
e l e c t  persons t o  r e g u l a r  membership i n  P i  Mu Epsilon. 

5. Nat ional  Meetings. A s  t h e  F r a t e r n i t y  h a s  grown from a s i n g l e  c l u b  
i n  1914, t o  18,857 members in 51 c h a p t e r s  i n  Apr i l ,  1951, t o  over 
45,000 members i n  n e a r l y  100 chapte rs  i n  May, 1964, it h a s  become 
i n c r e a s i n g l y  important  t o  provide c o n t a c t s  between t h e  members of  
d i f f e r e n t  c l u b s  a t  n a t i o n a l  meetings. Such meetings have been h e l d  
almost every  year  s i n c e  1923. I n  1952 and subsequent years ,  a s e s s i o n  
f o r  s t u d e n t  speakers  h a s  been arranged a t  t h e  n a t i o n a l  meetings, and 
t h e  chap te rs  have been urged t o  send t h e i r  b e s t  s t u d e n t  speaker  t o  

p resen t  a paper. Severa l  of  t h e s e  papers  have been subsequently publ ished 
i n  t h e  P i  Mu Epsi lon Journal .  F i n a n c i a l  a s s i s t a n c e  by t h e  n a t i o n a l  
t r e a s u r y  o f  t h e  F r a t e r n i t y  is given t o  s t u d e n t  speakers  ( f u l l  f a r e )  and 
t o  de lega tes  (ha l f  f a r e )  f o r  one r e p r e s e n t a t i v e  of  each c h a p t e r  who h a s  
no t  reached t h e  Master 's  degree l e v e l  p r i o r  t o  t h e  commencement 
immediately preceding t h e  meeting. The f i f t i e t h  ann iversa ry  meeting 
is  scheduled on August 25, 1964, a t  t h e  Univers i ty  o f  Massachusetts,  
i n  conjunct ion with meetings of t h e  Mathematical Assoc ia t ion  of America. 

APPENDIX I. GENERAL OFFICERS OF PI MU EPSILON. 

Di rec tor  Vice-Director S e c r e t a r y  Treasurer  L i b r a r i a n  

1914 E.D. Roe,Jr. F. F. Decker Helen Applebee P.J. Bentley Olive Jones 

Local o f f i c e r s  of  t h e  Syracuse chap te r  served a s  genera l  o f f i c e r s  u n t i l  
1922. 

1922 E.D. Roe,Jr. W.V. Houston W.G. Bul lard Louisa Lotz Mabel Kess le r  
1927 T. F o r t  H.S. E v e r e t t  Mabel G. Kess le r  ,* John S. Gold 
1929 Louis Ingold " 

1933 F.W. Owens T.M. Putnam 0, E.R. Smith [Libra r ian  
Secretary- Treasurer  o f f i c e  

1936 G.C. Evans W. E. Milne John S. Gold d i scont inued)  
1939 W.E. Milne Lincoln LaPaz 8 ,  

1942 Tomlinson F o r t  H.H. Downing rn 

1945 E.H.C. Hildebrandt  
1948 C.C. MacDuffee D.R. Hol l  E.H.C. Hildebrandt  

Editor-General 
1951 W.M. Whyburn J.S.Frame Ruth Stokes (49-55) 
1954 S.S. Cairns J.S. Frame R.V. Andree Franz Hohn (55-57) 
1957 J.S. Frame Orr in  Fr ink  Franc is  Regan (57-63) 
1960 R. H. Bing 
1963 J.S. Frame 8.T. Karnes R.V. Andree Seymour Schus te r  (63- ) 

APPENDIX 11. COUNCILORS GENERAL OF PI MU EPSILON. 

Florence A. Lane, Helen Mary Barnard, Edward J a y  C o t t r e l l ,  
Adolph Sussman 
E. D. Hedrick, Roeven, Rasor 
R. D. Carmichael 
E. D. Roe, Jr., R. D. Carmichael, E. R. Hedrick, Mi tche l l  
E. R. Hedrick, T. Fort ,  C. S. Latmin, Louis Ingold 
W. C. Brenke, Alan Campbell, D. Lehmer, F. W. Owens 
H. H. Downing, W. W. E l l i o t t ,  G. C. Evans, R. A. Johns 
W. C. Brenke, P. J. Daus, E. H. C. Hildebrandt ,  W. P. 
George Williams, C. A. Hutchinson, C. H. Richardson, E 
S. S. Cairns, T. Fort ,  J. S. Gold, A. H. Kempner 
S. S. Cairns, T. Fort ,  Sophia L. McDonald, Ruth W. S t  
H. C. Bennett, ex. o f f .  
Wealthy Babcock, R. F. Graesser, S. L. McDonal 
H. S. Thurston, Henry W. Farnham, ex. o f f .  
R. F. Graesser, H a r r i e t  M. Gr i f f in ,  E. H. C. 
R. L. San Soucie 
J. C. Eaves, Marion K. For t ,  Jr., Ivan Niven, 
Josephine Chanler, Roy Dubisch, Kenneth 0. Ma 

APPENDIX 111. P i  Mu Epsi lon Chapters i n s t a l l e d  l is t  was 
published wi th  t h e  C o n s t i t u t i o n  and By-laws. 



DEFINING THE CHARACTERISTIC POLYNOMIAL I 
WITHOUT DETERMINANTS I 

S. Cater ,  Univers i ty  of  Oregon 
(Oregon Alpha) 

I n  t h i s  expos i t ion  we w i l l  g ive  an adequate d e f i n i t i o n  of  t h e  
c h a r a c t e r i s t i c  polynomial of  an n by n mat r ix  wi th  e n t r i e s  i n  an 
a l g e b r a i c a l l y  c l o s e d  f i e l d  F without  r e s o r t i n g  t o  determinants ,  o r  
t o  Jordan forms, o r  t o  i d e a l s  i n  t h e  r i n g  of polynomi?ls over F. 
It w i l l  be apparent  from our  d e f i n i t i o n  t h a t  t h e  c h a r a c t e r i s t i c  . 
polynomial of  ( e l , )  w i l l  be  determined i n  t h e  expected way by t h e  
e n t r i e s  on t h e  main d iagona l  of  any t r i a n g u l a r  mat r ix  s i m i l a r  t o  
( c , , ) .  We w i l l  a l s o  d e f i n e  t h e  c h a r a c t e r i s t i c  polynomial of  a l i n e a r  
opera tor  T on an n-dimensional v e c t o r  space V over  F and g ive  a 
simple proof o f  t h e  Cayley-Hamilton equat ion.  Our arguments w i l l  r e s t  
p r imar i ly  on t h e  uniqueness of  t h e  dimension o f  a v e c t o r  space. We 
hope our  development w i l l  a l s o  be of  some i n t r i n s i c  i n t e r e s t .  Lemmas 
1 and 2 a r e  t r i v i a l ,  b u t  we b r i e f l y  ske tch  proofs  of  them f o r  t h e  
sake of  completeness. 

Lemma 1. Let S l ,  Sa be commuting l i n e a r  o p e r a t o r s  on V, l e t  W 
be  t h e  n u l l  space of  Sl Sa and l e t  Wl be  t h e  n u l l  space of  Sl . Then 
dim W < dim Wl + Wa . 
Proof. [ (V)Sl ] Sa = [ (V)Sa ] Sl c (v)S1 and Sg maps ( v ) s ~  i n t o  i t s e l f .  
Hence dim W = n - dim (V) Sl Sa = n - [dim (V) Sl - dim Wg 0 (V) Sl 1 

= dim Wl + dim Wa 0 (V)Sl < dim Wl + dim Wa . 
Lemma 2. There is a b a s i s  [zl , ..., z,] of V such t h a t  f o r  any 

i = 1 . . . , n, t h e  v e c t o r  Z, T i s  i n  t h e  span o f  t h e  v e c t o r s  
Z l ,  Z l + l ,  .-., 2,-  

Proof. The proof i s  by induc t ion  on n. For n = 0 o r  1 t h e r e  is  
nothing t o  prove. Assume t h e  Lemma i s  v a l i d  on any v e c t o r  space 
over  F o f  dimension < n - 1. S e l e c t  any nonzero z e V. Then t h e r e  
a r e  s c a l a r s  r , ,  not  a l l  0, such t h a t  ).':rl (zT') = 0. S ince  F i s  
a l g e b r a i c a l l y  c losed  t h e r e  a r e  s c a l a r s  c1 such t h a t  
z[T - cl ) (T - c a )  - - -  (T - c,, ) I  = 0. S ince  t h e  product of  nonsingular  
o p e r a t o r s  i s  nonsingular ,  it fol lows t h a t  t h e r e  i s  a s c a l a r  c such 
t h a t  T - c is s i n g u l a r  and dim (V) (T - c )  < n - 1; s e t  m = 
dim (V) (T - c ) .  S e l e c t  a b a s i s  [ z l ,  ..., 2.1 of  V such t h a t  
[zn - . . . , z n ]  c o n s t i t u t e s  a b a s i s  of  (V) (T - c )  s a t i s f y i n g  t h e  
d e s i r e d  proper ty  r e l a t i v e  t o  t h e  opera tor  T - c.  Then [zl , . . . , z, ] 
h a s  t h e  d e s i r e d  proper ty  r e l a t i v e  t o  T - c ,  and hence r e l a t i v e  t o  T. 
This  completes t h e  induct ion.  

Observe t h a t  t h e  mat r ix  of  T r e l a t i v e  t o  t h e  b a s i s  [ z l ,  ..., z,] 
cons t ruc ted  i n  Lemma 2 i s  t r i a n g u l a r :  i . e . ,  t h e r e  a r e  on ly  zeros  
below t h e  main diagonal .  We c a l l  a t r i a n g u l a r  mat r ix  ( c l , )  a 
t r i a n q u l a t i o n  of  T i f  t h e r e  i s  a b a s i s  o f  V which, with (c i ,  ) ,  g i v e s  + 
r i s e  t o  t h e  opera tor  T. Lemma 2 shows t h a t  T h a s  a t  l e a s t  one 
t r i a n g u l a t i o n .  

Theorem 1. For any c c F, l e t  Vc denote t h e  n u l l  space of  (c - T), 
and l e t  (ci 1 )  be  a t r i a n g u l a t i o n  o f  T. Then vC = (0) f o r  a l l  b u t  
f i n i t e l y  many c c F, (% - x)  (cga - x )  --â (cm - x )  = 
TT dim vC 
ccF - and IT ( c  - T ) ~ ~ ~  v~ = 0 on V. 

ccF 

Proof. Let [zl , . . . , z, ] be  a b a s i s  o f  V which, wi th  (ci ) ,  gives  r i s e  - 
t o  t h e  o p e r a t o r  T. Le t  ( d l l ( s ) )  be  t h e  mat r ix  of  t h e  o p e r a t o r  
cSs - T r e l a t i v e  t o  [q , . . . , z, 1 f o r  s = 1, . . . , n. Then (dl ( s )  ) 
is  t r i a n g u l a r  and dss ( s )  = 0 f o r  a l l  s = 1, ..., n. The f i r s t  column 
of  (dl (1)  ) is zero, t h e  f i r s t  two columns of  (dl , (1) ) (di , (2)  ) a r e  
zero, t h e  f i r s t  t h r e e  columns of  (dl J (1)  ) (dl J (2)  ) ( d l J  (3)  ) a r e  zero, 
and s o  on. F i n a l l y  a l l  t h e  columns of  t h e  product  (d l ,  ( 1 ) )  (dl ( n ) )  
a r e  ze ro  and (ell - T) (ega - T) .-* (c,, - T) = 0 on V. 

S e l e c t  d 6 F and suppose d occurs  k t imes on t h e  main diagonal  o f  
(ell) (poss ib ly  k = 0). An i n s p e c t i o n -o f  t h e  mat r ix  o f  t h e  o p e r a t o r  
d - T r e l a t i v e  t o  t h e  b a s i s  [zl , . . . , z, ] shows t h a t  i n  t h e  b a s i s  
r e p r e s e n t a t i o n  o f  t h e  v e c t o r  z1 (d - T)' t h e  c o e f f i c i e n t  of  zi is 
(d - c11 )' and t h e  c o e f f i c i e n t  of  z, i s  0 f o r  a l l  j < i. Hence t h e  
v e c t o r s  zi (d  - T)' f o r  which / d a r e  l i n e a r l y  independent, 
dim (V) (d - T)' > n - k and dim V < k. Since t h e r e  a r e  o n l y  n 
e n t r i e s  on t h e  main d iagona l  o f  ( c i J )  it fol lows t h a t  V,, = (0 )  f o r  

a l l  b u t  f i n i t e l y  many c e F and dim Vc < n. But fi (c  - T)' = 0 
ccF CaCÃ 

by t h e  preceding paragraph, and by repea ted  a p p l i c a t i o n s  o f  Lemma 1 

we have dim V = n. Again because t h e r e  a r e  o n l y  n e n t r i e s  on 
Câ‚ 

the main d iagona l  o f  (cia  ) we have k = dim Vd, and c l e a r l y  

(cii - x )  - a Â  (CM - x )  =Â c s ( ~  - x)  dim vc. This  concludes t h e  proof. 

The c h a r a c t e r i s t i c  polynomial o f  T we d e f i n e  t o  be  p(x)  = 

TT ( c  - x)dim 'c. ~ n y  o p e r a t o r  s i m i l a r  t o  T h a s  t h e  same t r i a n g u l a t i o n s  
ceE 
and, by Theorem 1, h a s  t h e  same c h a r a c t e r i s t i c  polynomial. The Cayley- 
Hamilton equa t ion  p(T) = 0 a l s o  fol lows from Theorem 1. We d e f i n e  t h e  
c h a r a c t e r i s t i c  polynomial o f  an n by  n mat r ix  wi th  e n t r i e s  i n  F i n  
t h e  obvious manner. C l e a r l y  t h e  c h a r a c t e r i s t i c  polynomial of  ( c , , )  
i s  determined by t h e  e n t r i e s  on t h e  main d iagona l  o f  any t r i a n g u l a r  
mat r ix  s i m i l a r  t o  (cl , ). 

By employing t h e  determinants  o f  n by n m a t r i c e s  wi th  e n t r i e s  i n  
F[x] and t h e  m u l t i p l i c a t i v e  proper ty  of  t h e  determinant ,  we can e a s i l y  
show t h a t  our  d e f i n i t i o n  o f  t h e  c h a r a c t e r i s t i c  polynomial is  equiva len t  
t o  t h e  convent iona l  d e f i n i t i o n .  Our d e f i n i t i o n  s u f f e r s  t h e  weakness 
o f  be ing  u s e l e s s  i n  computing c h a r a c t e r i s t i c  polynomials. 

I n  conclusion we w i l l  employ dimension t o  show t h a t  i n  Theorem 1, 518 
V i s  t h e  d i r e c t  sum of  a l l  t h e  nonzero Vc. S ince  we know - 
/Ã dim Vc = n it s u f f i c e s  t o  prove t h a t  t h e  subspaces Vc a r e  
2cF 

l i n e a r l y  independent. F i x  d c F and s e t  W = (V) (d - T)'. Then 

WT <= W, W i s  a n n i h i l a t e d  by cgd ( c  - TIdim vc and 5. dim (Vc 0 W) 2 c d 

dim W = n - dimVd by t h e  proof of  Theorem 1. But dim ( V  0 W) 

$ -  dim V = i - d i n  Vd, s o  dim (Vc 0 W) = dim Vc 1= W f o r  a l l  c # 
Again by t h e  proof of  Theorem 1, 21 dim (Vc 0 W) = dim W = 

C?F 

c$d dim (Vc 0 W), dim (Vd 0 W) = 0 and Vd can c o n t a i n  no nonzero ve 

i n  t h e  span of  a l l  t h e  V ,  c # d. This  concludes t h e  proof. 



AN EQUIVALENT DEFINITION OF VECTOR 

PRODUCT AND TOPOLOGICAL CONSIDERATIONS 

Robert J. ~uck* ,  Cal i fornia  I n s t i t u t e  of Technology 

1. INTRODUCTION. 

In  accordance with a suggestion of A. G. Fadell  [ I ] ,  the vector 
(cross)  product of two vectors, a = (a; , a a , & )  ai\d b =, (& ,b ,?+ 1,  
may be defined as  follows: 

Definition. a X b = f ( a , b ) ,  where the  function f s a t i s f i e s  the  
following conditions: 

i. f :  Eg X E3 + & ,  where & x & denotes the car tes ian  product 
of Euclidean 3-space with i t s e l f .  

ii. l f ( a , b ) )  = [ ( l a l l b l ) "  - (a-b)']*, where 
a-b  = a 1 h  + a g b  + aa&.  

iii. f ( a , b ) - a =  f ( a , b ) - b =  0. 

iv. f ( i , j )  = k, where i = (1,0,0), j = (0,1,0),  and k = (0,0,1).  

v. f is  continuoust t ha t  i s ,  fo r  every c > 0, there  e x i s t s  a 
6 > 0, such t h a t  a - %I < 6 and l b  - t>o\ < 6 implies 
f ( a , b )  - Â£(an& 1 < c fo r  a l l  (do,&) i n  & x  ~ g .  

We show t h a t  the def in i t ion  above agrees with the usual representat ion 
of t he  vector product i n  the  sense t h a t  a necessary and su f f i c i en t  
condit ion t h a t  a function, f ,  s a t i s f i e s  propert ies i. - v. above, i s  
t h a t  f o r  a l l  pairs ,  (a ,b) ,  i n  E3 x E3 we have 

In  o ther  words, the  c l a s s  F, of functions sa t i s fy ing  proper t ies  i. - v., 
cons i s t s  of prec ise ly  one member, namely t h a t  function defined by (1.0). 

A t  the  expense of being redundant, we formulate our problem as  a 
theorem: 

Theorem I. A necessary and su f f i c i en t  condit ion t h a t  f c F, is  
t h a t  

The proof of the sufficiency follows from a straightforward,  algebraic 520 
argument, a s  w i l l  be seen. The necessi ty,  however, is  l e s s  immediate 
and involves topological  considerations. It is  the  proof of the  
necessi ty,  then, which w i l l  be the  main concern of t h i s  paper. 

T h i s  research was done by the  author under an ~ndependent Study 
Grant from the National Science Foundation. 

2. PROOF OF THEOREM I- 

Sufficiency : 

Lemma I. I f  fo r  a l l  pa i rs ,  (a ,b) ,  , in  E3 X E3, we have 

j 
f ( a , b )  = a l  + t h e n f c  F. 

b , b h  

Proof: The function, f ,  obviously s a t i s f i e s  property i. Now, since 

(2.0) l f ( a , b ) l  = [(aa& - aha)" + (.tobi - al?+)a + (al& - aabi 1'1 
^ 

= [ ( a l & ) a  + ( a i b I a  + (al&)' + (agbiIa + 

+ ( a a b ) '  + ( a s h ) '  + + (aa?+Ia - (al%)' 

- (aaba)' - (ĉ )' - 2(agba)(aabs) - 2(a1bi) (aa?+)  

- 2(a1b, (agba)! 
2t 

1 

we see t h a t  f s a t i s f i e s  property ii. Further, 

and thus property iii. is  sa t i s f i ed .  Condition iv. i s  obvious. Let 
a., = ,a.,a,&,a) and & = ( b l  , b a , b 3 )  be any two f ixed vectors 
i n  E3 . By the  t r i ang le  inequal i ty  we have, 

f ( a , b )  - f (a . , ,&) l  .̂ \3a& - c^b - % a h a  + % s b a l  

+ l a a h  - a,?+ - a o ~ b - 1  + %ibga 1 
+ Iaiba - agbi - * i & a  + %abbiI -  

We s h a l l  show t h a t  fo r  any c > 0, t he re  e x i s t s  a b1 > 0, such t h a t  521 

1 a - a., I < b1 and l b  - la, 1 < b1 imply t h a t  

dabs  - 6 - % a h 3  + %aha I < ~ / 3 ,  

leaving ba and b3 for  the  remaining summands t o  be found i n  the  obvious 
manner. Let Q = ( l%a l  + Ia.,aI + lbbal + Ibo31) and 61 = 

[-3Q + (e + 24e)la 1/12. Clearly, f o r  0 < d < b l ,  we have, 

6 8  + 3Qd - c < 0, o r  

(2-1) d(I%a I + Idea I + Ibba I + \boa I + 2d) < ~ / 3 -  

I f  a - a., 1 '<. d < b1 and ) b  - & I < d < bl,  then it follows t h a t  1 1  5 d + and \ ? + I  5 -3 + 1 $ 3 1 :  and thus by (2.11, 

d ( I%aI  + I&aI + 1831 + IbI) < c/3- 



But we have, 

I S B ~  -*^3 - ~ o a l b a  + ~ o s t f a a I  = \ t > a ( %  - % a )  + % ( h a  - b a )  

+ Boa (ba - bo3) + boa ( ~ o 3  - * ) I  
^ .d(I*aI + I b a I  + 1831 + Ib3I) -  

Consequently condit ion v. i s  s a t i s f i e d  and the  lemma is  established.  

Necessity: 

Lemma 11. I f  f c F, then fo r  a l l  pa i rs ,  (a ,b) ,  i n  E3 X Â£3 

j 4 - 
f ( a , b )  = tlil % :I, where t = L l .  

4 h b g  

Proof i Let f (a,b)  = c = (cl ,ca ,c3) .  Then by property iii., - 
alcl + % ~ g  + %c3 = 0 and 
b,c1 + baca + bgc3 = 0. 

I f  c # (0,0,0) , then it follows tha t :  

j 
Hence we see t h a t  t = 2 1 and f (a,b)  = t l  il % : 1 ,  i f  f (a, b)  # 522 

4 h b 3  
(0,0,0). On the other hand, i f  we have f (a,b)  = (0 ,0 ,0) ,  then 

fo r  any r e a l  t: and the lemma follows. 

Lemma 111. Let f c F. Then f o r  a l l  pa i rs ,  (a, b ) ,  i n  E3 X E3, 
f (a ,b)  = (0,0,0) i f  and only i f  a = (0,0,0) o r  b = (0,0,0),  o r  e l s e  
a = kb, where k is  any r e a l  number. 

Proofi By Lemma 11, i f  a = (0.0,O) o r  b = (0,0,0) o r  a = kb, then - 
f (a ,b)  = (0,0,0).  Conversely, suppose a # (0,0,0),  b # (0,0,0) and 
f (a, b)  = (0,0,0).  Then by condition ii. and formulas (2.0), 

%ha - a3ba = 0, 
%% - alb3 = 0, and 
alba - aab, = 0. 

It follows from these equations, t h a t  i f  bi (i = 1, 2, o r  3) i s  not  
zero, then a, is  not zero. Further, k = a i / b i ,  depending upon which 
of 4 , h ,  or  bg is not zero. 

The preceding lemma i s  not e s sen t i a l  fo r  the  proof of Theorem I; 
however, s ince we a re  in t e re s t ed  i n  the s e t  of vector p a i r s  whose 
image under a function i n  F i s  not zero, the lemma w i l l  be useful  i n  
defining the zero ' s  of members of F. 

** 
L e t Z  = ( ( a , b ) :  (a,b)  c & X  Ea, ( f ) ( f  c F implies f ( a , b )  = 011 . 

Then by Lemma 111, we have, 

where it i s  understood t h a t  k is  any r e a l  number. We now denote the  
s e t  (Â£ X Â£3 - Z by S. I f  f is  any function i n  F, and i f  

j 523 
B = [ ( a , b ) :  ( a ,b )  e S, f ( a , b )  = - a~, :I], 

b , b y b a  
then it is  c l e a r  t h a t  S = A U B and A " B = f8. Further, we may prove: 

I Lemma IV. For a l l  pa i rs ,  ( a ,b ) ,  i n  S, there  e x i s t s  a 6 > 0, such 
t h a t  f o r  a l l  (c,d)  i n  S, i f  (a ,b)  e A, 1 a - c < 6, and b - d < 6, 
then (c,d) e A. 

Proofi Suppose, on the contrary,  t ha t  t he re  e x i s t s  a pa i r ,  (a ,b) ,  
i n  S such t h a t  f o r  a l l  6 > 0, there  e x i s t s  a pa i r ,  (c ,d) ,  i n  S such 
t h a t  (a ,b)  e A, l a  - cl < 6, l b  - dl < 6,  and (c ,d)  c B. Then i n  
pa r t i cu la r ,  f o r  each pos i t i ve  in teger  n, t he re  e x i s t s  a pa i r ,  (c ,d) ,  
i n  S such t h a t  (a,b)  c A, 1 a - cl < 1/n, l b  - dl < 1/n, and (c ,d)  c B. 
For each n, l e t  us define the  s e t  & by the  following: 

& = [ ( x , y ) t  (x,y) e B, l a  - X I  < 1/n, l b  - yl < l/n]. 

Clearly, each se t ,  & (n = 1, 2, ... ),  contains an i n f i n i t e  number of 
points of S. By the  Axiom of Choice [2], there  e x i s t s  a col lec t ion ,  
T, defined as  follows: 

T = [ (&,  ( x , ~ ) ) :  n e J, (x,y) c &. 
[ ( r ,  s )  K,, (u.v) K., (r, s )  # (u,v) implies K, # K.1 1, 

where J denotes the  s e t  of pos i t i ve  integers.  Hence, we may define a 
function, C, on J as  follows: C(n) = (x, y ) ,  where (Kn, (x, y ) )  c T. 
Then the s e t ,  ( ~ ( n ) :  n c J], is  a ne t  i n  S and, by our supposition, 
converges t o  (a ,b) .  In  order t h a t  f be continuous, it i s  necessary 
and su f f i c i en t  t h a t  i f  the  ne t  (C (n) : n e J ]  converges t o  (a, b ) ,  then 
the  ne t  ( f  (C (n) ) i n c J]  converges t o  f (a, b )  [3] . We s h a l l  e s t ab l i sh  
the  lemma by showing t h a t ,  i n  f ac t ,  ( f  ( ~ ( n )  : n c J] converges t o  
-f (a, b) .  For nota t ional  purposes, we l e t  C (n) = (xu ,yn ). A s  i n  the  
proof of Lemma I, 

1 f  ( ~ ( n ) )  + f ( a r b ) l  ̂ . Ixn3yna - XnaYii3 + %bg - %ba 1 
+ Ixtiyna - X , ~ Y Ã ˆ  + %bi - a i h I  

+ Ixnaynl - XnlYna + a1^3 - % %  1 ,  
and fo r  any e > 0, we f ind  an in teger  K ,  such t h a t  n > Nl implie 
x n 3  yna - Xna yii3 + agbg - *bg \ < e/3. Let 5 be l e a s t  integer,  

' than o r  equal 

** 
Here and i n  the  following, t he  symbols "0" and " (0 ,0 ,0 ) "  a 

interchangeably whenever confusion between the  sca l a r  zero and 
zero vector is  unlikely. 



Proceeding a s  i n  t h e  proof o f  Lemma I, we f i n d  t h a t ,  indeed, 
( f  ( ~ ( n )  ) : n  c J] converges t o  -f (a ,b ) .  

Note t h a t  Lemma IV remains t r u e  when t h e  s y m o l  "A" i s  r e p l a c e d  524 
by t h e  symbol "B" i n  t h e  lemma; t h a t  i s ,  an argument analogous t o  t h a t  
given f o r  t h e  proof o f  Lemma IV s u f f i c e s  t o  prove t h e  fol lowing:  

-"'" - 
Lemma I V ' .  For a l l  p a i r s ,  ( a , b ) ,  i n  S, t h e r e  e x i s t s  a  6 > 0, such 

t h a t  f o r  a l l  ( c ,d )  i n  S, i f  ( a ,b )  c B, 1 a  - cl < 6,  and l b  - dl < 6 ,  
then ( c , d )  e B. 

By c o n d i t i o n  i v .  o f  our  proposed d e f i n i t i o n ,  t h e  s e t  A, a s  def ined  
above, i s  non-empty f o r  every  f  i n  F. I f  we f u r t h e r  assume t h a t  f o r  
some func t ion ,  f ,  i n  F, t h e  s e t  B  i s  non-empty, then t h e  d i s c u s s i o n  
immediately preceding Lemma IV and t h e  lemma i t s e l f  g ive  us: 

Lemma V. Let S  have t h e  r e l a t i v i z e d  product  topology o f  & A Ea. 
I f  t h e r e  e x i s t s  a  func t ion ,  f ,  i n  F  such t h a t  t h e  s e t ,  

i s  non-empty, then t h e  p a i r ,  (A,B), i s  a  s e p a r a t i o n  o f  S. 

Lemma VI. Let X and Y be  t o p o l o g i c a l  spaces,  and l e t  g  be  an open, 
monotone mapping o f  X on to  Y. I f  X i s  separa ted ,  then  Y is  a l s o  
separated.  

Proof: Let  X = A U B, where A # $ # B, A 0 B = $, and both A and B a r e  
open i n  X. Fur ther ,  l e t  A '  and B' be  def ined  a s  fol lows:  

S ince  g  i s  monotone and A n B = 0, we must have Y = A '  U B '  and 
A '  n B' = 0. Furthermore, i f  A ' ,  say, were empty, then g-l (Y) = B, 
b u t  t h i s  c o n t r a d i c t s  t h e  f a c t  t h a t  A # 0.  Since  n e i t h e r  A nor  B  i s  
empty, A '  # $ # B'. Clear ly ,  A '  = g(A). Conversely, i f  y  e g(A) 
and y  / A ' ,  then  g-I (y )  c B, and gy (y)  n A # $, which is  a  con t ra-  
d i c t i o n .  Hence A '  = g(A) and B' = g(B),  from which it fol lows t h a t  
both A '  and B' a r e  open i n  Y. Thus t h e  p a i r ,  (A1,B') ,  s e p a r a t e s  Y. 

I t  i s  now c l e a r  t h a t  t h e  assumption t h a t  t h e r e  e x i s t s  a  func t ion ,  
f ,  i n  F  such t h a t  f o r  a t  l e a s t  one p a i r ,  ( a , b ) ,  i n  S, 

w i l l  l e a d  t o  a  c o n t r a d i c t i o n ,  i f  we can e x h i b i t  an open, monotone 
func t ion  mapping S  o n t o  a  connected space. 

Let D, be t h e  p r o j e c t i o n ,  Pi, r e s t r i c t e d  t o  S, of  E3 Ea onto  i t s  
f i r s t  coord ina te  space, E3 . We then have, 

Next, we may show: 525 

Lemma V I I I .  The s e t  S  i s  open i n  t h e  product  topology o f  E3 x E3. 

Proof: Let  f  be  any member o f  F. Then s i n c e  E3 X E3 - S = fa  (0 ,0 ,0 ) ,  - 
which i s  c l o s e d  by t h e  c o n t i n u i t y  o f  f ,  S  must be open i n  E3 ,-; Es. 

Lemma IX. The funct ion,  D , ,  is  a n  open mapping of  S  on to  
E3 - ( ( 0 , 0 , 0 ) 1 -  

Proof: Let  V be any open s u b s e t  o f  S. Then by Lemma V I I I  and t h e  - 
d e f i n i t i o n  of  t h e  r e l a t i v i z e d  topology f o r  S, V is  open i n  Ea 4 Ei. 

Then I\ (v) = Pi (V), which i s  open i n  & [3] .  Fur ther ,  
D, (V) c E3 - ( (0 ,0 ,0 )  ]  and & - ( (0 ,0 ,0 )  1 is  open i n  E3 . Hence, D, (v) 

i s  open i n  E3 - [ (0 ,0 ,0 ) ] .  

Lemma X. The func t ion ,  D, , is  monotone. 

Prooft  Let a  e E3 - ( ( 0 , 0 , 0 )  ]  and l e t  (a ,x )  and (a ,y )  be any two p o i n t s  
of  D,-' ( a ) .  Then by Lemma 111, t h e  po in t s ,  x  and y, a r e  elements of 
E3 - [c: c  = ka, k  c Reals].  We have two cases .  I f  y  is  n o t  coplanar  

with x  and t h e  l i n e ,  

L = [c: c = ka, k  c ~ e a l s l ,  

then we may d e f i n e  a  func t ion  g  a s  follows: f o r  a l l  u  e [ 0 , 1 ] ,  
g ( u )  = ( 1  - u ) x  + uy, which i s  cont inuous on [O, 11 .  I f  f o r  some u  and 

some r e a l  number t, g ( u )  = t a ,  then  it is c l e a r  t h a t  x, y, and L  a r e  
coplanar ,  c o n t r a d i c t i n g  our  assumption. On t h e  o t h e r  hand, i f  x, y, 
and L  a r e  coplanar ,  then  l e t  q be  any p o i n t  n o t  on p lane  
P  = [c: c  = klx  + k d ,  k l ,  ka e Reals] .  Fur ther ,  l e t  r be  any f i x e d  
p o i n t  i n  t h e  open i n t e r v a l  ( 0 , l ) .  Then we def ine  t h e  fol lowing funct ion:  

which i s  cont inuous on [0,1] .  I f  f o r  some u  i n  [O,r] o r  some u  i n  
[ r ,  1 1 ,  and i f  f o r  some r e a l  number t, g  ( u )  = t a ,  then 

both of  which c o n t r a d i c t  our  assumptions. I n  any event ,  t h e r e  e x i s t s  

a  cont inuous func t ion ,  g, def ined  on [0 ,1 ] ,  such t h a t ,  g ( 0 )  = x  and 
g ( 1 )  = y  and such t h a t ,  i f  u  c [0 ,1 ] ,  then  g ( u )  c E3 - L. We now 

d e f i n e  a  func t ion ,  h ,  a s  fol lows:  f o r  a l l  u  e [O, 11, h ( u )  = ( a , g ( u ) ) .  
C lear ly ,  h  is  continuous and hence Di is  monotone. 

Lemmas V - X show t h a t  t h e  assumption t h a t  F  c o n t a i n s  more than 
one func t ion  impl ies  t h a t  E3 - [ (0.0.0) 1 is separated.  But it can be  

shown [ 2 ] ,  t h a t  f o r  each n  2 2, t h e  space En - 0  i s  connected, Q.E.D. 
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It  i s  apparent  from t h e  proof o f  Lemma X, above, t h a t  t h e  i n v e r s e  
image of  a  p o i n t  under D, is  arcwise connected; and t h a t  t h i s  fol lows 
from t h e  arcwise-connectedness of  t h e  space, E3 - L. The s i t u a t i o n  
g e n e r a l i z e s  t o  t h e  c a r t e s i a n  product  of  a r b i t r a r i l y  many spaces. 

For"emphasis p r imar i ly ,  we make t h e  fol lowing d e f i n i t i o n :  a  
func t ion  w i l l  be c a l l e d  arcwise connected i f ,  and on ly  i f ,  t h e  i n v e r s e  
image of  t h e  func t ion  a t  a  p o i n t  i s  arcwise connected. Let A be  any 
indexing s e t  and l e t  x, [ Y :  a  c A] denote t h e  c a r t e s i a n  product  of  
t h e  spaces,  Y .  Then we have, 



Theorem 11. I f  fo r  each a e A, the  space Ya is arcwise connected, 
then fo r  each a e A,. the projection,  Pa, of > (ya: a e A ]  onto i t s  
a-th coordinate space, Ya, is  arcwise monotone. 

Proof i Let c e Yb, and l e t  x and y be any two points of pi1 ( c )  . Since 
each coordinate space is  arcwise connected, fo r  each a c A, there  e x i s t s  
a continuous function, ga, mapping the  closed u n i t  i n t e rva l  onto a 
subset of Ya, such t h a t  ga(0) = Xa and ga(1) = ya, where Xa and ya 
denote the  a-th coordinates of the  points x and y. Note t h a t  we must 
have fo r  a l l  u c [O, 11, gb(u) = c. By the Axiom of Choice, we may 
construct  the following col lec t ion:  

2 ,  
G = (gas a e A, [gd # g implies d # el 1. 

Let m be a function defined on the closed u n i t  i n t e rva l  such tha t ,  fo r  
a l l  u t [0 ,1] ,  m(u)^ = ga(u) ,  i.e., the  a-th coordinate of m(u) i s  
ga(u).  Then it follows t h a t  m i s  a continuous mapping of [O, 11 onto 
m([O,l] 1,  which is  contained i n  A (ga([O,l]  ) :  a'e A ]  131. Since 
gb([O, 11 ) = ( c ] ,  pi,' (c )  is  arcwise connected. Q.E.D. 

It is in t e re s t ing  t o  note t h a t  the proof given fo r  Theorem I1 may 
be applied t o  obtain the  following r e su l t :  

Theorem 111. A necessary and su f f i c i en t  condit ion t h a t  t he  product 
space, A (ya: a e A ]  be arcwise connected, is t h a t  fo r  each a c A, 
the space Y i s  arcwise connected. 

Proof: We merely ou t l ine  the  proof. 

Necessity: For each a t A, the  projection Pa is  continuous [3] .  

Sufficiency: For each pa i r  of points,  x and y, i n  A [ Y :  a e A], 
we may form the  col lec t ion:  

where ga is  a continuous mapping of [0,1],  onto a subset  of Ya such 
tha t ,  ga(0) = xa and g a ( l )  = ya. Proceeding as  i n  the  proof of 
Theorem 11, we f ind  t h a t  t (ya :  a e A ]  is  arcwise connected. Q.E.D. 
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PROBLEM DEPARTMENT 

Edited by 

M. s. Klamkin 

S t a t e  Universi ty of New York 
a t  Buffalo 

This department welcomes problems believed t o  be new and, a s  a ru le ,  
demanding no g rea t e r  a b i l i t y  i n  problem solving than that of t h e  average 
member of the  Fra tern i ty ,  but  occasionally w e  a h a l l  publish problems 
t h a t  should challenge the  a b i l i t y  of the  advanced undergraduate and/or 
candidate f o r  the Master's Degree. Solutions of these  problems should 
be submitted on separate,  signed sheets  within four months a f t e r  publi- 
cation. 

An a s t e r i s k  (*) placed beside a problem number indica tes  t h a t  t he  
problem was submitted without a solution. 

Address a l l  communications concerning problems t o  Professor M. S. 
Klamkin, ~ i v i s i o n  of In terd isc ip l inary  Studies, University of Buffalo, 
Buffalo 14, New York. 

PROBLEMS FOR SOLUTION 

159.* Proposed by David L. Silverman, Beverly H i l l s ,  California.  
I f  A, denotes the  l a r g e s t  in teger  d i v i s i b l e  by a l l  the in tegers  
l e s s  than i t s  nth root ,  show t h a t  Aa = 24 and A3 = 420. Find 
a general  formula f o r  A,. 

160. Proposed by Sidney Kravitz, Dover, New Jersey. 
"I have here,"  sa id  t h e  edi tor ,  "a cryptarithm which shows a two 
d i g i t  number being mul t ip l ied  by i t s e l f .  You w i l l  note t h a t  the 
subproducts a r e  not  shown, only the  number being squared and the  
f i n a l  product." 

"Well," sa id  the  reader, "I 've t r i e d  t o  solve t h i s  cryptarithm 
but the  so lu t ion  is  not unique. It is  poss ib le  that I might be 
able  t o  give you the answer i f  you to ld  me whether the  number 
being squared i s  odd o r  even." 

"The number being squared is odd," sa id  the  editor .  
"Good," sa id  the  reader. "I was 'noping you would say tha t .  

I now know the  answer. " 

What is the so lu t ion  t o  this unique cryptarithm? 

Proposed by Paul Schil lo,  Universi ty of Buffalo. 
It is conjectured t h a t  the  smallest  t r i ang le  i n  area which can 
cover any given convex polygon has an area  a t  most twice t h e  
area  of the  polygon. 

529 

Proposed by M. S. Klamkin, Universi ty of Buffalo. 
I f  a surface is  one of revolution about two axes, show t h a t  it 
must be spherical .  



SOLUTIONS 

143. Proposed by M. S. Klamkin, University of Buffalo. 
I f  X is a ra t iona l  approximation t o  the v/N (assumed i r ra t iona l ) ,  
f ind an always be t t e r  r a t iona l  approximation. 

Solution by David L. Silverman, Beverly H i l l s ,  California. 
The arithmetic mean of X and N/X. w i l l  not always be a be t t e r  
approximation but t h e i r  harmonic mean k' = 2NX/(N + Xa) w i l l  
be. (Edi tor ia l  note: To take care of the poss ib i l i ty  of \ being 
negative, replace X by 1 X 1 1. 2 - 
Solution by the proposer. 
An always b e t t e r  r a t iona l  approximation is  given by 

Since 

Generalizations of t h i s  r e s u l t  t o  a c lass  of always be t t e r  approxi- 
mations and a lso  t o  the roots of a c lass  of equations other than 
x' = N w i l l  be given i n  a subsequent paper. 

Also solved by Michael Goldberg, H. Kaye and Paul Meyers. 

145. Proposed by David L. Silverman, Beverly H i l l s ,  California. 
For what integers a and b (0 < a < b) are  the roots of 

integers? 

Solution by K. S. Murray, New York City. 
The equation factors in to  

(2 + bx + a)(* + ax + b) = 0. 

Thus , 
b = m + n = r s ,  
a = m n = r  + s, (ma n, r, s > 0). 

Assume r 2 s, m 2 n; then 530 
2 r  > mn and 2m > re, 

which implies t h a t  4 2 ns. This leads t o  the unique solution 
a = 6, b - 5 o r  vice-versa. 

Also solved by Bob Enunett,  H. Kaye, Paul Meyers, John Stout, 
M. Wagner, F. Zetto and the proposer. 

146. Proposed by C. W. Trigg, Los Angeles City College. 
Find a s e t  of three-digit numbers, each of which is a permutation 
of the same three digi ts ,  which when divided by the sum of the 
d ig i t s  yields two pairs  of a l ternate  integers. 

Solution by the proposer. 

~f =/(A + B + C) = M and =/(A + B + C) = M +  2, then - - 
CB - BC = 2(A + B + C). Since = = Â ¥ A  B + C 3z (mod 9), - - 
CB - BC 0 (mod 9), and thus a lso  2(A + B + C) 5 0 (mod 9). 

The case A + B + C = 18 is impossible. For A + B + C = 9, the 
unique s e t  is  1, 3, 5 and the solution is  

135/9 = 15, 153/9 = 17 and 513/9 = 57, 531/9 = 59. 

There a re  three other s e t s  of d igi ts ,  each of which leads t o  
a single pa i r  of a l t e rna te  integers: 324/9 = 36, 342/9 = 38; 
648/18 = 36, 684/18 = 38; and 702/9 = 78, 720/9 = 80. 

Also solved by K. S. Murray, M. Wagner and F. Zetto. 

147. Proposed by Leo Moser, University of Alberta. 
Show tha t  the maximum number of terms of di f ferent  form i n  a 
polynomial of degree n i n  k variables is the same as the maximum 
number of terms of di f ferent  form i n  a polynomial of degree k i n  
n variables. 

Solution by Frank Bongiovanni, University of Buffalo. 
The number of combinations of n things taken r a t  a time when 
each may be taken as  often as  we please is  the same as the number 
of homogeneous products of degree r which can be formed from the 
n l e t t e r s  say a, b, c, ---, k. The avm of these products is the 
coeff ic ient  of xr i n  the expansion of 

( 1 +  ax + aax' + - - - ) ( I  + bx + bax' + a * - )  --*(l + k x +  h'x' + 0-4. 
BY se t t ing  a = b = --a = k = 1, the number of such products is 
then the coeff ic ient  of x3' i n  the expansion of (1  + x + x' + 
or (1 - x)'". This gives the number as  (n + - I ) .  1f we now 531 

add an extra  l e t t e r  z t o  a, b, ---, k, t h i s  w i l l  give us a l l  
the terms of di f ferent  form i n  a polynomial i n  z of degree r. 

This number is then ( ) which is  symmetric in  n and r. 

Also solved by K. S. Murray, David L. Silverman, John Stout, 
M. Wagner, F. Zetto, and the proposer. 

148. Proposed by M. S. Klamkin, University of Buffalo. 
I f  a convex polygon has three angles of 60 , show that  it must be 
an equi la tera l  tr iangle.  

Solution by Edward L. Spitznagel, Jr., University of Chicago. 
The sum of the i n t e r i o r  angles of an n-gon is  180" (n - 2 ) .  Since 
a l l  the in te r io r  angles of a convex polygon are  less  than 180' 
we have the inequality 

3 (60') + (n - 3) (180' ) > (n - 2) ( 1 8 0 )  

unless n = 3- Thus, n = 3 and t r iangle  is equilateral .  

Also solved by H. Kaye, K. S. Murray, Paul Meyers, M. Wagner and 
the proposer. 



Editorial note: A simple extension of this result is the following: 
If n of the interior angles of a convex polygon add up to 
(n - 2) (1809), then the polygon must be precisely an n-gon. Put 
this way, the result is not particularly surprising. Another 
special case is that if a convex polygon has four right angles it 
mast be a rectangle. 

BOOK REVIEWS -- 
Edited by 

Franz E. Hohn, University of Illinois 

Principles of Abstract Alqebra. By R. W. Ball. New York; Holt, 
Rinehart and Winston; 1963. ix + 290 pp., $6.00. 

The author's preface states: "This book presents an approach to 
abstract algebra that is directed to undergraduate students at an 
intermediate level. For most students this would come after a year of 
beginning calculus, al.though it could well be studied earlier." The 
reviewer agrees with the author's appraisal of his book. 

Considering how carefully this book is written, the reviewer regrets 
that more material is not presented in the chapters on rings and groups. 
For example, a ring is defined and many excellent examples are given 
throughout the text, but little more is done with rings. Chapters 9 
and 10, devoted to groups, cover the topics of binary operations, groups, 
and the laws of exponents, finite cyclic groups, finite groups, and 
reduced groups of residues. 

The author gives a good discussion of the real number system, the 
complex number system, and polynomials. Additional chapters treat the 
theory of equations, real roots of real polynomial equations, rings 
of matrices, and systems of linear equations. Several of the theorems 
in the last ten chapters (11-20) are stated but not proved (for example, 
the completeness of the real number system). 

In view of the choice of topics, this book would be ideally suited 
as a text for future high school teachers, or for those students not 
yet ready for a more rapid, more detailed treatment of these topics. 

University of Illinois Hiram Payley 

-nerd Stochastic Processes in the Theory of Queues. By vaclav E. 
Benev. Reading, Mass., Addison-Wesley, 1963. viii + 88 pp., $5.75. 

Principal 'results for queues with one server and order of arrival 
service-time are deduced by.methods that are relatively new in queueing 
theory. Although this cannot be considered an elementary book on the 
subject, introductory sections have a fine intuitive presentation. 
Later sections contain an elegant mathematical treatment of delay 
using very general conditions on the interarrival-times and service- 
times. Explicit references are given for almost every result in 
analysis that is used, but results in queueing theory which appear in 
other recent books on the subject are usually just stated. 

University of Illinois Leone Y. Low 
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Gravitation: & Introduction to Current Research. By L. Witten, et al. 
New York, Wiley, 1962. x + 481 pp., $15.00. 

This is a collection of articles devoted to the current status of 
our knowledge and theories about gravitation from the point of view of 
general relativity. The chapter headings are: 1. Experiments on 
Gravitation; 2. Exact Solutions of the Gravitational Field Equations; 
3. The Equations of Motion; 4. The Cauchy Problem; 5. Conservation 
Laws in -General Relativity; 6. Gravitational Radiation; 7. The Dynamics 
of General Relativity; 8. The Quantization of Geometry; 9. A Geometric 
Theory of the Electromagnetic and Gravitational Fields; 10. Geometro- 
dynamics; 11. Relativistic Cosmology. 

Chapters 1 and (to a somewhat lesser extent) 10 are descriptive and 
require no specialized background for their comprehension. The reader 
will need a command of tensor analysis to pursue profitably the remain- 
ing chapters. 

The first chapter, which consists of a discussion of recent and 
not so recent experiments designed to throw light on the nature of 
gravitation, is noteworthy for its description of the great observational 
difficulties involved in the attempt to detect at solar eclipse the 
predicted outward displacement of star images from the sun's disk.  any 
appear to be unaware of the fact that unavoidably large observational 
errors are inherent in this experiment, rendering the results less 
reliable than commonly believed. Chapter 10 describes recent attempts 
to formulate classical physics and quantum mechanics entirely in terms 
of geometry~a notion (in the case of classical mechanics) that goes 
back as far as Riemann. 

The remaining chapters represent advances along the more customary 
lines of general relativity theory and are valuable for bringing the 
reader up-to-date in this field. 

University of Illinois Ray G. Langebartel 

Studies in Modern Alqebra. A. A. Albert, Editor. (~ol. 2, M. A. A. --- 
Studies in Mathematics.) Englewood Cliffs, N. J., Prentice-Hall, 1963. 
190 pp., $4.00. 

The first half of this book consists of two articles by S. MacLane 
on "recent advances. in algebra." It is quite interesting to compare 
these, for a twenty-four year interval separates their dates. Four 
papers on non-associative algebra comprise the second half: What is 
a loop?, by R. H. Bruck: The four and eight square problem and division 
algebras, by C. Curtis; A characterization of the Cayley numbers, by 
E. Kleinfeld; Jordan algebras, by L. Paige. There is also an intro- 
duction by A. A. Albert which summarizes these articles. 

Each of the authors has written most lucidly, and this book is 
accessible to anyone who enjoys the Mathematics Monthly. 

University of Illinois 

I 

Joseph Rotman 
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Representation Theory of Finite Groups. By C. W. Curtis and I. Reiner. 
New York, Wiley, 1963. xiv + 686 pp., $20.00. 

This is the most important single publication on representation of 
finite groups and on the part of the theory of rings and algebras that 
is related to these representations. There is no other book as compre- 
hensive or as instructive. The presentation is modern; for example, 
it takes into account the use of the concepts of homological algebra 
in the theory of rings and algebras. There are several introductory 
chapters which could serve as a basis of a good graduate course in the 
subject. The later chapters serve well as an introduction to the . 
literature and contain basic material which can be of use to all work- 
ing in this or related fields. The topics covered include on the more 
elementary level: the Wedderburn structure theory for rings and 
algebras, elements of algebraic number theory, group characters, and 
their application. Continuing on, Brauer-'s characterization of gen- 
eralized characters and the theory of splitting fields are developed. 
Nonsemisimple rings and algebras, the theories of integral and modular 
representations, are other main topics that are covered. 

This book is suited for the advanced graduate student and for 
research workers. Less experienced mathematicians will find the first 
chapters accessible. 

University of Illinois John H. Walter 

An Introduction to Linear Proqrammins and the Theory of Games. By M. 
7 

Glicksman. New York, Wiley, 1963. x + 131 pp., $2.25 (paper), 
$4.95 (cloth). 

This well-written monograph lives up to the promise of its bright, 
eye-catching cover. Basic concepts of convex sets, game theory, and 
linear programming are explained in detail and are illustrated with 
attractive, simple figures, graphs, and tableaux. Written at the 
sophomore level and using only tools and concepts of algebra and ana- 
lytic geometry, this book should be of interest, not only to the bright 
under-graduate mathematics student, but also to social scientists who 
are interested in a simple, though rigorous, development of appli- 
cations. 

Elementary proofs of the fundamental extreme point theorem for 
convex polygons, the fundamental duality theorems of linear program- 
ming, and its corollary, the minimax theorem, are included. Definitions 
and theorems are numbered, and their use is illustrated. The simplex 
method in linear programming is used to maximize or minimize functions 
subject to constraints, and to solve m x 2 matrix games. The amusing 
examples and problems help to heighten interest throughout the book. 

The only criticisms are the misprints on pages three and four (24 
should be substituted for 28) and the author's not discussing dominated 
strategies in matrix games. 

University of Illinois Leone Y. Low 

Sets, Logic, Axiomatic Theories. By Robert R. Stoll. San Francisco - 
and London, W. H. Freeman and Co., 1961. Paperbound, x + 206 pp., $2.25. 

This book is presented as a text for a one semester, undergraduate 
course for students who plan to study abstract mathematics, and for 
prospective high school mathematics teachers. Such students probably 
would have had no experience with mathematical proofs, except in high 
school geometry. They would be apt to find the proofs and the concise 
set notation difficult at first, but these would be valuable to them 
later. Certainly a student who knew the material in this book would be 
well prepared to continue in abstract mathematics. The author suggests 
that a good high school student might find the book stimulating. This 
seems doubtful. Although no special background is necessary for reading 
the book, the level of abstraction used in it requires a certain amount 
of maturity. 

Naive set theory is presented in the first chapter as a prerequisite 
tool for further study in abstract mathematics. This chapter is 
designed as an expanded version of the "Chapter 0" which appears in 
many textbooks. Besides set operations, it includes functions, equiva- 
lence relations, and ordering relations. 

Chapter two deals with the statement or propositional calculus and 
the first order predicate or functional calculus in terms of validity. 
The concept of a theorem in one of the calculi is not used in this 
chapter. The statement calculus is introduced in terms of truth tables 
and tautologies. The rules of inference, the regularity theorem, and 
the deduction theorem are all presented as preserving validity. Quanti- 
fiers are introduced with examples of translation from ordinary English 
sentences to formulas of the predicate calculus. The predicate calculus 
is then presented in much the same way as the statement calculus, 
although in less detail. 

Chapter three introduces axiomatic theories. Groups, affine 
geometry, and the Peano axioms are used as examples. The ideas of 
consistency, completeness, and independence are defined. The statement 
and predicate calculi are presented as axiomatic systems, and the 
results of chapter two are given in terms of theorems, then the consis- 
tency and completeness of these calculi are discussed. Finally, the 
concepts of meta-languages and object-languages are given. 

Chapter four is the reward for the other three chapters, especially 
one and three. It treats Boolean algebra as an example which ties 
together all the ideas presented in the previous chapters. Two different 
axiom sets are given, and are shown to be equivalent, for a Boolean 
algebra. A one-to-one correspondence between the congruence relations 
and the homomorphisms of a Boolean algebra is proved. Atoms and ideals 
are used to characterize Boolean algebras as being isomorphic to algebras 
of sets. As a final achievement in unifying the subject matter of the 
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book, a direct relationship between statement calculi and Boolean 
algebras is demonstrated and the suggestion made of investigating 
validity in a statement calculus in terms of congruence relations in 
a Boolean algebra. 

The book contains many examples and exercises which are interesting 
for themselves as well as illustrating the ideas being presented. 

University of Illinois M. K. Yntema 
2 .  

Matrix Iterative Analysis. By R. S. Varga. Englewood Cliffs, N. J.: 
Prentice-Hall, 1962. xiii + 322 pp., $7.50 text edition, $10.00 trade 
edition. 

This excellent book is primarily concerned with the analysis of 
matrix problems arising in the numerical solution of elliptic partial 
differential equations. It is designed for use as a text by first year 
graduate students in mathematics. Moreover it will serve as a valuable 
reference book for workers in this field. 

The principal emphasis here is on theory, not practice. There is 
a thorough treatment of the convergence of matrix iterative schemes, 
with many theorems on this subject being proved, but there are only a 
few practical applications discussed. The backbone for a lot of this 
work is the Perron-Frobenius theory of non-negative matrices which is 
discussed in Chapter 2. 

This reviewer was particularly impressed by the nice way that the 
author used graphs for illuminating various discussions. With some very 
elementary ideas from graph theory the author characterizes the structure 
of matrices arising in this work, gaining clarity and saving words 
thereby. 

Another impressive feature of this book is the bibliography and 
discussion that follows each and every chapter. Each of these desserts 
contains a short historical account of the development of ideas presented 
in the chapter along with references to the original papers. 

A list of chapter headings follows: 

Chapter 1 -- Matrix Properties and Concepts 
Chapter 2 -- Non-Negative Matrices 
Chapter 3 -- Basic Iterative Methods and Comparison Theorems 
Chapter 4 -- Successive Overrelaxation Iterative Methods 
Chapter 5 -- Semi-Iterative Methods 
Chapter 6 -- Derivation and Solution of Elliptic Difference 

Equations 
Chapter 7 -- Alternating-Direction Implicit Iterative Methods 
Chapter 8 -- Matrix Methods for Parabolic Partial Differential 

Equations 
Chapter 9 -- Estimation of Acceleration Parameters. 

University of Illinois Lloyd D. Fosdick 
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Generalized Analytic Functions. By I. N. Vekua. Reading, Mass.; 
Addison-Wesley, 1962. xxix + 668 pp., $14.75. 

The present book is another volume of the distinguished Adiwes 
International Series under the editorship of A. J. Lohwater. It gives 
a systematic and thorough account of the subject of generalized analytic 
functions--a subject cultivated by Professor Vekua and his school in 
Russia and by Professor Lipman Bers and his students in the United 
States. The basic theme is the study of the partial differential 
equation 

where the coefficients are complex-valued, and its intimate connection 
with the theory of analytic functions. The first part is devoted to 
the general theory. The second half treats applications of the theory 
to problems of surface theory and the membrane theory of shells. 

This treatise presupposes the usual material of what would generally 
be beginning graduate courses on real and complex analysis. The present 
translation has made available to an enlarged group of readers a sig- 
nificant exposition of this important field. 

University of Illinois Maurice Heins 

Understandin the Slide Rule. By R. F. Graesser. Paterson, New Jersey: 
Littlefield and Adams? 1963. 141 pp., $1.50 (paper). 

This is a carefully written book reflecting the experience of a 
patient, understanding teacher who has taught the use of the slide rule 
to engineering students for many years. It should be widely useful 
to those who wish to learn the use of the instrument. 

Those whose mathematical preparation is weak will be particularly 
helped by the fact that the book presumes almost no previous knowledge 
of algebra and none at all of trigonometry. All necessary facts are 
either reviewed or developed simply but sufficiently. Even basic facts 
of arithmetic are reviewed for those who need such a refresher. Those 
whose skills are more fluent can of course skip such material. 

The emphasis here is on understanding and on the development of 
genuine skill, for which latter purpose many exercises, with answers, 
are given. 

Finally, the fact that the explanations apply equally well to 
whatever type of slide rule the student is apt to have, guarantees 
the usefulness of this book for self-study or in the classroom under 
nearly all conditions. 

University of Illinois Franz E. Hohn 



Mathematical Diversions. By J. A. H. Hunter and J. S. Madachy. 538 
Princeton, Van ~os t ' rand,  1963. v i i  + 178 pp., $4.95. 

This l i t t l e  book was wri t ten  by two well-known puzzle enthusiasts .  
A s  is the  case i n  most such books, many of the problems are well-known, 
o thers  a re  not. The problems include 40 "s tory  t ea se r s "  whose solu t ions  
lead t o  diophantine equations o r  t o  the  analys is  of geometrical f igures.  
Solutions t o  most of these are  given. 

539 
~ e n e r a l i z e d  Functions and P a r t i a l  D i f f e ren t i a l  Equations. By A. 
Friedman. Englewood C l i f f s ,  New Jersey; Prentice-Hall; 1963. x i i  + 

The mathematical naivete of the  authors is  revealed i n  almost every 
chapter. One r eg re t s  t o  read "as fo r  the fourth dimension, even mathe- 
maticians admit they cannot v isual ize  it ," which appears t o  support t he  
col loquia l  impression t h a t  the  higher dimensions belong t o  some mystical 
domain of unrea l i ty .  The authors say (p. 74) of the  equation 01 = 1,  
"This can be proved, but  the  r i g i d  proof is  outside our scope here". 
It  is  hard t o  r e a l i z e  t h a t  anyone accomplished i n  mathematical problem 
solving would not be aware of t he  f a c t  t h a t  it is  necessary t o  define 
01 and convenient t o  define it as  1. 

The treatment of i n f e r e n t i a l  problems i n  Chapter 4 by Boolean algebra 
i s  pa r t i cu la r ly  poor, as  i s  t h e  treatment of probabi l i ty  problems i n  
Chapter 10. These chapters w i l l  be incomprehensible t o  the  newcomer 
and useless t o  the  informed. In Chapter 10 one learns  t h a t  t he  proba- 
b i l i t y  zero "... implies q u i t e  de f in i t e ly  t h a t  it is  impossible ..." 
and hence t h a t  i n  the  case of i n f i n i t e  s e t s ,  " i n f i n i t e l y  small" and 
"zero" must be dist inguished.  One hopes t h a t  the  authors have only 
t r i e d  too hard t o  be informal. 

A t  times f a c t s  are s t a t ed  without proof, even though proofs would 
be simple and ins t ruc t ive .  Some proofs are  so  informal as  t o  be 
erroneous. For example, one argument assumes t h a t  because each of two 
s e t s  of l i n e s  i s  i n f in i t e .  the  s e t s  must have a l i n e  i n  common. 

Altogether, one a r r ives  a t  t he  sad conclusion t h a t  t h i s  i s  a h a s t i l y  
prepared volume, not worthy of e i t h e r  the  authors o r  the  publishers. A 
ca re fu l  reading of the  manuscript by a competent c r i t i c  could e a s i l y  
have eliminated most of  the  grounds fo r  c r i t i c i sm and made the book 
acceptable as  well  as  i n t e re s t ing .  Some kinds of economy are,  i n  the  
long run, expensive. 

University of I l l i n o i s  Franz E. Hohn 

Dif ferent ia l  Equations: Geometric Theory, Second Edition. By Solomon 
Lefschetz. New York, Wiley-Interscience, 1963. x + 390 pp., $10.00. 

This is  an advanced t e x t  on d i f f e r e n t i a l  equations which makes 
extensive use of topology and matrix methods. A reader who i s  well  
grounded i n  r e a l  analys is  and l i nea r  algebra w i l l  f ind  here  a rigorous 
and exci t ing  treatment of many important topics. The book begins with 
existence theorems and l i n e a r  systems, t r e a t s  s t a b i l i t y ,  Liapunov's 
d i r e c t  method, and second order equations and systems of equations. 
This volume is e s s e n t i a l  reading fo r  the  ser ious  student of d i f f e r e n t i a l  
equations, whether he is  i n  pure o r  applied mathematics. 

University of I l l i n o i s  Franz E. Hohn 

340 pp., $7.50. 

The f i r s t  s i x  chapters of t h i s  volume o f f e r  a more complete study 
of the  theory of generalized functions than has h i t h e r t o  been avai lable  
i n  English. The treatment proceeds from the  general t o  the  pa r t i cu la r  
so, fo r  example, the  mater ia l  on d i s t r ibu t ions  appears only a f t e r  a 
r a the r  abs t r ac t  treatment of generalized functions. This approach, 
while it has the  advantage of of fer ing  the  material  i n  concise form t o  
those with a knowledge of measure theory, point  s e t  topology, and 
functional  analysis ,  places the  book a t  t he  advanced graduate l eve l  
and beyond. 

Chapters seven t o  eleven apply the  techniques of the  f i r s t  s i x  
chapters t o  some problems i n  the  theory of p a r t i a l  d i f f e r e n t i a l  
equations, with emphasis on the  Cauchy o r  i n i t i a l  value problem fo r  
equations with space-independent coeff ic ients .  Much is  presented here  
which was recent ly  avai lable  only i n  research journals. 

University of I l l i n o i s  J u l i u s  Smith 

NOTE: A l l  correspondence concerning reviews and a l l  books f o r  review 
should be sen t  t o  PROFESSOR FRANZ E. IIOHN, 375 ALTGELD HALL, UNIVERSITY 
OF ILLINOIS, URBAMA, ILLINOIS. 
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