## $\pi \mathrm{PI}$ <br>  <br> VOLUME 4 Spring 1968 NUMBER 8 CONTENTS

The C. C. MacDuffee Award for Distinguished Service J. C. Eaves319

A Convergent Series and Logarithms in Different Bases
Ali R. Amir-Moez ..... 322
Underqraduate Researeh Project ..... 326
Generalization of Sequences
William I Reynolds ..... 327
Summation of Generalized Harmonic Series with Periodic Sign Distributions

$\qquad$
Cerimele ..... 331
A Shorter Axiomatic System for Boolean Algebra Leray J. Dickey ..... 336
Distance Freserving Functions on the Real Line Glen Haddock and Dayid Moon ..... 337
A. Functional Approach to the Sinqularities of Plane Curves --Richard J. Bonneau ..... 341
A Prelinifinary Examination of Rounct-Pobin Tournament Theory --Charles A. Bryan ..... 350
Problem Department ..... 254
Book Reriews ..... 35.9
Books Received for Review. ..... 360
Initiates ..... 361
Copyright 1968 by Pi Mu Epsilon Fraternity, Inc.

## PI MU EPSILON JOURNAL

THE OFFICIAL PUBLICATION
OF THE HONORARY MATHEMATICAL FRATERNITY

Kenneth Loawen, Editor

## ASSOCIATE EDITORS

Roy B. Deal Murroy Klamkin

## OFFICERS OF THE FRATERNITY

> President: J. C. Eaves, University of Kentucky Nice-President: H. T. Karnes, Louisiana State University Secretor- Treosurer: R, V. Andree, University of Okiohomo Post-President: J. S. Frame, Michigon Stote University

## COUNCILORS:

L. Earie Bush, Kent Stote University Roy Dubisch. University of Woshington Iving Reiner, University of Ithinals


## J.C. Eaves, President, Pi Mu Epsilon

Fellow members of Pi Mu Epsilon, honored guests: he have come together tonight for many reasons but none more important than the next event on our program.

Presidents of an organization such as ours come and go, but they live on, on the back of the printed copies of our Constitution and By-Laws. This is not the case with the veritable servants of our fraternity. Any interested individual can ascertain from a copy of our constitution that Professor E. D. Roe, Jr., was our organization's first president (then called Director General) but there is no reference thereon that Dr. John Steiner Gold, our honoree, served as Secretary-General with Professor Roe. It was during these early formative years of Pi Mu Epsilon that the size of an Institution seemed to be synonomous with interest in a strong Mathematics Department and thus, Dr. Gold was instructed to discourage smaller colleges when they sought information concerning the possibility of a chapter.

Our Constitution booklet carries the names Ingold, Owens, Evans, Milne, Fort, MacDuffee, but no mention that our honoree saw service with all of these. Dr. Gold was elected secretary in 1927 and served continuously until 1948, the longest term of any elected officer. In 1936 he worked arduously and with inborn devotion to revise the constitution, placing emphasis upon quality rather than size alone. He saw Pi Mi Epsilon Chapters swell from 14 when he took office in 1927 to almost 50 in 1948 when he chose not to seek reelection.

While we all find it difficult to accept the decision of a devoted servant to step out, we must, nevertheless, see some justification. As one of the main driving forces behind the society, Dr. Gold had seen it develop from one or two new chapters per year, each installing itself, preparing its own certificates, paying no dues, ordering seals from the Director General (at lic per) to one which required an initiation ceremony usually attended by the Secretary, required membership certificates, individually written (in the fine Spencerian hand of Mrs. Gold), with ribbon and seal affixed by hand. He maintained detailed office records in the centralized headquarters of the fradetailed office records in the centralized headquarters of the fraternity from 1936 until his retirement. During much of Dr. Gold accepted donations of one or two dollars per year from each chapter


Professor and Mrs. John S. Gold
if the chapter took the hint and voluntarily contributed. In 1936 the seal of the Fraternity was placed in the hands of the Secretary Treasurer General, the new office created by the combination of the offices of Secretary, Treasurer, and Librarian. Each new member now was charged a Fee of $\mathbf{2 5} \boldsymbol{\xi}$ which barely covered Dr. Gold's cash outlay for certificate, seal, and ribbons. During the few minutes we had together prior to the beginning of our program tonight he also recalled some experiences such as an all night bus trip to clarify a point, and a trip on a bus which became snowbound and thus caused him to relay the initiation ceremony by phone thereby accomplishing the installation of a new Chapter.

Dr. Gold relates that money was scarce in the early 1930's and interest in mathematics also lagged. In case some of you think that a quarter wasn't much during those years, I must add that it was made of silver and 1 know some college men who survived on 25 to 30 cents per day for food and this included between meal snacks and night caps These were also the years during which high school principals were replacing mathematics courses with manual training courses. This was truly, for some, an unimaginably rough period and it is probably no truly, for some, an unimaginably rough period and it is probably no the unforgettable belief in the value of recognition of a budding young mathematician and the unregrettable devotion of many hour young mathematician, and the unregrettable devotion of many hours during 50 per cent of his active, productive, lifetime -we may no oblivion. With leaders like Dr. Gold, the World of Mathematics oblivion. With leaders like Dr Gold, the World of Mathematics scholars was not to lose conscious knowledge of this organization.

To me, Dr. Gold always exemplified aptness, unselfishness, and foresight, in his decisions for the fraternity. It was he who foresaw not only the possibility but also the necessity of a national publication, and this at a time barely following World War II.

Tonight we could honor others but none more deserving. Tonight we could read names from our roll of the many servants of Pi M Epsilon, but none more devoted. We could recount the accomplishment of president after president but scarcely a combination equals his indulgence. And for humility he has no equal.

Dr. Gold honors us tonight in accepting Pi Mi Epsilon's highest award, the C. C. MacDuffee Award. It was our intentions that this award say simply enough to anyone, "This is recognition of genuine, unselfish service." Hé intended that it be elegant enough to grace the finest wall and distinguished enough to become a cherished possession kew, members of Pi Mpsilon, this is a tribute to deserving member did not labor that he saw a medal in sight but
 or the promotion of those true scholarly ideals he saw foremost in our organization.

In recognition of the contribution Mrs Gold has made, both in sharing her husband's time with us and for the uncounted hours she spent in cutting ribbons, licking seals, and applying that long lost art of Spencerian penmanship, I am going to ask that she too stand and share in the presentation.

Dr. Gold, you honor us tonight and you both leave us forever in your debt.

## A CONVERGENT SERIES AND LOGARITHMS IN DIFFERENT BASES

Ali R. Amir-Moéz, Texas Technological College

In this note we first study a theorem of Euclidean geometry and use the result in obtaining logarithms in a positive base.



Fig. 1

1. Theorem: Let $O x$ and $O y$ be two half lines and $a$ be the angle between them (Fig. 1). Let $A_{0}$ be a point on Ox. We consider points $A_{0}, A, \ldots$ and $B_{0}, B_{1}, \ldots$ such that $B_{n}$ is the foot of the perpendicular through $A$ to $O y$, and $A_{n+1}$ is the foot of the perpendicular through $B_{n}$ to $0 x$. Let the segment $O A_{n}=a$, the segment $O B_{n}=b_{n}$, and the segment $A_{n} B_{n}=C_{n}$. Then

$$
\sum_{n=0}^{\infty} a_{n^{\prime}} \quad \sum_{n=0}^{\infty} b_{n^{\prime}}, \quad \text { and } \quad \sum_{n=0}^{\infty} c_{n}
$$

are convergent for $0<a<\frac{\pi}{2}$ and $0<a_{0}<\infty$.
proof: Let $a_{0}=a$. Then $b_{0}=a \cos a$ and $c_{0}=a \sin a$.
Thus $\quad s=\sum_{n=0}^{\infty} a=a\left(1+\cos ^{2} a+\ldots+c o s a+\ldots\right)$

$$
=\frac{a}{1-\cos ^{2} \alpha}=\frac{a}{\sin ^{2} \alpha}
$$

$$
\begin{aligned}
T & =\sum_{n=0}^{\infty} b_{n}=a\left(\cos \alpha+\cos ^{3} a+\ldots+\cos ^{2 n+1} \alpha+\ldots\right) \\
& =s \cos a=\frac{a \cos a}{\sin a} \\
R & =\sum_{n=0}^{\infty} \sum_{n}=a \sin \left(1+\cos a+\ldots+\cos ^{n} a+\ldots\right) \\
& =\frac{a \sin a}{1-\cos a}
\end{aligned}
$$

2. Discussion: We observe that for $a=0$ all three series are divergent. One easily sees that

$$
S+T=\frac{a}{1-\cos \alpha}
$$

This implies that

$$
\frac{\mathrm{R}}{\mathrm{~S}+\mathrm{T}}=\sin \alpha
$$

We may study the case $a>\frac{\pi}{2}$. But it will not be very interesting.

3. Logarithms in a base: Let us look at a sequence related to the series $S$. Choose $C_{0}$ on $O x$ and let $O C_{0}=d$. Then we draw the perpendicular to $O x$ through $C_{0}$ (Fig. 2). This perpendicular intersects $O y$ at $D_{0}$. Now we define $C_{1}, \ldots, C_{n}$ on $O x$ and $D_{1}, \ldots, D_{n}$ on $O y$ such that the
segment $\mathbf{C}_{\mathbf{k}} \mathrm{D}_{\mathbf{k}}$ is perpendicular to Ox and the segment $\mathrm{D}_{\mathrm{k}-1} \mathrm{C}_{\mathrm{k}}$ is perpendicular to $O y$ for $k=0,1, \ldots, n$. Let $0 C_{i}=d_{i}$, $i=0,1, \ldots$. Then the sequence $d_{0}, \ldots, d_{n}, \ldots$ will will be

$$
d_{0}=d, d \sec ^{2} a, \ldots, d \sec ^{2 n_{\alpha}}, \ldots
$$



In particular we are interested in the case that $d=1$. Let $h$ be a positive number and a base for logarithms. We consider a rectangular coordinate system (Fig. 3). We choose $\mathbf{C}_{0}=C$ to be $(1,0)$. We construct the right triangle OCM such that $C$ is the vertex of the right angle and $O M=h$. Let us denote the half line throügh 0 and $M$ by $0 z$. It is _clear that if a is the angle between Ox and $\mathbf{0 z}$, then seca $=$ h. This implies that $c_{n}$ corresponds to (seca, 0 ), $n=$ 1, 2, ... . Thus

$$
\log _{h} d_{n}=2 n
$$

Here we consider points ( $\mathbf{1}, \mathbf{0}$ ), ( $\left.\mathrm{d}_{\mathbf{1}}, 2\right),\left(\mathrm{d}_{2}, 4\right), \ldots$, $\left(d_{n}, 2 n\right)$. These points are on the graph of $y=\log _{h} x$.

Now if we draw $\mathbf{C B o}$ perpendicular to $\mathbf{O z}$ and $\mathbf{B o}_{0} \mathbf{A}_{\mathbf{1}}$ perpendicular to $O x$ and continue this way, we may obtain points with negative ordinates for $\log _{h} \mathbf{x}$, for example ( $\mathbf{a}_{1},-2$ ) where $0_{1}=a_{1}$.

What has been studied in this section does not give a very accurate approximation of $\log _{h} x$. Thus we shall add a few ideas in order to get better approximations.


Fig. 4
4. Geometric means: Let $a$ and $b$ be two positive numbers denoted by the line segments $A B$ and $B C$ respectively (Fig. 4). We draw a half circle with diameter AC. Then we draw the line perpendicular to AC at B. This line intersects the half circle at M. It is quite easy to show that the length of $B i y$ is $\sqrt{a b}$, i.e., the geometric mean of a and b. One can easily show that

$$
\log _{h} \sqrt{a b}=\frac{1}{2}\left[\log _{h} a+\log _{h} b\right]
$$

## 5. Refinement of the graph: Using the geometric

 construction in 4, we can obtain more points for the graph of $y=\log _{h} x$. For example, let us consider $\mathbf{C}_{1}$ and $\mathbf{C}_{2}$ of figure 3 . To $\mathbf{C}_{1}$ and $\mathbf{C}_{2}$ respectively correspond $\mathbf{d}_{1}=$ $\boldsymbol{s e c}^{2} a$ and $d_{\mathbf{2}}=\boldsymbol{s e c}^{4} a$. We construct the geometric mean of $\mathbf{d}_{\mathbf{1}}$ and $\mathbf{d}_{\mathbf{2}}$. Let D correspond to this mean (Fig. 5). One can easily see that to $D$ corresponds ( $\left.\sec ^{3} a, 0\right)$. We

Fig. 5
observe that the arithmetic mean of $\log _{h} d_{1}$ and $\log _{h} d_{2}$ is 3. Thus the point $\left(\sec ^{3} a, 3\right)$ is on the graph of $y=$ $\log _{h} x$. By obtaining geometric means on the $x$-axis and corresponding arithmetic means on the $y$-axis, one can obtain more points of the graph of $y=\log _{h} x$.

## UNDERGRADUATE RESEARCH PROJECT

Proposed by Richard V. Andree, University of Oklahoma
Write the equation

1) $a_{0}+a_{1} x+\ldots+a_{n} x^{n}=0$;
in the form
2) $\quad\left(a_{0}, a_{1}, \ldots, a_{n}\right) \cdot\left(1, x, \ldots, x^{n}\right)=0$.

Then the problem of finding approximate solutions to 1 ) may be thought of as finding a vector
3) $\left(1, x, \ldots, x^{n}\right)$
which approximatelv solves 2)
A related (but not equivalent) problem is to find exact vectors for which 2) is approximately zero.

A very different oroblem would be. given $x$, which vectors $\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ make 2 ) approximately zero.

Investigate these last two problems.

## GENERALIZATIONS OF SEQUENCES

William L. Reynolds
Florida State University

INTRODUCTION: Since our first introduction to elementary calculus we have all been aware of the seeming lack of consistency in defining limits and convergence of sequences of real functions as compared with the definitions as applied to complex functions and functions of several variables. It is with the hope of wrapping all these definitions up into one neat package that we embark on this study of generalizations of sequences following the theory of E. H. Moore and H. L. Smith.
(1) DIRECTED SETS AND NETS: Let us examine briefly the concept of convergence of the real valued denumerable sequence $x_{1}, x_{2}, x_{3}, \ldots$ which
converges to some $k$. Surely each of us is familiar with the classical "epsilon-delta" definition of convergence, and perhaps also with a more general topological definition. Let us put aside these definitions for the time being and develop a general definition involving the concept of a directed set, which we define as follows
1.1) Definition: A directed set is a nonempty set $N$ together with a binary relation $\geq$ (called the direction on $N$ ) such that
a) a $\geq$ a for each a in $N$
b) $\mathrm{a} \geq \mathrm{b}$ and $\mathrm{b} \geq \mathrm{c}$ implies $\mathrm{a} \geq \mathrm{c}$ for alla, b , c in N , and
c) if a and bare elements of $N$, then there is $c$ in $N$ such that

$$
\mathrm{c} \geq \mathrm{a} \text { and } \mathrm{c} \geq \mathrm{b} \text {. }
$$

We will denote the directed set by ( $N, \geq$ ) or by $N$ if there is no confusion, and we say that $N$ is directed by $\geq$. Obvious examples of directed sets are the set of positive integers and the reals with the usual $\geq$, and the collection of neighborhoods of a point in a topological space directed by inclusion.
2) Definition: $A$ net in a space $X$ is a function $S: N \rightarrow X$ from a directed set $N$ into a space $X$
We will denote the net simply by $S$, or in case the domain and direction are not explicit by ( $S, N, \geq$ ). We say that $S$ is in the space $X$ if $S(n)$ belongs to $X$ for each $n$ in $N$; $S$ is said to be frequently in a subset $A$ of $X$ if for each $n_{0}$ in $N$, there is $n \geq n_{0}$ such that $S(n)$
is in $A$. $S$ is eventually in the subset $A$ if for some $n_{0}$ in $N, S(n) \varepsilon A$ for each $n \geq n_{0}$.
1.3) Definition: A net $S$ in a space $X$ is said to converge to a point p in X if and only if $S$ is eventually in each neighborhood of $p$. We can now characterize open sets by the following
1.4) Theorem: A subset $U$ (of a topological space $X$ ) is open if and only if no net in X-U can converge to a point of $U$. (In the interest of brevity the proofs of this theorem and of many of the following are left to the reader.)
1.5) Corollary: A subset $V$ of a topological space $X$ is closed if and only if no net in $V$ converges to a point of $X-V$.

Student paper presented at the National Pi Mi Epsilon Meeting in Toronto, Canada, August, 1967.

One will note that, in general, limits of nets are by no means unique. The following theorem gives necessary and sufficient conditions for uniqueness.
1.6) Theorem: Let $X$ be a topological space. Then each net in $X$
converges to at most one point if and only if $X$ is Hausdorff.
We extend the notion of accumulation points to nets by saying
We extend the notion of accumulation points to nets by saying $n$ each neighborhood of $s$. It is interesting to compare this concept with the definition of convergence and ask under what conditions a net converges to its accumulation point(s). The following theorem establishes sufficient conditions for this convergence.
1.7) Theorem: Let $S$ be a net in a space $X$ with the property that, for each subspace A of X, S is eventually in A or eventually in
X-A (S is universal). Then $S$ converges to each of its accumulation points. (Proof is immediate upon establishment of the lemma:
A universal net which is frequently in a set $A$ is eventually in $A$.)
The study of subnets is appealing to one's intuition and supplements the theory of nets in much the same manner as subsequences supplement the theory of sequences. We will state the definition of subnet and a resulting theorem strictly as a point of interest, but, since we make no use of the concept in the sequel, we will not pursue the topic.
1.8) Definition: A net (T,D) is a subnet of a net ( $S, E$ ) if and only if there is a function $N: D \rightarrow E$ such that
a) $T=S \cdot N$, or equivalently $T(i)=S(N(i))$ for each $i$ in $D$, and
b) for each $m$ in $\mathbf{E}$ there is $n$ in $D$ with the property that, if $\mathrm{p} \geq \mathrm{n}$, then $\mathrm{N}(\mathrm{p}) \geq \mathrm{m}$.
1.9) Theorem: A point $s$ in a space $X$ is an accumulation point of a net $S$ (in $X$ ) if and only if some subnet of $S$ converges to $s$.
2) FILTERS: Our second generalization is somewhat less appealing to those indoctrinated with notions of sequences, but it nevertheless provides some interesting theory.
2.1) Definition: A filter in a set $X$ is a nonempty family of nonempty subsets of $X$ such that
a) the intersection of any two sets in $\phi$ contains an element of $\phi$, and
b) if $A \in \phi$ and $A \in B \in X$, then $B \in \Phi$.

Obvious examples of filters are the set of all neighborhoods of a point in a topological space and the family of all sets with finite complements in an infinite set.

Convergence is of particular interest, and we make the following
2.2) Definition: A filter $\phi$ is said to converge to a point $x$ in a Definition: A filter $\phi$ is said to converge to a point $x$ in a
space $X$ if
$\mathbf{x}$ belongs to $\phi$. space $X$ if and only if each neighborhood of $\mathbf{x}$ belongs to $\boldsymbol{\phi}$.
This definition makes it possible to characterize open sets in topological spaces
2.3) Theorem: A subset $U$ of a set $X$ is open if and only if $U$ belongs to every filter in $X$ which converges to a point of $U$.

It is also possible to characterize Hausdorff spaces by use of filters, as the following theorem indicates.
2.4) Theorem: A topological space $X$ is Hausdorff if and only if each filter in $X$ converges to at most one point.

We will say that the family $B$ of subsets of a set $X$ is a basis for a filter if and only if the collection of all subsets of $X$ conaining sets of $B$ is a filter in $X$. Clearly if $\mathrm{is}^{\text {a }}$ family such that each member of a filter $\Phi^{\prime}$ contains a member of $B^{*}$, then $B^{\prime}$ is a basis for $\boldsymbol{\phi}^{\prime}$.
2.5) Definition: A filter $\phi$ is said to refine a filter $\phi^{\prime}$ if each member of $\phi^{\prime}$ is also a member of $\phi$. In such a case $\Phi$ is said to be a refinement of $\phi^{\prime}$.
2.6) Lemma: Any refinement of a filter converging to a point also converges to that point.
Accumulation points of filters are of interest and are defined as follows: a point $x$ is an accumulation point of a filter $\boldsymbol{\phi}$ if there is a refinement of 4 which converges to $x$.
2.7) Lemma: Given a filter $\Phi$, the following are equivalent
a) $X$ is an accumulation point of $\Phi$
b) There is a filter $\phi{ }^{\prime}$ which is a refinement of $\Phi$ and of $N_{x}$, the neighborhood system of $x$.
c) The intersection of sets (members) of $\Phi$ with the sets of $\mathrm{N}_{\mathbf{x}}$ are nonempty.
3) RHATED PROPERTIES OF NETS AND FILTERS: In view of the close similarities of many of the notions ef nets and filters, one's first reaction is probably to wonder if the two objects are equivalent. he will not Drove that they are equivalent. but as the following theorems indicate, each net determines a filter with similar properties, and conversely.

If ( $S, D, \geq$ ) is a net in a set $X$, then we will call the collection of sets $\left\{F_{n}\right\}$ where $F_{n}=\{S(m) \mid m \geq n ; m, n \in D\}$ the filter basis associated with the net $S$. (It is left to the reader to show that $\bar{F}$ is indeed a filter basis.) Recalling the definition of a filter basis, the net $S$ thus defines a filter, called the filter associated with the net $S$.
3.1) Lemma: If the net ( $S, D, \geq$ ) is eventually in a set $E \subset X$, then $E$ is an element of $\phi$, the filter associated with $S$
3.2) Theorem: If the net $S$ in the topological space $X$ converges to a point $x$, then the filter $\Phi$ associated with $S$ converges to $x$. Proof: Recall that $S$ converges to $x$ if and only if $S$ is eventually of x belongs to $\phi$, so $\phi$ converges to x .

Nets may be constructed from filters in the following manner. Let $\phi$ be a filter in a space $X$, and let $A$ be the collection of pairs $(x, F)$ where $F \equiv \phi$ and $x \in F$. We define a direction on $A$ by requiring $(x, F) \geq(y, G)$ if and only if $F C G$. Then the function $S: A+X$ defined by $S(x, F)=x$ is a net in $X$, called the net associated with the filtere.
3.3) Lemma: If $\boldsymbol{\phi}$ is a filter and $F \subset X$ is a member of $\Phi$, then the net Lenma: If $\phi$ is a filter and F C $X$ is
associated with $\phi$ is eventually in $F$.
Proof: Let $\boldsymbol{\Phi}$ be a filter and $S$ the net associated with 4 as constructed above. Let $F \in \phi$, and let $(y, G)$ bs any element of our directed set $A$ (the domain of $S$ ) such that $(y, G) \geq(x, F)$. Then $G \in F$ and $y \varepsilon G$, so $S(y, G)=y$ is in $F$. Thus $S$ is eventually in $F$.
3.4) Theorem: Let $\Phi$ be a filter converging to a point $x$ in a space $X$ Then the net $S$ associated with $\boldsymbol{\Phi}$ converges to $x$. (This is a direct consequence of the preceding lemma and the fact that each neighborhood of $x$ belongs to $\boldsymbol{\Phi}$.)

The suspected relations involving accumulation points of associated nets and filters also hold, as the following theorems indicate.
3.5) Theorem: If $x$ is an accumulation point of a net $S$, then $x$ is
also an accumulation point of the filter associated with $S$.
Proof: Suppose $x$ is not an accumulation point of $\phi$, the filter associated with the net ( $S, D, \geq$ ). Then there is some neighborhood N of x and some $\mathrm{F} \varepsilon \phi$ such that $\mathrm{N} \cap \mathrm{F}=0$ by 2.7. Recall that $4=\left\{W \mid W \supset F_{n}\right\}$ where $F_{n}=\{S(k) \mid k \geq n\}$. So for some $n \varepsilon D, F_{n} \subset F$,
hence $F \cap N=0$, and therefore $S(j) \& N$ for $\mathbf{j} \geq n$; that is, $S$ is not frequently in $N$, so $x$ is not an accumulation point of $S$
3.6) Theorem: Let $\Phi$ be a filter and $\mathbf{S}$ the associated net. If x is an accumulation point of $\Phi$, then $x$ is an accumulation point of S.

Proof: Let N be a neighborhood of x , and suppose $(a, F) \varepsilon A$, the domain of S. By 2.7 (c),F $\cap \mathbb{N} \neq 0$, so for $b \in F \cap N,(b, F) \geq(a, F)$. Thus S is frequently in N .

So we see that for each net in a space $X$ there is a filter in $S$ with related properties, and conversely. This leads us to believe that any proposition whose proof requires the use of one of these objects could be justified by application of the other. Published research tends to justify this belief.

In the interest of brevity, only the basic definitions and theorems needed for a cursory comparison of nets and filters have been given. Many more results are known. While the independent study of nets and filters and their comparison is interesting and rewarding, the real challenge lies in developing, in accordance with a conjecture of E.H. Moore, a more general theory of sequential notions of which nets and filters are but special cases.

## REFERENCES

. Bartle, R. G. "Nets and Filters in Topology," American Mathematical Monthly, 62 (1955) pp. 551-557.-
. Cartan, Henri. "Filtres et Ultrafiltres," Comptes Rendus de 1'Academie des Sciences, 205 (1937) pp. 777-779.

4. Dunford, N., and Schwartz, J. T. Linear Operators. Vol. I. New York: Interscience Publishers, 1958.
5. Hu, Sze-Tsen. Elements of General Topology. San Francisco: HoldenDay, 1964
Kelley, John L. "Convergence in Topology, " Duke Mathematical Journal 17 (1950) pp. 277-283.
. - General Topology. Princeton: Van Nostrand Company, 1955. McShane, E. J. "Partial Orderings and Moore-Smith Limits," American Mathematical Monthly, 59 (1952) pp. 1-11.
9. Smith, H. L. "A General Theory of Limits," National Mathematics Magazine, 12 (1938) pp. 371-379.

## SUMMATION OF GENERALVED HARMONC

 SERIES WIIH PERIODIC SIGN DISTRIBUTIONSB. J. Cerimele, Xavier University

In reinforcing the idea that a conditionally convergent series depends upon the presence of an infinite number of negative terms, one usually cites the example of the alternating harmonic series. A frequent question which arises in this consideration is whether other patterns, such as the negation of every third term, might render the harmonic series convergent. In this connection the author will discuss the convergence behavior of a generalized harmonic series having any periodic distribution of signs. In particular, it will be brought out that only those sign distributions in which a balance of plus and minus signs occur in the repeating sign block render the series convergent. Finally, a method of summing such convergent series by means of fundamental component subseries will be explained Consider the series, which shall be called the W -series, defined by

$$
\sum_{i=0}^{\infty} i /(j+i k),
$$

where $\mathbf{j}$ and $k$ are arbitrary positive integers. For $\mathbf{j}=\mathbf{k}=1$ this series reduces to the ordinary harmonic series, and for arbitrary $\mathbf{j}$ and $k$ it diverges with the harmonic series. Patterns of sign distribution in the $W$-series which yield convergence are subject to the following theorem, due to Cesaro, which imposes a necessary condition on the relative frequency of plus and minus signs.

Cesaro's Theorem [3,p.318]. Let $p_{n}$ and $q_{n}$ denote the number of positive and the number of negative terms respectively in the first n terms of a series. If the series is conditionally convergent and its sequence of terms in absolute value is monotonically decreasing then $\lim _{\boldsymbol{n} \rightarrow \boldsymbol{m}} \mathbf{p}_{\mathbf{n}} / \mathbf{q}_{\mathbf{n}}=\mathbf{1}$, where the limit is known to exist when the terms are of an order of magnitude not less than those of the harmonic
series [2,p.17]. In a periodic pattern of sign distribution Cesaro's theorem leads to the requirement that there be a balance of plus and minus signs in the cyclic sign block.

In order to sum convergent $W$-series with a periodic sign distribution the sumability of certain fundamental alternating series is needed. Consider the following alternating series:

$$
\begin{align*}
& W\left(j ; k_{1}, k_{2}\right)=\sum_{i=0}^{\infty}(-1)^{i} /\left(j+q h+r k_{1}\right),  \tag{1}\\
& h=k_{1}+k_{2}, q=[i / 2], r=i, \bmod 2
\end{align*}
$$

where
Theorem: The series in (1) converges and has sum

$$
\left.W\left(j ; k_{1}, k_{2}\right)=(1 / h)\left[\psi\left(j+k_{1}\right) / h\right)-\psi(j / h)\right],
$$

where $\psi(z)$ denotes the psi or digamma function [1, p.277].
Proof: That the series in (1) converges is an immediate consequence of the alternating series test. To generate the sum function the terms of the series are grouped in pairs yielding:

$$
\sum_{i=0}^{\infty} 1 /(j+i h)-1 /\left(j+k_{1}+i h\right) .
$$

This grouped series can be expressed by:

$$
\begin{aligned}
& \sum_{i=0}^{\infty} \int_{j}^{j+k_{1}}(x+i h)^{-2} d x
\end{aligned} \sum_{i=0}^{\infty}(x+i h)^{-2} .
$$

is uniformly convergent for $x \geq \mathbf{1}$, the operations in the above grouped
series may be permuted to give

$$
\int_{i}^{j+k} 1 d x \sum_{i=0}^{\infty}(x+i h)^{-2}
$$

Noting that $[1, \mathrm{p} .285$ ]

$$
\psi^{\prime}(x / h)=\sum_{i=0}^{\infty}(i+x / h)^{-2},
$$

one obtains the result:

$$
\begin{aligned}
W\left(j ; k_{1}, k_{2}\right) & =\left(1 / h^{2}\right) \int_{j}^{j+k_{1}} \psi^{\prime}(x / h) d x \\
& =(1 / h)\left[\psi\left(\left(j+k_{1}\right) / h\right)-\psi(j / h)\right]
\end{aligned}
$$

Utilization of an integral representation of the psi function [1, p.278] yields the following special case which-'is reducible to elementary functions.

$$
\text { Corollary. If } k_{1}=k_{2}=k,
$$

$$
W(j ; k, k,)=W(j ; k)=(1 / 2 k)[\psi((j / 2 k)+1 / 2)-\psi(j / 2 k)]
$$

$$
=(1 / 2 k) \int_{0}^{1} \frac{t^{(j / 2 k)-1 / 2-t}(j / 2 k)-1}{t-1} d t
$$

which by means of the transformation $\mathbf{t}=\mathbf{x}^{\mathbf{2 k}}$ becomes

$$
=\int_{0}^{1} x^{j-1} \mathrm{dx} /\left(1+x^{k}\right)
$$

This last integral can be expressed in terms of elementary functions, viz.,

$$
\begin{aligned}
& W(j ; k)=(-1)^{j-1}(r / k) \ln (1+x) \\
& -(2 / k) \sum_{i=0}^{q-1}\left[P_{i}(x) \cos ((2 i+1) j \pi / k)\right. \\
& \left.-Q_{i}(x) \sin ((2 i+1) j \pi / k)\right]\left.\right|_{0} ^{1}
\end{aligned}
$$

where $\mathrm{q}=[\mathrm{k} / 2], \mathrm{r}=\mathrm{k}, \bmod 2, \mathbf{j} \leq \mathbf{k}$,

$$
\begin{aligned}
& P_{i}(x)=(1 / 2) \ln \left[x^{2}-2 x \cos ((2 i+1) \pi / k)+1\right] \\
& Q_{i}(x)=\arctan [(x-\cos ((2 i+1) \pi / k) / \sin (2 i+1) \pi / k] .
\end{aligned}
$$

Table 1 provides closed expressions for the sums of some of the fundamental alternating W -series.

Because of the cyclic pattern in the periodic sign distribution for a convergent W -series it is apparent that such series can be decomposed into component subseries of the form in (1); and moreover, the sum of the convergent $W$-series is given by the sum of the sums of the fundamental component subseries. Table 2 consists in a compilation of closed expressions and approximate numerical values for the harmonic series having convergent periodic sign patterns spanning two, four, and six terms.

The author acknowledges the computational support rendered by his student Timothy Luken.

## Table 1

Closed Expressions for Some
Fundamental Alternating W-series


## Table 2

Summation of Harmonic Series with Convergent Periodic Sign Distributions

Sign Pattern
+--+
+-+-
++--
+---++
+--+-+
+--++-
+-+--+
+-++--
++---+
++--+-
++-+--
+++---

Sum
$(1 / 4)(\pi-\ln 2)$
$\ln 2$
$(1 / 4)(\pi+2 \ln 2)$
(1/3) 1 n 2
$(1 / 9)(\pi \sqrt{3}-3 \ln 2)$
(1/18) (3 $\ln 108-\pi \sqrt{3})$
$(1 / 6)(\pi \sqrt{3}+\ln (4 / 27))$
$(1 / 9)(\pi \sqrt{3}+3 \ln 2)$
$(1 / 9)(2 \pi \sqrt{3}-3 \ln 2)$
(1/18) $(\pi \sqrt{3}+3 \ln 108)$
$(1 / 6)(\pi \sqrt{3}+\ln (27 / 4))$
$(1 / 9)(2 \pi \sqrt{3}+3 \ln 2)$

## References

1. Davis, Harold T., Tables of the Higher Mathematical Functions, The Principia Press, Inc., Bloomington, 1933.
2. Hardy, G. H., Note on a Theorem of Cesaro, Messenger of Math., (2) 41 (1911), 17-21.
3. Knopp, Konrad, Theory and Application of Infinite Series, 2nd ed., Hafner Publishing Co., New York, 1928.

## A SHORTER AXIOMATIC SYSIEM FOR BOOLEAN ALGEBRA

## Leroy J. Dickey

## University of Wisconsin

In volume 4, number 6 (this Journal), Lawrence J. Dickson lists seven axioms for Boolean Algebra. This list can be abbreviated.
I. The axioms:

A Boolean Algebra is a set $X$ such that, for all a, b, c, ...e $X$
A. There is defined a (closed) binary operation $\cap$ such that

Axiom 1: $a \cap(b \cap c)=(a \cap b) \cap c$
Axiom 2: $a \cap b=b \cap a$
Axiom 3: a $\cap a=a$
B. There exists an element $I \in X$ such that

Axiom 4: $a \cap \mathbf{I}=$ a for alla $\boldsymbol{E} X$
C. There can be defined a function ${ }^{\prime}$ from $X$ into itsel such that:
Axiom 5: ( $\left.a^{\prime}\right)^{\prime}=$ a for all $a \varepsilon X$
Axiom 6: a $\cap a^{\prime}=I^{\prime}$ for alla $\varepsilon$ X
Axiom 7: $a \cap b=I^{\prime} \rightarrow a \cap b^{\prime}=a$ 。
II.

Theorem 1: Axiom 3 is a consequence of axioms 5, 6, and 7. Proof:

Let a be any element of $X$. By axiom 6, a $\cap$ a' = I'. Hence by axiom 7, a $\cap\left(a^{\prime}\right)^{\prime}=a . \quad B u t, ~ b y ~ a x i o m ~ 5, ~\left(a^{\prime}\right) '=a$. Therefore $a n a=a$.

Theorem 2: Axioms 1 and 2 can be replaced by the axiom
Axiom 1': a $\cap(b \cap c)=(b \cap a) \cap c$,
as long as axiom 4 is retained.
Proof:
Clearly axiom $1^{\prime}$ is a consequence of axioms 1 and 2. Suppose now that axiom $1^{\prime}$ holds. First we show that axiom 2 holds.

$$
a \cap b=a \cap(b \cap I) \quad \text { by axiom } 4
$$

$=b \cap a$
by axiom 4
Then $a \cap(b \cap c)=(b \cap a) \cap c=(a \cap b) \cap c$, which shows that axiom 1 is satisfied.

Hence the original seven axiom system can be replaced by a system of five axioms, namely $l^{\prime}, 4,5,6$, and 7 .

## DISTANCE PRESERVING FUNCTIONS ON THE REAL LINE

Glen Haddock and David Moon, Arkansas College, Batesville, Arkansas
In introducing a general theorem it is usually both interesting and instructive to examine its implication in restricted cases. It is important that the student be able to illustrate the theorem in a become quite iike to discuss isometrics on the real line. The notions of function, distance, composition of functions, and graphing will be illustrated.

Definition 1: The function $f=\{(x, y) \mid y=f(x)\}$ is an isometry if and only if for all real numbers $a$ and $b$ we have $|a-b|=|f(\bar{a})-f(b)|$.

Definition 2: Let $f$ and $u$ be functions and let $F$ be the function $\bar{F}=\{(x, y) \mid y=f[u(x)]\}$. Then $F$ is called the composition (or composite) $F=\{(x, y) \mid y=f[u(x)]\}$. is the set of all ordered pairs of real numbers $(x, y)$ such that $y=f[u(x)]$.

The reader is referred to reference [1] for further definitions.
The following theorem is basic to the study of isometries in Euclidean $n$-dimensional space ( $\mathrm{E}^{\mathrm{n}}$ ).

Basic Theorem: Every isometry in Euclidean n-dimensional space can be represented by at most $n+1$ reflections through ( $n-1$ )-dimensional space (Ref. [2])

Since use of the theorem here is restricted to 1 -dimensional space, i.e., the real line, we will use a special case of the Basic Theorem: every isometry of Euclidean 1-dimensional space can be represented by at most two reflections through a point

We will discuss a procedure whereby any number of reflections can be expressed as a combination of not more than two reflections. Note that the Basic Theorem merely guarantees the existence of such a representation, whereas this procedure will yield a method for computing the exact representation in terms of the information at hand

Theorem 1: The graph of an isometry of a line into itself is a straight line having slope either +1 or $\mathbf{- 1}$.

Proof: Since every isometry can be represented as either a reflection through one point or a reflection through two points, we will consider two cases.

Case I: Reflection through one point
Suppose the isometry is equivalent to a reflection through one point, say A. Then it follows that $f(A)=A$. For an arbitrary point $x \operatorname{let} f(x)=x^{\prime}$; then $|x-A|=\left|x^{\prime}-A\right|$. It follows that either (1) $x-A=$ $x^{\prime}-A$, in which case $x=x^{\prime}$ and thus $x=A$ (since $A$ is the only fixed point) or (2) $x-A=-\left(x^{\prime}-A\right)$ and $x^{\prime}=2 A-X$. Therefore $f(x)=2 A-x$. It will now be shown that the slope of the line segment joining ( $A, A$ ) and ( $x, 2 A-x$ ) is -1. The slope of this line segment is given by

$$
m=\frac{2 A-x-A}{x-A}=\frac{A-x}{x-A}=-1
$$

Since $x$ is an arbitrary point the result follows. See Figure 1.


FIGURE 1: Graph of a reflection through points $A$ and ( $x, 2 A-x$ ).
Case II: Reflection through two points.
Suppose the isometry is equivalent to reflections through two points $A_{1}$ and $A_{2}$ in that order. From the proof of Case $I$ we know that given an arbitrary point $x$, the function $f(x)=2 A_{1}-x$ reflects through the point $A$. Similarly the function $g\left(2 A_{1}-x\right)=2 A_{2}-\left(2 A_{1}-x\right)$ reflects through the point $A_{2}$. Then $f[g(x)]=2 A_{2}-2 A_{1}+x$ is the composite function. $\operatorname{Now} f\left[g\left(A_{1}\right)\right]=2 A_{2}-2 A_{1}+A_{1}=2 A_{2}-A_{1}$. The slope of the line segment joining the two points $\left(x, 2 A_{2}-2 A_{1}+x\right)$ and $\left(A_{1}, 2 A_{2}-A_{1}\right)$ is

$$
m=\frac{\left(2 A_{2}-2 A_{1}+x\right)-\left(2 A_{2}-A_{1}\right)}{x-A_{1}}-\frac{x-A_{1}}{x-A_{1}}-1
$$

Since the points $x, A_{1}$ and $A_{2}$ were chosen arbitrarily, the proof is complete. See Figure 2.


Theorem 2: The graph of an isometry $F$ has slope +1 if and only if it can be decomposed into two isometries $f$ and $g$ whose graphs have slope -1.

Proof: Assume that $F$ can be decomposed into two isometries f and $g$ Proof: Assume these graphs have slope -1. Then $f=\{(x, y) \mid y=A-x$, for some fixed point A) and $g=\{(x, y) \mid y=B-x$, for some fixed point $B\}$. Therefore $f(x)=f(g(x))=A-(B-x)=A-B+x$. Therefore $F$ has slope +1 .

Now suppose $F$ has slope +1 ; then $F(x)=A+x$.
Let $f=\{(x, y) \mid y=A-x$, for some fixed point $A\}$ and $g=\{(x, y) \mid$ $y=-x\}$. Then $f[g(x)]=A+x$. See Figure 3 .


FGGURE 3: Decomposition of an isometry with slope +1 into two reflections.

Theorem 3; The composite of two isometries whose graphs have slope -1 and +1 is an isometry whose graph has slope $\mathbf{- 1}$.

Proof: Let $\mathrm{f}=\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{y}=\mathrm{A}-\mathrm{x}$, for some fixed point A$\}$ and $g=\{(\mathrm{x}, \mathrm{y})$ $\overline{y=B+x}$, for some fixed point $B\}$. Then $f[g(x)]=A-(B+x)=A-B-x$ and has slope -1 ; also $\boldsymbol{g}[f(x)]=B+A-x$ and has slope $\mathbf{- 1}$. See Figure 4 .


FGGURE 4: Composition of an isometry with slope $\mathbf{- 1}$ upon an isometry with slope +1 .

Theorem 4: The composite of two isometries whose graphs have slope +1 is an isometry with slope +1 .

Proof: Assume f and g are two functions whose slopes are +1. Let $\bar{f}=\{(x, y) \mid y=A+x$, for some fixed point $A\}$ and $g=\{(x, y) \mid y=B+x$, for some fixed point $B\}$; then $\mathbf{F}(x)=f[g(x)]=A+B+x$ whose slope is +1 .

A method will now be given for finding the image of an arbitrary point $x$ under a finite number of reflections. Let $f$ be the function obtained by reflection through $n$ points $A_{1}, A_{2}, \cdots, A_{n}$ in that order.
Then $f_{1}=\left\{(x, y) \mid y=2 A_{1}-x\right\}, f_{2}=\left\{(x, y) \mid y=2\left(A_{2}-A_{1}\right)+x\right\}, f_{3}=\{(x, y) \mid$ $\left.y=2\left(A_{3}-A_{2}+A_{1}\right)-x\right\}$.

In general, for n-even, $\mathrm{f}_{\mathrm{n}}$ is obtained by induction, first reflecting through the point whose coordinate is $A_{1}+A_{3}+A_{5}+\ldots+A_{n-1}$ followed by a reflection through the point whose coordinate is $A_{2}+A_{4}+A_{6}+\ldots+A$.

If $n$ is odd, then $f$ is obtained by a reflection through the point whose coordinate is given by $\left(A_{1}+A_{3}+A_{5}+\cdots+A\right)-\left(A_{2}+A_{4}+A_{6}+\cdots+A_{n-1}\right)$.

> References:

1. School Mathematics Study Group, Elementary Functions, Yale University Press.
2. L. M. Blumenthal, Theory and Applications of Distance Geometry Oxford University Press, 1953.

## Richard J. Bonneau

College of the Holy Cross

The problem of studying plane curves and their singularities has intrigued the men of mathematics for centuries. However, the necessity of working with poorly-behaved functions, the parametrizations of these curves, often quickly dampened the adventuresome spirits of many a would-be algebraic geometer. Many attempts have been made to avoid the use of such ill-behaved representations of plane curves. This paper will discuss a method employed by Hassler Whitney in a more general analysis of the singularities of maps for $\mathrm{E}^{\mathrm{n}}$ into $\mathrm{E}^{\mathrm{m}}$ (1).

Essentially this method reduces to several clear-cut steps First, an investigation is made of a smooth map from E into E, to determine its Jacobian $J(x, y)$. Second, determine the curve (or curves) C, called the general fold of $f$, in the pre-image space for which the Jacobian vanishes; i.e., $J(x, y)=0$, for all points $(x, y)$ on C. Third, form the image $f(c)$, a curve in the image space and examine it for possible singularities. Fourth, if the image of he general fold possesses singularities, analyze the general fold in the pre-image space near the inverse image of the singularity. It is this last step which will yield important information about the curve with singularities.

The crux of this procedure is: given a curve with singularities, does there exist a map whose points of vanishing Jacobian map into the given curve? This question is as yet unanswered, but the motivation of this paper lies in demonstrating how the above method can be effective in studying curves and their singularities.

## I. INTRODUCTION

Let $f: E^{2} \rightarrow \mathbf{E}^{2}$ be a smooth mapping; i.e., possessing c ntinuous partials. Associated with each vector $V$ in $E$ and $p$ in $E$, there is a unique vector $D_{v} f(p)$, given by
$D_{V} f(p)=\lim _{t \rightarrow 0} \frac{1}{t}[f(p+t V)-f(p)]$.
This represents the directional and magnitudinal change in the values of $f$ as one travels through $p$ in the direction of $V$.

Considering, for fixed $p$ and $f, D_{V} f(p)$ as an operator on the set of vectors in $\mathbf{E}^{\mathbf{2}}$, it can easily be shown that the operator $\mathrm{D}_{\mathrm{V}} \mathbf{f ( p )}$ is actually a linear transformation from $E^{2}$ into $E^{2}$. If $V$ is given by ( $a, b$ ) with respect to some co-ordinate $\operatorname{system}(x, y)$, we have
(2)

$$
D_{(a, b)} f(p)=\left.a \frac{\partial f}{\partial x}\right|_{p}+\left.b \frac{\partial f}{\partial y}\right|_{p} .
$$

Further, we can assume f to be given by component functions,
$u_{1}, u_{2}$, where $u_{1}, u_{2}: E^{2} \rightarrow E^{1}$. Then the following relationship between the $D$-operator for vector-valued functions and for real-valued functions holds.

$$
\begin{equation*}
D_{v} f(p)=D_{v}\left(u_{1}(p), u_{2}(p)\right)=\left(D_{v} u_{1}(p), D_{v} u_{2}(p)\right) . \tag{3}
\end{equation*}
$$

Thus, the process of finding derivatives of vector-valued functions can be reduced to that of finding the derivatives of its corresponding component functions.

Combining equations (2) and (3) above, we arrive at the following evaluation of the $D$-operator of a function $f=\left(u_{1}, u_{2}\right)$ :
(4)

$$
\begin{aligned}
D_{v} f(p) & =\left(D_{(a, b)} u_{1}(p), D_{(a, b)} u_{2}(p)\right) \\
& =\left(\left.a \frac{\partial u}{\partial x} 1\right|_{p}+\left.b \frac{\partial u}{\partial y} 1\right|_{p},\left.a \frac{\partial u_{2}}{\partial x}\right|_{p}+\left.b \frac{\partial u}{\partial y} 2\right|_{p}\right) .
\end{aligned}
$$

Let $\phi(t)$ be a smooth parametrized curve in $E_{2}^{2}$. This maps the real line $\mathbf{E}^{\mathbf{1}}$ into some subset of the real plane $\mathbf{E}^{2}$. For this curve, we define:

## $d \phi / d t=D_{e_{1}} \phi(t)$,

where $\mathbf{e}_{1}$ is the unit vector in $\mathbb{E}^{\perp}$ and $D$ is considered as an operator over a real valued function. The above definition of the tangent vector corresponds to the intuitive concept of tangent. It is a very specific example of the definition (1), where $f$ is defined by $f(x, y)$ $=\phi(x)$ for ally.
Lemma 1. Let $f$ be a 2 -smooth mapping, $f: E^{2}+E^{2}, V(p)$ be a smooth vector function in $E^{2}$ and $\phi$ a 2 -smooth curve in $E^{2}$ such that:

```
\(\mathrm{d} \phi(\mathrm{t}) / \mathrm{dt}=\mathrm{V}(\phi(\mathrm{t})) \neq 0\).
```

- Then,
(7)

$$
\begin{aligned}
& \frac{d}{d t}(f \phi)(t)=D_{v} f(p), \\
& \frac{d^{2}}{d t^{2}}(f \phi)(t)=D_{v} D_{v} f(p),
\end{aligned}
$$

where $p=\phi(t)$.

Proof: The restriction of $\phi$ in the hypothesis requires that its tangent vector for every $t$ coincide with the vector function $V(p)$, whenever $p=\phi(t)$.

By hypothesis, $D_{\phi}=\mathbf{d} \phi / \mathrm{dt}_{\mathrm{t}}$ maps $\mathbf{e}_{1}$ into $\mathrm{V}(\mathrm{p})$ : and Df maps $V(p)$ into $D_{V} f(p)$. Thus the composite ${ }^{1}$ map $D(f \phi)(t)=\frac{d}{d t}(f \phi)(t)$ maps $\mathbf{e}_{\mathbf{1}}$ into $\mathrm{D}_{\mathbf{V}} \mathrm{f}(\mathrm{p})$; i.e., equation (7) has been proven

Now, let us substitute the function $F(p)=D_{v} f(p)$ into the above results. Then,

$$
\frac{d^{2}}{d t^{2}}(f \phi)(t)=\frac{d}{d t}(F \phi)(t)=D_{V} F(p)=D_{V} D_{V} f(p) .
$$

Thus, given the conditions of the hypothesis, the tangent and "acceleration" vectors can be simply described in terms of the D-operator, a fact which will play a major role in the coming developments

## II. SINGULARITIES

Definition: Let $f: R \subset E^{2} \rightarrow E^{2}$ be a smooth mapping where $R$ is open in $E^{2}$. Then we say $f$ is regular at $p$ if

## (9)

$$
\mathrm{D}_{\mathbf{v}} \mathrm{f}(\mathrm{p}) \# 0 \quad \text { for } \mathrm{V} \neq 0
$$

What this means geometrically is that, in any direction, the direc tional derivative at $p$ is non-zero, indicating that at $f(p)$, there exists a non-zero image of $V$

From this definition, we further define:
Definition: If f is smooth and $f$ is not regular at $p$, then $f$ is said to be singular at $p$.
in $R$ and $f(R)$ respective

Definition: If $f: R \rightarrow E^{2}$ is a smooth mapping such that $f(x, y)=$ $(u(x, y), v(x, y))$, then the Jacobian is

$$
J=u_{x} v_{y}-u_{y} v_{x} .
$$

Geometrically, $J(p)$ represents the expansion (or contraction) factor of the mapping $f$ at the point $p$. From the above definitions of regular and singular points, it can easily be shown that p is a regular or singular point of $f$ according as $J(p) \neq 0$ or $J(p)=0$.
Definition: Let $f$ be a 2 -smooth mapping. We say $p$ in $R$ is a good point if either $J(p) \neq 0$ or $\operatorname{DJ}(p) \neq 0$.

Here, $D J(p)$ refers to the function $D J(p): E^{2} \rightarrow E^{1}$ where $D J(p)(V)=$ $D_{V} J(p)$. Thus, $p$ is good if either $J(p) \neq 0$ or, if $J(p)=0$, either $J_{x}(p)$ or $J_{y}(p) \neq 0$.

The above definition merely asserts the condition that the singular points of $f$ be well-behaved in the sense that their Jacobians vanish isolatedly.

We further define f to be good if every point of domain is good.
Example: Consider $f(x, y)=\left(x^{2}, y\right)$. Then, $J(x, y)=2 x, J_{x}(x, y)=2$, $\frac{\text { Example: }}{J_{Y}(x, y)}=0$. Thus, $J \neq 0$ except where $x=0$, in which case, $J_{x} \neq 0$.

As an example of a function which is not good, consider the map f given by $f(x, y)=\left((x-4)^{3}, y\right)$. In this case, $J(x, y)=3(x-4)^{2}$,
$J_{X}(x, y)=6(x-4), J_{Y}(x, y)=0$. We see that $J \neq 0$ except where $x=4$, in which case both $J_{x}$ and $J_{Y}$ are both 0 . If $R$ is taken to be the real plane $E^{2}$, then $f$ is not a good function as any point with the form $(4, y)$ is not good. However, if we restrict the domain $R$ so as not to include any portion of the line $x=4$, $f$ will then be a good function.

We may now prove an important result for our development:
Lemma 2: Let $f$ be good in $R$. Then the singular points of $f$ form smooth curves in R.
Proof: If $p$ is singular, $J(p)=0$, and $D J(p) \neq 0$. By the implicit function theorem, the solutions of $J(p)=0$ near $p$ lie on a smooth curve.

Definition: The smooth curves in R along which the Jacobian vanishes $\overline{\text { are called }}$ the general folds of $f$.
ample: 1. Let $f(x, y)=\left(x^{3}-12 x, y\right)$. Then, the Jacobian $J(x, y)=$ $3 x^{2}-12$, and the general folds are given by the smooth curves (lines) $\mathrm{x}=+2$.
2. Let $f(x, y)=\left(x y-x^{3}, y\right)$. In this case, $J(x, y)=y-3 x^{2}$ and the general fold is as shown in Figure 1.


FIGURE 1

The primary fact to remember about the general fold is the Jacobian function vanishes at every point of the smooth curve. These points map into the "irregular" points in the image space $f(R)$ Now, let f be 3-smooth and good in R. Also, let p be a singular point of $f$ and $\phi(t)$ any parametrization of the general fold through point of f and $\phi(t)$ any parametrization of the general fold thro

Definition: $p$ is a fold point of $f$ if
p is a cusp point if
(11)
$\mathrm{df} / \mathrm{dt}=0, \quad \mathrm{~d}^{2} \mathrm{f} / \mathrm{dt} \mathrm{t}^{2} \neq 0 \quad$ at p.
Thus, in example 1 above, all singular points of $f$ are fold points, while in example 2 , the point $(0,0)$ is a cusp point and all other points on the curve $y=3 x^{2}$ are fold points.

The condition of being fold or cusp points ties in intimately with the singularity of points of the image $f(C)$ of the general fold, as condition (11) is none other than the definition of a singular point for the curve $f \phi(t)$.

From the above definition, it can easily be proven that:
A. $p$ is a fold point iff the image of $C$ near $p$ is smooth with a non-zero tangent at $p$.
B. $p$ is a cusp point iff the tangent vector at $p$ is zero, but becoming non-zero as we move away from p on C .

As a consequence of $B$, it is evident that the cusp points of $f$ are isolated along $C$, implying that the corresponding singular points of $f(C)$ are also isolated. Note that these theorems must and can be proven to be independent of parametrization of the general fold $C$

Definition: $p$ is an excellent point of $f$ (assumed good) if it is either regular, fold or cusp. fis excellent if all points of its domain are.

Now let us assume a 3-smooth co-ordinate system about $p$ and also about $f(p)$. If we define a vector valued function $V(p)$ by
(12)

then,

$$
D_{V(p)} J(p)=-J_{y}(p) J_{x}(p)+J_{x}(p) J_{y}(p)=0
$$

Since $J(p)$ maps into $E^{\perp}$, then the above equation implies that the vector $V(p)$ is tangent to the general fold $C$ at each singular point of the curve.

Using the above deductions with any fold of $f$, we can find a parametrization of C so that equation (1) holds. Then, invoking Lemma 1, with $f$ assumed good, we have:
(13) $p$ is a fold point iff $D_{V} f(p) \# 0$,
(14) $\quad \mathrm{p}$ is a cusp point iff $\mathrm{D}_{\mathrm{V}} \mathrm{f}(\mathrm{p})=0$ and $\mathrm{D}_{\mathrm{V}} \mathrm{D}_{\mathrm{V}} \mathrm{f}(\mathrm{p}) \neq 0$.

We have now reduced the determination for the singularities of the image curve $f(C)$ to calculations performed only in the image space. This enables us to determine whether the image curve possesses singularities without knowing its actual form. The key point of this theorem lies in the need to prove that the function under discussion is actually excellent.

## III. STRUCTURE NEAR SINGULAR POINTS

Up to this point, attention has centered on the behavior of
points actually on the general fold; i.e., the singular points. now wish to relate these points to points in their two-dimensional neighborhoods.

Assume f to be an excellent map. For a given $p$ in $R$, let $V^{\prime}=$ $D_{V} f(p)$ be a mapping from the set of vectors $V$ into $E^{2}$ such that
$|V|=1$. Since the $\operatorname{Df}(p)$ operator is linear (Section I), the above restriction is not prohibitive. Then, define $R$ to be the set of points $p$ in $R$ such that the set $\left\{V^{\prime}=D_{V} f(p)\right\}$ has at least two nonequal elements.

Since the map $f$ is excellent, for any $p$ in $R^{\prime}$, there exists a unique pair of vectors $V$ and $-V$ for which the quantity $\left|V^{\prime}\right|=\left|D_{V} f(p)\right|$ is a minimum. Geometrically this means that for all points p in $R^{\prime}$, there exists a direction in which f varies the least. In this sens we can assign a vector to each $p$ in $R^{\prime}$ and this yields a system of smooth curves throughout R'

Definition: The smooth curves defined above are called the curves of minimum Df. Figure 2 illustrates this concept.


## FIGURE 2

From the above definition, we have immediately that, if $p$ is in $R^{\prime}$ and $V \neq 0$, then $D_{V} f(p)=0$ iff $p$ is a singular point and $V$ is tangent to the curve of minimum Df at p. This follows since 0 is the minimum possible value for $\left|D_{\mathbf{V}} \mathbf{f}(\mathrm{p})\right|$. This is illustrated in Figure 3.

p Singular


- Singurar

Now, let $C$ be a general fold of $f$. If a curve of minimum Df cuts C at a positive angle, then for the tangent vector $V(p), D_{v(p)} \mathbf{f ( p )} \neq 0$
and $p$ is a fold point. However, let us assume that $C$ is tangent-.to the curve of minimum Df at the point $p$. Since $V(p)$ may now be considered as the tangent vector to $C$ at the point $p$, by equation (13), $p$ is not a fold point. $P$ is thus a cusp point, because $f$ was assumed excellent. It j's this last criterion which is extremely usefulin determining the singular points of $f(C)$.


FIGURE 4

In Figure $4, \mathrm{p}_{1}$ is a fold point while the point $\mathrm{p}_{\mathbf{2}}$ is a cusp point of $f$.

Assume f to have a cusp point at p . Let

$$
v^{t}=D_{v} v_{v} f(p)
$$

Since $f$ is excellent, $V^{*} \neq 0$. Since $D_{\mathbf{v}^{\prime}} f(p)=0, D_{V^{\prime}} f\left(p^{\prime}\right)$ is approximately in the direction of $\Psi^{\boldsymbol{\pi}}$ for $P^{\prime}$ near $p$ on $C$. It then follows that $D_{W} f(p)$ is a multiple of $V^{*}$ for all W. As we move along $C$ through the point $p, D_{V^{\prime}} f\left(p^{\prime}\right)$ changes from a negative to a positive multiple of $V^{*}$ and thus $V\left(p^{\prime}\right)$ cuts the curves of minimum Df in opposite senses on each side of $p$. Therefore the curves of minimum Df lying on one side of $C$ cut $C$ on both sides of $p$. We call this side of $C$. the upper side, and the other, the lower side. The figures 5 and 6 exemplify this concept, for both the pre-image space and the image space.

## IV. SLMMARY

Considering the ultimate problem of this procedure, namely that of "reversinf" the process involved, the author and his advisor, Professor V. 0. McBrien, spent much time attempting to obtain an approProfessor V. O. McBrien, spent much time ${ }^{2}$ attempting to obtain an appro-
priate map which would yield the curve $\mathbf{y}^{2}=\mathbf{x}^{3}+x$. The analysis of priate map which would yield the curve $\mathbf{y}^{2}=\mathbf{x}^{2}+x$. The analysis
this particular problem led us to a more complex one involving the this particular problem led us to a more complex one involving the
solutions of partial differential equations. However, here again, solutions of partial differential equations. However, here again,
devoted research might well open the doors to many problems herein devoted resea
v. BIBLIOGRAPHY

1. Hassler Whitney, "On Singularities of Mappings of Euclidean Spaces," Annals of Mathematics, Vol. 62, No. 3, November, 1955, pp. 374383.
2. John W. Milnor, "Isolated Singularities of Hypersurfaces," Monthly, Vol. 74, No 4, April 1967, p. 467.
3. Egbert Brieskhorn, "Examples of Singular Normal Complex Spaces which are Topological Manifolds," Proceedings of the National Academy of Sciences, Vol. 55, No. 6, pp. 1395-1397, June, 1966.

The research in this paper was supported by a grant from the National Science Foundation. Student paper presented at the National Pi Mu Epsilon Meeting in Toronto, Canada, August, 1967.

## NATIONAL MEETING

Pi Mu Epsilon will meet in conjunction with the Mathematical Association of America on August 27-28, 1968, at the University of Wisconsin in Madison. Members are urged to plan to attend these association meetings, as well as those of Pi Mu Epsilon, and take advantage of the opportunity to hear outstanding mathematicians.

The Annual Banquet for Pi Mu Epsilon members and their guests will be held at 6 p.m. on Tuesday, August 27, in the East Dining Room of the Wisconsin Center. Tickets may be obtained for this dinner at the registration desk; price is $\$ 2.90$ per plate.

There will be the usual breakfast on Wednesday August 28, and members will go through the cafeteria line between 8:00 and 8:30 a.m. and take their trays across the hall to the Plaza Room for an informal meeting and get-together.

All chapters are urqed to submit applications for speakers as soon as possible. Applicants must be members of Pi Mu Epsilon who will not have received the Master's Degree by April 15th. Travel reimbursement will be paid by the National Office to a maximum of $\$ 150$ Deleqates' travel will be to a maximmol $\$ 75$. paid to a maximum of $\$ 75$. Every chapter should plan your chapter be there?

## A PRELIMINARY EXAMINATION OF

ROUNDROBIN TOURNAMENT THEORY
Charles A. Bryan
John Carroll University

1. We begin round-robin tournament theory with two essential concepts: a finite set of points $V=\{0,1, \ldots n-1\}$ and a set of ordered pairs $D \in V \operatorname{VVV}$. With these two concepts we formulate a number of definitions.
Directed Graph: a finite set of points $V$ and a set of ordered pairs D $\subset V_{X V}$.
Complete, Asymmetric Diagraph: for every pair of points $\mathbf{i}$ and $\mathbf{j}$ in $V,(i, j) E D$ iff ( $j, i) \in D$.
$i$ is adjacent from $\mathbf{j}$ iff $(j, i) \in D$
i is adjacent to $\mathbf{j}$ iff (i,j)eD.
The score of $\mathbf{i}$ is the cardinality of $\{j \mid(i, j) \in D\}$.

Example:

$V=\{0,1,2\}$
$D=\{(0,1)$
$=\{(0,1),(1,2),(0,2)\}$
In this case 1 is adjacent from 0 and 0 is adjacent to 1 . The score of 0 is 2 .
2. We give three applications of round-robin tournament theory


Game Interpretation: Every player is represented by a point and each game is represented by a line. Each player plays every other player once. In this tournament we have four players. Player 1 plays player 2 and defeats him. The arrow on the line always points in the direction of the defeated player.

## $-\approx$

Preference Interpretation: This interpretation is used in psychology and the social sciences. There is a subject who is asked to choose between objects in a method of paired comparisons. Thus the points now represent Thus in the example we have objects 2 and 3 and the subject has chosen object 2. The arrow always points in the direction of the object not chosen.

Dominance Interpretation: This interpretation is used in biology Each point represents a particular trait, characteristic, or species The arrow always points in the direction of the trait which is overcome.
3. Now we move into the theory itself

Definition: A tournament $T=(V, D)$ is a complete, asymmetric
iagraph.
A possible tournament would be the following:

$$
V=\{0,1,2,3\}
$$

T :

$$
D=\{(0,1),(2,0),(3,0),(2,1),(3,2),(1,3)\}
$$

There is another way of representing the same tournament. So far we have used a graphic method. For the tournament above the graph would be:


A second method of representing the tournament is by matrix. Let $T$ be the matrix representing the tournament $T$. Then $t_{i j}=0$ or $\mathbf{1}$
and $t_{i j}=1$ iff $(i, j) \in D$.

|  | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 0 | 0 |
| 1 | 0 | 0 | 0 | 1 |
| 2 | 1 | 1 | 0 | 0 |
| 3 | 1 | 0 | 1 | 0 |

(Here the score of $i$ is the sum of elements in row $\mathbf{i}$ of the matrix. Ed.)
4. Let us now proceed to examine the score sequences for tournaments

Theorem 1: A sequence of $n$ non-negative integers $-s_{0}, \ldots, s_{n-1}-$ may be considered as the score sequence of a tournament iff the following two conditions are fulfilled:

1. $\sum_{0}^{n-1} s_{i}=\frac{1}{2} n(n-1)$
2. If $k$ is any positive integer less than $n$, then $\sum_{0}^{k-1} s_{i} \geq \frac{1}{2} k(k-1)$
Example:
$\mathrm{V}=\{0,1,2,3\}$
$D=\{(0,1),(1,3),(2,1),(3,2),(2,0),(3,0)]$

## $s_{0}=1$ <br> $s_{1}=1$ <br> $s_{2}=2$ <br> $S_{3}=2$



We check to make sure this score sequence satisfies our two conditions

$$
\sum_{0}^{3} s_{i}=1+1+2+2=\frac{1}{2}(4)(3)=6
$$

Suppose k $=3$.

$$
\sum_{n}^{2} s_{i}=1+1+2=4>\frac{1}{2}(3)(2)=3
$$

Thus, this score sequence satisfies our two conditions.
5. To further examine the nature of score sequences a program was written to feed back the possible score sequences for n equal to the integral values up to 30 . However, the number of score sequences possible for even relatively small n turned out to be solarge that the General Electric 215 computer's work was terminated after $n=10$ had been computed.

The following theorem was used in writing the program
Theorem: Let T be a tournament with score sequence $\boldsymbol{< s}_{\mathbf{0}}$, •• $\mathbf{S}_{\mathbf{n}-\mathbf{l}} \boldsymbol{\beta}$ such that $\mathbf{s}_{\mathbf{0}} \leq \mathbf{s}_{\mathbf{1}} \leq \boldsymbol{m} \leq \mathbf{s}_{\mathbf{n}-\mathbf{1}}$. Then every score satisfies the inequalities $\quad \frac{1}{2}(k-1) \leq s_{k} \leq \frac{1_{2}}{(n+k-2)}$.

Some of the results of the program are tabulated below. Score Sequences Obtained From the Program
n
2
3
4

5

Sequences
<0,1>
$\langle 0,1,2\rangle\langle 1,1,1\rangle$
$\langle 0,1,2,3\rangle\langle 0,2,2,2\rangle\langle 1,1,1,3\rangle\langle 1,1,2,2\rangle$
$\langle 0,1,2,3,4\rangle\langle 0,1,3,3,3\rangle\langle 0,2,2,2,4\rangle\langle 0,2,2,3,3\rangle$ $\langle 1,1,1,3,4\rangle\langle 1,1,2,2,4\rangle\langle 1,1,2,3,3\rangle\langle 1,2,2,2,3\rangle\langle 2,2,2,2,2\rangle$

- As is immediately seen, every $n$ has a perfect hierarchial score sequence for one of its score sequences. In this perfect hierarchy, the worst player defeats no one, the second worst player defeats only the worst player and soon. This is indicated in the score sequence by a sequence such as $<0,1,2>$.

A tabulation of the number of possible score sequences for values of $n$ from 1 to 9 is given below.

| n | Number of | score sequences |
| :--- | :---: | :---: |
| 2 | 1 |  |
| 3 | 2 |  |
| 4 | 4 |  |
| 5 | 9 |  |
| 6 | 22 |  |
| 7 | 59 |  |
| 8 | 164 |  |
| 9 | 496 |  |

References (supplied by editor)
Harary, Frank and Leo Moser, "The theory of Round Robin Tournaments," American Mathematical Monthly, 73 (1966) 231-246.

Kemeny, J.G., J.L. Snell, G.L. Thompson, Introduction to Finite Mathematics, Chapter VII, Englewood CTiffs, New Jersey, 1957.

Student paper presented at the National Pi Mi Epsilon Meeting in Toronto, Canada, August, 1967


## NEED MONEY?

The Governing Council of Pi Mi Eosilon announces a contest for the best expository paper by a student (who has not yet received a masters degree) suitable for pubhas not yet received a masters degree)

The following prizes will be qiven
\$200. first prize
\$100. second prize
$\$ 50$. third prize
providing at least ten papers are received for the contest.
In addition there will be a \$20. prize for the best paper from any one chapter, providing that chapter submits at least five papers.

## ROBLEM DEPARTMENT

Edited by
M. S. Klamkin, Ford Scientific Laboratory

This department welcomes problems believed to be new and, as a rule, demanding no greater ability in problem solving than that of the average member of the Fraternity, but occasionally we shall publish problems that should challenge the ability of the advanced undergraduate and/or candidate for the Master's Degree. Solutions of these problems should be submitted on separate signed sheets within four months after publication.

An asterisk(*) placed beside a problem number indicates that the problem was submitted without a solution.

Address all communications concerning problems to M. S. Klamkin Ford Scientific Laboratory, P. 0. Box 2053, Dearborn, Michigan 48121

## PROBLEMS FRR SOLUTION

200*. Proposed by Helen M. Marston, Douglas College.
The arithmetic identities

$$
\begin{aligned}
6+(7 \times 36) & =6 \times(7+36) \\
10+(15 \times 28) & =10 \times(15+28) \\
12+(15 \times 56) & =12 \times(15+56)
\end{aligned}
$$

suggest the problem of finding the general solution, in positive ntegers, to the equation

$$
a+(b \times c)=a \times(b+c)
$$

In particular, how many pairs of positive integers ( $b, c$ ) with $b<c$ satisfy the latter equation if $a=21 ?$
201. Proposed by R.C. Gebhardt, Parsippancy, N. J Out of the nine digits $1,2,3, \ldots, 9$, one can construct 9 ! different numbers, each of nine digits. What is the sum of these 9! numbers?
202. Proposed by Leon Bankoff, Los Angeles, California Let I, 0, H, denote the incenter, circumcenter, and orthocenter, respectively, of a right triangle. Find angle HIO given that $\triangle H I O$ is isosceles.
203. Proposed by Stanley Rabinowitz, Polytechnic Institute of Brooklyn. Let $P$ denote any point on the median $A D$ of $A A B C$. If $B P$ meets $A C$ at $E$ and $C$ meets $A B$ at $F$, prove that $A B=A C$, if and only if, $\mathrm{BE}=\mathrm{CF}$.
204. Proposed by M. S. Klamkin, Ford Scientific Laboratory. If $a_{n+1}=\sqrt{2+a_{n}}, n=0,1,2, \ldots, a=\sqrt{x}$, find

$$
\operatorname{limit}_{x \rightarrow 4}^{\operatorname{lit}} \quad \frac{a_{r}-2}{x-4}
$$

Editorial note: Special cases of this problem occur in R. E. Johnson, F. L. Kiokemeister, Calculus with Analytic Geometry, 3rd Edition, Allyn and Bacon, Boston, p. 74.

## SOLUTIONS

187. Proposed by R. C. Gebhardt, Parsippany, N. J. A semicircle $A C B$ is constructed as shown, on a chord $A B$ of a unit circle. Determine the chord $A B$ such that the distance $O C$ is a maximum.


Solution by M. S. Klamkin, Ford Scientific Laboratory. For © to be a maximum for a given length chord $\overline{A B}, \overline{O C}$ will have to be perpendicular to $\overline{\mathrm{AB}}$. This follows immediately from the triangle inequality:
$O C=O D+D C=O D+D C^{\prime}>O C^{\prime}$.


Now if $O D=\sqrt{a}$,
$B=D C=\sqrt{1-a}, \quad$ Thus.

$$
o C^{2}=1+2 \sqrt{a(1-a)}=1+2\left\{(1 / 4)-(a-(1 / 2))^{2}\right\}^{1 / 2} .
$$

Whence, $O C_{\max }=\sqrt{2}$, occurring for $a=1 / 2$.
Alternatively, if $\angle D B=\theta$, then
$O C=\sin 8+\cos \theta=\sqrt{2} \sin (\theta+\pi / 4)$. For a maximum, $8=\pi / 4$.
Also solved by David W. Erbach, University of Nebraska; Bruce W. King, Burnt Hills-Ballston Lake High School; Paul Myers, Philadelphia, Pennsylvania; Stanley Rabinowitz, Polytechnic Institute of Brooklyn; Dennis Spellman, New York University; M. Wagner, New York City; and F. Zetto, Chicago, Illinois.

Editorial note: All the solutions except Spellman's used calculus to obtain the maximum. King also noted that at the maximum, the chord $\overline{A B}$ subtends a right angle at 0 .
188. Proposed by Waldemar Carl Weber, University of Illinois For any two real numbers x and y with $o<x \leq y$, verify the following procedure for adding on a slide rule using the $A, S$ and T scales.

First setting of the slide:

| A | opposite $y$ | opposite $x$ |
| :--- | :--- | :--- |
| $T$ | set right index | read angle $\theta, 0<\theta<\pi / 4$ |

Second setting of the slide:

| A | opposite $x$ | read $x+y$ |
| :--- | :---: | :--- |
| S | set angle 6 | opposite right index |

Solution by R. C. Gebhardt, Parsippany, N. J.
The $S($ sine ) and $T$ (tangent) scales on a slide rule are normally intended for use with the C and D scales. Using them with the A scale involves the square roots of the numbers employed, as
illustrated below.
In the first step of the procedure, $6=\arctan$ $\frac{\sqrt{x}}{\sqrt{y}}$

In the second step, $\theta=\arcsin \frac{\sqrt{x}}{\sqrt{2}}$.
Therefore, $\arctan \frac{\sqrt{x}}{\sqrt{y}}=\arcsin \frac{\sqrt{x}}{\sqrt{z}}=$
From the right triangle in the figure, it now follows that $\mathbf{z}=\mathrm{x}+\mathrm{y}$.


Also solved by Albert Good, University of California, San Diego; H. Kaye, Brooklyn, N. Y., Paul Myers, Philadelphia Pa., Stanley Rabinowitz, Polytechnic Institute of Brooklyn; and the proposer.

Editorial note: Good notes in his solution that it is necessary to use the proper half of the A scale and that the method will fail if the number of digits of $y$ exceeds the number of digits of $x$ by more than one
189. Proposed by Leon Bankoff, Los Angeles, California. f If $A, B, C, D, E, F$, and $G$ denote the consecutive vertices of a regular heptagon, show that $\mathcal{D}$ is equal to half the harmonic mean of $A C$ and AD.


Solution by Stanley Rabinowitz, Polytechnic Institute of Brooklyn. By the law of sines, CD, AC, and AD are proportional to sin $\pi / 7$, sin $2 \pi / 7$, and $\sin 3 \pi / 7$. Since
$\underset{\sin }{2 \pi / 7}-\frac{\sin 2 \pi / 7+\sin 3 \pi / 7}{\sin 3 \pi / 7}=\frac{\sin 2 \pi / 7+\sin 3 \pi / 7}{\sin 2 \pi / 7 \sin 3 \pi / 7}=2 \sin \pi / 7 \cos \pi / 7 \sin 3 \pi / 7$

$$
\geq \frac{\sin 2 \pi / 7+\sin 3 \pi / 7}{\sin 2 \pi / 7+\sin 4 \pi / 7} \cdot \frac{1}{\sin \pi / 7}=\frac{1}{\sin \pi / 7},
$$

$\Theta=\frac{1}{A C}+\frac{1}{A D} \quad$ which was to be shown.
Solution by C. W. Trigg, San Diego, California.
In the figure $\angle E A D=$
$\angle D A C=\angle C A B=\theta$,
$A B=B C=\Phi=\bar{E}=\mathbf{x}$,
$A C=y, \quad A D=A E=z$, and BH is the $\perp$ bisector of $A C$. In $A A B C, \cos$ $\theta=y / 2 x$. In AACD and $\triangle A D E$,
$y^{2}+z^{2}-2 y z \cos \theta=$
$x^{2}=z^{2}+z^{2}-2 z^{2} \cos \theta$. Whereupon,
$y^{2}-z^{2}=2 z(y-z) \cos \theta=$ (y-z)(zy/x). Then since $y \neq z, \quad x=y z /(y+z)$.


Also solved by Steven Ferry, Michigan State University; Edgar Karst, University of Arizona; H. Kaye, Brooklyn, N. Y.; Gregory Wulczyn, Bucknell University; F. Zetto, Chicago, Illinois; and the proposer
191. Proposed by Stanley Rabinowitz, Polytechnic Institute of Brooklyn. Let $P$ and $P^{\prime}$ denote points inside the rectangles Brooklyn. Let $P$ and $P^{\prime}$ denote points inside the rectangles
$A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$, respectively. If $P A=a+b, P B=a+c$, ABCD and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$, respectively. If $P A=a+b, P B=a+c$,
$P C=c+d, H D=b+d, P^{\prime} A^{\prime}=a b, P^{\prime} B^{\prime}=a c, P^{\prime} C^{\prime}=c d$, prove $\mathrm{PC}=\mathrm{c}+\mathrm{d}, \mathrm{H}=$
that $\mathrm{P}^{\prime} \mathrm{D}^{\prime}=\mathrm{bd}$.

Solution by Helen Marston, Douglas College.


FIGURE 1


FIGURE 2

Since $P A+P C=a+b+c+d=B+P D, P$ must lie on each of two ellipses having major axes of length $a+b+c+d$ and foci at $A$ and $C$ $B$ and $D$, respectively. Hence there are four possible position for $P$ (or one, should $a+b+c+d=A C$ ) and either $a=d$ or $b=c$ from which it follows that $P^{\prime} D^{\prime}=b d$.

Less Interestingly, we can use the Pythagorean theorem on Figure 2:

$$
\begin{aligned}
& (a+b)^{2}-s_{1}^{2}=t_{1}^{2}=(a+c)^{2}-s_{2}^{2}, \\
& (b+d)^{2}-s_{1}^{2}=t_{2}^{2}=(c+d)^{2}-s_{2}^{2} .
\end{aligned}
$$

Subtracting, we obtain (b-c)(a-d) $=0$ and either $a=d$ or $b=c$ as before.

Also solved by David W. Erbach, University of Nebraska; Albert Good, University of California, San Diego; H. Kaye, Brooklyn, N. Y.; Charles W. Trigg, San Diego, California; Cornelia Yoder, Michigan State University; and the proposer. There was also one unsigned solution

## \#flouing?

## IITEASE $4=0$

BE SURE TO LET THE JOURNAL KNOW:

Send your name, old address with zip code and new

## address with zip code to:

> Pi Mu Epsilon Journal
> Department of Mathematics
> The University of Oklahoma
> Norman Oklahoma 73069

## BOOK REVTEWS

Edited by
Roy B. Deal, Oklahoma University Medical Center

1. Convex Polytopes. By Branko Grunbaum with the cooperation of Victor Klee, M. A. Perles, and G. C. Shepard, Interstate Publishers, A Division of John Wiley and Sons, New York, New York, 1967, xiv + 456 pp., \$18.75.

A comprehensive account of the recent history and results in this importan aspect of modern geometry which could, seve either as a reference for someone working in this field, as a text for courses at many levels from the advanced undergraduate level up, or as an excellent source for an advanced undergraduate student with adequate dilligence to bring himself to the current frontiers in an interesting subject.
2. Imequalities. By Oved Shisha, Academic Press, Inc., New York, New York, 1967, xiv + 360 pp., $\$ 18.00$.

This is the preceding~of a symposium held at Wright-Patterson Air Force Base, Ohio, August 19-27, 1965, and consists, essentially, of the onehour lectures presented there by an Imposing collection of outstanding mathematicians. Many branches of algebra, geometry, and applied mathematics are covered and the levels of difficulty and prerequisites vary considerably.
3. Difference Methods for Initial-Value Problems. Second Edition By Robert D. Richtmyer and K. D. Morton, Interscience Publishers, a Mvision of John Wiley and Sons, New York, New York, 1967, xiv +405 pp., \$14.95.

In this revision of a book copywrited in 1957, there is even a greater attempt to bridge the gap between the highly theoretical analysis of partial differential equa tions and the solutions obtained by users with modern machine algorithms. Although most Pi Ku Epsilon readers will find parts of the book very difficult those who are really interested in the application of partial differential equations and/or their numerical solutions will find a rich source of fundamental ideas
4. Probability Measures on Meric Spaces. By K. R. Parthasarathy, Academic press, Inc., New York, New York, 1967, x i +276 pp., $\$ 12.00$.

Although the subjects covered seem somewhat sophisticated, a reader with a minimum knowledge of measure theory and general topology will find an accessible interesting collection of results on probability distribution and limit theorems in metric spaces, as well as convolutions in locally compact Abelin groups and Hilbert spaces.
5. Complex Numbers in Germeæury. By I. M. Yaglom, Academic Press, Inc., New York, New York, 1967 , xii +243 pp., Clothbound, $\$ 7.50$, Paperbound,
$\$ 4.25$. \$4.25.
This book is divided into sections with the intent to make various parts of the subject of interest to top high school students, undergraduate mathematics majors, as well as junior high and high school teachers. It is a good. source for the reader who would, like to know some of the classical foundations of Euclidean and. non-Euclidean geometries from a readable point of view with the use of ordinary and generalized complex numbers
 Random Matrices and the Statistical Theory of Energy Levels By M L

3. Renewal Theory. By D. R. Cox, Barnes and Noble, Inc., New York, New York, $\frac{\text { Renewa }}{1967 \text {, ix }+142}$ pp., Clothbound $\$ 3.75$, Paperbound $\$ 2.35$.
4. The Theory of Games and Linear Programming. By S. Vajda, Barnes and. $\frac{\text { The Theory of }}{\text { Noble, Inc, }}$ Names and $\frac{\text { Linear }}{\text { New York, New York, }} \frac{\text { Programming. }}{1967,106 \text { pp., By S. Vajda, Barnes and. }}$ bound $\$ 1.75$.
5. Mathematics for the Liberal Arts Student. By Richarman, Walker, and Wisner, Brooks/Cole Publishing Company, Belmont, California, 1967, viii + 190 pp.
6. Introduction To Mathematical Structures. By Charles K. Gordon, Jr., $\frac{\text { Introduction }}{\text { Dickenson Publishing Company, Inc., Belmont, California, }} \frac{1967 \text {, viii }}{}+164 \mathrm{pp}$.
7. Calculus and Linear Algebra. By Burrowes Hunt, W. H. Freeman and Company, San Francisco, California, 1967, xii $+401, \$ 9.50$.
8. Ordinary Differential Equations. By Fred Brauer and John A. Nohel, W. A. Benjamin, Inc., New York, New York, 1967, xvi +457 pp., \$10.75.
9. Intrcduction To Number Systems. By Spooner and Mentzer, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1968, x +339 pp., $\$ 7.95$.

NOTE: All correspondence concerning reviews and all books for review should be sent to PROFESSOR ROY B. DEAL UNIVERSITY OF OLAHDMA MEDICAL CENTER, 800 NE 13th STREET, OKLAHOMA CITY, OKLAHOMA 73104.

## BACK ISSUES AVAILABLE

All back issues of the Pi Mu Epsilon Journal are now available.

| Volume | 1 | Numbers | $1-10$ | (complete) + Index |
| :--- | :--- | :--- | :--- | :--- |
| Volume | 2 | Numbers | $1-10$ | (complete) + Index |
| Volume | 3 | Numbers | $1-10$ | (complete) + Index |

Volume 3 Numbers $1-10$ (complete) + Index
Volume 4 Numbers 1-8
.... PRICE: fifty cents (50¢) each is sue; indexes free
SEND REQUESTS PRE-PAID TO:

$$
\begin{aligned}
& \text { Pi Mi Epsilon Journal } \\
& \text { Department of Mathematics } \\
& \text { The University of Oklahoma } \\
& \text { Norman Oklahoma } 73069
\end{aligned}
$$

## $\xlongequal{\text { InITIATES }}$

ALABAMA ALPHA, University of Alabama

| lph Lee Be | Patricia Me |
| :---: | :---: |
| Donald William Burl | Fargaret E. Ingra |
| Edwin Dawson Cobb | Sarah Joanna Ivey |
| Jane Maurice Couch | Paul Dudley Kerr |
| William A. Crotwell, III | Hilliam David Lov |
| Elizabeth Ann Crump | Michael L. McBrea |
| Mary Leigh Curtis | John Michael McCol |
| Jack Edwin Griffis | Paul P. McCullough, Jr |
| ura Kaye Hancock | Walter Glenn Merri |

Travis Neal Miers, Jr. oan Marie Morgan Roy Owen Perry, Jr.
Linda Diane Posey Rebecca An Rosey Carolyn J. Roberts Gail Shannon Ropers Samuel Gifford Ross Stephen Riley Sisson

Sandra Lee Slatsky Nagindas Laxmidas Son Robert Douglas Street Davey Eugene Stringfellow Robert Harold Thornto
Eric Maxwell Tomlin Millard Barton Ulmer, $\mathrm{J}_{\mathrm{r}}$ John Burton Vance Hilmer Ard Watson, III
Richard Elgin Wood, Jr.

ALABAMA GAMMA Sanford University

| Anita P. Arnold | Norman L. Francis | Mary H. Hudson | James A. Robins <br> Kay S. Ewalt |
| :--- | :--- | :--- | :--- |
| Dorothy H. Hart | Michael E. Palmer | Ralph A. Sheets |  |

FLORIDA BETA, Florida State University

| Carol T. Baker | Patricia E. Henke |
| :--- | :--- |
| Samuel A. Bennett | John H. Johnson |
| Brenda J. Brannon | John D. Lee |
| George W. Deer | Richard A. Lindstrand |
| James E. Desmond | William P. Love |
| Darlene A. Dyer | Stephen E. McNeil |
| Savage R. Flatt | James L. Main |

fLORIDA EPSILON, University of South Florida

| Charles E. Blanco | Randall L. Holm |
| :--- | :--- |
| Joseph M. Blanco | Ray Richard Joelson |
| Pier L. Cecioni | Casimir M. Lesiak |
| Carmel M. Cone | Kenneth A. Lewis |
| Frank Virgil Cranor | Knute D. Lingaard |
| David M. Everling | Richard W. Maas |
| Francisco J. Gargallo | Hark James Mason |
| Darexa C. Hamrick | Stanley W. McCleskey |

FLORIDA GAMMA, Florida Presbyterian College
Michael K. Haseman James E. Meier

GEORGIA ALPHA, University of Georgia

| Ann E. Atchison | Phyllis Fincher |
| :--- | :--- |
| Katherine D. Davis | David F. Foster |
| Frances A. Fincher | William E. Holland |

GEORGIA BETA, Georgia Institute of Technology
Robert L. Carroll
Alfred Edward Lyle
Charles Newton Driskell Robert H. Martin, Jr
Charles J. Holland

Russell Morcom
Maurice E. Nott, Jr
E. Anne Perry
innie A Robertson
Phyllis Smith
Robert J. Miller
Elizabeth A. Hoore
Thomas A. Moore
Donald F. Myers
Dorothy J. Nales
Judy E. Nice
Louise Painter
Mis Raymond J. Pro

George A. Raftelis

## R. Douglas Mcleod ohn D. Moore, Jr

 Michael S. O'NealPaul James McCartney
Seaton D. Purdom

Stephen W. Smith Robert J. Tacy Gerald Tattershall, Jr. Walter E. Trafton, Jr Reginald P. Welty
Glenn C. Wrighton A. Zafarullah

Linda $\boldsymbol{M}$. Pulin
George Michael Riegle Frederic I. Ritternan Henry F. Sutter Joseph H. Weintraub Josole L. Zeh
Patricia A Ziehl

Richard A Rhodes, II Francis R. Smith

William Sheffield Owen, Jr taines A Weave

Robert John Schaffer
Alvie Steele
Jack H. Tedards

INDIANA BETA, University of Indiana

| Milton B. Barker | Michael D. Gunther | Zola S. Makrauer | Linda L. Schaden |
| :---: | :---: | :---: | :---: |
| Nancy J. Briggs | John E. Heckman | Karen K. Martin | Ray A. Scott |
| Lili C. Byers | Phillip D. Hiestand | Ferris E. McCormic | Jane M. Slay Thompson |
| Patricia J. Davis | Janice M. Jones | Wallace G. McOuat |  |
| Anthony K Dean | Patricia J. Kress | Robert J. Munson | Marjorie E. Winter |
| Ronald F. Ferling | Roger G. Lautzenheiser | Howard L. Penn | Stephen D. Hoodall |
| Nancy T. Fisher | Louisa M. Lipps | Howard L. Penn | Jacob C. Y. Wu |
| Richard A. ruhs | Brenda K Littlejohn |  |  |
| Dianne M. Goffinet | Bruce T. Maeda |  |  |
| INDIANA GAMMA Rose Polytechnic Institute |  |  |  |
| Richard C. Bennett | Robin R. Dutton | Stephen F. Morse | John Alan Spear |
| Joe Robert Billman | John Richard Fish |  | Sidney Norman Stone |
| George J. Butkovich | Dirk J. Hofsomner | Ted M. Smith <br> John T. Snow | Warren J. Wayne |
| John W. Cook | Robert M. Marksteiner |  |  |
| INDIANA DELTA, Indiana State University |  |  |  |
| Charles J. Bertram | Paul R. Hardesty | James McBride | Lawrence C. Salsman |
| Gerald M. Calvert | John R. Holmes | Mary Meyer | Beverly J. Starns |
| Leslie Felling | Willard Jarchow | Wanda Parker | Nancy J. Stone |
| Robert W. Fiess | Jinn-Kai Lo | Darrell M. Peigh | Gladys Taylor |
| Harry Gigous | Ruth A. Maulucci | James Petticrew | Tom Wade |
| Jerry Harbaugh | Patricia A. Maxwell | Anita Rupar |  |
| KENIUCKY ALPHA, University of Kentucky |  |  |  |
| Dennis Raymond Celeschi Rudy Leroy Curd | Cecelia Ann Holt | John Joseph Koehler | Thomas Bruce McLean George Frederick Weida |
| LOUISIANA DELTA, Southeastern Louisiana College |  |  |  |
| Lynda K. Brister <br> James R. Capezza | Frank W. furrow | Joseph S. Kiss | Clyde S. Robichaux Tommy J. Thompson |
| LOUSIANA EPSILON, McNeese State College |  |  |  |
| Gerald C. Allardyce | William R. Morgan, Jr. | Anthony J. Nocilla | Donal W. Sweeney |
| William P. Edmonds | Betty 0. Nixon | Terry L. Sonnenstine | Delton Thibodeaux |
| Eileen M. Granier |  |  |  |
| LOUISIANA GAMA Tulane University |  |  |  |
| Terry L. Habig | Richard H. Ochs | Mary Ann Riopelle |  |

LOUSIANA ZETA, University of Southwestern Louisiana

| James A. Bell | Richard A. Devall | Gerselle C. Favalora | Lewie F. Ramsey, Jr. |
| :--- | :--- | :--- | :--- |
| Janet C. Cohen | Patrick Duffy | Linda M. Lehman | Ann Rosenberg |
| Mrs. Ossie B. Davenport | Priscilla Dugas | Mike Lemoine |  |


| John ${ }^{\text {che }}$. Anderson | Richard M. Finkbeiner | Ellen Ruth Mintz | Robert w |
| :---: | :---: | :---: | :---: |
| Thomas C. Assiff | Bruce Glastad | Glen E. Newton | Phillip W. Singer |
| Michael J. Burnham | Sandra M. Haarala | Vary Lou Paige | Darrell G. Tangman |
| Leigh Burstein | Connie Jean Hack | Audrey Verne Piltch | Ronald L. Tracy |
| Donald F. Chambers | Robert W. Hesselbacher | Freeman L. Rawson, 1 II | Daniel Van Hafte |
| David F. Chavkin | Tama R. Hobbie | Margaret Mary Ruggerole | Frances L. Van Scoy |
| Robert A. Comfort | Carol L. Kennedy | Janette L. Santerre | Keith L. Younger |
| James E. Dobias | James E. Knirk | Steven C. Schafer | Richard w. Zurek |
| Raymond Gene DeVries Robert E. Feighner | Linda Sue Kohl |  |  |

MICHIGAN BETA, University of Detroit

| Christine M. Addison | Charles L. Bruce | Alexandra A Kozlowski | Fr. John D. O' Neili, SJ |
| :--- | :--- | :--- | :--- |
| Robert L. Agacinski | Michael D. Byrne | Robert G. Lang | Katherine A Rieman |
| Stephen S. Austin | Thomas F. Davis | Cameron A. Mackenzie | Carol A. Schoen |
| Gregory A Baryza | James A. Esper | Janet F. Hadenford | Richard H. Seymour |
| Ronald J. Bauer | John D. Fleck | Mark L. Mailloux | Jerome P. Sikora |
| Charles J. Bopp | KathleenA Healy | Arthur L. Masson | Richard G. Smith |
| Constance M. Boris | Mary E. Kopytek | Kirsten S. Moy | Paul H. Wozniak |
|  |  |  |  |
| MINNESOTA BETA, College of St. Catherines |  |  |  |
| Mary Indrelie | Sister Theresa Kelly | Mary Lou Logsdon | Jean M. Stepan |
| Elizabeth Johnson |  |  |  |

MISSOURI ALPHA, University of Missouri

| Dale Ausherman | Michael Girou |
| :--- | :--- |
| Helene Miriam Brody | John Alexander Gordon |
| George Keith Cambron | Greogory Q. Hase |
| John Gordon Campbell | L. D. Hackworth |
| Chris P. Christensen | Rita Sue Hamlin |
| Michael B. Clark | Stephen K. Happel |
| Dennis A. Cumnings | Paul C. Heaton |
| Michael S. Cunningham | Susan L. Hogan |
| Vernon Roe Cupps, II | Mark W. Hosler |
| Laurence Emmons | Nelson Hunp |
| Sybil Fein |  |
| Robert A. Frye | Kenneth Howard Kaplan |
|  | Stephen L. Kaplan |

Dwight D. Kerns
Denis R. Kertz
William R. Koeneman
Thomas Lannert
Richard A. LeFaivre
Paul David Harsh
Thomas 0. McCarthy
Kenneth Roy Meyer
John A. fill er
Ronald Ray Moll
Nancy H. Morgan
Everett Wayne Nelson

David Russell Poe
William Dourlas Rhodes, Jr.
Cheryl Lynn Shade
Lee E. Sorensen
Kenneth Stewart
Robert Barnett Strecker
Priscilla Jane Stuar Priscilla Jane Stuart Robert Tribble Judith A. Wesselmann Paul S. Winn

MONTANA ALPHA, University of Montana

| Richard W. Billstein | Walter S. Fellows | Joseph McPeek | James A. Pollock |
| :--- | :--- | :--- | :--- |
| Frederick. C. Buls | Daniel L. Hansen | Loren E. Meierding | William N. Rapp |
| Yean Mei Chuo | Carolyn A. Hom | Robert T. Moore | Linda C. Robison |
| Otis L. Clamp | Kenneth P. Johnson | William R. Mullette | Charles W. Schelin |
| David B. Clayton | Robert W. Kopitzke | Harvey C. Opden | Dorothy Anne Vanderburg |
| Carolyn S. Cordwell | David S. Mceuire | Joyce M. Olson |  |


| NBBRASKA ALPHA | University of Nebraska |  |  |
| :--- | :--- | :--- | :--- |
|  | Mary E. Hunt | R. David Pogge | James M. Sherman |
| Any Bouska | Lury |  |  |
| Gary Gruenhage Koerting | E. Charles Robacher | Gary J. Slizeski |  |
| Ronald L. Hazard | Gerald Lockwood | Kenneth H. Samples | Julie C. Stenlund |
| Richard L. Helms | Douglas B. Mitchell | Dianne Schmidt | Delyn Stork |
| Dennis Hopkins | Ronald K. Peterson | Michael L. Schuster |  |

NEVADA ALPHA, University of Nevada

| Richard D. Baker | Richard H. Heinen | Dale M. Nesbitt | Kenneth 0. Reil |
| :--- | :--- | :--- | :--- |
| William R. Bonham | Phillip H. Landis | Mary E. Nesmith | Virginia E. Usnick |
| Earl E. Cassity | Richard T. Mizner | Daniel L. Reich | Ann White |
| Julie Marie Chan |  |  |  |
|  |  |  | Lucinda L. Winters |

NEW JERSEY ALPHA, Rutgers University

| Richard F. Antonak | Jay E. Goldfeather | Stanley H. Le | d J. Schattin |
| :---: | :---: | :---: | :---: |
| Leonard A Cupingood | Larry M. Gross | Gregory G. Pyle | Thomas Steinberg |
| Louis D. Finkelstein | Stephen H. Leventhal | Bruce L. Rienzo | Thomas Steinberg |

NEW JERSEY BETA, Douglass College

| Shoko Aogaichi | Helen M. Galt | Sylvia A Lundy | Anita C. Smyle |
| :--- | :--- | :--- | :--- |
| Michele S. Backlar | Carolyn A Garrett | Gloria B. Mancuso | Janet L. South |
| Nancy H. Baxter | Karin L. Geiselhart | Virginia Mcarthy | Joan D. Spalding |
| Elizabeth Bolland | Janet M. Horowitz | Suzanne C.Norton | Roslyn A. Stone |
| Sandra L. Brook | Susan M. Junta | Marla Shalow | Joanne K. Testa |
| Jo Ann Deal | Bonnie J. Kestenbaum | Nancy E. Smickle | Bonnie R. Zirmer |
| Sarah C. Erich | Arlene G. Lucker | Anne M. Smith |  |

NEW YCRK GAMMA Brooklyn College

| Daniel Axelrod | Roberta Greenwald | David Kurnit | Howard Stern |
| :---: | :---: | :---: | :---: |
| Marion Retwin | Alan Kerstein | Sylvia Lazarnick | Philip Trauber |
| Suzanne Brumer | Charles Kleinberf | Erick Lindenberg | Robert Witriol |
|  |  | Harvey Spivack |  |
| NEW YORK EPSILON, St. Lawrence University |  |  |  |
| Raymond J. Barrowman | Linda L. Hulbert | Carole J. Lamb | Ruth C. Strodt |
| John R. Burke | Carole Huttar | Katherine J. Loomis | Walter C. Strodt |
| Diane E. Cannan | John A Jacobs | Phyllis M. Pangallo | Susan C. Wolford |
| Bonnie E. Ensman | Phyllis E. Jordan | Diane M. Ronan |  |

NEV YCRK ETA, State University of New York at Buffalo
Cora Beth Abel
Gary Paul Belcher
G. Robert Blakley
R. Timothy Cassel
Dennis W. Dalgleish
Sally I. Drob
Gail Frankenstein

| Stephen M. Gagola, Jr. | Richard Michael Katz |
| :--- | :--- |
| Charles Aillan Codfrey | Barbara Phyllis Levine |
| Karen Sue Goldsmith | Graham Lord |
| Robert L. Gritzke | Linda Irene Mayne |
| Joseph Anthony Guarnieri | Richard J. Orr |
| David Lee Herman | Evelyn Orvieto |

Rm Bachan Rm Linda Karen Reiss Mark Terry Rothstein Akella L. Somayajulu Aaul Edward Stachowski

Nav Yoxk KAPPA, Rensselaer Polytechnic Institute
Jerrold Gould
David Alfred Guaspari
Paul Lawrence Irwin

Henry Lawrence Kurland
Melvin David Melvin David Lax

Rosemary Ruth 0' Nei Bruce David Raymond
Donald Richard Steele
Charles Tier Richar
Tier Peter George Timmons

NEH YORK MU, Yeshiva College

| Melvin H. Davis | Henry Finkelstein | Sheldon Koenig | David Schmuckler |
| :--- | :--- | :--- | :--- |
| Chain Feller | Michael Frankel | David E. Miller | Norman Seidenfeld |
| Melvin Fine | William L. Gewirtz | Ralph C. Norden |  |

NORIH CAROLNA BETA University of North Carolin

| Charles Marshall Angell | Richard Allen Driver | Richard Allan Mann | Margarete Ellen Sandlin |
| :--- | :--- | :--- | :--- |
| Rosalie V. Beaudrat | EEizabeth T. Earnhardt | Leigh Louise McGoogan | Warren Hall Schonfeld |
| John Boyce Bennett, Jr. | Richard Keene Ellestad | Simon Deon Mobley | Steve Richard Searcy |
| James Edward Breneman | Linda Carol Florick | John Edward Page | Morris Shear |
| Doris Faye Burton | Jane Knox Grant | Richard James Parnell | MR Pandrai Suksawasdi |
| Douglas Campbell | Jill Beth Hickey | Pamela Jean Pendergrass | Allen Crisp Ward |
| Marvin Eugene Coley | Michael Katz | Gail Scott Poe | Elizabeth Francis Watkins |
| John Woodward Dees | Charles H. Lynch, Jr. | Timothy Louis Redeker | Stuart Alon Yarus |

NORTH CAROLINA GAMMA, North Carolina State University

| Grover C. Bishop | Patty Sue Greene | Barry F. McCoy | Theodore R. Rice |
| :--- | :--- | :--- | :--- |
| Thomas C. Borden | Seizrond G. Kopinitz | George J. Oliver | Charles D. Shuford |
| James D. Clark | Jo Perry Ledbetter | Betty F. Pritchard | Edward C. Sykes |
| Clyde C. Goad |  |  |  |

Patty Sue Greene
Seigrond G. Kopinitz
Jo Perry Ledbetter
. Oliver Betty F. Pritchard

OHO DELTA, Miami University

| Cynthia A. Baker | Margaret Holder | John D. McVay | David G. Waller |
| :---: | :---: | :---: | :---: |
| Barbara L. Catterton | Stephen J. Kuss | Janalynn C. Smith | Elizabeth A. Yount |
| Pamela A. Frick | Linda E. Manning | Jo Ann T. Thiel |  |
| OHIO EPSILON, Kent State University |  |  |  |
| Carol Bahn | Howard Cook | Bonnie Iffland | Michael Ray |
| Marion Bischof | Roger Copeland, Jr. | Alexandra Iwanchuk | Cynthia Savako |
| Diane Boesch | William Farmer | Michael Lenarcic | Joan Skelton |
| Gloria Bozek | Kenneth Frohlich | John Lynch | Eleanor Steven |
| Joan Briggs | Cynthia Gibson | Linda Mantz | Diane Suchan |
| Sarah Bromley | Grant Hagerty | Dorothy Oldford | Karla Wagner |
| Dennis Cameron | Janet Hoskinson | Terry Potter |  |

OHO LAMBDA Jôhn Carroll University
Leslie R. Balkanyi Thomas R. Courreur Matthias V. Kiiorys Michael C. Kopkas
OHIO THETA, Xavier University

| Philip Albers | Michael E. Doherty | Jerome P. Huhn | Eugene J. Otting |
| :--- | :--- | :--- | :--- |
| David G. Besco | Thomas F. Finke | Frederick W. Kemen | Joseph L. Puthoff |
| Richard E. Buten | Justin E. Fischer | Thomas J. Kioecker | Eric A. Soiu |
| George 0. Charrier | Carl R. Foster | James H. Knoll | Lawrence E. Stolz |
| Brother Cormac | Michael R. Good | Gary L. Yarotta | John Totten |
| J. Kurt Dew | John T. Hemnerle | Richard T. Miller | Carol Welch |
| Richard Dietz | Dennis A. Hopkinson | James S. Ochs |  |


| ORECON GAMMA Portland State University |  |  |  |
| :--- | :--- | :--- | :--- |
| Edward D. Deloff | Lewis Y. Lee |  |  |
| Lawrence C. Ford | Gary H. Newton | Stephen B. Rosenfeld | Ronald Y. Sugihara |
| Raymond 0. L. Girton E. Schonlau | Dennis W. Watson |  |  |
| John C. Reisner | Daniel G. Schwartz | David J. Wood |  |


| Dennis W. Andrews | Catherine A. Detz | Martin C. Golumbic | Patrick J. Walsh |
| :---: | :---: | :---: | :---: |
| Melissa A. Beaver | Eric R. Edgar | Lawrence Nova | Charles F. Wolf |
| Anne Bixler | Jean M. Engler | Susanne E. Smith | Linda Woodland |


| Edward L. Anderson | Kevin R. Conry | Devendra Gupta | Henry J. Schmidt, Jr |
| :--- | :--- | :--- | :--- |
| Dennis Paul K. Bannon | Thomas Corwin | Richard McCunney | John Joseph Volpe |
| Thomas F. Brady | Victor J. Costanze | Raymond J. Palmer, Jr. |  |


| PENNSYLVANA THETA, Drexel Institute of Technology |  |  |  |
| :--- | :--- | :--- | :--- |
| Stephen R. Blum | Ellis S. Cohen | Harry A. Kiesel | Alice B. Stanley |
| Cuarles W. Bock | Marilyn Fleming | Bernard P. Reca | Michael Temple |
| Judith H. Candelor | Alan W. Hunsberger | Frederick J. Scott | Mary Ann Wyzykiew |

PENNSYLVANIA ZETA, Temple University

| Katherine Bomba | Elaine M. Jacobson | David B. Perioff | Gary Shulberg |
| :--- | :--- | :--- | :--- |
| Loretta Campbell | Solomon Jekel | Malcolm Riddle | Deborah Sotnink |
| Mark S. Cooperstein | Sheila Kuzma | Allan Rosen | Jeanette M. Szwec |.

IEXAS BETA, Lamar State College of Technology
Sherrie Lee Haussner Marilyn E. Lewellen

VIRGINIA ALPHA, University of Richmond

James Freeman Bowen
Stanley J. Buchwalter Russell Pa Buchwalte Thomas Granderson Cran Margie Fern Crowder Wayne Richard Cushing Karl Herbert David Nancy Land Davis

Suzanne Dawkins Linda Vernon Elmore James William Evans Grayden Thomas Figart
Manfred C. Freeman, Minda Lee Graham udith Lynn Holme Hoadliff Jenkins, Jr.
ane Frances Kiser Dixie Belle Lee Thomas Sumner Ligon Bernie Thomas Quinn Sandra Lynn Rice Bernard Yancy Schultz Elizabeth Blair Smith

George Edward Smith. Jr. Marcia Ruth Smith Catherine Birdie Stone Robert Graf Stowbridge Randy Robin Walker
Hans H.C Weidman Hans H. C. Weidmann
Marie Catherine Whitlock

WASHINGION BETA, University of Washington

Susan M. Anderson
Bonnie Avery
Gary A. Banke
Gary A. Banker
Domthea L. Barne
Verna E. Eells

Virginia Figenbaum Patricia E. fogde Kirk L. Johnson Barbara Koss

## Janice Leighten anice Leighton Wobert Mccollom Michael Riste

James Rodgers
Gerald V . Saxton
Sand Mark E. Stickel Shyne Ling Wang Carolyn Young

The following friends of Pi Mu Epsilon Frotemity and the chapters indicoted ore patron subscribers to the PI MU EPSILON JOURNAL poying ten dolliors for a one-year subscription, in the hope that these subscriptions will relieve the general membership of the increasing
cost of publication and distribution of the JOURNAL.

WASHINGTON DELTA, Western Washington State College

Alan C. Adolphson
Christine R. Bauman
John J. Bennerstram Gary F. Boone Richard K. Brauninger Robert H. Brim Lawrence w. Brown George W. Burden Frank W. Cherry Steven K. Crawford Dennis L. Demorest

John C. Engstrom Sylvia F. Fountain Gordon D. Hager Linda K. Hager Helen F. Haugen Brian W. Hogan Stanley H. Jensen Margaret A. Johnsto Carol M. Kirby

Sandra L. Kokko Eugene J. Looman
Hazel D. Lundy Robert W. Lundy Clifford J. Mayoh Peter V. McCarthy Karen E. Mitchell Rhoda H. Moore Richard J. Norri John P. Oison

Shirley P. Pace
Dale D. Raile
Frank D. Rice David E. Rush Jacqueline Silberger Jonathan J. Smith David P. Sorensen David L. Spatz
Ward R. Wenner James M. Whalen Stephen A Wiitala Leonard E. Zenonian

Sr. Clare Lentz, FCSP Don Parda Ed Oberti James Rundle Ray Panko
Glen Frichberg Dan Harkins John Leland

Peggy Ayres
Forest Brooks Forest Brooks
James M. Cole Ted Cooper
tte University
WISCONSIN ALPHA, Marquette University
Joseph H. Cummings Roger George Klement
-George W. Kutner, Jr.
ames D. filler James D. filler *- Ki. Kutner, Jr.

Arkansas Alpho Chapter Hlinois Beto Chapter in Memeny of

Elmer E. Marx
College Library
Nebrastio Alpho Chepter
New Hompshire Aloho
In Memory of
Dr. Horry W. Reddick
Ohio Epsilon Chaprer
Oitainoma Beto Chopter
Penn. Beta Chapter
Penn. Delto Chopter
Virginio Beta Chopter

Frank W, Gamblin, It Florido Beta Florido Stote University


Arkansos Alpho
University of Arkonsas Northwestern University

Missouri Gomma Montano Beta Nebrosko Alpha
New Hampshire Alpha University of New Hompshire
New York Alpho
Ohio Epsilon
Oklahomo Beto
Penn. Beto
Penn. Delto


WASHINGTON GAMMA Seattle University


