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A GENERALIZATION OF MULTIPLICATION OF COMPLEX NUMBERS 

Sharon K. McKirnan, Lore t to  Heights College 

1. Int roduct ion.  I n  order  t o  cons t ruc t  t h e  f i e l d  of complex numbers, 
we consider  ordered p a i r s  (a ,b)  of r e a l  numbers. Our d e f i n i t i o n s  of 
add i t ion  and mul t ip l i ca t ion  a r e  motivated by p rope r t i e s  of  t h e  expression 
(a,b) = a + b i  where ia = -1. I f  ins tead,  we s e t  ia = a + fli where a 
and fl a r e  r e a l  numbers, and a s s e r t  t h a t  i n  s c a l a r  mul t ip l i ca t ion  t h e  r e a l  
number x be a s soc ia t ed  wi th  t h e  ordered p a i r  (x,O), we def ine  mul t ip l i ca t ion  
by 

(1) (a ,b)  0 (c, d )  = (ax + abd, ad + be + flbd), 

from which it follows t h a t  

(2) x (a, b )  = (xa, xb) . 
The following d e f i n i t i o n s  must a l s o  be  made: 

(3) (a ,b)  = (c ,d)  i f  and only i f  a = c and b = d. 

(4) (a,b) a (c ,d)  = (a + c,  b + d) .  

A s e t  S of ordered p a i r s  which f u l f i l l s  condi t ions  ( I ) ,  (2),  (31, and 
(4) c o n s t i t u t e s  a commutative r i n g  with t h e  i d e n t i t y  element (1,O). I n  
an attempt t o  preserve  t h e  axioms f o r  a f i e l d ,  we ask i f  f o r  any choice 
of a and fl a l l  non-zero elements have inverses.  I f  

(a ,b)  0 (c ,d)  = ( ac  + abd, ad + bc + flbd) = (1,0),  

then by equation (3) 

and 
ac  + abd = 1 

ad + bc  + flbd = 0. 

I n  order  t o  so lve  these  simultaneous equations f o r  t h e  value of ( c ,d ) ,  
t h e  determinant 

I a + ~ i b l  
must be  d i f f e r e n t  from zero. 

= a" + flba - at? 

Let aa + flba - aba = 0. I f  b = 0, t he  only element without an 
inverse  is t h e  ordered p a i r  (0,O) which is t h e  ze ro  element of S. Suppose 
then t h a t  b ft 0. Multiplying by (bf f , we have 

which implies t h a t  
a - f l Â  J- - = 
b - 



> 
Elements of t h e  form - * + 4a the re fo re  do not  have inverses  b, b  

and these  a r e  the  only elements without inverses.  

The na tu re  of t h i s  ordered p a i r  is such t h a t  it depends upon t h e  value 
of t he  d iscr iminant  + 4a. Here we w i l l  consider  t h e  th ree  poss i-  
b i l i t i e s  f o r  8' + 4a: CASE I, the  s e t  8, of a l l  r i n g s  where f* + 4a < 0: 
CASE 11, t h e  s e t  aa of a l l  r i nqs  where B" + 40: > 0; and CASE 111, t h e  
s e t  of a l l  r i n g s  where ft' + 4a = 0. 

2 The N e  a t i v e  Discriminant. When t h e  discr iminant  is l e s s  than zero,  
we s ~ t h a z  a l l  non-zero elements of r i n g s  belonging t o  have inverses ,  

f o r  when b  i s  r e a l ,  -' * ' P a  + 4a b  is complex, and t h e  only ordered - 

p a i r  of  the  form [ -' * 'fa + 4a b  , b) wi th  both elements r e a l  is ( O , O ) ,  

which is  the  zero  element. Thus f o r  any choice of a and ft  such t h a t  
+ 40: < 0 the  condi t ions  f o r  a  f i e l d  a r e  s a t i s f i e d .  The complex number 

system i s  a  p a r t i c u l a r  example of t h i s  case  where a = -1 and ft  = 0. 
Then 

( a ,b )  0 ( c a d )  = (ac - bd, ad + be) .  

THEOREM 1. A l l  f i e l d s  of ordered p a i r s  of  r e a l  numbers s a t i s f y i n g  equat ions  
( I) ,  (2) ,  ( 3 ) .  and (4)  such t h a t  fla + 40: < 0  a r e  isomorphic t o  t h e  
complex numbers. 

Proof. Let C  be t h e  s e t  of a l l  complex numbers generated by t h e  l i n e a r l y  
independent ordered p a i r s  (1,O) and ( 0 , l )  and wi th  mul t ip l i ca t ion  defined 
by equation (1)  wi th  a = -1 and ft  = 0, and l e t  C' be the  s e t  of a l l  

(E, -^& ) with multi-  elements generated by ( 1 , O )  and 6 

p l i c a t i o n  def ined by equat ion (1) with  a r b i t r a r y  a and fl such t h a t  
p + 4 a < o .  

We descr ibe  the  mapping C-C' by 

(1,0)-(1.0) 
and 

This determines a  one-to-one mapping of C  onto  C' given by 

[ a ( l ,O)  + b(O,l)I-.ta(l,O) + b  

To prove t h a t  C  is isomorphic t o  C ' ,  we must show t h a t  addi t ion,  
mul t ip l i ca t ion ,  and s c a l a r  mul t ip l i ca t ion  a r e  preserved under the  mapping. 
C-c'. S ince  s c a l a r  mul t ip l i ca t ion  follows d i r e c t l y  from the  d e f i n i t i o n  
of mul t ip l i ca t ion ,  equation ( I ) ,  we need only  show t h a t  add i t ion  and 
mul t ip l i ca t ion  a r e  preserved. 

The preservat ion of add i t ion  is a  consequence of t h e  following calcu-  
l a t i o n s :  

A demonstration of t h e  preservat ion of  mul t ip l i ca t ion  completes t h e  
proof of t h e  theorem. 

= (a ,b)  a (c,  d )  = (ac  - bd, ad + be) = [ (ac - bd, 0) + (0, ad + be) ]  

D. J. Hansen [2] adds t o  d e f i n i t i o n s  (1) .  (2) ,  ( 3 ) .  and (4) used 
he re  the  condi t ion t h a t  t h e  c l a s s i c a l  d e f i n i t i o n  f o r  t h e  modulus of  an 
ordered p a i r  be preserved along wi th  the  s ta tement  t h a t  

( x , y )  a (u ,v) l  = l ( x , y ) l  a l ( u . v ) l -  

He then proves t h a t  mul t ip l i ca t ion  must be  defined by 
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( a , b )  0 (c ,  d )  = ( a c  - b d ,  ad + be) 

i n  o r d e r  t o  o b t a i n  a r i n g  and p r e s e r v e  l e n g t h s .  I t  i s  e a s i l y  shown b y  
u s i n g  e q u a t i o n  (1)  f o r  m u l t i p l i c a t i o n  o f  o r d e r e d  p a i r s  t h a t  t h e  o n l y  
v a l u e s  f o r  a and ft w h i c h  f u l f i l l  t h e  c o n d i t i o n s  r e g a r d i n g  m o d u l i  a r e  -1 
and 0 r e s p e c t i v e l y .  

3 .  T h e  P o s i t i v e  D i s c r i m i n a n t .  S y s t e m  a*,  w h e r e  @ + 4a i s  g r e a t e r  t h a n  
z e r o ,  i s  n o t  composed o f  f i e l d s  b e c a u s e  i n v e r s e s  d o  n o t  e x i s t  f o r  e l e m e n t s  

( c , d )  a l o n g  t h e  i n t e r s e c t i n g  l i n e s  c a -8 * J e f  + 4 a d *  
2 

THEOREM 2.  A l l  c o m m u t a t i v e  r i n g s  o f  o r d e r e d  p a i r s  o f  r e a l  numbers  s a t i s -  
t y i n g  e q u a t i o n s  ( I ) ,  ( 2 ) ,  ( 3 ) ,  and ( 4 )  s u c h  t h a t  fl" + 4a > 0 a r e  i s o -  
m o r p h i c  t o  e a c h  o t h e r .  

P r o o f .  T o  d e f i n e  a mapping o f  a r i n g  % o n t o  a r i n g  Ag w h e r e  & and 
t S a ,  t h e  i d e n t i t y  e l e m e n t  maps o n t o  i t s e l f  

E l e m e n t s  1 0  and (L* , J ~ )  a r e  l i n e a r l y  i n d e p e n d e n t  and 
I +4a1 

g e n e r a t e  a l l  e l e m e n t s  o f  A i ,  t h u s  we d e f i n e  t h e  one- to- one mapp ing  

Here a g a i n  we may o m i t  the p r o o f  o f  t h e  p r e s e r v a t i o n  o f  s c a l a r  m u l t i p l i -  
c a t i o n  u n d e r  t h e  mapp ing  and show o n l y  t h a t  a d d i t i o n  and m u l t i p l i c a t i o n  
a r e  p r e s e r v e d .  

A d d i t i o n  i s  p r e s e r v e d  u n d e r  t h e  mapping &-A, b e c a u s e  
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[a ( L O )  + , ,/*) I a [ ~ ( l t  0 )  + d 

I t  f o l l o w s  t h a t  m u l t i p l i c a t i o n  i s  p r e s e r v e d  f rom:  

T h i s  c o m p l e t e s  t h e  p r o o f  o f  t h e  t h e o r e m .  

I n  c o n n e c t i o n  w i t h  Sa , l e t  u s  k e e p  e q u a t i o n s  ( 2 )  , ( 3 ) ,  and ( 4 )  and 
c o n s i d e r  a n o t h e r  m u l t i p l i c a t i o n  o f  o r d e r e d  p a i r s  d e f i n e d  b y  

I t  i s  e a s i l y  v e r i f i e d  t h a t  w i t h  t h e s e  d e f i n i t i o n s  o f  a d d i t i o n  and m u l t i -  
p l i c a t i o n  t h e  s e t  A' o f  a l l  s u c h  o r d e r e d  p a i r s  f o r m  a c o m m u t a t i v e  r i n g  
w i t h  a n  i d e n t i t y  e l e m e n t  ( 1 , l ) .  

THEOREM 3. T h e  r i n g  A' o f  o r d e r e d  p a i r s  o f  r e a l  numbers  s a t i s f y i n g  
e q u a t i o n s  ( 2 )  , ( 3 ) ,  ( 4 ) ,  and ( 5 )  i s  i s o m o r p h i c  t o  e v e r y  c o m m u t a t i v e  r i n g  
o f  o r d e r e d  p a i r s  o f  r e a l  numbers  s a t i s f y i n g  e q u a t i o n s  ( I ) ,  ( 2 1 ,  ( 3 1 ,  and 
( 4 )  s u c h  t h a t  fta + 4a > 0 -  



Proof. Since by THEOREM 2, a l l  r i ngs  i n  8a a r e  isomorphic t o  each other ,  
l e t  us choose a = 1 and fl = 0 and c a l l  t h i s  r i n g  A. Our proof then 
c o n s i s t s  of showing t h a t  A and A '  a r e  isomorphic t o  each other .  

For A-A' we have 

and s ince  i n  r i n g  A (0 , l ) "  = (1,O) and i n  r i n g  A '  (1,-1)' = ( 1 , l )  we 
may s e t  

(0,l)-  (1, -1). 

In  A, the  elements (1,O) and (0,11 a r e  l i n e a r l y  independent a s  a r e  (1,l) 
and (1,-1) i n  A ' ,  s o  we def ine  t h e  mapping A-A' by 

[ a ( l ,O)  + b ( 0 , l ) l  - i a ( l . 1 )  + b(1,-111 

and the re fo re  

[ c  ( 1 , O )  + d (0,111 - [ c  (1,l) + d (1, -111. 

Addition is preserved under t h i s  mapping because 

Mul t ip l i ca t ion  is preserved a s  follows: 

[ a ( l ,O)  + b ( 0 , l ) I  0 [c( l ,O)  + d ( 0 , l ) l  

= [ (a ,O)  + (0 ,b ) l  [(c,O) + (0 ,d) l  

= (a ,b)  0 ( c , d )  (ac + bd, ad + be) 

= ( a + b ,  a - b ) S  ( c + d ,  c - d )  

= (a ,a)  + (b,-b)l 0 [ (c ,c)  + (d,-dl1 

= [ a ( l , l )  + b ( l , - l ) ]  0 [ c ( l , l )  + d ( l , - l ) ] .  

Again the  preservat ion of s c a l a r  mul t ip l i ca t ion  follows from t h e  preser-  
va t ion  of mul t ip l i ca t ion ,  and t h e  proof of t he  theorem i s  t he re fo re  
completed. 

4. The Zero Discriminant. I n  order  f o r  p + 4u t o  be zero,  a and fl 
must both be zero, o r  a must be l e s s  than zero. Let a = -u, then fl = 
: </-4oi o r  (3 = * 2,/u". Let fl = -Z/u". Using these  values  f o r  a and fl, 
we f ind  t h a t  elements of t h e  form ( d f i ,  d)  do not  have inverses ,  and we 
see  t h a t  elements of a r e  not  f i e l d s .  

THEOREM 4. A l l  commutative r i n g s  of ordered p a i r s  of r e a l  numbers s a t i s -  
fy ing  equat ions  (11, (21, ( 3 1 ,  and (4)  such t h a t  ft" + 4n = 0 a r e  i so-  
morphic t o  each other.  

Proof. Let a = -u and fl = -z fS.  We descr ibe  the  mapping of a r i n g  - 
onto  a r i n g  5, where R. and 5 e 83 by 

and 

Elements (1,O) and ( J K ,  1) a r e  l i n e a r l y  independent and generate a l l  
o the r  elements of t he  r i n g  R,, and thus  we de f ine  a one-to-one mapping of 
R I - 5  by 

To show t h a t  add i t ion  i s  preserved under t h e  mapping, we r e a d i l y  
s e e  t h a t  t h e  sum of two elements i n  Ri maps i n t o  the  sum of two elements 
i n  5 .  

[ a ( l ,O)  + b(.&,l)l @ [ c ( l ,O)  + dt.lui , l ; l  
= 1 (a+c) ( L O )  + (b+d) (.Ah', 1) I- [ (a+c) (1 ,3)  + (&, 111 
= [ a ( l ,O)  + b(,/^",l)l @ [ c ( l ,O)  + dt^3",1)?. 

The preservat ion of mul t ip l i ca t ion  i s  shown byi  

[ a ( l , O )  + b(,/Ut",l)I 0 [ c ( l ,O)  + d f i , l ) l  
= [(a,O) + (b /5r ,b) l  0 [ (c ,O)  + (dy^",d)l 
= (a + G a b )  0 ( c  + a/uT,d) 
= (ac  + f ad  + be]  &,ad + b e )  
= f a c ( l . 0 )  + (ad+bc) ( . / 5T , l ) l - fac ( l . 0 )  + ( ad+bc)&, l ) ]  
= (ac + (ad + be].&, ad + b e )  
= ( a + & ,  b)  0 (c+d/^' ,  d )  
= [ (a ,O)  + !b/^,b)l 0 [ (c ,O)  + ((V>fc,d)l 
= [ a ( l ,O)  + bt/ua',l)I 0 [ c ( l ,O)  + <v^,l)I. 

It is  e a s i l y  shown t h a t  add i t ion  and mul t ip l i ca t ion  a r e  a l s o  preserved 
when fl = G, and the re fo re  t h e  proof of t he  theorem is completed. 

Since a l l  d e f i n i t i o n s  of mul t ip l i ca t ion  such t h a t  p + 4u = 0 a r e  
isomorphic, l e t  us consider  now the  s p e c i f i c  r i n g  Sa = [ (a ,b)  1 where 
a = 0 and fl = 0. Here 

(a, b)  0 (c, d )  = (ac, ad + be) .  

I f  we s e t  t h i s  product equal  t o  (0 ,0 ) ,  we s e e  t h a t  e i t h e r  a must be zero  
o r  c must be zero,  and i f  a is zero,  then c must a l s o  be zero. Conversely, 
i f  a = c = 0, then ( a ,b )  D ( c ,d )  = (0,O). Thus the  s e t  I = ( (0 ,b )  1 is 
t h e  s e t  of a l l  d i v i s o r s  of  zero. 

I is  an i d e a l  i n  Ra s ince  wi th  (0,a) and (0,b) elements of  I and 
(c,  d )  any element of Ra , 

(i) (0,a)  - (0 ,b)  - (0,a-b) e I 
and 

( i i )  ( c ,d )  0 (0 , a )  = (0 ,ca)  c I. 



Moreover, s ince  (0,b) 0 (0, a )  = (0,O) o r  I' = [ (0, O)], we see  t h a t  I i s  
a n i l p o t e n t  ideal .  

Now l e t  K be the  s e t  of  a l l  r e a l  numbers of t h e  form (a,O), and 
we s e e  t h a t  under the  correspondence [ (a, b)  ] -<Ã‘Â (a, 0) Ã‘Ã‘ a,  every equiva- 
lence c l a s s  con ta ins  a r ep resen ta t ive  of t h e  form (a,O). The r i n g  Hi 
modulo the  i d e a l  I is the re fo re  isomorphic t o  t h e  r e a l  numbers K; t h a t  i s  

K Z Ra (I). 

5. Conclusion. The values  of a and p i n  the  d e f i n i t i o n  of  mul t ip l i ca t ion  
of ordered p a i r s  of r e a l  numbers, [Eq. ( I ) ] ,  determine t h r e e  systems; 

I. When fl' + 4a is l e s s  than zero,  f i e l d s  i n  8% a r e  isomorphic 
t o  the  complex numbers, although the  statement t h a t  t h e  modulus of t he  
product of  ordered p a i r s  is equal  t o  the  product of  t h e i r  moduli is 
re t a ined  only  f o r  t h e  complex numbers, where a = -1 and fi = 0. 

11. When fl' + 4a is g r e a t e r  than zero,  r i n g s  i n  system Sa a r e  
isomorphic t o  t h e  d i r e c t  product of  t he  r e a l s  wi th  t h e  r e a l s .  

111. When fl' + 4a equals  zero, g iv ing  a r i n g  i n  the  r i n g  
con ta ins  a n i l p o t e n t  i d e a l  such t h a t  t h e  r i n g  modulo t h i s  i d e a l  is iso-  
morphic t o  t h e  r e a l s .  
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GRAPHICAL REPRESENTATION OF THE CONCEPTS OF GAME THEORY 

S i s t e r  M. Chiara Diensberg, Rosary H i l l  College 

1. Int roduct ion.  A n  i n t e r e s t i n g  graphical  so lu t ion  of  games may be 
found i n  The Theory of  Games and Linear Prowannning by S. Vajda. 
According t o  t h i s  method, one p l a y e r ' s  s t r a t e g i e s  a r e  represented by 
po in t s  i n  the  plane, whi le  h i s  opponent's s t r a t e g i e s  a r e  ind ica t ed  by 
l i n e s .  The s o l u t i o n  f o r  a p a r t i c u l a r  game depends upon where t h e  
s t r a t e g y  po in t s  l i e  i n  the  plane; it is my in t en t ion  t o  i n t e r p r e t  care-  
f u l l y  the  geometrical  a spec t s  of  so lu t ions  t o  var ious  types  of  simple 
games. 

Figure  1 is t h e  game matr ix  fo r  a 2x2 game. Two 
& 5 opponents, A and B, each have a choice  of  two s t r a t e g i e s ;  

a, r ep resen t s  t h e  payoff f o r  A's i t h  s t r a t e g y  and B's jth 
4 a! , s t r a t egy .  Player B's jth s t r a t egy ,  Bl , w i l l  be represented 

by a po in t  whose coordinates  a r e  ( a l J , + $ ) .  Once A l e a r n s  
A; a.l aaa B's choice,  he  should pick t h a t  s t r a t e g y  which maximizes the  a payoff a t  . I f  he  s e l e c t s  h i s  f i r s t  pure s t r a t e g y  A t ,  he  

gains  t h e  value of t h e  absc i s sa  of  B's s t r a t e g y  point;  i f  
Fig. 1 A; is h i s  choice,  he gains  t h e  value  of t h e  ordinate .  The 

graph of l i n e  L, y = x, determines two hal f- planes ,  y < x 
and y > x. I f  B's s t r a t e g y  po in t  l i e s  i n  the  former region, A should 
employ h i s  f i r s t  pure s t r a t egy ,  s ince  a l l  > a a l .  I f  t h i s  po in t  l i e s  i n  
the  l a t t e r  region, A ' s  more s e n s i b l e  move is  t o  use A;, s ince  aa l  > a l l .  
I f  B's s t r a t e g y  po in t  l i e s  on L, then it makes no d i f f e rence  which 
s t r a t e g y  A uses; he  may even m i x  them i f  he  wishes, b u t  t h e  payoff t o  A 
remains constant .  Natura l ly ,  B must exe rc i se  caut ion and s e l e c t  t h a t  
s t r a t e g y  po in t  which gives  h i s  opponent t h e  l e a s t  gain. Geometrically, 
t h i s  w i l l  be the  po in t  whose l a r g e r  coordinate  is smaller.  

2. Optimal S t r a t e w .  We s h a l l  devote our a t t e n t i o n  t o  f ind ing  the  
minimizing p l a y e r ' s  s t r a t e g y  f i r s t .  

THEOREM I. B's optimal s t r a t e g y  w i l l  be  mixed i f  t h e  l i n e  segment which 
connects h i s  two s t r a t e g y  po in t s  

(1) has  negat ive  s lope  
(2) i n t e r s e c t s  L. 

The po in t  of  i n t e r s e c t i o n  of t h i s  l i n e  segment wi th  L d iv ides  t h e  l i n e  
segment i n t o  two pa r t s .  The lengths  of t hese  segments a r e  t h e  r a t i o  of 
B 'S  pure s t r a t e g i e s  used i n  h i s  optimal s t r a t egy .  I n  Figure 2, Pi Pa has  
negat ive  s lope  and i n t e r s e c t s  L. B's optimal Y 
s t r a t e g y  (& :5 ) is  given by / 

COROLLARY. I f  e i t h e r  condi t ion is not  f u l f i l l e d ,  
then one of t h e  end po in t s  of B'S s t r a t e g y  l i n e  
g ives  t h e  solut ion.  This occurs when t h e  game has  
a saddle  point ,  and B's optimal s t r a t e g y  w i l l  then 
be a pure one. 

Fig. 2 
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Figure 3 i l l u s t r a t e s  a game i n  which condi t ion 
(1) is  lacking. When the  l i n e  segment connecting 
B ' S  s t r a t e g y  po in t s  has  p o s i t i v e  s lope,  t he  following> 
method may be  used t o  determine which s t r a t e g y  po in t  
h e  should s e l e c t :  From each of B's s t r a t e g y  points ,  
l e t  t he re  be drawn a lower v e r t i c a l  l i n e  and a l e f t  

,p( 
L 

I 
h o r i z o n t a l  l i n e ,  c a l l e d  supports.  B should choose 
t h a t  s t r a t e g y  po in t  from which a suppor t  i n t e r s e c t s  

Fig. 3 

L i n  a po in t  whose coordinates  a r e  a s  smal l  a s  poss ible .  This  method 
may a l s o  be  used i f  both  condi t ions  of t h e  theorem a r e  no t  f u l f i l l e d .  

I f  condi t ion (2)  is lacking, then B should choose t h a t  po in t  whose 
l a r g e r  coordinate  is smaller.  I f  both po in t s  l i e  i n  t h e  lower h a l f-  
plane determined by y = x, then B should s e l e c t  t h e  po in t  whose abscissa  
is  smaller.  I f  both po in t s  l i e  i n  t h e  upper half- plane, B 's  b e s t  choice 
is  the  po in t  whose o rd ina te  is smal ler .  

3. A's 0 t ima l  S t r a t e  . Now we tu rn  our a t t e n t i o n  t o  superimposing t h e  
m a x i ~ i n :  p l a y e r ' s  s t z t e g i e s  on the  same diagram, s o  t h a t  we may ob ta in  
a complete s o l u t i o n  f o r  t h e  game. 

Player A ' s  s t r a t e g i e s  a r e  represented by s t r a i g h t  l i n e s  whose equat ions  
a r e  of t h e  form mx + ny = c ,  where m and n a r e  t h e  frequencies with which 
h e  mixes Al and As. These s t r a t e g y  l i n e s  may be drawn from e i t h e r  of  
B's s t r a t e g y  po in t s  such t h a t  they i n t e r s e c t  l i n e  L. The coordinates  of  
t h i s  po in t  of  i n t e r s e c t i o n  give  A's expected payoff. 

The l i n e  mx + ny = c must have a nonposit ive s lope  ( i f  it has  a 
s lope)  s i n c e  both m and n a r e  non-negative; hence t h i s  l i n e  w i l l  e i t h e r  
have negat ive  s lope  o r  be p a r a l l e l  t o  one of the  coordinate  axes. I f  
A knows B's choice,  he should s e l e c t  t h a t  s t r a t e g y  l i n e  drawn from B's 
s t r a t e g y  po in t  which i n t e r s e c t s  L i n  a po in t  whose coordinates  a r e  a s  
l a r g e  a s  poss ible .  

Let  us f i n d  the  a lgebra i c  expression f o r  t h e  coordinates  of t h i s  po in t  
of  i n t e r sec t ion .  Solving x = y and mx + ny = c simultaneously,  we 
ob ta in  x = c/(m+n). But m + n = 1, and c = mx + ny, s o  t h e  po in t  of 
i n t e r s e c t i o n  has  coordinates  (mx, + ny,, mx, + ny, ),  when A draws h i s  
s t r a t e g y  l i n e  from B's jth s t r a t e g y  point .  Since t h i s  i s  t he  expression 
f o r  t h e  payoff t o  A, h i s  aim is t o  maximize t h e  coordinates  of t h i s  point ,  
whi le  B is determined t o  minimize them. B w i l l  s e l e c t  a s t r a t e g y  po in t  
s o  t h a t  A ' s  b e s t  s t r a t e g y  l i n e  from t h i s  point  t o  L has  a po in t  of  i n t e r-  
s e c t i o n  with L with t h e  sma l l e s t  coordinates  poss ible .  In general,  t h i s  
w i l l  be the  po in t  f i r s t  met i f  a l i n e  p a r a l l e l  t o  A ' s  s t r a t e g y  l i n e  sweeps 
upwards from the  lower l e f t  of t he  plane t o  t h e  upper r i g h t .  

Whenever A s e l e c t s  t h e  mixture (m:n) f o r  h i s  two 
pure s t r a t e g i e s  Al and Aa, where m + n = 1, then t h e  
average payoff t o  A f o r  B's jth s t r a t e g y  w i l l  be  
mx, + ny, . I n  Figure 4, B has  chosen Pi . There a r e  

x an i n d e f i n i t e  number of l i n e s  of t he  form mx + ny = c 
through t h i s  po in t  having non-negative slope. Which 

po in t  of  i n t e r s e c t i o n  wi th  L has  t h e  l a r g e s t  coordinates?  

I f  t h e  l i n e  segment connecting B's s t r a t e g y  po in t s  s a t i s f i e s  both 
condi t ions  of  Theorem I, A cannot do b e t t e r  than t o  choose t h i s  l i n e  a s  
h i s  s t r a t e g y  l i n e .  In  o the r  words, h i s  s t r a t e g y  l i n e  w i l l  have negat ive  
s lope  a l so ,  and t h e  po in t  of i n t e r s e c t i o n  of t h i s  l i n e  with L w i l l  be  
t h e  value  of  t h i s  game. In  t h i s  case,  A cannot s e l e c t  a s t r a t e g y  l i n e  
p a r a l l e l  t o  one of  t h e  axes, even though t h e  payoff would be  g rea te r ,  
because t h e  payoffs a r e  represented only by po in t s  l y ing  on t h e  l i n e  
segment which jo ins  B ' S  s t r a t e g y  points.  The equation of A ' s  b e s t  l i n e  
is (aaa -aal ) x  + (all  -aia ) y  = c ,  and h i s  optimal s t r a t e g y  w i l l  be mixed. 

I f  one o r  both condi t ions  of  Theorem I do no t  hold,  then A should 
s e l e c t  t he  s t r a t e g y  l i n e  p a r a l l e l  t o  one of t h e  coordinates  axes which 
is f a r t h e r  away from B'S  b e s t  point .  H i s  optimal s t r a t e g y  w i l l  be a 
pure one. When one s t r a t e g y  y i e l d s  a g rea t e r  gain  ( o r  l e s s e r  l o s s  f o r  
t h e  minimizing player)  r ega rd le s s  of t h e  o the r  p l a y e r ' s  choice  of s t r a t e -  
g ies ,  t h a t  s t r a t e g y  is c a l l e d  a dominant one. I f  a p l aye r  has  a dominant 
s t r a t eqy ,  h i s  optimal s t r a t e g y  w i l l  be  a pure one r a t h e r  than a mixture. 

I n  any case ,  A ' s  optimal s t r a t e g y  is given by t h e  c o e f f i c i e n t s  of  
t he  s t r a t e g y  l i n e  mx + ny = c ,  where (m:n) g ives  Al and Aa 's r a t i o ,  
respect ively .  It is  seen t h a t  A ' s  optimal choice is always t h e  answer 
t o  B's optimal s t r a t egy ,  and v i c e  versa.  A so lu t ion  always e x i s t s ,  and 
t h e  value  of  t he  game is always given by t h e  coordinates  of some po in t  
on L. 

4. Summary. The following po in t s  of i n t e r e s t  have been noted: 

(1) When t h e  l i n e  connecting B's s t r a t e g y  po in t s  has  negat ive  s lope,  A 
has  a dominant s t r a t egy ,  a s  long a s  t h i s  l i n e  does no t  i n t e r s e c t  L. 

(2) When t h e  l i n e  connecting B's s t r a t e g y  po in t s  has  p o s i t i v e  s lope,  B 
has  a dominant s t r a t egy ;  t he re  a r e  no r e s t r i c t i o n s  on where t h i s  l i n e  may 
l i e  i n  t h e  plane. 

(3) When B's s t r a t e g y  po in t s  both l i e  i n  t h e  lower hal f- plane determined 
by the  l i n e  whose equation is  y = x, then A ' s  s t r a t e g y  l i n e  is  always 
p a r a l l e l  t o  t h e  y-axis. 

(4) When B's s t r a t e g y  po in t s  both l i e  i n  t h e  upper hal f- plane determined 
by t h e  l i n e  whose equat ion is y = x, then A ' s  s t r a t e g y  l i n e  is always 
p a r a l l e l  t o  t h e  x-axis. 

(5) A ' s  s t r a t e g y  l i n e  has  negat ive  s lope  i f  and only i f  t h e  l i n e  jo ining 
B's s t r a t e g y  p o i n t s  has  negat ive  s lope  and i n t e r s e c t s  L. 

Doesn't  it appear t h a t  t h e  s lope  concept is t h e  b a s i s  of  t h i s  i n t e r-  
e s t i n g  a n a l y t i c  method? 

5. Application t o  2xm Games. This method is  s u i t a b l e  f o r  2xm games, b u t  
i n s t ead  of  a s t r a i g h t  l i n e  connecting B's s t r a t e g y  points ,  a convex 
polygon is  drawn, having m o r  l e s s  s ides .  Some s t r a t e g y  po in t s  may l i e  
i n  t h e  i n t e r i o r  of t h e  f igu re ,  b u t  a l l  t h e  v e r t i c e s  and po in t s  on t h e  



boundary r ep resen t  poss ib l e  payoffs f o r  B's var ious  s t r a t e g i e s .  B's b e s t  
mixture is determined by the  s t r a i g h t  l i n e  jo ining two v e r t i c e s  which 
i n t e r s e c t s  L i n  a po in t  whose coordinates  a r e  a s  smal l  a s  poss ible .  This  
2x2 subgame is then t r e a t e d  according t o  t h e  r u l e s  previously  given f o r  
2x2 graphical  solut ions .  

6. Examples. 

Figure  5 i l l u s t r a t e s  t h e  type of s o l u t i o n  L4v when B ' s  s t r a t e g y  l i n e  s a t i s f i e s  Theorem I. 
A ' s  b e s t  s t r a t e g y  l i n e  coincides  wi th  t h e  
l i n e  "joining B ' s  s t r a t e g y  points ,  s o  t h e  
c o e f f i c i e n t s  of t he  va r i ab le s  of t h e  equation 

A e 3  1 of t h i s  l i n e  g ive  A ' s  optimal s t r a t egy .  A ' s  
optimal s t r a t e g y  i s  (2:1), B 'S  i s  (2:1), and 

~ x g .  5 t h e  value of t he  game is 5/3. 
Yl / 

This game is an example of a pure s t r a t e g y  
f o r  both players .  B's s t r a t e g y  l i n e  l i e s  i n  
t h e  lower half- plane, s o  hxs opponent 's  b e s t  
s t r a t e g y  l i n e  is p a r a l l e l  t o  t h e  y-axis. A 'S  

the  value of t h e  game is 1. 
optimal s t r a t e g y  is (1:0), B's i s  (0:1), and 

Fig. 

1 Liv P.. optimal s t r a t e g y  is (1:0), B ' S  is (1:0), 

B 'S  s t r a t e g y  l i n e  again  l i e s  i n  t h e  lower 
half- plane, b u t  has  p o s i t i v e  slope. Notice 
the  v e r t i c a l  and hor i zon ta l  suppor ts  drawn 

& l o 2  
t o  determine B's optimal s t r a t egy .  A ' s  

t and t h e  value of the  game i s  1. Fig. 

Figure 8 shows a s t r a t e g y  l i n e  f o r  B 
i n  t h e  upper half- plane with negative s lope.  
In  t h i s  case,  it i s  a ho r i zon ta l  l i n e  t h a t  

s t r a t e g y  i s  (0:1), B's is (1:0), and the  f$?j pa)L!/x 
maximizes p layer  A's  gains.  A ' s  optimal 1 3 

value  of the  game is 1. 
Fig. 

I n  Figure 9, s ince  B's s t r a t e g y  l i n e  has  
p o s i t i v e  s lope,  suppor ts  a r e  again used t o  
determine h i s  most advantageous s t r a t egy .  
A 's  optimal s t r a t e g y  is (0:1),  B's is (1:0), 
and the  value of t he  game is 1. 

Fig. 

Figure 10 i l l u s t r a t e s  the  case  where t h e  
l i n e  connecting B's s t r a t e g y  po in t s  has  p o s i t i v e  
p o s i t i v e  s lope and i n t e r s e c t s  L. The method 
a l ready c i t e d  f o r  a l i n e  wi th  p o s i t i v e  s lope  

f l l  
i s  used t o  solve  t h i s  game. A's optimal & - 1 2  - -  
s t r a t e g y  i s  (1:0), B's i s  (1:0), and the  0 P1 

value  of the  game is 0. Fig. 10 

Should one of B 's  s t r a t e g y  po in t s  l i e  on L, 
t h i s  po in t  w i l l  be B 's  b e s t  choice.  But h i s  
opponent may play a pure s t r a t egy ,  o r  mix h i s  
s t r a t e q i e s  i n  any r a t i o  he d e s i r e s ,  s ince  an fl i' PI Po 
i n d e f i n i t e  number of l i n e s  may be drawn through 
t h i s  po in t  with nonposit ive s lope.  The value 
of t he  game is 2, B's optimal s t r a t e g y  i s  (1:0),  x 

L 
and A's might be (1:0),  (0:1),  o r  (1:1),  f o r  F1q. 11 
example. 

Mathematics is t r u l y  t imeless  and transcends a l l  ages; by drawing on 
t h e  p a s t  f o r  a lgebra i c  and geometrical  concepts,  t he  very modern problems 
of game theory f ind  a unifying and meaningful so lu t ion .  
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THE ETYMOLOGY OF MATHEMATICAL TERMS 

Margaret W. Perisho, Mankato S t a t e  College 

Mathematics has  a s p e c i a l  language a l l  its own. One of  t h e  d i f f i -  
c u l t i e s  t h a t  many s tuden t s  f ind  i n  t h e  success fu l  s tudy of mathematics 
is understanding t h e  meaning of t h e  many t echn ica l  terms which a r e  unique 
t o  mathematics. The i r  meaning is  b e t t e r  understood a f t e r  s tudying t h e i r  
o r ig in .  To b e t t e r  understand t h e  o r i g i n  of our mathematical terms it i s  
important t o  understand t h e  development of t h e  English language. 

When the  Romans came t o  B r i t a i n  i n  55 B.C. b r ing ing  t h e  La t in  language, 
they found t h e  people speaking Ce l t i c .  Following t h i s ,  t h e  Ju te s ,  Angles, 
Saxons, and F r i s i a n s  came and brought t h e i r  languages t o  add t o  the  Lat in  
and C e l t i c  a l ready there .  Later ,  t h e  Scandinavians ru l ed  England and 
brought t h e i r  language. This combination is known a s  Anglo-Saxon o r  Old 
English.  Today our number words, E, w, =, etc . ,  and words of 
measurement, such a s  and e, come from t h i s  source.  That t hese  
words have been r e t a i n e d  from t h e  Old English is a good ind ica t ion  t h a t  
they were used f r equen t ly  by t h e  common people and the re fo re  were passed 
on from generat ion t o  generation. With the  Norman conquest of  1066 French 
words were introduced. Technical and scho la r ly  words of Lat in  and Greek 
o r i g i n  were added l a t e r .  

Thus t h e  main sources f o r  t h e  mathematical words of  today a r e  Anqlo- 
Saxon (words i n  use  before  10661, Lat in  through French, d i r e c t l y  from 
Lat in ,  and d i r e c t l y  from Greek. 

Many of t h e  words used i n  mathematics have Lat in  roo t s ,  and f o r  people 
who have s tud ied  La t in  the  mathematical usage of  these  words "makes 
sense." The de r iva t ions  of these  a r e  e a s i l y  found i n  any good d ic t iona ry .  
A d i c t iona ry ,  however, g ives  only t h e  ba re  f a c t s  f o r  t h e  sources  of t hese  
words, whi le  we a r e  more i n t e r e s t e d  i n  words whose o r i g i n s  a r e  not s o  
obvious and which have i n t e r e s t i n g  s t o r i e s  behind them. Some of these  
words w i l l  be d iscussed i n  d e t a i l . ^  

ARITHMETIC--from Old French arismetiaue,  La t in  ar i thmet ica ,  Greek 
arithmetiki5 technE. The Greek words meant number sc i ence  and were used 
t o  descr ibe  what we c a l l  theory of numbers. For ca l cu la t ing ,  t h e  Greeks 
used t h e  word loq i s t ikz .  It was not  u n t i l  t h e  s ix t een th  century  t h a t  
a r i thme t i c  was used f o r  both sub jec t s .  It i s  a l s o  i n t e r e s t i n g  t o  note  
t h a t  i n  t h e  Middle Ages the  word took on an e x t r a  r, a r i thme t r i c ,  a s  i f  
it had something t o  do with t h e  Greek word metron (a measure). This 
e x t r a  r w a s  found i n  I t a l y  u n t i l  t h e  time of  p r i n t i n g  and t o  some extent  

%he Oxford Enqlish Dictionary, which is an a u t h o r i t a t i v e  reference  
f o r  t he  etymology of words, was found t o  be very  useful .  Much of t h e  
information which follows was taken from t h i s  source. 

i n  Germany and ~ r a n c e . ~  Webster 's  New World Dict ionary  uses t h e  i n  
i ts  etymology from t h e  Old French, b u t  t h e  Webster's Third New In te r-  
na t iona l  Dict ionary  does not. 

ALGEBRA--from I t a l i a n  a lqebra ,  adapted from t h e  Arabic a l- jeb r  
(reunion of broken p a r t s )  from j aba ra  ( t o  r eun i t e ,  boneset t ing) .  This  
word is  one of t h e  few words which has  an Arabic o r ig in .  I n  the  n in th  
century  al-Iaowarizmi wrote a t r e a t i s e  with t h e  t i t l e  a l- jeb r  
muaabalah. The word a lqebra  came from t h i s  t i t l e .  The a l- jeb r  was s a i d  
t o  mean t h e  t ransposing of a negat ive  q u a n t i t y  ( r eun i t ing  a l l  broken p a r t s ) ,  
and al-mucabalah means t h e  t ransposing of  a negat ive  quan t i ty  and the  
combining of  terms. Later ,  it was learned t h a t  a l- jeb r  is s i m i l a r  t o  an 
Assyrian term meaning equal  i n  rank. The Arabs may have used t h i s  
Assyrian term t o  apply t o  an e q u a t i ~ n . ~  So it may be t h a t  t h e  Arabs took 
t h e i r  word a l- jeb r  and used it a s  t h e  t r a n s l i t e r a t i o n  of  an Assyrian 
word meaning equation. It has  been repor ted  t h a t  dur ing the  Middle Ages 
a s i g n  was seen i n  a barbershop i n  England which read "Algebra and Blood- 
Let t ing."  It is well-known t h a t  b lood- let t ing was one of t h e  se rv ices  
performed by barbers ,  b u t  what does a lqebra  mean? It is  more l i k e l y  t h a t  
t h e  barber  s e t  broken bones than t h a t  he  was a scho la r  who helped s tuden t s  
with t h e i r  mathematics. 

The anc ien t  game of archery  furnished two mathematical words. The 
word ARC comes from t h e  La t in  (bow, arch, curve) .  The medieval 
w r i t e r s  used t h e  word t o  desc r ibe  any p a r t  of  t h e  circumference of a 
c i r c l e .  No doubt t h i s  word was chosen because they were f a m i l i a r  with 
t h e  bow which formed a p a r t  of  a c i r c l e .  The word CHORD comes from the  
Greek chord? (gut,  s t r i n g  of a musical instrument).  The gut  was used f o r  
a bowstring. The s i m i l a r i t y  of t h e  mathematical chord a s  t h e  s t r a i g h t  
l i n e  segment jo in ing  p o i n t s  on a curved l i n e  and the  bowstring is r e a d i l y  
seen. So we have from t h e  bow and from t h e  bowstring. 

CIRCUMFERENCE--from French c i rconference,  o r  adapted from Lat in  
c i r cunfe ren t i a ,  from circum (round) and ( t o  bea r ) .  L i t e r a l l y  t h i s  
would mean " t o  bear  around," b u t  t h e  word a rose  a s  a t r a n s l a t i o n  of t h e  
Greek word meaning "outer su r face"  o r  "periphery" s o  means t h e  boundary 
l i n e  of a c i r c l e .  

COROLLARY--adapted from La t in  corol lar ium (money paid f o r  a garland, 
a g i f t ,  g r a t u i t y ) ,  from c o r o l l a  (a l i t t l e  crown). A c o r o l l a r y  is a 
theorem which is es t ab l i shed  by t h e  proof of another  theorem. In  o the r  
words it is a bonus i n  t h e  inves t iga t ion ,  o r  a g i f t .  

ELLIPSE--adapted from Greek e l l e i p s i s ,  noun of ac t ion  from e l l e i w i n  
( t o  come s h o r t ) .  PARABOLA--from La t in  parabola ,  from Greek parabole  

-- 

^ ~ a v i d  Eugene Smith, H i s to ry  of Mathematics (Boston: Ginn and Company, 
1925), 11, 7-8. 

^era Sanford, A Short  H i s to r  of Mathematics (Boston: Houghton 
Mi f f l in  Company, 193-p. 144-:4~ 
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( s ide  by s ide ,  juxta-posit ion, app l i ca t ion ) .  HYPERBOLA--from La t in  
hyperbola,  adapted from Greek hyperbal le in  ( t o  exceed),  from hyper (over) 
and b a l l e i n  ( t o  throw). When t h e  Pythagoreans were &onstructing a 
f igu re  t h a t  was t o  be  equal  i n  area  t o  a f i g u r e  of a d i f f e r e n t  shape, 
they c a l l e d  i t  e l l i p s i s  i f  t he  base of t he  new f i g u r e  was s h o r t e r  than 
the  old  f igure .  I t  was c a l l e d  parabole  i f  the  two bases were equal  and 
hyperbole i f  t he  new base was longer (had some l e f t  ove r ) .  Many years  
l a t e r  Apollonius followed the  same idea when he  c a l l e d  an e l l i p s e  t h a t  
curve whose l a t u s  rectum i s  s h o r t e r  than the  s ide  of the  r ec t ang le  on the  
abscissa  equal  t o  the  square of the  ordinate .  He c a l l e d  it a parabola 
i f  t h e  l a t u s  rectum was equal t o  the  s i d e  of t he  r ec t ang le  and a h += bola i f  t he  l a t u s  rectum was longer than t h e  s i d e  of the  rec tangle .  

EXPONENT-from Lat in  exponentem, present  p a r t i c i p l e  of exponere ( t o  
put fo r th ,  s e t  fo r th ,  d i sp lay ,  dec la re  o r  publ ish)  from ex (out)  and 
ponere ( t o  put,  p l ace ; -  This i s  an example of t he  etymology being some- 
what d i s t a n t  from t h e  mathematical meaning. Perhaps it could be s a i d  t h a t  
we a r e  d e c l a n n q  the  f a c t  t h a t  a c e r t a i n  number i s  being used more than 
once a s  a f ac to r .  O r  perhaps i t  r e f e r s  t o  the  pos i t ion  where t h e  exponent 
i s  wr i t t en .  

LINE--from 01J English G, perhaps an adapta t ion of t h e  La t in  lines 
( l i nen  th read ) ,  from a ( f l a x ) .  This word has  been i n  use i n  some 
form f o r  a long time. Because of i t s  constant  use, i t  has  had d i f f e r e n t  
forms--Middle English and the  Old High German a r e  examples. 
A geometric l i n e  i s  an abs t r ac t ion .  Apparently t h i s  was b e s t  represented 
t o  the  Ancients by a t i g h t l y  drawn thread. 

MATHEMATICS--adapted from French mathematique o r  i t s  source,  La t in  
mathematicus, adapted from Greek mathematikos, from mathema ( sc i ence ) ,  
from mathein ( t h a t  which i s  l ea rned) .  Original ly ,  mathematics was any 
sub jec t  which required a formal course of i n s t r u c t i o n  t o  be learned. 
Subjects  l i k e  music and a r t  could be learned ind iv idua l ly  s o  were not 
c a l l e d  mathematics. The Pythagoreans were probably t h e  f i r s t  t o  l i m i t  
the  word t o  geometry and ar i thmet ic .  Those Pythagoreans who had learned 
the  Pythagorean theory of knowledge were c a l l e d  mathematicians. Others, 
who merely knew the  r u l e s  of conduct, were c a l l e d  hea re r s .  I n  P l a t o ' s  

time the  general  use of t h e  term was common although the re  was a tendency 
t o  l i m i t  it t o  the  sub jec t  we know today. By t h e  time of A r i s t o t l e  t he  
r e s t r i c t i o n ,  a s  we know it today, had been es tabl ished. '  

4 ~ l f r e d  HoOper, Makers of Mathematics (New York: Random House, 19481, 
pp. 40-41; Howard Eves, & In t roduct ion t o  t h e  His tory  of Mathematics 
(New York: Rinehart  and Company, Inc. ,  1953), p. 148. 

1 v 0 r  Thomas, Se lec t ions  ~ l l u s t r a t i n q  t h e  Hi s to rv  of Greek Mathematics 
with an English Trans l a t ion  (Cambridge: Harvard un ive r s i ty  Press,  1951) -- 
I, 3. 

POSTULATE--from Lat in  pos tu l a re  ( t o  demand), t r a n s l a t i o n  of Greek 
a i temata  ( t o  demand). Euclid used aitemata.  Pos tu l a t e s  were s ta tements  
which teachers  demanded t h a t  t h e  s tuden t  accept a s  a foundation on which 
t o  build.6 

QUADRATIC--adapted from Lat in  guadratus,  p a s t  p a r t i c i p l e  of guadrare 
( t o  square) .  The idea  of t he  square of an unknown was conceived long 
before  a symbol was invented f o r  it. The Greeks c a l l e d  it te t raqonas  
arithmos (four-angled n ~ m b e r ) . ~  The La t in  word f o r  fou r  was p a t t u o r .  
I t  would seem t h a t  t he  Lat in  w r i t e r s  used t h e  idea  of a four-angled number 
i n  t h e i r  word quadare ( t o  square) ;  thus  a "quadrat ic  equat ion"  means an 
equation whose unknown is squared. 

ROOT--from Old English rot, from Old Norse rot. The o r i g i n a l  stem 
is connected with t h e  La t in  & and the  Old English WJ& ( roo t ,  

herb,  p l a n t ) .  is a t r a n s l a t i o n  of t h e  Arabic &, which i n  turn ,  
is a t r a n s l a t i o n  of Sanskr i t  ( roo t  of a vegetable  and square roo t  
of a number). The Arabs thought of a square number a s  growing ou t  of a 
roo t ,  which accounts f o r  t h e i r  choice of & i n  t r a n s l a t i n g  from Sanskr i t  
t o  Arabic. I n  works t r a n s l a t e d  from Arabic i n t o  Lat in  the  Lat in  & 
( r o o t  of a p l a n t )  was used. The Arabs a l s o  used t h e  word i n  descr ib ing 
the  value of t he  unknown i n  an equation, thus "root  of an equation." The 
Lat in  w r i t e r s  thought of a square roo t  of a number a s  the  s i d e  of a 
geometric square.  Thus, s cho la r s  wr i t ing  i n  Lat in  "found" the  s ide ,  
while scho la r s  w r i t i n g  i n  Arabic "extracted"  o r  "pulled out"  t h e  root .  
Both usages have been preserved i n  English s ince  today we " f ind"  the  roo t  
of an equation and "ex t r ac t "  the  r o o t  of a number.' 

SINE--adapted from Lat in  sinus (a bend, bay, t he  hanging fo ld  of the  
upper p a r t  of a toga, t h e  bosom of the  garment). This i s  an exce l l en t  
example of a word whose etymology has  no connection wi th  t h e  mathematical 
usage. In  the  s i x t h  century  Aryabhata, a Hindu, c a l l e d  what we c a l l  s i n e  
ardha-jya (ha l f  chord) .  It was shortened t o  -iya (chord).  The Arabs 
t r a n s l i t e r a t e d  t h i s  t o  =. Since i t  was an Arabic custom t o  omit vowels, 
t h i s  was w r i t t e n  &. The word jibs was a t echn ica l  word s o  was not  very 
well-known. When Gherardo of Cremona (about 1150) was t r a n s l a t i n g  Arabic 
works, he came accros  2. The only Arabic word he  knew which could be 
abbreviated -jb was meaning "bosom." He must have been puzzled by 
t h i s ,  bu t  he d u t i f u l l y  t r a n s l a t e d  it i n t o  the  Lat in  word (bosom). 
From t h i s  came our word e.9 

TRAPEZOID--adapted from Modern Lat in  trapezoidFs,  from Greek 
trapezoeides ( t a b l e - l i k e ) ,  from t rapeza  ( t a b l e ) ,  from ( four )  and 

( foo t )  and (form). The d e f i n i t i o n  of a t rapezoid  today i n  
America is a q u a d r i l a t e r a l  with two s i d e s  p a r a l l e l .  Euclid d id  not use 



t h i s  word, b u t  it was introduced by another  Greek, Proclus, t o  mean a 
q u a d r i l a t e r a l  with no s i d e s  p a r a l l e l .  He used trapezium t o  mean a quadri-  
l a t e r a l  with two s i d e s  p a r a l l e l .  The d e f i n i t i o n s  of'proclus a r e  used i n  
a l l  con t inen ta l  European languages. However, i n  t h e  e ighteenth  century  
i n  England t h e  meanings were changed. T h i s  p r a c t i c e  has  continued i n  
America b u t  was changed back t o  the  o r i g i n a l  meaning i n  England i n  t h e  
n ineteenth  century.  Thus, a q u a d r i l a t e r a l  wi th  two s i d e s  p a r a l l e l  is  
c a l l e d  a t rapezoid  i n  America, b u t  i n  England the  same f igu re  is  c a l l e d  a 
trapezium. I 

The recen t  developments i n  mathematics have seen t h e  add i t ion  of many 
new terms. It is  i n t e r e s t i n g  t o  no te  t h a t  these  a r e  no longer words with 
La t in  r o o t s  b u t  on t h e  whole a r e  s h o r t  Anglo-Saxon words. For example, 
&, u, and g a r e  Anglo-Saxon words which have a b s t r a c t  meanings 
i n  mathematics. It would be i n t e r e s t i n g  t o  know how these  words happened 
t o  be  chosen ins t ead  of those  of La t in  o r ig in .  Perhaps the  use of t he  
vernacular  i n s t ead  of scho la r ly  words w i l l  make t h e  mathematical concepts 
e a s i e r  f o r  t h e  average person t o  grasp. 

This is only t h e  beginning of a very  f a sc ina t ing  s tudy and one which 
never ends. When one becomes aware of words themselves a s  w e l l  a s  t h e i r  
usage he  opens a new a rea  t o  explore.  

RAABE'S TEST 

Charles B. Huelsman 111, The Ohio S t a t e  Univers i ty  

Raabe's t e s t ,  developed by J. L. Raabe i n  1832, is a t e s t  f o r  t h e  
convergence and divergence of i n f i n i t e  s e r i e s .  Although ~ a a b e ' s  t e s t  
i s  easy t o  use,  it is  not  a s  e f f e c t i v e  a s  Gauss's t e s t ,  Kummer's t e s t  
o r  Maclaurin's  i n t e g r a l  t e s t .  However, t hese  t e s t s  a r e  a l s o  no t  easy 
t o  use. I n  t h i s  paper it i s  shown t h a t  Raabe's t e s t  is more e f f e c t i v e  
than the  r a t i o  t e s t ,  and t h a t  t he  proof of Raabe's t e s t  is of medium 
d i f f i c u l t y .  Thus, Raabe's t e s t  should be given a pos i t ion  i n  more of 
t he  textbooks on advanced ca l cu lus  and r e a l  va r i ab le s .  

F i r s t  we prove Raabe's t e s t .  

THEOREM. (Raabe's Tes t )  Given an i n f i n i t e  s e r i e s  rial 2-> an  where an >.Â 
f o r  every n. Then i f  

< -a < -1, t h e  s e r i e s  converges 
= a = -1, the  t e s t  is indec i s ive  

n- > a > -1, the  s e r i e s  d iverges  

Proof. Assume -a < -1. Let  c = (a-1)/2 > 0 .  From (1) f o r  every  n - 
grea te r  than some l a r g e  N 

L J 

- nan - a < - (-)an - - an 

(F) an < In - "an - nantl f o r  n > N 

1 ,  

-a-I  o l a  

Fig. 1 

Then 

2 
a n <  I ( n - l ) a n - n a  

2 n+l] = NaN+l = const.  
n= +1 n= +1 

Since  t h e  t a i l ,  a converges, t h e  s e r i e s ,  2 an converges. 
n= l  

e x  a s  a = -1. 2 Ã is divergent  and t h e  s e r i e s  2 $ ( log  n) 
2 

n= l  n=2 

i s  convergent, y e t  Raabe's t e s t  y i e l d s  -1 i n  both cases.  Thus t h e  
indecis iveness  has  been proven. 

Next assume a > -1. Let  ? = ( 1  + a)/2.  From (1) the re  e x i s t s  some 
l a rge  M such t h a t  f o r  every  n > M, 



Fig. 2 

Thus n a l  (n - l ) a n  and (n - 1 ) a  is a monotone i n c r e a s i n g  sequence 

f o r  n > M. A s  n, a  > 0, it fo l lows  t h a t  t h e r e  e x i s t s  some c o n s t a n t  p > 0 

such t h a t  f o r  e v e r y  n > M, (n - D a n  > p. But t h e n  a > p/ (n  - 1 )  f o r  
a l l  n > M and t h u s  

Divergence is obvious.  

Thus, Raabe's t e s t  is e a s y  enough t o  prove t o  w a r r a n t  u s e  i n  t e x t -  
books on advanced c a l c u l u s  and r e a l  v a r i a b l e s .  Next we compare t h e  r a t i o  
t e s t  w i t h  Raabe ' s  t e s t .  

THEOREM. 
( a )  I f  t h e  r a t i o  t e s t  shows t h a t  t h e  s e r i e s  2 an is  convergent  

n = l  
( d i v e r g e n t ) ,  t h e n  Raabe's  t e s t  shows t h e  s e r i e s  2 a n  i s  con- 
v e r g e n t  ( d i v e r g e n t ) .  n=l 

(b) Both converses  of  ( a )  a r e  f a l s e .  

Thus, Raabe's  t e s t  i s  s u p e r i o r  t o  t h e  r a t i o  t e s t .  Whenever t h e  r a t i o  
t e s t  works, Raabe ' s  t e s t  does.  But t h e r e  a r e  s e r i e s  f o r  which Raabe's  
t e s t  works and t h e  r a t i o  t e s t  does no t .  

B. Consider t h e  s e t  of  a l l  i n f i n i t e  s e r i e s  2 a n  where t h e  r a t i o  
n = l  - 

t e s t  p roves  t h a t  t h e  s e r i e s  converges.  Then f o r  any  member an o f  
t h i s  s e t  n = l  

n-- 

Given any i n f i n i t e  s e r i e s  x a n  where t h e  r a t i o  t e s t  p roves  d ivergence ,  
n a l  

we can  show w i t h  a s i m i l a r  p roof  t h a t  

l i m  n [F - l] = + -  . 
n-rn 

And ( a )  fo l lows .  

To complete t h i s  proof o f  s u p e r i o r i t y ,  we need o n l y  f i n d  a d i v e r g e n t  
and a convergent  i n f i n i t e  s e r i e s  for which Raabe's  t e s t  works, b u t  for 
which t h e  r a t i o  t e s t  does n o t  work. T h i s  may b e  demonstrated w i t h  t h e  

s e r i e s  2 1/10, n and l /n2 - 
n= 

Yet 

And (b)  fo l lows .  

I l l u s t r a t i n g  t h i s  p o i n t  f u r t h e r ,  t h e r e  a r e  i n f i n i t e l y  many s e r i e s  
o f  t h e  form a n

k + - - -  + aln + a. 
m, k > O  

z < n m +  .-- + bln + bo 

where t h e  r a t i o  t e s t f a i l s  and Raabe ' s  t e s t  works. Other  examples a r e  

1/n2 ( l o g  n ) k  f o r  k = 0,1 ,2  
n=2 

2 1/n l o g  n, and 
n=2 

We conc lude  t h a t  Raabe's  t e s t  is e f f e c t i v e ,  convenien t ,  s u p e r i o r  t o  
t h e  r a t i o  t e s t ,  and t h a t  it d e s e r v e s  a p o s i t i o n  i n  any undergradua te  
advanced c a l c u l u s  o r  r e a l  v a r i a b l e s  course .  
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ADDITIVE SUBGROUPS OF THE RATIONAL NUMBERS 

Alan Schwartz,  U n i v e r s i t y  o f  Wisconsin 

I n  t h i s  paper  we w i l l  a s s o c i a t e  w i t h  each  a d d i t i v e  subgroup of  t h e  
r a t i o n a l  numbers a f u n c t i o n  on t h e  prime numbers w i t h  range  i n  t h e  non- 
n e g a t i v e  i n t e g e r s  t o g e t h e r  w i t h  -. By means of  t h e s e  f u n c t i o n s  we can 
c l a s s i f y  t h e  a d d i t i v e  subgroups of t h e  r a t i o n a l  numbers i n t o  isomorphism 
t y p e s ,  and a l s o  de te rmine  whether  o r  n o t  a g i v e n  subgroup h a s  a minimal 
s e t  of  g e n e r a t o r s .  

DEFINITION. L e t  G b e  a subgroup o f  Q ( t h e  a d d i t i v e  r a t i o n a l s )  and suppose 
t h a t  G c o n t a i n s  Z. Then G/Z is w e l l  d e f i n e d  and is, i n  f a c t ,  a union Of 
f i n i t e  c y c l i c  groups.  L e t  S be  t h e  s e t  o f  o r d e r s  o f  e lements  o f  G/Z. For 
each prime p, l e t  g ( p )  b e  t h e  h i g h e s t  power o f  p o c c u r r i n g  a s  a d i v i s o r  
of  some e lement  o f  S i f  such  e x i s t s ;  o therwise ,  l e t  g ( p )  = -. We c a l l  
g t h e  d i v i s i b i l i t y  f u n c t i o n  of  G. 

EXAMPLES. 

( i )  G - Q; S c o n s i s t s  o f  a l l  t h e  n a t u r a l  numbers, hence g ( p )  = - f o r  
e v e r y  prime p. 

( i i )  G = t h e  group o f  r a t i o n a l  numbers t h a t  can  b e  w r i t t e n  a s  f r a c t i o n s  
w i t h  denominators b e i n g  powers o f  2; S c o n s i s t s  of  a l l  t h e  non- 
n e g a t i v e  powers o f  2, hence g ( 2 )  = - and g ( p )  = 0 f o r  e v e r y  o t h e r  
prime. 

( i i i )  G = t h e  group  g e n e r a t e d  b y  [1,.1,.01,.001, ... ); S c o n s i s t s  of  a l l  
numbers of  t h e  form 2.5" f o r  m and n non- negative i n t e g e r s ,  t h e n  
g ( 2 )  = g ( 5 )  = - and g ( p )  = 0 f o r  a l l  o t h e r  primes. 

( i v )  G = t h e  group g e n e r a t e d  b y  [2-I ,2-' , 2  ' , . . . : 3" ,5-' , . . -1;  
S c o n s i s t s  o f  a l l  t h e  non- negative powers o f  2 t o g e t h e r  w i t h  a l l  
t h e  prime numbers. 

Thus, g iven  a group  G c o n t a i n i n g  2, we have i t s  d i v i s i b i l i t y  func t ion .  
The f o l l o w i n g  lemma g i v e s  u s  a r e l a t i o n  between t h e  group  and i t s  d i v i s i -  
b i l i t y  f u n c t i o n .  

LEMMA. L e t  G b e  a subgroup o f  Q c o n t a i n i n g  2, and l e t  q b e  t h e  d i v i s i -  
b i l i t y  f u n c t i o n  o f  G, t h e n  G i s  g e n e r a t e d  b y  [ p - g ( ~ ) :  p prime and 

g ( p )  < - 1  . ip-l  ,p-' , p-' , . . . p prime and g ( p )  = -1. 
Proof. L e t  x e G. I f  x e Z we a r e  done, s o  assume t h a t  x if 2. Then x h a s  f i n i t e ,  non- zero o r d e r  i n  G/Z. Say it h a s  o r d e r  a; i . e . ,  
ax  + 2 = Z. Hence s x  = m f o r  some i n t e g e r  m and x = m / s _  s can  b e  
f a c t o r e d  i n t o  powers o f  d i s t i n c t  primes,  and s-' can  b e  expressed  a s  a 
l i n e a r  combination of  t h e  r e c i p r o c a l s  o f  t h e s e  powers of  primes w i t h  
i n t e g r a l  c o e f f i c i e n t s ,  and t h i s  comple tes  t h e  proof .  

Remark. The above lemma a l s o  shows u s  t h a t  e v e r y  f u n c t i o n  on t h e  primes 
w i t h  t h e  non- negative i n t e g e r s  t o g e t h e r  w i t h  - a s  range  is t h e  d i v i s i -  
b i l i t y  f u n c t i o n  o f  some subgroup o f  Q c o n t a i n i n g  2. 



We next examine the  r e l a t i o n  between t h e  d i v i s i b i l i t y  funct ions  of 
isomorphic groups. The following lemma w i l l  prove useful .  

LEMMA. Let  G and H be non- t r iv i a l  subgroups of Q; then G and H a r e  
isomorphic i f  and only i f  H = r G  f o r  some non-zero r a t i o n a l  number r. 

Proof. I f  H = r G  t he  isomorphism i s  obvious, o  verse ly ,  we note t h a t  - 
G conta ins  a t  l e a s t  one in t ege r  n. Let r and the  r e s u l t  follows 
immediately. 

DEFINITION. Let  g  and h  be two d i v i s i b i l i t y  funct ions .  We s h a l l  say  
g  and h  a r e  equivalent  (q  - h )  i f  f o r  each prune p, g (p )  and h ( p )  a r e  
both f i n i t e  o r  both i n f i n i t e ,  and g ( p )  = h ( p ;  except f o r  f i n i t e l y  many 
p  a t  which g (p )  and h  (p) a r e  f i n i t e .  

THEOREM. Let G and H be subgroups of Q conta ining 2, and i e t  g  and h  
be t h e i r  d i v i s i b i l i t y  functi ons.  Then G and H a r e  isomorphic i f  and only 
i f  q  and h  a r e  equivalent .  

Proof. Suppose 9  - h. Let e  ( P I  - h (P) - g ( p )  i f  h  (p) < -, and e  (p) = 0 
i f p )  = -. Then e ( p )  = 0 except f o r  f i n i t e l y  many p. Let r = 
(where the  product is taken over a l l  primes p).  r is a  r a t i o n a l  number 
s ince  a l l  bu t  f i n i t e l y  many of the  f a c t o r s  a r e  1. A simple c a l c u l a t i o n  
shows t h a t  H = r G  and hence t h a t  H and G a r e  isomorphic. 

Conversely, suppose H and G a r e  isomorphic. Then the re  must be a  
r a t i o n a l  number r such t h a t  H = r G .  r can be fac tored i n t o  p o s i t i v e  
and negative powers of primes and the  r e s u l t  w i l l  follow by working t h e  
f i r s t  p a r t  of t h i s  proof backwards. 

We can extend the d e f i n i t i o n  of d i v i s i b i l i t y  funct ion t o  a l l  non- 
t r i v i a l  subgroups of  Q i n  the  following manner. Let G be a  non- t r iv i a l  
subgroup of Q and l e t  n  be the  sma l l e s t  p o s i t i v e  in t ege r  contained i n  G, 
then ;G must conta in  Z and thus  have a  w e l l  defined d i v i s i b i l i t y  funct ion 
g. We then t ake  g  t o  be  t h e  d i v i s i b i l i t y  funct ion of G a s  well .  The 
above theorem i s  now seen t o  be  t r u e  f o r  a l l  non- t r iv i a l  subgroups of the  
r a t i o n a l  numbers. 

COROLLARY. There a r e  2m"isomorphism types  of subgroups of Q. 

Proof. There a r e  no more than 2N0 s ince  t h a t  i s  a l s o  the  number of s e t s  - 
of r a t i o n a l  numbers. That t h e r e  a r e  a t  l e a s t  t h a t  many follows from 
considera t ion of those  d i v i s i b i l i t y  funct ions  whose ranges c o n s i s t  s o l e l y  
of 0  and 

THEOREM. Let G be a  non- t r iv i a l  subgroup of Q, and l e t  g be  t h e  d i v i s i-  
b i l i t y  funct ion of  G. Then G has  a  minimal s e t  of  genera tors  i f  and only 
i f  one of t h e  following condi t ions  holds:  

Proof. Without l o s s  of gene ra l i t y ,  we can assume t h a t  G con ta ins  2. I f  - 
g s a t i s f i e s  (i), then G is generated by ( p - 9 ' ~ )  : p prime) and t h i s  s e t  
is  c l e a r l y  minimal. I f  g  s a t i s f i e s  (ii), l e t  [ r ,  : j = 1,2,3, .. . I  be  the  
countable s e t  ( P '  : p prime and g(p)  = -; m = 0, l .  2,. . -1. Then i f  we 

l e t  ( q  ) denote the  primes such t h a t  0  < g(q, ) < -, a  minimal s e t  of 

genera tors  f o r  G is [ r j q j  - 9 ( q ~  ) i j = 1,2,3,  .. .I.  

I f  G is such t h a t  n e i t h e r  (i) nor ( i i )  hold,  then g (p )  = - f o r  a t  
l e a s t  one prime and 0 < g(p )  < - f o r  only f i n i t e l y  many primes. Let  
[xJ z j  = 1,2,3, .  . .] be  a  s e t  of genera tors  f o r  G. We w r i t e  XJ a s  t h e  
reduced f r a c t i o n  ml n p-e(pa '̂ where t h e  product is taken over a l l  primes, 
m is an in t ege r  and e (p ,  j)  is  non-negative f o r  each prime. Let 
d  = g.c.d. (q ,nb ,nb , . ..) ( g r e a t e s t  common d i v i s o r ) ,  and l e t  d. = g.c.d 

(m, ,%, . . . ,ni, ) . We can pick no s o  l a r g e  t h a t  dn = d and s o  t h a t  f o r  

each prime p  such t h a t  0 < g ( p )  < -, e  (p, j )  > g(p )  f o r  some j < RJ . 
Then it i s  easy t o  v e r i f y  t h a t  [x, : j #  + 1 )  generates  G, hence [XJ 1 
is not a  minimal s e t  of generators.  

Remark. It is i n t e r e s t i n g  t o  note  t h a t  even though some subgroup may 
no t  have a  minimal s e t  of genera tors ,  it can be  embedded i n  a  l a r g e r  sub- 

group which does have a  minimal s e t  of generators:  consider  examples 

(ii) and ( i v ) .  (ii) has  no minimal s e t  of genera tors  whereas ( i v )  i s  
generated by (21p7$i  i p, i s  t h e  jth primel and t h i s  s e t  of genera tors  
is seen t o  b e  minimal. 

I would l i k e  t o  express my apprecia t ion t o  Professor L. Levy of t h e  
Univers i ty  of Wisconsin wi thout  whose h e l p f u l  suggest ions  t h i s  paper 
would not have taken t o m .  

( i )  g (p )  < - f o r  a l l  primes p  
( i i )  0  < q ( p )  < - f o r  i n f i n i t e l y  many primes p. 



RESEARCH PROBLEMS -- 
This sec t ion  is devoted t o  suggest ions  of  t op ic s  and problems fox 

Undergraduate Research Programs. Address a l l  correspondence t o  t h e  
Edi tor .  

Proposed by M. S. KLAMKIN. 

Analysis. 
Simpson's r u l e  f o r  approximating a d e f i n i t e  i n t e g r a l  is given by 

For a symmetric i n t e r v a l  (i.e., a = -b), t h e  r u l e  is exact  i f  and only i f  
F(x)  is  a quadra t i c  polynomial p lus  an odd funct ion among t h e  c l a s s  of 
d i f f e r e n t i a b l e  functions.  

The general  case  a l s o  holds  exac t ly  f o r  cubic polynomials. (This 
is r e l a t e d  t o  f ind ing  the  volumes of  a genera l  c l a s s  of s o l i d s  c a l l e d  
prismatoids.)  Are t h e r e  any odd funct ions  o the r  than F = c? which 
make Simpson's r u l e  exac t  ( f o r  a l l  va lues  of a and b ) ?  

Proposed by J. D. E. KONHAUSER. 

Seven men a r e  sea t ed  a t  a c i r c u l a r  t ab le .  Upon s igna l ,  t h e  men r i s e  
and mingle. 

(A) Given t h e  o r i g i n a l  s e a t i n g  arrangement, r e s e a t  t he  men i n  such a way 
t h a t  t he  number of  men (counted i n  e i t h e r  d i r e c t i o n )  sepa ra t ing  each p a i r  
of men is d i f f e r e n t  from t h a t  i n  t h e  o r i g i n a l  s e a t i n g  arrangement. 

(B) What is t h e  sma l l e s t  number of men f o r  which such r e s e a t i n g  arrange-  
ments can be  found? 

(C) For what values  of n, do so lu t ions  of  t he  above n-man problem e x i s t ?  

(D) I f  t he  des i r ed  r e s e a t i n g  arrangements e x i s t ,  a r e  they unique? 

PROBLEM DEPARTMENT 

Edited by 
M. S. Klamkin, Univers i ty  of Minnesota 

This department welcomes problems bel ieved t o  be new and, a s  a ru l e ,  
demanding no g rea te r  a b i l i t y  i n  problem solving than t h a t  of t he  average 
member of t he  F ra t e rn i ty ,  bu t  occas ional ly  we s h a l l  publ ish  problems 
t h a t  should chal lenge the  a b i l i t y  of t he  advanced undergraduate and/or 
candidate f o r  the  Master ' s  Degree. Solut ions  of these  problems should 
be submitted on separa te ,  signed shee t s  w i th in  four  months a f t e r  publi-  
ca t ion .  

An a s t e r i s k  (*)  placed bes ide  a problem number ind ica t e s  t h a t  the  
problem was submitted without a solut ion.  

Address a l l  communications concerning problems t o  Professor M. S. 
Klamkin, Department of  Mathematics, Univers i ty  of Minnesota, Minneapolis, 
Minnesota 55455.  

PROBLEMS FOR SOLUTION 

168t Proposed by J e r r y  Tower, North High School ( s tuden t ) ,  Columbus, Ohio. 
Determine x asymptot ica l ly  i f  

l og  x = n log  log  x. 

169. Proposed by Joe  Konhauser, Univers i ty  of Minnesota. 
From an a r b i t r a r y  point  P (not  a ve r t ex )  of an e l l i p s e  l i n e s  a r e  
drawn through the  f o c i  i n t e r s e c t i n g  the  e l l i p s e  i n  po in t s  Q and 
R. Prove t h a t  t he  l i n e  jo ining P t o  the  po in t  of i n t e r s e c t i o n  of  
the  tangents  t o  the  e l l i p s e  a t  Q and R is the  normal t o  the  
e l l i p s e  a t  P. 

E d i t o r i a l  Note: The proposer notes t h a t  he  does not know the  source 
of t he  problem and he has  not  been ab le  t o  l o c a t e  it i n  any of t h e  
books he has  examined. 

170. Proposed by C. S. Venkataraman, Sree  Kerala Vanna College, India.  
Prove t h a t  a t r i a n g l e  ABC is  i sosce le s  o r  right- angled i f  

a3 cos A + b3 cos B = abC. 
Proposed by S. SCHUSTER. 

Alqebra and Number Theory. 
The proof t h a t  t he  c i r c l e  cannot be  squared r e s t s  on t h e  f a c t  t h a t  

v is t ranscendenta l .  However, it would be  s u f f i c i e n t  t o  e s t a b l i s h  t h e  
weaker r e s u l t  t h a t  n cannot be achieved through any f i n i t e  sequence of 
quadra t i c  extensions  of t h e  r a t i o n a l  f i e l d .  Can you f ind  a r e l a t i v e l y  
simple proof of t h e  weaker r e s u l t ?  Is t h e r e  a gene ra l  c l a s s  of transcen-  
d e n t a l  numbers t h a t  can be proven t o  be non- constructible without invoking 
t r anscenden ta l i t y?  

171. Proposed by Murray S. Klamkin, Univers i ty  of Minnesota. 
For 0 < 0 < w/2, it is w e l l  known t h a t  t he  inequa l i ty  

s i n  0 > cos" 0 

holds  f o r  m = 1. What i s  t he  smal les t  constant  m f o r  which it  
holds?  



SOLUTIONS 

154. Proposed by Kenneth Kloss, Carnegie I n s t i t u t e  of Technology. 
For a number i n  (0 , l ) .  does t h e r e  e x i s t  a base s o  t h a t  i n  t h i s  new 
system of  enumeration t h e  f i r s t  two d i g i t s  a r e  t h e  same? 

Solut ion by Bob Pr i e l ipp ,  Madison, Wisconsin. 
I f  t he  number is of the  form 1/n, n = 2,3,4,. . . , then 

= 0.111 *-â [base (n+ l ) ] .  

I f  t he  number is of the  form m/n ( r a t i o n a l ) ,  then 

m - = 0 . m  * -  - [base (n+ l ) ] .  

I f  t h e  number is i r r a t i o n a l ,  it can be approximated by a r a t i o n a l  
number ( co r rec t  t o  a s u f f i c i e n t  number of decimal p laces)  and then 
use the  above. 

Also solved by H. Kaye, P. Myers, M. Wagner, F. Zet to ,  and t h e  
proposer. 

156. Proposed by K. S. Murray, New York City.  
I f  A and B a r e  f ixed po in t s  on a 
given c i r c l e  and XY is a va r i ab le  X ,  
diameter, f i n d  t h e  locus of po in t  P. ay u 
S o l u t i o n b y  Sidney S p i t a l ,  Ca l i fo rn ia  S t a t e  Polytechnic College. 

Let AB = a, then L P'XB = a/2 
and 8 = (n - a) /2 ,  0 = (IT + a)/2.  
Since  0 is constant ,  t h e  locus of 
P is a c i r c l e .  The symmetric case  
(diameter p a r a l l e l  t o  chord AB) 
shows t h a t  t h e  c i r c l e s  a r e  orthogonal. 4 Y 
Also solved by L. C a r l i t z ,  Leroy J. Dickey, X 
Theodore Junqreis ,  Marvin S. Levin, Charles 
W. Triqq, M. Wagner, and t h e  proposer. ..- 
E d i t o r i a l  Notei C a r l i t z  a l s o  r e f e r s  t o  t h e  following known theorem 
(Johnson's, Modern Geometry, p. 42, Theorem F) i I f  AB is a 
diameter of a c i r c l e  and i f  any two l i n e s  AC and BC meet the  
c i r c l e  again  a t  P and Q, r e spec t ive ly ,  then the  c i r c l e  CPQ is  
orthogonal t o  t h e  given c i r c l e .  

157. Proposed by John Se l f r idge ,  Pennsylvania S t a t e  College. 
a" a a a 

Prove na - na is d i v i s i b l e  by 2* - 2' . 
Solu t ion  by Theodore Junqreis ,  New York University.  

(1) For t h e  f a c t o r  2*, consider  t h e  two cases t  I f  n is even, 
n4 con ta ins  2* ; i f  n is odd, A,, AS, and Ag a r e  even and s ince  

and Ag a r e  consecutive,  one is d i v i s i b l e  by  4, thus  supplying 
four  f a c t o r s  of 2. 

(2) For the  f a c t o r  3" , consider  the  th ree  cases:  I f  n = 3m, 
n4 con ta ins  3": i f  n = 3m + 1, Ag and tÃ each a r e  d i v i s i b l e  by 
3; i f  n = 3m + 2, & and each a r e  d i v i s i b l e  by 3. 

(3) For the  f a c t o r  5, consider  t h e  f i v e  cases:  n = 5m, 5m + 1, 
5m + 2, 5m + 3, 5m + 4. For each case  one of  t h e  Ag is  d i v i s i b l e  
by 5. 

(4) and (5)  t r e a t  t h e  cases  f o r  7 and 13 a s  i n  (3) .  

Also solved by L. C a r l i t z ,  H. Kaye, Kenneth M. Maloney, Bob Pr ie l ipp,  
L. Smith, Charles W. Trigg, and t h e  proposer. 

158. Proposed by M. S. Klamkin, Univers i ty  of Minnesota. 
I f  P(x) is an nth orde r  polynomial such t h a t  P(x) = 2X f o r  
x = 1 ,2 ,3  ,..., n+l, f i nd  P(n+2). 

So lu t ion  by t h e  proposer. 
Since 

it follows t h a t  

Thus, 

S imi l a r ly ,  

This  problem is r e l a t e d  t o  the  number of p a r t s  space ( E , )  can be  
divided i n t o  by m n-dimensional spheres,  every p a i r  i n t e r sec t ing .  
Also, t h e  problem can be extended by consider ing 
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which reduces t o  ( ~ + a ) ~  f o r  x - 0,1, ..., n. 

Also solved by L. C a r l i t z ,  Pa t r i ck  G. Carr, Peter  A. Deninno, 
Theodore Jungreis ,  H. Kaye, Stephen L. Nemerofsky, L. Smith and 
M. Wagner. 

BOOK REVIEWS -- 
Edited by 

Roy B. Deal, Oklahoma S t a t e  Univers i ty  

Mathematical Models i n  Physical Sciences. Edited by Stefan Drobot and 
Paul A. Vierback. Englewood C l i f f s ,  New Jersey;  Prentice-Hall; 1962. 
193 pp. 

This  i s  a book-length compilation of the  proceedings of an NSF con- 
ference he ld  a t  t h e  Univers i ty  of Notre Dame i n  1962. A l l  con t r ibu to r s  
a r e  prominent i n  t h e i r  f i e l d .  The theme of the  conference is "mathematics 
is a powerful instrument f o r  developing i n t e r d i s c i p l i n a r y  research." 

The eleven papers considered a wide range of sub jec t s  from a s tochas t i c  
approach t o  cosmology t o  some p rope r t i e s  of c e r t a i n  non- linear t r ans fo r-  
mations. 

A l l  t he  papers had one q u a l i t y  in  common. They were introduced by 
c l e a r  and simple explanat ions  of c e r t a i n  physical  problems and the  need 
f o r  a model f o r  t h e i r  study. In  each of  t h e  papers an attempt is made t o  
d e a l  with empir ica l  ideas.  Mathematical t rea tment  is he ld  t o  a minimum, 
although the  book conta ins  valuable  phi losophical  and s c i e n t i f i c  ideas  f o r  
t he  most advanced s c i e n t i s t  it is p r imar i ly  worthwhile t o  the  novice 
researcher .  The reason i s  t h a t  one can gain i n s i g h t  i n t o  how powerful 
t o o l s  a r e  developed a s  a r e s u l t  of r a t h e r  simple ideas.  

The t roub le  wi th  reading the  book is t h a t  a f t e r  completing it, the  
reader  has  e leven more sub jec t s  i n  which he would l i k e  t o  spec ia l i ze .  

Robert G. McIntyre 

Proceedinqs of the  Symposium on Time S e r i e s  Analysis. Edited by Murray 
Rosenblatt. New York, John Wiley, 1963. 497 pp., $16.50. 

This is a c o l l e c t i o n  of twenty-eight l oose ly  r e l a t e d  papers which 
were presented by prominent workers i n  t h e  f i e l d ,  who discussed t h e  p resen t  
s t a t e  of knowledge and considered c u r r e n t  b a s i c  problems i n  theory and 
app l i ca t ion  of time s e r i e s  analys is .  Although t h e  papers, a s  a whole, a r e  
well-written and thought provoking, they a r e  not  intended f o r  t h e  under- 
graduate o r  beginning graduate s tudent .  A more soph i s t i ca t ed  s tudent  w i l l  
f i nd  the  r e s u l t s  and t h e  b ib l iog raph ies  he lp fu l .  



A wide range of t o p i c s  is  included, and a h i n t  of t he  v a r i e t y  is given 
by t h e  t i t l e s  of t he  sub- divisions i n t o  which the  exposi t ions  a r e  placed: 
Regression Analysis,  Zeros of Processes and Related Questions,  Meteoro- 
l o g i c a l  Problems, S t r u c t u r a l  Problems, Spec t r a l  Analysis,  S igna l  Detection, 
and Estimation and Predic t ion.  This i s  a f i n e  book f o r  those working i n  
any of these  areas.  

Leone Y. Low 

P a r t i a l l y  Ordered Alqebraic Systems. By L. lwchs. Reading, Mass., Addison- 
Wesley, 1964. ix + 299 pp., $7.00. 

This book is  a survey o f  t h e  theory of  p a r t i a l l y  ordered groups, r ings ,  
f i e l d s  and semi groups, and much a t t e n t i o n  is given t o  t h e  f u l l y  and 
l a t t i ce- orde red  s t ruc tu res .  The book is reasonably se l f- conta ined and 
con ta ins  an extensive  bibl iography of  t h e  a r t i c l e s  and books w r i t t e n  i n  
t h i s  area. The author  considers  t h e  non-abelian case  a s  w e l l  a s  t h e  abe l i an  
s i t u a t i o n ,  and many th ings  a r e  done i n  g r e a t  genera l i ty .  The book is  
w r i t t e n  i n  a reasonable s t y l e ,  bu t  t h e  author  supposes t h a t  t he  reader  
has  a good knowledge o f  a b s t r a c t  algebra.  No exe rc i se s  a r e  included, b u t  
t h e r e  is a long l i s t  of  unsolved problems f o r  t h e  research-minded individual .  
I would recommend this book t o  any advanced graduate s tuden t  who is  
i n t e r e s t e d  i n  l ea rn ing  something about the  a lqebra i c  a spec t s  of  p a r t i a l l y  
ordered systems. It is  an Important add i t ion  t o  t h e  mathematical l i t e r a t u r e .  

Univers i ty  of  I l l i n o i s  David Sachs 

Kopfchen, ~ 6 p f c h e n l  By B. A. Kordemski. (German Transla t ion from t h e  
Russian by D r .  Klemens Junge.) Leipzig, Urania Verlag, 1964. 330 pp., 
DM 12. 

The f i r s t  214 pages of  t h i s  book pose 323 problems, some old,  some 
new, mome easy, some challenging. There a r e  many c l e v e r  and amusing 
i l l u s t r a t i o n s  i n  t h e  form o f  sketches.  Frequently t h e  sketches  a r e  i n  
two colors :  b lack and pink. Appropriately,  t h e  f i r s t  problem is a c l eve r  
one about two observant young Pioneers. The second p a r t  of  t h e  book is 
devoted t o  so lu t ions  o f  t h e  problems posed i n  t h e  f i r s t  p a r t .  

Since t h e  range o f  sub jec t s  is very  wide, many puzzle en thus ia s t s  
w i l l  wish t o  add this volume t o  t h e i r  co l l ec t ions .  The p r i c e  (only about 
$3) is modest f o r  such a well- printed, cloth-bound, a t t r a c t i v e  book a s  
this one. 

Univers i ty  of  I l l i n o i s  Franz E. Hohn 

8 1 
Calculus of Var ia t ions .  By L. E. Elsgolc.  Reading, Mass., Addison- -- 
Wesley, 1962. 178 pp., $4.50. 

This t r a n s l a t i o n  from t h e  Russian is one of  the  most concise  and l u c i d  
t rea tments  of t h e  ca l cu lus  of  v a r i a t i o n s  t o  appear i n  t h e  English language. 
'The aim of t h i s  book is  t o  provide engineers  and s tuden t s  o f  co l l eges  of  
technology with the  oppor tuni ty  of  becoming f a m i l i a r  with t h e  b a s i c  not ions  
and s tandard methods of  t h e  ca l cu lus  of va r i a t ions . "  The book does t h i s  
and even more by including a chapter  on su f f i c i ency  condi t ions  f o r  an 
extremum f o r  t h e  s tuden t  i n t e r e s t e d  i n  t h e  more advanced a spec t s  of  t he  
ca l cu lus  of  va r i a t ions .  

In  chap te r  one the  theory of  maxima and minima of funct ions  of 
ordinary  ca l cu lus  i s  r e c a l l e d  and the  analogous not ions  f o r  func t iona l s  
of t h e  ca l cu lus  of v a r i a t i o n s  is introduced. The fundamental lemma of  
t h e  ca l cu lus  of  v a r i a t i o n s  is  proven and t h e  Euler equat ion i s  es tabl ished,  

f x. 
y i e l d i n g  t h e  ext remals  of  t h e  func t iona l  F (x, Y, ~ ' ) d x .  ~ u n c t i o n a l s  

depending on funct ions  with two o r  more dependent v a r i a b l e s  and t h e i r  
de r iva t ives ,  func t iona l s  involving d e r i v a t i v e s  of  h igher  order ,  and 
func t iona l s  depending on funct ions  of s e v e r a l  independent v a r i a b l e s  a r e  
considered and t h e  corresponding Euler equat ion is  der ived f o r  each. As 
a d i r e c t  app l i ca t ion ,  Hamilton's p r i n c i p l e  ( ca l l ed  t h e  p r i n c i p l e  of 
Ostrogradski-Hamilton by t h e  author)  of  mechanics is s t a t e d  and i l l u s t r a t e d .  

Chapter two d e a l s  wi th  funct ions  wi th  v a r i a b l e  o r  movable boundaries 
and t h e  t r a n s v e r s a l i t y  condi t ions  a r e  e s t ab l i shed .  

Chapter t h ree  is  devoted t o  t h e  notion of  a f i e l d  of extremals,  t h e  
Jacob! condi t ion,  and t h e  Weiers t rass  function; a l l  a r e  needed f o r  t h e  
su f f i c i ency  condi t ion f o r  an extremum. 

I n  chapter  four,  v a r i a t i o n  problems with s i d e  condi t ions  a r e  discussed. 
Using t h e  Lagrange Mul t ip l i e r  t h e  i sope r ime t r i c  problems a r e  solved. 

And f i n a l l y  i n  chapter  f ive ,  d i r e c t  methods of  so lv ing  v a r i a t i o n a l  
problems a r e  introduced. These include the  method of f i n i t e  d i f f e rences  
and the  R i t z  method. 

Worked examples a r e  p l e n t i f u l  throughout t h e  book and unsolved 
problems a r e  included a t  t he  end of each chapter .  

One n i t p i c k  is the  use of  t h e  name Ostrogradski by t h e  author.  I n  
e s t a b l i s h i n g  t h e  necessary condi t ion f o r  t h e  extrema of  a func t iona l  
depending on funct ions  wi th  two independent va r i ab le s ,  i.e., f i nd ing  t h e  
extrema of double i n t e g r a l s ,  t h e  author  c a l l s  t h e  r e s u l t i n g  p a r t i a l  
d i f f e r e n t i a l  equation the  Ostrogradski equation, " a f t e r  t he  famous Russian 
mathematician M. B. Ostrogradski,  who discovered it f i r s t  i n  1834." This 
equation i s  commonly c a l l e d  t h e  Euler-Lagrange equation. 



According t o  Todhunter, t h e  f a c t s  a r e  t h a t  Euler,  about a century  before  
Ostrogradski,  was t h e  f i r s t  t o  t r e a t  t h e  v a r i a t i o n  of  a double i n t e g r a l  
i n  h i s  t r e a t i s e  on t h e  ca l cu lus  of  v a r i a t i o n s  i n  I n t e q r a l  Calculus. 
Euler made an e r r o r  i n  t h i s  work. Lacroix ' s  work, published f i r s t  i n  
1797 contained t h e  same e r r o r  of  Euler. This e r r o r  was l a t e r  co r rec t ed  
by Poisson i n  a memoir presented i n  November, 1831. F ina l ly ,  on 24 
January, 1834, a memoir was communicated by M. Ostrogradski t o  the  
Academy of  Science of S t .  Petersburg. In  t h i s  paper, Ostrogradski po in t s  
ou t  t he  e r r o r  of  Euler and confirms t h e  c o r r e c t  r e s u l t s  of M. Poisson. 
He claims no discovery of h i s  own. 

The author  a l s o  a t t aches  t h e  name of Ostrogradski t o  ~ a m i l t o n ' s  
p r inc ip le ,  named a f t e r  S i r  William Rwan Hamilton (1805-1865) To t e l l  
t h e  s tuden t  of mechanics t h a t  Hamilton's p r i n c i p l e  must n w  be c a l l e d  the  
Ostrogradski-Hamilton p r i n c i p l e  i s  l i k e  t e l l i n g  Americans t h a t  Columbus 
d i d  not  d iscover  America; bu t  our  f r i e n d s  t o  the  nor th  have done t h a t  tool  

Despite the  n i tp i ck ,  t h e  book is wel l- wri t ten  and w e l l  organized. 
Anyone i n t e r e s t e d  i n  l ea rn ing  something of the  ca l cu lus  of v a r i a t i o n s  
w i l l  f i n d  it of value.  

Research Analysis Corporation Richard H. Gramann 

Foundations of D i f f e r e n t i a l  Geometry, Vol. I. By Shoshichi Kobayashi and 
Katsumi Nomizu. New York, In tersc ience ,  1963. x i  + 329 pp., $15.00. 

This i s  a t r a c t  on modern g loba l  d i f f e r e n t i a l  geometry, w r i t t e n  very  
concise ly  and intended f o r  graduate study. By "global" is meant t h a t  t h e  
ob jec t s  of s tudy a r e  who d i f f e r e n t i a b l e  manifolds and t h e i r  add i t iona l  
s t r u c t u r e s ,  not j u s t  t h e  neighborhoods of a point.  This does not mean 
t h a t  l o c a l  p rope r t i e s  a r e  neglected b u t  only t h a t  they a r e  placed i n  a 
l a r g e r  context .  

The ma te r i a l  is arranged roughly i n  order  of t h e  r e s t r i c t i v e n e s s  of 
t he  s t ruc tu re :  d i f f e r e n t i a b l e  manifolds and t h e i r  t enso r  ana lys i s ,  Lie  
groups, f i b r e  bundles, cmnec t ions  on p r i n c i p a l  f i b r e  bundles, l i n e a r  
connections,  Riemannian connections,  Riemannian curvature  and space forms, 
and transformations of t hese  s t r u c t u r e s .  The amount of ma te r i a l  included 
i s  enormous, well-chosen, and c e n t r a l  t o  t h e  main a reas  of present  research.  
Although preference  is shown f o r  c e r t a i n  no ta t ions  and formulations,  c a r e  
is taken t o  expla in  o the r  no ta t ions  c u r r e n t l y  used and t h e i r  i n t e r r e l a t i o n s ,  
s o  t h a t  the  s tuden t  w i l l  develop access t o  most of t h e  o the r  important 
sources.  

Univers i ty  of I l l i n o i s  R. L. Bishop 

Univers i ty  Mathematics. By R. C. James, Belmont, Ca l i f . ,  Wadsworth, 1963. 
x i i i  + 924 pp. 

Professor James has  w r i t t e n  an ext raordinary  book f o r  beginning 
s tuden t s  of t h e  ca lculus .  I t  is an unusual work f o r  a number of reasons,  
most of them good ones, and w i l l  no doubt s t i r  up much controversy and 
debate wherever i t  i s  adopted a s  a t e x t .  The book con ta ins  a prodigious 
amount of mater ia l .  Chapter 1 is  an in t roduct ion t o  t h e  ideas  and 
techniques of t he  ca lculus .  The remaining chap te r s  cover s e t s ,  logic ,  
p robab i l i t y ,  con t inu i ty ,  l i m i t s ,  a n a l y t i c  and vector  geometry, area  and 
in t eg ra t ion ,  t ranscendenta l  funct ions ,  ordinary  d i f f e r e n t i a l  equations,  
ca l cu lus  of s eve ra l  va r i ab le s ,  vec to r s  and curves,  s e r i e s ,  l i n e a r  processes,  
mul t ip le  i n t e g r a l s ,  and vec to r  theorems. The major i ty  of co l l eges  w i l l  
f i n d  enough ma te r i a l  he re  f o r  a minimum of fou r  semesters of work. 

Perhaps the  most s t r i k i n g  f e a t u r e  of t he  book is its high degree of 
mathematical soph i s t i ca t ion .  The reader  is presumed t o  be i n t e l l i g e n t  
and mature ( too  much s o  i n  t h e  case  of many beginning s t u d e n t s ) ,  and w i l l i n g  
t o  do much of t h e  reasoning himself.  The theorems a r e  we l l  presented 
wi th ,  i n  general ,  e x c e l l e n t  accompanying t e x t  t o  motivate d iscuss ion,  and 
with non- t r iv i a l  i l l u s t r a t i o n s .  The problems a t  t he  end of each sec t ion  
a r e  except ional .  They a r e  numerous and va r i ed  and w i l l  t e s t  t h e  under- 
s tanding and imagination of the  b e s t  a s  wel l  a s  t h e  average student.  Most 
unusual i n  a beginning t e x t ,  t h e r e  is a c a r e f u l  t rea tment  of a rea  and 
volume along with t h e  development of t he  d e f i n i t e  i n t e g r a l .  

In  s p i t e  of  t he  f a c t  t h a t  t h i s  is a gene ra l ly  supe r io r  work, it does 
conta in  a number of drawbacks. What has  been a l ready mentioned a s  one 
of the  book's outs tanding f ea tu res  may a l s o  be i ts  g r e a t e s t  l i a b i l i t y  
a s  f a r  a s  genera l  adoption is concerned. The approach may be f a r  t oo  
soph i s t i ca t ed  f o r  a l l  b u t  t he  most s e l e c t  of pupi ls .  Considering t h e  
p resen t  l e v e l  of mathematics teaching i n  t h e  high schools,  t h e r e  i s  no 
doubt t h a t  t he  ma jo r i ty  of en te r ing  co l l ege  s tuden t s  f i n d  it  a d i f f i c u l t  
book t o  read and comprehend. Chapter 1, while laudable i n  i t s  i n t e n t ,  
f a l l s  considerably  s h o r t  of success i n  i ts  execution. The informal t r e a t -  
ment of t he  ca l cu lus ,  though non-rigorous, is f a r  t oo  t ax ing  f o r  t he  
neophyte i n  i ts  argumentation. I n  Chapter 5, t h e  author presents  an 
admirably u n i f i e d  exposi t ion of  the  l i m i t  concept us ing systems of s t ages  
bu t  h i s  t iming i s  not  good. For pedagogical reasons,  t h i s  gene ra l i za t ion  
of the  l i m i t  d e f i n i t i o n  seems b e s t  understood some of the  p a r t i c u l a r  
l i m i t  processes have been presented t o  t h e  s tuden t  and he  has  had a 
chance t o  work wi th  them i n  d e t a i l .  F ina l ly ,  t h e  book con ta ins  a l a r g e  
number of minor e r r o r s ,  typographical  and otherwise. 

Here is a t e x t  t h a t  would seem t o  be i d e a l l y  s u i t e d  f o r  t he  s p e c i a l  
s ec t ion  of a ca l cu lus  course  cons i s t ing  of supe r io r  s tudents .  There is  
much t o  teach i n  t h i s  book and wi th  enough time t o  spend both professor  
and s tudent  should f i n d  it h igh ly  rewarding. 

Carleton College Arthur L. Gropen 
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Elementary General To~ology.  By Theral 0. Moore. Englewood C l i f f s ,  New 
Jersey; Prentice-Hall; 1964. 

This i s  one o f  the best o f  the recent crop o f  textbooks i n  elementary 
point set  topology. I t s  quali ty  approaches that o f  the very f ine book o f  
Kelley's. In fac t ,  the author i s  very clearly influenced i n  h i s  presen- 
ta t ion  and choice o f  examples by Kelley's book. However, t h i s  t e x t  i s  
easi ly  accessible t o  the undergraduate with some experience in  abstract 
mathematics--e.g. a good algebra or real variables c o u r s e ~ w h i l e  not being 
too easy for the more advanced student beginning t o  learn topology. I t  
i s  very well and careful ly  wri t ten and organized and should serve as an 
excellent t e x t  for s e l f  study as well as for conventional classroom use. 

The subjects covered are the usual ones--elementary se t  theory, 
separation axioms, mappings, compactness, Peano, metric, product, function 
spaces. There i s  also a very nice elementary treatment o f  nets. The 
author merely skims se t  theory (he does not pretend t o  do otherwise). 
There are few proofs for other than very elementary theorems about set  
theory. However, the main useful theorems are care fu l ly  explained and 
the ideas o f  set  theory receive clear exposition. 

There are many interesting examples, some included among the exercises. 
The exercises are well-chosen t o  i l l u s t ra t e  the proofs and cover a wide 
range o f  d i f f i c u l t y .  They also serve t o  introduce material not covered 
i n  the t e x t .  The author includes discussions o f  the results  o f  some o f  
the more d i f f i c u l t  exercises. This has i t s  obvious bad points, but w i l l  
be a help t o  the s e l f  studier and non-specialized instructor. 

As a f ina l  recommendation, I point out that  I found surprisingly few 
misprints or errors o f  fact  or logic. This i s  indeed a very sat is factory 
l i t t l e  book, which no instructor should be afraid t o  present t o  h i s  under- 
graduates or ashamed t o  present t o  h i s  graduate students. 

University o f  I l l i no i s  Mary-Elizabeth Hamstrom 

NOTE: All correspondence concerning reviews and a l l  books for 
review should be sent t o  PROFESSOR ROY B. DEAL, DEPARTMENT OF 
MATHEMATICS, OKLAHOMA STATE UNIVERSITY, STILLWATER, OKLAHOMA, 
74075. 




