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The c. c. MacDuffee Awad for Distinguished Service
J. C. Eaves, The University of Kentucky

1. Introduction: Pi Miu Epsilon's first recipient of The C. C.
MacDuffee Award for Distinguished Service was selected at the
annual meeting of the organization's officers, held on the
Cornell campus at Ithaca, New York, September 1965. perhaps
the discussions were somewhat prolonged but the unanimous choice
to receive the honor of the first such award since its adoption
was to be the presiding officer at all regularly scheduled meet-
ings, the national president of Pi Mu Epsilon, Dr. Jg. Sutherland
Frame; and he kept showing up on time.

Since The C. C. MacDuffee award is Pi Mu Epsilon's highest
recognition it was decided late in the meetings that presenta-
tion would be most appropriate upon Dr. Frame's retirement from
the presidency, this allowing ample time to arrange for the ban-
quet and to lay adequate plans for the occasion.

It was the opinion of those on the Governing council that
the award should be made "often enough to be recognized and
seldom enough to be meaningful." Excerpts from the presentation
notes are given below.

2. The First Presentation: "Members of Pi Mu Epsilon, distin-
guished guests: In making this presentation 1 call your
attention to the following observations.

Last year, the Councilors General, cognizant of the fact
that the awarding of The Cc. C. MacDuffee plaque for Distinguished
Service is Pi Mu Epsilon's highest tribute and most prestidigious
recognition, voted that, during the past decade, the most en-
during and valuable proponent of its cause -=- the promotion of
mathematics -- is its retiring president. This group unanimously
concurred in the opinion that some significant acknowledgment
of gratitude was here due and that only the C. C. MacDuffee
plaque befits this occasion.

"Our honoree is recognized as an outstanding scholar who
exemplifies triumphantly the true ideals of this learned society.
He is appreciative and productive of effective promotional
action in the area of mathematics. His dedication over the
past years supports our contention that he possesses the intel -
lectual strength and organizational qualities embodying competent
leadership. He is a motivating teacher and an inspiring speaker
who maintains a learning environment for himself and his asso-
ciates. These characteristics coupled with the curiosity of a
researcher, the critical mind of a mathematician, and an un-
limited concern for all aspects of service to Pi Mu Epsilon
make him worthy of this award.
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230 ! | "Here is a man whose service spans nine years as our
4 President and numerous years prior to this time expounding

X the cause in other capacities. He has installed almost 50%
of our chapters, 51 of the 120, these including ten alpha
chapters. This growth is more significant when measured in
terms of the 30,000 increase in membership witnessed during
the period 1951-1966. These |ast years have brought an in-
auguration of the matching funds for recognition awards with-
in local chapters, and book awards for the presentation of
superior papers. Finally, Pi Mi Epsilon became a fully grown
mathematics organization when Dr. Frame initiated the first
papers session at the Michigan State meeting.

"This man has brought encouragement to hundreds of pro-
spective mathematics students many of whom continued their
interests to become productive scholars. All of this has not
been without its hardships. Traveling the equivalent of near-
ly four times around the earth to see that "Chapters got their
Charters" must have accounted for the consumption of gallons

| of stale coffee, bouillon, undercooked egges, overcooked toast,
airport delays, and lost baggage. Surviving this, smiling, is
one blessed with tolerance and a measure of devotion to service
which would compliment any of us. Pi Mi Epsilon shall always
be indebted to him.

I an very pleased that it falls ny honor to present this,
the First c. Cc. MacDuffee Awad for Distinguished Service to one
to wom | can say, "Dr. Frame, only our highest award expresses
our sincere appreciation for your past devotion, your prudent
judgment, and your continued wise counsel and loyalty. Only
our highest award expresses the esteem with which you are re-
garded by our members. May this plaque find a prominent spot
in your home or office. Take unrestrained pride without embar-
rassment in the message it bears, for those who see it will know
that herein dwells one who has pursued his calling not only in
a superbly successful manner but with unrelenting vigor and
unselfish devotion.

Ladies and Gentlemen: The first recipient of our highest
award, Dr. J. Sutherland Frame."

3. The Second Presentation: Ladies and Gentlemen: You have
just been briefed on the true significance of the C. C. MacDuffee
Award. | need not repeat these facts in making @ second pre-
sentation tonight.

"Dr. Richard v. Andree has served our organization in a mul-
titude of capacities, faithfully bringing forth workable new
ideas and the energy to pursue them to fruition, this for many
years. He has done so with genuine interest and unselfish motives
He has been active in promoting mathematics wherever the oppor-
tunity exists and his efforts in advancing Mu Alpha Theta, the

Professor and Mrs. J. S. Frame
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international honor society for high school and Junior College
mathematics students has fed many top students into Pi Mu
Epsilon. 1t was through his foresight and wisdom that Pi Mu
Epsilon gave support to Mu Alpha Theta during the trying time
of MATs organizational days.

I t is not necessary to present the achievements and success
this able servant has enjoyed in his promotion of mathematics.
His abundantly impressive and valuable pioneering ventures in
all directions and at all levels are well known. He seems to
thrive on projects which promote scholarly study and investi-
gations, and this, particularly among the young scholars sup-
ports and reinforces the primary objectives of our organization.
His guiding philosophy never seems to be "We must move forward,"
but rather, "We must move. Our movement will be forward only."

"on behalf of Pi Mu Epsilon, the Councilors General con-
curring unanimously, it is a stimulating experience to present
this, the second such high recognition to be announced, the
C. C. Machuffee Awad for Distinguished Service, to one who
earned it through devotion and love, not through labor; not by
the dangerous and damaging drudgery of a duty but through the
pleasure of Service to Mathematics and to his fellow man.

"Ladies and Gentlemen, the second individual to receive
our highest tribute, Dr. Richard V. andree.”

(at Rutgers, 30 August, 1966)
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THE STDY OF A RECURSVE SEQUENCE

James Wingert, John Carroll University

The problem which will be discussed in this paper appeared
as an advanced problem in the June-July, 1965, issue of the
American Mathematical Monthly and is stated as follows: Given
the following 41 terms of a sequence 1221121221221121122121121
2211211212212211.. . , determine a simple generating relation-
ship for this sequence and determine whether or not the se-
quence is cyclic.

Since the first and |ast elements are identical, one ob-
vious solution would be to merely keep repeating the first 40
terms. Another idea occurred to ne when I noticed that every
third term was a 2. Upon deleting these 2's an interesting
pattern appears. 12 11 12 12 11 11 21 11 12 11 11 12 12 11 ...
As you can see, there is a 12 followed by a 11, two 12's fol-
lowed by two 11's. The 21 appears to have the function of in-
terchanging the roles of the 11's and the 12's. Hence there is
a 11 followed by a 12, two 11's followed by two 12's. However,
since the last term is a 11 the pattern is broken. A sequence
very similar to this one appeared in an article by Marston
Morse and Gustav Hedlund in the Duke Mathematics Journal; how-
ever, | was unable to apply all of its properties to this case.

The generating relationship which 1 have used was discover-
ed in the following way. 1 began by counting the number of
elements as they appeared in groups. There was ONE 1, T\O 2's
™O 1's, ONE 2, ONE 1, MO 2's, ONE 1 ™MD 2's, WO 1l's, etc.

As can be seen, these numbers are repeating the numbers of the
sequence. This led nme to the two rules that form the generating
relationship. The first rule concerns the number of elements
generated and the second rule concerns the kind of elements
generated, that is whether they are 1's or 2's. The number of
elements generated depends upon the generating element. 1T Wl I
generate one or two elements depending upon whether it isa 1
or a 2. The kind of elements generated depend upon the |last

element generated. If it is a 1, the next term generated will
be either a 2 or a 22. |If the last element generated is a 2,
the term generated will be either a 1 or a 11

I have prepared a few examples to illustrate this. In the

first example the generating element is a 2, so two elements
must be generated. The last element generated is a 1. Hence,
the generated element is 22. In the second example the gener-
ating element is a 2, the last element generated is a 2, so the
generated term is 11. Finally, if the generating element is al
and the last element generated is a 2, the generated term is a 1.

]
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Hence the sequence is built up as follows: A 1 generates
itself. Since it is the last element generated, the next term

will be either 2 or 22. Since in either case the second element
of the sequence is a 2 and since a 2 generates two elements, the
second term generated will be 22 and we have . The second 2

becomes the |ast element generated and the generating element.
This will generated a 11 and we have 12211 The second 1 be-

comes the generating element and the third 1 becomes the |ast
element generated. This will generate a 2 and we have 122112"

The third 1 becomes the generating element and the third 2 be-
comes the last element generated. This will generate a 1 and
e e 221 The third 2 becomes the generating element

and the }our%ﬁll becomes the |ast element generated. This will
generate a 22 and we have ;,5,75755- The fourth 1 becomes the

generating element and the fifth 2 becomes the |last element
generated. This will generate a 1 and we have 1221121221' As

you can see, each element in turn becomes the generating ele-
ment, but not every element is a |last element generated.

In order to meke the sequence easier to read | have used
the following code: A =1, B =11, C =2, and D = 22. Nw the
given 41 terms begin like this: ADBCADADBCB and so on. This
code was used because letters will generate letters. An A is
a1l and a 1 can generate either a 1 or a 2. Hence, an A can
generate either an A or ac. A B is a 11 and each 1 can generate
either a 1 or a 2. Hence a B can generate either a CA or an AC.
Likewise a C can generate a B or a D and a D can generate either
a DB or a BD.

I have programed the generating relationship on an LPG-30
computer and have printed out the first 1800 terms in the code
just described. This was done in order to get some idea if the
sequence would cycle. According to a theorem on sequence, if
three consecutive blocks of letters can be found that are iden-
tical, the sequence is cyclic. However, the printed terms give

no proof if the sequence is not cyclic. 1 checked to see if
the sequence had cycled in the following way. The first four
letters of the sequence were ADBC. 1 counted the number of

letters between each succeeding pair of blocks ADBC. Since

the last three numbers are 16, 6, 14 (See Appendix) and they
occur only once in this order, the sequence has not yet cycled.
In fact, there are numbers which are progressively larger, first
2, then 6, then 8 and finally as high as 24. This would seem
to suggest that the sequence is not cyclic, although I have not
been able to prove it as yet. In this year's Jguly-July issue

of the Monthly a solution to this problem has been published

and the sequence has been proven non-cyclic.

While working on this sequence 1 discovered several
properties of it.
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Property 1 There are never more than two successive 1l's
or 2's.

The proof of this property comes immediately from the way
the sequence was defined, for there were never more than two
elements generated at one time. Property I leads to several
facts about the code we have used. There can be no double
letters AA = 11 = B, CC = 22 = D, BB = 1111, DD = 2222.

There can be no combinations AB = BA = 111 or CD = DC = 222,
since both violate property I. By this we can see that an A
and a B must be followed by either aCc or aD and a C and a D
must be followed by an A or a B. Since the first letter is an
A, all odd numbered terms are A's or B's and all even numbered
terms are ¢'s or D's. There can be no combinations ACA, CAC,
CBD or BB because they violate Property 1. This can be shown
as follows. acA = 121. Somewhere in the sequence there would
have to be a 1 to generate the first 1, another 1 to generate
the 2 and a third 1 to generate the last 1. Hence three con-
secutive 1's were necessary to generate ACA and therefore it
cannot exist in the sequence. In a similar manner the other
combinations can be shown to violate Property 1.

Property II: In any group of five consecutive elements
there is at least one double (either a 11 or a 22).

The two contradicting cases are if the five elements are
12121 or 21212. A 12121 would be written as 1cacl and a 21212
would be written as 2aca2. Since neither of these combinations
can exist in the sequence, the property holds.

Property I1I: In any block of N consecutive elements
there are at least k-1 doubles if N = 4K, and there are at
least K doubles if N = 4K+1, N = 4K+2, or N = 4K+3.

In order to prove this property | will first show that any
block of length 4N+1 for any integer N contains at least N
doubles.

When N = 1 this statement is true by Property II.

Nowv assume that this is true for integers 1, 2, ..., N.
Nov 4 (N+1)+1 = 4N+5 = (4N+1)+4. In the first 4N+1 elements
there are at least N doubles by hypothesis. The last five
elements contain at |least one double by Property II. There-
fore there are at least N+1 doubles in the block of length
4 (N+1)+1. Hence, by induction, the property holds for all N.

Nov given a block of length N either N = 4K, N = 4K+1,
N = 4K+2 or N = 4k+3 for some integer K. |If N = 4K+1l, then
there are at |least K doubles by what has been shown above.
If N =4KR+2 or if N = 4k+3, there are at least K doubles,
since the addition of one or two elements will not affect the
first case. If N = 4K, then there must be at least K-ldoubles,
since 4K = 4(K-1)+143 and the first 4(K-1)+1 elements contain
at least K-1 doubles. Hence Property III has been proven.
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AFPENDIX

The number of letters between successive blocks of the form
ADBC are as follows:

2, 6, 4, 8, 2,8,2,8, 2,8, 4, 12, 8, 2, 2, 8, 14, 4, 14, 2,
8, 6, 4, 12, 16, 14, 8, 2, 6, 4, 14, 8, 2, 2, 14, 8, 4, 14, 14,
8, 2, 6, 4, 8, 12, 8, 2, 8, 2, 18, 20, 16, 6, 4, 14, 8, 4, 6,
2, 8, 20, 14, 14, 4, 6, 2, 8, 14, 2, 6, 4, 24, 14, 8, 4, 6, 4,
8, 2, 2, 8, 14, 8, 12, 4, 6, 8, 4, 12, 14, 4, 8, 20, 2, 8, 14,
4, 12, 16, 14, 14, 16, 6, 14.

UNDERGRADUATE REEEARCH PROECT

Proposed by Paul Samuel, South Minneapolis, Minnesota.

Investigate problems of inscribing equilateral triangles
in a given triangle:

(1) Can an equilateral triangle always be inscribed in a
given triangle? |If not, under what conditions?

(2) If an equilateral triangle can be inscribed in a given
triangle, in how many ways can this be done?

(3) Under what conditions is a given point P on a side of
a given triangle a vertex of an inscribed triangle?
Can P be the vertex of infinitely many inscribed
equilateral triangles? Under what conditions?

(4) Suppose there exists an inscribed equilateral triangle
with P as a vertex. Can the other two vertices be

determined by a euclidean construction (straight-edge
and compass in a finite number of steps)?

MOVING??
oy -~ lease be sure to let the Pi Mu Epsilon Journal
]P P now! Send your name and complete new address
ith zip code to: Pi Mu Epsilon Journal
]L]E[ SE Department of Mathematics
S—@ The University of Oklahoma

Norman, Oklahoma 73069
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MATRI CES' OF SYMMVETRI ES AND REDUCTI ON FORMULAS

Ali R Amir-Moez, Texas.Technological Col | ege

This is obtained through the matrix multiplication

211 32
A symetry or reflectionwith respect to a |line through the %" ¥°) = &3 a
originor the originitself introduces interesting techniques 2 =22
for reduction fornulas in trigonometry. In this note we woul d
like to give a few exanpl es. Indeed, this is the same as the set of equations
1. Definitions and notations: W& shall choose a rectangu- x' =a,,x + 3,y
| ar coordinate system Each vector A has its beginning at the {
origin. To each vector corresponds an ordered pair (x,y). Some- Y' o= 2,X 4+ 35y

times we wite the rowmatrix (x y) for this vector. A linear
transformation £ on the plane is a function whose domain is the

- . . To verify this we observe that
set of vectors in the plane and its range is a set of vectors y

in the plane such that (x,y) = x(1,0) + y(0,1)
and
{;(A '+ B) = £(a) + £(B) £(x,y) = x£(1,0) + y£(0,1)
E(C_I‘_\,) = _f(ﬁ) ' = §(Ell'ilz) + z(3211122) = El’zl) .
where Cis a real nunber [1]. This neans that £ transfornms a Thus
sumof two vectors to the sum of o (x'.¥') = (a,,x+ 851Ys B1,X + 3,5¥) .
their transforms and a multiple
of a vector to the same multiple 3. Matrices Of symetries: In general the matrix of a
of its transform Indeed a good

symmetry may not be very interesting. But one observes that if

] a vector is on the axis of symretry, then it is transformed in-
Fig. 1 toitself. |If a vector is perpendicular to the axis of symetry,
then it is transformed into its negative. W shall discuss a

f ew exanpl es.

exanple is symmetry (reflection)
with respect to a line through o B
the origin(Fig. 1). W observe

that the symretrical of a vector A with respect to the line OP

is £(a) = B, where B has the sane length as A and the |ine AB

is perpendicular to OP. The reader may verify that a symetry |

g : g I. Symmetry with respect to the x-axis: Here one observes
JSRERU T L U AT O | that (1,0) is on the axis of symetry and (0,1) is perpendicul ar
I O T o e T e ‘ it;)the axis of symmetry. Thus the natrix of this transformation
vectors (1,0) and (0,1) respectively on the x-axis and on the |
y-axis. |If i i
£(1,0) = (a;;,3,,) and £(0.1) = (a;;,2;5).
then we define o -1
2 215 11. Symmetry with respect to the angle bi sector of the
first guadrant: Here a sinple geonetric observation(Fig. 2
’ i nplies that
21 2
_§(1:0) = (011)
to be the matrix of £ with respect to the given coordinate and
system V¢ shall not go into the idea of a product of two f@,1) = (1,0). (0,1) %,
l'inear transfornations and corresponding matri x product. For Thus the matrix of this symetry is Y
nmore information we refer the reader to [I]. The transform of N
a vector neans 0 1 S
fxy) = xy'). ) o (1,0)
1 0 )
Fig. 2
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IIT. Symmetry with respect to the origin: The symmetrical
of any vector with respect to the origin is its negative. Thus
the matrix- of this symmetry is

-1 0

0 -1/

4. Application to reduction formulas: Let us look for
‘c_g(-l:_) and sin(-t) in terms of functions of t. It is clear
that the vector (cos[-t],sin[-t]) is the symmetrical of
(cos t, sin t) with respect to the x-axis. Thus

1 0
(cos [-t] sin [-t]) = (cos t sin t)
0 -1
1
= (cost - sin t)
Therefore cos [~t] = cos t and sin [-t] = - sin t.
Next we look for cos(g - %) and sin(% - t) in terms of
n
functions of t. Here the vector (cos ['—2" = E-], sin[% - tl) is
symmetrical of (cos t, sin t) with respect to the angle bisec-
tor of the first quadrant. Thus N
0 1

(cos(@ - t] sin(y - £]) = (cos & sin &)
1 0

= (sin t cos t).
L . o _ S Py _
This implies that 9_03(5 £) =sin t and sin(; ) = cos t.

Indeed, one can obtain many other formulas similarly. For
example, for functions of II - t and N+t werespectively
use the symmetry with respect to the y-axis and the symmetry
with respect to the origin.

[1] A. R. Amir-Moez, Matrix Techniques, Trigonometry, and
Analytic Geometry, Edwards Brothers, Inc., Am Arbor,
Michigan, 1964.
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THE PYTHAGOREAN THEOREM

Dana W. Alien, University of California-Davis

CONSTRUCTION

Consider the circle (AB)
with diameter AB. Choose an
arbitrary point ¢ on the cir-
cumference and construct the A B
chords AC and CB. Since the
vertex of angle A®B is on the
circumference and the sides
are subtended by a diameter
of the circle, angle AAB is a right angle. Therefore triangle
A®B is a right triangle.

Using B as a diameter, construct the circle (CB). Call
D the point at which circle (CB) intersects AB. Construct CD,
which is a chord of circle (CB). Triangle B is then a right
triangle.

Similarly, using AC as a diameter, construct circle (ac),
which intersects A at p'. Points D and D' coincide, for

B
A\U ’ ’ D‘

angle CDD' is a right angle and so is angle CD'D. Since the sum
of the interior angles of triangle CDD' is equivalent to two
right angles, angle DCD' is 0°. Consequently, D coincides with
D'. Therefore, triangle ADC is a right triangle.

Since the sum of the interior angles of all triangles is
equivalent, we have:

/Bt mct/ BA=/ADT /oAt / DC

/a8t /ect/ BoD
Ad [/ AB =/ AX = / (B because each is a right angle.
Therefore
L, o8t /aBc=/ADt /DAC =/ DBC T/ BD.
Since / CAB coincides with / DAC and

/ ABC coincides with / DBC
[/ AC=/AD and / CAB =/ BD.
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Therefore
/ CAB =/ DAC = / Bch and / ABC = / DBC = / CBD.

Consequently the triangles ACB, ADC, and CDB are sinilar, and
AB: BC : AC:. : AC: ¢cp : AD: - DB: ¢CB : CD

Let A(ACB) =%ACBC(the area of triangle ACB), and | et

A(AB) :%(AB)Z (the area of circle (AB) ).
n 2
mhen A0B) & PRV o am
A (ACB) %‘AC'BC 2 AC BC

A(AC) _m _ AC , AC
A(apc) 2

ana -ACB) @ . cB cB
A(CDB) 2 .

Fromthe simlarity of the triangles ACB, ADC, and (DB

AB _ac _BC . AB_AC_BC
AC” AD " cp ' B D BD
Ther ef or e, A(AB) A(AC) A(CB)

A(ACB) = A(aDc) = A(ACB) '

or A(AB) : A(AC) : A(CB) : : A(ACB) : A(ADC) : A(CDB)

Since A(ACB) = a(apc) + A(CDB), it follows irmmediately that
A(aB) = AAQ t AP .

Miul tiplying this | ast equation by ril , We have

(ap)? = (ac)? + (cB)?,
and the proof is conplete.

This method of proof may easily be extended to include the
construction of all regular polygons on the sides of a right
triangle; to showthat the sumof the areas of the two pol ygons
constructed on the legs of the right triangle is equal to the
area of the polygon constructed on the hypotenuse. The use of
acircle is the nost general solution and as such involves a
nore intimate set of relationships.
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THE FUNDAMENTAL THEOREM COF ALGEBRA
Paul Jg. Canpbell, University of Dayton

In elenmentary courses in algebra the theoremthat has be-
come known as the Fundanmental Theoremof Al gebra is usually
stated wi thout proof. The proof is first encountered in an in-
troductory course in conplex variables after the devel opnent of
a consi derabl e nunber of concepts and theorens.

One advantage of the follow ng proof of the Theoremis that
an under st andi ng of the proof requires only the nost el enentary
know edge of conpl ex nunbers and their vector representations.
The proof, however, does nmake use of the concepts of "bound,"
"infimum," and "cluster point," and serves as an exanple of
the application of the techniques they engender. Consequently,
the level of the proof is approximately that of begi nning ad-
vanced cal cul us.

Gauss in 1799 was the first to offer a correct formal proof
of the Theorem H s predecessor Jean LeRond D'Alembert (1717 =
1783) , however, gave an inconplete proof; and it is by means of
the | emma devised by and named after p'alembert that the
Theoremwi I | be proved. The general approach nmay be found in
Huntington's paper [2], but a great deal of restructuring and
sinplification has been effected. The proof of D'Alembert's
Lemma is essentially the one outlined in [1].

W begin with a basic definition:

Definition: Afunctionf is a polynomial of degree n if and

only if f£(z) =az"+ ... +az%a, wherefor all i, a is

a conpl ex constant, and a, #0. The following is a statenent
of the theoremwe shall prove:

THEOREM( The Fundanent al Theoremof A gebra): If f is a poly-
nom al of degree n > O whose domain is the set C of all conplex
nunbers, then there exists a c in C such that f(c) =0.

W note that no pol ynonm al equations may be solved in the
proof, explicitly or inplicitly. This fact would seemto pre-
cl ude the use of the nodul us function,

la + bil = #/(a® + b%),
whi ch assumes a positive solutionto the polynom al equation

22 = (a2 + bz) =0.

The proof of the existence of such a solution is established in-
dependently of the Theoremin, for exanple, rulks®' Advanced
Calculus (p. 53). Wth its foundation thus assured, we will

use the nodul us function freely in the proof.
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The proof réquires three lemmas; we assume for each of them
the same hypotheses concerning £ that we use in the statement
of the Theorem.

e . w(z) = {f (z)] is continuous.

Proof: we assume from elementary complex variable theory that
f is a continuous function of z. Then we need only show that
the modulus of a continuous function is continuous. L&t an

€ > 0 be given. Then, since f is continuous, for any given
z, there exists a 8 > O such that 1f(z) - f(zo)' < € whenever

tz -z 1 <& . But dif(2) - £z )l < |£(2) - £(z )l . so
that WI£(z) - f(zo)ll < € whenever |z " zo| < § . Hence,
w = {f] is continuous.

Lemma 2: If Z is a subset of ¢ and w(2) is a bounded set, then

Z is bounded.

Proof: Suppose, on the contrary, that z is unbounded. This
means there exists a sequence [zi], z, in z for all i, such

that for every M > O there exists a positive integer m such
that |zm| > M. Consider w(z):

a _1 ao
n n-
- — L] - . . . +
w(z) = [£(2)] =la]|* |z | l+zz ¥ g
n
l )N o> 1 |21l | 2|
Now 1+ ... ey
’ ( Z Ianl |z| |a|'|zn|
1a,l
Let A = maimum — , and let p be any positive number. Then
ogicn  laf

if M is greater than the larger of 2nA and 2P/jan| + there exists
an m such that Iz > M and

lan_ll+o.-+ lal 1
]anl |zm| Ian“ z
Hence, (1 + ...}] > 1 -
n,1l 1 n
wiz ) > |a |l M(5) > ) |ale)a]]
Thus, for any given p the sequence Ww(z.) has a term greater

than p. Therefore, w(2) is unbounded, contrary to hypothesis.

Lamma 3: (D'Alembert's Lemmg If £(a) £ O, then there exists
an h such that [£(a t h)| < |£(a)} .

i}
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Proof: W write out f(a ¥ h) in order of increasing powers

of ht f(a T h) = £(a) + an™ + ™! + ... + anhn, where A, B,

etc., may depend on a but do not depend on h, and where
l<{mgnand A #£0.

a
£(a + h) = £(a) + ah™ + ap™ [ﬁh . R

A
£(a) + ah" + 4.

Now, h is determined by two parameters: its modulus, and its
argument, so that

= |h| exp i [arg(h)].

Ve will restrict Ih| and arg(h) so that [f(at h) < I1£(a)l .
The restrictions are:

(1) 0. [an™ < 1f(ay #o pig, i P
- .
B eee 4+ .0 . D-m
(2) 13 h+ e+ 2pmm
(3) arg(ah™) = arg[f(a)l + I, or .
arg(h) = %[arg[f(a)] + 11 - arg(A)}. 1
2

The left-hand sides of the first and second restrictions are
both moduli of polynomials in h; by Leema 1, they are continuous
functions of h. The two of them are both 0 at h = 0, and the
two right-hand sides are both constants. Hence, there exist r,
and r2 such that if [h| < ri.
fied, and if | hl< r,, the second one is. Therefore, choose r

L

the first restriction is satis-

to be the lesser of r, and r,. Then if Ih] < ro both re-

strictions are satisfied.

Fig. 2 shows how the three restrictions accomplish their
goal of keeping |f(a* n)l < |f(a)l
The first circle is drawn wit

the origin as its center and
radius |f (a)l . The center of
the second circle is the point
representing the sum _£ (a)+Ah™,
and its radius is |an™l. The
third restriction establishes
that this point lies on the line
through the vector from the ori-

) o gin to the point representin
f(a); the first restriction assures us that the second circle

is contained within the first. Finally, the second restriction
makes it mandatory for the point representing £(a+h) = £(a)+aAhm
+A to lie within the inner circle, and a fortiori within the

Fig. 2

outer one. But the radius of the outer CiTcle 1S |£f(a)l : hence,
any h satisfying the three restrictions (that is, any h on the
open segment marked in Fig. L will also satisfy|£f (a+h)|

<I£(a)].
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At last wetcome to the main argument.

BProof of the Theorem: Contrary to the conclusion of the theorem,
suppose that for all z it is true that w(z) = |£(z)}] > 0. Let
A = inf (w). There are then two conceivable cases:

C

(a) w> A for all z, or

(b) There exists a ¢ such that w(c) = A.
In his attempt to prove the Theorem, D'Alembert failed to realize
the possibility of Case (a).
case (a): w > A for all z.

(1) Using the definition of A, we construct a sequence of
values {wn) as follows:

(a) Choose B » A.

(b) By the definition of A as infimum, there exists

a zy such that

A+ B

5 > w, =w(z.) > A.

1 1% &=

(c) By hypothesis, equality is impossible, so

A+ B
2 >w1>A.

(d) Using w, as a new B, iterate the process to ob-

tain a monotone decreasing sequence €wn] con-
verging to A.
(2) Consider the corresponding sequence (zn].
A+ B . . .
< : for all n implies that [z is
(a) A <w, > p [ n]

bounded for all n (Lemma 2).
(b) Therefore, [zn] has at least one cluster point ¢

(Bolzano-Weierstrass Theorem). By definition,
every neighborhood of ¢ contains an infinite

number of points of [zn}.

(3) Consequently, since w is continuous (Lemma 1), every
neighborhood of w(c) contains an infinite number of
points of {wn}. Hence, w(c) is a cluster point of

fw 3y,
n
(4) Inasmuch as rwn] possesses a limit, however, the clus-

ter point must be the Iimit point: i.e., w(c) = A.
This result contradicts our supposition that w » A
for all z. case (a) is impossible; Case (b) must
hold.

A
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Case (b): There exists a ¢ such that w(c) = A

(1) Suppose A > 0. Then according to Lemma 3 (D'Alembert's),
there exists a z, such that

w(z,) < w(c) = A
contrary to the definition of A as infimum.

(2) Therefore, A = 0. Then w(c) = 0, which is true if and
only if f (c) 0.

I should like to express ny thanks to Dr. Ralph steinlage
for his help and encouragement.
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AN rth ROOT ALGORITHM
Charles Edwin Hulsart, Jr., Wesleyan University

THEOREM. Let r, Xy A, be positive real numbers such that

0 ¢ Al/r < x and r > 1. Then the sequence [x,} defined by

1/r

1!

1 A
- + A
Xie1 - T [(r-1)x, x?']‘] converges to A Moreover,
i
1/ - 11i )
X0 " A l < (._r-) le Al/rl , i=1,2,...

Proof. Let u = Al/r. Ve first show that xi u implies

xi+1 > u, for i=12,2,... . Asume that for some integer k.

we have xk> u.

r
u

-y=2< -
e e ey TR
X

HI?J‘

rei;)r - r(ﬁ;) + (r - 1)]
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b
Now 0<% <14 For 0¢x<1 definethe functionf to be
xk r-1

r - 1) <0,

such that £(x) =x =rx *(r = 1). Then %f(X) s r(x
on 0<x<1 f(0) =r -1>0. £(1) =0. Thus £(x) >0
for all x on 0 <x <1, and the inductive step follows fromthe
continuity of f. Since x, > u, we conclude that %, > u,

1
iR 12t

W now show t hat t he sequence converges to u.

1 ur
X; = Xyyq =X -7 L% s
i
] 1 r r n
o - T v .
—1 (Xl u ) > 0, 1 1,2,
rx,
1
Hence 0 < u < * ¢ = < x5 < %y <% and so [x,) converges.
Let the limt of {xi] be L.
X 1 ur
L = lim X; ) = lim & [(z=1)x; + =79
i»00 i

.
L =1 [(x-1)L * _u_]‘ so that 1t = uf .
r r-1
L
But 0 <u< L.
_ Al/x
Therefore, L = u = A .
Final ly,
X, . -u=3p-1x, + u® ]
i+l r i r=-1 Y
i
r
1 u
<T lr=l)x; +—31 -u
u
r -1
i (x; = u)
Ther ef or e,
r=l, rol r-1.1i
1%, =9l < G (% ) -] < <7 %y -l

Remark: For r =2, the theoremyields Newon's well-known
square root algorithm

R
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FORVAL PONER SERI ES OVER A COVMUTATI VE RING W TH | DENTI TY

Janes W Brewer, The Florida State University

I. 1 NTRCDUCTI O\

Let Rbe a commutative ring with identity. |In the study of
abstract al gebra, a basic object of study is the ring of poly-
nomals in one indeterninate X over R This ring is denoted by
R[X]. This paper provides the definition and some basic results
concerning a generalization of the concept of a polynomal ring.

The notation here is rather standard. VW use ¢ for "is a
nmember of ," < for "is a subset of," < for "is a proper subset
of," and 1 for the identity of the ring R

II. DEFINTIONCF R[[X]].

Consi der sequences of elenments of R of the foll ow ng type,
Joe Let S denote the set of all such sequences. For
i=0"

LA [ri);ol B = {si];:oL a=pg if and only if r, =S,
i=0,1,2,°--.

(r,

For aand g as above, a *+g = v = (ti]¥=0 Where ti =

: AP e, and a - = fu, I . =
r, +s,; i 0,1,2, , 5] i'ie0 wher e u,

j4k2i ri + si, i =0,1,2,%=+,
It is straightforward to verify that Sis a coomutative
ring with identity {1,0,0,...}% under + and -. It is obvious
that the napping g fromR into S defined by #g(r) = ir,0,0,...]}
is an isonorphismand therefore induces an inbedding of R in S
If for r ¢ R we identify r and the sequence f{r,0,0,...1 and
if we denote by X the elenment f0,1,0,0,...} of S, then we may

easily see that any element a = fai]cf_0 of S nay be represented

(Xt oo tax®+eeel It isthis
n

representation of a with which we nmost coomonly work. Further,
it is clear fromthis representation of the elenents of s that
S > R[X]; that is, any polynomal f(x) € R[X] is nerely a
nmenber of S all of whose coefficients are zero fromsone point
on. It is this fact that notivates the notation. S is usually
denoted R[[X]] and we call R[[X]] the ring of formal power
series in one indetermnate X over R The el enents of R[[X]]
are called the formal power series or sinply power series.

uniquely in the form a0+ a
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pefinition. If +a = E riXI € R[[X]] and if a # 0, by the

- =

order of a we mean the smallest nonnegative integer k such that
# 0. The order of 0 is not defined. |If a has order k, we

shall call T the leading coefficient of a.

III. SME HBVENTARY PROPERTIES CF R[[X]].

3.1. Proposition. R[[X]] is an integral domain if and only if
R is.

Proof. If R[[X]] has no zero divisors, then R _ R[[X]] also
has none. Conversely, let a, g € R[[X]] = [0I. Let the lead-
leading coefficient of a be a, and the leading coefficient of

8 be b . Since R is an integral domain a b # 0. But ab
is the leading coefficii.ent of ag . Hence, a8 #0. Thus
R[[X]] is an integral domain.

3.2. Remark. The corresponding result is also true of R[X].

Proof. The same arguments apply.

)

An element e = E ,rixl is aunit of
1=

R[{[X]] if and only if ro is aunit of R.

3.3. Proposition.

Proof. Recall that b is a unit of R provided there exists an
element ¢ € R such that bc =1. Now if ais a unit of R[[X]].,
it is obvious that r_is a unit of R since a a unit of R[[X]]
means there exists poe R[[X]], B = so + slx + ..+, such that

a8 =1, and this equality implies r s = 1; that is, r_is a
. oo o
unit of R.

Then there
= 1. W proceed in-

For the converse, suppose r is a unit of R.

exists an element S, € R such that roso
ductively to define a seq e oo

RIS (5,07,
sr =1 and such that r.s, =0 for i =1,2,"". W
o o £ 3 k

have defined Sy = r0 . Having defined So Sl' 000 Sn—l’ we

. . oo =
wish to define s sothatsr +s 1, t sja, = 0. Thus

Then s _, s
[o]

in such a manner that

define s = -x_ 1
n o

satisfy the required conditions.

(sn—lrl U4 Sofn)- 1 7T S

Novw 8 = SO+ s X t -+ € R[[X]]

and by the choice of s;'s af=1 sothat ais a unit of R[[X]].

3.4. Remark. a=r_+ ;X + -°° + rnxne R[X] is a unit of

R[X] if and only if r_isaunitof Rand r,, 1 _ i _n, is
nilpotent; that is, there exists n,, a positive integer, such
that r?i = 0. The proof of this result is omitted since R[X]

is not the principal topic of investigation here. It is worth
noting that this result differs considerably from 3.3.

-s o>
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Definition. Let R be aring and A, an ideal of R. By a basis S
for A, we mean a subset s of A such that each element b € A is
expressible as a finite sum of the form r.s, * r. s+ ««¢ + S,

171 22
where rl,---,rneR, and s, ---,sn €S W write A= (5. If

Sis afinite set, we say the ideal A is finitely generated. If
each ideal A of R is finitely generated, R is said to be a
Noetherian ring.

3.5. Proposition. R is Noetherian if and only if R[[X]] is.
No formal proof will be presented. The proof in one direction
is easy. |If R[[X]] is Noetherian then the mapping g from R{[X]]

onto R defined by f(a) =, where a = o+ TqX + ¢ ER[[X]],

is a homomorphism of R[[X]] onto R. But a homomorphic image

of a Noetherian ring is Noetherian. Hence, R is Noetherian. A
proof that R Noetherian implies R[[X]] iS Noetherian may be
found in [2; 50].

3.6. Remark. Proposition 3.5 remains valid with R[[X]] replaced
throughout by R[{X]. One half of this result is the celebrated
Hilbert basis theorem and the other half may be proved using the
above argument.

It is well known that if Ris a field, R[X] is a Euclidean
domain in the terminology of [4], and as such is a principal i-
deal domain (PID); that is, an integral domain with identity in

which each ideal is generated by a single element. For R[[X]]

we have the following:

3.7. Proposition. Let R be a field. Then the set of all ideals
of R[[X]] is [R[[X]], (X), (X?), =+, (0)) .and the ideals of

R[[X]] > (X)> (x%) > -+ > (0).

Proof. It is obvious that each of the ideals listed is indeed
an ideal. Let A be any non-zero ideal of R[[X]], and choose

@ € A a of minimal order. Suppose a = rk)e( + rk+1xk+l + e
Xk(rk + rk+1x + .-+ ). Since R is a field, Proposition 3.3 implies
that r, + Py + ..+ is aunit of R[[X]]; that is a= <. €,
€l ea. Thus (9 < A.
a was of minimal order among

n-k
= + LAY
>3‘(snx )
This proves the first assertion, while

R[[X]] are related as follows:

€ a unit of R[[X]]. Therefore xk = @«
conversely, let B = snxn + <+ € A
all members of A. Hence, n _ K. Thus, 8

€ (x°), and A . (X9).
the second is ObVIOUS

Definition. an integral domain with identity in which the ideals
are linearly ordered is called a valuation zing,

3.8. Corollary. If Ris a field, R[[X]] is a valuation ring.
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3.9 corollary. LIf Ris a field, R[[X]] is a PID

Proof. (ovi ous.

Let R be a Unique Factorization Domain (UFD) in the sense
of [4 . Then it is well known that rR{X] is also a UFD. That
the corresponding result is not true for R[[X]] was shown by
Samuel [3]. However Krull has shown in [1;780] that the fol -
lowing result is true.

3.10. Proposition. 1If Ris a PID, R[[X]] iS a UFD.

Al of the above results are known. There renmni n, how
ever, many open questions involving power series. For exanple,
a characterization of zero divisors and nil potent el enents of
R[{X}] has not been given. Also, many results known to the
aut hor could not be presented here, either for the sake of
brevity or for the | evel of presentation. all the results con-
tained in this paper were solved by the author as exercises in
a course on conmutative algebra. To the instructor Of this
class, Dr. Robert W Gilmer, | amdeeply indebted both for en-
couragenent and aid in witing this paper.
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A SHORT AXI QVATI C SYSTEM FOR BOOLEAN ALGEBRA

Lawr ence J. Dickson, Seattle University
The purpose of this paper is to set forth and explain a

set of seven axions for Bool ean Al gebra, to prove that they are
equi val ent to the ordinary axions, and to showthat the three

axi oms whi ch peculiarly characterize the Bool ean A gebra -- the
axi ons of conpl ementation (union is defined by neans of the
conpl enent) -- are independent.

Axi ors, Definitions, Basic Theorens
A Bool ean Algebra is a set X such that, for all a,b,c,... € X:

A There is defined a (closed) binary operation (Intersection)

such that:

Axioml: an(banc) =(anb ac (Associ ati ve)

Adom2 anb=bana (Comut at i ve)

AXiom3 aAa=a (1 denpot ent)
B There exists an element | < x such that

Axiom 4: af I =a¥v¥ae€xX (Identity)

C There can be defined a function ¢ (Conpl enentation) fromX
toitself such that:
Axiom 5: (d)' =awva
Axioms: ana =1'yw

Three definitions are in order to clarify matters:

Def. 1: agb:aNb=a (I'ncl usi on)
f.2 avub=(a o b (Uni on
(This definition of union is nerely a rephrasing
of DeMorgan |aws.)
Def. 3: O =1 ("nul'l set")

Three basic theorens will nowbe presented to conpl ete the pic-
ture. (Here and hereafter, when a theoremhas a very straight-
forward and trivial proof, | will save space by omtting the
proof . )

THEOREM 1 ( Uni queness of I): A nost one el emrent of X
satisfies the property of 1 (Axiom 4).

THEOREM 2 (Uni queness of conplenentation): At nost one
function! from X to X can be defined satisfying
Axi ons 6 and 7.

Proof;: Let -' and -* be two such functions. Then for any
ac<x, O=afa'=a'na=aha*=a*na, and therefore,
a'n a*=a Ana* na =a*, wiichinplies a* = a* by

commutativity.
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THEOREM 3 (0'is "smallest” element): 0 4 awv a€ X.
Proof: ONha=aNoOoO=aNl(ana') = (ana aa =
ana =0.

V¢ can now explain the meaning of the seven axioms. The
first three axioms are easily shown to be equivalent to the
assumption that X is a p. o. set (wherea { b¥a g b) with a
glb for every finite subset (glb {a,b} = an b, etc.) . The
fourth axiom says that X has a greatest element under this p. o.
The last three axioms imply X has a smallest element (THM 3),
and state that X can be divided into pairs (of complements)
such that, not only do the elements of such a pair not meet
(i.e., they are "as incomparable as possible": their greatest
and only lower bound is O, a lower bound of everything), but
each member of the pair contains everything in X that does not
meet the other.

Proof of Equivalence with the Ordinary Axioms

First we will show that the ordinary axioms imply the system
given above.

THEOREM 4: Axioms 1 - 7 and Definitions 1 - 3 are true in
any system which satisfies the ordinary axioms
of Boolean Algebra.

Proof: Axioms 1 = 6 and Definitions 1 = 3 are all statements
or rephrasings of certain of the ordinary axioms of Boolean
Algebra. A Axiom 7 is implied by the distributive law:

anb=0=alNb' =(aflb')U(anb) =an (b'U b) =
alll=a,
Nov we will show that the implication runs the other way also.

The only real difficulty is with the distributive laws.

A. Axioms of Intersection: These are given, as Axioms 1 - 4
and 6.
B. Axioms of Union:

THEOREM 5 (Associative): a U (buc) = (aub) uc

Proof: a U(bUc) =aU(b'lc')' =(a* 2 (b'0Dc')""' =
(2’0 (P'nDe"))' = ((a'ab')n c')' = ((a*a )" nacH)' =
(a'n d')'yu c=(aUb)U c.

THEOREM 6 (Commutative): a Ub = b U a.
THEOREM 7 (ldempotent): a U a = a.

THECOREM 8 (ldentity): a U O
THECOREM 9 (Complement): au a .
THECOREAM 10 (Property of 1): aul =1.

I
o
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The Distributive Laws These turn out to follow from Axiom 7:

THECREM 11 (First distributive law): a n (b u c)=(aft b)u (anc),
Proof: W will proceed by steps.

Lema 1: an (anb)' =anb'.
Proof: 0 =(af b)N (anb)' =al (b2 (anb)")

= (aft (an b))y Nobo
s.,anN(aadb)'Nandb'=anan (anb)'n bt
= (an (an®') N b
=ah (ahb)'.

But 0 =an0O=an('ab) =agtnaab'ab
= (an b') n (anb)
‘an(anb)'n anb' =ananb'n (anb)!'
= (anb')n (anb)' =anb',
'an(a b)! =anb'.

Lerma 2 (afnn b) U (anb') =a.
Proof: ((anb) U (anb'))' = (anb)'an (anb')!

(anb)'n (anb')'na (anb)*

(anb)'a (aNb")' a (aNpy

(allb)'n (anad)y'N(anNanNb')y):
(a2t b)'n (anNbdv')y' N (a:

(a'2 an b)''na (a2 Nanb»')y'n a’
(onwv»y'n (ON»)'n a* = (0)N (0)*N a

INnNIiIana'-=a'".
~(ahNb) v (aadb') = ((aNb)yran (ana db')') = (a')* = a.

Rroef of Theorem:

i) anN((anbdb)'ana (anc)')* =anN (ah (aanadb)'n(anc)')
=an(an®)'n ()Y =an(b'anc')* =an(uc).
ii) a' n ((anb)''n (anc)')r =a" n (a* n (an b)'pfanc)*):

=a N (an (@a@nahb)!na@aanancn:
=a N(a'No'N oy =atqg (a’)' = 0.
iii) aN@®uc) =@n (byc))y 0 =fan((anb)'nlanc)*)']u
[a' N(anb)'ng (@ane)’)'] =(anb)' g (anc’)’
= (anNb) u (anNc). QED
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THEOREM 12 (&&cond distributive law): a U (b ac) =(au b)a(aUc). S UURUSSERE SRIERSO NG Lol RERE VO i e UR Lo
proof: a uy (bfe) = (a' N (bNc)')' =(a'n (b'U c'))’ both Axiom 5 and Axiom 6 satisfied, but Axiom 7 is not --
=((a'Ub')U(a'Uc'))':((an)'U(aUC)')' e.g.,a,naZ:O, but alna; :alna3:O;éal.
= ((aub)" n (avu c)")Y* = (aub) n (aUCc).
Reference

D. Properties of Inclusion and Complementation: These are listed
below, though they habe been mentioned before. They have
been proven, or their proofs are trivial.

THECREM 13 (de Morgan's Laws): a) (an b)' =a U b'

Allendoerfer and Oakley: Principles Of Mathematics.

b) (aub)' =a'n b'.
Note 1 (extreme elements): ¥ a € X, a) O0dga
b) agit: ARCBLEM DERARTMENT

THEOREM 14 (partial, ordering)= V a,b,c € X, Edited by
a) ada M. S. Klamkin, Ford Scientific Laboratory
b) agba.b

=} Sc=agc This department welcomes problems believed to be new and,
c) agb, bg

a=sa =b. as a rule, demanding no greater ability in problem solving than
that of the average member of the Fraternity, but occasionally
we shall publish problems that should challenge the ability of
the advanced undergraduate and/or candidate for the Master's

Independence of the Complementation Axioms Degree. Solutions of these problems should be submitted on

The examples given here to prove independence are all subsets separate signed sheets within four months after publication.

of power sets which are closed under finite intersection, and An asterisk (*) placed beside a problem number indicates

which contain the Identities of their respective power sets. that the problem was submitted without a solution.

Hence they satisfy Axioms 1 - 4. R .
Address all communications concerning problems to

THEREM 15 (Independence of Axiom 5): Axioms 1 - 4, 6, and M. S. Klamki_n,'Ford Scientific Laboratory, P. 0. Box 2053,
7 do not imply Axiom 5. Dearborn, Michigan 48121.

Proof: Let X = (0,a,I] where 0 =g, a= (1], and | = (1,2].

Define 1™ = a* = 0 0' = 1. Axiom 6 is seen to be satis-

fied; and so is Axiom 7, because x 1y = 0= x =0 or

y =0 for x,y € X. But Axiom 5 obviously must fail, for *'

FRCBLEMIS KR SOLUTION

is not 1-1. 187. Proposed by R. c. Gebhardt, Parsippany, N. J.
A semicircle ACB is constructed,
THEOREM 16 (Independence of Axiom 6): Axioms 1. - 5 and 7 as shown, on a chord AB of a
do not imply Axiom 6. unit circle. Determine the chord /mc
Proof: Let X = (0,1} y [LN:N € 2}, where 0 = 8, Z =the AB such that the distance OC o
set of all integers, | = 2, and L, = [n € Z:n { NJ}. is a maximum. w
Define 1I' = 0, 0'=1,andLI:]=LNVN€Z_ Axiom 5 is L
obviously satisfied. Axiom 7 is satisfied, because 188. Proposed by Waldemar Carl Weber, University of Illinois.
a,b€ X, anb=0=a=0o0rb=0. But Axiom6 is not For any two real numbers x and y with 0< x < vy,
satisfied: Ly n LI:I — LN #OVNEZ verify the following procedure for adding on a slide
rule using the A, S, and T scales. First setting of
THEOREM 17 (Independence of Axiom 7): Axioms 1 - 6 do not slide:
imply Axiom 7. R it
proof: Let X = (0,I,a;,a,,25,a,}, where 0 = #, 1 = [1,2,3,4], A|| opposite y | opposite x .

and a, = (i}. T[| set right index { read angle 9, 0<8< 7/4
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189.

190.

191.

155.

Se¢ond setting of slide:

A I opposite x r read x+y

Sl set angle 9 | opposite right index

Proposed by Leon Bankoff, LoOs aAngeles, California.
If A, B, C, D, E F, and G

denote the consecutive

vertices of a regular

heptagon, show that ¢cD is G

equal to half the harmonic
mean of AC and AD.

D
Proposed by Joseph arkin, Sufferv

Ifw v, t, n, u g, k, and r are B ct non-zero in-
tegers, find infinitely many solutions to the
diophantine equation

W4+v4+t4+n8 =u4+q4+k4+r8

where w, v, u, and q are each a hypotenuse of some
Pythagorean right triangle.

A

Proposed by Stanley Rabinowitz, Polytechnic Institute of

Brooklyn.
Let P and P' denote points inside rectangles ABCD and
A'B'C'D', respectively. If A =atb, mB=atc,

FC=ctd, ®=b+*td, Pp'a' =ab, P'B'=ac, P'C' =
cd, prove that P'D' = bd.

SOLUTIONS

Proposed by William J. Leveque, University of Michigan.
Two mountain climbers start together at the base of a
mountain and climb along two different paths to the sum-
mit. Show that it is always possible for the two
climbers to be at the same altitude during the entire
trip (assuming each path has on it a finite number of
local maxima and minima) .

Editorial note: The proposer notes that the problem is

not original with him and he does not know the original
proposer.

Solution by the proposer.
With no loss in generality, each path may be regarded as

a plane polygonal path connecting the origin and the point

(1,1), entirely contained in the unit square and having
one ordinate for each abscissa. Suppose first that the
ends are the only points of the paths at heights 0 or 1.

16l1*.
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Represent one such path, p in an (x,y)-plane, and the

ll

other, p in an (x,y)-plane. For each y with 0 £y < 1,

2'
there is a finite set of values xi(y), x:zl‘(y),--- of xl

for which (xi(y),y) isonp and a corresponding set of

ll

values x?(y) of x°. Plot all the points(xi'(y), X?(Y)) for

all combinations of i and j, and for all y, in an
(xl,xz)—plane, thus determining a point set s. Slies

entirely in the open square 0 - xt - 1, O x2 < 1, ex-—
cept for the two points (0,0) and (1,1) on it. Two

climbers are at the same height on the two paths if and
only if their positions give a point of S,and the prob-
lem reduces to showing that S contains an arc connecting

(0,0) and (1,1) in the (xl,xz)—plane.

Any point in the closed unit square U in the (xl,xz)—
plane determines unique positions on the two paths. In
particular, the point (1,0) places one climber at the top,
the other at the bottom; the point (0,1) gives the reverse
positions. An arc connecting (1,0) and (0,1) represents
a recipe for getting one maen down the mountain while the
other ascends it; obviously, under any such prescription,
the climbers are at the same height at some instant.

That is, any arc in U connecting (0,1) and (1,0) inter-
sects S. It follows that S connects boundary points of U,
and hence connects the only two possible boundary points,
(0,0) and (1,1).

If one (or both) of the paths has several points at
height 0, it can be modified slightly so as to have minima
at distinct heights very close to O (closer than any of
the other minima except the beginning point), and a sim-
ple continuity argument shows that the lowest minimum can
again be dropped to 0, then the next lowest, etc. The
case of several maxima of height 1 can be handled similarly.

Proposed by Paul Schillo, SuNy at Buffalo.

It is conjectured that the smallest triangle in area which
can cover any given convex polygon has an area at most
twice the area of the polygon.

Editorial note: This is a known result and is given in
H. G. Eggleston, Problems in Euclidean Space, Pergamon,
N. Y., 1957, p. 156:

"Theorem 9.5: Let I' be a convex set. Then every tri-

angle circumscribing T is of area greater than or equal
to twice that of T if and only if T is a parallelogram.”
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Proposed byic. S. Venkataraman, Sree Kerala Vama college,
Trichur, south India.

If s is the semi-perimeter and R, r, Ty, T, and ry are

the circum-, in-, and ex-radii, respectively, of a tri-
angle, prove that

R 252

r? = F1¥2%3

Solution by Stanley Rabinowitz, Polytechnic Institute of
Brooklyn.

V¢ start with the known inequality, R > 2r, with equality
if and only if the triangle is equilateral. 1t is also
known that rr ror. = K where K is the area of the tri-

angle (see N. A. Court, College Geometry, p. 79). Since

also K = rs, we have rrlrzr3 = r4s“, Finally,
! 2
R— Z g - -.___.25
> =
r rrifrs

Also solved by H. Kaye (Brooklyn, N. Y.), Paul Meyers
(Philadelphia, Pa.), M. Wagner (N.Y.C.) , F. Zetto (Chicago,
111) and the proposer.

Proposed by K. S. Murray, Am Arbor, Michigan.
Show that the centroid of A
triangle aBc coincides with

that of triangle a'B'Cc' where

A', B', and C' are the mid- c! B
points of BC, TO, and ZB,

respectively. Also, generalize

the result. B o

AF
Solution by Stanley Rabinowitz, Polytechnic Institute of
Brooklyn.

Since AB'A'C' is a parallelogram, aa' bisects B'c'. Hence
AA' is a median of both triangle ABC and A'B'C'. Hence
the medians of both these triangles meet at the same point.

Generalization: Let AO,A A .-, a be the vertices
r

1 P2
of an r-simplex and |et B; be the centroid of the (r-1)-
dimensional face opposite Ai, i=0,1, ..., r. Then the
centroid of the r-simplex with vertices Bo' -+ B is

the same as the centroid of the original r-simplex.

Proof: Ve use the following facts. The medians of an
r-simplex meet at the centroid and this point is

1/(r+1l) of the way up from the base. [A median of an r-
simplex is a line going from a vertex to the centroid of

the opposite face.] Therefore points B:'L, Bé, ey, B.', form

179.
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an r-simplex homothetic to the original one. Therefore

median BOB(') is also a median of the medial r-simplex since

it passes through the centroid of the r-simplex formed by
Bo, Bi, Bé, o0 Bx'_. So both sets of medians meet at the

same point. Hence the r-simplex and its medial simplex
have the same centroid.

Editorial note: There is a still further generalization

and it is easily established by means of vectors. Al-
though the generalization holds for an n-dimensional sim-
plex, we only illustrate it for n = 3. Let & B, &, and
D denote four linear independent vectors from some origin
0 to the four vertices A, B, ¢, and D, respectively, of
the tetrahedron. Its centroid is then given by

(F+ B +2+DB)/4. we row consider another tetrahedron
whose four vertices lie on the four faces of our initial
tetrahedron and are given by

rXtsB+tt rB+sC+tD rC+sD+tl rD+sA+tE
r+s+t ' r+s+t ' r+s+t ' r+s+t '

where r,s,t > 0. The centroid of this latter tetra-
hedron coincides with that of the initial one. If we let
all the weights r, s, t, be equal, we obtain the pre-
vious result.

Also solved by Paul Meyers (Philadelphia, Pa.), philip
Trauber (Brooklyn College), M. Wagner (N.Y.C. ), G. Weeks
(San Francisco, Calif.) and the proposer.

Proposed by Donald Schroeder, Seattle, Washington.
It is well known that

32 + 42
102 + 112 + 122

52

132 + 142 5

Generalize the above by finding integers a satisfying

m
;;(a+k)2 = E (a+k)2.
= K=m+1

Solution by Michael F. Brunner (no listed address).
Squaring out and summing, we obtain the equation

a2 - 2am2 - 2m3 - m2 = 0.

Whence, 5
a=mn" +mmt 1.

Editorial note: Charles Ziegenfus, Madison College,

Virginia, notes that the problem with solution occurs as
No. 550 in the Nov.,, 1964, Mathematics Magazine.

Also solved by J. H. Cozzens (Kettelle Associates, Pa.),

R. w. Feldman (Lycoming College, Pa.), E. Johnson (Univer-
sity of South Carolina), 0. Marrero (Miami, Fla.), P. Myers
(Philadelphia, Pa.), R. Prielipp (University of Wisconsin),
S. Rabinowitz (Polytechnic Institute of Brooklyn), G. Weeks
(San Francisco, Calif.) and the proposer.
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Proposed by I-R. C. Gebhart, Parsippany,
In the figure, AB = BC and
angle ABC = 90°. The arcs
are both circular with the
inner one being tangent to
AB at A and BC at C. Deter-
mine the area of the crescent. A

N. J.
B

C

Solution by B. W. King, Burnt Hills-Ballston Lake High

School, N. Y.
Let r denote the radius
of the circle determined
by arc ac and O denote
its center. It follows
that ABDO is a square and
that the radius of semi-
circle ABC is r/ V2.
Then, area of semlicircle
ABC = TIr2/4, area of seg-
ment bounded bg arc and
/

chord AC = 4 - r /2
Finally, the area of the crescent is
2 2
I'Ir2 - I'lr2 _ r_) r
4 4 2 T2

W. W. Wallace (Wisconsin State University)
notes that since the area of the crescent equals that of tri-
angle ABC it follows that the sum of the areas of the two
smaller segments AB and BC equals the area of the sector

AC.

Also solved by J. H. Cozzens (Kettelle
R. C. Gebhardt (Parsippany, N. Y.), G.

B

N\

2
AB

= —— o ——

2 ¢

Associates, Pa.),

Jacobs (2 sol.)

(Temple University), G. Mavrigian (2 sol.) (Youngstown

University), S. Rabinowitz (Polytechnic Institute of Brook-
lyn), P. Trauber (Brooklyn College), M. E. Votypka (John
, F. zetto (Chicago,

Carroll University), M. Wagner (N.Y.C.)
I111.) and the proposer.

in his solution
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MEW YORK MU, Yeshiva College

Shlomo A. Appel
Richard Auman
David Marc Benovitz
Wallace Goldberg

Jacob Ben-Zion Gross
Samuel Kohn
Eugene Korn
Myles Robert London

NV YO NU, New York University

David Leslie Fleming
Richard David Greene
Brian Paul Hotaling

Warren Robert Janowitz
Kathleen B. Levitz
Charles Rolli

N8V YOK XI, Adelphi University

Murray Barr
Seymour Berg
Walter Blumberg
Neoptolemos Cleopa
Robert Cohen
Grant Dufferin
Florence Elder
Harvey Finberg
Jerrold Fischer
Charles Garfield
Dr. D. Hammer

Marilyn Heinrich
Ronald Hirshon
Alan Hulsaver
Erwin Just
William Kane

Dr. A. Karrass
Harry Kristy
Joyce Leslie
Mrs. E. Lowrie
Daniel Marcus
Valerie McEnaney

NV YO OMICRON, Clarkson College of Technoloqy

David Boss
Richard Barry Fischer

Michael A. Grajek
Eric Kevin Poysa

N8V YOK RHO, St. John's University

Lucille S. Asciolla

Dr. Willie R. callahan
Michael F. Campbell
Linda Marie Catti

John Anthony Chiaramonte
Carol Davatzes

William K. Dugan, Jr.
George James Gipp

Brendan Harrington
Carol Lynn Keefe
Patrice Kistner

Bruce D. Leon

Raymond A. Maruca
John Pagano

Martin Peres

Kathleen Anne Peterson

NCRTH CAROLINA BETA, University of North Carolina

Nancy Baker

George D. Bame

Alyce Dianne Blankenship
Richard E. Bressler
William F. Burch III
Katharine Cannon
David Chung

Richard Long Cline
Charles D. Cunningham
Kent Paul Dolan
Darrell Drum
Margaret Gee

Thomas Handley

Craig W. Harrington
Brenda Herman
William Hobgood
Carolyn Hochanadel
Kathy Kerrigan
Conrad Martin
Diannc McDonald
Harold McFaden
Sandra Mercy
Virginia McMillan
Barbara Moser

Sue Nottingham
Yumiko Nozaki

Erwin Lutwak

Raymond Mauro

Ronald V. Padalino
Charles N. Privalsky

Charles Barr Probert
Frank James Tanzillo

Leonard Presby

Aaron Rabin

Shalom Reuvan Rackovsky
Alan Sidney Rockoff
Leonard Tribuch

Steohen Silverman
Michael 7umoff

Michael Mulryan
Harold Norton
Michael Orleck
Robert Payton
Edmund Pribitkin
Paula Schimmel
Nick Smernoff
Dr. Donald Solitar
Gary Telfeyan
Sal Tessitore
Nancy Van Scoy
herald Weinstein

Bernard Frederick Schutz Jr
Luther Gaylord Weeks

Michael s. Petillo
Diana . Possidel
Florence D. Rozniak
Lilian Steffens
Elvira Suros
Christine .Wasiluk
Thomas L. Weigand

Joyce Olson
Sandra Regionale
Gail Savage

David Sewell
Robert Shock
Anita Somers
William E. Stragand
Steohen Swearingen
Emory Underwood
Michael Varn
Barry Westerland
Robert M. Young
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NCRTH CAROLINA GAMMVA North Carolina State University

Stephen Hunt Brown
Lawrence Arthur Culler
Ronald Dabbs

Robert Edward Dungan

Noel Reed Hartsell
William F. Horton

Marlene Moore Jeffreys

Richard Lee Keefer

OHIO DELTA, Miami University

Nazanin Bahramian
Stephen C. Bell
William L. Crawford
Ann Carolyn Davis
Daniel J. Deignan
Leslie L. Durland
Robert M. Fry

John M. Hartling
Jeffrey A Hoffer

OHIO ETA, Cleveland State

James W. Dyche

Prentice L. House
Joseph W. Kennedy
Michael H. Kenyon
James W. Kimnach
Karen Lou Kingzett
Kaye F. Koenig
Sharon G. Kolter
James R. Morrow
Charlene J. Neyer

University

Mary Ann Fill
Frank J. Lid

OHIO THETA, Xavier University

Martin Brown
Brother Dennis Carl
James V. Cox

OHIO LAMBDA, John Carroll

Rosalie A. Andrews
Carmen Quentin Artino
Charles Arthur Bryan
Kathryn V. Campbell

Donald Grace
Robert 3. Honkomp
Paul 0. Kirley

University

Sandra A. Cervenak
Thomas E. Ciciarelli
Donald R, Collins

Richard A. Guinta

CKLAHOMA BETA, Oklahoma State University

Linda Chesnutt
Allan Edmonds
Jeffrey Glasgow
Ann Habeger

Tony Jaronek
Linda Koehler
Max McKee

James Patton

OREGON ALPHA, University of Oregon

Robert Eugene Dressier

Forrest Allen Richen

OREGON BETA, Oregon State University

Gerald Lee Black
John Cleveland

Joel Davis

Martha Louise Fuessel
Robert Edgar George

Roger Gray

Gary George Grimes
James R. Harries
Roger Hunt

Clay Robert Kelleher

PENNSYLVANIA BETA, Bucknell University

prof. Alphonse Baartmans
Carol L. Bateman
Ronald Benjamin

Alan J. Bilanin

Henry G. Bray, Jr.
Barbara Castagnero
Ronald A. Chadderton
Barbara A. Crockett
Brian J. Donerly
William C. Emmitt, Jr.
Roland W. Garwood, Jr.
Linda A. Gertz

Milton R. Grinberg
Timothy B. Hackman
James R. Hartman
Jane C. Henningsen
Thomas R. Hoffman
Paul w. Marvin

Susan A. Meyers
Leonard S. Reich
Douglas S. Richardson
William G. Robey, Jr.
Margaret A. Rogers
Michael ¢. sarisky

Joseph Wayne Pace
Charles Jack washam III

Rebecca Ann Wilson

Dianne K. Olix

Earl M. Pogue
Dorothy L. Rowe
Anita M. Schaffmeyer
Sandra M. Spagnola
Terry A. Stith

Mary C. Tabor
Margaret Ann Uhl

James E. Svarovsky

Robert C. Strunk
Joseph M. Thierauf
Rev. Robert Thul, S.J.

Theodore A. Linden, S.J.
Jerry W. Martin

Ronald A. Mozel eski
Leonard w. Ringenbach

Marsha Ray
John Thobe
Terry Vance
Ron Walker
Allan Woodruff

John Hooker Schultz

Theodore G. Lewis
Larry James Meeker
Wen-Ninghsieh

Clyde C. Ssaylor
William L. Stubkjaer
Walter A. Yungen

John T. Sennetti
Kathryn M. Setzke
David R. Stoll
James 0. Stevenson
David H. Walters
Dennis E. Whitney
George W. Williams
Harley W. Wilson
Christopher B. Winkler
David P. Wolper
william G. Woods TII
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FENNSYLVANIA DELTA, Pennsylvania State University

Murray F. Campbell
Christopher M. Clayton
Philip B. Gingrich
Jean A. Grube

John S. Jarecki

FENNSYLVANIA ZETA, Temple

Anna M. cavaliere
Barbara R. Davis
Joseph A. Gascho
Arnold K. Gash
Elaine Gold

FENNSYLVANIA THETA, Drexel

Robert C. Bushy
Carol Chavooshian
David P. Hatton

SUTH CAROLINA ALFHA, University of South Carolina

Stephen A. Burger

George H. Johnson
Frank P. Miller
Pamela 3. Olson
Richard A. Sankovich
John C. Sciortino

University

Glenn Goodhart
Mady Hochstadt
Helen Leibowitz
Dale Love
Martha MacDuffee

William F. Shivitz
John A. Thomchick
Richard J. wallat

Edward R. Whitson
Dennis P. Zocco

Patricia Moccia
Robert A. Monzo
Diana Moyer
Richard L. Mucci
Hope Welsh

Institute of Technology

Dennis R. Kletzing
Harold Luchinsky

Samuel McNeary

Larry M. Ernst

TEXAS BETA, Lamar State College of Technoloqy

James M. Hall
Emily Sue Hohes
Bill Kaminer

James Lewis Kingsley
Nancy Lynn McNabb
Jana White McNeill

VIRGINIA ALFHA, University of Richmond

David Joseph Brobst
Margaret Anne Byrn
Rodney Carl Camden
Wesley Sherrod Carver
Betty Fanner Hungate
Benjamin Franklin III
Virginia Sandra Griffin

WASHNGION DH.TA, Western

Gail Leslie Adams
William Clarence Anderson
Linda Marie Boman

Richard Allen Brandenburg
Larry Arthur Curnutt

Earl Frank Ecklund, Jr.

Glen Albert Hatcher
Jerry Perkinson Jones
James B. Marshall, Jr.
Edward V. Mason, Jr.
Evelyn Carter Richards
David Lindley Riley
Carol Amn Seymour

Stephen J. Nelson
Edward Pikus
Eric Lloyd Victor
Joel Zumoff

Ralph A. James

Kenneth L. Wise, Jr.

Richard A. Schoyen
Bryan Edwin Sloane
Larry W. Soradley
Loraine Thompson

Patricia Maye Shaw

Am Myrnell Spivey

David Charles Stromswold
Astra Jean Swingle
Evelyn Anmn Werth

Edgar Martin Wright, Jr.

Washington State Colleqe

Dolores Irene Fell
William Francis Fox
Dale Robert Fransson
Peter winslow Gray
Arthur Ray Hart
George Carl Harvey

WISCONSN ALPHA, Marquette University

Patricia Balloway
Mary Bellehaumeur
Mary Kay Gorski
Jose Garcia

Paul Harrison
Steven Hayward
Sheldon Fisher
Bill Lane

Larry Dean Larson

Carl Lawrence Main

Nand Kishore Rai

Terry E. Sharnbroich
Marshall Masao Sugiyama
David Brent Wagner
Edward Benson Wright

James Munroe
Val Schnabe
Donald Wilt









