The Construction of The Affine Plane and Its Associated Group In Terms of The Barycentric Calculus
- James V. Herod .. 169

Filters and Untrafilters - John E. Allen 177

Problem Department .. 180

Book Reviews - ... 184
Robert G. Bartle, Lawrence Levy, H. O. Pollak,
T. J. Cullen, Franz E. Hohn, Richard Jerrard,
Boris Musulin, Joseph M. Moser, George L. Kvitek,
James R. Boen, Henry Frandsen, Charles F. Koch,
Rothwell Stephens, Paul Slepian, Robert Kalaba,
Donald M. Roberts.

Books Received for Review 195

Operations Unlimited 196

News and Notices .. 203

Department Devoted to Chapter Activities 204

Initiates .. 205

SPRING .. 1961
THE CONSTRUCTION OF THE AFFINE PLANE AND ITS ASSOCIATED GROUP IN TERMS OF THE BARYCENTRIC CALCULUS'

By JAMES V. HEROD
Alabama Alpha

Introduction: The classical method of studying the affine plane is by means of the cartesian coordinate axes. This differs essentially from the study of euclidean coordinate geometry by the absence of any restrictions on the angle connecting the coordinate axes and hence the absence of a metric. After defining an affine transformation to be one that transforms a point $\langle x, y \rangle$ in the cartesian plane into the point $\langle x', y' \rangle$ such that $x' = ax + by + c$ and $y' = dx + ey + f$, then the affine group and its definable subgroups may be studied.

A second method of studying the affine plane is through the set of all linear combinations $\sum_{i=1}^{n} \alpha_i \mathbf{v}_i$ where α_i, \mathbf{v}_i are scalars with a non-zero sum and $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ are basis vectors of a three dimensional vector space. The affine transformations are those transformations which carry a point, or vector, \mathbf{v} into the point $\mathbf{s}(\mathbf{v})$ where \mathbf{s} is a transformation that leaves the sum of the scalars invariant.

It is the purpose of this paper to expand a third method of studying the affine plane and its associated group which is closely related to the second of the two listed above. This will be done via the barycentric calculus. We shall include a method of studying lines and conic sections as scalar-valued functions of points.

THE AFFINE PLANE: Two sets of objects are assumed. One is the set H of objects called points and denoted by capital letters. The other is the set R of real numbers which will be denoted by Greek letters. The elements of the set R will be referred to as scalars. We shall consider elements of $R \times H$ denoted by $\alpha \mathbf{a}$.

To every set of n elements of $R \times H$ such that the sum of the scalars is not zero, there corresponds a unique element of $R \times H$ denoted by $\sum_{i=1}^{n} \alpha_i \mathbf{v}_i \in R \times H$. We say that P is the centroid of the finite set. This correspondence between the set of elements in $R \times H$ and the single element is denoted thus:

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_n \mathbf{v}_n = \sum_{i=1}^{n} \alpha_i \mathbf{v}_i$$

For simplicity $\sum \mathbf{v}_i$ shall be denoted by P.

We assume the calculus to have the following properties:

$$(\alpha \mathbf{a} + \beta \mathbf{b}) + \gamma \mathbf{c} = \alpha \mathbf{a} + (\beta \mathbf{b} + \gamma \mathbf{c})$$

$$\alpha \mathbf{a} + \beta \mathbf{a} = (\alpha + \beta) \mathbf{a}$$

$$\alpha (\mathbf{a} + \mathbf{b}) = \alpha \mathbf{a} + \alpha \mathbf{b}$$

$$\mathbf{c} \mathbf{a} + \alpha \mathbf{a} = \alpha \mathbf{a}$$

Furthermore, if $\alpha \mathbf{a} + \beta \mathbf{b} = \gamma \mathbf{c}$, $\gamma \neq 0$, then $\alpha \gamma \mathbf{a} = \beta \gamma \mathbf{b} = \mathbf{c}$.
We shall define the points \(B_1, B_2, ..., B_n\) to be linearly independent if and only if \(\alpha_1 B_1 + \alpha_2 B_2 + ... + \alpha_n B_n = P\) implies \(\alpha_i = 0\) for \(i = 1, 2, ..., n\). The points are linearly dependent if and only if there exist scalars \(\alpha_1, \alpha_2, ..., \alpha_n\) not all zero, such that \(\alpha_1 B_1 + \alpha_2 B_2 + ... + \alpha_n B_n = OP\).

To determine the dimension of the space, we postulate that any four points are linearly dependent and that there exist three linearly independent points.

Every point may be expressed as a linear combination of three linearly independent points. In fact:

Theorem 1: If \(B_1, B_2,\) and \(B_3\) are linearly independent, then for every point \(P\) there exist unique scalars that \(P = \lambda B_1 + \mu B_2 + \nu B_3\).

In case the sum of the scalars of two elements of \(\mathbb{R}^3\) is zero, we shall define these elements as a point difference.

Definition: The point difference \(B - A\) is equivalent to the point difference \(D - C\) if and only if \(B + C = D + A\). We shall denote this equivalence relation by \(B - A \sim D - C\). In a similar manner we may define \(B - A \sim \mu (D - C)\) if and only if \(B + \mu C = \mu D + A\). We are justified in calling this an equivalence relation since every point difference is equivalent to itself, and if \((B - A) \sim (F - E)\) and \((D - C) \sim (F - E)\), then \((B - A) \sim (D - C)\). The equivalence classes of point differences are free vectors.

Definition: The set \(L\) is a line if \(L = \{C : \lambda (B - A) = C, B \neq A, \lambda \in \mathbb{R}\} \setminus \{C : \lambda = 0\}\).

Theorem 2: If \(A\) and \(B\) are points in a line, there exist unique scalars \(\alpha\) and \(\beta\) such that \(\alpha A + \beta B = C\) if and only if \(C\) is a point in the line.

Definition: If \(L_1\) and \(L_2\) are lines such that \(L_1 = \{C : \lambda (P - Q) = C\} \setminus \{C : \alpha = 0\}\), and \(L_2 = \{D : B + \mu (R - S) = D\} \setminus \{D : \beta = 0\}\), then \(L_1\) is parallel to \(L_2\) if and only if there exist \(\alpha\) and \(\beta\) such that \((P - Q) \sim (R - S)\).

Theorem 3: The relation of parallelism is an equivalence relation.

Proof: As a result of the properties of point differences, every line is parallel to itself and, if two lines are parallel to the same line, they are parallel to each other.

Theorem 4: Parallel lines are either coincident or have no points in common.

THE AFFINE GROUP: In their discussion of barycentric coordinates, Birkhoff and MacLane show that an affine transformation carries centroids into centroids. This follows in accordance with their previous definition of an affine transformation in a vector space. They restrict the transformations to be non-singular; that is, \(S(A) = S(B)\) implies \(A = B\). However, we shall define the affine transformations as the endomorphisms of the barycentric calculus. More explicitly, \(S\) is an affine transformation if \(S(\alpha A + \beta B) = \alpha S(A) + \beta S(B)\). Hence, we allow a projection to be an affine transformation.

Theorem 5: The set of automorphisms of the barycentric calculus form a group with respect to transformation multiplication. This group is called the affine group.

The reader's attention is called to the fact that the automorphisms, as opposed to the endomorphisms, compose the affine group since the inverse of every element must be in the group.

Definition: A transformation is a translation if there exists \((P - Q)\) such that \(T(X) = X + (P - Q)\).

Theorem 6: The set of translations forms a normal subgroup of the affine group.

Proof: We see that a translation is an affine transformation since \(T(\alpha A + \beta B) = \alpha T(A) + \beta T(B), \alpha \neq 0\). Furthermore, the set of translations forms a subgroup of the affine group; for if \(T_1\) and \(T_2\) are translations, then \(T_1 T_2(X) = T_1(X + (P - Q)) = X + (P - Q) + (R - S) = X + (2B - A)\), where \(2B = P + R\) and \(2A = Q + S\); and if \(T_1(X) = X + (P - Q)\), then \(T_1^{-1}(X) = X - (Q - P)\).

Since \((S^{-1} TS)(X) = X + S^{-1}(P - S^{-1}(Q))\), then the group of translations is a normal subgroup of the affine group.

Before studying invariants of the affine group and of this normal subgroup, we must look at some properties of a cell function.

Definition: A \(n\)-simplex is an ordered set of \(n + 1\) points \(\{A_0, A_1, ..., A_{n+1}\}\). Two simplices are equivalent if one may be obtained from the other by an even permutation of the points. Using the fact that the identity permutation is even and that the product of two even permutations is even, we see that this relation is an equivalence relation.

Under this definition, there are two equivalence classes that we shall call cells. This follows from the fact that every permutation is even or odd. We shall denote the cell of which \(\{A_0, A_1, ..., A_{n+1}\}\) is an element by \(\sigma_n\) and the cell of which \(\{A_1, A_2, ..., A_{n+1}\}\) is an element by \(-\sigma_n\).

Definition: A cell function is a scalar-valued function satisfying the following postulates:

1. \(f(\sigma_n) = (-1)^n f(P, A, A_1, ..., A_{n+1})\) where \(A_1\) is deleted and \(P\) is arbitrary.
2. \(f(\sigma_n) = 0\) if \(A_1 = A_j, i \neq j\).
3. \(f(\mu A + \nu B, A_1, ..., A_{n+1}) = \mu f(A, A, A_1, ..., A_{n+1}) + \nu f(B, A_1, A_2, ..., A_{n+1})\).
Theorem 10: If \(r > 2 \), the \(f_r(\sigma) = 0 \).
This theorem follows from the application of postulate three for the cell function plus the fact that any four points are linearly dependent.

Theorem 11: \(f_r(\sigma) = f_r(\sigma^*). \)
Proof of this theorem follows from the expansion of \(f_r(\sigma^*) \) with the condition that \(P = A_1 \).
Because of the length of the algebraic operations needed to supply proofs of the following theorems, let it suffice to say that they follow from definitions of the transformations together with repeated application of postulate three for the cell function.

Theorem 12: The function \(f_r \) is invariant under the set of translations; that is, \(f_r(T(A_0) \ldots T(A_n)) = f_r(A_0 \ldots A_n) \).

Theorem 13: There exists \(X \) such that \(f_r(S(A_0)S(A_1)S(A_2)) = \}

Theorem 14: If \(P, A_0, \) and \(A_1 \) are collinear, then \(\frac{f_r(P, A_0)}{f_r(A_0, A_1)} \) is invariant under the affine group.
The significance of the last five theorems becomes apparent if we interpret \(f_r(A_0, A_1) \) as the length of the line segment \(A_0A_1 \) and interpret \(f_r(A_0, A_1, A_2) \) as the signed area of the triangle of \(A_0A_1A_2 \). We see that it is the ratio of lengths of segments on a given line or on parallel lines and the ratio of areas of triangles that are invariant under the affine group. It is of interest to note that Theorem 12 implies that length and area are invariant under the set of translations.

In the Erlanger Program, Felix Klein showed that we may obtain a subgroup of a group of transformations from the set of all transformations that leave some property invariant. Consequently, Theorems 15 and 16 follow:

Theorem 15: The set of transformations that leave \(f_r \) invariant forms a normal subgroup of the affine group which we shall call the equi-affine group.

Theorem 16: The set of transformations that leave a particular point invariant forms a (non-normal) subgroup of the affine group. (This is the so-called full-linear group of the vector space of the same dimension as the affine space.)

LINEAR AND QUADRATIC FUNCTIONS: As has been suggested in the introduction, we can study lines and conic sections in terms of linear and quadratic functions. We begin with the properties of the linear function.

Definition: Let the scalar-valued function \(\mathbf{L} \) be defined on the set of all points. The function \(\mathbf{L} \) is linear if \(\mathbf{L}(\alpha A + \beta B) = \alpha \mathbf{L}(A) + \beta \mathbf{L}(B) \).

Theorem 17: Let \(\mathbf{L} \) be a linear function, not a constant, such that \(\mathbf{L}(A) = \mathbf{L}(B) = \mathbf{L}(C) \). Then \(\mathbf{L}(X) = \mathbf{L}(Y) = \mathbf{L}(Z) \) if \(\mathbf{L}(C : A + \lambda(B - A) = C, \lambda \in \mathbb{R}^+ \).
The proof of this theorem results from considering elements in each set and seeing that they can be expressed as an element of the other set. We have, then, a new definition of a line in terms of a linear function of points.
The following theorems show the effect of a general affine transformation, and of a translation, upon a line.

Theorem 18: If \(S \) is an affine transformation and \(L_1 = \{X: \mathbf{L}_1(X) = \mathbf{L}_2(X) \} \) then \(S(L_1) = \{Y: \mathbf{L}_2(Y) = \mathbf{L}_2(Y) \} \) where \(\mathbf{L}_2 \) is a linear function defined as follows: for \(A \) and \(B \), elements of \(L_1 \), \(\mathbf{L}_2(S(A)) = \mathbf{L}_2(S(B)) \).

Theorem 19: Let \(L_1 = \{X: \mathbf{L}_1(X) = \mathbf{L}_2(Y) \} \). Then \(L_2 = \{Y: \mathbf{L}_1(Y) = \mathbf{L}_2(Y) \} \) if and only if there exists an element \(T \) of the group of translations such that \(T(L_1) = L_2 \).

Theorem 20: The lines \(L_1 \) and \(L_2 \) of Theorem 19 are parallel.
Thus we see if \(S \) is an element of the affine group, \(S \) carries lines into lines. Translations carry lines into parallel lines. Furthermore, the linear functional value of points in parallel lines differs by a constant.

We now turn to properties of the quadratic function.

Definition: The scalar-valued function \(\theta \) defined on the set of all points is homogeneous and quadratic if 1) \(\theta(A + B + C) = \theta(A) + \theta(B) + \theta(C) \) + \(\theta(B + C) - \theta(B) - \theta(C) = 0 \). 2) \(\theta(\alpha A) = \alpha^2 \theta(A) \).

Definition: Let \(\mathbf{A} \) be an arbitrary scalar-valued function defined on the set of all points. We define a polarization operator on the function \(\mathbf{A} \) such that the operator \(\mathbf{A} \) satisfies the following properties:

1) \(\mathbf{A} \Lambda_{AB} = \Lambda_{AB} \Lambda_{(A+B)} - \Lambda_{A-B} \Lambda_{(A-B)} \).
2) \(\Lambda_{AB} \Lambda_{ABC} = \theta \).

Theorem 21: a) \([A] \Lambda (A) = \Lambda [A] \Lambda (B) \).
b) \(\Lambda_{AB} \Lambda (A) = 0 \).
c) \(\Lambda_{AB} \Lambda (A) = 2 \theta (A) \).
d) \(\Lambda_{AB} \Lambda (A) = \theta (A) + \Lambda_{AB} \Lambda (A) \).

Theorem 22: Let \(\phi (X) = \theta (X) + \mathbf{L} (X) \). Then \(\phi \) is quadratic but not homogeneous. That is, \(\phi(A + B + C) = \phi(A + B) + \phi(A + C) + \phi(B + C) - \phi(A) - \phi(B) - \phi(C) \) if and only if \(\phi(A) = \alpha^2 \phi(A) \) for all \(\alpha \).
Before proving the next theorem, we need to know that \(\theta (P-Q) \) is well defined.
Lemma: \(\theta(P-Q) = 2\theta(P) + 2\theta(Q) - \theta(P+Q) \).

This follows from expanding \(\theta(X+P-Q) \) and then letting \(X=Q \).

Theorem 23: Let \(\phi_1(X) + \epsilon = \theta_1(X) + \lambda_1(X) + \delta \). Then the quadratic part of \(\phi_1(X) \) is invariant under the set of translations.

Proof: Let \(T \) be an element of the set of translations such that for some \(P \) and \(Q \), then \(T(X) = X + \lambda(P-Q) \). Then it must be shown that

\[
\phi_1(T(X)) + \epsilon = \theta_1(T(X)) + \lambda_1(T(X)) + \delta.
\]

We know that \(\phi_1(T(X)) + \epsilon = \phi_1(X) + \lambda_1(P-Q) + \delta \).

Therefore,

\[
\phi_1(T(X)) + \epsilon = \theta_1(X) + \lambda_1(P-Q) + \delta.
\]

Let \(\phi_2(X) = \phi_1(X) + \lambda_2(P-Q) \) and define the scalar \(\epsilon \) such that

\[
\phi_1(T(X)) + \epsilon = \theta_1(X) + \lambda_1(T(X)) + \delta.
\]

Then \(\phi_1(T(X)) + \epsilon = \phi_1(X) + \lambda_1(T(X)) + \delta \).

A line has been shown to be the set \(L = \{ X : \phi_1(X) = \Delta \} \) where \(\phi_1(X) = \phi_1(X+ \lambda(P-Q)) \).

A conic section may be defined as the set \(C = \{ X : \phi_1(X) = \Delta \} \) where \(\phi_1(X) = \phi_1(X+ \lambda(P-Q)) \).

In terms of the ordered pair notation, \(L = \{ (x, y) : \alpha x^2 + \beta y^2 + \gamma xy = \Delta \} \) where \(\alpha, \beta, \gamma \) are constants in \(R \).

We shall define \(C \) to be an ellipse, parabola, or hyperbola according as \(\epsilon_e \) is less than, equal to, or greater than zero.
Theorem 24: Ellipses, parabolas, and hyperbolas are invariant under the affine group.

Proof: For an element S of the affine group, let

$$S(B_1) = \lambda_1 B_1 + \mu_1 B_2 + \nu_1 B_3; S(B_2) = \lambda_2 B_1 + \mu_2 B_2 + \nu_2 B_3; S(B_3) = \lambda_3 B_1 + \mu_3 B_2 + \nu_3 B_3$$

where $\lambda_1 \lambda_2 \lambda_3 = 1$. Then if $\lambda + \beta + \gamma = 1$, $\theta(S(\alpha B_1 + \beta B_2 + \gamma B_3)) = \theta(S(\alpha B_1) + \beta B_2 + \gamma B_3) = \theta(S(B_1))$. This may be simplified to an expression of the form

$$\alpha^2 \eta_1 + \beta^2 \eta_2 + \gamma^2 \eta_3 + \alpha \beta \eta_4 + \beta \gamma \eta_5 + \gamma \alpha \eta_6 = 0.$$

Then it may be shown that

$$\eta_2 - \eta_1^2 - \eta_3^2 + \frac{\eta_1}{\lambda_2} + \frac{\eta_2}{\lambda_3} + \frac{\eta_3}{\lambda_3} = \left(\frac{1}{\lambda_1} + \frac{1}{\lambda_2} + \frac{1}{\lambda_3}\right)^2.$$

Theorem 25: The discriminant $\eta_2 - \eta_1^2 - \eta_3^2 + \frac{\eta_1}{\lambda_2} + \frac{\eta_2}{\lambda_3} + \frac{\eta_3}{\lambda_3} = \left(\frac{1}{\lambda_1} + \frac{1}{\lambda_2} + \frac{1}{\lambda_3}\right)^2$.

Then if $\lambda_1 \lambda_2 \lambda_3 = 1$. Then if $\lambda + \beta + \gamma = 1$, $\theta(S(\alpha B_1 + \beta B_2 + \gamma B_3)) = \theta(S(\alpha B_1) + \beta B_2 + \gamma B_3) = \theta(S(B_1))$. This may be simplified to an expression of the form

$$\alpha^2 \eta_1 + \beta^2 \eta_2 + \gamma^2 \eta_3 + \alpha \beta \eta_4 + \beta \gamma \eta_5 + \gamma \alpha \eta_6 = 0.$$

LIST OF REFERENCES

University of Alabama

FILTERS AND ULTRAFILTERS

by JOHN E. ALLEN

Oklahoma Beta

The purpose of this paper is to establish the following theorem as proposed by N. Bourbaki: Every filter is the intersection of all the ultrafilters finer than it. Before we are able to prove this statement, however, it is necessary that we set up the definitions and preliminary results that we will use.

Then we begin with the definition of a filter. A filter \mathcal{F} on a set E is a collection of subsets of E satisfying the following properties:

(F1) Any set containing a set of \mathcal{F} belongs to \mathcal{F}.

(F2) Any finite intersection of sets of \mathcal{F} belongs to \mathcal{F}.

(F3) The empty subset of E does not belong to \mathcal{F}. In order that those unfamiliar with the concept of filters may get a better feel for the idea, we give a few examples. A very trivial example is to let $\mathcal{F} = \{E\}$, where E is some non-empty set. Then $\{E\}$ is seen to satisfy all the conditions of the definition. For a second example, let E be the set of positive integers. Then the collection $\mathcal{F} = \{A \mid (A) is finite\}$ is a filter on E. This particular filter is called the Frechet filter. For a third example, let E be a topological space; then the collection of neighborhoods of a subset A of E is a filter on E called the filter of neighborhoods of A.

Let \mathcal{F} be the collection of all filters on a set E and let us introduce an order relation on \mathcal{F}. Let \mathcal{F} and \mathcal{F}' be two filters on E. Then \mathcal{F} is said to be finer than \mathcal{F}' if $\mathcal{F} \subseteq \mathcal{F}'$, i.e., every set in \mathcal{F}' is also in \mathcal{F}. The relation of order opposite to "finer than" is "coarser than" and we say that \mathcal{F}' is coarser than \mathcal{F} if $\mathcal{F} \supseteq \mathcal{F}'$. Furthermore, if $\mathcal{F} \supseteq \mathcal{F}'$ and $\mathcal{F} \neq \mathcal{F}'$, then we say that \mathcal{F} is strictly finer than \mathcal{F}'.

Now let \mathcal{F}' be an arbitrary collection of filters on a set E, say $\mathcal{F}' = \{\mathcal{F}_x\}_{x \in \Lambda}$, where Λ is the index set. (A) Then it can easily be shown that \mathcal{F}_x is a filter on E. Certainly \mathcal{F}_x is a filter, since for every filter \mathcal{F}_x on E, E belongs to \mathcal{F}_x by (F). Then it is simply a matter of verifying that the conditions of the definition are satisfied.

Let us establish the concept of a system of generators of a filter. Let \mathcal{M} be any collection of subsets of a set E. (B) Then in order that there exist a filter on E containing \mathcal{M}, it is necessary and sufficient that any finite intersection of sets of \mathcal{M} be non-empty.

\[\text{Received by Editors June 18, 1960. Presented at the National Meeting of Pi Mu Epsilon, East Lansing, Michigan, August 30, 1960.} \]
The condition is obviously necessary in order to satisfy \(F_{III} \). To show that this condition is sufficient, we construct a filter \(\mathcal{F} \) on \(E \) containing \(\mathcal{A} \). First let \(\mathcal{A}' \) be the set of all finite intersections of sets of \(\mathcal{A} \). Then it can be shown that \(\mathcal{F} \), the collection of all subsets of \(E \) containing a set of \(\mathcal{A}' \), is a filter on \(E \). The set \(\mathcal{A} \) satisfying the conditions of sentence (B) is said to be a system of generators of the filter \(\mathcal{F} \).

A partially ordered set \(E \) is said to be inductive if it satisfies the following condition: any totally ordered subset of \(E \) has a least upper bound. The Theorem of Zorn states that every ordered inductive set has at least one maximal element. The set \(\mathcal{G} \) of all filters on \(E \) is ordered by the relation "is finer than" and can be shown to be inductive. In fact, any arbitrary collection \(\mathcal{G}' \) of filters on \(E \) is inductive. This idea of maximal element motivates the definition of ultrafilter. An ultrafilter on a set \(E \) is a filter \(\mathcal{U} \) on \(E \) such that there does not exist any filter on \(E \) strictly finer than \(\mathcal{U} \). (C) An immediate consequence of the Theorem of Zorn is that for every filter \(\mathcal{F} \) on \(E \), there exists an ultrafilter \(\mathcal{U} \) on \(E \) finer than \(\mathcal{F} \), i.e., \(\mathcal{F} \subseteq \mathcal{U} \).

Another theorem which may be obtained is that if \(\mathcal{A} \) is a system of generators of a filter, such that for every \(x \in E \), either \(x \) belongs to \(\mathcal{A} \) or \(C(x) \) belongs to \(\mathcal{A} \), then \(\mathcal{A} \) is an ultrafilter on \(E \). We use this theorem to give the following example of an ultrafilter: Let \(\mathcal{A} \) be the collection of subsets of a set \(E \) containing the point \(p \) belonging to \(E \). Then for every subset \(X \) of \(E \), either \(p \) belongs to \(X \) or \(p \) belongs to \(C(X) \), and it thus follows that \(\mathcal{A} \) is an ultrafilter on \(E \).

We now have the tools for proving the following theorem: Every filter is the intersection of all the ultrafilters finer than it. Let \(\{ \mathcal{U}_x \}_{x \in E} \) be the collection of ultrafilters on a set \(E \) finer than a filter \(\mathcal{F} \) on the set \(E \). Let \(\mathcal{G} = \bigcup \mathcal{U}_x \). Then \(\mathcal{G} \) is a filter on \(E \) by sentence (A). We must show that \(\mathcal{G} = \mathcal{F} \). \(\mathcal{F} \subset \mathcal{U}_x \) for every \(x \in E \), which implies \(\mathcal{F} \subset \mathcal{G} \). Now let us show that \(\mathcal{G} \subset \mathcal{F} \). Assume that there exists a set \(A \subset E \) such that \(A \) belongs to \(\mathcal{G} \) but \(A \) does not belong to \(\mathcal{F} \), and attempt to lead to a contradiction. \(A \) intersects all the sets of \(\mathcal{F} \), since \(\mathcal{F} \subset \mathcal{U}_x \) and \(A \) belonging to \(\mathcal{G} \) and \(F \) belonging to \(\mathcal{F} \) implies \(F \) belongs to \(\mathcal{G} \) and thus \(A \cap F \neq \emptyset \) by definition. \(C(A) \) intersects all the sets of

since if there exists a set \(F \) in \(\mathcal{F} \) such that \(C(A) \cap F \neq \emptyset \), then \(F \subset A \) which implies that \(A \) belongs to \(\mathcal{F} \) contradicting the assumption. \(\mathcal{F} \subset \mathcal{U} \{C(A)\} \) generates a filter \(\mathcal{F}' \) on \(E \) by sentence (B). Then there exists an ultrafilter \(\mathcal{U} \) finer than \(\mathcal{F}' \) by sentence (C). \(\mathcal{F} \subset \mathcal{F}' \subset \mathcal{U} \) implies that \(\mathcal{U} \) is an ultrafilter finer than \(\mathcal{F}' \). But \(A \) does not belong to \(\mathcal{U} \) contradicting that \(A \) belongs to the intersection of all the ultrafilters finer than \(\mathcal{F} \). Therefore, \(\mathcal{A} = \mathcal{F} \).

Reference

Oklahoma State University
This department welcomes problems believed to be new and, as a rule, demanding no greater ability in problem solving than that of the average member of the Fraternity, but occasionally we shall publish problems that should challenge the ability of the advanced undergraduate and/or candidate for the Master's Degree. Solutions of these problems should be submitted on separate, signed sheets within four months after publication. Address all communications concerning problems to M. S. Klamkin, Avco Research and Advanced Development Division, T-430, Wilmington, Massachusetts.

PROBLEMS FOR SOLUTION

127. Proposed by Harry Furstenberg, M. I. T.

Show that

\[\{ \text{Rank } || A_{rs} || \}^2 \geq \text{Rank } || A_{rs}^2 || \]

128. Proposed by Robert P. Rudis and Christopher Sherman, AVCO RAD

Given 2n unit resistors, show how they may be connected using n single pole single throw (SPST) and n single pole double throw (SPDT) (the latter with off position) switches to obtain, between a single fixed pair of terminals, the values of resistance of \(i \) and \(i'' \) where \(i = 1, 2, 3, \ldots, 2n \).

Editorial Note: Two more difficult related problems would be to obtain \(i \) and \(i'' \) using the least number of only one of the above type of switches.

129. Proposed by Leo Moser, University of Alberta

If \(R \) be a regular polyhedron and \(P \) a variable point inside or on \(R \), show that the sum of the perpendicular distances from \(P \) to the faces of \(R \), extended if necessary, is a constant.

Editorial Note: Also, consider the case when \(P \) lies outside of \(R \) by assigning proper signs to the various perpendiculars.

130. Proposed by H. Kaye, Brooklyn, N. Y.

If \(P \) is a variable point on the circular arc \(\overline{AB} \), show that \(\overline{AP} + \overline{PB} \) is a maximum when \(P \) is the mid-point of the arc \(\overline{AB} \).

SOLUTIONS

117. Proposed by Michael J. Pascual, Siena College

If the lengths of two sides \(x \) and \(y \) of a triangle and the angle \(\theta \) opposite one of them are chosen at random in the intervals

\[0 \leq \theta \leq \pi, \quad 0 \leq x \leq L, \quad 0 \leq y \leq L, \]

(\(x, y \), and \(\theta \) are assumed to be uniformly distributed), find the probability that

a) there is no triangle possible,

b) there is exactly one triangle possible,

c) there are two triangles possible.

Solution by M. Wagner, Boston, Massachusetts

No triangle can be formed if

\[y < x \sin \theta, \quad 0 \leq \theta \leq \pi/2, \]

or

\[y < x, \quad \theta > \pi/2. \]

Only one triangle can be formed if

\[y > x. \]

Two triangles can be formed if

\[x \sin \theta < y < x, \quad 0 \leq \theta \leq \pi/2. \]

Consequently,

\[
\begin{align*}
P_0 &= \frac{\pi/2}{L} \int_{\theta=0}^{\pi/2} d\theta \int_{x=0}^{L} dx \int_{y=0}^{x} dy + \int_{\theta=0}^{\pi/2} d\theta \int_{x=0}^{L} dx \int_{y=0}^{x} dy \\
&= \frac{\pi}{2} \int_{\theta=0}^{\pi/2} d\theta \int_{x=0}^{L} dx \int_{y=0}^{x} dy \\
&= \frac{\pi}{2} L^2 - \frac{\pi}{4} L^3.
\end{align*}
\]
118. Proposed by Leo Moser, University of Alberta

Split the integers 1, 2, 3, ⋯, 16 into two classes of eight numbers each such that the (8) = 28 sums formed by taking the sums of pairs is the same for both classes.

Solution by C. W. Trigg, Los Angeles City College

When all possible pairs of the integers, 1, 2, ⋯, 16 are taken, there is only one sum equal to 3 and only one sum equal to 4. Hence, if 1 is in class A, then 2 and 3 must be in class B. Now 2 + 3 = 5, so 4 must be in A. If 5 were in A, there could be no matching sum equal to six in B, so 5 is in B. But 2 + 5 = 7, so 6 is in A; and 3 + 5 = 8, so 7 is in A. Now 4 + 6 = 10, so 8 is in B.

By similar reasoning beginning with 16, 15, 14 (or by subtracting each member of classes A and B from 17) we establish two sets, C: 16, 13, 11, 10 and D: 15, 14, 12, 9. Then the unique solution to the problem is:

\[\text{AC: } 1 \quad 4 \quad 6 \quad 7 \quad 10 \quad 11 \quad 13 \quad 16, \]
\[\text{BD: } 2 \quad 3 \quad 5 \quad 8 \quad 9 \quad 12 \quad 14 \quad 15. \]

The 28 sums of pairs are: 5, 7, 8, 10, 11(2), 12, 13, 14(2), 15, 16, 17(4), 18, 19, 20(2), 21, 22, 23(2), 24, 26, 27, and 29.

Also solved by H. Kaye, Paul Meyers, J. Thomas and F. Zetto.

119. Proposed by Maurice Eisenstein, AVCO RAD

An infinite sequence of points on a line have coordinates given by the R progressions

\[\{a_r \cdot n + b_r \}, \quad r = 1, 2, \cdots, \quad R, \quad n = \cdots, -3, -2, -1, 0, 1, 2, 3, \cdots. \]

Find the average distance between contiguous points.

Solution by F. Zetto, Chicago, Illinois

The number of points of the progression \(\{a_r \cdot n + b_r \} \) lying in the interval \(-N \leq n \leq N\) is given by

\[\frac{2N}{a_r + b_r} + \epsilon_r, \]

where

\[\lim_{N \to \infty} \epsilon_r/N = 0. \]

Consequently, the total number of points in the interval \((-N, N)\) is

\[\sum_r \left(\frac{2N}{a_r + b_r} + \epsilon_r \right). \]

The average distance \(\overline{D}_N\) between contiguous points is then

\[\overline{D}_N = \frac{2N}{\sum_r \left(\frac{2N}{a_r + b_r} + \epsilon_r \right)}. \]

Finally,

\[\lim_{N \to \infty} \overline{D}_N = \left(\sum_r \frac{1}{a_r + b_r} \right)^{-1}. \]

Also solved by Merwyn M. Friedman, H. Kaye, Paul Meyers, J. Thomas and the proposer.

Errata:

124. Proposed by H. Kaye, Brooklyn, N. Y. Construct the center of an ellipse with a straightedge only, given a chord and its midpoint.

The editor regrets that he did not examine this problem more carefully when it was sent in because on subsequent examination of the problem he finds that the construction is indeed impossible. Consequently, the problem should be chnged to read:

Prove the impossibility of constructing the center of a circle with a straightedge only, given a chord and its midpoint.
BOOK REVIEWS

Both of these excellent new books deal with subjects which are above the level attained by the ordinary undergraduate mathematics student. Hence most of the readers of this Journal are not advised to attempt to read them with only the traditional undergraduate background. However, some general remarks concerning the contents of these books may be of value to the reader, for it is likely, if he continues with graduate study of mathematics, that he will at some future date wish to look into these attractive volumes.

The book of Gillman and Jerison assumes that the reader has some background in point-set topology and abstract algebra (especially ring theory). One semester of each would probably suffice if this book were used as a text in a course or with suitable guidance, but more background would be required for independent study. In addition to these prerequisites, Rickart supposes a knowledge of the basic facts concerning Banach and Hilbert spaces and for a real understanding of some of his examples more analysis would be required (e.g., measure theory, topological groups, etc.). Both books advance the reader to the forefront of knowledge in their fields and would provide adequate background for reading research papers.

The subject matter of these two books is about as similar as possible without actually overlapping, which they scarcely do. They both treat the same type of objects and with similar tools but from different points of view. We shall now try to describe briefly what their contents deal with. Let X be neither a normal topological space; for example, the closed interval $0 \leq x \leq 1$ is the real line. If f and g are two functions defined on X we define their sum, which we denote by $f + g$, to be the function whose value at the point x in X is given by

$$ (f + g)(x) = f(x) + g(x), \quad x \in X $$

Similarly we define their product fg by

$$ (fg)(x) = f(x)g(x), \quad x \in X $$

and we can define the product of a constant c with the function f by

$$ c f(x) = c f(x), \quad x \in X. $$

Under the first two operations, the collection $C(X)$ of all continuous real-valued functions on X form a ring in the sense of modern algebra. Under all three operations, this collection or the similar collection of complex-valued continuous functions forms a (commutative) algebra (over the real or complex field).

The object of study of Gillman and Jerison's book is the ring $C(X)$ of real-valued continuous functions on a topological space X. The main questions are to relate the algebraic properties of $C(X)$ and the topological properties of X. For example: What topological properties of X are determined by algebraic properties of $C(X)$ and vice versa? If every element in $C(X)$ is automatically bounded, what does this imply about X? What sets of functions on X form an ideal in the ring $C(X)$? When can the subring of all bounded functions in $C(X)$ be realized as a space $C(Y)$ and when this is possible what is the connection between X and Y? A considerable interplay between algebra and topology enters; it is difficult to imagine a better way to review and re-examine the basic notions of these two fields and to refine one's understanding and intuition than to work through this book. In addition to their careful exposition, the authors have provided a substantial list of problems of varying difficulty which augment and exemplify the main development.

In contrast to Gillman and Jerison, where $C(X)$ is the object of study, in Rickart's book it is one of the main examples, but not the whole thing. Here the primary interest is centered on algebras over the complex field in which there is also a notion of distance satisfying certain additional properties. These algebras are called Banach algebras (or normed rings) and they have been extensively studied since 1940. The space $C(X)$ forms a Banach algebra if we take as the distance between f and g

$$ \|f - g\| = \sup \{ |f(x) - g(x)| \}, \quad x \in X. $$

In fact $C(X)$ is a commutative Banach algebra. There are many other Banach algebras (both commutative and non) which arise in analysis. The purpose of Rickart's book is to examine the general properties of Banach algebras, to classify them in types, to analyze the structure of these different types of algebras and to represent abstractly-presented Banach algebras in terms of simpler and more concrete constructs. For example, the important Gelfand-Naimark theorem gives a necessary and sufficient condition for a commutative Banach algebra to be an algebra of the form $C(X)$ for a suitable topological space X. While Rickart does not provide any exercises he does provide an appendix full of examples, a guide to the literature, and a fifty-page bibliography of research papers. Unquestionably the theory of Banach algebras is of great importance for certain areas of functional analysis and highly enlightening for many others. It is this reviewer's opinion that any student will benefit from this theory which, in Rickart's words, has its 'feet in analysis and its head in algebra.' This book gives the most comprehensive treatment of the algebraic aspect of this theory that is available.

University of Illinois

Robert G. Bartle

With publication of the above volume the authors have completed their two-volume text on commutative algebra. The purpose of the text is to present, in organized form, the basic known results on commutative rings and their modules with particular emphasis on those parts of the subject which are needed in algebraic geometry.

Volume I deals with field theory, theory of ideals (particularly prime and primary) in commutative rings, theory of noetherian rings, and theory of dedekind domains. Volume II deals with the theory of valuations, polynomial and power series rings, and local algebra. The two-volume set is self-contained, but the second volume draws on results developed in the first volume. The authors state, in the preface to the first volume, that they hope to follow this set with a text on algebraic geometry.

The presentation followed by the authors is modern in the sense that the results are presented in ascending order of logical rather than intuitive complexity. The result is that a great deal of subject matter can be treated in a relatively small amount of space, and the proofs can still be done in considerable detail. For some of the more important results more than one proof is given.

A student can gain a great deal from reading these volumes provided that he is working under the guidance of an instructor who can explain the ideas behind the logical concepts discussed in the text, and who can provide problems dealing with the subject matter.

University of Illinois

Lawrence Levy

It is an unusual pleasure to read Prof. Rainville's book on special functions, for it is very clear from the beginning that he has included only topics which he loves and enjoys teaching, and has carefully woven these together into a smoothly unfolding fabric. The major theme is really polynomials, with a strong minor in hypergeometric functions. All the classical sets of polynomials are included, and dozens of other interesting sets besides. Similarly, there is an extensive treatment of the classical hypergeometric functions, with emphasis on the transformations, but there is much additional material on generalized hypergeometric functions which is not to be found elsewhere in an equally accessible form.

There are many unusual and delightful features to the way in which the polynomials are handled, and it is worth mentioning a few of these. General properties of whole classes of generating functions, many of them collected for the first time, are developed together. General techniques for obtaining recursion relations, and for expanding one set of polynomials in terms of another, are emphasized. A unified treatment is thus achieved. Furthermore, a variety of analytic techniques is stressed without prolonged use of any one. Happily, there are only two complicated contour integral arguments in the whole book; they are enough to give the feeling for that kind of development, and analytic ingenuity replaces a number of others.

Since the book (348 pages of text) is finite, it follows that the treatment of a number of other special functions cannot be more than cursory. This applies particularly to those which have been the subject of extensive exposition elsewhere, namely Bessel functions and elliptic functions. After the definition of Bessel functions, only the simplest recursions and the Neumann polynomials are taken up. On the other hand, there is an excellent chapter, with the most readable exposition I have seen, of the Jacobi Theta functions. And speaking of good developments, the introductory chapter on Gamma Functions is equally delightful.

The book deserves to be used as a classroom text, for self-study, and as a reference work. The teacher will find many excellent exercises which have obviously been designed with as much care as the text; he may, however, wish to supplement the almost total lack of any connection between the mathematics presented and any physical or engineering applications. For self-study, the book is remarkably self-contained, with only a few outside references to the theory of ordinary differential equations. And the exposition is exceptional. Finally, as a reference work, the book contains a considerable component orthogonal to any of the other standard collections on special functions, and, without question, deserves to become one of them.

Bell Telephone Laboratories H. O. Pollak

The topics included in this book are about the same as those in text by Altwerger, plus Statistics and Probability; the major exception being the exclusion of symbolic logic, although informal deductive and inductive logic are included. Generally, the work is well written, clear, and well suited for a variety of purposes. Concepts are sharply defined, and many interesting examples and exercises usually follow. The reading of this text should prove valuable to any college freshman.

Los Angeles State College T. J. Cullen

This book is a presentation of finite-difference methods for solving partial differential equations, particularly with the use of high-speed computing machines. It is a valuable addition to the literature, presenting an exposition of results that are essential for anyone who is entering this field. The authors have kept the material at an intermediate level, their only stated prerequisites being a knowledge of advanced calculus and some matrix theory. Though no knowledge of partial differential equations is presupposed, the book would be difficult for a reader who is entirely new to the subject.

The text consists of a brief introduction followed by four chapters. These are on hyperbolic equations in two independent variables, parabolic equations, elliptic equations (this chapter forms more than half of the book), and initial-value problems in more than two independent variables. There is an exceptionally complete bibliography. The exposition is very clear, though there are few numerical examples and no exercises.

The authors have tried to give the basic finite-difference methods in this field together with their theoretical foundation, and have succeeded very well in this aim. Their book is an admirable introduction for anyone who is new to the subject, and contains much that is of interest to those who are concerned with problems of this kind.

University of Illinois Richard Jerard

This is not a textbook but combines a collection of methods for solving ordinary differential equations and a collection of solutions of 2315 given equations in a single volume. A similar book is Kamke: Differentialgleichungen, Lösungsmethoden und Lösungen, Band 1, Gewöhnliche Differentialgleichungen, which lists solutions of 1530 equations, including 83 systems of equations and 15 functional differential equations.

The equations whose solutions are listed in Murphy's book are broadly classified thus:

A: First Order
A1: First Degree
A2: Second or Higher Degree
B: Second Order
B1: Linear
B2: Nonlinear
C: Order Higher Than Two
C1: Linear
C2: Nonlinear

These classifications are further broken down into the familiar types. Part I lists familiar and unfamiliar devices for solving given types of ordinary differential equations. Part II lists specific equations together with their solutions. There is a rather complete treatment of singular points. However, the book does not contain an extensive treatment of boundary value and eigenvalue problems such as is found in Kamke.

This book will be useful to workers in applied fields who are obliged to solve differential equations which have solutions in closed form. (Numerical methods are not treated.) It should be in every mathematical library.

University of Illinois Franz E. Hohn

Professor Atkin has written a book with the primary purpose of preparing students to pass examinations, such as the Cambridge Tripos papers, in Classical Dynamics. The format of the text is well designed for this purpose. A principle is introduced in simple terms followed by many worked examples. The reader is then given the opportunity to test his newfound knowledge on a great number of exercises. A careful reading, with abundant use of paper and pencil, should give the reader a mastery in the intricacies of this phase of classical physics.

The author assumes a good mathematical background as well as an elementary knowledge of physics. The mathematical background should include a thorough knowledge of algebra, a mastery of elementary calculus and analytic geometry, an introduction to differential equations, and some familiarity with matrix algebra. Although a great amount of detail is presented in the working of examples, many of the mathematical operations are omitted or briefly indicated. Professor Atkin does provide a short introduction to the theory of vectors. The rapid pace of the text is indicated by the fact that the eighteen-page section begins with a definition of vectors and proceeds to the concept of second order tensors.

Classical Dynamics is restricted to the usual undergraduate material. There is much discussion of the motions of particles and rigid bodies. The Lagrangian function is discussed while topics such as Hamilton's equations are added to further clarify matters.

Although the author in the preface almost apologizes for writing another elementary text in statistics, this is not just another elementary text. It is an excellent presentation of some concepts which one would encounter in the field of statistics. The presentation of the material is made very clear with good explanation and, where needed, numerical examples of the theory are added to further clarify matters.

Southern Illinois University

Boris Musulin

This book is the best the reviewer has seen for a first course in modern algebra. It begins with a chapter on sets, mappings, equivalence relations, etc., but offers good motivation for abstract concepts throughout. Generally, the author proceeds from the concrete to the abstract at a comfortable rate. The chapter titles, beginning with the second, are: Rings, Integral Domains, Some Properties of the Integers, Fields and the Rational Numbers, The Field of Real Numbers, The Field of Complex Numbers, Polynomials, Groups, Vector Spaces, Systems of Linear Equations, Linear Transformations and Matrices. The book is solid, and has the beautiful feature that the exercises are properly placed and should all be assigned with the feeling that they are sufficient. There is enough material for six semester-hours of work.

Southern Illinois University

James R. Boen

This book, designed for college freshmen, is a notable improvement on the traditional "College Algebra" text. The exposition is careful and clear and the material is in keeping with the modern trend without going off the deep end of abstraction. Most college freshmen will find much to be learned between its covers.

The text begins with an axiomatic approach to the properties of the real number system. This chapter includes many rigorous proofs of simple theorems. An introduction to elementary set theory is then given and used to define the function concept. Some basic concepts of Analytic Geometry are introduced. Next, a brief chapter on equations deals with the logical aspects of solving equations while assuming the ability to handle basic algebraic operations. Inequalities are given due attention in a chapter which begins with the order properties of the real numbers and includes a fine discussion of absolute values. Systems of linear equations and determinants are treated extensively; matrices are introduced in a wholesome manner and used as an example of a non-commutative algebraic system. Mathematical induction, the binomial theorem, progressions, exponents and logarithms are treated in the traditional manner and its properties as a function, rather than only its use in numerical computations are stressed. The exercises, while not too numerous, avoid repetition and are thus definitely in keeping with the spirit of the book.

University of Illinois

Charles F. Koch

The purpose of this book is to present the basic ideas and techniques of analysis, for real-valued functions, in such a way that it can be studied by students who have had only a standard calculus background, as well as by those with extended backgrounds. The chapters on functions of a single variable are essentially those of Intermediate Analysis, published in 1956 by the same author and publisher. As in the earlier book, great flexibility is achieved by staggering sections and exercises. Very few of the 2200 exercises are trivial and students who work all of them would have an excellent command of the theory of functions of a real variable. Many of the more complicated and advanced ideas occur only in the doubly-starred exercises.

Because of the clearness and detail in proofs, the book is most suitable for an undergraduate or first year graduate course, especially where such a course replaces advanced calculus. Although the author mentions notations and definitions coming into current use, the style and flavor is traditional. The teacher will have to select exercises carefully in order to keep from spending too much time on each chapter.

The book is an excellent addition to the undergraduate library, and, with the increasing emphasis on rigor, should prove to be a popular text.

Knox College

Rothwell Stephens

After a preliminary introduction to the Algebra of Matrices, the author assembles in compact form a large amount of information concerning the computational aspects of the solution of linear equations, the inversion of matrices, and the solution of eigenproblems: more than is contained in any other single volume known to this reviewer.

The book is not for beginners. The style is extremely compact and at times the material is made unnecessarily difficult to understand. A great deal of prior knowledge of matrices and determinants is assumed. Statements are at times imprecise and definitions do not always define, so that the reader must know from past experience what is intended in order to follow the text. (This may be in part a language difficulty since the author’s native tongue is not English.) Frequently use is made of material that follows later in the book. For such reasons, those who seek an introduction to matrix calculus should probably turn elsewhere.

On the other hand, those who have a great deal to do with matrix computation and who are already well-acquainted in the field will find the book useful for its critical evaluation of the advantages and disadvantages of the various procedures discussed and for its encyclopedic character.

The compactness of the treatment and the elegance of some of the proofs are largely attained through the effective use of special notations for the rows and columns of a matrix and for certain specific types of matrices. However, the special notation seems to make some of the manipulations more complex rather than simpler.

There are some misprints and some mistakes, but neither will cause difficulty for the mature user of the book.

University of Illinois
Franz E. Hohn

This is one of the many books appearing recently which try to present elementary mathematics from the modern viewpoint. The volume here does not attempt to go into calculus, as most others do, but concentrates on the rudiments of mathematics: logic and set theory, geometry, number systems, exponents and logarithms, measurement and mensuration, functions and graphs, interest, probability, and insurance. The book is intended primarily for teacher education, and as such, it is well done.

Los Angeles State College
T. J. Cullen

Hardly a month passes during which the reviewer does not receive notice of a new book dealing with matrices. In fact, the writing of such books now seems to be a popular pastime among mathematicians as the production of books at the freshman level dealing with the fundamentals of mathematics. Unfortunately, the word "pastime" is regrettably appropriate, and many recent books on matrix theory are poorly written and hastily contrived, owing their existence merely to the economics of the sudden and current popularity of the subject in our engineering schools and industrial engineering laboratories.

Thus, the reviewer started his inspection of this new addition to the collection of such books without much enthusiasm, expecting to find little to distinguish these two volumes from their many predecessors. A glance at the table of contents gave the first indication that perhaps these two volumes are somewhat unique. The contents indicated that the author covers thoroughly every conceivable aspect of matrix theory, and in a satisfactory manner. Indeed, a subsequent closer inspection of the book itself disclosed that my appraisal gleaned from the table of contents was overly conservative.

After familiarizing myself with both volumes I would pronounce upon an unsuspecting colleague and say, "Name a topic in matrix theory which you have yet to see given a satisfactory exposition in a text."

A variety of answers were received. For example:

(1) A discussion of multiple eigen-values and linearly independent eigenvectors.

(2) Lyapunov’s work in stability in connection with matrices and differential equations.

(3) A complete exposition of the Jordan normal form of a matrix.

(4) Hankel forms.

In these and many other cases, I dragged my reluctant and skeptical colleague into my office and produced the requested material in Gantmacher’s book, carefully and thoroughly discussed and explained.

Furthermore, the exposition of the book under review is above criticism. Too many other mathematics texts are written like novels, and after the innocent reader has been led through several pages of flowing prose, the author announces that he has just proved the following six theorems. However, in Gantmacher’s book each term is precisely defined, and each theorem is carefully stated and then meticulously proved.

Unfortunately no problems are included. Thus, when used alone these books are not suitable as a text. But if augmented with suitable problems, sufficient material is included in both volumes to cover at least three, or perhaps four, one-semester courses in matrix theory. Moreover, as complete reference books in matrix theory these two volumes are unsurpassed; this will probably be the situation for some years to come.

University of Arizona
Paul Slepian

It is frequently necessary to make a sequence of decisions, the object of which is to maximize a return or minimize a cost. Only rarely will the decisions be made on the basis of complete information concerning cause and effect, the object of the process, and so on. So that a theory for decision making under conditions of uncertainty is of paramount importance in many branches of applied mathematics. These remarks obviously apply in operations research and industrial engineering, where human beings serve as the decision makers. They also apply in the field of automatic control, where presently control devices that have the capability to "learn" to improve their own capabilities based on experience are contemplated. One of the great challenges to the creative mathematician working in these areas is that many of the significant problems have not yet even been formulated in mathematical language. Still other fascinating problems exist at the analytical and computational levels.

This monograph—essentially the author’s doctoral thesis—provides a delightful introduction to the subject of multi-stage decision processes, a field pioneered and extensively cultivated by Richard Bellman, who coined the term "dynamic programming."
The reader is first introduced to the concept of discrete-time Markov processes and their treatment via matrix analysis and generating functions. Then the expected return from a Markov process is discussed, and finally a decision aspect is introduced which leads to the question of the determination of optimal policies. The emphasis is upon determining optimal policies for processes of infinite duration, and a solution based upon successive approximations in policy-space is proposed. The remaining chapters are devoted to processes in which there is discounting of future returns and the treatment of continuous time Markovian decision processes. Throughout, Bellman’s principle of optimality plays a key role.

Some of the carefully worked-out examples, concerning baseball, operation of a taxicab fleet, and maintenance of equipment, are interesting and suggestive. One, concerned with the operation of a business concern, demonstrates the advisability of engaging in research and development activities, no doubt intended for subliminal effects on managerial readers.

Concepts from probability theory, matrix theory, differential and difference equations, Laplace transform theory, and numerical analysis, as well as the functional equation technique of dynamic programming are skillfully blended together to provide a framework for the formulation and treatment of a variety of significant and topical conundrums.

The Rand Corporation

Students of management problems, economics, military tactics, and general operations research recognize the importance of game theory and linear programming as a tool in solving many classes of decision problems. However, it is certainly equally important that the student of mathematics be made aware of the exciting potentialities these and allied disciplines within the general framework of decision theory offer both for applying existing mathematics and for suggesting avenues for the development of new mathematical structures.

In these two volumes Professor Karlin has presented a clear and penetrating analysis of the structure of game theory and programming, both linear and nonlinear, together with applications to mathematical economics. Volume I is devoted to the study of matrix games, programming, and mathematical economics, all of which draw on the tools of vector spaces; convex sets and convex functions; and Volume II is concerned with the mathematically more difficult subject of infinite games. Throughout both volumes, emphasis is placed on the exposition of the underlying mathematical structure. Certain topics, such as vector spaces, convex sets, and convex functions are developed in the appendices while others, such as positive operators, conjugate functions, and the generalized Nevanlin-Pearson lemma are introduced where needed in the text. The more advanced topics are treated in starred sections which may be omitted on a first reading, while notes and references at the end of each chapter give some historical background as well as suggesting material for further study. Problems form an integral part of the text, and a discussion of the more difficult ones is included. The two volumes have been made independent by reproducing the introductory chapter and the appendices in each.

In summary, we feel that the mathematically mature reader will profit much from studying these two volumes though he will probably need guidance to comprehend the more advanced sections. The work should also prove useful as a text at the graduate level and also as a reference for those engaged in research in the many fields of application.

University of Illinois

Donald M. Roberts

There is certainly enough material included in this work to cover a full year’s program of general education in mathematics. Most of the topics of the previous book reviewed are covered, together with the more elementary parts of the calculus; probability, interest, and insurance do not appear. As in many mathematics texts of recent vintage, even advanced ones, the author has included an index of symbols, which would prove quite helpful to students. In criticism, I feel I must say that the definitions given are, at times, somewhat fuzzy, a serious complaint if the text is to be used as for general education. The author seems somewhat hesitant to develop some of the concepts in the spirit of “modern mathematics.” The arrangement of topics is sometimes questionable; e.g., “Symbolic Logic” does not appear until page 170.

Los Angeles State College

T. J. Cullen
This section of the Journal is devoted to encouraging advanced study in mathematics and the sciences. Never has the need for advanced study been as essential as today.

Your election as members of Pi Mu Epsilon Fraternity is an indication of scientific potential. Can you pursue advanced study in your field of specialization?

To point out the need of advanced study, the self-satisfaction of scientific achievement, the rewards for advanced preparation, the assistance available for qualified students, etc., it is planned to publish editorials, prepared by our country's leading scientific institutions, to show their interest in advanced study and in you.

Through these and future editorials it is planned to show the need of America's scientific industries for more highly trained personnel and their interest in scholars with advanced training.

We are pleased in this issue to have an editorial from the Union Electric Company. This is one of the nation's major utility systems. They have participated in the Nuclear Power Group, Inc., a non-profit corporation which was formed to conduct research studies in the field of nuclear power. They produce electric power for use in three states and their 6,500 employees include many mathematicians and research scientists.

The article "Mathematics Today and Tomorrow" is reprinted from the Mathematical Association of America's "Recommendations for the Training of Teachers of Mathematics". Information and recommended undergraduate curriculum may be requested from the Executive Director, Dr. Robert J. Wisner, Michigan State University Oakland, Rochester, Michigan.
The Electric Utility Industry, like many others, in its earlier years operated in a quite successful manner, without benefit of unusually involved mathematical concepts. However, it should hastily be added that this is not to imply that the basic design formulae of electrical equipment did not resort to mathematical procedures of a very high order. It most certainly did — but the reference here is, of course, to utility engineering, operating and statistical personnel whose main function was concerned with the application of available equipment, its operation and maintenance.

It is axiomatic that the many facets of our technological society must advance hand in hand, — witness for example the tremendous impetus given to the development of the physical sciences by the invention of the steam engine and the electric telegraph in the early nineteenth century — giving us transportation and communication.

The Electric Power Industry has moved along with the tide, and today it is a highly specialized and complex technology, wherein mathematics of most any order and the most involved of the physical sciences lends a hand in the solution of its many problems.

Electric power is generated, transmitted and distributed to our homes and factories throughout a great range of voltages — from the 120 volts necessary to operate our lights and appliances, up to 460,000 volts used in the transport of large blocks of power from generating sources over great distances to points of power utilization.

The problems associated with the necessity to confine this voltage to its designed environment have always been challenging ones, and have given rise to mathematical concepts involving dielectric and corona losses, insulation voltage gradient and stresses, arcing phenomena and others of a highly technical nature, in which the use of integral calculus and other forms of mathematics are most essential.

Frequently, however, these voltages do "get out of hand" and take a short-cut path back to the power sources, usually because of failure of some insulating medium; by mechanical damage to electrical structures; by excessively high transient power surges and in some instances, not too infrequent, because lightning may strike the power circuits.

When these things happen, it is essential to isolate the faulted circuit from the system, and to do it fast to prevent damage and loss of service continuity to other parts of the system. Protection of the electric system through the medium of automated control devices and circuit interrupting devices capable of opening circuits carrying as much as ten million kilowatts of power in a tenth of a second and less, is another specialized branch of utility system engineering.

The precise determination of fault current magnitude and location within a complex arrangement of circuit interconnections necessitates a broad appreciation of the principles of network analysis and application of such specialized mathematical tools as the Theory of Symmetrical Components.

Like any other business, Electric Utility Companies are profit-making organizations — they exist specifically for the sole purpose of supplying electric service under conditions that will insure reasonable return on system investment. As an aside, it is of interest to note that capital investment per customer served is approximately $900.00 — much higher than any other type of business.

Plant investment per dollar of sales is close to $5.00 — ten times as much as the average of all of the manufacturing industries in our country.

Be that as it may, the important aspect here, is that electric power is not sold over the counter, like a pack of cigarettes, instead it is brought into your homes and factories over wires, and at that point, it must be metered with great precision, not only for your satisfaction but also to insure that the utility stays in business.

That requires a lot of meters, one at least for every customer — over 650,000 for a metropolitan area the size of St. Louis. It is a tribute to the meter manufacturing industry that such instruments can be made for a very few dollars and record energy consumption year after year with an error not over a few tenths of one percent.

Periodically, however, these meters must be given a test for accuracy of registration and, if necessary, recalibrated.

But that costs money, in a big way, and is time-consuming, and that is where in the last few years application of the principles of statistical analysis, sample testing, has put utility company meter testing on a more economical basis, and as an added dividend vastly improved the overall accuracy of electric meters in service.

It is common practice for the electric utility company in a community and the local telephone company to share use of poles belonging to one, with the other, to carry their respective power and
Some telephone circuits. Either company may own an agreed upon proportion of the "joint-use" poles and receive compensation from the other in the form of a rental fee.

When it is considered that several hundred thousand poles are involved, it is not unusual that inventory statistics may eventually become inaccurate.

In several instances the problem of "joint-use" ownership has been solved by application of a statistical sampling technique based on determining the ownership ratio within sample clusters throughout the area involved.

Very few electric power companies operate on the "lone wolf" basis today. Usually they are part of a much larger integrated system. For instance, our company here in St. Louis has power interchange agreements, through high voltage interconnections, with power companies in the states of Missouri, Illinois and Iowa, representing a total generating capacity of 4,500,000 kilowatts. Our neighboring utilities in turn are interconnected with other companies forming a vast network comprising approximately 40% of the total generating capability in the United States. At the present time this total is close to 175,000,000 kilowatts.

To operate such a system efficiently and economically is a problem - complex and of utmost importance.

The cost of generating electricity at any particular plant within the interconnected system is directly related to the age of the generating units. Operating efficiencies steadily improve through the years, hence the most recently installed units are the most economical of operation. Selection of additional units to carry the total load depends upon such factors as: cost of transmitting power to the numerous load centers; incremental cost of generation; cost of buying power from other members of the interconnected system, and where hydro-electric power is a part of the system, a consideration of water availability in the reservoir and expected rainfall is necessary.

All of these factors must be evaluated and put into mathematical formulation to reveal the most economical operating arrangement, usually involving the application of automatic computers; to provide answers quickly and frequently during the daily load cycle to which the system is subjected.

Optimum economy of system operation requires that available generating capability be held to a minimum, commensurate with adequate reliability of service, taking into account equipment and circuit outages, due to failure or maintenance of equipment, or the elements themselves. First, second, and possibly higher order contingencies concerning the occurrence of events that may lead to a disruption of the service continuity of specific parts of the electric system, is the real problem here, and is the object of some considerable research today. The evaluation of these questions in the past may have been quite vague and difficult, but application of statistical and probability methods promises results that can, and in some few instances has, effected real economies in system operating procedures.

These are but just a few examples of the application of mathematical procedures directed to the improvement, and greater ease of operation, of the electric power industry. Many more could be cited and certainly many more are just over the horizon - projects that we are not aware of today, or are in the embryonic stage that will come to the forefront because modern forms of mathematics and computational equipment will permit study on a truly economic basis.

Mathematical ability and mathematical training are commodities in greatest demand today. Science is the new American frontier, and mathematics is the language of science. New pioneers in all fields of science, engineering, and technology will need to be experts in this language.

At the same time, the nature of mathematics has changed drastically. A broader conception of the subject today has stimulated amazing new theoretical developments, and in turn has led to new possibilities of application in the physical, biological, and social sciences. There are more research mathematicians alive today than the total number in the several thousand-year history of the subject.

Our colleges are being called upon to fill an endless need for professional mathematicians, for mathematically trained scientists, and for a variety of mathematically skilled personnel in hundreds of activities. Our business schools often demand the very newest techniques developed by the mathematician. Medical research may soon require mathematical training comparable to that required of the nuclear physicist. Our engineers must be prepared to meet the needs of the rapidly changing American technology. The new industrial revolution - automation - each year demands many thousands of mathematically trained men and women to command our "giant brains".

Such topics as operations research, linear programming, theory of games, stochastic processes, and machine simulation were unheard of a generation ago. Today government, industry, and our universities are clamoring for more experts in these fields.
Vast sums of money are being spent by the United States government—through the National Science Foundation, the Department of Health, Education, and Welfare, and the research arms of the various military services—to increase the amount of new mathematics produced and to interest more students in a scientific career.

It is fair to say that mathematics will play a central role in the American culture of tomorrow. We must train our young men and women to be able to attack and solve problems that did not exist when they attended school; problems which require the ability to think mathematically. This requires an educational system that teaches not only fundamental mathematical techniques, but stresses understanding and originality of thought in its mathematics courses. It is this new emphasis on the role of mathematics, the new demands made upon mathematical education, and the broader view of the nature of mathematics itself which motivates these recommendations.

The rate of development in mathematics since 1900 has been truly amazing. There are hundreds of journals all over the world reporting on the most recent discoveries in both pure mathematics and in its ever increasing applications. Our educational system has until recently not responded to these developments. We find thousands of people who now regret their failure to appreciate earlier the significance of mathematics in the modern world and who must return to college later in life to learn techniques demanded by their professions.

Our teachers on all levels, in primary and secondary schools as well as in colleges, must be competent to teach mathematics with an understanding of traditional mathematics and an appreciation of the modern point of view; and they must be able to convey to our students a new insight into the nature of mathematical thought and of its role in our culture. The training of these teachers should be one of the primary concerns of our civilization.

INSTALLATION OF NEW CHAPTERS
The seventy-sixth chapter of Pi Mu Epsilon, Louisiana Beta, was installed at Southern University on October 14, 1960, with Director-General J. Sutherland Frame present as installing officer. The campus of Southern University is about fifteen miles north of Baton Rouge, on the Mississippi River.

Professor Frame presented the charter to the following charter members: Matthew Crawford, William Fun, John Gipson, Carolyn Hines Harris, Emma Dee Jenkins, Percy Lee Milligan, Rogers Newman, Delores Spikes, Harry Washington, Lloyd K. Williams. Additional members initiated were: Trenton Cooper, Clyde L. Duncan, Carolyn Jacobs, Frances Kraft, Frankie B. Patterson, Leroy Roquemore, Washington Taylor, Llewellyn S. Whitlow, David Williams, Winifred W. Williams.

Professor Frame had a busy afternoon the day of the installation ceremonies. At 1:30, he gave a talk on "Space Drawings with the Trilinear Ruler" to a class of twenty-five. At 4:00 p.m., he gave a lecture on "A Bridge to Relativity Theory". The installation took place at 5:15. This was followed by a banquet at 7:00 p.m., attended by about thirty people, including President Felton Clark and Dean Harrison of Southern University. After several short informal speeches by members present, Professor Frame concluded the program with a talk on the history of Pi Mu Epsilon.

Professor Frame says, "I feel that Southern will accept the challenge and develop an active chapter".

On November 15, 1960, the seventy-seventh chapter of Pi Mu Epsilon, Gamma of North Carolina, was launched, at North Carolina State College in Raleigh.

Professor Frame was again installing officer. At 4:00 p.m., he gave a lecture on "Continued Fractions" to an audience of sixty people, including Professor W. T. Whyburn from the University of North Carolina in Chapel Hill, representing the North Carolina Beta Chapter, and Professor F. G. Dressel of Duke University, representing the Alpha Chapter of North Carolina. Immediately after the talk, fourteen students were installed as charter members of the new Gamma Chapter.

The banquet at 6:30 p.m., was attended by the charter members, some faculty members, and a few guests. Professor Frame talked briefly on the history of Pi Mu Epsilon.

Speaking of the new chapter, Professor Frame says, "This group of students appears to have been carefully selected out of a much larger number of eligible students, and I believe that a strong chapter will be active in Raleigh".

While on his two installing trips, Professor Frame had the opportunity to visit the Pi Mu Epsilon chapters at Louisiana State University and the University of North Carolina. At the former university he lectured to a meeting of the chapter, while at the latter university, he was entertained at luncheon with student members.
DEPARTMENT DEVOTED TO CHAPTER ACTIVITIES

EDITORS NOTE: According to Article VI, Section 3 of the Constitution: "The Secretary shall keep account of all meetings and transactions of the chapter and, before the close of the academic year, shall send to the Secretary General and to the Director an annual report of the chapter activities including programs, results of elections, etc." The Secretary General now suggests that an additional copy of the annual report of each chapter be sent to the editor of this department of the Pi Mu Epsilon Journal. Besides the information listed above, we are especially interested in learning what the chapters are doing by way of competitive examinations, medals, prizes, scholarships, news, and notices concerning members, active and alumni. Please send reports to Chapter Activities Editor Houston T. Karnes, Department of Mathematics Louisiana State University, Baton Rouge 3, Louisiana. These reports will be published in the chronological order in which they are received.

REPORTS OF THE CHAPTERS

ALPHA OF VIRGINIA, University of Richmond.

The Virginia Alpha Chapter held six meetings during the academic year of 1959-60. The following papers were presented:

"Four-Dimensional Graphs of Complex Functions" by Mr. Malcolm Murrill
"Logical Systems" by Professor H. P. Atkins
"The Four-Color Problem" by Paula Williams
"The Development of a Formula for the Normal Age Distribution of a Population" by Marie Grasty
"The Development of Logarithms" by Edith Jones
"A Mathematical Treatment of Error" by William J. Bugg

Activities during the year included the annual banquet at which Professor Tibor Rado of Ohio State University gave a speech on "Mechanical Brains." Winners of the prize examinations for students in elementary courses were: Freshman Mathematics: tie between Patricia Long, Maurice Novick and Ronald Powers. Sophomore; first prize, Joyce Chang; second prize, C. Y. Man.

Officers for 1959-60 were: Director, Paula Williams; Vice-Director, William E. Seward; Secretary, Anne Loving; Treasurer, William J. Bugg.

Officers for 1960-61 are: Director, Joyce Steed; Vice-Director, Raoul L. Weinstein; Secretary, Ann Jones; Treasurer, Betty Pritchett.

INITIATES

ALABAMA BETA, Auburn University, (January 17, 1961)

Edward B. Anderson
Arthur D. Carpenter
David Livingston Colbert
Eldridge R. Collins, Jr.
Ralph S. Cunningham
Robert E. Hammett
John Taylor Hannon, Jr.
Royce D. Harbor

Cordelia Houston
John David Lewis
Alfred LaSeine
Janie Lomax
Lewis C. Martin, Jr.
John B. McManus
Joel W. Muchenhauser
Thomas L. Osborne

William Steve Pesto
Philip Frank Pollacia
Thomas AlSaunders
Peggy Jo Smith
Bruce L. Spencer, Jr.
Nathan Wayne Stark
Dwight L. Wiggins, Jr.
Edward L. Willis

ARIZONA ALPHA, University of Arizona, (May 5, 1961)

Robert W. Blum
James Bunch
Michael Calderon
Hal W. Crawford
Tomas C. Darre
Wayne Dawson

Robert H. Devore
Herbert Goulabian
Larry J. Hall
Howard Jelinek
Vuyli J. Klassen

ARKANSAS ALPHA, University of Arkansas, (November 18, 1960)

James B. Barkendale
Ronald Dunin Davis
Freida Carol Davis
William Brian Disney
David W. Dubbelt
Nora Lee Ford
Travis J. Galloway
Justin J. Garrett

J. D. Hunsard, Jr.
Holly Louise Hertrick
Ernest Loyd Haskewood
Charles Everett Head
William Higgenbottom
Lillie E. Johnns
William King Johnston

Robert M. Merrifield
Allan Wayne Parse
Robert V. Lee, Jr.
James W. Miller, Jr.
Peter G. Nelson
Eugene V. Sherman
Gerald N. Soma
John B. Terry

CALIFORNIA ALPHA, U.C.L.A. (January 18, 1961)

William E. Adams
Barry Boehm
Stephen Bornstein
Wilbur Edwin Bosarge
Donnel Briggle
Wayne S. Carpenter
Cheryl Clark
John Alexander Copeland, III
Lillie A. Galt
Gary D. Darby
Caleb Davis
Frank Falch
R. Don Freeman

Michael D. Fried
Robert E. Greene
Paul F. Gruber
Theodore Gunn
Lon Day Hadden
Llewella L. Hall
Carolyn L. Harris
Mary Ellen Jones
Edward Landesman
Joseph Carby Mendez

Ronald Lee Olive
Eugene Robkin
Robert Rodman
Edward Scher
Donald Lamed Smith
Judith C. Soren
in George Stem
Keith F. Taylor
John Varady
Donald Wilken
Lynda L. Wolfinger

James W. Shiver
Lawrence A. Smith
Richard Clinton Walk
Ruth Wright Wing

FLORIDA BETA, Florida State University, (November 9, 1960)

Ann Carol Brennan
George William Crofts
Linda Ruth Eliot
Esther E. Elizabeth Harves

Julia Katherine Hobbs
Mary Patricia Kelley
Donald Joseph Kiser
Jim Wade Miller, Jr.

FLORIDA BETA, University of Georgia, (December 15, 1960)

James H. Anderson
John W. Boyd, Jr.
Patricia A. Bradberry
John Lane Dolvin
Allen Lee Echols
Mack Earnest Elder, Jr.
Linda Hope Evans
Joseph Faber
Lillian Louise Greene

James M. Hartly, Jr.
Laura Augustay Hay
Gordon C. Howell, Jr.
Mildred Louise Hyde
Dewitt Earl Lavender
Eileen Little
George Lane Maness
James Virgil Peavy

John Richard Ray
Rosalie Seymour
Robert Glenn Stockton
Vesta Lois Stovall
Lucy Carol Watrous
Sara Ellen Weaver
Mary Frances Wellborn
Ramona E. Westbrook
Nancy Claire Wright
ILLINOIS BETA, Northwestern University, (November 13, 1960)

Sara Aylanian
Robert Beck
Ruth M. Chatley
John Bryson
John L. Cooper
David A. Dixon
Alvin W. Flisterup

Louis Goldberg
Charles F. Hepner
Gerald W. Iseler
R. T. Malmgren
Winfred L. Morris
Arthur Palmer

John Roberson
Charles Rulon
Joel W. Russell
Elmer Schaefer
Philip Schaefer
Thongg Tourville

IOWA ALPHA, (January 31, 1961)

Glen Albers, Jr.
Kendall E. Atkinson
Ruben B. Babayan
Gerald R. Baumgartner
Robert F. Berry
Payy E. Chase
Norman B. Dillman
Susan Jane Dobson
Judy G. Doug
Richard C. Eden
William F. Egleston

Lyle A. Feisel
Charles A. Goben
Raymond R. Guenther
William M. Hartman
Dan Andrew Hayes
Eugene W. Holden
Kempston L. Huenet
Bong Taick Kown
Kenneth C. Krumpel
Marvin M. Lentner
Orval G. Lorimer

Joyce Elaine McGee
Richard Keith Miller
Sidney Dean Nolte
John Robert Peterson
Paul C. Phillips
Robert Nelson Sackett
Carol J. Schultz
Jan D. Schwitter
Wayne H. Specker
Jerry R. Tennant
William J. Wahn

KANSAS ALPHA, University of Kansas, (November 30, 1960)

Rebecca Ann Brown
Player E. Cook
Harold W. Fearing
Frank Feick
Emilie Louise Hopkins

Joseph L. McNicolls
Donald A. Morris
Andrew Page
Robert Keith Remple
F. Edward Spencer, Jr.
Howard L. Taylor

Marvin E. Turner
Neal Wagner
B. Hobson Wildenthal
John Wold
Charles W. S. Ziegenhus

KANSAS GAMMA, University of Wichita, (December 8, 1960)

Mufid Abla
John R. Burchfield
Bruce K. E. Donaldson

Lawrence Camden Gerlow
Michael J. Mailhiet
Maganbhai P. Patel
John Bart Sevart

Alan Leon Shore
Verl K. Speer
Lawrence Taylor

KENTUCKY ALPHA, University of Kentucky (December 15, 1960)

John Crawford Adkins
Mary Edna Logan

Charles W. Plummer
James H. Rolf
Jacoab Regina Smits

LOUISIANA BETA, Louisiana State University, (November 7, 1960)

Patricia Ann Aeadole
Thomas Loris Boullion
Alton Aubrey Braddock
George M. Chandlee, Jr.
William Bissellaton
Robert V. Courteyn
Gasten M. Dubrock, Jr.
Marlin Dutt

Jeffrey Bert Fariss
Eugene Lance Forse
Rex Elwyn Fox
Ted Thomas Gradolf
Dudley W. Griffith
Patricia Rae Hedblom
Anuar Emir Mahomar
Carey Siemore Mathis
Betty Jo Neal

Valgene Otto Peters
John M. Rucker
Sarah Abernethy Ruse
Walter E. Schlemmer
Robert Carl Smith
Henry Howard Thoyre
Ann T. Tinsley
John Franklin Wheeler

LOUISIANA ALPHA, (September 27, 1960)

Trenton Cooper
Clyde L. Duncan
Carolyn W. Jacobs

Frances S. Kraft
Frankie B. Patterson
Leroy C. Roquemore
Washington T. Taylor

MISSOURI ALPHA, University of Missouri, (December 5, 1960)

John Howard Anderson
William E. Beckner
James Robert Bickel
Robert Rush Bigger
Walter Robert Bowles
George Russell Brower
John Howard Courtland, Jr.
James Chih Chen
Charles Claude Cox
Ronald Gregg Craven

Jerrod Lra England
Paul Willard Geer
William Alfred Gates
Larry Laverne Gilworth
Gerald Lee Joe
Eldon Eugene Heaton
J. V. Hood
Willis Gall Jones, Jr.
Jery Alan Jouret
Marshall Kai Lee

NEBRASKA ALPHA, University of Nebraska, (December 14, 1960)

James Arnold Anderson
John Howard Courtland, Jr.
Roger D. Bengston
David Harold Bliss

Fred William Foss
Gary Gene Gilbert
Francis Marvin Green
Louis Earlyton Lamerry

NEW JERSEY BETA, Douglass College, Rutgers University, (October 17, 1960)

Jean Shropshire Harris

NEW JERSEY ALPHA, Rutgers University, (April 4, 1961)

John Joseph Akloinis
Joseph F. Baumgarden
Robert Lorenz Boysen
Anthony Cerami
Norman Farber
George William Feusel
Jay Shelday Fein
Arthur T. Galya
Michael H. Hagler
Daunants Hamers
Hamilton Paul Herzo

John Richard Horvath
Allan Jenks
Kenneth R. Jungblut
Nicholas Joseph King
John Kjellgren
Arturas Krumins
George T. Kwiatkowski
Walter S. Korolow
Donald R. Lehman
John A. MacDonald
Nickolas M. Miskovsky
Edward A. Page

NEW MEXICO ALPHA, New Mexico State University, (December 15, 1960)

Elias M. Armijo
Eileen M. Arnold
Benjamin A. Arnholdt
Dennie R. Cartridge
Alfred C. Carver

William L. Caudle
Walter B. Miller
Edmund J. Peake, Jr.
Carol L. Peery
Anthony J. Perrotto

NEW MEXICO BETA, New Mexico State University (February 10, 1961)

J. Mack Adams
John E. Caine
Richard D. Davis
Lamoreta L. Hosten
Jimmie L. Johnson
Richard E. Johnson

Kenneth E. Guthrie
Darel W. Hardy
Ernest G. Holman
Jimmie L. Johnson
Richard E. Johnson

Llewellyn Whitlow
M. Miles Williams
Winfred W. Williams

Helene Lowoss
Sara Aslanian

Dennis Lee Fear

William F. Egleston

Joyce Elaine McGee

Eugene W. Holden

Joe Alexander

John Howard Anderson

Percy Lee Milligan

Carolyn W. Jacobs

Dennis Lee Fear

Carolyn W. Jacobs

Robert F. Berry

John R. Burchfield

Nebraska State University, (February 10, 1961)

Mary Edna Logan

Jerry A. Jouret

Eugene W. Holden

John Franklin Wheeler

Michael H. Hagler

Dennis Lee Fear

Charles W. Plummer

Louis Earlyton Lamerry

William F. Egleston

John F. Anderson

Mary Edna Logan

William F. Egleston

Louis Earlyton Lamerry

Mary Edna Logan

Louis Earlyton Lamerry
NEW YORK BETA, Hunter College, (November 2, 1960)

Karin Alff
Elizabeth Bradbury
Samuel Chapman
Judith Cohl
Patricia Joyce
Charles Mustiele
Ann Nelson

NEW YORK GAMMA, Brooklyn College, (November 28, 1960)

Lawrence Chimerine
Robert Cohen
Sandra Klein
Robert S. Mankin
Elaine R. Morrill
Thomas A. Mormino
Eric H. Ostrov
Isaac R. Fiebiger

NEW YORK EPSILON, St. Lawrence University, (October 15, 1959)

Lila J. Brush
Herman Hagedom
Anita Hills
Antonia Hoffmann
Carol Lachenbach
Loyd Landau
Richard Palmer
Bruce Roberts
Robert J. Robinson
Richard C. Smith
Margaret Potter
Richard Waterman
Barbara Zeldler

NEW YORK ETA, University of Buffalo, (Fall, 1960)

Jerry Ehman
Robert Kindy
Jerold McClure
Robert Pompl
Robert Stalder
Mrs. Cynthia Ritvo
Robert Smith
Donald Trasher
Richard Uschold

NEW YORK IOTA, Polytechnic Institute of Brooklyn, (June 15, 1960)

Jerome Dancis
Marc Piotkin
Errol Pomerance
Janett Rosenberg
Lester A. Rubenfeld
Sheldon Trubatch

NEW YORK KAPPA, Rensselaer Polytechnic Institute, (June 6, 1960)

Dr. Edwin Brown Allen
Stuart Antman
Jerry Bank
Spero Criesia
Jack Friedman
Thomas Giammo
Robert Grewold
Jack Hoffman
Eric Jaede
Martha Jochnowitz
Theodore Jungreis
Harold Langworsky
Stephen Meskin
Richard Roth
Dr. Robert Talham

NORTH CAROLINA ALPHA, Duke University, (December 15, 1960)

Perry Rutledge Grace
Gary W. Huss
Margery Ann Katz
Janice Edna Murphy
John Bradbury Reed
John S. Thaeler
John Randolph Tinnell

NORTH CAROLINA BETA, University of North Carolina, (November 4, 1960)

Edwin John Blythe, Jr.
Warren J. Bose
William J. C. Boykin
Larry Wesley Brown
John R. Dowdle
Julia Dunning
Ian Morgan Happer
Shirley Ann Harris
John Charles Hellard
Hughes Bayne Hoyle, III
James Lee Kene
George G. Killough
Sigrid B. Lund
Kay Nichols Lynn
David Franklin McAllister
Ralph Connor Reid, Jr.
Clyde Gordon Roberts
Robert Charles Rohfs
Lewis Odie Rush, Jr.
Robert L. Sanderson
Francis Gerald Smith
Kosmo Davis Tatilas
Wilfred Turner
Emmanuel Veth
John Bacon Wagoner
Grayson Howard Walker

OHIO BETA, Ohio Wesleyan University, (April 13, 1961)

John Findley Berglund
Suellen Bowden
Ernest L. Glickman
Paul C. Hart
Lewis H. Jones IV
Constandy Khali Kouy
Leslie H. Leighton
Patricia S. Martin

OKLAHOMA ALPHA, University of Oklahoma, (December 8, 1960)

Paul M Barry
Holland Ford
Robert L. Kinzer
Thomas A. Lewis
Katie Richards
Thad B. Welch, Jr.

PENNSYLVANIA ALPHA, University of Pennsylvania, (January 10, 1961)

Leon H. Assassourian
Stephen M Belikoff
Kenneth Brait
John E. Burroughs
Frank C. Calzel
Raymond W. Carlson
Deborah F. Chemock
Peter J. Cleland
Peter M. Cornittor
John W. Docktor

NORTH CAROLINA BETA (cont’d), (December 16, 1960)

Anil Kumar Bose
Joan Brooks
Henry Lee Butler
James L. Comer
John David Harrell, Jr.
Camilla Joseph
George J. Michaelides
Sandra G. Ness
Stewart B. Priddy
James A. Reneke
Miriam G. Shoffner
Nathan Simms, Jr.
William H. Turner
Albert R. VanCleave
Richard P. Whittaker

NORTH CAROLINA GAMMA, North Carolina State College, (October 20, 1960)

Joel Vincent Brawley, Jr.
Walter Bradley Comings
Robert Dabney Davis
Peter Murray Gibson
Reid Kent Gryder
Betty Gall Harris
Arthur Bruce Hoadley
Jon Russell Hosell
William Patrick Kolodny
Ronald Lee Olive
Richard Wayne Philbeek
Thomas Proctor, HI
Jerry Allen Roberts
Robert Jones Smith
James Thompkin
Spence Timothy
Nugent David Boyce Tangle
Fred Toney, Jr.
Kappe Duane Wait
Robert M. Waddell
Grover Karl Warmbrod
Stevie Mike Ylonoulis

OKLAHOMA BETA, University of Oklahoma, (December 8, 1960)

Paul M Barry
Holland Ford
Robert L. Kinzer
Thomas A. Lewis
Katie Richards
Thad B. Welch, Jr.

PENNSYLVANIA ALPHA, University of Pennsylvania, (January 10, 1961)

Leon H. Assassourian
Stephen M Belikoff
Kenneth Brait
John E. Burroughs
Frank C. Calzel
Raymond W. Carlson
Deborah F. Chemock
Peter J. Cleland
Peter M. Cornittor
John W. Docktor

NORTH CAROLINA BETA (cont’d), (December 16, 1960)

Anil Kumar Bose
Joan Brooks
Henry Lee Butler
James L. Comer
John David Harrell, Jr.
Camilla Joseph
George J. Michaelides
Sandra G. Ness
Stewart B. Priddy
James A. Reneke
Miriam G. Shoffner
Nathan Simms, Jr.
William H. Turner
Albert R. VanCleave
Richard P. Whittaker
NOTICE TO INITIATES

On initiation into Pi Mu Epsilon Fraternity, you are entitled to two copies of the Journal. It is your responsibility to keep the business office informed of your correct address, at which delivery will be assured. When you change address, please advise the business office of the Journal.
The Most
Distinguished Mark in Fraternity Jewelry

YOUR GUARANTEE OF . . .

PERFECT SATISFACTION
- UNMATCHED QUALITY
- COMPLETE SECURITY

OFFICIAL JEWELER TO PI MU EPSILON

IN CANADA L. G. BALFOUR COMPANY, LTD. MONTREAL AND TORONTO

AVAILABLE

There are a limited number of back issues of the Journal available.
The price: less than six copies, fifty cents each; six or more, twenty-five cents each.

Send requests pre-paid to:
Pi Mu Epsilon Journal
St. Louis University
221 N. Grand Avenue
St. Louis 3, Missouri