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In  t h i s  paper we s h a l l  i l l u s t r a t e  and ve r i fy  two algorithms f o r  
determining the  coe f f i c i en t s  i n  t he  polynomial representa t ion  of 

f o r  each non-negative in teger ,  k. and each pos i t ive  in teger ,  n. 
These coe f f i c i en t s  w i l l  be placed i n  an i n f i n i t e  t r i a n g l e  a s  follows: 

so  t h a t  i f  n is any pos i t ive  in teger ,  and k is any non-negative 
in teger ,  then: 

1 
Since 1 ik = lk = 1, we know t h a t  

i=l 

r 
( 2 )  1 R i  = 1 f o r  a l l  pos i t ive  i n t ege r s  r. 

i=l 

From t h e  well-known i d e n t i t y  

3 nk = @ - ( i  - l l j  f o r  a l l  pos i t ive  in tegers  k. 
i=l 

can be derived t h e  equations 

and 

f o r  a l l  pos i t ive  in tegers  r. 



s-1 
5 )  RrVs = F Rr-i,s-i Pr+lM f o r  a l l  i n t e g e r s  r,s 

i=l 
such t h a t  1 < s < r. 

The P appearing i n  equa t ion  ( 5 )  a r e  t h e  elements o f  Pasca l ' s  
"'*n 

Tr iangle ,  placed and numbered a s  fol lows:  

^l 

p21 p22 

'31 p32 p33 

'Ql '42 'Q3 'QQ 

'51 '52 '53 ' 5 ~  '55 ...................... 
s o  t h a t  

Equations (2) .  (41, and (5)  provide t h e  b a s i s  f o r  our  FIRST 
ALGORITHM. We here  i l l u s t r a t e  t h i s  a lgor i thm by using it i n  order  
t o  determine t h e  f i f t h  row o f  our  c o e f f i c i e n t  t r i a n g l e  on t h e  assumption 
t h a t  we have a l r e a d y  determined t h e  f i r s t  f o u r  rows. We p lace  a 
blank row beneath t h e  f o u r t h  row, and p l a c e  a "1" i n  t h e  s i x t h  row 
i n  t h e  f i f t h  column numbered from t h e  r i g h t .  We p l a c e  a s  a column 
o f  m u l t i p l i e r s  t h e  elements of  t h e  s i x t h  row of P a s c a l ' s  Tr iangle ,  
beginning wi th  a "1" i n  our  s i x t h  row and proceeding upward with 
a l t e r n a t i n g  s igns :  

MULTIPLIERS 

I f  we now d i v i d e  each column sum by 5 ( t h e  number o f  t h e  row which 
we a r e  determining).  we s h a l l  have t h e  f i f t h  row of our  c o e f f i c i e n t  
t r i a n g l e :  

1 1  1 1 
5' 2"' 3" 0' -30'- 

The appearance of  t h e  c o e f f i c i e n t  t r i a n g l e ,  down t o  and inc luding  
t h e  f i f t h  row, is t h e r e f o r e  a s  fol lows:  

Our SECOND ALGORITHM is very l a r g e l y  based on 

THEOREM 1: I f  r,s a r e  i n t e g e r s  and 1 < s < r ,  then  

(7 
r - 1 

R r , s  = r - s + 1 -Rr-l,s. 

Proof: Let  m be any i n t e g e r  g r e a t e r  t h a n  1. Then ( 7 )  holds f o r  - 
r = m and s = 1, because 

( 8 )  
1 m- 1  1 = - = - . - =  m - 1  

R m , l  m m m - 1  m - l + l  R m - l , l  ' 

Next, we assume t h a t  ( 7 )  holds no t  on ly  f o r  R but  a l s o  f o r  
m.1  

t h e  t o p  q elements of  t h e  column headed by RmSl; t h a t  is, t h a t  ( 7 )  

(=R, ). h 0 1 d s f 0 r R m , ~ s R m + ~ , ~ ~ R m + ~ , ~ ~ ~ ~ ~ y R m + q - ~ , q - ~ ~ a n d R m + q - ~ , q  ,q 
Then: 

1 k - i  R = - ) +  k - q + 1 k-i ,q+l-i  pk+2,2+i k+1 i=l 

1 k - i  R (k+l ) !  - 
) +  k - q + 1 k-i ,q+l-i  r l + i ) !  (k-i)!  k+1 i=1 



k 1 
k - q + l ' k  

Thus 

(lo) %+l,q+l = 
That is, (7) holds also for the (q+l)th element (counting from the 
top down) of the column headed by R 1  . 

This concludes the Second-Principle Induction, and therefore 
also the proof, that (7) holds for every element of the column headed 

by RmSl . Since m was an arbitrary integer greater than 1, we see 

that ( 7 )  holds for every element of the coefficient triangle not in 
the rightmost column. THEOREM 1 is therefore proved. 

The validity of our SECOND ALGORITHM for the determination of 
the coefficient triangle is now established. We describe this algorithm: 

I Use (4) to construct the first upper-right-to lower-left diagonal: 

I1 Determine R j,jl for each positive integer j. in either of the 

following two ways: 

a) Apply the FIRST ALGORITHM to only the right-most column; 

b) When the jth row is known except for the element R j,j' 

use equation ( 2 )  ; 

I11 Use equation (7) to determine R r.S for every r and s in I such 

that 2 < s <r. 
We next present the first nineteen rows of the coefficient 

triangle as determined by an electronic computer in accordance with 
the above program (specifically, instructions I, IIb, and 111). See 
Figure 2. 

In perusing the COEFFICIENT TRIANGLE, one observes the seeming 
alternation of upper-right-to-lower-left diagonals of zeros from 
the fourth on. We shall prove that these zero-filled diagonals do 
indeed alternate indefinitely. 

Lemma 1: If k,n are positve integers and (n. (k+l)!) = 1. then 

y ik is divisible by n. 
i=l 

Proof: We know from the established validity of the FIRST and SECOND 
ALGORITHMS that for any k.n positive integers there exist integers 
a ,  a ,  a ,  ... , ak, h such that 

and h divides (k+l)!. If k.n satisfy the hypothesis of Lemma 1, 
then (n,h) = 1. Since the left member of (11) is an integer, we see 

that is also an integer, where 



k (12) q = aon t a n k-1 + 
1 . + ; L n  t a .  

Therefore h divides nq. Since (n,h) = 1. t h i s  implies t h a t  h divides 

q. I n  o ther  words, 3 is an integer.  Since h 

we see t h a t  f ik is d iv i s ib l e  by n, 
i=l 

Lemma 1 and the  f a c t  t h a t  

e s t ab l i sh  immediately 

Corollary 1: I f  k,n a r e  posi t ive  in tegers  and (n ,  ( k t l ) ! )  = 1, then 

n-1 
ik is d iv i s ib l e  by n. 

i=l 

Lemma 2: I f  h,n a r e  posi t ive  integers.  (2nt l .  (k t l ) ! )  = 1, and k 

is even, then f ik is d iv i s ib l e  by (2nt l ) ! .  
i=l 

Proof: By Corollary 1, 

2n k (15) 7 i 5 0  ( m o d ( 2 n + l ) ) .  
i=l 

Since k is even, then f o r  every i c (1. 2, ... , n} we have 

(16) ik S [ (2n t l )  - ilk (mod ( 2 n t l ) )  . 
Hence 

2n k (17) 1 ik E 2 -1 i (mod ( 2 n t l ) )  . 
i=l ~ = l  

From (15) and (17) we have - 
(18) 2! i k S O  (mod ( 2 n t l ) )  . 

iil - - -  k - From t h i s ,  s ince  ( (2nt l l .2)  = 1, we see  t h a t  ( 2 n t l )  d iv ides  7 i , 
i=1 

THEOREM 2: I f  k,n a r e  posi t ive  in tegers ,  k 1 3, and k is odd, then, 
i n  the  right-hand member of ( l l ) ,  

Proof: I f ,  i n  (11). we se l ec t  n a s  an  odd in teger ,  2mtl .  such t h a t  
(2in+l, ( k t l ) ! )  = 1, then we can wri te  

2m+l 2 
From t h i s  we see  t h a t  1 ik is d iv i s ib l e  by (2mtl) i f  and only 

i=l 

i f  t he  expression 

(21) k(2mtl ) ( lk-1t  2k-1t ... t m k - I )  

2 is d i v i s i b l e  by (2m+l) . This is seen t o  be the  case whenever the  
expression 

(22) lk-I t 2k-1 + ... t m k - I  

is d i v i s i b l e  by (2mtl). The l a t t e r  is the  case, however, a s  we see  
from Lemma 2. We have, therefore ,  t h a t  i f  n = 2m t 1 and 
( 2 m + l ( k + D !  ) = 1, then the  right-hand member of (11) is equal t o  

2 sn  f o r  some in teger  s. From t h i s  it follows t h a t  

2 Thus n d ivides  akn and hence n divides a,. From the  way i n  which 

n was se lec ted we see  t h a t  a, is d iv i s ib l e  by every posi t ive  in teger  

which is re l a t ive ly  prime t o  (k t I) ! .  It follows, of course, t h a t  
\ = 0. 

Q.E.D. 

MEETING ANNOUNCEMENT 

P i  Mu Epsilon w i l l  meet i n  l a t e  August, 1970, a t  the  University 
of  Wyoming, Laramie, Wyoming, i n  conjunction with t h e  Mathematical 
Association of America. Chapters should s t a r t  planning NOW t o  send 
delegates o r  speakers t o  t h i s  meeting, and t o  attend a s  many of t h e  
lec tures  by other mathematical groups a s  possible.  

The National Office of P i  Mu Epsilon w i l l  help with expenses 
of a speaker OR delegate (one per chapter) who is a member of P i  Mu 
Epsilon and w h o  has not received a Master's Degree by April  15, 1970, 
a s  follows: SPEAKERS w i l l  receive 54 per mile or  lowest cos t ,  confirmed 
a i r  t r a v e l  f a re ;  DELEGATES w i l l  receive 2 1/24 per mile o r  lowest cos t ,  
confirmed a i r  t r a v e l  f a re .  

Select  the  bes t  t a l k  of t he  year given a t  one of your meetings 
by a member of P i  Mu Epsilon who meets the  above requirement and have 
him o r  her apply t o  the  National Office. Nominations should be i n  our 
o f f i c e  by April  15, 1970. The following information should be included: 
Your Name; Chapter of P i  Mu Epsilon; school; topic  of t a lk ;  what degree 
you a r e  working on; of you a r e  a delegate o r  a speaker; when you expect 
t o  receive your degree; current mailing address; summer mailing address; 
who recommended by; and a 50-75 word summary of t a lk ,  i f  you a r e  a 
speaker. MAIL TO: P i  Mu Epsilon, 1000 Asp Ave., Room 215. Norman, 
Oklahoma 73069. 



ELLIPTIC CURVES OVER LOCAL FIELDS 

Bruce L. Rienzo 
Rutgers University 

3 E l l i p t i c  curves may be put i n t o  t h e  standard form y2 = x + Ax + B, 
ca l led  the  Weierstrass form. In  t h i s  form, t he  points  on t h e  curve 
defined over a f i e l d  k form an abel ian  group under an appropriate 
composition law. This group law a l s o  works f o r  s ingular  curves, 
provided we avoid the  s ingular  point .  

Considering the  curves over f i n i t e  f i e l d s  of P elements, we see  
2 t h a t  there  can be only p poss ib le  curves. We then may program the  

group law on a computer and run off a l l  poss ib le  cases.  Looking a t  
these r e s u l t s ,  we can then make same conjectures a s  t o  t he  number of 
points  on t h e  curve mod p. 

Having found the  solu t ions  mod p,  we procede t o  develop a method 

fo r  l i f t i n g  these  solu t ions  t o  so lu t ions  mod pN, f o r  a r b i t r a r y  N. 
This gives solu t ions  i n  t he  p-adic f i e l d s .  

F inal ly ,  we develop the  Nagell-Lutz Theorem, f o r  p-adic f i e l d s .  
By t h i s  theorem, points  of f i n i t e  order  i n  t h e  group must have in teger  
coordinates. 

1. E l l i p t i c  Curves and the  Group Law. 

5 1 . 1  Weierstrass Form 

Rather than having t o  work d i r e c t l y  with e l l i p t i c  curves, we 
may f i r s t  put them i n t o  a standard form. An e l l i p t i c  curve, defined 
over a f i e l d  k of cha rac t e r i s t i c  not 2 o r  3, is b i r a t i ona l ly  equivalent 

3 
t o  a plane cubic curve of t he  form y

2 = x + Ax + B, provided the  curve 
has a point  defined over k. 

Thus, we w i l l  not  need t o  consider general  e l l i p t i c  curves, only 

those of t he  form y2 = x + Ax + B. Curves of t h i s  form a r e  s a id  t o  
be i n  t h e  Weierstrass form. We w i l l  o f ten  denote t he  Weiestrass form 

by y2 = f ( x ) ,  where f ( x )  is a cubic. 

What do these  curves look l i ke?  This question can be asked f o r  
various d i f f e r en t  f i e l d s .  We w i l l  r e s t r i c t  our a t t en t ion  t o  points  
which a r e  r a t i o n a l  over t he  f i e l d .  F i r s t ,  consider the  f i e l d  of r e a l  
numbers. - -*  - 51.2 The Real Ground Field 

For t he  f i e l d  of r e a l  numbers there  a r e  s eve ra l  cases depending 
on the  roo t s  of f ( x )  = 0. 

f ( x )  = 0 has 
t h ree  d i s t i n c t  
r e a l  roo t s .  

y2=x3-3x 

f ( x )  = 0 has a 
double roo t  a t  
x=a and a d i s t i n c t  
s ing le  roo t .  The 
point (a.0) is 
then a s ingular  
point  of t he  curve. 

y2=x3-3x+2 

2) f ( x )  = 0 has 
only one 
r e a l  roo t .  

y2=x3-3x+3 ? 
4) f ( x )  = 0 has 

a t r i p l e  roo t  a t  
x=a. The curve then 
has a cusp a t  (a.0); 
t h i s  is a l s o  a 
s ingular  point .  

2 3 y =x 

51.3 Projec t ive  Space 

We w i l l  be considering these  curves from the  point of view of 
projec t ive  geometry. That is, we w i l l  be including points  a t  i n f i n i t y  
on the  curve. Put t ing  the  equation i n t o  homogeneous form gives 

2 3 2 3 Y Z = X + AXZ + BZ . The points  a t  i n f i n i t y  a r e  t h e  points  with 
Z = 0. But t h i s  means t h a t  x3 = 0. Thus the re  is only one i n f i n i t e  
point  on the  curve ( the  point (0,  1, 0) i n  projec t ive  coordinates);  
and the  l i n e  a t  i n f i n i t y  i n t e r sec t s  t he  curve a t  t h i s  point  with 
mu l t ip l i c i t y  three .  

51.4 The Group ~ a w ~  

Consider a f ixed e l l i p t i c  curve defined over a f i e l d  k.  I f  we 
can devise a way of making t h e  po in t s  of t he  curve i n t o  a group, we 
may then study t h e  points  by studying t h e  s t ruc tu re  of t h e  group. 
We w i l l  see  t h a t  we can i n  f a c t  def ine  such a group operation.  It 
w i l l  t u rn  out t o  be commutative, so  we w i l l  c a l l  t he  operation addit ion 
and denote it "+", 

Geometrically, t h e  group operation f o r  non-singular curves is 
based on the  f a c t  t h a t ,  counting m u l t i p l i c i t i e s ,  any l i n e  defined over 
k i n t e r sec t s  t he  curve i n  exact ly  t h ree  points  (over t h e  a lgebra ic  
c losure  of k).  What t h i s  means is t h a t  i f  Pl and P2 a r e  two points  

on the  curve, we may draw the  l i n e  through them. and t h i s  w i l l  g ive  
us  a t h i r d  point  associated with P and P2. 

Unfortunately, t h i s  e a s i l y  defined composition is not a group 
operation.  For one th ing,  it has no iden t i t y .  However, we may remedy 
t h i s  s i t u a t i o n  by f i r s t  f i x i n g  some point  0 on t h e  curve t o  serve  a s  
t he  i den t i t y  element of t he  group. Then when we ge t  t he  t h i r d  point  
of t he  curve on the  l i n e  through P and P2, we simply draw the  l i n e  

through t h i s  point  and the  point  0. The t h i r d  point on t h i s  l i n e  w i l l  
be t he  desired point Pl + P2. 

...̂  



I t  is c l e a r  immediately t h a t  t h i s  a d d i t i o n  law is commutative. 
(The l i n e  through P and P i s  c e r t a i n l y  t h e  same a s  t h e  l i n e  through 2 
P2 and P .) To show t h a t  t h e  p o i n t  0 is indeed t h e  i d e n t i t y ,  we l e t  1 
P be a p o i n t  on t h e  curve and f i n d  P + 0. The l i n e  through P and 0 
i n t e r s e c t s  t h e  curve i n  some t h i r d  p o i n t  Q.  We then  cons ider  t h e  l i n e  
th rought  0 and Q .  But t h i s  must be t h e  same l i n e .  Thus t h e  t h i r d  
p o i n t  must be P. That is, P + 0 = P a s  d e s i r e d .  

To g e t  i n v e r s e s ,  we draw t h e  l i n e  through 0 twice  ( i . e .  t h e  l i n e  
tangent  t o  t h e  curve a t  0 )  and l e t  S be t h e  t h i r d  p o i n t .  Then i f  P 
is any p o i n t ,  t h e  t h i r d  p o i n t  o f  t h e  l i n e  through P and S is t h e  
p o i n t  -P. (The t h i r d  p o i n t  of  t h e  l i n e  through P and -P is S . )  Then 
t h e  t h i r d  p o i n t  of  t h e  l i n e  through 0 and S is 0. So P + (-PI = 0. 

The hard p a r t  is t o  show a s s o c i a t i v i t y .  We omit t h i s  proof here ,  
r e f e r r i n g  t o    ate^ f o r  a proof.  This  d i f f i c u l t y  may be avoided completely 
by using t h e  d e f i n i t i o n  o f  e l l i p t i c  curves  i n  c a s s e l s 4 .  

We may choose any p o i n t  on t h e  curve t o  be t h e  f i x e d  p o i n t  0. 
I f  we choose t h e  p o i n t  a t  i n f i n i t y ,  then  t h e  l i n e s  through 0 a r e  j u s t  
t h e  v e r t i c a l  l i n e s  (and t h e  l i n e  a t  i n f i n i t y ) .  That is, t h e  l i n e  
through 0 and P = (x ,y ,z )  has t h e  p o i n t  (x,-y,z) a s  its t h i r d  p o i n t  
o f  i n t e r s e c t i o n  with t h e  curve.  

Inverses  a r e  now simple t o  compute. The p o i n t  S descr ibed  above 
is  now t h e  p o i n t  0. (The l i n e  tangent  t o  t h e  curve a t  t h e  p o i n t  a t  
i n f i n i t y  is t h e  l i n e  a t  i n f i n i t y ,  Z = 0. But we have seen  t h a t  Z = 0 
i n t e r s e c t s  t h e  curve 3 t imes  a t  t h e  p o i n t  0. Thus, S = 0 . )  So, i f  
P = (x ,y ,z )  then -P is t h e  t h i r d  p o i n t  o f  t h e  l i n e  through P and 0 
which is j u s t  (x.-y,z). 

We may now r e s t a t e  t h e  a d d i t i o n  law. I f  P and P a r e  two p o i n t s  
1 2 

on t h e  curve ,  l e t  t h e  l i n e  through them have P3 = (x ,y ,z )  a s  its t h i r d  

p o i n t .  Then P + P2 = (x ,  -y, z ) .  That is, Pl + P2 = -P3; o r  

Pl + P2 + P = 0, where P -, P2, and P3 a r e  c o l l i n e a r .  

It w i l l  be u s e f u l  t o  have an a c t u a l  formula 
f o r  t h e  a d d i t i o n  of  two f i n i t e  ~ o i n t s .  Let 
pl = ( x ~ , Y ~ . ~ )  = (xl,yl) and p 2 =  (x2,y2,1) = 
(x2,y2).  If xl = x 2  and yl = -y2, t h e  p o i n t s  a r e  
i n v e r s e s  and P + P2 = 0. Otherwise, cons ider  t h e  

- - 

l i n e  through Pl and P ,  Say i ts  equa t ion  is 
Y -Y . I f  P = P ,  t h e  y = Ax + v. I f  P # P ,  then  t h e  s l o p e  A = - x -X 2 1 

l i n e  through P and P is t h e  t a n g e n c a t  t h a t  p o i n t .  Then y2 = f ( x )  
1 2 

f t ( x )  g i v e s  A = - 
2~ . - - -  .. I n  e i t h e r  c a s e ,  v = yl - A x  (=y2 - Ax2). To g e t  t h e  t h i r d  p o i n t  

P3 = (x3,y3), we plug y = A X  + v i n t o  y2 = x
3 

+ A X  + B: 

(Ax + v )  = x
3 + Ax + B 

This  is a c u b i c  i n  x whose r o o t s  a r e  j u s t  t h e  x- coordinates o f  
t h e  t h r e e  p o i n t s  o f  i n t e r s e c t i o n  of  t h e  curve with t h e  l i n e .  The 
r o o t s  must equa l  t h e  nega t ive  of t h e  c o e f f i c i e n t  of t h e  second o r d e r  

, + x3 = A 2 .  Thus t h e  group law becomes: term. i . e .  x + x 

"1-"2 f ' ( X I  
where A = -when xl # x2,  and A = -when Pl = P2, and where 

x1-x2 2~ 
v = y, - Ax,. 

J. J. 

N z z  I f  t h e  curve is given i n  t h e  form y2 = x
3 + ax

2 + bx + c ,  

t h e n  x 1 + x2 + x3 = A 2  - a. So t h e  group law is x3 = A 2  - a - (x 1 2  +x ). 

These formulas could now be used t o  prove a s s o c i a t i v i t y .  

51.5 S ingular  curves  

We have descr ibed  t h e  group opera t ion  f o r  non- singular  curves.  
What can be s a i d  about  t h e  s i n g u l a r  cases?  We needed t h e  f a c t  t h a t  
a l i n e  i n t e r s e c t s  t h e  curve  i n  e x a c t l y  t h r e e  p o i n t s .  This  is still 
t r u e  provided t h e  l i n e  does n o t  p a s s  through t h e  s i n g u l a r  p o i n t .  

I f  P. and P. a r e  two p o i n t s  on t h e  curve,  then  t h e  l i n e  through 
J. Â£ 

them does n o t  p a s s  through t h e  s i n g u l a r  p o i n t .  (The s i n g u l a r  p o i n t  
is i n  e f f e c t  a double p o i n t ,  s o  any l i n e  through it can i n t e r s e c t  i n  
on ly  one o t h e r  p o i n t  of  t h e  curve.)  

Thus our  group o p e r a t i o n  holds f o r  p o i n t s  o t h e r  t h a n  t h e  s i n g u l a r  
p o i n t .  That is, t h e  complement o f  t h e  s i n g u l a r  p o i n t  forms a group. 

2. Local and F i n i t e  F i e l d s  

52.1 P-adic f i e l d s  

Many o f  t h e  most i n t e r e s t i n g  r e s u l t s  on e l l i p t i c  curves come from 
looking a t  t h e  curves  over p-adic f i e l d s .  We w i l l  n o t  d i s c u s s  t h e  
theory  o f  p-adic numbers here .  (For a n  explana t ion  of  p-adic numbers 
see a number theory  t e x t  such as Borevich and Shafarev ich l . )  

We w i l l  be  us ing  t h e  exponent ia l  p-adic v a l u a t i o n ,  which is g iven  
by: 

v (pnu/v) = n where p 4 u and p 4 V. 
P 

~f a ,  6 are non-zero p- adic numbers, then  

v (aB) = v ( a )  + V ( 6 )  
P P P 

v (a+6) 2 min[v ( a ) , v ( B ) ]  
P P 

wi th  e q u a l i t y  i f  v ( a )  # v ( 0 ) .  
P P 

I f  v,,(a) 2 0, t h e n  a is a p- adic i n t e g e r .  
r 

If v_(a)  = 0, t h e n  a is a u n i t  o f  t h e  r i n g  of  p-adic i n t e g e r s .  (Since 
I' 

we w i l l  i n  g e n e r a l  be  working wi th  a f i x e d  p ,  we w i l l  o f t e n  w r i t e  j u s t  
\)(a) t o  denote  t h e  va lua t ion .  ) 



Solution of y2 = x
3 + Ax + B i n  D-adic numbers is eauivalent 

N t o  solut ion of y2 E x3 + Ax + B (mod p 1 f o r  a r b i t r a r i l y  high N. 
We consider f i r s t  N = 1. 

52.2 Solutions mod p -- Fin i t e  Fie lds  

In  t h i s  sect ion we w i l l  be considering the  group of points on 
the  curve over the  f i n i t e  f i e l d  of p elements ( i .e .  t he  f i e l d  of numbers 
mod p where p is a prime. In general,  we w i l l  avoid p = 2 and 3,  
s ince  these cases present spec ia l  problems with regard t o  s ingu la r i t i e s .  
(Note t h a t  f i e l d s  of  cha rac te r i s t i c  2 and 3 were excluded from the  
discussion on page 1 of t h i s  paper.) 

For a given p, there  a r e  only p2 curves of the  form y
2 = x3+Ax+~. 

(A and B can each take only p values.) Thus it is possible t o  program 
the  group law on a computer and run o f f  a l l  the  possible cases. 

Before seeing the  ac tua l  r e s u l t s ,  how many points might we expect 
the  curve t o  have f o r  a given p? The "Riemann hypothesis"2 gives 
t h e  number of points  a s  N = p + 1 - a where la1 < 2 6 .  In  o ther  words, 
p + i - 2 6 ~ ~ ~ ~ + 1 + 2 6 .  

Let's look f i r s t  a t  p = 5. Then N should f a l l  i n  the  range 
2 & N 5 10. The following char t  gives the  number of points  i n  t h e  
group f o r  each possible A and B. 

0 1 2 3 4  

A s ingle  d i g i t  indicates  t h a t  t he  B\ group f o r  t h a t  pa r t i cu la r  curve is cyc l i c  
of t h a t  order. For examnle. 5' 2.2 2 10 2.4 . . 

3 I 6 9 7 4 % 8  y
2 = x + 2x + 1 has 7 solut ions  

(including the  ~ o i n t  a t  i n f in i tv ) .  and 6 4 6 ' 5  3 - .  
its g r o u p i s  cyc l i c  of order 7. 3 6 4 6 ' s  3 

When the  entry is expressed a s  a 4 6 9 7 4' B 

product, t he  group is the  d i r e c t  product 
of cyc l i c  groups. For example, 

y2 = x3 + 4x has 8 solut ions ,  and its group is the  d i r e c t  product of 
a cyc l i c  group of order 2 and one of order 4. 

An "s" indicates  t h a t  t he  curve has a s ingular  point.  For example, 
m " 

y' = x + 2x + 3 has 7 solut ions ,  one of which is singular.  Its group 
is cyc l i c  of order 6. (The group does not include the  s ingular  point . )  

Inspection of  the  char t  shows many in t e re s t ing  features.  F i r s t ,  
a l l  values a r e  within the  predicted 2 d N <. 10 range. In  f a c t ,  a l l  
poss ible  N within the  range occur. 

4 We know t h a t  t he  isomorphisms of the  curves a re  given by A+c A,  

B - Ã ˆ ~ B  where c e k. ( I t  is c l ea r  t h a t  these a r e  isomorphisms; they - 
take  x-~x/c' and y-y/cJ. For a proof t h a t  they a re  the  only ones, see  
cassels3.  ) - - .. In  t h i s  case. a l l  four th  powers 51 (mod 5 )  and s ix th  powers 5 
squares 31 (mod 5). So the  isomorphisms a re  ju s t  t he  iden t i ty  and 
B-ÃˆÃˆ This explains why the  row B = 1 is the  same a s  the  row B = 4, 
and why the  row B = 2 is the  same a s  the  row B = 3. 

We a l s o  note (without explanation) t h a t  i n  any column ( i . e .  f o r  
any fixed A) the  number of solut ions  a r e  congruent mod p. Also, i n  
any row ( i . e .  f o r  any fixed B) no two numbers a r e  congruent. 

Before looking a t  p = 7,  l e t ' s  t r y  t o  predic t  what we can. F i r s t ,  
the  number of solut ions  should be i n  the  range 3 < N 513 .  A s  f o r  
the  isomorphisms, four th  powers E l ,  2, 4 (mod 7) .  and a l l  s i x t h  
powers Â£ (mod 7) .  So the  isomorphisms a r e  the  iden t i ty ,  A+2A, and 
AMA. Thus we would expect t he  rows A = 1, A = 2, and A = 4 t o  be 
the  same, and the  rows A = 3, A = 5, and A = 6 t o  be the  same. 

Here's the  char t :  x 0 1 2 3 4 5 6  

We see  t h a t  our 
predictions a r e  t rue ,  and t h a t  7' 8 8 4.2 8 4x2 4.2 

again a l l  possible values i n  the  6.2 5 5 12 5 12 12 
range 3 4 N L 13 occur. Also, 
now i n  any row the  number of 3.3 8% 8' 9 8' 9 9 

solut ions  a r e  congruent mod P .  3 1 ! 6 6 6 6 6 6  

And, i n  any column, except A = 0, 3 10 10 10 10 10 10 
no two numbers a r e  confluent. 

1 7 6' 6' 7 6' 1 1 

When B = 0, N is always 8. 2.2 I I  I! 4 I 1  6 4 
(Note t h a t  f o r  p = 5. when A = 0. 
N was always 6.)  This p+1 
phenomenon can be explained by looking a t  the  automorphisms of the  
curves [see cassels4].  The r e s u l t  is f o r  pE3 (mod 4). N = p + 1 f o r  
B = 0 ;  a n d f o r p S 5 ( m o d 6 ) , N = p + l f o r A = O .  

We make the  following conjecture: I f  pE3 (mod 4). then f o r  
B = 0, N = p + 1; and f o r  any fixed A # 0, no two N a r e  congruent 
mod p. I f  p ;' 3 (mod 4) ,  then f o r  any f ixed A,  a l l  N a r e  congruent. 
I f  p Â 5 (mod 6) .  then f o r  A = 0, N = p + 1; and f o r  any fixed B # 0, 
no two N a r e  congruent mod p. I f  p ;' 5 (mod 6).  then f o r  any f ixed 
B,  a l l  N,are congruent. 

For p = 11, we predic t  a range of 6 4 N 5 1 8 .  Also, the  isomorphisms 
a re  the  iden t i ty ,  A-5A B+9B, AMA B+3B, A+3A BMB, and A-9A B+5B. 
Thus the  rows A = 1, A = 3,  A = 4, A = 5, and A = 9 should be permutations 
of each other.  The same should be t rue  f o r  the  rows A = 2. A = 6. 
A = 7, A = 8, and A = 10; the  columns B = 1, B = 3, B = 4, B = 5, 
and B = 9; and the  columns B = 2, B = 6, B = 7,  B = 8, and B = 10. 

We have 11 E 5 (mod 6) and 11 E 3 (mod 41, s o  f o r  e i t h e r  A = 0 
o r  B = 0. we should have N = p + 1. Also, f o r  any fixed A o r  f o r  any 
fixed B,  no two N should be confluent. 

I 2 3 4 5 6 7 8 9 1 0  

kA 
0 11' 12 6-2 I2 12 12 6.2 6-2 6.2 12 682 

I I2 14 16 I8 9 I I  12' 15 17 4x2 10 

2 I2 8 ~ 2  9 13 6 10 14 7 10' 15 0 

3 12 18 12' 4x2 it 9 IS 10 I6 1 1  17 

4 I2 9 I7 I4 I I  4.2 16 12' 10 18 IS 

5 I2 1 1  10 9 4-2 I8 17 16 IS 14 11% 

6 12 13 14 15 6x2 6 7 8 9 10 10' 

7 12 IS 7 10 13 8.2 B 10' I4 6 9 

8 I2 6 10' BÃ§ 10 IS 9 14 8 13 7 

9 12 4.2 IS 1 1  I8 I4 10 I7 12' 9 16 

0 12 10 8 6 I5 13 10" 9 7 0x2 I' 



52.3 Solu t ions  mod p 
N 

Now t h a t  we have t h e  so lu t i ons  mod p ,  we need a way of l i f t i n g  
N 

them t o  so lu t i ons  mod p . We do t h i s  one s t e p  a t  a time, i . e .  from 

p t o  p2,  then  from p2 t o  p3, e t c .  I n  genera l ,  we want t o  l i f t  s o lu t i ons  
n t 1  

mod pn t o  so lu t i ons  mod p . 
Any so lu t i on  mod p n  must a l s o  be a so lu t i on  mod pn. Thus a l l  

so lu t i ons  mod pntl a r e  i n  t h e  form (xotspn,yo+upn) where (xo.yo) is 

a so lu t i on  mod pn, and s and u a r e  between 0 and p-1. Then, 

( y + u ~ " ) ~  2 f (x0tspn) (mod pn+l)  

2 yo +2youpntu2p2n E f ( xo t spn )  (mod pn+l)  

yo2+2youpn 5 f d to t spn )  ( m d  on+') 

2youpn 5 f(xo+spn)-yo 2 (mod pn^) 

The r i g h t  s i d e  is d i v i s i b l e  by pn s i n c e  f(xo)-yo2 Z 0 (mod pn). 

f ( x o t s ~ n ) - ~ o  2 2y u 5 0 (mod P 

pn 

Provided yo  # 0 (mod p ) ,  t h i s  is a simple l i n e a r  congruence and s o  

each va lue  of s g ives  exac t l y  one va lue  of u. There a r e  p such va lues ,  
s o  t h e r e  a r e  p so lu t i ons  

Suppose yo s 0 mod p) .  Then, a s  before  

n 2 2y0upn 2 f ( x + ~ P  )-yo (mod pn+l)  

But now, y0pn E 0 (mod p n ) ,  s o  

f(xotspn)-yo2 ; 0 (mod pntl) 

Using t h e  expansion: 
2 2n 

f (x0tspn)  = f ( x )  t spnf *(x0) + S+ f1 ' ( x0 )  t a .  ,, 

gives  f ( x )  t s p n f f ( x o )  - 0 (mod pntl) 

f (x0)-yo 
2 

t s f t ( x 0 )  5 0 (mod P 
pn 

Provided f ' ( x o )  3 0 (mod p ) ,  t h e r e  is exac t ly  one s which so lves  t h i s  

l i n e a r  congruence. This va lue  of s and any va lue  of u g ives  a so lu t ion .  
t h e r e  a r e  p va lues  of  u ,  s o  aga in  t h e r e  a r e  p so lu t i ons .  

I f  both y and f t ( x 0 )  5 0 (mod p ) ,  then t h e  poin t  (xo,yo) is 0 

a s i ngu l a r  po in t .  Otherwise, each poin t  mod pn l i f t s  t o  P po in t s  

mod p n ,  and we need only so lve  a l i n e a r  congruence t o  f i n d  then.  

3. Nagell-Lutz Theorem 

I n  t h i s  chapter ,  we g ive  t h e  major theorem on t h e  s t r u c t u r e  of 
t h e  group f o r  curves over l o c a l  f i e l d s .  The proof given here  genera l ly  
fol lows t h e  proof given by ~ u t z l .  

Let  r be t h e  group of po in t s  on t h e  curve y2 = x
3 + Ax t B over  

a p-adic f i e l d ,  where A and B a r e  p-adic i n t ege r s .  

Lemma 3.1 Each r a t i o n a l  poin t  P = (x,y) i n  l' has coordina tes  i n  t h e  

form (~p-2n,6p"3n),  where n 2 0 is an  i n t ege r  and E,6 a r e  p-adic i n t ege r s .  
6 and 6 are u n i t s  i f  n > 0. 

-8 I f  x is a p-adic i n t ege r ,  then  s o  is y;  and then  6=x, 6=y, 
and n=0. 

3 Otherwise, v(x) < 0, and we have v(x  ) = 3v(x) < 0 .̂ v(Ax). 
2 3 3 Also, v(x3) < 0 < v(B). Therefore,  v(y ) = v(x +Ax+B) = v(x 1. 

2v(y) = 3v(x) and s o  we must have v(x) = -2n and v(v) = -3n with 

n > 0. Thus, x and y a r e  i n  t h e  form x = (p-2n and y = 6p-3n where 
6 and 6 a r e  u n i t s .  

For any r a t i o n a l  poin t  P on t h e  curve, l e t  n(P) be t h e  i n t ege r  n 
of t h e  above lemma. Let  l' denote t h e  s e t  of  po in t s  P with n(P) 2 m 
(That is, with v(x) 5 -2m and v(y) & -3m). 

Theorem 3.2 is a subgroup of  l'. 

-1 Let Pl = (xl,y2) and P2 = (x2,y2) be two po in t s  i n  rm. Let 

P = P t P and say  P3 = (x3.y3). 
1 

Suppose n(Pl) # n(P2). We may assume n(P2) > n(Pl). The add i t i on  

2 2 (y2-yl)2 - ( x  t x  )(x2-x1l2 = x x t x  x t A ( x l t x 2 ) t 2 B - 2 y ~  
formula x3 = 1 2  2 1 2 1  

(x2-xl) 2 X22-2X X +X 
2 

2 1  1 

2 2 g ive s  v(x3) = v(x2 x l t x 2 x 1 2 t ~ ~ x l + x 2 ~ t 2 ~ - 2 y ~ l ~  - v ( x ~ ~ - ~ x  2 1  x t x  1 ). 

Thus f o r  n ( P )  # n(P-1, we have 

Suppose n(Pl) = n(P2).  Then Pl = P3 - P2, s o  i f  n(P3) # n(P2) we  have 

n ( P )  = min[n(P)  , n ( P ) I .  Thus, f o r  n ( P )  = n(P2), we have n(P3) 2 n(Pl). 

I n  e i t h e r  case ,  we have n(P3) 2 min[n(Pl),n(P2)l. Therefore,  s i n c e  



-. n(P 2 m and n(P ) > m, we have n(P3) 2 m, so P3 is in rm. rm is 1 2 - 
therefore a subgroup of T. 

Theorem 3.3 I' has finite index in r ,  for integers m > 0. 
m 

Let Pl = (xl,yl) and P = (x2,y2) be two points in r. We 

need to consider conditions under which (P2-Pl) E rm, 

We may assume the P,P2 f! r ,  say n(Pl) = n(P2) = n < m. Put 

-2n -3n) -2n -3n) 
P + ( C P  ,6̂ p and P2 = (C2p ,i2p with 

4n 6n 612 = C13 t A5p4" t Bp6" and 6; = 6; + AC2p t BP , where El, 
C2, 6.. and i2 are units. 

From the addition formula, n(P-P) 2 m if and only if 

But 

62+61 2̂ 1 s o  n P ) m if and only if v(-) = n+v&) < n-m. 2 1 62-61 2-"1 

Thus, v(C -6 ) .> m-n and ~ ( 6 ~ - 6 ~ )  2 m-n is clearly a necessary 2 1 - - 

condition for n(P2-P) i m. 

If P # 2, S t 6  is a unit, so v(6,+6) = 0. Then, (E2-C1) i m-n 
is a sufficient condition. 

If p = 2, write 
4n 

(62+61)(62-61) = 6̂ -6 1 = 6; -Â£ + A(E2-E1)p . 

2 2 2 4n 
Since P # 3, E2 +62~ltC12 is a unit; and then so is 5 tC2CltCl tAp . 
From the above, we know 

Therefore, v(6 -6 ) A m-n is a sufficient condition for n(P2-Pl)2 m, 
2 1 -  

when p = 2. 
Putting together the necessary and sufficient conditions gives 

that (P2-Pi) E rm if and only if v(C2-Cl) 2 m-n and v(i2-i1) 2 m-n. 

In particular, when n = m - 1 this shows that rm-l/l'm is finite for 

m > 1. [The lifting procedure described in 2. shows that the index 
of rm-l in rm is exactly 0. Also, it should be noted that these arguments 

require that singularities be avoided.] This shows that I' is of finite 
index in rl. 

We still must show that r/rl is finite. Let n(P) = n(P) = 0. 

We claim that n(P 2- P 1 ) >  m when C2 2 El and 6- E 61 modulo a sufficiently 
high power of p. Say C2 2 El, 6 2 5 6 1 (mod for sufficiently 

large r. 
2 

If not, n(P 2 -P 1 ) < m implies ~ ( 6 ~ t 6 ~ )  i. r and ~ ( c ~ ~ ~ C ~ C ~ ~ C ~  +A)> r 

by the above argument. Then, ~ ( 2 6 ~ )  = ~((6,+6~)-(6,-6~)).> r and 

However, we have the identity 
2 

-@A3 - 27B2 = (x3tAx+B)~(x) + (3x tA)Q(x) where P(x) = 1BAx - 27B. 
2 

and Q(x) = -6Ax + 9Bx - @A2. Putting x = Â£ and doubling, we get 

&'<A3 - 27B2) = s ~ ~ P ( x )  t 2(3c12 t A)Q(x). But the right side 2Q 

(mod pr) [since 26: 2 0, and 3c12 t A Â 0 (mod pr)]. Thus, 

2(-4A3 - 27B2) 5 0 (mod pr), which cannot be for arbitrarily high r. 
Thus rm is of finite index in r. 

In the previous theorem, we looked at groups r/rm. These groups 

may be described in terms of what we did in Chapter 2 of this paper. 
The group r/r is jugt the group of points on the curve over the field 
of numbers mod p. In general. we have the following theorem for 
non-singular curves and p # 2. The singular cases are quite a bit 
more complicated. 

Theorem 3.4 T/l' is isomorphic to the group of points on the curve 

mod pm. 

&I Let Pl = (xl,yl) and P2 = (x2,y2) be two finite points in 

with xl 2 x 2 and yl 2 y2 (mod pm). Then we must show that P2-Pl E rm, 

The addition formula gives the x-coordinate of the point P2-Pl 

Y +Y 2̂ 1 
v((-&$)~ - (x2txl)) = 2 v L )  <Â -Ã  ̂since y2tyl is a unit and 

2 1 2 1 x2-xl Z 0 (mod p). 



d t )  
The curve may be parametrized a s  follows: x = Ã y = - 

t t 
3 

I f  yl Â y2 Â 0 (mod p ) ,  and the  curve is non-singular mod p,  we 

may wr i t e  its equation i n  t h e  form y2 = (x-xo)g(x) where xlEx2Exo 

(mod p)  and g(xo) is a un i t .  Consider 4 
where ~ ( t )  = ( 1  t A t  t ~ t ~ ) " ~ .  ~ ( t )  may be represented a s  a power 

w 

se r i e s :  ~ ( t )  = 1 t 1 [The s e r i e s  may be derived from the  
i=2 

2 
Y 2 -  Yl 
-= xl-xo 

g(xl) Here g(x  ) and g(x2) a r e  un i t s .  
"2 - xl 

1 - - 
1 1 2  

s e r i e s  (ltu)"' = 1 t 5 u - ,. u t & u3 - . . . I This s e r i e s  converges 

p-adicly f o r  t Â 0 (mod p). From t h e  formula f o r  t ,  we see  t h a t  t 
is t h e  parameter of a point  i n  rm i f  and only i f  v ( t )  2 m. 

We may assume t h a t  v(xl -x)  2 v(x2-x ) .  Suppose f i r s t  

v(x -x ) > v ( x - x ) .  Then v(x -x ) = v((x2-xo) + ( x - x ) )  
1 0  2 1 

= min[v(x2-xo) ,v(xo-xl)l 

= v ( x - x )  

"l^o = x2-x0 is a un i t  and - - 0 (mod 0 ) .  Therefore, This means t h a t  - 
x2-x1 x2-x1 

2 

is a un i t .  x -X 2 1 

Let P 1' P 2 have parameters tl,t2 resp.  Put 5 = e ( t l ) ,  

E = ~ ( t ) ,  nl = n ( P ) ,  and n2 = n(P2). Let P3 = P 1 + P2 and have 

parameter t3, We need t o  express t h e  addi t ion  law i n  terms of t he  

parameters; t h a t  is, we need t3 i n  terms of tl and t2. 

We may assume nl 5 n2. 

On t h e  o ther  hand, i f  v(x -X ) = v ( x 2 - x ) ,  we may wri te  1 0  

- -  - - 
2 3 3 

y2-y1 t tt1t2tt2^-tl t2 8 
, we ge t  - = 1 

I f  we l e t  8 = 1 
i=:1 x 2 -X 1 t1t2(t1tt2) Since g(x) is a polynomial, x2-x2 div ides  g(x2)-g(xl). SO 

By the  addi t ion  formula, 
g ( x ) - g ( x )  

is an in teger .  x 2 xo (mod P ) ,  s o  x2-xo Â 0 (mod P 1. 
x2-X2 2 

Thus the  product 50 (mod 0 ) .  However g(xl) is a u n i t ,  so  t he  sum is 

Â£ Â 

Y -Y1 
a un i t .  I n  e i t h e r  case,  Ã‘Ã‘Ã is a u n i t .  We know 

x2-x1 

2 2 
Y2+Y1 Y 2  -Y1 1 - = - -where y Â y (mod p).  Therefore, 
x2-x1 X2-X1 Y2-Yl 

The r i g h t  s i d e  of t h e  above may be expressed a s  a power s e r i e s  using '̂ t ... (1-u)-1/2 = 1 t F U  t 
2 2 

We know v( t l )  j n, v ( t 2 )  2 n, and u ( t l  t t1 t2 t t2^)  = v( t l  ) 2 2n1. 

2 2 
ThwÃ§fore v(t l t2(t l  t t l t2+t22))  = v( t l ) t v ( t2 ) tv ( t l  t t l t 2 t t 2 2 )  2 3nltn2. 



. I f  p # 2, 9 is an i n t e g e r  ( s i nce  t h e  denominators of  t h e  y a r e  powers 
1 

2 2 of  2 . )  Then v(t l t2(t l  +tlt2+t2 )9) 2 3n1+n2 

Consider now mu l t i p l e s  of  a po in t  P. By induct ion  on 1 i n  t h e  
above equation.  we g e t  (wr i t ing  t f o r  t h e  parameter o f  P): 
v(t(1P) - t t ( P ) )  2 Sm. I f  1 = p,  v(t(pP) - P ~ ( P ) )  2 Sn, and s o  

t(pSp) Then, by induct ion  on s, v ( ~  - 1) 2 4n - 1. Thus f o r  a l l  i n t e g e r s  
P t ( P )  

1, (w - 1) 2 4n - 1. Therefore,  f o r  P c rl ( i .e .  n 2 11, if 

1 = rps where p j  r then we have v( t (1P)  - 1 t ( P ) )  = v ( t ( t P )  - r pS t (p ) )  

= v(# - 1) + v i rpS t i p )> ->  (bn-1) + s > n + s. 

That is, n(JlP) = n(P) t s. 

For P = 2, 6 is not  i n  genera l  an  in teger .  Therefore,  we must 
make sure t h a t  it is not  t oo  bad---that is, t h a t  v,(B) is not  t oo  

much below zero. 

1 1 2  - i Going back t o  ( l ~ u ) ~ "  = 1 + Ã - p + &.I' -... = 1 61 .  , 
i s 0  
i we s ee  t h a t  v2(6i)i -21. I n  t h e  expansion f o r  e ( t ) ,  t h e  u t e r n  expands 

t o  terms i n  t4i (and h igher  order  t e rn s ) .  The coe f f i c i en t  of  t h e  

t i  term is ; s o  v ( y  ).> -21, whereby v2(yi)> -i. 
2 21 

21-3 2i-3 - t2 -tl 
He have 9 = 7 - -- i=2^ 5-5 

* 

2i-3- 2i-3 

" ('2 t1 ) = v2(t-"-4+tlt'~-5+...+t 1 '1-5 

> v2(t121-4) ( 2 i - 4 ) n .  - 
Thus, v2 ( i t h  term of  8 )  2 (2i-4)nl-i. 

For nl> 1 t h e  s e r i e s  converges, and then  

i-n1(21-4) 5 i-(21-4) = 4-i 5 2, s i n c e  t h e  s e r i e s  s t a r t s  a t  i = 2. 

2 
Again we have v2(t l t2(t l  + t 1 t 2 + t 2 ) )  2 3n +n2. But now, 

2 2 
v ( t  t ( t  + t  t + t  ) 9 ) 2  3nl+n2-2. Mow if Pl,P2 e rm with m 2  1, 

2 1 2  1 1 2  2 
v2( t3- ( t  1 2  + t  )) 2 Sm-2. Proceding a s  before,  v ( t ( 1 P ) - t t ( P ) )  i Sm-2, 

( t(2P) 
2 21̂ 7 - 1) 2 4"-3' 

v2(# - 1) ; 4.-3. 
S o a g a i n f o r P  e r a n d  1 = r p s  p If r ,  we haven (1P)  = n(P) + s. 

What t h i s  means is t h a t  n a c t s  on t h e  po in t s  of  rm i n  exac t l y  

t h e  same way v a c t s  on t h e  p-adic i n t ege r s .  I n  f a c t ,  we have t h e  
following theorem: 

Theorem 3.5 For m ?  1, rm is isomorphic t o  t h e  add i t i ve  group of  
p-adic i n t ege r s .  

&I We need t o  show t h a t  t h e r e  e x i s t s  a Po E rm such t h a t  any 

P e rm can be uniquely expressed a s  P = CPo where ( is a p-adic i n t ege r .  

m m+1 
From t h e  va lues  o f  t 5 0 (mod p ) choose a to 5 0 (mod p ). 

i 
Let Po be t h e  po in t  with to as its parameter. Let P. = p Po and ti 

be t h e  corresponding parameter. The preceding r e s u l t  g ives  
n(Pi) = n(P) + 1, i . e .  P E Fmi. So, 

t . s 0 (mod pm+i). 

Let  P be any po in t  i n  r ,  and l e t  t s 0 (mod pm) be its parameter. 

Let  no be t h e  unique i n t ege r  nod p such t h a t  t noto  (mod pm+l). 

~ e t  P^ = P - n o o  Then t ( )  = t ( p l ) )  5 t - n o t  (mod psm) 

5 0 
(1 )  (mod pm^ 1. 

S 0 ' P  E ^ 1 .  

m+ 2 
Let n be t h e  unique i n t ege r  mod p such t h a t  t") z nltl (mod p ). 

Let P(2) = P ( l )  - ( 2 )  
n E + and l e t  P ( ~ )  have parameter t . 

Continue by induction:  



Here I nipi is a p-adic in teger ,  unique s ince  the  ni a r e  unique mod p .  

Corollary 3.6 A point P E I' of f i n i t e  order is not i n  I ' .  That is, 
It must have in teger  coordinates. 

These r e s u l t s  over p-adic f i e l d s  have in t e re s t ing  consequences 
f o r  the  group of points  on the  curve over the  f i e l d  of r a t i o n a l  numbers. - - 
Theorem 3.7 (Nagell-Lutz) Let yz = x + Ax + B be non-singular and 
have in teger  coeff ic ients .  Then a l l  r a t iona l  points  P = (x,y) of 
f i n i t e  order have in teger  coordinates such t h a t  y = 0 or  

y21 - 4 ~ ~  - 2 7 ~ ~ .  

I f  P is of f i n i t e  order i n  the  group of r a t iona l  solut ions ,  
%of f i n i t e  order i n  the  group of p-adic solut ions  f o r  each p. 
Thus by the  above corol lary ,  x and y a r e  in tegers  i n  every p-adic f i e l d .  
But then they must be in tegers  i n  the  f i e l d  of r a t iona l s .  

I f  P is of order 2, then y = 0. 

Otherwise, consider the  point 2P. It is non-zero and of f i n i t e  
order. Thus it too has in teger  coordinates. The addition law gives 

f ' ( x )  2 the  x-coordinate of 2P a s  (-1 - 2x. For t h i s  t o  be an in teger  2v 
we must have 2y1f ' (XI  and then y If ' (XI.  But we have the  iden t i ty  

- 4 ~ ~  - 2 7 ~ ~  = f(x)P(x) + fV(x)Q(x)  given i n  the  proof of Theorem 3.3. 

y2 = f ( x )  so  ce r t a in ly  y [ f ( x ) .  Now, y f ( x )  and y [ f ' (x ) .  Therefore, 
y l f ( x ) ~ ( x )  + fv (x )Q(x) .  That is yl-4f14 - 2 7 ~ ~ .  

Footnoted References 

Chapter 1 Chapter 2 

' ~ a s s e l s ,  p. 211. ' ~ o r e v i c h  and Shafarevich, Chapter 1. 
 ate, Chapterl. 2 ~ a s s e l s ,  p. 242. 
" ~ a s s e l s ,  p. 210. 3 ~ a s s e l a ,  p. 211. 

Chapter 3 ' t a s se l s ,  p. 213 

' ~ u t z ,  pp. 239-244. 
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A DECIMAL APPROXIMATION TO n UTILIZING A POWER SERIES 

Tim Golian and John Hanneken 
Ohio University 

CAN A CIRCLE BE SQUARED? This question has puzzled mankind s ince  
ant iqui ty .  Even before the  17th century mathematicians believed t h a t  
t he  key t o  answering t h i s  question l i e  i n  a very spec ia l  number - p i ,  
t he  r a t i o  of t he  circumference of a c i r c l e  t o  its diameter. Since 
t h a t  time, mathematicians have t r i e d  t o  f ind  a unique value f o r  p i .  
Their attemps can be divided i n t o  three  d i s t i n c t  periods. 

In  the  f i r s t  period, which was from the  e a r l i e s t  times t o  the  
middle of t he  17th century, t he  pr inciple  aims of mathematicians' 
s tudies  were di rec ted toward t h e  approximation of p i  by calcula t ions  
of perimeters o r  areas  of regular  inscribed and circumscribed polygons. 

From the  middle of the  17th t o  the  middle of t he  18th century, 
t he  calculus of i n f i n i t e  s e r i e s  was u t i l i z e d  i n  the  development of  
expressions f o r  p i .  

The l a s t  period, extending more then 150 years,  pertained primarily 
t o  inves t igat ing and characterizing p i .  In  1761. J .H.  Lambert proved 
the  i r r a t i o n a l i t y  of p i  and i n  1882 transcendence was established by 
F. Lindeman. 

In  the  following development of IT t h e  spec i f i c  objective r e l a t e s  
t o  the  second period, and thus the  basic r e l a t ions  introduced i n  t h a t  
e r a  w i l l  be examined. Early expressions such as:  

do not converge rapidly  enough f o r  p rac t i ca l  use. For example, t he  
l a t t e r  expression, according t o  Newton, would require  5 BILLION terms 
t o  accurately ca lcula te  the  value of p i  t o  20 decimal places. These 
r e l a t ions  were replaced by r e l a t ions  based upon the  power s e r i e s  

x5 x
7 

arc tan  (x)  = x - *Â + - - - + . . . (-1 x < 11, which was discovered 
3 5 7  

by James Gregory i n  1671. 

There a r e  nine Important r e l a t ions  based on Gregory's s e r i e s .  
These are :  

1 1 
#1. = arc tan - + arc tan - 

4 2 3 
Charles Hutton - 1776 

1 1 
#2. = = 4 arc tan - - a rc t an  - John Machin - 1706 

4 5 239 

Student paper presented a t  t he  meeting of P i  Mu Epsilon i n  Eugene, 
Oregon, August, 1969. 



1 1 1 
#3. -  ̂ = 8 arc tan - - 4 arc tan - - arc tan - 4 10 515 

S. Klingenstierna - 1730 

1 3 
#4, 5 = 5 a m t a n  7 + 2 arc tan - 79 Euler - 1755 

1 1 #5. v- = 4 arc tan Ã - arc tan - + arc tan - 4 70 99 
Euler - 1764 

1 1 1 
#6. -̂ = a rc t an  - +  arc tan - +  arc tan - L.K. Schulz von Strassnitzky - 

4 2 5 8 1844 

1 1 
#7, = 2 arc tan 7 + arc tan - 7 Button - 1776 

1 1 
#8. v- = 3 arc tan - + arc tan t arc tan S.L. Loney - 1893 4 4 20 

1 1 1 
4 18 

23g Gauss #9. = = 12 a rc t an  - + 8 arc tan Â¥ge - 5 arc tan - 
The or-oofs of these  nine r e l a t i o n s  follows e a s i l y  from the  next 

example. T h e  r e l a t i o n s  a r e  found i n  "The Evolution of  Extended Decimal 
Approximations t o  n," Wrench, Jr., J . W . ,  The Mathematics Teacher, 
December, 1960, pp. 644 - 650, which did not contain the  proofs. 

1 1 1 $1. SHOW: 2 a rc t an  - = arc tan - + arc tan - 
10 5 515 
1 Let: ~ z a r c t a n -  o < A < ;  10 

C = arc tan - 515 

t an  B + t an  C 
tan (B - 1 - ( t a n  B)(tan C) 

1 1  - +-  
t a n  (B + C) = 5 515 

20 
t a n  (B + C) = E 

t an  (2A) = 2 t a n  A 
2 1 - t an  A 

20 
t a n  (2A) = E 

t an  (2A) = t an  (B + C) 
1 1 1 

2 A = B t C  Therefore: 2 arc tan  - = arc tan - + arc tan - 10 5 515 
1 1 1 or: arc tan  = 2 arc tan - - arc tan g^g- 10 

1 1 
#2. SHOW: = 4 arc tan ,- - arc tan - 239 

1 Let: A = a rc t an  - 5 O L A L ~  e 

l O < , B < i  B = arc tan - 239 

tan  (4A) = 2 t a n  (2A) 

1 - tan2 (2A) 

4 t an  A 
2 

2 
t a n  (4A) = 1 - t an  A 

- (4 tan  A)( l  - t an  A) 

2 
2 2 ( 1  - tan  A ) ~  - 4 tan  A 

1 - 4 tan  A - - 

4 24 

t an  (4A) = (57(d - -  - 1 2 0  

24 - 4 (d 25 

t a n  (4A) - t an  B 
tan - = 1 + t an  (4A) t an  B 

120 1 - --  
t an  (4A - B) = 119 239 = 

t an  = 1 4 

tan  ; = t an  (4A - B) 

= 4~ - B 
1 1 

4 
Therefore: = - 4 arc tan 5 - arc tan - 

4 23 9 

1 1 1 
4 10 

515 arc tan  - $3. SHOW: ^- = 8 arc tan - - 4 arc tan - - 
239 

1 1 
Since: = 4 a rc t an  g - arc tan - 

4 239 

1 1 1 
And; arc tan  F = 2 arc tan - - arc tan - 10 515 

1 1 1 
Therefore subst i tu t ing:  ^- = 8 arc tan - - 4 arc tan - - arc tan - 

4 10 515 239 

This, therefore ,  completes the  proof of r e l a t i o n  number three.  



where R is the  e r ro r  i n  approximating the  sum of the  

s e r i e s  a f t e r  its f i r s t  n terms. R may a l s o  be wri t ten  

In t h i s  development r e l a t i o n  number three  w i l l  be used. The 
r e l a t i o n  was or ig inal ly  discovered i n  1730 by S. Klingenstierna and 
rediscovered by Schellbach i n  about 1830. In  1926 it was used by 
C.C. Camp t o  evaluate  IT/^ t o  56 places.  P i  was calculated t o  10021 
places on a Pegasus computer by G.E. Felton on March 31, 1957, a t  the  
Ferrant i  Computer Center i n  London. Thirty- three hours of computer 
time were required t o  accomplish t h i s .  A l a t e r  check revealed t h a t  
the  computer erred and the  r e s u l t  was only accurate t o  7480 decimal 
places.  This r e l a t i o n  was l a t e r  replaced by more e f f i c i e n t  r e l a t ions ,  
such a s  r e l a t ion  number two. 

- 
as: 1 ( - I )~"  ai, which would a l s o  be a convergent 

i = n t l  

a l t e rna t ing  se r i e s .  A s  shown i n  Theorem #1, t he  magnitude 
of each of the  p a r t i a l  sums of R is l e s s  than the  magnitude 

of a ,  and consequently 1 R I < lantl 1 . 
After choosing which r e l a t i o n  t o  use, the  next l og ica l  s t ep  is 

t o  determine bounds on the  er ror .  Theorem #3: I f  I R ~ ( X ~ ) I  < 5 then a decimal approximation 

f o r  arc tan  (xo) correct  t o  p-1 places can be obtained by 
Theorem #1: The magnitude of the  p a r t i a l  sums of a convergent continually 

decreasing a l t e rna t ing  s e r i e s  is l e s s  than the  magnitude 
of the  f i r s t  term. 

Proof: 

Consider the  convergent a l ternat ing se r i e s ,  

using the  f i r s t  n terms of the  power s e r i e s  ( t h i s  follows 
d i r e c t l y  from r u l e s  of  round o f f ) .  

FIND THE NUMBER OF TERMS NECESSARY TO OBTAIN IT CORRECT TO 16 DECIMAL PLACES. 

1 1 1 Since IT = 32 a rc t an  - - 16 arc tan - 4 arc tan - 10 239 - 

with the  two p a r t i a l  sums, 

S = ( a  - a,) t (a3 - a,,) t (a5 - a6)  t ... t (an-l - an)  

Sntl = al - (a2  - a3) - (a4 - as)  - ... - (an - anti). 

The quan t i t i e s  i n  parenthesis a r e  posi t ive  because 
0 < a 1  < a f o r  a l l  pos i t ive  in tegers  (def in i t ion of 

t h  
where S ,  T ,  and Q,, a r e  the  respect ive  remainders a f t e r  t he  m , 
w h ,  and v h  term. By theorem #3, t he  t o t a l  remainder must be l e s s  convergence). Since a l l  quan t i t i e s  a r e  posi t ive  S )  0 

than ( 5 ) ( 1 0 - )  f o r  16 place accuracy. Thus choose a, w, and v such 
and S 1  < al f o r  a l l  pos i t ive  integers.  Furthermore 

t h a t  1 3 2 . ~ ~  - 16*Tw - 4 . ~ ~ 1  < 5 *lo-17. NOW, 

s ince  Sntl = Sn t anti then S < Sntl and 0 < Sn < Sntl < al. 3 2 %  - 16.T~ - 4 . ~ ~ 1  3 2 I ~ n l  + 16 1 ~ ~ 1  1 4  IQV 1 .  According t o  theorem #2, 
when: m = 7 I ~ z - s ~ I  < 213.344 x 10- 

Theorem #2: - n t1  1f 1 ( - l ) i t 1 a i = a l - a 2 t a 3 -  .,. t (-1) a n t  ... 
i=l 

is a convergent a l t e rna t ing  se r i e s ,  then t h e  e r ro r  ( R )  

Since each remainder taken separately is greater  than (5)(10-17) 
then a t  l e a s t  one more term must be taken from each se r i e s .  

when: m = 8 32-Sm < 1.888 x 

i n  approximation the  sum of the  s e r i e s  a f t e r  its f i r s t  
n terms is l e s s  than the  absolute value of t he  f i r s t  
neglected term (antl). -- 

Proof: - - -  
+ Consider the  convergent a l t e rna t ing  s e r i e s  as:  v = 3 4 - Q  < 1.284 x 10-17. 

Therefore, 3 2 1 ~ ~ 1  t 1 6 1 ~ ~ 1  t 4 1 ~ ~ 1  < 3.188 x 10-17< (5)(10-17). 



1 Thus, n w i l l  be co r r ec t  t o  16  decimal places when 8 terms of a r c t an  rn 
1 1 and 3 terms of a r c t an  - and 3 terms of a r c t an  -yy a r e  calculated 515 

according t o  t h e  ideni ty  f o r  n, which is: - 

BOUNDS ON ERROR DUB TO ROUNDING OFF. 

1 1 1 n = 32 a rc t an  - - 16 a rc t an  g^g- - 4 a rc t an  
10 

1 Maximum e r r o r  i n  a r c t an  z: 8 terms, each with $0.5 e r r o r  i n  t h e  l a s t  

1 d i g i t  used, or (8)(0.5) = 4; therefore,  maximum error i n  32 arc tan  - 10 
is (32)(4) = 128, and 

Maximum e r r o r  i n  a r c t an  & 3 terms, each with $0.5 emor i n  t h e  

l a s t  d i g i t  used, o r  (3)(0.5) = 1.5; therefore ,  maximum error i n  
1 16  a rc t an  Is (16)(1.5) = 24, and 

1 Maximum e r r o r  i n  a r c t an  .gg-; 3 terms, each with $0.5 e r r o r  i n  t h e  

l a s t  d i g i t  used, o r  (3)(0.5) = 1.5; therfore ,  maximum error i n  
1 4 a rc t an  -yy is (4)(1.5) = 6, 

Tota l  maximum error due t o  rounding o f f  is 128 + 24 + 6 = 158 
Thermfore,calculations o u s t  be ca r r i ed  ou t  t o  20 decimal places t o  
assure  16 p lace  accuracy. 

term # pos i t i ve  terms negative terms 

1 0.10000000000000000000 

2 0.00033333333333333333 

3 0.00000200000000000000 

4 0.00000001428571428571 

5 0.00000000011111111111 

6 0.00000000000090909091 

7 0.00000000000000769238 

8 0.00000000000000006667 

sum 0.10000200011111880349 0.00033334761995677662 

term # pos i t i ve  terms negative terms 

1 0.00194174757281553398 

2 0.00000000244037775828 

3 0.00000000000000552070 

sum 0.00194174757282105468 0.00000000244037775828 

0.00194174757282105468 
-0.00000000244037775828 

0.00194174S13244329640 
1 

16 a rc t an  TTc-~0.03106792211909274240 

term id pos i t i ve  terms negative terms 

1 0.00418410041841004184 

2 0.00000002441659178708 

3 0.00000000000025647231 

sum 0.00418410041866651415 0.00000002441659178708 



1 1 1 n = 32 arctan - - 16 arctan - - 4 arctan - 
10 515 239 

3.18939687971718485984 

According to theory the answer is only correct to 16 decimal places, 
therefore: n as 3.1415926535897932 

Established value accurate to 16 decimal ~laces: rift; 3.1415926535897932 
(from page A9 of Handbook of Chemistry and Physics, The Chemical 
Rubber Co., Cleveland, 47th Ed., 1966). 

Student paper presented at the meeting of Pi Mu Epsilon in Eugene, 
Oregon, August, 1966. 

NEED MONEY? AND MATCHING PRIZE FUND 

The Governing Council of Pi Mu Epsilon announces a contest for 
the best expository paper by a student (who has not yet received a 
masters degree) suitable for publication in the Pi Mu Epsilon Journal. 
The following prizes will be given 

$200. first prize 
$100. second prize 
$ 50. third prize 

providing at least ten papers are received for the contest. 

In addition there will be a $20. prize for the best paper from 
any one chapter, providing that chapter submits at least five papers. 

The Governing Council of Pi Mu Epsilon has approved an increase in 
the maximum amount per chapter allowed as a matching prize from $25.00 
to $50.00. If your chapter presents awards for outstanding mathematical 
papers and students, you may apply to the National Office to match the 
amount spent by your chapter--i.e., $30.00 of awards, the National 
Office will reimburse the chapter for $15.00, etc. ,--up to a maximum 
of $50.00. Chapters are urged to submit their best student papers 
to the Editor of the Pi Mu Epsilon Journal for possible publication. 
These funds may also be used for the rental of mathematical films. 
Please indicate title, source and cost, as well as a very brief comment 
as to whether you would recommend this particular film for other Pi 
Mu Epsilon groups. 

SOME COMMENTS ON TERMINOLOGIES 

RELATED TO DENSENESS 

R. Z. Yeh, University of Hawaii 

The definitions of denseness, nowhere-denseness, and denseness- 
in-itself can be very confusing to the students learning about them 
for the first time. Perhaps more than anything the terminologies are 
at fault. 

The familiar topological descriptions of sets, such as compact- 
ness, connectedness, openness and closedness, are either invariant or 
non-invariant with respect to subspace topologies. We recall that 
given a topological space X a subset A is said to be dense in a subset 
B if the closure of A contains B; in particular A is said to be dense 
in X (or dense everywhere) if the closure of A is X. A subset A is 
said to be nowhere-dense in B if the complement in B of the closure 
of A is dense in B; in particular A is said to be nowhere-dense in X 
if the complement of the closure of A is dense in X. Obviously, 
denseness and nowhere-denseness are non-invariant concepts. For 
example, the set of all rationals is dense in the real x-axis, nowhere- 
dense in the entire xy-plane, and neither in the union of the x-axis 
and the first quadrant. The often used phrase "dense everywhere", 
though convenient, is not really appropriate. It is almost as bad as 
if one were to say that A is "open everywhere" when one really means 
that A is open with respect to the topology of X. The word "nowhere" 
can be confusing also, especially when one has to consider "nowhere- 
dense =? in the whole space X? or in some set B?" We also recall 
that a subset A of a topological space is said to be dense-in-itself if 
every point of A is a limit point of A. It is not difficult to show 
that if A is dense-in-itself with respect to the subspace topology of 
some set containing A, it is dense-in-itself with respect to the subspace 
topology of any set containing A. Denseness-in-itself is thus an 
invariant concept, and the term is suggestive of this. Only the word 
"dense" used here has nothing to do with the same word used earlier. One 
should keep this in mind or else substitute a new term for "dense-in- 
itself". 

Hocking and Young [l] points out that the terminology "dense in 
itself" (meaning of course dense-in-itself, since every set is trivially 
dense in itself) is misleading. ~ u ~ u n d j i  [2] paranthetically calls a 
nowhere-dense set a -. The choice of a noun instead of an adjective, 
however, might obscure the fact that nowhere-denseness is only a non- 
invariant concept. 
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A NECESSARY AND SUFFICIENT CONDITION FOR CERTAIN TAUBERIAN THEOREMS 

This study is concerned with ce r t a in  questions l e f t  open about 
Tauberian theorems by previous authors. Speci f ica l ly ,  t h i s  paper 
demonstrates a necessary and su f f i c i en t  condition f o r  a generalization 
of a c l a s s  of Tauberian theorems studied by Hardy and Littlewood [l] 
and more recent ly  by A.E. Ingham [21. For a b r i e f  discussion of the  
h is tory  of these  theorems and eveolution of the  methods employed i n  
t h e i r  proofs,  t h e  reader is referred t o  Ingham [21. 

Ingham's theorem [2, Th. A,  p. 1601, i n  f a c t  a generalization 
of Hardy and Littlewood's, s t a t e s :  

"Suppose t h a t  

where A(u) is posi t ive  and 
f o r  u > 0. Let L(u) be a ( s t r i c t l y )  posi t ive  function such 
t h a t  L(cu) % L(u) a s  u- f o r  each f ixed c >  0; and suppose 
a > -1. Suppose, fu r the r ,  t h a t  

Then 

What t h i s  paper demonstrates is the  following generalization: 

THEOREM 1. Let 

where A(t )  is non-negative and monotonic ( i n  t h e  wide sense) but not 
i den t i ca l ly  zero, f o r  t > 0. Then i f  5 > 0, the  following statements 

. a r e  equivalent: 

- -(1) CA(x) -Ã̂ g(x)  a s  x- - 
2 ^ f g(xt)e--dt a s  x-. 

A. M.  Fischer 
West Virginia University 

1. INTRODUCTION 

which indicates  xg(x) is unbounded. This is a contradiction; consequently 
xg(x) is unbounded. 

CASE ii. I f  (2 )  is t rue ,  then 2 x ' j ~ x  > x'  we have both xg(x) > C/2 

and 2fxg(x) > f g(t)e-t/xdt. Hence 
0 

m m 

4cxg(x) > 2 g(t)e-t /xdt > C t"e^^dt, 
X '  X '  

which a l so  indicates  xg(x) is unbounded, a contradiction. 

Although t h e  proof is omitted, it is in t e re s t ing  t o  note t h a t  
Ingham's theorem can be deduced d i r e c t l y  from Theorem 1. 

Theorem 1 is a conclusion of Lemmas 2 and 4' Lemma 2 es tabl ishes  
t h a t  (1 )  + (2) ;  Lemma 4 shows t h a t  (2)  implies 

which completes the  proof. Lemmas 1 and 3 per ta in  t o  the behavior 
of g. Lemma 1 is in te re s t ing  i n  its own r i g h t  insofar  a s  it demonstrates 
a necessary r e s t r i c t i o n  on the  r a t e  a t  which g can decrease. 

2. NOTATION AND ASSUMPTIONS 

The notation employed herein should be construed a s  follows: 
t and s respect ively  s ignify  ' s t r i c t l y  increasing'  and 'non-decreasing' 
j u s t  a s  + and* respect ively  s ignify  ' s t r i c t l y  decreasing' and 'non- 
increasing' .  In  addition t- indicates  'increasing and unbounded'. 

Since Theorem 1 is the  goal  of t h i s  paper, i ts hypotheses a r e  
assumed without fu r the r  mention. Furthermore, the  convergence of the  - m 

i n t eg ra l s  f ~ ( t ) e - " ~ d t  and f g(xt)e-tdt  f o r  x > 0 is a l s o  assumed. 
0 0 

3. PROOF 

Before s t a r t i n g  any proofs, it is  wise t o  note two important f ac t s :  
f i r s t ,  from the  de f in i t i on  of g. it follows t h a t  g(x) > 0 (x > 0). 
and t h a t  i f  A(x) ,yor$,  then g(x) behaves i n  the  same respective manner; 
and second, t h a t  

so  t h a t  l i m  inf  A/g and l i m  sup A/g actual ly  ex i s t .  

LEMMA 1. I f  e i t h e r  (1 )  o r  (2)  is t rue ,  then xg(x)tm. - 
Proof: Under the  hypotheses of Theorem 1, xg(x) = f ~ ( t ) e " ~ d t  

0 

so  t h a t  xg(x)t .  Assume t h a t  xg(x) is bounded, then xg(x) = C > 0. 

CASE i. I f  ( 1 )  is t rue ,  then 3x'atfx > x ' :  Â£xA(x > C/2 



LEMMA 2. (1 )  3 (2) .  

Proof: (l)z$V e > 0, 3 x W x  > x':  Ig (x ) /~ (x ) -S l  < e.  Hence 

m 
1 < g(x)- l  / eA(xt)e^dt + x-lg(x)- / ~ g ( t ) - S ~ ( t )  le-^dt 

x ' / x  0 

x '  
< E t [ / g( t )+â‚¬A(t)dt l / [xg(x)  

0 

A s  a consequence of Lemma 1, and s ince  e is a rb i t r a ry ,  it follows 
t h a t  (1 )  +p (2).  which was t o  be shown. 

Lemmas 3 and 4 a re  devoted t o  showing t h a t  (2 )  =) (1).  

In  Lemmas 3 and 4 we s h a l l  take u=+l i f  ATI; u=-1 i f  Alf ( i f  A 
is constant,  a r b i t r a r i l y  take v=+l).  

LEMMA 3. Define B(q) = A^jg sup g(xq)/g(x). I f  (2) .  then B(q) 

e x i s t s  f o r  every q and 14 BtqU) = 1. 
q 5. 

CASE i. I f  A* then gs, and v=-1. B(q) e x i s t s  f o r  q 2 1  simply because 
g is non-increasing. I f  q > 1, then by Lemma 1 we have 

(x/q)g(x) < (x/q)g(x/q) < xg(x) 

from which we in fe r  t h a t  ~ ( q - )  e x i s t s  and t h a t  1 $, B C ~ " )  A q. 

CASE ii. I f  A / * ,  from ( 2 )  we see: V E  > 0, 3x'aVq > 0, Vx > x ' :  

= 2-^cxq), 

consequently B(q) ex i s t s .  Put q = l / log2 i n  (3)  and obtain 

(4 )  g(xq) < (~+e)~exp(l/log2)2qg(x). 
Now consider 1 < q < l / log2 .  For VE.> 0 and f o r  x su f f i c i en t ly  large  

2 by (4).  where c = ( C + l )  exp(l/log2). Divide t h i s  by g(x),  take t h e  

l i m  sup a s  x-, the  l i m i t  a s  E+O, and note t h a t  g?I. This r e s u l t s  i n  

-2 -1/q 
1 S, B(q) 1 + 2coq(l-qlog2) e log q. 

The lemma follows immediately. 

LEMMA 4. Define CL and CH respect ively  a s  $^jg inf and 

A(x) & sup of ^y ; then (2)  CL ,̂ 1/â 2 CH. I n  the  i n t e r e s t  of brevity 

only the  f i r s t i n e q u a l i t y  w i l l b e  shown i n  f u l l  d e t a i l ,  t he  proof of 
the  second is conceptually the  same. 

Proof: Consider an a rb i t r a ry  q ( 1  < q < l / log2).  Define ~ ( t )  = 4(2-t-2-2t) 

and s e l e c t  an N > 2, then s e t  H(t ) = pN(t  and h ( t )  = H(t ) - ~ ~ - ' ~ t t )  

where 0=0(q) = maxfp(q-l),p(q)}. Since p ( t ) +  (O&ts )  and p ( t ) +  ( t s ) ,  
obviously 0 < 1. Furthermore 

R 
( 5 )  H(t) and h ( t )  a r e  both of the  form 1 vre-tvr (or > 0). 

r=l 

( 6 )  H(t) 0 ( t20)  and h ( t )  ,̂ { H(t) ( tk0)  
0 tl 'cq-l,q)' 

For an addi t ional  ease of notation a l s o  define 

It follows from ( 6 )  t h a t  

(7 )  0 < J ( x )  > J (x) > j (x )  2 j (x ) .  
q q 

I t  w i l l  be c l ea r  t h a t  ( 8 )  through (13) hold f o r  any pa r t i cu la r  e > o 
i f  x is su f f i c i en t ly  large.  Now observe t h a t  

where c = 4 [ ~ ( ~ ~ ~ / l o ~ 2 ) + l ] / l o ~ 2  > 0. I n  view of  (7) ,  t h i s  leads  t o  



of (5 )  [since x is  su f f i c i en t ly  large] 

where t h e  l a s t  s t ep  is a r e s u l t  of Lemma 4. Combine (9)  and (10) and 

divide  by g(xqV)qJ t o  obtain 
q 

1 
(11) 

Now l e t  u s  momentarily consider J Since p"( t )  5 0 (Oi t^ ) ,  
q '  

p(0) = 0 and p(1) = 1 it is evident t h a t  p ( t )  t ( 0 s ) .  Thus 

Combine (11) and (12) and then take  l i m i t s  a s  x-xÂ and c+0; we r ead i ly  
obtain 

(13) tL i, ~ t ~ ( q ~ " > q l " ~  - c ( ~ t 1 )  

Because N was chosen a s  any in teger  .> 2, it can be taken large  enough 
s o  t h a t  t he  l a s t  term i n  (13) is a r b i t r a r i l y  close t o  zero ( r e c a l l  
t h a t  8 < 1) .  Finally take  the  l imi t  a s  q + l  and apply Lemma 3. This 

proves t h e  f i r s t  inequal i ty  of Lemma 4. 

To prove the  second inequal i ty ,  a l t e r  t he  de f in i t i ons  of J ( x ) ,  
j ( x ) ,  J ( x )  and j ( x )  by replacing A with g. Then i n  p a r a l l e l  t o  

from which tH A 1 / C  is a simple deduction. 
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UNDERGRADUATE RESEARCH PROPOSALS 

Bernard McDonald 
University of Oklahoma 

Develop a theory f o r  the  n x n matrices over a f i e l d  having the  
property such t h a t  every submatrix has non-zero determinant. Is 
the  Vandermond matrix of t h i s  form? 

Two matrices over a f i n i t e  f i e l d  G F ( ~ )  a r e  t o  be considered equivalent 
i f  they d i f f e r  by a row o r  column permutation. Count the  number 
of equivalence c lasses  and number of matrices i n  each c lass .  

Determine a cannonical matrix f o r  the  r ing  M(R) of n x n matrices 

over a pr incipal  i dea l  domain R under operation on the  l e f t  by 
unimodular matrices and on the  r i g h t  by permutation matrices. 

Let m > 0 be square f r ee .  Take a = a + b 6  , where a and b a re  
from Q,  t he  s e t  of r a t iona l s .  Let G be the  mul t ip l ica t ive  group 
of and H be Q - (0). Is the  quotient G/H f i n i t e l y  generated? 



A CHARACTERIZATION OF HOMEOMORPHIC T l  SPACES 

W .  M .  P r i e s t l e y  

Beginning s t u d e n t s  of  topology a p p r e c i a t e  t h e  fol lowing theorem, 
whereas w r i t e r s  o f  elementary textbooks apparen t ly  do not .  

THEOREM: Let ( X , b ) ,  ( Y , J )  be tl spaces.  ( X , d )  and ( Y , J )  a r e  
homeomorphic ( h  , and (3 , G )  a r e  isomorphic a s  p a r t i a l l y  
ordered s e t s .  

PROOF: (d) I f  f:X + Y is a homeomorphism, then  I :  * d def ined  
by I(G) = ( f ( x )  1 x & G I  f o r  G e. Ã§ is an order  isomorphism. 

(6 ) I f  I: a *J is an order  isomorphism, cons ider  t h e  complemen- 
t a r y  l a t t i c e s  and J' of closed subse ts  and t h e  induced order  
isomorphism 1': % * a ) '  def ined  f o r  F e. J'  by I 1 ( F )  = I ( F 1 ) ' ,  where S '  
denotes t h e  complement of  t h e  s e t  S. I n  T l  spaces s i n g l e t o n  s e t s  a r e  
closed.  They a r e  a l s o  minimal i n  t h e  sense t h a t  each is preceded by 
e x a c t l y  one o t h e r  s e t  ( t h e  empty s e t  1(1) i n  t h e  order ing  C .  An order  
isomorphism sends minimal elements i n t o  minimal elements,  and it t h e r e-  
f o r e  makes sense  t o  d e f i n e  a func t ion  f:X + Y by ( f ( x ) }  = I 1 ( ( x } )  f o r  
x e X.  f i s  one-one and onto  s i n c e  I '  i s ,  by an elementary argument 
s i m i l a r  t o  t h a t  given i n  [l]. It is a simple e x e r c i s e  t o  show t h a t  f o r  
each F â j', f ( F )  = I t ( F ) ,  from which it follows t h a t  both f and f - 1  
a r e  continuous.  

The example of X = ( l } ,  Y = ( 1 , 2 ) ,  = a! = (1(1,1(1'} shows t h e  T l  
hypothesis  t o  be e s s e n t i a l .  

Compare Kelley 's  f i n a l  remark on p. 130 of [2]. 
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PROBLEM DEPARTMENT 

Edited by 
Leon Bankoff, Los Angeles, C a l i f o r n i a  

This  department welcomes problems be l ieved  t o  be new and, as 
a r u l e ,  demanding no g r e a t e r  a b i l i t y  i n  problem s o l v i n g  t h a n  t h a t  of  
t h e  average member of  t h e  F r a t e r n i t y ,  bu t  occas iona l ly  we s h a l l  publ i sh  
problems t h a t  should cha l lenge  t h e  a b i l i t y  o f  t h e  advanced undergraduate 
o r  candida te  f o r  t h e  Master's Degree. Solu t ions  should be submitted 
on s e p a r a t e ,  s igned  s h e e t s  and mailed before  August 1, 1970 

Address a l l  communications concerning problems t o  Leon Bankoff, 
6360 Wilsh i re  Boulevard, Los Angeles, C a l i f o r n i a  90048. 

PROBLEMS FOR SOLUTION 

232. Proposed by Solomon W. Golomb, Univers i ty  o f  So. C a l i f . ,  Los 
Angeles . 
Find a d i r e c t  combinatorial  i n t e r p r e t a t i o n  of  t h i s  i d e n t i t y :  

233. Proposed by Char les  W.  Trigg,  San Diego, C a l i f o r n i a .  

The d i r e c t o r  of a v a r i e t y  show wanted t o  g i v e  t h e  female imper- 
sonator  a job, bu t  quest ioned h i s  a b i l i t y  t o  dance wi th  t h e  
high-kicking F o l i e s  Bergere chorus. I n  r e p l y  t o  t h e  d i r e c t o r ' s  
guery,  t h e  impersonator 's  Spanish agent  s a i d :  

"SI/HE = .CAN CANCAN..., 

b u t  .CAN be l e s s  than  one- fourth e f f e c t i v e  i n  h i s  demonstrat ion 
today ." 
I f  each l e t t e r  of  t h e  c ryptar i thm uniquely r e p r e s e n t s  a d i g i t  
i n  t h e  s c a l e  of  e leven ,  what is t h e  s o l e  s o l u t i o n ?  

234. Proposed by Char les  W. Trigg,  San Diego, C a l i f o r n i a .  

Show t h a t  when t h e  n i n e  p o s i t i v e  d i g i t s  a r e  2 8 7  
d i s t r i b u t e d  i n  a square  a r r a y  s o  t h a t  no column, 6 1 4  
row, o r  unbroken d iagonal  has its d i g i t s  i n  o r d e r  5 3 9  
of  magnitude, t h e  c e n t r a l  d i g i t  must always be odd. 

235. Proposed by James E. Desmond, F l o r i d a  S t a t e  Univers i ty .  

Prove t h a t  an+l  d i v i d e s  (ab  + c )  (ad)n - ctad)" f o r  i n t e g e r s  
a > 0,  b ,  c ,  d > 0 and n > 0.  



Proposed by Erwin J u s t ,  Bronx Community College. 

I f  k is a pos i t i ve  in teger ,  prove t h a t  (616k+2/2) - 1 is not 
a prime. 

Proposed by Leonard Barr,  Beverly H i l l s ,  Cal i fornia .  

The diameter of a semi- circle is divided i n t o  two segments, 
a and b, by its point of contact  with an inscribed c i r c l e .  
Show t h a t  t h e  diameter of t h e  inscribed c i r c l e  is equal t o  t he  
harmonic mean of a and b. 

Proposed by David L. Silverman, Beverly H i l l s ,  California.  

A necessary and su f f i c i en t  condition t h a t  a t r i ang le  e x i s t  is 
t h a t  its s ides ,  a ,  b, and c s a t i s f y  t he  i nequa l i t i e s  (1 )  a < b + c ,  
(2 )  b < a + c ,  (3 )  c < a + b. Express (1).  ( 2 ) ,  and (3 )  i n  
a s ing le  inequal i ty .  

Proposed by David L. Silverman, Beverly H i l l s ,  California.  

A p a i r  of toruses  having hole- radius = tube-radius = 1 a r e  
l inked. a )  What is t h e  smallest  cube i n t o  which t h e  toruses  
can be packed? b )  What convex surface  enclosing the  l inked toruses  
has t h e  smal les t  volume? c )  What convex surface  enclosing the  
l inked toruses  has t h e  smallest  area? d )  What is the  locus of 
points  i n  space equidis tant  from t h e  two l inks?  

SOLUTIONS 

(Spring 1969) Proposed by Gregory Wulczyn, Bucknell University. 

Prove t h a t  a t r i a n g l e  is isosceles  i f  and only i f  it has a pa i r  
of equal ex-symmedians. (Ed i to r i a l  note: See Mathematics Magazine, 
Problem 637, November 1966, May 1967 and January 1968, f o r  t he  
corresponding problem involving symmedians.) 

Solution by the  Proposer. 

Let a ,  b, c denote t h e  s ides  opposite ve r t i ce s  A, B, C of t he  
t r i a n g l e  and l e t  x and x denote t he  lengths  of t he  ex-symmedians 
i ssuing from A and B and terminated by t h e  opposite s ides .  

I. I f  a = b, we have 

b s i n  C 
"a = sino 

c s i n  A 
[Davis, "Modern College Geometry", 

"b = sino p. 1711 

Then, s ince  b s i n  C = c s i n  B,  

b s i n  C c s i n  B c s i n  A 
x a = - = s i n ( B - C ) = s i n ) = x b  

11. I f  x = xb, then 

b s i n C  c s i n A  c s i n B  
~ - = s i n ( A - C ) = s l n o  

It follows t h a t  s i n  A s i n  (B-C) = s i n  B s i n  (A-C) , which s imp l i f i e s  
t o  s i n  (A-B) = 0. Hence A = B, and t h e  t r i a n g l e  is isosceles .  
The proposer a l s o  supplied a geometric so lu t ion .  

214. (Spring 1969) Proposed by Charles W. Trigg, San Diego, Cal i fornia .  

Find t h e  unique nine-digit  t r i angu la r  number A which has d i s t i n c t  
d i g i t s  and f o r  which n has t h e  form abbbb. 

Solution by t h e  Proposer. 

In  A = n(n + 1) /2 ,  t he  l a s t  three  d i g i t s  of n(n + 1 )  determine 

t h e  l a s t  two d i g i t s  of A .  Thus we f ind  t h a t  f o r  b = 0, 3 ,  

6, 9, dupl ica te  d i g i t s  terminate A .  Now 

Therefore, s ince  A has nine d i g i t s ,  n < [ /2(987654321) 1 = 44444, 

and a < 4. Furthermore, n > [ /2(102345678) I = 14307. Consequently, 
t he re  a r e  only seventeen possible values of n, a l l  of which y i e ld  
a A having dupl ica te  d i g i t s  except A25555 = 326541790. 

Answers (without so lu t ions)  were a l s o  supplied by Car l  A. Argila,  
TRW Inc., Houston, and by Kenneth A. Leone, Michigan S t a t e  
University. 

215. (Spring 1969) Proposed by Leon Bankoff, Los Angeles, Cal i fornia .  

I n  an acute  t r i a n g l e  ABC whose circumcenter is 0, l e t  D ,  E, F 
denote t h e  midpoints of s i d e s  BC, CA, AB, and l e t  P, Q R denote 
t h e  midpoints of t he  minor a r c s  BC, CA, AB of t he  circumcircle.  
Show t h a t  

Solution by Alfred E. Neumann, New York City.  

2 
It is known t h a t  OD+OE+OF = R + r. Since 1 cos (A/2) = 2 + r/2R 

2 and 1 s i n  (A/2) = 1 - r/2R, we have 

Also solved by Guy Gardner, USAF 
Academy, Colorado; Gregory Wulczyn, 
Bucknell University; and the  
proposer. 



216. (Spring 1969) Proposed by Erwin J u s t ,  Bronx Community College. 

Prove t h a t  t h e  Diophantine equation 

x9 + 2y9 + 3z9 + 4w9 = k 

has no solu t ion  i f  k E (11, 12, 13,  14, 15, 161. 

Solution by the  Proposer. 

Since 0(27) = 18, x18 5 1 (mod 27) when (x ,  27) = 1. This 
9 implies (x9 - l ) ( x  + 1 )  2 0 (mod 27), from which it may readi ly  

be concluded t h a t  x9 5 *1 (mod 27). On t h e  o ther  hand, i f  
(s ,27) # 1, then it must follow t h a t  x9 5 0 (mod 27). Thus, 
i n  a l l  cases e i t h e r  x9 s 0 (mod 27), x9 Z 1 (mod 271, o r  x9 2 -1 
(mod 27). 

A s  a r e s u l t ,  when t h e  given Diophantine equation is viewed a s  
a r e l a t i o n  among t h e  in tegers  (modulo 271, it is apparent t h a t  
none of t he  permitted values of k w i l l  enable t h e  equation t o  
be t rue .  Since the re  can be no solu t ions  (modulo 27), it follows 
t h a t  t he  given equation has no solu t ions  i n  in tegers .  

217. (Spring 1969) Proposed by C.S. Venkataram, Sree Kerala Vanna 
College, Trichur,  South India .  

A t ransverse  common tangent of two c i r c l e s  meets t he  two d i r e c t  
common tangents i n  B and C. Prove t h a t  t he  f e e t  of t he  perpendiculars 
from B and C on t h e  l i n e  of centers  a r e  a pa i r  of common inverse 
points  of both the  c i r c l e s .  

Solution by the  Proposer. 

Let t he  d i r e c t  common tangents meet i n  A.  Then the  two c i r c l e s  
a r e  p l a in ly  t h e  i n c i r c l e  and exc i r c l e  opposite t o  A of t r i ang le  
ABC. Therefore l e t  us  denote t h e i r  centers  by I ,  I ,  respectively.. 

Let M ,  N be t he  f e e t  of t he  perpendiculars from B,  C on 11 ,  

the  l i n e  of centers ,  and l e t  Y ,  Z be t h e  points  of contact  of 
the  i n c i r c l e  with AB, AC respect ive ly .  Jo in  B I ,  C I .  

Adopting t h e  usual notation f o r  a t r i ang le  ABC, we obta in  readi ly  
t ha t :  I N  = C I  cos NIC = C I  cos (A/2 + C/2) = C I  s i n  (B/2) - - -  

* I M  = B I  cos BIM = B I  cos (A/2 + B/2) = B I  s i n  (C/2). 

B Therefore IN-IM = ( B I  sinF)(CI sin:) = IY-IZ = r 2 

So N,M a r e  inverse points  with respect  t o  the  c i r c l e  ( I ) .  
S imi lar ly ,  they a r e  inverse points  with respect  t o  the  c i r c l e  
(I,). 

Also solved by Alfred E. Neumann, New York City,  who found the  
problem s t a t ed  but not solved i n  Forder's "Higher Course Geometry", 
page 182, problem 48. 

218. (Spring 1969) Proposed by Charles W .  Trigg, San Diego, California.  

Find t h e  th ree  3-digit  numbers each of which is equal t o  t he  
product of t h e  sum of its d i g i t s  by the  sum of t he  squares of 
its d i g i t s .  

Solution by t h e  Proposer. 

I f  t h r ee  d i g i t s ,  a ,  b, c ,  have a f ixed sum, the  minimum value - - -  
of a^  + b^ + c^  is a t ta ined when a = b = c .  Since 

3 ( 5 ) [ 3 ( ~ ~ ) ]  > 1000, then a + b + c < 15. 
2 2 

N = ( a  + b + c ) ( a  + b + c2)  = ( a  + b + c )  (mod 9).  so 
2 2 

( a  + b + c ) ( a  + b + c 2  - 1 )  E 0 (mod 9). 

We need consider only those d i g i t  s e t s  whose sum E 0, and those 
the  sum of whose squares E 1 (mod 9) .  In t he  l a t t e r  case,  one 
square must b e =  1 and each of t h e  o ther  two squares 5 0 (mod 9).  
I t  is necessary t o  examine only t h e  twenty-four s e t s ,  009, 018, 
027, 036, 045, 117, 126, 135, 144, 225, 234, 333, 001, 008, 
031, 038, 061, 068, 091, 331, 338, 361, 391, 661, t o  s ee  i f  t h e  
product of t h e  sum of t he  d i g i t s  by the  sum of t he  squares of 
t he  d i g i t s  i n  any of these  s e t s  is equal t o  one of t he  s i x  
permutations of t he  s e t .  

The three  solu t ions  are :  133 = 7(19); 315 = 9(35); and 
803 = l l ( 7 3 ) .  

Also solved by Car l  A. Argila,  TRW Systems, Houston and by Kenneth 
Leone, Michigan S ta t e  University. 

219. (Spring 1969) Proposed by Stanley Rabinowitz, Polytechnic I n s t i t u t e  
of Brooklyn. 

2 
Consider t he  following method of solving x - llx + 36x - 36 = 0. 

Since (x3 - llx2 + 36x)/36 = I, we may s u b s t i t u t e  t h i s  value 
f o r  1 back i n  t h e  o r ig ina l  equation t o  obtain 

2 x3 - l l x  + 36x(x3 - llx
2 + 36x)/36 - 36 = 0, 

3 -  
o r  x4 - lox  + 25x2 - 36 = 0, with roo t s  -1, 2, 3, and 6. We 
f ind  t h a t  x = -1 is an extraneous root .  

Generalize t h e  method and determine what extraneous roo t s  a r e  
generated. 

Solution by Charles W. Trigg, San-Diego, Cal i fornia .  

The polynomial equat ion ' f (x)  = 0 has a constant term a .  When 

"the method" is applied t o  t h i s  equation by multiplying t h e  term 

an-kxk by 1, t h a t  is, by [ f (x )  - an]/(-an), we have 

k f ( x )  - an-.x + a^xk[f(x) - an]/(-an) = 0. 

This s imp l i f i e s  t o  

(an-kxk - an)  f ( x )  = 0. 



Consequently, t h e  extraneous roo t s  introduced by "the method" 

a r e  t h e  r o o t s  of an-kxk = a n" 

Also solved by the  Proposer. 

220. (Spring 1969) Proposed by Daniel Pedoe, University of Minnesota. 

a )  Show t h a t  t he re  is no so lu t ion  of t h e  Apollonius problem of 
drawing c i r c l e s  t o  touch th ree  given c i r c l e s  which has only seven 
solu t ions .  b)  What spec i a l i za t ions  of t he  t h ree  c i r c l e s  w i l l  
produce 0, 1, 2, 3, 4, 5, and 6 d i s t i n c t  so lu t ions?  

The so lu t ion  t o  problem 220 w i l l  appear i n  t h e  next i ssue .  

221. (Spring 1969) Proposed by Murray S. Klamkin, Ford S c i e n t i f i c  
Laboratory. 

Determine 8 ve r t i ce s  of an inscribed rec tangular  parallelepiped 
i n  t h e  sphere 

(x  - xl)(x - x2)  + (y - yl)(y - y2) + ( z  - zl)(z - z2)  = 0. 

Solution by Charles W. Trigg, San Diego, Cal i fornia .  

Obviously, t he  following e igh t  points  f a l l  on t h e  surface  of 
t he  sphere: 

A(xls Y s  zl)s B(xls y1, z2)s CCx2, y1, z2)s D(x2, y1, zl)s 

A'(xls Y ,  zl)$ B'(xls Y ,  2 ) .  C ' ( x s  Y ,  2 ) s  Dt(x2, Y ,  z ) .  

Clearly,  M I  = l y l  - y21 = BBI = cct = D D ' ,  

AB = [ z  - z 1 = CD = A'B' = C ' D ' ,  2 
AD = [x - x21 = BC = A I D 1  = B ' C ' ,  

s o  ABCD-A'B'C'D' is a para l le lepiped.  Also, 
2 2 ( A ' B * ) ~  = (x1 - xl) + (yl - y2) + (z1 - 9 = ( A A - ) ~  + ( A B ) ~ ,  

2 2 ( A ' D ) ~  = ( X  - x )  + (yl - y2)  + (zl  - z1l2 =  AD)^ + ( A A ' ) ~ ,  

and t h e  t r e e  f ace  angles a t  A a r e  r i g h t  angles.  Therefore, 
ABCD-A'B'C'D1 is an inscribed rec tangular  parallelepiped. 

Also solved by t h e  Proposer. 

37. (Apr i l  1952) Proposed by Victor Thebault, Tennie, Sarthe,  France. 

Find a l l  p a i r s  of three- digi t  nUmbers, M and N, such t h a t  
(M)(N) = P and (Mt)(N') = PI,  where M ' ,  N '  and P' a r e  t h e  numbers 
M, N, and P wr i t t en  backwards. For examae: 

-.- (122)(213) = 25986 
(221)(312) = 68952 

I. Solution by Charles W. Trigg, San Diego, Cal i fornia .  

A) If M = abc, N = de f ,  P = y y z ,  (M)(N) = P. M '  = cba, N'  = fed ,  
P' = zyxwv, and (M')(Nf) = P , c l ea r ly  no columnar sum can exceed 
9 i n  t h e  mul t ip l ica t ion  

d e f  

a b c  - 
v w x y z  

No one of a ,  c ,  d ,  f can be zero. To avoid dupl ica t ion  of pa i r s ,  
Keep M < N. 

I f  M = 101, then e may be any one of t he  t e n  d i g i t s ,  and d + f < 9. 
Thus the re  a r e  10(8 + 7 +... + 1 )  o r  360 accompanying values of 
N. 

I f  M = 102, then 2d + f < 9 and d ,  e ,  f < 5. Hence, t he re  a r e  
5(4 + 4 + 3 + 1 )  - 1 o r  59 accompanying values of N > M .  

For o ther  possible values of M < N ,  e i t h e r  t he  r e s t r i c t i o n s  on 
the  d i g i t s  of N o r  t h e  values of N accompanying t h a t  M a r e  
tabulated below together with t he  frequency of t he  N 1 s  f o r  t h a t  M .  

M N Frequency 

103 3 d + f < 9 ;  d , e , f  < 4  22 

104 111, 112, 121, 122, 201, 211, 221 7 

- 108 In  each case,  111 only 

d + e + f s 9 ; d , e , f < 8  

2e + f 5 9 ;  2d + e + f 5 9 ;  d ,  e ,  f < 5 

113, 121, 122, 123, 201, 202, 203, 211, 

120, 121 

2 d + e 5 9 ; d + 2 e + f s 9 ; e + 2 f 5 9  

2 d + e < 9 ;  2 d + 2 e + f < 9 ; e + f < 5  

201, 202, 203, 211 

134, 144 201 

201, 202, 203, 211, 212, 221, 301, 302, 

201, 202, 203, 211, 212, 301, 302, 303 



Total  f o r  a l l  36 values of M 801 

For each M ,  N t h e  corresponding M I ,  N '  necessar i ly  a l s o  appears 
i n  t h e  tabula t ion .  

B) I f  (abc)(def)  = uvwxyz and (cba)(fed) = zyxwvu, then ( c )  ( f )  = pn, 
where n = p t 1. The only possible terminal duos a r e  2(6) = 12, 
3(4) = 12, 5(9)  = 45, and 7(8)  = 56. 

Now i n  PI,  399(499) = 199101, s o  3.  4 may not be a terminal duo. 
Also, 299(699) = 209001, but (b2)(e6) = lOObe + 20(e + 3b) + 12, 
s o  i n  P t h e  penultimate d i g i t  is not  zero, which r u l e s  out  2, 
6 a s  a terminal duo. 

I f  (5b5)(9e9) o r  (7b7)(8e8) provide a so lu t ion ,  t he  P = PI,  so  
t he  product must be palindromic and therefore  d i v i s i b l e  by 11 
Hence, any solu t ions  must come from (5b5)(979), (7b7)(858), 
o r  (737)(8e8). There a r e  only four  such solu t ions :  

No other  so lu t ions  appear when the  products (5b9)(9e5), (7b8)(8e7), 
(5b7)(9e8), and (5b8)(9e7) a r e  exhausted. 

11. Solution by C a r l  A. Argila,  TRW Systems, Houston, Texas. 

Given any th ree  d i g i t  in teger ,  I ,  we def ine  the  function B a s  
follows : 

- 

where [A] is the  g rea t e s t  in teger  i n  A. Note t h a t  B(1) is j u s t  
I wr i t t en  backwards. We wish t o  f i nd  a l l  p a i r s  of t h ree  d i g i t  
in tegers ,  M and N, f o r  with B(M) and B(N) a r e  a l s o  three  d i g i t  
in tegers  and f o r  which 

B(HxN) = B(tt)xB(N). 

By means of a simple computer program we determine t h a t  t he re  
a r e  805 d i s t i n c t  p a i r s  of t h ree  d i g i t  numbers which s a t i s f y  t h i s  
condition.  

83. (Spring 1956) Proposed by G.K. Horton, University of Alberta. 

Evaluate 

Solution by Murray S. Klamkin, Ford S c i e n t i f i c  Laboratory. 

It  follows by symmetry t h a t  

where c = fi. 

We f i r s t  transform the  rectangular coordinates (x,y) i n t o  e l l i p t i c  
coordinates (E,n) (see  St ra t ton ,  Electromagnetic Theory, McGraw- 
H i l l ,  N.Y., 1941, pp. 52-54.) 
Here r tr 1 2  

Â £ E Ã ‘  2c . n = -  1 - 2  
2c 

and t h e  region of in tegra t ion  is c > 1, -1 < n < 1. 

Also 
2 E Z - , , ~  2 z 112 dxdy = c { - a  - 1  dcdn. 

â‚¬2 1-nz 
Thus, 

In tegra t ing  with respect  t o  n; 

Now l e t  6 = cosh0 giving 

Dif ferent ia t ing  t h e  known i n t e g r a l  
m 

Ko(a) = f e-a cOshOdO (KO - modified Bessel function) 
0 

twice with respect  t o  a ,  we obta in  
m 

1 K = ~ ( a )  - -K ( a )  = f cosh20 e* c0sh8de. 
0 a 1  0 

Whence, 



and 

2 
I = { 2K2(2c) - $C1(2c) - K ( 2 c )  }. 

Now j u s t  replace  c by fi . 
91. ( F a l l  1956) Proposed by Nathaniel Grossman, Cal i fornia  I n s t i t u t e  

of Technology. 

Prove t h a t  

1 a 2- H d )  = n*T(n) 
d/n 

where T(n) denotes t h e  number of d iv i so r s  of n. a (n )  is t h e  
sum of t h e  d iv i so r s  of n,  and $(n)  is t h e  Euler Totient function.  

I.  Solution by James E. Desmond, Florida S t a t e  University. 

It is well known t h a t  a ,  $ andTare  mu l t ip l i ca t ive  number-theoretic 
functions.  A s  shown i n  (Calvin T. Long, Number Theory, D.C. 
Heath and Co., Boston, 1965, p. 103), 

F(n) = 1 o(n/d)$(d) 
d/n 

is mul t ip l ica t ive .  We note t h a t  

a ( p r - s ) ~ p s )  = pr - ps-l 

f o r  any prime p and in t ege r s  r .> s > 0. Therefore F C P ~ )  = p r * ~ ( p r ) ,  

a2 "k Write n i n  standard form, n = p, p, ...pk . Then 

We note t h a t  t he  r e s u l t  appears without proof i n  History of t he  
Theory of Numbers by Leonard E. Dickson, P. 285, and is generalized 

11. Solution by Solomon W. Golomb, University of Southern California.  - 
i For R ( s )  > 2, t h e  following i d e n t i t i e s  hold: 

Titchmarsh (1.2.12) page 6 

Titchmarsh (1.3.1) page 8 

i T X  = &) 
n = l  ns 

Therefore, s ince  both 

Titchmarsh (1.2.1) page 4 

and 

the  corresponding coe f f i c i en t s  of n must be equal: 

Reference: E.C. Titchmarsh, The Theory of t h e  Riemann Zeta 
Function, Oxford, Clarendon Press,  1951. 

Also solved by Marco A.  E t t r i ck ,  Brooklyn, N.Y.; Murray S. Klamkin, 
Ford S c i e n t i f i c  Laboratory; Bob P r i e l i pp ,  Wisconsin S t a t e  University; 
Cary C .  Todd, Buies Creek, North Carolina, and Alfred E. Neumann, 
New York City.  

111. (Spring 1960) Proposed by M.S. Klamkin, AVCO RAD, and D . J .  Newman, 
Brown, University.  

I t  is  conjectured by a t  most N - 2 super-queens can be placed 
on an NxN (N > 2) chessboard so  t h a t  none can t ake  each o ther .  
A super-queen can move l i k e  an ordinary queen o r  a knight. 
( I t  should have been s t i pu la t ed  t h a t  N is even. For N = 5 ,  
Michael J.  Pascual has shown t h a t  one can place 4 super-queens.) 

Comment by Martin Gardner, Hasting-on-Hudson, N.Y. 

"In 1965 a reader of Sc i en t i f i c  American Column, Hi lar io  Fernandez 
Long, (of Fernandez Long y Reggini, Esmeralda 356, Buenos Aires) 
sent  me t h e  following counter-example t o  t h e  conjecture---lo 
super-queens on t h e  10 x 10. 

He sa id  a computer program had shown t h i s  t o  be a unique solu t ion  
f o r  10 super-queens on t h e  10 x 10." 



Comment by the  Edi tor .  

Solomon W. Golomb notes t h a t  i f  n 2 1 0  is e i t h e r  a prime o r  one 
l e s s  than a prime, t he re  is a construction which places n mutually 
non-attacking super-queens on t h e  n x n board. Furthermore, 
f o r  n prime, t he  board may even be regarded a s  a torus! In 
t h e  example shown above, i f  a row is added above t h e  board and 
a column t o  t h e  l e f t ,  a super-queen can be placed i n  t h e  upper 
l e f t  corner thus rendering the  solu t ion  appl icable  f o r  a torus.  

Also solved by George S. Cunningham, University of Maine; Richard 
E. Sot, University of Toledo; and Stanley Rabinowitz, Far Rockaway, 
N.Y. 

(Spring 1961) Proposed by Robert P. Rudis and Christopher Sherman, 
AVCO RAD. 

Given 2n un i t  r e s i s t o r s ,  show how they may be connected using 
n s ing le  throw (SPST) and n s ing le  pole double throw (SPDT) 
( the  l a t t e r  with o f f  pos i t ion)  switches t o  obtain,  between a 
s ing le  f ixed pa i r  of terminals,  t he  values of r e s i s t ance  of 

i and i-l where i = 1, 2, 3 ,..., 2n. 

Ed i to r i a l  Note: Two more d i f f i c u l t  r e l a t ed  problems would be 

t o  obta in  i and i using the  l e a s t  number of only one of the  
above type of switches. 

Solution by C.W. Dodge, University of Maine, Orono. 

The accompanying c i r c u i t  is minimal s ince ,  f o r  t he  s e r i e s  r e s i s t ance  
2n connection, switch 2n* must be closed with a l l  o thers  open, 
and f o r  t he  p a r a l l e l  r e s i s t ance  l /2n  connection, a l l  o ther  switches 
must be closed.  Thus the  number of permanent connections is 
a maximum. We see  t h a t  2n - 1, SPST switches and 1 SPDT switch 

. . 
The s e r i e s  r e s i s t ances  a r e  obtained by c los ing switch 2n* and 
a l s o  switches 2n - 2 and 2n - 1, 2n - 2, 2n - 4 and 2n - 1, 
2n - 4, ... , 2, 2n - 1, none,'for 1, 2, 3, 4,  ..., 2n - 2, 2n - 1, 
2n ohms r e s i s t ance ,  respect ive ly .  The p a r a l l e l  res is tances  require  
c los ing switches 1 and 2 n *  1 and 2 and 2n, 1 and 2 and 3 and 
2n*, ..., 1 through 2n, f o r  1, 1/2,  l / 3 ,  ..., l /2n ohms r e s i s t ance ,  
respect ive ly .  

F inal ly ,  observe t h a t  the  lone SPDT switch does not need t o  
have an o f f  pos i t ion .  

166. ( F a l l  1964) Proposed by Leo Moser, University of Alberta. 

Show t h a t  5 points  i n  t h e  i n t e r i o r  of a 2-by-1 rec tangle  always 
determine a t  l e a s t  one d is tance  l e s s  than sec  lSO.  

Solution by Charles W. Trigg, San Diego, Cal i fornia .  

In  t h e  2-by-1 rec tangle  ABCD connect t he  midpoint E of a long 
s ide  DC t o  t h e  ext remit ies  and midpoint F of t he  opposite s ide .  
From A draw l i n e s  making angles of 30Â with AE, meeting DC i n  
G and EF i n  H. Also, from B draw l i n e s  making 30Â angles with 
BE, meeting DC i n  K and (by symmetry) EF i n  H .  Thus t h e  t r i ang le s  
AGH and BKH a r e  i sosceles ,  and consequently a r e  equ i l a t e r a l  
t r i ang le s  inscribed i n . u n i t  squares.  A s  may be seen from r i g h t  
t r i a n g l e  AHF, each s i d e  of t h e  t r i ang le s  is sec  lSO. The f i v e  
points  A,  G,  H ,  K,  B a r e  a s  widely separated a s  poss ib le  i n  o r  
on t h e  boundary of t he  2-by-1 rec tangle .  Clearly,  any movement 
of one of these  points  w i l l  reduce the  d is tance  between it and 
a t  l e a s t  one of t h e  o ther  points.  Since t h e  boundary is excluded 
i n  t h i s  problem, it follows t h a t  a t  l e a s t  one d is tance  between 
two of t he  points  is l e s s  than sec ISO. 

This method follows t h a t  of Dewey Duncon i n  dealing with 
subs t an t i a l l y  t he  same problem i n  Mathematics Magazine, 23 
(March, 19501, page 206. 

Solution I1 by C.W. Dodge, University of Maine, Orono, Maine. 

F i r s t  we show t h a t  3 points  on a un i t  square determine a t  l e a s t  
one d is tance  not exceeding sec  lSO. The maximum dis tance  between 
t h e  points  occurs when one point  A is a t  a ver tex  of t he  square 
and t h e  o ther  two points  X and Y l i e  on s ides  BC and CD of t he  
square t o  form an equ i l a t e r a l  t r i ang le .  By symmetry it follows 
t h a t  angle BAX = lSO = angle YAD. Then AX = XY = YA = sec lSO. 
Since now angle YXC = 4S0, then CY > (sec  1S0)/2. Reflecting 
t h i s  f i gu re  i n  s i d e  BC produces a 1 by 2 rec tangle  with 5 points  
thereon and in s ide  determining dis tances  of a t  l e a s t  sec  lSO. 
By symmetry, sec  lSO is the  l a r g e s t  value t h i s  minimum dis tance  
can have. It follows t h a t  5 points  a l l  s t r i c t l y  i n t e r i o r  t o  
t h e  rec tangle  cannot obta in  t h i s  minimum value. 
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