

## e

VOLUME 3
NUMBER 9

## CONTENTS

Undergraduate Research in Mathematics at the Naval Academy-J. C. Abbott. ..... 453
The Absolute Value of a Matrix-J. R. Michel ..... 459
Problem Department ..... 471
Unique Research Role for Mathematicians-L. W. Tordella ..... 477
Mathematics Teachers Needed Overseas- Peace Corps Announcement ..... 479
Book Reviews ..... 480
Books Received for Review., ..... 485
Initiates ..... 489
FALL ..... 1963

PI MU EPSILON JOURNAL
THE OFFICIAL PUBLICATION

Seymour Schuster, Editor

## ASSOCIATE EDITORS

Franz E. Hohn Murray Klamkin
Rita Vatter, Business Manaaer

## GENERAL OFFICERS OF THE FRATERNITY

Director General: J. S. Frame, Michigan State University Vice-Director General: H. T. Kames, Louisiana State University Secretary-Treasurer General: R. V. Andree, University of Oklahoma
Councilors General:

Josephine Chanler, University of Illinois Roy Dubisch, University of Washington Kenneth O. May, Carleton College Francis Regan, St. Louis University

Chapter reports, books for review, problems for solution and solutions
to problems, and news items should be mailed directly to the special to problems, and news items should be mailed directly to the special respondence, including manuscripts should be mailed to THE EDITOR OF THE PI MU EPSILON JOURNAL, Minnemath Center, University of Minnesota, Míatioplis. Minnesota 55455.

EI EPS EPILON JOURNAL is published semi-annually at the University of

Suncip: S PRICE: To Individual Members, $\$ 1.50$ for 2 years; to NonMemers and . iraries, $\$ 2.00$ for 2 years. Subscriptions, orders for back numbers tisinc shoul Center, Unity

UNDERGRADUATE RESEARCH I N MATHEMATICS AT THE NAVAL ACADEMY

## J. C. Abbott, U. S. Naval Academy

In recent years there has been a growing interest in undergraduate research and independent study in mathematics. Much of this new interest is due to the upgrading of both pre-college and college curricula so that students are proceeding at an accelerated rate and, at the same time, are encouraged to take a real interest in "modern mathematics." Further impetus has been supplied by the National Science Foundation through its Undergraduate Science Education Program. This program supplies financial aid to students and schools to encourage gifted students to undertake individual projects apart from the regular curriculum. The principal difficulty in the field of mathematics is that genuine research problems are generally inaccessible to all but advanced graduate students and professional mathematicians. Consequently many of the proposals for undergraduate independent study are apt to degenerate into reading courses not offered in the regular curriculum, or are, at best, library research papers. The purpose of this paper is to describe a rather unique program which has been under development at the Naval Academy on an experimental basis during the past three or four years.

The mission of this program, like many others throughout the country, is to give selected students an early opportunity to see mathematics as a mathematician sees it, as a living, growing science with unexplored frontiers, rather than simply as a hand-maiden for the physical sciences. Too many undergraduates still see mathematics only as a collection of algorithms for solving different typed problems. They seldom have an opportunity to formulate their own concepts and feel the excitement of discovering their own proofs of their own theorems, which is the true fun of mathematics. The program at the Naval Academy is designed to present just such an opportunity to at least, a few students willing to work for the reward of scientific achievement.

The principal innovation of this particular program is its organization as a group activity around a single central theme developed by the students themselves over a period of years. Thus, it is a seminar in the true meaning of the word, a small group of students working together to create new theories in which each is able to make a specific contribution. The program originated three years ago with a single student who spent a year and a half working on an assigned problem in boolean algebra. This project led to a paper which was read to a sectional meeting of the Mathematical Association of America and to the Eastern Colleges Science Conference. Since then two other students took up this same problem and developed it further. They also presented their results to professional audiences. At present two juniors and two seniors are carrying on the work by writing additional papers in allied topics.

The specific topic around which the program has grown has been the development of boolean algebra from a new point of view. The central idea was not unheard of before, and, in fact, was suggested as early as 1880 by C. S. Pierce, but has never been carried out to its logical conclusion. We begin by considering the single set operation known as implication. If $A$ and $B$ are two arbitrary subsets of some universal set, $U$, then their implication product is the set of elements of $U$ either not in $A$ or in B. In classical notation this is written $A^{\prime}$ B where ' stands for set complement and is set union. Here we abbreviate it simply as $A B$ and call it implication. (The terminology stems from the fact that, in logic, $p$ implies $q$ means either not p or q.) We now define an implication algebra of sets as any collection of subsets of some universal set, $U$, which is closed under set implication. It is now easy to verify that this operation satisfies the three following fairly simple laws: P1: (AB) $A=A, \quad P 2: \quad(A B) B=(B A) A, \quad P 3: \quad A(B C)=B(A C)$ which we call contraction, quasi-commutativity, and exchange. Using set theory as a model, we now define an abstract implication algebra to be a set, $I$, of elements, $\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots$. closed under a single binary operation which satisfies these three laws as postulates. What is not quite so obvious is that, conversely, these three laws themselves are sufficient to characterize a very
large portion of the algebra of sets. In fact a boolean algebra can be 455 characterized as an implication algebra which satisfies the one additional postulate P4: there exists an element 0 saitsfying oa $=$ aa for all a in I.

For those who would like to try their hand in the early phases of the
subject, we suggest the following: show that the square of any element is a constant in the algebra; we denote it by $u$. Show that $u$ is a left identity, and, at the same time, a right zero ( $a u=u$ for $a l l a)$. Then solve the word problem with two letters, i.e., determine all possible elements that can be generated from two free elements a and b using only P1-P3. Determine their implication table. As a further exercise, define $a \quad b$ if and only if $a b=u$. Show that is a partial order, and that, with respect to this partial order, I is a join-semi-lattice, but is, in general, not closed under greatest lower bounds. This is only the beginning, but will give some idea of the kind of computations that must be performed.

Mathematics abounds in examples of implication algebras. First of all, any boolean algebra is an implication algebra, so that all examples of boolean algebra are candidates. On the other hand, the set of all non-empty subsets of arbitrary set forms an implication algebra which is not a boolean algebra. Furthermore, the operation of set subtraction, A-B, also satisfies P1-P3, so that any collection of sets closed under subtraction is also an implication algebra. For example, the set of finite subsets of any infinite set is such a case. In fact, abstract set theory itself is a second such example, which is again not a boolean algebra. There is no greatest set On the other hand implication algebra bears the same relation to the positive calculus of proportions (without negation) as does boolean algebra to the full calculus. Hence, logic is a rich field for applications. Finally, for the topologists, if the word neighborhood is taken to mean any set with a non-empty interior, then the set of neighborhoods of a topological space is a further example. In fact, we can use implication algebra to formulate the very term "topological space." Many other specific examples of finite and denumerably infinite algebras have also been concocted to illustrate
various aspects of the subject.
Implication algebra is not only rich in applications, but also has a very classical algebraic structure and can therefore be used to illustrate many notions from abstract algebra. In particular, since only a single basic operation is involved, it is natural to turn to group theory as a source of concepts. This is contrary to the popular impression that boolean algebra requires two distinct operations and therefore must be developed either as a special kind of lattice or by analogy with the theory of rings, not groups. Thus, the student can write his own definition of a homomorphism using the same definition as in group theory. He then can define an ideal by analogy with a normal subgroup and a congruence relation in terms of ideals. The basic theorems of elementary group theory can then be restated for implication algebras, but the proofs must be entirely different, since the basic arithmetic is so different. Hence the student is given an incentive to study group theory, not just as a collection of theorems and proofs in a text book, but as a source of concepts needed in order to develop his own theory. The very fact that implication is neither commutative nor associative in itself creates a fascination, while, at the same, the simplicity of the postulates makes it possible for even an undergraduate to achieve new results. On the other hand there is enough challenge in the development of the more sophisticated aspect of the subject to keep the student's interest.

The earliest papers showed the relationship between implication algebra and classical boolean algebra. Specifically, it was shown that every implication algebra can be imbedded in a boolean algebra. This paper required the development of ideal theory which has become one of the major tools for further developments. The latest papers included a representation theory for implication algebra in terms of set theory, essentially an extension of Stone's results for boolean algebra, and a development of the Jordan-Holder Theory for ideals in implication algebras. This final paper also included some new isomorphism theorems which have no counterparts in group theory. Papers underway at the present include a study of free algebras with either a finite
or denumerably infinite number of generators, the programming of a computer for the solution of certain word problems, a study of the relation of
implication aldebra to brouwerian lattices, a completion process using dedekind cuts, applications to logic and topology, etc. Many other topics simply await interested students to investigate them. Perhaps some of the readers of Pi Mu Epsilon may find sufficient interest to enter the field.

We conclude with a few comments about the organization of the program for those who might be interested in forming their own projects. The program is based on a weekly seminar. Students may enroll at the middle of their sophmore year after completing the calculus and one semester of modern algebra. The first phase of the program is devoted to building up a background of a now classical nature. Topics include set theory, relations and functions,
partially ordered sets, lattices, the axiom of choice and classical boolean algebra. This part of the program is conducted mostly on a lecture system, but carries no official recognition, has no formal requirements, gives no tests or grades, etc. Reading assignments are suggested and students are encouraged to give lectures themselves on special topics from time to time. The only true incentive is the knowledge gained, and the seminar is open to anyone. Frequently, students complete this phase of the program for the material it contains even though they do not wish to work on a project.

The second phase usually begins by the fall of the junior year and is devoted to a review of the known results in implication algebra as previously obtained by past graduates. During this phase frequent side issues arise which give the students their first opportunity to work out some new theorem, or reformulate past results. This gives the student his first opportunity to present results to the rest of the seminar for discussion and suggestions. Results obtained are often the joint efforts of more than one student. These results are then written up into the notes for the use of future members. Again, this phase lasts for approximately one semester.

The final phase consists of work on individual projects which may take anywhere from a year to a year and a half to complete. Successful projects
terminate in the writing of a paper which, if acceptable, is awarded a three semester hour credit, the only official recognition of the program. During this phase, the seminar continues to meet regularly for discussion of the various projects, giving all the studerits an opportunity to keep abreast of the others and permitting mutual criticism and suggestions from the group. Student activity now becomes the heart of the program rather than formal lectures.

Hence, the goal of the program is met when undergraduates are given a $c$ hance to read mathematics, to talk mathematics and to write mathematics, i.e., to act like mathematicians. They learn that mathematics has unsolved and unsolvable problems and they gain a sense of mathematical maturity not generally available to undergraduates. The success of the program is the enthusiasm of the students themselves who all acclaim, universally, that this program is the salient feature of their undergraduate education. It is hoped that this success may encourage others elsewhere to undertake similar projects.

## the AbSOLUTE VALUE Of A MATRIX*

Introduction. Function of a Matrix. The idea of a function with a matrix argument is not new. For the matrix $A$, matrix expressions for $e^{A}$, the Taylor series in $A$, polynomials in $A$, and transcendental functions of A are well known. See [2].

The absolute value of a matrix $A=[a p q]$ whose elements are complex numbers of functions was defined by J. H. M. Wedderburn [4] to be the scalar $\sum_{p, q} \mathbf{a}_{\mathrm{pq}} \cdot \bar{a}_{\mathrm{pq}}$. The definition to be given in this paper is motivated by a different view. We shall give a matrix expression for abs A by using the absolute value function to define a mapping of matrices onto matrices. Then, the properties of the function matrix will be discussed and the paper will conclude with an interesting result which can be seen analogous to the polar factorization of a complex number.

Before discussing the absolute value function, a discussion of the general definition of functions of matrices to be applied is in order. The definition of a function of a matrix most useful to the purpose of this paper is given by Gantmacher [1] and is summarized below.

Let $A$ be a square matrix of order $n$ and $f(x)$ a function of a scalar argument $x$. We wish to define what is meant by $f(A)$; that is, we wish to extend the function $f(x)$ to a matrix value of the argument.

If $f(x)$ is a polynomial,

$$
f(x)=a_{t} x^{t}+a_{t-1} x^{t-1}+\ldots+a
$$

we define $f(A)$ to be the matrix

$$
\begin{equation*}
f(A)=a_{t} A^{t}+a_{t-1} A^{t-1}+\ldots+a_{0} I . \tag{1}
\end{equation*}
$$

*This paper was written under the supervision of J. L. Zemmer and submitted to the Honors Council of the College of Arts and Science, University of Missouri, as part of the requirement for the B. A degree with Honors in Mathematics.

Using this special function of a matrix as a basis, we can obtain a definition of $f(A)$ when $f(x)$ is not necessarily a polynomial but an arbitrary function. To do this certain terms defined in the following paragraphs will be used.

Definition 1. A scalar polynomial $\varnothing(x)$ is called an annihilating polynomial of the square matrix $A$ if $\varnothing(A)=0$. An annihilating polynomial $u(x)$ of least degree and highest coefficient one is called a mal polynomial of $A$ If $p(x)$ is any annihilating polynomial, then $\sim(x I$ is divisible by $u(x)$.

By the well-known Cayley-Hamilton Theorem, the characteristic poly-
nomial of $A, \Delta(x)=\operatorname{det}\left(A^{-} x I\right)$ is an annihilating polynomial of $A$ but it is not, in general, a minimal polynomial. Let

$$
\begin{equation*}
u(x)=\left(x-k_{1}\right)^{m_{1}}\left(x-k_{2}\right)^{m_{2}} \ldots\left(x-k_{s}\right)^{m_{s}} \tag{2}
\end{equation*}
$$

be the minimal polynomial of Awhere $k_{1}, k_{2}, \ldots, k_{s}$ are the characteristic roots of $A$ and the degree of the polynomial is the sum of the multiplicities of the roots

$$
m=\sum_{i=1}^{s} m_{i}
$$

Definition 2. Given the arbitrary function $f(x)$, consider
(3) $\quad f\left(k_{i}\right), f^{\prime}\left(k_{i}\right), f^{\prime \prime}\left(k_{i}\right), \ldots, f^{\left(m_{i}-1\right)}\left(k_{i}\right), i=1,2, \ldots, s$, and $m_{1}$ is the multiplicity of $k_{1}$ in the minimal polynomial of $A$, (2). The $m$ numbers in (3) will be called the values of the function $f(x)$ on the spectrum of the matrix $A$, denoted by $f\left(X_{A}\right)$.

We may now proceed to prove a valuable theorem:
THEOREM 1. If $p(x)$ and $q(x)$ are polynomials which assume the same values on the spectrum of $A, p\left(X_{A}\right)=q\left(X_{A}\right)$, then

$$
p(A)=q(A)
$$

Proof. We will use the following well known result from a theorem in
the theory of equations: If $h(x)$ is a polynomial, then $k$ is a root of $h(x)$ of multiplicity $m$ if and only if $h(k)=h^{\prime}(k)=\ldots=h^{(m-1)(k)=0 .}$ To use this result: Consider the difference $d(x) \stackrel{p}{\equiv} p(x)-q(x)$ of the two polynomials above. Since $p$ and $q$ have the same values on the spectrum of $A, d\left(k_{i}\right)=d^{\prime}\left(k_{i}\right)=\ldots=d^{\left(m_{i}-1\right)}\left(k_{i}\right)=0$ for $i=1,2, \ldots, s$. Then, by the theorem cited above, $k_{1}, k_{2}, \ldots, k_{s}$ are roots of $d(x)$ and
 from (2), the definition of the minimal polynomial, $d(x)=u(x) t(x)$. Since $u(A)=0$, it is seen that $d(A)=p(A)-q(A)=0 \cdot t(A)=0$, and $p(A)=q(A)$ as was to be shown.

The definition of $f(A)$ in the general case can be made subject to the principle of the above theorem. That is, the values of the function $f(x)$ must determine $f(A)$ completely, or, in other words, all functions $f_{i}(x)$ having the same value on the spectrum of A must have the same matrix value, $f(A)$

Definition 3. If the function $f(x)$ is defined on the spectrum of the matrix A, and

$$
f\left(x_{A}\right)=p\left(x_{A}\right)
$$

where $p(x)$ is an arbitrary polynomial that assumes on the spectrum of $A$ the same values as does $f(x)=$

$$
f(A) \stackrel{D}{\equiv} p(A) .
$$

It can be shown [1] that for any function, defined on the spectrum of a matrix, there exists a polynomial having the same values on the spectrum of the matrix. Thus, given an arbitrary function, it is sufficient to look for the polynomial $p(x)$ that assumes the same spectral values as the function and define the function of the matrix as above. $e^{A}$, cos $A$, $\sin \mathrm{A}$ and other analytic functions are defined by using their Taylor series expansions for the $p(x)$ above.

The following example is stated to show the application of Definition 3 to the absolute value function.

Example. Consider the two by two matrix

$$
A=\left[\begin{array}{cc}
2 & 3 / 2 \\
2 & 1
\end{array}\right]
$$

The characteristic roots of $A$ (and hence the roots of the minimal polynomial) are

$$
k_{1}=\frac{3+\sqrt{13}}{2} \text { and } k_{2}=\frac{3-\sqrt{13}}{2} .
$$

The polynomial $3 / \sqrt{13} x+2 / \sqrt{13}$ has the same value as $f(x)$ on the spectrum of A so

$$
\text { abs } A=3 / \sqrt{13} A+2 / \sqrt{13} I=1 / \sqrt{13}\left[\begin{array}{cc}
8 & 9 / 2 \\
6 & 5
\end{array}\right]
$$

Before studying the properties of the absolute value matrix further, several basic theorems which will make our work easier will be stated The proofs can be found in Murdock [3].

SUMMARY OF SIMILARITY THEOREMS.
(4)

A matrix $R$ is said to be similar to a matrix $S$ if there exists a nonsingular matrix $P$ such that $R=P^{-1} S P$. The passage from $S$ to $P^{-1} S P$ is called a similarity transformation.
(5) Similar matrices have equal determinants, the same characteristic equations, and the same characteristic roots.
(6) If the characteristic roots of a matrix are distinct, it can be shown that the matrix is similar to a diagonal matrix, the diagonal elements being the characteristic roots of the matrix. If the characteristic roots are not distinct, the matrix may not be similar to a diagonal matrix but every matrix is similar to a triangular matrix, that is, a matrix with only zeros below (or above) the principal diagonal. The elements on the principal diagonal are obviously the characteristic roots of the triangular matrix and hence (by 5) of the transformed matrix.
(7) If $k_{1}, k_{2}, \ldots, k_{r}$ are the characteristic roots of the matrix $A$ and $p(x)$ is any polynomial, the characteristic roots of $p(A)$ are $p\left(k_{1}\right), p\left(k_{2}\right), \ldots, p\left(k_{r}\right)$.
(8) Every matrix $A$ is similar to a triangular matrix of the form

$$
\mathrm{TAT}^{-1}=J=\left[\begin{array}{llll}
{ }^{F_{1}} & & & \\
F_{2} & & \\
& & \ddots & \\
& & F_{r}
\end{array}\right] \quad \text { where each } F_{i} \text { on the }
$$

diagonal has the form,

$$
F_{i}=\left[\begin{array}{llll}
k_{i_{1}} & 1 & & \\
k_{i} & 1 & \\
& \ddots & \\
& \ddots & \\
& & \ddots k_{i}
\end{array}\right] \quad \text { and } k_{1}, k_{2}, \ldots, k_{r}
$$

are the characteristic roots of $A$ but are not necessarily distinct. J is called the classical or Jordan canonical form of A and two matrices are similar if and only if they have the same Jordan form except possibly for the order in which the matrices $F_{i}$ occur in the diagonal of J. The Jordan canonical form is a diagonal matrix if each of the submatrices has order one. This is the case for $F_{j}$ if the characteristic root $k_{j}$ has multiplicity one in the minimal polynomial. $F_{j}$ then is simply the element $k_{j}$.

An important theorem can now be given:

where $f(x)$ is an arbitrary scalar function.
Proof. Consider the characteristic equation $\Delta(x)$ of $G$
$\Delta(x)=\operatorname{det}(G-x I)=\operatorname{det}\left(H_{1}-x I\right) \cdot \operatorname{det}\left(H_{2}-x I\right) \ldots \operatorname{det}\left(H_{v}-x I\right)=0$.
It is apparent that any characteristic root (which is also a root of the minimal polynomial) of one of the submatrices $H_{i}$ is also a characteristic root of the matrix $G$.

Let $f(x)$ be an arbitrary function defined on the spectrum of $G$. There exists a polynomial $p(x)$ such that $f\left(X_{G}\right)=p\left(X_{G}\right)$. By Definition 3,

See equation (1).
Now, consider $p\left(H_{i}\right)$. In order to define $f\left(H_{i}\right)$, let $p_{i}(x)$ be a polynomial such that $f\left(X_{H_{i}}\right)=p_{i}\left(X_{H_{i}}\right)$. Since the spectrum of $H_{i}$ was seen above to be a subset of the spectrum of $G, p\left(X_{H_{i}}\right)=p_{i}\left(X_{H_{i}}\right)=f\left(X_{H_{i}}\right)$; so from THEOREM 1 and Definition 3,

$$
\text { (9) } \quad f\left(H_{i}\right) \stackrel{D}{\equiv} p\left(H_{i}\right)=p_{i}\left(H_{i}\right) \quad \text { for } i=1,2, \ldots . v .
$$

Since $f(G)$ and $f\left(H_{i}\right)$ are defined as $p(G)$ and $p\left(H_{i}\right)$, a glance at the $p(G)$ matrix in the paragraph above shows THEOREM 2 is now proved.

Now, by the theorem just proved and (8), the Jordan form theorem, we see that for any matrix $A$, there exists a nonsingular matrix $T$ such that $A=T^{-1} J T$, where $J$ is the Jordan form of $A$ and thus $f\left(F_{1}\right)$
$f(A) \stackrel{D}{\equiv} P(A)=T^{-1} p(J) T=T^{-1} f(J) T=T^{-1}$
$\mathrm{f}\left(\mathrm{F}_{2}\right)$

If $A$, and hence (by 5) also $J$, has distinct characteristic roots, $J$ is a simple diagonal matrix with the characteristic roots as the diagonal elements. The $i^{\text {th }}$ element of $f(J)$ as seen above would be in this case simply $f\left(k_{i}\right)$ and $f(J)$ is diagonal in this form.

The Absolute Value Function, abs A. In the introduction, the general
concept of a function matrix was defined. If $f(x)=|x|, f(A)=$ abs $A$ is defined if $|x|$ is defined on the spectrum of the matrix $A$ We will restrict our attention to square matrices with real elements. Since the derivatives of $f(x)=|x|$ are not defined for zero or for a complex value of $x$, we must further restrict $A$ to be a nonsingular matrix (a nonsingular matrix has nonzero characteristic roots) having no repeated complex roots in its minimal polynomial.

The function matrix for a real nonsingular $n$ by $n$ matrix $A$ is by (10) (11) abs $A=T^{-1} \mathbf{p}(J) T=T^{-1}\left[\begin{array}{ccc}\text { abs } F_{1} & & \\ & \text { abs } F_{2} & \\ & & \\ & & \\ & & \\ & & F_{r}\end{array}\right]$.

To define abs $F_{i}$ we must find the polynomial $p_{i}(x)$ such that $p_{i}(x)$ assumes the same values as $f(x)=|x|$ on the spectrum of $F_{1}$, that is

$$
\begin{aligned}
& p_{i}\left(k_{i}\right)=\left|k_{i}\right| \\
& p_{i}^{\prime}\left(k_{i}\right)=\left\{\begin{array}{cl}
1 & \text { if } k_{i}>0 \\
-1 & \text { if } k_{i}<0
\end{array}\right. \\
& p_{i}^{\prime \prime}\left(k_{i}\right)=\ldots=p_{i}^{\left(m_{i}-1\right)}\left(k_{i}\right)=0, \quad i=1,2, \ldots . \quad r .
\end{aligned}
$$

Such a polynomial is simply $p_{i}(x)=\frac{\left|k_{i}\right|}{x}$. From (9), since $p\left(X_{F_{i}}\right)=p_{i}\left(X_{F_{i}}\right)=f\left(X_{F_{i}}\right)$, abs $F_{i} \stackrel{\#}{\equiv} p\left(F_{i}\right)=p_{i}\left(X_{F_{i}}\right)=\frac{\left|k_{i}\right|}{k_{i}} F_{i} \quad$ for $i=1,2, \ldots+r_{\text {. Filling }}$ in (11) then we have (12)

$$
\text { abs } A=T^{-1}\left[\begin{array}{ccc}
\frac{\left|k_{1}\right|}{k_{1}} & F_{1} &  \tag{T.}\\
\frac{\left|k_{2}\right|}{k_{2}} & F_{2} & \\
& & \ddots \\
& & \\
& & \frac{\left|k_{r}\right|}{k_{r}} F_{r}
\end{array}\right]
$$

Several theorems which state important properties of the absolute value matrix will now be given.

$$
\text { abs } d A=p(d A)=T^{-1}\left[\begin{array}{cccc}
a b s & d F_{1} & & \\
& a b s & d F_{2} & \\
& & \ddots & \\
& & \text { abs } d F_{r}
\end{array}\right] \quad T_{.}
$$

The polynomial $p_{1}(x)$ which has the same values as $x$ on the spectrum of


$|a| \cdot \operatorname{abs} A$.

THEOREM 5. If $A$ is nonsingular and abs $A$ is defined, then

$$
\text { abs } \mathrm{A}^{-1}=(\text { abs } \mathrm{A})^{-1}
$$

Proof. We know from (12) that abs $A=T^{-1}(a b s J) T$ and thus (abs A) ${ }^{-1}=$ $T^{-1}(a b s J)^{-1} T$, and we know from (B) that $A=T^{-1} J T$ or $A^{-1}=T^{-1} J^{-1} T$. Also, if $k_{i}$ is a characteristic root of a nonsingular matrix $A$, then $\frac{1}{k_{i}}\left(=k_{1}^{-1}\right)$ is a characteristic root of $A^{-1}$. Thus,

$F_{i}^{-1}$ has a single characteristic root $k_{i}$ repeated $n_{i}$ times on its principal diagonal. Hence, in defining abs $F_{i}^{-1}$, we must find a polynomial $p_{i}(x)$ such that

$$
\begin{aligned}
& p_{i}\left(\frac{1}{k_{i}}\right)=\frac{1}{\left|\frac{1}{k_{i}}\right|} \\
& p_{i}^{\prime}\left(\frac{1}{k_{i}}\right)= \begin{cases}1 \text { if } k_{i}>0 \\
-1 & \text { if } k_{i}<0\end{cases} \\
& p_{i}^{\prime \prime}\left(\frac{1}{k_{i}}\right)=\ldots=p_{i}^{\left(m_{i}-1\right)}\left(\frac{1}{k_{i}}\right)=0 .
\end{aligned}
$$

where $m_{i}$ is the multiplicity of $k_{i}$ in the minimal polynomial of $F$,
 $p_{i}\left(F_{i}^{-1}\right)=\frac{k_{i}}{k_{i}} F_{i}^{-1}$ so

$$
\text { abs } A^{-1}=T^{-1}\left[\begin{array}{lll}
\frac{k_{1}}{\left|k_{1}\right|} & F_{1}^{-1} & \\
& \ddots & \\
& \frac{k_{r}}{\left|k_{r}\right|} & F_{r}^{-1}
\end{array}\right] \mathrm{T} .
$$

This is the same as (13), so THEOREM 5 is proved.

The following is the major theorem of this paper.
THERREM 6. Any real nonsingular square matrix a whose absolute value is defined can be written as the product of its absolute value and a matrix whose absolute value is the unity matrix, that is

$$
A=a b s A \cdot B
$$

$$
\text { where abs } \mathbf{B}=\mathbf{I} \text {. }
$$

Proof. The proof will consist of showing abs $B=a b s[(a b s A)-A]=$ I. From (13) and (8),

$$
\begin{align*}
B & =(\operatorname{abs} A)^{-1} \cdot A=A \cdot(\text { abs } A)^{-1}=T^{-1}\left[\begin{array}{llll}
\frac{k_{1}}{k_{1}} & & & \\
& \frac{k_{2}}{k_{2}} & & \\
& =T^{-1} D T . & & \\
& & \ddots & \\
& & & \frac{k_{r}}{k_{r}}
\end{array}\right] \tag{14}
\end{align*}
$$

Every element of the diagonal matrix $D$ in (14) is either $\boldsymbol{+ 1}$ or $\mathbf{- 1}$ and these elements are the characteristic roots of D. By THEOREM 2 and THEOREM 3, the characteristic roots and elements of the diagonal matrix abs D are equal to 1. Hence abs $D$ is the identity matrix and thus

$$
\operatorname{abs} \mathrm{E}=\mathrm{T}^{-1} \mathrm{IT}=\mathbf{I} . \quad \text { Q.E.D. }
$$

It is noted in linear algebra and matrix theory that every real nonsingular matrix $A$ can be written as a product $A=S .0$ where $S$ is a positive definite symmetric matrix and 0 is an orthogonal matrix. Generalizing to complex matrices: A complex nonsingular matrix can be written as a product of a Hermitian matrix and a unitary matrix. See
[3]. These facts are often cited in analogy to the polar factorization of a complex number $z=x+i y \quad(i=\sqrt{-1})$,

$$
\begin{array}{ll}
z=|z| \cdot(a+i b), & \begin{array}{l}
a=\cos 0 \\
\text { where }|a+i b|=1
\end{array} \\
& \text { sin } \theta \\
& \text { where } \theta=\tan 1 \frac{y}{x} \\
& \text { and } z=\sqrt{x^{2}+y^{2}}
\end{array}
$$

and are called "polar factorization of a matrix."
THEOREM 6 might be called a "polar factorization" theorem also by analogy to polar factorization of the complex numbers and it is an even more direct analogy. Thus, the concept of the absolute value matrix has proved to have interesting and useful properties.
1946.
3. Murdoch, D. C. Linear Alqebra for Undergraduates, pp. 130-137, New York, 1957
4. Wedderburn, J. H. M. Bull. Amer. Math. Soc.. Volume 31 (1925) pp. 304-308.

1. Gantmacher, F. R. The Theory of Matrices, Volume I, pp. 95-103, New York, 1959
2. MacDuffee, C. C. The Theory of Matrices, pp. 99-102. New York,

## Edited by

## M. S. Klamkin

## State University of New York

 at BuffaloThis department welcomes problems believed to be new and, as a rule, demanding no greater ability in problem solving than that of the average member of the Fraternity, but occasionally we shall publish problems that should challenge the ability of the advanced undergraduate and/or candidate for the Master's Degree. Solutions of these problems should be submitted on separate, signed sheets within four months after publication. Address all communications concerning problems to Professor M. S. Klamkin, Division of Interdisciplinary Studies, University of Buffalo, Buffalo 14, New York.

## PROBLEMS FOR SOLUTION

154. Proposed by Kenneth Kloss, Carnegie Institute of Technology. For a number in $(0,1)$, does there exist a base so that in this new system of enumeration the first two digits are the same?
155. Proposed by William J. LeVeque, University of Colorado.

Two mountain climbers start together at the base of a mountain and climb along two different paths to the summit. Show that it is always possible for the two climbers to be at the same altitudes during the entire trip (assuming each path has on it a finite number of local maxima and minima)

Editorial Note: The proposer notes that the problem is not original with him and he does not know the original proposer.
141. Proposed by D. J. Newman, Yeshiva University.

Determine conditions on the sides $a$ and $b$ of a rectangle in order that it can be imbedded in a square.

Solution by David L. Silvennan, Beverly_Hilis, California.
Imbedding is simple if the longer side does not exceed unity. Otherwise it is necessary and sufficient that the sum of the sides does not exceed the diagonal of the square. These conditions are summed up in the inequality

$$
\min \left\{\frac{a+b}{2}, \quad \max (a, b)\right\} \leq 1
$$

Also solved by George E. Andrews, Michael Goldberg, H. Kaye,
L. Smith, M. Wagner, J. E. Yeager, and the proposer.
142. Proposed by Pedro A. Piza (posthumously), San Juan, Puerto Rico. Show that unity can be expressed as the sum of four squares less the sum of four squares (all squares distinct) in an infinitude of ways.

Solution by George E. Andrews, Philadelphia, Pennsylvania.
$1=\left(a^{2}+b^{2}\right)^{2}+\left(m^{2}+n^{2}\right)^{2}+1^{2}+0^{2}-(2 a b)^{2}-\left(a^{2}-b^{2}\right)^{2}$
$-(2 m n)^{2}-\left(m^{2}-n^{2}\right)^{2}$.
Also solved by John E. Fergurson, Theodore Jungreis, David L.
Silverman, L. smith, M. Wagner, and the proposer
Editorial Note: Another four parameter solution is given by $1=\left(x^{2}-y^{2}-u^{2}-v^{2}\right)^{2}+4 x^{2} y^{2}+4 x^{2} u^{2}+4 x^{2} v^{2}-1-\left(x^{2}-y^{2}-u^{2}+v^{2}\right)^{2}$

$$
-4(x y-u v)^{2}-4(x u+y v)^{2}
$$

156. Proposed by K. S. Murray, New York City If $A$ and $B$ are fixed points on a given circle and $X Y$ is a variable diameter, find the locus of point $P$.

157. Proposed by John Selfridge, Ohio State University. Prove $\mathrm{n}^{2^{2^{2}}}-\mathrm{n}^{2^{2}}$ is divisible by $2^{2^{2^{2}}}-2^{2^{2}}$.
158. Proposed by M. S. Klamkin, State University of New York at Buffalo.

If $P(x)$ is an nth order polynomial such that $P(x)=2$ for
$\mathrm{x}=1,2,3, \ldots, \mathrm{n}+1$, find $\mathrm{P}(\mathrm{n}+2)$.

## SOLUTIONS

137. Proposed by Leo Moser, University of Alberta.

Show that squares of sides $1 / 2,1 / 3, \ldots, 1 / n, \ldots$ can all be placed without overlap inside a unit square.

Solution by Michael Goldberg, Washington, D. C
The number of terms in the sequence beginning with $1 / 2^{n}$ and ending with $1 /\left(2^{n+1}-1\right)$ is $2^{n}$. Hence, the geometric squares with these terms as edges can be included in a strip of width $1 / 2^{\mathrm{n}}$ and unit length. Hence, all the squares can be included in the strips of width $1 / 2,1 / 4,1 / 8, \ldots, 1 / 2^{\text {n }}, \ldots$ and a unit length to make up the unit square

Since $\sum_{1}^{\infty} n^{-2}=\pi^{2} / 6$, the coverage of the unit square is $\pi^{2} / 6-1$ or $64.5 \%$.

Also solved by H. Kaye, P. Myers, L. Smith and M. Wagner.
138. Proposed by David L. Silverman, Beverly Hills, California. The points of the plane are divided into two sets. Prove at least one set contains the vertices of a rectangle. Solution by John E. Ferguson, Oregon State University.

In any straight line there are at least four points $\mathbf{P}_{\mathbf{1}}, \mathbf{P}_{\mathbf{2}}$, $\mathbf{P}_{3}, \mathbf{P}_{4}$ in one of the sets say $\mathbf{S}_{\mathbf{1}}$. Now consider the following configuration:

| $\mathrm{P}_{1}$. | $\mathrm{A}_{1}$. | ${ }^{\mathrm{B}}$. ${ }^{\text {. }}$ |  |
| :---: | :---: | :---: | :---: |
| $\mathrm{P}_{2}$. | $\mathrm{A}_{2}$. | $\mathrm{B}_{2}$. | (Note: The distances between points are |
| $\mathrm{P}_{3}$ - | $\mathrm{A}_{3}$. | $\mathrm{B}_{3}$. | out of scale.) |
| $\mathrm{P}_{4}$. | $\mathrm{A}_{4}$. | $\mathrm{B}_{4}$. |  |

In order not to form an $S_{1}$ rectangle, at least 3 points of the A group and at least 3 points of the $B$ group must belong to the other set $\mathbf{S}_{\mathbf{2}}$. It then follows immediately that there is an $\mathbf{S}_{\mathbf{2}}$ rectangle.
Also solved by George E. Andrews, P. Myers, Charles S. Rose, L Smith, M. Wagner, and the proposer.

Editorial Note: The same result will hold if we restrict the points of the plane to being lattice points. This problem is related to Van Der Waerden's Theorem on arithmetic progressions, i.e., if we divide the natural numbers into $k$ classes, then an arithmetic progression of arbitrary length can be found in at least one of the classes. Another associated problem here would be to find the smallest square of lattice points which must contain a rectangle (or some other possible figure). The four vertices of the rectangle must belong to one of the classes into which the lattice points have been divided.
139. Proposed by Leo Moser, University of Alberta.

Show that there exists a unique sequence of non-negative integers,
$\left\{\mathrm{a}_{\mathrm{i}}\right\}$, such that every non-negative number n can be expressed uniquely in the form $n=\mathbf{a}_{\mathbf{i}}+2 \mathbf{a}_{\mathrm{j}}$.

Solution by L. Carlitz, Duke University.
If we let $f(x)=\sum_{i} x^{a_{i}}$, then the statement that every
$\mathrm{n} \geq 0$ can be expressed uniquely in the form $n=a_{i}+2 a_{j}$ is equivalent to

$$
f(x) f\left(x^{2}\right)=1+x+x^{2}+\ldots=\frac{1}{1-x}
$$

Thus, $f(x)=\frac{1}{(1-x) f\left(x^{2}\right)}=\frac{\left(1-x^{2}\right) f\left(x^{4}\right)}{1-x}=(1+x) f\left(x^{4}\right)$.
Whence, $f(x)=(1+x)\left(1+x^{4}\right)\left(1+x^{16}\right) \ldots$.
Therefore, the $\left\{a_{i}\right\}$ are the numbers of the form
$c_{0}+c_{1} 4^{+} c_{2} 4^{2}+\ldots+c_{k} 4^{k}$
where $\mathrm{k} \geq 0$ and each $\mathbf{c}_{\mathbf{r}}=0$ or 1 。
Solution by Charles S. Rose, Brooklyn College.
The required sequence is formed by the non-negative integers
that can be expressed in the base four using only zeros and ones
It is obvious how to produce $0,1,2$, and 3 . From these, the unique expression of $n$ follows. For example:
$3102_{4}=\left(1100_{4}\right)+2 \cdot\left(1001_{4}\right)$. The production of no carrys
shows that the expression of $n$ is unique and that none of the
$a_{i}$ can be produced from the others. If another sequence were formed, it must contain the $\mathbf{a}_{\mathbf{i}}$; since any other member $a^{*}$ could then be represented as its expression in the $\mathbf{a}_{\mathbf{i}}$ and distinctly as $a^{*}=a^{*}+2 \cdot O_{4}$, the sequence $a_{i}$ is unique.

Also solved by George E. Andrews, P. Myers, David L. Silverman,
L. Smith and the proposer.
140. Proposed by Michael Goldberg, Washington, D. C.

What is the smallest area within which an equilateral triangle can be turned continuously through all orientations in the plane? This problem is unsolved and similar unsolved ones exist for the square and other regular polygons.

Partial solution by the proposer.
The problem is still unsolved. It is obvious that the triangle can be rotated within its circumscribing circle. However, the smaller area described in the proposer's paper " N -gons making n +1 contacts with fixed simple
curves," American Mathematical
Monthly, July, 1962,
has an area equal to approximately 79\% of the
area of the circle.
The exact minimum
of the infinite
family of curves
described is not known.
Furthermore, there may be
other curves of even

## lesser area.

The figure shows

the trianale with its
circumscribing circle and the smaller four-lobed curve within which the triangle may also be rotated.

## UNIQUE RESEARCH ROLE

## FOR MATHEMATICIANS

DR. LOUIS W. TORDELLA
Deputy Director
National Security Agency Fort George G. Meade, Maryland

Mathematicians will find an increasing number and diversity of professional opportunities in Government. These include many significantly to major technical programs or to attain high-level managerial positions.

Although little known outside the circles of a select portion of the American scientific community, the National Security Agency has
ex the U.S. Department of Defense research and development activity on science and technology, which, in their constantly advancing state, make increasing demands on the capabilities of scientists in many fields. Mathematicians are key members of this scientific fraternity They are assigned both individually and in groups throughout the Agency's extensive laboratories and research facilities.

NSA mathematicians are concerned mainly with problems which must be solved in support of the communications requirements of the United States Government. These require. The total systems and special-purpose receivers, antennas, terminal units to handle all types of information transmission, and recording and information storage devices. In addition to the hardware which is employed in $U$. $S$. communications, NSA must also provide highly esoteric principles to insure the invulnerability of classified governmental information. Together, the foregoing requirements present a variety of interesting challenges, and their successful prosecu tion is gratifying in a sense beyond the ordinary
ions problems involves, among other the statistical design rcausal significance, analysis. Some of the problems stemming from systems design require extensive research and the application of statistics, modern algebra,
linear algebra, and information theory. Here, too, we find useful such tools as groups, Galois fields, matrices, number theory, and nature urgent, but there is also much long-range research in general communications.

In support of the work in communications, NSA maintains a fine computing facility employing the most advanced systems and computing techniques. As machines have become the "sliderrules" of the scientist and engineer, a whole array of intriguing problems have mathematicians. These individuals work closely with the physicists and engineers who develop new concepts and circuit devices to be incorporated in the logic and memory elements of faster and more versatile computers. Indeed, the Agency's research and development program in this field has had a significant influence on computer development in the United States.
It is not enough, however, to have better machines. The computer them, the "software" side of the picture re loads to interesting if sometimes bewildering problems in automatic coding and in programming languages, speech recognition, pattern recognition, and the mathematical analysis associated with learning machines. The latter are machines that are programmed not just to do a job, but to learn how to do it. Much of this work emphasizes the solution of logical problems rather than numerical analysis.

There are, of course, other exciting areas of concentration for thematicians at NSA. These problems are of a high order of difficulty and require an uncommon amount of ingenuity. In fact, they have led stimulating experience to become acquainted with the language and techniques of this science and to see practical applications of some hitherto purely academic branches of mathematics. Moreover, many branches of mathematics which could be fruitfully used await the necessary capability and interest of new mathematicians. For example, tician interested in graph theory, operations research, information theory, or organization theory. In short, a mathematician at NSA will use as much mathematics as he is both inclined and capable of using.

The present state of knowledge in certain fields of mathematics is not sufficiently advanced to satisfy NSA requirements, and it is therefore necessary to undertake theoretical research in these fields Those individuals who are interested in doing this type of work, and who have the competence, are encouraged to engage in independent substantial scientific contributions in bridging the gap between theoretical investigations and practical applications
There is an additional point to be made about the work at NSA involves the lesson which must be learned by all mathematicians, namely that problems are seldom, if ever, formulated and handed to the mathema tician for solution. Instead, he must help to define the problem by observing its origin and characteristics, and the trends of any data associated with it. Then he must determine whether the problem and the data are susceptible of mathematical treatment, and if so, how.
As he grows in his appreciation of this approach to mathematical problems and the relationship of his academic field to non-mathematical subject matter, both his personal satisfaction and his value to the profession will increase

As a result of contacts with many distinguished consultants at the colleges and universities, and a close and continuing relationship ith no dearth industrial laboratories, it is quite apparent that ther common denominator of the nation's total need for these professional is quality. There are indeed many opportunities for mathematicians of is quality, calibre and field of specialization; but, in an organization which relies heavily on mathematics, it is the versatile and imaginative mathematician who contributes most effectively.

## MATHEMATICS TEACHERS NEEDED OVERSEAS

## Washington, DC - The Peace Corps estimates that during 1964

 ore than 5,000 teachers will be required to meet the requests coming to it from 48 countries throughout Latin America, Africa and Asia. These teachers will instruct on the elementary, secondary and college levels. More than 1,000 of these teachers have been requested to teach on the secondary and college levels in the fields of science and mathematics--650 in general science, physics, biology, chemistry, botany and zoology, and 350 in mathematics. The major requests have come from Bolivia, Ethiopia, Ghana, India, Liberia, Malaysia, Nigeria, Philippines, Sierra Leone and Turkey.Teachers who can qualify and desire to secure one of these interesting overseas posts at the end of the current school year should file an application at an early date. Full details and an application form may be secured by writing the Division of Recruiting Peace Corps, Washington, D.C. 20525

## BOOK REVEMS

Edited by
Franz E. Hohn, University of Illinois

## $\frac{\text { Elements of }}{1961.189} \frac{\text { Alqebra }}{\mathbf{1}}, 25$ Fourth Edition. By H. Levi. New York, Chelsea,

This book was written as a textbook for an introductory course leading to more advanced and abstract mathematical courses, and to expose nonmathematical students to genuine mathematical problems and procedures. It presupposes no mathematical training beyond arithmetic, but ments. The book carries out the construction of the natural numbers, the integers, the rationals, and the reals. It develops the algebra appropriate to each of the number systems. The terms used are clearly defined and usually are followed by an example demonstrating the term but are explained in more everyday language to give them meaning.
The book fulfills its original aims. It also is an excellent book for introducing science students with a backg
matics to the subject of abstract mathematics

Urbana, Illinois
George Kvitek
$\frac{\text { Elements }}{\text { Addison-Wesley: }}$ of Finite Mathematics. $\quad$ By Francis J. Scheid. Reading, Mass.;

Professor Scheid has written this book to illustrate the use of mathematical abstraction for readers acquainted with high school algebra. He presents four major illustrative topics. These topics are Boolean algebra, the concept of number, combinational analysis, and probability. One quarter of the book is devoted to each of these topics

The author begins the book by pointing out that mathematical formuthe formulations necessary for the solution of simple problems in the above-mentioned four topics. This he does by a clear but abstract develoment of the needed mathematical structures. Many unusual and interesting problems are solved as examples, others are left for the reader. In addition, an appendix details the elementary programming f a digital computer.
This book is a fine text for an introductory cultural mathematics course for liberal arts students and would be enjoyed by the amateur
mathematician. It would, however, be too simple for the serious mathematics Student or for the mathematical education of the scientist and engineer.

Monsanto Research Corporation--Mound Laboratory
L. A. Weller

This book contains a vast collection of mathematical puzzles, almost all of which are original with the author. Very few of the standard problems of recreational mathematics are included although many variof geometrical problems, cryptarithms, magic arrangements, combinatorial problems, etc. There is no bibliography and there are no answers or
solutions.
The textual material forms only a minor part of the book and does not pretend to offer a complete introduction to the various problem ypes that appear. arguments are needlessly hard to follow. Chapter X, which presents tedious numerical methods of solving problems that could be solved more appeal to most readers. The exercises of Chapter $X$ can, of course, be olved by more familiar methods. is not an outstanding feature of the book, there are so many hundred f tempting problems and puzzles here that the book is well worth it

University of Illinois
Franz E. Hohn

Ordinary Differential Equations. By Garrett Birkhoff and Gian-Carlo $\frac{\text { Ordinary }}{\text { Rota. Boston, Ginn, }} \frac{\text { Equations }}{1962 .} \mathrm{vi}+318 \mathrm{pp} ., \quad \$ 8.50$.

As stated in the preface, one of the chief objectives of this book is to bridge the gap between the usual material treatedin afirst course and the study of advanced methods and techniques. The book amply meets o the usual first course in differential equations, a thorough grasp to the usual first course in differential equations, a thorough gra
of the major ideas and methods given in a sound course in advanced calculus, and some knowledge of vectors, matrices, and elementary complex variable theory.
The first four chapters review the methods usually covered in a first course, and also include careful discussions of many theoretical questions, and some new techniques. Chapters V through VIII deal w linear differential equations. An additional indication of the subject matter treated is given by the chapter headings of these latter chapters. matter treated is given by the chapter headings of these lat ter chapters VII--Approximate Solutions. VIII--Efficient Numerical Integration
IX--Regular Singular Points. X--Sturm-Liouville Systems. XI--Expansions in Eigenfunctions.
Important special functions are defined and studied by means of thei defining differential equations and boundary conditions. The book is can be used for a semester course. The choice of subject matter is excellent and the exposition is clear There is a thoroughly adequate set of problems. The authors are the field involved.
St. Louis University
J. D. Elder

The authors state that the book was not written to be used as a textbook. No exercises are included. The book may be used, however, as a supplement for a course in multivariate analysis.
Perhaps the book will be most useful to research workers in the
behavioral sciences at installations which have not yet acquired a library of behavioral science programs. These persons can merely copy the programs and thus obtain immediately a small basic libraryy. The
authors state that each program has been test $\&$ on-an IBM 709 and prove to be correct.
University of Illinois
Kern W. Dickman

## $\frac{\text { Partial Differential Equations }}{\text { New York: McGraw-Hill, 1962. }} \mathrm{x} \frac{\text { an }}{+} \frac{\text { Introduction. }}{273 \mathrm{pp} ., ~ \$ 9.50 .}$ By Bernard Epstein.

The subject of partial differential equations is one which frequently gets slighted in the training of students of mathematics. The reason for this is very simple: it is a vast and difficult field which has across almost all mathematical fields--starting, perhaps, in mathematical physics, through complex and real analysis into functional analysis, through differential geometry into group theory, whence it re-enters into physics. Because of its breadth, no mathematics student should be innocent of some of the main results in this subject. However, because of its depth (and difficulty), an unfortunately large percentaqe of such students are not introduced to these results.

The reviewer hopes and feels that this book may help to improve the Unlike some books, it of mathematics (rather than engineering). Anyone can quibble over the content, but it is unquestionable that what is treated, is done well.
After an introductory chapter which discusses the Ascoli Theorem, After an introductory chapter which discusses the Ascoli Theorem,
Weierstrass Approximation Theorem, Fourier integral, etc., the author Weierstrass Approximation Theorem, Fourierintegral, etc., the author gives a very clean presentation of first order equations. Next he discusses the Cauchy problem and the wave equation. Two long chapters on followed by a good treatment of potential theory and various approaches to the Dirichlet problem. The book ends with one brief chapter on the heat equation and one on Green functions.
Although this reviewer feels that there is more of the Banach and Hilbert space theory than is justified by the applications given in this text, he unhesitatingly recommends it to any mathematics student as a useful and interesting book.
University of Illinois
Robert G. Bartle

Linear Alqebra and Geometry. By Nicolaas H. Kuiper. Amsterdam: NorthHolland Publishing $\frac{\text { Geometry, }}{\text { Company, }} 1962 . \quad$ viii +285 pp., $\quad \$ 8.25$.

This well-written book, essentially a translation from the Dutch by A. van der Sluis, gives an excellent treatment of linear algebra and geometry from a somewhat higher standpoint. It will be highly useful
as background material for college instructors teaching linear algebra or advanced analytic geometry, because of its depth, breadth, and modjunior or, senior level as well as for a high anhol teachers' inst ute. For graduate students it may be recommended as an interesting and eminently readable introduction to advanced materials.

After short chapters on geometric vectors in the classical sense and on the elementary set-theoretic notions, the authot introduces the n-dimensional tuple space $\mathrm{V}^{n}$ and makes use of it in a preliminary definition of the n-dimensional affine space An. After a discussion of some algebraic and geometric notions and their properties, including
the dual space and the cobasis, the affine space An is now defined as a set of elements called points with an atlas of one-to-one correspondences $k: P \quad k(P)$ of $A^{n}$ onto $V^{n}$ such that $k(P) P=0$ and $k(P) k-1(\bar{Q})$ is a translation. This leads to the definition of a linear m-variety. The classical geometric theorems are presented, homomorphisms and their duals are studies in detail, matrices are introduced as their representations, systems of linear equations are solved, determinants are reated and applied to geometry, endomorphisms are classified, quadratic spaces are investigated. Special mention should be given to a chapte on applications to statistics, including the method of least squares, linear adjustment, regression, and the correlation coefficient. The book ends with chapters on Motions and Affinities, Projective Geometry, Non-Euclidean Planes, and some topological remarks. The author is very successful in keeping a healthy balance between geometry and algebra.
University of Cincinnati
Arno Jaeger

## Diophantine Approximations. By Ivan Niven. Interscience Tracts in Pure and Applied Mathematics, Number 12. New York, John Wiley, 1963 viii +68 pp., $\$ 5.00$.

The inclusion of this book in the series of Interscience Tracts in Pure and Applied Mathematics is somewhat surprising. The advertising for the Interscience Tracts says, The presentation is on an advanced level indeed, for it requires only a smattering of elementary number theory and a knowledge of the basic facts about inequalities. While it certainly is no tragedy that this author has produced a very accessible book, it must be admitted that the difference in level between Niven's book and its predecessor in the series is practically infinite!

Diophantine approximation deals with the approximation of real numinequalities in integers. As already indicated, the author discusses only certain facets of the subject which are susceptible of an elementary treatment. The exposition is very clear and well-arranged, and the book should be within the reach of any serious undergraduate mathematics student. As a result, the book is sure to be welcomed by those unning independent study programs for undergraduates, for it is ideal for such a purpose.

The only reasonable criticism of the book is that it does not go far都 relatively narrow compass. The reader would certainly get a more
balanced view of the subject by reading the relevant chapters in Hardy and Wright's Theory of Numbers. The novice reading Niven's book could easily come to the false conclusion that Diophantine Approximation consists solely of elementary manipulations with inequalities. Actually, Diophantine Approximation can serve as a scenic path on which to lead theory, probability, convex sets, geometry of numbers, algebraic numtheory, probability, convex sets, geometry of numbers, algebraic numauthor did not use his expository talents for such a program. However, within the narrow limitations which he has set for himself, the author has produced a first-rate book.
University of Illinois
Paul T. Bateman

## A New Journal, the FibONACCI QUARTERLY

The Fibonacci Quarterly is a journal "devoted to the study of integers with special properties." It is under the general editorship of Verner E. Hoggatt, Jr. It serves as an outlet for serious elementary problems. The level of expository quality of the papers is kept high so as to make the results widely available to students at all levels, whether mathematically sophisticated or not. The journal should provide a great deal of inspiration and enjoyment to all of those inter ested in that part of number theory which deals with "integers with special properties."
The page size is $7 \times 10 \frac{1}{2}$. Vol. 1, No. 1 contains 75 pages. The subscription rate is $\$ 4.00$ per year. Subscriptions are to be addressed St. Mary's College Post Office, California

University of Illinois
Franz E. Hohn

NOTE All correspondence concerning reviews and all books for review should be sent to PROFESSOR RRANZ
SITY OF ILLINOIS, URBANA, ILLINOIS.


L. J. Adams: Applied Calculus. New York, Wiley, 1963. $\mathbf{x}+278 \frac{\text { pp. }, \$ 5.95}{}$
*A. A Albert (Editor): Studies in Modern Algebra (Studies in

${ }^{\star}$ R. W. Ball: $\frac{\text { Principles of }}{\text { Rinehart }} \frac{\text { Abstract Algebra. }}{\text { and Winston; }} \frac{\text { New }}{1963 . \quad \text { York; }}$ ix +290 ppolt,
B. Baumrin (Editor): The Philosophy of Science: The Delaware $\frac{\text { Semin }}{\$ 9.75 .}$
*V. E. Benes: General Stochastic Processes in the Theory of Queues. Reading, Mass.; Addison-Wesley; 1963. xiii +88 pp., $\$ 5.75$.
H. Boemer: Representations of Groups. New York, Wiley, 1963. $\mathrm{xii}+325$ pp., $\$ 13.50$.

C. Caratheodory: $\begin{aligned} & \text { Al ebraic } \\ & \text { New York, Cheory } \\ & \frac{\text { of }}{\text { elsea, } 1963} \frac{\text { Measure }}{378} \frac{\text { and }}{\$ 7.50} \text { Inteqration. }\end{aligned}$
W. Cooley and P. R. Lohnes: Multivariate Rrocedures for the Behav
$\$ 6.75$.
*C. W. Curtis and I. Reiner: Representation Theory of Finite Curtis and I. Reiner: Representation Theory of Finite
$\frac{\text { Groups }}{\text { xiv }+686} \frac{\text { and }}{86} \frac{\text { Associative }}{\text { Algebras. }}$ New York, Wiley, 1963
S. Drobot (Editor): Mathematical Models in Physical Sciences: $\frac{\text { Proceedings }}{\text { Dame, } 1962 \text { of the Conference }} \frac{\text { at the }}{\text { Englewood Cliffs }}, \frac{\text { U }}{\text { Niversity }}$ J. of Notre 193 pp., \$3.75.

## 

M. P. Fobes and R. B. $\underset{\text { Volumes I. II. Smyth: }}{\text { Englewood Calculus }} \frac{\text { and }}{\text { Cliffs, }} \frac{\text { Analytic Geometry, }}{\text { N. J. }} 1963 . \quad$ Vol. I,

A. Friedman: $\underset{\text { Equations }}{\substack{\text { Generalized Functions } \\ \text { Englewood Cliffs, }} \frac{\text { and Partiar }}{\text { J., Pifferential }} \text { Prentice-Hall, } 1963}$ $\frac{\text { Equations }}{\text { xif }+340} \underset{\text { pp., }}{\substack{\text { Englewood Cliffs, } \\ \$ 7.50 .}}$
M. Gelfand and S. V. Fomin: Calculus of Variations Englewood Cliffs, N. J.; Prentice-Hall; $\frac{192}{1963 . \quad \text { vii }}+232$ pp. $\$ 7.95$
*A. 'N. Glicksman: Linear Programing and the Theory of Games. New York, Wiley, 1963. $\mathrm{x}+131$ pp., $\$ 2.25$ (paper) $\$ 4.95$ (cloth)

J. G. Herriot: $\begin{aligned} & \text { Methods of York, Mathematical Analysis } \\ & \text { Wiley, } 1963 . \\ & \mathrm{xiii}+198 \mathrm{pp.,} \$ 7.95 .\end{aligned}$

*J. A H. Hunter and J. S. Madachy: Mathematical Diversions. Princeton, Van Nostrand, 1963. vii + 178 pp., $\$ 4.95$.
 1963. xiii + 924 pp . No price provided.
F. L. Juszli: $\frac{\text { Analytic Geometry }}{\text { and }} \frac{\text { Calculus. }}{+178}$ Englewood C1iffs,

J. G. Kemeny, R. Robinson, and R. W. Ritchie: New Directions

 $\frac{\text { Mathemati }}{\$ 12.50 \text {. }}$
${ }^{*}$ H. Langman: Play Mathematics. New York, Hafner, 1962. 216 pp., $\$ 4.95$.
 Edition. New York, Wiley - Interscience, $1963 . \mathrm{x}+390 \mathrm{pp}$.,
$\$ 10.00$.
C. W. Leininger: Differential Equations. New York, Harper, 1962 x + 271 pp., $\$ 6.00$
M. Loeve: Probability Theory, Third Edition $\quad$ Vrinceton
R. D. Luce, R R. Bush, and E. Galanter (Editors): Handbook
 \$11.95
R. D. Luce, R. R. Bush, and E. Galanter (Editors): Reading $\frac{i n}{1963 .} \frac{\text { Mathematical Psychology, }}{\text { ix }+535 \mathrm{pp} .,} \quad \$ 8.95$.
W. Maak: An Lntroduction to Modern Calculus. New York: Holt Rinehart and Winston; 1963. $\mathbf{x}+390$ pp., $\$ 7.00$
D. B. MacNeil: $\begin{gathered}\text { Modern } \\ \text { Princeton, } \\ \text { Van Nostrand, } 1963 . \\ \text { ix }+310 \mathrm{pp} ., ~ \\ \$ 5.75\end{gathered}$
 Freeman, 1963. xi +304 pp., $\$ 7.50$.
P. H. E. Meyer and E. Bauer: Group Theory: The Application E. Meyer and E. Bauer: Group Theory:
to Quantum Mechanics. Application
$\$ 9.75$. York, Wiley,
M. E. Munroe: Modern Multidimensional Calculus $\begin{aligned} & \text { Mddison-Wesley; } 1963 . \text { viii }+392 \text { pp., } \$ 9.75 .\end{aligned}$ gata: Local_Rinas. New York, Wiley (Interscience), 1962. xiiii $+\frac{\text { Local Rinas }}{234 \text { pp., } \$ 11.00}$
*I. Niven: Diophantine Approximations New York, Wiley (Interscience),
L. L. Pennisi: Elements of Complex Variables. New York: Holt,
M. Rosenblatt (Editor): Proceedings of the Symposium en Time Series Analysis. New York, Wiley, 1963. xivt $497 \mathrm{pp.}$.
J. Ryser: Combinatorial Mathematics, Carus Monograph No. 14. New York, Wiley, 1963. xiv + 154 pp., $\$ 4.00$.
T. L. Saaty (Editor): $\frac{\text { Lectures }}{\text { New York, Wiley, }} 1$


H. A. Thurston: $\frac{\text { Calculus }}{\text { Eng }} \frac{\text { for }}{} \frac{\text { Students }}{\text { of }} \frac{\text { of }}{\text { Enqineering }} \frac{\text { and the }}{\text { J.; Prentice }}$

*I. N. Vekua: Generalized Analytic Functions. Reading, Mass., Additon-Wesley, 1962. xxix + 668 pp., $\$ 14.75$.
iN. H. Ware: Diaital Computer Technology añá Design. New York Wiley, 1963. Vol. I, xviii + $245 \mathrm{pp.} \$$.7.95 . Vol. 11, $\mathrm{xx}+536$ pp., $\$ 11.75$.
H. C. White: $\frac{\mathrm{An}}{\text { Prentice-Hallin }} \frac{\text { Anatomy }}{1963} \frac{\text { of }}{1} \frac{\text { Kinship- }}{80 \mathrm{pp.,}} \$ 6.95$.

L. Witten (Editor):
$\quad$ Research, New Yoritation:
Rork, Wiley,
1962. $\frac{\text { Antroduction }}{x+481 \mathrm{pp} .,} \frac{\text { to Current }}{\$ 15.00 .}$

$$
\text { Research, New York, Wiley, 1962. } \mathrm{x}+481 \mathrm{pp.,}
$$

*The Fibonacci Quarrterrily, Vol.. I, No. I, February 1963. \$4.00 per year. $\frac{c / o}{}$ Brother U. Alfred St. Mary's College Post Office California

Topics in Mathematics, translated from the Russian
A. I. Fetisov: Proof in Geometry, 55 pp., $\$ 1.40$.
N. N. Vorobyov: The Fibonacci Numbers, 47 pp.. \$1.35.
E. S. Venttsel' : An Introduction to the Theorv of Games, 66 pp., $\$ 1.75$

Boston, D. C. Heath, 1963.
*See review, this issue

ALABAMA BETA, Auburn University (May 16, 1963)

Lynda C. Arnold
William V. Barber, Jr.
Robert McArthur Beard
obert Earl Blankenship
Charles B. Boardman
Willam H. Boykin,
Lawrence Owen Brown
im Allen Burton
Mary Ann Cahoon
Thomas Rush Clement
Trson S. Craven
Judy Davidson
William Byrd Day
Clyde Patrick Drewett
James W. Dumas
Richard E. Fast
Daniel M. Fredrick
Clay Gibson Griffin

Douglas Van Hale Daniel C. Holsenbeck George A. Howell John C. Ingram Sarah A. Jackson William Douglas Jackson James Cecil Johnson William W. Lazenby James T. Lewis Donald w. Lynn William C. Mayrose Roy W. McAuley Wilson S. Mcclellan Bryant E. McDonald Penn 玉. Mullowney, Jr. Bobby C. Myhand Lowell W. Patak

Ben Starling Pearson Charles F. Perkins, Jr. Mickie N. Porch
Tommy Jay Richard Fred Randolph Robnett Russell H. Ryder, Jr. C. D. Scarbourough Burton Sigrest ohn D. Skeparnias Marsha Stanley James R. Thomas Pamela D. Turvey John T. VanCleave Alice Marie Venable Barbara G. Wallace Shelby Davis Worley Philip J. Young

ARZONA ALPHA, University of Arizona (Spring 1963)

| Margaret L. Cadmus | Peter B. Lyons | CodnalR.SSApligmilSprouse |
| :--- | :--- | :--- |
| Leroy J. Dickey | Demir Ozdes |  |
| Clarence K. Hutchinson | Harry L. Rosenzweig | Helen Wong |

ARKANSAS ALPHA, University of Arkansas (October 11, 1963)

> Margaret A. Atkinson am Ray Bailey
> Dale Keith Cabkwell Roger Clyde Clubbs Franklin H. Cochran Lawrence Davenport Donald D. Dillard Donald S. Douglas Abdul Wadud Drak Ronald Gene Embry Lawson Edward Glove

Carl Edwin Halford Travis E. Harrell Thomas Wagner Hogan Mary Sue Hornor Robert Denham Hurley George Jew
John B. Luce, Jr. Joyce Ann Mikeska Thomas Stephen Moore Walter T. Murphy Jerry Lee Parker

John W. Perry Michael R. Platt Richard D. R James W. Sea Charles Paul Sisco Kenneth R. Skillern David E. Standley Clifton C. Stewart, Jr. Michael T. Taylor James T. Womble Kenneth Elmer Wood Jo Ellen Woody

ARKANSAS ALPHA, University of Arkansas (March 7, 1963)

| Michael C. Carter | Troy Floyd Henson | William A. Jasper |
| :--- | :--- | :--- |
| Onis J. Cogburn | Raymond Higdon | Lynn Morris Leek |
| Dwight Arles DeBow | Tim C. Hinkle | Charles B. Martin |
| Nina L. Fisher |  | Jכhn George Weber |

CALIFORNIA GAMMA, Sacramento State College (Fall 1962)

CALIFORNIA DELTA, $\underset{\text { (Charter Members) }}{\text { Uniforniat }} \underset{\text { (May } 23, ~ 1963)}{\text { Santa }}$ Barbara

| Charles Huff | Robert Newcomb | Donald Stice |
| :--- | :--- | :--- |
| MarvinMarcus | JudithPaige | Eric Stolz |
| Dan Moore | DonPotts | William Watkins |
| Susan Moore | JamesSloss | Adil Yaqub |

CALIFORNIA EPSILON, The Claremont Colleges (Spring *1963)

Richard Abel
David A. Angst
Victor Buhler Jon Bushnell
Michale Chamberlain
Courtney Coleman
Kenneth L. Cook
Mary Kay Emery
John A Ferling
Donald Fox
Judith Fry
Ross Goodell
John Greever

Norman Nielsen Ronald M. Oehm Evan L. Porteus James Ritter Richard W. Rosin Steve D. Silbert Elmer B. Tolsted Barbara Waite Jane Wheelock Alvin White Edward Wilson Mery Worrell
David Young

CONNECTICUT ALPHA, University of Connecticut (May 18, 1963)

Estelle Chmura Ronald W. DeGray Edward Fawcett
Raymond Ferris
Ann Foley
Marilee Goldfarb Lawrence C. House Janice Ingrain

| Janice Hallick | Norman Nielsen |
| :--- | :--- |
| DavidG. Haut | Ronald M. Oehm |
| Irving H. Hawley | Alden F. Pixley |
| RichardL. Hawley | Evan L. Porteus |
| J. Philip Huneke | James Ritter |
| CarolynHunt | Richard W. Rosin |
| Robert T. Ives | Steve D. Silbert |
| ChesterG. Jaeger | Elmer B. Tolsted |
| RobertC. James | Barbara Waite |
| DavidV. Jensen | Herbert Walum |
| Alan Kirschbaum | Jane Wheelock |
| BeverlyP. Lientz | Alvin White |
| G. John Lucas | Edward Wilson |
| Thomas W. Moran | MeryWorrell |
| Janet Myhre | David Young |

WASHINGTON, D. C., ALPHA, Howard University (June 1963)

| Goldie Lee Battle | George Gardner | Gloria Prather |
| :--- | :--- | :--- |
| Jean LloydBlake | Marvie De Lee |  |
|  | Mary Ann McAlister | Edward Singletary |

FLORIDA ALPHA, University of Miami (April 28, 1963)
William C. Brown, Jr. Maria Auxiliadora Hernández
Hazel Alice Cohen
N. Abraham Glatze

Miguel C. Guerrero Brita Laux Keesling Gisela Rosch Dpuglas.

FLORIDA BETA, Florida State University (April 6, 1963)
James William Brewer
ames William Brewer
Barbara Carroll Brogden Simcha Brudro
Robert G. Carson
Richard G. Cornell Bill Dahl
Richard Henry Goodell John F. Hannigan, Jr.

William James Heinzer Kenneth Clayton Hepfer Leonard R. Howell, Jr.
James Ralph Hughes
Rhonald M Jenkins
Richard Alan Jensen
Oscar Taylor Jones
Clinton W. Kennel
Connie Clarke Kimbrough
William E. Lever
Franklin Robert Hartranft

Helen G. Roberts
Lydia Rufleth
David Sleeper
Regina N. Slivinskas
Dorothy Volosin
Sherman Wolff
Della Joanne Zera

Norman H. Magee, Jr
David Lee Neuhouser
James Wilson Newman, Jr.
Lloyd Nathan Nye
Matthew Joseph O'Malley
Richard Murdoch Root
Ronald Albert Schmidt Linda Marceline Spaugh Ronald Andrew Sweet Frank Wilcoxin
Craig Adams Wood

GEORGIA BETA, Georgia Institute of Technology (May 26, 1963)
Garth RussellAkridge

James Lucius Grant $\quad$\begin{tabular}{l}
HarryAdelbert Guess, Jr. <br>
<br>
<br>
E. Dennis Huthnance <br>
Lawrence P. Staunton

$\quad$

Doris Alexandria Truitt <br>
Woodson Dale Wynn
\end{tabular}

ILLINOIS DELTA, Southern Illinois University (May 24, 1963)

| Richard Dean Daily | Gary D. Jones | Robert Curtis P |
| :---: | :---: | :---: |
| Marian Dean | Judith D. Kistner | James D. Snyder |
| Larry Ramon Diesen | Robert A. McCoy | William J. Spicer |
| Victor H. Gummersheimer | John Clement McNeil | William Paul Wake |
| John Paul Helm | Carol Ann Mills | Charles Russell Weber |
| William Gerry Howe | S. Burkett Milner | Ella L. Weitkamp |
| Ronald E. Hunt | Mary Jane Prange | James S. Younker, Jr |

KANSAS ALPHA, University of Kansas (March 18, 1963)

| Stephen J. Bozich | Kenneth C. Ford | Michael J. O'Neill |
| :--- | :--- | :--- |
| Woodrow Dale Brownawell | Warren D. Keller | Franklin D. Shobe |
| Donovan E. Cassatt | Max Dean Larsen | William P. Vale |
| Karin VanTuyl Chess | Harold W. Mick | TaraVedanthan |
| James S. Dukelow, Jr. | Edwin Alan Nordstrom | John T. White |

KANSAS ALPHA, University of Kansas (April 22, 1963)

William M Causey
Dovid Edward Fisc
Sally Foote
Dorothy Jean Hain
James Dean Harris
Thomas J. Henninger
William R. Jines

Shirley E. Scott
Gary Alan Smith Donald F. St. Mary Richard F. Taylor James Madison Tilford Bette K. Weinshilboum Couis H. Whitehair CarlScott Zimmerman

KANSAS ALPHA, University of Kansas (June 1, 1963)
John J. Hutchinson
KANSAS GAMMA, University of Wichita (December 14, 1963)
Marion G. Speer
KANSAS BETA, Kansas State University (May 8, 1963)

| Judith I. Brandt | H. K. Huang |
| :--- | :--- |
| Janice Caldwell | Charles E. Johnson |
| James West Calvert | Gary Johnson |
| John W. Carlson | John L. Johnson |
| An-TiChai | Karen M. Lowell |
| MelvinC. Cottom | Gangadhara Swami Mathad |
| DavidA. Draegert | John O. Mingle |
| David J. Edelblute | Sanuel A. Musiel |
| Wayne O'Neil Evans | Donald L. Myers |
| Henry M. Gehrhardt | ChongJin Park |
| John Harri | Marvin R. Querry |

Jack Franklin Reffne Gerald Schrag Gale Gene Simons Raymond C. Smith Clyde Sprague Sumpunt Vimolchalao Ray A. Waller Chee Gen Wan ChesterC. Wilcox Mary Louise Zavesky

KANSAS BETA, Kansas State University (May 16, 1963
George Dailey

KANSAS GAMMA, University of Wichita (June 5, 1963)

| Judith A. Coombs | Donald L. Hull | Samuel A. Lynch |
| :--- | :--- | :--- |
| Donald Franklin Cowgill | Thomas George Klem | Toma I. Sara |
| Ted Davis | Joanne V. Larson | David T. Sawdy |
| J. Fred Giertz | Wilbur J. Lewis | Frank Wilson |
| Samuel Dale Gill |  | Robert Ernest Young |

Thomas Joanne V Karson Wilbur J Lewis

9, 1963)
KENTUCKY ALPHA, University of Kentucky (May 9, 1963)
Austin W. Barrows
Joseph Lawrence Beach

> William L. Crutcher Nancy RodgersDykes RonaldC Glidden

Ronald C. Glidden
Paul Martin Ross
W. Prentice Smith

LOUISIANA BETA, Southern Louisiana (May 8, 1963)

| Mrs. Prince Armstrong | Oscar Ray Jackson | Glendell Kirk |
| :--- | :--- | :--- |
| Talmadge Bursh | Joan FayePerry |  |
| Mary Ann Coleman | Jo MeCray | WinfieldReynolds |
|  | Roosevelt Peters | JohnStills |

MARYLAND ALPHA, University of Maryland (May 15, 1963)

Ronald Wilson Browe Nicholas Cianos Joseph F. Escatel Paul Gammel
Alvan M Holston

William A. Horn Jyun J. Kim George Cleveland Robertson Margarita C. Sotolongo

Garrettoliver
VanMeter, II Robert Paul Walker David Weiss George Westwick George Wilson

MICHIGAN ALPHA, Michigan State University (February 28, 1963)

| Carolyn A. Burk | Lawrence Leftoff | Peter H. Rheinstein |
| :--- | :--- | :--- |
| John K. Cooper, Jr. | Ralph B. Leonard | RichardSauter |
| Stephen E. Crick, Jr. | Margaret M. Loomis | Walter N. Schreiner |
| JohnR. Faulkner | EdnaC. Madison | Diane K. Sovey |
| NancyJ. Fitchett | Arnold R. Naiman | M C. Trivedi |
| Mary EllenGreene | RobertS. Olstein | William A. Webb |
| ErnestS. Grush | Angela M. O'Neill | BarbaraA. Weeks |
| Jeffrey I. Hack | PatrickK. Pellow | Ronald H. Wenger |
| Gail E. Haske | Arden D. Parling, Jr. | James R. Whitney |
| Joanne L. Holdsworth | John M. Rawls | Deborah A. Williams |

MISSOURI ALPHA, University of Missouri (May 8, 1963)
Ramzia M. Abdulnour
Fonson N. Anadu
Robert Lee Beneditti William M Bolstad William Paisley Brown Joseph Kent Bryan Carol Calhoun Chi Cheng Chen Ronald W. Fries Larry E. Halliburto Monty J. Heying

| William D. Hibler, III | Richard L. Norman |
| :--- | :--- |
| Raymond A. Hicklin | Neal F. Peterman |
| David Howe | Samuel T. Picraux |
| James Mark Hunt | Norman Recknor |
| John Irvin Israel | Harry D. Riead |
| June Jenny | Slade W. Skipper |
| Robert Jordan | Elvin B. Standrich |
| Donald G. Kaiser | Joseph S. Starr |
| Udo Karst | Fred Stroup |
| Randolph H. Knapp | AlbertL. Tryee |
| Ester Lorah | Ning Sang Wong |
| Robert B. Ludwig | Scott Yeargain |
| Wayne D. Meyer | Paul J. Ziegelkin |
| John W. Neubauer |  |

MISSOURI GAMMA, St. Louis University (April 25, 1963)

| Lawrence W. Albus | Patricia R. Flannery | Thomas E. Moore |
| :---: | :---: | :---: |
| James F. Aldrich | Joseph M Fouquet | b |
| Barbara Lee Bacon | Martin D. Fraser | LaVerne S. Oakes |
| Larry G. Bauer | Sheila M Gallagher | Joan M. Oliver |
| William F. Bayer, Jr. | Donald H. Galli | Thad P. Pawlikowski |
| Nathaniel A. Boclair, Jr. | Nancy J. Garrity | Michael W. Pieper |
| Enrique Bolanos | Gerald A. Geppert | Geraldine C. Pisarek |
| Francis R. Boman | Edward O. Gotway, Jr. |  |
| Edward M Boule | James M. Guida |  |
| Marilyn L. Boxdorfer | Joyce C. Gunnels |  |
| Sister Duns Scotus Breitbart | Mary Kathryn Haas | Juliana Roh! ing |
| Anne Brightwell Richard B. Brown | Thomas J. Higgins | Jasepdn cR ud.a wRstinels |
| Richard B. Brown Cathleen Adelaide Callahan | Barbara M Holtkamp <br> Paul B. Hugge |  |
| Cathleen Adelaide Callahan | Judith L. Huntington | George E. Samoska |
| Barbara A. Carpenter | Dale N. Jones | David A. Schmitt |
| Mary Kezia Carrothers | Kathryn M. Keller | Ellen M. Schroeder |
| Feng-Keng Chang | Katharine J. Kharas | Carol Patricia Sip |
| Quiza Chang | Jane M. Klein | Mary Ann Smola |
| Lurelle K. Coddington | Fred J. Kovar | Sue Elaine Snyde |
| Sister Joseph Norbert Crete | Robert G. Kribs |  |
| Timothy J. Cronin, S.J. | Elmer A. Krussel | Judith Anne Stute |
| Lames Leo Daly, S.J. | Carolyn L. Kuciejczyk CarlR. LaForge | Judith Anne Stute <br> John F. Suehr, S.J. |
| Maria Davis | Linda Lee Leech | Frank H. Tubbesing |
| PaulR. Dixon | Stevenson Dun-Pok Mack | illiam. Walker |
| Rev. Evan T. Eckhoff, O.F.M. | James 区. Maletich | Wegma |
| Nicolaas W. Eissen | Elmer ${ }^{\text {E }}$. Marx | Mary Anita Weis |
| Ronald F. Eldringhoff | Jacqueline McCoy | May ydAJmatue hrie |
| Mary Rose Enderlin | James T. Melka |  |
| Fred K. Enseki | Carl F. Meyer | Ronald E. Yanko |
| Kenneth J. Feuerborn | Susan D. Miller | Dennis L. Young |

MONTANA ALPHA, Montana State University (October 31, 1962)

| CarlCain | Margaret Kem | Kenneth Osher |
| :--- | :--- | :--- |
| WilliamGregg | AntonKraft | RobertVosburgh |

MONTANA BETA, Montana State College (May 20, 1963)
Patrick Arthur Cowley
Minerva Rae Hodis
Glenn R. Ingram
Leon Eugene Mattics Dean Paul McCullough Robert Frank Sikonia
George Henry Spanqrud
William A. Stannard Raymond Clayton Suiter
GIOrial Eileen Wheeler

NEBRASKA ALPHA, University of Nebraska (May 19, 1963)
Robert Wesley Brightfelt
Theron David Carlson heron David Carlson Rodney Dean Crampton Stephen Paul Davis Richard Victor Denton Lyal Val Gustafson Daniel B. Howell
Kenneth Francis Hurst
Helen J. James James Lee Jorgensen Gary Samuel.Kearney Robert Dean Lott Rodney Lee Marshall James Pougal McCall, Jr. Robert Joseph McKee, J
William Howard Odeli

Allen Arthur Otte
Carol Ann Phelps Donald Howard Schroede Ararr lMaranagearaikenseney

Richard Paul Smith
Harold D. Spidle
Daryl Andrew Travnicek

NEW HAMPSHIRE ALPHA, University of New Hampshire (May 30, 1963)

| Richard B. Aldrich | Vincent B. Roberts <br> Sidney Einbinder <br> Robert L. Rascoe | Paul W. Stanton |
| :--- | :--- | :--- | | Frank D. Szachta |
| :--- |
| Neorge N. Yamamoto |
| NEW JERSEY ALPHA, Rutgers, The State University2 |

William J. Culverhouse
Peter R. Mumber
NEV JERSEY BETA, Douglass College (March 18, 1963)

| Mary Janet Casciano | Judith Diane Flaxman | Janet Lynne Johnston |
| :--- | :--- | :--- |
| Anne T. Crumpacker | Eleanore Ann Geary | Carol Shapiro Lessinger |
| Joyce Danziger | Prances H. Griffith | Roberta Neslanik |
| Barbara Lee Elcome | Gloria Herships | Carolyn Clark Palmer |
| Judith E. Fischer |  | Arlene R. Silverman |

NAW MEXICO ALPHA, New Mexico State University (May 29, 1963)
David R. Arterburn
Michael Carroll
Richard Ed Davies
Robert W. Deming
Ernest E. Denby
Frances Hammer
Edgar Howard
Adolf Mader
Thomas Meaders
Laurel Ruch
Ronald Stoltenber

Gary N. Smith
Gregory Tracht
Charles Ward Robert Whitley
Ernest F. Deming

NEW YORK ALPHA, Syracuse University (April 24, 1963)

| Richard R. Bates | Robert James Heins | Donald Charles Miller |
| :--- | :--- | :--- |
| Jean H. Becker | Elizabeth Hufnagel | Barbara Adele Morgenroth |
| William Paul Blake | Beverly Anne Kaupa | Thomas J. Riding |
| John E. Bothwell | Stephen B. Kazin | Diane Schlieckert |
| Richard Brandshaft | Carol Kwietniak | Sheridan Gilmore Smith |
| Raymond Caputo | Tanya Francine Landau | Charles J. Stemples |
| Nicholas Celenza | Richard C. Lessmann | Richard B. Stock |
| William Haldance Courage | Francine Sue Librach | Ann R. Tierney |
| Howard L. Empie | Paul Lovecchio | Judith Helen Yavner |
| Robert B. Fletcher | Sheila Magaziner | Paula Zak |
| William Garrett | Barbara Micski | Marsha Ellen Zanville |
| Patricia Ann Gawarecki |  | Ronald Charles |
|  |  |  |

NEVADA ALPHA, University of Nevada (April 26, 1963)

| Ernest Samuel Berney, III James A. Hammond | Wendell A. Johnson |  |
| :--- | :--- | :--- |
| Betty Jo Cosby | James R. Herz, Jr. | Ronald A. Jeuning |
| Joseph N. Fiore |  | Gordon L. Nelson |

NEV HAMPSHIRE ALPHA, University of New Hampshire
Jack L. Baker
Raoul S. Barker
Robert E. Bennett
Robert G. Drever
Virginia Ann Gross
Paul L. Hardy

Donald Wayne Hodge
Charles E. Horne
Curtis S. Morse
Robert J. Oelke
Beverly S. Payne
(May 16, 1963)
James L. Priest
Robbin Roberts
Walter J. Savitch
William H. Weaver
Roberta S. Wright
Edwards H. Veech

NEW YORK BETA, Hunter College (March 31, 1963)

| Elaine Akst | Rhoda Goldwein <br> John Altson <br> Eleanor Barnabic <br> Elaine Baron | Barbara Nissel <br> Lillian Heim <br> George Levine |
| :--- | :--- | :--- |
| NEW YORK GAMMA Brooklyn College (April 25, 1963) |  |  |
| Camille Volence |  |  |

NEW YORK DELTA, New York University (February 25, 1963)
Susan Feinberg
N\#N YORK EPSILON, St. Lawrence University (February 6, 1963)
Sherrie Lee Buell Mary Justine Coss Wayne Lloyd Huntress
NEW YORK ETA, University of Buffalo (April 3, 1963)

| William T. Bailey | David C. Dynarski | Larry Long |
| :--- | :--- | :--- |
| Robert S. Barcikowski | Edward Paul George | Cary A. Presant <br> Daniel J. Benice |
| Karen Gochenour | Robert Lewis Richards |  |
| Ronald H. Bernard | Larry Goldstein | James M. Riley |
| Judith Ann Brandes | Ethel C. Goller | Robert Singer |
| Kathleen M. Brunig | Lois A. Grabenstatter | John Joseph Slivka |
| Donald Joseph Buchwald | Sheilah J. Granatt | Richard W. Snow |
| Sharon B. Cohen | Virginia Johnson <br> Ronald Levy | John Winkleman, Jr. |
|  |  |  |
| NEW YORK IOTA, Polytechnic Institute of Brooklyn | (May 15, 1963) |  |


| Sheldon Gordon | Otto Moller | Bruce H. Stephan |
| :--- | :--- | :--- |
| David Michael Hurwitz | Robert Robins <br> Donald Neil Levine | Fred Rosenblum |
|  |  | Denis Alan Taneri <br> Howard Taub |

NEW YORK KAPPA, Rensselaer Polytechnic Institute (May 7, 1963)

John Chukwnemeka Amazigo Gilbert Roy Berglass
Patrick J. Donohoe
Fred Gustavson
Charles W. Haines
(June 1, 1963)
Robert Frank Anastasi
Michael John Arcidiacono

Duncan Brooks Harris Donald Gilbert Hartig
Stanley Kogelman
Stuart Pittel

Howard Burt Kushner

Robert Leo Schneider Arthur Loring Schoenstadt Robert David Sidman George Randall Taylor R. A. Wolkind

Lawrence Elliott Levine George Svetlichny

NEW YORK LAMBDA, Manhattan College (Spring 1963)

| Anthony F. Badelamenti | William Patrick Dugagan | Dennis S. Martin |
| :--- | :--- | :--- |
| Charles J. Badowski | Thomas S. Farley | James H. McMahon |
| Gerard T. Boyle | John J. Ferlazzo | Thomas J. Pierce |
| Stephen W. Chan | Richard J. Grimaldi | Richard E. Seif |
| Peter A. Deninno | Richard J. Hutter | Thomas H. Stern |
| Robert DeStefano | Nicholas T. Losito | David S. Woodruff |
|  | Anthony J. Marra |  |
|  |  |  |
| NORTH CAROLINA ALPHA, Duke University (May 1963) |  |  |

Anita Joyce Cummings
Jerry Robert Hobbs Wayne Terryl Peterson
John Franklin Walden

Elizabeth Anne Walris Donald F. Young
(May 27, 1963)
Miriam M. Almaguer Marie Stuart Austin Sam D. Bryan
Walter L. Carson, Jr Ann Rita Chaney Albert A. Chiemiego,III Ronald W. Clarke Howard W. Cole Randolph Constantine, Jr Frederick H. Croom

Perino M. Dearing, Jr.
Forrest Forrest B. Green Jerry G. Hamrick Mary M. Hopkins Robert L. Ingle Samuel R. Keisler Barry F. Lee Betty Ann Lupberger Carolyn F. Lyday Alice Maris

Margaret M. Millende Berrien Moore, III Peter Müller-Römer Nelson F. Page Nelson $F$. Page
Robert
L. Peek Thomas F. Reid Frank A. Roescher Ann R. Sarratt David W. Showalter Melba Donnell Smith

NORTH CAROLINA GAMMA, North Carolina State University (May 1, 1963)

| Sam G. Beard, Jr. | J. Allen Huggins | Richard Steele Payne |
| :--- | :--- | :--- |
| Leslie Ray Brady, Jr. | John Clay Kirk | Charles V. Peelle |
| Irene Chai-man Chan | Robert L. Lambert | Ronald Owen Pennsyle |
| Lawrence Rufty Chandler, Jr. | . Douglas Seaton Lilly | Thomas Jackson Shaffner |
| John Steele Culbertson | Nguyen Vo Long | Robert Demarest Soden |
| Marion Lee Edlards | Anthony Guy Lucci | Stavros John Stephanakis |
| Abdelfattah A. Elsharkawi | William Francis Maher | Sohn Cornelius Theys, Jr. |
| Thomas A. Foster | Philip Gale McMillan | Wiliam Doyle Turner |
| Richard Vernon Fuller | Francis F. Middleswart | Robert Henry Wakefield, Jr |
| Herbert Hames Goldston, Jr. | Stephen Watts Millsops Charles Newton Winton |  |
| Leland Moore Hairr |  |  |

OHIO ALPHA, University of Ohio (Spring 1963)

Daniel Donald Bonar
Frederick C. Byham
John B. Fried
John B. Fried
Walter C. Giffin

Thomas S. Graham
Albert F. Hanken Del William Heuser Joseph J. Y. Liang
Joseph Meeks Randal P. Mil Roger Jeffrey McNichols

Randolph H. Ott
Daryl $J$. Rinehar
Melvin R. Rooch Ravid M Thompsot Bert K. Waits

OHIO BETA, Ohio Wesleyan University (April 25, 1963)
Betty Jane Albrecht
Katherine Alice Berli
Gerald William Boston

Nancy Alice Lange
John Alexander Neff
Dennis Lee Orphal
James Eldon Wiant William Aaron Woods, Jr.

OHIO EPSILON, Kent State University (Spring 1963)

Olga Kitrinou Kenneth W. Klouda Geraldin Kucinski peter A. Lindstrom Yih Tang Ling Larry Nimon Suzanne M. Pane Bonnie Pentz

Duane L. Shie Dorothy L. Shipman Karen K. Stein Eric J. Thompson Nola J. Troxell
Anka M. Vaneff Sigrid E. Wagner Marion B. Walker Anne Way

Henry J. Prince Gerald J. Shaughnessy Ronald J. Versic Gerard O. Wunderly

Edward W. Rummel William J. Scarff Rex S. Wolf

|  |  |
| :--- | :--- |
| Richard A. Borst | David S. Chandler |
| William E. Blum | Frank E. Hess |
| Timothy R. BuhI | David D. McFarland |
|  |  |
|  | Kamran Mokhtarhan |

OHIO IOTA, Denison University (May 21, 1963)
Linda Voorhis
OKLAHOMA BETA, Oklahoma State University (January 18, 1963)


OREGON BETA, Oregon State University (May 9, 1963)

| Gerald Lee Caton | Terry B. Hinrich | Arthur Eugene Olson, Jr |
| :--- | :--- | :--- |
| Chi-Ming Chow | RobertCarlJohnson | Jack T. Rover |
| Allen R. Freedman | John William Kjos | Henry Lynn Scheurman |
| James W. Green | Richard Bruce McFarling | KennethVanceSmith |
|  |  |  |

PENNSYLVANIA BETA, Bucknell University (March 27, 1963)

Ellen J. Albright
Linda J. Cline
Michael D. Fitzpatrick
(April 2, 1963)
Daniel Motill

| James A. Ake | William H. Jaco |
| :---: | :---: |
| Paul Richard Althouse | Barbara Jacobson |
| Harold Justin Bailey | Judith Katz |
| Daryl Scott Boudreaux | Eugene Klaber |
| Donald B. Boyd | Ellis D. Klinger |
| Glen F. Chatfield | Edward W. Landis |
| Claude R. Conger | Frederick C. Lane |
| Joseph Nunzio Davi | Marilee McClintock |
| Aletta S. Denison | Thomas B. McCord |
| William Defenderfer | John McGrath, III |
| Richard B. Divany | Michael A. Moore |
| John Bill Freeman | Marsha Ann Morris |
| Elizabeth Goldberg | Eugene A. Novy |
| Mary E. Hewetson | John A. Panitz |
| Frederick Hugh Heyse | Richard S. Paul |
| George J. Hoetzl | Dale A. Peters |
| George W. Houseweart | Alan Lewis Polish |

PENNSYLVANIA ZETA, Temple University
(May 10, 1963)
Michelle Anderson
Gary Bennet
Richard Castin
Marilyn Leonard

## Stephen Nemorufsky Judith Ravitz Ronald Sheinso

 Eileen SiloSteven Gerald Mann<br>Lowell Nerenberg<br>Roberta Passman<br>Stephen Arthur Schneller

| Allan Becker | Steven Gerald Mann | Francis Joseph Smaka |
| :--- | :--- | :--- |
| Alan Cutler | Lowell Nerenberg | Lou Wm. Stern |
| Gail Forman | Roberta Passman | Bonnie Rae Strouss |
| Joel Greene | Arthur Rosenthal | David E. Tepper |
| RonnieJudith Katz | Stephen Arthur Schneller | SandraVolowitz |

Alan Cutler
Joel Greene
Ronnie Judith Katz

SOUTH CAROLINA ALPHA, University of South Carolina (May 6, 1963) 499

| Gary Paul Bennett | David Lee Gray |
| :---: | :---: |
| David Roy Bonner | Judith A. Holshouser |
| Ann Bengtson Booth | Wanda M Johnson |
| Joseph L. Boyette | Burman H. Jones |
| Michael D. Caldwell | Larry Harold Kline |
| Helen Conway Faris | Cheri Anne Moore |
| Penelope Lee Fletcher | Richard Allen Myer |

Thomas Gold Owen David Roger Roth Herbert N. Stacy Edwin C. Strother William F. Wheeler Morton N. Winter

SOUTH DAKOTA ALPHA, University of South Dakota (April 23, 1963)
Kenneth Wayne Anderson
FrederickDee Baker
Wayne Harley Cramer
Theodore Stanley Erickson
Charles Harold Frick
Donald Robert Greenwaldt
Jo Ann Hafner
George Solomon Keil
Ronald James Leidholm
Marvelene Her

Nelontine Maria Maxwel
Charles Joseph Miller
John Hoseph Mill
Paul Francis Nye
Donald Allen Owens Dennis Edward Preslicka Elaine Norma Reinking Billy Joe Scherich Harvey Eugene Schmidt
Marve James Leidholm

David Charles Smith Richard Larsen Storm Blaine Eugene Thorson Kenneth Arthur Thorson
Wayríd nWbluay Westrae

Linda Faye Wilkie James Harold William Howard William Witt
Robert Charles Witt

RobertS. Pollack William Gerald Quir David M Rank Francis Sandomiersk Robert Scheerbaum Richard G. Seasholtz Terry L. Shockey Dean W. Skinner Susan E. Starbird Joseph E. Turcheck Jay Nicholas Umbre Rocco David Walke William Z. Warren Thomas C. Wellington Gretchen J. Zukas

David Tippe Miles N. Wrigley Sheppard Yarrow David Zitarelli

Francis Joseph Smaka Sandra Volowitz


TEXAS ALPHA, Texas Christian University (March 20, 1963)
Jean Beal Richmond Laddie W. Rollins
(May 22, 1963)

| Billy D. Adams | Steinar Huang |
| :--- | :--- |
| S. Siraj Ahmad | Joyce Crumpler Hutchens |

Gordon W. Bowen
ames C. Couchman
John N. Davies
J. Michael Gray
obert M. Hansar
E. W. Hollier

Joyce Crumpler Hutchens
John C. Knowles, Jr. Craig Mason
Emajean U. McCray Dorothy Dell Mannahan
James C. Nicholson
E. W. Hollier

UTAH ALPHA, University of Utah (June 4, 1963)

| Francis Belinne | Euel Wayne Kennedy | Elbridae Wesley Sander |
| :---: | :---: | :---: |
| Charles Bentley | Frank J. Kuhn, Jr. | George Stratopoulos |
| Austin F. Bishop | J. Cleo Kurtz | Gerald B. Stringfellow |
| Eddie George Chaffee | Jack Wayne Lamoreaux | Peter W. Temple |
| K. Michael Day | Wallace Earl Larimore | David J. Uherka |
| Lynn E. Gamer | Alvin H. Larsen | Allen Howard Weber |
| Robert Kent Goodrich | L. Duane Loveland | Larry L. Wendell |
| Hugh Bradley Hales | Richard Roy Miller | Willes L. Werner |
| V. Ronald Halliday | John H. Parker, Jr. | Donald M. White |
| Elbert Troy Hatley | Jean J. Pedersen |  |
| Joseph Taylor Hollist | Fredric Grant Peterson | Jerry W. Wiley |
| Allen Quentin Howard, Jr. | David Charles Powell | Russell Wilhelmsen <br> Thomas L. Williams |
| Ronald L. Irwin | David L. Randall |  |
| Stanley M. Jencks | Bruce S. Romney | James H. Wolfe |

VIRGINIA ALPHA, University of Richmond (May 6, 1963)
Ruth Ann Carter Bonnie May Higgins Richard Henry Lee Mark.

Walter J. Rainwater, Jr John Duncan Raithel Randa Suzanne Randolph Grady Roberts
Woodlea Sconyer William A. Sisk

Grace Moncure Collins
Joseph Richard Manson, IV

Richard Henry Lee M
Sara Janet Renshaw

Frederick Charles Barnett Shih Shiang Hsing George Christopher Canavos Whitney Larsen Johnson Cecile Korsmeyer Cotton Harvey Arlen Dan John Richard Hebel Allison Ray Manson Kenneth Mullel Matheny John Wesley Philpot

Martha Kotko Roane John G. Saw Leonard Roy Shenton Robert Heath Tolson Robert Heath Tolson Donald Womeldorph

Ronald J. Bohlman
James E. Hoard Joyce E. Imus
Leslie A. Fox John Rolland

Barton H. Clennan Raymond L. Ostling
Gary C. Pirkola

Rodney B. Thorn Richard Tse-Hung Woo

Ann L. Schultz Noel W. Vencil Sally Ann Zitzer

Brian K. Bryans
Kristen Cederwal
Paul P. Chen

## (Janua

0, 1963) Kay Harding University (May 22,1963 )
WASHINGION GAMMA, Seattle University (May 22, 1963)

Gary Leonard Harkins Mary Ann Kertes

Howard Frank Matthews Douglas Arthur Ross

Nevada Lee Sample John Michael Stachurski

WASHINGION DELTA, Western Washington State College (July 5, 1963)
David Arthur Ault
Orin Francis Dutton
Bryan Vadiver Hearse
Janet Louise Knapman
Ronald Joe Saltis

WISCONSIN ALPHA, Marquette University (May 11, 1963 )

Oscar L. Benzinger, S.J. Thomas G. Bezdek
Catherine Ann Brust
Loretta Mary Buttice Regis J. Colasant Thomas Danninger

James L. Gauer
Robert A. Keller
Timothy M. Lawler, III
Kathleen Maug
Suzanne Miller
Randolph J. Ostlie

Jane Anne Paulu Maria Elena Stanislawski Gerald J. Talsky Joseph A. Zocher Joseph C. Zuercher

WISCONSIN BETA, University of Wisconsin (May 20, 1963)

Donald L. Chambers Neil A. Davidson Robert W. Easton James Gehnnan Donald J. Gerend

Jonathon S. Golan Fred D. Mackie Alan G. Merten Albert G. Mosley Allen Reiter

Michael Shashkevich Dean E. Stowers Thomas A. Tredon Lynn R. Veeser

The following friends of Pi Mi Epsilon Fraternity and the chapters indicated are patron subscribers to the Pi Mı Epsilon Journal, paying ten dollars for a one year subscription, in the hope that hese subscriptions will relieve the general membership of the increasina cost of publication and distribution of the Journal

| Arkansas Alpha Chapter | Arkansas Alpha | University of Arkansas |
| :---: | :---: | :---: |
| Illinois Beta Chapter | Illinois Beta | Northwestern University |
| Elmer E. Marx | Missouri Gamma | Saint Louis University |
| College Library | Montana Beta | Montana State College |
| Nebraska Alpha Chapter | Nebraska Alpha | University of Nebraska |
| New Hampshire Alpha | New Hampshire Alpha | University of New Hampshire |
| In Memory of Dr. Harry W. Reddick | New York Alpha | Syracuse University |
| Ohio Epsilon Chapter | Owie Epsilon | Kent State University |
| Oklahoma Beta Chapter | Oklamonna Beta | Oklahoma State University |
| Penn. Beta Chapter | Penn. Beta | Bucknell University |
| Penn. Delta Chapter | Penn. Delta | Penn. State University |
| Virginia Beta Chapter | Virginia Beta | ginia Polytechnic Institute |

## Jriumph of the Jewelers <br> Art

YOUR BADGE - a triumph of skilled and highify trained Balfour
craftsmen is a steadfast and dynamic symbol in a changing world.

Official badge ...................... $\$ 3.25$
Official one piece key ............ 3.75
Official three-piece key... ........ . . . 4.50 Official three-piece key-pin ...... 5. 5.50
Add 10\% Federal Tax and any State or City Taxes to all prices quoted.

OFFICIAL JEWELER TO PI MU EPSILON
Write for complete insignia price list


