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MEHOD GF SECANTS FOR THE SOLUTI ON GF EQUATIONS

J. C. Peck, University of Southwestern Louisiana

Ore of the standard methods for finding the solution of equations
f(x) = 0 is the "cobweb" or "spiral staircase" method of iteration. This
method works fairly well if conditions are "just right;" however, if these
conditions are not properly satisfied, the method is uneconomical to apply
or may even fail to converge to a root.

Using the fact that a straight line approximates a curve over a small
interval, a variation of the method of iteration can be derived which
eliminates many of the conditions which must be satisfied for the standard
method. The new method assumes that the curve is nearly linear over a
small interval and can be approximated by a secant line over this interval.

Before discussing the method of secants it is best that we give a short
summary of the standard method of iteration. Let us assume that we have an
equation f(x) = O with real roots. This equation can be expressed as:

g(x) = h(x) where f(x) = g(x) = h(x).
We next form the two equations:

y = g(x) and y = h(x). (1)
The value of x at the intersection of the graphs of these two equations
is the value of x that makes f(x) = O

in the original equation. (Fig. 1)
Nov the problem becomes a problem of
finding the solution to the simultaneous y = h(x)

equations (1)

Let us now assume that we have an
approximation a to the root of the g Yy = g(x)
equation f(x) = 0. We now wish to
improve this approximation. Our first
step in refining this approximation is
to solve one of the equations (1) for
X. Solving y = h(x) for x yields Fig. 1
X = H({y). We now have the two equations:

root

'] S—

y = g(x) , (2)
and
X

= H(y). (3)

We then substitute our approximation a into (2) and determine w1
such that y3, = g(a). (Fig. 2) This value of y is then substituted into
(3) and a new value of x is determined. This new value of x is again
substituted into (2) and the process is continued until two successive
values of x are within the desired tolerance.

This method works very well for many cases; however, unless special
care is taken in selection of the equations (1), it also fails for many
cases. It is quite possible to choose these two equations in such a
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manner that convergence will occur at a slow rate (Fig. 3) or will not

Fig. 2 Fig. 3 Fig. 4 Fig. 5

x=H (y)

x=H(y)

_———— e —— -

y=g (x)
T a root a root
occur at all. (Fig. 4) Care must also be exercised when deciding which one
of the equations (1)is to be solved for x. |f the wrong equation is chosen,

divergence will occur. (Fig. 5)

The following method is a variation of the method of iteration which
forces convergence to occur much more rapidly and also finds roots of many
equations that the normal iterative method fails to determine.

The method begins to differ from the normal iterative method explained
above at the point where one of the equations (1)is solved for x. With
this new method either equation (1) can be solved for x and convergence will
occur. Solving y = h{x) for x yields:

g(x) (4)

Y
and

X

H(y) . (5)

We shall refer to the graph of (4) as curve 1 and the graph of (5) as curve
2.

Substituting our initial approximation a into our original equations
y =g(x) and y =h(x) , we get
two points: C(a,g(a)) on curve x=H(y)
1 and E(a,h(a)) on curve 2. y=h (x)
(Fig. 6) Substituting g(a)
into (5) yields a point F(j,g(a))
on curve 2, where j = H(g(a))«

One more substitution of j into g(a) < F
(4) yields a point D(j,g(j)) on
curve 1L D__ y=g (x)

h(a)

One can easily see that the
slope of &b is:

-g{i) - g(a)
M e

A root j

Fig. 6
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The slope of EF is:
h
(fa =

Consider a portion of Fig. 6. (Fig. 7)
Other expressions for slopes ¥ and Mg

are:
wm= 2, w - 2
or
Fig. 7
z = -Mx, z:(fay
-Mx = (fay.

Adding Msx to both sides yields:

(fax = Myx = My T (fax
(M - M)x =My + x)

x ___ M
X+y M-M

Now is the fraction of the distance from C to F where the perpen-

X
X +y
dicular from O is drawn. This ratio will tell us how far along the line
CF we should "slide" to take our next approximation for the root. Since
the distance from C to F is the same as the distance from a to 3,
our next approximation a' will be:

a' = a+ -({—a—'_”—yq—(j-a). (6)

We then repeat the process by using a' to find g(a') which is used to
find H(g(a')) which we can again call j. These results can then be
substituted back into (6) toyield a new a'. This process can be expressed
more compactly as:

B = A+ s (H(gla) - ) .

The ratio I—&m need not be calculated for every iteration; however,
convergence will occur in fewer steps if the ratio is recalculated for each
iteration. When the difference (H(g(a;)) ~ a;) becomes sufficiently close
to zero, we know' that we have found the root.

We have observed only the case where the slopes are of opposite sign
in the foregoing discussion. When the slopes are both positive, we have
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a graph somewhat like Fig. 8. In this case the ratio I-b—b'ki— is a

fraction with value greater than one so that when the difference {3 = a)

is multiplied by the ratio and
added to a, our new approxi-
mation has a value greater than
j. A similar argument holds
for the case where both slopes
are negative.

Several comparison tests were
run between the standard method of
iteration and the method of secants

<X=H(Y)

y=g(x)

Fig. 8

variation of the standard method.

Using the FORTRAN language and an
IBM 1620 computer for the calcula-
tions, roots accurate to 8 decimal

3

root

digits were sought for the equations ¥ = x - 30=0 and ¥ - eX =0

The methods compared as follows:

¥ =x~-30=0 Standard Method
g{x) = 6/x; h(x) = (x-1)/5

Root 6.00000000
Initial approximation 9.00000000
Number of iterations 83

¥ -eX =0
g(x) = ¥: hix) = &

Root diverged
Initial approximation 3.00000000
Number of iterations stopped at 97

Secant Method

6.00000000
9.00000000

5

~.70346742
3.00000000

8

In every case tested the method of secants converged more rapidly than did
the standard method; however, special cases can be devised where this

probably will not hold true. |In general though,

it appears that the method

of secants is a definite improvement over the standard "cobweb" method of

iteration.

A GENERALIZATION CF THE STRUCTURE F THE SENTENTIAL CALCULUS

Dennis Spellman, Temple University

1. Introduction.

All formulae of the sentential calculus may be expressed in terms of
conjunction, disjunction, and negation. If conjunction and disjunction
are interpreted as operations defined on the truth-values "t" and "p"
occurring in their truth-table definitions (or equivalently of substitute
symbols, e.g. "1" and "0")}, and if negation is considered a function of
these elements, then the resulting system is a Boolean algebra. In this
paper we shall consider a system having a remnant of Boolean structure, as
well as, containing a sub-system, the structure of which is identical with
that of the propositional calculus.

Let U = [0,1].

We define the following operations on u

P@g=P+q-pq
Pp®g = pg.

We make the following definition:

If P €U, then 5 =1 - p.
11 Interpretations of (u, @, O}~

Let p,g € U Let p be the probability of P and g be the probability
of Q and let P and Q be independent events. p®q, P®g, and P can

be interpreted as the probability of PV Q PAQ and ~P respectively
where "v" represents disjunction, "A" represents conjunction, "~" represents
negation. At the endpoints we have the operation tables below.

@ o1 ® o1
0 |of1 o |ofo
101111 1lol1

We note also that T=0 and 0 = 1. Consider the following tables:
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We see that the sub-system defined by the first set of "operation tables"
is indeed structurally identical to the sentential calculus.

p®x = px =-p,x € [0,1]--can be interpreted graphically as a line
segment having range [0,p] and passing through the points (0,0) and (1,p).

Yy
(0, 1) (1, 1) We see that the line segment can also
be characterized as the one originating
from the vertex (0,0) of the unit square
(1, p) [(0,0), (1,0), (A1), (0,1)] and terminating
| at a height p on the opposite vertical
(0peq) x side.

(0,0) (q,0) (1,0)

p®@x = (1= p) - x*t p--p, x € [0,1]1-- can be interpreted graphically
as a line segment having range [p,1] and passing through the points (1,1)
and (0,p).

(0,1) (1, 1) . .
Similarly, the line segment p® x can
also be characterized as the one origi-
(G peq) nating from the vertex (1,1) of the unit
square and terminating at a height p on
(0,p) the opposite vertical side.

(0,00 (q,0) (Lo’ X

Where p is not held constant but allowed to vary over U, p & x and
p® x may be interpreted as families of line segments in the plane--as
illustrated below.

AY y
(1,1 (1,1

P® x pOx

(0, 0 ¥ (0. 0) I

III. ProgertiesOf u @, ).
1

Let pqge U, i.e., 0L p< 1 and 0< g2
w0<pgslqggl

. is closed under ®

1-p>0

U= belU

q(l-p) 21-p
ppt+tqg(l-p) L (1-p)+p=1
Pp+g-pgil

s closed under @&,

cdooowm +C
NN m v

151
Theorem 1. B = p.

Proof. 1 - (1 = p) = p.

Theorem 2. ¥ p,q,r, POg=q0p, (PO Or=p0G (a®r),
0®@p=0, 1Op-=p.

The theorem follows from the properties of multiplication of real
numbers since p ® g = pg by definition.

Theorem 3. P ®q -

F® 3.
Proof. pPOg=1"pq
P®g = (1-p) + (1-g) - (1-p)(l-q) = 2 - p = q - (l-p-g+pq)
=1 = Pq
=P®T-
Alternate Proof.
Case |I. 0O<p, gl
E' (o}
Let OEOE = [(0,0),(1,0),(1,1),(0,1)].
c' Let EA=p, OB=gq, OD=7q, OA'=FP.
/ We recognize BC as p®gq and DC
A’ A as P®d§. Since oa'=p and OD =7,
. / we have E'A’ = p and [E = q.
r LE =(LE' =n/2 and & =0'E' =1
0 B E A A = AO'E'A' Dby S.A.S.
. L AE =L A'O'E!
Since [E and B'O' are opposite sides of
rectangle DEO'B', [E = 0'B'. But [E=g¢q, -0'B' =qgq. Nw L BC =1L 0'B'C’

=r/2 and @B = 0'B' q.
A GBC = A0O'B'C' by ASA.
BC = B'C'

But DC =1 - B'C’
SDC =1 - BC
SP@®T=1-(pOq)

Case II. p € U.
0@p=0=1
0®dp=1®pPp=1+P-1p=1
. 0 =0®P
I_CSP=§
1®pP=0®F=0+PF-0FP=F
L10p=1I®F

Consider the function y = f(x) =%, Given any y ¢ U, f: ¥ - y: hence,
f isontoU Let % = X.
I-% =1~ x
X T X
. f is one-one.
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Moreover x = ® is an isomorphism from (U, ® ) onto (U, @) since broof. mim L LR &> l-pFl-pmp-m2l-n
= f f -
£(p O q) (p) © £(q) Theorem 8. r{pOqgls &> F_POF_L and
Theorem 4. ¥ p,q,r, P®ag=g®pP, (PAOPO®r=p®(@®r), 1®p-=1, I{P@®ags &> FLPFOTLE
°@p =P Proof. Let r < pP®q  s.
Proof. The theorem follows immediately from Theorem 2 since x - X is S1l-r>1-(p0Oq) =pP0Og21l-s
an isomorphism from (u, ®) onto (U, ® ). SELP®TLT
et S{P@PDggLE.
Theorem 5. A P@®a=7P07 Sl-s{POaLl-rx
B. BORO - Ok ~ROR® - O np2PgEsE
C POR® - Ok = OR O - OB similarly r < p®q_s => 5. POT_LT .
Proof. A. Let p=TF, g =F§8.
Erom_Theorem 3, T@®Ss=r ® s. v Other Properties.
P®a =507
p®@qgq=pP07 "#" is to be read: "not identically equal to."
P®a =307 .
. . o p®P=p+pP-PF =2p-p2 £ P
B. since ® and @ are both commutative and associative, POP=PF ZP
generalized commutative and associative laws hold for both. P@®P=p+(l-p) -p(l-p)=1-p+p #1
Under the isomorphism x = X, the image of the generalized POP=p(l -p) B0
product: B (& -+* ® P, Iis the generalized sum of the 12 ® (/3 @ 1/4) = 1/4
images: pi @ ‘- @ Q. and (1/2 O 1/3) ® (/2 O 1/4) = 13/48
) _ _ ) PO @@®r) £ (PON® (PO
C. Part A establishes that x = ¥ is also an isomorphism from /2 @& (1/3 O 1/4) = 13/24
(U, @) onto (U, O). and (/2 @ 1/3) O (1/2 ® 1/4) = 5/12
. like in part B, Sp@®(@O@r) £ (P®qg O (P® 1)
i ij .o = D s 00 B . .
& P RO OR We know that in a Boolean algebra a < o' = a®b = 0.
B , o _ _ 1/3 - 34 = 1i/a
Vp, 1@®p=21 < 1has no additive inverse. 172 O x =1 = x = 24U. Uz B 34 0
1/2 has no multiplicative inverse. |In general, inverses do not exist. © #

Pl & pOg=0.

We are familiar with the following three properties of the 2 relation:
if p,g,r are real numbers then

v. From Another Viewpoint.

1. pgp
2. pZg, qr = p_.r Another truth-functional connective is defined by the table below.
3. p_.a - p => p=g. .
—~ 49 9 _ P QO |PLQ
The following theorems show that < is an inclusion-like relation in
55 T T F
v, ®. 0). E T T
Theorem 6. ¥ P, q, 0-_prPOaq_P_pP®g_ 1. E 1:: g
Proof. Since 0 . p _ .1, 0 q_ 1 ’
0-.pg=pO®qglp It is, perhaps, an unwieldy ingredient in the business of evaluating the
and 0 Z q(1 - p) truth-values of compound statements, but it is not at all artificial for it
Swpip+ql-p) =p@®g_1 represents the exclusive sense of the word "or". Since all formulae of the
SL0<Zp@®ag_p_pPp®g_ 1l propositional calculus can be expressed in the terms of conjunction and
Theorem 7. PP P2l " B = B _ <P LB .
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negation alone, they can certainly be expressed in terms of "exclusive

disjunction", conjunction, and negation. Again we may consider * fle and
‘A" as operatives defined on "T" and "F" and consider "~" as a function
of these truth-values. Consider the tables below.
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. F Al P T
-—‘-————- I/(2)
F F T F F F REFERENCES
T T F T F T
+ 10 1 -lo 1 o ) o .
e vim g 0ol o 1 o]lo o 1 R, Le Blanc, Statistical and lndictive Prohahilities Prentice-Hall, Inc.,
T ETT - 111 o 1lo 1 Englewood cliffs, N. J., 1962
F| F T Fl T F , W.v. Quine, Mathematical Logic, Harper and Row, New York and Evanston,
1962.
We see that the truth-values under the operations " lll" and "A" are isomorphic
to the integers modulo 2 and also to themselves under the operations "=’ 3 I. M. Copi, Symbolic Logic, The Macmillan company, New York, 1954.
and "v" where "-" is the biconditional. Since 1/(2) is a Boolean rina with .
unit, the others are also. 4. N. H. McCoy, Introduction to Modern Algehra, Allyn and Bacon, Boston,

We may make the following definitions of operations on U:

P@a=p+q” 2pq
p®ag=p0q
P®a=1-p-q+2pq
P@®a=pr@q.
I shall state without proof some of the properties of (u, @, ®) and
(U, ®, @). U is closed with respect to all four operations.
Theorem. p W q =757 and
P®a=PF @ §-
Nov we see that x - X is an isomorphism from (U, @, ®) onto

(U, ® @), and vice-versa.

1960.

Hence, we need explore the properties of only
(v, ® @).
Theorem. ¥ p.q.r, P@®a=q@p, (pDg) @r=p@(q®r),
0@p=p 1/2Q@p=12 1@p=5
Theorem. A. In general inverses do not exist.
B. @ does not distribute over @ .

c. p@®p % 0.
In the same way that interpretations of

interpretations can be given to p@q and p ®&gq. At the endpoints of

(U, ®, @) we have the operation tables below.
®|o 1 0o 1
0 0 i 0 0 0
1 1 0 1l0 1

This sub-system is isomorphic to 1/(2) and the other two rings.

P®g and p@q are given.




A MYTHCAL HISTORY O THE JARGON G- MATHEMATICS
Billie McLaughlin, Portland State College

Thousands of years ago mathematics was simply an ordinary occupation.
When a person said he was a mathematician, no one shuddered, or stuck his
fingers in his ears, or gave him a look of thorough distaste. Rather, this
announcement was met with giggles, snickers, and even chortles. Wy should
the people not have laughed? Al that mathematicians did was to sit around
drawing circles and triangles, muttering "alpha squared plus beta squared
equals gamma squared.” It hardly seemed an appropriate pastime for the
grossly retarded. Naturally, mathematicians felt they were fully competent,
and the constant disparagement began to undermine their morale. Soon they
were breaking out in sppts and showing neurotic tendencies like tics, para-
noia, persecution complexes, and disassociative reactions. Several were
even more severely struck and became schizophrenic. O course, their work
was hampered by their lack of mental stability; and mathematics went into a
catastrophic decline, causing it to fall into even greater disrepute than
before.

This was almost the end of the field of mathematics.

However, one of the saner mathematicians, in a lucid moment, realized
that mathematics was doomed unless this group of pathetic psyshotigs re-
ceived immediate help. So he took the group to the nearest accredited
psychotherapist to see if therapy could not help them.

Fortunately, the therapist was able to help these wretches. He immedi-
ately put them in group therapy, and it was here that mathematics was actually
saved. After a few sessions, they had gained insight enough into their prob-
lem to consider a solution. Their problem (ignoring the extraneous factors
of incorrect toilet training, Oedipus complexes, and sueh) was that they
were suffering from deep insecurity and thwarted snobbery. Their profession
certainly gave them no prestige; they had either to change jobs or do some-
thing to mathematics.

Thanks to the psychotherapist, they were able to devise a way to save
their beloved profession. He had talked to them at one of the sessions
(about their improvement, historians think), and no one understood a syl-
lable. Hot damn! If only they could manage to garble their speech in the
same way, they could cure their problemsl

At the very next session they began to work on what was to become a
most successful jargon. Since they could not use jargon for the existing
concepts, they decided to start branching out, making up anything which
scemed reasonable; for now they would have jargon to hide any inconsisten-
cies. The few who had not yet recovered from their psychoses were put to
work creating the new jargon since they spent most of their time babbling
nonsense anyway.
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O course, a plan of such divine simplicity worked marvelously. Ore
needs only to look at the work done in a small section of plane analytic
geometry to realize the genius of these men. A retired butcher had found
his way into mathematics. Having been a butcher all his life, he kept in
practice with his cleaver by attacking wooden cones with it. One particular
day, one of his words to use was "conic." "Cone," "conic:" there was a
resemblance, so he created the conic sections (curves created by slicing a
cone in various ways). He was quite inventive, and he used his day's quota
and requested three additional lists. (Thiswon for him a solid gold cleaver
and the steer of his choice.)

Out of the conic sections came the hyperbola, parabola, circle, ellipse,
a straight line, a pair of straight lines, and a point. All of these fig-
ures had common properties or properties common to at least some. The hyper—
bola has all the gualities--axes of symmetry, one being conjugate, the other
transverse; two branches; two asymptotes: a latus rectum for either branch;
and eccentricity. It also has two ridiculous definitions, neither of which
makes much sense. Hw often does a person feel compelled to talk about the
locus of a point whose distance from two fixed points has a fixed difference?
But the jargon was working. The definitions and properties sounded impres-
sive, perhaps made sense to a few, and baffled everyone else.

The men in calculus had a problem different from that in plane analytic
geometry. They had been assigned to this branch because they had no ability
at all in drawing. A1l sections of geometry had refused to take them, and
these unartistic men were trying to create some form of mathematics which
required no drawing. Wesks went by, and still they had nothing to call
calculus but the name on their door. W they were asked to double as the
janitorial staff, they decided they must attack the problem differently.

Since none of the men could conceive of doing any mathematics without
a picture, they decided to borrow sketches from other fields. Perhaps if
these blighted artists could add a new line or two and give a reason for
doing so, they could claim that they had finally invented calculus. Anyone
can draw a line with a ruler, so they tried it. They even found something
to describe what they had done: they had taken the derivative of the equa-
tion of the figure and shown its geometric interpretation.

Nw that they had started, they were creating volumes of work. The
original derivative was called the first derivative because they had found
second and third derivatives. Naturally, these were not simply first or
second derivatives but first or second derivatives taken with respect to a
given variable. The derivative was obtained by differentiation, not by
derivation. The mathematicians even founded a concept which they named
‘'the partial derivative,” taken with respect not to a partial variable but
simply a given variable.




The men were so excited about actually creating calculus that they
turned in their mops permanently and had a celebration. Feeling sublimely
daring from all the wine, these dedicated mathematicans boldly created a

concept even more ludicrous than that of differentiation--antidifferentiation.

When they were sober, they realized that they had committed a ghastly error
by simply putting a negating prefix in front of the name of the former con-
cept and changed the latter's name to integration. Since they had been able
to differentiate all sorts of functions--algebraic, logarithmic, trigono-
metric--they might integrate these functions. W they integrated they had
an integral, but they had all types of integrals. There was the definite
integral, the indefinite integral, also the improper, the iterated single,
the double, and the triple integral. They even claimed that they could find
areas, volumes, first moments, moments of inertia, and work by integration.

Wok in all branches of mathematics was as successful as it was in plane
analytic geometry and calculus. The jargon was created, and the resourceful
mathematicians were able to find concepts for it. Muh of the vernacular
is quite impressive today because it is either utterly misleading or means
absolutely nothing unless the listener has a Master's degree in mathematics.
A logarithm sounds like a pulsating piece of felled tree, the deleted neigh-
borhood a problem for the NAA.CP. Who was the witch of Agnesi? Are you
a surd? Wha is Lipschitz's condition? After a person casts out nines, does
he have a Baire function? |Is society safe from the standard deviate? Do
shrinking and stretching transformations hurt? Is the sheet of a surface
usable on a bed? Is the class called Life Drawing a person's first Baire
class? Do amicable numbers love each other? will the annihilator get you?

It is quite apparent that jargon has absolutely solved the problem of
the ancient mathematicians. Since they unleashed their powerful vernacular
on the public, the guffaws and chortles have been replaced by awful sighs
and reverent silence. Wwo nowv would dare to laugh when a mathematician
opens his mouth? Wop understands but the smallest part of what a mathema-
tician utters? Wo listens?

HEBEVIENTARY MATRICES EXARESED |IN THRMS (F THE KRONECKER DH.TA
Mak E Christie, Bowdoin College

The Kronecker Delta is defined as: 61j =14if 1 =3, 6l =0 4f 1 £ 4.

It is possible to express an elementary matrix entirely in terms of the
Kronecker Delta, using it to represent the elements of the matrix under con-
sideration. The process of finding the precise K-Delta expression for a
given elementary matrix is essentially one of trial and error. 1t is known
that the statement must contain the general term Gij’ and other terms to

express any non-zero off diagonal elements and any diagonal elements equal
to zero.
By way of example, consider the elementary matrix PPI defined as an

n X n matrix such that every element on the principle diagonal is 1 except
for the pth and qth rows. In these rows the diagonal element equals zero,
while the element in the pth row and gth column equals 1, as does that in
the qth row and pth column. Al other off diagonal elements equal zero.

Consider the following expression written in terms of K-Deltas:

p__ = [&

pq 13+ By = 8yp) By = 844)]

To demonstrate that the above statement is true, it is necessary to show
the following three properties: (1) that one can express any qu by the

expression; (2) that PPIPPCI =1 = [ﬁij]; (3) that premultipl_iéation of a
matrix A by PPI (in the K-Delta form) does change the pth and gth rows of A.

. — - - 6 H
(1) consider PPI [61j + (éiq Gip) (ﬁpj qj)]
if 41 £ porqg, then the expression equals [Gij],

if L =p, = [6
£ Pppq [pj

i= = [6
if L Ppq [qj

+ (0 - 1)(6pj - qu)l = [bqjl,

+ (1 -0) (Gpj = qu)] = [5Pj].

It is clear that our K-Delta form can express any qu
n
2 = [4 d = d
(@) et Bopg = [45)(855) = XAyl

n
=kZ=31 (83 +(8y =0y ) (B =0} 116y (0 =0y ) (6p570q37]
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= 6 -6 6, . (6, -6 6 -6

kZ_lwikékj (akq kp)(pj qj) * kj( igq ip)(pk qk)

6, -6 6 -6 6, -6 1.
+ 1q7%1p? Cpx qk)(kq kp) pi~ qj)
Expanding the second term:
= -8 . -6_6_.)=1(6, -6 6 . -6 ).

6ik“skqépj ij 6kJ kp qJ) ¢ iq ip)( pJ qj)

Clearly the expansion of the third term will yield the same result. Now

factoring (qu _ in) (6pj - qu) and expanding the last term:

= - 6 . -6 1+41+6 -1-1+6 .
quppq [Gij # r(ﬁiq ﬁip)( p3 qj”( Pq qp”
But qu = GCZP =0 saince g # p.

= [6,.].
Therefore, ququ [ 13]

(3) using the notation of (2), we have:
P A - Edlka"kj ;(6 ix * (6 - 6ip) (ka - qu)Uaij’

if i #qgorp, ten idikaﬁcj = {aij"

K=1
n

if i =p, then :L;ldikakj = [8+(0-1) (epk-ﬁqk)lrakj1 = raqjl,
n

if 1 =gq, then );ldikakj = [64+(1-0) (6 Oe) 11240 = fagy!-

Thus we know that the K-Delta representation under consideration does indeed

correctly express P__.
y p pa
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ADDITION AROGRAM KR TURING MACHINE

J. Woeppel and M. Wunderlich
State University of Nav York at Buffalo

Many people consider that the Turing machine is the abstract proto-
type of a digital computer. Therefore, anyone who plans to master
computer science might find it useful to first become acquainted with
this theoretical device conceived by A. M. Turing in 1937. [1]

For our purposes the Turing machine consists of an infinite tape
divided into squares called "cells" and a device called the "sensing
device" which is able to sense the symbol in the current cell, that is
the cell where the sensing device is presently resting, and replace this
symbol with another symbol or leave it as is. The symbols are E, Z, O,
and 1, though a person could introduce any finite number of symbols. The
tape can be moved to the right one cell at a time or to the left one cell
at a time, or left at the current cell.

We assume that all data on the tape is given in binary notation with
the lowest order bit to the extreme right of the word which may consist
of an arbitrary number of cells (i.e., the usual order in which numbers
are written). The tape is originally assumed to have all E's in the cells
left of a given cell and a 2z in the cell immediately to the right of this
given cell. The symbols in these cells are never changed. The remaining
cells have either a O or a 1 in them and these symbols may be replaced by
either a 0 or a 1. The given cell also has either a O or a 1 in it which
may be replaced by either a 0 or a 1

One could imagine the tape to appear as follows:

tape
clefelefefelele] [2[ [ [ [ [ [ [ [ ]|

move tape left move tape right

m Sensing device

Note: Blank cells have a 0 or a 1 in them.

The "given cell" is positioned at the "sensing
device." We move the tape not the sensing device.
Later on we will find it convenient to name the cells. It must be
remembered that the machine does not recognize names for the cells; it
is only for our convenience. The "given cell" above is called the "AC";
the cell containing "2" (the next cell to the right) is called the "origin”
or "zero cell"; the remaining cells are numbered 1, 2, 3, ... to the

right from the "origin." The following diagram illustrates this:
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Aac 0 1 2 3 4
clelefefelefefef Je] [ [ [ [ [ ]|

Note: Blank cells have a 0 or a 1 in them.

The "current symbol" is defined to be the symbol in the cell at the
sensing device. Each cell is referred to as a "location." The numbered
cells are referred to by their number, e.g. loec. 27; this is the 27th
cell right of the origin. When we say that we move the tape to loe. N,
we mean we position the tape so that loc. N iS at the sensing device.

A specific set of instructions which the machine is asked to execute
is called a "program”, and tre n instructions of a given program are
consecutively numbered 1, 2, 3, through n.

Following Arden's [2] method, we will have only three basic instruc-
tions which the Turing machine can execute:

(a) If the current symbol is x, move the tape one cell to the left
and execute instruction y. Otherwise, execute the next instruction.
This instruction is denoted symbolically IFL x,y where x is a symbol
and y is an instruction number.

{b) If the current symbol is x, move the tape one cell to the right
and execute instruction y. Otherwise, execute the next instruction.
This instruction is denoted symbolically IFR %,y where x is a symbol and
y is an instruction number.

(¢} If the current symbol is x, replace it with z, then execute the
next instruction. Otherwise, just execute the next instruction. This
instruction is denoted symbolically IFS x,z where x and z are symbols.

We have deviated slightly from A. M. Turing's [1] and subsequent
authors' definition of a Turing machine in order to make its analogy
with the modern day computer more apparent: of course, the machine
described above is not a stored-program computer. For example, Turing
does not number his cells, thus he has no "locations."

A. M. Turing presents an argument in [1} that a machine such as
described above is capable of performing any calculation that a computer
is able to perform. So, let us see how we would add two four-digit binary
numbers together. To do this with only the three basic instructions
requires one hundred or more instructions and is very difficult to follow.
To avoid this, we introduce "macro instructions."” Each macro instruction
must be defined by a program of previously defined macro instructions or
basic instructions.
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We will now list the macro instructions and give their defining
programs in a few cases:

(a) 1IFL 1% Move the tape to the left one location -and then
execute instruction y.

1 IFL 0,y

2. 1IFL 1,y
3. IFL 2,y
4., IFL E,y

Since this is the first program which has been presented, we will
explain it briefly to the reader. We know when this program is executed
that the tape is moved to the left one cell and instruction y is executed.
since each symbol appears in one of the four instructions.

(b) 1IFR 'Y Move the tape to the right one location and then
execute instructions y.

(c) TRA ‘2 Transfer to instruction y. (Execute instruction ¥y
next.)

1 IFL .2
2. IFR 'Y

(@) HALT The machine halts. (The state of the machine remains
the same indefinitely without affecting the tape;
used to stop the machine, e.qg. at the end of the

program. )
1. TRA .1
25 5a00
(e) 1IFS X Replace the current symbol with x and then execute
the next instruction. (Note, the current symbol

can not be 2 or E and x can not be 2 or E.)

1 IFS 0O,x
2. IFS 1,x
3. e

(f) MITR N,y Move the tape to the right N locations and then
execute instruction y.

1 IFR .2
2. IFR ;3
C

i. IFR ,(i+1)
(i+l). .uus

N. IFR  , (N+1)
(N+1). TRA L,y
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(g) MTL M,y Move the tape to the left M locations and then
execute instruction vy. 1 MTA ,2 5. |ES ,0
2. TRA 0,6
(h) TRA x,y If the current symbol is x, execute instruction y. 3. MIP N4 3. NABP O0,%
Otherwise, execute the next instruction. 4, TRA 0,7 8. MTa ,5
(i) MIrP N,y Move the tape to loc. N and then execute instruction 1 We shall explain this program briefly. First we move the tape to the
Y. AC and test to see if there is a O there by instructions 1 and 2. If there
1. TRA E.3 is a 0 there, the left-hand column of the table is pertinent and we wish
2. MTR 1"1 to leave the 0 in the AC and Ieavg \_Nhatever symbol. isin lpc. N there. So
3. TRA Z,5 \ we merely move the tape to the origin and execute instruction y (by
4. ML 1.3 Qxecuting Instruction 6}. If there is not a O there, we go on to )
5 ML N:y instructions 3 and 4 which move thg tape to loe. N and test to see if
there isa 0 in loc. N If there is, we wish to put a 0 into the AC and
() MTA Ly Move the tape to the AC and then execute instruction a 1.|nt9 loc.'N. Instructhns 7, 8, and o operatlng_ln that order,
v. accomplish this. [If there is not a O in the AC we wish to put a 1 into
the Ac and a O into loec. N. Instruction 5 alone accomplishes this since
(k) CLA N,y Put the symbol which is presently in loe. N into the there is already a 1 in the AC
AC leave the tape positioned at the origin (loc. 0),
and then execute instruction y. Note, the symbol (b) ADN N,M Add the symbol in lec. N to the symbol in loc. M.
in loc. N is not changed. If the sum is less than or equal to 1, the sum is
placed in loc. N and the AC remains unchanged. |If
(1) SsTO N,y Put the symbol which is presently in the AC into the sum is greater than 1, a 1 is put into the AC
loc. N, leave the tape positioned at the origin, and and a O into loc. N. In both cases the tape is left
then execute instruction y. Note, the symbol in at the origin and the next instruction executed.
the AC is not changed
1. MIP M,2 6. QA M8
l. MA L2 5 MIP 0O,y 2. TRA 0,8 7. IFS ,1
2. TRA 0,6 6. MTP N,7 3. MIP N, 4 8. MIP 0,9
3. MIP N4 7. IFS ,0 4. TRA 0,7 9. auus
4. IFS .1 8. MIP 0,y 5. IFS ,0
Ve will now introduce three instructions which give us the body of our The dots in instruction 9 indicate that the next instruction is to be
addition program. The first instruction adds the contents of the AC and executed.
the contents of a location. The second instruction adds the contents of . . . . . .
two locations. The third is a combination of the first two and is the Again we will briefly explain the program. The T'rSt W TS
only instruction of the three which actually appears in the addition move the tape t9 loc. M and test for_a 0. If therg is a 0 there, the sum
program. of the symbols in loc. N _and loc. M is the symbol. in loc._ N, so we mere-_ly
move the tape to the origin and execute the next instruction (by executing
; Instruction 8). |If thereisalin loe. M, we go on to instructions 3
[ ARE ;¥ iLrtl-:-tt);ebz(;heA%mfo;n&nzlosv.ril:ea?cti thazdt;ibtlt;ebsi%mbol and 4 which move the tape to loc. N and test for 0. |If there is a0
binary sum. Put the Ieflt—hand bit of the double there, the sum would be 1, so we transfer to instruction 7 which puts a
bit sum obtained into the AC and put the right—hand 1l into loe. N and then we move the tape to the origin and execute the
bit of the double bit sum obtained into loc. N. next instruction (by executing Instruction 8). |If there is no O in loc.
Leave the tape positioned at the origin and execute o we Lk FO Bak a_l_into the AC andiajoNiinto loc: L To_do this_we g0
instruction y. to.lnstructhn 5 which puts a 0 |nt0_19c. N, then instruction 6 brings the
z 0 1 1in loe. M into the AC and we are finished.

X

double bit loc. N and loc. M, the AC was left unaltered.
sums

0 00 01 } It must be noted that except in the case where there is a 1 in both
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(¢} ANM NM Add the symbol in the AC the symbol in loe. N, and
the symbol in loec. M together. This sum is less
than 4. Express it in a binary form (two bits),
put the left-hand bit into the AC and the right-hand
bit into loc. N. Leave the tape at the origin and
execute the next instruction.

1. AA N,2
2. ADN N,M
3. aaas

To do this we use the first two instructions. Let all sums be
expressed as double bits. The first instruction adds the symbol in the
AC and the symbol in loc. N and puts the right-hand bit of the sum into
loec. N and the left-hand bit of the sum into the aAc. The second instruction
adds the right-hand b:.'t of the previous sum now in loc. N and the symbol
in loc. M and puts the right-hand bit of this sum (the sum of the symbol
now in loec. N and the symbol in loe. M) into loec. N. If the left-hand
bit of this sum is 0, it does nothing to the AC thus leaving the left-
hand bit (highest order bit) of the previous sum of the symbols in the
AC and loe. N undisturbed (there is no carry for this sum). |If, on the
other hand, the left-hand bit of this sum (the sum of the symbol now in
loc. N and the symbol in loc. M) is 1, it puts a 1 into the AC In this
case, the left—hand bit of the previous sum, that is the sum of the symbols
in the AC and loc. N, is lost but it would have been 0 anyway because the
total sum, that is of the AC loc. N, and loc. M, has to be less than 4.

The following program adds a number A and a number B where A is in
locations N-3, N-2, N~1, N; and B iS in locations M-3, M2 M-1, M and
stores the results in N-4, N-3, N-2, N-1, N (where the highest order bit
isin N3 or M3 for A and B respectively). Note, N and M must be > 4
and |M - N| > 4.

1. MTA .2 5  ANM N-2 M-2
2. IFS ,0 6. ANM N-3,M-3
3. ANM N,M 7. STO N-4,8
4. AWM N-1,M-1 8. HALT

Instructions 1 and 2 put a 0 into the AC since there is no initial
carry. Instructions 3, 4, 5 and 6 add the ones' bit, twos' bit, fours'
bit, and eights' bit of the binary numbers A and B and the previous carry
together respectively putting the lowest order bit of each sum into
locations N, N-1, N-2, and N-3 respectively, and putting the highest order
bit of each sum, that is the carry, into the AC Finally, instruction 7
puts the final carry into location N-4  Thus the sum of A and B appears
in locations N-4, N-3, N-2, N-1, N. Note, by merely adding extra ANM's
we could increase the maximum magnitude of A and B.

We have shown that a simple machine such as described above can perform
addition of positive integers. Subtraction could also be handled easily
by writing an instruction which would replace a number by its complement.
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To subtract a number B from a number A, we would replace B by its comple-
ment and add it to A. For example, if we assume that we are working with
a maximum of three- digit binary numbers, the complement of the binary
number 0101 (5) is 1011 which is the first number, 0101, subtracted from
binary 10000 (16). The assumption that we are only working with three-
digit binary numbers is required since we must have a way of telling
whether a number is a complement quantity or not. Note, the four-digit
representation of binary five is also binary eleven. For this purpose
we reserve the extreme left-hand bit of a four-bit word; if it is a 1,
the next three bits are a three-digit complement quantity; if it isa O,
the next three bits are a regular three-digit quantity. W could also
put negative numbers on the tape in their complement form.

We have not mentioned multiplication or division or decimal quantities.
Multiplication and division could be taken care of by still more compli-
cated programs using addition and subtraction as developed above and a
shift instruction. Decimal quantities could be handled by the manner in
which the data was placed on the tape. That is, one could presume that
the decimal point lies after the first ten places of all numbers.

Thus, it is reasonable to say that the Turing machine can perform any
calculation that a computer can perform. But is a computer capable of
calculating everything that a Turing machine is able to calculate?

Recently many authors including M. 0. Rabin and D. Scott [3] have come
to the conclusion that the Turing machine with its infinite tape is too
general to serve as an actual model for digital computers. They base
their argument on the fact that the Turing machine has an unlimited
amount of memory space on its tape while an actual computer would have a
limited amount of memory space.
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A MULTIPLICATION-FREE CHARACTERIZATION CF RECIPROCAL ADDITION

James Williams, cCarleton College

Motivation.

Reciprocal addition, which we shall represent by the symbol "e," is
defined, in terms of the real number system, by

1/(1/a + 1/b) = ab/(a + b),
0

aob
aoo

(a, b, a+b # 0)

and 1s commonly used with an ideal infinity element w with the properties
aou=a and at w=w. In such applications as parallel - series problems
in electronics, for instance, the operations of addition and reciprocal
addition frequently occur together (the constants O and w corresponding
to the two extremes of short and open circuit values) exclusive of the use of
multiplication; it is therefore of interest to develop an axiomatic charac-
terization of *+ and o independently of the notion of multiplication.

We begin with a listing of some properties of R*, the real number system
with w and the operation o adjoined.

1. We use the mapping
£(x) = 1/x, 0 # x # w; £(0) = wp f(w) =0
to show that R* is a dual system:
a, b, a+b # 0, w =

(1) f(-a) = 1/(-a) = -1/a = -£(a)
(2) f(a +Db) =1/(a + b) = (1/a)(1/b)/(1/a t 1/b)
=1/a o0 /b = f (a) o f(b)
f(a ob) = 1/(1/(1/a + 1/b)
=1/a+ 1/b = f(a) T f (b)
(3) f(ab) = 1/ab = (1L/a) (1/b) = f(a)f(b)

The argument for special elements proceeds by definitial patching thus:

(1) -w

= w
(2) ao
a -

a, a+w=w, ao0=0 a#0 = ao (-a) =w
W W= W

w
w
11 *+ and o are correlated independently of multiplication by the
relation

ab
a+b

(a® + 2ab)/(a + b)

a(a + 2b)/(a + b)

2a(2a + 4b)/(2a + (2a + 4b))
2a o (2a + 4b)

a+ (aob) =a+ (a, b, a+b # 0, w)

We now proceed to investigate a system TI with special elements o and
w, with a monary operation ' , and with binary operations * and o,
satisfying axioms I - VI for all elements a, b, ¢ inT.
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Definition i.
Let N be the set of positive integers; ¥ n ¢ N,
l-~a=a, (n+ l)a=na+a
a/l = a, a/(n+ 1) =a/mnoa.
Axioms.
I. a+b=b+a; aob=boa
11 (a+b)tc=at (b+ec); (aob)oc=ao0 (boec)
III. a+0=a; aow=a
IV. 0'=0; w =w O0Fafw => (a+a'"=0 and aoa' = w
V. ao0=0
ViI. at (aob) =2a o0 (2a T 4b)
Theorem I. ¥ a b e T,
1 (2a/2) = a
2 2a=0 = a=0
3 a=a' = (a=0 or a=uw)
4 a+w=uw
5. aob=0 = (a=0 or b=0)
a+b=w = (@a=w or b=uw
6. T#{0)] = 0#w
7. aob=w = a'=bhb;
a+b=0 = a'=>b
8. (a+b)'=a'+b'; (aob)'=a'"ob'
9., 2(a/2) = a
10. 2(a o0 b) = 2a 0 2b; (at b)/2 = a/2 + b/2
Preof I+3.
a=a+ (ao0) =2ao0 (2a + 4-0) (I1I, V; VI)
= 2a o 2a = (2a)/2 (111, def)
Proof 1.2.

If 2a =0, then
(I.1; hyp, def; III)

RPreef +=3-
If a=a and a # ~ ,then
2a=a+a’'®™o0 (IV, hyp)
a=20. (1.2)
Therefore, a=a' = (a=0 or a=uw .
Preet 4
(1) If a=0, then
a+w=0+cw=uw. (hyp, III)
(2) (Lemma) If r#w and rt s=0, then
F'=r'+0=1x'4+ (r + s) (III, hyp)
=(r'tr)ts (11)
=048 =s. (IvV, hyps III)
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{3) (Lemma) |If 2a =, then
a=2a02a=wow=w. (1.1, hyp, I1II)
(4) (Lemma) If a # w, then
(2a)’ = (2a)' + 2 - 0
= (2a)' + 2(a t a") (111, def; IV, hyp)
= ((2a)* t+ 2a) + 2a’ = 2a"’. (I1; IV, hyp; 111)
{(5) If O #a#uw then
at (aoa') =2ao0 (2a*t4a"), (V1)
at w=12a0 ((2a t 2a') + 2a') (Iv, hyp: def, II)
=220 ((2a t (2a)") * (2a)") (4)
= 2a o (2a)"'. (Iv, 3, hyps III)
(6) Therefore a#w = atw-= w (1,5)
If a=w then + w = 2wy suppose 2w # w, then
(7)) w=2wtw:= 3w {hyp, 6 with a = 2w; def)
2w = w+t w=w+ (wo w (Gef, IIXI)
= 2wo (2wt 4w (v1)
= 2w o (3w + 3w) (def, II)
= 2w 0 (w+ w) (7)
= 2w 0 2w = w (def, I.1)
Contradiction, therefore waeT, at ws= w
Proot 15
If aob=0 and b # 0, then
a=aow=ao (bob') = (aob) o b’
=0o00bd'=0. (I1I; IV, hyps; IIy hyp; V)
Therefore, aob=0 = (a=0 or b= 0).
Similarly, if a+b=w and b # w then
a=a+o0=a+ (b+Db') = (a+b) + b’
=w+ b’ w. (III; IV, hyp; 11; hyp; 1.4)
Proot 1-6-
I1f T# {0}, axeT: X # 0; suppose O = then
OFX=X+0=%X+w= w. (hyp, III, hyp, I.3)
Contradiction, therefore T # {0} = 0 # w.
Preoet =+
If aob=w and T = [0}, then a' =0 = b.
(8) If aob=w and T # {0}, then a# O since
a=0 = 0=0o0ob=aob=uw. (v, hyp, hyp)
Contradiction by Theorem 1.6.
a'=a'ow=2a'o (aodb) =(a'oca)oebdb
=wob=D>~ (111; hyp; 11; 1V, 8; 111)
(9) Similarly, if at*b =0 and T # (0}, then a# w since
a=@w = w+b=a+b=0. (1.3, hyp, hyp)
Contradiction by Theorem I.6.
at=a to=a +(atb)=(atato
=0+b=> (III; hyp; 11; IV, 9 111)
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Preef 18-
If a =0, then
(aob)'! =(0ob)'=0'"=0=00b'=0"'"o0Db'
=a' ob'. (hyp, v, 1V, V, IV, hyp}
If a#0 and b # 0, then
(aob) o(a ob’) = (aoa') o (bob")
= wo w=W. (1, 11; 1V, hyps 111}
Therefore, (aob)' = a' ob' by Theorem I.7.
If a=uw then
(a+b)' =(w+b)' =w =w=w+d'" =w +Db'
=a t+b' (hyp, 1.4, IV, 1.4, |V, kyp)
If a#w and b # w then
(atp)+ (aetbp')y=(ata)t+ (pt+tp"
=0+ 0=0. (1, II; IV, hyp: 11I)
Therefore (a* b)' =a' *+b' by Theorem I.7.
Preef 9-
suppose O # a# w :
at (aoa'/2) =2a o0 (2a*t 4(a'/2)) (VI)
at (aoa') oa' =2ao0 (2at 4(a’'/2)) (def, II)
at (woa') =2a o0 (2a + 4(a'/2)) (Iv, hyp)
ata =2ao0 (2a 1 4tat/2)) (II1)
0=2ao0 (2a t+ 4(a'/2)) (Iv, hyp)
Therefore either 2a =0 or 2a t* 4(a'/2) = 0 by Theorem I.5.
But 2a =0 = a=0 by Theorem 1.2, and a # 0, therefore
0 =2a+ 4(a'/2) = 2a + (4(a/2)) ' (1.8)
2a = ((4(a/2))')' = 4(a/2) = 2(2(a/2)) (1.7, def)
(2a)/2 = (2(2(a/2)))/2, a = 2(a/2). (1.1)
Finally:
2(0/2) = (0o 0) T (0 00) =0+ 0= 0, (def, 111, III)
2(w2) = (wow T wo w = w+ w=w. (def, 111, 1.6)
Proof 1.10.
2(a 0 b) = 2((2a)/2 o (2b)/2) (1.1)
= 2((2a 0 2b)/2) (def, II)
= 2a 0 2b. (I.9)
(at b)/2 = (2(a/2) + 2(b/2)/2 (1.9)
= (2(a/2 + b/2})/2 (def, II)
=a/2 t bv/2 (I.1)

et Hreorem.

I' is a dual system; that is,
formed by replacing each occurrence of
(respectively) is also a theorem in T.

+,

for each theorem T in T,

o,

0 and w with

o,

+,

the statement T*

w and O
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Proof.

Axioms | = IV are self-dual. Theorem 1.2 is the dual of Axiom V. The
dual of Axiom VI is proved as follows: For any given x and y inT, let
a =x/2, b =y/4, then

2a = 2(x/2) =X (1.9)
4b = 2(2b) = 2(2(y/4))
= 2(2((y/2)/2)) = 2(y/2) =Y.
(def, 11; hyp; def, 11; 1.9; I.9)

Making the appropriate substitutions in Axiom VI then gives
¥ X, yeTI;
(10) x/2 t (x/2 0y/4) = x o (xty)

The meta-theorem is completed by noting that if T is any theorem with
a proof P, then T*, the dual of T, will have a proof P*, each step of which
is the dual of the corresponding step in P.

At this point it would be nice to know how close T comes to representing
the notion of a field. |In one direction, beginning with any field, we may
construct all of the axioms of T just as we did for the real numbers, with
the one exception that the derivation of VI requires the principle 1.2:
2a =0 = a =0, thus eliminating fields such as I/(2). In the other
direction, however, the answer seems |less clear: Theorem II contains some
partial results.

Definition ii.

We classify T by writing for each k € N,

Tesg iff #aeTl, k(a/k) =a
TemT iff ¥vaeT, (ka)/k = a
(11) Lemma.
If T e S, 8¢, then ¥ aeTl
pa(a/pq) = plal(a/p)/q)) (def, II)
= pla/q) (T e s5q)
= a (I‘ € SP)

so that T € Spg. Similarly, TeTpl Tq = T e Tpy.

(12) Lemma.

If TesS_ NT, then ¥ p € N

q

(pa)/q = (plala/q)))/a (T ¢ sq)
= (g(p(a/q)))/q (11, def)
= p(a/q) (T ¢ Tq)

(13) Lemma.

Tespg = (a/p=
a = p(a/p)
Similarly, T € Tp

w), sinceif a/p = w, then

w = E
= pw o (T € s I.4)
=

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

Lemma

If T e Se.;, then (ka=0 = a=0 = (a/k-w = 2w,

for suppose

1) ka # 0, 2) a/k = w, and 3) a# w then
w=aoa/(k - 1) (def, hyp 2)
a=(a/(k~-1)"'=a'/(k " 1) (1.7, 1.8)
(k- 1a=(k=-1)(a'/(k - 1)) =a' (T e Sp_y)

ka = (k- 1ata=a +a=o0.
Contradiction by hypothesis 1.
Therefore (a# 0 = ka#0) = (a/k=w = a=w.

(def; IV, hyp 3)

Basic Lemma for Theorem 11
k-1
vael, ¥keN If Tehl
n=1
then T ¢ 8

(SnnTn) and ka=0 = a =0,

" 1 Ty.
We shall prove T € 8 and show T € Ty by a duality argument.

We begin with proofs for special cases:

If a
if a

= 0, then k(0/k) = (x-0)/k = O, (III, V)
= w then k(wk) = (kw)/k = w . (r1r, I1.4)
The cases for k=2 and k = 4 follow directly from the fact
that T e N [52' S4: Sg. ***), which in turn follows from Theorem
1.9 and Lemma 11.

We next prove the case for k = 3 as follows: if 3a# 0 and
a#w then a/6 # w sinceif a/6 = w, then

a/3 = 2((a/3)/2) = 2(a/6) = 2w = w.
Contradiction by Lamma 14.

2aoa=ao (ata) =a/2*t (a/2 0 a/4)
a/2 t a/6 (def; 10; def, II)
(2a o a) +a/e = af2taset a'/6 = a/2

(II; 1.6; IV, a/6 # 0, III)

o

2(2a oa) *+ 2(a's/6) = 2(a/2) = a (a4, def; 1.9)
2(2((2a o a)/2)) + 2((a'/3)/2) = (1.9; def, II)
4((2a)/2 o a/2) + a'/3 = (def, 11; 1; 1.9)

4(a/3) + a'/3 = (r.1, def)

3(a/3) t (a/3 1 (a/3)") = (def, 11; 1.8)
3(a/3) = a (v, 14, hyp; 111

Finally, by induction for any k > 4, choose O # a # w, then

a/2(k - 2) # w by 13, since T € S, (k-2) by Theorem 1.9,
hypothesis, and Lama 11.
(k = 4)a* # 0 by 13 since T ¢ Ty_g-

(k - 4)a# w by Theorem 1.5 since a # w by hypothesis, and
therefore (k - 4)a/k # w by l4.
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Having dispensed with the preliminary details, we make the following
computation:

at [ao ((k=a)a')/2(k = 2)] =2a o0 [2a+ 4[((k = 4)a')/2(k = 2)]]

[VI with b = ((k - 4)a')/2(k = 2)]

= 4[{a/2 o [a/2 T ((k = 4)a')/2(k - 2)]] (1.9, 1.10)
=4[a/2 o [(k = 2)(a/2(k = 2)) t ((x = 4)a')/2(k - 2))]]

(T € Sk_z)

= 4{a/2 o [(k - 2)(a/2(k = 2)) * (k = 4)((a'/2)/(x - 2))]] 10)

(1.

= 4la/2 o [(k = 2)(a/2(k - 2)) + (k - 4) ((a'/2)/(kx - 2))]] 12
= 4[a/2 o [(k = 2)(a/2(k = 2)) *+ (k = 4)(a/2(k - 2))']]

(r.10, 1.8)

= 4[a/2 o 2(a/2(k = 2))] (Iv, 20)

= 4[a/2 oa/(k = 2)] (def, 11; 1.9)

Therefore,
at [ao ((k - 4)a')/2(k = 2)] = 4(a/k) (def, 1I)
at [((k - 4)a)/(k - 4) 0 ((k - 4)a')/2(kx - 2)] (T € Ty_y)

at ((x —4)a')/x

(def, 1I; IV, 21; III)

at [((k- 4)a)/kl’' = 4(a/k) (1.8)

Adding ((k = 4)a)/k to both sides gives
a = 4(a/k) + ((k - 4)a)/k (def, 11; Iv, 22; III)
= k(a/k) 1 (def, II)

- (SnnTn) and ka=0 = a=0, then

T ¢ sy by 16, 17, 18, and 19,

Therefore, if T e N
n

To arrive at T ¢ Ty, we note that the above proof takes the form "if P

and Q, then R" [where P is T'¢ " T;), Q is ka=0 = a=0and
R is T ¢ sk)]. Since P and P* are identical, and since P and Q

= Q* by 14, P and Q = P and Q*; finally, P and Q* = R*
by the meta-theorem, so that P and Q =» R and T ¢ Tk.

Definition iii. T =T - (w].

Fheorem 34

With respect to suitable definitions of multiplication,

1. If for some prime integer p and for all ae€ |2, pa =0, then
I+ is a vector space over 1/(p), the ring of integers modulo p.

2. If T¥ has a prime number of elements p, then T is derivable
from 1/(p) .

3. If ¥ael+* and ¥ne N, na=0 = a=0 then T isa
vector space over the field of .rational numbers.

Proof 1I.1. 17s

Assume pa =0 for all a ¢ Tt, for some prime integer p.

(23) (Lemma) We note that IY is a prime order abelian group with
respect to addition as a result of Axioms I-1V and the above
assumption.

(24) Considering [n] ¢ I/(p) as an equivalence class of n, we
define, v ae¢ I¥, ¥ [n] ¢ I/(p),

[n]a = na.
[n]Ja is well defined since if ([n] = [m], then (n - m) = 0 (mod p}
and therefore (n =~ m)a=0, na = ma

Theorem 11.1 now follows from the fact that any additive p-order Abelian

group forms a vector space with respect to definition 24 of multiplication.

Proef -2

Assume I+ has p elements for some prime integer p.

Then, with respect to addition, I+ 1is a cyclic group, so that by
Theorem 1I.1, it forms a one dimensional vector space with respect to
definition 24 of multiplication.

(25) To extend the scalar-field properties of |72, we choose an
arbitrary normalizing constant a ¢ 1?2 = (0}, and define
x-y = [k(x)] [k(y)la where
[k(x)]a = x, [k(y)la =vy.

(26) We also define 1/x by
1/x =y <> x°y = a

(27) (Lemma) ¥ n<p, wael, (na)/n=n(a/n) =a since, by
induction, we have first T ¢ (S3 N T,) as mentioned in Lamma
15; then if T ¢ ﬂl;:i (s, N T,) for some k < p, then
a#0 = ka# 0 by Lemma 23 and therefore T ¢ s t T, by
Lemma 15. The induction stops with k = p = 1L

(28) (Lemma) If n # O, then
(na)+(a/n) = [k(na)] (k(a/n)]a) (25, def i)
= [n] (a/n) (25, 24, 25)
= n(a/n) = a. (n ¢ [n], 27)

Therefore 1/(na) = a/n by definition 26.

Finally, we choose x, y ¢ I = [0} such that x' #y and compute

xoy=1/(1/x) o 1/(1/y) (26)
= [1/k(1/x)a] o [1/k(1l/y)al (25)
= a/k{1l/x) o a/k(l/y) (28)
= a/[k(1/x) + k(1/y)] (def i, II)
= 1/[k(1/x) + k(1l/y)]a (27)
= 1/(k(1/x)a + k(1/y)a] (def i, II)

1/01/% + 1/y]
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So that 0 is algebraically determined by the field properties of T+

and the co
Proet H-3-
Assume

(29)

(30)

(31)

(32)

(33)

(34)

(35)

nventions for special elements (e.g. a tw=w.

vaeIt, vwkeN ka=0 = a=0.

We define ¥ k € N,
(-k)a= ka', a/(-k) = a'/k, 0+a = 0.

(Lemma) By analogy with Leammma 27 of the previous proof, we conclude

T e “k:1 (S N T,), so that, in view of definition 29, ¥ k € 1,

k(a/k) = (ka)/k = a.

YaelIt, ¥vp gel, q# 0, we define

(p/qla = (pa)/q .
The above multiplication by rational numbers is well defined since
if p/@ = Pa/%s if Pos @y Poy Qe € I, and if q, @ # 0O,
then P, = mq /-

(p/m)a = ((ma/m)a)/a (31)
= ((pama)/as )/ (31)
= [[aq(pa)l/aa)l/x (def i, II)
= [q[(pa)/wll/a (12, 30)
= (pa)/@ = (m/x)a (30, 31)

Assuming the normal field properties for rational numbers, the
field-[vector space] correlation laws are proved as follows:

1+ x=x (def i)
(p/q) [(x/s)x] = [p[(rx)/s]l]l/aq (31)
= [[p(rx)]/s]l/q (12, 30)
= [(pr)x]/qs (def i, 1I)
= (pr/qs)x = [(p/q) (x/s)]x (31)
(p/q) (x + y) = [pP(x + ¥)]/q (31)
= p{(x + y)/q] (12, 30)
= pl{g(x/q) + qly/q))/q) (30)
= pl(a(x/q + y/q))/ql (def i, I, II)
= p(x/q + y/q) (30)
= p(x/q) + ply/q) (def i, I, II)
= (px)/q + (py)/q (12, 30)
= (p/a)x + (p/q)y (31)
(p/q + r/s)x = [(ps + qr)x]/qgs (31)
= [(ps)x + (gr)x]l/qgs (def i, II)
= [1/gqs] [ (ps)x + (qr}x] (31, 32)
= [1/qgs) [ (ps)x] + [1/gs][(qgr)x] (34)

(p/q)x + (r/s)x (33)

REFARCH FROBLEVIS

Proposed by GEORGE BRAUER, University of Minnesota.

The real-valued functions on (-«,=) is a semi—-group, if we define the
product of two such functions by

(1) £ xg=g(£(t)) .

The function x acts as identity and each constant function c¢ has the
properties:

(2) c x f

f(c) ,
(3) fxec=c¢c .

If we denote the set of real-valued functions by S, and the set of constants
by 1, we have

(4) Ixsc1I, SxI=1I.

Moreover, if we define f > g to mean that £(t) > g(t) for all t,
then S is right partially ordered, i.e.,

(5) f>h = f xg> fxh.

Problem: oObtain properties of abstract right partially ordered semi-groups.
What algebraic properties, in addition to (1) = (5), would constitute a
characterization of the semi-group of real functions? What properties would
characterize the sub semi-groups?

Proposed by SIM KaH, University of Minnesota.

Examine, heuristically, the geometry of geodesics on a cylinder in order
to obtain a set of axioms of incidence and order. Using these axioms,
deductively develop a geometry and attempt to find models, other than the
cylinder, to which this geometry applies.
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FROBLEM DEPARTMENT

Edited by
M. S. Klamkin, Ford Scientific Laboratory

This department welcomes problems believed to be new and, as a rule,
demanding no greater ability in problem solving than that of the average
member of the Fraternity, but occasionally we shall publish problems that
should challenge the ability of the advanced undergraduate and/or candidate
for the Master's Degree. Solutions of these problems should be submitted
on separate signed sheets within four months after publication.

An asterisk (*) placed beside a problem number indicates that the problem
was submitted without a solution.

Address all communications concerning problems to M. S. Klamkin, Ford
Scientific Laboratory, P. 0. Box 2053, Dearborn, Michigan 48121.
ARCBLAVIS FOR SOLUTION

177. Proposed by c. S. VENKATARAMAN, Sree Kerala Varma College, Trichur,
South India.

If s is the semi-perimeter and R, r, r,, rz, and rz; are the circum-,
in-, and ex-radii respectively of a triangle, prove that

R N 2s®
Fh = nrzra

178. Proposed by K. sS. MURRAY, Nev York City.

Show that the centroid O A ABC coincides with
the centroid of A A'B'C'_where A, B', and

c' are the midpoints of BC, CA, and AB,
respectively.

c

Generalize to higher dimensions. Al
179. Proposed by DONALD SCHROEDER Seattle, Washington.

It is well known that
52,
13* + 14°.

Generalize the above by finding integers a satisfying
an

m
Z(a+k)a = Z. (a+k)?.
k=0 =m+1
-
180. Proposed by R. C. GEBBHARI, Parsippany, N. J.

In the figure, AB = BC and LABC = 90. The arcs are both circular
with the inner one being tangent to AB at A and BC at C

179
Determine the area of the crescent.

B

t8l. Proposed by DONALD w. CROME University of Wisconsin and M. S. KLAMKIN,
Ford Scientific Laboratory.

Determine a convex curve circumscribing a given triangle such that
1. The areas of the four regions (3-segments and a triangle)
formed are equal and
2. The curve has a minimum perimeter.
SOLUTIONS
I65. Proposed by D. J. NEWMAN, Yeshiva University.
Express cos ® as a rational function of sin® 0 and cos® @.
Solution by R. C. Gebhart, Parsippany, N. J.
Since
1. 4 cos® O=3cos 91 cos 30,

2. 256 cos® 9 sin® 8 =6 cos ® - 8 cos 38 * 3 cos 79 = cos 98,
3. 64 cos 9 sin® 8 =5cos 9 - 9 cos 3¢ + 5 cos 58 - cos 76,

4, 256 cos® 8 = 126 cos 9 + 84 cos 39+ 36 cos 59 + 9 cos 79 + cos 96,

5. 64 cos ® cos° 0= 35cos 91 21 cos 30+ 7 cos 59 + cos 79,
cos 9 is a linear combination of the left-hand sides of equations 1-5,
i.e., COs A = A cos® 8+ B cos® 6sin® 91 Ccos @ sin® 8 + Dcos® 6
+ E cos 8 cos® e.

It then follows that

A=2,B=C=D=1, and E=- 2.

2 cos® 9 t (cos® 8) (sin® 8)2 + (cos® 8)°
1 - (sin® @) + 2(cos® 6)*?

Also solved by K. S. Murray, P. Myers, and F. Zetto.

Whence,

cos 8 =

7. Proposed by M. S. KLAMKIN, Ford Scientific Laboratory.
Given a centrosymmetric strictly convex figure and an intersecting
translation of it; show that there is only one common chord and that
this chord i s mutually bisected by the segment joining the centers.

Solution by the proposer.
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*
168.

If the two ovals intersect in more than two points,
then each oval would contain at least three
parallel and equal length chords. The length

and direction being the length and direction

of the translation. This is impossible

since the middle chord must be larger than

the outer equal ones by strict convexity.

If A and B denote any pair of
centrosymmetric points of the
first oval and A' and B' the
corresponding points of the
translated oval then AA'BB

is a parallelogram. It then
follows that the entire figure
(both ovals) is cen'trosymmetric
about point M the midpoint of
the segment joining the two
centers. Since D and E are the
only two double points, they must
correspond to each other, i.e.,
be centrosymmetric with respect
to M. Note that this generalizes the well known result for two
intersecting congruent circles.

Also solved by M. Wagner.
Proposed by JERRY TOMER North High School (student), Columbus, Ohio.

Determine x asymptotically if

log X = nlog log x.
Solution by Sydney Spital, California State Polytechnic College.
The given equation may be rewritten as

(1) " = log x

whose limiting solution is easily seen to be x = e. To determine X
asymptotically, we let x = e(lL T 6) and assume (to be justified
subsequently) that 6 = O(F)' Substituting back into (1), yields

1 L
vn 2 = Y
e [1+0(n=)] 1+6+0(n=).
Thus,
6=e" - 1%0(%).
Since e =1+ 0(%), our previous assumption is justified and the
desired asymptotic behavior is given by

x = et + o(da) = e(ll/n) + 0k .

Also solved by Paul 3. Campbell, K. S. Murray and F. Zetto.

169.

170.

181
Proposed by JOE KONHAUSHR University of Minnesota.

From an arbitrary point P (not a vertex) of an ellipse, lines are
drawn through the foci intersecting the ellipse in points Q and R
Prove that the line joining P to the point of intersection of the
tangents to the ellipse at Q and R is the normal to the ellipse
at P

Editorial Note: The proposer notes that he does not know the source
of the problem and he has not been able to locate it in any of the
books he has examined.

Solution by s§. schuster, University of Minnesota.
L}
s = QR is the polar of 8. Then B
H(PT,US)7; and ¥(QP,QT;QU,QS)
is a harmonic set of lines. The
projectivity (defined by the conic)
between the lineson Q and the
lines on P makes the correspondences:
QP - PB', QT - P’, QU- PR, QS - PQ.
.« A(PB',PT;PR,PQ). But since
LA'PQ = LB'PR, we have PT . PB"
Other interesting properties of the
figure are:
BB' + PQ, AA L R,
AB . BS and BA + AS .

Also solved by Paul Myers and the proposer. s

Editorial Note: It would be of interest to supply a nonprojective
proof.

Proposed by C. S. VENKATARAMAN, Sree Kerala varma College, India.

Prove that a triangle ABC is isosceles or right-angled if

(1) a®> cos At b cos B = abc.
The solutions by Paul J. Campbell, University of Dayton, and Marilyn

Mantel, University of Nebraska were essentially identical and are
given as follows:

Replacing cos A and cos B by the law of cosines, i.e.,
.t - g. &t -
cos A = 2be ’ cos & Zac '

(1) reduces to (after some algebraic manipulations)
@+ -f)y@ -p)? =0
which implies the desired result.
Sydney Spital, California State Polytechnic College and the proposer

use the projection formula
acos Bt bcosA=C
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171.

to obtain
(a® - b%) (b cosB~-acosA) =0
which implies the desired result.

Also solved by H. Kaye, P. Myers, M. Wagner and F. Zetto.
Proposed by MURRAY S. KLAMKIN, Ford Scientific Laboratory.

For 0< 0 < m/2, it is well known that the inequality

sin @

L
r s cos® @

holds for m = 1. Wha is the smallest constant m for which it
holds?

Solution by the proposer.

It follows from the power series expansions that py > % We now show
that it suffices to have m :% , i.e.,
1) sinf 0otane > @°.

Since the l.h.s. and the r.h.s. of (1) are equal at 8 =0, it
suffices to show that the derivative of the 1.h.s. is greater than
the derivative of the r.h.s. of (1), i.e.,

(2) 2sin® 0+ tan® 0 > 307 .
Similarly to establish (2), it suffices to show

(3) 4 sin @ cos0* 2tan @ sec® @ > 60 ,
or
4) 4 cos 20+ 2 sec* 9 +4 tan® @ sec® @ > 6.

(4) follows since it can be rewritten as
(sec* @) (sin* ) (3 + 4 cos® @) > 0 .

Sydney Spital, California State Polytechnic College, establishes the
above result by showing that

n(e) = log (8 csc @)

log sec O

is monotone decreasing on (0,7/2]1 and then the desired minimum
value of m is given by
limit m(@) =
e - 0

wi-

Also solved by Paul J. Campbell, H. Kaye, Paul Myers, and Ricky Pollack.
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BOK RRMIBAS

Edited by
Roy B. Deal, Oklahoma State University

General Theory of Functions and Integration. By Angus E. Taylor. New York,
Blaisdell Publishing Company, 1965. xvi + a37 pp., $12.50.

A rather thorough self-contained treatment of certain aspects of analysis,
basically concerned with the development of Lebesgue measure, then the
Lebesque integral, followed by treatment of the Daniell integral and then
measure, establishing the inter-relatedness of the two, and providing the
necessary topological background in the beginning with many interesting
related concepts such as signed measures, LP spaces, vector valued functions
of bounded variation, and Stieltjes integrals developed throughout.

Brelude to Analysis. By Paul C. Rosenbloom and Seymour Schuster. Englewood
Cliffs, New Jersey, Prentice-Hall, 1966. xix + 473 pp-

A unique textbook in which a vast number of important mathematical concepts
are skillfully woven into pre-calculus material, using a variety of peda-
gogical techniques to establish these concepts at an elementary level. It
does not contain trigonometry, however, as the authors feel that this should
be developed by the use of calculus.

A Concept of Limits. By Donald W. Hight. Englewcod Cliffs, New Jersey,
Prentice-Hall, 1966. xii T 138 pp., $3.95.

A brief but rather complete treatment of the elementary theorems of |limits

of real sequences and real functions with some history and many examples and
exercises designed to lead the reader with a high school algebra and trigo-
nometric background to a thorough understanding of the fundamental concepts.

Linear Statistical Inference and its Applications. By C. Radhakrishna Rao.
Nev York, John Wiley, 1965. xviii T 522 pp., $14.95.

Perhaps the most comprehensive modern treatment of statistical theory and
methods available, treating analysis of variance, estimation, large sample
theory, statistical inference, multivariate analysis with many facets of

the modern fundamental concepts of each, and a rather thorough treatment

of mathematical prerequisites such as vector spaces, including Hilbert
Spaces, probability and measure theory, and necessary excerpts from analysis.
It presupposes a mathematical maturity at about the advanced calculus level
and some knowledge of elementary statistical theory and methods.

Vector Analysis. By Barry Spain. Princeton, Newv Jersey, Van Nostrand, 1965.
ix + 114 pp., $5.95.

A brief but thorough treatment of the mathematics of classical vector analysis

from a classical point of view with a brief introduction to classical tensor
analysis, omitting all applications.
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Topological Structures. By Wolfgang J. Thron. New York, Holt, Rinehart and
Winston, Inc., 1966. x * 240 pp.

A modern self-contained treatment of general topology, with historical and
motivation remarks, which proceeds from a very elementary introduction to

some rather difficult advanced theorems in twenty-three brief chapters.
Although the book is brief, there is an excellent bibliography and enough
difficult but important theorems and exercises to warrant a year's study.

In addition to the classical topics of general topology, there are modern
treatments of quotient spaces, nets, filters, uniform spaces, proximity spaces,
topological groups, and paracompactness and metrization.

Introduction to Basic Fortran .Em.gmmma_nd. Numerical Metheds. By William
Prager.

Based on lecture notes prepared for a one-semester course for students of
applied mathematics with limited mathematical background, covering Fortran
programming with applications to computing with polynomials, interpolation,
quadrature, solution of equations and integration of ordinary differential
equations.

Albert Einstein and the Cosmic World Order. By Cornelius Lanczos. New York,
Wiley—Interscience, 1965. vi T 139 pp.

An outgrowth of a public lecture series at the University of Michigan
in the spring of 1962 called "The Place of Albert Einstein in the History Of
Physics,” written by one of the outstanding mathematics expositors and a
former associate of Einstein.

Modular Arithmetic. By Burton W. Jones.

An excellent book for secondary school teachers, outstanding high school
students, or for college students who might wish to use it as an elementary
secondary reference on modular systems.

BOOKS RECEIVED FOR REVIEW

Henry E. Fettis and James C. caslin. Ten Place Tables of the Jacobian
Elliptic Functions. Aerospace Research, United States Air FOrce, Wright-
Patterson Air Force Base, Ohio, 1965. iv t 562 pp-

Fisher and Ziebur. Calculus and Analytic Geometry. Englewood Cliffs, New
Jersey, Prentice—Hall, 1965. xiii T 768 pp.

John N. Fujii. Numbers and Arithmetic. Nev York, Blaisdell Publishing
Company, 1965. xi *+ 559 pp., $8.50.

Einar Hille. Analytic Function Theory, Volume 11. New York, Ginn and
Company, 1962. xi11 + 496 pp.

J. Nagata. Modern Dimension Theory. New York, John wiley, 1965. 259 pp.,
$11.00.

L. B. Rall, editor. Error in bigital Computation, Voiume I1. Newv York,
John Wiley, 1965. x T 288 pp., $6.75.

Seaton E. Smith, Jr. Explorations in Elementary Mathematics. Englewood
Cliffs, Newv Jersey, Prentice-Hall, 1966. xv ¥ 280 pp., $5.95.

Hans F. Weinberger. A First Course in Partial Differential Equations with
Complex Variables Transform Methods. Newv York, Blaisdell PublsSting
Company, 1965. ix * 446 pp.

Herbert S. wilf. calculus and Linear Algebra. New York, Harcourt,

Brace
and World, Inc., 1966. xiv T 408 pp., $8.50.

NOTE Al correspondence concerning reviews and all books for review
should be sent to FROFESSOR ROY B. DEAL, DEARIMENT (F MATHEMATICS
KLAHOMA  STATE UNIVERSITY, STILLWATER, CKLAHOMA, 74075.
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ALABAMA ALRHA, University of Alabama

Brenda Jo Alexander
Edwin Glenn Bishop

Gary Thomas Brewster
Robert Letcher Brown, Jr.
Charles Morgan Butler
Der-San Chen

Larry Wayre Christian
James Creed Clayton
Ronald Terry Cooper

John Joseph Dearth
Robert Michael Dennis
Stephen Alan Doblin

Dale Dan Doreen

Edward Lynn Englebert
George Lawson Finch
Dwight Marshall Folmar
Richard Andrew Fry
Dietwald Adalbert Gerstner
Earnest Robert Harrison
Randall Neal Heartsill

William Frederick Heathcock

Charles Morrell Hess, Jr.
Rodger Paul Hildreth

ALABAMA BETA, Auburn University

Richard F. Ashford, Jr.
Henri Lou Coleman
Rachel Ann Corey

John Drewry Foy, IIL
Kay Kight Hardwick
Mary Ann Long

Sandra Elaine Holloway
Ina Joyce Huckabee

Earl Thomas Hudson
Patricia Am Huey

Jerry Walter Jackson
Larry Kent Jackson
Chand Mal Jagetia

Sara Nell James

Martin Theophilus Jasper
Carolyn Elizabeth Johnson
Robert William Jones
Roy Stanley Jones, Jr.
Hui=Chuan Juan

James Edmund Kain

Anna Jean Kimbrell
Kenneth Rowen LaBorde
Donald Zenon LaRochelle
David Dalmain Libbers
Thomas Jasper Lowe, Jr.
Barbara Jean Matthews
Samuel Carter Miller
Luther Jackson Nale
Patel Manoj Natverlal
Thomas Lamar Nowland

James Michael MeKinney
Don Milton

Elizabeth J. Murphy
Thomas Christian Roth
James Richard Sidbury
Charles W. Sommer

ARKANSAS ALFHA, University of Arkansas

Curtis Blair Barton
Wayre Bennett

John William Birks
Alfred L. Burke
Wiley Christal

Judy Ann Garrett

Ivan D. Hazlewood, Jr.
Judy Herndon

William A Jackson

M. Michael Jansen

Howard E Jones
James S, Keel

Edward M. Knod, Jr.
Victor Manuel Levell
Lucy Martin Lyon
Josephine Matlock
Lynn McDonad
Sandra Key Moore
William Floyd Murphy
Ronnie Dale Palmer
Travis Porter

Vijaykumar N. Parekh
Ann Marie Parsons
Paula Am Price

Jose Manuel Quirce
Charles Reeder

Samuel LeRoy Ruple
Elaine Barbara Schwartz
Joyce Am Seagraves
Rodney Dell Shirley
Roberta Sue Silver
Ronald Lee Smith
Richard H. Stein
Frances Conway Strickland
Joe Hulon Sullivan
Michael Onan Sutton
Gayle Teresa Taylor
Jerry Michael Taylor
William C Tidwell
Sylvia Am Tippin
William Rodney Windham
George Randal Woxd
Willaim Cleveland Wood, Jr.
Jerry Winfield Woodruff

John M, Sutton

Albert Lawrence Wad
John Whitfield Wells, Jr.
James Robert Wilson
Thomas Stephen Woods
Abner W. Wamek

Harriet E Root
Dudley Shollmier
Dixie Lee Silvers
Fred Smith

Neal Spearmon

Lucy Spears

Patrick Leo Sullivan
Sm C White
Claudette Wright
Richard B. Wright

CALIFORNIA ALFHA, University of California

Edward Brill

Charles Joseph Burke
Tao-Geun Cho

Anna Maria DeRoe

Richard W. Engdahl
Elizabeth Jane Fishman
Charles Goldberg

Milton J. Goldwasser, Jr.

Eugene Gross

Benjamin Halpern
Thomas N. Hibbard
Hsiao Chung Hsieh
Arnold Harris Hurwitz
Geoffrey Thomes Jones
Peter Laszlo

Brian G. Luyt

Frank Massey

CALIFORNIA EPSLON, Claremont Colleges

Peter Anders

Donna Marie Beck
Kenneth Spiers Brown
James Prescott Butler
Richard Butler
Donald Dean Chamberlin
Charles Cranfill
Sue-Ellen Cruse
Joseph Dauben

John Jay Gould

Alan Marvin Gross
Eric Richard Halsey

GONNECTIQUT ALFHA, University of

Joseph C Amato
Joan Alice Carlson
Judith T. Ehrenpreis

John Emerson Heiser
Ralph Robert Lake
John Vernon Landau
Anthony J. Landler
Katharine Jo Maryaitt
George Frank MeNulty
Lynn D. dealer

Gary Modrell

Edward Gale Movius
William Neil Musser
George Rothbart
Stephen Quilici
George Robinson

Connecticut

William Allen Holden
Joseph Edward Karas
Robert T. Leo, Jr.
Soll Robert Levine

DISTRICT - CLUVIBA ALFRHA, Howad University

Abraham Tishman

FALORIDA. BETA, Florida State University

Charles Elton Alters
David Allan Brenner
Phillip Edwin Brown
Maurice Andrew Colee
JoAnne Conte

William J. Courtney
Patricia Jane Curry
Peter DeYoung

Ernest David Fahlbery
Robert D. Fray

Dale Eugene Grussing
C Richard Guarnieri
Steven Charles Habert
William Roy Helms

William Joy Hellister
Robin Anne Jaeger

May Helen Johnston
Hal Roger

James Druce Kraft

Anmma Marie LaChance
Victoria Laird
Elizabeth Weigle Moore
Douglas Morelly

Joe Leonard Mott
Ronald Orville Nelson
Donald Richard Peoples
Susan M. Plattis
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S J. Morizumi

John Piepenbrink
Alan Radnitz

George W. Rainey, Jr.
Richard A Robertson
Jeanne C Slaninger
Rita F. Stoudt

R. Bruce Welmers

Stuart M. Rupp
Shirley Anne Sandoz
John Shapard

Robert L. Smith
Gary 0. Spessard
Thomas Starbird
Marilyn Louise SN m
Alicia Christine Tormollan
Candis Tyson

Gary Lynn Van Velsir
David Ken Wagner
Joseph James Walker

Karen Eleanor Monti
Judith Amn Moss
Johanne M. Schmelz

David S Reynolds
Robin Cook Seaborn
May Jane Singleterry
Susan M. Smathers
Robert W. Smith
Patricia Ann Twitchell
Rosario Uree

Joseph McAlpin Vann
Loy Ottis Vaughan, Jr.
Linda Joe Wahl

Beverly Wallich

Paul Carlton Woods
Ernest L. Woodward
John E Yust
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FLORDA ALFHA, University of Miami.

Luis Orlando Alvarez
rami Lee Capeletti
Carlos Corrales
Daniel C Ferguson
Miguel A Fernandez

Hector Hirigayen
John J. Leeson
Alfredo Magnan
David M. Morris

CGEORGA ALFHA, University of Georgia

Jerry Anderson

Robert Owen Armstrong
Jane Rudolph Barnett
Elizabeth Diane Beasley
Barbara Bishop

John Thomas Camp

Jay Cliett

Mary Catherine Cowan
Penny Craig

Jane Dunphey

Roy H. Edwards

Genevieve Gaither

C. David Grant
William Andrew Greene
Jane Heath

Charles Herty Hooper, Jr.

Jerry Wayne Jones
Jerry Anmn Loveless
Susan Lovering
James W. Maxwell
Alexander Morgan

ILLINOIS ALFHA, University of Illinois

Donald Frederick Behan
Pinaki R. Das
John Robert Hunt

Terry Franklin Lehnhoff
Robert Cully Mers
Betty Kiser Plunkett

ILLINOIS BETA, Northwestern University

Alan H, Aicher
C. John Buresh
Ronald E. Carlson
Robert N. Dreyer

Paul Grassman

David B. Larimore
Carol B, Porter
Bernard Ray Ritterbush

ILLINOIS GAMMA, DePaul University

Edmund S. Baker
Linoa Baloun
Frances L. Birtola
Barbara J. Corso
David C Courtney
Orsserlene Culpeper

INDIANA BETA, Indiana University

Carl C. Cowen
John W. Jurgensen

Colette Currie
Richard Follenweider
Kathleen Gleeson
Mary Jacobs

Richard Matthei

Terry C Lawson
Charles G, Sills

LOUISANA BETA, Southern University

Willie Brown
Whelbert Cleno DeBose, Jr.

Azzie Newton
Emile Pitre

LOUISANA DE.TA, Southeastern Louisiana College

Sherry Ann Blum
Ruby Kay Carollo

Judy Darling Huffman
Susan Louise McMichael
Mary Beth Remes

Leonard Arthur Stein
Jose Szapocznik
Raymond Traub

Julio A Travieso
Galen Whittaker

Carol Delores Paulk
Rabie Joyce Payne
Alice Everett Peek
Sally King Pitts
Howard W. Reese, Jr.
Richard H Reese
Karol Durrette Rooney
1. Benny Rushing
Carole Smith

Roy L. Smith

Thomas J. Tidwell

Jack Semler
Waldemar Carl Weber
Ekkehard Friedrich Wiechering

Alexander W. Schneider, Jr.
Robert Kurt Seyfried

John B. Sieg

David Edwin Tierney

Patricia . Miller
Francis |. Narcowich
Linda Marie Newell
Judy Povilus

Joseph S Sequens
Joseph A Subrue

George Thompson
Peter W. Vitaliane

Roland Sanchez
Wilbur Duboise VanBuren

Joseph Robert Weaver
Lee Bangs Wheeler

LOUISANA EPSILON, McNeese State College

Kenneth Durden
Rurald Bertrand

MAINE ALFHA, University of Maine

Russell Albert Altenberger

Marie Rose Arcand
Stephanie Pooler Barry
Barbara West Blake
Ellen M. Brackett
Thomas Ernest Byther
Wayne Ervin Carter
Allyn Brackett Chase
Alfred Charles Darrow
Richard McClure Day
Ronald Robert DeLaite
Margaret Virginia Devoe
Patricia Ann Dond
Paula Joyce Dunbar
Howard Whitley Eves
Alfred Bruce Fant
William Thomas Flint
Ian MacKay Fraser
Horace Melvin Gower
Jill Marjorie Guinon
Philip Lord Hamm

John Patin
Gordon Steen
Larry Fontenot

John Frank Harper
Ronald Earl Harrell
Dennis Charles Hass
Thomas James Hayley
Roger Bray Hooper
Dorothy May Howard
Elizabeth Ellen Hoyt
Gene Doris Humphrey
JanErik Hubert Johannsen
Joseph John Kilcoyne
Spafford Harris Kimball
Robert John Knowles
Fred Lincoln Lamoreau
David Nils Larsen
Barbara Alice Lester
Nancy Edith Littlefield
Elaine Ann Manter

Am Murray Mason

Daniel Leighton McCrum
Katherine June McKinnon
Douglas Carrigan McMann
Thomas Mickewich

MICHIGAN ALFHA, Michigan State University

Johnnie D. Adams
Richard B Brandt
Karen R. Brown
Lawrence Campbell
Steven M. Entine
Louis Gorden
David J. Halliday

Maurine A. Haver
Barbara J. Koehler
Barbara A. Maltby
Thomas R Morris
John R Myers
David C. Patterson

MINNESOTA BETA, College of St. Catherine

Rita Louise Beaucage

Sister Amn Bernadette Berryman

Patricia Am Glascow

Sister Am Marie Hart, C.S.J.

Sandra May Joiner
June Marie Opatrny

NEV JERSEY ALFHA, Rutgers University

Ira Feinberg
Zachary Granovetter
Richard Guhl
Kenneth Heffner

Stephen Hirshfeld
Edward Lacher

Jed Lewis

NEW JERSEY BETA, Douglass College

Evelyn Ann Brenzel
Elena Marie Caruso
Margaret Ann Collins
Yona Mayk Eyal

Jean E Fortmann

Marie E Grover
Jane |. Kiernman
Susan Carol Liss
Barbara Bryant Mayne
Delores S Palatt
Carol Jeanne Rampel
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Frank Carter
Charles Braught

Gary Roscoe Moody
Linda A. Morandy
Judith Kay Morrison
Edward Stafford Northam
James Edward Owen
Gerald David ParmenLer
David Charles Poulin
Martha Belknap Reed
Paul Ringwood

Peter Gary Sawtelle
William Merritt Snyder
Lee H. Swinford

James Christos Taroumoulos
Beverly Toole

John William Toole
William James Turner
Albert George Wootton
Clayton B. Worster, Jr.
Reginald George Worthley
Peter A. Wursthorn
Richard Harold Wyman

Baahalid RitE&tedike

Gerald L. Rains
Sharon M. Sackrider
Vernor S. Vinge
Nancy M. Zander
Lucy B Zizka

Mary Joyce Potasek
Sister M. Thomas Pietig, C.S.J.
Sister M. Paula Wiliging,C.8.J.

John Maffei

Andrew Modla
James Vasile
Powell Whalen

DeeAnn Ciel Roth
Rita Rubenfeld
Marian Simon

Gail Claire Slangan
Wendy Judith Weyne
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NEV YORK EPILON, St. Lawrence University

Susan Jane Allen

Bonnie Joan Buchner
Robert Baar Burdick, Jr.
Sandra Jean Bussing

Sten Anders Casperson, Jr.
Stanley James Cross
Daniel Wayne Dodway

Edwin Adam Engelhaupt
Marguerite Ethel Engelson
Kent Ellsworth Foster

Earl Theodore Hilts
Judith Estelle Jefferson
John Alfred Kern

Margaret Elizabeth Leonard
Marcia Helen Lindsey

NEV YO ETA, State University of New York at Buffalo

Martha Lorraine Albro
Harvey S. Axlerod
Robena L ail Bauer
Stephen P. Berke
Richard W. Bethin

NEV YOK GAMMA, Brooklyn College

Warren Balinsky
Steven Bruckner
Mitchell Chill
Albert Drillick
Harvey Epstein
Deborah Friedman

Robert De Carli
James R, Doane
Neal Felsinger
Edward H, Goit, Jr.
Barbara J. Mueller

Ralph Isaacs

Dov Levine

Theodore Liebersfeld
Miriam F. Metzger
Mark E Nadel

David M. Rabinowitz
Phillip Ratner

NEV YOK KAFPA, Rennselaer Polytechnic

Marshall Allan Atlas
Paul William Davis
Donald Allen Drew
Jose Francisco Garcia

John Anthony Gosselin
Robert Nathan Grannick
Jack Neil Lieberman
Larry Thomas Miller

NV YK OMICRON, Clarkson College

David Andrew Platte

N®V YOK RHQ St. John's University

Dennis Robert Aprile
Connell John Boyle
Harry August Brodine
May Ellen Burke
Margaret Mary Carlin
Patricia Margaret Castel
Alan Chutsky

Gerard Michael Corcoran
Richard E. Cover

Spero Criezis

Sheila Donnamaria Daley
Henry James DeAngelis
Lucille Margaret DiTirro
Loretta M. Denavan
David Doynow

Elizabeth Mary Erdo
Patricia May Fleming
Francis Flynn

Joseph Frechen

Teresa Anmn Fugazzi
Eugene Joseph Germino
Kathleen Marie Gorman
Donald Gormley

Susan M. Hess

Mary Jo Kapecky
{Catherine Kearon
Marilyn Ann Kluepfel
M Krolik

Linda Theresa Lico
Nicholas Leo McCann
John S Mallozzi

John Alfred Mango
Vincent Joseph Mancuso
John Christopher Maughan
Lynn Michael

Edward Miranda

Calvin Mittman

John Molluzzo

Raymond A Morrissey
Barbara Anne Obohoski
Norbert Louis Oldani
Ellen May 0'Meara
Anthony S. Pagoto
Magdalen Pak

Sr. Helen Mary Potthist,I.H.M.
Louis V. Quintas

Phvllis Day Martin

Laura Ellen Mason

Michael Lawrence Nesnow
Frederick B. Stallman, Jr.
Robert Nathan Stocker
William Eldon H. Trauth, Jr.
¥im Yackel

Paul T. Reger
James Smith
Daniel J. Stynes
Jonathan D. Swift
John T. C Wong

Kenneth Shapire
Gerald Silverman
Marsha Silverman
Robert Vermes
Linda F. Zahalsky
Paul Zorfass

John Warren Rainey
Alfred Roger Simon
Jeffrey Clayton Wiener
Marvin Zelkowitz

Frank Joseph Rau
Arthur John Renzi

C Carl Robusto
Michael Thomas Roddy
Joseph M. Rodgers
Aurora S. Rogati
Anthony H. Sarno
Karla Frances Schmidlin
Marvin Schwartz

John Joseph Shibilo
Sr. Janet Marie
Robert Otto Stanton

S F Sun

Michael Swirnoff
Andrew Joseph Terzuoli
May Alice Thiemann
John Tucciarone
Adelaide Nieves Vega
John Vogel

Father Buatista Vazquez
Carol Marie Vollmer
Arthur Joel Waldo
Rose Marie Weber

NCRIH CARCLINA ALFHA, Duke University

Robert N. Armstrong
Edward B Brown

Kent Sessions Burningham
Barbara C Campbell
Donald R. Charlesworth
William L. Clarke
Charles Cowling Couper
Helen Graves Crater

Dianne Lee Denton
Gregory Alden Donovan
Gary Richard Feichtinger
Richard Rutter Gross
Betsy Hutton Harmanson
William Lank High
Sylvia Dianne Kiser

NCORIH CARCLINA BETA, University of North Carolina

Paul Baker

Thomas Carl Brown, Jr.
Mary Bues

Lelia T. Clinard
Roger L. Cordle
Kirk A Griffin

Richard Ku

Glenn A Lancaster, Jr.
S Wyatt McCallie
Edward E Messina
Robert J. Newlin
Elwood G Parker

NCRIH CARCLINA GAMMA  North Carolina State University

John Je Higgins
Roger Allen Holton
Judith Marie Hubbard

OHIO DELTA, Miami University

Bruce Bowerman

Lynn L. Brenner
Dansen L. Brown
Gerald R. Callahan
David A Dickey
Robert M. Dieffenbach

Margaret Emily Mamn
Darryl Raymond Moyers

Maruice E  Owens

Henry N. Hanson
Michelle R, Harrell
Federico E Heinz
John S Howard
James L. Monroe, Jr.

OHIO ETA, Cleveland State University

Theodore M Aldxich
Thomas Brady
Richard Burkhard

Joseph A DeFife
Jerome Griesmer

Thomas S. Houser
Russell Kalbrunner

OHIO LAMBDA, John Carroll University

Richard C Ciolek
Gerald E Matyk

OHIO THETA, Xavier University

Rev. Ralph Bangs
Richard K Bernstein
Thomas J. Brexterman
Kenneth Busch

Robert M. Clark
John Wayne Cowens

Dr. Frank Ryan

Lawrence J. Devanney
Wayne E Dyde

Robert C. Geggin
Thomas J. Grogan
William C. Hale

Rev. Bert Heise, OFM.

KLAHOMA BETA, Oklahoma State University

Gary W. Gates
Judy Herring
George Maurice Kizer
Nan-Kang Liao

John Maciula
Larry E. Porter
Jean Prescott

19l

William Roy McIntire
Barbara Anne Pfohl
Richard H Pritchard
Robert B. Ridenhour
Petrés ApnRaltbressel

Larry Walter Thomas
Donald Robinson Wood

Jasin S Saeed
Martha Kay Shaw
Jennifer Smith
Noxwood L. Taylor
Spencer L. Tinkham
Thomas Williams

Ann Elizabeth Robinson
John Wendell Simpson
Bruce Alger Whitaker

James R. Myers
Ronald C. Scherer
Stanley Schumacher
David K. Urion
Richard D Weinstein
Janice L. Wickstead

Clifford Linton
Ernest Thurman
Dale Wingeleth

Thomas J, Slavkovsky
Michael E Votypka

Loren Henry

William J. Klus

James J. Maratta
Michael McSwigan

John Thomas Rupley
Bro. Raymond Wuce, SM.

Roger B. Rylander
Vinson C Smith
Richard Michael Still
Sing-yuan Ting
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FENNSYLVANIA ETA, Franklin and Marshall College

Robert Bolin Brown
Huibert R DeMeester
Charles Edward Forbes
Bradley P. Fuhrman
Philip Jeffrey Hay

Martin William Kendig
Keith Allen Klinedinst
Goh Komoriya

Timothy Grant Raymond
Barry Lee Renner

FENNSYLVANIA ZETA, Temple University

Velma Knight Janice Nibauex

Noel Salem
RHIE IS AND ALRHA, University of Rhode |sland

Marsha J., Farrell Chester A Piascik

TEXAS ALFHA, Texas Christian University

George Berzsenyi
Joe Alston Guthrie
Beverly Ann Jones

James Robert Mosher
John Nichols Reynolds

TEXAS BETA, Lamar State College of Technology

Miriam E Anderson

Joseph Adam Baj

Lawrence D. Bell

Mary Katherine Walker Bell
Paula Gayle Bourque
Jimmie Corbett

Sterling C Crim

Dock B. DeMent

Robert L. Dingle

Don A. Edwards

Charles Allen Ford
Frank A. Foreman
Claude F. Gilson

Annie Sue Willis Green
John F, Harvill
Carolyn Dolores Jenkins
Barbara Ann Kadanka

WASHNGION DHELTA, Western Washington State College

Edwin S. Braithwaite Anthony A Jongejan
Gary L. Earkes Phillip MeGill
Robert S. Fair John Mudgett

Dean Henry Fearn William W. Mulkey
Leland J. Fry A Duane Munro
Cedric George Hannon John C Neuenfeldt
Stanley H Jensen

WASHNGION GAMMA, Seattle University
Leonard C Haselman

Thomas A Imholt
Raymond J. Liedtke

James A Baxter
William R Bigas
Lawrence J. Dicksen

WISCONSN ALFHA, Marquette University

Kathleen M. Neidhorfer
Barry Pitsch

Roberta Lee Ruzich
Eugene Schaefer

Thomas C. Arnoldussen
John Michael Doherty
Gerald |. Gardner
Evelyn A Lamsarges
Robert J, Mussallem

Ronald Albert Shea
Herbert Theodore Stump
Gregory Neil Suess
Allen Victor Sweigart
James J. Tattersall

Harry T. Weston

Robert W. Redding

Ann Marguerite Strine
Nancy Connolly Sullivan
Gene Ellen Wommack

Patricia A Kirk
Marilyn Elizabeth Marsh
Retd Gene Parrish

Billy D. Read

David R Read

William B. Roberts, Jr.
D. Faye Thames

Barbara Lee Whatley

Richard Plagge

Edward Rathmell

Michael D. Ross

Henry G. Rowley, III
Edward E Schrump

Jerry R Shipman
Fredrick Raymond Symonds

Janet M. MecCloskey
Thomas J. Rigert
John H, Wagaman

Joan Schaefer
Robert R Singers
Francis M, Skalak
Mary Weimer
Robert J. Welsch






