Pl MU EPSILO/\;
JOURNAL

VOLUME 5 SPRING 1974 NUMBER 10
CONTENTS

Elementary Number Theory in Certain Subsets of the Integers, I
Carmen Q. Artino and Julian R. Kolodw............. 489

A Nested Prime Number Magic SQUAPE i iilesaceesrereerosnnssosionss.. BI6

Niceness of the Socle and a Characterization of Groups
of Bounded Order
S. W, TalloSl .cm. . QN0 SO0, . .......0.0... 3082 L0 LSS

Use of Matrices in the Four Color Problem
Daniel ol fll......... B % . .. .....0 4%l %1 568

Euler's Constant and Euler's e
PotOr A LA TG ., . .« e .-k .. . PR

Partial Differentiation on a Metric Space
ROsednn Moriello ...eucecreesss fibeehals. .. 000, JBNNS |

A Suggestion for Enjoyable Reading . u.. .. eit.ovesotessonesnianssss 520
Welcome oS NGREERADLOTS WMt ot o oovs et ones mome Wiy,  AERNEEN . 5201
Local Chapter AWESE'dEENS TR ERE. e siss s.c.ccoornBEiERORY "8 = 529

Problem Department ... W 0. S, NN, N . W, ... ... .......... 523



ELEMENTARY NUMBER THEORY IN CERTAIN
SUBSETS OF THE INTEGERS |

By Cawmen Q. Antino and Jufian R. Kolod
The. College ovf Saint Rose

The purpose of thi paper is to study some aspects of elementary
number theory in certain subsets of Z, the set of integers. The moti-
vation for this study came about from discussions in number theory texts
indicating that the fundamental therrem of arithmetic does not hold in
some ubsets of Z (see [1, p 28], [2, p 18], or [4, p 12]). The usual
example given is 2Z, the multiples -f 2, where 't is hown that 2, 6,
and 18 are "prime" and that 36 = 6 = 6 = 2 - 18.

In elementar. textbooks on algebra, divisibility is usually studied
in an integral domain (commutative ring with unity and no zero divisors)
and, as is well known, the fundamental theorem does net always hi Id in
this case either. The definiticns are usually -tated for a commutative
ring and the main results usually hold in an integral domain. In this
paper we make no such algebraic assumptions en the -ub etz con !dered.
The assumptions which are made are more or less forced by the fact that
we need 1o limit the kinds of subsetrs of Z we wish to consider bur are
weak enough t~ allow a wide variety of sets te be taken into considera-
tion, However, our main rezults will be for the ring »Z, the multiples
of some integer n, n > 1. These results, however, do not hold because
=f the algebraic praperties of »nZ but because the prime: and composites
(as we shall define them) are so nicely distribu<ed in these sets.

The author= would like to thank the referee for his observations
and comments.

1. Preliminaries

In looking at nZ one immediately sees that this subset of Z is

closed under negation. To discuss divisibility in subsets of Z, this
is precisely the restriction we wish to place on the types of subsets
we are to consider (with the exception that we exclude the singleton
set {0} ). Thus in this paper we only consider non-empty subsets A of
Z having the two properties: (a) A # {0} and (b) if x A, then -x = A




T& define divisibility in such subsets of Z we merely mimic the

usual definition.

Definition: Let x,y ¢ A, X # 0. We say that x dividesy in A

(or x A-divides y) if there exists n € A such that y = nx.

To denote the fact that X A-dividesy we write x(4)y; otherwise we

write x(/)y. If A =2, we adopt the usual notations x ] y and x /I'y.

As a result of this definition the following can be easily verified:

(1) 1f 1€ A, then 1(4)x for all X inA.

(2) Divisibility in A isreflexive if and only if 1 e A.

(3) x(4)(-z) if and only if -x(A)x if and only if -1 ¢ A.

(4) If 0e A, then O(/).z forall X in A, but x(4)0 for all non-
zero X in A.

(5) If A cBand x(d)y, then x(B)y. Thus, if x(4)y, then X | vy.
On the other hand, if O is the set of odd integers, then
2(0)y if and only if x | y.

(6) Divisibility in A need not be transitive. For example, take
A = {22, :3, 6, *18}. Here 2(4)6 and 6(4)18, but 2(f)18.

Although divisibility in A need not be transitive, about the best

we can do in this regard is rhe following proposirion, which is easily

verified.

lemma 7: If A is closed under multiplication, then divisibility
inA istransitive.

)
As aresult, divisibility in nZ is transitive. The converse of

this proposition is false as we see later.

To define primes in A we again mimic the usual definition.

Deginition: Letp + A. p # 1is said to be prime inA, (or to be
an.A=prime),

(1) if 1/ A, then x({)p for all X inA or

(2) if 1€ A and x(4)p, then x = *p or x = 1.

x is composite in A if z is not ¥ or t1 and is not prire in 4

Thus, for example, 2, 6, 10, 14,--- are prime in 2Z and the primes

in Z are prime in any set containing them. More generally, if p ¢ A ¢ B

and p s prime in B, then p is prime in A. The converse is false--take
4« 42 c 2Z. Note also that p is prime inA if and only if -p is prime
in A, so as a result we shall omit discussing the negative primes.

There are only two subsets of Z which do not have primes, namely
{1} and { 0, *1}. For any other set A, the least positive integer in
A which is greater than one is always prime in A. It is also easy to
see that for any integer n > 1, there is a subset of Z with -n and n as
its only primes. Finally, if Py» p2,---pn are any n distinct positive
inZ, the set

n
A = U (=) [ m=1,2,000)

=1

has exactly 2n primes (n positive primes). Note that divisibility is
transitive in A so that A serves as a counterexample to the converse

of Lemma 1.

2. The. Fundamental Theorem of Arnithmetic
In this section we discuss the primes in nZ, the fundamental theo-

rem of arithmetic in nZ and make some observations concerning primes in
nZ and Z. For the remainder of the paper we use FTAI to mean there
exists a factorization into a product of primes, FITA2 to mean the fac-
torization is unique, and FTA to mean both FTAI and FTAZ2.

The FTA1 always holds in a subset A of Z of the type considered
earlier (other than A = {#1} and A = {0, *1}) and the proof can be pat-
terned after that given in [u, p 11]. We shall show, however, that
FTA2 does not hold in nZ. There are proper subsets of Z for which the
FTA does hold; for example take A = {"**,-p?, -p, p, p?, "'} wherep is
any (positive) prime in Z.

There is a simple formula for the primes in nZ '(n > 1) while, of

course, no such formula is known tO exist for the primes in Z.

Theorem 1" The positive primes in nZ (n > 1) are of the form
(kn + 2)n for £ = 1,2,--,w - L and k = 0,1,2,°°*. All other posirive
integers in nZ are composite and are of the form knZ for k = 1,2, ",
Proof: Let p ¢ nZ so that p = mm for some m o Z, and suppose that
p isprime in nZ. Using the division algorithm (in Z) we can write

m=knti, 0<i<n. Nowi = 0iff p=kn? iff n(nZ)p denying the
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primality of p. Thus if p is an nZ-prime, then p = (ka + £)n for
1= 1,2,---, n - A

Theorem 2: For any integer » > 2, the FTA2 does not hold in »Z.

Proof: By Theorem 1, n2(n + 1)¢ is composite in nZ and is not
uniquely factorable since
nin + )2 =n . [nn + 1)?] and
n2nt+ 132 = [n(n + 1)] - [ntn + 1]

are two differenr prime factorizations in nz.

The following theorem identifies which composires in nZ are and which
are not uniquely factorable .in nz. First we observe that if X is com-
posite in nZ, we have X = kn? by Theorem 1. W& then note that X can be

written as X = kn? = k;n" where m > 2 and n | k.

Theorem 3: Let X be an 7x2-composite written x = knm where m 2 2
and n | k. Then X is uniquely factorable if and only if k = 1or k is
prime in Z.

Proof: Let k = plalpzaz-.-pral” be the unique prime factorization
of k in z. Observing that k = 1 is a trivial case, we go on to the
cases when k # 1.

Case 1: r = 1.

(a) If a, = 1 then x is uniquely factorable as X = nm_l(npl)-
(b) |If a, z 2, then X is not uniquely factorable since
nm_l(nplal)

al-l
1

X

= A" % p Y(npy)

are two different prime factorizations of X in né.
Case 2: r = 2,
Then X is not uniquely factorable since

- x = nm'z(nplal)(np;z..-prar)

ar
P)

m-1 a
71 (npl 1...p
are two different prime factorizations of X in nZ.

Theorem 1 allows us to make the following observazions concerning

primes in nZ and in Z; some of these will be discuisse- Iz rore detail in
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the next section.
(1) There are infinitely many primes in each nZ, as there are in

Z.

(2) There are not arbitrarily large gaps between primes in nZ as
there are in Z, 1In fact, the gap between primes in #Z is
either 0 or 1.

(3) There are infinitely many twin primes (primes separated by
only one composite) in each nZ. Moreover, the twin primes in
nZ have the form: (kn * (n - 1)) - nwand ((k + Dvu + 1) v n
for k = 0,1,2,---.

(1) Given any positive integer n, however large, nZ contains n - 1
consecutive primes. (ln Z the largest sequence of consecutive

primes is the sequence 2, 3.)

3. The Anithmetie Function n{x)

LéT nA(x) denote rhe number of positive primes in A which are less than
or equal to X ¢ A, Since the primes and composites in #Z are so nicely
distributed, we are able to obtain an explicit formula for this function.
In the following theorem, [X] means the greatest integer (in Z) which is

less than or equal to x.

Theonem 4. |f x = kn ¢ nZ, then

g = k- [kl = 2= s m e,

where in the last equality k = ng + » and 0 £ r< n, g = [k/n].

Proof', The number of positive primes in nZ which are less than or

equal to kn is equal to T - C where

T = the total number of positive integers in nZ which are < kn,
and

C = the number of positive composites in n& which are < kn.
It isclear that T = k., As we saw in Theorem 1, the composites in nZ
are of the ferm kn?, Now the composites in nZ which are less than or
equal to kn are: n2, 2n2,.««, [k/n] * n%. Thus, C = [k/x].

In Z, the ratio n(x)/x can be interpreted in two ways:
(1) as the number of positive primes which are < X compared to x, or
(2) as the number of positive primes which are £ X compared to

the number of positive integers which are < z.
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Of course these two meanings are the same, and it is well-known that

lim =(x)/x = 0 .
Tre

However, in nZ the above meanings are different since the first gives the

ratio m nz(kn)/kn and the second gives the ratio ™ nz(kn)/k. In the

next theorem we examine the two limits arising from these ratios.

Theorem 5. For a fixed n > 1

(1 1 222 mon
o K
(kn)
(2) lim "”in =i

Proof: Let q = [k/n]. From Theorem 4

T nZ kn k
lim —2 = 1im -9
oo k - k
= pd 4t T - g
goes ng + r
= lim (l - —g—)
g ng +r
- _n 1
n
The proof of (2) follows from (1). o) (kn)
We observe that for a fixed n, 0< 1lim HZT < lim nZ—k< 1

k-0 Koo

and that for large n, lim ™ Z(kn)fkn is near zero while 1im ?nz(kn)/k
k+eo kxa

is near cne.

4. The. Anithmetic Functions 1(x) and olx)

In this section we discuss the following two functions:

-.A(x) = the number of positive divisors of X in4 ,
oA(x) = the sum of the positive divisors of x in 4.

In Z, one normally establishes formulas for these functions by first
taking X as prime, then X as a power of a prime, and z~en shows the above

functions are multiplicative [f(mn) = flm) * f(n whex 7 and 7 relatively
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prime] so that one can rely on FTA2 to obtain the formulas for composites.
Since factorization is not unique in nZ, this process will not work. In
the following approach we see that these functions are "nearly" multipli-
cative in nZ. W first establish the formulas for powers of » and then
nz(x) =0 ;1 a ,(z).
W saw before that if X is composite In nZ, we can write X = kn' where
mz 2and n | k.

for composites. Clearly, if X is prime in nZ, then 1

m m m 25 r
lemma Z: If x = n , then T,,(n) =m- Land onZ(n’) = E n .
r=1
Proof: The positive divisors of " in nz are n, n<, N3, -, A - 1

and the formulas follow easily.

Theorem 6: If x = kn" where m 2 2 and n ! &, then
T 0 = (m - 1) k) = 1) - (k)

o, (kn") mz_:l n e ay(k) = o (") - o,(k)
r=1

Proof: Each divisor of k multiplied by » is a divisor of X. Each
divisor of k multiplied by n? is a divisor of x. Inductively, each di-
visor of k multiplied by nt - ]'isa divisor of x. Since k does not
have n as a factor neither do the divisors of k and so the divisors
named above are all distinct. Moreover, these are all the positive di-
visors of X. Since each row contributes Tz(k) divisors of X and since
there arem - 1 rows, there are therefore (m - 1) - rz(k) divisors of «
innZ. Tofind onz(knm)‘ we merely add up the divisors in each row. The
gum of the jth row isn/ - oz(k). Summing the m - 1 rows gives the mid-
dle equality. Lemma 2 gives the last equalities in the two formulas.

In a future paper we shall discuss in nZ the notions of greatest

common divisor, relative primeness, and Euler's function ¢(x).
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A NESTED PRIME NUMBER
MAGIC SQUARE
Reverend Victor Feser of St. Ambrose Church, St. Louis, has pointed
out an example of a 13 x 13 nested magic square consisting entirely of
prime numbers.l (See in this connection the article ™lagic Squares
Within Magic Squares™ by Joseph Hoser, this Journal, 5, No. 8 (Spring

1973), p. 430.) Each smaller square centered at 5437 is also a magic square,

1153 8923 1093 9127 1327 9277 1063 9133 9661 1693 991 8887 8353
9967 8161 3253 2857 6823 2143 uu47 8821 8713 8317 3001 3271 907
1831 8167 4093 7561 3631 3457 7573 3907 7411 3967 7333 2707 90u3
9907 7687 7237 6367 4597 4723 6577 4513 4831 6451 3637 3187 967
1723 7753 2347 4603 5527 4993 5641 6073 4951 6271 8527 3121 9151
9421 2293 6763 4663 L4657 9007 1861 5443 6217 6211 4111 8581 1453
2011 2683 6871 6547 5227 1873|5437/ 9001 5647 4327 4003 8191 B863
9403 8761 3877 4783 5851 5431 9013 1867 5023 6091 6997 2113 1471
1531 2137 7177 6673 5923 5881 5233 4801 5347 4201 3697 8737 9343
9643 2251 7027 4423 6277 6151 4297 6361 6043 4507 3847 8623 1231
1783 2311 3541 3313 7243 7417 3301 6967 3463 6907 6781 8563 9091
9787 7603 7621 8017 4051 8731 6427 2053 2161 2557 7873 2713 1087
2521 1851 9781 1747 9547 1597 9811 1741 1213 9181 9883 1987 9721

lrrom the Recreational Mathematics Journal, No. 5 (October 1961), p. 28.
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NICENESS OF THE SOCLE AND A CHARACTERIZATION
OF GROUPS OF BOUNDED ORDER

by S W. Talley!
Western Kentucky University

A classification result (that tells when or how two algebraic sys-
tems are of the same kind) is one of the most desired results in the
study of any algebraic system. One of the most notable classification
theorems is that of Ulm [10], which classifies countable reduced abelian
primary groups in terms of a set of numerical invariants. This classi-
fication using the same invariants has been extended to a much larger
class of abelian p-groups, the class of totally projective groups, in
the work of Nunke [9], Hill [5] (see Griffith [3]), and Crawley and
Hales [I17] -

Hill introduced the concept of "nice subgroup”™ and established the
characterization of a totally projective group as a reduced p-group that
contains "enough" nice subgroups. Moreover, Hill was able to show that
the class of totally projective groups is the largest reasonable class
of reduced primary abelian groups that can be classified by their Ulm
invariants.

If ¢ is an abelian p-group (p prime) and # is a non-negative integer,
then G[pn] denotes the subgroup of G consisting of all elements having
order less than or equal to pn; G[p] is called the soele of G. In this
paper a necessary and sufficient condition is found for G[pn] to be a
nice subgroup of the reduced abelian p-group G (see Theorem 1). This
condition, together with the result of Hill [u], leads to the character-
ization of a reduced bounded p-group as a reduced p-group in which all

subgroups are nice (see Theorem 4).

Preliminanies
All groups in this paper are assumed to be additively written re-
duced abelian p-groups. (A p-group is one in which all elements have

order equal to a power of the prime p.) A group G is a divisible group

IThe author wishes t o acknowledge the help of K. D. Wallace in writing
this paper.
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Jf for each x ¢ G and each positive integer n, there exists y ¢ G such
that x = ny. A reduced group is =ne which contains no (nonzero) divisi-
ble subgroups. (Clearlythe element 0 is divisible by every positive
integer n, since 0 = n0.) Nw let G be a p-group for the prime p. For
each ordinal a, we define inductively a subgroup p“G as follows:

pG = 1{px | X e G} pY+lG = p¥e); ifyisalimit ordinal p'¢ = gy pBG.
We thus have a descending chain of subgroups
G2pG 2 - apaG 2p°‘+lG R

Note in particular if» is a positive integer and x pnG\pnﬂG then x

i s divisible by p" in G but x is not divisible by pml inG. Ifxis
divisible by pn for every positive integer n, then x ¢ p“G where v is

the first infinite ordinal and x i s said to have infinite height in G.

In general, the element x is said to have p-height a in G, and we set
hy(z) = a, ifxe p%e\p®e. 11 x e p%¢ for each ordinal a then h,(e) = <

where = > a for each ordinal a. Since 0 ¢ paG for each ordinal a,
e (0)

The following fundamental properties are easily established. Let
G be a p-grcup with xz,y ¢ 6. |If hG(:r:) # hG(y) then hG(x +y) isthe
smaller of the two heights. |f hG(x) = hG(y) then hG(x ty) = hG(:c).
A homomorphism cannot decrease height; that is, i f £ is a homomorphism
from G into G', then hG(x) < hG,(f(:c)). I1f p% = paﬂG, then pBG = paG
for 8 > aad p®G i s adivisible group. If G is areduced p-group,
there must be an ordinal y such that pYG = {0}. The least such ordinal
vy is called the length of ¢ and is denoted by A(G) = y. A bounded group
is atorsion group for which there exists a finite upper bound to the
set of orders of all elements. That is, there exists a positive integer
n such that nx = 0 for every x in the group. Alternatively, ¢ is a

bounded group i fthere exists a positive integer n such that nG = G.
A subgroup A of the group G Is a nice subgroup of ¢ ifand only if

- afc) _plc+4
P (A) ST
for all a. We note that the subgroup A of G is nice if and only i f for
each x ¢ G there exists some a ¢ A such that hG/A(:c + 4) = ha(x +a).
The following characterization, given by Hill [5], will be utilized:

Theonem A: The subgroup A of a p-group G is a nice subgroup of G
i fand only i f each coset x t+ A contains an element x + a that has
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p-height in ¢ which i s maximal anmong the elements of the coset x + A.
A immediate consequence of the above theorem i s the fact that any
finite subgroup i s nice.

Chanactenization Theorems

Theorem 1: Let G be a reduced abelian p-group and n a positive in-
teger. Then ¢[p"] is nice i fand only i fA(G) A w.

Proof: Suppose n is an arbitrary but fixed positive integer, &[p"]
is a nice subgroup of ¢, and that A(G) > n. Consider the descending
chain of subgroups

G>pG 5P a5 p% 5 p*Me s,
Since A(7) > w, p“C # {0} and there exists x ¢ p“G - p“"lG, X # 0. Note
the height of x i s w. Thus for the positive integer n there exists an
element y in ¢ such that x = p"y. Moreover, for each positive integer m

Y e pn+mG - pM"0)

and hence there exists x € p"G such that z = d"mm. Now
n N T S
Pz, -y)=px -~py=x-x=0
X -y« ¢[p"] ad thus

x .+ 6lp"1 =y + 6lp"]
Since ¢[p"] is nice, the coset y *+ ¢[p"] contains an element y + a of
maximal height. Hence hG(y +a)z hG(y t g) for each g ¢ 6lp™1. Since
x eyt ¢lp"l, h(y * @) 2 h(z ) = m for each positive integer m. Thus
holy t2) 2w Nw observe that since a ¢ G[p"], p"a = 0 ad therefore

P’y = py t pla. Thus
w = @) = k(") = kT M) = RNy @) 20+,

which i s absurd. (Indeed, hG(pna:) > hG(:c) + »n holds in general.) Thus i f
¢[p™] i s nice then A(G) < w for each positive integer n. |If A(G) < w,
then the set consisting of all ordinals which serve as heights of ele-
ments of G is finite and consequently any set of elements of ¢ must con-
tain an element of maximal height. In particular, ¢[p"*] i s nice for each
non-negative integer n. Now suppose A(G) = w and G[pn] i s not nice. Then
there exists an element x ¢ ¢ such that x * G[pn] does not contain an
element of maximal height. (Note: X ¢ G[p"], for otherwise x + (-z) = 0
e x + G[p"] and 0 is a member of x + ¢[p"*] of maximal height.) For each



a’e G[p"1, there exists an element @ ¢ G[pn] such that hG(:x: +a) < hG(.r +a).

Censequently for each positive integer N there exists a ¢ G[p"] such that

hlx ta)>N Ifae ¢[p"] then p™(x + a) = p"x and hG(pn:c) =

(P (z + @) 2 h(z +a). Thus ho(p"x) = hy(z + a) for cach a e clp™
and consequently hG(pn:c) > N for each positive integer N. Therefure
p".r #Z 0 and hc(pn:c) > p, contradictory to the assumption that A(G) = .

Thus if A(G) < o, G[p"] is a nice subgroup of the reduced p-group G.

A topology may be introduced on a reduced p-group G by letting the

subgroups{pnG} serve as a basis for the neighborhoods of zero. This

<
topology is calizedwthe p-adic topology. With this topology, G is Haus-
dorff if and only if G has no elements of infinite height and a subgroup
Hof G isclosed in ¢ if and only if G/H is without elements of infinite
heirht., In [u4], Hill established the following characterization for

direct sums of cyulic groups.

Theorem 2. Let G be a primary group without elements of infinite
height. Then ¢ is a direct sum of cyclic groups if (and enly if) there
exists a collection C of subgroups of G[p] such that:

(i) each member of C is closed in G,

(ii) v is a member of C,

(iii) the group union in G of any collection of subgroups belonging
to C again belongs to C,

(iv) ifSeCandifTsG[p]issuchthatS;T

there exist.: &' ¢ C such that $' 2 S+ T and S'/S is countable.

is countable, then

Since hG(x t+ h) < hg/y(x + H) for all he H, it follows from Theo-
rem A that the closed subgroups of the p-adic topology are in fact nice
subgroups of G if ¢ is without elementsof infinite height. Moreover,
if & is a p-group without elements of infinite height then a subgroup H
of G_isclosed if and only if His a nice subgroup of G. By utilizing

Theorem 1, we may restate Theorem 2 as follows.

Theorem 2': Let G be a primary group. Then G is a direct sum of
cyclic groups if and only if there exists a collection € of subgroups of
¢[p] such that:

(i) each member of C is a nice subgroup of G,

(ii) 0 is a member of C,
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{iii) che group union in ¢ of any collection of subgroups belonging
to € again belongs to C,

¢iv) if SeCandif Tgclp]is such that S;T
there exists §' ¢ C such that $’ 2 § + & and §'/§ is countable.

is countable, then

The following example of a divisible group shall play an important
role in our remaining development. The reader is referred to Kaplansky
[6] or Fuchs [2] for further properties and discussion of divisible groups.
Let p be a fixed prime, and |l et P denote the additive group of those ra-
tionals whose denominators are powers of p. W denote the quotient group
P/Z by Z(pm); it is understood that addition takes place modulo one.
Since Z(pm) is a primary group, all of its elements are divisible by any
integer prime to p. On the other hand, it is clear that every element
of Z(pm) can be divided by arbitrary powers of p. Putting these two con-
ditions together we have that Z(pm) is adivisible group and we further
emphasize that addition is modulo one.

Lemma 2: Z(p ) is an epimorphic image of k® Z(pk).
<D

Proof. For each positive integer n, the element l/p71 generates a
cyclic subgroup of Z(pw) having order pn. Hence there exists a homomor-
phism (in fact isomorphism) of Z(pn) onto<l/pn>. By the universal prop-
erty of direct sums, it follows that there exists a homomorphism of

Z(pk) onto Z(pm).
K < w

Lemma 3: Let G be an unbounded reduced p-group. If G is a direct
sum of cyclic groups then Z(pm) is an epimorphic image of G

Proof: LetG = @ Z(pn") for some ordinal T where{na}a<r is an un-

a<T
bounded set of positive integers such that n < ng if a< g. Consider

1] Z(pk). Since {na} is unbounded, for each k we may choose oy < T,
k<uw

o ¢{ui}i<k’ such rhar a = k. Hence for each k, rhere exists a homo-
morphism of Z(pnak) onto Z(pk). Let G' = k@ Z(pnak). By the universal '
<w
property of direct sums there exists a homomorphism ¥ of G’ onto @ Z(pk). |
k<w
Since ¢' is a direct summand of G, there exists a homomorphism, e, of G

onto G'. Thus pe¥ is a homomorphism of G onto ® Z(pk), and by Lemma 2
k<w
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it follows that Z(p”) is an epimorphic image of G

Theorem 4: Let G be a reduced p-group. Then G is a bounded group

if and only if each subgroup of G is a nice subgroup of G

Proof: If the group G is bounded then A(G) < w. Hence any set of
elements has an element of maxima height which implies that every sub-
group is nice. Assume that every subgroup of Gis nice. This implies,

by Theorem 2' with C the class of all subgroups of G[p], that the group

Gis a direct sum of cyclic groups. Then G is either bounded or unbounded.

If G is bounded we are finished. Assume G is unbounded. Then by Lemmas

2 and 3 there exists an epimorphism from G onto Z(pw), say ¥ : G-»Z(pw).

Note Ker ¥ # {0} and G isadivisible group (since G = z(pm)),
Ker ¥ Ker ¥
Let X ¢ Ker ¥; then = = h G (x + Ker ¥) >hG(m+k) for any k ¢ Ker ¥.
Ker ¥

Thus Ker ¥ is not a nice subgroup of G which is a contradiction of our
hypothesis. Hence i f each subgroup of G is a nice subgroup of G then G

is a bounded group.
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USE OF MATRICES IN THE FOUR COLOR PROBLEM

by Daniel Minoli
Polytechnic Institute of, Nw Yohk

The four color problem has fascinated mathematicians and laymen for
the pasr 100 years. Notwithstanding rhe massive research in this area
and rhe rampant growth of graph theory, of which magp coloring is a sub-
field, the four color problem remains unsolved to the present day. The
reader may wish to consult Marshall [1]and May [5] for a historical ac-
count of the subject.

The four color problem may be stated with the aid of the following

two definitions:

Definition 1: A finite collection M = {Ri} of closed subsets of
E? having the properties

1) each R. has positive area,

2) RinintRJ.:d’fOI'aHi and j, T # g,
and

3) each R. is a homeomorphic image of the unit circle,

is called a map; the Rij's are called regions.

More refined definitions can be given using the concept of planar

graphs; see Ore [3], Tutte's definition in Harary [4].

Definition 2: A well-coloring of a mep M is a function assigning
to each region R7;0 e M acolor a, | suah that, for all j # g, if

3R. n 3R, is a set of positive moeasure then ¢, # a,,
L) J * 190 i

The central question is: Given a magp M what is the minimum number, Ty

of colors which iS required to well-color the map? Obviously, if the

map has n regions, zy < n; however we can do much better than this. In
fact, as seen in Ore [6], for any mep M

Ty S5 .
We may now ask: IS it possible that four colors are sufficient to well-

color an arbitrary map M2 An obviously related question is: Can we con-

struct a counterexample which cannot be well-colored with four colors?




Amazingly, neither of these apparently simple questions has yet been an-

"swered, and this is what constitutes the so called Four Color Problem.
In this paper we definitely do not solve the four celor problem,

bur simply offer a new approach To the problem. To every mg assign a

region-region marrix H = [a'zj] as defined as follows:

a,., =1if aRi n 31?3. is a set of positive measure,

Y]
a,, =0 if 3R, n 3R. is a set of zero measure,
1J 1 J
For a map with » regions the matrix f will be » x n and, as indicated

later, it contains certain information concerning the map. (This notion
is similar to that involved in a general graph when one constructs the
so called adjacency matrix.) |t follows directly from the definition
that:
1) The matrix associated with any mg is symmetric.

ii) The diagonal entries must be ones.

iii) A column cannot consist entirely of zeroes.

iv) In any row there arc at least two non-zero entries.
Property (i) implies that we need to studv only the upper triangular
matrix. An example follows.

5
gy
Lt

1
FI GURE 1

In the mg illustrated in Fig. 1, we have
u(dRy n 3R1) > 0, ajp; = 1,
u(3Ry n 3Ry) > 0 , =1
u(3R, n dR3) > 0, aj3 = 1,

0 b}

- u(3Ry N 3Ry) = and so forth.

Hence the matrix associated with this map is

1 1 1 0 1
L 1 1 1
1 1 1 1 =
g 1 1 1 1
1 1 1 1 1
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The upper triangle is

=
P+ pRo
B PR e

1.
The matrix can be read as follows: Region 1 touches regions 2, 3, 5 but
not 4 (read row 1 across); region 3 touches regions 4, 5 (read row 3
across) and regions 1, 2 (read column 3).

Since the numbering of the regions in the collection M is arbitrary,
we can use different numberings. This induces different matrices. There
are in fact n! "different” matrices for a given map. Lf Hy is any parti-
cular matrix, the remaining n! - 1 matrices are called derivatives of Hy;
symbol: 3H, - any derivative of Hp.

We are now ready to define an equivalence relation between maps.

The following is easily seen to be an equivalence.

Definition 3: My ~ My if the set of derivatives of a matrix Hy of
by coincides with the set of derivatives of a matrix Hp of M;.

Obviously a necessary condition for two maps to be equivalent is
‘that they have the same number of regions. On the other hand, two maps
My and M, being homeomorphic is sufficient to insure M; ~ M,. For exam-
ple, the two maps given in Fig. 2 are equivalent and consequently are

considered to be indistinguishable.

FIGURE 2

The converse, however, is not true, as Fig. 3 shows. These two naps are
equivalent (as can be seen by writing out the 4! = 24 matrices assccizzed
with each map) but are not homeomorphic, since in the seconé mzp

3Rz N 3Ry # ¢.
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. ()
\_/
3 @ 3

FIGURE 3

(3]

Given two equivalent maps, if we well-color one mg and assign a
numbering to the second map such that the matrix thus generated is equal
to the matrix used to color the first map (we show below how this is
done), then we automatically have well-colored the second map. Hence the
chromatic characteristics of maps belonging to the same equivalence class
are the same. For this reason we have only to study the equivalence
classes of maps, which is equivalent to the study of the associated ma-
trices, or in particular, any one of the associated matrices.

The equivalence relation introduced above reduces the number of
maps in E¢ having = regions to a finite number of equivalence classes.
The number of equivalence classes for maps with n regions is bounded by
21/2n(n-l) (use properties (ii), (iii), (iv) of the region-region matrix).
The function f associating the region-region matrix to a mgp is a func-

tion into the set of symmetric matrices. It will be seen later that the
matrix
111111
111 1 1
1111
1 1 1
1 1

a1
has no pre-image; for if it has a pre-image, it would require 7 colors
to well-color it, but, as we have indicated, a,,z 5 for any map M,
Nov we introduce a technique to well-color a map using the associ-
ated matrix without any reference to the actual mg itself. W have already
stated that we need investigate onlv the upper triangular matrix--one can
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construct the triangular matrix by determining, for a particular region
i, the regions with assigned integer greater or equal to 7, which have
a common border with region 2. The well-coloring procedure is as follows:
Suppose that we make the first region of color A. We then "multiply" the
first row by A. For the preceding matrix mg of Fig. 1 we would obtain
A A A OA
1 1 1 1

Nov investigate the second (ith) region. W are allowed to make the sec-
ond (Zth) region of the same color A as the first region (the same color
as the (¢ - 1)st, (£ - 2)nd---2nd, 1st regions) ONLY if the second (Zth)
eolunn does not already contain color A (color of (£ - 1)st, (£ - 2)nd-""
etc.) We see we cannot use color A for the second region since the sec-
ond column already has A in |It; we must use a different color, say B,

and hence "multiply” the row by B. W get

A A A O A
B B B B
1 1 1
1 1
£ N

Continuing this process we finally obtain

A A A O A
B B B B
c c C
A A

D .

Note that in row four we can use color A again, since that column does
not already contain A. This means that region L will be made color A;

2, By 3, C, 4, A; 5, D. If wenow go back to the actual map, we see that
it is well-colored.

FIGURE 4



Dedinition 4: The ecoloration of a matrix IS the assignment of a

label L(aij) to every non-zero element a,, of the matrix.
tJ

Definition 5: An n x n matrix M with a coloration is normal if

1) forall4, 1 =14 <n, L(ar s L(aii) for all non-zero elements

t
it
2) for all §, 153 < n, L(ajé) # L(atj) for all non-zero elements
@i < 3.

Theonem 1: Let H be some matrix associated with a map M. Then M

is well-colored i f and only if H is normal.

Proof: Let the matrix be normal; the color on the diagonal is dif-
ferent from any color in that column. Consider aé.. The fact that a,,
ajz’ aja,---, ajj are, say, 1's means that the (jth) region touches the
1st, 2nd,-++, (§ - 1)st region; but by hypothesis the color of the jth
region is different from that of the 1st, 2nd,---, (§ - 1l)st region, con-
tiguous To it. This being true for all columns implies that the mep is
well-colored.

Conversely, let the mgp be well-colored. Then any region j is sur-
rounded by regions with colors different from that of the region j. Give
an arbitrary numbering to the mgp and also write down a letter symbol for
the color in the appropriate region. Now construct the associated matrix,
but instead of 0's and 1's, put 0's and the letter of the color. Say that
the (uncolored) matrix is of the form

11 1 0---1 4
1 1 1---1 4
1 1---1 4

By hypothesis all regions around région j, say J = 3, have differ-
ent colors. This means that the entries in column j, have different
colors (by construction of the matrix). So the matrix will be of the .
form
1 1 A 01 1
1 B 1-++1 1
¢ 1.1 1

and hence by the multiplication principle
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A A A 0'"4 A
B B B***B B
C ¢c=-~ C
and it iS nermal (the argument above being true for all columns).

A question of considerable importance is if the map is well-colored
with the minimum possible number of colors. Obviously, normality does
not imply that the mgp is well-colored with the minimum number of colors;
the converse IS however true. In order to well-color with minimum number
of colors, every time we get to a new row we must investigate to see if
we can use again colors already used.. Sometimes we will have a choice

of two colors (already used) leading to a different number of total colors

used. In any case the matrix will be normal. Example:
A A 0 D A 4 A U 0 A
B 0 B B B o B B
A A A B B B
c A A
P c

(4 colors needed) (3 colors needed)

This does not present a problem, however, since In applicati’on of this
procedure to the four color problem we suppose there exists a matrix with
n *+ 1 columns, representing the smallest mgp M in E? requiring five colors.
If we can fuse together two regions in such a way that the resulting n x n
matrix (map) still requires 5 colors, we achieve a contradiction since

M was the smallest such map; hence no such mg could exist. O course,
we already know that n has to exceed 40. See Ore and Stemple [7] To

that end we present (without proof) the following theorem.

Theornem 2: Let M be a map, H its matrix. Let Ra, ke two con-
tiguous regions ({i.e. an. =1) and assume J > a Let M' be a mg iden-
tical with M except that the regions Rj and R are combined. Let H' be a
a matrix obtained as follows:
1) "Add" the corresponding entries of row J In Htorow ain f as
follows: 1+0=0+1=2, 0+0=0, 1+1-=1.
2} "Fold™ the jth column at entry a « Then:
a) "Add' (as above) the corresponding elements of the unfolded

part to the entries of the a column
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b) “Add* (as above) the corresponding elements of the folded

part to the a row.

ZiN
N\ {_/IL!Z:H:::‘
|| 247172
a/\\ 7
\\\\ —1
7

3) All other rows and columns of H remain unchanged.
Then there exists a numbering of the regions of &' such that the matrix

of M' is exactly H'.

Example: Fuse region 2 and region 4 in mg M below:

! M ! A
6
5
3 3 4 3 2
FIGURE 5
H. = 1 0 11 1 1 H* = 1 1 1 1 1
o@li1 o 1111
111 0 110
11 1 1
11 1
1
The matrix H' is obtained from H by the following steps:
101111 101111 17011111 111¢11
10111 18]I 1 Tig¢11
TTI10] —- 1110 - fio - T¢10
g0 8|¢ ¢ X
11 11 /11 11
' ! ! '
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and finally
11111
111 1
1 1 0
1 1
1

It should be noted that even though one row and one column disap-
peared, this fusion "swallows up" zeroes in the remaining rows and col-
umns. The presence of more one's tends to increase the number of colors
needed t o normalize the matrix. Hence the proof of the following con-

jecture, as indicated earlier, would solve the four color problem.

Conjecture: Given an n t 1 matrix which requires a minimum of 5
colors to be normalized, then there exists one fusion of regions such
that the resulting n * n matrix requires 5 colors to be normalized.

The above, and this we believe is the merit of this paper, is void
of any geometric concept and constraint: Given a matrix which requires
5 letters to be normalized, fuse two rows (in the sense of the preceding
theorem -- without reference to geometry) such that the resulting matrix
still requires 5 letters. The efforts of the author toward settling the

above conjecture have not yet produced satisfactory results.
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EULER'S CONSTANT AND EULER'S e
By Peter A. Lindsitrom
Genesee Community College

The sequence{a } defined by

n
a = 2.—Lnn

i=1

can be shown to converge by denonstrating that the sequence is (1) de-

S

creasing and (2) bounded bel owby 0. The value of thislimt is often
referred to as Euler's constant. Another constant associated with Eul er
ise Euler introduced e to represent the base of the natural |ogarithm
ne of the famliar properties of e is the follow ng inequality:

(a) (1 +5%cecqr +5H%, -1 2 3,

The purpose of this note is to showthat by using (A, one can show that
the above sequence {an} i's convergent.
Since by (a)

1lin+l
e<(l+r—l) 5

then:

(1 + i) 5 el/(n+l)
n

1+ 1
7

5 Ry

: z n+ 1 1
- l“( 5 el/(n+l)) > &

n

n

II el/'b/n
z=1

sl irrayrrnnd I
nt >
ot elﬁ/(n)rl)
i=1

']
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1/% 1/i

" 3
=
®
>,

"
A
[\

mi{Z=———] s m| =],
n n+1

——
.M3
(=

. n+l .
nel/l_lnn)>(Zlﬂel/t—ln(n'i‘l)),

=1 1:=l

n n+l
(2%—1nn)>(2%—ln(rz+l)),

i:ll =1

so that the sequence { an} is decreasing for all n.
Since al so by (4) )
1+d <e

then:

el/i>(l+%)=(‘b::-l) ,

n ; n . 1
I'lel/7'>n(———7'z )=n+l.
=1 i=1

Thus, the above is greater than n, so we have

n .
ln( elh' >1nn ,
=1

and the sequence{an} i s bounded bel owby O for all n.
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£ PARTI AL DI FFERENTI ATION ON A METRI C SPACE!
by Roseann Moaiello
Seton Hall University
The "metric differentiability™ of functions between abstract metric
spaces is a relatively new and undeveloped field of mathematics. The
metric derivative of a function with real domain was first defined in
1935 by W. A. Wilson (See [2]). In 1971, E. Braude arrived at the same

definition after having researched the topic independently. Unlike his

predecessor, Braude sought to develop his concepts of metric differenti- A

ability for functions with abstract metric domains, In this paper we

explore the idea of partial differentiation for functions defined on the

<

cartesian product of two metric spaces.

Parntial digferentiation on a metric space

Let f be a function from a metric space (X,s) into a metric space

(Y,£) and let b ¢ X. f is said to be metrically differentiable at b if
b is not discrete and if a real number fI(b) exists with the property
that for every E > 0, a positive number 5 can be found such that if
s(x', b) < 6, g(x", b) < 8§ and x’ # X", then

t(flx’), flx")) _ fI(b) 2 i
gle', 2")
The assertion "f: X - Y is metrically differentiable” means that f is
(See [2].)
Proceeding almost directly from the definition of the metric deriv-

metrically differentiable at every point of X

ative is the definition of the metric partial derivative. Let f be a
function from a metric space (XxY,p) into a metric space (Z,p') and | et
(xz,y) be an element of XxY for which every open ball containing (z,y)
contains an element (x',y) with x' # 3 f has a metric partial deriva-
t e with respect to x at (x,y) if a real number f‘;(:c,y) exists with the

-

property that for every « > 0, a positive number 5 can be found such that
if-ple’, =) < 6, p(z", ) < 6 and x' # z", then v

“lone of several papers produced as a result of a research project funded
by the Research Corporation under the Cottrell College Science Program,
grant number c-205/308, directed by Professor E. 3. Braude, Seton Hall
University.

515

p'(flx"y y), fl=", y) _ f{(m, y)l .
p((z', ), (=", y)) ¥
and f has a metric partial derivative with respect to y at (x,y) if
every open ball containing (x,y) contains an element (z,y') with y # y'
and a real number f;(m,y) exists with the property that for every ¢ > 0,
a positive number § can be found such that if p(y', y)< §, py", y) < §
and y' # y", then

p'(flz, yN), flz, y") ff(x, P < e

pllx, y"), (z, y")) Y

It follows from the work of Braude in [1] that the derivative of f

with respect to x in the case X=Y =2 =R, where p({z, y), (z', y')) =
[z -2"%+ (y-y")2]Y2, and p'(z, a') = |z - 2'|, is equal to the ab-
solute value of the ordinary partial derivative of f with respect to Xx.
Similarly, the metric partial derivative of f with respect to y in this
case is equal to the absolute value of the ordinary partial derivative
with respect to y.

The Cauchy-Riemann equations are an important criterion for the
differentiablility of a function from B2 into R?. A necessary and suf-
ficient condition for f(x t Zy) = U(x, y) + iV(x, y) to be differentiable
is that Ux(x, y) = VY(x, y) and UY(x, y) = —Vx(x, y) together with the
continuity of Ux, U, Vx, and V. where .’Jx and VX are the partial deriv-
atives of U and V with respect to x,and UY and Vy are the partial deriv-
atives of U and V with respect to y. The following theorems give condi-
tions analogous to the Cauchy-Riemann equations which are necessary but
not sufficient for a function f to be metrically differentiable.

Theorem 1: Let X be a metric space .with metric p and let g be the
metric on XxX defined by
gz, y"), ", y™) = [pla’, a2 + ply’, yM?21V/2,
Furthermore, let f: (xxx,g) > (XxX,g) with f(x, y) = (U(x, y), V(z, y))
where U, V: ¥xx = X. If f is metrically differentiable at (x, y) and
Ugs Uys Vys @nd \, exist, then Ui(x, )2t Vi(m, y)? = U;(x, y)? + V‘;-(ac, R
Proof: Since the quantity
glfe", y'), fle”, y"))
gz’ y"), (", y"N
gets arbitrarily close to fI(x, y) for (x', y') and (z", g") sufficiently
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close to (xz, y), it can be said that the quantity
a(fle's y), fl=z", y))
g(lx', y), (=", ¥))
gets arbitrarily close to f'z-(:c, y) for ' and =" sufficiently close to

X. Thus

fr(xs y) 1im glfiz", y'), flz", y"))
(z', y') + (x, y¥) g((;z;', ¥, (x", y"))
(=", y") + (z, y)

glfle", y), flx", y))

= lim
x>z glx'y, y), (=", y))
x> x
= lim g, y), Viz', y)), Ulz", y), Viz", y)))
x'+ gz, y), (x", y))
x'"+ x

Lig PG, ), UG, y))? + pVGa’, y), V", y))°

il b, M2 + ply, y)?
- 13 PUWG's y), U, ) 2 o 1m0 y), VT, y)) ]2
z'+ plx', =) '+ plx', ")
z"r x z' x

= [Ui(:c, yZ+ Vi(:c, y)21t/2,
similarly, f'(z, y) = [U;(x, y)?2 + Vg(x, ¥)211/2,  Hence,

ULa, y)2 + VoG, )2 = Utes 92 + V(@ y)

In order to extend the ideas of Theorem 1. to abstract metric spaces,
it is necessary to introduce the following lemma

Lomma 1: Let (X, p) be a metric space and | et h be such that (1)
#:RtxRY > RY, (2) h(e, t)=0if andonly if s =t = 0, (3) h(bte, e+ f)<
n(be) t hie,f), and (4) if a <b and ¢ s d, then h(a,e) < h(b,d).
Furthermore, |let g be a mapping from XxX into R" defined by

glz’, y"),@&", y™) = hlplz’, =), ply', ¥™).

Then g is a metric on XxX.

Proof: W meke the following observations:
(1) The domain of g is (XxX)x(XxX).
(2) The range of g is a subset of [0, =).
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(3) The following iS true:
(a) gllx’, y"), (', y")) =

= h(c, C) = 0,

) gz, y"), (", y™) = hiplx',
if (', y') # (", y"),

(c) gllz', y"), (x", y™)) = wplz', =), ply', y")) =
hip(z", '), p(y", y")) = gllz", y"), (', y')),

(@) glz’, y"), (", y") = hplx', "), ply', y") <
h((p(x', ) + plx,z™)), (ply', y) + ply, ¥y
hp(x', =), pCy', ¥)) + hiplx,z"), ply, y™)) =
gllz', ¥y, (@, ¥)) + gllx, y), (=", y™));
therefore g((x', y'), (x",
gz, y), &”, y")).

Hence g is a metric by definition.

hip(z', '), p(y's y'))

2"y, p(yr’ y") >0,

A

y" < gllz’, y"), (xz, y)) +

The restrictions placed on g and h by the preceding lemma allow

for a more general statement of Theorem 1.

Theonem 2. Let (X, p) be a metric space, and let h be a continu-
ous function of ' x T into R satisfying the conditions on h of Lemm 1,
as well as the conditions k{(a, 0) = a, h(0, b) = b, and ch(a, b) =

h(ca, eb) for every e, a, and b in R'. Let g be the metric on xxXx de-

fined in Lemma 1 by g({z*, y'), (=", y") = hip(z', ="), p(y', y"). Then

for every metrically differentiable function f:

(X=X, g) » (XxX, g) given

by flz, y) = (U(x, y), V(x, y)) for which UI VI JT and Vf exist,
rlte, v), i, ) - h(UI(x, ), VI(x ).
Proof':
P o - o Oy, £ )
(xl, yl) - (x, y) g((xl, yl), (x"’ y"))
(xn, yu) o (.'E, y)
= 1y 9TGS Y, fla", y))
'~z gllx', ¥y), ", y))
"+ x
& 1qm LU, ), V', y)), (U, y), V(z", y)))
x'>x gllx', y), ", y))
x> x
= Tim hp(Ulae's y), Ulx”, y)), pWlx', y), Vix", ¥)))
x'+x alple', =™, ply, y))
x"_’, x
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TN rpUz', y), Ux", y)), p(V(z', y), V=", y))) Remark 2: Nw consider the function h: &Y x gt » g% defined by
x'+ x hip(z', ="), 0) h(g, t) = max(s, t).
' = (a) Since h~a, b) = (a, b) x (a, b) for every open interval (a, p
. R(pUz', y), Ulz", ¥)), pVix', y), Viz", ¥))) in ", and n-l[0, B) = [0, b) x [0, b) for every b > ¢, hi s continuous.
x>z plz’, ") (b) h satisfies the conditions of Lemma 1:
x>z ) h: BY x " > T
= lim h[P(”(x" y), V", y))  pa's y), VT, y))-] (2) max(s, t) =0 ifad only ifs =t = ¢
z:’,:; pats =) pla’s ) (3) (b, e) t h(c, f) = max(b, e) t max(e, f) 2b t .
Lip PUWGET ), U, y)) g PV, ), Vi, y)) TSLm“a”V’ Wb, e) t ke, f)zet f. )
B s, 5 p(z’, " o' pla’, =™ us, (b, e) t ;.z(c, flzmax(bte,et f)=hbte,etf).
" x z" x (4) asband e < dimply max(a, ¢) s max(b, d). Now,
. h(Ui(xs ), Vi(m’ e e(max(a, b)) = max{ea, eb) since "d = k" and 'ed > ck" are

equivalent for e¢ 2 0. The equations k(a, 0) = a and
n(o, b) = b are clear.
Applying Theorem 2 to the function h of Remark 2 gives the follow-
ing result.

since h i s continuous and the two limits exist by hypothesis. Similarly,

Az, y) = h(Uj(m, ¥, V‘;(ac, ¥)).
Therefore,
WL, 9, Vi, 1)) = R, 9, VoG, ).
Conollany: Let X be a metric space with metric p and let g be the
metric on xxx given by g((z', y'), (x", y")) = max[p(x', =), p(y', y™1.
Furthermore, let f:(XxX, g) + (XxX, g) with flx, y) = Uz, y), V(x, y))
where v : xxx ~ X and UL, VL, u;' and vi exist. If fis metrically

The above theorem gives necessary but not sufficient conditions for de-
termining the metric differentiability of a function.

Remank 1: Theorem 1 is a special case of Theorem 2 in which differentiable at (x, y), then
h(s, t) = /s2 + t2. The function x satisfiesthe conditions of Lemma 1: o~ [Ui(x’ ¥, Vi(x’ )] = max [Uj(x’ ¥, Vj(x’ 1.
(1 h: B x &Y+ B
= / 2 = i 1 = =
(2) h(s, t) .s t t2=0ifand on!y ifs=t=0 e
(L Iollowmg = CUELEA CHS G IR SUSRC AL C O Lo 1. Braude, E., "A Metric Space Derivative," American Mathematical Society
in R Notices 20, (1973), p. A608.

(bf - ee)? 2 0; 2(bf)(ec) s (B2 + (ee)?; be + ef <
Vb2a2 + e2f2 + e2¢2 + B2FZ; (b +e)2 + (e + )2 s [VBZ + &2 +
22 1 212, V(b + e)? + (e + )2 < /b2 + e2 + Ve? + F2,
Wb te,et f)<hb, e)t ke, f).

(v) 1f @ <band ¢ < d, then a2 t ¢2 < b2 t d2, and so va? + e2 <
/b2 t d2 (i.e. hla, ¢) < (b, d).)

I't i s an elementary fact that h is continuous. The equations h(a, 0) = a

2. Dugundji, J. Topology, Allyn and Bacon, Boston, 1965.

and h(0, b) = b are clear. Finally, ife e Rt, then for any (a, b) in
" x BT, oh(a, b) = e¥a? t b2 = V(ca)? t (ech)? = hlca, cb).




A SUGGESTION FOR ENJOYABLE READING

Professor Robert W. Prielipp of the University of Wiscensin, 0Oshkesh,

highly recommends three relatively little known books to Journal readers.

Fantasia Mathematica, assembled and edited by Clifton Fadiman, Simon
and Schuster, Inc., New York, 1958 (Paperback). Noteworthy selections in
this collection of short stories and poems are:

(a) Young Archimedes, by Aldous Huxley -- the difficulties faced by
a young Italian peasant boy who seems to be a mathematical genius.

(b) The Devil and Simon Flagg, by Arthur Porges -- a mathematical
version of Stephen Vincent Benet's The Devil and Daniel Webster.

(¢) ——-And He Built a Crooked House, by Robert A. Heinlein -- unusual
phenomena in a house having dimension higher than three.

(d) A Subway Nared Moebius, by A. J. Deutsch -- strange things happen
to the Boston subway when the Boylston shuttle is installed.

The Mathematical Magpie, assembled and edited by Clifton Fadiman,
Simon and Schuster, Inc., New York, 1962 (Paperback). Choice selections
in this anthology are:

(a) The Law, by Robert M. Coates -- unlikely events become the rule.

(b) The Appendix and the Spectacles, by Miles J. Brown, ¥.L. -- a
mathematician uses the fourth dimension to get even with a bank president.

(¢) The Nine BZllion Names of God, by Arthur C. Clarke -- Tibeton
monks try to use a computer to set down all the possible names of God.

(d) Milo and the Mathemagictian, by Norton Juster -- the adventures of
alittle boy and a dog (who ticks) in Digitopolis.

_ Whom the Gods Love (The Story of Evariste Galois), by Leopold Infeld,
Mcér';»;—ﬁill Book Company, Inc., New York, 1948 -- the moving story of a
young mathematical genius who i s caught up in the struggle for a new French
republic in the days after Napoleon's defeat during the reign of the Bour-
bons, His father commits suicide, his mathematical accomplishments go
unrecognized during his lifetime, and at age twenty he is killed in a duel
resulting from a love affair plotted by his political enemies.

WHCOVE TO NBV CHAPTERS

The Journal extends its welcome to the following new chapters of
Pi Mu Epsilon which were recently installed:

AABAVA EPILON at Tuskegee Institute, installed by Houston T.
Karnes, Council President.

CALIFORNIA IOTA at the University of Southern California, installed
by J.C. Eaves, past Council President.

GEORGIA GAMMA at Armstrong State College, installed April 2, 1974
by Houston T. Karnes.

ILLINOIS EPSLON at Northern Illinois University, installed by J.
Sutherland Frame, past Council President.

ILLINOIS ZETA at Southern Illinois University, installed June 1,
1973 by Houston T. Karnes.

KENTUCKY BETA at Western Kentucky University, installed by J.C.
Eaves.

LOUISANA KAPPA at Louisiana Tech, installed May 9, 1973 by Houston
T. Karnes.

MICHIGAN DHETA at Hope College, installed by J. Sutherland Frame.

NEBRASKA BETA at Creighton University, installed April 25, 1973 by

R.¥. Andree, Council Secretary-Treasurer.

PENNSYLVANIA MU at the University of Scranton, installed by Eileen

L. Poiani, Councilor.

SUJH CAROLINA BETA at Clemson University, installed March 27, 1973
by Houston T. Karnes.



x LOCAL CHAPTER AWARDS WINNERS

The Journal inadvertently omitted the JALIFORNIA ETA (University of
Santa Clara) report of their annual awards in the last issue. The Award
for Excellence for 1973 was presented t o

Kanen A. Moneta,
and the George W. Evans 11 Memorial Prize for highest placing in the
William Lowell Putnam lMathematical Competition was received by

Paul N. ILacqua

Kathteen M. Daty.
The winner of the Freshman Mathematics Prize for 1973 was

James L. Hafnen.

A FRIENDLY REMINDER

We are no longer printing the long initiate lists in the Journal,
but we do print the names of those who have distinguished them-
selves in mathematics in their local chapters. PLEAE $&\D US THE
NAVES OF your ANDS WINNERS and | et your exceptional chapter mem-
bers (or local students) will receive the recognition they deserve.

In connection with this, remember that the National Office can
supply you with impressive award certificates. Write to:

R. V. Andree

Secretary-Treasurer, Pi Mu Epsilon
601 EIm Avenue, Room 423

The University of Oklahoma

Norman, Oklahoma 73069

NO ANNUAL MEETING THIS SUMMER
Because the annual summer meeting of the Mathematical Association

of America w:ll not be held this year, Pi %u Epsilon also will not have
its meeting. The Council urges as many local chapters as possiktle to

make plans t o send delegates to regional meetings of the HAA in their
area instead. May of these regionals include sessions for undergraduate

papers, so be aware of this opportunity for your members.

PROBLEM DEPARTMENT

Edited by Leon Bankoff
Los Angeles, California

This department weleomes problems believed to be new and, as a rule,
demanding no greater ability in problem solving than that of the average
member of the Fraternity. Occasionally we shall publish problems that
should challenge the ability ¢f the advanced undergraduate or candidate
fer the Master's Degree. 21d problems displaying novel and elegant
methods of solution are also acceptable. Proposals should be accompanied
by solutions, i f mailable, and by any information that will assist the
editor.

Solutions should be submitted on separate sheets containing the
name and address of the solver and should be mailed before the end of
November 1974.

Address all communications concerning problems to Dr. Leon Bankoff,
6360 Wilshire Boulevard, Los Angeles, California 95048.

Problems for Solution

314. Pnoposed by J. A H. Hunter, Toronte, Canada
Show that

5 . o .
sin® 45 - sin? 15 = sin 80"

- e o . o
zinc 30 - sin® 10 sin 30

315. Proposed by Charles W. Trnigg, San Diego, California.

One type of perpetual calendar consists of two white plastic cubes
resting on a tilt-back base. n each face of each cube is a single
digit. The digits are so distributed that the cubes can exhibit any
date from 01 to 31 on their front faces.

Cou.d this type of calendar be constructed if a base of numeration
smaller than ten were employed?

316. Proposed by Zazou Katz, Beverly Hills, California.

I f you were maronned on a desert island without a calculator or

tables of trig-nometri: functions, how would you g.- about determining
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which IS greater:
2 tan }(¥Z - 1) or 3 tan T(1/4) * tan “Lis:q99) -

317. Pnroposed by the Editor of the ProbLem Department.

A rectangle ADEB is constructed externally on the hypctenuse AB of
aright triangle ABC (Fig. 1). The lines €D and CE intersect the line
AB in the points F and G respectively. a) If DE = ADV2, show that
AG? + FB? = 4B®. b) If AD = DE, show that FG2 = AF - GB.

C C

FIGURE 1

318. Proposed by R PRobinson Rowe, Sacramento, California.
Two equal cylindrical tanks, Tank A abcve Tank B, have equal ori-

fices in their floors, capable of discharging water at the rate of 137

gallons per minute, where h is the depth of water in feet. At 10:20 am.

Tank B is empty and water is 10 feet deep in Tank A, as discharge begins.

At noon Tank 4 is Just emptied, What was the maximum depth in Tank B,
and when ? How deep is the water in Tank B at noon, and when will it

be smpty?

319.  Proposed by Professorn M. S. Longuet-Higgins, Cambridge,
England.

Let A', B', C' be the images of an arbitrary pcint in the sides
BC, CA, AB of a triangle 4Bc. Prove that the 4 circles AB'Z*, BC'A',

CA'B', ABC are all concurrent.

320. Proposed by H. S. M. Coxeter, Tenonto, Canada.
Prove that the projectivity ABC & BCD (for 4 collinear points) is
of the period 4 if and only if H(AC, BD).

321. Proposed by Nosmo King, Raleigh, Nonth Carolina. (Dedicated
to the memony of Leo Mosen).

According to Herten's Theorem

n (1 = l) v 2
p<n r log »

where y denotes Euler's constant, (9.57721...) and where the product on

the left is taken over all primes not exceeding n. (See Hardy and Wight,
The Theory of Mumbers, p. 351 or Trygve Nagell's Introduction to Mumber
Theory, p. 298). Cam you estimate

nf{i1-2)¢
a5

322.  Proposed by Jack Garfunkel, Forest HiLLs High School, New
York.

It i s known that the ratio of the perimeter of a triangle to the
am of its altitudes iS greater than or equal te 2/V3. (See American
Hathematical Honthly, Problem E 1427, 1961, pp. 296-297). Prove the

stronger inequality for the internal angle bisectors ta' tb and t

2t +t, +t)<V3ila+ b +e)
a e

b
equality holding if and only if the triangle i s equilateral.

323.  Proposed by David L. Silvemman, Los Angeles, California.

Call plane curves such as the circle of radius 2, the square of
side 4, or the 6 x 3 rectangle in Fig., 2 isometric if their perimeter
is numerically equal to the area they enclose. Vhat is the maximum area

that can be enclosed by an isometric curve?

3 TSOMETRIC
F1 CURVES

FIGURE 2
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324. Proposed by R. S. Luthar, University of Wisconsdin, Janesville,
Wisconsin,
Evaluate ﬁ 3
lim J=l §+1
n>e n

325. Proposed by Chanles W. Trigg, San Diego, California.
Show that there is only one third-order magic square with positive

prime elements and a magic constant of 267.

Solutions

292. [Spring 1973] Proposed by Jack Gargunkel, Forest Hills High
School, FRushing, New Yonk.

If perpendiculars are censtructed at the points of tangency af the
incircle of a triangle and extended outward to equal length:, then the
ioins of their endpoints form a triangle perspective with the given tri-

angle.
Solution by Clayton W. Dodge, Univensity of Maine at Onono.

Q

la~}

FIGURE 3
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Let the incircle touch sides BC, C4, AB of triangle ABC at points
X, Y, Z, (see Fig. 3) and let the other ends of the constructed equal
perpendiculars be P, Q, R, respectively. 1t is well known that points
A, B, Cand X, Y, Z are in perspective at the Gergonne point for trian-
gle ABC. But also triangles XYZ and PQR are in perspective at point 1,
the incenter for triangle-ABC. It is also known that perspective is
transitive; that since triangles ABC and XYZ are in perspective and tri-
angles XYz and PQR are in perspective, then triangles ABC and PQR are
in perspective also.

Also solved by ZAZOU KATZ, Beverly HilLs , California, and the
Proposen.

Probfem Editon's Note
Two recent texts describing the Gergonne point and other potable

points of the triangle are: (1) David C. Kay, College Geometry, Holt,
Rinehart and Winston, Inc., 1969; (2) Clayton W. Dodge, Euclidean Geome-

try and Transformations, Addison-Wesley Publishing Company, Inc., 1972.

293. [Spring 1973] Proposed by Lew Kowarski, Morgan State College,
Baltimone, Manyland.

Prove that N = 53103 + 10353 js divisible by 78.

1. Sofution by R Robinson Rowe, Sacramento, California.

Since 53 = -1(mod 6) and 103 = 1(meod 6), we have 53183 = (-1)103(mod 6)
= -1(mod@ 6) and 10353 = 1(mod 6).

Alsc, since 53 = 1(mod 13) and 103 : -1(mod 13), we have 53193 =
1{mod 13) and 103°3 = -1(mod 13).

Hence N is divisible by both 6 and 13, which are relatively prime.
Therefore ¥ is divisible by 6 « 13 = 78.

Similarn solutions were offened by MERYL J. ALTABET, Baonx, N. Y.
RAYMOND E. ANDERSON? Montana State University, Bozeman, Montana; DONALD
CASCI, Rhode 1sfand College, Providence, Rhode 1sland; RICHARD A. GIBBS,
Font Lewis College, Durango, Colorado; DONNELLY JOHNSON, Major, USAF,
Adin Force Institute of Technology, Fairbonn, Ohio; BRUCE LOVETT,Rutgers
College N u Brunswieck, N. J.; T. E. MOORE, Bridgewater State College,
Bridgewaten, Mass,; THERESA PRATT, N. Easton, Mass.; PAOLO RANALDI,
Aknor, Ohio; MICHAEL SCHWARZSCHILD, Polytechnic Tnstitute 0f Brooklyn.
11. Solution by Chartes W. Trigg, San Diego, California.

Examining the congruences of 53103 and 103°% for the moduli 3, u,
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75 13 and 25, it is seen that Nis divisible not only by 78 = 2(3)(13)
but also by any combination of the factors 29, 3, 52, 7, and 13.

Solutions necognizing this extension of the proposed problem wenre
offened by CLAYTON W. DODGE, University of Maine and by DAVID L. SILVER-
MAN, Lob Angeles, California.

111.  Sofution by Frank Massimo and Mark Yankovich, Juniors at Drexel
Univernsaty, Philadelphia, Pennsylvania.

Expansion of (78 - 25)193 and (78 + 25)°3 by the binomial theorem
shows that each term contains a factor of 78 except (-25)103 gng 25°3.
Therefore, if 2553 - 25193 js divisible by 78 then so is N. Rewrite
9553 _ 55103 as -(25)33(255Y - 1), which equals -(25)33(825°5 - 1). It
is known that (62525 - 1) isdivisible by (825 - 1) = 8 x 78, Therefore
78 divides 25°3 - 25103 and also 53103 + 10333,

Other solutions involving the binomial theorem were offered by
HYMAN CHANSKY, Untversity of Maryland; STANN CHONOFSKY, Wonrcester Poly-
fLeehnic Institute, Woncestern, Mass.; JACK GIAMMERSE, Louisiana State
Univensity, Baton Rouge, Lowisiana; PETER A. LINDSTROM, Genesee Communi-
ty College, Batavia, New Yotk, T. PAUL TURIEL, SUNY at Binghamton, New
Yonk; CHARLES W TRIGG, San Diego, Califonnia; and the Proposen.
Comment

Generalizatiecns of the problem were submitted by Theodore Jungreis,
Brooklyn, New York and by Bob Prielipp, University of Wisconsin at Osh-
kosh: If p=a1m+l=a2n—1andq:a;m—1:ahn+1,andpandq
are odd, it is found that pq + qr' isdivisible by 2mn.

294. [Spring 1973] Proposed by Charles W. Trigg, San Diego, Cali-
fornia.
In Fig. 4 show that ABCD is a square.

A
il S
- P ¥ D
B Q‘I —
@

FIGURE 4

Comment by Clayton W. Dodge, University of Maine at Orono.

The solution of the analogous problem for nested equilateral tri-
angles appeared in the November 1970 issue of the Mathematics Magazine,
Problem 754, pages 280-281. Comment by K, R. S. Sastry, akele, Ethio-
pia, in the November 1971 issue indicates that the method of the solution
by Michael Goldberg holds for any regular polygon. Hence it holds for
a square, proving problem 294.

Solutions were also offered Dy ZAZOU KATZ, Beverly HilLLs, California;
ALFRED E. NEUMAN, Mu Alpha Delta Fraternity; R. ROBINSON ROWE, Sacramento,
California; and the Proposer.

295.  [Spring 1973] Proposed by Murray S. Klamkin, Ford Scientific
Laboratony, Deanborn, Michigan.

Determine an equation of a regular dodecagon (the extended sides
are not to be included).
Solution by the Proposen.

The equation
N

E!Eax-b!+|cy-d[}=>\
i 1 n'n ¢!
n=1

represents a 4N-gen. By svmmetry we try
e — 2 +jz b2ty - 1]+ fy F 2] talz] t y]) =0
After scme elementary calculations,
a=+/3-1 o= 202 + V/3) .,

296. [Spring 1973] Proposed Dy Sofomon W. GolLomb, University of
Southenn Califonnia, Department of Efectrical Engineering.

1) Combine 2, 5, and 6 to make four 2's.

2) Combine 2, 5, and ¢ to make four u's.

3) Combine 2, 5, and 6 to make four &5's.

4) Combine 2, 5, and 6 to make four 7's.

5) Combine 1, 5, and 6 to make four 7's.
Sofution by Chankes W. Trnigg, San Diego, California.

In general,

6+2-5=3=(ag+a+alla;

2{6 - 5) =2=a/ata/a=611-5

2+ 5-6=1= (a/a)(a/a)

6 -5-12=0=aqa/a - a/a

6 - 5 =1;

aa/aa = ala + a - a = a%a% = 1(6 - 5);

a+a-a—a=aa—aa=aa—aa=




where a is any positive digit, including 2, 4, 5 and 7. (The symbol lx
indicates sub-factorial X. For example: 1 =0, !2 =1, and !5 = 44))
Attention is called to the solution of Problem E861, American Math-
ematical Monthly, January 1950, page 35, where Vern Hoggatt and Len Moser
show that every integer may be expressed by using p a's and a finite
number of operator symbols (including log) used in high school texts;
p >3 and a> 1 are integers
For other representations where a has a specific value, space is
conserved by first listing certain non-negative integers with their re-

presentations by 2, <, and 6. Namely:

0=(s+ 5)[1(12)] 13=2+5+6 35 = 5(6 + 12)
1=(6/2)! -5 15 = 5(6)/2 36 = (61/51)2

2 =5-6/2 16 = 2(5) + 6 40 = 5(2 + 6)
3=5-/6-2 18 = 6(5 - 2) 42 = 6(2 + 5)

4 = 2(5) - & 20 = 5(6 - 2) uy = (Is)(1VE - 2)
5= (.5)(6) + 2 21 =26 - 5 46 = 1s + V6 - 2
6 = 2(.5)(6) 22 = 2(6 + 5) ug = 15 + 6 - 2

7 =2(6) -5 24 = 2(6)/(.5) 49 = 15 + 6 - 12
8 =5+ 6/2 25 = 5(6 - 12) 50 = (15)(12) + 6
9=6+5-2 26 = 25 - 6 gu = 281/
10 = 6 + 2/(.5) 28 = 6(5) - 2 88 = (15)v/6 - 2
11 = (6/2)! + 5 30 = 5(6)(12) 625 = 586 = 2)

12 = 2(8!)/(5!) 32 = 2 + 5(6)

There are many alternate simple representations of these integers
by 2, 5, and 6, as well as representations of many other integers.
1) The fcllowing representations using four 2's can be matched

against the previcus representations using 2, 5, and 6:

o=(2t%t2)/2-2 16 = (2 + 2)(2 + 2)
1= 22/(2)(2) %18 = 22 - 2 - 2
2=24+2-2(12) 20 = (2/.2)0/(2)(2)
3=2 +2-2/2 %22 = 22(2)/2
4= 2(2)(2)/2 36 = (2 + 2+ 2)2
5 =24+ 2+ 2/2 fuy = 22 + 22
8 =242+ 2 + 2 #e = 2 + 2(22)
10 = 2(2)(2) + 2 64 = [(2)(2)(2)]2
%11 = (22/2)(12) %88 = 2(2)(22)

12 = (2 + 2 + 2)(2)

2) All of the integers in 1), except those marked by an asterisik
(*), can be represented properly by replactng each 2 with v&. Other

representations by four u4's are:

7 =4+ 4 - L/u 2 = u(u) + o+

8 = (4 1 u)(u/u) 32 = u(u)(u)/ve

9 = 4+ 4 + 4/y 40 = WN(E)/(.=)
12 = 4 + 4 + /4 + /4 42 = u(u)/(.8) « 0%
EE o5 ow(L4) - u/u 44 = u(u)/C.e) + =
& = 4+ L4+ 4o+ 4 64 = (4 + u)(- +

3) Some representations of gertaln of the integers in the first

list given above but using four 5's are:

3:=5-(5%5)/5 20= 5+ 3 + 5 +
6 =5/5t v/5(5) 24 = (5)(5) -
7=5%/5-5/5 = 5(5)(5/5
9=5+5-5/5 26 = (5)(5) =

10 = (5 * 5)(5/5) q0 = 5(5 -

11 =5+ 5+ 5/5 35 = 3+ 5+

1% = (5)(5) - 5 -5 625 = 3(5

4) Some representatigns of certain of the integzers in © iy
1ist given above but using four 7's are:
y = 77/7 - 7 21 =7 + 7 ¢+ fil3)
7=74+7-V7(7) W =T +7T+7 %3
9= (7t +7
3 =7+7-77
WwW=7tr7+7/7 -
18 =77/7 17

Us¥hg match sticks or toothpicks and
H+v+Vl — 7—-—7—7—7

5) Combining 1, 5, and 6 == == Y
6/vS - 1 =3=(%+ 7+ 7)/7 vz (T e« TR

(61)/(51) - 1 =5 =7~ (7 + 7)/7 g R R ia
v6(5 + 1) = 6 = v7(7) - 7/7 - -T e N

7 = (FIWTCT 8 eTeTw

(6l)/(s!) + 1
6+ V5 - 1=8=7/7+ 70 7
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Using toothpicks and rearranging:

+V+VI —>T77-7-7

Ncte: In each of the five cases, the three unlike digits have been com-
bined so as to equal the sum of the four like digits.
Problem Editon's Comment

The multitude of solutions listed below, in some cases duplicating

representations already listed in Trigg's solution, display the ingenlous
variety accomplished by the following solvers: CLAYTON W. DODGE, Uni-
versity of Maine at Onono; JOAN INNES, Creighton Univernsity, Omaha,
Nebraska; RICK JOHNSON, Buwwroughs Conporation, Wilmington, N. C.; BRUCE
LOVETT, Rutgens Coflege, New Brunswick, N. J.; JIM METZ, Springgield,
TLLinodis; T. E. MOORE' Bridgewater State College, Bridgewater, Massa-
chusetts; BOB PRIELIPP, The University of Wisconsin, Oshkosh; R. ROBIN-
SON ROWE, Sacramento, California; and the Prgposer.
The potpownii of sofutions submitted by the above-named solvers is as
goLLows :
1) 2+ 546 =292 9+2+2=2
6/2+5=2+2+2+2

256 = [(22)2]2 25 % &),
[52/6] = -[-62/5] =2t 2+ 2+t 2,

where brackets Indicate the greatest integer function.

2) V256 = 2 «+ 5+ 6 = L+ L 4L +4
256 = 4 o L e L4 oL 3 25 e f =4 e bbb g

5 ¢ B4 = b4 o« Lh o+ 4,

3) S(6-2)=5+5+5+5 ; 5672 = 5 a5 5 5 =G
625 = 5 + 5+ 5 « 5,

4) 56/2=7+7+7+7 3 65-2=7«T7T+7+7T ;
5+6-2=7+7+7+7 5 5+ (7% 1Y7+7 3
2+ 5-86=77/7 - 1.

2]
1

%]
1]

5) 1(6 - 5)=77/77 3 (1 +5)/6=77/73 1+5+6=(77T4+7)7
5(6+1) =7 +7-(7+7) 3 62>+ 1=7777.

Ln
(¥
)

297.  [Spring 1973] Proposed by Roger E. Kuel, Kansas City,
Missound.

A traffic engineer is confronted with the probrem of connecting
two non-parallel straight roads by an S-shaped curv.: formed by arcs =f
two equal tangent circles, one tangent to the first road at a selected

point and the other touching the second road a- a g‘ven point.

FIGURE 5

1) Petermine the radius of the egual circles synthetically, =riz-
onometrically or analytically.

2) If the figure lends itgself t& an Euclidean construction, mow
wonld ane g¢ about ft?2
Problem Editon's Note

Because of the complexity and difffculty of this probissi =

line for consideration of solutions is hereby egtendeé to Now

1974. A synthetic solution would be particularly welcorme.

298. [Spring 1973] Proposed by Paul Eadés, Budapes?
Jan Myecielski, Univensity of Colorade, Boulder, Colo

Prove that
1) lim %(/ﬁt St .ot ) =
ne .
2) lim = (n/108 4 /1o k.
n 7
Sofution by Donnelly J. Johnson, Hajci, teghs-Paszesson Ade Fom
Base, Ohio.
Let ¢ > O be given. Using 1'Hosoi= ‘ - 20e =2
Thus, there is a function #(c) so = o> we
n
.1 /k e
claim i: k;2 n - L] < & i
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v

Observe that nl/k = exp (E%—n), so if

k5 log n .
ll,]g(l F 5)

then

1—07%—71 < log(l + 7) and w'* 14 &

Also observe that

logn _ 2 log y
1/2 1/2 :
so if
,l”"
w2 nE toa(l + 5N
then
laog n [ E
—i% < -5 lr.'g(l + 5)
3 . 3 S (7 4= NN S £ N log n "
Thus if n 2 =, n > }~1(€ log(l + 3)), and m = [———lr:g(l Tz -“3)]’ then
n n ;
1 1/k 1 1/k
|52n 'l|=|ﬁ(l+ (n —l})|
k=2 k=2
m _1/k n
1 n -1 1/k
== Z " o Z (n 1)
k=2 k=1+m
1 1/2 14«
<1, __logn - + = Z z
" 1og(l + %) &
e 3 k=1
« sy E=E as required
3t3+v3 9 :

ALso solved by the Proposens.

299, [Spring 1973] Proposed by David L. Silvesmman, West Lob
Angeles, California.
“ - "n the back of an envelope you see the results of an interrupted
game by two players whom you know to be tic-tac-toe experts, It is
generally recognized that the expert never puts himself into a poten-
tially losing position and always wins if his opponent gives him the
opportunity, There are 2 X's and 2 0's on the diagram. It iS impos-
sible to deduce whose move it is. Neglecting symmetry, what is the

position?
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Sotution by Clayton W. Dodge, Univernsity of Maine at Onono.

Let us number the boxes in the tic-tac-toe array along each row
from left to right using L to 9, Thus the first column is 1-4-7.
the 2 X's and 2 O0's, it is clear that

1. No mark (say X) can occupy box 5, since then a like mark is
adjacent to it, so the opposite mark () must complete that row or column
or diagonal, The last O cannot now be placed so that a win cannot be
forced in some way.

2. No two like marks are symmetric to box 5, since then a like mark
in box 5 would win or observation 1 would be violated.

3, The same mark (say X) cannot appear in two adjacent corners
(say 1 and 3), since then O must occupy box 2 and some other box that
would enable 0 to win if he plays next.

4. The same mark (say X) cannot appear in two middle-of-an-edge
squares (such as 2 and B er 2 and 4) without violating observation 2
(as in boxes 2 and 8) or, if we assume X's in boxes 2 and 4, then O must
occupy the corner (box 1) between the X's and another box (either 6 or
8) to prevent X from winning with box 5, But then O can win with box 9.

5. The same mark (say X) cannot occupy two adjacent squares (say 1
and 2), since then the opposite mark would have to complete that row or
column (0 in box 3) and another box, enabling O to win if he moves first.

6. Thus each mark occupies one corner and one middle-of-an-edge
box (such as 1 and 6) that i s opposite. There are four cases.

If Xliesindland 6 and & in 2 and 9, then X in 4 forces a win for

X.

If X lies in 1 and 6 and O in 2 and 7, then X in 5 forces a win for
X.

If Xisin boxesdland 6 and if O isin 4 and either 3 or 9, then
expert play will produce a tie in all cases.

Hence we have two distinct solutions to the problem, either of which
could have been on the envelope:

X X| 10
O] |X O] |X
O
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ALso scfved by RICK JOHNSON, Wilmingteon, N. C.i ZAZOU KATZ, Bevesly
HLLs, Californda; and the Proposes,

300. [Spring 1973] Proposed by the Problem Editonr.

It can be shown with difficulty that if the opposite angles of a
skew quadrilateral are equal in pairs, the opposite sides are also eaual
in pairs. (The reward of instant immortality is offered the solver who
can prove this without difficulty). |If two opposite sides of a skeuw
quadrilateral are equal and the other two unequal, is it possible to
have one pair of opposite angles equal?

. Sofution by CLayton W, 'Dodge, University of Maine at Oxcno.

The answer is "yes." W make use of the "ambiguous"™ case SS4 for
congruence of triangles. Let ABC be anv obtuse triangle with obtuse
angle at B and with side AB greater than side BC (Fig. 6). #ith center
B swing an arc of radius BC to cut side AC again at E. Then triangles
ABC and ABE are not congruent but satisfy the $S4 condition. Construct
triangle BCD (on side BC) congruent to triangle EBA. Now fold the paper
along line BC. Then the skew quadrilateral ACDB has angles A ang D
equal, sides AB and CD equal, and sides AC and BD unequal.

IT. Sclution by Zazou Katz, Beverly HiLLs, California,
Consider the annexed figure, in which chords CD and AB are parallel

(Fig. 7D« 1t is clear that angles DCB and DAB are equal and that CB = AD.

if triangle CDB is hinges about DB and C is lifted from the plane of the
figure, we obtain a skew quadrilateral in which the angles at C and A
remain equal, the opposite sides BC and AD are eaual, and the opposite

sides CD and AB are unequal.

C—"—D

A <

5

FIGURE 6 FIGURE 7

ALso sofved by ALFRED E. NEUMAN, Mu Alpha Delta Fraternity, New

York, and by NOSMO KING, Rafeigh, N. C.
ProblLem Editon's Note.

Readers interested in skew quadrilaterals will find solutions of

the introductory theorem on pages 1026 and 1027 of the November 1973
issue of the American Mathematical Monthlyisolutions to Question B-5

of the William Lowell Futnam liathema: ical Compet®tlon held on December -,
1972).

301. [Spring 1973] Proposed by Nea? Jaccbs, Bronx, N. Y.

(Corrected). One-fifteent!. can be expressed in "decimals" ir manv

ways, for example, as .0421 in base =ight, or as .013 in base five. Show
+*hat ‘n any base n, the "decima." for one-fifteenth will have nz more
than four recurring digits.

Solution by Donnelly J. Johnson, Majon, USAF, Wiight-Patterson Aix
Fornce Base, Oluo.

The representaticsn of 1715 as a "decima.' expression to base i,

(n =2, 3, 4,**+,) either terminates or has a repeating block £ Zenz-.
1, 2, or 4. T. prave this, 't is sufficient to show that there I = r -
peating block = f length 4. Also it is sufficient to show tha+ - =
2, 3, 4,"**, then 15 divide- n(n* - 1) since 1 n(n" - 1)71% = - __

K = Z 012/71z with 0 < a. n, then

o r
X {1 X K X
z A = ~— —q + 4+ e
no (ﬁ") a5t ae T
r=0

is seen to represent a number in "decimal" base # wi-. r=

length 4 digits; and

i xf{1\¥_ K/n® _ 4 .
o\ nt Tt - 1)/nt T onlnt - L
r=0

T complete the proof that 15 divider -

p = 3and for p =5, p divide? either?+ =r s sf-
ficient to show forp = 3, 5 that if a - _. . e g =8
is amultiple of p: thus, 1% - 1= : - =2 A% = 1.
215.

Also solved by RICHARD A. GIBBS. ~ - . . Danzege, ColiNs
ado; BOB PRIELIPP, The Universt” saf e PunpeEe
ALL solvens noted the. mispriint - T wtlen.




Professon Prielipp cited the Teacher's Manual gor Excursions Into
lathematics by Beck, Bleicher and Crowe, pp. 271-272. Gibbs noted the
genenal result found <n B. M. Stewart, Macmillan 1952, p. 234.

302. [Spring 1973] Proposed by David L. Silvemman, West Los Angeles,
California and Alfred E. Newman, Mu Alpha Delta Fraternity, New Yonrl.

A tapestry is hung on a wall so that its upper edge is a unit: an?
its lower edge b units above the observer's eye-level. Show tha: in
order t. u«btain the most favorable view the observer should stanu at a
distance vab from the wall.

I.  Sofution by R. Robinson Rowe, Sacramente, California.

In Fig. 8, AB is the tapestry on wall 4B and the .bzerver's eye [-
at | at a distance of I1C = d from the wall. Tor the most favorable view,
angle AIB = 9 should be a maximum.

A = AIC - BI" = tan"la/d - tan~lb/d
anl dfa + b)

d< + ab

Tinee w is less than 90°, it can be maximized by maximizing its
tangent, and hence by maximizing its tangent divided bv (a - b). Let-
ting F(d) = d/(d% *+ ab), we obtain F'(d) = (ab d-)/(d* + ab)? = |
whence ab - d? = - and d = Vab.

Commat by Problem Editor

While this solution is correct in theory, ther. are practical lim-

=t

itations. As C approaches B, b and d approach zero and ! approaches 90°
Thus, if a=4and b = .01, we find that d = .2 and even a myopic obser-

ver would get a jaundiced view.

A g
I
A
a
B
]
b B
X
I d C I a5 c

FIGURE 8 FIGURE 9
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11. Amakgam of geometric solutions by Scott H. Brown, West Vinginia
Uncvensity, Mongantown, West Vinginda and CLayton W. Dodge, Univensity
of Maine at Orono.

Zonstruct the cirsle through the top and the bottom ~f the tapestry
4nd tangent t. the eye-level line of the wbserver (Fig. 9). The point
of contact .f the circle witi the line is the optimum pcsition. For all
points on the line ocutside the circle, the tapestry zubtends a smaller
angle than at the point f *angency. Hence the dirtance from the wall
is Vab.

Othen atmost identical caleulus sofutions were offered by RAYMOND
E. ANDERSON, Montana State Univers.ity; ROBERT C. GEBHARDT, Hopatcong,
N. J.; JOHN M. HOWELL, Léittlerock, California; DONNELLY JOHNSON, Wright-
Patterson Ain Fornce Base, Ohio; G MAVRIGIAM, Youngstown State Undivernsity;
BOB PRIELIPP, The University of Wisconsdin, Oshkosh; DAN SCHOLTEN, Wesfey-
an Univensity. ALso solved by the Proposens using synthetic geometry.
Probfem Editon's Comment

It is hard to find an elementary calculus text that has not used

some variant of this problem. Howell gave the references to W. L. Hart's
Analytic Geometry and Calculus, p. 265, problem #47 and to Smail's Ana-
lytic Geometry and Calculus, p. 301, problem #3. The geometric version
can be found in an article by J. H. Butchart and Leo Moser, published in
the September-December 1952 issue of Seripta Mathematica. An extension
of the geometric treatment may be found in problem E1128, pages 184-185
of the American Mathematical Monthly, March 1955. Bob Prielipp called
attention to the article "How to Break a Window Without Calculus"™, bv

John H. Hughes in the January 1974 issue of The Mathematics Teacher.
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