VOLGME 4 Fall 1968 NUMBER 9
CONTENTS
A Formula for the Derivative of the Absolute value of a Polymomial Nanganet R. Niscimb. 367
Undergraduate Rescanch Profect 369
An Easien Condttion than Total Boundedness
Daniel E. Putnam 370
Set-Theoretic Definition of Dedered N-Tupies
B. L. Madison. 373
An Intertesting Mapping of Two Eields
Jerome M. Katz 375
Independent Postulate Sets for Boolean Algebra Chinthayarma 376
Problem-Departmant 380
Hook Reviews 393
Books Received for Reviek. 395
Initiates. 396
Copyright 1969 by Pi Mu Epsilon Fratemity, Inc.

PI MU EPSILON JOURNAL

THE OFFICIAL PUBLICATION
OF THF HONORARY MATHEMATICAL FRATERNITY

Kenneth Loewen, Edifor

ASSOCIATE EDITORS

Roy B. Deol Leon Bankoff

OFFICERS OF THE FRATERNITY

President: \&. C. Eaves, University of Kentucky Vice-Prasident: H. T. Kornes, Louisiana State University Secretory-Troosurer: R. V. Andree, University of Okiahomo Post-President: J. S. Frame, Michigon Stote University

COUNCILORS:

L. Eorle Bush, Kent State University Roy Dubisch, University of Woshington Iving Reiner, University of Illinois R. H. Sorgenfrey, University of Califormio of L.A.

The University of St. Thomas, Houston, Texas
In a calculus class a student noticed that $D_{\mathbf{x}}{ }^{j} \mathbf{x} \left\lvert\,=\frac{|x|}{x}\right.$ and $D_{x}\left|x^{2}-4\right|=\frac{\left|x^{2}-4\right|}{x^{2}-4}(2 x)$.

This led to the question:
If $P(x)$ is a polynomial, is the following formula valid?

$$
D_{x}|P(x)|=\frac{|P(x)|}{P(x)} \cdot P^{\prime}(x)
$$

The class quickly found a counterexample. If $P(x)=x^{3}$, then $|\mathrm{P}(\mathrm{x})|$ has a derivative everywhere, hence the formula, which would indicate that the derivative did not exist at the origin, is not valid in this case.

This brought up the question, what conditions can we impose on $P(x)$ so that the formula will hold? One student suggested the condi(ion: if $P(a)=0$ then $P^{\prime}(a) \# 0$, while another noticed that in all cases for which the formula held, the roots were distinct

After considerable labor and prodding by the instructor, the following theorem emerged:

Theorem: If $P(x)$ is a polynomial, then the following three conditions are equivalent:
(i) If a is real and $P(a)=0$, then $P^{\prime}(a) \neq 0$
(ii) The real roots of $P(x)$ are distinct
(iii) $D_{x}|P(x)|=\frac{|P(x)|}{P(x)} \cdot P^{\prime}(x)$
(i) \Rightarrow (ii) Suppose $P(x)$ has a repeated real root, a,

Then by the Factor Theorem, $P(x)=(x-a)^{2} Q(x)$.
$P^{\prime}(x)=(x-a)^{2} Q^{\prime}(x)+2 Q(x)(x-a)$ and $P^{\prime}(a)=0$.
(ii) \Rightarrow (i) Suppose $P(a)=0$, a real. Then
$P(x)=(x-a) Q(x)$, and since $P(x)$ has no repeated real roots,
$Q(a) \neq 0$. Then
$P^{\prime}(x)=(x-a) Q^{\prime}(x)+Q(x)$ and
$P^{\prime}(\mathrm{a})=\mathrm{Q}(\mathrm{a}) \neq 0$.
(ii) \Rightarrow (iii) Proof by induction on the number of real roots of $P(x)$. First we state two preliminary lemmas whose proofs are obvious.
$D_{x}|P(a)|=\lim _{x \rightarrow a} \frac{\left|(x-a)^{2} Q(x)\right|}{x-a}$

- $\lim _{x+a} \frac{(x-a)^{2}|Q(x)|}{x-a}$
$=\lim _{x \rightarrow a}(x-a)|Q(x)|=0$
Thus the derivative exists at a and (iii) does not hold.

UNDERGRADUATE RESEARCH PROJECT

Submitted by Dr. David Kay University of Oklahoma

This problem concerns a method of characterizing certain sets in the plane. Say a set is $(\boldsymbol{m}, \boldsymbol{n})$-convex if it has the property that among each
 set, $m \geq 2$ and $n \geq 0$. For example, the five-pointed star with its interior is a set which is $(2,0)-,(3,1)-,(4,3)-,(5,5)$-convex, etc.; the set consisting of two intersecting lines is $(2,0)-,(3,1)-,(4,2)-,(5,4)$ convex, etc. The function $c_{c}(m)$ is defined as the maximal number n such that the set S is (m, π)-convex. Evidently $c_{S}(m)$ reflects the character of S. Thus it is easy to see that if S is a parabola $c(m)=0$, if S is convex $c_{S}(m)=(m)=[m(m-1)] / 2$, and if S consists S of the union of two convex $\mathrm{S}^{2} \mathrm{ts} \mathrm{c}_{\mathrm{s}}(\mathrm{m})=$

$\binom{[m / 2]}{2}$,

where $[m / 2]$ denotes the greatest integer in $m / 2$. Investigate certain sets in the plane to see if they may be characterized by the function ${ }_{c}{ }_{s}(m)$ defined above. Sample theorem: A set S consists of a convex set C, and k isolated points not in C, if and only if $c_{S}(m)=\left(m_{2} k\right)$.

NEED MONEY?

The Governing Council of Pi Mu EDsilon announces a contest for the best expository paper by a student (who has not yet received a masters degree) suitable for publication in the Pi Mi Epsilon Journal.

The following prizes will be qiven

$$
\begin{aligned}
& \$ 200 . \text { first prize } \\
& \$ 100 . \text { second prize } \\
& \$ 50 . \text { third prize }
\end{aligned}
$$

providing at least ten papers are received for the contest.
In addition there will be a $\$ 20$. prize for the best paper from any one chapter, providing that chapter submits at least five papers.

AN EASIER CONDITION

THAN TOTAL BOUNDEDNESS

Daniel E. Putnam

University of Illinois

The condition of total boundedness is a useful one: for instance, in establishing compactness. Therefore it is worthwhile to find simpler properties equivalent to total boundedness. The condition I suggest is this:

Definition: A subset A of a metric space (X, d) is Cauchy bounded, if for all $\varepsilon>0$ and all infinite subsets $B C A$ there are two points $x, y \in$ B with $d(x, y)<\varepsilon$.

Compare this condition with that of total boundedness:
Definition: A subset A of a metric space (X, d) is totally bounded, if for all $\varepsilon>0$ there is an ε nef consisting of a finite subset, $\left\{a_{1}, a_{2}, \ldots, a\right\}$, of A so that for any $x \in A$ we have $d\left(x, a_{i}\right)<\varepsilon$ for some i.

It is easy to see that if A were totally bounded and if BCA were infinite, then given $\varepsilon>0$, we could find $x, y \in B$ with $d(x, y) \leq \varepsilon$. The procedure is simple. We simply note the existence of a $1 / 2 \mathrm{E}$ net and see that there are two points, x and y, of the infinite set B clustered about one of the points, a_{i}, in the $1 / 2 \varepsilon$ net. From $d\left(x, a_{:}\right)<\varepsilon / 2$ and $d\left(y, a_{1}\right)<\varepsilon / 2$ and the triangle inequality, we see that $d(x, y)<\varepsilon$. Thus total boundedness easily implies Cauchy boundedness. That Cauchy boundedness implies total boundedness is not quite so easy to see but is still easy to prove.
Theorem: If a subset A of a metric space (X, d) is Cauchy bounded, -then it is totally bounded.

Proof: Suppose that A was not totally bounded. In that case we would have an $\varepsilon>0$ so that no ε net existed. Choose a point $a_{1} \in A \cdot\left\{a_{1}\right\}$
is not an ε net, so there must be a point $a_{2} \varepsilon A$ with $d\left(a_{1}, a_{2}\right) \geq \varepsilon$. $\left\{a_{1}, a_{2}\right\}$ is not an ε net, so there must be a point $a_{3} \varepsilon A$ with $\bar{d}\left(a_{3}, a_{2}\right) \geq \varepsilon$ and $d\left(a_{3}, a_{1}\right) \geq \varepsilon$. We note that $\{a 1, a 2, a 3\}$ is not an ε net, and this
process continues in the same way. The result is a sequence of points \{a \}, of A, with the property that $d\left(a_{i}, a_{j}\right) \geq \varepsilon$ if $i \neq j$. The sequence \{ a_{n} \} is an infinite subset of A that has no two points closer than E. Thus we have a contradiction to the Cauchy boundedness of A, and the theorem is established.

Perhaps it is now easier to see why Cauchy boundedness is simpler to establish than total boundedness. The fact that Cauchy boundedness follows so easily from total boundedness implies that one might as well prove a set to be Cauchy bounded as totally bounded. Furthermore the fact that in order to establish total boundedness one must find an ε net for each ε seems to indicate that total boundedness is harder to establish than Cauchy boundedness where one only needs to find two close points in an infinite subset.

As an illustration of what is involved, let me offer a new proof to an old result.

Theorem: If A is a subset of the space of continuous real-valued functions on $[0,1]$ with the uniform metric, then A is compact if A is closed, equicontinuous, and uniformly bounded.

This is half of the Arzela-Ascoli theorem as stated in [1]. The procedure will be to show that A is complete and totally bounded. This procedure will be to show that A is complete and totally bounded. says that a subset of a metric space is compact if, and only if, it says that a subset of a metric space is compact if, and only if, it tinuous functions on $[0,1]$ is complete and A is given to be closed, we know that A is complete. Thus we only need to prove that A is totally bounded. We will do this by route of Cauchy boundedness.

Let A_{0} be an infinite subset of A and let $\varepsilon>0$ be chosen. Since A_{0} is also equicontinuous, for all $x \in[0,1]$ there exists N such that for all $f \in A$ and all $y \in N_{x}$ we have $|f(y)-f(x)|<\varepsilon / 3$, where N denotes an open set for which $x \in N$. We note that the family of sets $\left\{N_{x}\right\}$ for $x \in[0,1]$ covers $[0,1]$ and so we have a finite subcover of $[0,1],\left\{N_{x_{1}}, N_{x_{2}}, \ldots, N_{x_{K}}\right\}$.

Now consider the set $\left\{f\left(x_{1}\right) / f \in A_{0}\right\}$. From the fact that A_{0} is both uniformly bounded and infinite, we know that there is an infinite subset $A_{1} C A$ such that for $f, g \varepsilon A$ we have that $\left|f\left(x_{1}\right)-g\left(x_{1}\right)\right|<\varepsilon / 3$. This follows from the well known Bolzano-Wierstrass theorem

Let me put together what we have so far. Let $y \in N_{x_{1}}$ and f, $g \in A$, then:
$|f(y)-g(y)| \leq\left|f(y)-f\left(x_{1}\right)\right|+\left|f\left(x_{1}\right)-g\left(x_{1}\right)\right|+\left|g\left(x_{1}\right)-g(y)\right|$. We know that each of these quantities is less than $\varepsilon / 3$, so we have $|f(y)-g(y)|<\varepsilon$. Thus, the functions of A_{1} uniformly approximate each other on $\mathrm{N}_{\mathrm{x}_{1}}$ "

The same trick works again and we find an infinite subset $A_{2} c A_{1}$ so that $f, g \in A, y \in N_{x_{2}}$ implies $|f(y)-g(y)|<E$. Of course, since
$A_{2}{ }^{C} A_{1}$ we know that $|f(y)-g(y)|<\varepsilon$ also holds if y εN_{1}. Continuing in this way eventually produces an infinite subset $A_{k} \subset A_{0}^{1}$ such that $|f(y)-g(y)|<\varepsilon$ if $f, g \varepsilon A_{k}$ and $y \in N_{x_{i}}$ for $i=1,2, \ldots k$. Since $\left\{N_{x_{i}}{ }^{i}=1,2, \ldots k\right\}$ covers $[0,1]$ we see that A is an infinite set of functions whose elements uniformly approximate each other within $\boldsymbol{\varepsilon}$ on the unit interval.

We have taken an infinite subset $A_{0} c A$ and shown that an infinite subset $A_{k} C A_{0} C A$ has the property that any two elements of A are less than ε apart according to the uniform metric on the space of continuous functions. Thus we see that A is Cauchy bounded and therefore totally bounded and compact

An alternate approach found in [1] actually constructs an \boldsymbol{E} net by using a set of polygonal functions. Unfortunately, this method requires a little ingenuity and some verification. However, in the proof used in this paper the immediate consequence of the definitions of equicontinuity and uniform boundedness is the critical idea of the entire proof: that the functions of a certain infinite set of functions are uniformly close on $[0,1]$. We see that, at least in this case, Cauchy boundedness is indeed an easier condition to establish than total boundedness.

REFERENCES

1. C. Goffman, Preliminaries to Functional Analysis, Vol. 1 of 'MM Studies in Mathematics"; ed. R. C. Buck, 1962, pp. 151-152.
2. H. L. Royden, Real Analysis, New York; Macmillan Co., 1963, p. 142 .

A PROBLEM IN EEMENTARY MATHEMATICS

Kenneth Loewen

In the book One Hundred Problems in Elementary Mathematics Hugo Steinhaus proposes the following problem: Find numbers in the unit interval such that the first two are in different halves, the first three in different thirds, the first four in different fourths, and so on, till the first n are in different n-ths. He gives a solution for $n=14$ and in a footnote mentions that M. Warmus proved that $n=17$ is the largest number for which the problem has a solution. A solution for $n=17$ will be given by any set of numbers staisfying the following inequalities:

$0<x_{1}<1 / 17 ;$	$11 / 13<x_{7}<6 / 7 ;$	$8 / 17<x_{13}<1 / 2 ;$
$16 / 17<x_{2}<1 ;$	$1 / 6<x_{8}<3 / 17 ;$	$15 / 17<x_{14}<14 / 15 ;$
$7 / 13<x_{3}<6 / 11 ;$	$8 / 13<x_{9}<5 / 8 ;$	$1 / 5<x_{15}<4 / 17 ;$
$4 / 15<x_{4}<3 / 11 ;$	$1 / 3<x_{10}<6 / 17 ;$	$11 / 17<x_{16}<11 / 16 ;$
$12 / 17<x_{5}<5 / 7 ;$	$10 / 13<x_{11}<11 / 14 ;$	$6 / 17<x_{17}<7 / 17$.
$5 / 12<x_{6}<3 / 7 ;$	$1 / 12<x_{12}<1 / 6 ;$	

SET-THEORETIC DEFINITION OF ORDERED N-TUPLES

B. L. Madison
L. S. U., Baton Rouge

We make a distinction between the ordered n-tuple ($a_{1}, a_{2}, \ldots, a_{n}$) and the set $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. The ordered n-tuple's "value" is changed if the elements are rearranged while the order of the elements has nothing to do with the "value" of the set. For example, $(1,2,3) \neq$ $(3,2,1)$, but $\{1,2,3\}=\{3,2,1\}$.

The above remarks follow from the definition that ($\left.a_{1}, a_{2}, \ldots, a\right)=$ $\left(b_{1}, b_{2}, \ldots, b\right)$ if and only if $a_{1}=b_{1}, a_{2}=b_{2}, \ldots, a=b_{n}$.

On the other hand, two sets are said to be equal if they contain the same elements. More precisely, sets A and B are equal if and only if every element of A is an element of B and every element of B is an element of A
Example 1. If $\left\{\begin{array}{l} \\ a\end{array}, b\right\}=\{x, y\}$ then either $a=x$ and $b=y$ or $b=x$ and $a=y$. Of course, both of these could occur, i.e. $a=x=b=y$. he will usually omit this trivial case.
Example 2. If $\{a\}=\{x, y \mid$ then $a=x=y$ and $\{a, x, y\}=\{x, y\}=\{a, x\}=$
$\mid a, y\}=\{a\}=\{x\}=\{y\}$ More concretely, $\{2,3,2,3\}=\{2,3\}$.
Example 3 . $\left\{\{a\}\left\{a_{3}\right\}\right\}$ is a set whose elements are themselves sets

The object here is to define an ordered n-tuple in terms of sets. To dispose of the case where $n=1$, we shall define $\{a\}=(a)=a$. The case for $n=2$ is more interesting

Definition 1. $(a, b)=\{\{a\},\{a, b\}\}$.
The question now is whether or not the right hand side of (I) complete and uniquely determines the ordered pair (a, b). The following theorem answers this question affirmatively.

Theorem $\mathbf{1}^{(a, b)}=(x, y)$, i.e. $a=x$ and $b=y$, if and only if

Proof: Suppose $(a, b)=(x, y)$, i.e. $a=x$ and $b=y$. Then $\{a\}=\{x\}$ and $\{a, b\}=\{x, y\}$. Thus $\{\{a\},\{a, b\}\{=\{\{x\},\{x, y\}\}$.

Suppose that $\{\{a\},\{a, b\}\}=\{\{x,\{x, y\}\}$.
Two cases arise. We ignore the triviai case where $\{a\}=\{a, b\}=$ $\{x\}=\{x, y\}$.
Case 1 .
$\left.\begin{array}{rl}\{a\} & =\left\{\begin{array}{l}x\} \\ a, b\end{array}\right\} \\ =\{x, y\end{array}\right\}$.

From (A) one gets $\mathrm{a}=\mathrm{x}$. From (B) one gets either

$$
a=x \text { and } b=y
$$

$$
\text { or } a=y \text { and } b=x
$$(B_{2})

If (A) and $\left(B_{1}\right)$ then $a=x$ and $b=y$.
If (A) and $\left(B_{2}\right)$ then $a=x$ and $b=y$.
Then one has $(a, b)=(x, y)$.

From (c) $a=x=y$ and from (D) $a=b=x$, which yield $a=x$ and $b=y$. Thus $(a, b)=(x, y)$. This completes the proof.

In the case where $n=3$ (3-tuple or ordered triple), several definitions will yield a result analogous to Theorem 1. For example,
Definition 2. $(a, b, c)=\{\{(a, c)\},\{(a, b),(b, c)\}\}$.
The reader can verify this definition by following the example of
Theorem 1. Attempts at other definitions will show that some apparently obvious ones are not sufficient.

Example 4. Define $(a, b, c)=\{\{\bar{a}\},\{a, b\},\{a, b, c\}\}$. Note that $(1,1,2) \neq \neq$ $(1,2,1)$, but $\{\{1\},\{1,1\},\{1,1,2\}\}=\{\{1\},\{1,2\},\{1,2,1\}\}$ since both sides reduce to $\{\{1\},\{1,2\}\}$. This shows that the definition is not sufficient.

One can extend this sort of definition to an n-tuple for any positive integer n. The following is a generalization of (I) and (II).

Definition $3 . \quad\left(a_{1}, a_{2}, \ldots, a\right)=\left\{\left\{\left(a_{1}, a_{2}, \ldots, a_{n-2}, a_{n}\right)\right\},\left\{\left(a_{1}, a_{2}, \ldots\right.\right.\right.$
$\left.\left.\left.a_{n-1}\right),\left(a_{2}, a_{3}, \ldots, a_{n}\right)\right\}\right\}$.
It is not difficult to prove that $\left(a_{1}, a_{2}, \ldots, a\right)=\left(x_{1}, x_{2}, \ldots, x\right)$ if and only if $\left\{\left\{\left(a_{1}, a_{2}, \ldots, a n-2, a_{n}\right)\right\},\left\{\left(a_{1}, a_{2}, \ldots, a_{n-1}\right),\left(a_{2}, a_{3}, \ldots, a_{n}\right)\right\}\right\}=$ $\left\{\left\{\left(x_{1}, x_{2}, \ldots x_{n-2}, x_{n}\right)\right\},\left\{\left(x_{1}, x_{2}, \ldots x_{n-1}\right),\left(x_{2}, x_{3}, \ldots x_{n}\right)\right\}\right\}$.
Note that this is a recursive definition of an ordered n-tuple, i.e., we define an n-tuple in terms of sets whose elements are ($n-1$)-tuples.

\#laving?

BE SURE TO LET THE JOURNAL KNOW

Send your name, old address with zip code and new
address with zip code to:
Pi Mu Epsilon Journal
1000 Asp Ave. Rm. 215
The University of Oklahoma
Norman. Oklahoma 73069

AN INTERESTING MAPPING OF TMO FIELDS

Jerome M. Katz

Brooklyn College
In this article, I will prove an interesting theorem concerning a mapping of two fields, namely: If T is a one-to-one mapping of a field Fonto a field F^{\prime}, such that $T[a(b-1)]=T(a)[T(b)-T(1)]$, then T is an isomorphism.

In order to prove that T is an isomorphism, it is sufficient to show that T preserves addition and multiplication. To do this, I will characterize addition and multiplication in terms of the operation $a(b-1)$ which will be denoted $a * b$.
Theorem 1: $a b=(a * 0)$ * $[(1 * 0) * b]$
Proof: $(\mathrm{a} * 0){ }^{*}[(1 * 0) * b]=[a(0-1)] *[1(0-1) * b]$
$=(-a) *(-1 * b)$
$=(-a) *(-b+1)$
$=(-a)(-b+1-1)$
$=(-a)(-b)=a b$
Theorem 2: $a+b=\left(b^{*} 0\right):\left[\left(a b^{-1}\right) * 0\right]$ if $b \neq 0$
Proof: $(b * 0) *\left[\left(a b^{-1}\right) * 0\right]=[b(0-1)] *\left[a b^{-1}(0-1)\right]$
$=(-b) \times\left(-a b^{-1}\right)$
$=(-b)\left(-a b^{-1}-1\right)$
$=b a b^{-1}+b$
$=a+b$
If $b=0$, we obviously have $a+b=a+0=a$.
We are given that $T(a * b)=T[a(b-1)]_{*}=T(a)[T(b)-T(1)]$; thus in order to prove that $T(a * b)=T(a) T(b)$, it is sufficient to prove that $T(1)=1^{\prime}$ where $\mathbf{1}^{\prime}$ is defined to be the unity for \mathbf{F}^{\prime}. F^{\prime}.

Theorem 3: If T is a one-to-one mapping of a field Fonto a field F^{\prime} such that $T[a(b-1)]=T(a)[T(b)-T(1)]$, then $T(0)=0$

Proof: $0=0(a-1)$ for all a in F

$$
T(0)=T[0(a-1)]
$$

$T(0)=T(0)[T(a)-T(1)]$ \qquad
Assume $T(0) \neq 0$. Then we can cancel $T(0)$ from both sides of (1). Therefore, $\mathbf{1}^{\prime}=T(a)-T(1)$, and $T(a)=T(1)+1^{\prime}$ for all a in F.

Therefore, T maps every element of F into one element of F^{\prime}, a
contradiction since T is one-to-one.
Therefore $T(0)=0^{\prime}$

Theorem 4: If T is as in the preceding theorem, then $\mathrm{T}(\mathbf{1})=\mathbf{1}^{\prime}$.
Proof: $1=(-1)(0-1)$
$T(1)=T(-1)[T(0)-T(1)]$
But $T(0)=0 \quad($ Theorem 3$)$
Therefore, $T(1)=-T(-1) T(1)$
But $T(1) \neq 0^{\prime}$ since T is one-to-one.
Therefore, $T(-1)=-1^{\prime}$
It is now necessary to consider two cases: case I where F is not of characteristic 2 and case II where F is of characteristic 2

CASE I: F is not of characteristic 2 (i.e. $1 \neq-1$)
$-1=1(0-1)$
$T(-1)=T(1)[T(0)-T(1)]$
But $T(0)=0^{\prime}$ and $T(-1)=-1$
Therefore, $-\mathbf{1}^{\prime}=\bar{y}^{-}\left[\mathrm{T}(1){ }^{2}\right.$.
Therefore, $[\mathrm{T}(1)]^{2}=1$.
Therefore, $[\mathrm{T}(1)]^{2}=1^{\prime}$.
Therefore, since T is one-to-one and $-\mathbf{1} \neq 1, \mathrm{~T}(1)=\mathbf{1}^{\prime}$
CASE II: F is of characteristic 2 (i.e. $\mathbf{1}=-1$)
Since T is onto, every element of F^{\prime} has a preimage in F
Let a be the preimage of $\mathbf{1}^{\prime}$
Then $T(a)=1$,
$T(a-1)=T(a+1)=T[1(a-1)]=T(1)[T(a)-T(1)]$
But $T(1)=-\mathbf{1}^{\prime}($ since $\mathbf{1}=-1)$.
Therefore, $T(1)[T(a)-T(1)]=\left(-1^{\prime}\right)\left[1^{\prime}-(-1)^{\prime}\right]$

$$
=\left(-1^{\prime}\right)\left(1^{\prime}+1^{\prime}\right)=-\left(1^{\prime}+1^{\prime}\right.
$$

$\mathrm{T}\left(\mathrm{a}^{2}\right)=\mathrm{T}[\mathrm{a}(\mathrm{a}+1-1)]=\mathrm{T}(\mathrm{a})[\mathrm{T}(\mathrm{a}+1)-\mathrm{T}(1)]$ $=1^{\prime}\left[-\left(1^{\prime}+1^{\prime}\right)-\left(-1^{\prime}\right)\right]=-1^{\prime}$.
Therefore, $\mathrm{T}\left(\mathrm{a}^{2}\right)=\mathrm{T}(1)$. But T is one-to-one. Therefore,
$a^{2}=1$. Therefore, $a^{2}-1=0$.
But $a^{2-1}=(a+1)(a-1)$, and this factorization is unique since a polynomial ring over a field is a unique factorizationdomain. See, for example, G. Birkhoff and S. MacLane, A Survey of Modern Algebra, 3rd edition, page 72.)

But $a+1=a-1$
Therefore, $a^{2}-1=(a-1)^{2}$. Therefore, by the factor theorem, $a=1(=-1)$ is the only root.

Therefore, in this case, $T(1)=1^{\prime}$
Note that we have also shown that F^{\prime} is of characteristic 2 . * Using the fact that $T(1)=l^{\prime}$, we can conclude that $T\left(a^{*} b\right)=$ (a) T(b). The proof of this obvious statement is left to the reader

We are now ready to prove that T preserves addition and multipliation.

Theorem 5: $T(a b)=a^{\prime} b^{\prime}$ where $a^{\prime}=T(a)$ and $b^{\prime}=T(b)$.

```
Proof: T(ab)=T{(a*0)** [(1*0)*b]}
    =T(a*0) *T [(1*0)*b]
    =T(a*0)* [T(1*0)*T(b)]
    = [T(a)*T(0)]* [(T(1)*T(0)) הT(b)]
But T(0)=0',T(1)=1',T(a)=\mp@subsup{a}{}{\prime}}\mathrm{ and }T(b)=\mp@subsup{b}{}{\prime
Therefore, T(ab) = (a'*O')}[(1+\mp@subsup{0}{}{\prime})\quadb;
    = a'b' by Theorem 1
```


Theorem 6: $T(a+b)=a^{\prime}+b^{\prime}$

Proof: It is necessary to consider the cases $b=0$ and $b \neq 0$ separately.

If $b=0, T(a+0)=T(a)=a^{\prime}=a^{\prime}+0^{\prime}=T(a)+T(0)$

If $b \neq 0$
$T(a+b)=T\left[\left(b^{*} 0\right) *\left(\left(a b^{-1}\right) * 0\right)\right]$
$=T(b \neq 0) \quad T\left[\left\{a b^{-1}\right) \quad 0\right]$
$\left.=[T(b) * T(0)] \stackrel{x^{2}}{\left[T\left(a b^{-1}\right)\right.}{ }^{0} T(n)\right]$
But since T preserves multiplication, $T\left(a b^{-1}\right)=a^{\prime} b^{1-1}$.
Therefore, $\begin{aligned} T(a+b) & =\left(b^{\prime *} 0^{\prime}\right) \div\left[\left(a^{\prime} b^{\prime-1}\right)^{*} 0^{\prime}\right] \\ & =a^{\prime}+b y \text { Theorem }\end{aligned}$
and T is a one-to-one, we know that $\mathrm{b}^{\prime} \neq 0$
Now that we have proven that T is a homomorphism, it follows from the assumption that T is one-to-one and onto that T is an isomorphism.

$$
\operatorname{Tan}^{3} x+\operatorname{Tan}^{3} y=3 \operatorname{Tan} x \operatorname{Tan} y
$$

INDEPENDENT POSTULATE SETS FOR BOOLEAN ALGEBRA

Chinthayamma

University of Alberta
Introduction. According to Dickson [2] a Boolean Algebra is a set X such that for all a,b,c,... belonging to X :
A. There is defined a (closed) binary operation "." such that

Axiom 1. a. (b.c) = (a.b).c
Axiom 2. a.b $=$ b.a
Axiom 2.
$a . b=b . a$
B. There exists an element I belonging to X such that

Axiom 4. a.I = a for all a belonging to X
. There can be defined a function' from X into itself such that Axiom 5. ($\left.a^{\prime}\right)^{\prime}=$ a for all a belonging to X^{\prime}
Axiom 6. a.a' : I^{\prime} for all a belonging to X
$\begin{array}{lrl}\text { Axiom 6. } & \text { a.a' } & =I^{\prime} \text { for all a belonging } \\ \text { Axiom 7. } & a . b=t^{\prime} \text { implies } a \cdot b^{\prime}=a .\end{array}$
Dickey [1] has reduced this system of seven axioms to a system of five axioms by eliminating the axiom 3 and by replacing the axioms 1 and 2 by

a.(b.c) $=(b . a) . c$

which can be done as long as the axiom 4 is retained
The purpose of this paper is to give two independent sets of four postulates in which axiom 4 is also eliminated using the axioms 5,6 and 7 and even though axiom 4 is eliminated the axioms 1 and 2 are replaced by a variant of axiom 1.

Sets of Postulates.
THEOREM 1. Let X be a set with an element I such that for all a,b,c,... belonging to X
A. There is defined a (closed) binary operation "." such that

```
Axiom 1'.
a.(b.c) \(=c .(a . b)\)
```


or

Axiom 1". (a.b).c = (b.c).a
B. There can be defined a function ' from X into itself such that

$$
\begin{array}{lrl}
\text { Axiom 5. } & \text { (a')' } & =\text { a for all a belonging to } X \\
\text { Axiom 6. } & a^{\prime} a^{\prime} & =I^{\prime} \text { for all a belonging to } X \\
\text { Axiom 7. } & \text { a.b } & =I^{\prime} \text { implies a.b' }=\text { a. }
\end{array}
$$

Then X is a Boolean Algebra.
Proof. It is sufficient to prove the axioms 1, 2 and 4 since the axiom $\overline{3}$ is already proved in [1].

When 1' holds replace a by b.c in it and use axioms 1' and 3 to get

$$
\begin{aligned}
(b \cdot c) \cdot(b \cdot c) & =c \cdot((b \cdot c) \cdot b) \\
b \cdot c & =b \cdot(c \cdot(b \cdot c)) \\
& =b \cdot(b \cdot(c \cdot c)) \\
& =b \cdot(b \cdot c)=c \cdot(b \cdot b) \\
& =c \cdot b
\end{aligned}
$$

Similarly when 1'' holds replace c by a.b in it and use axioms 1'' and 3 to get a.b = b.a.

Thus "." is commutative in any case and this together with 1' or 1'' implies 1. Axiom 4 is also satisfied in any case as follows:

I^{\prime}	$=\mathbf{a . a}$		
	$=(a . a) . a^{\prime}$		by axiom 6
	$=$ a.(a.a')		by axiom 3
	$=\mathbf{a . I}$		by axiom 1
es		by axiom 6	
$\left.I^{\prime}\right)^{\prime}$	$=$ a		by axiom 7
a.I	$=$ a		by axiom 5

Independence. Let $\mathrm{X}=\{0, \mathrm{a}, \mathrm{b}, \mathrm{I}\}$ with 1.0 : a.b $=\mathrm{b} . \mathrm{a}=0$ otherwise $\mathbf{x} . \mathbf{y}=\mathbf{x}$; with $\mathbf{x}, \boldsymbol{y}$ denoting any of the elements $\hat{b}, \mathbf{a}, \mathbf{b}, \mathrm{I}$ and $\mathbf{x} . \boldsymbol{y}=\mathbf{x}$; with \mathbf{x}, \mathbf{y} denoting any of the elements $\mathbf{b}, \mathrm{a}, \mathbf{b}, \mathrm{I}$ and
$0^{\prime}=\mathrm{I}, \mathrm{I}^{\prime}=0, \mathrm{a}^{\prime}=\mathbf{b}, \mathbf{b}^{\prime}=a$. Then axioms 5,6 and 7 are satisfied. $0^{\prime}=I, I^{\prime}=0, a^{\prime}=b, b^{\prime}=a$. Then axioms 5,6 and 7 are satisfied
But axiom 1^{\prime} is not satisfied since \mathbf{a}.(a.I) $=a$ and $I .(a . a)=I$ and But axiom 1^{\prime} is not satisfied since a.(a.I) $=$ a and $1 .(a . a)$ is also not satisfied since (a.I).a $=a$ and I.(a.a): I. The $1^{\prime \prime}$ is also not satisfied since (a.I).a : a and I. (a.a)
other three axioms are proved to be independent in [2].

REFERENCES

1. L. J. Dickey, "A Short Axiomatic System for Boolean Algebra," Pi Mu Epsilon Journal, V. 4, No. 8 (1968) p. 336.
2. L. J. Dickson, Ibid. V. 4, No. 6 (1967), pp. 253-257.

etc.

$$
\begin{aligned}
& 7-4=3 \\
& 7^{2}-4^{2}=33 \\
& 57^{2}-54^{2}=333 \\
& 557^{2}-554^{2}=3333 \\
& 5557^{2}-5554^{2}=33333 \\
& \text { etc. }
\end{aligned}
$$

ROBLEM DEPARTMENT

Edited by

Leon Bankoff, Los Angeles, California

With this issue we introduce a new problem editor. To Murray Klamkin who served in this capacity for the past ten years we give our thanks for a job well done.

The new editor is Leon Bankoff who has contributed many problems and solutions to the problem department of the He also served as joint editor of the problem department for one issue (Spring 1958). Dr. Bankorf practices dentistry in Los Angeles.

The new problem editor would like to publish solutions to all problems which have appeared in this Lomrnal, but for which solutions are listed below.

The editor.
37. (April 1952) Proposed by Victor Thébault, Tennie Sarthe, FranceFind all pairs of three digit numbers M and N such that $M \cdot N=P$ and $M^{\prime} \cdot N^{\prime}=P$, where $M^{\prime} \cdot N^{\prime}$ and P^{\prime} are the numbers $M-N$ and P written backwards. For example,
$122 \times 213=25986$
and

$$
221 \times 312=68952
$$

48. (Nov. 1952) Proposed by Victor Thébault, Tennie, Sarthe, FranceFind bases \bar{B} and B^{\prime} such that the number 11, 111, 111,111 consisting of eleven digits in base B is equal to the number 111 consisting of three digits in Base B'. (An incorrect solution by the proposer was given in the November 1953 issue. discussion see the Spring 1958 issue.)
49. (April 1954) Proposed by Martin Schechter, Brooklyn, N. Y. Prove that every simple polygon which is not a triangle has at least one of its diagonals lying entirely inside of it.
50. (April 1955) Proposed by Victor Thébault, Tennie, Sarthe, FranceConstruct threecircles with Eiven centers such that the sum of the powers of the center of each circle with respect to the other two is the same.
51. (Spring 2956) Proposed by G. K. Horton, University of AlbertaEvaluate

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp -\left(\sqrt{(x-1)^{2}+y^{2}}+\sqrt{x^{2}+(y-1)^{2}}\right) d x d y
$$

91. (Fall 1956) Proposed by Nathaniel Grossman, California Institute of Technology Prove that

$$
\int_{d / n} \sigma\left(\frac{n}{d}\right) \phi(d)=n \cdot \tau(n)
$$

where $\tau(n)$ denotes the number of divisors of $n, \sigma(n)$ is the sum of the divisors of n and $\phi(n)$ is the Euler Totient function.
102. (Fall 1958) Proposed by Leo Moser, University of Alberta Give a complete proof that two equilateral triangles of edge 1 cannot b placed, without overlap, in the interior of a square of edge 1.
120. (Spring 1960) Proposed by Michael Goldberg, Washington, D. C. 1. All the orthogonal projections of a surface of constant width have the same perimeter. Does any other surface have this property? 2. A sphere may be turned through all orientations while remaining tangent to the three lateral faces of a regular triangular prism. Does any other surface have this property? Note that a solution to 2. is also a solution to 1 .
128. (Spring 1961) Proposed by Robert P. Rudis and Christopher Sherman, AVCO RAD Given $2 n$ unit resistors, show how they may be connected using n single pole single throw (SPST) and n single pole double throw (SPDT) (the latter with off position) switches to obtain, between a single fixed pair of terminals, the values of resistance of i and i^{-1} where $i=1,2,3, \ldots, 2 n$.
Editorial Note: Two more difficult related problems would be to obtain i and i^{-1} using the least number of only one of the above type of switches
136. (Fall 1961) $\operatorname{Pr} \Phi$ osed by Michael Goldberg, Waghingwon, D. C. What is the smallest convex area which can be rotated continuously within a regular pentagon while keeping contact with all the sides of the pentagon? This problem is unsolved but has been solved for the square and equilateral triangle. For the square, it is the regular tri-arc made of circular arcs whose radii are equal to the side of the square. For the triangle, it is the two-arc made of equal 60° arcs whose radii are equal to the altitude of the triangle.
144. (Fall 1962) Proposed by Huseyin Demit, Kandilli, Eregli, Kdz., Turkey Find the shape of a curve of length LTying in a vertical plane and having its end points fixed in the plane, such that when it revolves about a fixed vertical line in the plane, generates a volume which when filled with water shall be emptied in a minimum of time through an orifice of given area A at the bottom. (Note: The proposer has only obtained the differential equation of the curve.)
166. (Fall 1964) Proposed by Leo Moser, University of Alberta Show that 5 points in the interior of a 2×1 rectangle always determine at least one distance less than sec 15°.

This department welcomes problems believed to be new and, as a rule, demanding no greater ability in problem solving than that of the average member of the Fraternity, but occasionally we shall publish problems that should challenge the ability of the advanced undergraduate or candidate for the Master's Degree. Solutions of these problems should be submitted on separate signed sheets within four months after publication.

An asterisk (${ }^{(}$) placed beside a problem number indicates that the problem was submitted without a solution.

Address all communications concerning problems to Leon Bankoff, 6360 Wilshire Boulevard, Los Angeles, California 90048.

PROBLEMS FOR SOLUTION

205. Proposed by C. S. Venkataraman, Trichur, South India. $\frac{\text { Proposed by C. S. Venkataraman, Trichur, South India. }}{\mathrm{ABC} \text { and } \mathrm{PQR} \text { are two equilateral triangles with a common }}$ ABC and PQR are two equilateral triangles with a common in opposite senses. Prove that AP, BQ, CR are concurrent.
206. Proposed by Charles W. Trigg, San Diego, California. Identify the pair of consecutive three-digit numbers each Identify the pair of consecutive three-digit numbers each
of which is equal to the sum of the cubes of its digits.
207. Proposed by Charles W. Trigg, San Diego, California. Find a triangular number of the form abcdef in which def $=2 \mathrm{abc}$.
208. Proposed by Thomas Dobson, Hexham, England. Where must a man stand so as to hear simultaneously the report of a rifle and the impact of the bullet on the target?
209. Proposed by R. C. Gebhardt, Parsippany, New Jersey At each play of a game, a gambler risks $1 / \boldsymbol{x}$ of his assets at the moment. What must be the odds so that, in the long run he just breaks even?
210. Proposed by Leon Bankoff, Los Angeles, California. Three equal circles are inscribed in a semicircle as shown in the adjoining diagram. How is this figure related to one of the betterknown properties of the sequence of Fibonacci numbers?

211. Proposed by Leonard Barr, Beverly Hills, California It is known that the sum of the-distances from the incenter I to the vertices of a triangle ABC cannot exceed the fombined distances from the orthocenter H to the vercices the reverse Monthly, 1960, 695; problem E 13971. Show that the reverse AI•BI•CI.
212. Proposed by J. M. Gandhi, University of Manitoba, Winnipeg, $\frac{\text { Proposed by J. M. Gandhi, University of Manitoba, Winnipeg, }}{\text { Canada. If }}$ $M(n)=\sum_{s=0}^{n-1} \cdot\binom{n}{s+1}\binom{n+s}{s}$
show that $(a) M(5 m+2) \equiv 0(\bmod 5)$.
(b) $H(5 m+3) \equiv 0(\bmod 5)$.

Ref: George Rutledge and R. D. Douglass, "Intergral Functions Associated with Certain Binomial Sums," Amer. Math. Monthly, 43 (1936), pp. 27-33].

SOLUTIONS
192. (Fall 1967). Proposed by Oystein Ore, Yale University. Albrecht Durer's famou's etching "Melancholia" includes the magic square

$$
\begin{array}{lrrr}
16 & 3 & 2 & 13 \\
5 & 10 & 11 & 8 \\
9 & 6 & 7 & 12 \\
4 & 15 & 14 & 1
\end{array}
$$

The boxed-in numbers 15-14 indicate the year in which the picture was drawn. How many other 4×4 magic squares are
there which he could have used in the same way? there which he could have used in the same way?
Solution by C. J. Bouwkamp, Phillips Research Laboratories, Eindhoven. Netherlands. There are exactly 32 solutions to this problem, including the Durer version shown above (with misprint from the Fall 1967 issue, page 295 corrected). Curiously, this number is contained in Durer's magic square in the míddle of the top row. The construction is as follows. There exist solutions), $2,15,14,3$ (6 solutions), $3,15,14,2$ (6 solutions), and 4, 15, 14, 1 (10 solutions). Further it is known that the sum of the four inner elements equals 34 . Thu the sum of the two inner elements of the first row must be 5 ($\mathbf{2 + 3}$ or $\mathbf{1 + 4}$). Similarly, the outer two elements of the first row can only be 13 and 16. All in all, there are then 16 types where the upper and lower rows are fixed. The re-
maining numbers 5 through 12 are to be distributed over the two middle rows. The inner four elements can be linearly expressed in terms of one parameter. Some easy manipulation then leads to all 32 possible Durer magio squares. The complete list of solutions is shown below.

| 13 | 3 | 2 | 16 | 13 | 3 | 2 | 16 | 16 | 2 | 3 | 13 | 16 | 2 | 3 | 13 | 16 | 2 | 3 | 13 |
| ---: |
| 12 | 6 | 7 | 9 | 8 | 10 | 11 | 5 | 10 | 5 | 8 | 11 | 11 | 5 | 8 | 10 | 7 | 6 | 9 | 12 |
| 8 | 10 | 11 | 5 | 12 | 6 | 7 | 9 | 7 | 12 | 9 | 6 | 6 | 12 | 9 | 7 | 10 | 11 | 8 | 5 |
| 1 | 15 | 14 | 4 | 1 | 15 | 14 | 4 | 1 | 15 | 14 | 4 | 1 | 15 | 14 | 4 | 1 | 15 | 14 | 4 |
| 16 | 2 | 3 | 13 | 16 | 2 | 3 | 13 | 16 | 2 | 3 | 13 | 16 | 2 | 3 | 13 | 16 | 2 | 3 | 13 |
| 12 | 6 | 9 | 7 | 5 | 8 | 11 | 10 | 10 | 8 | 11 | 5 | 6 | 9 | 12 | 7 | 7 | 9 | 12 | 6 |
| 5 | 11 | 8 | 10 | 12 | 9 | 6 | 7 | 7 | 9 | 6 | 12 | 11 | 8 | 5 | 10 | 10 | 8 | 5 | 11 |
| 1 | 15 | 14 | 4 | 1 | 15 | 14 | 4 | 1 | 15 | 14 | 4 | 1 | 15 | 14 | 4 | 1 | 15 | 14 | 4 |
| 13 | 4 | 1 | 16 | 13 | 4 | 1 | 16 | 16 | 1 | 4 | 13 | 16 | 1 | 4 | 13 | 16 | 1 | 4 | 13 |
| 11 | 6 | 7 | 10 | 7 | 10 | 11 | 6 | 11 | 6 | 7 | 10 | 7 | 10 | 11 | 6 | 5 | 8 | 9 | 12 |
| 8 | 9 | 12 | 5 | 12 | 5 | 8 | 9 | 5 | 12 | 9 | 8 | 9 | 8 | 5 | 12 | 11 | 10 | 7 | 6 |
| 2 | 15 | 14 | 3 | 2 | 15 | 14 | 3 | 2 | 15 | 14 | 3 | 2 | 15 | 14 | 3 | 2 | 15 | 14 | 3 |

Also solved by R. ,C. Gebhardt, Parsippany, N. J.; Edgar Karst University of Arizona; and Alfred E. Neuman, New York, N. Y.

Editorial Note: Bouwkamp verified his results by referring to two curious books in his possession, privately published by K. H. de Haas.

1) Albrecht Durer's Meetkundige Bouw van Reuter en Melencolia S 1 ,
D. van Sijn en Zonen, Rotterdam, 1932. by the same publisher in 1935. Gebhardt and Karst noted that a
magic square remains magic if the same quantity is added to each element of the square, thus extending the number of solutions if the sequence 15-14 were permitted to appear in other rows.

Detailed discussions of magic squares may be found in the two well-known classics in mathematical recreations, by Kraitchik and by well-known classics in mathematical recreations, by Knaitchik and Gardner's Second Scientific American Book of Mathematical Puzzles and Gardner's Second Scientific American Book of Mathematical Puzzles and
193. (Fall 1967). Proposed by William H. Pierce, General Dynamics, Electric Boat Division, Groton, Sonnecticutt. Two ships are steaming alone at constant velocities (course and speed). If the motion of one ship is known completely, and if only the speed of the second ship is known, what is the minimum number of bearings necessary to be taken by the first ship in order to determine the course (constant) and range (time-dependent) of the second ship? Given this requisite number of bearings, show how to determine the second ship's course and range.
"Editorial Note: This problem was suggested by problem 186 which was given erroneously. See the comment on 186 in the Fall 1967 issue.

[^0]\[

$$
\begin{aligned}
& x=p_{0}+\text { at } \cos 8 \\
& y=q_{0}+\text { at } \sin \theta
\end{aligned}
$$
\]

Similarly, designate the second ship as the "target ship" and write its parametric equations of motion as

$$
\begin{aligned}
& x=x_{0}+v t \cos \phi \\
& y=y_{0}+v t \sin \phi
\end{aligned}
$$

in which only the speed v is known. The following picture will illustrate the situation.

One Bearing Given
At time t_{1}, bearing \boldsymbol{B}_{1} is observed. Thus,
(1)

$$
\begin{aligned}
& \sin \beta_{1}=\frac{y_{0}-q_{0}+(v \sin \phi-a \sin \theta) t_{1}}{R_{1}} \\
& \cos \beta_{1}=\frac{x_{0}-p_{0}+(v \cos \phi-a \cos \theta) t_{1}}{R_{1}}
\end{aligned}
$$

which implies
(2) $\quad\left(\cos \beta_{1}\right) y_{0}+\left(t_{1} \cos \beta_{1}\right) v \sin \phi-\left(\sin B_{1}\right) x_{0}{ }^{-}\left(t_{1} \sin B_{1}\right) v \cos \phi=$ $\left(\cos B_{1}\right) q_{0}+\left(t_{1} \cos B_{1}\right) a \sin 0-\left(\sin B_{1}^{1}\right) p_{0}^{0}-\left(t_{1} \sin B_{1}^{1}\right) a \cos 8$
It should be noted that (2) does not imply (1) as there are targets staisfying (2) which do not satisfy (1), namely targets whose bearing differs from $\boldsymbol{\beta}_{\mathbf{1}}$ loy 180°. Equation (2) is a linear

where A, μ, and y are free parameters subject only to the restrictions

Three Bearings Given
A third bearing β_{3} is observed at a time $t_{3}>t_{2}>t_{1}$, giving

$$
\sin B_{3}-\underline{y_{0}-q_{0}+(v \sin \phi-a \sin 0) t_{3}}
$$

7)

$$
\cos \beta_{3}-\underline{R_{3}}-\mathrm{P}_{0}+(\mathrm{v} \cos \phi-a \cos 0) \mathrm{t}_{3} \quad\left(\mathrm{R}_{3} \neq 0\right)
$$

which implies
(8) $\quad\left(\cos \beta_{3}\right) y_{0}+\left(t_{3} \cos \beta_{3}\right) v \sin \phi^{-}\left(\sin \beta_{3}\right) x_{0}-\left(t_{3} \sin \beta_{3}\right) v \cos \phi=$
$\left(\cos \beta_{3}\right) q_{0}+\left(t_{3} \cos \beta_{3}\right) a \sin 0-\left(\sin \beta_{3}\right) p_{0}-\left(t_{3} \sin \beta_{3}\right) a \cos \theta$
The general solution of the linear equations (2), (5), and (8) is

$$
\begin{align*}
& y_{0}=q_{0}+H_{1} \lambda ; v \sin \phi=a \sin 0+H_{2}^{\lambda} \tag{9}\\
& x_{0}=p_{0}+H_{3} \lambda ; v \cos \phi=a \cos 0+H_{4}^{A}
\end{align*}
$$

Where λ is an arbitrary non-zero parameter carrying the sign of $\mathrm{H}_{1} \mathrm{H}_{4}-\mathrm{H}_{2} \mathrm{H}_{3}$ (which insures that (9) satisfies (1), (4), and (7), 1 and where

$$
\begin{aligned}
& H_{1}=\left\lvert\, \begin{array}{lll}
t_{1} \cos \beta_{1} & -\sin \beta_{1} & -t 1 \sin \beta 1 \\
t_{2} \cos \beta_{2} & -\sin \beta_{2} & -t_{2} \sin \beta_{2} \\
t_{3} \cos \beta_{3} & -\sin \beta_{3} & -t_{3} \sin \beta_{3}
\end{array}\right. \\
& H_{2}=\left|\begin{array}{lll}
\cos \beta_{1} & \sin \beta_{1} & -t_{1} \sin \beta_{1} \\
\cos \beta_{2} & \sin \beta_{2} & -t_{2} \sin \beta_{2} \\
\cos B_{3} & \sin \beta_{3} & -t_{3} \sin B_{3}
\end{array}\right| \\
& H_{3}=\left|\begin{array}{lll}
\cos \beta_{1} & t_{1} \cos \beta_{1} & -t 1 \sin \beta_{1} \\
\cos \beta_{2} & t_{2} \cos \beta_{2} & -t_{2} \sin \beta_{2} \\
\cos \beta_{3} & t \cos \beta_{3} & -t_{3} \sin \beta_{3}
\end{array}\right| \\
& H_{4}=\left|\begin{array}{lll}
\cos \beta_{1} & t_{1} \cos \beta_{1} & \sin \beta_{1} \\
\cos \beta_{2} & t \cos \beta_{2} & \sin \beta_{2} \\
\cos \beta_{3} & t_{3} \cos \beta_{3} & \sin \beta_{3}
\end{array}\right|
\end{aligned}
$$

The solution (9) is meaningful only when $\sin \left(B_{i}-B_{j}\right) \neq 0$ in which case it can be proved that $\mathrm{H}_{1} \mathrm{H}_{4}-\mathrm{H}_{2} \mathrm{H}_{3} \not \mathrm{~F}^{\mathrm{i}} \mathrm{O}$. It can further be shown that the three bearings must be such that $\sin \left(\beta_{2}-\beta_{1}\right), \sin \left(\beta_{3}-\beta_{1}\right)$, and $\sin \left(\beta_{2} \sigma_{2}\right)$ all have the same sign which is opposite that of $\mathrm{H}_{1} \mathrm{H}_{4}-\mathrm{H}_{2} \mathrm{H}_{3}$.

Solution (9) is a one-parameter family of targets in which the known target speed imposes a restriction on the parameter A The restriction is
(10) $\left(\mathrm{H}_{2}{ }^{2}+\mathrm{H}_{4}{ }^{2}\right) \lambda^{2}+2 a\left(\mathrm{H}_{2} \sin \theta+\mathrm{H}_{4} \cos \theta\right) \lambda+\mathrm{a}^{2}-\mathrm{v}^{2}=0$
which is a quadratic in λ that may have two, one or no roots depending on the magnitude of the target speed v. In any event, the parameter λ is determinable (if it exists) from (10) and the associated target motion is determinable from (9). Target range and course are easily determined from the quantities y_{0},
$v \sin \phi, x_{0}$, and $v \cos \phi$. $v \sin \phi, x_{0}$, and $v \cos \phi$.

We therefore conclude that three bearings are needed to determine the target motion when target speed is known, and that this motion is obtained from (10) and then (9). Zero, one, or two All additional bearings are determinable from the three given bearings, and no further bearings add any information given bearings, and no further bearings add any information.
194. (Fall 1967). Proposed by J. M. Gandhi, University of Alberta Show that the equation

$$
x^{x+y}=y^{y-x}
$$

has no solution in integers except the solutions:

$$
\text { (i) } x= \pm 1, y= \pm 1, \text { (ii) } x=3, y=9
$$

Solution by Charles W. Trigg, San Diego, California. The given equation may be written in the form.

$$
(x y)^{x}=(y / x)^{y}
$$

The left hand member is an integer, so the right hand member must be an integer also. This requires that $y=k x, k$ an integer. Thus

$$
\left(k x^{2}\right)^{x}=(k)^{k x} \text { or } x=k^{(k-1) 72}
$$

Consequently, k is qdd and has the form $2 m+1, m$ an integer; or k has the form n, n a non-zero integer.

The complete solution is $x= \pm 1, y=-1 ; x \overline{\overline{2}}(2 m+1)^{m}$,
$y=(2 m+1)^{m+1}, m=-1,0,1,2, \ldots ; x=n^{n^{2}-1}, y=n^{n^{2}+1}$
n a non-zero integer. The proposition as stated is false.
Also solved by R. C. Gebhardt, Parsippany, N. J.; Erwin Just Bronx Community College; Bruce W. King, Burnt Hills-Ballston Lake High School; Bob Nemez; Bob Prielipp, Wisconsin State University; Phillip Singer, Michigan State University; and Gregory Wulczyn, Bucknell University.
195. (Fall 1967). Proposed by Leon Bankoff, Los Angeles, California. Math. Mag. (Jan. 1963), p. 60, contains a short paper by Dov Avisholom, who asserts without proof that in the adjoining diagram $A N=N C+C B$. Give a proof.

Solution I by Joe Konhauser, University of Minnesota. $A M C B$ is a cyclic quadrilateral, so $A M \cdot C B+M C \cdot A B=A C \cdot M B$. $A M E$, Then, Le $A M$, have $A M \cdot C B+2 M C \cdot A F=A C \cdot A M$. Triangles MAF using $A M C$, $A M \cdot A F=A M \cdot N C$. Therefore, since $A C=A N+N C$, it follows that $A M \cdot C B+2 A M \cdot N C=(A N+N C) A M$ Simplifying gives the desired result.
Solution II by Charles W. Trigg, San Diego, California. From M drop a perpendicular to BC extended, meeting it at D. Draw $M A$ and MB. Since $M A=M B$ and since angle MAK $=$ arc MC/2 angle MBD, the right triangles MAN and MBD are congruent, and $A N=D C+C B$.
Also, $M N=M D$ and $M C=M C$
Therefore right triangles MNC and MDC are congruent, and $N C=D C$. Finally, $\mathrm{AN}=\mathrm{NC}+\mathrm{CB}$.

Solution III by Leon Bankoff, Los Angeles, California.
Extend $A C$ to D so that $C D=C B$. If P is diametrically opposite
M, we find that $C P$, the bisector of angle $A C B$ is perpendicular
to MC. Therefore MC bisects angle BCD, and we have angle MCB = angle MCD. So triangles MBC and MCD are congruent, and $M D=M B=M A$. It follows that the right triangles MAN and $D M N$ are congruent. Hence $A N=N D=N C+C D=N C+C B$.

Also solved by Dan Deignan, Miami University (by trigonometry); William Tally, University of Southwestern Louisiana; and Gregory Wulczyn, Bucknell University (using polar coordinates).
196. (Fall 1967). Proposed by R. C. Gebhardt, Parsippany, N. J. What is the remainder if
x^{100} is divided by $x^{2}-3 x+2 ?$
Amalgam of almost identical solutions submitted by E. A. Franz, Illinois College, Jacksonville, Illinois; Erwin Just, Bronx Community College; and Charles W. Trigg, San Diego, California. Division gives rise to the identity

$$
x^{100}=f(x)=(x-1)(x-2) Q(x)+A x+B
$$

here $A x+B$ is the remainder sought. The term $(x-1)(x-2) Q(x)$ can be eliminated by the substitution of either 1 or 2 for x. Thus, we have

$$
f(1)=A+B
$$

$$
f(2)=2 A+B
$$

Then

$$
\begin{aligned}
& A=f(2)-f(1)=2^{100}-1 \\
& B=2 f(1)-f(2)=2-2^{100}
\end{aligned}
$$

Therefore the remainder, $A x+B$, is equal to $\left(2^{100}-1\right) x+2-2^{100}$ or $2^{100}(x-1)-(x-2)$.
197. (Fall 1967). Proposed by Joseph Arkin, Nanuet, New Jersey.

A box contains (1600 $\left.u^{2}+3200\right) / 3$ solid spherical metal bearings. Each bearing in the box has a cylindrical hole of length . 25 centimeters drilled straight through its center. The bearings are then melted together with a loss of 4% during the melting process and formed into a sphere whose radius is an integral number of centimeters. How many bearings were there originally in the box?

Solution by Charles W. Trigg, San Diego, California.
The volume of the "wedding ring" left after a cylindrical hole with axis along, a diameter is drilled through a sphere is the same as that of a sphere with diameter equal to the length of the hole. [Cf., e.g., Charles W. Trigg, Mathematical Quickies, the hole. [Cf., e.g., Charles W. Trigg, Mathemat
McGraw-Hill (1967), page 179.1 Hence we have

$4 \pi R^{3} / 3=\left[1600\left(u^{2}+2\right) / 3\right](\pi / 6)(1 / 4)^{3}(96 / 100)$ or $R^{3}=u^{2}+2$.

The only value of u satisfying this last expression is $u=5$, whereupon $R=3 \mathrm{~cm}$. and the original number of bearings was 14, 400 .

Also solved by the proposer, who noted that a treatment of the Diophantine equation $\mathbf{R}^{3}=\mathbf{u}^{2}+2$ is given in L. E. Dickson's History of the Theory of Numbers, Vol. II, p. xiv., Chelsea
198. (Fall 1967). Proposed by Stanley Rabinowitz, Polytechnic Institute of Brooklyn. A semiregular solid is obtained by slicing off sections from the corners of a cube. It is a solid with 36 congruent edges, 24 vertices and 14 faces, 6 of which are regular octagons and 8 are equilateral triangles. If the length of an edge of this polytope is e, what is its volume?

Solution by Leon Bankoff, Los Angeles, California. The eight sliced-off pyramids can be assembled to form a regular octahedron of edge e, whose volume is known to be $\mathbf{e}^{3}(\sqrt{2}) / 3$. Subtracting this quantity from $\mathrm{e}^{3}(\sqrt{2}+1)^{3}$, the volume of the cube, we find that the volume of the truncated cube is $7 \mathrm{e}^{3}(3+2 \sqrt{2}) / 3$.

Also solved by Charles W. Trigg, San Diego, California, and the proposer.

Editorial Note. The term "truncated cube" is more descriptive of the residual polyhedron than is the word "polytope", which is general enough to apply to points, segments, polygons, polyhedra and hyperdimensional solids.
199. (Fall 1967). Proposed by Larry Forman, Brown University, and M. S. Klamkin, Ford Scientific Laboratory. Find all integral solutions of the equation
$\sqrt[3]{\sqrt{x}+\sqrt{y}}+\sqrt[3]{\sqrt{x-\sqrt{y}}}=2$.

Solution by Charles W. Trigg, San Diego, California
I. It is evident upon inspection that if $\mathrm{x}=0$, then $\mathbf{z}=0$ (and conversely), and y is indeterminate. Also, if y : 0 then $x=(z / 2)^{3}$, so z is even.
II. Put $x+\sqrt{y}=m^{3}$ and $x-\sqrt{y}=n^{3}$, whereupon

$$
\begin{aligned}
\sqrt{y} & =\left(m^{3}-n^{3}\right) / 2, \text { and } \\
x & =\left(m^{3}+n^{3}\right) / 2, \text { and } y=\left(m^{3}-n^{3}\right)^{2} / 4, z=m+n,
\end{aligned}
$$

where m and n are integers with the same parity. This

$$
\text { two-parameter solution includes (I), for } m=+n \text {. }
$$

III. Solution II is based upon the restricted assumption that m and n are integers. Cubing both sides of the given equation.

Let $x^{2}-y=k^{3}$, whereupon

$$
\begin{aligned}
& x=z\left(z^{2}-3 k\right) / 2, \text { and } \\
& y=\left[z\left(z^{2}-3 k\right) / 2\right]^{2}-k^{3}=\left(z^{2}-4 k\right)\left(z^{2}-k\right)^{2} / 4 .
\end{aligned}
$$

Solutions not given by (II), for example, when $\mathbf{z}=3$ and $k=1$, are given by this two-parameter solution in \mathbf{z} and \mathbf{k}, with \mathbf{z} even or with z and k both odd, and $\mathbf{z}^{2} \neq 3 \mathrm{k}$, $z^{2} \# k$. These two restrictions are necessary for consistency with (I). The penultimate restriction is necessary because if $x=0$, then $\mathbf{z}=0$; and the last one because if $y=0$ if $\mathrm{x}: 0$, then $\mathbf{z}=0$; and the
then $\mathrm{x}=\mathbf{z}^{\mathbf{3}} \mathbf{8}$, whereas if $\mathbf{z}^{2}=\mathrm{k}$, then $\mathrm{x}=-\mathbf{z}^{3}$.

Editorial Note, Klamkin cubed the given equation to obtain $2 x+3 z \sqrt[3]{x^{2}-y}=z^{3}$. Thus $\sqrt[3]{x^{2}-y}: m$ (an integer), and the desired solution is

$$
x=\left(z^{3}-3 z m\right) / 2, \quad y=\left[\left(z^{3}-3 z m\right) / 2\right]^{2}-m^{3}
$$

where \mathbf{z} and m are arbitrary integers, provided either \mathbf{z} is even or both z and m are odd.
"proper" cube roots must be extracted to satisfy the original equation. For example, suppose $z=3$ and $m=3$. Then $x=0$,

Recasting this in the form $\sqrt{3} \sqrt{1}-\sqrt{3} \sqrt{\mathbf{i}}=3$, an obvious impossibility, we are confronted by the intrusion of an extraneous root. On the other hand, the solution becomes acceptable by the following procedure:

$$
\begin{aligned}
\sqrt[3]{\sqrt{-27}}+\sqrt[3]{\sqrt{-27}} & =27^{6}\left[(i)^{1 / 3}+(-i)^{1 / 3}\right] \\
& =\sqrt{3}\left[e^{i \pi / 6}+e^{-i \pi / 6}\right] \\
& =2 \sqrt{3} \cos (\pi / 6)
\end{aligned}
$$

$=3$.
Also solved by Edgar Karst, University of Arizona, and Gregory Wulczyn, Bucknell Universit, $;$ both of whom submitted partial solutions for integral values of $x+\sqrt{y}$.
200. (Spring 1968). Proposed by Melen M. Marston, Douglas College The arithmetic identities

$$
\begin{aligned}
6+(7 \times 36) & =6 \times(7+36), \\
10+(15 \times 28) & =10 \times(15+28), \\
12+(15 \times 56) & =12 \times(15+56),
\end{aligned}
$$

suggest the problem of finding the general solution, in positive integers, to the equation

$$
a+(b \cdot c)=a \cdot(b+c) .
$$

In particular, how many pairs of positive integers (b,c) with bec satisfy the latter equation if $a=21$?
Solution by Charles W. Trigg, San Diego, California.
$a+b c=a(b+c)$ implies $b=a+a(a-1) /(c-a)$. The number of solutions in positive integers for any given a is equal to the number of factors of a(a-1), that is, $\mathrm{d}[\mathrm{a}(\mathrm{a}-1)]$, and the number of distinct pairs is d[a(a-1)]/2. Corresponding to the complementary factors f and $g,(f<g)$, are $b=a+f, c=a+g$.
Thus when $a=21$, the twelve distinct pairs are: (22, 441), $(23,231),(24,161),(25,126),(26,105),(27,91),(28,81)$, $(31,53),(33,56),(35,51),(36,49),(41,42)$.

Also solved by Richard L. Enison, New York; Joe Konhauser, Macalester College; Graham F. Lord, Philadelphia; Gregory Wulczyn, Bucknell University; and the proposer. Two incorrect solutions were received.
201. (Spring 1968). Ppoposed by R. C. Gebhardt, Parsippany, New Jersey. Out of the nine digits $1,2,3, \ldots, 9$, one can construct 9 ? different numbers, each of nine digits. What is the sum of thes 9! numbers?

Solution by Joe Konhauser, Macalester College.
Let the 9! numbers be arranged in the usual manner for addition. In each column, each of the digits 1 through 9 will appear 8! times. The sum of the numbers in each column will be

$$
8!(1+2+\ldots+9)=8!(45)=1,814,400 .
$$

The sum of the $9!$ numbers will be
$1,814,400\left(1+10+100+\ldots+10^{8}\right)=1,814,400 \times 111,111,111$ $=201,599,999,798,400$.
Also solved by Leonard Cupingood, Newark, N. J.; Richard L. Enison; Keith Giles, Norman, Oklahoma; Robert J. Herbold,
Cincinnati; Neal H. Kilmer, Oklahoma State University; Eruce W. King, Burnt llills, N. Y.; Graham F. Lord, Philadelphia; John McNear, Lexington (Mass.) High School; Norman Pearl, Pratt Institute; Andrew E. Rouse, University of Mississippi; Catherine J. Strahl, Temple University; Charles W. Trigg, San Diego, California; Gregory Wulczyn, Bucknell University; and the proposer.

BOOK REVIEWS

Edited by
Roy B. Deal, Oklahoma University Medical Center

1. Theoretical and Mathematical Biology By Talbot H. Waterman and Harold J. Morowitz, Blaisdell Publishing Company, New York, 1965 Harold J. Moro.
xvii +426 pp.

A series of seventeen chapters, written by well-known biologists, which gives an excellent survey of a variety of the important areas in biology where rather extensive and interesting mathematical models promise to play a big role.
2. An Introduction to Probability Theory and Its Applications Vol I, 3rd Edition, By W. Feller, John Wiley \& Sons, Inc., New York, 1968 xviii +509 pp., $\$ 10.95$.

A third and revised edition of the now famous classic in modern mathematical writings. Many proofs and developments have been modernized. In particular the chapter on fluctuations in coin tossing and random walks has been extensively rewritten and expanded to incorporate modern probabalistic arguments. Sections have been added on branching processes, on Markov chains, and on the De Moivre-Laplace theorem. These changes, along with other clarifications and rearrangements, and the established importance of the earlier editions make this also a valuable book.
3. An Introduction to Probability Theory and Its Applications By William Feller, John Wiley and Sons, Inc., New York, 1966, xviii + 626 pp.

Whereas the first volume was basically a study of discrete probabilities and was a pioneer in its mathematical treatment of applied problems, the second volume covers a larger spectrum, utilizes Lebesgue measure, has many theorems and applications on more general multidimensional distributions, on more general Markov processes, random walks, renewal theory and other aspects of stochastic processes, and many interesting uses of such things as semi-groups, Tauberian theorems, Laplace transforms, and harmonic analysis. This volume may not have as much of the pioneering aspect but it reflects the same organizational talent of a master who can bring difficult subjects to within the grasp of one with a minimal background, say elementary real analysis and volume one.
4. Integration By A. C. Zaanen, John Wiley and Sons, Inc., New York, 1967, xiii +604 pp., $\$ 16.75$.

Although this is an advanced and extensive book on integration, and perhaps beyond the level of many Pi Mu Epsilon readers, it is such an excellent book that it should be brought to the attention of most members. It is a completely revised and enlarged edition of his well-written earlier book "An Introduction to the Theory of Integration."
5.-. Combinatorial Identities by J. Riordan, John Wiley and Sons, Inc., 1968, xil + $256 \mathrm{pp} ., \$ 15.00$.

A comprehensive, coordinated collection of combinatorial identities including "The most extensive array of inverse relations available," and a survey of number-theoretical aspects of partition polynomials.
6. Quantum Mechanics By R. A. Newing and J. Cunningham, John Wiley and Sons, Inc. 1967, ix $+225 \mathrm{pp}$. . $\$ 4.50$.

Although there are many fine books on Quantum Mechanics at the first year graduate level, this little book which grew out of a course for final year honors students of mathematical physics is
because of the spirit in which it is written, perhaps the best introduction to mathematical quantum mechanics for mathematics students at the senior-first year graduate level.
7. Dynamic Plasticity By A. Cristescu, John Wiley and Sons, Inc., An import from the North-Holland Publishing Company, 1968, xi + 614 pp., \$25.00.

The North-Holland Series in Applied Mathematics and Mechanics is attempting to foster a continuing close relationship between applied mathematics and mechanics by publishing authoritative monographs on well-defined topics. This reasonably selfcontained book presents the main problems considered in the theory of dynamic deformation of plastic bodies. It gives many details regarding mechanical models, computing methods, and programs for the integration with computers. Although it is written so that no previous knowledge of plasticity is required, the solutions to many problems are given with such detail and modern methods that they may be used directly by the practicing engineer.
8. Ordinary Differential Equations and Stability Theory: An Introduction By David A. Sanchez, W. H. Freeman and Company, San Francisco, California, 1968 , viii $+164 \mathrm{pp}$. , $\$ 3.95$ paperbound.

This little book meets quite well its stated objective of giving a brief, modern introduction ot the subject of ordinary differential equations with an emphasis on stability theory to the reader with only a "modicum of knowledge beyond the calculus".
9. Numarical Methods for Two-Point Boundary - Value Problems By Herbert B. Keller, Blaisdell Publishing Company, Waltham, Massachusetts, 1968, viii + 184 pp .

This brief but excellent account of practical numerical methods for solving very general two-point boundary-value problems would follow. quite well the above book by Sanchez. "Three techniques are studied in detail: initial-value or "shooting" methods, finite-difference methods, and integral-equation methods. Each method is applied to non-linear second-order problems and eigenvalue problems; the first two methods are applied also to first-order systems of non-linear equations."
10. A Handbook of Numerical Matrix Inversion and Solution of Linear Equations By Joan R. Westlake, John Wiley 6 Sons, Inc., 1968 viii + 171 pp., $\$ 10.95$.

While this book should be very valuable for its stated purpose as a nearly encyclopedic single reference source for scientific programmers with a bachelors degree and a mathematics major, it might also serve to provide the undergraduate mathematics major with a feeling for this important aspect of real world problems, as well as delineate the essential features for many of today's more sophisticated users.

BOOKS RECEIVED FOR REVIEW

1. Biometry By Charles M. Woolf, Van Nostrand Co., New York, 1968, XIII + $359 \mathrm{pp.} \$$,
2. Introduction to Arithmetic By C. B. Piper, Philosophical Library, Inc., New York, 1968, vii + 211 pp., \$6.00.
3. Introduction to Probability and Statistics, Second Edition, William Mendenhall, Wadsworth Publishing Company, Inc., Belmont, California, 1967, xiii + 393 pp.
4. The Design and Analysis of Experiments By William Mendenhall, Wadsworth Publishing Company, Inc., Belmont, California, 1968, xiv +465 pp .
5. New College Algebra By Marvin Marcus and Henryk Minc, Haughton Mifflin Company, Boston, Mass., 1968, x + 292 pp., $\$ 6.50$.
6. Introduction to Probability and Statistics, Fourth Edition By Henry L. Adler and Edward B. Roessler, W. H. Freeman and Company, San Francisco, California, 1968, xii +333 pp., $\$ 7.00$.
7. Introduction to Matrices and Determinants By Max Stein, Wadsworth Publishing Company, Inc., Belmont, California, 1967, x +225 pp .
. Modern Mathematical Topics By D. H. V. Case, Philosophical Library Inc., New York, 1968, viii $+158 \mathrm{pp} ., \$ 4.75$.
8. First-Year Calculus By Einar Hille and Saturnine Salas, Blaiddell Publishing Company, Waltham, Mass., 1968, xi $+415 \mathrm{pp}$. . $\$ 9.50$.
Note: All correspondence concerning reviews and all books for review should be sent to PROFESSOR ROY B. DEAL, UNIVERSITY OF OKLAHOMA MEDICAL CENTER, 800 NE 13th STREET, OKLAHOMA CITY, OKLAHOMA 73104.

MATCHING PRIZE FUND

The Governing Council of Pi Mu Epsilon has approved an increase in the maximum amount per chapter allowed as a matching prize from $\$ 20.00$ to $\$ 25.00$. If your chapter presents awards for outstanding mathematical papers and students, you may apply to the National Office to match the mount spent by your chapter--1.e., $\$ 30.00$ of awards, the National Office will reimburse the chapter for $\$ 15.00$, etc.,--up to a maximum of $\$ 25.00$ Chapters are urged to submit their best student papers to the Editor of the Pi Mu Epsilon Journal for possible publication.

$\underline{\underline{\text { INITIATES }}}$

ARIZONA ALPHA. University of Arizona

FLORIDA GAMMA, Presbyterian College
Robert C. Meacham, Jr.

FLORIDA DELTA, University of Florida
Louis S. Block
Patricia R. King
Fredrick J. Pollack
James W. Taylor
James F. Davis
John S. Heidt
Alexander S. Nicolas
Richard D. Spool
Howard L. Trefethen
FLORIDA EPSILON, University of Southern Florida

Patricia Ann Bolinski	Marilyn Eloise Hanson
Ann Wilkinson Bower	James Albert Moran
Loree Anette Bryer	David Marshall Ogletree
Agostino J. DeGennaro	Wayne Thomas Owen

Pauline Ann Peffer Jeanne Marie Rohrer
James Edward Shellabarg Donald MacDavid Tolle
Timothy Jay Tyrell

Ann Wilkinson Bower Loree Anette Bryer

Agostino J. DeGennaro

GEORGIA ALPHA, University of Georgia
A. Wayne Godfrey
Evelyn Toler

ILLINOIS DELTA, Southern Illinois University

Shiela K. Blebas	Richard D. Harper
Wayne A. Booth	Mary S. Horntmp
Patricia G. Boyer	Linda Hussong
Jay Doegey	Daniel A. Kanmler
Fred Chu Hung Goon	Janice M. Kidd

INDIANA BETA, Indiana University
$\begin{array}{ll}\text { Paul W. Baranowski } & \text { Jennifer Jo Ginther } \\ \text { Larry L. Brock } & \text { Elaine S. Kunkle }\end{array}$ arry L. Brock
Jennifer Jo Ginthe
Elaine S. Kunkle
Paul E. Moody

INDIANA DELTA, Indiana State University
Larry Bond
William Brenner
Frederrick L. Buchta Robert Fischer
Russell L. Green
Arthur W. Griffith
Eileen Hunter
Thomas Reberger

BabersB. LVaSchnoor
Beth Kravetz
Jai Chi Kwok
Richard L. Pehrso
Gordon Ramsey

Mei-Dai Wang
Janet Whan Johnny Yang

IOWA ALPHA, Iowa State University
Dudley James Bainbridg Richard Lavern Dergst Richard Alan Birney Kent Duane Bloom
Stanley Joe Caldwell

Donald Chi Tat Chong David Whinery Collins
David Maxwell Downino

Judith Ann Enfield

 Kenneth Allan Gittin Eugene Francis Dumstörff Harlan James HansonDennis Eugene Hining Stephen Michael Hoil Stephen Paul Johnson Brian Douglas Jones Hideo Koike

KANSAS ALPHA, University of Kansas

Judith A. Anderson Steven M. Berline Martin Fan Cheng
Kathleen M. Chilton

James M. Concannon William H. Coughlin Richard D. Cruis Sandra A. Crumet
Charles N. Eberlin

Benjamin A. Franklin
John Terry Gill
Arthur David Grissinge

```
Leland C. Heimle Robert A. Herman John E. Holconb David W. Hutchison
```

Jane E. Laughlin	Kenneth E. Norland	Dale Spangler	Michael C. Walter
James. L. Liebert	Robert J. Rojakovick	David J. Thuente	Billie Ann Whited
Patrick T. Malone	Chistonher T. Sumelson	nharles Yotaw	Glen J. Wiebe
George Mazaitis	Judith Marie Sauls	Gary L. Walls	Catherine Wiehe

KANSAS BETA, Kansas State University

Harold E. Barnthson, Jr. Pierre A. Grillet	
Robert Becker	James P. Hatienbuhler
Jerry Fabert	Donald F. Hunziker
Paul Fisher	Ronald L. Iman
Richard J. Greechie	Carl D. Latham

Kenneth N. Locke
Ronald D. Lyberger
Nancy McNerny
Jon H. Peterson
Mireille 0. Poinsignon

Barry L. Rhine
Rita Rodriquez
Robert M. Smith Robert M. Smith
Phillip R. Unruh
Richard J. Greechie
Ronald L. Iman
Carl D. Latham Mireille 0. Poinsignon

KENTUCKY ALPHA, University of Kentucky

Marcia J. Bain	Jerry R. Hamilton	Janeth S. Leathers	Stephen Puckette
Beth Brandenburgh	Richard A. Hartley	Rosanne M. Mandia	William A. Raker
Lawrence R. Catlett	Micheel Heath	Jimny J. Miller	Dorothy Rouse
Ronald Coburn	Elizabeth Hill	Laura Mullikin	John K. Stah1
C. K. Currens	Danny M. Huff	Thomas Powell	Bob Trent
Phillip E. Duren	Sandra M. Krampite		Dale Wheeler

LOUISIANA ALPHA, Louisiana State University

Charles H. Allen	Terry W. Deville
Daniel Buquoi	Mary E. Emerson
L. J. Cassanova III	Myron B. Katz
Bijan Chadorchi	Donald R. Kleckner
Manmohan S. Chawla	Thomas G. Loflin
Oscar R. DeRojas	Robert S. Mattei

James D. Mayhan, Jr.
Barbara J. McManus
Bailey B. Shelhorse, Jr.
Katherine E. Stewart
John N. Stokes James B. Williams Elvan S. Young

LOUISIANA BETA. Southern University

Alyce Adams	Paul Domingue	Annie Joseph	Everett Stull
Sandy Bonhomme	Larry Ferdinand	Doris Smith	Roberta Tyler
Letatia Ann Bright	Betty Gibson	Margie Smith	Saundra E. Yancy
Billie J. Davis	Vernon Hamilton	Melvin Smith	

LOUISIANA GAMMA, Tulane University
Martin L. Pinstein
louisiana delta, Southeastern Louisiana College

Lynda K. Brister	Frank W. Currow	Joseph S. Kiss	Clyde S. Robichaux James R. Capezza

LOUISIANA EPSILON. McNeese State College

Thomas.C. Babineaux	Nancy B. Huck (Mrs.) Stephen E. LeDoux	Junius L. Pennison, Jr. Mary-R. Hopkins David H. Spell	Leonard R. Watts John C. Young
Alton G. Houston	Ted C. Lewis, Jr.		
John W. Turner			

MAINE ALPHA, University of Maine

June E. Ackley	G. Richard Ellis	Nathan v. Lilley	Roger A. Roy
Leon E. Heal, Jr.	Jane M. Fupbush	Alfred J. Loewe	Durand M. Smith
Gerard R. Blais	Robert A. Gardner	Eleanor E. Mason	Sylvia E. Snowman
David A. Bowie	H. John Hays	Brenda J. Mitchell	Linda L. Soucy
Yiu Ting Chu	Pamela J. Hogan	June M. Parker	William G. Swett
Sara L. Costa	John B. Howe	Donna J. Parks	Dianne R. Thomas
George S. Cunningham	James G. Huard	Beverly A. Perkins	Stephen J. Turner
Linda S. Dyer	Elizabeth A. Ifill	Nancy S. Rasmussen	David R. Wheeler
Scott E. Edwards	Stuart A. Kopel	Elizabeth M Ray	
MAREAAND ALPHA, University of Maryland			
Theodore A. Eisenberg	Eleanor L. Jones	Mary M. Mann	Irene H. Schwar
Duane M. Faxon	H. Steven Kanofsky	Fredrick T. Martin	Wayne B. Stern
William L. Ford	Stephen A. Kramer	Margaret Maslak	James S. Tobin
Michael L. Hill		Margaret Maslak	A. Steven Wolf

MASSACHUSETTS ALPHA, Worcester Polytechnical Institute

Peter H. Anderson	Mark S. Gerber	Peter Marzetta	Richard P. Romeo
Normand L. Bachand	Harold F. Hemond	Edward L. O'Neill	Lucien J. Teig
Carl G. Carlson	Philip M. Kazemersky	Joseph F. Owens III	

MASSACHUSETTS BETA, College of the Holy Cross

Donald B. Albonesi	Paul J. Feiss	Rev. John J. MacDonne11, S.J. William M Notis	
John E. Anderson	David Kennedy	Francix X. Maginnis	Peter Perkins
Robert L. Devaney	Paul D. Light	John R. McCarthy	Leonard C. Sulski

| MICHIGAN BETA, University of Detroit | | | |
| :--- | :--- | :--- | :--- | :--- |
| Mary M Ayoub | Stephen A. Hansen | Donna M Pietraniaic | Francine M. Rozanski |
| Kerry M Gigot | Charles H. LaHaie | Theodore J. Rodak | Carolyn M. Zimmeth |

minNesota beta, College of St. Catherine
Mary Patricia Carroll Patricia A. Donahue Deborah M Hill
Sister Jeanne Lieser, OSF
Sister Martha Nemesi, CSJ

MINNESOTA GAMMA, Hacalester College

Marilyn Biel	David Huestis	Kenneth Miller	Judy Seppanen
Prof. Murray Braden	R. Daniel Hurwitz	Helen Parkinson	Robert Stephenson
Prof. E. J. Camp	Kim Kowalke	Prof. A L. Rabenstein	Eric Swanson
Richard Cowles	Paula Lindberg	Prof. A. Wayne Roberts	Marjorie Van Hoven
Charles Hanna	Gerld Martin	Paul Rusterholz	David Wille
Pamela Held	Stanley McCaslin	Prof. John Schue	Barbara Zingheim

MISSISSIPPI ALPHA, University of Mississippi

Katherine A. Abraham	Betty C. Birdwell	Robert L. Bradley	William A. Carter
Nancy E. Arnstrong	Carl V. Black, J.	Carolyn D. Caldwell	Roger D. Cox
Rhett H. Atininson	Ann D. Bomboy	Thomas L. Callicutt, Jr. Buren R. Crawford	
Bonita E. Baldwin	Kit H. Bowen	Edgar L. Caples	Cray M Crockett
Hazel A. Barnes	Howell J. Boyles	Betty M. Carlisle	Susan Denhar.
Thomas A. Bickerstaff	Patricia A Bradley	David R. Carlson	James O. Dukes

Leonard B. Gatewood John Guyton	Tanis I. Marble Gary E. Marsalis	Lonnie W. Pearson Alan W. Perry	Lester F. Smith Robert D. Smith
Edward L Hardister	Lois C. Matson	Donald L. Quinn	Katie D. Speakes
Judith K. Harper	Carolyn C. Haxwell	Pauline Quon	Martha T. Stokely
Michael L. Hedges	James E. McFarlane	Susan G. Ray	Patricia M. Temple
Oliver A. Hord, Jr.	Delora D. McGee	Herman A Rogers	Vincie D. Thornton
Steven K Howell	Paula Meek	William A. Roper, Jr.	Roger M Tubbs
Charles F. Johnson, III	Samuel B. Miller	Andrew E. Rouse	Stanley E. Tupman
David L. Landskov	James S. Netherton	Frankie B. Shows	Mary J. Warren
B. Elaine Legget	Jerry L. Patton	Warren R. Sigman	James C. Woods
Kathleen V. Macdona	Joel G. Payne	Jean A Smith	Janis E. Worsham
David J. Manifold			
MISSIOURI ALPHA, University of Missouri			
Lonnie Antwil	David J. Fannon	Alvin R. Lang	John A Stann
Charles W. Baker	Evelyn Field	Larry Jay Lewis	David R. Stevens
Edwin Dean Breahears	Martha Fuchs	Loling Mao	Tom Stuber
Kenneth Bryant	J. Gordon Godsey	Charles Mueller	Jack E. Sutherland
John B. Burns	Charles Hanov	Charles Poeppelmeier	Donald W. Williams
Stephen Chadwick	Ron Hodges	Alice Susan Price	Candace Holfe
Karen Doll	Paula Kieffer	Oran Allan Pringle	Stephen Wolken
Curran F. Douglas	Karen Ladd	Gordon F. Sieckmann	Robert A. Woodruff

B. F. Abell	Donald R. Haberman	Richard J. Maresh	Hiroko Sekiguchi
Becky Achelpohl	Sr . Sharon Louise Hagen	Marvin L. Martin	Timothy T. Seubert
Thomas R. Achtyl	Richard A. Hammer	Sr. Marian Joan McKenna	Richard J. Shiffer
Linda K Allen	Gregory J. Hanker	Walter R. Hodrys	Carol A Siebert
Robert A. Andrea	Francis J. Hartke	Arthur R. Molner	Mary A. Siemer
Patricia A Austermann	Robert S. Heinicke	Kenneth J. Mraz	Donald R. Steckhan
Diane M Barwe	Thomas C. Hermans	Toni M. Notorangelo	Sr. Arthur Marie Straub
Jeanette A. Bickley	Kirby F. Heyns	Asad Said Omar	Ronald G. Tenney
George L. Blomster	Charles R. Hobbs	Carol J. Perrin	Sr. M. Benett The
Mary J. Boeckmann	Dale w. Istwan	Stephen R. Radosevich	Laura Thomas
David Davison	Karl J. Jindra	E'Lane Reatherford	Virginia C. Tiffany
Sr. Jean Lovene	Michael w. Kappel	J. L. Rhodes	Mary A. Travers
Jan.R. Digman	Paul J. Keliher	J. B. Riles	James M. Trull
Carl R. Erdmann	Kevin J. Keller	Andrew B. Rochman	Dwyla J. Tunstall
David A. Findley	Stephen D. Killian	Sr . Adele Marie Rothan	Gary P. Vogt
Marie E. Ford	Janet Kuehnle	C. L. Sabharwal	Mark H. Walsh
George J. Gagen	Albert Letzkus	Donald H. Sanders	Diane A Wieland
John R. Genser	J. M. Lin	Richard M Scherer	Eugene P. Hiesler
John M Dozdzialski	C. A Long	Howard H. Schmidt	Victor A. Will, Jr.
Donna Gronemeyer	Sr. Elizabeth James Maher	Jane M Schwendema	Richard L. Winter

new hampshire alpha. University of New Hampshire

Joel J. Bedor	Kathleen M. Dix	Barbara A Larsen	Linda J. Phipps
Beverly A. Bellenger	Richard P. Flynn	Donald G. Marion	James E. Rand
Stephen A. Blain	Leon A. Frizzell	Karla J. Marois	Robert K. Rayner
Alice J. Clark	Delmon B. Grapes	Kathy L. Mascia	Judith L. Simpson
Carol A. Clark	Stephen A Habif	Janet E. Matheson	Mark W. Springgate
John-A. Clark	Barbara A Hanlon	Woodrow H. McDonald, Jr.	Wayne L. Thompson
Robert M Corlett	Jill Happny	Kenneth W. Norton	Douglas S. Vaughan
Sharyn L. Cornish	Elizabeth M. Harker	Paul h. Noyes, Jr.	Kenneth J. Versprille
Jane G. Craven	Brenda M. Hodsdon	William w. Page	Billy F. Webster
Daryl E. Dexter	Barry F. Langer	Linda J. Pelletier	
NETH JERSEY delta. Seton Hall University			
Dr. Joseph w. Andrushkiw	Madeline Carr	Stephen Demko	Dr. Charles H. Franke
Ralph Bravaco,	Douglas Cestone	Julia Diffily	Dr. Marcelle friedman
Kenneth T. Burk	Edward Delaney	Mary Drexler	James Giesen

NWV YORK PI, State University College

Arthur L. Desell	Danton Hilldale	Sharon Kenfield	Paul E. Miller
Louis moldsmith	:ayne Judkins	Richard J. McKeon	Robert Scharf

NWV YORK RHO, St. John's University

Theodore J. Beke
Veronica G. Brelinski Frances Cackowski Barbara A. Calh
illiam E. Coffey, Jr. Jane E. Gogola
John E. Colman, C. M. Nai P'o Lee
William J. Conklin Karen M. Mathison
Arthur P. Curley
Antoinette C. DiGennaro Mary Ann Miller
James J. Mulloy

George W. Pennecke Cyril Price

Mary Osip Robert Silverstone

Richard L. Enison Mark Herbach

Kenneth Hoffman
William Hutzler William Hutzle
Gayle Kessler

Paul E. Millex Robert Scharf
nev York sigma, pratt Institute
orth carolina alpha, Duke University

Daniel R. Altschuler Hitchell Jay Bassman Thomas H. Beckett Donald Herbert Bennett Dauglas Boehm

Thomas Arrington Duke Trilby M. Duncan Charles W. Dunn John Wayne Farlow Harry 0. Finklea Hilliam Fry William Fry George Carey Fuller Richard Evans Gordon Philip E. Hardee Kenneth Harvey Elizabeth Evans Hill
Frank Owen Irvine, Jr John Howard Judd, Jr.

Robert Stephen Conker Robert Cunningham John Dermon
andra Jean Dillard Levis Dozier

James D. Kemp Judith Eleanor King Paul Lafollett Michael E. Landis James Enmett Lenz, Jr. Karen Anne Maher Albert Joseph Mailman Robert Charles Marlay Jean Edith Martin Jeremy Alan HcCreary John Vick Mickey Richard Alan Nay

NEW YORK XI, Adelphi University
Neil Bernstein
Roza Weiser Brzozowski
Martha P. Dykes
Harold Hochstein

James Brehm
Angelo DiSant

NRTH CAROLINA Gamma, North Carolina State University

Jacob C. Belin	Arthur L. Frazier	Robert C. Kirkman
Randolph F. Bowling	Albert V. Hardy, Jr.	Larry L. Lanning
Jark P. Bujalski	Jerry L. Hicks	Derek A. Lindsley
Kenneth A. Byrd	Donald L. Hill	Gerald A. Morin
Kendy W. Chung	Richard J. Johnson	Robert L. Marlin
James J. Deese	Walter D. Johnson	Donald T. Metcalf
Gary R. Felmster		
horth carolina delta, East Carolina University		
Donald F. Bailey	Elizabeth C. Crawford	James E. Godfrey
Jerry L. Barnette	John B. Davis, Jr:	toward E. Hardee
Robert H. Barnhild	K. Joseph Davis	Leslie W. Hewett, Jr.
Ellenf F. Benditz	Judy L. Dees	Linda M. Hill
Susan E. Bradford	Judy L. Dudley	Dr. Katharine W. Hodgin
Glenda D. Brinson	Richard B. Duncan	Gayle D. Hudson (Mrs.)
W. Carroll Byrum	Donald W. Fulford	Richard W. Johnson
Claudia S. Coutler ()Jackie A. Gerard	Nancy P. Kluttz

horth carolina delta, East Carolina University

Carroll Byrum Donald W. Fulford
James E. Godfrey James E. Godfrey
toward E. Hardee
Leslie W. Hewett, Leslie W. Hewett, Jr. Linda M. Hill Dr. Katharine W. Hodgin
Gayle D. Hudson Gayle D. Hudson (Mrs.) Nancy P. Kluttz

Jean C. Mulvey
Marie L. Nusio Vincent S. Russott Thomas R. Sexton Ellen B. Tumninell

David K. Monroe David T. Register Cecil o. Smith, Jr William W. Taylor
Charles M. Walters Jerry S. Worley Jane C. Harren

Marsha A. Lukens
James L. Mann Audrey B. McCullen (Mrs.)
Michael L McLawhor
Rachel J. Micol
H. Thomas Parrish
Dr. Sallie E. Pence

Dr. Sallie E. Pence
Martha N. Pierpoint
Lois Carolyn Heilson Cynthia L. Peterson Thomas hllen Powers Kenneth Houston Pugh
Frederic Marsh Ramsey Page H. Smith Douglas G. Spruge Janet Paula Steel Edmund W. Thomas, Jr Anne K. J. Welsh Martin James Wert Eric Vassar Witt Dorothy Converse Young

Dr. Tullio J. Pignani	John A. Staley, Jr.	Bonnie R. Taylor	Leslie J. Whitehurst
Constance L. Rhem (Mrs.)	H. Ray Stinson	Leif L. Tobiasson	F. Tyrone Williams
Robert D. Satterfield, Jr.	Thornton G. Stovall, Jr.	Cary C. Todd	Judy B. Wilson
Frank H. Saunders	Margaret T. Strickland (Mrs.)	Robert E. Turner	James F, wimek
Miriam E. Sawyer	Linda R. Tate	Evelyn L. Wallace	Robert M. Woods
Dr. Katye 0. Sowell			

NORTH DAKOTA ALPHA, North Dakota State University

Daniel G. Fors	Larry E. Hulett	James E. Koering	William B. Shepherd
Hariley F. Guenther	Mark J. Kulemele	Kathryn A. Mach	David 0. Torkelson
Jill K. Hermanson	Ronald J. Knauss	Roger D. Riveland	Jaw Ming Yang
Eileen R. Hoiland			

Eilleen R. Hoiland Kathryn A. Mach Jaw Ming Yang

OHIO BETA, Ohio Wesleyan University

Ann R. Arbanz	Dianne N. Frye	Carol E. Msntz	Sandra L. Schulze
Henjamin Barnes	Nancy Githens	Charles Pfleeger	Gary Smeal
Charlene M. Cort	Raymond T. Jackson	Douglas A. Regula	Charles R. Tate
Richard G. Cromell	Joyce M. Jones	Carol E. Rice	James H. Whitman
Joan E. Ericson	Hilliam Manogg	Allan C. Rosser	Kinberley L Zuzelo
Thomas G. Eshelman			

Thomas G. Bierley Jo A. Davis Margaret M. B. Donlan	Greg Dziegielewski Timothy F. Eller	Garry L. Miller Anna L. Robins	Paula R. Stevens Barbara J. Taylor
OHIO 2ETA, University of Dayton			
Mary Ellen Baracket	Thomas S. Hornbach	Jane Lusienski	Richard E. Schmotzer
Frank G. Burianek	Ruth Ann Kaule	Theodore F. McFadden	Sam Slowinski
Gregory P. Campbell	Joan Kilsheimer	Kathleen Arme McRaven	Gary Charles Staas
James Charles Carruth	Judy Kittelman	James Middendorf S. M.	Donna Jean Walters
Joseph John Chmiel	Michael Laubacher	Ralph George Renneker	Rob Wenning
Kathleen DeWald	James Arville Loudernilk	Maxy Beth Schindler	Richard Wittuauer

OhIO GAMMA, University of Toledo

Reky Ann Hofmann
OHIO ETA, Cleveland State University

Roy L. Boling	Barry Lowe	Joseph A. Oswald	Frank Robert Tamburello
Louis Dankovich	Kenneth R. Mazer	William A. Patti	John F. Toth
Kenneth Earl Goltz ${ }^{\text {a }}$	william c. McCabe	Antanas Vytautas Razgaitis	James Edward Triner
Robert H. Grau	James A. Murphy	Steven J. Ring	Jan Karl VanVoorhis
Jay Theodore Hargreaves	Julianna Hadas	Harry Earl Schweitzer	Frank J. Vargo
Carol A. Luczak			Edward Allen Winsa
OHIO IOTA, Denison Unive	sity		
Carol Jane Anderson	Andrew Harley French	Michael Obletz	Carol Ann Voegele
John Edward Brewer	Dennis Ted Fujka	Roswell Bond Paine, Jr.	Loretta Ann Whitney
Craig Ridgway Dripps	Janet Gail Hienton	Juliet Evans Sears	

OKLAHOMA ALPHA. Universitv of Oklahoma

Mark E. Adams	Mary C. Chronister	Richard S. Dowell	Keith E. Giles
Susan Basolo	Judy A. Cohenour	Clarence Durand	Sue A. Goodman
Thomas E. Biery	Laird R. Cormell	Edward D. Einhorn	Mischa Gorkuscha
Warren S. Butler	Fioyd E. Davis, Jr.	Jean M. Ezell	JoAne S. Growney
Thomas E. Carpenter	David A. Doughty	Rodney R. Foster	Wallace J. Growney

James R. Harrison	Dorella F. Logan	Laurel A Shannon	Gloria A Sullivan
Joe L. Hill	Fred M. Hayes, Jr.	Peter R. Skwerski, Jr.	Pamela Sutton
John E. Hosuland	Curtis A Mitchell	Wayne E. Smith, Jr.	Michael C. Svec
Gilbert E. itumprey	Richard K. Olney	Terry C. Snow	James J. Tattersall
Claude H. Johnson, Jr.	Stanley G. Oskatip, Jr.	Linda L. Southern	Steve L. Terry
Kathleen A Johnston	Shrikant Panwalkor	J. David Stevens	Deborah C. Tung
Benigro B. Jorque	Joe Ramsey	Mitchell D. Stucker	Cindy L Williams
Chuan-fang Kung	William L. Rowan	Halter P. Stuermann	Don M. Hoodford
Pamela B. Lay			
OKCAHOMA BETA, Oklahoma	State University		
Jack L. Barnes	Diane M. McDaniel	Martha N. Parker	Gerry C. Wiley
Ann C. Ferry	John M. Moore	Ann E. Pill	
OREGON GAMA, Portland	State College		
Rutbanne Benrett Mary Craven	Jerry Jefferies	Jacine Owen	Harrison T. Platt Margaret Ann Riley

pennsylvania delta, Pennsylvania State University

Wendell L. Anderson	David W. Crotty
Michael C. Balay	Richard Curcio
Roy C Bartholomae	David Scott Cavis
Millicent Anne Beaver	Michael R Delozier
David F. Becker	Lucinda A Duke
Claude A. Bench	Peter K. Eck
Karen A. Bienstock	Wilfred C. Fagot
James E. Bonerigo	Karl N. Fleming
Gerald L. Boyer	Victor A. Folvarczny
Howard S. Budd	Ashok V. Godarbe
Martin E. Budd	Robert T. Goettge
Charles A. Cable	Gordon A Griffin
Hilliam J. Ceriani	Charles W. Hamby
James T. Clenny	Charles P. Harrison
Robert Cowles	Charleen Hartsock
Lana S. Creal	Joseph M. Hoffman

James A Hunsicker	Donald C. Miller
Konanur G. Janardan	James C. Miller
S. W. Joshi	Leonard Miller
Dennis L. Kershner	Joseph Omaggio
Timothy J. Killeen	Walter T. Pazlewicz
Kim D. Klitgord	Michael F. Petock
Arthur A Knopp	Linda J. Pursell
George R Knott	Arthur R. Rand
Margret F. Kothanan	Glenn W. Sc-effler
Hanna R. Lattman	Mickolas J. Sepe
William C. Leipold	Victor Tang
Hyrie London	Alan Thistleuaite
Daniel E. Lutz	P. Timothy Wendt
Charles F. Hagnani	Michael J. Wingert
John W. MeCornick	Thomas J. Korgul
John J. Meister	

PENNSYLVANIA ETA, Franklin and Marshall College

David Joseph Burr	George Lee Greenwood
Kenneth Roberts Fox	Darrell Eugene Haile
Robert Thomas Glassey	Marc Craig Hochberg
Steven Gnepp	Randall Marvin King
Roy Goldman	

$$
\begin{array}{ll}
\text { Robert Mark Magrisso } & \text { Daniel Robinson } \\
\text { Walter D. Hendenhall } & \text { George M. Rosenstein } \\
\text { Lee Roy Phillips } & \text { Larry Fay Walker } \\
\text { M. John Plodinec } & \text { William Lewis Wass } \\
& \text { Kenneth R. Welsh }
\end{array}
$$

Roy Goldman
Marc Craig Hochberg

PENNSYLVANA IOTA, Villanova University
Robert Rigolizzo

PEMISYLVANIA THETA, Drexel Institute of Technology
Richard̈ A. Bogen
Dennis F. Melvin
Mary B. Sassaman

RHODE ISLAND ALPHA, University of Rhode Island
Harold Vincent Cardoza Mary K. Hutchinson
Jackson Intlehouse Rncent Anthony D'Alesand Frank Rocco Dellofacona P. S. Kamala Gangaran S. Ladde

Joseph 0. Luna
Darwin D. Harcoux
Christopher A. Nerone
Irene S. Palmer

[^1]SOUTH CAROUNA ALPHA, University of South Carolina

John Savid Asman	Hilliam ${ }^{\text {. }}$. Jones	"ayne 7. "oberts	Thomas Terry
William W. Foster	Patricia Fletcher Joye	Bob Robertson	William M. Weiis, III
Sherry Gomez	Lawrence Gregory Layman	Lwarence M. Robinson, Jr.	Stephen Hamilton West
Horman H. Haskell, Jr.	Wayne Metzger	Donald Eric Scott	Pamela Wofford
Dru R. Hoard	Sara A Ramos	Barry L. Shuler	Ben W. Wright
Vickie Estelle Hodges	Lenore Grace Fandall	John Thomas Snipes	

SOUTH DAKOTA ALPHA, University of South Dakota

Dean Anstad James H Battey	Stuart W. Doescher Dale S. Dutt	Ronald J. Light	Nicholas J. Scheuring
James, H. Battey	Dale S. Dutt	James H. Maher	Dennis L. Schladweiler
Charles L Bare	Arnold H. Fockler	Dona M. Miller	Jay G. Short
Carl M. Benson	Richard H. Forman	David H. Moen	Steve J. Solum
Darold Borchardt	Arie Gaalswy	Peggy Morgen	John If. Stene
Paul C. Burgan	Thomas J. Graf	Ellen D. Oliver	Gary 0. Stensaas
Herle K. Carlson	Judy A. Halverson	Larry R Osthus	Gerald R. Straney
Luey M. Clausen	James R Horning	Jane E. Phillips	Jerri L. Swoyer
Claire H. Dirks	Hartha B. T. Iken	Craig D. Porter	Tamara S. Tieman
Arlat R. Dekock	Thomas w. Johnson	Ernest Richards	Donna R. Vonrak
Lynn K. Dobson	Janice A. Kehn	Jams R Scharff	Ruth Hedgrood
temmesser alpha, Memphis State University			
Carolyn T. Campbell	Mary J. Dye	Judy A. Fowler	Charlotte A. McDonald
Timothy R Campbell	Harmon D. Essary	Jean I. Higley	Arthur G. Terhune
Anthony E. Caudel			Nancy E. Wagner

TEXAS ALPHA, Texas Christian University

Javid A. Archer	Barbara J. Heckendorn	Janice C. Peterson	Hisahiro Tamano
Alfonso G. Azpeitia	Stanley B. Higgins	J. V. Petty	Sandra L. Thomas
Robert D. Camitchel	Nom Howes	Georgia L. Sims	Shirley Smith Tucker
E. E. Dean	Michal Tyng Melvin	Walter J. Slade, Jr.	Sandra Williams
Gilliam R. Haughey	Joan A. Yutt	James D. Smith	Darlene Yarger

VIRGIIIIA BETA, Virginia Polytechnic Institute
James . Brewer
William Douglas Cwk,
Sterling T. Dibrell
Berter ly Jane Fishow
John Robert Fogelgren
Uarry, Thomas Frazier

Jams Tate Gabbert, Jr.	Alexander G. Kliefort
Jacques David LaMarre	
Sandra Lee Gill	Pei Liu
I. J. Goed	Claude Boyd Loadholt
Jee W. Johnson	Gichael Anthony Keenan Franklin Heyers

washingtor ALPHA, Washington State University

Zoger H. Aidersen	Lee Edlefsen	Michael A. Kilgore
Parla J. Armstrong	Wayne J. Erickson	Celia Klotz
Douglas M. Bell	Nancy Farley	Dennis Luiten
Don J. Bradley	Donald J. Ferre	Gene Hiller
ziehard Brown	Margaret Fox	Vern His
D. Eushaw	Gordon R. Gray	Ronald 0. Newlon
Demis E. Carlson	John R. Hastings	Julian W. Pietras
Alian M. Carstens	Pat Healey	Harley R. Potampa
Roger L. Clement	E1liott Henry	Rod S. Raguso
c. Allen Cole	David Johnson	Hichael R Riches
Resbert R. Collison	Hai-On Kan	Kanneth D. Riley
Joe E. Cutie	Sard! Kates	Alan Roecks

Lyle Russell Richard S. Sandmeyer Cheryl Sapp.
erome Schmierer
Dennis G. Schneider
olleen Supler
Joe Turon
Dwain C. Wegrer
Robert E. Hes

John Cannon Francix Cheng

WASHINGTON EPSILON, Gonzaga University

Kathleen Bonck Gary Gones
James Clark
Paula Cowley
Michael Epton
Prof. John Firkins
Prof. Aaron Goldman

Raymond Hart
Tom Henry
Michael Keyes
Terry Krize

Graham Maidment hof. Paul McWilliams Oscar Montes-Rosales Prof. Zane Motteler John Nelsen

Robert Michale Nuess John Rawson
Prof. Donald R. Ryan
Robert Stoffregen
Patricia Van House

WEST VIRGINIA ALPHA, University of West Virginia

Sandra J. Beken
William A. Biese
Elizabeth N. Caldwell
Anand M. Chak
James R. Dosier
Addison M. Fischer

Elizabeth W. Frye Carol E. Haddock Francis H. S. Hall Jean A. M. Hall Robert E. Harper Henry K. Hess

Alonzo F. Johnson Patricia A. H. Jones Robert J. Kumza Samuel K. McDaniel William L. Peters James B. Reese

Glenn W. Rock Judy A. Stanko Curtis A. Staton Patricia E. Stemple Karen A. Toothman Edward A. Waybright James E. Zaranek

Mark Sheingorn

 Phillip F. Stambough Martin Strassberg Mary W. WhiteNEW CHAPTERS OF PI MU EPSILON

ARIZONA BETA 139-1968	Prof. Matthew J. Hossett, Dept. of Mathematics Arizona State University, Tempe 85281
MINNESOTA GAMMA 133-1968	Prof. Wayne Roberts, Dept. of Hathematics, Macalester College, St. Paul 55101
MISSISSIPPI ALPHA 136-1968	Dr. T. A. Bickerstaff, Dept. of Mathematics, University of Mississippi, University 38677
$\begin{aligned} & \text { NEW JERSEY DELTA } \\ & 137-1968 \end{aligned}$	Dr. Marcelle Friedman, Dept. of Mathematics, Seton Hall University, South Orange 07079
NEW JERSEY EPSILON 138-1968	Miss Eileen L. Poiani, Dept. of Mathematics, St. Peter's College, Jersey City
NORTH CAROLINA DELTA 135-1968	Prof. Robert N. Woodside, University of East Carolina, Greenville 27834
WASHINGTON EPSILON 134-1968	Dr. Zane C. Motteler, Dept. of Mathematics, Gonzaga University, Spokane 99202

Triumph of the Jewelers Ant YOUR BADGE - a triumph of skilled and highly trained Balfour
craftsmen is a steadfast and dyrimic symbol in a changing world. Official Badge Official nome piece key ortimal the piece key-pion Official three-piece key-pin WRITE FOR INSIGNIA PRICE LUST.

OFFICIAL JEWELER TO PI MU EPSILON

[^0]: Solution by the Proposer. Designate the first ship, whose
 motion is known completely, as "own ship" and write its parametric equations of motion as

[^1]: lexander S. Papadopoula
 A. N. V. Rao

 Ronald C. Schies
 Carolee S. Hashburn

