CONTENTS

General Terms for Repeating Sequences
—Steven Minskyer ... 193

The Schroder-Bernstein Theorem
—Frank Bernhart ... 200

Undergraduate Research Project 204

Problem Department ... 205

Book Reviews ... 211

Books Received for Review ... 214

Initiates .. 216

Copyright 1966 by Pi Mu Epsilon Fraternity, Inc.
One of the many beauties of mathematics is that, as a language, it can state succinctly that which otherwise could not be concisely put. The general (or \(n \text{th} \)) term particularly illustrates this. For instance, instead of exhibiting a sequence to be 0, 1, 0, 1, 0, 1, ..., we can simply say \(T_n = \frac{1}{2}(1 + (-1)^n) \), where \(T_n \) will henceforth denote the \(n \text{th} \) term of the sequence in question, or, instead of exhibiting the sequence 1, 5, 7, 31, 65, ..., and then having to explain that the odd-numbered terms are equal to one less than two raised to that odd number while the even-numbered terms are equal to one more than two raised to that even number, we may write \(T_n = 2^n + (-1)^n \).

The object of this paper is to find, in as "neat" a form as possible, the general term for the repeating sequence:

\[b_1, b_2, \ldots, b_j, a_1, a_2, \ldots, a_k, a_1, a_2, \ldots, a_k, a_1, a_2, \ldots, a_k, a_1, \ldots, a_k, \ldots \]

where, after a finite number \((= j) \) of terms, the sequence repeats itself in blocks of \(k \) terms. We shall choose the \(b \)'s and \(a \)'s so that they be real numbers. However, our conclusions hold equally well if they are complex numbers. [Note: I have chosen to call a sequence of this type "repeating" and not "recurring" because a recurring sequence has already been understood to be one in which the \(n \text{th} \) term is a certain linear combination of a fixed number of directly preceding terms, such as Fibonacci's sequence \(\ldots 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, \ldots \) where \(T_n = T_{n-1} + T_{n-2}, T_0 = 0, T_1 = 1 \).

To find a general term for such a sequence (for the Fibonacci sequence, \(T_n = \frac{1}{\sqrt{5}}((1+\sqrt{5})^{n-1} - (1-\sqrt{5})^{n-1}) \)), involves a standard method using scales of relation, which is discussed in "Higher Algebra" by Hall and Knight. Enough said on this topic; however, we may ask the interesting question: If we take Fibonacci's sequence, and from it form a sequence using the last digits of the numbers of the original sequence, that is, \(0, 1, 1, 2, 3, 5, 8, 3, 1, 4, \ldots \), what type of sequence is obtained? Readers who like arithmetic may begin by adding.]

Before attacking the problem firsthand, let us consider three examples, the results of which will be useful later on.

Example 1. Sequence is \(a_1, a_2, \ldots, a_2, a_1, a_2, \ldots \)

What is needed here is some operation which distinguishes between the cases \(n \) odd and \(n \) even; such an operation is \((-1)^n \). A little thought yields the result

\[T_n = \frac{1}{2}(1 + (-1)^n)a_2 + \frac{1}{2}(1 - (-1)^n)a_1 \]

or

\[T_n = \frac{a_1 + a_2}{2} + (-1)^n(a_2 - a_1) \]
Example II. Sequence is $a_1, a_2, a_3, a_4, a_5, \ldots$

What is needed is an operation which distinguishes between the cases $n = 1$ and $n > 1$. Such an operation is 2^{n-1}, which yields an odd number for $n = 1$, an even number for $n > 1$. Hence, $(-1)^{n-1}$ does the trick:

$$T_n = (1 + (-1)^{n-1}) \frac{a_2}{2} + (1 - (-1)^{n-1}) \frac{a_1}{2} = \frac{a_1 + a_2}{2} + (-1)^{n-1} \frac{a_2 - a_1}{2}.$$

If we introduce the operation $[Z]$, where $[Z]$ is defined as an integer such that $[Z] \leq Z < [Z] + 1$, we can get a different nth term above. Considering the sequence $1, 0, 0, 0, \ldots$, we see that the nth term here is $[Z]$. Since the sequence $a_1, a_3, a_4, a_5, \ldots$ may be obtained from $1, 0, 0, 0, \ldots$ by multiplying each term of the latter by (a_1, a_3) and adding a_4, we get

$$T_n = (a_1 - a_2) \left[\frac{n}{2} \right] + a_2.$$

It must be added that the operation $[Z]$ is defined as the greatest integer contained in Z. In fact, whenever possible, use more "commonly known" operations in place of $[Z]$, such as absolute value, as will be presently done.

Example III. Sequence is $a_1, a_2, a_3, a_4, a_5, a_6, a_7, \ldots$

Call the nth term of this sequence T_n, and consider $0, 0, 0, \ldots, 1, 1, 1, \ldots$

Call the nth term of this sequence T_n. After some thought, we realize that $\left(\frac{n - 1}{3} \right)$ has value 0 for $n \leq j$ and equals some positive integer for $n > j$, while $\left(\frac{n}{3} \right)$ has value 0 for $n > j$ and equals some positive integer for $n \leq j$. Hence,

$$T_n = \left(\frac{n - 1}{3} \right) + \left(\frac{n}{3} \right).$$

However, another operation which distinguishes between the cases $n \leq j$ and $n > j$ is

$$\frac{|n - j - \frac{1}{2}|}{n - j - \frac{1}{2}},$$

which equals 1 for $n > j$, -1 for $n \leq j$.

The factor $\frac{1}{2}$ is introduced to avoid a zero denominator when $n = j$. We thus obtain

$$T_n = \frac{1}{2} \left(1 + \frac{|n - j - \frac{1}{2}|}{n - j - \frac{1}{2}} \right).$$

To obtain the sequence $a_1, a_2, a_3, a_4, a_5, \ldots$ from $0, 0, 0, \ldots, 1, \ldots$, we multiply each term by (a_1, a_2) and add a_3, analogous to what was done in Example II, so that $T_1 = (a_1, a_2) T_0 + a_3$.

We are now ready to attack the general repeating series. If we can find an nth term for the sequence

$$0, 0, 0, \ldots, 0, 1, 0, 0, \ldots, 0, 1, 0, 0, 0, \ldots, 0, 1, \ldots$$

the rest will follow, as we shall see later.

When $k = 2$, we have already seen that $T_8 = \frac{1}{4} (1 + (-1)^8)$ in the opening paragraph. Consider now $k = 4$; that is, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, ... Without exploring the motivation we can say that, experimenting with (-1) raised to odd and even powers, we come up with the result:

$$T_n = \frac{1}{4} \left((-1)^{n+1} + (-1)^{n+3} + (-1)^{n+5} + 1 \right).$$

The reader may verify the validity of this general term. The important point, however, is that this result is rather isolated, and the method of using (-1) to various powers does not readily resolve other cases, in particular $k = 3$. Thus, this method will be abandoned in favor of three more general approaches.

Observe that $\left(\frac{n}{k} \right) = \frac{n}{k}$ if and only if k divides n. If k does not divide n, then $\left(\frac{n}{k} \right) < \frac{n}{k}$. Since the given sequence is such that $T_0 = 0$ for n not divisible by k and $T_k = 1$ for n divisible by k, then $T_n = \left(\frac{n}{k} \right)$.

Although this is a nicely compact statement, we shall look for other methods for the reasons mentioned in Example II.
We must find an operation which distinguishes between the cases \(n \) divisible by \(k \) and \(n \) not divisible by \(k \). The desired operation, resolved to trigonometry, is \(\sin\left(\frac{\sin(n\theta)}{k}\right) \). Assume \(k \geq 2 \), since the case \(k = 1 \) (sequence \(1, 1, 1, 1, \ldots \)) is solved immediately by \(T_n = 1 \). Consider:

\[
\frac{\sin\left((n+1)\theta\right) \sin\left((n+2)\theta\right) \ldots \sin\left((n+k-1)\theta\right)}{\sin\left(\theta\right) \sin\left(2\theta\right) \ldots \sin\left(k-1\theta\right)}
\]

If \(n \) is not divisible by \(k \), then one of the terms \((n+1), (n+2), \ldots, (n+k-1) \) must be divisible by \(k \), so that the above expression equals \(0 \).

If \(n \) is divisible by \(k \) (let \(n = pk \)), we see that \(\sin\left((n+1)\theta\right) = \cos p \sin\left(\frac{2\pi}{k}\right) = \pm \sin\left(\frac{2\pi}{k}\right) \) if \(p \) is even or odd respectively. If \(p \), therefore, is odd, and \(k \) happens to be even, the above expression has value \(-1 \). Since, under the circumstances, we want a value \(= 1 \), we can rectify the situation by taking an absolute value of the expression or by squaring it. (It will suffice to do this just to the numerator, but for purposes of symmetry, we will do this to the whole expression.) Squaring, and using product notation:

\[
T_n = \frac{1}{k} \sum_{t=0}^{k-1} (\cos \frac{2\pi t}{k})^2 = \frac{1}{k} \sum_{t=0}^{k-1} \cos\left(\frac{2\pi t}{k}\right) = 0.
\]

Hence the numerator of the general term is \((w^k)^{k-1} + (w^k)^{k-2} + \ldots + w^{k-1} \). The denominator is obtained by replacing \(w^k \) by 1, so that it equals \(1^{k-1} + 1^{k-2} + \ldots + 1 + 1 = k \).

In place of the "1" in the numerator, write \(w^0 \) for symmetry, so that:

\[
T_n = \frac{1}{k} \sum_{t=0}^{k-1} \cos \left(\frac{2\pi t n}{k}\right).
\]

But by De Moivre's Theorem:

\[
T_n = \frac{1}{k} \sum_{t=0}^{k-1} \cos \left(\frac{2\pi t n}{k}\right).
\]

For \(n \) a positive integer, \(T_n \) must be real, so that \(\sum_{t=0}^{k-1} \sin\left(\frac{2\pi t n}{k}\right) = 0 \) for such \(n \). It can, in fact, be shown that this sum \(= 0 \) for all real \(n \). We may thus write:

\[
T_n = \frac{1}{k} \sum_{t=0}^{k-1} \cos \left(\frac{2\pi t n}{k}\right).
\]

The reader, using the identity

\[
2 \sin \frac{1}{2} \theta \left(\sum_{t=0}^{k-1} \cos t \theta \right) = \sin(k - 1)\theta + \sin \frac{1}{2} \theta
\]

can easily verify this general term.

We now want the general term for:

\[
a_1, a_2, \ldots, a_i, a_{i+1}, a_2, \ldots, a_{i+1}, a_i, a_{i+1}, a_2, \ldots,
\]

Call the general term \(T_{n+1} \). Note that, in any sequence's general term, substituting \((n+1) \) in place of \(n \) shifts the sequence one term to the left; that is, for example, if \(T_n \) is the \(n \)th term of

\[
0, 0, \ldots, 0, 1, 0, 0, \ldots, 0, 0, 1, 0, 0, \ldots, 0, 1, 0, 0, \ldots
\]

\(k \) terms

then the general term of

\[
0, 0, \ldots, 0, 1, 0, 0, \ldots, 0, 1, 0, 0, \ldots, 0, 1, 0, \ldots
\]

\(k \) terms

is \(T_{n+1} \). Since
\[(a_1, a_2, \ldots, a_k) \ldots = a_k(0,0,\ldots,0,1) + \ldots + a_{k-1}(0,0,\ldots,1,0) + \ldots + a_1(1,0,\ldots,0,0)\ldots\]

It follows that

\[T_n = a_n T_n + a_{n-1} T_{n-1} + \ldots + a_2 T_{n-k+2} + a_1 T_{n-k+1}\]

We have already determined \(T_n\) in sections B and C.

Using the value obtained in section B, we get:

\[T_n = \sum_{i=1}^{k} \left[a_i \frac{\sin \left[\frac{(n+t+k-i)\pi}{k} \right]}{\sin \left[\frac{t \pi}{k} \right]} \right].\]

However,

\[\sin \left[\left(n+t+k-i \right) \frac{\pi}{k} \right] = \sin \left[\left(n+t-i \right) \frac{\pi}{k} \right] \quad \text{(I)}\]

Or, in a completely analogous fashion, using the result of section C:

\[T_n = \sum_{i=1}^{k} \left[a_i \frac{\sin \left[\frac{(n+t+k-i)\pi}{k} \right]}{\sin \left[\frac{t \pi}{k} \right]} \right].\]

At this point, the reader may wish to verify that the sequence \(a, a_2, a_3, \ldots\) (that is, the case \(k = 2\)) has the general term (using equation I) of:

\[a_1 \sin \left[\frac{n \pi}{2} \right] + a_2 \sin \left[\frac{(n-1) \pi}{2} \right] = a_1 \sin^2 \left(\frac{n \pi}{2} \right) + a_2 \cos^2 \left(\frac{n \pi}{2} \right)\]

and (using equation II) of:

\[\frac{a_1 + a_2}{2} + \left[\cos \left(\frac{m \pi}{2} \right) \right] \cdot \frac{a_2 - a_1}{2}\]

Compare these with Example I.

Now consider the final result desired, the \(n^{th}\) term of \(b, b_2, \ldots, b_j, a_1, a_2, \ldots, a_k, a_2, \ldots, a_1, \ldots, a_k, \ldots\). We already know how to distinguish between the cases \(n = j\) and \(n < j\) (See Example III). For now, consider the individual cases \(n = 1, 2, \ldots, j\). We first desire an expression which equals 1 when \(n = 1\) and which equals 0 for \(n = 2, 3, \ldots, j\). This requires no new ingenuity; such an expression is similar in form to the ones originally formed in sections B and C:

\[(n-2)(n-3) \ldots (n-j)\]

If \(j = 1\), then let this expression be 1 identically.

Similarly, for the particular case \(n = 2\), consider:

\[(n-1)(n-3)(n-4) \ldots (n-j)\]

In an analogous fashion, we develop "coefficients" for the cases \(n = 3, 4, \ldots, j\). Now, starting with \(n = j + 1\), we wish to obtain the sequence \(a, a_2, a_3, \ldots, a_k, a_2, \ldots, a_1, \ldots, a_k, \ldots\). This can be easily accomplished, however, by substituting \((n - j)\) for \(n\) in either equation I or II. After such a substitution, we will get \(T_n^{(n-j)} = a\) when \(n = j + 1\), \(T_n^{(n-j-1)} = a_2\) when \(n = j + 2\), etc. When \(n < j\), we get \(T_n^{(n-j)}\) (non-positive integer), but \(T_n^{(n-j)}\) obviously exists for negative \(n\) and, moreover, we will have a multiplier in front which equals 0 for \(n < j\).

Thus, we are now ready to establish the final result. The general \((n^{th})\) term for the sequence \(b, b_2, \ldots, b_j, a_1, a_2, \ldots, a_k, a_2, \ldots, a_1, \ldots, a_k, \ldots\), which is denoted by \(T_n\), is given by the equation

\[T_n = \frac{1}{2} \left(1 - \frac{n-j}{n-j-1} \right) \left[(n-2)(n-3) \ldots (n-j) b_j + (n-1)(n-3) \ldots (n-j) b_2 + \ldots + (n-1)(n-2) \ldots (n-|j|) b_{j-1} \right] \quad \text{(II)}\]

where \(T_n\) is defined by either equation I or II.
A cardinal number is any number which is used to answer the question 'How many?' A good part of the mathematical history of numbers has been taken up with finding adequate symbolization for expressing finite cardinal numbers. The numerals used in counting form an ordered array, 1, 2, 3, ..., but they all belong to the set N of natural numbers. But the awareness of the natural numbers as a group invites us to ask 'How many natural numbers are there?'; and the answer is not a natural number! We might also ask how many real numbers there are, and whether there are more real numbers than natural numbers. To say only 'They are infinite' is a weak answer to 'How many' and hardly touches the question 'Is this infinity more than that?'

The modern notion of a cardinal number runs something like this:

1. We talk about sets, especially sets of numbers. To every set there should be associated a cardinal number. It is intended that two sets should have the same cardinal number if and only if they have the "same number" of elements.

2. If sets can be organized into groups of the "same number" without using anything called a cardinal number, then it will be possible to assign a cardinal number to the sets of each group. What these cardinal numbers are is of no particular importance if they can easily be identified with the proper group, and can be distinguished among themselves.

3. The usual choice for cardinal number of a class of sets is that class itself. For example, the cardinal 1 is just the class of all sets which contain but a single element. To be sure, other definitions of cardinal number may serve as well. The cardinal number of a class of sets might be one of those sets, picked to represent the class.

4. We have put off discussing what we could use to define the groupings. The criterion of "sameness" or equivalence, as it is more often called, is this: If there exists a way to pair off the elements in one set with the elements of another set so that each element in one set is matched with exactly one element of the other, the sets are equivalent. In other words, to say that sets X and Y are equivalent, written (X ~ Y) means there exists a one-to-one mapping, or function, from X onto Y. It may seem perhaps strange that mappings are considered more basic than cardinal numbers, but that is the modern viewpoint, and it works very well.

5. Equivalence (X ~ Y) defines a relation between sets. It has the three properties we would expect of an equivalence relation.

 (E1) X ~ X (for all X). Reflexivity.
 (E2) If X ~ Y, then Y ~ X. Symmetry.
 (E3) If X ~ Y, and Y ~ Z, then X ~ Z. Transitivity.

These properties are sufficient to separate all sets into equivalence classes (or cardinal numbers). Essentially, X ~ Y if and only if X and Y belong to the same cardinal number.

Nothing more than the above idea would be needed if the relation X ~ Y was all we had to contend with. We could take the infinite sets we know and show which were equivalent and which were not. But let us now ask how to tell when one cardinal number is more than another. Consider the following mapping from N onto a subset of N.

<table>
<thead>
<tr>
<th>f(n) = n + 3</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>f(n)</td>
<td>1</td>
</tr>
</tbody>
</table>

If N* is the set of values f(n), then N ~ N*, even though N* is a proper subset of N. Now Cantor showed that R ~ N is false, where R denotes the set of real numbers. But the mapping f(n) = πf from N to R identifies N with, or carries N onto a proper subset R* of R, and is one-to-one. That is, N ~ R* and R* ~ R. What do we wish to conclude? Simply that if X ~ Y where Y is a subset of Y, then X certainly cannot have a bigger cardinal number than Y. Let X denote the cardinal number to which X belongs, and similarly for Y. We have seen that X = Y if and only if X ~ Y. We are now defining X ~ Y to mean that there is a subset Y of X and X ~ Y*. Actually the properties of sets should be invoked to show that the ordering of cardinal numbers X ~ Y does not depend on the particular sets X, Y, representative of X and Y*, that are chosen. But it is true, and we will now simply write X ≤ Y to save on notation. So we define X ≤ Y to mean there exists a one-to-one mapping from X onto a subset of Y (into Y). Concisely X ≤ Y means "there is some Y* and X ~ Y* ⊆ Y*.

We have suggested that with the relation X ≤ Y cardinal numbers can be ordered. Let us examine by looking at the properties order must have. (Since we are using sets instead of the cardinal numbers, X ~ Y will occur where we would expect X = Y.)

 (01) X ≤ X (for all X). Reflexivity.
 (02) If X ≤ Y and Y ≤ Z then X ≤ Z. Transitivity.
 (03) If X ≤ Y and Y ≤ X then X = Y. Anti-symmetry.
 (04) X ≤ Y and Y ≤ X not both false. (Used only for strong order.)

As it turns out ≤ is a well-defined order, for all four properties are true—however, (01) and (02) are trivial, but (03) and (04) are not. We will say no more about (04) since it requires the Axiom of Choice before it can be proved. It is the difficulty of (03) that interests us. Let us try to see it more clearly with an example. Let Q denote the positive rational numbers.
We see that neither f nor g will do to establish $N \sim Q$. We need another mapping h, from N onto, not into, Q. To prove property (03) we need to show that given f and g, $(X \leq Y \land Y \leq X)$, it is always possible to find an h such that $X \sim Y$. The proof of "If $X \sim Y$ and $Y \leq X$, then $X \sim Y$" is called the Schröder-Bernstein Theorem. It is a notable theorem of elementary cardinal number theory. Like many theorems in mathematics, it establishes a result that seems plausible or even obvious, but really requires some ingenuity to prove. The converse of the Schröder-Bernstein, "If $X \sim Y$, then $X \leq Y$ and $Y \leq X$", is trivial, since $X \sim Y$ implies $X \leq Y$ and $Y \leq X$. The same tale can be told to cover all possibilities, so that we are sure of A, B_1, C_1, B_2, \ldots and $A, B'_1, C'_1, B'_2, \ldots$ each being distinct collections.

Let f and g be the mappings which exist by virtue of $X \leq Y$ and $Y \leq X$. Let us suppose, as we may, that $f:X \sim Y$, $g:A \sim B$, and $g:Y \sim X$. Define $B_1 = (X - Y)$; $C'_1 = (Y - X)$. Then define inductively the other sets in the B, C, B', C', series by the formulas:

$$
[f:B_1 = B'_1 \land (g:C'_1 = C) \land k = 1, 2, 3, 4] \land (C = U(C'_k), B = U(B_k), B' = U(B'_k), C' = U(C'_k)).
$$

All the sets defined are distinct, because f and g are one-to-one functions. Otherwise, working backward in the formulas, if B_{k+1} were not distinct from B_k, B'_k, B'_k, B_{k+1} would have overlapped too, and then B_k and B'_k, and so on until we found that B_k and B'_k had elements in common. But this is impossible, since B_k and $k # 1$, was defined by the mapping g, whereas B_1 is not included in the mapping g by definition. That is, $B_1 = X - Y$, but all other $B_k \subseteq X$. The same tale can be told to cover all possibilities, so that we are sure of A, B_1, C_1, B_2, \ldots and $A, B'_1, C'_1, B'_2, \ldots$ each being distinct collections.

As an easy corollary to these definitions we see that $C_1 = C, C_2 = C, C_3 = C, \ldots$ and $B_k = B_1 - B_k, B'_k, B'_k$. By repeated use of property (03) of the relation \sim, we establish that (\sim) and (\sim) and (\sim) and (\sim) and (\sim) and (\sim). Let $h = U(B_k), C = U(C'_k), B' = U(B'_k), B'_k, \ldots$ and $U(C'_k), B' = U(B'_k), B'_k, \ldots$. Then we see that if we let $A = X = (B \cup C)$ and $A = Y = U(C'_k)$. Then we see that if we let $A = X = (B \cup C)$, it must be true that $f:A \sim A$ and $g:A \sim A$, hence $A \sim A'$. The assumption that $X = X$ and $Y = Y$ is now justified by the choice of the sets A, A', etc., and the demonstration that the choice was in line with the requirements on these sets at the beginning of the proof. The Theorem is now proved.

The Schröder-Bernstein Theorem is not hard to prove, once it is seen that the mappings f and g derived from $X \sim Y$ and $Y \sim X$ actually dissect X and Y into parts precisely as is displayed in Fig. 1. For it is an easy step from Fig. 1 to Fig. 2. This seems long because it takes space to write down all the information contained in Fig. 1 in a rigorous manner.
There is one other reason why the proof was offered in more detail than necessary. It is important to see how this trick with prechosen sets characterizes and makes transparent the core of the proof. Over the years, since proof was first supplied independently by Schröder and by Bernstein in 1896 and 1899, various proofs have been found which are in the literature. But these have the disadvantage of appearing to use independent means of arriving at the conclusion, and both the proofs themselves, and their interrelations are not always obvious. The proof given here was developed from a comparative study, and should not only show the method clearly, but by comparison reveal that all the proofs in the literature studied by this author (about 5) are totally equivalent. All produce exactly the same mapping \(h \). (Any property of the elements under the mapping which allow \(A, B, C \) and \(A', B', C' \) to be distinguished will provide a proof. A study of Fig. 1 can suggest several such properties, such as the "chain" idea used by Birkhoff-Maclane.) To my knowledge this powerful observation seems not to have been made explicitly.

Reading Suggestions
2. Stoll, Robert, Set Theory and Logic (page 81).
3. Suppes, Patrick, Axiomatic Set Theory (page 54).

* * *

UNDERGRADUATE RESEARCH PROJECT

Proposed by Paul Samuel, Minneapolis.

H. S. M. Coxeter, in his Real Projective plane, shows how to modify his axiom system in order to develop Complex Plane Projective Geometry. Carry out this synthetic development (or a portion thereof) and contrast it with the development in projective geometry by Veblen and Young. What has to be added to Coxeter's axiom system in order to extend it to three-dimensional Complex Projective Geometry? Are any of his axioms rendered dependent by the ones you have added?

Given: \(f(n) = f(n + 3) \), \(n = 1, 2, \ldots \),

\(f(1) = 1 \), \(\sum_{n=1}^{\infty} f(n)/n = 0 \).

Find \(f(2) \).

Two ships are steaming along with constant velocities. What is the minimum number of bearings necessary to be taken by one ship in order to determine the velocity of the other ship? Given this requisite number of bearings, show how to determine the other ship's velocity. (It is assumed that range-finding equipment is either non-existent or non-operative.)

SOLUTIONS

172. Proposed by JOHN BAUDHUIN, Sparta High School (student), Sparta, Wisconsin.

Given: Semi-circle \(O \) with diameter \(AB \) and equilateral triangle \(PAB; \) \(C \) and \(D \) are trisection points of \(AB \) (i.e., \(AC = CD = DB \)).

Prove: \(E \) and \(F \) are trisection points of \(AB \).

Note: A synthetic proof is desired.

Solution by Gabriel Rosenberg, Temple University

By Symmetry, \(AE = FB \) and \(OE = OF \). Since \(\angle AOC = \angle EAB = 60^\circ \), \(\triangle AEP = \triangle AOC \). Since also, \(CO = \frac{1}{3} AP, \) \(OE = \frac{1}{3} AE \) and, thus, \(E \) and \(F \) are trisection points of \(AB \).

Joe Konhauser, University of Minnesota, notes that if \(AB \) is divided into \(n \) equal segments and then equilateral triangles are erected on these segments as bases, the lines joining \(P \) to the vertices off \(AB \) will \((n + 1) \)-sect \(AB \). The proposed problem corresponds to \(n = 2 \).

He also notes that the problem has appeared previously in the Mathematics Teacher, Nov. 1953, p. 524. There the construction was submitted by R. J. Orr, Iowa State Teachers College and was originated and solved by Patty Hake, a student.

Also solved by P. J. Campbell (University of Dayton), R. C. Gebhardt (Farsippon, N. J.), R. Prielipp (University of Wisconsin), W. J. Rickert (Rutgers - The State University), N. H. Sleep (Michigan State University), S. Spital (California State Polytechnic college), C. W. Trigg (San Diego, Cal.) and the proposer.

Editorial Note: If the semi-circle \(AB \) and diameter \(AB \) are both \(n \)-sected and corresponding points are joined by straight lines, the lines will only be concurrent for \(n = 3 \) or 4.

If \(D^n \Phi(x)/x = \Psi_n(x)/x^{n+1} \),

show that \(D^n \Phi(x) = x^n D^{n+1} \Phi(x) \).

Solution by J. R. Kuttler and N. Rubinstein, University of Maryland

\(D^{n+1} \Phi(x)/x = \Psi_n/x^{n+1} - (n+1) \Psi_n/x^{n+2} \)

or

\(\Psi_n = x^n D^{n+1} \Phi(x)/x + (n+1)x^n D^n \Phi(x)/x \).

Then by Leibniz's rule for the \(n \)th derivative of the product \(x \cdot \Phi(x)/x \),

\(D^n \Phi(x) = x^n D^{n+1} \Phi(x) \).

Also solved by H. Kaye (Brooklyn, N.Y.), and the proposer.

Editorial Note: Also by Leibniz's rule,

\(\Psi_n(x) = \sum_{t=0}^{n} (-1)^{t} F_t(x) x^{n-t} D^{n-t} \Phi(x) \)

and the result follows by differentiation.

Additionally, since

\(\Psi_{n+1} = \Psi_n - n \Psi_1 \),

the solution of the differential-difference equation

\(F_{n+1} = x F_n - n F_1 \), \(F_0 = F_0(x) \),
is given by

\[P_i(x) = x^i D^i P_0(x). \]

174. Proposed by C. S. VENKATARAMAN, Sree Kerzala Varma College, Trichur, South India.

Find the locus of a point which moves such that the squares of the lengths of the tangents from it to three coplanar circles are in arithmetic progression.

Solution by Charles W. Trigg, San Diego, California.

Let the circles be

\[x^2 + y^2 + a_i x + b_i y + c_i = 0, \quad i = 1, 2, 3. \]

Then the tangents from the point \(P(x, y) \) to the circles are given by

\[t_i = \frac{x^2 + y^2 + a_i x + b_i y + c_i}{\sqrt{(a_i)^2 + (b_i)^2}}. \]

Since the squares of the tangents are to be in arithmetic progression,

\[2t_2 = t_1 + t_3. \]

Thus the locus of \(P \) is the straight line

\[(2a_2 - a_1 - a_3)x + (2b_2 - b_1 - b_3)y + 2c_2 - c_1 - c_3 = 0. \]

175. Proposed by R. C. GEBHARDT, Parsippany, New Jersey.

The twenty-one dominoes of a set may be denoted by \((1,1), (1,2), \ldots, (1,6), (2,6), \ldots, (6,6)\).

(a) Is there any arrangement of these, end-to-end with adjacent ends matching, such as \(\ldots (3,1) (1,1) (1,6) (6,4) \ldots \), such that all twenty-one dominoes may be involved?

(b) What conditions must a general set of dominoes satisfy in order that such an arrangement in (a) exists?

Editorial Note: A related problem would be to find the largest and the smallest completed chain which can be formed with a given set of general dominoes.

Solution by Craig A. Kalicki, John Carroll University.

Each digit appears seven times. Any digits that are strictly interior to the chain must occur an even number of times. Thus if a given digit is to appear an odd number of times it must occur at an end point. Since there are only two end points, there is no such arrangement.

In general, the chain can be constructed from the set \((1,1), \ldots, (n,n)\) if and only if \(n \) is odd or \(n = 2 \).

Solution by Neal Felsinger, SUNY at Buffalo.

Consider a set of points \(P \) \((r = 1, 2, \ldots, n)\) in general position in space. If \((1,j)\) is a domino used in the arrangement, draw a line between \(P_i \) and \(P_j \). For the domino \((i,i)\), draw a line from \(P_i \) to itself. The stated problem has now been reduced to traversing the network of lines such that each line is traced exactly once. Using Euler's results, the network must be connected and at most two vertices can be odd. Translated to dominoes, you must be able to get from one number to any other number by placing dominoes end to end (connectiveness) and there can be at most two numbers occurring an odd number of times. For the set of dominoes \((1,1), \ldots, (n,n)\), this is possible, if and only if, \(n \) is odd or \(n = 2 \).

Also solved by C. W. Trigg (San Diego, Cal.), M. Wagner (N.Y.C.) and the proposer.

Editorial Note: The "smallest" chain that can be formed from the dominoes \((1,1), \ldots, (n,n)\) is \(2n - 2\) \((n-odd)\) and \(2n-1\) \((n-even)\) (Note that a chain is incomplete if another domino can be added).

The problem of determining the largest chain is equivalent to finding the maximum number of edges in an Eulerian tour of a complete graph of \(n \) vertices. If \(n \) is odd it follows from above that the number is \(\binom{n}{2} - \binom{n}{2} - 1 \). If \(n \) is even, the number is \(\binom{n}{2} - \binom{n}{2} - 1 \).

176. Proposed by M. S. KLAMKIN, Ford Scientific Laboratory.

Determine all continuous functions \(F(x) \) in \([0,1]\), if possible, such that \(F(x^2) = F(x)^2 \) and

(a) \(F(0) = F(1) = 0 \),
(b) \(F(0) = F(1) = 1 \),
(c) \(F(0) = 0, \; F(1) = 1 \)
(d) \(F(0) = 1, \; F(1) = 0 \).
Solution by K. S. Murray, Ann Arbor, Michigan.

Clearly, \[F(x^2) = F(x^2). \]

Thus for \(0 < x < 1, \)

\[
\begin{align*}
\lim_{n \to \infty} x^n &= 0, & \lim_{n \to \infty} x^n &= 1, \\
\lim_{n \to \infty} F(x^n) &= \begin{cases} 1 & \text{if } |F(x)| > 1, \\
1 & \text{if } |F(x)| = 1, \\
0 & \text{if } |F(x)| < 1, \\
\end{cases}
\end{align*}
\]

Since \(F(x) \) is continuous, we then must have

(a) \(F(x) = 0 \),
(b) \(F(x) = 1 \),
(d) impossible.

For case (c), there are infinitely many functions satisfying the requirements. One simple example is \(F(x) = x^2 \). For a wider class of functions, arbitrarily define \(F(x) \) in the interval \(\left(\frac{1}{n}, \frac{1}{n} \right) \) such that it is continuous and that \(F(1/n^2) = F(1/n)^2 \). Then, \(F(x) \) is continuous and defined over the interval \([0,1] \) by means of the functional relation \(F(x^2) = F(x)^2 \).

Also solved by R. C. Gebhardt (Parsippany, N. J.), and F. Zotto (Chicago, Ill.) and the proposer.

1967 MEETING

Your chapter is encouraged to nominate your best speaker who will NOT have a masters degree by April, 1967, as a speaker for the Pi Mu Epsilon meetings to be held in Toronto, Canada, August 28-29, 1967. As usual the national office will pay partial expenses for speakers. Nominations should be submitted by February 25, 1967, and mailed to Dr. Richard V. Andree, Pi Mu Epsilon, The University of Oklahoma, Norman, Oklahoma 73069.

BOOK REVIEWS

Edited by Roy B. Deal, Oklahoma State University

An excellent book for Pi Mu Epsilon members who know some advanced calculus and can pick up, occasionally, some elementary theory of functions of a real variable, having interest for many mathematics, physical science, and engineering majors. It has modern results and modern treatments of classical results in approximations of functions, mostly real, with elegant, simple proofs and excellent exposition, including enlightening, historical notes or concept remarks, interesting exercises, and a good bibliography. Except for some results on Chebyshev systems, Kolmogorov's concept of entropy, and a few auxiliary notions on polynomials and moduli of continuity the central notion is that of degree of approximation.

An introduction to complex complete vector spaces with scalar products (Hilbert spaces). In particular the so called 1_2 space of sequences for which the sum of squares of the absolute values converges, with a fairly extensive treatment of invariant subspaces using the concepts developed by considering the sequences as coefficients of a formal power series. This leads to a fairly complete introduction to complex function theory in the second part of the book. The approach is basically to develop the material through an interesting selection of problems which is good for self-study for those with the motivation and perseverance. It is a necessary prerequisite to the paper on "Canonical Models in Quantum Scattering Theory" in the proceedings on "Perturbation Theory and its Applications in Quantum Mechanics" Listed in the "Books Received" list in this journal.

A well written "short but thorough treatment of Lebesgue integration", containing its own development of measure concepts needed, for the reader with an advanced calculus background.

A study of the classical geometry of curves and surfaces designed to introduce the reader to some basic ideas in the rapidly growing fields of modern differential geometry and differential topology. Except for the maturity sufficient to accept an abstract definition of a familiar concept, a strong elementary calculus course and some linear algebra provides an adequate background.

With the exceptions of filters, nets, and uniform spaces (uniform concepts in metric and normed spaces are included) this book provides a rather thorough self-study introduction to the general topology necessary to studying analysis including some function space theory. It is within the reach of any well-motivated undergraduate and provides an excellent background for advanced calculus.

A brief but excellent introduction to probability theory by the professor famous for beating the Nevada casinos at blackjack. The first three chapters provide the fundamental concepts in the discrete case with many interesting examples and exercises, requiring very little mathematical background. Elementary calculus suffices for the last chapter which gives a short provocative basic introduction to continuous probability. Problems designed for computer use are included with very little programming knowledge required.

Three interesting books on geometry. Dorwart's book is a brief expository and historical account of the fundamental concepts of incidence in classical projective geometry. Artzy and Rosenbaum skillfully interweave modern linear algebra into the study of classical geometry. Of these two Rosenbaum's is the more elementary, using matrices more extensively than vector spaces in the computations, providing more algebraic detail, and sticking primarily to properties of projective geometry, with the exception of conics, which hold in all finite dimensions. Artzy uses vector spaces for these studies and in addition devotes about half of the book to non-Euclidean geometries, Cayley-Klein models, Cayley algebras, quaternions, elliptic three-space, and the often avoided coordinatization in non-desarguesian planes, with Veblen-Wedderburn planes, M鯾if planes, Desarguesian planes, Projective planes, and other axiomatics. Artzy has more affine and Euclidean geometry but presupposes, for ease in reading, some familiarity with modern algebra whereas Dorwart and Rosenbaum are accessible to any reader with high school geometry and a little analytics.

By writing succinctly and elegantly in the mathematical physics style the author is able to provide the reader who has a background of advanced calculus and three or four non-elementary undergraduate physics courses with an excellent selection of results in analytical dynamics, optics, wave mechanics, quantum mechanics, field equations, eigenvalue problems, and scattering theory within the unifying concepts of calculus of variations.

$100 cash prize award for the best expository paper published in the Pi Mu Epsilon Journal by an undergraduate student goes to:

James Williams
Carleton College

BOOKS RECEIVED FOR REVIEW

NOTE: All correspondence concerning reviews and all books for review should be sent to PROFESSOR ROY B. DEAL, DEPARTMENT OF MATHEMATICS, OKLAHOMA STATE UNIVERSITY, STILLWATER, OKLAHOMA, 74075.
INITIATES

ALABAMA ALPHA, University of Alabama
Keith R. Alverson
Douglas L. Blackwell
Karen P. Boozer
James E. Bright
Pamela E. Butler
Lindsey E. Carter
Sarah J. Channell
LONNIE G. Cox
William D. Creighton
Edward E. Deason
John R. Dewberry
GEORGE A. Evans

ARIZONA ALPHA, University of Arizona
John L. Freeouf
Alan P. Frost
J. Frank George

ARKANSAS ALPHA, University of Arkansas
Vladimir Bermudez
Wayne Chaffin

CALIFORNIA GAMMA, Sacramento State college
Richard E. Breweiy
GOULD L. Cline
Linda Galleher

CALIFORNIA ZETA, University of California at Riverside
Monty L. Anderson
ALFRED L. Basinger
Leonard J. Bass
JOHN C. Beebe
Stanley J. Benkoski
Paul F. Berry
VERA D. Briggs
John D. Brink
Peter Cavaretta
Jeanette M. Cook
Chester R. Cram
ALFONS J. Daverio

CALIFORNIA GAMMA, University of California
Robert Brandon
ROBERT C. Kirby
Dr. F. S. Kontovich
Edward H. Larson
Eliot P. Levin
Lucien B. Levy
Alice Y. Lou
TYRONE L. McMurtry
William Neillard
James Mitsuhashi
Isamu Okajima
WILLIAM L. Paige
Michel Pham-Huu-Tri

ARIZONA ALPHA, University of Arizona
Stephen P. Laberge
E. Paul Love, Jr.
Jeffrey H. Miles

ARKANSAS ALPHA, University of Arkansas
Freddie Fowlkes

CALIFORNIA GAMMA, University of California
Robert Brandon
Robert C. Kirby
Dr. F. S. Kontovich
Edward H. Larson
Eliot P. Levin
Lucien B. Levy
Alice Y. Lou
TYRONE L. McMurtry
William Neillard
James Mitsuhashi
Isamu Okajima
WILLIAM L. Paige
Michel Pham-Huu-Tri

CALIFORNIA GAMMA, University of California
Dr. ROBIN C. Kirby
Fredric M. Pollack
Russell D. Rupp, Jr.
Peter J. Ryan
David D. Shochat
Sheldon O. Sickler
Jane P. Soule
Dr. Donald Z. Spicer
Dr. Charles Stone
Melvin M. Sweet
Dr. BERTRAM J. Walsh
LARRY M. Weiner

DISTRICT OF COLUMBIA ALPHA, Howard university
Bonnie J. Ashurst
Saranjit J. Bhatia
Albert I. Chatmon
George 0. Earle
Ervin Forbes
Rajinder P. Garg
Peter M. Gitu

DISTRICT OF COLUMBIA BETA, Georgetown university
Geraldo S. Avila
DONALD R. Collier
GIULIANO N. Gugnoli

DISTRICT OF COLUMBIA BETA, Georgetown university
George B. Mackiw
Richard K. Martin
Arnold P. Stokes

Frank A. Pignata
VINCENT A. Sposito
Conrad A. Willis

John L. Murphy
Armund Orenstein
Karen E. Ravn
Dennis M. Rodriguez
Sue L. Schultz
Ladd G. Seekins
Robert J. Simay
Albert M. Soldier
William B. Stelwagon
Carol E. Taylor
John J. Willis
Stephen J. Wolfe

Matthew J. Jordan
Barbara Kusila

Sylvia M. Sloan
Desmond H. Rochester
ALVIN L. Thomas
William Wen
Hilton H. Woodward

CONNECTICUT ALPHA, University of Connecticut
Nancy A. Crawford
Evelyn J. Gottheim
Ruth P. Graziani

DISTRICT OF COLUMBIA BETA, Georgetown university
J. Roger Teller
Pierre M. Tullier
James A. Wood
FLORIDA EPSILON, University of South Florida

- **Ignacio Bello**
- **James Bledsoe**
- **Theo Anne Boltin**
- **David E. Bunch**
- **William R. Burdett**
- **Terry R. Chapman**
- **Yoon Ja. S. Chung**
- **Dr. Frank L. Cleaver**
- **Luis Jose Cowan**
- **Ronald H. Estes**
- **Claudio Fernandez, Jr.**
- **William R. Freeman**
- **Dennis M. Hall**
- **Stephen B. Haley**
- **Michael L. Harrison**
- **Phillip Hartman**
- **Robert C. Helgeson**
- **Neal D. Hendrix**
- **Bruce D. Jameson**
- **Jerome P. Kane**
- **James H. Kavina**
- **Carl N. Kiebler**
- **Doris M. Laflam**
- **Fred G. Levesque**
- **Myra K. Marshall**
- **Stephen J. Maxwell**
- **William E. McGavern**
- **Joseph G. Morton**
- **Sarah J. Pardo**
- **John C. Petrick**
- **Joseph R. Pliego**
- **Ralph K. Powell**
- **Vincent J. Puglisi**
- **Ferdie Ramos**
- **David A. Rose**
- **Dr. Donald C. Rose**
- **Marguerita A. Sanchez**
- **Myron D. Sellers**
- **Andrea Troutman**
- **Kenneth A. Vagts**
- **Edmund Vollrath**
- **Barbara E. Warren**
- **Geoffrey R. Webb**
- **Fredric J. Zerla**

GEORGIA BETA, Georgia Institute of Technology

- **James R. Albritton**
- **Andrew A. Blanchard**
- **Paul Boland**
- **Donald C. Brabston, Jr.**
- **Noah W. Cox, Jr.**
- **Joanne L. Brunst**
- **John P. Hardin**
- **Linn W. Hobbs, Jr.**
- **Michael S. Lurey**
- **David W. Smith**
- **Lee Edwards**
- **Stanley W. Johnston**
- **Alan G. Law**
- **Ira B. Tetalman**
- **Robert Wayman**

ILLINOIS BETA, Northwestern University

- **Thomas L. Dobek**
- **Sherrin A. Jones**
- **William J. Lawrence**
- **Dennis C. Rarick**
- **Gerald R. Thrasher, Jr.**
- **Alien B. Wesson**
- **Jim E. Peterson, Jr.**

INDIANA BETA, Indiana University

- **William F. Knapplein**
- **William F. Linn**
- **Michael S. Lurey**
- **David W. Smith**
- **Lee Edwards**
- **Stanley W. Johnston**
- **Alan G. Law**
- **Ira B. Tetalman**
- **Robert Wayman**

INDIANA GAMMA, Rose Polytechnic Institute

- **William F. Knapplein**
- **Linn W. Hobbs, Jr.**
- **Michael S. Lurey**
- **David W. Smith**
- **Lee Edwards**
- **Stanley W. Johnston**
- **Alan G. Law**
- **Ira B. Tetalman**
- **Robert Wayman**

KANSAS ALPHA, University of Kansas

- **Charles C. Alexander**
- **Joseph A. Bergin**
- **Richard D. Bishop**
- **Beverly Braun**
- **Norman F. Chaffee**
- **Wing Sang Chan**
- **Jayanthi chidambaramswamy**
- **James C. Deel**
- **William R. Deever**
- **Felix F. Dreher**
- **Deborah R. Evans**
- **S. Harvey Fryer**
- **Ted Q. Haggart**
- **Ronald D. Halbgewachs**
- **F. W. Hartman, Jr.**
- **Sara L. Harvey**
- **Alan Hitt**
- **Gwynn Jennings**
- **William E. Jones, Jr.**
- **R. Charles Knapp**
- **John L. Labbert**
- **Telis K. Menas**
- **James E. Miller**
- **S. Edward Nevis**
- **Michael L. Nicholas**
- **David J. Pack**
- **Boyd Pearce, Jr.**
- **Timothy J. Reed**
- **John C. Roper**
- **Joanna R. Shrader**
- **Duncan Sommerville**
- **John B. Stinson**
- **William A. Subick**
- **Carol Targett**
- **Tommy K. Teague**

KANSAS BETA, Kansas State University

- **James A. Baran**
- **Mary M. Berg**
- **Nancy L. Brown**
- **Chi-Yung Chiang**
- **Lawrence O. Corcoran**
- **Russhton E. Davis**
- **Jacqueline Dietrich**
- **Edward J. Kobetich**
- **Gail A. Klick**
- **Sun-wook Lee**
- **Ronald K. Lohrding**
- **Kathleen Mathieu**
- **Judith A. Melvin**
- **Jeanette R. Morgan**
- **Sherman F. Ogle**
- **David L. Parker**
- **Richard M. Rubin**
- **Eugene P. Schulstad**
- **Arthur H. Simonson**
- **Beryl A. Shaw**
- **Donald G. Shivers**
- **Robert A. Shivers**
- **David S. Tucker**

KANSAS GAMMA, Wichita State University

- **C. W. Anderson, III**
- **Madelaine Bates**
- **Dennis K. Buth**
- **Ronald R. Dutton**
- **G. Ronald Galloway**
- **George R. Hadley**
- **Richard A. Harris**
- **Janet Sue Hatfield**
- **Robert L. Hogan**
- **Donley D. Jones**
- **Ronald Dutton**
- **G. Ronald Galloway**
- **Forrest L. McDaniel**
- **Cheryl J. Olson**
- **Michael A. Perl**
- **Thomas O. Sloan**
- **Fred Jack Smith**
- **Arthur D. Snow**
- **Derek A. Snyder**
- **Yih-yan Sun**
- **Diana Kay Webster**

KENTUCKY ALPHA, University of Kentucky

- **Craig A. Artherholt**
- **Vincent C. Ashwill**
- **Adele Berry**
- **Judith E. Brown**
- **Tjoo Hung Chung**
- **Janice M. Christian**
- **Brian W. Crossley**
- **James A. Cunningham**
- **Robert A. Delaney**
- **Daryl R. Fischer**
- **James L. Hartmann**
- **Judith Jo Holland**
- **Gerry Lee Janssen**
- **Hugh A. King**
- **Loren D. Lange**
- **Jack N. Lindon**
- **Arlene M. Nelson**
- **Neil C. Nelson**
- **Kenneth W. Olsen**
- **Carol M. Pothast**
- **Joseph Polito, Jr.**
- **Thomas A. Reglein**
- **Romna M. Robertson**
- **Ardeshir Rosami**
- **Donald G. Sander**
- **Martin M. Van Luven**
- **William F. Whitaker**
- **Mary H. Wyck**
- **James L. Frank**
- **Charles R. Hammons**
- **William McGovern**
- **James D. Nelson**
- **Arthur M. Richl**
- **William D. Stiles**
- **Kenneth A. Stammerman**
- **J. B. Trout, Jr.**
- **Franklin G. VanLandingham**

KENTUCKY GAMMA, University of Kentucky

- **Dennis K. Buth**
- **Ronald R. Dutton**
- **G. Ronald Galloway**
- **George R. Hadley**
- **Richard A. Harris**
- **Janet Sue Hatfield**
- **Robert L. Hogan**
- **Donley D. Jones**
- **Ronald Dutton**
- **G. Ronald Galloway**
- **Forrest L. McDaniel**
- **Cheryl J. Olson**
- **Michael A. Perl**
- **Thomas O. Sloan**
- **Fred Jack Smith**
- **Arthur D. Snow**
- **Derek A. Snyder**
- **Yih-yan Sun**
- **Diana Kay Webster**
<table>
<thead>
<tr>
<th>LOUISIANA ALPHA, Louisiana State University</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homer M. Allison, Jr.</td>
</tr>
<tr>
<td>Joel M. Atkins</td>
</tr>
<tr>
<td>Miriam Currier</td>
</tr>
<tr>
<td>Brother A. DuRapau</td>
</tr>
<tr>
<td>John S. Everett, Jr.</td>
</tr>
<tr>
<td>Frank F. Fishell</td>
</tr>
<tr>
<td>Jose A. Galinzoga</td>
</tr>
<tr>
<td>Albert L. Gardner</td>
</tr>
<tr>
<td>Johnny Gills, Jr.</td>
</tr>
<tr>
<td>Brother Neal Golden</td>
</tr>
<tr>
<td>William C. Haight</td>
</tr>
<tr>
<td>Robert B. Hamilton</td>
</tr>
<tr>
<td>Dale A. Huckaby</td>
</tr>
<tr>
<td>Elizabeth J. Keller</td>
</tr>
<tr>
<td>Frances W. Lewis</td>
</tr>
<tr>
<td>James M. Lewis</td>
</tr>
<tr>
<td>Ruth S. L. Lewis</td>
</tr>
<tr>
<td>Hipolito Martinez</td>
</tr>
<tr>
<td>Otis B. Friedman</td>
</tr>
<tr>
<td>Henry L. McQueen</td>
</tr>
<tr>
<td>James A. Moore</td>
</tr>
<tr>
<td>Paul J. Moses, Jr.</td>
</tr>
<tr>
<td>Billy C. Parrish</td>
</tr>
<tr>
<td>Kenneth W. Potter</td>
</tr>
<tr>
<td>Janella C. Rachal</td>
</tr>
<tr>
<td>Shirley M. Ritter</td>
</tr>
<tr>
<td>Joseph W. Robert</td>
</tr>
<tr>
<td>H. L. Shoemaker, III</td>
</tr>
<tr>
<td>Donval R. Simpson</td>
</tr>
<tr>
<td>Glenn A. Taylor</td>
</tr>
<tr>
<td>Darwin R. TeBeest</td>
</tr>
<tr>
<td>Thomas E. Warth</td>
</tr>
<tr>
<td>William W. Waters, Jr.</td>
</tr>
<tr>
<td>Joyce L. Wym</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOUISIANA BETA, Southern University</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habib Eskander</td>
</tr>
<tr>
<td>Floyd L. Knox</td>
</tr>
<tr>
<td>A. D. Oliver</td>
</tr>
<tr>
<td>J. D. Oliver</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MARYLAND ALPHA, University of Maryland</th>
</tr>
</thead>
<tbody>
<tr>
<td>William B. Adams</td>
</tr>
<tr>
<td>Judy Arnold</td>
</tr>
<tr>
<td>Martin R. Babst</td>
</tr>
<tr>
<td>Joseph H. Bredekamp</td>
</tr>
<tr>
<td>Margaret M., Cook</td>
</tr>
<tr>
<td>W. R. A. Dorsett</td>
</tr>
<tr>
<td>Howard Eisner</td>
</tr>
<tr>
<td>Walter L. Hagen</td>
</tr>
<tr>
<td>Catherine M. Hausler</td>
</tr>
<tr>
<td>Leonard S. Haynes</td>
</tr>
<tr>
<td>Adil J. Kanaan</td>
</tr>
<tr>
<td>Barry R. Korb</td>
</tr>
<tr>
<td>Raymond C. Luebbe</td>
</tr>
<tr>
<td>Paul Menzel</td>
</tr>
<tr>
<td>Ronald Shepler</td>
</tr>
<tr>
<td>T. E. Williamson, Jr.</td>
</tr>
<tr>
<td>Gordon S. Woodward</td>
</tr>
<tr>
<td>Susanne Zumstein</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MASSACHUSETTS ALPHA, Worcester Polytechnic Institute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stephen R. Alpert</td>
</tr>
<tr>
<td>Robert E. DeNigris</td>
</tr>
<tr>
<td>Edward A. Gallo</td>
</tr>
<tr>
<td>John L. Kilguss</td>
</tr>
<tr>
<td>Alan H. Miller</td>
</tr>
<tr>
<td>Peter H. Tallman</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MINNESOTA ALPHA, Carleton College</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nadim Assad</td>
</tr>
<tr>
<td>Bennett M. Davis</td>
</tr>
<tr>
<td>Dwight V. House</td>
</tr>
<tr>
<td>Jack E. Kyte</td>
</tr>
<tr>
<td>Rodger E. Poore</td>
</tr>
<tr>
<td>Hal M. Hart</td>
</tr>
<tr>
<td>Gary R. zempel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MONTANA ALPHA, University of Montana</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rudolfo Arnao</td>
</tr>
<tr>
<td>Shomei Chow</td>
</tr>
<tr>
<td>Loxi Eide</td>
</tr>
<tr>
<td>Elmer Gall</td>
</tr>
<tr>
<td>Jerry D. Halstrom</td>
</tr>
<tr>
<td>Darrel Hagen</td>
</tr>
<tr>
<td>Richard Kruse</td>
</tr>
<tr>
<td>Marie T. McBride</td>
</tr>
<tr>
<td>Elaine Nelson</td>
</tr>
<tr>
<td>Elmer Schuman</td>
</tr>
<tr>
<td>Vernon L. Smith</td>
</tr>
<tr>
<td>Edward Walsh</td>
</tr>
<tr>
<td>Karen Hammond</td>
</tr>
<tr>
<td>Bill Irlebeck</td>
</tr>
<tr>
<td>Dick Kinder</td>
</tr>
<tr>
<td>Kenneth E. Blutt</td>
</tr>
<tr>
<td>Kent F. Carlson</td>
</tr>
<tr>
<td>Lawrence V. Durland, Jr.</td>
</tr>
<tr>
<td>William S. Jackson</td>
</tr>
<tr>
<td>Jerry L. Jackson</td>
</tr>
<tr>
<td>William T. Johnson</td>
</tr>
<tr>
<td>John B. Kolesar</td>
</tr>
<tr>
<td>Michael J. Kosorok</td>
</tr>
<tr>
<td>Thomas P. Kostohris</td>
</tr>
<tr>
<td>Benjamin A. Laws, Jr.</td>
</tr>
<tr>
<td>Thomas J. Morgan</td>
</tr>
<tr>
<td>Larry M. Nelson</td>
</tr>
<tr>
<td>Jonathan T. Patten</td>
</tr>
<tr>
<td>Sidney E. Prahl</td>
</tr>
<tr>
<td>Joel W. Schaaf</td>
</tr>
<tr>
<td>Keith H. Senechal</td>
</tr>
<tr>
<td>Merriel A. Storseth</td>
</tr>
<tr>
<td>Kenneth J. Thurber</td>
</tr>
<tr>
<td>Jay T. Weyerman</td>
</tr>
<tr>
<td>Gary A. Wolf</td>
</tr>
<tr>
<td>Robert W. Walf</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MISSOURI GAMMA, St. Louis University</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leonard E. Allen, Jr.</td>
</tr>
<tr>
<td>William A. Allison</td>
</tr>
<tr>
<td>Robert L. Arndt</td>
</tr>
<tr>
<td>Nieves P. Arribas</td>
</tr>
<tr>
<td>David W. Banque</td>
</tr>
<tr>
<td>John A. Barry, Jr.</td>
</tr>
<tr>
<td>Peter J. Barsos</td>
</tr>
<tr>
<td>Thomas C. Becvar</td>
</tr>
<tr>
<td>Barbara Blackmore</td>
</tr>
<tr>
<td>Stanley J. Boehm</td>
</tr>
<tr>
<td>Sister M. D. Bourgeois</td>
</tr>
<tr>
<td>Therese M. Bruce</td>
</tr>
<tr>
<td>Chung Hee Chang</td>
</tr>
<tr>
<td>Kenneth W. Clark</td>
</tr>
<tr>
<td>James K. Colligan</td>
</tr>
<tr>
<td>Michael E. Coughlin</td>
</tr>
<tr>
<td>Helen M. Daus</td>
</tr>
<tr>
<td>Val F. De La Guardia</td>
</tr>
<tr>
<td>Jacqueline M. Deveny</td>
</tr>
<tr>
<td>Samuel Dugolano</td>
</tr>
<tr>
<td>M. Deborahah Doyle</td>
</tr>
<tr>
<td>Gerard C. Dunn</td>
</tr>
<tr>
<td>Sr. Rose E. Ehret</td>
</tr>
<tr>
<td>Sister M. C. Ehmann</td>
</tr>
<tr>
<td>Seymour B. Elk</td>
</tr>
<tr>
<td>Robert Ernst</td>
</tr>
<tr>
<td>Raymond C. Eyer</td>
</tr>
<tr>
<td>Huei Sheh Fann</td>
</tr>
<tr>
<td>Mary A. Faust</td>
</tr>
<tr>
<td>Paul Peagan</td>
</tr>
<tr>
<td>Joseph F. Pennell</td>
</tr>
<tr>
<td>patricia Finnegan</td>
</tr>
<tr>
<td>Anne L. Ford</td>
</tr>
<tr>
<td>John T. Porsing</td>
</tr>
<tr>
<td>Philip E. Froendorf</td>
</tr>
<tr>
<td>Peggy Frintrup</td>
</tr>
<tr>
<td>Charles W. Gantner</td>
</tr>
<tr>
<td>Gerad L. Gilsinn</td>
</tr>
<tr>
<td>Joseph A. Hobbs</td>
</tr>
<tr>
<td>Richard G. Hortan</td>
</tr>
<tr>
<td>Jacqueline J. Howard</td>
</tr>
<tr>
<td>Jerry G. Johnson</td>
</tr>
<tr>
<td>Walter J. Johnston</td>
</tr>
<tr>
<td>Kathleen Kirby</td>
</tr>
<tr>
<td>Pamela C. Koehl</td>
</tr>
<tr>
<td>Nancy M. Kopff</td>
</tr>
<tr>
<td>John D. Kubicek</td>
</tr>
<tr>
<td>Judith I. Lurtz</td>
</tr>
<tr>
<td>Lawrence A. Machtiner</td>
</tr>
<tr>
<td>David J. Meagher</td>
</tr>
<tr>
<td>Gary L. Melvin</td>
</tr>
<tr>
<td>Denis L. Melans</td>
</tr>
<tr>
<td>Carol A. Meyer</td>
</tr>
<tr>
<td>Gerald L. Moriarty, S.J.</td>
</tr>
<tr>
<td>Martin W. Mcraz</td>
</tr>
<tr>
<td>James A. Murphy, Jr.</td>
</tr>
<tr>
<td>Mary Anne Nugent</td>
</tr>
<tr>
<td>Nancy J. O'Brien</td>
</tr>
<tr>
<td>Daniel C. O'Connor</td>
</tr>
<tr>
<td>Mark Oskennhild</td>
</tr>
<tr>
<td>Norman L. Parker</td>
</tr>
<tr>
<td>John pisarkiewicz, Jr.</td>
</tr>
<tr>
<td>Mary Ann Reardon</td>
</tr>
<tr>
<td>Joann M. Rhodes</td>
</tr>
<tr>
<td>Ralph J. Richardson</td>
</tr>
<tr>
<td>Ralph W. Rotter, Jr.</td>
</tr>
<tr>
<td>Alan J. Solfheime</td>
</tr>
<tr>
<td>Annette M. Seiler</td>
</tr>
<tr>
<td>Joseph L. Small</td>
</tr>
<tr>
<td>John G. Smerek, S.J.</td>
</tr>
<tr>
<td>Brian G. Smith</td>
</tr>
<tr>
<td>Robert R. Sontheimer</td>
</tr>
<tr>
<td>James W. Taylor, Jr.</td>
</tr>
<tr>
<td>Richard Tompkins</td>
</tr>
<tr>
<td>David C. Torretta</td>
</tr>
<tr>
<td>Richard C. Trushel</td>
</tr>
<tr>
<td>John A. Van De Walle</td>
</tr>
<tr>
<td>Carole A. Voudrie</td>
</tr>
<tr>
<td>David Wang</td>
</tr>
<tr>
<td>Paula A. Wankam</td>
</tr>
<tr>
<td>Paul R. Weirich</td>
</tr>
<tr>
<td>John W. West</td>
</tr>
<tr>
<td>Michael P. West</td>
</tr>
<tr>
<td>Patricia L. Whitehead</td>
</tr>
<tr>
<td>Raymond J. Will</td>
</tr>
<tr>
<td>Mary P. Wilson</td>
</tr>
<tr>
<td>Diana C. wittenborn</td>
</tr>
<tr>
<td>Charles E. Wuller, Jr.</td>
</tr>
<tr>
<td>James E. Wynne</td>
</tr>
<tr>
<td>George W. York</td>
</tr>
<tr>
<td>Sister John M. Burton</td>
</tr>
<tr>
<td>Chi Fung Chow</td>
</tr>
<tr>
<td>Thomas V. Wencewicz</td>
</tr>
</tbody>
</table>
MISSOURI ALPHA, University of Missouri

Robert Ayres
Lee Badger
Edward Bolton
James Briner
Herbert Britt
Robert B. Chamberlain
Thomas Chaney
J. K. Chang
Milton Cone
Richard Connors
James R. Dickenson
David W. Dillingham
Elizabeth Duncan
Logan Dysart
Martha Edwards
James Goff
Edward Hackman
Steven J. Halliburton
Daniel Harman
Sallie Haynes
Lawrence Heligman

Bonnie Lou Hicks
Mary Howard
Larry W. Isenhour
Barbara Jones
Jon Jorgenson
Ellen Kane
David Kessell
Robert G. Kneile
Susan Koeller
James Leath
Richard LeBoeuf
Joyce Linbrach
Larry Linn
Charles R. Mann
Carmel Mazocco
Donald McKin
William S. Meisner
John R. Meyer
Ronald Moen
Gail Neu
David Nolting

Alfred J. Patrick
Joanne Payne
John Payne
Judson Palmer
Sarah Pento
Perkins
William Peterson
Charles A. Preuss
Terry Sappenfield
Walter Schwartz
Robert Sprading
Shirley Teal
Roger Thaller
Daniel Tichenor
Mark Tittle
Ronald Tuttle
Ronald J. Vehique
Walter M. Viebrock
Keith Weaver
Charles Weil
Carl J. Willig

NEBRASKA ALPHA, University of Nebraska

Dean C. Bayer
George N. Bennett
Phillip C. Boardman
Bing Chen
Earl E. Dredge
Jaclyn Kay Eads

David Walter Erbach
Mrs. Thomas H. Frick
Joe Richard Haberman
Charles A. Hentzen
Jose Manuel Inquanzo
Larry Lee Jurgens
Francis E. Lefler

Gary Lee Muller
James A. Pardubsky
Richard Lee Voq
James T. Scheppers
Richard T. Reckmeyer

NEVADA ALPHA, University of Nevada

Peter Berney
Patrick W. Brymer
Margaret A. Coplin
William W. Coplin

Ronald C. Gallaway
Terrance R. Graves
Alden McLellan

Young W. Ham
George L. Simmons
Marjorie L. Thalde
Steve L. Williams

NEW YORK ALPHA, Syracuse University

Donald Andres
Karla Banazier
Thomas Brown
Regina Brunner
Robert Campbell
William Cox
Wayne Daigle
Virgil R. Daio
June DelHar
Mitchell Gaynes
Barbara Giampa
Bernard Gorkin

Robert Graves
Barney Haiduk
Cecil T. Hb
Paul R. Houf
James Jacobson
Karen Kane
Byrna T. Klastorin
George Klee
Donald E. Lehman
Penny Low
Thomas Magnanti
Scott G. McMullin
William Mesrobian
Richard Michelson
Robert Moffett

NEW YORK BETA, Hunter college

Sheila Antonoff
Peter Dunn
Gloria Ruben

Alice Farbman
Mary G. Ferry

Marilyn Hirschhorn
Beverly Karp
Susan Tjoeng

NEW YORK ETA. State University of N. Y. at Buffalo

Joseph Barback
Michael DiNoto
Claudia Elliott
Morton Goldberg
John M. Hall
Richard G. Hull
Delia Z. Klingbeil

Madeline E. Lipsky
Kun-Taung Liu
John A. McCabe
Mark Moogant
Linda A. Nadler
Rajagopalan Neela

NEW YORK GAMMA. Brooklyn college

James Baumbach
Rudolph Binenbaum
Nancy Evraets

Florence W. Feldman
Edna Kalik

Rosalie Sherman
Joel Wolowelsky

NEW YORK IOTA, Polytechnic Institute of Brooklyn

Michael G. Adlerstein
Marvin Blecker
Marco A. Ettrick

William L. Goodhue
Michael M. Schachter
William J. Hery
Stanley Rabinowitz

NEW YORK NU. New York University

Jay Gerstenblith
Richard A. Goldman

Edward H. Grossman

Charles Phillips
Joseph G. Stampfl

Craig Hunger
Ralph Muier
Natalie Myerberg
Brian O'Neil
Bruce Paterson
William Porter
William C. Richardson
Robert A. Sitterley
Marvin Snow
James Spreaf
Alan Spivack
Martin Steusky
Carol Tewes
Bruce Wilson

Mary Rooker
F. Brian Talbot
Susan Vampatie
Elaine S. White
Susan L. Whitney
Brian J. Winkel
Rosemary A. Zent

Eric Pesso

Marshall Schwartz
Joseph F. Sullivan
Roy P. Weber

Charles Phillips
Joseph G. Stampfl
Pennsylvania Alpha, University of Pennsylvania
Arthur Babaian
John S. Cook
Carol F. Lieb
Ernest D. Lieberman
Alex J. Lyczak, Jr.
Joy I. Miller
Arline I. Moskowitz
Ralph J. Plotkin
Hadas Rin
Martin L. Schwartz
Sandor H. Straus
Paul A. Wolfgang
Kenneth L. York
Mark L. Yoshloff

Pennsylvania Delta, Pennsylvania State University
Marie E. Aileo
William Armel
Thomas A. Augustine
George E. Bilger
Thomas S. Blair
Dirk C. Blakeslee
Charles Bradley
Alexis J. Brauner
Robert T. Burger
Richard A. Cox
Robert G. Crawford
Nancy Deck
Caroline I. Deisher
David J. DeVries
John M. Dziehl
Edward B. Edinger
Thomas W. Edmunds
James O. Emanuel
Charles R. Eminiheizer
Robert H. Feldman
William B. Fiss
Donald M. Freedman
Stuart J. Freidelin
David Gallo
Richard S. Gavlik
Devin A. Geer
David M. George
Matthew Gould
James W. Greer, Jr.
Wh. P. Grimm
Ernest Haeussler, Jr.
Dennis R. Hizer
L. Katherine Jones
Allyn B. Kahn
Michael D. Kebaugh
David C. Keiter
Richard A. Kemmerer
James C. Kennedy
Walter E. Kerschbaum
Daniel J. Klementik
Gerald N. Klenmushin
Alice Ann Kuettel
Thomas C. Lavy
Martha Lester
G. K. Marshall, Jr.
Richard D. Matthews
Marvin A. Mazur
Adrienne L. McNaboy
Maureen McEvoy
Robert B. McNeill
Jacques Mumba
John F. Norris
Lawrence E. Olah
John Perrine
Thomas D. Pinkerton
Thomas Pirsot
Kenneth A. Ports
Cassandra Riddell
Arthur W. Rizzi
Barry H. Rosenberg
Ann C. Rutledge
R. Shantaram
Leroy B. Sheibley
Jeffrey A. Simon
Jean Smith
Wilbur L. Smith
Barbara M. Smukler
Robert T. Snyder
William M. Stitesler
Norman W. Stoldt
Douglas K. Thomson
Sister A. S. V. Walsh
Karen L. Walter
John Wasileski
Peter M. Weiss
William R. Weller
Stanley E. Werner
Nancy J. Whitley
John M. Wnuk
Michael H. Zucker

Pennsylvania Eta, Franklin and Marshall College
Joseph J. Levinsky

Pennsylvania Zeta, Temple University
Gayle Auerbach
Joan Cheng
Frank Daniel, Jr.
Esther Dechow
Paul M. Goodman
Sharon Green
Marcia Lavin
Barry Marged
Marsha Markowitz
George S. McElhinney
Suzanne Powell
Marc Ross
Catherine Strahl
J. Yvonne Taylor
Cheryl R. Zaret

Rhode Island Alpha, University of Rhode Island
William Barletta
Paula L. Cinquegrana
Jay V. Cohen
William J. DiMarco
Elizabeth K. Faella
Janice E. Kelly
Phyllis Kelvin

South Carolina Alpha, University of South Carolina
Terry W. Boyd
Sara J. Grooms
Michael E. Harper
Sharon L. Hixon
Samuel A. Jeter
Nexson B. Johnson
Harold E. Lindsey, Jr.
Talbot R. Malcolm
Virginia A. McDaniel
William Z. McGhee
Francisco G. Moreno

South Dakota Alpha, University of South Dakota
Robert L. Adams
Gernhard Bellof
Byron M. Brandt
Harold L. Christensen
Carol A. Clarke
Howard H. Connors
L. Pierre Engen
Caroline A. Erickson
Richard Fejfar
Martin Getz
Lowanne M. Graffing
Calvin W. Hartman
Ellen Dee Hoppe
Lawrence W. Huff
Monte J. Johnson
Merrill H. Jordahl
Andrew E. Karantinos
Mary E. Klaras
Sharon L. Kollasch
Terry D. Lenker
Ken Lundberg
Judith A. Nusz
Carol E. Reed

Texas Alpha, Texas Christian University
James R. Boone
Bettye D. Forte
William D. McAdams
Jerry McAllister
Herbert D. Nobles
E. Leigh Secrest

Texas Beta, Lamar State College of Technology
Dolores G. Saunders
Arthur L. Smir
Patricia A. Snyder
Baline M. Anderson
Linda K. Anderson
Alan C. Ashton
Carlos G. Atencio
Wayne W. Barrett
James E. Boyle
Robert H. Bradway
James W. Cannon
Ross N. Castleton
Dennis D. Clayton
Nelson T. Dinerstein
Richard C. Dixon
Tommy Dodd
A. George Dors

William T. Eaton
David L. Egli
Robert H. Hassell
John C. Hawkins
Roger L. Hunt
Herbert F. Kiesler
Frederick M. Lister
Noel E. Marquis
Robert R. Marshall
E. Ray Martin
Carletta J. Miller
Gregory M. Nielson
David E. Olson

Keith B. Olson
Beverly J. Petersen
Owen G. Reese, Jr.
Randall D. Reece
E. Roger Simonson
Jakob Chi-kang Soong
Robert L. Stewart
Merrily A. Swank
Ronald L. Thurgood
Geno P. Tolari
San-Chu Want
Steven C. Wheelwright
Robert D. White
Don R. Wilhelmsen

Willard D. Altman
John G. Barile, Jr.
William W. Belew, III
Jackie M. Beverly
Joseph R. Boggs
William G. Buchanan
Nancy E. Dodson
Harriet H. Farrier
Harry P. Folden
Kenneth R. Garren
Chang-King Hsu
Ernest Paul Lane
Chih-Bing Ling

Valiant Wai-Yung Mah
William H. Olson
Joe G. Rieley
John C. Stewart
Forrest D. Rollins
James Pickands, III

Miriam P. Edwards

Robert J. Madigan
John G. Menges

Gerald L. Reiner

David Fehl
Sandra L. Goldsmith
William D. Koepp

Ashok Kumar
Bradley Pinz
Dennis P. Wierzb

Richard Kos
Gary Lachmund
Delmar Marshall
M. F. Yu

Triumph of the Jewelers Art

Your badge - a triumph of skilled and highly trained! Balfour
outfit is a steadfast and dynamic symbol in a changing world.

Official Badge $3.75
Official flip key $4.25
Official flip key $5.00
Official three-piece key $5.25
Official three-piece key $6.00

Add any state or city sales taxes to all prices quoted.

Official jeweler to Pi Mu Epsilon

In Canada: L. G. Balfour Company, Ltd. Montreal and Toronto