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A GENERALIZATION GF MULTIPLICATION G- GOVIREEX NUMBERS
Sharon K. McKirnan, Loretto Heights College

1. Introduction. In order to construct the field of complex numbers,

we consider ordered pairs {(a,b) of real numbers. Our definitions of
addition and multiplication are motivated by properties of the expression
(a,b) = at bi where i* = -1 If instead, we set i® =a * Bi where a

and B8 are real numbers, and assert that in scalar multiplication the real
number x be associated with the ordered pair {(x,0), we define multiplication
by

(1) (a,b) O (c,d) = (ax + abd, ad + be + Bbd),

from which it follows that

(2) x(a,b) = (xa, xb).

The following definitions must also be made:

(3) (a,b) = {¢,d) if and only if a=c and b = d.
(4) {a,b) & (c,d) = (atc, b+ 4.

A set S of ordered pairs which fulfills conditions (1), (2), (3), and
(4) constitutes a commutative ring with the identity element (1,0). In
an attempt to preserve the axioms for a field, we ask if for any choice
of & and 8 all non-zero elements have inverses. |If
(a,b) O (c,d) = (ac + abd, ad + bec + gbd) = (1,0),
then by equation (3)

ac Tt abd = 1
and
ad t bc *+ gbd = 0.

In order to solve these simultaneous equations for the value of (e,d),
the determinant

a ab '
= a® t gba - at?
b a + ﬁbl

must be different from zero.

Let & + fba - ab? = 0. If b =0 the only element without an
inverse is the ordered pair (0,0) whig:h is the zero element of 8. Suppose
then that b # 0. Multiplying by (v® )" , we have

R

which implies that

a | B F v
b z

or

().
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-8+ + 4o
Elements of the form (— 2 b, b

and these are the only elements without inverses.

) therefore“do not have inverses

The nature of this ordered pair is such that it depends upon the value
of the discriminant g* * 4qa. Here we will consider the three possi-
bilities for g* + 4a: CAE I, the set 8; of all rings where 5* * 4¢ < 07
CAE 1I, the set 8; of all rings where #° + 4a > 9; and CASE 1rI, the
set 83 of all rings where 8 * 4a = 0.

2. The Negative Discriminant. When the discriminant is less than zero,
we see that all non-zero elements of rings belonging to 8, have inverses,

B+ /B + 4
2

for when b is real, b is complex, and the only ordered

3__
pair of the form (—:E—ug-ﬂLb . b) with both elements real is (0,0),

which is the zero element. Thus for any choice of a and 8 such that
g* + 42 < 0 the conditions for a field are satisfied. The complex number
system is a particular example of this case where a = -1 and B8 = O
Then

(a,b) @ (c,d) = (ac =~ bd, ad *+ be).

THEOREM 1. Al fields of ordered pairs of real numbers satisfying equations
(1), (2), (3), and (4) such that g® *+ 4a < 0 are isomorphic to the
complex numbers.

Proof. Let C be the set of all complex numbers generated by the linearly
independent ordered pairs (1,0) and (0,1) and with multiplication defined
by equation (1) witha = -1 and B = O, and let ¢' be the set of all

S — ) . .
| t ted b 1,0 d -2 = with lti-
elements generated by ( ) an (pﬁ, e multi

plication defined by equation (1)with arbitrary a and 8 such that
£ + 40 < 0.

We describe the mapping ¢=—=C' by
(1,0)=~—(1,0)

and \
‘°'1"—’(’\llp=_i = A 4a) .
This determines a one-to-one mapping of C onto ¢' given by
(21,00 + (0,11 —=1a(3,0) + blafrgr . -3/ =)

and therefore

<] -1
fc(1,0) + d(0,1)]=—=[c(1,0) + d( Y 4x ' NPT 4a) le
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To prove that C is isomorphic to C', we must show that addition,
multiplication, and scalar multiplication are preserved under the mapping.
Cc<+—-=C'. Since scalar multiplication follows directly from the definition
of multiplication, equation (1), we need only show that addition and
multiplication are preserved.

The preservation of addition is a consequence of the following calcu-
lations:

[a(1,0) + b(0,1)] @ [c(1,0) + da(0,1)]

= [(a+c) (1,0) + (b+d) (0, 1)] == [ (a+c) (1,0) + (b+d)(B 3/3’11 )

= [a(1,0) + b(ﬂJB:-i-M ‘. _\IB°+4a)] @ [c(1,0) + d(ﬁvpa_’_m . _VB:"‘M )]

A demonstration of the preservation of multiplication completes the
proof of the theorem.

[a(1,0) + b(0,1)] © [c(1,0) + d(0,1)] = [(a,0) + (0,B)] @ [(c,0) + (0,d)]

(a,b) @ (c,d) = (ac - bd, ad * be) = [(ac - bd, 0) + (0,ad + be)]

u

[ (ac~bd) (1, 0) + (ad+bc) (0,1)] =—[ (ac-bd) (1, 0)

+ (ad+bc)(%/§r"" _:a )]
A |- tsewme) fafmn [
(ac—'bd + [ad-&-bci’ﬂ,/ﬁa‘z ' [ad"b‘:]"{%z)
(o ) o o ot oofp)
[(a,O) 5 (bg\/?—;—ia- , =2b ?:—:a)] o [(c,O) + (iﬁ\[?% . ~24 Ffi&‘)]

0 + o A [ - oW A )

D. J. Hansen [2] adds to definitions (1), (2), (3), and (4) used
here the condition that the classical definition for the modulus of an
ordered pair be preserved along with the statement that

[ (ac-bd, 0) + ([ad+bc}

]

]

l(xly) C] (“:V)I = |(x:Y)| °© l(“lv)l‘

He then proves that multiplication must be defined by



(a,b) @ (c,d) = (ac = bd, ad * be)

inorder to obtain aring and preserve lengths. |t is easily shownby
using equation (1) for multiplication of ordered pairs that the only
values for a and 8 which fulfill the conditions regarding moduli are -1
and O respectively.

3. The Positive Discriminant. System 8, where 8 *+ 4x i s greater than
zero, is not composed of fields because inverses do not exist for elements

. . . +
(c,d) along the intersecting lines ¢ =_8—*‘@d

THEOREM 2. All commutative rings of ordered pairs of real numbers satis-
tying equations (1), (2), (3), and (4) such that & + 4a >0 areiso-
morphic to each other.

Proof. To define a mapping of a ring A, onto a ring & where & and
Ay ¢ 8;, the identity element maps onto itself

(1,0) == (1,0)
and we set

(7l i) — (Rl )

-2 . .
Elements 1 0 and (75{'!;-407 - M) are linearly independent and

generate all elements of Ay, thus we define the one-to-one mapping

[a(1,0) +b(m£+4‘a— ./ﬂ,+4a )1 {a(l,0) +b(-?£l— 7?‘-:—3.7)1

and therefore

-2 -2
[e(1,0) + d(m%&—x— . m)]._.[c(l,o) + d(y;z'e:‘z " m) Tea

Here again we may omit the proof of the preservation of scalar multipli-
cation under the mapping and show only that addition and multiplication
are preserved.

Addition i s preserved under the mapping A-=—=Ag because

_2 -2
[a(1,0) + b(ﬁuﬁh' ' «/—ﬁ’_—;-)] ® [c(1,0) + a T, m)l

= [(a+c) (1,0) + ‘b“d’(ﬁ’ml . TR )1 [ (a+e) (1,0)

+ (b+d)(7ﬁ'€.‘4¢7 U 7ﬁii_a:) J
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(21,00 + b7 I/%T?E)' ® le(1,0) + ozl | ot )1-
It follows that multiplication i s preserved from:
fa(l,0) + b( Bk 75!5_’-2—1—)1 ® [c(1,0) + d(yy'g‘;; . 737:,2&,—1) 1
= [(2,0) +(7§‘,’"€4T 7§L)’ © [Lic:0) + (J&mx 75‘3?7,)]
= (a+ m?gaﬁ mﬂ’-—) @ (c+ yﬁ'%z;. ;iia, )
| S
|
=  [(ac+bd) (1,0) + (ad+b<:)(751”‘1‘40‘1 ' 751’::&1 )1
[ (ac+bd) (1,0) + (ad+bc)(;/—a!'%4a—: , 733;2173)1
752-%;‘ , (ad+be) Tﬂ'a'i%ajf) 1
= (ac+bd + [ad+bc}3m€’4?n-f . [Bd+bclgﬁ£ )
- (AR o (e )
= [(a.0) +(7§%'£§+4I, 733'%)] ® [(c,0) +(—prg%z -Zd )l
- [a(l,o0) + b(]ﬁ!%a—.' , mea)] o [c(1,0) + d(m-ﬁz , m)l

This completes the proof of the theorem.

]

-

- (ac+bd + (ad+bc]

= [ (ac+bd, 0) + (ad+bc

= [ (ac+bg, 0) + ([ad+bc]

In connection with 8;, let us keep equations (2), (3), and (4) and
consider another multiplication of ordered pairs defined by

(5) (a,b) @ (e,d) = (ac,bd).

It iseasilyverified that with these definitions of addition and multi-
plication the set A" of all such ordered pairs forma commutative ring
with an identity element (1,1).

THEOREM 3. The ring A" of ordered pairs of real numbers satisfying
equations (2), (3), (4), and (5) i s isomorphic to every commutative ring
of ordered pairs of real numbers satisfying equations (1), (2), (3), and
(4) such that g* + 4a > 0.
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Proof. Since by THEORAM 2, all rings in 8; are isomorphic to each other,
let uschoose a=1 and 8§ = 0 and call thisring A. Our proof then
consists of showing that A and A' are isomorphic to each other.

For A—A we have
(1,0)=e—e(1,1),

and since inring A (0,1)® = (1,0) and inring A' (1,-1)® = (1,1) we
may set
(0, 1)e—(1,-1).

In A, the elements (1,0) and (0,1) are linearly independent as are (1,1)
and (1,-1) in A', so we define the mapping A——A" by

[a(1,0) + b(0,1)] «— {a(l,1) + b(1,-1)]
and therefore
[e(1,0) + d(0, 1V} +— [e(1,1) * d(1,-2)].
Addition is preserved under this mapping because
{a(1,0) + b(0,1)] ® {c(1l 0) + a(0,1)]
= [ (a+c) (1,0) + (b+d) (0,1)]=+— [(a+c) (1,1) + (b+d)(1,-1)
= [a(1,1) + b(1,-1)] & [c(1,1) + dA(1,-1)].

Multiplication is preserved as follows:
{a(1,0) T b(0,1)] @ [e(1,0) + 4(0,1)]
s [(a,0) + (0,b)] © [(c,0) + (0,d)]
= (a,b) O (c,d) = (ac t bd, ad * be)
= { (ac+bd) (1,0) + (ad+bc) (0, 1)]=— [ (ac+bd) (1,1) + (ad+bc) (1,-1)]
= (ac + bd + ad + be, {ac + be} - {ad + bel)
= (a+b,a- b)S(c+4d, c-d)
= {(a,a) + (b,~b)] © [(ec,c) + (4,-d)]
= [a(l,1) + b(1,-1)] © [e(,1) + dA(1,-1)].
Again the preservation of scalar multiplication follows from the preser-

vation of multiplication, and the proof of the theorem is therefore
completed.

4. The Zero Discriminant. In order for g* *+ 4o to be zero, a and 8
must both be zero, or a must be less than zero. Let a = -u, then § =
+./=4 or B =%2/u. Let 8§ = -2/u. Using these values for a and fl,
we find that elements of the form (4&/q, d) do not have inverses, and we
see that elements of 83 are not fields.
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THEOREM 4. Al commutative rings of ordered pairs of real numbers satis-
fying equations (1), (2), (3), and (4) such that g* + 4¢ = 0 are iso-
morphic to each other.

Proof. Let a = -u and § = -2/u. We describe the mapping of a ring g,
onto aring Rg, where Ry, and Ry € 8 by

(1, 0) =—(1,0)
Wy, 1)e—(Ju, 1).

Elements (1,0) and (/u;,1) are linearly independent and generate al |
other elements of the ring R, and thus we define a one-to-one mapping of
e R Dby

[a(1,0) + bW/w,1)]=—=[a(l,0) + b(/ug,1)],
and therefore

{e(1,0) + d(/w, )] =—=[c(L,0) + al/5g5,1)].

and

To show that addition is preserved under the mapping, we readily
see that the sum of two elements in R maps into the sum of two elements
in Rg.

fa(1,0) + b(/u ,1)] o_[c(1,0) + d{/u,1)]
= [(a+c) (1,0) +_(b+d) (/i , 1)]=—= [(a+c) (1,0) + (b+d) (/Us,1)]
= [a{l,0) + bug,1)] & [c(L,0) + dWug,1}].

The preservation of multiplication is shown bys

[a(l,0) + by ,1)] @ [e(1,0) + d(W&,1)]

= {(a,0) + (b/u;,b)] © [(c,0) + (&/u ,d)]

= (a+ h/u,b) @ (c + d/y,4d)

= (ac * fad + be] J/u ,ad + be)

= [ac(1, 0} + (ad+be) /oy, 1)1 = [ac(l,0) + (ad+be) (fug,1)]
= (ac + (ad *+ be) Jug, ad + be)

= (a+h/u, b) 0 (c + af5g, 4)

= {(a,0) + (B/u,b)] @ [(c,0) + (&fuz,qd)]

= [a(1,0) + b(/u,1)] © [c(1,0) + d/ug,1)].

It is easily shown that addition and multiplication are also preserved
when $ = 2/u, and therefore the proof of the theorem is completed.

Since all definitions of multiplication such that g2 + 4 = 0 are
isomorphic, let us consider now the specific ring Rs = {(a,b)} where
a=0 and 8 = 0. Here

(a,b) @ (c,d) = (ac, ad * be).

If we set this product equal to (0,0), we see that either a must be zero
or ¢ must be zero, and if a is zero, then ¢ must also be zero. Conversely,
ifa=c=0 then (a,b) ® (c,d) = (0,0). Thus the set 1 = {(0,b)} is
the set of all divisors of zero.

|l isan ideal in Ry since with (0,a) and (0,b) elements of 1 and
(c,d) any element of Ry,
(i) (0,a) = (0,b) = (0,a~b) ¢ 1
and
(ii) (e,d) O (0,a) = (O,ca) ¢ I.
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Moreover, since (0,b) ® (0,a) = (0,0) or I'" = [(0,0)]1, we see that I is
a nilpotent ideal.

Now | et K be the set of all real numbers of the form (a,0), and
we see that under the correspondence [(a,P)] e (a,0) «—- a, every equiva-
lence class contains a representative of the form (a,0). The ring Rs
modulo the ideal | is therefore isomorphic to the real numbers X; that is

K= Re(l).

5. Conclusion. The values of a and 8 in the definition of multiplication
of ordered pairs of real numbers, [Eg. (1)], determine three systems;

1. When & + 4¢ isless than zero, fields in 8, are isomorphic
to the complex numbers, although the statement that the modulus of the
product of ordered pairs is equal to the product of their moduli is
retained only for the complex numbers, where a = -1 and g8 = O.

II. When g° + 4a is greater than zero, rings in system 83 are
isomorphic to the direct product of the reals with the reals.

IIX. When & * 4 equals zero, giving a ring in 8s, the ring
contains a nilpotent ideal such that the ring modulo this ideal is iso-
morphic to the reals.
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GRAFPHICAL REFRESENTATION CF THE CONCEPTS OF GAME THEORY
Sister M, Chiara Diensberg, Rosary Hill College

1. Introduction. An interesting graphical solution of games may be
found in The Theory of Games and Linear Programming by S. Vajda
According to this method, one player's strategies are represented by
points in the plane, while his opponent's strategies are indicated by
lines. The solution for a particular gamne depends upon where the
strategy points lie in the plane; it is ny intention to interpret care-
fully the geometrical aspects of solutions to various types of simple
games.

Figure 1 is the game matrix for a 2x2 game. Two
B, | By | opponents, A and B, each have a choice of two strategies;
a, j represents the payoff for A's ith strategy and B's j

A |a,|a,] strategy. Player B's jth strategy, By, will be represented
by a point whose coordinates are (a,;,a,). Once A learns

Po | ag,| agg B's choice, he should pick that strategy which maximizes the

payoff ays3« |If he selects his first pure strategy &, he
gains the value of the abscissa of B's strategy point; if

Fig. 1 A; is his choice, he gains the value of the ordinate. The

graph of line L, y = x, determines two half-planes, y < x

and y > x. |If B's strategy point lies in the former region, A should
employ his first pure strategy, since a,; > azy;. If this point liesin
the latter region, A's more sensible move is to use A;, since agy > a .
If B's strategy point lies on L, then it makes no difference which
strategy A uses; he may even mix them i f he wishes, but the payoff to A
remains constant. Naturally, B must exercise caution and select that
strategy point which gives his opponent the least gain. Geometrically,
this will be the point whose larger coordinate is smaller.

2. B's Optimal Strateqy. We shall devote our attention to finding the
minimizing player's strategy first.

THECREM 1. B's optimal strategy will be mixed if the line segment which
connects his two strategy points

(1) has negative slope

(2) intersects L.

The point of intersection of this line segment with L divides the line
segment into two parts. The lengths of these segments are the ratio of

B's pure strategies used in his optimal strategy. In Figure 2, B P; has
negative slope and intersects L. B's optimal Y
strategy (B, :Bg) is given by B

(Po By :P Po)
QOROLLARY. |If either condition is not fulfilled,
then one of the end points of B's strategy line
gives the solution. This occurs when the game has x
a saddle point, and B's optimal strategy will then L
be a pure one.

Py

Fig. 2
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Figure 3 illustrates a game in which condition
(1 is lacking. When the line segment connecting
B's strategy points has positive slope, the following
method may be used to determine which strategy point ™~
he should select: From each of B's strategy points,
let there be drawn a lower vertical line and a left
horizontal line, called supports. B should choose
that strategy point from which a support intersects
L in a point whose coordinates are as small as possible. This method
may also be used if both conditions of the theorem are not fulfilled.

Fig. 3

I f condition (2) is lacking, then B should choose that point whose

larger coordinate is smaller. |f both points lie in the lower half-
plane determined by y = x, then B should select the point whose abscissa
is smaller. |f both points lie in the upper half-plane, B's best choice

is the point whose ordinate is smaller.

3. A's Optimal Strategy. Mow we turn our attention to superimposing the
maximizing player's strategies on the same diagram, so that we may obtain
a complete solution for the game

Player A's strategies are represented by straight lines whose equations
are of the form nx * ny = ¢, where m and n are the frequencies with which
he mixes ay and A;. These strategy lines may be drawn from either of
B's strategy points such that they intersect line L. The coordinates of
this point of intersection give A's expected payoff.

The line mx *+ ny = ¢ must have a nonpositive slope (if it has a
slope) since both m and n are non-negative; hence this linewill either
have negative slope or be parallel to one of the coordinate axes. |f
A knows B's choice, he should select that strategy line drawn from B's
strategy point which intersects L in a point whose coordinates are as
large as possible.

Let us find the algebraic expression for the coordinates of this point
of intersection. Solving x =y and nx * ny = ¢ simultaneously, we
obtain x =¢/{(m#n). But m+t+ n=1, and c =mx t ny, so the point of
intersection has coordinates (mx; + ny;, mx; + ny,;), when A draws his
strategy line from B's jth strategy point. Since this is the expression
for the payoff to A, his aim is to maximize the coordinates of this point,
while B is determined to minimize them. B will select a strategy point
so that A's best strategy line from this point to L has a point of inter-
section with L with the smallest coordinates possible. In general, this
will be the point first met if a line parallel to A's strategy line sweeps
upwards from the lower left of the plane to the upper right.

Whenever A selects the mixture (m:n) for his two
pure strategies A, and 2, where m* n = 1, then the
average payoff to A for B's jth strategy will be
mx; + ny;. In Figure 4, B has chosen P,. There are
an indefinite number of lines of the form nx + ny = ¢
through this point having non-negative slope. Which
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point of intersection with L has the largest coordinates?

If the line segment connecting B's strategy points satisfies both
conditions of Theorem I, A cannot do better than to choose this line as
his strategy line. In other words, his strategy line will have negative
slope also, and the point of intersection of this |[ine with L will be
the value of this game. In this case, A cannot select a strategy line
parallel to one of the axes, even though the payoff would be greater,
because the payoffs are represented only by points lying on the line
segment which joins B's strategy points. The equation of A's best line
iS (azz-as;)x T (a,; -a,5)y = c, and his optimal strategy will be mixed.

If one or both conditions of Theorem I do not hold, then A should
select the strategy line parallel to one of the coordinates axes which
is farther away from B's best point. His optimal strategy will be a
pure one. When one strategy yields a greater gain (or lesser loss for
the minimizing player) regardless of the other player's choice of strate-
gies, that strategy is called a dominant one. |f a player has a dominant
strateqy, his optimal strategy will be a pure one rather than a mixture.

In any case, A's optimal strategy is given by the coefficients of
the strategy line nx *+ ny = ¢, where {m:n) gives A, and 2, 's ratio,
respectively. It is seen that A's optimal choice is always the answer
to B's optimal strategy, and vice versa. A solution always exists, and
the value of the game is always given by the coordinates of some point
on L.

4. Summary. The following points of interest have been noted:

(1) When the line connecting B's strategy points has negative slope, A
has a dominant strategy, as long as this line does not intersect L.

(2) When the line connecting B's strategy points has positive slope, B
has a dominant strategy; there are no restrictions on where this line may
lie in the plane.

(3) When B's strategy points both lie in the lower half-plane determined
by the line whose equation isy = x, then A's strategy line is always
parallel to the y-axis.

(4) When B's strategy points both lie in the upper half-plane determined
by the line whose equation isy = x, then A's strategy line is always
parallel to the x-axis.

(5) A's strategy line has negative slope if and only if the line joining
B's strategy points has negative slope and intersects L.

Doesn't it appear that the slope concept is the basis of this inter-
esting analytic method?

5. Application to 2xm Games This method is suitable for 2xm games, but
instead of a straight line connecting B's strategy points, a convex
polygon is drawn, having m or less sides. Some strategy points may lie
in the interior of the figure, but all the vertices and points on the
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boundary represent possible payoffs for B's various strategies. B's best
mixture is determined by the straight line joining two vertices which
intersects L in a point whose coordinates are as small as possible. This
2x2 subgame IS then treated according to the rules previously given for
2x2 graphical solutions.

6. Examples.
P Figure 5 illustrates the type of solution
! when B's strategy line satisfies Theorem 1.

P A's best strategy line coincides with the

112 P, line joining B's strategy points, so the
) % coefficients of the variables of the equation
Raf 3|1 of this line give A's optimal strategy. A's
L optimal strategy is (2:1), B's is (2:1), and

Fig. § the value of the game is 5/3.

This game is an example of a pure strategy
for both players. B's strategy line lies in B B Py
the lower half-plane, so has opponent's best a2
strategy line is parallel to the y-axis. Aa's [™*
optimal strategy is (1:0), B's is (0:1), and |Aa|-2|0
the value of the game is 1 Fig.

N
-

B's strategy line again lies in the lower
half-plane, but has positive slope. Notice
the vertical and horizontal supports drawn
to determine B's optimal strategy. A's
optimal strategy is (1:0), B's is (1:0),
and the value of the game is 1

Al 13
nl| Fle

in the upper half-'plane with negative slope.

In this case, it is a horizontal line that ‘?} B P, .
maximizes player A's gains. A's optimal e
strategy is (0:1), B's is {1:0), and the A -1]-2 g 8 P
value of the game |ys:L Al 13 B,
B, |Bay In Figure 9, since B's strategy J-_I,;H e has ©
NEIR positive slope, supports are again used to
1 - determine his most advantageous strategy.
Re| 13 A's optimal strategy is (0:1), B's is (1:0),
- and the value of the game is 1
Fig. 9
Figure 10 illustrates the case where the
line connecting B's strategy points has positive B, |B:

positive slope and intersects L. The method
already cited for a line with positive slope A0 12
is used to solve this game. A's optimal Ag|=1|2
strategy is (1:0), B's is (1:0), and the
value of the game is 0. Fig. 10
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Should one of B's strategy points lie on L,

this point will be B's best choice. But his P,
F S B [B| Y, f2
opponent may play a pure strategy, or mix his
strateqies in any ratio he desires, since an Al2)1 B Po
indefinite number of lines may be drawn through NERE
this point with nonpositive slope. The value _
of the game is 2, B's optimal strategy is (1:0), L X
and A's might be (1:0), (0:1), or (1l:1), for Fig. 11

example.

Mathematics is truly timeless and transcends all ages; by drawing on
the past for algebraic and geometrical concepts, the very modern problems
of game theory find a unifying and meaningful solution.
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THE ETYMA.GGY CF MATHEMATICAL TERMVS

Margaret W. Perisho, Mankato State College

Mathematics has a special language all its own. One of the diffi-
culties that many students find in the successful study of mathematics
is understanding the meaning of the many technical terms which are unique
t o mathematics. Their meaning is better understood after studying their
origin. To better understand the origin of our mathematical terms it is
important to understand the development of the English language.

When the Romans came to Britain in 55 BC. bringing the Latin language,
they found the people speaking Celtic. Following this, the Jutes, Angles,
Saxons, and Frisians came and brought their languages to add to the Latin
and Celtic already there. Later, the Scandinavians ruled England and
brought their language. This combination is known as Anglo-Saxon or Old
English. Today our number words, one, two, three, ete., and words of
measurement, such as feoot and inch, come from this source. That these
words have been retained from the Old English is a good indication that
they were used frequently by the common people and therefore were passed
on from generation to generation. With the Norman conquest of 1066 French
words were introduced. Technical and scholarly words of Latin and Greek
origin were added |ater.

Thus the main sources for the mathematical words of today are Anglo-
Saxon (words in use before 1066), Latin through French, directly from
Latin, and directly from Greek.

Many of the words used in mathematics have Latin roots, and for people
who have studied Latin the mathematical usage of these words "makes
sense." The derivations of these are easily found in any good dictionary.
A dictionary, however, gives only the bare facts for the sources of these
words, while we are more interested in words whose origins are not so
obvious and which have interesting_ stories behind them. Some of these
words will be discussed in detail.

ARITHMETIC-—from OIld French arismetique, L atin arithmetica, Greek
arithmetik®& techn&. The Greek words meant number science and were used
to describe what we call theory of numbers. For calculating, the Greeks
used the word logistik&. It was not until the sixteenth century that
arithmetic was used for both subjects. It is also interesting to note
that in the Middle Ages the word took on an extra r, arithmetric, as if
it had something to do with the Greek word metron (a measure). This
extra xr was found in Italy until the time of printing and to some extent

l’l‘he Oxford English Dictionary, which is an authoritative reference
for the etymology of words, was found to be very useful. Mudh of the
information which follows was taken from this source.
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in Germany and France.? webster's Nav World Dictionary uses the ¢ in
its etymology from the Old French, but the Webster's Third Nav Inter-
national Dictionary does not.

ALGEBRA—from Italian algebra, adapted from the Arabic al-jebr

(reunion of broken parts) from jabara (to reunite, bonesetting). This
word is one of the few words which has an Arabic origin. In the ninth

century al-Khowarizmi wrote a treatise with the title al-jebr 33
mugabalah. The word algebra came from this title. The al-jebr was said
to mean the transposing of a negative quantity (reuniting_a{'l_ﬁroken parts),
and al—-mucabalah means the transposing of a negative quantity and the
combining of terms. Later, it was learned that al-jebr is similar to an
Assyrian term meaning equal in rank. 'ghe Arabs may have used this
Assyrian term to apply to an equation.® So it may be that the Arabs took
their word al-jebr and used it as the transliteration of an Assyrian

word meaning equation. It has been reported that during the Middle Ages
a sign was seen in a barbershop in England which read "Algebra and Blood-
Letting.”" It is well-known that blood-letting was one of the services
performed by barbers, but what does algebra mean? |t is more likely that
the barber set broken bones than that he was a scholar who helped students
with their mathematics.

The ancient game of archery furnished two mathematical words. The
word ARC comes from the Latin arcus (bow, arch, curve). The medieval
writers used the word to describe any part of the circumference of a
circle. No doubt this word was chosen because they were familiar with
the bow which formed a part of a circle. The word GHOD comes from the
Greek chord? (gut, string of a musical instrument). The gut was used for
a bowstring. The similarity of the mathematical chord as the straight
line segment joining points on a curved line and the bowstring is readily
seen. So we have arc from the bow and choxrd from the bowstring.

CIRCUMFERENCE—from French circonference, or adapted from Latin
circumferentia, from circum (round) and ferre (to bear). Literally this
would mean "to bear around,” but the word arose as a translation of the
Greek word meaning "outer surface" or "periphery" so means the boundary
line of acircle.

COROLLARY —adapted from L atin corollarium (money paid for a garland,
a gift, gratuity), from corolla (aTlittle crown). A corollary is a
theorem which is established by the proof of another theorem. |n other
words it is a bonus in the investigation, or a gift.

ELLIPSE--adapted from Greek elleipsis, noun of action from elleipein
(to come short). PARABOLA—from Latin parabola, from Greek parabole

A~avi dEugene Smith, History Of Mathematics (Boston: Ginn and Company,
1925), 11, 7-8,

3yera Sanford, A Short History of Mathematics (Boston: Houghton
Mifflin Company, 1930), pp. 144-145.
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(side by side, juxta-position, application). HYPERBOLA--from L atin
hyperbola, adapted from Greek i (to exceed), from hyper (over)
and ballein (to throw). When the Pythagoreans were constructing a
figure that was to be equal in area to a figure of a different shape,
they called it ellipsis if the base of the new figure was shorter than
the old figure. It was called parabole if the two bases were equal and
hyperbole i f the new base was longer (had some left over). May years
later Apollonius followed the same :dea when he called an gllipse that
curve whose latus rectum is shorter than the side of the rectangle on the
abscissa equal to the square of the ordinate. He called it a

if the latus rectum was equal to the side of the rectangle and a E!gﬂ“
bola if the latus rectum was longer than the side of the rectanglé.

EXPONENT —from L atin exponentem, present participle of exponere (to
put forth, set forth, display, declare or publish) from ex (out) and
ponere (to put, placei. This is an example of the ety_mology being some-
what distant from the mathematical meaning. Perhaps it could be said that
we are declaring the fact that a certain number i s being used more than
once as a factor. Or perhaps it refers to the position where the exponent
is written.

LINE--from o1J English lin, perhaps an adaptation of the Latin linea
(linen thread), from linum (flax). This word has been in use in some

form for a long time.” Because of its constant use, it has had different
forms--Middle English ligne and the Old High German lina are examples.

A geometric line is an abstraction. Apparently this was best represented
to the Ancients by a tightly drawn thread.

MATHEMATICS--adapted from French mathematique or its source, Latin
mathematicus, adapted from Greek mathematikos, from mathema (science),
from mathein (that which is learned). Originally, mathematics was any
subject which required a formal course of instruction to be learned.
Subjects like music and art could be learned individually so were not
called mathematics. The Pythagoreans were probably the first to limit
the word to geometry and arithmetic. Those Pythagoreans who had |earned
the Pythagorean theory of knowledge were called mathematicians. Others,
who merely knew the rules of conduct, were called hearers. In Plato's
time the general use of the term was common although there was a tendency
tolimit it to the subject we know today. By the time of Aristotle the
restriction, as we know it today, had been established.'

4pl1fred Hooper, Makers of Mathematics (New York: Random House, 1948),
pp. 40-41; Howard Eves, An lntroduction to the Histary Of Mathematics
(New York: Rinehart and Company, Inc., 1953), p. 148.

Stvor Thomas, Selections Illustrating the History of Greek Mathematics
w+th as English Translation (Cambridge: Harvard university Press, 1951)
1, 3
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POSTULATE--from Latin postulare (to demand), translation of Greek
aitemata (to demand). Euclid used aitemata. Postulates were statements
which teaghers demanded that the student accept as a foundation on which
to build.

QUADRATIC~-adapted from Latin guadratus, past participle of guadrare
(to square). The idea of the square of an unknown was conceived—Tong
before a symbol was invented for it. The Greeks called it tetragonas
arithmos (four-angled number).’ The Latin word for four was quattuor.
It would seem that the Latin writers used the idea of a four—%@__num er
in their word guadare (to square); thus a "quadratic equation” means an
equation whose  unknown is squared.

ROOT—from Old English xot, from Old Norse rot. The original stem
wrot is connected with the Tafin radix and the OId English wyrt (root,
herb, plant). Root is a translation of the Arabic gidr, which in turn,
is a translation of Sanskrit mula (root of a vegetable and square root
of a number). The Arabs thought of a square number as growing out of a
root, which accounts for their choice of gidr in translating from Sanskrit

to Arabic. In works translated from Arabic into Latin the Latin radix
(root of a plant) was used. The Arabs also used the word in describing
the value of the unknown in an equation, thus "root of an equation." The

Latin writers thought of a square root of a number as the side of a
geometric square. Thus, scholars writing in Latin "found" the side,
while scholars writing in Arabic "extracted" or "pulled out" the root.
Both usages have been preserved in English since today we "find" the root
of an equation and "extract" the root of a number.'

SINE--adapted from Latin sinus (a bend, bay, the hanging fold of the
upper part of a toga, the bosom of the garment). This is an excellent

example of a word whose etymology has no connection with the mathematical
usage. In the sixth century Aryabhata, a Hindu, called what we call sine
ardha-jya (half chord). It was shortened to jya (chord). The Arabs
transliterated this to jiba, Since it was an Arabic custom to omit vowels,
this was written jb. The word jiba was a technical word so was not very
well-known. When Gherardo of Cremona (about 1150) was translating Arabic
works, he came accros jb. The only Arabic word he knew which could be

abbreviated jb was jaib meaning "bosom." He must have been puzzled by
this, but he dutifully translated it into the Latin word gjinus (bosom).
From this came our word sine.?

TRAPEZOID--adapted from Modern Latin trapezoides, from Greek
trapezoeides (table-like), from trapeza (TabTe), ITOM getray (four) and
pous (foot) and eidos (form). The definition of a trapezord today in
America is a quadrilateral with two sides parallel. Eyclid did not use

6smith, op. cit., p. 280.
71bid., p. 394.
8Ibid., p. 150.
9Eves, op. cit., p. 196.
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this word, but it was introduced by another Greek, Proclus, to mean a

quadrilateral with no sides parallel. He used trapezium to mean a quadri-
lateral with two sides parallel. The definitions of Proclus are used in

all continental European languages. However, in the eighteenth century
in England the meanings were changed. This practice has continued in
America but was changed back to the original meaning in England in the
nineteenth century. Thus, a quadrilateral with two sides parallel is
called a trapezoid in America, but in England the same figure is called a
trapezium.

The recent developments in mathematics have seen the addition of many
new terms. It is interesting to note that these are no longer words with
Latin roots but on the whole are short Anglo-Saxon words. For example,
ring, field, and set are Anglo-Saxon words which have abstract meanings
Tn mathematics. Tt would be interesting to know how these words happened
to be chosen instead of those of Latin origin. Perhaps the use of the
vernacular instead of scholarly words will make the mathematical concepts
easier for the average person to grasp.

This is only the beginning of a very fascinating study and one which
never ends. When one becomes aware of words themselves as well as their
usage he opens a new area to explore.
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RAABE'S TEST

Charles B. Huelsman III, The Ohio State University

Raabe's test, developed by J. L. Raabe in 1832, is a test for the
convergence and divergence of infinite series. Although Raabe's test
is easy to use, it is not as effective as Gauss's test, Kummer's test
or Maclaurin's integral test. However, these tests are also not easy
touse. In this paper it is shown that Raabe's test is more effective
than the ratio test, and that the proof of Raabe's test is of medium
difficulty. Thus, Raabe's test should be given a position in more of
the textbooks on advanced calculus and real variables.

First we prove Raabe's test.
THEOREM.  (Raabe's Test) Given an infinite series r;él a, where a, >.0
for every n. Then if

a € -« < -1, the series converges
(1) lim n n - {= a = -1, the test is indecisive
n-e n 2 a> -1, the series diverges

Proof. Assume -« < -1. Let € = (a-1)/2 > 0. From (1) for every n
greater than some large N

a
n+l a -1 - o1
n —:— -1] < 3 -a = >
3 a-l
_ _ < - Q+_l)a a L 1y !l
nan+l nan a —2 n-a, -a-1 0 1
E=1}a < (n-Da_ - > Fig. 1
> a, (n a, na .y for n N 1g.
Then

2 : 2 _ 2 _
oy a, < -1 n-g]_ [(n-l)an - nam_l] = a1 NaN+1 = const.

@
Since the tail, E a_ converges, the series, E a, converges.
n=RN+1 n=I|

2
is divergent and the series i %x (log n}
| n=2

Next assume a = -1

1Me
=R

i s convergent, yet Raabe's test yields -1 in both cases. Thus the
indecisiveness has been proven.

Next assume @ > -1. Let ¢ = (1+ a)/2. From (1) there exists some
large M such that for every n > M,
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n n+1 -1 S o — 1l + o
a 2
n
a
n+1_l>l[rx-l]\)__l_ et ida
an n 2 0 |2|| |? L
R 1
n+l 1
> - — .
= 1 - = Fig. 2
n
Thus na . > (n - l)an and (n - l)a is a monotone increasing sequence
forn>M Asn, a 0, it follows that there exists some constant p > O

such that for every n > M, (p - 1)an > p. But then a > p/(n - 1) for
all n> M and thus

2: 9 0
a > p- .
n=Mf1 ° n;q“'l

Divergence is obvious.

Thus, Raabe's test is easy enough to prove to warrant use in text-
books on advanced calculus and real variables. Next we compare the ratio
test with Raabe's test.

THEOREM. o )
(a) If the ratio test shows that the series Z a IS convergent
n=1 -
(divergent), then Raabe's test shows the series E a is con-
vergent (divergent). =1

(b) Both converses of (a) are false.

Thus, Raabe's test is superior to the ratio test. \Whenever the ratio
test works, Raabe's test does. But there are series for which Raabe's
test works and the ratio test does not.

Proof, Consider the set of all infinite series 2 a where the ratio
n=I @
test proves that the series converges. Then for any member Za of
- n

this set =
lim :+1-1 =k -1<0 .
n~= n

as lim (2L _ 3 40,

n—e 2n

; an-l
Llim f2== _ ) limn]: (k ~ 1) limn = - =
n-e n e

n-o
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lim
n~e n

B
Given any infinite series Zan where the ratio test proves divergence,

n=1l
we can show with a similar_proof tha
a
lim N —;ﬁi S = e
n-~® n

And (a) follows.

To complete this proof of superiority, we need only find a divergent
and a convergent infinite series for which Raabe's test works, but for
which the ratio test does not work. This may be demonstrated with the

2
series 1/log n and 2 1/n" .
n=, n=

2
log n 3 n
1im = 1 and lim ———— =
_— log (n+l) nee  (nF1)
Y et
lim n}=—298 _ _ 1| -0 and
log (n+1)
n—w
n2
lim n -1 = =2 .
n-o [n+1)2
And (b) follows.
Illustrating this point further, there are infinitely many series
of the form an + *** + a;n + a
S K = ° m k>0
= m e
n=lpn" + + bin + by

where the ratio testfails and Raabe's test works. Other examples are
/7% (log m)¥ for k = 0,1,2
n=2
@

E 1/n log n, and

n=2

i ennl
n

n=1 1

We conclude that Raabe's test is effective, convenient, superior to
the ratio test, and that it deserves a position in any undergraduate
advanced calculus or real variables course.
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ed. by R C. H. Young (London: pgjackie and“Son Limited, 1951).
In this paper we will associate with each additive subgroup of the

rational numbers a function on the prime numbers with range in the non-
negative integers together with #=. By means of these functions we can
classify the additive subgroups of the rational numbers into isomorphism

types, and also determine whether or not a given subgroup has a minimal
set of generators.

DEFINITION. Let Gbe a subgroup of Q (the additive rationals) and suppose
that G contains Zz. Then G/Z is well defined and is, in fact, a union O
finite cyclic groups. Let S be the set of orders of elements of G/Z2. For
each prime p, let g{(p) be the highest power of p occurring as a divisor

of some element of S if such exists; otherwise, let g{p) = . We call

g the divisibility function of G.

EXAMALES

(i) G =4Qs S consists of all the natural numbers, hence g(p) =« for
every prime p.

(ii} G = the group of rational numbers that can be written as fractions
with denominators being powers of 2; S consists of all the non-
negative powers of 2, hence g{2) == and g(p) = O for every other
prime.

(iii) G = the group generated by (1,.1,.01,.001,...); S consists of all
numbers of the form 2*5" for m and n non-negative integers, then
g(2) = g(5) == and g(p) = O for all ofher primes.

(iv) G= the group generated by {27,27%,2 " ,...; 37,577,777, ...]);

S consists of all the non-negative powers of 2 together with all
the prime numbers.

Thus, given a group G containing 2, we have its divisibility function.
The following lemma gives us a relation between the group and its divisi-
bility function.

LEMMA Let G be a subgroup of Q containing 2, and let g be the divisi-
bility function of G then G is generated by [p-g(p): p prime and
gp) <=} u (p?*,p>,P ,...2 pprime and gip) = =].

Proof. Let x ¢ G. If x ¢ 2 we are done, so assume that x £ Z. Then
x + Z has finite, non-zero order in G/Z. Say it has order s; i.e.,

sx + 2 =2. Hence sx = m for some integer m and x = m/s. 8 can be
factored into powers of distinct primes, and s~ can be expressed as a
linear combination of the reciprocals of these powers of primes with
integral coefficients, and this completes the proof.

Remark. The above lemma also shows us that every function on the primes
with the non-negative integers together with ® as range is the divisi-
bility function of some subgroup of Q containing 2.
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W next examine the relation between the divisibility functions of
isomorphic groups. The following lemma will prove useful.

LBMMA  Let G and H be non-trivial subgroups of Q; then G and H are
isomorphic if and only if H = rG for some non-zero rational number r.

Proof. |f H = rG the isomorphism is obvious. versely we note that
G contains at least one integer n. Let r = .ji the result follows

immediately.

DEFINITION.  Let g and h be two divisibility functions. e shall say
g and h are equivalent (g~ h) if for each prune p, g(p) and hip) are
both finite or both infinite, and g(p) = h{p} except for finitely many
p at which g{p) and h{p) are finite.

THEOREM.  Let G and H be subgroups of Q containing z, and iet g and h
be their divisibility funct.ons. Then G and H are isomorphic if and only
if g and h are equivalent.

Proof. Suppose g~ h. Let e(p) = h(p) = g(p) if h(p) <=, and e(p) = O
if h(p) ==. Then e{p) = 0 except for finitely many p. Let r = np”e(P)
(where the product is taken over all primes p). r is a rational number
since all but finitely many of the factors are 1. A simple calculation
shows that H = r6 and hence that H and g are isomorphic.

Conversely, suppose H and G are isomorphic. Then there must be a
rational number r such that H = rG. r can be factored into positive
and negative powers of primes and the result will follow by working the
first part of this proof backwards.

We can extend the definition of divisibility function to all non-
trivial subgroups of Q in the following manner. | et G be a non-trivial
subgroup of Q and Il et n be the smallest positive integer contained in G,
then Le must contain z and thus have a well defined divisibility function
g. then take g to be the divisibility function of G as well. Tp
above theorem is now seen to be true for all non-trivial subgroups ofe the
rational numbers.

QOROLLARY.  There are 2" isomorphism types of subgroups of Q.

Proof. There are no more than 2™ since that is also the number of sets
of rational numbers. That there are at |least that many follows from
consideration of those divisibility functions whose ranges consist solely
of O and =,

THEOREM.  Let G be a non-trivial subgroup of Q and let g be the divisi-
bility function of 6. Then G has a minimal set of generators if and only
if one of the following conditions holds:

(i) g(p) <= for all primes p

(i1) 0< g(p) <= for infinitely many primes p.
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Proof. Without loss of generality, we car1 25ieye that G contains 2. If

g satisfies (i), then G is generated by. (p~9{P)+ p prime) and this set
isclearly minimal. |f g satisfies (ii),let [r,: j =1,2,3,uu.]) be the

countable set {p™: p prime and g(p) = =; m = o 1,2, _,] ‘Then if we
let {q;) denote the primes such that O < gl(qy) <=, aminimal set of
generators for G is (r,q,-q Q) 4= 1,2,3,...1.

If G is such that neither (i)nor (ii) hold, then g(p) = = for at

least one prime and 0< g(p) <= for only finitely many primes. Let
{xy1 3 = 1,2, 3,...) bease of generators for 6. We write x5 as the

reduced fraction ™ P~ e (p, where the product is taken over all primes,
my is an integer and e(p,j) is non-negative for each prime. , Let
d=g.c.d. (m,mg’ °,.) (greatest common divisor), and let ¢ = g.c.d
(m ,mg,ne,m). V& cCan pick m, so large that dp, = d and so thay, for
each prime p such that 0< g(p) <=, e(p3) > g(p) *or somed < [
Then it is easy to verify that [x,x 4 # no + 1} generates G, hence {x,]
is not a minimal set of generators.

Remark. It is interesting to note that even though some subgroup may

not have a minimal set of generators, it can be embedded in a larger” sub-
group which does have a minimal set of generators: Consider examples
(i1) and (iv). (ii) has no minimal set of generators whereas {iv) is
generated by (27'p7}, ¢ p; is the §th prime] and this set of generators
is seen to be minimal.

1 would like to express ny appreciation to Professor L. Levy of the
University of Wisconsin without whose helpful suggestions this paper
would not have taken torm.
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This section is devoted to suggestions of topics and problems fox
Undergraduate Research Programs. Address all correspondence to the
Editor.

Proposed by M. §. KLAMKIN.

Analysis.
Simpson's rule for approximating a definite integral is given by

b
j; F(x)dx =~ ’%a{p(a) + AR 4 Fm) } .

For a symmetric interval (i.e., a = -b), the rule is exact if and only if
F(x) is a quadratic polynomial plus an odd function among the class of
differentiable functions.

The general case also holds exactly for cubic polynomials. (This
is related to finding the volumes of a general class of solids called
prismatoids.) Are there any odd functions other than F = ex¥* which
make Simpson's rule exact (for all values of a and b)?

Proposed by J. D. E KONHAUSER.

Seven men are seated at a circular table. Upon signal, the men rise
and mingle.

(A) Given the original seating arrangement, reseat the men in such a way
that the number of men (counted in either direction) separating each pair
of men is different from that in the original seating arrangement.

(B) What is the smallest number of men for which such reseating arrange-
ments can be found?

(c) For what values of n, do solutions of the above n-man problem exist?

(D) |f the desired reseating arrangements exist, are they unique?

Proposed by S. SCHUSTER

Algebra and Number Theory.

The proof that the circle cannot be squared rests on the fact that
7 is transcendental. However, it would be sufficient to establish the
weaker result that # cannot be achieved through any finite sequence of
quadratic extensions of the rational field. Can you find a relatively
simple proof of the weaker result? Is there a general class of transcen-

dental numbers that can be proven to be non-constructible without invoking

transcendentality?
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FRCBLBVI DEPARTMEBENT

Edited by
M. S. Klamkin, University of Minnesota

This department welcomes problems believed to be new and, as a rule,
demanding no greater ability in problem solving than that of the average
member of the Fraternity, but occasionally we shall publish problems
that should challenge the ability of the advanced undergraduate and/or
candidate for the Master's Degree. Solutions of these problems should
be submitted on separate, signed sheets within four months after publi-
cation.

An asterisk (*) placed beside a problem number indicates that the
problem was submitted without a solution.

Address all communications concerning problems to Professor M. s,
Klamkin, Department of Mathematics, University of Minnesota, Minneapolis,
Minnesota 55455.

FROBLAVIS KR SOLUTION

168% Proposed by Jerry Tower, North High School (student), Columbus, Ohio.
Determine x asymptotically if

log x = n log log x.

169. Proposed by Joe Konhauser, University of Minnesota.
From an arbitrary point P (not a vertex) of an ellipse lines are
drawn through the foci intersecting the ellipse in points Q and
R. Prove that the line joining P to the point of intersection of
the tangents to the ellipseat Q and R is the normal to the
ellipse at P.

Editorial Note: The proposer notes that he does not know the source
of the problem and he has not been able to locate it in any of the
books he has examined.

170. Proposed by C S. Venkataraman, Sree Kerala varma College, India.

Prove that a triangle ABC is isosceles or right-angled if

a cos A t b® cos B = abC.

171. Proposed by Murray S. Klamkin, University of Minnesota.
For 0<o0<w/2, it iswell known that the inequality

_S_i__rl_O. > eos® O
[}

holds for m =1 What is the smallest constant m for which it
holds?
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SOLUTIONS

Proposed by Kenneth Kloss, Carnegie Institute of Technology.
For a number in (0,1), does there exist a base so that in this new
system of enumeration the first two digits are the same?

Solution by Bob Prielipp, Madison, Wisconsin.
If the number is of the foom 1/n, n = 2,3,4,..., then

L . 0111 -+ [base (n+D)].
If the number is of the form mh (rational), then
# = O.mmm ¢++ [base (n+l)].
If the number is irrational, it can be approximated by a rational

number (correct to a sufficient number of decimal places) and then
use the above.

Also solved by H. Kaye, P. Myers, M. Wagner, F. Zetto, and the
proposer. n_-— o

Proposed by K. S. Murray, Nav York City.
If A and B are fixed points on a
given circle and XY is a variable
diameter, find the locus of point P.

Solution by Sidney Spital, California State Polytechnic College.
Let AB =a, then L P'XB = /2

and 6 = (7 —a)/2, @ = (nta)/2.

Since g is constant, the locus of

P is acircle. The symmetric case

(diameter parallel to chord AB)

shows that the circles are orthogonal.

Also solved by L. Carlitz, Leroy J. Dickey,
Theodore Junqreis, Marvin S. Levin, Charles
W. Trigg, M. Wagner, and the proposer. ~—

Editorial Notei Carlitz also refers to the following known theorem
(Johnson's, Modern Geometry, p. 42, Theorem F): If AB is a
diameter of a circle and if any two lines AC and BC meet the
circle again at P and Q, respectively, then the circle CPQ is
orthogonal to the given circle.

Proposed by John Selfridge, Pennsylvania State College.

a a ,a
Prove M - isdivisibleby 2@ =-2* .

Solution by Theodore Junqreis, Nav York University.

158.
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P - = n* (n®+1) (n+1) (n° -n+1) (n-1) (n® +n+l)
= M By P * A *As " Pe.
2’2-2',=2‘-3'-5-7-13.

(1) For the factor 2*, consider the two cases: |f n is even,
n* contains 2*; if n 4is odd, A, As, and A are even and since
As and 3 are consecutive, one is divisible by 4, thus supplying
four factors of 2.

(2) For the factor #, consider the three cases: If n= an
n contains ¥ if n=3nt1, 2 and A each are divisible by
s if n=3n+t2 A and A, each are divisible by 3.

(3) For the factor 5, consider the five cases: n = 5m, &5n + 1,
sm+ 2 5n+ 3 5nt 4 For each case one of the & is divisible
by 5.

(4) and (5) treat the cases for 7 and 13 as in (3).

Also solved by L. Carlitz, H. Kaye, Kenneth M. Maloney, Bob Prielipp,
L, Smith, Charles W. Trigg, and the proposer.

Proposed by M. S. Klamkin, University of Minnesota.
If P(x) is an nth order polynomial such that P{x) = 2¥ for
x =1,2,3,...,n+l, find P{n+2).

Solution by the proposer.
Since
n n n n n
27 = (141) = () + () + )
it follows that
x-1 x-1 .. x-1
P(X)=2[(o)+(1)+ +(n)]-

Thus,
, 1
P(ne2) = 20"Fh) + (OPh 4 cee 4 ()
n+l n+l n+2
= 2(2 - (n+1)} 2 - 2.
Similarly,
n+2 n+2 n+2
P(n+3) = 2(277° - (1)) - (15)]
=2™3 _on -,

This problem is related to the number of parts space (E,) can be
divided into by m n-dimensional spheres, every pair intersecting.
Also, the problem can be extended by considering

P{x) = (’é) + (’l()a 4 oeee 4 (’l;)an
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which reduces to

Also solved by L. Carlitz,
Theodore Jungreis, H. Kaye, Stephen L. Nemerofsky,

M. Wagner.

X =0,1,...,n,

Patrick G Carr, Peter A. Deninno,

L. Smith and
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BOK RRMBAS

Edited by
Roy B. Deal, Oklahoma State University

Mathematical Models in Physical Sciences. Edited by Stefan Drobot and
Paul A. Vierback. Englewood Cliffs, Nev Jersey; Prentice-Hall; 1962.
193 pp.

This i s a book-length compilation of the proceedings of an NI con-
ference held at the University of Notre Dare in 1962. Al contributors
are prominent in their field. The theme of the conference is "mathematics
is a powerful instrument for developing interdisciplinary research."”

The eleven papers considered a wide range of subjects from a stochastic
approach to cosmology to some properties of certain non-linear transfor-
mations.

All the papers had one quality in common. They were introduced by
clear and simple explanations of certain physical problems and the need
for a model for their study. |In each of the papers an attempt is made to
deal with empirical ideas. Mathematical treatment is held to a minimum,
although the book contains valuable philosophical and scientific ideas for
the most advanced scientist it is primarily worthwhile to the novice
researcher. The reason is that one can gain insight into how powerful
tools are developed as a result of rather simple ideas.

The trouble with reading the book is that after completing it, the
reader has eleven more subjects in which he would like to specialize.

Robert G. McIntyre

Proceedings of the Symposium on Time Series Analysis. Edited by Murray
Rosenblatt. Nav York, John Wiley, 1963. 497 pp., $16.50.

This is a collection of twenty-eight loosely related papers which
were presented by prominent workers in the field, who discussed the present
state of knowledge and considered current basic problems in theory and
application of time series analysis. Although the papers, as a whole, are
well-written and thought provoking, they are not intended for the under-
graduate or beginning graduate student. A more sophisticated student will
find the results and the bibliographies helpful.
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A wide range of topics is included, and a hint of the variety is given
by the titles of the sub-divisions into which the expositions are placed:

Regression Analysis, Zeros of Processes and Related Questions, Meteoro-
logical Problems, Structural Problems, Spectral Analysis, Signal Detection,

and Estimation and Prediction. This is a fine book for those working in
any of these areas.

Leone Y. Low

Partially Ordered Algebraie Systems. By L. Fuchs. Reading, Mass, Addison-
Wesley, 1964. ix T 299 pp., $7.00.

This book is a survey of the theory of partially ordered groups, rings,
fields and semi groups, and much attention is given to the fully and
lattice— ordered structures. The book is reasonably self-contained and
contains an extensive bibliography of the articles and books written in
this area. The author considers the non-abelian case as well as the abelian
situation, and many things are done in great generality. The book is
written in a reasonable style, but the author supposes that the reader
has a good knowledge of abstract algebra. Nbo exercises are included, but
there is a long list of unsolved problems for the research-minded individual.
I would recommend this book to any advanced graduate student who is
interested in learning something about the algebraic aspects of partially
ordered systems. It is an Important addition to the mathematical literature.

University of Illinois David Sachs

Képfchen, Kopfchen! By B. A. Kordemski. (German Translation from the
Russian by Dr. Klemens Junge.) Leipzig, Urania Verlag, 1964. 330 pp.,
DM 12.

The first 214 pages of this book pose 323 problems, some old, some
new, some easy, some challenging. There are many clever and amusing
illustrations in the form of sketches. Frequently the sketches are in
two colors: black and pink. Appropriately, the first problem is a clever
one about two observant young Pioneers. The second part of the book is
devoted to solutions of the problems posed in the first part.

Since the range of subjects is very wide, many puzzle enthusiasts
will wish to add this volume to their collections. The price (only about
$3) is modest for such a well-printed, cloth—bound, attractive book as
this one.

University of Illinois Franz E. Hohn
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Galeus—ef Variations. By L. E. Elsgolec. Reading, Mass, Addison-
Wesley, 1962. 178 pp., $4.50.

This translation from the Russian is one of the most concise and lucid
treatments of the calculus of variations to appear in the English language.
'The aim of this book is to provide engineers and students of colleges of
technology with the opportunity of becoming familiar with the basic notions
and standard methods of the calculus of variations.” The book does this
and even more by including a chapter on sufficiency conditions for an
extremum for the student interested in the more advanced aspects of the
calculus of variations.

In chapter one the theory of maxima and minima of functions of
ordinary calculus i s recalled and the analogous notions for functionals
of the calculus of variations is introduced. The fundamental lemma of
the calculus of variations is proven and tZe Euler equation i s established,

yielding the extremals of the functional F(X,y,y')dx. Functionals

depending on functions with two or more dependent variables and their
derivatives, functionals involving derivatives of higher order, and
functionals depending on functions of several independent variables are
considered and the corresponding Euler equation is derived for each. As

a direct application, Hamilton's principle (called the principle of
Ostrogradski-Hamilton by the author) of mechanics is stated and illustrated.

Chapter two deals with functions with variable or movable boundaries
and the transversality conditions are established.

Chapter three is devoted to the notion of a field of extremals, the
Jacobi condition, and the Weierstrass function; all are needed for the
sufficiency condition for an extremum.

In chapter four, variation problems with side conditions are discussed.
Using the Lagrange Multiplier the isoperimetric problems are solved.

And finally in chapter five, direct methods of solving variational
problems are introduced. These include the method of finite differences
and the Ritz method.

Worked examples are plentiful throughout the book and unsolved
problems are included at the end of each chapter.

Ore nitpick is the use of the name Ostrogradski by the author. In
establishing the necessary condition for the extrema of a functional
depending on functions with two independent variables, i.e., finding the
extrema of double integrals, the author calls the resulting partial
differential equation the Ostrogradski equation, "after the famous Russian
mathematician M. B. Ostrogradski, who discovered it first in 1834." This
equation is commonly called the Euler-Lagrange equation.
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According to Todhunter, the facts are that Euler, about a century before 83
Ostrogradski, was the first to treat the variation of a double integral
in his treatise on the calculus of variations in Integral Calculus.

Euler made an error in this work. Lacroix's work, published first in University Mathematics. By R. C. James, Belmont, Calif., Wadsworth, 1963.
1797 contained the same error of Euler. This error was later corrected xiii T 924 pp.
by Poisson in a memoir presented in November, 1831. Finally, on 24
January, 1834, a memoir was communicated by M. Ostrogradski to the Professor James has written an extraordinary book for beginning
Academy of Science of St. Petersburg. In this paper, Ostrogradski points students of the calculus. It is an unusual work for a number of reasons,
out the error of Euler and confirms the correct results of M. Poisson. most of them good ones, and will no doubt stir up much controversy and
He claims no discovery of his own debate wherever it i s adopted as a text. The book contains a prodigious
amount of material. Chapter 1 is an introduction to the ideas and

The author also attaches the name of Ostrogradski to Hamilton's techniques of the calculus. The remaining chapters cover sets, logic,
principle, named after Sir William Rwan Hamilton (1805-1865) To tell probability, continuity, limits, analytic and vector geometry, area and
the student of mechanics that Hamilton's principle must nw be called the integration, transcendental functions, ordinary differential equations,
Ostrogradski-Hamilton principle i s like telling Americans that Columbus calculus of several variables, vectors and curves, series, linear processes,
did not discover America; but our friends to the north have done that tool multiple integrals, and vector theorems. The majority of colleges will

find enough material here for a minimum of four semesters of work.
Despite the nitpick, the book is well-written and well organized.

Anyone interested in learning something of the calculus of variations Perhaps the most striking feature of the book is its high degree of
will find it of value. mathematical sophistication. The reader is presumed to be intelligent
and mature (too much so in the case of manwy beginning students), and willing
Research Analysis Corporation Richard H. Gramann to do much of the reasoning himself. The theorems are well presented
with, in general, excellent accompanying text to motivate discussion, and
with non-trivial illustrations. The problems at the end of each section
are exceptional. They are numerous and varied and will test the under-
Foundations Of Differential Geometry, vol. I. By Shoshichi Kobayashi and standing and imagination of the best as well as the average student. Most

unusual in a beginning text, there is a careful treatment of area and

Katsumi Nomizu. Nawv York, Interscience, 1963. xi * 329 pp., $15.00. volume along with the development of the definite integral.

This is a tract on modern global differential geometry, written very
concisely and intended for graduate study. By "global" is meant that the
objects of study are who differentiable manifolds and their additional
structures, not just the neighborhoods of a point. This does not mean
that local properties are neglected but only that they are placed in a
larger context.

In spite of the fact that this is a generally superior work, it does
contain a number of drawbacks. What has been already mentioned as one
of the book's outstanding features may also be its greatest liability
as far as general adoption is concerned. The approach may be far too
sophisticated for all but the most select of pupils. Considering the
present level of mathematics teaching in the high schools, there is no
doubt that the majority of entering college students find it a difficult
book to read and comprehend. Chapter 1, while laudable in its intent,
falls considerably short of success in its execution. The informal treat-
ment of the calculus, though non-rigorous, is far too taxing for the
neophyte in its argumentation. |n Chapter 5, the author presents an
admirably unified exposition of the |limit concept using systems of stages
but his timing i s not good. For pedagogical reasons, this generalization
of the limit definition seems best understood after some of the particular
limit processes have been presented to the student and he has had a
chance to work with them in detail. Finally, the book contains a large
number of minor errors, typographical and otherwise.

The material is arranged roughly in order of the restrictiveness of
the structure: differentiable manifolds and their tensor analysis, Lie
groups, fibre bundles, cannections on principal fibre bundles, linear
connections, Riemannian connections, Riemannian curvature and space forms,
and transformations of these structures. The amount of material included
i s enormous, well-chosen, and central to the main areas of present research.
Although preference is shown for certain notations and formulations, care
is taken to explain other notations currently used and their interrelations,
so that the student will develop access to most of the other important
sources.

S a2 e S U R. L. Bishop Here is a text that would seem to be ideally suited for the special

section of a calculus course consisting of superior students. There is
much to teach in this book and with enough time to spend both professor
and student should find it highly rewarding.

carleton College Arthur L. Gropen
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Elementary General Topology. By Theral 0. Moore. E—ﬁglelvood Cliffs, Nav
Jersey; Prentice-Hall; 1964.

This is one of the best of the recent crop of textbooks in elementary
point set topology. Its quality approaches that of the very fine book of
Kelley's. In fact, the author is very clearly influenced in his presen-
tation and choice of examples by Kelley's book. However, this text is
easily accessible to the undergraduate with some experience in abstract
mathematics—-e.g. a good algebra or real variables course~--while not being
too easy for the more advanced student beginning to learn topology. It
is very well ad carefully written and organized and should serve as an
excellent text for self study as well as for conventional classroom use.

The subjects covered are the usual ones--elementary set theory,
separation axioms, mappings, compactness, Peano, metric, product, function
spaces. There is also a very nice elementary treatment of nets. The
author merely skims set theory (he does not pretend to do otherwise).
There are few proofs for other than very elementary theorems about set
theory. However, the main useful theorems are carefully explained ad
the ideas of set theory receive clear exposition.

There are mary interesting examples, some included anong the exercises.
The exercises are well-chosen to illustrate the proofs ad cover a wide
range of difficulty. They also serve to introduce material not covered
in the text. The author includes discussions of the results of soe of
the nore difficult exercises. This has its obvious bad points, but will
be a help to the self studier and non-specialized instructor.

As a final recommendation, | point out that | found surprisingly few
misprints or errors of fact or logic. This is indeed a very satisfactory
little book, which no instructor should be afraid to present to his under-
graduates or ashamed to present to his graduate students.

University of Illinois Mary-Elizabeth Hamstrom

NOTE All correspondence concerning reviews and all books for
review should be sent to PROFESSOR ROY 3. DEAL, DEPARIVENT OF

MATHEMATICS OKLAHOMA STATE UNIVERSTY, STILLWATER, OKLAHOMA,

74075.






