


THE C._C. MAMUHE AVWD KR DISTINGUISHED SERVICE

J.C. Eaves, President, Pi Mu Epsilon

Fellow members of Pi Mu Epsilon, honored guests: W have come
together tonight for mawy reasons but none more important than the
next event on our program.

Presidents of an organization such as ours come and go, but
they live on, on the back of the printed copies of our Constitution
and By-Laws. This is not the case with the veritable servants of
our fraternity. Ary interested individual can ascertain from a
copy of our constitution that Professor E. D. Roe, Jr., was our
organization's first president (then called Director General) but
there is no reference thereon that Dr. John Steiner Gold, our
honoree, served as Secretary-General with Professor Roe. It was
during these early formative years of Pi Mu Epsilon that the size
of an Institution seemed to be synonomous with interest in a
strong Mathematics Department and thus, Dr. Gold was instructed
to discourage smaller colleges when they sought information con-
cerning the possibility of a chapter.

Our Constitution booklet carries the names Ingold, Owens,
Evans, Milne, Fort, MacDuffee, but no mention that our honoree
saw service with all of these. Dr. Gold was elected secretary
in 1927 and served continuously until 1948, the longest term of any
elected officer. In 1936 he worked arduously and with inborn devo-
tion to revise the constitution, placing emphasis upon quality rather
than size alone. He saw Pi Mi Epsilon Chapters swell from 14 when
he took office in 1927 to almost 50 in 1948 when he chose not to seek
reelection.

While we all find it difficult to accept the decision of a devo-
ted servant to step out, we must, nevertheless, see some justification.
As one of the main driving forces behind the society, Dr. Gold had
seen it develop from one or two new chapters per year, each installing
itself, preparing its own certificates, paying no dues, ordering seals
from the Director General (at 1¢ per) to one which required an initia-
tion ceremony usually attended by the Secretary, required membership
certificates, individually written (in the fine Spencerian hand of
Mrs. Gold), with ribbon and seal affixed by hand. He maintained
detailed office records in the centralized headquarters of the fra-
ternity from 1936 until his retirement. During much of Dr. Gold's
period of service there were no national dues but the head office
accepted donations of one or two dollars per year from each chapter
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if the chapter took the hint and voluntarily contributed. In 1936

the seal of the Fraternity was placed in the hands of the Secretary
Treasurer General, the nev office created by the combination of the
offices of Secretary, Treasurer, and Librarian. Each rew member rnow
was charged a Fee of 25¢ which barely covered Dr. Gold's cash outlay
for certificate, seal, and ribbons. During the few minutes we had
together prior to the beginning of our program tonight he also recalled
some experiences such as an all night bus trip to clarify a point, and
a trip on a bus which became snowbound and thus caused him to relay the
initiation ceremony by phone thereby accomplishing the installation

of a new Chapter.

Dr. Gold relates that money was scarce in the early 1930's and
interest i n mathematics also lagged. In case some of you think that
a quarter wasn't much during those years, | must add that it was made
of silver and I know some college me who survived on 25 to 30 cents
per day for food and this included between meal snacks and night caps.
These were also the years during which high school principals were
replacing mathematics courses with manual training courses. This was
truly, for some, an unimaginably rough period and it is probably no
exaggeration to say that except for the stamina, the perserverance,
the unforgettable belief in the value of recognition of a budding
young mathematician, and the unregrettable devotion of manwy hours
during 50 per cent of his active, productive, lifetime —we may not
today be aware of Pi Mi Epsilon, it having long since slipped into
oblivion. With leaders like Dr. Gold, the World of Mathematics
scholars was not to lose conscious knowledge of this organization.

To me Dr. Gold always exemplified aptness, unselfishness, and
foresight, in his decisions for the fraternity. 1t was he who fore-
saw not only the possibility but also the necessity of a national
publication, and this at a time barely following World Wa II.

Tonight we could honor others but none more deserving. Tonight
we could read names from our roll of the mawy servants of Pi M
Epsilon, but none more devoted. W could recount the accomplishments
of president after president but scarcely a combination equals his
indulgence. Ard for humility he has no equal.

Dr. Gold honors us tonight in accepting Pi M1 Epsilon's highest
award, the C. C. MacDuffee Award. |t was our intentions that this
award say simply enough to anyone, "This is recognition of genuine,
unselfish service."” We intended that it be elegant enough to grace
the finest wall and distinguished enough to become a cherished poss-
ession. W know, members of Pi Mi Epsilon, this is a tribute to a
deserving member who did not labor that he saw a medal in sight but
for the promotion of those true scholarly ideals he saw foremost in
our organization.

In recognition of the contribution Mrs Gold has made, both in
sharing her husband's time with us and for the uncounted hours she
spent in cutting ribbons, licking seals, and applying that long lost
art of Spencerian penmanship, | an going to ask that she too stand
and share in the presentation.

Dr. Gold, you honor us tonight and you both leave us forever
in your debt.

August 29, 1967, On the occasion of the Annual Banquet, Toronto.
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A CONVERGENT SERI ES AND LOGARI THVS | N DI FFERENT BASES

Ali R amir-Modz, Texas Technol ogi cal Col | ege

Inthis note we first study a theorem of Euclidean
geonetry and use the result in obtaining logarithms in a

positive base.

Fig 1

1 Theorem Let x and O/ be two half lines and a
be the angle between them (Fig. 1). Let A, be a point on
. W\ consider points Ag, A, ... and By, Bl, ... Such
t hat B is the foot of the perpendicular through A to Oy
and A,
Let the segnent OAn = a , the segnent OBn = bn, and the
segnent A B =c_ . Then

@ - o

o«
a s b ; and
n=0 " nio n’

o~

cn
n=0

m
are convergent for 0 < a < 3 and 0 < apg < o,

proof: Let a, =a Then by = acos a and co = a sin a

Thus S = ] a =a(l+cos?2at+...tcosat...)
n=0
= a _ _a

2 X ’
1l - cos“a s;nza

1 is the foot of the perpendicul ar through B to .

323
® 3 2n+1
T= J b= a(cosa + cos®a + ... + cos“™a ... )
nt0
a cgsa
= S cosa = —
sin a
R= § c, =2 sina(l + cosa *+ ... + cosa + ... )
nz0
_ _a sina
- 1 - cosa °

2 Di scussion: W observe that for a = 0 all three

series are divergent. One easily sees that

a
§+T=731"Ccosa *
This inplies that
R _ _.
S+T—s.1nu.
W may study the case a > %. But it will not be very

i nteresting.

3. Logarithns in a base: Let us look at a sequence

related to the series 8. Choose Co on Ox and let 0Cq = d.
Then we draw the perpendicular to O through Co (Fig. 2.
Thi s perpendicular intersects O at Do. Now we define

c --+s C 0N X and Dys ---, D ON O/ such that the

ll
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segment C, D, i s perpendicular to & and the segrent q(_ lq(
is perpendicular to @& for k =0, 1, ..., n. Let oc; = 4. _ _ _
i =0, 1, ... . Then the sequence dg, ..., a, ... will Now i f we draw cB, perpendicular to 0z and BoA; per pendi cul ar
wWll be to & and continue this way, we rmay obtain points with
negative ordi nates for log, X, for exanpl e (ay, -2) where
dy = d, d secza, R { seczna, fer . 0A. = a

1
What has been studied in this section does not give

1

a very accurate approximation of log, X. Thus we shal |

add a fewideas in order to get better approxi mations.

2
) x Fig. 4
4 Ceonetric neans: Let a and b be two positive
Fig. 3 nunbers denoted by the line segments AB and BC respectively
-2 " A (Fig. 4. VW drawa half circle with diameter AC  Then

we drawthe |ine perpendicular to AC at B. This line

In particular we are interested in the case that d = 1 intersects the half circleat M It is quite easy to show
S . Mis /ab, i.e. i

Let h be a positive nunber and a base for |ogarithms. Ve that the length of B is /ab, ie , the geonetric mean of

consi der a rectangul ar coordi nate system(Fig. 3. W a and b (ne can easily show that

choose c, = Cto be (1, 0). W construct the right triangle log, Jah e % [log, a + log, bl.
ocM such that Cis the vertex of the right angle and QM = h.
Let us denote the half |ine throagh 0and Mby 0z. It is 5 Refinement of the graph: Using the georetric

clear that if ais the angle between O and 0z, then seca = constructionin 4, we can obtain nore points for the

h. This inplies that c, correspondsto (seca, 0), n = graph of y = logy X. For exanpl e, |et us consider c and

1, 2, «.. .« Thus c, of figure 3 To c, and C, respectively correspond d, =

sec2a and d, = sec4a V¢ construct the geonetric nean of

logh d = 2n . .
n 4, and da,. Let D correspond to this mean (FFg. 5. One

1

Here we consi der points (1, 0), a,, 2), (a,, 4), ..., can easily see that to D corresponds (sec3a, 0). W

(d,, 2n). These points are on the graph of y = log, X
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Fig. 5

observe that the arithmetic nean of 1ogh d, and 1ogh d,
is 3 Thus the point (sec3a, 3) is on the graph of y =
log, x. By obtaining geonetric means on the x-axis and
corresponding arithmetic means on the y-axis, one can

obtain nmore points of the graph of y = log, x.

UNDERGRADUATE REEEARCH PROJECT

Proposed by Richard V. Andree, University of Oklahoma

Write the equation

1) agtaxt .. .+anx"=o0;
in the form
2) (ag, a3, +v.» ap)ell, x, .,.,.x") = 0,

Then the problem of finding approximate solutions to 1)
may be thought of as finding a vector

3) (1, x, ..., xM
which approximatelv solves 2).

A related (but not equivalent) problem isS to find exact vectors
for which 2) is approximately zero.

A very different problem would be. given x, which vectors
(ag. 2a;, ..., a;) make 2) approximately zero.

Investigate these | ast two problems.
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GENERALIZATIONS OF SEQUENCES

William L. Reynolds

Florida State University

INTRODUCTION:  Since our first introduction to elementary calculus we
have all been aware of the seeming lack of consistency in defining
limits and convergence of sequences of real functions as compared with
the definitions as applied to complex functions and functions of sev-
eral variables. It is with the hope of wrapping al | these definitions
up into one neat package that we embark on this study of generalizations
of sequences following the theory of E. H. Moore and H. L. Smith.

(1) DIRECTED SETS A\D NETS: Let us examine briefly the concept of con-
vergence of the real valued denumerable sequence %15 X5 Xgsee- which

converges to some k. Surely each of us is familiar with the classical
"epsilon-delta™ definition of convergence, and perhaps also with a
more general topological definition. Let us put aside these definitions
for the time being and develop a general definition involving the con-
cept of a directed set, which we define as follows.
1.1) Definition: A directed set is a nonempty set N together with a

binary relation 2 (called the direction on N) such that

a) a >afor each a inN,

b)az=bandb 2 cimpliesa 2 cforall a, by, cinN, and

c) if aand b are elements of N, then thereis c in N such that

czaand c2b.

We will denote the directed set by (X, 2) or by N if there is no
confusion, and we say that N is directed by >. Obvious examples of
directed sets are the set of positive integers and the reals with the
usual z, and the collection of neighborhoods of a point in a topolog-
ical space directed by inclusion.

1.2) Definition: A net in a space X is a function S:N - X from a

directed set N into a space X.

We will denote the net simply by S, or in case the domain and its
direction are not explicit by (S,N, 2). W say that S is in the space
X if s{n) belongs to X for each nin N, S is said to be frequently in
a subset A of X if for each ny in N, thereisn » nj such that S(n)

isinA S iseventually in the subset A if for some n, in N, S(n) € A-

for each n 2 ny.

1.3) Definition: A net 8 in a space X is said to converge to a point
pinXxif and only if Sis eventually in each neighborhood of p.
We can now characterize open sets by the following

1.4) Theorem: A subset U (of a topological space X) is open i f and
only if no net in X-U can converge to a point of U. (Inthe
interest of brevity the proofs of this theorem and of many of
the following are left to the reader.)

1.5) Corollary: A subset V of a topological space X is closed i f and
only i f no net inV converges to a point of X-V.

Student paper presented at the National Pi Mi Epsilon Meeting in
Toronto, Canada, August, 1967.
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Ore will note that, in general, limits of nets are by no means
unique. The following theorem gives necessary and sufficient condi-
tions for uniqueness.

1.6) Theorem: Let X be a topological space. Then each net in X
converges to at most one point i f and only if X is Hausdorff.

We extend the notion of accumulation points to nets by saying
that a point s is an accumulation point of a net Sif Sis frequently
in each neighborhood of s. Tt IS interesting to compare this concept
with the definition of convergence and ask under what conditions a
net converges to its accumulation point(s). The following theorem
establishes sufficient conditions for this convergence.

1.7) Theorem: Let S be a net in a space X with the property that,
for each subspace A of X, Sis eventually in A or eventually in
X-A (S is universal). Then S converges to each of its accumula-
tion points. (Proof is immediate upon establishment of the lemma
A universal net which is frequently in a set A is eventually in 4.,)

The study of subnets is appealing to one's intuition and supple-
ments the theory of nets in much the same manner as subsequences
supplement the theory of sequences. W will state the definition
of subnet and a resulting theorem strictly as a point of interest,
but, since we make no use of the concept in the sequel, we will not
pursue the topic.

1.8) Definition: A net (T,D) iS a subnet of a net (S,E) if and only
1 f there1s a function ND =+ E such that
a) T = S$*N, or equivalently T(i) = S(N(i)) for each i in D, and
b) for each min E there is n in D with the property that, if
p 2 n, then N(p) 2 m.

1.9) Theorem: A point sin a space X is an accumulation point of
anet S (inX)if and only if some subnet of S converges to s.

2) ALTERS Our second generalization is somewhat | ess appealing to
those indoctrinated with notions of sequences, but it nevertheless
provides some interesting theory.

2.1) Definition: A filter in a set X is a nonempty family ¢ of non-

empty subsets of X such that

a) the intersection of any two sets in ¢ contains an element of

$, and

b)if Ac dand Ae B X, thenB € ¢.

Obvious examples of filters are the set of all neighborhoods of
a point in a topological space and the family of all sets with finite
complements in an infinite set.

Convergence is of particular interest, and we make the following
2.2) Definition: Afilter ¢ is said to converge to a point x in a

space X i f and only i f each neighborhood of x belongs to ¢.
This definition makes it possible to characterize open sets in
stopological spaces.

2.3) Theorem: A subset U of a set X isopenif and only i f U belongs
to every filter in X which converges to a point of U.
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It is also possible to characterize Hausdorff spaces by use of
filters, as the following theorem indicates.
2.4) Theorem: A topological space X is Hausdorff if and only if each
filter in X converges to at most one point.

We will say that the family B of subsets of a set X is a basis
for afilter if and only if the collection of all subsets of X con-
taining sets of B isa filter in x. Clearly if B' is a family such
that each member of a filter &' contains a member of B*, then B' is a
basis for ¢'.

2.5) Definition: A filter ¢ is said torefineafilter ¢'if each
member of ¢t is also a member of ¢, In such a case ¢ is said
to be a refinement of ¢*.

2.6) Lamma: Ary refinement of a filter converging to a point also
converges to that point.
Accumulation points of filters are of interest and are defined
as follows: a point x is an accumulation point of a filter ¢ if there
is a refinement of 4 which converges to x.

2.7) Lamma Given a filter ¢, the following are equivalent:
a) x is an accumulation point of ¢.
b) There is a filter ¢' which is a refinement of ¢ and of N,
the neighborhood system of x.
c) The intersection of sets (members) of ¢ with the sets of
N, are nonempty.

3) RALATED PROPERTIES F NETS AND FILTERS In view of the close sim-
ilLarities of many of the notions ef nets and filters, one's first re-
action is probably to wonder i f the two objects are equivalent. V¢
will not Drove that they are equivalent. but as the following theorems
indicate, each net determines a filter with similar properties, and
conversely.

If (s,D, 2) isanet inaset X, thenwe will call the collection
of sets {pn} where Fp, = {S(m) [ m2n; mn e D} the filter basis

associated with the net S. (It isleft to the reader to show that

7~ isindeed a filter basis.) Recalling the definition of a filter
Ka_%is, the net S thus defines a filter, called the filter associated
with the net S.

3.1) Lemma: If the net (s,D, >) is eventually in aset E <X, thenE
TS an element of ¢, the filter associated with S.

3.2) Theorem: |f the net Sin the topological space X converges to a

point x, then the filter ¢ associated with S converges to x.
Proof: Recall that S converges to x if and only if S is eventually
rreach neighborhood of x. From the above lemma, each neighborhood
of x belongs to 4, so ¢ converges to x.

Nets mey be constructed from filters in the following manner.
Let ¢ beafilter in a space X, and |l et A be the collection of pairs
(x,F) where F ¢ ¢ and x ¢ F. W define a direction on A by requiring
(x,F) 2 (y,6) if and only if FCG. Then the function SA + X defined
by S(x,F) = x isa net in X, called the net associated with the fil-
ter €&
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3.3) Lemma: If ¢ isafilterand F€ X is a member of ¢, then the net
associated with ¢ is eventually in F.

Proof: Let ¢ beafilter and S the net associated with 4 as constructed

above. Let Fe ¢, and let (y,6) bg any element of our directed set A
(the domain of §) such that (y,6) 2 (x,F). ThenG< Fandy ¢ G, so
S(y,G) =y isinF ThusS is eventually in F.

3.4) Theorem: Let ¢ bea filter converging to a point x in a space X.
Then the net S associated with ¢ converges to x. (Thisis a
direct consequence of the preceding lemma and the fact that each
neighborhood of x belongs to ¢.)

The suspected relations involving accumulation points of associa-
ted nets and filters also hold, as the following theorems indicate.
3.5) Theorem: |f x is an accumulation point of a net S, then x is

also an accumulation point of the filter associated with S.
Proof: Suppose x is not an accumulation point of ¢, the filter
assoclated with the net (S,D, 2)}. Then there is some neighborhood
N of x and some F ¢ ¢ such that N n F=0 by 2.7. Recall that
4= {wlw> Fp} where F, = {S(k) | k 2 n}. So for some ne D, F, € F,

hence F. N N = 0, and therefore S(j) ¢ N for j2 n; that is, Sis not
frequen{"ly in N, so x is not an accumulation point of S.

3.6) Theorem: Let ¢ be a filter and S the associated net. |If x is
an accumulation point of ¢, then x is an accumulation point of

Proof: ‘Let N be a neighborhood of x, and suppose (a,F) ¢ A, the domain
of S. By 27 (e¢), FAN # 0, so for b ¢ F NN, (b,F) > (a,F). Thus
S is frequently in N.

So we see that for each net in a space X there isa filter in
S with related properties, and conversely. This leads us to believe
that any proposition whose proof requires the use of one of these
objects could be justified by application of the other. Published
research tends to justify this belief.

In the interest of brevity, only the basic definitions and
theorems needed for a cursory comparison of nets and filters have
been given. May more results are known. While the independent study
of nets and filters and their comparison is interesting and reward-
ing, the real challenge lies in developing, in accordance with a
conjecture of E. H. Moore, a more general theory of sequential notions
of which nets and filters are but special cases.
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SUMMATION CF GENERALIZED HARMCNIC

SERIES WTH PERIODIC SGN DISTRIBUTIONS

B. J. Cerimele, Xavier University

In reinforcing the idea that a conditionally convergent series
depends upon the presence of an infinite number of negative terms,
one usually cites the example of the alternating harmonic series.

A frequent question which arises in this consideration is whether
other patterns, such as the negation of every third term, might render
the harmonic series convergent. In this connection the author will
discuss the convergence behavior of a generalized harmonic series
having any periodic distribution of signs. In particular, it will

be brought out that only those sign distributions i n which a balance
of plus and minus signs occur in the repeating sign block render

the series convergent. Finally, a method of summing such convergent
series by means of fundamental component subseries will be explained.

Consider the series, which shall be called the W-series,
defined by

I 1/7¢3 + k),

i=0

where j and k are arbitrary positive integers. For j=k=1 this series
reduces to the ordinary harmonic series, and for arbitrary j and k

it diverges #ith the harmonic series. Patterns of sign distribution

in the W-series which yield convergence are subject to the following

theorem, due to Cesaro, which imposes a necessary condition on the
relative frequency of plus and minus signs.

Cesaro's Theorem [3,p.318]. Let Py and q, denote the number of
positive and the number of negative terms respectively in the first
n terms of a series. If the series is conditionally convergent and
its sequence of terms in absolute value is monotonically decreasing,
then Li m pp/an=1, where the limit is known to exist when the terms

WO

are of an order of magnitude not |ess than those of the harmonic
series [2,p.17]. In a periodic pattern of sign distribution Cesaro's
theorem leads to the requirement that there be a balance of plus and

minus signs in the cyclic sign block.
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: : S . Corollary. If k, =k, =k,
I'n order to sum convergent W-series with a periodic sign dis-

Wlisk,k,) = W(i3k) = (1/2k) [9 ((3/2k) + 1/2) - ¢ (§/20)]
tribution the summability of certain fundamental alternating series i ( 1 (3/2K)-1/2 _(§/2k)-1
- = (1/2k) I dt
is needed. Consider the following alternating series: 0 t-1
W33 kg, ky) = T i/ (G+qgh+ rk)), ) which by means of the transformation t = x2* becomes
i=o0 k

(1]

1
, . = -1
where b=kt kyyq = (872, v = i, med 2, -}'O x17Hdx/ (1 + %)

Theorem: The series in (1) converges and has sum This last integral can be expressed in terms of elementary functions,

Viz.,
LIGH k,) = j - j S -
s kys Jg) = /D) Do G+ dep/m) = 9 (/w1 W0 = (DI 10 (s x)
where y (z) denotes the psi or digamma function [1, p.277]. 931 s <
v P & * P ] =(2/%) Z [Pi(x) cos ((2i + 1) jn/k)
Proof: That the series in (1) converges is an immediate consequence i=0
of the alternating series test. To generate the sum function the . < s 11
terms of the series are grouped in pairs yielding: -Q; (x) sin ((2i + 1) jn/x)]) 0
T 1/(5 + in) - 1/(5 + ky + ih). where g = [k/2), r = k, mad 2, § £ ks
i=0 2 @
This grouped series can be expressed by: Pi(x) = (1/2) 1n [x°- 2xcos((2i + 1)w/k) + 1]
) Ij?*"l . Q;(x) = arctanl(x-cos((2i + 1)n/k)/sin (21 + w/k].
i=0
Because the series ©
I (xt in)-2
i=0
is uniformly convergent for x > 1, the operations in the above grouped
series may be permuted to give
j+kl ® -2
f dx Z (x + ih) ~. Table 1 provides closed expressions for the sums of some of the
i i=0 fundamental alternating W-series.
Noting that [1, p.285] ©
P'x/h)= § (i + x/h)-2, Because of the cyclic pattern in the periodic sign distribution
) i=0 for a convergent W-series it is apparent that such series can be
one obtains the result: decomposed into component subseries of the form in (1); and moreover,
2 J+ky the sum of the convergent W-series is given by the sum of the sums
H(j;kl,k2) = (1/h°%) f ' (x/h)dx of the fundamental component subseries. Table 2 consists in a com-
i pilation of closed expressions and approximate numerical values for

= (1/h) [y ((F + kl)/h) -y (i/n)].

Utilization of an integral representation of the psi function [1, p.278]

yields the following special case which-'is reducible to elementary
functions.

the harmonic series having convergent periodic sign patterns spanning
two, four, and six terms.

The author acknowledges the computational support rendered by
his student Timothy Luken.
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Table 1
Closed Expressions for Some

Fundamental Alternating W-series

One parameter series: w(j;k) =Z (-1)i (j + ik)

i=0
Wiisk) 1 2 k 3 y
1 1n2 n/u (1/9)[n/3 + 3 1n2] (V2 /8) [7 + 2 In(1 + V2 )]
2 (1/2) 1n2 (1/9)[n/3 - 3 1n2] n/8
J,A 2 (1/3) 1n2 (/7 /8) [m - 2 In(1 + v2 )]
4 (1/4) 1n2

Two-parameter series: W(j;kl,k2) =i§0(-l)i / (j + qh + rky),
Where h = ky ; k2, q =1[i/2), r =i, mod 2
h =2, W (1;1,1) = W(1l;1) = In2
h o= 3, W (1;1,2) = (%/9)/3
W (1;2,1) = (1/18) (n/3 + 9 1n3)

h =4, W (131,3)

(1/8) (v + 2 1n2)
W (1;2,2) = W(1;2) = 7/u

W (153,1) = (1/8) (71 + 6 1n2)

Table 2
Summation of Harmonic Series

with Convergent Periodic Sign Distributions

Sign Pattern Sum Approximate value
oot (1/48) (v - 1n2) -61211
obe 1n2 69315
+4-- (1/4) (n + 2 1n2) 1.13197
+--=t+ (1/3) 1n2 +23105
+omt-t (1/9) (n¥3 - 3 1n2) -37355
ot (1/18) (3 1nl08 - /3 ) 147806
R — (1/6) (V3 + 1n(4/27)) -58864
+tt-- (1/9) (n/3 + 3 1n2) 183565
+-——+ (1/9) (27/3 - 3 1n2) .97815
+-—t- (1/18) (nv/3 + 3 1nl08) 1.08266
-t (1/6) (n/3 + 1n(27/4)) 1.22516
- (1/9) (2743 + 3 1n2) 1.44025
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A SHORTER AXIOMATIC SYSTEM FCR BOOEAN ALGEBRA

Leroy J. Dickey
University of Wisconsin

I'n volume 4, number 6 (this Journal), Lawrence J. Dickson
lists seven axioms for Boolean Algebra. This |ist can be abbre-
viated.

I. The axioms:
A Boolean Algebra is a set X such that, for all a, b, ¢, ... X:
A. There is defined a (closed) blnary operation A such that:
Axiom 1: an(b Nc)=(@NnNnb)nc
Axiom 2: a N b=>b N a
Axiom3: a A a=-a
B. There exists an element | e X such that

Axiom 4: a n | =aforallaceX
C. There can be defined a function ' from X into itself
such that:
Axiom 5: (a')!' = a for all a € X
Axiom 6: a n a' = I*'forallaceX
Axiom 7: a N b=1I'+a N b' = a.

II.
Theorem 1: Axiom 3 is a consequence of axioms 5, 6, and 7.
Proof:
Let a be any element of X. By axiom6, a n a' = I'. Hence by
axiom 7, a N (a')' = a. But, by axiom 5, (a')' = a. Therefore
a NnNac<=a.

Theorem 2: Axioms 1 and 2 can be replaced by the axiom
Axomdl': a nh (bne)=(bna)ne,
as long as axiom 4 is retained.
Proof:
Clearly axiom 1' is a consequence of axioms 1 and 2. Suppose
mow that axiom 1' holds. First we show that axiom 2 holds.

anbzandGnil) by axiom 4
= nanl _ by axiom 1*
=b A a by axiom 4.
Thena n (b A e)=(b na)Nc=(an b)n c, which shows that

axiom 1 is satisfied.

Hence the original seven axiom system can be replaced by a system
of five axioms, namely 1', 4, 5, 6, and 7.

337

PRESFRVING FUNCTIONS ON THE REAL LINE
Glen Haddock and David Moon, Arkansas College, Batesville, Arkansas

In introducing a general theorem it is usually both |nterest|nc{;
and instructive to examine its implication in restricted cases.

is important that the student be able to illustrate the theorem in a
setting familiar to him. There are mawy theorems in mathematics which
become quite elementary when applied to restricted cases. V& would
like to discuss isometrics on the real line. The notions of function,
distance, composition of functions, and graphing will be illustrated.

Definition 1: The function £= {(x,y) | y=£f(x)} is an isometry i f and
only if for all real numbers a and b we have |a-b|=|f(a}y - £(b)]|.

Definition 2. Let f and u be functions and |l et F be the function

= [y y =flu(x)1}. Then F is called the composition (or composite)
of f upon u; that is, F is the set of all ordered pairs of real numbers
(x,y) such that y = £u(x)].

The reader is referred to reference f11 for further definitions.

The following theorem is basic to the study of isometries in
Euclidean n-dimensional space (EN).

Basic Theorem: Every isometry in Euclidean n-dimensional space can be
represented by at most n+l reflections through (n-1)-dimensional space.
(Ref. [2D)

Since use of the theorem here is restricted to 1-dimensional space,
i.e., thereal line, we will use a special case of the Basic Theorem:
every isometry of Euclidean 1-dimensional space can be represented by
at most two reflections through a point.

We will discuss a procedure whereby any number of reflections can
be expressed as a combination of not more than two reflections. Note
that the Basic Theorem merely guarantees the existence of such a repre-
sentation, whereas this procedure will yield a method for computing
the exact representation in terms of the information at hand.

Theorem 1: The graph of an isometry of a line into itself is a straight
line having slope either +1 or -1.

Proof: Since every isometry can be represented as either a reflection

through one point or a reflection through two points, we will consider
two cases.
Case |: Reflection through one point.

Suppose the isometry is equivalent to a reflection through one

point, say A. Then it follows that f(A)=A. For an arbitrary point

X let £(x)=x'; then |x-A| |x'—A|. It follows that either (1) x-A =
®'-A, in which case x=x' and thus x=A (since A is the only fixed point)

or (2) XA = -(x'-A) and x' = 2A-X. Therefore f(x)=2A-x. It will now

be shown that the slope of the line segment joining (A,A) and (x,2A-x)

is -1. The slope of this line segment is given by
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28-x-A  A-x

m = xh - xa°- L.

b

Since x is an arbitrary point the result follows. See Figure 1.
T £(x)

(0,801 (A.4)

} > X
(A,0)
\(x, 2A-x)

FIGURE '  Graph of a reflection through points A and (x,2A-x).

Case 1I: Reflection through two points.
Suppose the isometry is equivalent to reflections through two
points A1 and A2 in that order. From the proof of Case I we know that

given an arbitrary point x, the function f(x)=2A1-x reflects through
the point A . Similarly the function g(2Al-x)=2A2-(2A1—x) reflects
through the point 4,. Then f[g(x)]=2A2-2A1+x is the composite function.

Now f[g(Al)]=2A2-2A1*A1=21\2-A1- The slope of the line segment joining

the two points (x,2A2-2Al+x) and (A1,2A2—A1) is

_ Ay -2t x) T (2, 7 A k- A
m = - - 1.
X - Al X = Al
Since the points X, Al and A, were chosen arbitrarily, the proof is

complete. See Figure 2.

(x,28-x) (x,2B-x) £(x)
X

]
|
1
'
]
]
‘
"

t
Ll
1
'
'
"

(W,O)____. - - _K'Z;O'
' \{
/5-4--_- & -----

HGURE 2: Composite of a reflection through B upon a reflection through A.

¥
%
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Theorem 22 The graph of an isometry F has slope +1 if and only if it
can be decomposed into two isometries f and g whose graphs have slope
-1

. Assume that F can be decompo: into two isometries f and g
v"ﬁ%,%@'graphs have slope -1. Then f = {(x,y)|y=A-x, for some fixed
point A) and g = {(x,y)|y=B-x, for some fixed point B}, Therefore
F(x) = f(g{x)) = A - (B-x) = A - B + x. Therefore F has slope +I.

Nw suppose F has slope +1; then F(x) = A+x.

Let f = {(x,y)]|y=A-x, for some fixed point A} and g = {(x,y)]
= -x}. Then flg(x)]=A+x. See Figure 3.

f(x)

1

(x,A-x)

(x,-%) (x,x)

/ (x,~A+x)

HAGURE 3: Decomposition of an isometry with slope +1 into two reflections.

Theorem 3; The composite of two isometries whose graphs have slope
1 and +1 is an isometry whose graph has slope -1.

Proof: Let f = {(x,y)|y=A-x, for some fixed point A} and g = {(x,y)|
y=B+x, for some fixed point B}. Then flg(x)]=A-(B+x)=A-B-x and has
slope -1; also glf(x)1=B+A-x and has slope -1. See Figure 4.
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(x,28-x) £(x) (x,%)

(x,-B+x)

HGURE 4: Composition of an isometry with slope -1 upon an isometry with slope +I.

Theorem 4: The composite of two isometries whose graphs have slope
+1 IS an isometry with slope +1.

Proof: Assume f and g are two functions whose slopes are +1. Let
T = {(x,y)]y=A+x, for some fixed point A} and g = {(x,y)]y=B+x, for
some fixed point B}; then F(x) = f[g(x)]=A+B+x whose slope is +I.

A method will novw be given for finding the image of an arbitrary
point x under a finite number of reflections. Let f be the function

obtained by reflection through n points Al’AQ’""An in that order.
Then £ = {(x,y)|y=2A)-x}, £ = {(x,y) [y=2(A,-A))#x}, £, = {(x,y)]
y=2(A3-A2+Al)-x}.
In general, for n-even, fn is obtained by induction, first reflect-
ing through the point whose coordinate is A A _+A_+...4A followed
g g p 17305 N by

a reflection through the point whose coordinate is Aszu+A6+...+A .

If nisodd, then f is obtained by a reflection through the point

whose coordinate is given by (A1+A3aA5+--~+A ) - (A2+A44A6+---+An_1),
References:
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A FUNCTIONAL AHFROACH TO THE

SINGULARITIES CF RANE ARVES

Richard J. Bonneau

College of the Holy Cross

The problem of studying plane curves and their singularities
has intrigued the men of mathematics for centuries. However, the
necessity of working with poorly-behaved functions, the parametri-
zations of these curves, often quickly dampened the adventuresome
spirits of many a would-be algebraic geometer. May attempts have
been made to avoid the use of such ill-behaved representations of
plane curves. This paper will discuss a method employed by Hassler
Whitney in a more general analysis of the singularities of maps
for EVinto E™ (1).

Essentially this method reduces to several clear-cut steps.
First, an investigation is made of a smooth mgp f from E into
E , to determine its Jacobian J(x,y). Second, determine the curve
(or curves) C, called the general fold of f, in the pre-image space
for which the Jacobian vanishes; i.e., J(x,y)=0, for all points
(x,y) on C. Third, form the image £(e), a curve in the image space,
and examine it for possible singularities. Fourth, if the image of
the general fold possesses singularities, analyze the general fold
in the pre-image space near the inverse image of the singularity.
It isthis last step which will yield important information about
the curve with singularities.

The crux of this procedure is: given a curve with singularities,
does there exist a mgp whose points of vanishing Jacobian mgp into
the given curve? This question is as yet unanswered, but the moti-
vation of this paper lies in demonstrating hov the above method can
be effective in studying curves and their singularities.

1. INTRODUCTION
Let f:E2-> £2 be a smooth mapping; i.e., possessing c ntinuous

partials. Associated with each vector VinE and pin E, thereis
a unique vector Dyf(p), given by

1
D, f = lim — [f( tV)-£(p)].
1) vE(p) i {f(p + P

This represents the directional and magnitudinal change in the values
of f as one travels through p in the direction of V.
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Considering, for fixed p and f, va(p) as an operator on the set
of vectors in }.‘.2, it can easily be shown that the operator DVf(p) is
actually a linear transformation from 52 into E2. If Vis given by

(a,b) with respect t o some co-ordinate system (x,y), we have

2 af af| .
2 D(a,p)f(P) = a K‘p + bé-};ip

Further, we can assume f to be given by component functions,

U)5U,, where u }.‘.2-> El. Then the following relationship between

l,u2:
the D-operator for vector-valued functions and for real-valued func-

tions holds.

(3) va(p) = DV(“l(p)’“z(P)) = (Dvul(p),Dvuz(p)).

Thus, the process of finding derivatives of vector-valued functions
can be reduced to that of finding the derivatives of its correspond-

ing component functions.

Combining equations (2) and (3) above, we arrive at the following
evaluation of the D-operator of a function f = (ul,uz):

(4) va(p) = (D(a,b)“l(p)’D(a,b)“z(p))
du Ju u,j u
= (a Hlp*f bwl P ’3-3-;2|p+ bWQIP ).

Let ¢(t) be a smooth parametrized curve in E2. This maps the
real line EL into some subset of the real plane E“. For this curve,
we define:

(5) d¢/dt = D, ¢(t),
1

where e, is the unit vector in E! and D is considered as an operator
over a feal valued function. The above definition of the tangent
vector corresponds to the intuitive concept of tangent. It IS a very
specific example of the definition (1), where f is defined by f(x,y)
= ¢(x) for ally.

Levma 1, Let f be a 2-smooth mapping, f:E:2 + E:2, Vv(p) be a smooth vec-
Tor Ffunction in E2 and ¢ a 2-smooth curve in E< such that:

(6) de(t)/dt = v(¢(t)) # O.
~ Then,
i = D,f
N e (£¢)(t) vE(P),
(8) a2
— (f$)(t) = DVDVf(p),
dt?

where p = ¢(t).

|

343

Proof: The restriction of ¢ in the hypothesis requires that its
tangent vector for every t coincide with the vector function V(p),
whenever p = ¢(t).

By hypothesis, D¢ = d¢/dt maps e, into V(p): and Df maps
V(p) into Dyf(p). Thus the composite " mgp D(£f¢)(t) = g—t'(f“(t)

maps e, into Dyf(p); i.e., equation (7) has been proven

Now, | et us substitute the function F(p) = va(p) into the
above results. Then,
2
4% (£6)(t) = SUFp)(t) = DF(p) = DyDyE(p).
at? dt

Thus, given the conditions of the hypothesis, the tangent and

""acceleration" vectors can be simply described in terms of the
D-operator, a fact which will play a major role in the coming

developments.

II. SINGULARITIES

Defipnition: Let f:RC 52 > £2 be a smooth mapping where R is open
in E4, Then we say f isregular at pif

(9) D f(p) # 0 forV # 0.

What this means geometrically is that, in any direction, the direc-
tional derivative at p is non-zero, indicating that at f(p}, there
exists a non-zero image of V.

From this definition, we further define:

Definition: If f is smooth and f is not regular at p, then f is

sald to be singular at p.
Assume now that we have fixed co-ordinate systems (x,y), (u,v)
in R and f(R) respectively. The Jacobian of a mep f is given by

Definition: If f:R -+ EZ is a smooth mapping such that f(x,y) =
(u(x,y),v(x,y)), then the Jacobian is

J = uxvy - uyvx.
Geometrically, J(p) represents the expansion (or contraction) factor
of the mapping f at the point p. From the above definitions of
regular and singular points, it can easily be shown that p is a
regular or singular point of f according as J(p) # 0 or J(p) = 0.

Definition: Let f be a 2-smooth mapping. We say p in R is a good
point i f either J(p) # 0 or DJ(p) # O.

Here, DJ(p) refers to the function DJ(p):EQ + g where DI(p)(V) =
DvJ(p). Thus, pis good if either J(p) # 0 or, if J(p) = 0, either

Jx(p) or Jy(p) £ 0.
The above definition merely asserts the condition that the sing-

ular points of f be well-behaved in the sense that their Jacobians
vanish isolatedly.
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We further define f to be good if every point of domain i s good.

Example:  Consider £(x,y) = (x2,y). Then, J(x,y) = 2x, I (x,y) = 2,
JY(x,y) = 0. Thus, J # 0 except where x = 0, in which case, Jx £ 0.

As an example of a function which is not good, consider the ma
f given by f(x,y) = ((x-u)3,y). In this case, J(x,y) = 3(x-4)2,
Jx(x,y) = 6(x-~4), JY(x,y) = 0. W see that J # 0 except where x = 4,
i n which case both J, and J, are both 0. If R is taken to be the

Y

real plane E2, then f is not a good function as any point with the
form (4,y) is not good. However, if we restrict the domain R so as
not to include any portion of the line x = 4, f will then be a good
function.

V¢ mey now prove an important result for our development:

Lemma 2: Let f be good in R. Then the singular points of f form
smooth curves in R.

Proof: |f p issingular, J(p) = 0, and DJ(p) # 0. By the implicit
function theorem, the solutions of J(p) = 0 near p |ie on a smooth
curve.

Definition: The smooth curves in R along which the Jacobian vanishes
are called the general folds of f.

ample: 1. Let f(x,y) = (x3-l2x,y). Then, the Jacobian J(x,y) =

3x2—12, and the general folds are given by the smooth curves (lines)
X = +2.

. 2
2. Let £(x,y) = (xy-xs,y), In this case, J(x,y) = y-3x

and the general fold is as shown in Figure 1.
i

FIGURE 1
y = ax?
general
fold

The primary fact to remember about the general fold is the
Jacobian function vanishes at every point of the smooth curve.
These points mgp into the "irregular” points in the image space £f(R).
Now, let f be 3-smooth and good in R. Also, let p be a singular

..point of f and ¢(t) any parametrization of the general fold through

p such that ¢(0) = p. Using df/dt to mean d/dt(£f4$), we define:
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Definition: p is a fold point of f if

(10) df/dt # 0 at p;

p is a cusp point if

(11) af/dt = 0, d’€/dt2 £0  at p.

Thus, in example 1 above, all singular points of f are fold points,
while in example 2, the point (0,0) is a cusp point and all other
points on the curvey = 3x2 are fold points.

The condition of being fold or cusp points ties in intimately
with the singularity of points of the image £(C) of the general fold,
as condition (11) is none other than the definition of a singular
point for the curve f¢(t).

From the above definition, it can easily be proven that:

A. pisa fold point iff the image of C-near p is smooth with
a non-zero tangent at p.

B. pis acusp pointiff the tangent vector at p is zero, but
becoming non-zero as we move away from p on C.

As a consequence of B, it is evident that the cusp points of f are
isolated along C, implying that the corresponding singular points of
f(c) are also isolated. Note that these theorems must and can be
proven to be independent of parametrization of the general fold C.

Definition: p is an excellent point of f (assumed good) if it is
either regular, fold or cusp. f is excellent if all points of its
domain are.

Nw | et us assume a 3-smooth co-ordinate system about p and also about
£(p). |f we define a vector valued function v(p) by

(12) v(p) = (-Jy(p),Jx(p)),
then,
Dv(p)J(p) = -Jy(p)Jx(p) + Jx(p)Jy(p) = 0.

Since J(p) maps into El, then the above equation implies that the vec-
tor Vv(p) is tangent to the general fold C at each singular point of the
curve.

Using the above deductions with any fold of £, we can find a
parametrization of Cso that equation (1) holds. Then, invoking
Levma 1, with f assumed good, we have:

(13) p isafold point iff Dyf(p) # O,
(1u) p is a cusp point iff Dyf(p) = 0 and DyDyf(p) # O.

W have now reduced the determination for the singularities of the
image curve f(C) to calculations performed only in the image space.

This enables us to determine whether the image curve possesses singular-
ities without knowing its actual form. The key point of this theorem
lies in the need to prove that the function under discussion is
actually excellent.
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I11,. STRUCTURE NEAR SNGULAR POINTS

W to this point, attention has centered on the behavior of
points actually on the general fold; i.e., the singular points. W
mow wish to relate these points to points in their two-dimensional
neighborhoods.

Assume f to be an excellent mgp. For a given pinR, let V' =
Dyf(p) be a mapping from the set of vectors V into E2 such that

[v] = 1. Since the Df(p) operator is linear (Section 1), the above
restriction is not prohibitive. Then, define R' to be the set of

points p in R such that the set {v' = va(p)} has at least two non-
equal elements.

Since the mgp f is excellent, for any p in R', there exists a

unique pair of vectors V and -V for which the quantity IV'| = |va(p)|
is a minimum. Geometrically this means that for all points p fn R',
there exists a direction in which f varies the least. In this sense,

we can assign a vector to each p in R' and this yields a system of
smooth curves throughout R'.

Definition: The smooth curves defined above are called the curves
of minimum Df. Figure 2 illustrates this concept.

~y R!
v
) :
Curves of
Minimum Df
HGURE 2
DO
U_/

From the above definition, we have immediately that, if pisin
R' ahd V # 0, then Dyf(p) = 0 iff pis a singular point and V is tan-
gent to the curve of minimum Df at p. This follows since 0 is the
minimum possible value for Iva(p)I. This is illustrated in Figure 3.
A

(Dy£(p)=0)

Ny
v
1
R Df(p)
> £(p).
R P
= > u
p Singular
\/ ”

FIGURE 3
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Now, | et C be a general fold of f. If a curve of minimum Df cuts
C at a positive angle, then for the tangent vector V(p), Dv(p)f(p) 20

and p is a fold point. However, | et us assume that C is tangent-.to
the curve of minimum Of at the point p. Since V(p) ney now be con-
sidered as the tangent vector to C at the point p, by equation (13),
p is not a fold point. P is thus a cusp point, because f was assumed
excellent. 1t 4§ this last criterion which is extremely useful in
determining the singular points of f(C).

General

i Fold C

/

In Figure 4, P, is a fold point while the point P, is a cusp
point of f.
Asume f to have a cusp point at p. Let

vk = Dvaf(p).
Since f is excellent, V¥ # 0. Since D f(p) = 0, Dyf(p") is approxi-
mately in the direction of tV* for p' near pon C. |t then follows
that Dwf(p) is a multiple of V* for all W. As we move along C
through the point p, va(p’) changes from a negative to a positive
multiple of W and thus V(p') cuts the curves of minimum Df in opposite
senses on each side of p. Therefore the curves of minimum Df lying
on one side of C cut Con both sides of p. W call this side of c,
the upper side, and the other, the lower side. The figures 5 and 6

exemplify this concept, for both the pre-image space and the image
space.
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Upper Side

Qrves of ~

. a ——
Minimum Df Lower Side I

™

General Fold. Cusp at pe
AGURE 5

_ql'

Vi

Image of general fold and of box about cusp point shown.
AGURE 6

The image of C clearly has a cusp at f(p), pointing, in the direction
- of -v%, For any vector W not tangent to C at p, D f(p) is a positive
or negative multiple of V* according as W points into the upper or
lower side of C.
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IV. SMVARY

Considering the ultimate problem of this procedure, namely that
of "reversing" the process involved, the author and his advisor,
Professor V. 0. McBrien, spent much time attempting to obtain an appro-
priate map which would yield the curve y2 =x3+ x . The analysis of
this particular problem led us to a more complex one involving the
solutions of partial differential equations. However, here again,
devoted research might well open the doors to many problems herein
encountered.
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A FRELIMINARY EXAMINATION CF

ROUNDRCBIN TOURNAVENT THECRY

Charles A. Bryan

John Carroll University

1. Weé begin round-robin tournament theory with two essential con-

cepts: afinite set of pointsVv = {0, A, wus n-l} and a set of

ordered pairs D ¢ VxV, With these two concepts we formulate a

number of definitions.

Directed Graph: a finite set of points V and a set of ordered
pairs D < VxV.

Complete, Asymmetric Diagraph: for every pair of points i and j
inV, {1,7)e D iff (j,i)¢D.

i is adjacent from j iff (j,i)eD.

i is adjacent to j iff (i,j)eD.

The score of i is the cardinality of {j|(i.j)cD}.

0
Example:
2 1
V = {0,1,2
D = 1(0,1), (1,2), (0,2)}

In this case 1 is adjacent from 0 and O is adjacent to 1. The
score of O is 2

2. \We give three applications of round-robin tournament theory.
0 1

. 3 2 .
Gare Interpretation: Every player is represented by a point and
each game is represented by a line. Each player plays every other
player once. In this tournament we have four players. Player 1

plays player 2 and defeats him. The arrow on the line always points

in the direction of the defeated player.

Preference Interpretation: This interpretation is used in psychology
and the social sciences. There is a subject who is asked to choose
between objects in a method of paired comparisons. Thus the points
nowv represent objects. Thus in the example we have objects 2 and 3

and the subject has chosen object 2. The arrow always points in
“the direction of the object not chosen.
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Dominance Interpretation: This interpretation is used in biology.
Each point represents a particular trait, characteristic, or species.
The arrow always points in the direction of the trait which is
overcome.

3. Nw we move into the theory itself.
Definition: A tournament T = (V,D) is a complete, asymmetric
diagraph.
Example:
A possible tournament would be the following:
v = {0,1,2,3}

D = {(0,1), (2,0), (3,0), (2,1), (3,2), (1,3)}
There is another way of representing the same tournament. < far

we have used a graphic method. For the tournament above the graph
would be: 0 1

3 . .
A second method of representing the tour 1’ament is by a matrix. Let
T be the matrix representing the tournament T. Then tij= Oor 1

and ti4= 1iff (i,5)eD. o /1]2]3
7 dl1]jo]o
1[ofo o1
2T 1]0]o0
alff1jo]1o

(Here the score of i is the sum of elements in row i of the matrix. Ed.)

4. Let us row proceed to examine the score sequences for tournaments.

Theorem 1: A sequence of n non-negative integers--sg,...,S -
mey be considered as the score sequence of a n-1
tournament iff the following two conditions are
fulfilled:

n-1
1. gsi = % n(n-1)
2. If k is any positive integer less than n, then
k-1
Is. 2%xx-1)
o i
Example:
v = {0,1,2,3}

D = {(0,1), (1,3), (2,1), (3,2), (2,0), (3,0)]
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s =1 0 1
0

5,7 1

s2= 2

sq= 2 3 ?

We check to make sure this score sequence satisfies our two conditions.
3
Is; = 1414242 = ¥(8)(3)=6
0

Suppose k = 3.
2

gsi 1+142= 4 » %(3)(2)= 3

Thus, this score sequence satisfies our two conditions.
5. To further examine the nature of score sequences a program was

written to feed back the possible score sequences for n equal to

the integral values up to 30. However, the number of score sequences
possible for even relatively small n turned out to be so large that
the General Electric 215 computer's work was terminated after n = 10
had been computed.

The following theorem was used in writing the program.
Theorem: Let T be a tournament with score sequence <Sgs ° * . Sp-13

such that sos $1S wss HENEE Then every score satisfies
the inequalities x(k-1) < s, < k(n+k-2).

Some of the results of the program are tabulated below.
Score Sequences Obtained From the Program:

n Sequences

2 <0,1>

3 <0,1,2> <1,1,1>

4 <0,1,2,3> <0,2,2,2> <1,1,1,3> <1,1,2,2>

5 <0,1,2,3,4> <0,1,3,3,3> <0,2,2,2,4> <0,2,2,3,3>

<1,1,1,3,4> <1,1,2,2,4> <1,1,2,3,3> <1,2,2,2,3> <2,2,2,2,2>

— -As is immediately seen, every n has a perfect hierarchial score se-
“quence for one of its score sequences. !N this perfect hierarchy,
the worst player defeats no one, the second worst player defeats
only the worst player and soon. This is indicated in the score
sequence by a sequence such as <0,1,2>.
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A tabulation of the number of possible score sequences for
values of n from L to 9 is given below.

n Number of score sequences
2 1

3 2

4 4

5 9

6 22

7 59

8 164

9 436
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204.
FROBLEM DEFARTMIENT
Edited by
M. S. Klamkin, Ford Scientific Laboratory
187.
This department welcomes problems believed to be new and, as a
rule, demanding no greater ability in problem solving than that of
the average member of the Fraternity, but occasionally we shall pub-
lish problems that should challenge the ability of the advanced under-
graduate and/or candidate for the Master's Degree. Solutions of these
problems should be submitted on separate signed sheets within four
months after publication.
An asterisk(*) placed beside a problem number indicates that the
problem was submitted without a solution.
Address al | communications concerning problems to M. S. Klamkin,
Ford Scientific Laboratory, P. 0. Box 2053, Dearborn, Michigan 48121.
AROBLEMS KR SOLUTION
200*. Proposed by Helen M. Marston, Douglas College.
The arithmetic identities
6 + (7x36) = 6 x (7+36),
10 + (15x28) = 10 x (15+28),
12 + (15x56) = 12 x (15+56),
suggest the problem of finding the general solution, in positive
integers, to the equation
a + (bxc) = a x (b+c).
In particular, how many pairs of positive integers (b,c) with
b < c satisfy the latter equation if a = 21?
201. Proposed by RiC. Gebhardt, Parsippancy, N. J.
Out of the nine digits 1,2,3,...,9, one can construct 9! different
numbers, each of nine digits. Wha is the sum of these 9!
numbers?
202. Proposed by Leon Bankoff, Los Angeles, California.
Let I, O, H, denote the incenter, circumcenter, and orthocenter,
respectively, of a right triangle. Find angle HIO given that
AHIO is isosceles.
188.
" 203. Proposed by Stanley Rabinowitz, Polytechnic Institute of Brooklyn.

Let P denote any point on the median AD of AABC. If BP meets AC
at E and P meets AB at F, prove that AB = AC, if and only if,
BE = CF.
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Proposed M. S. Klamkin, Ford Scientific Laboratory.

I f an+l= 2+an, n=0,,2,... ,a = +¢x, find
- -2
limit 2r
x + U X - 4

Editorial note: Special cases of this problem occur in R. E.
Johnson, F. L. Kiokemeister, Calculus with Analytic Geometry,
3rd Edition, Allyn and Bacon, Boston, p. 74.

SOLUTIONS \A
Proposed by R. C. Gebhardt, Parsippany,
N. J. A semicircle ACB is constructed,
as shown, on a chord AB of a unit sl
circle. Determine the chord AB 0 ¢
such that the distance OC is a
maximum. L/B

Solution by M. S. Klamkin, Ford Scientific Laboratory. For CC
to be a maximum for a given length chord AB, OC will have to be
perpendicular to AB. This follows immediately from the triangle
inequality:

OC = OD+DC = OD+DC' > OC'.

Now if OD = va ,
B = = .

v2
0c? = 1 + 2/a(1-a) = 1 + 2 {(1/w)-(a-(1/2))%} .

Whence, 0C. .= V2, occurring for a = 1/2.

Alternatively, if L DB = 68, then

OC= sin8 + cos® = /2 sin(8+n/4). For a maximum, 8 = n/u,
Also solved by David W. Erbach, University of Nebraska; Bruce
W. King, Burnt Hills-Ballston Lake High School; Paul Myers,
Philadelphia, Pennsylvania; Stanley Rabinowitz, Polytechnic
Institute of Brooklyn; Dennis Spellman, Nav York University;
M. Wagner, Nav York City; and F. Zetto, Chicago, lllinois.

Editorial note: All the solutions except Spellman's used calcu-
lus to obt_a_in the maximum. King also noted that at the maximum,
the chord AB subtends a right angle at O.

Proposed by Waldemar Carl Weber, University of Illinois.

For any two real numbers x and y with o < x <y, verify the
following procedure for adding on a slide rule using the A, S,
and T scales.
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First setting of the slide: —sin 2n/7 + sin 3n/7 _ sin 2a/7 *+ sin 3n/7
sin 2n/7 sin 3n/7 sin 2n/7 sin 3n/7 - 2 sinwn/7 cosu/7 sin 3an/7
A opposite y | opposite x
t _sin 2a/7 t sin 31/7 1 . 1
T set right index I read angle 8, 0 < 8 < n/k =Sin 25/7 T sin ux/7 ° sin #/7 _ sin w/7 °

S 1,1

Second setting of the slide: 1 .
Gé * i + ) which was to be shown.

A opposite x | read x +y

Solution by C. W. Trigg, San Diego, California.

S set angle 6 | opposite right index
In the figure L ED =

Solution by R. C. Gebhardt, Parsippany, N. J. L DAC= /., OB =9,
The S(sine) and T(tangent) scales on a slide rule are normally AB =BC = ® = [E = %,
intended for use with the Cand D scales. Using them with the AC=y, AD= AE = 2z,
A scale involves the square roots of the numbers employed, as and BH is the.l bisector
illustrated below. %% of AC. In AABC, cos
In the first step of the procedure, 6 = arc tan = . 8 = y/2x. In AACD and
53 y BADE,
In the second step, & = arc sin /C’i . y2 + z2 = 2yz cos 6 =
z
Ve /s /z, x x2 = 22+ g2 - 252 cos8.

Therefore, arc tan X s arcsin X% . Whereupon,

y© - 22 = 22 (y-2z) cos@ =
From the right triangle in the figure, 8 [] (y-z)(zy/x). Then since

it nov follows that z = x +y. /)7 y # z, X =yz/(y+z).

Also solved by Albert Good, University of California, San
Diego; H. Kaye, Brooklyn, N. Y., Paul Myas Philadelphia,
Pa., Stanley Rabinowitz, Polytechnic Institute of Brooklyn;

and the proposer. Also solved by Steven Ferry, Michigan State University; Edgar
. . . . . L. Karst, University of Arizona; H. Kaye, Brooklyn, N. Y., Gregory
Editorial note: Good notes in his solution that it is necessary Wulczyn, Bucknell University; F. Zetto, Chicago, Illinois;
to use the proper half of the A scale and that the method will fail and the proposer.
if the number of digits of y exceeds the number of digits of x by
more than one. 191. Proposed by Stanley Rabinowitz, Polytechnic Institute of
Brooklyn. Let P and P' denote points inside the rectangles
189. Proposed by Leon Bankoff, Los Angeles, California. ¢ ABD and A'B'C'D', respectively. |f FA = atb, B = atc,
|If A,B,C,D,E,F, and G denote the FC = e¢+d, D = b+d, P'A' = ab, P'B' = ac, P'C' = cd, prove
consecutive vertices of a regular that P'D' = bd.
heptagon, show that @ is equal to E
half the harmonic mean of AC and Solution by Helen Marston, Douglas College.
AD. D c
D C
A 4,
D g :t2 &8
L]
£ ;
B c o : N
Solution by Stanley Rabinowitz, Polytechnic Institute of ity
Brooklyn. By the law of sines, CD, AC, and AD are proportional i
. to sin /7, sin 2a/7, and sin 3n/7. Since L B A S1 s2 B
A

AGURE 1 AGURE 2
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Since A + FC = atbtetd = BB + PD, P must |i e on each of two
ellipses having major axes of length a+b+ec+d and foci at A and C,
B and D, respectively. Hence there are four possible positions
for P (or one, should at+bt+c+d = AC) and either a = d or b = c,
from which it follows that P'D' = bd.

Less Interestingly, we can use the Pythagorean theorem on Figure

2:
(a+b)? - 512 = t12 = (a+c)2 - 522 .

2 2 ”
)2 - 5,2 s Gewd]® - 5,2 .

"
ad

1

Subtracting, we obtain (b-c)(a-d) = 0 and either a = d or b= ¢
as before.

Also solved by David W. Erbach, University of Nebraska, Albert
Good, University of California, San Diego; H. Kaye, Brooklyn,

N. Y., Charles W. Trigg, San Diego, California; Cornelia Y oder,
Michigan State University; and the proposer. There was also one
unsigned solution.
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a good. source for the reader who would, like to know some of the classical
foundations of Euclidean and. non-Euclidean geometries from a readable
point of view with the use of ordinary and generalized complex numbers.
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Dwight D. Kerns
Denis R. Kertz
William R. Koeneman
Thomas Lannert
Richard A. LeFaivre
Paul David Harsh
Thomas 0. McCarthy
Kenneth Roy Meyer
John A. filler
Ronald Ray Moll
Nancy H. Morgan
Everett Wayne Nelson

Joseph McPeek

Loren E. Meierding
Robert T. Moore
William R. Mullette
Harvey C. Opden
Joyce M. Olson

R. David Pogge
E. Charles Robacher
Kenneth H. Samples
Dianne Schmidt
Michael L. Schuster

Dale ¥. Nesbitt
Mary E. Nesmith
Daniel L. Reich

Stanley H. Levy
Gregory G. Pyle
Bruce L. Rienzo
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Fr. John D. O'Neill, SJ
Katherine A Rieman
Carol A. Schoen
Richard H. Seymour
Jerome P. Sikora
Richard G Smith

Paul H. Wozniak

Jean M. Stepan
Mrs. Carol Margrett

David Russell Poe

William Douplas Rhodes, Jr.

Cheryl Lynn Shade

Lee E. Sorensen
Kenneth Stewart

Robert Barnett Strecker
Priscilla Jane Stuart
Robert Tribble
Marjorie Unkleshay
Judith A. Wesselmann
Paul S. Winn

James A. Pollock
William N. Rapp

Linda C. Robison
Charles W. Schelin
Dorothy Anne Vanderburg

James M. Sherman
Gary J. Slizeski
Julie C. Stenlund
Delyn Stork

Kenneth 0. Reil
Virginia E. Usnick
Am White

Lucinda L. Winters

Richard J. Schattin
Thomas Steinberg
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NEW JERSEY BETA, Douglass College

Shoko Aogaichi
Michele S, Backlar Carolyn A Garrett
Nancy H. Baxter Karin L. Geiselhart
Elizabeth Bolland Janet M. Horowitz
Sandra L. Brook Susan M. Junta

Jo Am Deal Bonnie J. Kestenbaum
Sarah C. Erlich Arlene G Lucker

Helen M. Galt

Sylvia A Lundy
Gloria B. Mancuso
Virginia MeCarthy
Suzanne C. Norton
Marla Shalow
Nancy E. Smickle
Anne M. Smith

NEW YOK GAMMA Brooklyn College

David Kurnit
Sylvia Lazarnick
Erick Lindenberg
Harvey Spivack

Roberta Greenwald
Alan Kerstein
Charles Kleinbers

Daniel Axelrod
Marion Betwin
Suzanne Brumer

NEW YOK EPSILON, St. Lawrence University
Raymond J, Barrowman Carole Ji Lamb
John R Burke

Diane E. Cannan
Bonnie E. Ensman

Linda L. Hulbert
Carole Huttar Katherine J. Loomis
John A Jacobs Phyllis M. Pangallo
Phyllis E. Jordan Diane M. Ronan

N&V YO ETA, State University of New York at Buffalo

Cora Beth Abel
Gary Paul Belcher
G. Robert Blakley

Stephen M. Gagola, Jr. Richard Michael Katz
Charles Allan Godfrey Barbara Phyllis Levine
Karen Sue Goldsmith Graham Lord

R. Timothy Cassel Robert L. Gritzke Linda Irene Mayne
Dennis W. Dalgleish Joseph Anthony Guarnieri Richard J. Orr

Sally 1. Drob David Lee Herman Evelyn Orvieto

Gail Frankenstein

NEV YOK KAFPA, Rensselaer Polytechnic Institute
Jerrold Gould

David Alfred Guaspari
Paul Lawrence Irwin

Henry Lawrence Kurland Rosemary Ruth O'Neil
Melvin David Lax Bruce David Raymond

NEW YOX MU, Yeshiva College

Sheldon Koenig
David E. Miller
Ralph C. Korden

Henry Finkelstein
Michael Frankel
William L. Gewirtz

Melvin H. Davis
Chaim Feller
Melvin Fine

NORH CARCLINA BETA. University of North Carolina

Charles Marshall Angell Richard Allen Driver Richard Allan Mam
Rosalie V. Beaudrat Elizabeth T. Earnhardt Leigh Louise McGoogan
John Boyce Bennett, Jr. Richard Keene Ellestad Siman Deon Mobley
James Edward Breneman Linda Carol Florick John Edward Page

Doris Faye Burton Jane Knox Grant Richard James Parnell
Douglas Campbell Jill Beth Hickey Pamela Jean Pendergrass
Marvin Eugene Coley Michael Katz Gail Scott Poe

John Woodward Dees Charles H. Lynch, Jr. Timothy Louis Redeker

NORTH CARCLINA GAMMA, North Carolina State University

Grover C. Bishop
Thomas C. Berden
James D. Clark
Clyde C. Goad

Patty Sue Greene
Seiprond G. Kopinitz
Jo Perry Ledbetter

Barry F. MeCoy
George J. Oliver
Betty F. Pritchard

Anita C. Smyle
Janet L. South
Joan D. Spalding
Roslyn A. Stone
Joanne K. Testa
Bonnie R Zimmer

Howard Stern

Philip Trauber
Robert Witriol

Ruth C. Strodt
Walter C. Stredt
Susan C. Wolford

Ran Bachan Ran
Linda Karen Reiss

Mak Terry Rothstein
Steven Schlosser

Akella L. Somayajulu

Paul Edward Stachowski
Antoinette Marie Young

Donald Richard Steele

Charles Tier
Peter George Timmons

David Schmuckler
Norman Seidenfeld

Margarete Ellen Sandlin
Warren Hall Schonfeld

Steve Richard Searcy
Morris Shear

MR Pandrai Suksawasdi

Allen Crisp Ward

Elizabeth Francis Watkins

Stuart Alon Yarus

Theodore R Rice
Eagsc spputord

OHIO DELTA, Miami University

Cynthia A. Baker

Barbara L. Catterton

Pamela A. Frick

Margaret Holder
Stephen J. Kuss
Linda E. Manning

OHIO EPSILON, Kent State University

Carol Bahn
Marion Bischof
Diane Boesch
Gloria Bozek
Joan Briggs
Sarah Bromley
Dennis Cameron

Howard Cook

Roger Copeland, Jr.
William Farmer ==
Kenneth Frohlich
Cynthia Gibson
Grant Hagerty
Janet Hoskinson

OHIO LAVBDA, Jéhn Carroll University

Leslie R. Balkanyi

Thomas R. Couvreur

James ¥. Kirby, S.J.

OHIO THETA, Xavier University

Philip Albers
David G Besco
Richard F. Buten
George 0. Charrier
Brother Cormac

J. Kurt Dav
Richard Dietz

Michael E. Doherty
Thomas F. Finke
Justin E. Fischer
Carl R Foster
Michael R Good
John T. Hemnerle
Dennis A. Hopkinson

CREGON GAMMVA| Portland State University

Edward D. Deloff
Lawrence C. Ford

Raymond 0. L. Girton

FENNSYLVANIA DELTA, Pennsylvania State University

Dennis W. Andrews
Melissa A. Beaver
Anne Bixler

William R. Conrad

Lewis Y. Lee
Gary H. Newton
John C. Reisner

Catherine A. Detz
Eric R Edgar
Jean M. Engler

FENNSYLVANIA IOTA, Villanova University

Edward L. Anderson

Dennis Paul K. Bannon

Thomas F. Brady

Kevin R Conry
Thomas Corwin
Victor J. Costanze

John D. McVay
Janalynn C. Smith
Jo Am T. Thiel

Bonnie Iffland
Alexandra Iwanchuk
Michael Lenarcic
John Lynch

Linda Mantz
Dorothy 0l1dford
Terry Potter

Matthias V. Kliorys

Joseph F. Scharf, S$.J.

Jerome P. Huhn
Frederick K. Kemen
Thomas J. Kloecker
James H. Knoll
Gary L. Marotta
Richard T. Miller
James 8. Ochs

Stephen B. Rosenfeld
James E. Schonlau
Daniel G. Schwartz

Martin C. Golumbic
Lawrence Novak
Susanne E. Smith

Devendra Gupta
Richard McCunney

Raymond J. Palmer, Jr.

FENNSYLVANIA THETA, Drexel Institute of Technology

Stephen R. Blum
Charles W. Bock
Judith H. Candelor

Ellis S. Cohen
Marilyn Fleming
Alan W. Hunsberger

FENNSYLVANIA ZETA, Temple University

Katherine Bomba

L oretta Campbell
Mak S. Cooperstein
Hark Feldman
Stuart M. Hoffman

Elaine M. Jacobson
Solomon Jekel
Sheila Kuzma

Mak D. Lipshutz
Jane Meyers

Harry A. Kiesel
Bernard P. Reca
Frederick J. Scott

David B. Perloff
Malcolm Riddle
Allan Rosen

Susan B. Rosenberg
Howard Shectman
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David G Waller
Elizabeth A. Yount

Michael Ray
Cynthia Savako
Joan Skelton
Eleanor Steven
Diane Suchan
Karla Wagner

Michael C. Kopkas

Eugene J. Otting
Joseph L. Puthoff
Eric A. Soiu
Lawrence E. Stolz
John Totten
Carol Welch

Ronald Y. Sugihara
Dennis W. Watson
David J, Wod

Patrick J. Walsh
Charles F. Wolf
Linda Woodland

Henry J. Schmidt, Jr.
John Joseph Volpe

Alice B. Stanley
Michael Temple
May Anmn Wyzykiewicz

Gary Shulberg
Deborah Slotnik
Jeanette M. Szwec
Barbara Widman



TEXAS BETA, Lamar State College of Technology

Sherrie Lee Haussner

Marilyn E. Lewellen

VIRGINIA ALFHA, University of Richmond

James Freeman Bowen
Stanley J. Buchwalter
Russell Parrish Carlton
Thomas Granderson Crane
Margie Fern Crowder
Wayne Richard Cushing
Karl Herbert David
Nancy Land Davis

Suzanne Dawkins
Linda Vernon Elmore
James William Evans
Grayden Thomas Figart
Manfred C. Freeman,
Linda Lee Graham
Judith Lynn Holmes
Woodliff Jenkins, Jr.

WASHNGION BETA, University of Washington

Susan M. Anderson
Bonnie Avery

Gary A. Banker
Domthea L. Barnes
Verna E. Eells

Virginia Figenbaum
Patricia E. Fogde
Kirk L. Johnson
Barbara Koss

Patricia Lynn McCarry

Jane Frances Kiser
Dixie Belle Lee
Thomas Sumner Ligon
Shirley Crowder Lonp
Bernie Thomas Quinn
Sandra Lynn Rice
Bernard Yancy Schultz
Elizabeth Blair Smith

Janice Leighton
Robert McCollom
Walter Potter
Michael Riste

WASHINGTON DELTA, Western Washington State College

Alan C. Adolphson
Christine R. Bauman
John J. Bennerstrom
Gary F. Boone
Richard K. Brauninger
Robert H. Brim
Lawrence W. Brown
Jonathan W. Bryan
George W. Burden
Frank W. Cherry
Steven K. Crawford
Dennis L. Demorest

John C. Engstrom
Sylvia F. Fountain
Robert H. Grenier
Gordon D. Hager
Linda K. Hamilton
Helen F. Haugen
Brian W. Hogan
Stanley H. Jensen
Thomas C. Jepsen
Margaret A. Johnston
Carol M. Kirby

WASHNGION GAVMA Seattle University

Peggy Ayres
Forest Brooks
James M. Cole
Ted Cooper

Glen Frichberg
Den Harkins
David R. Huphes
John Leland

WISCONSN ALFHA, Marquette University

Joseph H. Cummings

Roger George Klement

-George W. Kutner, Jr.
-

Peter John Leesan, |V
James D. filler

Sandra L. Kokko
Eugene J. Loomans
Hazel D. Lundy
Robert W. Martin
Clifford J. Mayoh
Peter V. McCarthy
Karen E. Mitchell
Rhoda H. Moore
Everett V. Neuman
Richard J. Nerris
John P. Olson

Sr. Clare Lentz, FCSP
Ed Oberti
Michael Palandri

Ray Panko

Linda H. Schumacher
Ellen Skowronski

Hal McKinley, IT1

George Edward Smith. Jr.
Marcia Ruth Smith

Edwin J. C. Sobey
Catherine Birdie Stone
Robert Graf Stowbridge
Randy Robin Walker

Hans H. C. Weidmann
Marie Catherine Whitlock

James Rodgers
Gerald V. Saxton
Mark E. Stickel
Shyne Ling Wang
Carolyn Young

Shirley P. Pace
Dale D. Raile

Frank D. Rice
David E. Rush
Jacqueline Silberger
Jonathan J. Smith
David P. Sorensen
David L. Spatz
Ward R, Wenner
James M. Whalen
Stephen A Wiitala
Leonard E. Zenonian

Don Parda
James Rundle
Pat Welch

Joseph S. Subjak, Jr.
Michael Taken
Dennis Ward






