


VARIATIONS ON SUMS OF SQUARES 
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One o f  the famous resul ts  of number theory, due t o  Lagrange, 
i s  tha t  every posit ive integer i s  expressible as  a sum of four 
squares of integers.  The "four" here i s  best possible; not 
every posit ive integer i s  expressible as  a sum of three squares. 
The conditions under which an integer i s  expressible as a sun of 
three squares a r e  known: a posit ive integer n i s  a sun of three 
squares i f  and only i f  n is of the form 

where a and 6 are  non-negative integers. 

Also well-known are  the  conditions tha t  must be s a t i s f i ed  
i n  order t ha t  an integer n be expressible as  a sum of two squares. 
These conditions involve the factoring of n in to  prime powers, 

rl r2 rk 
n a p 1  P2 ... Pk n 

where pl, p2,..., p, a r e  d i s t i nc t  primes and the exponents r ,  r , .  ..,rk 

a re  posit ive integers.  Then n is expressible a s  a sum of two squares 

i f  and only i f  every prime fac tor  p+ of the  form 4m+3 has an even , 
exponentr4 , in  other words, i f  every prime fac tor  of n of the  form 

J 
4m+3 divides n and even number of times. 

Of these three r e su l t s ,  the  three squares theorem is the  most 
d i f f i c u l t  t o  prove. A proof i s  given i n  reference [ll. Proofs 
of the  two squares theorem and the  four squares theorem a r e  more 
readi ly  available,  f o r  example in  references [31 and C41. A f u l l  
account of the  h i s to r i ca l  background of these r e su l t s  is given i n  
D2ekson's History of the  Theory of Nubbers, reference c21. 

One point t o  be noted about these r e su l t s  is tha t  the  squares 
under consideration may be zero. For example, we may say tha t  21 

2 2 2 2  is a sum of four squares. t ha t  is. 21 = 4 +2 +1 +0 . Similarly 13 
2 2 2  is a sum of three  squares, namely 13 = 3 +2 +0 . In Theorem 1 below 

we w i l l  look a t  the  poss ib i l i ty  of expressing integers a s  sums of 



then non-zero squares of in tegers ,  i . e . ,  a s  sums of squares of pos i t ive  
integers.  In  Theorem 2 below, we do not requi re  pos i t ive  squares, but 
we look a t  t h e  p o s s i b i l i t y  of rep lac ine  one of the  squares i n  t h e  four 
squares theorem by a k-th power. 

Conversely, suppose t h a t  8 r  is a sum of four squares, say 

To be s p e c i f i c ,  we prove two r e s u l t s ,  one based on t h e  c l a s s i c a l  
four  squares theorem, t h e  o ther  on t h e  c l a s s i c a l  th ree  squares theorem, 
The f i r s t  r e s u l t  is a s  follows: Now t h e  y:'s must be a l l  even, f o r  i f  one o r  more were odd we see  

Theorem 1. Every s u f f i c i e n t l y  la rge  pos i t ive  in teger  i s  a  
sum of f i v e  pos i t ive  squares of  in tegers .  This r e s u l t  i s  f a l s e  i f  
' f i v e"  is replaced by "four". 

t h a t  
y12 t y22 + y32 + y42 E 1, 2, 3, 4, 5, 6 ,  o r  7 (mod 8)  

because any square y2 5 0, 1 o r  4 (mod 8).  This cont rad ic t s  
We can be s p e c i f i c  a s  t o  what is meant here by " suf f ic ien t ly  

large". We prove t h a t  every in teger  >I70 is a sum o f  f i v e  pos i t ive  
squares of in tegers .  We leave t o  t h e r e a d e r  t h e  v e r i f i c a t i o n  of 
t h e  r e s u l t  t h a t  every pos i t ive  in teger  except 1 ,  2, 3, 4 ,  6, 7, 9 ,  
10, 12, 15, 18, 33 is a sum o f  f i v e  pos i t ive  squares. 

8 r  E 0 (mod 8).  So t h e  y i t s  a r e  a l l  even and we have 

2. = fa]' + [+I2 t [+I2 + l̂  
It follows t h a t  i f  we exhib i t  a  number 2r  t h a t  is not a sum 

of four pos i t ive  squares, then none of 8 r ,  32r, 128r,.. . ,  
22s+1r ,... 

is  a sum of four pos i t ive  squares. Take r = 4: we see t h a t  8 is  
not  a  sum of four pos i t ive  squares, and thus we conclude t h a t  

The second r e s u l t  t h a t  we prove i n  t h i s  a r t i c l e  is t h e  
following. 

Theorem 2. Every s u f f i c i e n t l y  la rge  pos i t ive  in teger  n is 
expressible a s  a  sum o f  t h r e e  squares and a k-th (&, - .  

,2s+l is 5 a sum of four pos i t ive  squares f o r  s = 1, 2, 3,.. .  . 
Proof of  Theorem 2, The only in tegers  n t h a t  need t o  be 

considered a r e  those o f  t h e  form 
2 2 2 k  

n = x +y +z +t ) i f  k = 2, 4 ,  6 o r  i f  k is an pos i t ive  odd 
in teger ,  This a s z r t i o n  i s  f a l s x k  i s  an zven in teger  28. 

Here we cannot be s p e c i f i c  about t h e  meaning of " suf f ic ien t ly  
la rge '  i n  any absolute sense; it depends on k. I f  k = 1, 2, 4, o r  
6 t h e  r e s u l t  holds f o r  any pos i t ive  in teger ;  t h a t  is,  t h e  equation with a and 6 non-negative in tegers ,  because a l l  o ther  pos i t ive  

in tegers  a r e  sums o f  th ree  squares. I t  i s  c l e a r  t h a t  a  sum of 
t h r e e  squares can be regarded a s  a  sum of th ree  squares and a 
k-th power; simply take  the  k-th power t o  be zero. 

2 2 2 k  n = x +y tz + t  has a so lu t ion  i n  i n t e r e r s  x ,  y, z ,  t f o r  every 

pos i t ive  in teger  n, But i f  k is odd, k23, then n = x2+y2+z2+t
k 

has 
k a so lu t ion  i n  in tegers  i f  n23 . This condit ion,  t h a t  n 2 3 ,  may not 

bes t  possible,  
Now, i f  n = 7 + 86, then n-1 = 6 + 86, so  t h a t  n-1 is a sum 

of th ree  squares, say 
2 

n-1 = x2 + y2 + z . 
Thus we have n = x

2 + y2 + z2 + l
k
. 

Proof of Theorem 1. Let n be a pos i t ive  in teger  >170. Then n-169 
Is a pos i t ive  in teger  and by t h e  c l a s s i c a l  four squares theorem t h e  
equation 

Next, i f  n = 4 (7*86),; then n-1 = 27 + 326 = 3 + 8y 
where y = 3 + 46. Once again n-1 is a sum o f  th ree  squares,  and 
the  r e s u l t  follows a s  i n  t h e  previous case. has a so lu t ion  i n  in tegers  x ,  x ,  x , x , say with x >x->x >x >0. 

3 4 1- 2- 3- 4- 
If these  in tegers  a r e  a l l  pos i t ive  then we have In view of these  two cases we need consider  only in tegers  o f  

t h e  form 4 ( 7  + 86) with aL2, and no o thers .  
a s  was t o  be proved, I f  xl, x x3 a r e  pos i t ive ,  but  x = 0, then 4 
n = 1z2 + s2 t xi

2 + x22 + x32?' I f  x and x2 a r e  pos i t ive ,  but  
1 

Case 4. k odd. We observe t h a t  3 s 1 (mod 81, and so  

3k z 3 (mod 8) .  Now n = 4Â¡( + 861, s o  t h a t  n E 0 (nod 81, and we 
obtain 

n - 3k s 0 - 3 s 5 (mod 8) .  
2 x3 = x4 = 0, then n = 1p2 t b2 + 32 + x

1
2 + x2 . I f  x is pos i t ive  

1 
2 2 2 2 but  x = x3 = x = 0, then n = 10 + 8 + 2' t 1 + xl . I n  every 2 

case we have expressed n a s  a  sum of f i v e  pos i t ive  squares. 
Hen e n - sk = x2 + y2 + z2 has a so lu t ion  i n  in tegers  x, y,  z i f  E n23 . 

To complete t h e  proof of Theorem 1 we must show t h a t  it is  f a l s e  
- t h a t  every s u f f i c i e n t l y  la rge  pos i t ive  in teger  is a sum of four 

pbs i t ive  squares. To do t h i s  we f i r s t  show t h a t  i f  r is a pos i t ive  
in teger ,  then 8 r  is a sum of f o w  pos i t ive  s u a n z F i f  and only l f  Zr -- ----- 
is such a sum. F i r s t  i f  2r  is a s u m o f f o u r h i v e  squares,  ---- 



Case 2. k = 2 .  In t h i s  case Theorem 2 i s  j u s t  t h e  c l a s s i c a l  
four squares theorem. 

Case 3. k = 4. We t r e a t  even a and odd a separately.  I f  a 
is even, say a = 2y, then 

Hence n - (zy14 = x
2 + y2 + z2 has a so lu t ion  i n  in tegers  x,  y ,  z. 

I f  a is odd, say a = 1 + 2y then 

n - ~ 9 ) ~  = 4Â¡'( + 80) - ( 2 ~ ) ~  = 4^(3 + 8k) 

where A = 3 + 4B. Again we see  t h a t  n - ( 2 ~ ) ~  is expressible a s  
a sum of th ree  suqares. 

Case 4. k = 6. When a-2 is divided by 3, l e t  t h e  quotient  
be y. The remainder may be 0, 1 o r  2 and so  we have 
a = 2 + 3y, 3 + 3y o r  4 + 3y. Then we see t h a t  i n  these th ree  
subcases we have 

where A = 3 + 40. Hence there  a r e  in tegers  x ,  y ,  z such t h a t  

n - C21+~)6 = x2 + y2 + z2 o r  n = x + y2 + z2 + (21^16. 

Notice t h a t  t h i s  completes a l l  t h e  cases i n  which n is t o  be 
shown equal t o  a sum o f  t h r e e  squares and a k-th power. 

Case 5 ,  k even, k28. I f  t is any odd pos i t ive  in teger  then 

t2 : 1 (mod 8)  and so  tk : 1 (mod 8) .  I f  t is any even non- 

negative integer then tk : 0 (mod 2k),  and t h i s  implies t h a t  
2 

tk = 27.q. We prove t h a t  i f  n = 4 (7 + 80) with t3zq then n- tk is 

not a sum of th ree  squares, no matter  what t is. I f  t is odd we 

see t h a t  
n - tk z 0 - 1 Z 7  (mod 8 ) .  

I f  t is even, we observe t h a t  

n - tk = 16(7 t 80) - 12Bq = 16{7 + 8(B-q)). 
k In  ne i ther  case is n- t equal  t o  a sum of t h r e e  squares, s o  t h a t  

n is not representable a s  a sum of th ree  squares and a k-th power. 
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THE DISTRIBUTION OF n-PRIMES 

George F. Grob 

Georgetown University 

The d i s t r i b u t i o n  o f  primes among t h e  in tegers  has never been 
s a t i s f a c t o r i l y  described by mathematicians. I t  appears t h a t  it may 
be useful  t o  consider  the  primes a s  a subset o f  some appropriate s e t  
o f  in tegers  whose d i s t r i b u t i o n  can more read i ly  be accounted f o r  and 
whose proper t ies  a r e  i n t e r e s t i n g  i n  themselves. 

' .. 
Label t h e  primes pl = 2, p2 = 3, p = 5,  p = 7, p = 11, e t c .  

I f  an in teger  a is r e l a t i v e l y  prime t o  t h e  f i r s t  n primes, l e t  us c a l l  
a an n-prime. 

Clearly,  f o r  any n e 2,  t h e  in tegers ,  t h e  s e t  of primes l a r g e r  
than p is a subset  of t h e  s e t  of n-primes. 

Unlike t h e  primes which seem t o  fol low no pa t te rn ,  there  is a 
pa t te rn  f o r  n-primes, a s  t h e  following theorem indica tes .  

Theorem 1: An in teger  a is an n-prime i f  and only i f  MP t a is an 
n-prime, f o r  a l l  M E 2,  and P = plp -...pn. 

Proofs Suppose a is  an n-prime. Assume MP + a is c a n  n-prime f o r  - 
some M e 2 ,  Then p i I t 4 ~  + a ,  f o r  some i = l , 2 , .  . . ,n. But pi[t4~,,. 

So p i I ~ n  t a - HPn, o r  p. la ,  a contradict ion t o  t h e  f a c t  t h a t  a is 

an n-prime. The converse is proved i n  t h e  same way. 

Let P t  = {x  E ZIl<x<P). Once we know t h e  d i s t r i b u t i o n  of n- 

primes i n  P *  then t h e  pa t te rn  established there  w i l l  be repeated 

every P consecutive in tegers .  We s h a l l  now inves t iga te  t h e  d i s-  

t r i b u t i o n  of n-primes i n  P* n '  
Theorem 2: An integer, a E P* is an n-prime i f  and only i f  ( P - a )  is - an n-prime. 

The proof of Theorem 2 is s imi la r  t o  t h e  proof of 1 above. 

Theorem 3: There a r e  (p2-l)(p3-1) ... ( p - 1 )  n-primes i n  P*. 

Proof: The number of n-primes i n  P t  is equal t o  t h e  number of pos i t ive  - 
in tegers  r e l a t i v e l y  prime t o  and smaller  than P .  Using E u l e r g s  6 

function,  t h e r e  a r e  + ( P )  = (p2-l)(p3-1) ... (pn-1) such in tegers .  



We may ask about the distribution of n-primes alnost any question 
asked about the distribution of primes. A famous unanswered question 
about primes is: 'How many twin primes are there?' By twin primes we 
mean a pair of primes a and a+2. We can similarly definep- 
twin n-primes to be a pair of n-primes a and at2. The following 
theorem partially describes the distribution of twin n-primes among 
the integers. 

Theorem 4: There are (p,-2)(p,,-2). . .(p-2) intefers x e P* such that 

x-1, x+1 is a pair of twin n-primes. 

Proof: Let Ai = (x E ~10~x~~.-l). Define - 
f:Z+A x A x ... x A n  by: 

for a e Z, f(a) = (al,a2, ..., a ) where for lzi~n, ai is the remainder 

when a is divided by pi. By the Chinese remainder theorem, f is onto. 

Riven the n-tuple a' = (al,a2,. . .,a), let a be such that f(a) = a'. 

Then, since p. IMP for all l ~ i y ,  f(MP + a) = a' for all M e Z. 
1 n 

Choose Ifo such that l2f(:,f0Pn + a)2Pn. Then for each a' e (Al x A2 x...x An), 

there is some l<a<P such that f(a) = a'. Let f* be the restriction 

of f to P*. Then 

is onto, and since 

card(A x A? x .., x A ) = Pn = card (P:), 
1 

the mappinf f* 3s a bijection. 

It is clear that x e Z is an n-prime if and only if f(x) has no zero 
entries. Then for x e PE, the pair x-1, xt1 is a pair of twin n-primes 

if and only if fVx) = f(x) never has 1 or p.-1 as its i-th entry, 

where l<ic-n. By counting all n-tuples without such entries, the 
theorem is proved. 

[Student Paper presented at the National Meeting, August, 1968, 
Madison, Wisconsin.] 

UNDERGRADUATE RESEARCH PROPOSAL 

Proposed by Leon Bankoff 

The problem of locating a point which minimizes the sum of the distances 
from three fixed points to the point in question is well known. There is 
a nice geometric solution to the problem. 

Modify the problem so that the point lies on a fixed line (or curve). 
An analytical solution would be straightforward (though perhaps messy). 

. Is there a geometric solution to the location? 
- -- 

A This would be more picturesquely stated in the following way. Where 
along a straight railroad line should one locate a station to serve three 
neighboring towns such that the sum of the distances from the three towns 
to the station is a minimum? 

CORRECTION for the Fall, 1968 Undergraduate Research Project: In the 
- Undergraduate Research Project in the Fall, 1968 issue part of the 

formula was omitted. The displayed formula should read 

ANEXTENSION OF EULER'S PHI-FUNCTION -- 
Andrew E. Rouse 

University of Mississippi 

Eulcr's phi- function, written $(H) for M a positive integer, 
gives the number of positive integers less than or equal to an 
integer M (>PO) and relatively prime to M. 

Now consider the problem of finding the number of positive 

integers relatively prime to M (M = P,"~P~"~. . . P ~ N  where the 

P's are tfrimes), M>1, and less than an integer Y where Y = 

KPIP ... P ,  K a positive integer. This function will bc read Y 

Euler's phi-function with respect to Y and will be written 1(1 (M). 

Obviously, Euler's phi-function is the special case of Euler's 

phi-function with respect to Y occurring when Y = M. 

~h~~~~~ : <l̂- Â¥+a (M) = ijial (M) + 1(1̂ (31) + . . . + iĵ n (M) ,where 

1 = P ~ ~ P ~ " ~ . . . P  N "N (the Pts are primes) and al = Kl(P&. . .PN), 
a2 = K2(PlP2.. .PN), . . . , a = Kn(PlP2.. .P̂ ,), (the Krs are positive 

integers). a <a <...<a 1 2  n' al+Y 
Proof: Let a2+. . .+a = Y. So 1(1al+a2+' ' '̂"(M) = 1(1 @I). - 
Let XI, X2, X3, ..., X be the integers less than Y and relatively 

prime to M. 
(̂MI 

Obviously a. + XI, a + X ,, al + X3. .... a are also + V(M) 
Y 

relatively prime to M. So there are at least <(i (M) integers 

between a and al + Y which are relativcly prime to H .  

Assume L is an integer less than or cqual to Y and (L.M) # 1. 

Then (altL,~.t) + 1 since al is a multiple of all the prime divisors 
of M and (L.M) # 1. 

Y 
Thus there are exactly 1(1 @-I) integers greater than al and 

less than a. + Y which are relatively prime to H. 
Y 

It follows that l(lal̂ p-l) = Cl(11) + 1(1 (M). Hcncc by induction 

1(1a1+a2+.-.+an(r.~) = w) + +. .  an(^^). 
ample: 1(136(6) = 1(1 6+12+18(6) = 12, where 1, 5, 7, 11, 13, 17, 19, 
23, 25, 29, 31, 35 are relatively prime to 6. 



6 1 2  
4 (6) = 2 where 1 and 5 a r e  r e l a t i v e l y  prime t o  6. ifi (6) = 4 
where 1, 5, 7 ,  11 a r e  r e l a t i v e l y  prime t o  6. +18(6) = 6 where 1, 

5, 7 ,  11, 13, 1 7 a r e  r e l a t i v e l y  prime t o  6. ifiG(6) + (̂d) + f i  = 
l2 46+12+18 

(6). 

L:?$$-.-: I I I ~ ( M ) - ! ! ! ~ ( N )  = P(MN) where M = p a 1 P a 2 .  . .P: (P ' s  a r e  

primes), ti = nl'l~;~...(^Bn (Q ' s  a r e  primes), x = p1P 2... em, 
Y = QIQ 2...0n and (b1,N) = 1. 

Proof: L i s t  the  i n t e g e r s  up t o  XY i n  t h e  followinp, manner: 

x 
There a r e  4 (1.1) i n t e g e r s  i n  t h e  f i r s t  row r e l a t i v e l y  prime t o  It. 

Now examine a  column with one of these  + ( M )  i n t e g e r s  a t  the  top,  

say t h e  h th  column. Obviously every i n t e g e r  i n  such a  column is  

a l s o  r e l a t i v e l y  prime t o  M. Consider 

SX + h - qgY + r ,  
Â¥s 

TX+ h = qTY + r ,  r  <Y. 
T 

I f  is = r ,  then (S-T)X = (q -q )Y. Th is  implies  Y 1 (S-T)X. But S T 
0<S<Y and O<T<Y and (X,Y) - 1 s i n c e  (M,N) = 1. So Y I  (S-T)X+S = T. 

For S # T, r # r .  

Thus no two remainders, upon d i v i s i o n  of the  i n t e g e r s  i n  t h e  
h th  column by Y,  a r e  equal .  Since t h e r e  a r e  Y remainders they 
must be 0 ,  1, 2 ,... (Y-1) i n  some order .  

Obviously whether an i n t e g e r ,  SX + h, i n  t h e  column is  
r e l a t i v e l y  prime t o  N depends on whether o r  no t  t h e  remainder, 
upon d i v i s i o n  by Y, is r e l a t i v e l y  prime t o  N, Since t h e  remainders 
range from 0 t o  Y-1 t h e r e  a r e  $^(N) i n t e g e r s  i n  each such column 
r e l a t i v e l y  prime t o  B and so r e l a t i v e l y  prime t o  AB. 

Y Since t h e r e  areitX(M) columns, each with 4 (N) i n t e g e r s  
r e l a t i v e l y  prime to  MN 

#(M)-?(N) - it.'"(m). 
E L L   em ma 2: 4 (M)-Ã (N) = L4 (HN) where H = P : ~ P ~ ~ ~ .  . .P̂ ""' (P ' s  .-*--- 

a r e  primes), N = 0 ^Q ^...I)'" (0 ' s  a r e  primes), L = 
1 2  

K(PlP2.. .Pm) (QlQ2.. .Qn), (K is  a p o s i t i v e  i n t e g e r ) .  and (11,N) = 1. 

Proof: 

- $(-) = 4 ~ : ( P l P 2 . . - P m ) ( ~ . . Q  n (M) - 
l.. .Qn)-$plp2"-pm(?~) [by Theorem 11. = K(0 0 

^(N) $ W l p 2 .  - . P m ) ( W  ..Qn)(N) 

P ~ ~ ~ P ~ ~ ~ .  . .P am ( P ' s  a r e  primes) and X - K P P . .  . P ,  K a  

p o s i t i v e  i n t e g e r .  

Proof: (By induct ion on a). Let  M = pla1. Then X = K P  where 

K is a p o s i t i v e  in teger .  Since a l l  i n t e g e r s  except mul t ip les  of 

P w i l l  be r e l a t i v e l y  prime t o  Pla1, 

Now l e t  !I = plal.. .P am. Then X = U P . .  .P where K is a p o s i t i v e  

in teger .  Assume 

x 

Let MI - Pa1PZa2.. .PmamPe?". Then X1 = KIPIP 2... .PmPel 

where I:' is  a p o s i t i v e  i n t e g e r .  

x A (M) a x 39.. ---- --- . Replace x by X '  a ( K ' P ~ ~ ) P ~ P ~ . .  .P m *  

Multiplying g ives  

Example: $ lo  (40) = 101 (2-1)121 [(s-l),Sl = lO(112) (415) = 4. 

1, 3, 7, 9 a r e  r e l a t i v e l y  prime t o  40. 



Theorem 3: $ x ( ~ f ) - + y ( ~ )  - +"(MN) where (M,N) a 1, B! = 

2...P N ~ ~ ~ ~ Q ~ ~ 2 . . . c ~ ,  X - KIPIP ;...em and Y = 

K Q Q  . . .  0 (K' a r e  p o s i t i v e  i n t e g e r s ,  P ' s  and P ' s  a r e  pr imes. )  

P d -  The proof  fo l lows  immediately from Theorem 2. 

l h l e r ' s  ph i- func t ion  wi th  r e s p e c t  t o  Y probably  can  be 
a p p l i e d  t o  r e l a t e d  a r e a s  i n  number theo ry .  One o f  t h e  p o s s i b l e  
a r e a s  t o  which t h e  f u n c t i o n  might be  a p p l i e d  i s  p r i m i t i v e  r o o t s .  
Le t  u s  d e f i n e  a concept  which somewhat o v e r l a p s  p r i m i t i v e  r o o t s  
c a l l e d  ve ry  p r i m i t i v e  r o o t s .  

D e f i n i t i o n :  L e t  a and M be two r e l a t i v e l y  prime p o s i t i v e  --- 
L 

i n t e ~ e r s .  I f  t h e  exponent t o  which a belongs  modulo M is 4 (MI 

where M = ~ ~ ' 1 ~ ~ ~ 2 . .  .PmUm and L = PIP2., .Pm, a i p  s a i d  t o  be  a 

v - ~ r d m i t i v e  roo<  modulo V. 

For  t h o s e  i n t e r e s t e d ,  t h e  fo l lowing  problem is  open f o r  
f u r t h e r  r e sea rch .  Prove o r  d isprove:  

Conjecture :  For M Pa, 2PU where P is  a n  odd pr ime,  t h e r e  e x i s t  

flL(')[(^(M)I ve ry  p r i m i t i v e  r o o t s  modulo M, L - P, 2P r e s p e c t i v e l y .  
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NEED MONEY? 

- - +  
The Governing Counci l  o f  P i  Mu Eps i lon  announces a c o n t e s t  - f o r  t h e  b e s t  e x p o s i t o r y  pape r  by a s t u d e n t  (who h a s  n o t  y e t  r ece ived  

a m a s t e r s  d e g r e e )  s u i t a b l e  f o r  p u b l i c a t i o n  i n  t h e  P i  Mu Eps i lon  
J o u r n a l .  The fo l lowing  p r i z e s  w i l l  b e  g iven  

$200. f i r s t  p r i z e  

$100. second p r i z e  

$ 50. t h i r d  p r i z e  

p rov id ing  a t  l e a s t  t e n  pape r s  a r e  r ece ived  f o r  t h e  c o n t e s t .  

I n  a d d i t i o n  t h e r e  w i l l  be  a $20. p r i z e  f o r  t h e  b e s t  paper  from 
any one c h a p t e r ,  p rov id ing  t h a t  chap te r  submits  a t  l e a s t  f i v e  papers .  

RECURSIONS ASSOCIATED WITH PASCAL'S PYRAMID 

Stephen I lue l l e r  

Wisconsin S t a t e  Un ive r s i ty ,  Oshkosh 

A s  developed p rev ious ly  i n  a paper  by 1 
Raab [I], t h e  sum o f  t h e  terms on c e r t a i n  
d i a g o n a l s  through a g e n e r a l i z e d  P a s c a l  a b 
t r i a n g l e  (F ig .  1 )  can  be  found by means 
o f  t h e  formula a 2ab b2 

a3 38% 3ab2 . . .  
Figure 1 

where R is a non-negative i n t e g e r .  

It was t h e n  shown t h a t  c e r t a i n  r e c u r s i o n s  e x i s t  between p a r a l l e l  
d i agona l s .  I t  is t h e  purpose  o f  t h i s  a r t i c l e  t o  f i n d  a formula 
which w i l l  y i e l d  t h e  sum o f  t h e  terms on any p l ane  through a gene- 
r a l i z e d  P a s c a l  pyramid ( t h e  t r i n o m i a l  analogue o f  P a s c a l ' s  tri- 
a n g l e )  and t h e n  t o  f i n d  a r e c u r s i o n  formula wi th  r e s p e c t  t o  p a r a l l e l  
p l anes .  F i r s t ,  l e t  u s  d e f i n e  t h e  d i agona l  w i th  s l o p e  P/Q. 

D e f i n i t i o n  1. {J,P/Q}, r e p r e s e n t s  t h e  s e t  o f  d i a g o n a l s  d e t e r -  

mined by t h e  f i r s t  term i n  t h e  J - t h  row, a ,  and t h e  ( Q + l ) - s t  term 

i n  t h e  (J-P)- th row, J-(P+Q) Q, where J,P,Q a r e  i n t e g e r s  wi th  
J ,Q>1. 

b 

Using t h i s  d e f i n i t i o n  l e t  u s  f i n d  an  expres s ion  which w i l l  
y i e l d  t h e  sum o f  t h e  terms on t h e  d i a g o n a l ,  J ,P /Q ,  which r a d i a t e s  
from a^.  We can  s e e  from Fig.  2 t h a t  we may have nega t ive  v a l u e s  
f o r  P. But s i n c e  we a r e  concerned on ly  wi th  f i n i t e  sums, we s h a l l  
cons ide r  o n l y  v a l u e s  o f  P/Q g r e a t e r  t h a n  -1. I n  Fig .  2 t h e  d i a -  
g o n a l s  shown r a d i a t e  from t h e  f i r s t  term i n  t h e  f o u r t h  row, a4 .  



Figure 2 Generalized Pascal  t r i a n g l e  

J=4  f o r  a l l  diagonals shown 

In  view of Fig. 2 we may obtain 

Notice t h a t  when P = Rand Q = 1 (2)  reduces t o  (1) .  Next we define 
Pascal 's  pyramid. 

Defini t ion 2. Pasca l ' s  pyramid is  the  three- faced pyramidal 
a r ray  of coef f ic ien ts  i n  t h e  expansion of the  tr inomial ,  (a+b+cIJ, 
such t h a t  t h e  c o e f f i c i e n t s  of (a+b+c)J a r e  systematical ly placed 
beneath those of (a+b+c)J-1, resu l t ing  i n  a Pascal t r i angle  on each 
of the  th ree  faces.  

Analogous t o  t h e  rows of Pascal 's  t r i a n g l e  a r e  the  l e v e l s  of 
Pasca l ' s  pyramid. In  Fig. 3 we have a generalized Pascal pyramid 
t o  t h e  t h i r d  leve l .  

I n  the  general ized Pascal t r i a n g l e  we sought t h e  sum of t h e  
terms on any diagonal through t h e  t r i a n g l e .  Now we a r e  concerned 
with f inding t h e  sum of t h e  terms on any 1 LEVELS: 0 
plane passing through the  pyramid. 
Clearly,  there  a r e  planes passing 
through the  pyramid which have n o .  
terms on them, but  we a r e  in te res ted '  
only i n  planes t h a t  do. 
J u s t  a s  it is possible t o  f i n d  

1 

- -.. diagonals through t h e  
generalized Pascal  t r i a n g l e  
whose f i r s t  term is not a J ,  so  
i t  is a l s o  possible t o  f i n d  planes 
through the  general ized Pascal 

2 

Pryamid whose term c loses t  t o  one 
of t h e  t h r e e  l a t e r a l  edges is not 
aJ, bJ, o r  cJ. So here we w i l l  
r equi re  t h a t  t h e  plane contain t h e  
term, aJ ,  which w i l l  be t h e  r e f e r-  
ence point  f o r  t h e  plane. 

b3 3 

Although a plane passing through t h e  pyramid c rea tes  t h r e e  
diagonals on t h e  th ree  faces  (Fig. 4)  only two diagonals a r e  needed 
t o  determine t h e  plane and t h e  terms on t h e  plane. From t h e  
reference po in t ,  aJ, l e t  P/Q be t h e  f i r s t  
diagonal taken from aJ towards t h e  edge LEVELS: 0 
containing b and l e t  P'/Q1 be t h e  second pieure 4 
diagonal from t h e  b edge toward t h e  edge 
containing c. Thus we w i l l  designate 
planes by J.P/Q, P ' /Qt  . 

Before we give a more concrete 
d e f i n i t i o n  of J.P/Q, P'/Q' , l e t  US 

examine t h e  terms i n  t h e  expansion 
of (a+b+c)J a l i t t l e  more closely.  

a 

Plane of Fig. 4: 2,P,Ps 
5 0' 

This shows t h a t  each t r inomia l  coef f ic ien t  may be expressed a s  t h e  
product of two Binomial coef f ic ien ts .  This f a c t  is used i n  t h e  
following def in i t ion .  

Defini t ion 3. {J,P/Q, PP/Q'IJ  represents  t h e  s e t  of planes 

through t h e  general ized Pascal pyramid determined by t h e  t h r e e  terms 
J-Pm-P 

aJ. (iz] aJ-m(PtQ) bQm and [-Qm-r'] [Qm$']aJ-m(~+~) bQm-(P'+Q') 

f o r  o m  pos i t ive  in teger  IU 5 I&[ where J,P,Q,P1 and Q ' a r e  in tegers  

with J.Q,Q1 > 1. 0 4 
2 

For example, t h e  terms a4,  b and c 
(corresponding t o  m = 2) determine t h e  &a03 4b03 

plane 4,1/1,1/1 while a 4  and 3a2b 
(corresponding t o  m = 1 )  do not .  6a202 12abc2 6b20ik 
Furthermore, we s h a l l  designate 
t h e  sum of t h e  terms on a par- a 3 0  =2a2bc , liiab20 4b30 
t i c u l a r  plane J ,  P/Q, P ' /Q1 by a 4 4a3b 6a2b2 ,̂3 b4 

'J.P/Q, P'IQ'. Picum 5 
I f  we look a t  t h e  terms i n  t h e  

plane 4,0/1,0/1 we f i n d  t h a t  
they may be arranged a s  
i n  Fig.- 5. This a r ray  is 
t h e  four th  l e v e l  i n  Fig. 7 .  ( ?)(~Ja03 (t)(S b03 
The c o e f f i c i e n t s  of Fig. 5 
may then be replaced 4 2 4 3 4 4 
by those of  Fig. 6. (2) (2)ao2 (3) (2)aba2 (4) [2)b2a2 
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These terms are obtained, of course, from 

That a
4
, [̂a3! and 1') [t]a3c determine this plane can be easily 

verified by definition 3. 

In general, the sum of the terms on any plane with diagonals 
P/Q = P'/Q1 = 0/1 = 0 can be found by 

J J-m m-n n = (atb+c) . 
(3) 'J.O,O =Lo ~~[m][n] a b c 

Let us look at the terms in the plane 4,1/2,1/1. These 
terms are circled in the four levels of the generalized Pascal 
pyramid in Fig. 7. 

1 Levels : 0 

Expressing the coefficients of these terms as products of binomial 
coefficients, we have 

-- . - These three terms also happen to determine the plane 4,1/2,1/1. - 
Comparing these terms with definition 3 we find that we may write 
this sum as 

The term 1 (J-P~-:'] Qm-p k;~'] J-m(P+Q) Qm-(P'tQ9) =Q1 in 

definition 3 corresponds to the case m = m, n = 1 of the general 
term 

J-Pm-P n Qm-P n [ ] [ ] J-m(P+Q) bQm-n(P'+Q') Q'n 

which was found by using empirical methods. This sugests that 

x ~ , ~ / ~ , ~ * / ~ ~  
will be a double summation over m and n. We still 

need to find the upper limits of the summations. Any limits we obtain 

must not violate these conditions: i.) both h and k of IS] must be 

non-negative integers with h>k and ii.) all exponents of a, b and c 

must be non-negative integers. These conditions are met when 

J-Pm-P'n - >Qm-P'nor m - < J/(P+Q) and when J-Pm-P'n 2Q'n or 

n 5 (J-Pm)/(P'+Q9). Since we are summing over integers we shall use 

I&] and r&] to eliminate problems with fractions. 

In general, then, the sum of the terms X J P L Q p , / ,  is given by - .. - 

where P/Q, P1/Qt>-1" It is easily seen that (4) reduces to (2) when 
the diagonal P1/Q' aoes not exist. 

In [l] it was shown that for sequences X J,R.J of sums of terms 

on parallel diagonals of the generalized Pascal triangle, 

'J,R = a x ~ - l . ~  + bx~-(~+l),~'" 

Likewise, if we let Q and Q' of (4) be 1, (4) becomes 

Using this expression we may obtain the following: 

Theorem. For sequences of sums of terms XJ,p,p,,J 

(6 )  xJ,p,pt = axJ-l,p,p~ + bX~-(p+i),~,~t + cx~-(~+l)(~l+l),~,~' 

^[*I 
proof: " J - ~ , P , P *  = ,"=o 1 n:o I p - h - ~ : n - l )  l-~'"]~-rn(~+i) b m-n(pg+l)  ' =n 



If we let J' = J-Em-P'n, rn' = ra-P'n, and n *  = n ,  then  

As an example of the above theorem note that the elements of 
the sequence 

2 3 fXJ,l,>J = (1, a, a +b, a +2ab, aha%+b2, a5+4a3b+3ab2, a6+5a%+6a2b2b3+c.. .} 

do in fact satisfy the recursion formula: 

REFERENCE 
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PARTIAL SUMS OF CERTAIN INFINITE 

SERIES OF POLYGONAL NUMBERS 

Michael Kopkas 

John Carroll University 

In the December, 1966 issue of the American Mathematical Monthly, 
these two problems were proposed by J. M. Khatri of Baroda, India: 

(1) Prove or disprove: There exists an infinite 
series of triangular numbers such that every partial sum 
is a perfect square number. 

(2) The same except that every partial sum shall be 
a triangular number. [I] 

The purpose of this paper will be to solve these two problems 
and then to generalize them as to the numbers used in the series and 
the numbers arrived at with each partial sum. 

INTRODUCTION 

Before beginning our investigation of series of polygonal numbers, 
we must first see what these numbers are and how they might be 
generated. 

Polygonal numbers are sets of numbers first classified by the 
mathematicians of ancient Greece. The Pythagoreans were fascinated by 
the mystery of numbers. In fact, Pythagoras himself went so far as to 
claim that numbers are in some way the cause of the form of an object 
[Z]. One set of numbers which especially interested them was that 
set generated by counting the number of dots in different sized 
equilateral triangles (hence, the name triangular). The number 1 
was included in the list even though it is not strictly generated by 
a triangle. Thus, the first four triangular numbers and their dot 
representations are as follows. . . . . . . . ... . . .... 

1 3 6 10 
We may note that each succeeding row of the triangle is formed by 
adding one dot onto the previous row. Thus, the fifth row would 
contain five dots, and in general, the nth row would contain n dots. 
The triangular number is the sum of the number of dots in each row. 
Hence, the nth triangular number equals 1+2+3+...+n, which equals 
n(n+l)/2 by the formula for the sum of an arithmetic progression. 

Now we might generalize this notion of triangular numbers to 
numbers which are generated by counting the number of dots in different 



s ized  e q u i l a t e r a l  four-sided f igures ,  o r  squares. The concept o f  
, square numbers is indeed fami l ia r .  Again, t h e  number 1 is included i n  

t h e  l i s t  by convention. Hence, t h e  f i r s t  four square numbers and t h e i r  
dot  representat ions a r e  a s  follows. 

We may note t h a t  each square number i s  formed by adding one row and 
one column of do ts  t o  t h e  previous square p lus  one dot i n  t h e  corner 
t o  complete t h e  square. Thus, t h e  nth square number-is formed by 
adding 2(n-1) + I ,  o r  2n-1 t o  t h e  (n-1)st square number. The nth 
square equals 1+(2(2)-1) + [2[3)-1) + .. . + (2(n)-1) = 1+3+5+.. .+ 
(2n-11, which by the  formula f o r  the  sum of an ar i thmet ic  progression 
equals n(2n)/2 = n 2 ,  

We can continue t h i s  process f o r  pentagonal numbers; t h a t  i s ,  
numbers which a r e  generated by counting t h e  number of  do ts  i n  
d i f f e r e n t  s ized  e q u i l a t e r a l  f ive- sided f igures ,  o r  regular  pentagons. 
Again we include t h e  number 1. Thus, t h e  f i r s t  four pentagonal 
numbers and t h e i r  dot representat ions a r e  a s  follows. 

Af te r  a c lose  inspection,  we may note t h a t  each pentagonal number is 
formed by adding three  l i n e s  o f  do ts  next t o  th ree  s ides  of  t h e  
previous pentagon [each l i n e  o f  dots  containing a s  many dots  a s  i n  
one s i d e  o f  t h e  previous pentagon) plus one dot  t o  complete t h e  new 
pentagon. Thus, t h e  nth pentagonal number is formed by adding 
3(n- l )+ l ,  o r  3n-2 t o  t h e  [n-1)st pentagonal number, The nth 
pentagonal equals 1+(3(2)-2)+(3(3)-2)+. , .+(3(n)-2) = 1+4+7+. . . 
+(3n-21, which by t h e  formula f o r  t h e  sum o f  an ari thmetic pro- 
gression equals  n (3n-1)/2. 

We can continue t h i s  process f o r  hexagonal numbers, septagonal 
numbers, e tc . ,  t o  include numbers formed by counting t h e  do ts  i n  any 
regular  polygon. Also, we can a r r i v e  a t  a formula f o r  the  n th  k- 
gonal  number, which w i l l  be hereaf te r  designated f k ( n ) .  This for-  

k u l a  ,is given here without proof t o  be n(Z+(k-2)(n-1))/2 [3]. A 
shor t  t a b l e  of polygonal numbers is given i n  t h e  Appendix. 

This notion o f  polygonal numbers extends back t o  t h e  time o f  
Pythagoras (570-501 B.C.). In  175 B.C., tlypsicles defined polygonal 
numbers i n  t h e  following way: 

I f  there  a r e  a s  many numbers a s  we p l i a s e  beginning with 
one and increasing by t h e  same common d i f fe rence ,  then when . t h e  common d i f fe rence  is 1. t h e  sum of a l l  terms i s  a tri- - - -  angular  number; when 2, a square; when 3, a pentagonal number. - 
( I f  t h e  common d i f fe rence  is k-2, t h e  sum o f  a l l  terms is 
a k-gonal number. ) 141. 

A book of a r i thmet ic  by Theon of Smyrna and one by Nichomachus, both 
about 100 A.D., contained def in i t ions  o f  polygonal-numbers and 

-severa l  theorems about them. The grea t  mathematician Diophantus 
(ca. 250 A.D.) a l s o  proved a few theorems dealing with polygonal 
numbers. 

As t h e  years passed and t h e  development of addi t ive  ari thmetic 
increased,  s o  d id  i n t e r e s t  i n  polygonal numbers. hien l i k e  Descartes, 
Euler, and Fermat devoted much time t o  them, Most of  t h e i r  work, 
however, d e a l t  with the  representat ion of an in teger  a s  t h e  sum of 
a p a r t i c u l a r  combination of  polygonal numbers. This paper w i l l  
deal  instead with t h e  nth p a r t i a l  sums of  p a r t i c u l a r  s e r i e s  of  
polygonal numbers. I t  i s  meant t o  be a beginning and a s t a r t  toward 
f u r t h e r  research,  f o r  I f e e l  confident t h a t  there  a r e  many more 
general izat ions t h a t  might be proved. With t h i s  i n  mind, l e t  us 
begin. 

FIRST PROBLEhi 

The f i r s t  problem we s h a l l  examine i s  whether o r  not there  
e x i s t s  an i n f i n i t e  s e r i e s  of  t r i a n g u l a r  numbers such t h a t  each nth 
p a r t i a l  sum is another t r i a n g u l a r  number. 

We begin by considering t h e  f i r s t  t r i angular  number, 1. Can 1 
be the  f i r s t  term of such a s e r i e s ?  By t h e  way t r i a n g u l a r  numbers 
a r e  formed, it can e a s i l y  be seen t h a t  no two t r i a n g u l a r  numbers a r e  
one u n i t  a p a r t ,  The second t r iangular  is two u n i t s  from t h e  f i r s t ,  
t h e  t h i r d  i s  th ree  u n i t s  from t h e  second, and so  on, t h e  nth tri- 
angular being n u n i t s  from t h e  (n-1)st. Therefore, 1 cannot 
possibly s t a r t  our  s e r i e s ;  f o r  i f  we began with 1, we could f ind  
no o ther  t r i a n g u l a r  number which, when added t o  1, would y ie ld  
another t r i a n g u l a r  number. Hence, we would have no second term f o r  
our  s e r i e s .  

W i l l  t h i s  hold t r u e  of  every t r i a n g u l a r  number? Can t h e  second 
t r i a n g u l a r  number, 3,  be t h e  f i r s t  term of such a se r ies?  That i s ,  
a r e  there  two t r i a n g u l a r  numbers t h a t  a r e  t h r e e  u n i t s  apart? 
Obviously, the  t h i r d  t r i a n g u l a r  i s  th ree  u n i t s  from the  second. 
Therefore, our s e r i e s  may begin 3+3+,...  IVe note t h a t  t h e  second 
p a r t i a l  sum is 6, which i s  t h e  t h i r d  t r iangular .  Now, a r e  there  
two t r i a n g u l a r s  t h a t  a r e  s i x  u n i t s  apart? Obviously, t h e  f i f t h  and 
s i x t h  t r i a n g u l a r s  a r e  s i x  u n i t s  apar t ;  so we l e t  t h e  t h i r d  term o f  
our s e r i e s  be the  f i f t h  t r i a n g u l a r ,  15. Our s e r i e s  now looks l i k e  
3+3+15+.,.. In  general ,  i f  t h e  nth p a r t i a l  sum is k ,  then t h e  next 
term o f  t h e  s e r i e s  can be t h e  (k-1)st t r i angular ,  s ince  t h e  (k-1)st 
t r i a n g u l a r  plus k y ie lds  the  kth t r iangular .  Since t h i s  process can 
be car r ied  on i n d e f i n i t e l y ,  we have shown t h a t  t h e r e  e x i s t s  an 
i n f i n i t e  s e r i e s  of  t r i a n g u l a r  numbers, namely, beginning with t h e  
number 3, such t h a t  t h e  nth p a r t i a l  sum i s  another t r i a n g u l a r ,  Thus, 
t h e  next term of t h e  s e r i e s  we have s t a r t e d  would be t h e  twentieth 
t r iangular ,  which i s  210, making our  s e r i e s  3+3+15+210+.... We see  
t h a t  t h e  fourth p a r t i a l  sum is 231, which is t h e  twenty- first  tri- 
angular. The f i f t h  term would then be t h e  230th t r iangular .  

Note t h a t  s ince  our  process works whenever t h e  nth p a r t i a l  sum 
i s  g r e a t e r  than 1, we can general ize and say t h a t  beginning with 
any t r i a n g u l a r  number except 1, there  e x i s t s  an i n f i n i t e  s e r i e s  of  
t r i a n g u l a r  numbers whose every nth p a r t i a l  sum i s  another t r iangular  
number, The procedure f o r  construct ing these  s e r i e s  i s  a s  follows: 
givcn any t r i a n g u l a r  number c ,  g rea te r  than 1 ,  we can always f i n d  
two t r i a n g u l a r  numbers, t h e  (c-1)st and t h e  c t h ,  t h a t  a r e  c u n i t s  
apar t .  Therefore, t h e  next term i n  t h e  s e r i e s  can be t h e  [c-1)st  
t r i a n g u l a r  number. The exception comes i n  when c = 1, because t h e  
(c-1)st t r i a n g u l a r  would become the  0th t r i a n g u l a r ,  which is un- 
defined. 



In  summary, we have found t h a t  t h e r e  e x i s t s  an i n f i n i t e  number o f  
i n f i n i t e  s e r i e s  o f  t r i a n g u l a r  numbers such t h a t  a l l  nth p a r t i a l  
sums a r e  t r i a n g u l a r  numbers. 

SECOND PROBLEM 

The next problem we w i l l  examine i s  whether o r  not  t h e r e  e x i s t s  
an i n f i n i t e  s e r i e s  o f  t r i a n g u l a r  numbers whose nth p a r t i a l  sums a r e  
pe r fec t  squares .  There a r e  a number of ways o f  a t t a c k i n g  t h i s  
problem, and we w i l l  demonstrate two o f  them. 

Before we begin t h e  first proof ,  l e t  us s t a t e  a well-known 
mathematical f a c t .  Every square can be represented a s  t h e  nth 
p a r t i a l  sum o f  t h e  s e r i e s  o f  odd i n t e g e r s ,  and every such nth p a r t i a  
sum i s  a square.  This  f a c t  can be shown q u i t e  e a s i l y  be mathematical 
induct ion.  

Now l e t ' s  look a t  t h e  sum of t h e  f i r s t  f i f t e e n  odd i n t e g e r s  

1 and 3 a r e  t r i a n g u l a r  numbers, s o  we ' l l  use them a s  t h e  f i r s t  two 
terms of our  s e r i e s .  Now we take  t h e  next t h r e e  numbers--5,7,9. 
We can p a r t i t i o n  5 (which means t o  f a c t o r  it i n  an a d d i t i v e  manner] 
i n t o  1+4. Also 7 = 2+5 and 9 = 3+6. Therefore 

which i s  p r e c i s e l y  t h e  s i x t h  t r i a n g u l a r  number 21. We use 21 a s  t h e  
next term of our  s e r i e s ,  y ie ld ing  1+3+21+. . . , Note t h a t  a s  we go 
along, each p a r t i a l  sum is a p e r f e c t  square,  s i n c e  a l l  we a r e  r e a l l y  
doing i s  r ewr i t ing  n th  p a r t i a l  sums o f  t h e  s e r i e s  o f  odd i n t e g e r s .  

Looking a t  t h e  next nine numbers, we p a r t i t i o n l l =  l+lO,  1 3  = 
2+11,. . . , 27 = 9+18. Therefore 

11+13+. . ,+27 = 1+10+2+11+. . .+9+18 = 1+2+. . .+ I8  

which is t h e  e igh teen th  t r i a n g u l a r  number, 171. Our s e r i e s  looks 
l i k e  l+3+2l+l7l+.  ... 

How do we know how many numbers a r e  t o  be p a r t i t i o n e d ?  S t a r t i n g  
with t h e  first odd number, c a l l  it a ,  we p a r t i t i o n  a i n t o  l+(a-1) .  
P a r t i t i o n i n g  must cont inue u n t i l  t h e  number (a-11-1, o r  a-2, appears  
a s  an a d d i t i v e  f a c t o r .  Thus 

where m is a p o s i t i v e  even in teger .  F M ~  a t o  a+m t h e r e  a r e  exac t ly  
-(3=21 numbers, a s  we can see  from t h e  f i r s t  column o f  f a c t o r s .  Since 

t h e r e  a r e  a t o t a l  o f  (m+2] f a c t o r s ,  and (a-2) is h a l f  t h e  number o f  
f a c t o r s ,  then m+2 = 2(a-2). Therefore 

So if  a i s  our  f i r s t  odd i n t e g e r ,  we t ahc  each o f  t h e  odd in tegers  
from a t o  3(a-2) and p a r t i t i o n  them a s  be fore  t o  detcrminc t h e  
next  t r i a n g u l a r  number i n  t h e  s e r i e s .  Thus, t h e  next term i n  t h e  
s c r i e s  we havc generated so f a r  would be found a s  follows: our  f i r s t  

odd i n t e g e r ,  a ,  i s  29. The l a s t  one i s  3(29-2). which i s  81, IVe 

p a r t i t i o n  t h e  odd i n t e g e r s  from 29 t o  81 i n t o  t h e  sum of t h e  f i r s t  
2(a-2) consecut ive i n t e g e r s ,  o r  t h e  f i r s t  54 i n t e g e r s .  Our next 

t r i a n g u l a r  number, then,  would be t h e  54 th ,  1485. The process we 

have described can be c a r r i e d  on i n d e f i n i t e l y ,  y i e l d i n g  an i n f i n i t e  
s e r i e s  o f  t r i a n ~ u l a r  numbers whose nth p a r t i a l  sums a r e  p e r f e c t  
squares .  

The second method o f  proof i s  t h a t  of  matliematical induct ion.  
We may note t h a t  

t h e  sum o f  t h e  f i r s t  and second t r i a n g u l a r s  y i e l d s  
t h e  sccond square.  
The sum o f  t h e  f i r s t ,  sccond, and s i x t h  t r i a n g u l a r s  
y i e l d s  t h e  f i f t h  square.  
The sum o f  t h e  f i r s t ,  second, s i x t h ,  and e i g l ~ t e c n t h  
t r i a n g u l a r s  y i e l d s  t h e  fourteenth square.  

A c l o s e  examination will reveal  a p a t t e r n  forming. Using f3(k) and 

f 4 ( k )  t o  mean tile kth t r i a n g u l a r  and t h e  kth square respectively, 
we can summarize t h i s  k-1 p a t t e r n  with t h e  following formula. 

k-1 . 

'The proof proceeds by mathematical induct ion,  The case where ,, 
k = 1 y i e l d s  1 + f3(2)  = 1 + 3 = 4  = (1 + 112 = (1 + 30)2 = f 4 ( l  + 3 ) .  
As t h e  next s t e p  i n  t h e  induct ion p roof ,  wc assume t h a t  

k-1 k-1 . 

and must show t h a t  

IVe makc use of t h e  formula f o r  t h e  sum of  a geometric progression 



Now we would l i k e  t o  f i n d  c o n d i t i o n s  under  which k(2n+k) i s  
a t r i a n g u l a r  number; t h a t  i s ,  under  which k(2n+k) = m(m+1)/2 f o r  
some i n t e g e r  m.  

Let us  f i r s t  assume t h a t  m i s  an even i n t e g e r .  Th i s  is 
e q u i v a l e n t  t o  s ay ing  t h a t  m/2 i s  an  i n t e g e r .  Let k = m/2. Then 
(2n+k) = m+l and m = 2k. From t h e s e  we d e r i v e  k = 2n-1. Thus which, by t h e  induc t ion  hypo thes i s ,  equa l s  

which is t h e  (4n-2)nd t r i a n g u l a r  number. 

which i s  p r e c i s e l y  what we were t o  show. The re fo re ,  by mathematical 
i n d u c t i o n ,  

Keeping t h i s  i n  mind, l e t  u s  now assume t h a t  m i s  an odd 
i n t e g e r .  Th i s  is e q u i v a l e n t  t o  s ay ing  t h a t ( m + l ) / 2 i s  an  i n t e g e r .  
Let k = [m+1]/2. Then (2n+k) = m and m = 2k-1. From t h e s e  we 
d e r i v e  k = 2n+l .  Thus 

We have found a p a t t e r n  t h a t  can he gene ra t ed  i n f i n i t e l y  t o  y i e l d  
an i n f i n i t e  s e r i e s  o f  t r i a n g u l a r  numbers whose n t h  p a r t i a l  sums a r e  
p e r f e c t  squa res .  

which is t h e  ( 4 n + l ) s t  t r i a n g u l a r  number. 

l a a t  we have shown i s  t h a t ,  g iven  any n', we can always f i n d  
two t r i a n g u l a r  numbers, t h e  (4n-2)nd and t h e  ( 4 n + l ) s t ,  such t h a t  
when e i t h e r  o f  t h e s e  is added t o  n2 ,  we )ge t  a n o t h e r  squa re ,  
(n+k) 2 .  

Ilow many such s e r i e s  a r e  t h e r e ?  Let u s  beg in  t o  answer t h e  
q u e s t i o n  i n  t h i s  way. Given any squa re ,  c a l l  it n 2 ,  we can r e p r e s e n t  
t h i s  squa re  geomet r i ca l ly  a s  n rows and n columns o f  do t s .  

Now i f  we can  show t h a t  t h e r e  a r e  an  i n f i n i t e  number o f  
squa re  t r i a n g u l a r  numbers t o  be  used a s  t h e  f i r s t  term o f  a 
s e r i e s ,  we w i l l  have shown t h a t  t h e r e  a r e  an i n f i n i t e  number o f  
i n f i n i t e  s e r i e s  o f  t r i a n g u l a r  numbers whose eve ry  n th  p a r t i a l  
sum i s  a p e r f e c t  squa re .  In  o t h e r  words, we must f i n d  c o n d i t i o n s  
under  which n(n+1)/2  = m2 f o r  some i n t e g e r s  m and n ,  and show 
t h a t  t h e r e  a r e  an i n f i n i t e  number o f  p a i r s  o f  i n t e g e r s  s a t i s f y i n g  
t h e s e  c o n d i t i o n s .  

2 2 
To form (n+ l )  we add t o  n a row o f  n d o t s  and a column o f  n 

d o t s  p l u s  one d o t  i n  t h e  c o r n e r  t o  complete t h e  squa re :  t h a t  i s ,  we 
add 2n+l d o t s .  So (n+1l2 = n2 + (2n+ l ) .  

n 1::: .... 
n 1 

2 
We form (n+2) by adding t o  n2 two rows o f  n d o t s  each and 

two columns o f  n d o t s  each p l u s  f o u r  d o t s  i n  t h e  cornep t o  complete 
t h e  s u a r e  t h a t  is ,  we add 2n+2n+4, o r  2(2n+2) d o t s .  So 
(n+2)1 = ni+2(2n+2) .  

Let u s  heg in  by cons ide r ing  t h o s e  squa res  which can be 
r e w r i t t e n  a s  t h e  product  o f  two s q u a r e s ;  t h a t  is ,  m2 = a2b2. 

F i r s t  we c o n s i d e r  t h e  c a s e  where n i s  even;  t h a t  is, n = 2k. 
Then 

a
2

b
2 

= m2 = n(n+1)/2 = 2k(2k+1)/2 = k(2k+ l ) .  

Keeping t h i s  i n  mind, we c o n s i d e r  nex t  t h e  case  where n is 
odd; t h a t  is ,  n = 2k-1. Then 

a2b2 = m2 = n(n+1)/2 = (2k-1)(2k)/2 = k(2k-1).  

2 L e t t i n g  a 2  = k ,  t h e n  b = 2k-1 = 2a2-1,  o r  2a2-b2 
= 1. In  g e n e r a l ,  t o  form (n+k)', we add t o  n 2 ,  k rows o f  n d o t s  

eachandkcolumns o f  n d o t s  each p l u s  k2 d o t s  i n  t h e  c o r n e r  t o  
complete t h e  s q u a r e ;  t h a t  is, we add k(2n+k) d o t s .  Th i s  i s  - - -  - e a s i l y  v e r i f i e d  by t h e  binomial  expansion (n+k)2 = n2+2kn+k2 = 
= n*+k (2n+k). . . . . . . . . 

k :::: :::: . . . . . . . . .... .... . . . . . . . . n . . . . . . . . . . . . . . . . + n k 

p:t we have shown i s  t h a t  choosing a and b such t h a t  
2a2-b - + I ,  enab le s  u s  t o  f i n d  m and n ( s ince  m' = a2b2 and 
n = 2a2 o r  2a2-1) such t h a t  m2 = n(n+1)/2. 

To complete t h e  p r o o f ,  we need on ly  t o  show t h a t  t h e r e  a r e  an  
i n f i n i t e  number o f  p a i r s  o f  i n t e g e r s  a and b such t h a t  2az-bZ = +l. 
S e t t i n g  up a t a b l e  o f  numbers, we o b t a i n  t h e  fol lowing:  



We might note  t h a t  adding t h e  number i n  t h e  a column with i t s  
p a r t n e r  i n  t h e  b column gives us t h e  next number i n  t h e  a column, 
and t h a t  adding twice t h e  number i n  t h e  a column with i t s  p a r t n e r  
i n  t h e  b column gives us  t h e  next  number i n  t h e  b column. In  - -, 
o t h e r  words, i f  2aL-bL = -1, then ~ ( a + b ) ~ - ( ~ a + b ) ~  should equal 1 ; 

and, i f  2a2-b2 = 1 ,  then ~ ( a + b ) ~ - ( ~ a + b ) ~  should equal -1. This 
can be proved q u i t e  e a s i l y ,  f o r  

2 2 2 2 Therefore,  2a -b and 2(a+b) -(2a+b) a r e  always o f  equal  abso lu te  
va lue  but  o f  opposi te  s ign .  Thus, given t h e  numbers a = 1 and 
b = 1 a s  a s t a r t i n g  p o i n t ,  we can generate  an i n f i n i t e  s e t  of  
p a i r s  a and b such t h a t  2a2-b2 = ~ 1 ,  which i s  what we needed t o  
show. 

Summing up t h e  e n t i r e  proof ,  we have shown t h a t  given any 
square t r i a n g u l a r  number, of  which t h e r e  a r e  i n f i n i t e l y  many, we 
can use t h i s  number as  t h e  f i r s t  term o f  an i n f i n i t e  s e r i e s  o f  
t r i a n g u l a r  numbers whose every nth p a r t i a l  sum i s  a p e r f e c t  
square.  Thus, t h e r e  a r e  i n f i n i t e l y  many such s e r i e s .  

GENERALIZATION? 

1Ve demonstrated e a r l i e r  a s e r i e s  o f  t r i a n g u l a r  numbers with 
t r i a n g u l a r s  a s  n th  p a r t i a l  sums. Can we f ind  a s e r i e s  o f  squares  
y ie ld ing  squares  a s  nth p a r t i a l  sums? Again we can immediately 
see  t h e  problem o f  beginning with t h e  number 1.  No two squares  
o f  p o s i t i v e  i n t e g e r s  a r e  one u n i t  a p a r t .  Thus, 1 must be excluded, 

An examination of t h e  way i n  which squares  a r e  formed might 
g ive  us some h i n t  on how t o  proceed. As was mentioned e a r l i e r ,  
each square i s  a kth p a r t i a l  sum of t h e  s e r i e s  o f  odd i n t e g e r s ,  
Suppose we t a k e  two squares  - one odd and one even - whose sum i s  
a l s o  a square.  For example, t a k e  9 and 16,  whose sum is 25. We 
can choose f o r  t h e  next number i n  t h e  s e r i e s  t h a t  square which 
i s  t h e  sum o f  a l l  t h e  odd i n t e g e r s  up t o  and including t h e  odd 
i n t e g e r  before 25; t h a t  i s ,  t h e  n-ext term would be l+3+ ...+ 23, 
which equals  144. We might note  t h a t  t h e r e  a r e  (25-1)/2, o r  12, 
odd i n t e g e r s  before 25 and t h a t  144 = 1z2,  This is a d i r e c t  
consequence o f  t h e  f a c t  t h a t  n2 = 1+3+. . .+(2n-11, which can be 

- - *  proved q u i t e  e a s i l y  by induct ion.  The t h i r d  p a r t i a l  sum o f  OUT 
s e r i e s  i s  9+16+144 = 169 = 1 3 ~ .  Next, we t ake  t h e  number o f  odd 
i n t e g e r s  l e s s  than 169, which i s  (169-1)/2 = 84. IVe add 842, o r  
7056 t o  t h e  s e r i e s ,  giving us 9+1b+144+7056 = 7225 = 85'. The 
process  we have s e t  up i s  a s  fol lows.  

1)  Take t h e  kth p a r t i a l  sum. 
2) Sub t rac t  1 from i t  and d iv ide  t h e  r e s u l t  by 2. This 

w i l l  always y i e l d  an even i n t e g e r ,  a s  can be shown 
by t h e  fol lowing argument: a s  long a s  t h e  kth p a r t i a l  
sum i s  an odd square (and we w i l l  show t h a t  it always 
i s ) ,  it is necessa r i ly  t h e  s uare o f  an odd number and 
can be represented by (2k+l ) I  f o r  some i n t e g e r  k. 
This y i e l d s  4k2+4k+l. Sub t rac t ing  1 and d iv id ing  by 
2 y i e l d s  2k2+2k, which is an even i n t e g e r .  

3) Square t h i s  number and include t h e  answer i n  t h e  s e r i e s .  
The square of an even i n t e g e r  i s  always even; thus ,  
except f o r  t h e  f i r s t  term, every term w i l l  be an even 
number. Since t h e  f i r s t  term i s  odd, every p a r t i a l  sum 
w i l l  be an odd square,  and we can go back t o  s t e p  1 
t o  f ind  t h e  next term i n  t h e  s e r i e s .  

Since t h i s  process  can be c a r r i e d  on i n d e f i n i t e l y ,  we have found 
an i n f i n i t e  s e r i e s  o f  square numbers whose nth p a r t i a l  sums a r e  a l s o  
squares .  

I s  t h e r e  more than one such s e r i e s ?  Choosing any odd square 
except 1, we can begin with s t e p  2 o f  t h e  process  and e a s i l y  a r r i v e  
a t  o u r  des i red  s e r i e s .  Nhen we begin with 1 ,  we ob ta in  a s e r i e s  
with 1 a s  t h e  f i r s t  term and 0 a s  every o t h e r  term; but  we a r e  
looking f o r  s e r i e s  o f  squares  o f  p o s i t i v e  i n t e g e r s ,  and t h e r e f o r e  
we exclude 0.  llowever, s i n c e  t h e r e  a r e  i n f i n i t e l y  many odd 
squares  t o  be used a s  a s t a r t i n g  po in t ,  we have shown t h a t  t h e r e  
a r e  an i n f i n i t e  number o f  i n f i n i t e  s e r i e s  o f  squares  whose nth 
p a r t i a l  sums a r e  a l s o  squares .  

We have already found t h a t  t h e r e  e x i s t s  a s e r i e s  o f  t r i a n g u l a r  
numbers y ie ld ing  square p a r t i a l  sums. Can we reverse  t h i s  and 
f ind  a s e r i e s  o f  squares  with t r i a n g u l a r  p a r t i a l  sums? Examining 
a t a b l e  o f  squares  and t r i a n g u l a r s ,  one may note t h a t :  

1 i s  both square and t r i a n g u l a r  and can be used t o  s t a r t  
t h e  s e r i e s .  

2 2 1 +3 = 10 = f3(4)  = f3(1+3) 

12+32+92 = 91 = f3(13) = f3(1+3+91 

2 2 2 In general ,  1 +3 +9 +. . .+(3k)2 = f3(l+3+9+. . .+3k) ,  o r  

This  genera l i za t ion  can be proved d i r e c t l y ,  

Therefore,  t h e r e  e x i s t s  an i n f i n i t e  s e r i e s  o f  square numbers 
whose nth p a r t i a l  sums a r e t r i a n c u l a r .  numbers. 

Let us  cont inue i n  t h i s  d i r e c t i o n .  Can we demonstrate a 
s e r i e s  of pentagonal numbers y ie ld ing  squares  a s  nth p a r t i a l  
sums? A s h o r t  examination o f  a t a b l e  o f  pentagonals and squares  



provides t h e  following formula, which we s h a l l  prove by induc t ion ;  

where f5(k)  means t h e  kth pentagonal. Making use o f  t h e  formula 
given e a r l i e r  f o r  f inding t h e  nth k-gonal number, we can see  t h a t  
t h e  case where n = 1 g ives  

i 1 f5(5 = f5(1)+f5(5) = 1+35 = 36 = b2 = f (1+5) = f 
i = O  4 

n .  
Next, We assume t h a t  1 f5(s1) = f 4  

i = O  

Now n+l 

i = O  i = O  2 

which i s  what we were t o  show. Therefore,  we have found an 
i n f i n i t e  s e r i e s  o f  pentagonal numbers whose nth p a r t i a l  sums a r e  
squares .  

Let us look a t  what we have done. We can see  t h a t  i n  our  
s e r i e s  o f  square numbers with t r i a n g u l a r  nth p a r t i a l  sums, t h e  
numbers sqpared have d i f f e r e d  by a f a c t o r  o f  t h r e e ;  i n  our  s e r i e s  
o f  pentagonal numbers with square n th  p a r t i a l  sums, t h e  numbers 
"pentagonalized" have d i f f e r e d  by a f a c t o r  o f  f i v e .  Examination 
o f  t h e  t a b l e s  i n  t h e  Appendix would i n d i c a t e  t h a t  i n  a s e r i e s  o f  
hexagonal numbers with pentagonal nth p a r t i a l  sums, t h e  numbers 
"hexagonalized" w i l l  d i f f e r  by a f a c t o r  o f  seven. We may 
genera l i ze  by saying t h a t  i n  a s e r i e s  o f  k-gonzl numbers with 
(k-1)-gonal nth p a r t i a l  sums (k>3), t h e  numbers "k-gonalized" 
muss d i f f e r  by a f a c t o r  o f  (2k-5). Thus, l e t t i n g  fk(m) be t h e  
mth k-go!al number, we must prove t h e  fol lowing 

where k i s  any p o s i t i v e  i n t e g e r  g r e a t e r  than o r  equal t o  4 ,  

Thc proof proceeds by mathematical induct ion on n.  The case 
n = 0 fol lows t r i v i a l l y ,  s ince  fk[(2k-5)0]  = fk(1)  = I = f k - l ( ~ )  = 
fk-1[(2k-5)O]. This was t o  be expected s i n c e  1 is t h e  f i r s t  k- 
gonal number f o r  any i n t e g e r  k. 

Since t h i s  case \?as so t r i v i a l ,  we might include t h e  case n = 1 ,  
although i t  i s  not  s t r i c t l y  necessary t o  t h e  proof. \\'hen n = 1 ,  
we must prove t h e  following 

Applying o u r  formula f o r  f inding t h e  mth k-gonal ~~umbcr ,  namely 
fk(m) = m(2+(k-2) (m-1))/2, we reducc our  problem t o  proving t h a t  

Beginning with t h e  l e f t  s i d e ,  we g e t  

which is p r e c i s e l y  what t h e  r i g h t  s i d e  equals .  

Continuing with our  induct ion proof ,  we assume 

\ 

and using t h i s  assumption, we must show t h a t  

Again wc make use of our  formula f o r  f ind ing  t h e  mth k-gonal number, 
which makes o u r  induct ion hypothesis  

what we must prove i s  

n + l  r y  (2k-5)j[2+(k-3){ [y (2k-5)i]-l}] 

1 
(2k-~)~(2+[k-2][(2k-~)l-l]) = i = O  i = O  

2 2 i = O  

Beginning with t h e  l e f t  s i d e ,  we have 



which, by the induction hypothesis, equals 

which is precisely what the right side equalled. Thus, by the 
principle of mathematical induction, we have established that 

Since we did not specify k, other than saying that k is a 
positive integer greater than or equal to 4, our results hold 
for all positive integers greater than or equal to 4. Actually, 
the formula holds for all positive integers, but we have not 
defined k-gonal numbers for k = 1 or k = 2, since these have no 
geometric significance. Thus, for k greater than or equal to 4, 
we have proved that one can find an infinite series of k-gonal 
numbers such that the sum of the first n terms of the series is 
a (k-1)-gonal number. 

CONCLUSION 

Rather than summing up my results, I would like to conclude 
this article with a few comments on why and how it was written. 

The initial problems upon which the article was based first 
appeared (as was stated in the introductory remarks) as elementary 
problems in the American Mathematical Monthly. They were fairly 
easy to prove and lent themselves quite well to more difficult 
generalizations. While my results will not, I am sure, shake 
modem mathematics to its foundations, these generalizations were 
good exercises in analyzing polygonal numbers and proving theorems 
about them. 

Worthy of mention is the role of a computer in obtaining my 
results. While the computer furnished no proof to any theorem, 
it supplied me with tables of numbers from which I was able to 
make generalizations. Without these tables, I would have spent 
many long hours computing values of polygonal numbers, with a 
very good possibility of an error. Thus, the computer was a 
necessary tool for formulating the problems, even though it could 
not prove them. 

Finally, I feel that this article was a good review of the 
method of proving mathematical existence theorems constructively. 
In this method of proof, the existence of something is proven by 
giving a method for constructing it. One must then show that 
this construction is valid, either by proving the validity of the 
generating process, or by a method such as mathematical induction. 
Both of these methods were used throughout the article. 

F3 F4 F5 
1 1  1 1 
2 3 4 5 
3 6 9 12 
4 10 16 22 
5 1 5  25 35 
6 21 36 51  
7 28 49 70 
8 36 64 92 
9 45 81 117 

1 0  55 100 145 

[Student paper presented 
Madison, Wisconsin. I. 
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F6 
1 
6 

15 
28 
45 
66 
9 1  

120 
153 
190 

at the 

F7 F9 F l ~  FT, 
I l l  1 1 
7 8 9 1 0  11 

18 21 24 27 30 
34 40 46 52 58 
55 65 75 85 95 
81  96 111 126 141 

112 133 154 175 196 
148 176 204 232 260 
189 225 261 297 333 
235 280 325 370 415 

National Meeting, August, 1968, 



For example. if we write the binomial coefficients in the 
familiar triangular arraneemcnt due to Pascal and consider the sums 
of the numbers on the "rising diagonals" of the triangle, we note that 
we obtain the Fibonacci sequence. 

THE FIBONACCI SEQUENCE: AN INTRODUCTION 

Donald F. Reynolds 

Texas Christian University 

In 1202 an Italian merchant. Leonardo Pisano, known to history 
by his nickname Fibonacci, published a mathematical textbook, 
Liber Abacci, which was responsible for the introduction of Hindu- 
Arabic numerals to the western world. One of the problems appearing 
in Leonardo's book was the following: 

"Suppose we place one pair of rabbits in an en- 
closure in the month of January; that these rabbits will 
breed another pair during February; that pairs of rabbits 
always breed in the second month following birth, and 
thereafter produce one pair of rabbits monthly; and that 
none die. How many pairs of rabbits would we have at the 
end of December?" 

Another concept to which Fibonacci numbers are 
is that of continued fractions. A finite continued 
expression of the form 

intimately related 
fraction is an 

An analysis of the number of pairs of rabbits at the end of 
each month yields the following sequence 

1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, .... 
These numbers are the terms of the Fibonacci sequence. or more 
simply, the Fibonacci numbers. The sequence is formally defined 
as follows 

F = 1 , F  = 1 , F  = F  1 2 n n-1 + Fn-2 L 
An examination of this sequence reveals some rather interesting and 
often surprising results. 

qn where q ...,q are positive 

integers and q is a non-negative integer. The integers q,,, q,, ..., 
0 

q are called the partial denominators of the continued fraction. 

Infinite continued fractions are defined in the obvious way. 

Some elementary number theoretic properties which can be 
readily obtained are the following 

(1) F. + F, + . . . + F~ = F n + ~  - la 
2 2 (2) Fl + F2 + . . . + F~~ = FnFnt1. 

(31 Fd2 = FnFn+. + (-1)". 

(4) Neighboring Fibonacci numbersare relatively prime. 

Theorem: If a finite continued fraction has n partial denominators 
q,,. ql.. . . .vl and qo = ql = . . . = = 1, then the fraction equals 

'n+1 . 
r* 
n 

This result can easily he extended to the infinite case to obtain 
the followinp theorem. 

( 5 )  For any m, n, (Fm, Fn) = F(m,n), where (a,b) denotes the 
-.- 

* greatest common divisor of a and b. 

( 6 )  F divides F if and only if m divides n. 

Theorem: If an infinite continued fraction has all its partial 
denominators equal to unity, then the value of the fraction is given by 

lim "n+1. 
n* Fn 

In addition to these properties, which relate only to the 
Fibonacci numbers themselves, we find that the Fibonacci sequence is 
related to other areas of mathematics and. in fact, even pervades a 
number of non-mathematical disciplines. 



.Thus the sequence formed by taking ratios of successive Fibonacci 
numbers converges to a number, which we shall call 4 ,  which is also 
the value of an infinite continued fraction. The number 4 is interesting 
for still another reason, for if we construct a rectanrle with sides 
iff the ratio of 4 and remove from it the largest possible square, the 
remaining rectangle has sides whose ratio is again equal to 4 .  Such a 
rectangle is known as a golden rectancle and 4 is known as the golden 
ratio. 

Fibonacci numbers also appear in many non-mathematical disciplines 
such as optics, botany, and genetics. Consider, for example, the an- 
cestry of the male bee. Noting the fact that the male bee is hatched 
from an unfertilized era, and hence has only a female parent, we con- 
struct the followinc family tree. 

In the above figure, m represents male, f represents female, and the 
numbers at the right indicate the number of males, females, and total 
ancestors at that level. All three follow the pattern determined by 
the Fibonacci sequence. 

The Fibonacci numbers are also related to leaf arrangements, the 
chambered nautilus, the number of ways which light can reflect within 
to plates of glass, and many other physical phenomena. 

[Student Paper presented at the National Meeting, August, 1968, 
Madison, Wisconsin.. I 

MEETING ANNOUNCEMENT 

Pi Mu Epsilon will meet August 25-27, 1969, at the University 
of Oregon, Eugene, Oregon, in conjunction with the Mathematical Association 
of America. Chapters should start planning NOW to send delegates or 
speakers to this meeting, and to attend as many of the lectures by other 
mathematical groups as possible. 

The National Office of Pi Mu Epsilon will help with expenses 
of a speaker OR delegate (one per chapter) who is a member of Pi Mu 
Epsllon and who has not received a Master's Degree by April 15, 1969, 
as follows: SPEAKERS will receive 5$ per mile or lowest cost, confirmed 
air 6 W S l  fare; DELEGATES will receive 2 1/2<: per mile or lowest cost, 
confirmed air travel fare. 

Select the best talk of the year given at one of your meetings 
by a member of Pi Mu Epsilon who meets the above requirement and have him 
or her apply to the National Office. Nominations should be in our office 
by April 15, 1969. The following information should be included: Your Name; 
Chapter of Pi Mu Epsilon; school; topic of talk; what degree you are working 
on; if you are a delegate or a speaker; when you expect to receive your 
degree; current mailing address; summer mailing address; who recommended by; 
and a 50-75 word summary of talk, if you are a speaker. MAIL TO: 
Pi Mu Epsilon, 1000 Asp Ave., Room 215, Norman, Oklahoma 73069. 

PROBLEM DEPARTMENT 

Edited by 

Leon Bankoff, Los Angeles, California 

This department welcomes problems believed to be new and, as 
a rule, demanding no greater ability in problem solving than that 
of the average member of the Fraternity, but occasionally we shall 
publish problems that should challenge the ability of the advanced 
undergraduate or candidate for the Master's Degree. Solutions 
should be submitted on separate, signed sheets and mailed before 
July 31. 1969, 

Address all communications concerning problems to Leon Bankoff, 
6360 Wilshire Boulevard, Los Angeles, California 90048. 

PROBLEMS FOR SOLUTION --- 
213. Proposed, by Gregory Wulezyn, Bucknell University. 

Prove that a triangle is isosceles if and only if it has a 
pair of equal ex-sypedians, (Editorial note: See Mathematics 
Magazine , Problem 637, November 1966, H a y 6 7  and January 1968, for 
the corresponding problem involving symmedians , ) 

214. Proposed by Charles W, Trigg. San Diego, California. 

Find the unique 9-digit triangular number A which has distinct 
digits and for which n has the form abbbb. 

215. Proposed by Leon Bankoff, Los Angeles, California. 

In an acute triangle ABC whose circumcenter is 0, let D, E, 
F denote the midpoints of sides BC, CA, AB and let P, Q, R denote 
the midpoints of the minor arcs BC, CA, AB of the circumcircle, 
Show that 

DP + EQ + FR sin2(~/2) + sin2(~/2) + sin2(c/2) 

OB + OD + OC + OE + OA + OF = cos2(~/2) + cos2(~/2) + cos2(c/2). 
216, Proposed by Erwin Just, Bronx Community College. 

Prove that the Diophantine equation 

x9 + zY9 + 3z9 + gW9 = k 
has no solution if k E (11, 12, 13, 14, 15, 16). 

217, Proposed by C. S. Venkataraman, Sree Kerala V m a  College, 
Trichup, South India. 



A t ransverse  common tangent of  two c i r c l e s  meets t h e  two 
d i r e c t  common tangents  i n  B and C, Prove t h a t  t h e  f e e t  of t h e  
perpendiculars  from B and C on t h e  l i n e  of cen te rs  a r e  a p a i r  of 
common inverse po in ts  of both t h e  c i r c l e s .  

Find t h e  t h r e e  3- digit  numbers each of which is equal t o  t h e  
product of t h e  sum of its d i g i t s  by t h e  sum of t h e  squares of  i ts 
d i g i t s ,  

219, Proposed by Stanley Rabinowitz* Polytechnic I n s t i t u t e  of 
Brooklyn, 

Consider t h e  following method of  solving x
3 - l l x 2  + 36x - 36 = 0 ,  

2 
Since (x3 - l l x  + 36x)/36 = 1, w e  may s u b s t i t u t e  t h i s  value f o r  
1 back i n  t h e  f i r s t  eauation t o  obtain 

x
3 - l l x

2  + 36x(x3 - l l x
2  + 36x1136 - 36 = 0, 

3 
o r  x4 - lox + 25x2 - 36 = 0, with r o o t s  -1, 2, 3 and 6 ,  We f i n d  
t h a t  x = -1 is an extraneous roo t .  

Generalize t h e  method and determine what extraneous r o o t s  a r e  
generated. 

220. Proposed by Daniel Pedoe, Universi ty of Minnesota, 

a )  Show t h a t  t h e r e  is no so lu t ion  of t h e  Apollonius problem 
of drawing c i r c l e s  t o  touch t h r e e  given c i r c l e s  which has only 
seven solut ions.  

b )  What spec ia l iza t ions  of t h e  t h r e e  c i r c l e s  w i l l  produce 
0, 1, 2, 3, 4, 5 and 6 d i s t i n c t  so lu t ions?  

221, Proposed by Murray S. Klamkin* Ford S c i e n t i f i c  L a b r a t o r y ,  

Determine 8 v e r t i c e s  of  an inscribed rectangular  parallelepiped 
i n  t h e  sphere 

(x-x1)(x-x2) + (y-y1)(y-y2) + (z-z1)(z-z2) = 0. 

E d i t o r i a l  Note: The previous i s sue  of  t h i s  Journal  ( F a l l 9  1968) 
contained a re-statement of twelve problems f o r  which so lu t ions  
have not y e t  been published, Omitted *om t h i s  co l lec t ion  was 

rproblem 50, which was f i r s t  proposed i n  t h e  F a l l ,  1952 i ssue  and 
l a t e r  repeated i n  t h e  Spring, 1955 i ssue ,  Another omission is 
problem 111. proposed i n  Spring, 1959 and corrected i n  Spring, 1960, 
Readers a r e  inv i ted  t o  o f f e r  so lu t ions  t o  these problems, 

50, ( F a l l ,  1952) Proposed by Pedro Piza,  San Juan, Puerto Rico. 

Prove t h a t  t h e  in teger  2n+l is a prime i f  and only i f ,  f o r  
every value o f  r = 1, 2, 3 ,.,., [m], t h e  binomial c o e f f i c i e n t  

- d m  (:%) is d i v i s i b l e  by 2 r + l ,  

111. (Spring* 1960) Proposed by M ,  S. Klamkin, AVCO RAD, and D, 
J. Newman, Brown University. 

I t  is conjectured t h a t  a t  most N-2 super-queens can be placed 
on an N x N (N>2) chessboard s o  t h a t  none can take  each o ther ,  A 

superqueen can move l i k e  an ordinary queen o r  a knight ,  
It should have been s t ipu la ted  t h a t  N is even. For N = 5, 

Michael J ,  Pascual shows t h a t  one can place 4 super-queens, 

SOLUTIONS 

102. ( F a l l ,  1958). Proposed by Leo Moser, University of  Alberta, 
Edmonton, Canada. 

Give a complete proof t h a t  two e q u i l a t e r a l  t r i a n g l e s  of edge 
1 cannot be placed, without overlap, i n  t h e  i n t e r i o r  of a square 
of edge 1. 

Solution by Charles W.  Trigg, San Diego, California.  

-- 
I n  order t h a t  t h e  shor tes t  d i s tance  between t h e  most remote 

v e r t i c e s  of two non-overlapping congruent e q u i l a t e r a l  t r i a n g l e s  i n  
t h e  plane may be achieved, t h e  t r i a n g l e s  must be i n  contact ,  Any 
r e l a t i v e  pos i t ions  they may assume may be reached by t r a n s l a t i o n  
and/or r o t a t i o n  fiom t h e  posi t ion where two s i d e s  a r e  coincident ,  
a s  i n  t h e  f igure .  In  t h a t  pos i t ion  t h e  most remote v e r t i c e s  of 
two t r i a n g l e s  with s i d e  1 a r e  6 apar t .  Any motion of t r a n s l a t i o n  
o r  r o t a t i o n  increases t h e  d i s tance  between A and D u n t i l ,  when they 
become c l o s e r  than 6, another p a i r  w i l l  have become t h e  most 
remote v e r t i c e s ,  

The two most remote po in ts  on a u n i t  square a r e  opposite  
v e r t i c e s  whose d i s tance  apar t  is fi(<fi). Consequentlys t h e  two 
t r i a n g l e s  cannot be placed i n  a u n i t  square without overlap,  

This  conclusion can be confirmed by considering a t r i a n g l e  
ins ide  t h e  square, In  order t o  provide a maximum area  i n  which 
t o  place another t r i a n g l e ,  one of t h e  u n i t  t r i a n g l e ' s  v e r t i c e s  
must coincide with a ver tex  of  t h e  square. The s i d e  opposite  t h a t  
ver tex  must be perpendicular t o  t h e  diagonal of  t h e  square f im 
t h a t  vertex,  i n  order t h a t  t h e  a l t i t u d e  of t h e  maximum second 
t r i a n g l e  w i l l  be (fi - 6 / 2 ) < 6 / 2  and its s i d e  w i l l  be ( 2 6 1 3  - l ) < l ,  



Following the same reasoning, the maximum pair of conpuent 
triangles which can be placed in a unit s uare without overlap 
will have altitudes of fi/2 and sides of h, 
202, (Spring, 1968). Proposed by Leon Bankoff, Los Angeles, 
California, 

Let I, 0, H denote the incenter, circumcenter and orthocenter, 
respectively, of a right triangle. Find angle HI0 given that AH10 
is isosceles, 

Solution by Charles W, Trigg, San Diego, California, 

In the right triangle ABC, C and H A 
coincide, Let F be a foot of the per- 
pendicular from 0 to AC. Then OF = a/2 - r, 
IF = b/2 - r, and I0 = IH = rfi. Then in 
the right triangle IOF, 

2 ( ~ f i ) ~  = ( 4 2  - r)2 + (b/2 - r) , 
whereupon 

r = (a2 + b2)/4(a + b) = (a + b - c)/2, 
When this equation .s si plified and the 
substitution a2 + b3 = c' is made, we have B 

c
2 - 2(a t b)c + 4ab = 0. 

So c = (a + b) + (a -.b); that is, c = 2a or 2b. and ABC is a 
30Â°-60 right tFiangle, Then angle OHA = angle OAH = 60Â° angle 
IHA = 4S0, and angle HI0 = 1000 - 2(60Â - 4S0) or 150Â° 

Also solved by Joe Konhauser, Macalester College; Andrew E, 
Rouse, University of Mississippi; Gregory Wulczyn, Bucknell 
University; and the proDoser, 

Editorial Note: Konhauser and Wulczyn applied the cosine 
law in triangle OIH, in which (0112 : R(R - 2r). OH = R, and 
( I H ) ~  = 2r2, to obtain cos OIH = 4612, or angle OIH = 150Â° 

203, (Spring, 1960). Proposed by Stanley Rabinowitz, Polytechnia 
Institute of Brooklyn, 

Let P denote any point on the median AD of ABC, If BP 
meets AC at E and CP meets AB at F, prove that AB = AC, if and - only if BE = CF, 

-; -Almost identical solutions by the proposer and by Charles W, Trigg, 
San Diego, California, 

By Cevafs Theorem, (AF)(BD)(CE) = (FB)(DC)(EA), and since BD = DC, 
we have AF/FB = AE/EC. Consequently EF is parallel to BC, and 
EFBC is a trapezoid, 

If BE = CF: the trapezoid is isosceles, angles ECB and FBC 
are equal, and the triangle ABC is isosceles, with AB = AC. 

If AB = AC: angles ACE and ABC are equal, so the trapezoid 
is isosceles and its diagonals BF and CF are equal. 

Also solved by Bruce W. King, Burnt-Hills-Ballston Lake High 
School; Joe Konhauser, Macalester College; Graham Lord; John McNear, 
Lexington High School; Andrew E. Rouse, University of Mississippi; 
and Gregory Wulczyn, Bucknell University. 

204. (Spring, 1968) Proposed by M. S. Klamkin, Ford Scientific 
Laboratory. 

If an+l = T, n = 0,1,2 ,... ; a = &, find 

limit ar - 
X+'l % - 4 .  

Editorial Note: Special cases of this problem occur in R. E. 
Johnson, F. L. Kiokemeister, Calcu1us.with Analytic Geometry, 3rd 
Edition, Allyn and Bacon, Boston, p. 74. 

Solution I by Robert J. Herbold, Proctor & Gamble Company, 
Cincinnati, Ohio. 

By L'Hospitalfs rule, 

and 

Hence, we are led to showing by induction that 

!+om above, we know this holds for r = 0 and r = 1. Suppose 
it is true for r = k. Consider 

By hypothesis, 

Therefore, k+l :$ ak - 2 = 2 (a - 

and 



But by L'Hospital's rule 

Therefore, 

lim aktl - 1 k+2 -- 
x* x - 4 - (TI 

and so by induction, 

Solution I1 by the F'roposer. 

We consider the more general problem of finding 

limit ar - 
x+L x - E  

where the sequence {an] is defined by 

a =F(an),ao=~(x), a z x ~ b  
ntl 

F1, GI, exist, and where 

G(E) = L, limit a = L (independent of XI. 
n- 

Let 

BOOK REVIEWS -- -- 

- 
Since L a F(L) and ar = L for x = L, 

For the given problem 

F(x) = G, G(x) = &, r =  4, and L = 2. 

Also solved by Richard Enison, New York; Keith Giles, University 
of Oklahoma; Michael R. Gorelick, Adelphi University; Rick Johnson, 
East Carolina University; Bruce W. King, Burnt-Hills-Ballston Lake 
High School; Graham Lord, Philadelphia; Andrew E. Rouse, University 
of Mississippi; David Thomas, Southeastern Louisiana College; and 
Gregory Wulczyn, Bucknell University. 

Edited by 

Roy B, Deal, University of Oklahoma Medical Center 

1. The AEt of Philosophizin~ by Bertrand Russell, Philosophical --- Library, New York. New York, 1968, 119 pp., $3.95. 

A collection of essays concern in^ the art of rational conjecture. 
the art of drawin% inferences, and the art of reckoning. Written 
by Bertrand Russell while he was teach in^ philoso~hy at American 
Universities durin~ the Second World War. 

2. Evolution of Mathematical Concepts by R, L. Wilder, John Wiley 
and Sons, Zc., New York, New York, 1968, xiii t 224 pp,, $8.00. 

Highly recommended to all Pi Mu Epsilon readers and their friends 
who have a lay interest in mathematics or the "New Math." This 
little hook looks at the history of some important mathematical 
concepts from the point of view of their evolution and the 
"forces" of various cultures on these developments. 

3. Comhinatorial Theory hy Marshall Hall, Jr., Blaisdell Publishing 
Company, Waltham, Massachusetts, 1967, x t 310 up. 

This is another book of wide general interest to Pi Mu Epsilon 
readers. It is so well mitten and organized that it can be 
self-studied and it has a wide variety of results and techniques 
which have application to statistics, operations research, and 
modern physics, as well as havin~ much of the same tvpe of 
intrinsic fascination that number theory has, 

4. Outline of General To o l o ~ y  by R, en gel kin^, John Wiley and Sons, 
Inc., New York, New-968, 388 pp., 617,SO. 

This introduction to general topology has much classical material, 
some modern material and some material with a modern view of the 
classical. It contains more than some of the comuarahle books 
(some of which would he excellent prerequisites for advanced 
calculus), but because of its depth and rather formal style of 
presentation, even though it ~rovides many excellent examples, 
it probably should follow some introduction to modern analysis. 

5 .  Algebraic Geometry by I. G. Macdonald, W, A. Benjamin, Inc., New 
York, 1968, vii + 113 pp. 
A brief, formal, well-or~anized presentation of some of the 
important concepts, such as sheaves and schemes, of modern algebraic 

Late solutions we- received from Edgar Karst (problem 200); 
David Thomas (problems 200 and 201); and Dan Deignan (problem 201). 



approaches to geometry and other aspects of the homological 
algebra of today. Although, in principle, nothing is assumed 
of the reader beyond elementary notions of algebra and topology, 
he must be prepared for the formalism and abstract nature of the 
subject, 

Convergence Probability Measures by P. Billingsley, John Wiley 
and Sons, Inc., New York, New York, 1968, xii + 253 pp., $12.50. 

For the reader with a back~round of a year of real analysis and 
some probability theory and/or statistics, this book presents 
a unified treatment of many of the convergence problems in measure 
theory. 

Battelle Rencontres by Cecile M. DeWitt and John A. Wheeler, W. A. 
Benjamin, New York, New York, 1968, xvii + 557 pp., $14.50. 

A collection of most of the expositions on a wide spectrum of 
topics in modern physics and mathematics which were presented 
at a meeting of some of the world's most outstanding physicists 
and mathematicians at the Battelle-Seattle Center in the summer 
of 1967, where it was hoped to consolidate the experiences of 
many on some of the complex problems of our time. Needless to 
say, much maturity is required for some of the articles and each 
reader will need to judge his readiness from his o m  experiences. 

Boundary Value Problems of Mathematical Physics, Volume I1 by 
Ivar Stakgold, The MacMillan Company, New York, New York, 1968, 
viii + 408 pp. 

A continuation of the excellent first volume. It mainly emphasizes 
solutions of partial differential equations with boundary values, 
using distributions, Green's functions and variation techniques. 

Mathematical Models of Arms Control and Disarmament by Thomas L, 
Saaty, John Wiley and Sons, Inc., New York, New York, ix t 190 
pp., $10.95. 

This book represents a sound initial effort to bring to bear some 
of the organizational advantages of mathematical model in^ on 
complex political problems and to provide, at least in some cases, 
a partially unifying language. A reader with a little knowledge 
of matrix algebra and differential equations will have no diffi- 
culty with the mathematics, but even a read who is familiar with 
most of the mathematical models will find the or~anizational 
problems of relating the models to the real world, as presented 
here, very informative, - 
Mathematical Programmin in Practice by E. M. L. Beale, John Wiley 
and Sons, New York, NewgY=k=xi t 195 pp., $5.50. 

- - - The author lists five catagories for the recent books in mathe- 
matical programming. He lists this book under "methods of organizing 
real problems so they can be solved numerically us in^ standard 
computer codes,'' He says, however, this cannot be discuessed 
intelligently without reference to other aspects of the subject. 
Although he avoids introducing unnecessary mathematics, this - 
book is not for anyone who takes pride in his ignorance of mathematics. 
In addition to standard topics in linear programming the book 
includes quadratic promamming, separable programming, integer 

programndng, decomposition techniques, and a brief (but interesting) 
chapter on stochastic programming. 

Nonlinear Programming by Anthony V. Fiacco and Garth P. MacCormick, 
John Wiley and Sons, New York, New York, 1968 xiv + 210 pp., $9.95. 

"The primary prupose of this hook is to provide a unified body of 
theory on methods of transformin8 a constrained minimization 
problem into a sequence of unconstrained minimizations of an 
appropriate auxiliary function." It is a rather comprehensive 
exposition of nonlinear programming, including the historical 
remarks and bibliography. 

Filterin for Stochastic Processes with Ap lications to Guidance 
by R, S .&B= and P. D. Joseph, J o h ~ l e y ~ a n d  Sons, X c m o r k  
New York, 1968 xviii t 195 pp., $12.95. 

Although the mathematical prerequisites are listed as probability 
theory (Chapters 4 and 5 of Feller) and differential equations 
(the first few chapters of Coddington and Levinson), the book 
provides such a comprehensive treatment of both the theory and 
practice in the subject that some maturity in the area should be 
a prerequisite, 

An Introduction to Harmonic Analysis by Y. Katznelson, John Wiley - 
and Sons, Inc,, New Yo'rk, New York, 1968, xiv + 264 pp., $12.95. 

Although the book is aimed at Fourier analysis on locally compact 
Abelian groups, the first six (of eight) chapters deal with 
ordindy Fourier series and Fourier transforms with the general 
case in mind. The last chapter, on commutative Banach algebras, 
also emphasizes those parts related to the same subject. 

BOOKS RECEIVED FOR REVIEW 

The Elements of Complex Analysis by J. Duncan, John Wiley and ---- 
Sons, Inc,, New York, New York, 1968, ix + 313 pp., $11.50. Cloth, 
also available in paper at $5.75. 

Mathematics of Finance by Cissell and Cissell, Houghton Mifflin 
Company, ~ o s ~ n ~ c h u s e t t s ,  1968, xviii + 346 + 89 pp., $7 ,SO. 

Basic Concepts of Calculus by John M. H. Olmsted, Appleton-Century- - 
Crofeq, New YO~K -, 1968, xiv t 403 pp. 

A Second Course in Calculus by John M. H. Olmsted, Appleton-Century- ----- 
Crofts, New York, New York, 1968, xv + 389 pp. 
Prelude to Calculus and Linear Algebra by John Me H. Olmsted, ----- 
Appleton-Century-Crofts, New York, New York, 1968, xix + 332 pp. 

Note: All correspondence concerning reviews and all books for review should - 
be sent to PROFESSOR ROY B. DEAL, UNIVERSITY OF OKLAHOMA MEDICAL CENTER. 
800 NE 13th STREET, OKLAHOMA CITY, OKLAHOMA 73104. 



ALABAHA ALPHA, University of Alabama 

NEW INITIATES 

Lee M. Albr i t ton  
David W.  Arnold 
Glenn D. Bedwle 
W y  Ann B l a i r  
Eddy Joe Brackin 
Suzanne Brooks 
m e t t  H. Bmxson, Jr. 
Joseph Antony Cabri 
William G. Canpbell 
Hary Angela Caylor 
Michael H e w  Chase 
William Haydkn Childs 
Charles W .  Cleveland 
J o  Lynn Coates 
Floyd Connell, Jr. 
Thomas Dale Cosby 
Wade A. cowart 
Charles E. Cracker, Jr 

Ben J o  Cumbus 
William H. Davenport 
David C u r t i s  DeRams 
Gary Amon Di l lard  
Lynne El len  Dodson 
Ri ta  Dianne m i v e r  
David L. Drumonds 
Roy S. Dunaway, Jr. 
Lynn G i l b e r t  
R a p n d  L. G r a b  
John T h m s  G r i f f i n  
Donald Wayne Hardin 
Hartha Lee Nodnett 
Lloyd n. J o f e r  
J e r r y  W. Hohes  
Uary Anne H o h e s  
Dam Halt 

.Thomas E. Honeycutt 

ALABAMA BETA, Auburn University 

Gordon Ray Mopkins 
Maurice J a m s  
Randy C. Johns 
Edward A. Johnson 
T. Scot t  Johnson 
Nata l ie  Jones  
Gary Leon Jordan 
Kathy Dianne Keenm 
Herbert V. ta rnerd  
Hargie Loo Lee 
Dewey S. Lynch, Jr. 
J a n e t  Gertrude McGee 
Benjamin B-x McIntyre 
Katherine E. HcNillan 
William Bury1 McWaters 
John Stephen Hanger 
lamy C. Montgonery 
Barbara Sue Moore 

Christopher Allan Poythresa 
Henry L. mgh,  Jr. 
30 Anne Raiford 
Linda Ruth Roberts 
David Lee Rouse 
Sandra U r l e  Schultz 
Douglas C u r t i s  Seay 
mank W i l l i a m  S l i z  
Brenda Faye smith 
Sandra Jean Speegle 
Paul Frederick Strong 
Caroline Dee Trahan 
Jon Douglas Turner 
Shir ley  J o  Turner 
&egg Lynn Vaughn 
Sharon El izabeth  Wilbanks 
Leland Ansel W i g h t  

Randal Paul Andress CatherinwAnn Cumins Margaret Leo McCorqudale 
Theresa Ann Baker Deborah Davis Mary Nel l  McCorquodale 
Hartha Brom Binder Susan Diane Davis Suzanne McDonald 
Susan Love Brasf i led  Chang-Chi Hung Hoyt W. Mitchell,  J r .  
Al ice  W i a  B r a s s e l l  Carol Ivey Linda S. H a t s  
Eurbara Diane Burke h i l y  Sue Johnson Linda Carol Montgomery 
Edith Carolyn Burkes Robert E. Johnson Richard Watmon Moore 
Ruth Murray Byram Virgin ia  G. Johnson Kenneth Howard Morgan 
Judi th  Carol Carruth Linda S. Kidd Charles h n c a n  Nesbi t t  
E l l e n  Crawford Hary Kathleen King Louise K. F ~ i t c h e t t  
El izabeth  Gai l  Broley Martha Susan Langford J m e s  Lawton RogerS, Jr. 
Madison Stevens Crouch Alan Lee Larson Suzanne Jean S f o r z i n i  
J o  Ann Culpepper Kenneth N. Uachnnel l  Jin-Dih Shih 

ALABAMA WHA, %!=,ford University 

Carolyn Rebecca Taylor 
Jane  B. Thonas 
H o h e s  Nvan Turner, Jr. 
Joan Bradley Wages 
Mary El izabeth  Ward 
Linda J. Whitley 
Leland M. Wilson 
Sheryl Lynn Wolf 
Brenda G a i l  Wright 
C a r l  P.  Wyli.3 
Chao-Chen Yang 
Robert R. Yeager, Jr. 

David H. Breder m e  Lynn Uadderra P e t e r  N. Peacock J. T. T w i n  
Brenda G. Jones  

ARIZONA BETA, Arizona S t a t e  University 

Roger S. Countryman ht thmw J .  Haesett  h n n a  Haydow Vinscent D. Reed 

CALIFORNIA ALPHA, University of Cal i fornia  at Los Angeles 

Lanrence M ,  Agin 
Robert Alber t  
Armando Alvarado 
Susan Auyang 
Paul D. Lacsich 
Geoffrey R. W e s  
Gerald A. Beer 
Demetrios B r i z o l i s  
Ben Louis Browdy 
P a t r i c i a  0. B r m  
Ann Byler 
James B. c a b a l l e r o  
W a l d  R. Chachare 
Miriam Cohen 
hrk.David Dautsch 
J m f e y  M. Dimadale 
N e x w d y I k  Dubelman 

David M. Elson 
E l i  Engel 
Dirk Q. Fe i ld  
Fuggern F e r r o  
Michael Terry 
w i n  Paul Fish  
Kent S. m a z i e r  
David A. Fredr icks  
T-y A. Gaddis 
Marc D. Cluckman 
David L. Gxdnan 
Allen M. Granik 
J a r o l d  Mark Haber 
Geineford J. Hall, 
El izabeth  Modes 
Chuan-Ying Hsiung 
Richard L. Impett 

~ o - t  n. ~ o h n ~ t ~ n  
Shinichi ro  Kmasuda 
Howard Charlea Kirby 
Michael Klass 
Michael Koaecoff 
Hershie M. W i c h  
R O b t  J. Krueger 
Judy Kunofsky 
Stovan R. Lay 
Larry Lichten 
Nancy Jane Lord 
David W. L m  - 
J a y  M. Lubin 

Jr. Jean L. k c l a i n  
Michael M i l l e l .  
Amy bib Hunaoka 
Donald ml Olson I1 

Robert Edward Park 
S t w e n  J a y  P f l d e r a r  
Jacqueline P l a u t  
Cooper N. Redwine 
steven Rc.,nan 
Steven M. Rosentmeig 
P a t r i c i a  Aun m s c h  
Michael L. sandier 
Hamin Schaefer 
J o e l  L i m  Schiff 
Camline  R. Shal lon  
Stan Sisskin  
J e f f r e y  Allan Smith 
Franklin M. Steen 
David Wang U. V. Ward 
Ceci l ia  Uary Weddle 

Judy Ann Brown Jerome h a m  L w i n  John Michael Wartman Mhha M a n  
Judy Lynn Hogan J. Cldyton S m o c k  bbart &own Wfhon 

CALIFORNIA ETA, University of Santa Clara 

T e r i l  T. Crampton 

COLORADO ALPMA, University of Colorado 

John R. Barney Jean G. F e r r i s  Steve D. Kelley 
Marilyn I .  Beavers Tr ish  A. Fischbach Daryl R. Kuiper 
Gary 0. C a l e t t i  Jim L. Harvey Jim A. Morgan 
Nancy J. Cowan P h y l l i s  A. Kane Ela ine  M. Seawalt 

FLORIDA BETA, Flor ida  S t a t e  University 

Betty A l t b u s  Gai l  k C m i c k  J a n e t  L. Stoner 
Donna M.  Bush J m e s  W. Mercer Richard J .  Sylves ter  
James E. E l l i s  h v i d  P. Skinner Robert L. Taylor 
J a i r u s  D. Flora, Jr. 

FLORIDA GAMMA, Flor ida  Presbyter ian  College 

Leonard R. Faerber, Jr. Vaughn W. Norrison Char les  E. Reid, J r .  
Firman D. King 

FLORIDA EPSILON, University of  South Flor ida  

Robert B. Allan Howard Noman Glassman Henry 0. Mwm, Jr. 
Keith E. Allchin G q  J. KeKelis Ronald W. Olson 
C a r l  Wandle Earth Robert Leake Cam1 Jean Pul in  
Loren Jay  B a r t e l s  Robert L. Leonard Rawleigh L. S a l l e e  
Lynne S. Binder Larry Wayne k w i s  Marie Cecs l ia  a n t r y  
Bruce Scot t  Gadney Glen Edwin H i l l s  Elton Scot t  

ILLINOIS ALPHA, University of I l l i n o i s  

E r i c  Douglas Bedford P a t r i c i a  J .  Fa t ten  James Allen L a i d  
E r i c  John Braude Karen Gi lber t  Robert W. Oldani 
Steven Harders Brubaker John Evan Grenn Daniel E. Putman 
Vivian Wan-Man Chan John M.  l!acmnd Richard Car ter  Quinn 
James Bndy Dollahan Walter W. Johnston Mary Gai l  Rudes i l l  
Paula Laah Eschmnn Kenton h a n a  J u h l i n  S a l l y  Jean Sergey 

ILLINOIS GAMMA, DePaul University 

S i l v i o  3 .  Anichini Mary J O  h q u e t t e  Nancy J .  Mooney 
Thouas P. Blaszak R i t a  D. F i l l w n  Pat  R. Mudloff 
Karen Casten John P. Graner ~ a m e s  J. NOV& 

Adrienne A. Chabowski W. Dean Grove Maryann O1Ma1ley 
Edna Chinewrth  Jcanne Gurdak William E. Palluck 
Richard M.  D m v i c  Catherine C. W o l l  Kenneth R. Piwwer  
Robert J. Conovan 

IUIIIANA BETA, Indiana University 

Michael S. A v o n  Michael F. Koch Susan Ela ine  Harr is  
lamy D. Catte.11 Robert W. Lauritzson Stephen M. Nagler 
George J. Coleman Warren L. Macy Hargeane M. Ranger 
Cheryl Kay Dixon C e c i l i a  Ann W r z e t t a  Admw J. Rosalsky 
Er ic  J. Isaacson C a m l  M.  Morreale J m s  L. Shaw 

INDIANA DELTA, Indiana S t a t e  University 

Haldon L. Anderson Arlene M.  Eckerle Linda S. h r s e  
John A. b e y  Joane K. Fowler Ki l  Lee 
John S. Bennett Ruth Minkle Harilyn R. Link 
T-i A. Burland Ronald L. Hower Wesley Lyda 
P a t r i c k  t.. Duffy Marlowe M.  Kennedy Michael McGrapfe 

KEmUCKY ALPHA, University of Kentucky 

Linda S. m a n c i s  Warren E. Hanahan, Jr. Camlyn Mil ler  
mrylynn Hal l  

LOUISIANA BETA, Southern University 

Helen Marie Finley Shir ley  Jean Scot t  J e r r y  Lynn West 

Mary A. Spear 
Mike Eamy E. E. T d d  Waiss 

Tel-y wolf 

Joseph L. Trafton 
Henry J. T r u s s e l l  
T W s  E. Watkins 

John R. sunders 
Susan Schwartz 

Jane8 Robert smith 
Caml J .  Sweet 
David A. Tracy 
W i l l i a m  G. Gracy 
P a t r i c i a  Tsotsos 
David Garland Winslow 

Val Gerard Tareski 
P a t r i c i a  Ann Tieken 
Benjamin Shaw-hu Hang 
Richard W, Washburn 
Paul Martin Z i s l i s  

Pepina C. Prange 
Herbert A. Rwha 
Michael A. Romanoski 
Michael W. Schoenwald 
e a z y n a  S t o l z  
Robert L. Zimek 

Harold L. Spencer 
S a l l y  Jean Spiers  
Linda Beth Swaby 
P h i l l i p  A. Wilron 

Kathy N. Peish 
J=es  Rutherford 
Richard D. Waltars 
Michael Zablocki 

Wanda D. Spisak 

Wil l ie  Williams 



LOUISIANA EPSILON, HcNeese State  College 

John G.  Bacon James L. Hagar Ronald J. Juneau Glynn W. Richey 
Michael W. Guidry Paul Hsieh Richard 0 1  Pendarvia D r .  S. Swetharanyam 

LOUISIANA ETA, Nicholls State  Co l l eg~  

Pearl N. k e e n  
Dr. Donald Ayo 
Joan M. Barrios 
Jinny Broussard 
Loraine M. Cook 
Gary T. Danos 

Carrol J .  Falcon r: Jack Field 

Raymond Folse Edwin L. Kelly Babette A. Tassin 
Olen Gary Dr. Gordon Landry Gerard J. Tassin 
Edward J .  Glynn Dr. Charles J. Honier Donald T. Tcups 
Douglas 5 .  Gordon Carol A. Oher Dr. G. G. Varvara 
James Hanley Dr. Merlin H. O b r  Dr. Din A. Veith 
Max Hardberger Stanley L. Ferret Alfred J .  Hebre 
Dale nester Dean A. Pol let  Charles E. Welner 

William A. Wilcox 

MASSACHUSETTS ALPHA, Worcester Polytechnic Ins t i tu t e  

Donald E. Casperson Daniel C. Pond Robert J .  Slomcenski John H. Sundstrom 
Robert P. Market David A. Zlotek 

MICHIGAN ALPHA, Michigan State University 

Jack Robert Abell 
Marlene Altraan 
Bruce Alan Averil 
Nancy Joyce Bachtel 
Kenneth Lee Baker 
Clifford John W o r d  
William T. Barker 
Charles Dayton Bash 
Bruce Charles Broudy 
Kerry Frank Campise 
Brian James Clerk 
Robert J .  DeMarco 
Kenneth Edwin Dobbins 
Keith J. Dubas 

Mary Margaret Engelhardt 
David Carl Ewbank 
William John Falk 
Ronald G. Fontaine 
Kenneth R. Fruit 
Carol Ann Gaber 
Catherine E. Gruse 
James R. Hsrrington 
Hichael Luther nines 
Wilburn C. Hoskina 
Louis Kirschbaum 
David Arthur Kohler 
Jean Joan Kwan 

Kenneth A. Leone 
Susan E. Macon 
Douglas Paul Harsh 
Madge Martin 
Stephen Martin 
Joe l  Leslie Hasser 
Robert 1). HcCulloigh 
Jack Heyer 
Steven Richard Mierau 
Thomas G.  Hil ler  
Rnily Jane Moore 
Benjamin Houltrie 
Kent Duane Neitzert 

MINNESOTA BETA, Collage of St. Catherine 

Therese A. Fuss Kathleen H. Haher Linda M .  S t e l l a  

MISSOURI ALPHA, University of Missouri 

Judy Alteroatt 
Charles Baker 
Joe E. Bell 
William B, Boyer 
Steven H. Bradshaw 
Cathy Campbell 
Kenneth Christ 
Dale Cli them 
Alan Claude 
John C. Coats 
Sharron Cobb 
Vicky Counsil 
Thomas Curtright 
Steven H. Day 
Paula Edwards 
Glen' Fanner 
Harry Feuerberg 

Donald R. Fisher 
Jane Fleeraan 
Mike Foxworthy 
Lan-y W. Frevert 
Joe Gist 
Patr icia  A. Goldrick 
Robert G. Hartman 
Craig L. Hunphries 
Benjamin W. Jackson 
David J .  Jones 
Kay Kirchnan 
Dale Klein 
Robert Koirtyohann 
David Eugene Leake 
Frederick A. Lafsar, 
Hilliam E. Ledford 

Larry Hartin 
Darrell Harquette 
B i l l  Hasaman 
Susan A. Haupin 
Susan Harie Mills 
Richard W. Moore 
David Opf 
Ronald J. Ott 
Kathryn Palisch 
Joe H. Parsons 
Gary Patterson 
Hary Kathleen Pell 
Ronald P la t t  
Ton Quigley 

Jr. Gary I. Reed 
Deborah V. Rhyne 

Carl Eric Nylund 
Alda Lynn Pless 
Edward C. Polhamus, J r .  
Kathleen G. Prange 
Sandra Rebhan 
Carolyn Rodda 
Lawrence J .  Sinak 
Susan Marie Soolinske 
Bruce C. Vavrichek 
James P.  Vincent 
Alica L. Wahmhoff 
Timothy E. Walters 
Stephen H. Welch 

Richard E. Ruppert 
Errol Sandier 
Barbara Schindler 
Wayne Schindler 
Paul Sewell 
Glennon L. Sieve 
Ronald A. Spencer 
Dennis A. Sprick 
John D. Spurrier 
David Stoenner 
John David Swearingen 
Floyd W. Tichenor 
Henry F. Vehige 
Theodore R. Vehige 
Rod Woolsey 
Charles E. Wright 

MONTANA BETA, Montana State University 

Steven Anacker Garey Dale Fri tz  Linda J. Livers Jaoes Stewart Simpson 
Robert Alien Anderson Robert Gunderson Lynda Kay Heal V. Roger Stewart 
Bruce H. Blevins Carl F. Kaun Patr icia  E. Phil l ips  Louise Verploegen 
James L. Emin William L. Lane Verne D. Schlepp Donna Zack 
Adele Evans 

NEBRASKA ALPHA, University of Nebraska 

Frederick Leland AbbuN Owen Charles Gadeken Donna Lienemann 
Bruce J .  Ackerson John Patrick Gibbs Thomas L. May 
Dexter R. Anderson Lawrence Jay Gier Michael Robert Miner 
Mahesh Chandra Bhandari Richard Lloyd Grover Dennis Joe Huller 
Thomas Eugene Bors Terry Duane Hafer Betty Ann Parde 
Janes Lee Boslivavac Richard Lee Hild Lanny Lee Parker 
Noma Jean Buel Paul Alan Hitz Owen Alfred Paulson 
Karl E. Byleen David Holcumb Robert Henry Riggert 
Jaaes Carl Charling Hichale Paul Honke Elaine  ere& Rogge 
Jane L. Feldman Thoaas Enil Johnmoo John Franklin Rose 
Dan H. F r i t z  Dennis James Kathan 

Vicki J .  Schick 
Stuart Lee Sorensen 
Susan Ann Spoonhour 
Charles M i  Sundemeirer 
John David Swanson 
Harold B. Teagum 
Robert Dennis Tucker 
Sandra Jean Wegener 
Lauren Wayne Wisoer 
Hary Jane Hitcig 
Daniel N. Wolf 

NEW JERSEY EPSILON, St. Peter's College . - 
James H. Barry William A. Druain John Jensen Eileen L. Poiani 
Howard T. Bell David P. Finn B. Melvin Kiernan Hayer Riff 
Ronald H. Brzank Agnes H. Giantini Joann H i  Drawiec Bernard J .  Ruddock 
Alessandro C. Calianese James Hamill B o s h  H a l h  Hakar Francis T. Rush 
Rev. Robert I. Canavan, S.J.Charles E. Hanlon Frank J. HcMackin Peter R. Santanello 
Rev. Edward Cavey, S.J. Edward S. Jabbowski John Pecoram Robert Steeves 
Daniel A. Crifo Theodore Jakubowaki Theresa N. Pedulla Francis A. ~ a r r i c b g  - 
Michael J. D'kore Eileen H. Halsh 

SEÃ MEXICO ALPHA, New Mexico State  University 

George Alexander William G. Bryan James A. Graves Joann H. Mines 
Moh-ed Bahauddin Teresa G. Cook Ralph P. G r h l d i  Richard D. Garbourn 
John W. Billiard Fosysh R. Falkner Caroline B. Garvey William D. Schwaderer 
William E. Bazzell, Jr.Edward E. Gerguson Don H. Johnson Suzanne Sinnock 
Fredrick H. Bethford Ingeborg E.  Garlick Mary E. Landers William J .  Teach I1 
J. Grlenn Brookshear Paul K. Garlick Melton W. Legg William C. Hoolley 

M E W  MEXICO BETA, New Hexico Ins t i tu t e  of Mining and Technology 

Kayreen H. Barela Richard A. Karn Richard J .  Thorp Eugene F. Tobey 
Frank C. Garcia 

HEW YORK BETA, Hunter College of Cuny 

Robert H. Carroll Albert T. Hoke Gimpier0 Pecel l i  Barbara White 
Linnie Chew Susan mansky F. Joachim Hey1 

Diana Forastiero Abraham Getzler Marvin Goldbert Larry Manovitz 
Marion Gabel Iris Glassberg Beatrice Kleiman Lawrence Scherr 

NEW YORK DELTA, Hew York University 

Marina Domeshek 

NEW YORK EPSILON, St .  Lawrence University 

Joy R. Chapman Dean L. Haglin Gary A. Porter Karen E. Schmitz 
Pamela A. Duckworth 

NEW YORK MU, Yeshiva College 

Jack Babani Sheldon Goldstein Menachen H. Hil ler  Michael Sillier 
Harry M. Bajnon David Klavan Tiberiu Pollack Marvin Srulowitz 
Aaron E. Bulman Arthur B. Levenglick Harold Rabinowitz Steven Stein 
Abraham L. Esses Saul H. Mashbaun Nman  Seidenfeld Tzvee Zahavy 
Thooas G. Freund 

M E W  YORK RNO, St. John's University 

Barbara Ann Aliprando Pascal de Caprariis William Lua Joseph L. Santa Croce 
Jeanne Marie Baccash Frances R. D'Anna John J .  Murphy Paul S. Szabo 
Peter R. Bruzzo Rosemary E. Dunne Ju l i a  A. Murphy James J. Walker 
Mary Calabro Patr icia  A. *eve Janet A. Peluso Maria E. Wiegelmann 
Joseph D. Campbell Frank J .  Horoszewski Conrad J .  Rausch Stanley M. Zoltek 

NEW YORK SIGMA, Pra t t  Ins t i tu t e  

Yau Chan Alexander Glenbocki Robert Kuba Kelvin Russell 
Victor Deuraaga Orrin Heller Joseph Hoscowitz Victor Sorin 
Dr. Martin Fried Mark Jofe Theodore Polovy Sotir ios  Sotiriou 

NORTH CAROLINA ALPHA, Duke University 

Robert P. Bebringer Thoaas H. Dunigan, J r .  David W. Kroepsch Joseph H. Rosenfeld 
George J. Bennett Robert M.  Geist I11 Anne T. McCartt W i l l i a m  A. J. Sippel 
Jackson B. Browning, Jr. Chipstopher Giles  Craig R. Horin Roger Solomon 
Gordon G. Camichael Sandra L. Hauser Benjamin H. Parker Barbara A. Waterman 
Carol A. Cnckram Howell G. Henry Daniel A. P i t t  Clark Wilwx 
Gray F. Grouse Susan Y. I l k t o n  S u e a m  Raynor Stephen E. Young 



OREGOH ALPHA, University of  Oregon 
NORTH CAROLINA BETA, University of North Carolina 

Robert Dean Ahrand Edward John Degner Monroe Albin J u b i t z  Toshiko Matsunga Sato  
Paul  Own B a r t l e t t  James H. Donnelly Linda Grace Karr David Eaerson Scot t  
Diane Dale Beelam Shir ley  J o  Anne E l l i o t  Harold Bruce Keap P h i l l i p  Wighumn sÃ§ol  
Linda Jean Benedict Dwayne E. Epikaon ~ a r v  Leonard David Carlton Shiman 

Jody Ackeroan John Person Daughtry. Jr. Richard J. S c h r w r  Deborah Sue Sugar 
Lury Sheldon Dansky Nola Grady Jennins  Hichael S t r o s c i o  Robert Russe l l  Walker 

NORTH CAROLINA GAKHA, North Carolina S t a t e  University Dorothy Bennett 
La Verne Bjerke 
William Braniff 
Sharon Bruce Allen b y  Bright Burke 

Kelvin Ronald Capps 
Judy Harie Carlaon 
Sue Jane Cassidy 
Kelvin Moon Hoy Choy 
Les l ie  Clarke 
Denis A. Dedrick 

Oavid Joseph Faurot 
David R. Fredlund 
Susan Rayner Gardner 
Gary Allen Gislason 
Alexander C. Granzin 
Glenda Ann Gunderson 
Hidel Edward Hatxi1 
Adele Jean Hansen 
Luella Rice Harder 
Mary Calleen 
Diane Deane J o r v i l l e  

ping Kun Liao Gerry Lee ~uchanek 
Ani ta  Ruth Home Karen Frances Turner 
Kathleen H. Haka Higuel Angel Alloa 
Les l ie  Jean Heilson Joy Lynn VanderHass 
Alan Paul Onkka John Paul Wahl 
Douglas Allan Parker Vynn Thea Walter 
Pamela Ruth Patton William Braidon Watson 
Anna Hichaelides Pink Vivian Bloksberg Watson 
Haher Fauzi Caddual Rose Harie Wells 
Robert Redfield 'S is ter  Carol Wester 
Joan Carolyn Salzman Sharon Jean Yasui 

Joseph D. Allen Gaulong K. Chao Robert S. Hall 
E r i c  C. Bigham Hartha R. Purr Russe l l  H. Johnson 

Janes  Hi Stanley  

NORTH CAROLINA DELTA, Eas t  Carolina University 

James Pi Bright John H. Fisher  Roger W. Hobley 
Carol A. Cam Sandra L. H i z e l l  Cynthia A. Pierce  

William T. Ransone 

OHIO DELTA, Miami of  Ohio University 

June H. Greene Kenneth D. Mahrer Michael H. Rohrer 
Edith C. Kregelius Larry H. O'Haley Barbara L. Schafer 
James E. Link Susan HcKlnnell Byron Smith I 1 1  
Herbert L. Hagley 

Kathryn E. Swigart 
Elizabeth T e l l a l l a n  
P a t r i c i a  Wahlberg 

PENNSYLVANIA BETA, Bl icknel l  University 

Char lo t te  E. Beors 
Janice  L, Bohnert 
Hichael A. Book 
John E, Butrico 
Douglas C. Crawford 
Candace L. Del l inger  
Karen R. Derck 

Linda A. F a l t i n g s  
Camlyn Famile t t i  
William D. Fellows 
Robert D. Fie lds  
Evelyn L. Finkel l  
Generio T. Gargiulo 
Richard L. m h h i  

David W. Johnson 
Anne P. Jones 
Hong Hha-.lUm 
Robert L. Lanbert 
Charles W. Lund 
P e t e r  D. Hatthews. 
Madelyn A. Hautino 
Barry If. Huller 
Ei leen  P. Neilly 

S a i l  A. Net t le ton  
Thomas J. Onka 
Susan A .  Ricc iardi  
J u d i t h  H. Richardson 
J u d i t h  C. Schwenk 

Jr.Darlene M. Tomckio 
Ri ta  E. Torres 
Kenneth J. Unuer 

OHIO EPSILON, Kent S t a t e  University 

Ronald C. Wallie 

OHIO ETA, Cleveland S t a t e  University Karen E. Cumrachter  u i l l i a m  C. Hell:; 
Susan Hi Ehrenfeld Barbara 11th 

Thomas J. Dziubakowski James Joseph Horvath John F. Murphy 
David H. Eguchi Denis Richard Jonke Robert J. Phei f fer  
Meal Seth Fens ter  Nina Ei leen  Kirschner Gary Lynn Pr ice  
James Thomas P r a t e r  Robert J. HcKenney J a n e t  Ruth Schedler 

Robert W. ~ a r g a s  
Trent A. Sponsel ler  
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Robert L. S t e n c i l  
Lon S. Swearingen 

PENNSYLVANIA ZETA, Teaple University 

Junes J. Hendrick Hark Lipshutz 
J o e l  Kohler 

Judy Hyerson Daniel H. S c a r i c a c i o t t o l i  
E l l i o t  H. Sender 

OHIO THETA, Xavier University 
PENNSYLVANIA THETA. h x e l  I n s t i t u t e  of  Technology 
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Paul Ebacher David Hucaell 
John W. Erns t  Dr. Bernard L. J a n w  
Richard Fuchs 
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James F. Marquardt Charles Weaver 
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Nick Morgan Robert Milhelm 
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Robert J. Stanton 
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TEXAS BETA, Lamar S t a t e  College of Technoloay 
OHIO LAMBDA, John C a r m l l  University 

lue E l l a  Busch Neal Douglas Hoore James D. Neaton 
5 n u e i  V. Dimiceli 

Joan A. T e r r e l l  
E a r l  J a m s  W i l l s  I11 Carole Albanese Raymond A. D'Angelo 
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Anthony J. Kenzie Joseph H. Skevington 
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J e r r y  L. Moreno James J. Weigand 

TEXAS GtHMA, P r a i r i e  View ASH College 

Domthy H. Anderson Jaws Handsbomugh Car l  m o r e  
Joe  D. BÃ§asle Clinnon Harvey Bernestine Page 
Debra F. Cole- Frank Hawkins Barbara Penn 
Freddie F r a z i e r  Kenneth Hinao Marian Pugh 
Joan Garre t t  Mary L. Johnson Vera D. Rugeley 
Samuel Good Jacquelyn Kennedy Carole Smith 
I s a a c  Gouldshy 

OHIO MU, Ohio University N D. Stewart 
Wil l ie  Taylor 
Earnie Walker 
W i l l i a m  White 
S h i r l e y  W i l l i a m s  
Ural Wilson 

Richard L. Bihl 
Edrick G. Coppock 
P a t r i c i a  N. Cowles 
Mildred A. Disko 
Thomas M. Doyle 
Stephen Hi Fel ton  
David L. Punches 
Daniel J. t e l l e r  
John C. Hansen 

James T. Healey 
David J. Hi ldre th  
Loren20 0 .  H i l l i d  
Ronald Ibach 
Thomas R. James 
James W. Kosta 
James T. h a t e s  
Aroand B. Luhahi 

Hyron A. L u r i l  
Kwan-Lan Mao 
Dennis W. Martens 
Sandra D. HcCluit 
John R. HcKenna 
Kin E. Hitchener 
Dwight W. MÃ§ye 
Stanley  L. Hyers 

Richard K. Rohde 
Thomas E. Scheper 
Ela ine  H. Shively 
Nancy L. Soi th  
Bruce R. Stewart 
Mary Ann Swardson 
Lee Parsons 
Dan Udovic 
Kerry J .  Vargon 

UTAH ALPHA, University of  Utah 

Robert L. Askew Dr. Richard E. Goodrick Barbara J. Laucher George W. S h e l l  
Homan W. Lauritzen David A. Simpson 
Paul  W. Lewis Fredrick Sipinen 
William J. Hareth. Jr. Dan R. Slaughter 
David J. HcElhinney Larry H. Southwick 
Dr. Robert H. HcKalvev Barbara Stewart 

Larry R. Austin 
George Barton 
P e t e r  B. Bauner 
J a n e l l e  Bedke 
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James M. Briggs 
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Charles H. Burr is  
Gary W. Carlson 
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Gmy J. Clark 
Steven L. C o l l i n s  
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Eva Crangle 
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John R. Edwards 
Thotfflton E. Fehr 
R o w  H. F l W a l  
Richard W. Fuller 
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Dr. Robert Gordon 
A. Thayne Green 
Dr. Louis J. G r i m  
Nei ls  H. Hansen, Jr. 
Joseph H, Harr is  
E a r l  R. Heal 
Paul W. Heaton 
Dr. Reinhard Hermann 
Robert D. Hooper 
Kenneth E. Hooton 
Roger L. Hunt 
Kendell Hyde 
John E. Ja loeiynaki  
Wayne R. Jones 
Michael D. J u l i a n  
Laya Floch Keener 
Herbert F. Keia lar  
William C. King 
John P. Lamb 
Lynn Back Lamon 
Roger G. Lapaon 
Karllyu K. Lathan 

OHIO NU, University of Akron 

Alex A l a t s i a  
Barry Arnow 
Daniel Auvil 
H. Hehaond Bagadia 
El izabeth  Bridgeman 
John Burkley 
Hazeldean Chneseaan 
Robert &'Davis 
Beat r ice  DeMan 
Kenneth E c h n  
Joseph K. E l l i s  
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George Gavala 
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Ruth T. Haddock 
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Shel ly  Oakman 
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Louis Rodabaugh 
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Louis Ross 
Subhash Saxena 
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Bl in  Scat terday 
Samuel Selby 
Laurel Singer 
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Gregory H. Nielaen 
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Stephen K. Parker 
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David E. Payne 
Six H. p e t t e y  
Dr. Alexander Peyerimhi 
Lee Grant P o r t e r  
Dr. D. Keith Read 
Walter H. Reid 
Stephen T. Rhorar 
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Dr. Dan Richards 
J a n e l l e  R o u e  
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Robert L. Stewart 
Stephen R. Swanson 
Dr. Joseph L. Taylor 
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Dennis H. Tolboe 
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UTAHBETA, Utah State  University 

Ronald C. Adam Pat-Yuan Chang Barney L. Erickson 
Robert Kelvin Anderson Nancy E. Daley R. Michael Lamb 
Irvin K. But-bank Phil Howard Di t tmr  Helvin Leroy Ott 

UTAH GAHHA, Brigham Young University 

Betty B. Anderson J .  Scot Fishburn 
Daniel R. Bartholomw Harvey J .  Fletcher 
Bruce Bil ls  Mason D. Harrall. J r .  
Janet L. Brereton Gary W. Harrison 
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Michael B. Edwards Garold Keith Kotter 
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WASHINGTON ALPHA, State  College of Washington 

Stephen Monson 
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Janet R. Nelson 
Robert E. Paul 
Juanita Jones Pope 
David L. Rasnussen 
Paul H i  Rasmussen 
Donald W. Robinson 
Laurel Robison 
W. Keith Busaell 

Ronald L. Baker Herjorie E. G i l l  Joseph K. Ling 
Thomas G. Bartholet Michael G. Hubbard Thorns W. Logsdon 
Randy L. Carter Simon S. Lam Peter Ng 

WASHINGTON, D.C. BETA, Georgetown University 

Johnnie Gorge Slagle 
H. Clair Webb 
Charles C. White 

John T. Shaw 
R. V. Skarda 
Steven Hark Thouas 
Hasaji Wtatbe 
Hatthew D. Wheaton 
Allen Jay White 
Joseph T. Wilcox 
Gordon T. Wilson 
George V. Woodward 

Jocelyn D. Phi l l ips  
Ward J .  Walker, J r .  
Dale G. Width 

Claim Cope George Crob 

WEST VIRGINIA ALPHA, University of West Virginia 

Frederick W. Shultz Heri H. Srivastava 

WISCONSIN ALPHA, Hai-quette University 

Cyril Ayeni Rober A. Elseth 
Jamea Dierberger 

Paul Harrison Thonaa H o r n  
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Lehmann College of C W ,  New York 10468 

Prof. R. V. Skarda, Dept. of Hathociatics, 
Brigham Young University, Provo 84601 

Dr. H. H. Ober .  Dept. of Hatheastics, 
Nicholls State  College, Thibodaim 70301 

Prof. Alfred J .  Patrick, Dept. of Hatheoatics, 
University of Ohio, Athens 45701 

Dr.  Louis Ross, Dept. of Hatheaatics, 
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