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VARATIONS N SMS CF SJUARESS

Ivan Niven, University of Oregon
Herbert S. Zuckerman, University of Washington

Ore of the famous results of number theory, due to Lagrange,
i s that every positive integer i s expressible as a am of four
squares of integers. The "four” here is best possible; not
every positive integer i s expressible as a am of three squares.
The conditions under which an integer i s expressible as a sun of
three squares are known: a positive integer n is a sun of three
squares i f and only if n is not of the form

4% (7 + 88)
where a and g are non-negative integers.

Also well-known are the conditions that must be satisfied
in order that an integer n be expressible as a am of two squares.
These conditions involve the factoring of n into prime powers,
T T T,
k
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where Py» Pgseres py are distinct primes and the exponents Tis Toseensl
are positive integers. Then n is expressible as a am of two squares

k

if and only if every prime factor p, of the form 4m+3 has an even

exponentr,, in other words, if ever;’/ prime factor of n of the form
J

um+3 divides n and even number of times.

d these three results, the three squares theorem is the most
difficult to prove. A proof is given in reference [1]. Proofs
of the two squares theorem and the four squares theorem are more
readily available, for example in references [3] and {41, A full
account of the historical background of these results isgiven in
Digskson's History of the Theory of Nuhbers, reference [2].

Ore point to be noted about these results is that the squares
under consideration mey be zero. For example, we nmey say that 21

is a am of four squares, that is. 21 = 42+22+12+02. Similarly 13

$s a am of three squares, namely 13 = 32+22+02. In Theorem 1 below

we will look at the possibility of expressing integers as sums of
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non-zero squares of integers, i.e., as sums of squares of positive
integers. In Theorem 2 below, we do not require positive squares, but
we look at the possibility of replacing one of the squares in the four
squares theorem by a k-th power.

To be specific, we prove two results, one based on the classical
four squares theorem, the other on the classical three squares theorem,
The first result is as follows:

Theorem 1. Every sufficiently large positive integer is a
aum of five positive squares of integers. This result is falseif
'five™ 1S replaced by "four™.

V¥ can be specific as to what is meant here by " sufficiently
large™. ¢ prove that every integer 2170 is a sum of five positive
squares of integers. W& leave to the reader the verification of
the result that every positive integer except 1, 2, 3, 4, 6, 7, 9,
10, 12, 15, 18, 33 is a aum of five positive squares.

The second result that we prove in this article is the
following.

Theorem 2. Every sufficiently large positive integer n is
expressible as a am of three squares and a k-th power (j e,,

n = xiayZez%st) if k=2 4, 60rif kisany pesitive odd
integer, This assertion is false if k i s an even integer >8.

Here we cannot be specific about the meaning of "sufficiently
large' in any absolute sense; it dependson k. If k = 1, 2, 4, or
6 the result holds for any positive integer; that is, the equation
n = x2+y2+22+tk has a solution in integers x, y, z, t for every
positive integer n, But if k is odd, k>3, thenn = x2+y2+22+tk has

a solution in integers if niak. This condition, that n>3k, may not
best possible, -

Proof of Theorem 1. Let n be a positive integer >170. Then n-169
is a positive integer and by the classical four squares theorem the
equation

2 2 2 2
n-lﬁg-xl+x2+x3+xu
has a solution in integers Xps Rgs Xgy Xy, SAY with X2X >R 2%, >0,
If these integers are all positive then we have
a2 2 2 2 2
n =13 +xl+x2+x3 + %,
as was to be proved, If x., x,, x, are positive, but x, = 9, then
n = 122 + 52 ¢ xj2 + x. 2 +lx 2? I? X, and are ositi4ve but
I Tx Ty q and =, are p :
- - - 2 2 2 2 2 . L
x3 = x, = 0, thenn = 12° t 4 + 3%+ %" + %% If x; is positive
but x, = x4 = x, = 0, then n = 102+ 82+ 2?2 4 12+ xlz. In every

case we have expressed n as a aum of five positive squares.

To complete the proof of Theorem 1 we must show that it is false
that every sufficiently large positive integer is a am of four
positive squares. To do this we first show that if r is a positive
integer, then gr is a sum of foun positive Squares if N0 I
is such asum. First if 2r is a sum of four positive squares,
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2 2 2 2
say 2r = RPN then

2 2 2 2
8r = (2x))° + (2%,)7 + (22507 + (2x¢))",
Conversely, suppose that 8r is a aum of four squares, say
.2 2 2 2
Br-yl ty, tY, +yq.

Nw the y.'s must be all even, for if one or more were odd we see
that 2 2 2 2
.ot Y, +y3 +yu 1,2 3,4, 5, 6, or 7 (mod 8)

because any square y° = 0, L or 4 (mod 8), This contradicts
: 0 (mod 8). So the yi's are all even and we have

It follows that if we exhibit a number 2r that is not a sum

of four positive squares, then none of 8r, 32r, 128r,..., 225”‘:‘,...

isa am of four positive squares. Taker = 4: we see that 8 is
not a am of four positive squares, and thus we conclude that

225*1 5 not a am of four positive squares for s = 1, 2, 3,... .

Proof of Theorem 2, The only integers n that need to be
considered are those of the form

4% (7 + 88),

with a and B non-negative integers, because all other positive
integers are sums of three squares. It is clear that a am of
three squares can be regarded as a sum of three squares and a
k-th power; simply take the k-th power to be zero.

Now, if n=7+ 88, thenn-1= 6 + 88, so that n-1is a sum
of three squares, say
2 2 2
n-1 = x" +y + 2.

Thus we have n = x2+y2 + z2 + Ik.

Next, if n= 4 {7+88),. thenn-1= 27 + 326 = 3 + 8y
where y = 3 + 4g, Once again n-11s a aum of three squares, and
the result follows as in the previous case.

In view of these two cases we need consider only integers of

the form 8%(7 + 88) with @>2, and no others.

Case 4. k odd. Ve observe that 3 : 1 (mod 8), and so
3 (mod 8). Nw n = 4*(7 + 88}, so that n 2 0 (nod 8), and we
in

o w
o
—~
@ "

n-3:0-3:5 md8).

Henge n - Sk = x2 + yz + zz has a solution in integers x, ¥y, 2z if
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Case 2. k = 2. In this case Theorem 2 is just the classical
four squares theorem.

Case 3. k=4. W treat even a and odd a separately. If a
is even, say a = 2y, then

n- @)% =n- 4% = 4% + 88).

Hence n - (2")4 = x2 + yz + z2 has a solution in integers x, y, z.

If aisodd, say a =1+ 2y then
n- @M =% +88) - 2N = 4G+

where » = 3 + 48. Agan we see that n - (27)4 is expressible as
a aum of three suqares.

Case 4. k = 6. Whm a-2 is divided by 3, let the quotient
be y. The remainder mey be 0, 1 or 2 and so we have
a=2+3y, 3+3yo0r 4+ 3. Then we see that in these three
subcases we have

a-1

n- @0 - 453 + 8g), 4%(6 + 88) or 4%71(3 + B)

where A = 3 + 48. Hence there are integers x, ¥, z such that

n-(21’Y)6=x2+y2+220rn=xz+y2+zz+(ZIW)G_

Notice that this completes all the cases in which nis to be
shown equal to a aum of three squares and a k-th power.

Case 5, k even, k>8, If t isany odd positive integer then
2

t°: 1 (mod 8) and so tK = 1 (mod 8). If t is any even non-

negative integer then tk z 0 (maod 2k), and this implies that

- 27-q. % prove that if n = 42(7 + 88) with B8>q then n—tk is
not a am of three squares, no matter what t is. If t is odd we

see that K
n-t £0-1s57 (mod 8).
If t is even, we observe that

n-t<=16(7 + 88) - 128q = 16{7 * 8(8-q)}.
In neither case is n—tk equal to a am of three squares, so that
n is not representable as a aum of three squares and a k-th power.
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THE DISTRIBUTION OF n-PRIMES

George F. Grob
Georgetown University

The distribution of primes among the integers has never been
satisfactorily described by mathematicians. |t appears that it may
be useful to consider the primes as a subset of some appropriate set
of integers whose distribution can more readily be accounted for and
whose properties are interesting in themselves.

Label the primes Py ¢ 2, Py * 3, Py * 5, Py * 7, Pg - 11, etc.
If an integer a isrelatively prime to the first n primes, let us call
a an n-prime.

Clearly, for any n ¢ Z, the integers, the set of primes larger
than P, is a subset of the set of n-primes.

Unlike the primes which seem to follow no pattern, there is a
pattern for n-primes, as the following theorem indicates.

Theorem 1: An integer a isan n-prime if and only if WP+ a isan
n-prime, for all ¥ ¢ 2, and P = PyPye--Ppe

Proofs Suppose a is an n-prime. Asume MP + a is not an n-prime for
some M ¢ 2, Then piIMPn +a, for some i = 1,2,...,n. But pilMPn'

So piIMPn +a" M, Or p.la, a contradiction to the fact that a is
an n-prime. The converse is proved in the same way.

Let P% = (x ¢ leixiPn}. Once we know the distribution of n-
primes in P%, then the pattern established there will be repeated
every P consecutive integers. W shall now investigate the dis-
tribution of n-primes in P
Theorem 2: An integer, a € Pg is an n-prime if and only if (Pn—a) is

s

an n-prime.
The proof of Theorem 2 is similar to the proof of 1 above.
Theorem 3: There are (p2-l)(p3-l)...(pn-l) n-primes in P*.
Proof: The number of n-primes in Pg is equal to the number of positive
integers relatively prime to and smaller than P.. Using Euler's ¢
function, there are ¢(Pn) = (p2-l)(p3-l)...(pn—l) such integers.
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& may ask about the distributionof n-primes almost any question
asked about the distributionof primes. A famous unanswered question
about primes is: 'How many twin prines are there?” By twin prines we
mean a pair of primes a and a+2. \& can simlarly define a pair of
twn n-primes to be a pair of n-primes a and a+2. The followi ng
theorempartial ly describes the distributionof twin n-primes among
the integers.
Theorem4: There are (p3-2)(pu—2)...(pn-2) integers X ¢ P* such that AN EXTENSION CF BULER S PHI - FUNCTI ON
x-1, x+1 is a pair of twn n-prines. And E R
. rew use

Proof: Let A, : {x ¢ Z]o<x<p.-1}. Define . . T
— 1 - Uni versity of M ssi ssi ppi

f:Z"AlXA X o, XAn by
for a : 2z, f(a) = (al,az,,,‘,a ) where for l<i<n, a; i s the remai nder

S . . . Euler's phi- function, witten ¢() for M a positive integer,

when a i's divided by Py~ By the Chinese remai nder theorem f is onto. gi ves the nunber of positive integers |ess than or equal to an
Rven the n-tuple & = (al,a2,...,an), let a be such that f(a) = d. integer s (>PQ and relatively prine to .

Then, since p.lIMpn for all 1<i<n, £(MP_+ a) : & for all Mz 2,

Choose ¥ such that 1<f(M P+ a)<P_. Then for each a' =z (A, x A, %x...x A ),
[] — " on —-n 1 2 n

there i s sone 1<a<P such that f£(a) = a. Let f* be the restriction

of f to P. Then

Now consi der the probl emof finding the nunber of positive
integers relatively prine to M (M = Pl“1P2°2...PN°rI where t he
P's are primes), M>1, and less than an integer Y where ¥ «

o KPIPZ...PN, Ka positive integer. This functionwll bc read
FRPIA) X Ay x e XA Biller's phi-function vith respect to Y and wll be witten ¢ (M)
Goviously, Euler's phi-functionis the special case of Ruler's
phi-function with respect to Y occurring when Y = .

Theorem 1: ¢21%32%-7 %3000 = ¢?100) + 2201 +...+ ¢®n (), where

is onto, and since
card(Al X A2 X .., XA) = Pn : card (p;‘;)‘
the mapping f* 3s a bijection.

It isclear that x ¢ Zis an n-primeif and only if £(x) has no zero . pllp @2 aN ; 3
entries. Thenfor X ¢ Pg, the pair x-1, x+1 is a pair of twin n-prinmes M- BTP ---PNT(the Pts are primes) and 2 Kl(plpz"'PN)j
if and only if f#(x) = f£(x) never has 1 or p.,-1 as its i-th entry, _“2 - l(Z(PIPZ"'PN)""’ a - Kn(Ple...PN),(the k's are positive
where 1<i<n, By counting all n-tuples wthout such entries, the Integers).  aj<ap<...<a,. 2 420k, . .42 aj+Y
theoremis proved. Proof: Let a,+...+a =Y. S0 g¢°1 2te-tnyy = 0.
[Student Paper presented at the National Meeting, August, 1968, Let X), X,, X5,...,X Y () be the integers less than Y and relatively
Madi son, Wsconsin.] prime to M, ¢
UNDERGRADUATE RESEARCH PROPOSAL Qviously a; + X;, a; + Xy, 2 + Xge0s 8 %y are also

¢ (M)

Y :
i i M, Sothere are at least ¢ (M) intcgers
Proposed by Leon Bankoff relatively prine to i, east ¢ (M) integ

between a and a, + Y which are relatively prine to i,
The probl emof |ocating a point which mninzes the sumof the distances

fromthree fixed points to the point in questionis well known. Thereis Assune L is an |'nteger I.ess than (_)r equal to Y and _(L'M)"{' L
a nice geonetric solution to the probl em Then (al+L.n) # 1 since aisa mul tiple of all the prine divisors
Mdi fy the problemso that the point lies on a fixed line(or cuve). of Mand (L,M) # 1 Y )
An anal ytical solution would be straightforward(though perhaps nessy). Thus there are exactly ¢ (M) integers greater than a; and
. I's there a geonetric solution to the |ocation? less than a1+YV\hich arerelativelyprirT%tor‘l.

A Thi's woul d be nore picturesquely stated inthe foll owing vay. Were It follows that ¢21*Ypn = ¢21a11) + ¢ (W Hence by induction
along a straight railroad |ine should one locate a station to serve three $21%32% - *anagy . 43Laq) + 6R2(M) +...4e7n ().

nei ghbori ng towns such that the sumof the distances fromthe three towns 36 6+12+18

to the stationis a nininn? Example: ¢~ (6) = ¢ (6) = 12, vhere 1, 5, 7, 11, 13, 17, 19,
OORRECTI ONfor the Fall, 1968 Undergraduate Research Project: In the 23, 25, 29, 31, 35 are relatively prime to 6.

- Undergraduat e Research Project in the Fall, 1968 issue part of the
formula was omtted. The displayed formula shoul d read

[[méZ]] . [[.(m+.;)/2]) - [%] [m%]:]
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¢6(6) = 2 where 1 and 5 are relatively prime to 6. ¢12(5) =4

where 1, 5, 7, 11 are relatively prime to 6. ¢18(6) = 6 where 1,

5, 7, 11, 13, 17are relatively prime to 6. 48¢gy + 4L%¢5) + o186 =
12 = ¢6+12+18(6)_

Lemma 1: ¢x(M)'¢Y(N) = ¢XY(MN) where M = Pluleaz...Pmam (P's are
primes), N = 01610202...(2“‘3“ (Q's are primes), X = PlPZ...Pm,

Y = 0.0, and (M,N) = 1.

Proof: List the integers up to Xy in the following manner:

1 2 3... | . X

X+1 X+2 X3 . .. Xth ... 2X
2X+1 2X+2 2X43 . . . 2X+h . . . 3X
(T-1)X+1 (Y-1)X+2 (Y-1)X+3...(Y~1)X+h... XY

There are ¢X(H) integers in the first row relatively prime to It.
Nov examine a column with one of these ¢K(M) integers at the top,

say the hth column. Obviously every integer in such a column is

also relatively prime to M. Consider
9(+h=qu+rS, rg<Y
TX+ h = q. + Ty T<Y.

If Pg = Ty, then (S-T)X = (qs-qT)Y. This implies Y|{(s-T)X. But

0<S<Y and 0<T<Y and (X,Y) = 1 since (M4,N) = 1. So Y|(S-T)X+S = T.

For S# T, g # Tpe

Thus no two remainders, upon division of the integers in the
hth column by Y, are equal. Since there are Y remainders they
must be 0, 1, 2,...(Y-1) in some order.

Obviously whether an integer, SX + h, i nthe column is
relatively prime to N depends on whether or not the remainder,
upon division by Y, is relatively prime to N. Since the remainders
range from 0 to Y-1 there are $¥(N) integers in each such column
relatively prime to B and so relatively prime to AB.

Since there are¢x(M) columns, each with ¢Y(N) integers
relatively prime to MN

oXan-eYan = ¢ om).
a2

Lemma 2 oFan ot = Labom) where 1 = Plule ...pm““‘ (P's

are primes), N = nlelozﬂ...l)"' (n's are primes), L =
K(Ple...Pm)(QIQZ...Qn), (K is a positive integer). and (M,N) = 1.
Proof:
o 0y = oK Pye B (@05 -.Qn) ()
- K(Qlol...Qn)¢P1P2"'Pm(.‘I) (by Theorem 1].
ol = oK(ByPye P 0(010,...0)) 1y
= k(e,P,...P )6°1% W) [by Theorem 1]
152" "m y g

-..P

shan k) = K(0,Q,...q )¢" 12 m0) KPPy .. P 6%1% o)
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2 P.P,...P ..0,Q,...0
K (plpz...Pm) (Qloz...on)[qs 172 m(M)+¢ 172 n(N)]

xeof1P2e P 62 % %

= KLé (P1P2' : 'Pm) (Q]_Qz- : 'Qn) M) (by Theorem 11.

i L¢K(P1P2'”Pm) (Q]_QZ"'Qn) (MN) [by Lemma 1].

= L¢L(HN).
P, -1][P ~1 P -1
N
Theorem 2: ¢X(M) = X —"-‘:; ][TZ, ‘] "'[—i’ }, M>1 where M =
[heorem Z A . g

al, a2 am .
P1 Pz ...P (P's are primes) and X = KPIPZ...Pm, K a

positive integer.
Proof: (By induction onm). Let M = Plal. Then X = K.Pl where
K is a positive integer. Since all integers except multiples of

P. will be relatively prime to Plul,

1
P.-1
X,n o - KR iy . L
$7(p°1) = KB, = K = KP, (1 Pl) x[PI].
Now let i = pl“l...p °m, Then X = KB P,...P where K is a positive
integer. Assume P -1
¢X o = K[P.I.-.l_] [P.z_—.{] [__‘“.-._J
P1 Pz Pm
= alp 02 [P am+l T
Let M' P1 P2 "'Pm Pm+l . Then X KP1P2°"'Pum+1

where K' is a positive integer.

X P, ~1)|P,~-1 P-L .
o M) =X .-P-l.- ===l 5] Replace X by X' = (K'Pm_l)Ple...Pm

PZ vm
= - -1 P -1
x.(m - @ P,-1 Pl Pot]. But ¢x'(Pm+1a"'+l) = X' _%ﬂ_ 5
Then ¢ P P, P m+l

Multiplying gives

P_-1l{P -1 P -1 P -1
X' X a 1 2 m m+1l
" (M)«¢” (P mtl) = X[ | I+ —_—| 1% |,
m+l ‘ 1 J[ P2 } Pl-n J m+l
1 1] x
By Lemma 2 ¢X (H).¢X (P 1“m+1) = X'¢ (M.Pm+1u""1). Hence

p,-1) [P, -1 P -1\{p -1
x'¢x'(M-Pm+1a"'*1) = xlz(%—] [ﬂf’—][%_] [%tl——] ¥

m
” _Pl_l -Pz-l Pm—l Pm+l_1 )
B4l Bs Pn )| Pl
Example: 10 (40) = 10[(2-1)/2][(5-1)/51 = 10(1/2) (4/5) = 4.
1, 3, 7, 9 arerelatively prime to 40.

o oy
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Theorem 3: ¢ X(b!)'¢Y(N) = ¢XY(MN) where (M,N) = 1, M =

a1, a2 am = 0 By B2 Bn - -
Pl Pz I 4 , N Ql Qz ...Qn » X K1P1P2°"Pm and Y
K,0,Q,...0 (K' are positive integers, P's and P's are primes.)

Proof: The proof follows immediately from Theorem 2,
P.-1}{pP,-1 P -1 Q,-1}{q,-1 Q-1
¢X(M>-¢Y(N)=x[{11, } ) ["’ o [] 2] [n_]]

ET AN GV e RO 1D i
Bl e 1)

= ¢*¥om).

Example: ¢°(8)-0°0(15) = 3-16 = 48.  $18%(120) = 48.

Buler's phi-function with respect to Y probably can be
applied to related areas in number theory. One of the possible
areas to which the function might be applied is primitive roots.
Let us define a concept which somewhat overlaps primitive roots
called very primitive roots.

Definition; Let a and M be two relatively prime positive

intepers. |f the exponent to which a belongs modulo M is <bL(M)
- a1n @2 a, _ .

where M P1 P2 ...Pm mand L = Ple...Pm, a is said to be a

very primitive root modulo *.

For those interested, the following problem is open for
further research. Prove or disprove:

Conjecture: For M = Pa, 2P® where P is an odd prime, there exist
L

M

¢¢ ™)
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NEED MONEY?

The Governing Council of Pi Mu Epsilon announces a contest

" for the best expository paper by a student (who has not yet received

a masters degree) suitable for publication in the Pi_Mi Epsilon
Journal. The following prizes will be given

$200. first prize
$100. second prize
$ 50. third prize

providing at least ten papers are received for the contest.

In addition there will be a $20. prize for the best paper from

any one chapter, providing that chapter submits at least five papers.

[¢L(M)] very primitive roots modulo My L = P, 2P respectively.

RECURSONS ASSOCIATED WITH PASCAL'S PYRAMID

Stephen llueller

Wisconsin State University, Oshkosh

A's developed previously in a paper by 1
Raab [1], the sum of the terms on certain
diagonals through a generalized Pascal a b
triangle (Fig. 1) can be found by means 2 2
of the formula a 2ab b
[J] al 3% 3ap? 3
&L
W X =1 [";R"] J-k(R+1) K L
® k=0 8 Figure 1

where R is a non-negative integer.

It was then shown that certain recursions exist between parallel
diagonals. It is the purpose of this article to find a formula
which will yield the sum of the terms on any plane through a gene-
ralized Pascal pyramid (the trinomial analogue of Pascal's tri-
angle) and then to find a recursion formula with respect to parallel
planes. First, let us define the diagonal with slope P/Q.

Definition 1. {J,P/Q}J represents the set of diagonals deter-
mined by the first &M in the J-th row, aJ, and the (Q+l)-st term

in the (J-P)-th row,[ ('2 J-(P+Q) bQ, where J,P,Q are integers with
J,Q1. a

Using this definition let us find an expression which will
yield the sum of the terms on the diagonal, J,P/Q, which radiates
from aJ. We can see from Fig. 2 that we may have negative values
for p. But since we are concerned only with finite sums, we shall
consider only values of P/Q greater than -1. In Fig. 2 the dia-
gonals shown radiate from the first term in the fourth row, ak4.
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Figure 2 Generalized Pascal triangle
J=4 for all diagonals shown
i Rowss 0
) /(PQ'Q‘U 1
(P=1,Q=1)
a? 2ab >
/_’/.——(P-l.w) 2
abz bj 3
4
a —632!:2—‘53!:3%5“ (P=0, "
5 2 2 Q=1)
o b\ 10022 10a%?  sapt b5 s
6
& 6a5y 15a%p2 mugz 4 6ab> b6 p
\~ o }-1&-2)
(Pk-1,Q=1)
In view of Fig. 2 we may obtain
g
P (g-pm
(2) X5 54 =m£0 [Qm ] JJ-m(P+Q) \om , P/Q>-1.

Notice that when P = Rand Q = 1 (2) reduces to (1). Next we define

Pascal's pyramid.

Definition 2. Pascal's pyramid is the three-faced pyramidal
array of coefficients in the expansion of the trinomial, (atbt+c)d,
such that the coefficients of (a+b+c)J are systematically placed
beneath those of (at+b+e)J-1, resulting in a Pascal triangle on each
of the three faces.

Analogous to the rows of Pascal's triangle are the levels of
Pascal's pyramid. In Fig. 3 we have a generalized Pascal pyramid
to the third level.

In the generalized Pascal triangle we sought the aam of the
terms on any diagonal through the triangle. Nw we are concerned
with finding the sum of the terms on any 1
plane passing through the pyramid.
Clearly, there are planes passing
through the pyramid which have no.
terms on them, but we are interested’
only in planes that do.

Just as it is possible to find
diagonals through the

generalized Pascal triangle

whose first term is not a?, so

it is also possible to find planes
through the generalized Pascal
Pryamid whose term closest to one
of the three lateral edges is not
aJ, v¥, or c?. So here we will
require that the plane contain the
term, a2, which will be the refer- 3ac
ence point for the plane.

LEVELS:

b3
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Although a plane passing through the pyramid creates three
diagonals on the three faces (Fig. 4) only two diagonals are needed
to determine the plane and the terms on the plane. Fom the
reference point, aJ, let P/Q be the first
diagonal taken from a’ towards the edge
containing b and I et P'/Q"' be the second 4
diagonal from the b edge toward the edgenuu_
containing c. Thus we will designate
planes by J,P/Q, P'/Q',

LEVELS. O

Before we give a more concrete
definition of J,P/Q, P'/Q', let us
examine the terms in the expansion
of (atbte) a little more closely.

g 9y i ®(m _
Lafbved =m§o[m] & (bte)® =mzo[m) aJ_ngO{n) p" B P T

J m
1 I [J) [:) J-m ym-n n.
m=0 n=0 m

This shows that each trinomial coefficient may be expressed as the
product of two Binomial coefficients. This fact isused in the
following definition.

Definition 3. {J,P/Q, l"/Q'}J represents the set of planes

through the generalized Pascal pyramid determined by the three terms
J {J-Pm J-Pm-P'] |Qm-P"' '
s om JJ-m(P+Q) ,om and Qn-p* Q,rj‘aJ-m(P+Q) pam-(P'+Q") R
for some positive integer m < l.-l;;aJ where J,P,Q,P' and Q' are integers
with J,Q,Q" > 1. o4

For example, the terms au, b2 and c
(corresponding to m = 2) determine the
plane #,1/1,1/1 while a* and 3a¢b
(corresponding to m = 1) do not.
Furthermore, we shall designate 3 2 2 3
the sum of the terms on a par- 4a’le 12a“bec ,12ab“c 4b7c
ticular plane J, P/Q, P'/Q" by a4 P 6a2p2 4ab’

X5 ,p/0, P1/Q", ieure

bac?  bbo?
6a202 12&‘!.'»02 6b2¢;&

If we look at the terms in the
plane 4,0/1,0/1 we find that
they may be arranged as
in Fig. 5. This array is
the fourth level in Fig. 7.
The coefficients of Fig. 3
may then be replaced
by those of Fig. 6.

(a)(3) o
(5)(3ae3  ()3) 003
(2)()acz  (5)(B)avo? (8)(2)eze2
(‘{) (i)a3o (g) (i)azbo (3)(3) av2e (8)(3) 63

amre s (0)(0)a® ()53 (2)(3)a2s2 (3)(Blav> (i) (S)et

b
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These terns are obtained, of course, from

s 2 T () [
Xy 071,071 = ¥u,0,0 = (atbte) =m£0 nzo[m][n] 2t
That a4, [Z]aab and [:] [ﬂaac determne this plane can be easily
verified by definition 3

In general, the sumof the terns on any plane wth diagonal s
P/Q = P'/Q' = 0/1 = 0 can be found by

‘i rf J}m J
(3) X = [)[] J-m.mn n = (atbtc) .
J,0,0 ms0 n=0 mf{nj a b c

Let us look at the terns in the plane 4,1/2,1/1. These
terns are circled in the four levels of the generalized Pascal
pyramid in Fg. 7

1 Levels s O

Figure 7
Jebt 1
papr=Q't=l
Q=2
2
3
1

Expressing the coefficients of these terns as products of binom al
coefficients, we have

Xy,1/2,11 © [:) [g) at?t [3] [2)Nab2 * [i) [i) ac .

- These three terns al so happen to deternine the plane 4,1/2,1/1.

Conparing these terms with definition 3 we find that we may wite
this sumas

1 m
. b4-m-n} | 2m-n ”
Xy,1/2,1/1 -mzo nzo[ 2m—n][ n _] gi-3m p2m-2n o s
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The term [ ngp!"] Qg:P ] aJ‘“‘(P*Q) bQm-(l"+Q') Q' in

definition 3 corresponds to the case m=m n = 1 of the general
term

wfm"nl Qnn) g-n(pe) yon-n(Pree) @'n

whi ch was found ! using enpirical nethods. This sugests that

Xy P/QB'/Q" will be a doubl e summation over mand n. .W."Sti Il .
need to find the upper linits of the summations. Ay |||”h]5 we obtain
must not violate these conditions: 1i.) both h and k of Ik nust  be
non-negative integers with h>k and ii.) all exponents of a, b and ¢
nust be non-negative integers. These conditions are net when
J-Pm-P'n 2Qm-P'nor m< J/(P+Q) and when J-PmPn > Q'n or

n < (J-Pm)/(P'+Q'). Since we are summing over integers we shall use
[PJTQ] and [%;?g—,] to elimnate problens with fractions.

I'n general, then, the sumof the terms xJ.PlO-P'/Q' is given py

-

] J Pm
g P Qm P
-Pm-P'n -P! [ '
() X ome 3 )[ ) J-n(P+Q), Om-n(P'+Q') Q'n
J,P/Q,P'/Q" mgo n=0 m-P'n a b e

where p/q, P'/Q'>-1= It is easily seen that (%) reduces to (2) when
the diagonal P'/Q' aoes not exist.

In [1] it was shown that for sequences XJ»R.J of sunms of terms
on parallel diagonals of the generalized Pascal triangle,

X5, T #51,r T PXy_(Re1) R’

Likewise, if we let Qand Q' of (4) be 1, (4) becones
o
P+I) (F7+1] (;_pm-p'n

m-P'n .
(5) Xy ppr* Zo nzo [ m-P'n ][ 3 ] gJ-m(P+1) ym-n(P'+l) n
* m= =

Using this expression we may obtain the fol | ow ng:

Theorem For sequences of suns of terns XJ’P‘PI,J

(8) X;ppr =X ) popr . DXy (ps1),p,P' + KI-(P41)(R'41),P,P’
J-1 J-Pm-l]
Pri [P +L
Proof: axJ-l,P,P' = mZo n)':o [J'P:::::'l] [m':'n]aJ-m(Pfl) bh-n(P'+1) M

J- Pm]
[Pfl] [Pzﬂ. [J-Pm-?m-l) [m-:'n) a""““”l) bm-n(P'u) R

¢ neo m-P'n
me =
J-P-1} [J-Pm-P-1|
Pfl P'fl -
J-Pm-P'n-P-1} {m-| _p_ N
bX)_(pe1),p,p I [ SphR )[ ) J-n(P+1)-P-1 | m n(P'+1)+1 P

n=0 n-O
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- J_| [J=Po)

Pl (P74
- J-Pn-P'n-1) [n-P'n-1 ) s
= mzo ngo [ iy ]["‘ n“ ]aa-m(nl) pR-n(P'+1) n;

X1-(pe1)(P141) PP ©

[3-P+1)(P1+2)] [3-Po-(P+1)(P ' +1))

L Pfl 0 4 [a-pm-p'n-(ru)(r
m-P'n

m=0 n=0

E[%Zl:] [:é_:ﬂ [J-Pm-P'n-x) [m-P'n-l

n-P'n-1 n-1 ) aJ-m(Pﬂ) bm-n(P'ﬂ.) A

m=0 n=0
If we let J* = J-Em-P'n, m' = m-P'n, and n' = n, then

Xja,ppr *

.,go nzo “",,',21) [','::] + [,n::ﬂ [m"ljl) " [;':i) [::ﬂ] J-R(PHL) mn(Pral) g
ma sinee [12)(E0) ¢ (125 ()] - L)) Bl - )
S s EAE) AE) - ) - B - ve ehen neve

BXy(p+1),B,Bt * KyL(Pe1)(pr41) PP

J'-1
m*

_J 1[J-Pm J | [J-Pm

[Pfl][?'il][ ,) n' [PT]JE’ +l J-Pm-P'n| [m-P'n

Rl iy [n') SI-R(P4L) men(Pre1) on mgo A [ P 'n J{ n ) SJ-m(P+1) bm-nlr'ql)cn
B R R

As an exanpl e of the above theoremnote that the el ements of
t he sequence

- 2 3
{xJ,l,}J = {1, a, a“th, a

+2ab, au+3azb+b2 y a5

do in fact satisfy the recursion formila:
X5,0,2° %02 01,2 Y K60
REFERENCE
1 J. A Raab, "A Ceneralizationof the Connection Between the Fibonacci

Sequence and Pascal's Triangle", Fibonacci Quarterly, Cctober, 1963,
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PARTI AL SUMB OF CERTAIN | NFINTE

SERI ES OF POLYGONAL NUMBERS

M chael Kopkas
John Carroll University

I'n the Decenber, 1966 issue of the American Mathematical Monthly,
these two probl ens were proposed by J. M. Khatri of Baroda, India:
() Prove or disprove: There exists an infinite
series of triangular nunbers such that every partial sum
is a perfect square nunber.
The sane except that every partial sumshall be
a triangul ar nunber. f1]

The purpose of this paper will be to solve these two probl ens
and then to generalize themas to the nunbers used in the series and
the nunbers arrived at with each partial sum

I NTRCDUCTI ON

Bef ore begi nning our investigation of series of polygonal nunbers,
we nust first see what these nunbers are and howthey night be
gener at ed.

Pol ygonal nunbers are sets of nunbers first classified by the
mat hemati ci ans of ancient Geece. The Pythagoreans were fascinated by
the nystery of nunbers. In fact, Pythagoras hinself went so far as to
claimthat nunbers are in some way the cause of the formof an object
[2t], (ne set of nunbers which especially interested them was that
sef generated by counting the nunber of dots in different sized
equilateral triangles(hence, the nane triangular). The nunber 1
was included in the list even though it is not strictly generated by
atriangle. Thus, the first four triangul ar nunbers and their dot
representations are as follows.

' e
o ann sers

1 3 6 10
V¢ may note that each succeeding row of_the triangle is formed hy
adding one dot onto the previous row T}]us, the"?i Fihrow wou1d

contain five dots, and in general, the nth row woul d contain n dots.
The triangul ar nunber is the sumof the nunber of dots in each row
Hence, the nth triangul ar nunber equal s 1+2+3+...+n, whi ch equal s
n(n+1)/2 by the formula for the sumof an arithnetic progression.

Now we m ght generalize this notion of triangular numbers to

If your chapter presents awards for outstandi ng mathematical papers and students,
you may apply to the National Ofice to match the amount spent by your chapter--
i.e., $30.00 of awards, the National Office will reinburse the chapter for $15.00,
etc.,--up to a maxinumof $25.00. Chapters are urged to submt their best student
papers to the Editor of the Pi Mi Epsilon Journal for possible publication.

nunbers whi ch are generated by counting the nunber of dots in different
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sized equilateral four-sided figures, or squares. The concept of
square numbers is indeed familiar. Again, the number 1 is included in
the list by convention. Hence, the first four square numbers and their
dot representations are as follows.

1 4 9 16
W may note that each square number i s formed by adding one row and
one column of dots to the previous square plus one dot in the corner
to complete the square. Thus, the nth square number-is formed by
adding 2{n-1) +1, or 2n-1 to the (n-1)st square number. The nth
square equals 1+(2(2)-1) + (2(3)-1) + ... + (2(n)-1) = 14345+, .+
(2n-1}), which by the formula for the sum of an arithmetic progression
equals n(2n)/2 = n2,

W can continue this process for pentagonal numbers; that is,
numbers which are generated by counting the number of dots in
different sized equilateral five-sided figures, or regular pentagons.
Again we include the number 1. Thus, the first four pentagonal
numbers and their dot representations are as follows.

1 5 12 22
After a close inspection, we mey note that each pentagonal number is
formed by adding three lines of dots next to three sides of the
previous pentagon [each line of dots containing as meny dots as in
one side of the previous pentagon) plus one dot to complete the new
pentagon. Thus, the nth pentagonal number is formed by adding
3(n-1)+1, or 3n-2 to the (n-1)st pentagonal number, The nth
pentagonal equals 1+(3(2)-2)+(3(3)-2)+.,.+(3(n)-2) = 1+4+7+, ..
+(3n-2), which by the formula for the aum of an arithmetic pro-
gression equals n(3n-1)/2,

W can continue this process for hexagonal numbers, septagonal
numbers, etc., to include numbers formed by counting the dots in any
regular polygon. Also, we can arrive at a formula for the nth k-
gonal number, which will be hereafter designated f,(n). This for-

mula is given here without proof to be n{2+(k-2)(n-1))/2 [3]. 4
short table of polygonal numbers is given in the Appendix.

This notion of polygonal numbers extends back to the time of
Pythagoras (570-501 B.C.). In 175 B.C., Hypsicles defined polygonal
numbers in the following way:

If there are as many numbers as we please beginning with
one and increasing by the same common difference, then when
the common difference is 1, the sum of all termsis a tri-

=~ - angular number; when 2, a square; when 3, a pentagonal number.

(If the common difference is k-2, the am of all terms is
a k-gonal number.) [4].

A book of arithmetic by Theon of Smyrna and one by Nichomachus, both
about 100 A.D., contained definitions of polygonal-numbers and
-several theorems about them. The great mathematician Diophantus
(ca. 250 A.D,) also proved a few theorems dealing with polygonal
numbers.
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As the years passed and the development of additive arithmetic
increased, so did interest in polygonal numbers. Men like Descartes,
Euler, and Fermat devoted much time to them, Most of their work,
however, dealt with the representation of an integer as the am of
a particular combination of polygonal numbers. This paper will
deal instead with the nth partial sums of particular series of
polygonal numbers. |t is meant to be a beginning and a start toward
further research, for | feel confident that there are many more
generalizations that might be proved. With this in mind, let us
begin.

FIRST _PROBLEM

The first problem we shall examine i s whether or not there
exists an infinite series of triangular numbers such that each nth
partial am IS another triangular number.

W begin by considering the first triangular number, 1. Can 1
be the first term of such a series? By the way triangular numbers
are formed, it can easily be seen that no two triangular numbers are
one unit apart, The second triangular is two units from the first,
the third is three units from the second, and so on, the nth tri-
angular being n units from the (n-1)st. Therefore, 1 cannot
possibly start our series; for i f we began with 1, we could find
no other triangular number which, when added to 1, would yield
another triangular number. Hence, we would have no second term for
our series.

Will this hold true of every triangular number? Can the second
triangular number, 3, be the first term of such a series? That is,
are there two triangular numbers that are three units apart?
Obviously, the third triangular is three units from the second.
Therefore, our series mey begin 3+3+,... We note that the second
partial sum is 6, which is the third triangular. Now, are there
two triangulars that are six units apart? Obviously, the fifth and
sixth triangulars are six units apart; so we let the third term of
our series be the fifth triangular, 15. Our series now looks like
3+3+415+,,,. In general, if the nth partial am is k, then the next
term of the series can be the (k-1)st triangular, since the (k-1)st
triangular plus k yields the kth triangular. Since this process can
be carried on indefinitely, we have shown that there exists an
infinite series of triangular numbers, namely, beginning with the
number 3, such that the nth partial sum is another triangular, Thus,
the next term of the series we have started would be the twentieth
triangular, which is 210, making our series 3+3+#15+210+.... V¢ see
that the fourth partial sum is 231, which is the twenty-first tri-
angular. The fifth term would then be the 230th triangular.

Note that since our process works whenever the nth partial sum
is greater than 1, we can generalize and say that beginning with
any triangular number except 1, there exists an infinite series of
triangular numbers whose every nth partial &m is another triangular
number, The procedure for constructing these series i s as follows:
given any triangular number c, greater than 1, we can aways find
two triangular numbers, the (c-1)st and the cth, that are c units
apart. Therefore, the next term in the series can be the (c-1)st
triangular number. The exception comes in when ¢ = 1, because the
(c-1)st triangular would become the Oth triangular, which is un-
defined.
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In summary, we have found that there exists an infinite number of
infinite se_ries of triangular numbers such that all nth partial So if aisour first odd integer, we take each of the odd integers
sums are triangular numbers. from a to 3(a-2) and partition them as pefore to detcrminc the
next triangular number in the series. 1hus. the next term in thfe_ ‘
series we have generated_so far would be found_as follows: ourv Irs
SECOND FRCBLEM odd integer, a, is 29. The last one is 3(29-2), which is 81, ¥We
. N . partition the odd integers from 29 to 81 into the sum ofothe first
The next problem we will examine i s whether or not there exists 2(a-2) consecutive integers, or the first 54 integegs. U next
an infinite series of triangular numbers whose nth partial sums are triangular number, then, would be the 54th, 1485, ﬁ"le process we
perfect squares. There are a number of ways of attacking this . have described can be carried on indefinitely, yielding an infinite
problem, and we will demonstrate two of them. series of triangular numbers whose nth partial sums are perfect
. . 1 squares.
Before we begin the first proof, let us state a well-known ’ 9
mathematical fact. Every scT;uare can be represented as the nth The second method of proof is that of mathematical induction.
partial sum of the series of odd integers, and every such nth partial V¢ mey note that
sum i s a square. This fact can be shown quite easily be mathematical
induction. . the sum of the first and second triangulars yields
) ) ) | the sccond square.
Nw let's look at the #m of the first fifteen odd integers The sum of the first, sccond, and sixth triangulars
| yields the fifth square.
143454749+411413+415+17+19421+23+25+27+29. The sum of the first, second, sixth, and eighteenth
1 and 3 are triangular numbers, so we'll use them as the first two triangulars yields the fourteenth square.
terms of our series. Nov we take the next three numbers--5,7.9 R . . i ‘
V¥ can partition 5 (which means to factor it in an additive’manner] | A close examination will reveal a pattern forming. Using fg(k? and
into 1+4, Also 7 = 2+5and 9 = 3+6. Therefore £, (k) to mesn the kth triangular and the kth square respectively,

we can summarize thik-fattern with the foIIl?viing formula.
54749 = 14442454346 = 14243444546 i il
which i s precisel i i 1+ § oesh=gs I3 J
precisely the sixth triangular number 21. \w yse 21 as the ; LT3 4 20
next term of our series, yielding 1+3+21+..., Note that as we go : j=0 J
along, each partial sum is a perfect square, since all we are really

doing i s rewriting nth partial sums of the series of odd integers. The proof proceeds by mathematical indugtion, Thg gaseFWhIETE 8
= + = = = = = .
. . " Asthe hext “step 1A he induction proof, e assune that’ 40 )
Looking at the next nine numbers, we partition ll= 1410, 13 = € next step € Inauction proof, wc assume tha
2+11,..., 27 = 9+18. Therefore k-1 k-1 .
' .3y = 3JJ
11413+, ,,427 = 1+410+2+411+,..49+18 = 142+,..+18 b jzof:l’(2 s f4{1 ' J'Zo
which is the eighteenth triangular number, 171. O i look
11K 14352041715, +o0 9 Ur Series 100ks and must show that
k k
Hov do we know how meny numbers are to be partitioned? giartin Iy o j
with the first odd number, call it a, we partition a into 1+(a-1), g 1+ j)_:ofs(z's ) = f4 L+ j)=:03

Partitioning must continue until the number (a-1)-1, or a-2, appears

as an additive factor. Thus . .
We make use of the formula for the sum of a geometric progression

a=1 + a-1 X
at2 =2 + a j k+l
a+d = 3  + a+l . 13 = (3 "-1)/2.
: : 5 K i=0
. : ' j 1 2 k+l 2
atm = a-2 + m+2 Therefore f4[1 + 7 33] = [1#(:’:k+ -1)/72]1° = [(37 "+1)/2]
. . . j=0 N
where m is a positive even integer. From a to atm there are exactly = [(3k+1)2+2(3]‘+1)+1]/4

{@-2) numbers, as we can see from the first column of factors. Since
there are a total of (m+2) factors, and (a-2) is half the number 0?
factors, then m+2 = 2(a-2). Therefore

(33N 2e2(3(3%))+11/4

t9¢3*)%+6(35)+11/4

s e Een) = 2@0e@-2) - 3@, [(3k)2+2 (3k)+1+8(3k)2+4 (Sk)]/4

13 242(3%)11/4 + a1 23178
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[3*e1y721%3K 2. 3%41)

k-1 j K
f4[1 + .Z 3 J + £4(2:3)
j=0

which, by the induction hypothesis, equals

k-1 ’ X k .
1+ ] £(2:37) ¢ £,(2:3) =1+ ] £.(2-3)
i 3 3 ¢ 3
j=0 j=0
which is precisely what we were to show. Therefore, by mathematical
induction,
k-1 j k-1 j
1+ Z 53(2-3 ) = f4[1 + Z 3)
j=0 j=0
We have found a pattern that can he generated infinitely to yield

an infinite series of triangular numbers whose nth partial sums are
perfect squares.

How many such series are there? Let us begin_to answer the

question in this way. Given any square, call it n“, we can represent

this square geometrically as n rows and n columns of dots.

n
To form (n+1)2 we add to n2 a row of n dots and a column of n

dots plus one dot in the_corner to complete the square: that is, we
add 2n+1 dots. So (n+1)2 = nZ + (2n+l1).

We form (n+2)2 by adding to n2 two rows of n dots each and
two columns of n dots each plus four dots in the corner to complete

the square; that is, we add 2n+2n+4, or 2(2n+2) dots. So
(n+2)2 = n2s2(2ne2).

In general, to form (n+k)2, we add to nz, k rows of n dots
eachandkcolumns of n dots each plus k2 dots in the corner to
_complete the square; that is, we add k(2n+k) dots. This is
easily verified by the binomialfxpansion (n+k)2 = n2+2kn+k? =
= n2+k(2n+k).
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Nov we would like to find conditions under which k(2n+k) is
a triangular number; that is, under which k{2n+k) = m(m+1)/2 for
some integer m.

Let us first assume that m is an even integer. This is
equivalent to saying that m/2 is an integer. Let k = m/2. Then
(2n+k) = m+l and m = 2k. From these we derive k = 2n-1. Thus

k(2n+k) = (2n-1)(2n+2n-1) = (2n-1)(4n-1) = (4n-2)(4n-1)/2
which is the (4n-2)nd triangular number.

Keeping this in mind, let us now assume that m is an odd
integer. This is equivalent to saying that(m+1)/2is an integer.
Let k = [m+1]/2., Then (2n+k) = mand m = 2k-1. From these we
derive k = 2n+1, Thus

k(2n+k) = (2n+1)(2n+2n+l1) = (2n+l) (4n+l) = (4n+2)(4n+1)/2
which is the (4n+l)st triangular number.

What we have shown is that, given any n%, we can always find
two triangular numbers, the (4n-2)nd and the (4n+l)st, such that
when either of these is added to nz, we 'get another square,
(n+k) 2,

Nov i f we can show that there are an infinite number of
square triangular numbers to be used as the first term of a
series, we will have shown that there are an infinite number of
infinite series of triangular numbers whose every nth partial
sum is a perfect square.  In other words, we must find conditions
under which n(n+1)/2 = mZ for some integers m and n, and show
that there are an infinite number of pairs of integers satisfying
these conditions.

Let us begin by considering those squares which can be
rewritten as the product of two squares; that is, mZ = a2b2,

First we consider the case where n is even; that is, n = 2k.

a2b2 = 2

Then
= n(n+1)/2 = 2k (2k+1)/2 = k(2k+1).

Letting az = k, we get b2 = 2k+l = 2324-1, or Zaz-b2 = -1

Keeping this in mind, we consider next the case where n is
odd; that is, n = 2k-1. Then

a%b% = nf - n(n+1)/2 = (2k-1)(2k)/2 = k(2k-1).
Letting az = k, then b2 = 2k-1 = 2a2—l, or 2a2-b2 = 1.
at we have shown is that choosing a and b2 such that
2a2-bé - +1, enables us to find m and n (since m* = a2b2 and
n = 2a2 or 2a2-1) such that m2 = n(n+1)/2.
To complete the proof, we need only to show that there are an

infinite number of pairs of integers a and b such that 2a2-b2 = +1,
Setting up a table of numbers, we obtain the following:



430

Zaz-b2
1
-1

5 7 1

12 17 -1

29 41 1

a

——..—b
11
2 3

W\ might note that adding the number in the a column with its !
partner in the b column gives us the next number in the a column,
and that adding twice the number in the a column with its partner
in the b column gives us the next number in the b column. 1In

other words, if 2af-bt = -1, then 2(a+b)‘-(2a+b)z should equal 1;
. 2.2
and, if 2a”-b" =

]

=1, then 2(a+b)2-(2a+b)2 should equal -1. This
can be proved quite easily, for

2(a+b)%-(2a+b)? = 2a%+4ab+2b%-4a%-4ab-b°

= 222002 « (2229,

Therefore, 2:12-b2 and 2(:114-!:)2-(234»b)2 are always of equal absolute
value but of opposite sign. Thus, given the numbers a = 1 and

b = 1 as a starting point, we can generate an infinite set of
pairs a and b such that 2a2-b2 = +1, which is what we needed to
show.

Summing up the entire proof, we have shown that given any
square triangular number, of which there are infinitely many, we
can use this number as the first term of an infinite series of
triangular numbers whose every nth partial sum is a perfect
square. Thus, there are infinitely many such series.

GENERALIZATION?
We demonstrated earlier a series of triangular numbers with g
triangulars as nth partial sums. Can we find a series of squares

yielding squares as nth partial sums? Again we can immediately
see the problem of beginning with the number 1. Nbo two squares ;
of positive integers are one unit apart. Thus, 1 must be excluded, "

An examination of the way in which squares are formed might
give us some hint on how to proceed. As was mentioned earlier,
each square is a kth partial sum of the series of odd integers,
Suppose we take two squares - one odd and one even - whose sum is
also a square. For example, take 9 and 16, whose sum is 25. W&
can choose for the next number in the series that square which
is the sum of all the odd integers up to and including the odd
integer before 25; that is, the next term would be 1+3+.,,+23,
which equals 144. W might note that there are (25-1)/2, or 12,
odd integers before 25 and that 144 = 122, This is a direct
consequence of the fact that n? = 1+3+...4(2n-1), which can be
proved quite easily by induction. The third partial sum of ouT
series i s 9+16+144 = 169 = 132, Next, we take the number of odd
integers less than 169, which is (169-1)/2 = 84. We add 842, or
7056 to the series, giving us 9+16+144+7056 = 7225 = 852, The
process we have set up is as follows.

1) Take the kth partial sum.
2) Subtract 1 from it and divide the result by 2. This
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will always yield an even integer, as can be shown

by the following argument: as long as the kth partial
sum is an odd square (and we will show that it always
is), it is necessarily the square of an odd number and
can be represented by (2k+1)Z for some integer k.

This yields_4k2+4k+1. Subtracting 1 and dividing by
2 yields 2k2+2k, which is an even integer.

3} Square this number and include the answer in the series.
The square of an even integer is always even; thus,
except for the first term, every term will be an even
number. Since the first term i s odd, every partial sum
will be an odd square, and we can go back to step 1
to find the next term in the series.

Since this process can be carried on indefinitely, we have found
an infinite series of square numbers whose nth partial sums are also
squares.

I's there more than one such series? Choosing any odd square
except 1, we can begin with step 2 of the process and easily arrive
at our desired series. When we begin with 1, we obtain a series
with 1 as the first term and 0 as every other term; but we are
looking for series of squares of positive integers, and therefore
we exclude 0. However, since there are infinitely many odd
squares to be used as a starting point, we have shown that there
are an infinite number of infinite series of squares whose nth
partial sums are also squares.

W have already found that there exists a series of triangular
numbers yielding square partial sums. Can we reverse this and
find a series of squares with triangular partial sums? Examining
a table of squares and triangulars, one may note that:

1 is both square and triangular and can be used to start
the series.

2.2
1%3% 210 = £,04) = £,(1+3)
1%43%0% - o1 - £,(13) = £5(1+3+9)

In general, 12+324-92+...4~(3k)z s f3(1+3+9+...+3k), or

kgo 6"? - s {kzosk) '

This generalization can be proved directly,

n+l ][ml ]
3L
%k ™)) [“‘—‘2_ 3 i
£, I3 = £ 55— = 3 = 3
k=0
n n
2.k .
= T O T Eh?
k=0 k=0

Therefore, there exists an infinite series of square numbers
whose nth partial sums are triangular: Numbers.

Let us continue in this direction. Can we demonstrate a
series of pentagonal numbers yielding squares as nth partial
sums? A short examination of a table of pentagonals and squares
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provides the following formula, which we shall prove by induction;
n i n i]
iZofs(s ) = f4[izos
where £, (k) means the kth pentagonal. Making use of the formula

given edrtler for finding the nth k-gonal number, we can see that
the case where n = 1 gives

1.
Z £, (s } = £,(1)+£.(5) = 1+35 = 36 6% - f4(145) = f4[_2051]
1=

. n N
Next, we assume that z f (51) = f [ z 51] and show that
i=0 3 420
n+l n+l .
Z £, i) = AR
i=0
Nw  n+l s n [n . n+l.2 _n-1
Z&GH=[ZfG)] ﬁ6m5=f.254+36 T
i=0 =0 > =0 2
. [ 1]2 , 246°™2) 5™
16
52n+2 (n+1)+1§24(52n+2)_8(5n+1)
16
_ 256" 106™ e _ 2™ s™
16 = 16

2
5n+2_1 n+l i
= { 3 = £, 15
i=0

which i s what we were to show. Therefore, we have found an
infinite series of pentagonal numbers whose nth partial sums are
squares.

Let us look at what we have done. We can see that in our
series of square numbers with triangular nth partial sums, the
numbers squared have differed by a factor of three; in our series
of pentagonal numbers with square nth partial sums, the numbers
"pentagonalized" have differed by a factor of five. Examination
of the tables in the Appendix would indicate that in a series of
hexagonal numbers with pentagonal nth partial sums, the numbers
“hexagonalized" will differ by a factor of seven. W may
generalize by saying that in a series of k-gonal numbers with
(k-1)-gonal nth partial sums (k>3), the numbers 'k-gonalized"
must differ by a factor of (2k-5). Thus, letting fk(m) be the
mth k-gonal number, we must prove the following

n i n i
IECEOD RENPRCED
i=

i=0
where k i s any positive integer greater than or equal to 4.
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The proof proceeds by mathematical induction on n. The case
n = 0 follows trivially, since fy[(2k- 5)0] fr1) =1 = fi_1Q1) =
fk-1[(2k-5)0]. This was to be expected since 1 is the first k-
gonal number for any integer k.

Since this case was so trivial, we might include the case n = 1,
although it is not strictly necessary to the proof. When n = 1,
we must prove the foIIowing

3 ;
f £, [(2k-5) Y= ) (2k-5)*
i=0 i=0

Applying our formula for finding the mth k-gonal number, namely
fk(m) = m(2+(k-2) (m-1))/2, we reducc our problem to proving that

1% [Zk-s](2+(k-§)([Zk-sj-l)} o [1+(2k-5)]{2+([k-1]-2) ([1+(2k-5)]-1)}
2

Beginning with the left side, we get

=1+

L o (251020 (k-2) ([2%-5]-1)) (2k-5) (2k*-10k+14)
2 3

= 14(2k-5) (k2-5k+7) = 2k>-15k%+39Kk-34 = (k-2) (2k2-11k+17)

- (2k-4) (2+[k-3]1[2k-5])
2

_ [1+(2k-5)]{2+([k-1]-2) ([1+(2k-5)]-1}
2
which is precisely what the right side equals.

Continuing with our induction proof, we assume
n i n i
izafk[(ZR—S) 1=£ , iZO(Zk-S)
and using this assumption, we must show that

nl i nl i
L fl@-5" = £ |1 (2-5)
i=0 1=0

Again wc make use of our formula for finding the mth k-gonal number,
which makes our induction hypothesis

f (2k-5) ] 1h

i=0

{ z (2k-5) }[2+(k 3){[
(2k-5)% (24 [k- 21 @k sylap |

Z z

i=0

what we must prove is
n+l

A n+l ;

1 1
n{l(Zk_5)1(2+[k_;][CZk_S)x_I]) _ [igefzk-s)J[z+(k-3;{{}§8fzk-s) J-l}{
i=0

Beginning with the left side, we have
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“fl(Zk-s)i{2+[k-21[(zk-s)i-lll
2
i=0

Z (2k-5) {2+ k- 2][(2k -5) -1]j (2k-5)"" {2+ [k-2] [(2k-5)""1 11}
Z
i=0

whi ch, by the induction hypothesis, equals

[1])} (2k-5)'][2+(1\ 3){[ Xo(zk -5) ] 11

ico , (k5™ (4+k[2k-5;n+l-k -2[2k-5]™*1)
)
" 2+(k-3)[ 2k-5]"*1.1 1]
_ (2k-5)""-1 L|[z k=37 1
T =51 { 2 !
. 42k-5)" ek (2k-5)" 2k (2k-5)™ -2 2k -5) ™2

)

k-5 [3-2(k-3)+(zk-s)“"1]

T T 2lk-3) ] ]

4 (2k-5)""Lex (2K-5) 2™ 2k (2k-5)"* -2 (2k-5) 22

2

(2k-5) 225 k-4) (2k-5) " Le2k-0

= 8(k-3)

, 4k (-3) (2k-5) 2016 (-3) (2k-5) "Lk (k-3) (2k-5)" -8 (k-3) (k5 P

8(k-3)

_ [(4k-8) (k-3)+1] [2k-51°™24 [-2(k-4)+16 (k-3) -4k (k-3)] [2k-5]"* ! +2k-9

= 8(k-3)

 (4Kk%-20k+25) (2k-5) "2+ (-ak2+26k-40) (2k-5)"* T+ 2k -9

¢ BR-3)

 2k=5) 2" (2k-8) (2Kk-5) " 242k

= §(k-3)

(2k-5) 2™ gk (2k-5)"* 249 (2k-5)"* 2 (2k-5) " 242k -9

% §k-3)

L2k-5)"2 1] [ (2k-5)""2-2k+9)

= 8(k-3)

2, 4+2(k-3)[(2k s 2. 120k 3)]

_ (2k-5) 2(3) 7y
2(k-3) [ 4 ]

2+ (k- 3)[(2k 521 1]

2k-5)"*2g 7(k-3) "
Rl Y (3 2 !
n+l n+l .
2 (2k-5)* [ 2+ (k-3){ f (2k-5)*|-1}]
iko

2

which is precisely what the right side equalled. Thus, by the
principle of mathematical induction, we have established that

n § n 2
! £ 0(2k-5)"] = fk_l[ ) (zk-S)‘J.
i=0 i=0 |

Since we did not specify k, other than saying that k is a
positive integer greater than or equal to 4, our results hold
for all positive integers greater than or equal to 4 Actually,
the formula holds for all positive integers, but we have not
defined k-gonal numbers for k =1 or k = 2, since these have no
geonetric significance. Thus, for k greater than or equal to 4,
we have proved that one can find an infinite series of k-gonal
nunbers such that the sumof the first nterms of the series is
a (k-1)-gonal nunber.

CONCLUSI ON

Rat her than summing up ny results, | would like to conclude
this article with a few comments on why and how it was witten.

The initial problenms upon which the article was based first
appeared (as was stated in the introductory remarks) as el enmentary
problems in the American Mathematical Mnthly. They were fairly
easy to prove and Tent themselves quite welT to nore difficult
generalizations. Wile ny results will not, | amsure, shake
modem mathematics to its foundations, these generalizations were
good exercises in analyzing polygonal nunmbers and proving theorens
about them

Wrthy of nmention is the role of a conputer in obtaining ny
results. Wile the computer furnished no proof to any theorem
it supplied me with tables of nunbers fromwhich | was able to
meke generalizations. Wthout these tables, | would have spent
many long hours conputing val ues of polygonal nunbers, with a
very good possibility of an error. Thus, the conputer was a
necessary tool for formulating the problenms, even though it could
not prove them

Finally, | feel that this article was a good review of the
met hod of proving mathematical existence theorems constructively.
In this method of proof, the existence of sonmething is proven by
giving a method for constructing it. One nust then show that
this construction is valid, either by proving the validity of the
generating process, or by a method such as mathematical induction.
Both of these methods were used throughout the article.

APPENDI X
n Fy Fy Fs Fg F; Fg Fg Fyg 1y
101 1 i 1 1 1 1 1 1
2 3 4 5 6 7 8 9 1 0 1
3 6 9 12 15 18 21 24 27 30
4 10 16 22 28 34 40 46 52 58
5 15 25 35 45 55 65 75 85 95
6 21 36 51 66 81 9% 111 126 141
7 28 49 70 91 112 133 154 175 196
8 36 64 92 120 148 176 204 232 260
9 45 81 117 153 189 225 261 297 333

10 SS 100 145 190 235 280 325 370 415

[Student paper presented at the National Meeting, August, 1968,
Madi son, W sconsin. |

435




436

THE FI BONAGO SEQUENCE AN | NTRODUCTI ON

Donal d F. Reynol ds
Texas Christian University

In 1202 an Italian nerchant. Leonardo Pi sano, known to history
by his ni cknane Fi bonacci, published a nmathenatical textbook,
Li ber _Abacci, which was responsible for the introduction of Hindu-
Aabic nuneral s to the western world. One of the probl ens appearing
in Leonardo's bhook was the follow ng:

each

" Suppose we pl ace one pair of rabbits in an en-
closure in the nonth of January; that these rabbits wll
breed anot her pair during February; that pairs of rabbits
al ways breed in the second nonth fol | owing birth, and
thereafter produce one pair of rabbits monthly; and that
none die. w nany pairs of rabbits would we have at the
end of Decenber ?"

An anal ysis of the nunber of pairs of rabbits at the end of

month yi el ds the fol | owi ng sequence
, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377,....

1, 2, 3
These nunbers are the terns of the Fi bonacci sequence. or nore

sinply, the Fibonacci nunbers.

as foll ows

An exam nation of this sequence reveal

F, =1, F

1 =1, F = F F n_>_3.

2 n n-1

often surprising results.

Sone el enentary nunber theoretic properties which can be

readily obtained are the fol | owi ng

Fi bonacci nunbers thensel ves, we find that the Fibonacci sequence is
related to other areas of mathematics and. in fact, even pervades a

(1) Fp+Fy+ .. +F = Frez = 1t
© |:12 . F22 S R I
2 n

() F ol =FF . (DN

(4  Neighboring Fi bonacci numbers are rel atively prine

(s) Forany m, n, (F, F):Fo 4, where {(a,b) denotes the

greatest conmon divisor of a and b.
6) Fp di vi des F ifand only if mdivides n

In addition to these properties, which relate only to the

nunber of non-nat henatical disciplines.

The sequence is fornally defined

-1 . n-2
s sone rather interesting and
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For exanple. if we wite the binomal coefficientsin the
fam|liar triangul ar arrangement due to Pascal and consider the suns
of the nunbers on the "rising diagonal s" of the triangle, we note that
we obtain the Fibonacci sequence.

112 358 13...

Anot her concept to whi ch Fi bonacci nunbers are jniinatel y related

is that of continued fractions. Afinite continued fractionis an
expression of the form

.+ 1
qa, where q;,...,q are positive

integers and g, IS a non-negative integer. The integers g CIREN
q, are called the partial denomnators of the continued fraction.
Infinite continued fractions are defined in the obvi ous way.

Theorem |f a finite continued fraction has n partial denom nators
Qo+ GyarensGpy 30 G =@y = v e = a,, = 1, then the fraction equal s

Pn+l .

r

. . n S .
This result can easily he extended to the infinite case to obtain
the following theorem

Theorem |f aninfinite continued fraction has all its partial
denominators equal to unity, then the value of the fraction is given by

1lim Fn+l.
ne F
n
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~Thus the sequence forned by taking ratios of successive Fi bonacci
nunbers converges to a nunber, which we shall call ¢, which is also

the value of an infinite continued fraction. The nunber ¢ is interesting

for still another reason, for if we construct a rectangle with sides
i the ratio of ¢ and renove fromit the |argest possible square, the
remai ning rectangl e has sides whose ratio is again equal to ¢, Such a
rectangl e is known as a gol den rectangle and 4 i s known as the gol den
ratio.

Fi bonacci nunbers al so appear in many non-mat hematical disciplines
such as optics, botany, and genetics. Consider, fér exanple, the an-
cestry of the male bee. MNoting the fact that the male bee is hatched
froman unfertilized egg, and hence has only a fenmale parent, we con-
struct the following fanily tree.

P om in £ f i : G, s, 8
T T T
f £ m £ @, 3,5
e e ScB
f m f (1, 2: 3)
| [
m I £ a, 1, 2
T @, 1,1
m G-; o, D

In the above figure, mrepresents male, f represents female, and the
nunbers at the right indicate the nunber of nales, fenales, and total
ancestors at that level. Al three followthe pattern determned by
the Fibonacci sequence.

The Fibonacci numbers are alsorelated to |eaf arrangenents, the
chanbered nautilus, the nunber of ways which light can reflect within
to plates of glass, and many other physical phenonena.

[Student Paper presented at the National Meeting, August, 1968,
Madi son, Wsconsin.. ]

MVEETI NG ANNCUNCEMENT

Pi M Epsilon will neet August 25-27, 1969, at the University

of Oregon, Eugene, Oregon, in conjunction with the Mathematical Association

of Arerica. Chapters should start planning NOVto send del egates or

speakers to this neeting, and to attend as many of the | ectures by other

mat henat i cal groups as possi bl e.

The National Ofice of Pi Mi Epsilon will help wth expenses
of a speaker OR del egate (one per chapter) who is a nmenber of Pi M
Epsilon and who has not received a Master's Degree by April 15, 1969,

as foll ows: SPEAKERS will receive ¢ per nile or lowest cost, confirmed

air trayel fare; DELEGATES will receive 2 1/2¢ per mile or |owest cost,
confirmed air travel fare.

Sel ect the best talk of the year given at one of your neetings
by a menber of Pi M Epsilon who neets the above requirenment and have him
or her apply to the National Cffice. Noninations should be in our office
by April 15, 1969. The following information should be included: Your Nane;
Chapter of Pi Mi Epsilon; school; topic of talk; what degree you are working

on; if you are a del egate or a speaker; when you expect to receive your

degree; current mailing address; sunmer nailing address; who reconmended by;

and a 50-75 word summary of talk, if you are a speaker. MAL TQ
Pi M Epsilon, 1000 Asp Are., Room 215, Norman, Cklahoma 73069.
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PROBLEM DEPARTMVENT

Edi ted by
Leon Bankoff, Los Angel es, California

Thi s department wel comes probl ens believed to be new and, as
a rule, demanding no greater ability in problem solving than that
of the average menber of the Fraternity, but occasionally we shall
publ i sh probl ens that should challenge the ability of the advanced
under graduate or candi date for the Mster's Degree. Sol utions
shoul d be subnitted on separate, signed sheets and mailed before
July 31, 1969,

Address al | communi cati ons concerning problens to Leon Bankoff,
6360 Wilshire Boul evard, Los Angeles, California 90048.

RREBEEME-ER -Se=tH-aN

213. Proposed, by Gregory Wulezyn, Bucknell University.

Prove that a triangleis isosceles if and only if it has a
pair of equal ex-symmedians., (Editorial note: See Mathematics
Magazi ne , Probl em 637, Novenber 1966, ﬁay 1967 and January 1968, for
the correspondi ng probl eminvol ving symedi ans, )

214. Proposed by Charles W. Trigg, San Diego, California.

Find the unique 9-digit triangul ar nunber A which has distinct
digits and for which n has the form abbbb.

215. Proposed by Leon Bankoff, Los Angeles, California.

In an acute triangl e ABC whose circumcenter is O, let D, E,
F denote the mdpoints of sides BGC CA ABand let P, Q R denote
the m dpoints of the minor arcs Bc, CA AB of the circuntircle,
Show t hat

P+ EQ+ FR sin®(A/2) + sin(B/2) + sin’(C/2)

OB + OD + OC + OE + OA + OF

cosz(A/2) + cos?(B/2) + eos?(C/2).
216, Proposed by Erwin Just, Bronx Community Coll ege.

Prove that the Diophantine equation
x9+2y9+3z9+lw9=k
has no solutionif k ¢ {11, 12, 13, 14, 15, 1¢).

217, Proposed by C S Vyenkataraman, Spee Kerala Varma Col | ege,
Teichur, South Imdia,
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A transverse common tangent of two circles meets the two
direct common tangents in 8 and ¢, Prove that the feet of the
perpendiculars from B and C on the line of centers are a pair of
common inverse points of both the circles.

218. Proposed by Charles W. Trigg, San Diego, California,

Find the three 3-digit numbers each of which is equal to the
product of the sum of its digits by the sum of the squares of its
digits,

219, Proposed by Stanley Rabinewitz, Polytechnic Institute of
Brooklxn,

Consider the following method of solving x3 - llx2 + 36x - 36 = 0,

Since (x3 - :I.lx2 + 36x)/36 = 1, we may substitute this value for
1 back in the first eauation to obtain
x> < 11x2 + 3ex(x® = 11x2 + 36x)/36 = 36 = 0,
M

or x* - 105 + 25x2 - 36 = 0, with roots -1, 2, 3 and 6, Ve find
that x = -1 iS an extraneous root.

Generalize the method and determine what extraneous roots are
generated.

220. Proposed by Daniel Pedoe, University of Minnesota,

a) Show that there is no solution of the Apollonius problem
of drawing circles to touch three given circles which has only
seven solutions.

b) Wha specializations of the three circles will produce
0, 1, 2, 3, 4, 5and 6 distinct solutions?

221, Proposed by Murray S. Klamkin, Ford Scientific Laboratory,

Determine 8 vertices of an inscribed rectangular parallelopiped
in the sphere

(x-xl)(x-xz) + (y-yl)(y—yz) + (z-zl)(z-zz) =0,

Editorial Note: The previous issue of this Journal (Fall, 1968)
contained a re-statement of twelve problems for which solutions
have not yet been published, Omitted from this collection was
problem 50, which was first proposed in the Fall, 1952 issue and
later repeated in the Spring, 1955 issue, Another omission IS
problem 111, proposed in Spring, 1959 and corrected in Spring, 1960,
Readers are invited to offer solutions to these problems,

50, (Fall, 1952) Proposed by Pedro Piza, San Juan, Puerto Rico.

Prove that the integer 2n+l is a prime if and only if, for
every valueof r = 1, 2, 3,..,, (/n/2], the binomial coefficient

(B*F) is divisible by 2r+1,

111, (Spring* 1960) Proposed by M. S. Klamkin, AV RAD, and D,
J. Newman, Brown University.

It is conjectured that at most N-2 super-queens can be placed
on an N x N (N>2) chessboard so that none can take each other, A

hh)
superqueen can move like an ordinary queen or a knight,
It should have been stipulated that N is even. For N = 5,
Michael J, Pascual shows that one can place 4 super-queens,
SOLUTIONS
102. (Fall, 1958), Moser
Edmonton, Canada.
Give a complete proof that two equilateral triangles of edge
1 cannot be placed, without overlap, in the interior of a square
of edge 1.
Solution by Charles W. Trigg, San Diego, California.
</
c

A

In order that the shortest distance between the most remote
vertices of two non-overlapping congruent equilateral triangles in
the plane may be achieved, the triangles must be in contact, A

A . . Any
relative positions they may assume may be reached by translation
and/or rotation from the position where two sides are coincident,
as in the figure. In that position the most remote vertices of
two triangles with side L are Y3 apart. Any motion of translation
or rotation increases the distance between A and D until, when they
become closer than ¥3, another pair will have become the most
remote vertices,

The two most remote points on_a unit square are opposite
vertices whose distance apart is ¥2(</3), Consequently, the two
triangles cannot be placed in a unit square without overlap,

This conclusion can be confirmed by considering a triangle
inside the square, In order to provide a maimum area i n which
to place another triangle, one of the unit triangle's vertices
must coincide with a vertex of the square. The side opposite that
vertex must be perpendicular to the diagonal of the square from
that vertex, in order that the altitude of the maximum second
triangle will be (Y2 = ¥3/2)<¥/3/2 and its side will be (2/6/3 = 1)<1,
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Fol | owi ng the sane reasoni ng, the maxi num pair of congruent
triangl es which can be placed in a unit square wthout overlap
wi |l have altitudes of ¥2/2 and sides of v273,

202, (Spring, 1968), Proposed by Leon Bankoff, Los Angeles,
California,

Let I, 0, Hdenote the incenter, circuncenter and orthocenter,
respectively, of aright triangle. Find angle HIO given that AHIO
is isosceles,

Solution by Charles W, Trigg, San Diego, California,

Inthe right triangle ABc, C and H A
coincide, Let F be a foot of the per-
pendicular fromO0 to AC Then CF = a/2 ~r,
IF=b/2-r, and I0 = IH = /2, Then in
the right triangle IOF,

(=/D)? = (as2 = ©)2 + (/2 - 1),
wher eupon

r=(a +b2)/mtat b) = (at b - e)/2,

When thi s equation '215 siqulified and the
substitution a2 + b = ¢ is nade, we have H (C)

¢? - 2(at b)e t 4ab = Q
So.c = (a+tb)+ (a-b);that is, ¢ = 2aor 2b, and ABCis a
304-60 right triangle. Then angle CHA = angle OAH = 60°, angle
IHA = 45°, and angle HIO = 180° ~ 2(60° ~ 45°) or 1509,

Al so solved by Joe Konhauser, Macal ester Col | ege; AndrewE,
Rouse, University of M ssissippi; Gegory WIczyn, Bucknell
Uni versity; and the proposer,

Editorial Note: Konhauser and Wil czyn applied the cosine
lawin triangle R in which (0I1)2 < R(R - 2r), OH= R and
(IH)2 = 2r2, to obtain cos OH = -/3_/2, or angle O H = 150°,

203, (Spring, 1968). Proposed by Stanl ey Rabinowitz, Polytechnie
Institute of Brooklyn,

Let P denote any point on the nedian AD of ABC, If BP
meets AC at E and CP neets AB at F, prove that AB = Ac, if and
only if BE = CF,

“Almost i dentical solutions by the proposer and by Charles W, Trigg,

San Diego, (aliTornia,

By Ceva's Theorem (AF){BD){CE) = (FB)(DC)(EA), and since BD = pc,

we have AF/FB = AE/EC. Consequently EF is parallel to Bc, and
EFBC i s a trapezoid,
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If BE = CF: the trapezoid is isosceles, angles ECB and FBC
are equal, and the triangle ABCis isosceles, with AB = AC

If AB = AC angles ACB and ABC are equal, so the trapezoid
is isosceles and its diagonals BF and CF are equal .

Al so solved by Bruce W King, Burnt-H|ls-Ballston Lake H gh
School ; Joe Konhauser, Macal ester Col |l ege; GahamLord; John McNear,
Lexi ngton H gh School; Andrew E. Rouse, University of M ssissippi;
and G egory Wil czyn, Bucknell University.

204. (Spring, 1968) Proposed by M. S Kl ankin, Ford Scientific
Laboratory.

Ifa , =vT+a ,n=01.2,...;a = Yz, find

linit 3 ~ 2
x4 x -4
Editorial Note: Special cases of this problemoccur in R. E.
Johnson, F. L K okeneister, Calculus.with Anal ytic Ceonetry, 3rd
Edition, Allyn and Bacon, Boston, p 74

Solution | by Robert J. Herbold, Proctor & Ganbl e Conpany,
G ncinnati, Chio.

By L'Hospital's rule,

1m% "2 1

wwh x - 4§
and a -2

1im %1 = 4?2

x4 x -4 [T

Hence, we are led to showi ng by induction that

1im % 7 % &

x4 x -4 W *
From above, we knowthis holds for » = 0 and r = 1. Suppose
it istruefor r =k  Consider

2 V2 + a, - 2

lim 2l ~ % lim k

x4 X -4 »el X - 4
By hypot hesis,

1im ¥ 2 B (l)kﬂ .
X4 x - 4 n
Therefore
' K+l
lim - _ lim - 1
B ak 2= . (x u)(‘,r)

k+l
1im _ lim 1
x_’v‘ak'l>2- %x-u)(;) + 4,
and lim Tk _ lim

4 »l
/ R
(x - u)(;) + 4 -2

b g X -4 PR ] X - 4




Lk

But by L'Hospital's rule

/ R
(x - u)(;) +4 -2

- i (l)k+2
x4 x - U u
Ther ef or e,
1im 2 -2 Y k+2
o (T
and so by induction,
. a_ -2 r+l
lim r = ¢l
x4 x-u-(F) #d 2 Be
Solution II by the Proposer. 1.

W\ consider the nore general problem of finding

linmit % ~ B
T
where the sequence {an} i's defined by )
a4 = F(an), ag = G(x), a<x<b
F', G', exist, and where
G(L) = L, linit a =L (independent of x).
née
Let
L oumit e T % e TP L 3
r+l x>L x -T x*L x -T
Since L = F(L) and a_ = L for x = [
_ limit Flal=La =k .
L~ T ——— _-F(L)Lr.
r x+L a -L x-1L
r
Whence, L, = (FLYL = (Fr @6 @ . &
For the given problem
F(x) = v2 + %, 6(x) = /x, T =4, and L = 2
Thus, 1 r+l
s L!‘ = (E)
Al'so solved by Richard Enison, New York; Keith Giles, University
of klahoma; Mchael R Gorelick, Adelphi University; Rick Johnson, 5
East Carolina University; Bruce W King, Burnt-Hlls-Ballston Lake '
H gh School; G aham Lord, Philadel phia, Andrew E Rouse, University
of M ssissippi; David Thomas, Southeastern Louisiana College; and

Gegory Wulezyn, Bucknel | University.

Late sol utions were received from Edgar Karst (problem 200);
Davi d Thomas (problens 200 and 201); and Dan Deignan (probl em 201).
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BOOK REVI EVS
Edited by
Roy B, Deal, University of Cklahoma Medical Center
T APY O™ Philosophizing by Bertrand Russell, Philosophical

Library, New York. New York, 1968, 119 pp., $3.95.

A collection of essays concerning the art of rational conjecture.
the art of drawing inferences, and the art of reckoning. Witten
by Bertrand Russell while he was teaching philosophy at Anerican
Uni versities during the Second World War.

Evol ution of Mathematical Concepts by R. L Wlder, John Wiley
and Sons, Inc,, New York, New York, 1968, xiii t 224 pp., $8.00,

H ghly recommended to all Pi Mi Epsilon readers and their friends
who have a lay interest in mathematics or the "Mew Mith." This
little hook Iooks at the history of some inportant mathematical
concepts fromthe point of view of their evolution and the
"forces" of various cultures on these devel opnents.

Conhi natorial Theory hy Marshall

Hall, Jr,, Blaisdell Publishing
Conpany, Waltham, Massachusetts,

1967, x t 310 up.

This is another book of w de general interest to Pi Mu Epsilon
readers. It is so well written and organized that it can be
self-studied and it has a wide variety of results and techni ques
which have application to statistics, operations research, and
modern physics, as well as having nmuch of the same type of
intrinsic fascination that number theory has,

Qutline of General To ology by R. Engelking, John Wley and Sons,
Inc., New York, Nv——38 388 pp., 817,50,

This introduction to general topology has much classical material,
some nodern material and sone material with a modern view of the
classical. It contains more than sone of the comparable books

(some of which would he excellent prerequisites for advanced

cal culus), but because of its depth and rather formal style of
presentation, even though it provides many excellent exanples,
it probably should follow some introduction to nodern analysis.

Al gebraic Ceonetry by I.

G Macdonald, W, A Benjanin,
York, 1968, vii T 113 pp.

Inc., New

A brief, formal, well-organized presentation of sone of the
important concepts, such as sheaves and schemes, of nodern al gebraic
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10,

approaches to geonetry and other aspects of the honol ogi cal

al gebra of today. Although, in principle, nothing is assuned

of the reader beyond el enentary notions of algebra and topol ogy,
he nust be prepared for the formalism and abstract nature of the

intelligently without reference to other aspects of the subject.

Al though he avoids introducing unnecessary mathematics, this

book is not for anyone who takes pride in his ignorance of mathenatics.
In addition to standard topics in linear programmng the book

includes quadratic programming, separabl e programm ng, integer
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programming, deconposition techniques,
chapter on stochastic programi ng.

and a brief (but interesting)

subj ect, 11. Nonlinear Programming by Anthony v, Fiacco and Garth P. MacCormick,
John WTey and Sons, New York, New York, 1968 xiv + 210 pp., $9.95.
Convergence of Probability Measures by P. Billingsley, John Wley . . . ) o
and Sons, Inc., New York, New York, 1968, xii + 253 pp., $12.50. " The primary prupose of this hook is to provide a unified body of
theory on nethods of transforming a constrained nininization
For the reader with a background of a year of real analysis and probleminto a sequence of unconstrained mininizations of an
sone probability theory and/or statistics, this book presents appropriate auxiliary function.” It is a rather conprehensive
aunified treatment of many of the convergence problens in neasure exposi tion of nonlinear progranming, including the historical
theory. remarks and bi bl i ography.
Battelle Rencontres by Cecile M DeWitt and John A \heeler, W A 12, Filtering Tor Stochastic Processes whth Appliieations to Guidance
Benjamin, New York, New York, 1968, xvii + 557 pp., $14.50. y R. S, Bucy and P. DI Joseph, John Wiley and Sons, In¢,, New York
New York, 1968 xviii t 195 pp., $12.95.
A collection of nost of the expositions on a w de spectrum of . o . L
topics in nodern physics and mathematics which were presented Al though the mathematical prerequisites are listed as probability
at a meeting of some of the world's npst outstanding physicists theory (Chapters 4 and 5 of Feller) and differential equations
and mathematicians at the Battelle-Seattle Center in the summer (the first few chapters of Coddington and Levinson), the book
of 1967, where it was hoped to consolidate the experiences of provides such a conprehensive treatnent of both the theory and
many on some of the conplex problens of our tine. Needless to practice in the subject that some maturity in the area should be
say, much maturity is required for sone of the articles and each a prerequisite,
reader will need to judge his readiness fromhis own experiences. . . ) !
13, An Introduction to Harmonic Analysis by Y. Katznelson, John Wley
Boundary Val ue Probl ens of Mathematical Physics, Volume II by and Sons, Inme,, New York, New York, 1968, xiv + 264 pp., $12.95.
Ivar Stakgold, The MacMillan Conpany, New York, New York, 1968, . ) . .
viii + 408 pp. Al though the book is aimed at Fourier analysis on locally conpact
Abelian groups, the first six (of eight) chapters deal with
A continuation of the excellent first volume. It mainly enphasizes ordinaty Fourier series and Fourier transforms with the general
solutions of partial differential equations with boundary val ues, case in mind. The last chapter, on commutative Banach al gebras,
using distributions, Geen's functions and variation techniques. al so enphasi zes those parts related to the same subject.
Mathematical Mdels of Arnms Control and Disarmament by Thomes L,
Saaty, John Wley and Sons, Inc., New York, New York, ix t 190 BOOKS RECEI VED FOR REVI EW
pp., $10.95.
This book represents a sound initial effort to bring to bear some 1. The Elenents of Complex Analysis by J. Duncan, John Wley and
of the organizational advantages of mathematical modeling on Sons, Inc., New York, Nemhlgggy ix + 313 pp., $1L. go_ doth,
conplex political problems and to provide, at least in sone cases, al'so available in paper at $5.75.
a partially unifying |anguage. Areader with a little know edge
of matrix algebra and differential equations will have no diffi- 2, Mithemtics of Finance by Cissell and Cissell, Houghton Mifflin
culty with the mathematics, but even a read who is faniliar with Conpany, Boston, Massachusetts, 1968, xviii + 346 + 89 pp., $7.50.
nost of the mathematlcal nodels will find the organizational
problenms of relating the nodels to the real world, as presented 3. Basic Concepts of Calculus by John M H Onsted, Appleton-Century-
here, very informative, ~ Croftg, New York, New York, 1968, xiv t 403 pp.
Mat hematical Programming in Practice by E M L Beale, John Wley 4, A Second Course in Calculus by John M H QOnsted, Appleton-Century-
and Sons, New York, New York, 1968, xi t 195 pp., $5.50. COrofts, New York, New York, 1968, xv + 389 pp.

- The author lists five catagories for the recent books in mathe- 5. Prelude—toCalculus andLinear Algebra by John M, H O nsted,
matical programing. He lists this book under " methods of organizing Appl et on- Century- Crofts, New Yo'kj_r . New York, 1968, xix * 332 pp.
real problens so they can be solved nunerically using standard ) ) ]
conputer codes,’' He says, however, this cannot be discuessed Note: All correspondence concerning reviews and all books for review shoul d

be sent t o PROFESSOR ROY B, DEAL, UNI VERSITY OF OKLAHOMA NEDI CAL CENTER
800 NE 13th STREET, OKLAHOMA CITY, OKLAHOMA 73104.
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Jane L. Feldman Thomas Emil Johnson John Franklin Rose Hary Jane Witeig
Den H. Fritz Dennis James Kathman Daniel N. Wolf
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NCRIH CAROLINA BETA, University of North Carolina

Judy Ackersan
Lury Sheldon Dansky

John Person Daughtry, Jr. Richard J. Schroer Deborah Sue Sugar

Nola Grady Jenning

Hichael Stroscio

NCRIH CAROLINA @ixXa, North Carolina State University

Joseph D. Allen
Eric C. Bigham

Gaulong K Chao
Hartha R. Purr

Robert S. Hall
Russell M. Johnson

NCRH CARCLINA DELTA, East Carolina University

James P. Bright
Carol A carr

John K. Fisher
Sandra L. Mizell

OHIO DELTA, Hiami of Ohio University

June M. Greene
Edith C. Kregelius
James E. Link
Herbert L. Magley

Kenneth D. Mahrer
Larry M. 0'Maley
Susan McKinnell

OHIO EPSILON, Kent State University

Ronald C. Wallie

OHIO ETA, Cleveland State University

Thomas J. Dbziubakewski James Joseph Horvath
David M. Eguchi Denis Richard Jonke
Meal Seth Fenster Nina Eileen Kirschner

James Thomas Frater

Robert J. McKenney

CHO THETA, Xavier University

Sam Carlos

Chung K Cheng
Willard H Connor
Paul Ebacher
John W. Ernst
Richard Fuchs

Daniel Greathouse
Terrence Halpin

Dr. Robert Herbold
David Hummell

Dr. Bernard L. Janco

OHIO LAMBDA, John Carml| University

Carole Albanese
Ralph Ankuda
Albert E Antonelli
James C. Backer

Raymond A. D'Angelo
Alfred N DiDominiek
Joseph J. Grebauskas

OHIO MU Ohio University

Richard L. Bihl
Edrick G Coppock
Patricia M. Cowles
Mildred A. Diske
Thomas M. Doyle
Stephen H. Felton
David L. Punches
Daniel J. teller
John C. Hansen

James T. Healey
David J. Hildreth
Lorenzo 0. Hilliard
Ronald Tbach
Thowas R James
James W. Kosta
James T. Loates
Armand B. Luhahi

OHIO NU, University of Akron

Alex Alatsis

Barry Arnow

Daniel Auvil

H Mehmond Bagadia
Elizabeth Bridgeman
John Burkley
Hazeljean. Cheesenen
Robert 3« Davis
Beatrice DaMan
Kenneth Eckman
Joseph K Ellis
Marilyn Ellis
George Gavala

Paul Gilmore
Frank Gruccio
Ruth T. Haddock
Robert Hathaway
Carolyn M. Hirsch
William ¥. Hokman
George Jacobs
David P. Kirbawy
Hichael Klein
Kenneth W. Klouda
James F. Korenz
Miiton L. Kult
John A. Lavery

Roger W. Mobley

Cynthia A. Pierce

Michael ¥. Rohrer
Barbara L. Schafer
Byron Smith III

John F. Murphy
Robert 3. Pheiffer
Gary Lynn Price
Janet Ruth Schedler

Dr. Aum Lalchandani
James [, Marquardt
John Martini

Dr. Phillip E. McNeii
Nick Morgan

Anthony J. Kenzie
Chester J. Malara
Jerry L. Moreno

HMyron A. Luril
Kwan-Lan Ma
Dennis . Hartens
Sandra D MeClure
John R. MeKenna
Kin E. Mitchener
Dwight W. Meyer
Stanley L. Myers

Robert Leasure

Sue Lee

Patricia L. Leighton
Theodore R Harra
Jacqueline T. McVay
Laverne Meconi
James Michaud
Shelly Oakwan

Sarah Orlinoff
Charles Poluga

Rex F. Rhinesmith
Louis Rodabaugh
Timm Rodgers

Robert Russell Walker

James H. Stanley

William T. Ransone

Kathryn E. Swigart
Elizabeth Tellalian
Patricia Wahlberg

Trent A Sponseller
Alan John Stacey
Robert L. Stencil
Lon S. Swearingen

John T. Pfarr
Charles Weaver
Richard Hehrmeyer
Barry Weiss
Robert Wilhelm

Joseph H Skevington
Janes M. Venglarik
James J. Weigand

Richard K. Rohde
Thomas E Scheper
Elaine H. Shively
Nancy L. Smith
Bruce R. Stewart
May Am Swardson
Lee Parsons

Dan Udovie

Kerry J. Vargon

Joseph Rody
Louis Ross
Subhash Saxena
Daniel Saurer
Blin Scatterday
Samuel Selby
Laurel Singer
Carol B. Synder
Leonard Sweet
George Szoke
John J. Vallesio
Ohel J. Volanyk
David Height

OREGON ALPHA University of Oregon

Robert Dean Ahrend
Paul Owen Bartlett
Diane Dale Beelamn
Linda Jean Benedict
Dorothy Bennett

La Verne Bjerke
William Braniff
BinarenAKaynBBigke

Kelvin Ronald Capps
Judy Marie Carlson
Sue Jane Cassidy
Kelvin Moen Hoy Choy
Leslie Clarke

Denis A Dedrick

Edward John Degner
James H. Donnelly
Shirley Jo Anne Elliot
Dwayne E Erikson
David Joseph Faurot
David R Fredlund
Susan Rayner Gardner
Gary Allen Gislason
Alexander C. Granzin
Glenda Am Gunderson
Hidel Edward Rabel
Adele Jean Hansen
Luella Rice Harder
Mary Calleen

Diane Deane Jarville

PENNSYLVANIA BETA, Bucknell University

Charlotte E Beers
Janice L, Bohnert
Hichael A. Book
John E. Butrico
Douglas C. Crawford
Candace L. Dellinger
Karen R Derck
Karen E. Durrwachter
Susan H. Ehrenfeld

Linda A. Faltings
Camlyn Familetti
William D, Fellows
Robert D. Fields
Evelyn L. Finkell
Generio T. Gargiulo
Richard L. Grubbs
William C. Hsller
Barbara Iltis

FENNSYLVANIA ZETA, Temple University

James J. Hendrick
Joel kohler

Hark Lipshutz
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Monroe Albin Jubitz Toshiko Matsunga Sato
Linda Grace Karr David Emerson Scott
Harold Bruce Kemp Phillip Wightman Sedly
Mary Leonard David Carlton Shipman
Ping Kun Liao Gerry Lee Suchanek
Anita Ruth Mocre Karen Frances Turner
Kathleen H Haka Miguel Angel Alloa
Leslie Jean Neilson Joy Lynn VanderMass
Alan Paul Onkka John Paul Wahl
Douglas Allan Parker Vynn Thea Walter
Pamela Ruth Patton William Braidon Watson
Anna Michaelides Pink Vivian Bloksberg \Watson
Maher Fawzi Qaddumi Rose Marie Wells
Robert Redfield 'Sister Carol Wester
Joan Carolyn Salzman Sharon Jean Yasul

David W. Johnson Sail A Nettleten
Anne P. Jones Themas J. Onka

Hong Wha-Kim Susan A. Ricciardi
Robert L. Lambert Judith M. Richardson
Charles W. Lund Judith C. schwenk
Peter D Hatthews. Jr.Darlene X, Torockio

Madélyn A. Mautino
Barry ®. Huller

Rita E. Torres
Kenneth J. Unger

Eileen P. Neely Robert W. vargas

Daniel M. Scaricaciottoli
Elliot H. Sender

Judy Myerson

FENNSYLVANIA THETA. Drexel |nstitute of Technology

Otha L. Britton
Robert W. Doherts
Albert J. Herr
Allen Lang

Edward Moskowitz
Robert W. Nelson
Frank L. Pocius
Reynold Pollini

Hark David A. Rosen Robert J. Stanton
David Sidewater BmprgndJ R KWAskins

Stephen A. Skoka
John H staid III

TEXAS BETA, Lamar State College af Technology

Sue Ella Busch
Emanuel V. Dimiceli

Neal Douglas Moore

TEXAS cA¥MA, Prairie View A3H College

Domthy #. Anderson
Joe D, Beasley
Debra F. Coleman
Freddie Frazier
Joan Garrett

Samuel  Good

| saac Gouldsby

Jaws Handsborough
Clinnon Harvey
Frank Hawkins
Kenneth Hinso
Mary L. Johnson
Jacquelyn Kennedy

UAH ALFHA, University of Utah

Robert L. Askew
Larry R Austin
George Barton
Peter 3. Baumer
Janelle Bedke
Mitchell Billis
Shirl M. Breitling
James M. Briggs
Lorin W. Bmwn
Charles H. Burris
Gary W, Carlson
Dr. A. Earl Catmull
Gary J. Clark
Steven L. Collins
Otis L. Copeland III
Eva Crangle

Gerald L. Despain
Sharon Lee Doran
John R, Edwards
aszpeon E. Fehr
Robert M. Flegal
Richard W. Fuller
Paul Bennion Gartf

Jaces D. Neaton Joan A. Terrell

Earl Jages Wills III

Carl Moore N D. Stewart
Bernestine Page Willie Taylor
Barbara Penn Earnie Walker
Marian Pugh #illiam White
Vera D. Rugeley Shirley Willians
Carole Smith Ural Wilsen

Dr. Richard . Goedrick Barbara J. Laucher George W. Shell

Dr. Robert Gordon
A Thayne Green

Dr. Louis J. Grima
Neils H. Hansen, Jr.
Joseph H. Harris
Earl R. Heal

Paul W. Heaton

Dr. Reinhard Hermann
Robert D. Hooper
Kenneth E. Hooton
Roger L. Hunt
Kendell Hyde

John E. Jaloszynski
Wayre R. Jones
Michael D. Julian
Laya Floch Kesner
Herbert F. Keisler
William C King
John P. Lanb

Lynn Back Larson
Roger G Larson
Marilyn X. Latham

Norman W. Lauritzen David A. Simpson
Paul W. Lewis Fredrick Sipinen
Willfam J. Hareth. Jr. Dan R. Slaughter

David J. McElhinney

Larry H. Southwick

Dr. Robert W. McKelvev Barbara Stewart

Gregory M. Nielsen
Vern” Alan Norton
Cheryl Am Qutsen
Stephen K Parker
Randall Jams Parr
David E. Payne
Dix H Pettey

Robert L. Stewart
Stephen R. Swanson

Dr. Joseph L. Taylor

Russell C Thompson
Dennis H Tolboe
Glen K Tolman
Allen L. Tuft

Dr. Alexander Peyerimhiff Simon A Vreeke

Lee Grant Porter

Dr. D. Keith Read
Walter M. Reid
Stephen T. Rhoren
Robert J. Rich

Dr. Den Richards
Janelle Rouze
DerrJefonBagensarber

Constance J. Web
dary 3, Welch
Robert C., Wever
Sheldon F. Whitaker

Dr. Douglas W. Willett

Willliam A Willia=s
Randall R, Willie
v, am W. Young
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UTAH_BETA, Utsh State University

Ronald C Adams

PaleYuan Chang

Robert Kelvin Anderson Nancy E. Dale;

Irvin K. But-bank

4
Phil Howad Dittmer

UPH GAMMA, Brigham Young University

Betty B Anderson

J. Scot Fishburn

Daniel R. Bartholomew Harvey J. Fletcher

Bruce Bills
Janet L. Brereton
Eugene S. Call

Boyd L. Cardon
Ernest L. Carey, Jr.
Roun-Shen Chen
Michael B. Edwards

Mason D. Harrell, Jr.
Gary . Harrison
Lelon R. Hill
Margaret Hill

Kenneth L. Hillam
Gordon W. Hoagland
Garold Keith Kotter

Richard Bruce Findlay Randall J. Knudsen

Barney L. Erickson
R. Michael Lamb
Melvin Leroy Ott

Stephen Monson
Nobuo Muranaka
Janet R. Nelson
Robert E Paul
Juanita Jones Pope
David L. Rasmussen
Paul 4. Rasmussen
Donald W. Robinson
Laurel Robison

W. Keith Russell

WASHNGION ALRHA, State College of Washington

Ronald L. Baker
Thomes 6. Bartholet
Randy L. Carter

Marjorie E Gill
Michael G. Hubbard
Smon S Lan

Joseph K. Ling
Thomas . Logsdon
Peter Ng

Johnnie Gorge Slagle
M. Clair Wdb
Charles C. White

John T. Shaw

R. V. Skarda
Steven Hak Thomas
Hasaji Wtatbe
Matthew D. Wheaton
Allen Jay White
Joseph T. Wileox
Gordon T. Wilson
George V. Woodward

Jocelyn D. Phillips
Wad J. Walker, Jr.
Dale 6. Width

WASHNGION, DC BETA, Georgetown University
Claim Coyne George Crob

WEST VIRGINIA ALPHA, University of West Virginia
Frederick W. Shultz Hari M. Srivastava

WISCONSIN ALPHA, Marquette University

Paul Harrison Thonas Moore

Cyril Ayeni Rober A. Elseth

Jamea Dierberger
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