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The University of S t .  Thomas, Houston, Texas 

I n  a ca lculus  c l a s s  a s tudent  noticed t h a t  X I  = .k$ and 

This led t o  t h e  question: 
I f  P(x) is a polynomial, is the  following formula val id?  

The c l a s s  quickly found a counterexample. I f  P(x) = x ,  then 
]P(x) 1 has a der iva t ive  everywhere, hence t h e  formula, which would 
ind ica t e  t h a t  t he  de r iva t ive  did not e x i s t  a t  the  o r ig in ,  is not valid 
i n  t h i s  case.  

This brought up the  question,  what conditions can we impose on 
P(x) so  t h a t  t he  formula w i l l  hold? One s tudent  suggested the  condi- 
t ion :  i f  P(a) = 0 ,  then P t ( a )  # 0 ,  while another noticed t h a t  i n  a l l  
cases f o r  which t h e  formula held,  the  roo t s  were d i s t i n c t .  

After considerable labor  and prodding by the  in s t ruc to r ,  t he  
following theorem emerged: 

Theorem: I f  P(x) is a polynomial, then the  following three  conditions 
a r e  equivalent:  

( i )  I f  a is r e a l  and P(a)  = 0, then P f ( a )  # 0.  
( i i )  The r e a l  roo t s  of P(x) a r e  d i s t i n c t .  

( I i i )  BJP(X)I . p t (x )  

( i )  4 ( i i )  Suppose P(x) has a repeated r e a l  roo t ,  a ,  

2 
Then by t h e  Factor Theorem, P(x) = ( x  - a )  Q(x) .  

2 
P'(x) = (x  - a )  Q ' (x)  + 2 Q(x)(x - a )  and P ' ( a )  = 0. 

( i i )  + ( i )  Suppose P(a)  = 0 ,  a r e a l .  Then 
P(x) = ( x  - a)Q(x), and s ince  P(x) has no repeated r e a l  roo t s ,  
Q(a)  # 0. Then 
P1(x) = (x  - a)Q1(x)  + Q(x) and 
P V ( a )  = Q(a)  # 0. 

( i i )  -Ã  ̂ ( i i i )  Proof by induction on the  number of r e a l  roo t s  of 
P(x).  F i r s t  we s t a t e  two preliminary lemmas whose proofs a r e  obvious. 



Lemma 1. I f  Q(x) is a polynomial having no r e a l  roots ,  then - 

Lemma 2. I f  P(x) = x - r, r real, then - 

Proof of ( i i )  + ( i i i ) :  F i r s t  we show t h a t  ( i i i )  holds i f  P(x) 
has only one r e a l  root .  Then I P ( x ) ~  = l (x  - rl)Q(x) 1 where Q(x)  has 
no r e a l  roots .  

t he  lemmas, t h i s  is 
1 - 1 IQ(X)I lx - rlI 

1 .o(x) Q'(x)  + 1 ~ 1  - 
x - r  1 

Next we assume t h a t  ( i i i )  holds f o r  a polynomial having exactly 
k d i s t i n c t  r e a l  roots.  He want t o  show t h a t  ( X i )  is val id  i f  P(x) 
has exactly k + 1 d i s t i n c t  real roots .  

where Q(x)  has no r e a l  roots .  

Thus f o r  every posi t ive  in teger  n, i f  P(x) i s  a polynomial having 
n r e a l  roo t s ,  ( i i )  -Ã ( i i i ) .  

( i i i )  Â¥ ( i i )  Suppose P(x) has a repeated r e a l  roo t ,  a .  Then 

I P ( x ) ~  = l (x  - a ) 2 ~ ( x ) l  and 

l i m  (x  - a ) 2 1 ~ ( x ) l  - x+a x - a  

Thus the der ivat ive  ex i s t s  a t  a and ( i i i )  does not hold. 

UNDERGRADUATE RESEARCH PROJECT 
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This problem concerns a method of characterizing ce r t a in  s e t s  i n  the  
plane. Say a s e t  is (m,n)-convex i f  it has t h e  property t h a t  among each 
m points  of t he  s e t  there  a r e  a t  l e a s t  n p a i r s  whose joins a r e  i n  t h a t  
s e t ,  m>2 and n>0. For example, t h e  five-pointed star with its i n t e r i o r  
is a set w h i c h i s  (2,O)-, (3,l)-, (4,3)-, (5,5)-convex, etc. ;  t he  s e t  
consis t ing of two in t e r sec t ing  l i n e s  is (2,O)-, (3,l)- ,  (4,2)-, (5,4)- 
convex, e t c .  The function c (m) is defined as the  maximal number n such s t h a t  t he  s e t  S is (m,n)-convex. Evidently c (m) r e f l e c t s  t he  character  
of S. Thus it is easy t o  see  t h a t  i f  S is a

s
parabola c (m) = 0, i f  S s is convex cs(m) = (9) = Cm(m - 1)1/2, and i f  S consis ts  of t he  union of 

two convex s e t s  c_(m) = 

v - /  
where [m/2] denotes the  p a t e s t  in teger  i n  m/2. Investigate ce r t a in  
s e t s  i n  the  plane t o  see  i f  they may be characterized by the  function 
cs(m) defined above. Sample theorem: A s e t  S consis ts  of a convex s e t  C ,  
and k i so l a t ed  points  not i n  C ,  i f  and only i f  cS(m) = ~ ~ $ 1 .  
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h a s  no t  y e t  r e c e i v e d  a masters d e g r e e )  s u i t a b l e  f o r  pub- 
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AN EASIER CONDITION 

THAN TOTAL BOUNDEDNESS 

Daniel E. Putnam 

University of Illinois 

The condition of total boundedness is a useful one: for instance, 
in establishing compactness. Therefore it is worthwhile to find 
simpler properties equivalent to total boundedness. The condition 
I suggest is this: 

Definition: A subset A of a metric space (X,d) is Cauchy bounded, 
if for all E > 0 and all infinite subsets BCA there are two points 
x,y E B with d(x,y)<e. 

Compare this condition with that of total boundedness: 

Definition: A subset A of a metric space (X,d) is totally bounded, 

if for all e>O there is an E nef consisting of a finite subset, 

{a.,a,...a 1, of A so that for any x e A we have d(x,ai)<e for some i. 

It is easy to see that if A were totally bounded and if BCA were 

infinite, then given e>0, we could find x,y e B with d(x.y)<e. The 

procedure is simple. We simply note the existence of a 1/2 E net 

and see that there are two points, x and y, of the infinite set B 

clustered about one of the points, ai, in the 1/2 e net. From 

d(x,a.)<e/2 and d(y,a.)<e/2 and the triangle inequality, we see that 
1 

d(x,y)<e. Thus total boundedness easily implies Cauchy boundedness. 

That Cauchy boundedness implies total boundedness is not quite so 

easy to see but is still easy to prove. 

Theorem: If a subset A of a metric space (X,d) is Cauchy bounded, 
-then it is totally bounded. 

Proof: Suppose that A was not totally bounded. In that case we - 
would have an 00 so that no e net existed. Choose a point ale A-{al} 

is not an E net, so there must be a point a2e A with d(al,a2)>e. 

{al,a2} is not an e net, so there must be a point a3e A with d(a3,a2)2e 

and d(a3,al)ze. We note that {a 1 2 3  ,a ,a } is not an E net, and this 

process continues in the same way. The result is a sequence of points, 

{a 1, of A, with the property that d(ai,a.)>e if i # j. The sequence 
I - 

{ a }  is an infinite subset of A that has no two points closer than e. 

Thus we have a contradiction to the Cauchy boundedness of A, and the 

theorem is established. 

Perhaps it is now easier to see why Cauchy boundedness is simpler 
to establish than total boundedness. The fact that Cauchy boundedness 
follows so easily from total boundedness implies that one might as 
well prove a set to be Cauchy bounded as totally bounded. Furthermore 
the fact that in order to establish total boundedness one must find an 
e net for each e seems to indicate that total boundedness is harder to 
establish than Cauchy boundedness where one only needs to find two 
close points in an infinite subset. 

As an illustration of what is involved, let me offer a new proof 
to an old result. 

Theorem: If A is a subset of the space of continuous real-valued 
functions on [0,11 with the uniform metric, then A is compact if A is 
closed, equicontinuous, and uniformly bounded. 

This is half of the Arzela-Ascoli theorem as stated in [I]. The 
procedure will be to show that A is complete and totally bounded. This 
is enough to prove that A is compact by a nice little theorem that 
says that a subset of a metric space is compact if, and only if, it 
is complete and totally bounded [21. Since the metric space of con- 
tinuous functions on [0,11 is complete and A is given to be closed, we 
know that A is complete. Thus we only need to prove that A is totally 
bounded. We will do this by route of Cauchy boundedness. 

Let A be an infinite subset of A and let 00 be chosen. Since 0 
A is also equicontinuous, for all x e [0,11 there exists N such that 
0 

for all f E A and all y e N we have If (y) - f (x)l< e/3, where N de- 

notes an open set for which x E N . We note that the family of sets 

{ N }  for x e [0,1] covers [0,1] and so we have a finite subcover of 

Now consider the set {f(x )/f e A}. From the fact that A is 
1 0 

both uniformly bounded and infinite, we know that there is an infinite 

subset A c A such that for f, g E A we have that If(x) - g(xl)1<e/3. 
1 

This follows from the well known Bolzano-Wierstrass theorem. 

Let me put together what we have so far. Let y e N and f, 

g E A ,  then: 1 

lf(y) - g(y)l 5 lf(y) - f(xl)l + lf(xl) - g(xl)1 + Ig(xl) - g(y)l. 
We know that each of these quantities is less than e/3, so we have 

If (Y) - g(y) 1 <e. Thus, the functions of A uniformly approximate each 
1 

other on Nx . 
1 

The same trick works again and we find an infinite subset A c A 
2 1 

so that f, g e A ,  y E Nx implies If (Y) - g(~)I<e. Of course, since 
2 



A CA we know t h a t  l f ( y )  - g ( y )  a l s o  ho lds  i f  y E N . Continuing 2 1 
1 - 

i n  t h i s  way e v e n t u a l l y  produces an i n f i n i t e  subse t  A k C A  such t h a t  

f y - g ( y ) < e i f  f , g e A k a n d y e N  f o r i = l , 2  ,... k. Since 
x: 
L 

{N /i = 1,2, . . .k} covers [0,11 we s e e  t h a t  A is a n  i n f i n i t e  s e t  of  
xi - 

f u n c t i o n s  whose elements uniformly approximate each o t h e r  wi th in  

e on t h e  u n i t  i n t e r v a l .  

We have taken  an i n f i n i t e  s u b s e t  A CA and shown t h a t  an i n f i n i t e  
0 

s u b s e t  A C A C A  has  t h e  proper ty  t h a t  any two elements of  A a r e  l e s s  
.. . 

t h a n  E a p a r t  according t o  t h e  uniform m e t r i c  on t h e  space of  continuous 

func t ions .  Thus we s e e  t h a t  A is Cauchy bounded and t h e r e f o r e  

t o t a l l y  bounded and compact. 

An a l t e r n a t e  approach found i n  [l] a c t u a l l y  c o n s t r u c t s  an e 
n e t  by us ing  a s e t  of  polygonal func t ions .  Unfortunately,  t h i s  
method r e q u i r e s  a  l i t t l e  ingenui ty  and some v e r i f i c a t i o n .  However, 
i n  t h e  proof used i n  t h i s  paper t h e  immediate consequence o f  t h e  
d e f i n i t i o n s  o f  e q u i c o n t i n u i t y  and uniform boundedness is t h e  c r i t i c a l  
i d e a  of  t h e  e n t i r e  proof :  t h a t  t h e  f u n c t i o n s  of  a  c e r t a i n  i n f i n i t e  
s e t  of  f u n c t i o n s  a r e  uniformly c l o s e  on [0,11. We s e e  t h a t ,  a t  l e a s t  
i n  t h i s  c a s e ,  Cauchy boundedness is indeed an e a s i e r  condi t ion  t o  
e s t a b l i s h  than  t o t a l  boundedness. 
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A PROBLEM I N  ELEMENTARY MATHEMATICS 

Kenneth Loewen 

I n  t h e  book One Hundred Problems i n  Elementary Mathematics, 
Hugo Steinhaus proposes t h e  fol lowing problem: Find n numbers i n  t h e  
u n i t  i n t e r v a l  such t h a t  t h e  f i r s t  two a r e  i n  d i f f e r e n t  ha lves ,  t h e  
f i r s t  t h r e e  i n  d i f f e r e n t  t h i r d s ,  t h e  f i r s t  f o u r  i n  d i f f e r e n t  f o u r t h s ,  
and s o  on, till t h e  f i r s t  n a r e  i n  d i f f e r e n t  n- ths.  He g i v e s  a s o l u t i o n  
f o r  n = 14 and i n  a foo tnote  mentions t h a t  M .  Warmus proved t h a t  n = 1 7  
is t h e  l a r g e s t  number f o r  which t h e  problem has a s o l u t i o n .  A s o l u t i o n  
f o r  n = 17 w i l l  be given by any s e t  o f  numbers s t a i s f y i n g  t h e  fol lowing 
i n e q u a l i t i e s :  

SET-THEORETIC DEFINITION OF ORDERED N-TUPLES 
-- 

B. L.  Madison 

L.  S. U . ,  Baton Rouge 

We make a d i s t i n c t i o n  between t h e  ordered n- tuple ( a , a  - , . . . , a )  

and t h e  s e t  {al,a2, . . . , a } .  The ordered n- tuple 's  "value" is changed 

i f  t h e  elements a r e  rearranged while t h e  o r d e r  of  t h e  elements has 
nothing t o  do with t h e  "value" o f  t h e  s e t .  For example, (1,2,3)  # 
( 3 , 2 , 1 ) ,  bu t  {1,2,3} = {3,2,1}.  

The above remarks fol low from t h e  d e f i n i t i o n  t h a t  (al,a7, ..., a ) = 

(bl,b2 ,..., b ) i f  and only i f  al = bl, a 2  = by,  ..., a = bn.  

On t h e  o t h e r  hand, two s e t s  a r e  s a i d  t o  be equa l  i f  they  conta in  t h e  
same elements.  More p r e c i s e l y ,  s e t s  A and B a r e  equa l  i f  and only 
i f  every element o f  A is an element o f  B and every element of  B is a n  
element o f  A .  

Example 1. 1 f  {a,b} = { x , ~ }  t h e n  e i t h e r  a  = x and b = y o r  b = x and 
a = y .  Of course,  both of  t h e s e  could occur ,  i . e .  a  = x = b = y.  We 
w i l l  u s u a l l y  omit  t h i s  t r i v i a l  c a s e .  

Exam l e  2 I f  {a} = { x , ~ " }  t h e n  a = x = y and { a , x , ~ }  = {x ,  } = {a,x)  = {a = {x} = ly] .  More concx-etely, {2,3,?,3} = {2,3\ .  

Example 3 .  {{a ,{a,b}} is a s e t  whose elements a r e  themselves s e t s ,  
namely { a  a d  a .  I n  a d d i t i o n .  {{a],{a,b)} # {a,a,b} = {a,b}.  

The o b j e c t  h e r e  is t o  d e f i n e  an ordered n- tuple i n  terms o f  s e t s .  
To d ispose  of t h e  case  where n = 1, we s h a l l  d e f i n e  {a} = ( a )  = a .  
The case  f o r  n = 2 is more i n t e r e s t i n g .  

Def in i t ion  1. ( a , b )  = {{a},{a,b}] . ( 1 )  
The ques t ion  now is whether o r  n o t  t h e  r i g h t  hand s i d e  of  ( I )  completely 
and uniquely determines t h e  ordered p a i r  ( a , b ) .  The fo l lowing  theorem 
answers t h i s  ques t ion  a f f i r m a t i v e l y .  

Theorem 1. ( a  b )  = ( x , y ) ,  i . e .  a  = x and b = y ,  i f  and only i f  

f ( a U a , b ) I  = l tx l ,{x*YI]  - 
Proof: Suppose ( a , b )  = ( x , y ) ,  i . e .  a  = x and b = y .  Then {a} = {xl  
W a , b )  = { x , ~ } .  Thus {{a1 {a,b}' = {{x ,{x,y)}. 

Suppose t h a t  {{a} .{a,b}l '= {{XI .{x.y1i. 
Two c a s e s  a r i s e .  We ignore  t h e  t r i v i a l  case  where {a} = {a,b} = 

= { x ~ Y I .  
Case 1. - {a = x} 

and { a , b l  = [x ,y l .  



From (A) one RetS a = x. From (B) one g e t s  e i t h e r  
a = x a n d b = y  

o r  a = y a n d b = x ,  

I f  (A) and ( B )  then  a = x and b = y .  

I f  ( A )  and ( B )  t h e n  a = x and b = y.  

Then one has  (a ,b)  = (x ,y) .  

Case 2. {a \  = ( , x y )  - 
and f a , b ,  = 

AN INTERESTING MAPPING OF TWO FIELDS 

Jerome M .  Katz 
Brooklyn College 

. - 
From ( C )  a = x 8 =  y and from (Dl a = b = x, which y i e l d  a = x 
and b = y .  Thus ( a , b )  = ( x , y ) .  This completes t h e  proof .  

I n  t h e  c a s e  where n = 3 (3- tuple  o r  ordered t r i p l e ) ,  s e v e r a l  
d e f i n i t i o n s  w i l l  y i e l d  a r e s u l t  analogous t o  Theorem 1. For example, 

D e f i n i t i o n  2. (a ,b,c)  = { { ( a , c ) l ,  { ( a , b ) ,  (b,c)}}.  (11) 
The r e a d e r  can v e r i f y  t h i s  d e f i n i t i o n  by fol lowing t h e  example of  
Theorem 1. Attempts a t  o t h e r  d e f i n i t i o n s  w i l l  show t h a t  some appar-  
e n t l y  obvious ones a r e  not  s u f f i c i e n t .  

(a ,b ,c )  = { a}  a b} {a,b c ] } .  Note t h a t  (1,1,2)  # 
{1},{1,11,{1,1,2~} ; l { ; } , [ l , 2 ] , [ l , 2 , 1 ~  s i n c e  both s i d e s  
,{1,2}} . This shows t h a t  t h e  d e f i n i t i o n  is n o t  

s u f f i c i e n t  . 
One can extend t h i s  s o r t  of d e f i n i t i o n  t o  an n- tuple f o r  any pos i-  

t i v e  i n t e g e r  n.  The fol lowing is a g e n e r a l i z a t i o n  of  ( I )  and ( 1 1 ) .  

D e f i n i t i o n  3 .  (al,a2 ,..., a ) = {{(al,a2 ,..., a^,an)}, {(al ,a2 ,... 
an-l), (a2,a3,  ....a ) I } .  (111) 

I t  is  not  d i f f i c u l t  t o  prove t h a t  (al,a2 ,..., a ) = (xl,x2 ,..., x ) i f  and 

only  if ({(al ,a2,  ..., a n - 2 d n  )I, {(al,a2 ,..., a^) ,  ( a 2 + ,  ..., a ) } }  = 

{{(x1,x2,. . .xn_2,xn)1, {(x1,x2,. .X^), ( x  2.x3....xn)}}. 

Note t h a t  t h i s  is a r e c u r s i v e  d e f i n i t i o n  of an ordered n- tuple ,  i . e . ,  
we d e f i n e  an n- tuple i n  terms of  s e t s  whose elements a r e  (n-1)-tuples.  

Wu i ng? 

B E  S U R E  T O  L E T  T H E  JOURNAL KNOW: 

I 

Send your name, old address wi th  z i p  code and new 
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I n  t h i s  a r t i c l e ,  I w i l l  prove an i n t e r e s t i n g  theorem concerning 
a mapping o f  two f i e l d s ,  namely: I f  T is  a one-to-one mapping o f  a 
f i e l d  F onto a f i e l d  F' such t h a t  Tra(b- l ) ]  = ~ ( a ) [ ~ ( b )  - ~ ( l ) ] ,  then 
T is an isomorphism. 

I n  o r d e r  t o  prove t h a t  T is an isomorphism, it is s u f f i c i e n t  t o  
show t h a t  T preserves  a d d i t i o n  and m u l t i p l i c a t i o n .  To do t h i s ,  I w i l l  
c h a r a c t e r i z e  a d d i t i o n  and m u l t i p l i c a t i o n  i n  terms of  t h e  o p e r a t i o n  
a(b-1) which w i l l  be  denoted a*b. 

Theorem 1: a b  = (a*0) * r(l*Ol*bI 

Proof: (a*O) * [(l*0)*b] = [a(O-111 * r l ( 0 - l ) * b l  
= (-a)*(-l*b) 
= (-a)*(-b+l) 
= (-a)(-b+l-1) 
= (-a)(-b)  =ab 

I f  b=0, we obviously have a+b=a+O=a. 
We a r e  given t h a t  T(a*b) = T [ a ( b - l ) ]  = T(a)  rT(b) - T ( l ) 1  ; 

t h u s  i n  o r d e r  t o  prove t h a t  T(a*b) = T(a)  * T(b),  it is  s u f f i c i e n t  t o  
prove t h a t  T ( l )  = 1' where 1' is  def ined  t o  be t h e  u n i t y  f o r  F ' .  

I w i l l  f i r s t  prove t h a t  T(0) = 0 '  where 0 '  is t h e  z e r o  element o f  
F ' .  

Theorem 3: I f  T is a onr- to-one  mapping o f  a f i e l d  F on to  a f i e l d  F' 
such t h a t  T [a (b- I ) ]  = T(.,) [T(b) - T ( l ) ] ,  t h e n  T(0) = 0 ' .  

Proof: 0 = O(a-1) f o r  a l l  a i n  F - T(0) = T [OCa-Dl 
T(0) = T(0) CT(a) - T ( l ) 1  ( 1 )  

Assume T(0) # 0 ' .  Then we can c a n c e l  T(0) from both s i d e s  o f  ( 1 ) .  
Therefore,  1' = T(a) - T ( l ) ,  and T(a)  = T ( l )  + 1' f o r  a l l  a i n  F. 

Therefore,  T maps every element o f  F i n t o  one element of F ' ,  a 
c o n t r a d i c t i o n  s i n c e  T is one-to-one. 

Therefore T(0) = 0 ' .  
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Theorem 4: I f  T is a s  i n  t h e  preceding theorem, then T(1) = 1'. 

Proof: 1 = (-D(O-1) 
T(1) = T(-1) [T(0) - T ( D I  
But T(0) = 0 '  (Theorem 3) 
Therefore, T(1) = -T(-l)T(l)  
But T(1) # 0'  s ince  T is one-to-one. 
Therefore, T(-1) = -1'. 

It i s  now necessary t o  consider two cases: case I where F is not of 
c h a r a c t e r i s t i c  2 and case I1 where F is of cha rac t e r i s t i c  2. 

CASE I: F is not o f  c h a r a c t e r i s t i c  2 ( i . e .  1 # -1) 
-1 = l (0-1)  
T(-1) = T(1) rT(0) - T ( l ) l  
But T(0) = 0' and T(-1) = -1' 
Therefore, -1' = - [ ~ ( l ) l '  
Therefore, [ ~ ( l ) ] ~  = 1'. 
Therefore, s ince  T is one-to-one and -1 # 1, T(1) = 1'. 

CASE 11: F is of c h a r a c t e r i s t i c  2 ( i . e .  1 = -1) 
Since T is onto, every element of F' has a preimage i n  F. 

Let a be t h e  preimage of 1'. 
Then T(a) = 1' 
T(a-1) = T(a+l) = T [ l ( a - l ) ]  = T(1) [T(a) - T(D1  
But T(1) = -1' (s ince  1 = -1). 
Therefore, T(1) [T(a) - T ( l ) ]  = (-1') r l '  - (-!')I 

= ( - 1 ' ) ( l 1 + l ' )  = -(11+1') 
~ ( a ~ )  = T r a ( a+ l - l ) l  = T(a)  rT(a+i) - T(1)I 

= i t  r - ( l t + r )  - (-1'11 = -11. 
Therefore, ~ ( a ' )  = T(1).  But T is  one-to-one. Therefore, 

a2=1. Therefore, a 2  - 1 = 0. 
But a2 - 1 = (a+l) (a-1) .  and t h i s  f ac to r i za t ion  is unique 

s ince  a oolvnomial r i ng  over a f i e l d  is a uniaue fac tor iza t iondomain .  - - - 
(See, f o r  example, G. Birkhoff and S. MacLane, A Survey of Modern 
Algebra, 3rd ed i t i on ,  page 72, )  

But a + l  = a-1. 
Therefore, a2 - 1 = ( a  - 1)' Therefore, by t h e  f ac to r  

theorem, a = l  (=-I )  is t h e  only roo t .  
Therefore, i n  t h i s  case,  T(1) = 1' 

Note t h a t  we have a l so  shown t h a t  F' is o f  c h a r a c t e r i s t i c  2. 
Using t h e  f a c t  t h a t  T(1) = l', we can conclude t h a t  T(a*b) = 

T(a) * T(b). The proof of t h i s  obvious statement is l e f t  t o  t he  reader.  

We a r e  now ready t o  prove t h a t  T preserves addi t ion  and mul t ip l i -  
ca t ion .  

Theorem 5: T(ab) = a ' b '  where a8=T(a )  and b8=T(b).  

Proof: T(ab) = ~ { ( a * 0 )  * C(l*o)*bI} 
= T(a*O) * T r(l*O)*b] 
= T(a*O) * rT(l*O)*T(b)] 
= CT(a)*T(O)] * [(T(l)*T(O)) * T(b)l  

But T(0)=O1, T ( l ) = l t ,  T(a)=a'  and T(b)=b1. 
Therefore, T(ab) = (at*O') * 1"(1'*Ot) * b ' l  

= a 'b '  by Theorem 1. 

Theorem 6: T(a+b) = a l+b '  

E: It is necessary t o  consider t he  cases b=O and b#O separa te ly .  

I f  b=0, T(a+O) = T(a) = a '  = al+O' = T(a) + T(0) 
I f  b#O, 
T(a+b) = T [(b*o)*((ab'l) *0)1 

= T ( ~ * o )  * T [(ab-l)  * 01 
= [T(b)*T(O)] * [ ~ ( a b - l )  * T(0) l  

But s ince  T preserves mul t ip l ica t ion  ~ ( a b - l )  = a 'b ' - l .  

Therefore, T(a+b) = (bf*O') * [(a'b'I1) * 0 '1  
= a '  + b' by Theorem 2 is b'#0. But s ince  b#O, 

and T is a one-to-one, we know t h a t  b'#O. 

Now t h a t  we have proven t h a t  T is a homoniurphism, it follows from 
the  assumption t h a t  T is one-to-one and onto t h a t  T is an isomorphism. 

3 3 
Tan x + Tan y = 3 Tan x Tan y. 



When 1' holds replace a by b.c in it and use axioms 1' and 
3 to get 

INDEPENDENT POSTULATE SETS FOR BOOLEAN ALGEBRA 

Chinthayamma 

University of Alberta 

Introduction. According to Dickson [2] a Boolean Algebra is a 
set X such that for all a,b,c,... belonging to X: 
A. There is defined a (closed) binary operation "." such that 

Axiom 1. a.(b.c) = (a.b).c 
Axiom 2. a.b = b.a 
Axiom 3. a.a = a 

B. There exists an element I belonging to X such that 
Axiom 4. a.1 = a for all a belonging to X 

C. There can be defined a function ' from X into itself such that 
Axiom 5 .  (a')' = a for all a belonging to X' 
Axiom 6. a.at = I' for all a belong in^ to X 
Axiom 7. a.b = 1' implies a.bt = a. 

Dickey [l] has reduced this system of seven axioms to a system 
of five axioms by eliminating the axiom 3 and by replacing the axioms 
1 and 2 by 

which can be done as long as the axiom 4 is retained. 

The purpose of this paper is to give two independent sets of 
four postulates in which axiom 4 is also eliminated using the axioms 
5, 6 and 7 and even though axiom 4 is eliminated the axioms 1 and 2 
are replaced by a variant of axiom 1. 

Sets of Postulates. 
THEOREM 1. Let X be a set with an element I such that for all 

a,b,c, ... belonging to X 
A. There is defined a (closed) binary operation "." such that 

Axiom 1'. 

Axiom 1". 

B. There can be defined a function ' from X into itself such that 

Axiom 5 .  (a')' = a for all a belonging to X 
Axiom 6. a.a' = I' for all a belonginr to X 
Axiom 7. a.b = I' implies a.b' = a. 
Then X is a Boolean Algebra. 

Similarly when 1'' holds replace c by a.b in it and use axioms 1" and 
3 to get a.b = b.a. 

Thus "." is commutative in any case and this together with 1' 
or 1'' implies 1. Axiom 4 is also satisfied in any case as follows: 

= a.1' 
This implies 

a.(It)' = a 

by axiom 6 

by axiom 3 

by axiom 1 

by axiom 6 

by axiom 7 

by axiom 5 

Independence. Let X = {O,a,b,I} with 1.0 = a.b = b.a = 0 otherwise 
x.y = x; with x,y denoting any of the elements 0, a, b, I and 
0' = I, I' = 0, a' = b, b' = a. Then axioms 5, 6 and 7 are satisfied. 
But axiom 1' is not satisfied since a.(a.I) = a and I.(a.a) = I and 
1'' is also not satisfied since (a.1l.a = a and I.(a.a) = I. The 
other three axioms are proved to be independent in C21. 
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etc. etc. 

Proof. It is sufficient to prove the axioms 1, 2 and 4 since the 
axiom- already proved in [ll. 



PROBLEM DEPARTMENT 

Edi ted  by 

Leon Bankoff, Los Angeles, C a l i f o r n i a  

With t h i s  i s s u e  we in t roduce  a new problem e d i t o r .  To Murray 

Klamkin who served i n  t h i s  capac i ty  f o r  t h e  p a s t  t e n  y e a r s  we g i v e  
o u r  thanks f o r  a  job w e l l  done. 

The new e d i t o r  is Leon Bankoff who has c o n t r i b u t e d  many problems 
and s o l u t i o n s  t o  t h e  problem department of  t h e  J o u r n a l  i n  t h e  p a s t .  
He a l s o  se rved  a s  j o i n t  e d i t o r  of  t h e  problem department f o r  one 
i s s u e  (Spring 1958). D r .  Bankoff p r a c t i c e s  d e n t i s t r y  i n  Los Angeles. 

The new problem e d i t o r  would l i k e  t o  p u b l i s h  s o l u t i o n s  t o  a l l  
problems which have appeared i n  t h i s  J o u r n a l ,  but  f o r  which s o l u t i o n s  
have not  y e t  been published.  These problems (published p r i o r  t o  1967) 
a r e  l i s t e d  below. The e d i t o r .  

37. ( A p r i l  1952) Proposed by Vic tor  ~ h e b a u l t ,  Tennie Sar the ,  France 
Find a l l  p a i r s  o f  t h r e e  d i g i t  numbers M and N such t h a t  M'N = P 
and M I - N '  = P, where M I - N '  and P' a r e  t h e  numbers M - N  and P 
w r i t t e n  backwards. For example, 

122 x 213 = 25986 
and 

221 x 312 = 68952 

91. ( F a l l  1956) Proposed by Nathaniel  Grossman, C a l i f o r n i a  I n s t i t u t e  
of  Technology Prove t h a t  

1 a(-) @ ( d l  = n ~ ( n )  

d 
where ~ ( n )  denotes t h e  number of  d i v i s o r s  of  n ,  a ( n )  is t h e  sum of 
t h e  d i v i s o r s  of  n and + ( n )  is t h e  Euler  T o t i e n t  func t ion .  

102. ( F a l l  1958) Proposed by Leo Moser, Univers i ty  of  Alber ta  Give a 
complete proof t h a t  two e q u i l a t e r a l  t r i a n g l e s  of  edge 1 cannot be 
p laced ,  without  over lap ,  i n  t h e  i n t e r i o r  of  a  square  of edge 1. 

120. (Spring 1960) Proposed by Michael Goldberg, Washington, D.  C. 
1. A l l  t h e  or thogonal  p r o j e c t i o n s  o f  a  s u r f a c e  o f  cons tan t  width 
have t h e  same per imeter .  Does any o t h e r  s u r f a c e  have t h i s  property? 
2. A sphere  may be tu rned  through a l l  o r i e n t a t i o n s  while remaining 
tangent  t o  t h e  t h r e e  l a t e r a l  f a c e s  o f  a  r e g u l a r  t r i a n g u l a r  prism. 
Does any o t h e r  s u r f a c e  have t h i s  p roper ty?  Note t h a t  a  s o l u t i o n  t o  
2. i s  a l s o  a s o l u t i o n  t o  1. 

128. (Spring 1961) Proposed by Robert P. Rudis and Chr i s topher  Sherman, 
AVCO RAD Given 2n u n i t  r e s i s t o r s ,  show how t h e y  may be connected 
us ing  n s i n g l e  po le  s i n g l e  throw (SPST) and n s i n g l e  po le  double 
throw (SPDT) ( t h e  l a t t e r  with o f f  p o s i t i o n )  swi tches  t o  o b t a i n ,  
between a s i n g l e  f i x e d  p a i r  of  t e r m i n a l s ,  t h e  va lues  of  r e s i s t a n c e  

of  i and i'l where i = 1,2,3, .  . . ,2n. 

E d i t o r i a l  Note: Two more d i f f i c u l t  r e l a t e d  problems would be t o  

o b t a i n  i and i using t h e  l e a s t  number of  on ly  one o f  t h e  above 

type  of  swi tches .  

( F a l l  1961) Pro  osed b Michael Goldberg,Washin t o n ,  D.  C. What 
is t h e  smallest

p
convex

y
area which can be r o t a t e d g c o n t i n u o ~ s l y  

w i t h i n  a r e g u l a r  pentagon while keeping c o n t a c t  with a l l  t h e  
s i d e s  o f  t h e  pentagon? This problem is unsolved b u t  has been 
solved f o r  t h e  square  and e q u i l a t e r a l  t r i a n g l e .  For t h e  square ,  it 
is t h e  r e g u l a r  t r i - a r c  made o f  c i r c u l a r  a r c s  whose r a d i i  a r e  equa l  
t o  t h e  s i d e  of  t h e  square.  For t h e  t r i a n g l e ,  it is t h e  two-arc 
made of  equa l  60Â a r c s  whose r a d i i  a r e  equa l  t o  t h e  a l t i t u d e  of  
t h e  t r i a n g l e .  

(Nov. 1952) Proposed by Vic tor  ~ h g b a u l t .  Tennie, Sar the ,  France 
Find b a s e s  B and B' such t h a t  t h e  number 11, 111, 111, Ill con- 
s i s t i n g  o f  e leven  d i g i t s  i n  base B is  equa l  t o  t h e  number 111 
c o n s i s t i n g  of t h r e e  d i g i t s  i n  Base B'. (An i n c o r r e c t  s o l u t i o n  by 
t h e  proposer was given i n  t h e  November 1953 i s s u e .  For f u r t h e r  

d i s c u s s i o n  s e e  t h e  Spring 1958 i s s u e . )  

65. ( A p r i l  1954) Proposed by Martin Schechter ,  Brooklyn, N.  Y.  Prove 

t h a t  every simple polygon which is not  a  t r i a n g l e  has a t  l e a s t  
one of  its d iagonals  l y i n g  e n t i r e l y  i n s i d e  of  it. 

73. ( A p r i l  1955) Proposed by Vic tor  ~ h e b a u l t ,  Tennie, Sar the ,  France 
Construct  t h r e e  c i r c l e s  with ff iven c e n t e r s  such t h a t  t h e  sum o f  
t h e  powers of t h e  c e n t e r  o f  each c i r c l e  wi th  r e s p e c t  t o  t h e  o t h e r  
two is  t h e  same. 

83. (Spring 1956) Proposed by G. K. Horton, Univers i ty  o f  Alber ta  
Evaluate ' 

( F a l l  1962) Proposed by Huseyin Demit, K a n d i l l i ,  E r e g l i ,  Kdz., T u r w  
Find t h e  shape of  a  curve of  l e n g t h  L l y i n g  i n  a v e r t i c a l  plane-- 
and having its end p o i n t s  f i x e d  i n  t h e  p lane ,  such t h a t  when it 
revolves  about  a  f i x e d  v e r t i c a l  l i n e  i n  t h e  p lane ,  genera tes  a  
volume which when f i l l e d  with water  s h a l l  be emptied i n  a minimum 
of t ime through an o r i f i c e  of  g iven  a r e a  A a t  t h e  bottom. (Note: 
The proposer has on ly  ob ta ined  t h e  d i f f e r e n t i a l  equa t ion  o f  t h e  
curve.  ) 

( F a l l  1964) Proposed by Leo Moser, Univers i ty  of  Alber ta  Show t h a t  
5 p o i n t s  i n  t h e  i n t e r i o r  of  a  2x1 r e c t a n g l e  always determine a t  l e a s t  
one d i s t a n c e  l e s s  t h a n  s e c  15O. 



This department welcomes problems believed to be new and, as a 
rule, demanding no greater ability in problem solving than that of the 
average member of the Fraternity, but occasionally we shall publish 
problems that should challenge the ability of the advanced under- 
graduate or candidate for the Master's Degree. Solutions of these 
problems should be submitted on separate signed sheets within four 
months after publication. 

An asterisk ( f t )  placed beside a problem number indicates that 
the problem was submitted without a solution. 

Address all communications concerning problems to Leon Bankoff, 
6360 Wilshire Boulevard, Los Angeles, California 90048. 

PROBLEMS FOR SOLUTION 

Proposed by C. S. Venkataraman, Trichur, South India. 
ABC and PQR are two equilateral triangles with a common 
circumcenter but different circumcircles. PQR and ABC are 
in opposite senses. Prove that AP, BQ, CR are concurrent. 

Proposed by Charles W. Trigg, San Diego, California. 
Identify the pair of consecutive three-digit numbers each 
of which is equal to the sum of the cubes of its digits. 

Proposed by Charles W. Trigg, San Diego, California. 
Find a triangular number of the form abcdef in which 
def = 2 abc. 

Proposed by Thomas Dobson, Hexham, England. 
Where must a man stand so as to hear simultaneously the report 
of a rifle and the impact of the bullet on the target? 

Proposed by R. C. Gebhardt, Parsippany, New Jersey. 
At each play of a game, a gambler risks 1/x of his assets at 
the moment. What must be the odds so that, in the long run, 
he just breaks even? 

Proposed by Leon Bankoff, Los Angeles, 
California. Three equal circles are 
inscribed in a semicircle as shown in 
the adjoining diagram. How is this 
figure related to one of the better- 
known properties of the sequence of 
Fibonacci numbers? 

Proposed by Leonard Barr, Beverly Hills, California. 
It is known that the sum of the-distances from the incenter I 
to the vertices of a triangle ABC cannot exceed the combined 
distances from the orthocenter H to the vertices. [Amer. Math. 
--- - -  

Monthly, 1960, 695; problem E 13971. Show that the G r s e  
inequality holds for their products, namely, that AH-BH-CH < 
AI-BI-CI. 

Proposed by J. M. Gandhi, University of Manitoba, Winnipeg, 
Canada. If n-1 

M(n) = 1- [syl] k] 
s=0 

show that (a) M (5m + 2) : 0 (mod 5). 
(b) M (5m + 3) 0 (mod 5). 

[Ref: George Rutledge and R. D. Douglass, "Intergral Functions 
Associated with Certain Binomial Sums," Amer. Math. Monthly, 
43 (1936), pp. 27-33]. --- 

SOLUTIONS 

(Fall 1967). Proposed by Oystein Ore, Yale University. 
Albrecht Durer1s famous etching "Melancholia" includes the 
magic square 

16 3 2 13 

The boxed-in numbers 15-14 indicate the year in which the 
picture was drawn. How many other 4 x 4 magic squares are 
there which he could have used in the same way? 

Solution by C. J. Bouwkamp, Phillips Research Laboratories, 
Eindhoven. Netherlands. There are exactly 32 solutions to this 
problem, including the Durer version shown above (with misprint 
from the Fall 1967 issue, page 295 corrected). Curiously, 
this number is contained in Durer's magic square in the middle 
of the top row. The construction is as follows. There exist 
four types according to the bottom row: 1, 15, 14, 4 (10 
solutions), 2, 15, 14, 3 (6 solutions), 3, 15, 14, 2 (6 
solutions), and 4, 15, 14, 1 (10 solutions). Further it is 
known that the sum of the four inner elements equals 34. Thus 
the sum of the two inner elements of the first row must be 
5 (2+3 or 1+4). Similarly, the outer two elements of the 
first row can only be 13 and 16. All in all, there are then 
16 types where the upper and lower rows are fixed. The re- 
maining numbers 5 through 12 are to be distributed over the 
two middle rows. The inner four elements can be linearly 
expressed in terms of one parameter. Some easy manipulation 
then leads to all 32 possible Durer magic squares. The complete 
list of solutions is shown below. 



x = p + at cos 8 
y = qo + at sin 8. 

Similarly, designate the second ship as the "target ship" and 
wite its parametric equations of motion as 

x = x + vt cos ^ 
Y = yo + vt sin + 

in which only the speed v is known. The following picture will 
illustrate the situation. 

1 x = xo + vt cos Ã 

I y = y + vt sin Ã 0 

B(bearing) 
(range ) Own ship track 

speed a 

One Bearing Given 
At time tl, bearing 0, is observed. Thus, Also solved by R. ,C. Gebhardt , Parsippany, N. J. ; Edgar Karst, 

University of Arizona; and Alfred E. Neuman, New York, N. Y. 

Editorial Note: Bouwkamp verified his results by referring to two 
curious books in his possession, privately published by K. H. de Haas. 
1) Albrecht Durer's Meetkundige Bouw van Reuter en Melencolia S 1, 
D. van Sijn en Zonen, Rotterdam, 1932. 2) Frenicles's 880 Basic 
Magic Squares of 4 x 4 Cells, Normalized, Indexed and Inventoried, 
bv the same publisher in 1935. Gebhardt and Karst noted that a cos Bl = xO-pO + (v cos Ã - a cos 8)t 1 

Rl 
which implies 

magic squareremains magic if the same quantity is added to each 
element of the square, thus extending the number of solutions if the 
sequence 15-14 were permitted to appear in other rows. 

Detailed discussions of magic squares may be found in the two 
well-known classics in mathematical recreations, by Knaitchik and by 
Ball and Coxeter. An additional bibliography appears in Martin 
Gardner's Second Scientific American Book of Mathematical Puzzles and 
Diversions in connection with a most refreshing chapter on this subject. 

(cos Bl)yo + (tcos B)v sin Ã - (sin B )x - (tsin B )v cos 1)1 = 
1 0  1 

(cos 6 )q + (tlcos 6,)a sin 0 - (sin Bl)p0 - (t sin Ella cos 8 
1 0  1 

It should be noted that (2) does not imply (1) as there are 
targets staisfying (2) which do not satisfy (l), namely targets 
whose bearing differs from B by 180Â° Equation (2) is a linear 
equation in yo, v sin 1)1, x0,and v cos Ã whose general solution is (Fall 1967). Proposed by William H. Pierce, General Dynamics, 

Electric Boat Division, Groton, Sonnecticutt. Two ships are 
steamine alone at constant velocities (course and speed). If 

Yo = qo t A sin 0, 

v sin Ã = a sin 8 t 

Xo = Po + A cos 6, 

+ ytcos B 
1 

p sin 0 l - Y COS 0, 
- yt sin 6 

1 1  

II cos Bl + y sin Bl 

parameters subject only 

- - 
the motion of one ship is known completely, and if only the 
speed of the second ship is known, what is the minimum number 
of bearings necessary to be taken by the first ship in order to 
determine the course (constant) and range (time-dependent) of 
the second ship? Given this requisite number of bearings, show 
how to determine the second ship's course and range. 

v cos Ã = a cos 6 

"Editorial Note: This problem was suggested by problem 186 which was 
given erroneously. See the comment on 186 in the Fall 1967 issue. where A ,  p ,  and y are free 

restrictions 
to the 

Solution by the Proposer. Designate the first ship, whose 
motion is known completely, as "own ship" and write its parametric 
equations of motion as 



The first restriction eliminates from (3)"those targets which 
do not satisfy (1) and the second restriction eliminates from 
(3) those targets which do not have the required target speed v. 
There remains in (3). however, a multiplicity of targets with 
the required speed satisfying (1) so that we conclude that one 
bearing is insufficient to determine target motion when only 
target speed is given. 

Two Bearings Given 
A second bearing-6, is observed at time t > t ,  giving 

y -q + (v sin 1)1 - a sin 0 It2 
sin B2 = 0 0 

R2 

x -p + (v cos 1)1 - a cos 0)t2 
cos B2 = 0 0 

R 
2 

which implies 

(5) (cos B2)y + (tcos B2)v sin 1(1 - (sin B2)x0 - (t 2 sin B2)v cos 1)1 = 

(cos B2)q0 + (t2cos B2)a sin 8 - (sin B2)po - (tsin B2)a cos 0 

The general solution of the linear equations (2) and (5) is 

yo = qo - At 1 2  sin 6 + ut2sin B1 

v sin 1(1 = a sin 8 j ksin B2 - u sin 6, 

XO = Po - Atlcos B2 + utcos B1 

v cos 1)1 = a cos 8 + 3k.cos B2 - u cos B1 

where A and u are free parameters subject only to the restrictions 

The parameters here are not relat,ed""to those used earlier, and 
the first restriction eliminates from ( 6 )  those targets that do 
not satisfy (1) and (41, while the second restriction eliminates 
from (6) those targets not having the required speed v. Thus, there 

i 
remains in (6) a one-parameter family of targets having the 
required bearings, and we conclude here also that two bearings 
are insufficient to determine target motion when only target speed 
is given. (If sin(B2-6,) = 0, then the two ships have either 
parallel motion or are on a collision course, and further informa- 
tion about target course can be obtained; discussion of this 
aspect is omitted. ) 

Three Bearings Given 
A third bearing 6, is observed at a time t >t >t , giving 

3 2 1  

- yo-qo + (v sin 1(1 - a sin 0 )t 
sin B3 - 3 

R3 
(R3 # 0) - x-po + (v cos 1)1 - a cos 0 )t3 cos 6, - 

which implies 
R3 

(cos B3)yo + (t3cos B3)v sin 1)1 - (sin B3)x - (t3sin 6 )v cos 1)1 = 
3 

(cos B3)qo + (t3cos B3)a sin 0 - (sin S3)p0 - (t3sin B3)a cos 0 

The general solution of the linear equations (2), (5), and ( 8 )  is 

yo = q + H )t;v sin = a sin 0 + H2A 
0 1 

x = p + HX;vcos1(1 = a  cos 0 + H A  
0 3 4 

Where A is an arbitrary non-zero parameter carrying the sign 
of H H - H H (which insures that (9) satisfies (l), (4), and 
(7 ),la$d whirl 

cos 6, sin 6, 

cos 6, sin B2 

cosB3 sin6, 

cos 6, tlcos 6, 

cos B2 t2cos B2 

cos B3 t c o s  B3 

cos 6, tlcos 6, 

cos B2 t c o s  

cos 6, t3cos B3 

-t 1 1  sin 6 

-tsin 6 2 

-t sin 6 
3 3 

-t sin 6 
1 1  

-t sin 6 
2 2 

-tsin 6 3 

-t 1 sin 13. 

-t2sin 6 2 

-t sin 6 
3 3 

sin B1 

sin B2 

sin 6, 

The solution (9) is meaningful only when sin(6.-6.) # 0 in 
which case it can be proved that H I H  - H H  î0.' It can 
further be shown that the three bearings must be such that 
sin(6 -6 1, sin(6 -6 1, and sin(6 -6 all have the same sign 

2 1 3 1 which is opposite that of H 1 H  - 8-~2. 
Solution (9) is a one-parameter family of targets in which the 
known target speed imposes a restriction on the parameter A. 
The restriction is 





197. (Fall 1967). Proposed by Joseph Arkin, Nanuet, New Jersey. 
2 A box contains (1600 u + 3200)/3 solid spherical metal 

bearings. Each bearing in the box has a cylindrical hole of 
length .25 centimeters drilled straight through its center. 
The bearings are then melted together with a loss of 4% during 
the melting process and formed into a sphere whose radius is an 
integral number of centimeters. How many bearings were there 
originally in the box? 

Solution by Charles W. Trigg, San Diego, California. 
The volume of the "wedding ring" left after a cylindrical hole 
with axis alonf; a diameter is drilled through a sphere is the 
same as that of a sphere with diameter equal to the length of 
the hole. [Cf., e.g., Charles W. Trigg, Mathematical Quickies, 
McGraw-Hill (1967), pafe 179.1 Hence we have 

The only value of u satisfying this last expression is u = 5, 
whereupon R = 3 cm. and the original number of bearings was 
14,400. 

Also solved by the proposer who noted that a treatment of 
the Diophantine equation R"= u2 + 2 is given in L. E. Dicksonls 
History of the Theory of Numbers, Vol. 11, p. xiv., Chelsea 
Publishing Co., New York, 1952. 

198. (Fall 1967). Proposed by Stanley Rabinowitz, Polytechnic 
Institute of Brooklyn. A semiregular solid is obtained by 
slicing off sections from the corners of a cube. It is a solid 
with 36 congruent edges, 24 vertices and 14 faces, 6 of which 
are regular octagons and 8 are equilateral triangles. If the 
length of an edge of this polytope is e, what is its volume? 

Solution by Leon Bankoff, Los Angeles, California. 
The eight sliced-off pyramids can be assembled to form a 
regular octahedron of edge e, whose volume is known to be 

3 e3(î ")/3. Subtracting this quantity from e (5 + I)~, the 
volume of the cube we find that the volume of the truncated 
cube is 7e3(3 + 2î )/3. 

Also solved by Charles W. Trigg, San Diego, California, and 
the proposer. 

Editorial Note. The term "truncated cube" is more descriptive of the 
residual polyhedron than is the word "polytope", which is general 
enough to apply to points, segments, polygons, polyhedra and hyper- 
dimensional solids. 

199. (Fall 1967). Proposed by Larry Forman, Brown University, and 
M. S. Klamkin, Ford Scientific Laboratory. Find all integral 
solutions of the equation 

Solution by Charles W. Trigg, San Diego, California. 
I. It is evident upon inspection that if x = 0. then z = 0 

(and converse1 ), and y is indeterminate. Also, if y = 0, 
then x = (z/2I3, so z is even. 

11. Put x t /v = m3 and x - 6 = n3, whereupon 

^y = (m3 - n3)/2, and 
3 3 2 

x = (m3 + n )/2, and y = (m3 - n ) 14, z = m + n, 

where in and n are inteeers with the same parity. This 
two-parameter solution includes (I), for m = +n. 

111. Solution I1 is based upon the restricted assumption that m 
and n are integers. Cubing both sides of the given equation. 
we have 3 3 

Let x
2 - y = k3, whereupon 

x = z(z2 - 3k)/2, and 
y = [z(z2 - 3k)/212 - k3 = (z2 - 4k)(z2 - kI2/4. 

Solutions not given by (II), for example, when z = 3 and 
k = 1, are given by this two-parameter solution in z and 
k, with z even or with z and k both odd, and 22 # 3k, 
z2 # k. These two restrictions are necessary for consistency 
with (I). The penultimate restriction is necessary because 
if x = 0, then z = 0; and the last one because if y = 0, 
then x = z3/8, whereas if z2 = k, then x = -23. 

Editorial N Z .  Klamkin cubed the given equation to obtain 

ix + 32 &- = z3. T ~ U S  3- = m (an integer), and the desired 

solution is 
2 3 

x = (z3 - 3zm)/2, y = c ( ~ ~  - 3zm)/21 - m , 
where z and m are arbitrary integers, provided either z is even or 
both z and m are odd. For values of z and m that result in y<0, the 
"proper" cube roots must be extracted to satisfy the original 
equation. For example, suppose z = 3 and m = 3. Then x = 0, 
y = -27, and z = 3. Substitution of these values in the given equation 
yields 3--- a- /m+ 3 /-m = 3 3. 

Recasting this in the form /3 /T - /ST /T = 3, an obvious impossibility, 
we are confronted by the intrusion of an extraneous root. On the other 
hand, the solution becomes acceptable by the following procedure: 

3- 3- 
+ 4-/~27- = 276[(i)1/3 + (-1) 1/3] 

- - m i n / 6  + e-in/61 

Also solved by Edgar Karst, University of Arizona, and Gregory 
Wulczyn, Bucknell University both of whom submitted partial solutions 
for integral values of x + 4. 
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BOOK REVIEWS 

Edited by 

Roy B. Deal, Oklahoma University Medical Center 

Theoretical and Mathematical Biology By Talbot H. Waterman and 
Harold J. Morowitz, Blaisdell Publishing Company, New York, 1965, 
xvii + 426 pp. 

A series of seventeen chapters, written by well-known biologists, 
which gives an excellent survey of a variety of the important 
areas in biology where rather extensive and interesting mathematical 
models promise to play a big role. 

An Introduction to Probability Theory and Its Applications Vol I, 
3rd Edition, By W. Feller, John Wiley & Sons, Inc., New York, 1968, 
xviii + 509 pp., $10.95. 

A third and revised edition of the now famous classic in modern 
mathematical writings. Many proofs and developments have been 
modernized. In particular the chapter on fluctuations in coin 
tossing and random walks has been extensively rewritten and 
expanded to incorporate modern probabalistic arguments. Sections 
have been added on branching processes, on Markov chains, and on 
the De Moivre-Laplace theorem. These changes, along with other 
clarifications and rearrangements, and the established importance 
of the earlier editions make this also a valuable book. 

An Introduction to Probability Theory and Its Applications By 
William Feller, John Wiley and Sons, Inc., New York, 1966, 
xviii + 626 pp. 

Whereas the first volume was basically a study of discrete 
probabilities and was a pioneer in its mathematical treatment of 
applied problems, the second volume covers a larger spectrum, 
utilizes Lebesgue measure, has many theorems and applications on 
more general multidimensional distributions, on more general 
Markov processes, random walks, renewal theory and other aspects 
of stochastic processes, and many interesting uses of such thinrs 
as semi-groups, Tauberian theorems, Laplace transforms, and harmonic 
analysis. This volume may not have as much of the pioneering 
aspect but it reflects the same organizational talent of a master 
who can bring difficult subjects to within the grasp of one with 
a minimal background, say elementary real analysis and volume one. 

Integration By A. C. Zaanen, John Wiley and Sons, Inc., New York, 
1967, xiii + 604 pp., $16.75. 

Although this is an advanced and extensive book on integration, and 
perhaps beyond the level of many Pi Mu Epsilon readers, it is such 
an excellent book that it should be brought to the attention of most 
members. It is a completely revised and enlarged edition of his 
well-written earlier book "An Introduction to the Theory of Integration." 



5.-. Combinatorial Identities by J. Riordan, John Wiley and Sons, 
Inc., 1968, xii + 256 pp., $15.00. 

A comprehensive, coordinated collection of combinatorial iden- 
tities including "The most extensive array of inverse relations 
available," and a survey of number-theoretical aspects of 
partition polynomials. 

6. Quantum Mechanics By R. A. Newing and J. Cunningham, John Wiley 
and Sons, Inc. 1967, ix + 225 pp., $4.50. 

Although there are many fine books on Quantum Mechanics at the first 
year graduate level, this little book which grew out of a course 
for final year honors students of mathematical physics is, 
because of the spirit in which it is written, perhaps the best 
introduction to mathematical quantum mechanics for mathematics 
students at the senior-first year graduate level. 

7. Dynamic Plasticity By M. Cristescu, John Wiley and Sons, Inc., 
An import from the North-Holland Publishing Company, 1968, xi t 
614 pp., $25.00. 

The North-Holland Series in Applied Mathematics and Mechanics 
is attempting to foster a continuing close relationship between 
applied mathematics and mechanics by publishing authoritative 
monographs on well-defined topics. This reasonably self- 
contained book presents the main problems considered in the 
theory of dynamic deformation of plastic bodies. It gives many 
details regarding mechanical models, computing methods, and 
programs for the integration with computers. Although it is 
written so that no previous knowledge of plasticity is required, 
the solutions to many problems are given with such detail and 
modern methods that they may be used directly by the practicing 
engineer. 

8. Ordinary Differential Equations and Stability Theory: An Introduction 
By David A. Sanchez, W. H. Freeman and Company, San Francisco, 
California, 1968, viii + 164 pp., $3.95 paperbound. 

This little book meets quite well its stated objective of giving 
a brief, modern introduction ot the subject of ordinary differential 
equations with an emphasis on stability theory to the reader with 
only a "modicum of knowledge beyond the calculus". 

9. Numbrical Methods for Two-Point Boundary - Value Problems By 
Herbert B. Keller, Blaisdell Publishing Company, Waltham, 
Massachusetts, 1968, viii + 184 pp. - 

-This brief but excellent account of practical numerical methods 
for solving very general two-point boundary-value problems would 
follow.quite well the above book by Sanchez. "Three techniques 
are studied in detail: initial-value or "shooting" methods, 
finite-difference methods, and integral-equation methods. Each 
method is applied to non-linear second-order problems and eigenvalue 
problems; the first two methods are applied also to first-order 
systems of non-linear equations." 

A Handbook of Numerical Matrix Inversion and Solution of Linear 
Equations By Joan R. Westlake, John Wiley 6 Sons, Inc., 1968 
viii + 171 pp., $10.95. 

While this book should be very valuable for its stated purpose 
as a nearly encyclopedic single reference source for scientific 
programmers with a bachelors degree and a mathematics major, it 
might also serve to provide the undergraduate mathematics major 
with a feeling for this important aspect of real world problems, 
as well as delineate the essential features for many of today's 
more sophisticated users. 

BOOKS RECEIVED FOR REVIEW 

Biometry By Charles M. Woolf, Van Nostrand Co., New York, 1968, 
XI11 + 359 pp., $8.75. 

Introduction to Arithmetic By C. B. Piper, Philosophical Library, 
Inc., New York, 1968, vii + 211 pp., $6.00. 

Introduction to Probability and Statistics, Second Edition, 
William Mendenhall, Wadsworth Publishing Company, Inc., Belmont, 
California, 1967, xiii + 393 pp. 

The Design and Analysis of Experiments By William Mendenhall, 
Wadsworth Publishing Company, Inc., Belmont, California, 1968, 
xiv + 465 pp. 

New College Algebra By Marvin Marcus and Henryk Minc, Haughton 
Mifflin Company, Boston, Mass., 1968, x + 292 pp., $6.50. 

Introduction to Probability and Statistics, Fourth Edition By 
Henry L. Adler and Edward B. Roessler, W. H. Freeman and Company, 
San Francisco, California, 1968, xii + 333 pp., $7.00. 

Introduction to Matrices and Determinants By Max Stein, Wadsworth 
Publishing Company, Inc., Belmont, California, 1967, x + 225 pp. 
Modern Mathematical Topics By D. H. V. Case, Philosophical 
Library Inc., New York, 1968, viii + 158 pp., $4.75. 

First-Year Calculus By Einar Hille and Saturnine Salas, Blaiddell 
Publishing Company, Waltham, Mass., 1968, xi + 415 pp., $9.50. 

Note: All correspondence concerning reviews and all books for 
review should be sent to PROFESSOR ROY B. DEAL, UNIVERSITY OF 
OKLAHOMA MEDICAL CENTER, 800 NE 13th STREET, OKLAHOMA CITY, 
OKLAHOMA 73104. 

MATCHING PRIZE FUND 

The Governing Council of Pi Mu Epsilon has approved an increase in 
the maximum amount per chapter allowed as a matching prize from $20.00 
to $25.00. If your chapter presents awards for outstanding mathematical 
papers and students, you may apply to the National Office to match the 
amount spent by your chapter--i.e., $30.00 of awards, the National Office 
will reimburse the chapter for $15.00, etc.,--up to a maximum of $25.00. 
Chapters are urged to submit their best student papers to the Editor 
of the Pi Mu Epsilon Journal for possible publication. 
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