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n
Two ALGORITHMS FOR EXPRESSING z ik AS A POLYNOMIAL IN n
i=1

Louis D. Rodabaugh, Ph. D.
University of Akron

In this paper we shall illustrate and verify two algorithms for
determining the coefficients in the polynomial representation of
lk + 2k + 3k + o0 nk
for each non-negative integer, k, and each positive integer, n.
These coefficients will be placed in an infinite triangle as follows:

Rll

R21 R22

R R,

31 Ra2 Raz

41 Ruz Ruz Ryy

R51 R52 R53 RSM R55

“sesessessnrecsaense s

R,

so that if n is any positive integer, and k is any non-negative
integer, then:

n

ko k+l k
1) 'Zl it = Rk+1,ln + Rk+1’2n + .00t Rk+1,K+1n'
i=

T k k
Since § i" = 1% = 1, we know that
i=lI

r

2y } R,; =1 for all positive integers r.
i=l
From the well-known identity

ko %ok X N
(3) nt= Il -G-1 for all positive integers k.
=

can be derived the equations

_1 S
() Rr,l =i for all positive integers r.

and
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1 1+i
(5) R, _== Z (-1)
LEL I R i,s-1 Pre1,2e8
The P, , appearing in equation (5) are the elements of Pascal's
*
Triangle, placed and numbered as follows:

Pll

P21 P22

P31 P32 P33

Pyy Pyp Pya Puy

Pg) Pgy Pgy Pgy Pgg

so that

m-1 (m-1)! il 3
(6) Pm,n = N : DTG for all positive integers m,n.

Equations (2), (4), and (5) provide the basis for our FIRST
ALGORTHM. We here illustrate this algorithm by using it in order

to determine the fifth row of our coefficient triangle on the assumption

that we have already determined the first four rows. W place a
blank row beneath the fourth row, and place a "1" in the sixth row
in the fifth column numbered from the right. W place as a column
of multipliers the elements of the sixth row of Pascal's Triangle,
beginning with a "2" in our sixth row and proceeding upward with
alternating signs:

for all integers r,s
such that 1 { s < r,

1 -1 -1
L | e 5 | s
2 2 2 |7
T | 1|1 10 5
3 2 3 =10 3 -5 )
T |1 | 1 5 5
m 3 Iy 0 10 7 5 5 4]
-5
] 1 1 1
- MULTIFLIERS—3" 1| 2| S e [X
2 3 ]
~ Lo

If we now divide each column sum by 5 (the number of the row which
we are determining), we shall have the fifth row of our coefficient
triangle:

1 _a

2 30"

The appearance of the coefficient triangle, down to and including
the fifth row, is therefore as follows:

0,

Wl
-

1
ga

1
1|1
2 2
1 1 1
3 2 6
1 1 1
T 3 T 0
1 1 1 0 1
5 2 3 30

Our SFOOND ALGORTHM is very largely based on
THEREM 1: If r,s are integers and 1< s <p, then

r -1
(7 Rr,s =r-sT1 .Rr-l,s’

Proof: Let m be any integer greater than 1. Then (7) holds for
r =mand s = 1, because
1_m-1 1 m- 1

(8) Rl a " "l m-1+1 Bp1,1 -

Next, we assume that (7) holds not only for Rm 1 but also for
*

the top q elements of the column headed by R that is, that (7)

m,l;

holds for R R Rm+q-2,q 10 and Rm#q-l " (=Rk,q)'

m,1° R
Then:

m+l,2° X

m+2,3° "

o1 g 141
Rerl,qr = BT L L7 Rgoi,qe1-i Pre2,24i

-2 ( l)1+i

. k - i P
K+l R+ T Rt qtl-i “ke2,2¢i

2 14K - i (k+1)!

. , . Sl T
kel o VT TR T ki, qelei TIFDY (D)

k!

.1 E +i
kTe vl q I Reei,qel-i THFDT (o1=DDT
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-1
30
=1
30

=3

20
u20

-€91

=7

2
-691

2

14

~uss
12

-1
-143
10

35

23494

=429
16

1108

12

=1u3
60
143

~663

as a polynomial

au

k

n

for representing Z i
izl

These are the first nineteen

COEFPICIENT TRIANGLE

in accordance with the SECOND ALGORITHM

rows as constructed by an IBM computer
of Professor Louis D, Rodabaugh,

in n,

Figure 2
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1 (q+l)-1

1+i
(-1 Rk-i,q+l-i P)<+1,2+i

=1

B——— .
k-q+1l i=1

Thus
(k+l) - 1

(10) Rty g4l ° T = (@) F T Rikel)-1,q41 °

That is, (7) holds also for the (gtl)th el enent (counting fromthe
top down) of the col unmm headed by Ry
’

Thi's concl udes the Second- Principlelnduction, and therefore
al so the proof, that (7) holds for every elenent of the col urm headed
Since mwas an arbitrary integer greater than 1, we see

by R .
that™¢}) hol ds for every el enment of the coefficient triangle not in
the rightnost colum. THEOREM 1 is therefore proved.
The validity of our SECOND ALGORI THM for the deternination of
the coefficient triangle is now established. W describe this algorithm

| Use (4) to construct the first upper-right-to | ower-left diagonal:

II Deternine Ri,3" for each positive integer j, in either of the
followi ng two ways:
a) Apply the FIRST ALGORITHMto only the right-nmost col um;
b) Wenthe jthrowis known except for the el ement Ri,i’
use equation (2);

III  Use equation (7) to determine Fr,s for every r and s in | such
that 2&s <r.

% next present the first nineteenrows of the coefficient
triangl e as deternmined by an el ectronic conputer in accordance with
the above program(specifically, instructions |, IIb, and III). See
Figure 2

I'n perusing the COEFFI Cl ENT TRIANGLE, one observes the seem ng
alternation of upper-right-to-lower-left diagonals of zeros from
the fourth on. shal ' prove that these zero-filled diagonal s do

indeed alternate indefinitely.

Lemma 1. If k,n are positve integers and (n, (k+1)!) = 1 then
T ok
} i“isdivisible by n
i=l

Proof: W& know fromthe established validity of the FIRST and SECOND
ACGORITHMS that for any k,n positive integers there exist integers
a, a, a, ses ’ak’h such t hat

n k+1 k 2
(11) Z ik = 30 + a,n + .0t a_1? + an

i=1 'h
and h divides (k+1)!. |f k,n satisfy the hypothesis of Lemm 1,
then (n,h) = 1 Since the left nenber of (11) is an integer, we see

t hat ?is al so an integer, where
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(12) g = aonk + alnk_1 .4 a_n+a.

Therefore h divides ng. Since (n,h) = 1, this implies that h divides
q, In other words, % is an integer. Since

g k
(13) i"=n .3
i=1 %

n
ve see that § i¥ isdivisible by n, Q.E.D,
i=I

Lemma 1 and the fact that
n=1 n

(1) yik= ] ikook
i=1 i=1

establish immediately

Corollary 1: If k,n are positive integers and (n, (k+1)!) = 1, then

n-1 "
1 i isdivisible by n.
i=l

Lema 22 If h,n are positive integers. (2n+l, (k+1)!) = 1, and k
ok
iseven, then | i isdivisible by (2n+1)!,
i=lI
Proof: By Corollarx 1,

2nk
(15) I 1=z 0 (mod (2n+1)) .
i=I

Since k is even, then for every i ¢ {1, 2, +4x , n} we have

(1) i* = [(2nr1) - 1% (mod (2ne1)) .
Hence
ZA Doy
17) I i=2 7] i (mod (2n+1)) .
izl i=1

Fom (15) and (17) we have

=0 (mod (2n+1)) .

1

- n

From this, since ((2n+1),2) = 1, we see that (2n+l) divides Z ik,
i=1

(18) 2

i

I e~18

THERM 20 If k,n are positive integers, k2 3, and k is odd, then,
in the right-hand member of (11),

(19) a =0,
Proof: If, in (11), we select n as an odd integer, 2m+l, such that
(Zm+1, (k+1)!) = 1, then we can write
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n 2m+1
(20) yoike ] K
= i=1

= (1% ¢ [2m1) = 17 + (2% + [(2mt1) - 27

+ G [me) - 37 # ...+ (0 ¢ [(2me1) - nT) + (2meD)X,

2m+1 Kk 2

From this we see that I i° isdivisible by (zm#1)“ if and only
i=lI

if the expression

(1)  k(2m1)(25L 4 224 L e kY

isdivisible by (2m+1)2. This iS seen to be the case whenever the
expression

k-, kel y k-1

(22) vee 4 m

isdivisible by (2m+#1). The latter is the case, however, as we see

from Lemmm 2. W& have, therefore, that if n = 2m + 1 and
(2m+1, (k+1)!) = 1, then the right-hand member of (11) is equal to

sn2 for some integer s. Fom this it follows that

k-1 k 2 2

(23) a.n +amn +...+a 0 +akn=hsn.

0

Thus n2 divides an and hence n divides @,. Fom the way in which

n was selected we see that @, is divisible by every positive integer
which is relatively prime to (k + 1)t. It follows, of course, that

ak:O,

Q.E,D.
MEETING  ANNCUNCEVIENT

Pi Mu Epsilon will meet in late August, 1970, at the University
of Wyoming, Laramie, Wyoming, in conjunction with the Mathematical
Association of America. Chapters should start planning NOW to send
delegates or speakers to this meeting, and to attend as many of the
lectures by other mathematical groups as possible.

The National Office of Pi Mu Epsilon will help with expenses
of a speaker OR delegate (one per chapter) who is a member of Pi Mu
Epsilon and Who has not received a Master's Degree by April 15, 1970,
as follows: SEAKERS will receive 54 per mile or lowest cost, confirmed
air travel fare; DHEGATESwill receive 2 1/24 per mile or lowest cost,
confirmed air travel fare.

Select the best talk of the year given at one of your meetings
by a member of Pi MiI Epsilon who meets the above requirement and have
him or her apply to the National Office. Nominations should be in our
office by April 15, 1970. The following information should be included:
Your Name Chapter of Pi Mu Epsilon; school; topic of talk; what degree
you are working on; of you are a delegate or a speaker; when you expect
to receive your degree; current mailing address; summer mailing address;
who recommended by; and a 50-75 word summary of talk, if you are a
speaker. MAL TO Pi Mu Epsilon, 1000 Asp Ave, Room 215. Norman,
Oklahoma 73069.
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ELLIPTIC QRVES O/BR LOCAL HELDS

Bruce L. Rienzo
Rutgers University

Elliptic curves mey be put into the standard form y2 B x3 + Ax t B,
called the Weierstrass form. In this form, the points on the curve
defined over a field k form an abelian group under an appropriate
composition law. This group law also works for singular curves,
provided we avoid the singular point.

Considering the curves over finite fields of p elements, we see

that there can be only p2 possible curves. W then mey program the
group law on a computer and run off all possible cases. Looking at
these results, we can then make same conjectures as to the number of
points on the curve mad p.

Having found the solutions mad p, we procede to develop a method

for lifting these solutions to solutions nod o“, for arbitrary N.
This gives solutions in the p-adic fields.

Finally, we develop the Nagell-Lutz Theorem, for p-adic fields.
By this theorem, points of finite order in the group must have integer
coordinates.

1. Elliptic Curves and the Group Law.
51.1 Weierstrass Fom

Rather than having to work directly with elliptic curves, we
mey first put them into a standard form. An elliptic curve, defined
over a field k of characteristic not 2 or 3, is birationally equivalent

to a plane cubic curve of the form y2 = x3 + Ax + B, provided the curve
has a point defined over k.

Thus, we will not need to consider general elliptic curves, only

those of the form y2 = x3 + Ax + B. Curves of this form are said to
be in the Weierstrass form. & will often denote the Weiestrass form

by y2 = £(x), where £(x) is a cubic.

What do these curves look like? This question can be asked for
various different fields. W will restrict our attention to points
which are rational over the field. First, consider the field of real
numbers.

. 51.2 The Real Ground Field

For the field of real numbers there are several cases depending
on the roots of £{x) = 0.

1) f(x) = O has 2) £(x) = 0 has

three distinct only one
real roots. real root.
y2=x3-3x y2=x3-3x+3
3) f{x) = 0 has a 4) £(x) = 0 has

double root at a triple root at
x=a and a distinct x=a. The curve then
single root. The has a cusp at (a,0);
point (a,0) is thisisalso a

then a singular singular point.
point of the curve.

y2=x3-3x+2 y2= 3

51.3 Projective Space

VW will be considering these curves from the point of view of
projective geometry. That is, we will be including points at infinity
on the curve. Putting the equation into homogeneous form gives

Yzz = X3 + AXZ2 + ES. The points at infinity are the points with

Zz = 0. But this means that X3 = 0. Thus there is only one infinite
point on the curve (the point (0, 1, 0) in projective coordinates);
and the line at infinity intersects the curve at this point with
multiplicity three.

51.4 The Group Law?

Consider a fixed elliptic curve defined over a field k. If we
can devise a way of making the points of the curve into a group, we
mey then study the points by studying the structure of the group.

VW will see that we can in fact define such a group operation.
will turn out to be commutative, so we will call the operation addition
and denote it "+",

Geometrically, the group operation for non-singular curves is
based on the fact that, counting multiplicities, any line defined over
k intersects the curve in exactly three points (over the algebraic

closure of k). Wha this means is that if Pl and I’2 are two points

on the curve, we may draw the line through them. and this will give
us a third point associated with Pl and P,.

Unfortunately, this easily defined composition is not a group
operation. For one thing, it has no identity. However, we mgy remedy
this situation by first fixing some point 0 on the curve to serve as
the identity element of the group. Then when we get the third point
of the curve on the line through I’l and P,y we simply draw the line

through this point and the point 0. The third point on this line will
be the desired point P, + P,.
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It is clear immediately that this addition law is commutative.
(The line through Pl and P2 is certainly the same as the line through

P2 and Pl.) To show that the point O is indeed the identity, we let

P be a point on the curve and find P+ 0. The line through P and 0
intersects the curve in some third point Q. We then consider the line
throught 0 and Q. But this must be the same line. Thus the third
point must be P. That is, P+ 0 = P as desired.

To get inverses, we draw the line through O twice (i,e. the line
tangent to the curve at 0) and let 8 be the third point. Then if P
is any point, the third point of the line through P and § is the
point -P. (The third point of the line through P and -P iS S.) Then
the third point of the line through O and § is 0. So Pt (-P) = 0.

T_he hard part is to show associativity. W omit this proof here,
referring to Tate? for a proof. This difficulty may be avoided completely
by using the definition of elliptic curves in Cassels®.

We may choose any point on the curve to be the fixed point 0.
If we choose the point at infinity, then the lines through O are just
the vertical lines (and the line at infinity). That is, theline
through 0 and P = (x,y,z) has the point (x,-y,z) as its third point
of intersection with the curve.

Inverses are now simple to compute. The point S described above
is now the point 0. (The line tangent to the curve at the point at
infinity is the line at infinity, Z = 0. But we have seen that Z = 0
intersects the curve 3 times at the point 0. Thus, S= 0.) So, if
P = (x,y,z) then -P is the third point of the line through P and 0
which is just (x,-y,z).

W may now restate the addition law. |f Pl and P2 are two points
on the curve, let the line through them have P3 = (x,y,z) as its third

point. Then P, + P, : (x, -y, z). That is, Py + P, = -P;; or
Pl + P2 + P3 = 0, where Pl’ P2, and 11’3 are collinear.

It will be useful to have an actual formula
for the addition of two finite points. Let

Py = (xl’yl‘l) = (xl’yl) and P, = (x2,y2,l) =
(xp¥3) it X) ® X, and ¥, * -y,, the points are
inverses and P_ + P2 = 0. Otherwise, consider the 4
line through Pl and P2. Say its equation is _

y = A+ v. IfPl#P then the slope A = 2. If P, = P

+P,

the

2 Xym%q 1 2
line through Pl and P2 is the tangentuat that point. Then y2 = £(x)
. . E'(x)
gives A = .
In either case, v = y; - AX (=y2 - sz). To get the third point

. 3
Py = (xa,ya), we plug y = Ax * v into y2 = x +ax t B:

(Ax+v)2=x3+Ax+B

59

x2x2+2kvx+v2=x3+Ax+B

0= x3 - x2x2 + (A-2av)x + (B-vz)

This is a cubic in x whose roots are just the x-coordinates of
the three points of intersection of the curve with the line. The
roots must equal the negative of the coefficient of the second order

term. i.e. Xy t Xy t %, = x2. Thus the group law becomes:

=12 —y. =
Xy = AC - (xl+x2) Y3 xxa + v
Y-y [
where A = l2whenx #x,andA=ﬁwhenP = P, and where
X 7%, 17 72 2y 1772

v =Y, = AX,.
s oL
o 2 3., 2
Note: If the curve is given in the formy“ = x~ + ax“ + bx * c,

then x1.+ x, + Xy ® 22 -a sothe group law is x, = A2 - a - (x14x2),

3
These formulas could now be used to prove associativity.

51.5 Singular curves

We have described the group operation for non-singular curves.
Wha can be said about the singular cases? W needed the fact that
a line intersects the curve in exactly three points. This is still
true provided the line does not pass through the singular point.

I f Pl and P2 are two points on the curve, then the line through

them does not pass through the singular point. (The singular point
isin effect a double point, so any line through it can intersect in
only one other point of the curve.)

Thus our group operation holds for points other than the singular
point. That is, the complement of the singular point forms a group.

2. Local and Finite Fields
52.1 P-adic fields

May of the most interesting results on elliptic curves come from
looking at the curves over p-adic fields. W will not discuss the
theory of p-adic numbers here. (For an explanation of p-adic numbers
see a number theory text such as Borevich and Shafarevichl.)

V& will be using the exponential p-adic valuation, which is given
by:

VP(pnu/v) =n wherepfuandp}v.
If a, 8 are non-zero p-adic numbers, then
VP(uB) = VP(u.) + vP(B)
vP(a+B) 2 min[vp(a),vp(e)l
with equality if vP(u) ? vP(B).

If v (@) 2 0, then a is a p-adic integer.
If vp(u) = 0, then a isa unit of thering of p-adic integers. (Since

we will in general be working with a fixed p, we will often write just
v(a) to denote the valuation. )
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Solution of y2 : x3 + Ax + B in D-adic numbers i S equivalent

to solution of y2 = x3 + A&+ B (mad pN) for arbitrarily high N.

W consider first N = 1.
522 Solutions md p -- Finite Fields

In this section we will be considering the group of points on
the curve over the finite field of p elements (i.e. the field of numbers
nmod o where p is a prime. In general, we will avoid p = 2 and 3,
since these cases present special problems with regard to singularities.
(Note that fields of characteristic 2 and 3 were excluded from the
discussion on page 1 of this paper.)

For a given p, there are only p2 curves of the form y2 : x3+Ax+B.
(A and B can each take only p values.) Thus it is possible to program
the group law on a computer and run off all the possible cases.

Before seeing the actual results, hov may points might we expect
the curve to have for a given p? The "Riemann hypothesis"? gives

the number_of pointsasN = p + 1 - a where |a] < 2/p. In other words,
p+1-2/p <Ngp+l+ 2h.

Let's look first at p = 5. Then N should fall in the range
2 ¢ N €10. The following chart gives the number of points in the
group for each possible A and B.

'Y ] ! 2 s ‘.
A single digit indicates that the \

group for that particular curve iscyclic 8 .

of that order. For example, o 2 10

2 ) s

y® = x% + 2x + 1 has 7 solutions ! s v e

(including the point at infinity), and ? 6 4 & 3 3

its group is cyelic of order 7. 3 6 ] 6 s 3
4 6 9 7 4 ]

Whn the entry is expressed as a
product, the group is the direct product
of cyclic groups. For example,

y2 = x4 ux has 8 solutions, and its group is the direct product of

a cyclic group of order 2 and one of order 4.

An "s" indicates that the curve has a singular point. For example,

y2 = x * 2x * 3 has 7 solutions, one of which is singular. |ts group

iscyclic of order 6. (The group does not include the singular point.)

Inspection of the chart shows mary interesting features. First,
all values are within the predicted 2 ¢ N ¢ 10 range. In fact, all
possible N within the range occur.

W know that the isomorphisms of the curves are given by A-bc4A,
B+c"B, where ¢ ¢ k. (1t is clear that these are isomorphisms; they

take x*»-.\c/c2 and y*y/c". For a proof that they are the only ones, see
Cassels3.)

In this case. all fourth powers =1 (mod 5) and sixth powers :
squares =£1 (mod 5). So the isomorphisms are just the identity and
B+B. This explains wy the row B = 1 is the same as the row B = 4,
and why the row B = 2 is the same as the row B = 3.
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W also note (without explanation) that in any column (i.e. for
any fixed A) the number of solutions are congruent nod p. Also, in
any row (i.e. for any fixed B) no two numbers are congruent.

Before looking at o = 7, let's try to predict what we can. First,
the number of solutions should be in the range 3 ¢ N £13. As for
the isomorphisms, fourth powers eI, 2, 4 (mod 7), and all sixth
powers AfFimod 7).  So the isomorphisms are the identity, A+2A, and
A+4A, Thus we would expect therows A = 1, A = 2, and A = 4to be

the same, and therows A = 3, A = 5 and A = 6 to be the same.

Here's the chart: \ 0 1 2 3 4 5 6
W see that our 8
predictions are true, and that 0 7 8 8 ax2 8  axz 4x2
again all possible values in the ex2 5 5 12 5 1 1
range 3 £ N £13 occur. Also,
: 2 33 8% 8t 9 8% 9 9
mow in any row the number of
solutions are congruent nod e+ 3 13 6 6 6 6 6 [
And, in any column, except A = 0, 4 3 10 10 10 0 10 to
no two numbers are confluent. s 7 5 & 7 & 1 1
When B = 0, N is always 8. 6 2 1" " 4 " A 4

(Note that for p = 5, when A = 0.
N was always 6.) This p+l

phenomenon can be explained by looking at the automorphisms oj_ the
curves [see Cassels*}. Theresult isfor p23 (mod ), N = p T 1 for

B =0; and for p=5 (mod 6), N =p + 1 for A = 0.

V& make the following conjecture: |f p=3 (mod %), then for

B=0, N=pt1l; and for any fixed A # 0, no two N are congruent
md p. If ¢ # 3 (mod #), then for any fixed A, all N are congruent.
If pz5 (mod 6), then for A =0, N = g'i'l; and for any fixed B # 0O,
no two N are Congruent nod p. I f p 2 (mod 6), then for any fixed
B, all N, are congruent.

For 5 = 11, we predict a range of 6 & N < 18. Also, the isomorphisms
are the identity, A5\ B+9B, A+4A B+3B, A+3A B-+4B, and A9\ B-5B.
Thus therows A = 1, A =3, A=4, A =5, and A = 9 should be permutations
of each other. The same should be true for the rows A = 2, A = 6.
A:7, A=8 adA =10; thecolumnsB =1,B =3, B=4, B:=5,
and B = 9; and the columns B = 2, B =6, B=7, B=28, and B = 10.

V¢ have 11.= 5 (mod 6) and 11 ¢ 3 (mod 4), so for either A = 0
or B = 0, we should have N = p + 1. Also, for any fixed A or for any

fixed B, no two N should be confluent.

A [} L} 2 3 4 s 6 7 ] 9 10

1% 12 6x2 12 12 12  6x2 6x2 6x2 12 6x2

12 18 D ax2 14 9 15 10 16 1t 17
1209 17T 14 11 4ax2 16 12 10 18 15
tz 110 9 axz 18 17 16 Is 14 3%

12 ax2 a5 11 18 14 10 17 12* 9 16
0 2 10 8 6 I5 13 10 9 7 @#x2 14
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§2,3 Solutions mod pN
Nw that we have the solutions mod p, We need a way of lifting
them to solutions mod pN. We do this one step at a time, i.e. from

p to p2, then from p2 to p3, etc. In general, we want to |ift solutions
mod p" to solutions mod DM]‘.

Ary solution maod o™ must also be a solution mod p". Thus all
solutions mod pn+l are in the form (x°+spn,y°+uon) where (xo,yo) is

a solution mod pn, and s and u are between 0 and p-1. Then,

tygruo™? = £ (xgrsp™ (mod o™
y°2+2y°up“+u2p2n H f(x°+spn) (mod pnﬂ')
yoz+2y0m:on H f(x°+spn) (mod °n+l)
2yquo” = £(x +sp )=y 2 (mod o)

The right side is divisible by p" since f(xo)—yo2 =0 (mod ™).

n
: f(xo+sp )-y02

2y (mod p)

n
p
Provided Yo # 0 (mod p), this is a simple linear congruence and so

each value of s gives exactly one value of u. There are p such values,
so there are p solutions

Suppose y, = 0 wmed p). Then, as before

2y°upn z f(xoi»spn)—yo2 (mod oL

But now, yopn : 0 (mod pml), so

f(x°+spn)—y°2 =0 (mod pnﬂ')
Using the expansion:

2 2n
f(x°+spn) = f(xo) t spnf‘(xo) + s__;_ f"(xo) | SN

gives £(x) t so™F'(x) -y 220 (mod p™*)
0 0 0
f(xg)-y,?
_t sf'(xo) 50 (mod p)
<]

Provided £'(x,) # 0 (mod p), there is exactly one s which solves this

linear congruence. This value of s and any value of u gives a solution.
there are p values of u, so again there are p solutions.

63

1 f both Yo and f'(xo) z 0 (mod p), then the point (xo,yo) is

a singular point. Otherwise, each point mod p" liftstoe points
mod pnfl
3, Nagell-Lutz Theorem

, and we need only solve a linear congruence to find then.

In this chapter, we give the major theorem on the structure of
the group for curves over local fields. The proof given here generally
follows the proof given by Lutz!.

Let I' be the group of points on the curve y2 s x3 + Ax t B over

a p-adic field, where A and B are p-adic integers.

Lema 3.1 Each rational point P = {x,y) in I has coordinates in the

form (Ep"zn.ﬁp'an), where n3 0 is an integer and £,8 are p-adic integers.

E and 6 are unitsif n)> 0.

roofi If x is ap-adic integer, then so is y; and then g=x, §=y,

Otherwise, v(x) < 0, and we have v(xs) = 3v(x) < 0 £ v(Ax).

Also, v(xa) < 0 ¢ v(B)., Therefore, v(yz) = v(x3+Ax+B) = v(xs).
2v(y) = 3v(x) and so we must have v(x) = -2n and v(v) = -3a with

ns 0 Thus, x and y are in the form x = "2 and y = 803" where

£ and 6 are units.

For any rational point P on the curve, | et n(P) be the integer n
of the above lemma Let I'_ denote the set of points P with n(P)2 m
(That is, with v(x) € -2m and v(y) ¢ -3m).

Theorem 32 T is a subgroup of T.

E!‘OOfl Let Pl = (xlryz) and P2 = (x
Py = Py t Py and say Py = (xg,,).

2.y,‘,) be two points in I . Let
Suppose n(Pl) # n(P2). W& may assume “(Pz) > n(Pl). The addition
2 . 2 2 2

) (xlt xz)(xz-xl) = X X% X +A(x1+x2)+2B-2y2yl
(x

formula x, = (y,-y,

x.)2 2., 2
2* 1 x2 - XZX 1+x1

. 2 2 - 2 2
gives vlxg) = vlx, "% +x,%, +A(x, #x,)42B-2y,¥,) = v(x,"-2x2x 1t xA7) .

v(xzle) - v(x22) = v(xl)
Thus for n(Pl) H n(P2), we have
n(Ps) = n(Pl + P2) = min[n(Pl),n(Pz)]

n(Pl -P. )= min[n(Pl),n(Pz)].

2
Suppose n(P,) = n(P,). Then P, = P, = P, soif n(P,) # n(P,) we have
n(Pl) B min[n(Pa),n(Pz)]. Thus, for n(Pl) z n(Pz). we have “(1’3) > n(Pl).
In either case, we have n(Pa) 2 min[n(Pl),n(Pz)]. Therefore, since
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n(P1)2 m and n(P2)3 m Wehaven(Pa)z m, SO Paisinl‘m. I‘mis I'n particular,lv\h?nn=m-1this showstAhat rm_llrmisfinitgfor
therefore a subaroup of T ms 1 [The lifting procedure described in 2 shows that the index
g pA o ) ) of rm_lin r isexactly p. Aso it should be noted that these argunents
Theorem 3.3 I‘m has finite index in I, for integers m»> 0. requite that singularities be avoided.] This shows that r isof finite
Let ?1 = (xl.ylA) and P2 = (x?,y2) be two points in T. W index in I‘l.
need to consider conditions under which (Pp-P)) € T. Vé still nust showthat r/r isfinite. Let n(P;) = n(P)) =0
V& may assune the P sP, £ T, say n(Pl) = “(Pz) =n<m Put Ve claimthat n(P27P1) 3 m when £, 28 and &, = 8, nodul o a sufficiently
- - - . i = H mir ici
P+ (Epp 2n 2610 31y and P, = (&0 2n.620 ) vith high pover of p. Say &, & 62 = 61 (mod p™E), for sufficiently
- 6n larger.

_ 4
= E '[ AElD Bp
€50 61, and 62 are units.

2 3 4n 6n
= + . .
and &, &2 Agp ™ U Bo™, where &, If not, n(P2-P1)< minplies w(§,+8,) 2 r and v(522*5251+512+ﬂ)2 r

by the above argument. Then, v(26;) = v((61+62)—(62-61))2 r and

Fromthe addition formla, n(P,-P;) 2 m if and only if V(3512+A) - (5221'52514'512*5) 2. Thus we have vw(26)) 3 r, and

Yoty +y 2
v((x2_xl)2 - Gagry)) = “(1“2._,(1)25 m v(3g,“+) 2 1.
271 1 . .
+y) Hovever, we have the |dent|t¥
(v 2 ) -upd - 2782 = (xP+Ax+BIP(x) + (3x“+A)Q(x) where P(x) = 18Ax = 27B,
+y P +6 and Q(x) = -6Ax2 + gBx - uA%. Putti ng x =& and doubling, we get
2 1 = -n
But (y 7%y 52-5 2(-up® - 278%) = 2612P(x)t 2(3512t A)Q(x). But the right side =Q
ty r : 2 2 - r
S0 n(Py-P)) mif andonly if v(r] z n+v€,—-—x—§_xi) < n-m (mod p7) [since 26,° 20 and 3§, t A=0(md p)I. Thus,

2(-HA3 - 2782) 5 0 (nmod o¥), which cannot be for arbitrarily highr.

Thus, "(52'51) 2 mn and v(62-61)3 mnis clearly a necessary Thus r ‘s of finiteindexin T.

condi tion for n(P2-P1) 2 m
I'n the previous theorem we |ooked at groups I‘/I‘ . These groups

It e #2 85%6) s aunit, so v(62+61) = 0. Then, (52'51)') may be described in terns of what we did in Chapter 2 of this paper.

is asufficient condition. The group T/T is just the group of points on the curve over the field
Ifp=2 wite of nunbers nod p, In general. we have the follow ng theoremfor
' 2 2 3 3 4n non-singul ar curves and p # 2 The singular cases are quite a bit
(62+61)(62-61) = 62 -81° = £, - + A(E2-El)p . more conpl i cat ed.
2 2 un Theorem 3.4 I‘/!‘m is isonorphic to the group of points on the curve
= (6,-8,)(E, #6846 "+hp ). —m
2 2 2 2., tn ol
Since o # 3, &, +E,E,4E, " is a unit; and then so is By HE 8 46, HAp proof: Let P, = (xl,yl) and P2m= (x2,y2) be two finite points in
Fromthe above, we know with x, 2 x2 and ¥y 2 yz(rmd p ). Then we nust show that P2-Pl e Tpe
62+61 522+5251+512+Ap‘m The addition formula gives the x-coordinate of the point P,-P,

£t T_+6 .
- ? ) . 2 ! o as g—z——l-)2-(x2+xl). For p # 2, ifylEyzio(modp),
Therefore, v(62—61) A mnis asufficient condition for n(P2-Pl)2 Xp~¥y
when p = 2

. . . . ((y2+y1)2_( %)) = 2 (V2 1) om + t and
Putting together the necessary and sufficient conditions gives v Xoo%y Xotx1) = 2v -2m, since Y2 ¥y is a unit an

t hat (P2-P1) eT if and only if v(Ez—El) 2 mn and v(62-61)2 mn. Xy=% = 0(md p™.

So, PP, £ T
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I f Y, Y, ¢ 0 (mod p), and the curve is non-singular md p, we
mey write its equation in the form y2 z (x-xo)g(x) where %y EX,5X
(mod p) and g(xo) is aunit. Consider

y2 - yl X=X xl—x

x2 - xl 27 % —xl

V¢ may assume that v(xl—xo) 2 v(xz-x ). Suppose first
vx -x) > vlx,-x)).  Then v(xz-xl) 2 vl((x,-x,) + (xy=x,))

min[v(x2-x° ) ,v(xo-xl)]

: v(xz-xo)
) Ry=X) ) x %o
This means that =—— is a unit and — C 0 (mod p). Therefore,
1 271
Yy =¥
)2( _xl is aunit
271

n the other hand, if v(xl-xo) = v(xz-xo), we mey write

2
YoV *27% *17%g  X37%g
X% glx,)) = - &lx)) (x =, T x-x )
271 27 271 271
X, -X X, -X
2 270
= gx )—_--g(x ) - + glx.)
2 xymXy 1 xy=Xy 1

g(xz)-g(xl)

(x,-x.) + g(x.).
xy=Xy 270 1
Since g(x) is a polynomial, x,-x, divides g(xz)-g(xl). So

g(xz)-g(xl)

%y, is an integer. x, % %y (mod P), SO x,=xy = 0 (mod ).
Thus the product 0 (mod p). However g(xl) isaunit, sotheam is
2 2
. Yy -Yl .
a unit. In either case, ——=—=—is a unit. W know
*27%)

2.2
y2+yl y2 _yl 1
= o vy Wherey, ty, (modp). Therefore,
*27™1 7% Yo

. vy
: _vgz Y .yt -
“ KoK

1 Yoi¥y

Y, ty f’ +y
2771,2 - 27, ,
v(("z"‘l) - (x2+xl)) = 2v x—-)2_,‘1 < -2m.

Thus, P?'Pl € I‘m.

- 2 70 0 .
= glx,) 2—- - glx)) xz—-x; Here g(xl) and g(x,) are units.

elt)

1 .
The curve may be parametrized as follows: X * t_i y * t3

4

6,1/2
where e(t) = (1 + At +Bt)/.

e(t) may be represented as a power

2
series: e(t) = 1t ): Y;t ot [The series mey be derived from the
i=2

V2o tut P e

series (1+u) 3 u 7 u t is u This series converges

p-adicly for t 0 (mod p). From the formula for t, we see that t

IS the parameter of a point in r,if and only if vit) 2 m

Let P1’P2 have parameters t)st, resp.  Put €) * e(tl),
: : = Let P, = PL*+ P_ and have
2 e(tz), o) n(Pl), and n, n(Pz). 3 2

parameter t

€
3 We need to express the addition law in terms of the
parameters; that is, we need 'c3 in terms of tl and tz.

W may assume ny £ n,.

3 3 3_3, v 263 2i_ 3
VoY, €.t -6ty . Tt g yi(t2 T -t Tty )
X X, 2,2
271 €, t,(t. " -t,%) 2_ 2
172771 "2 tltz(tl t,")
3 3.3 3% 2i-3__ 2i-3
)0t ety g v4(t, 5,7
= 2. 2
tlt2(tl -t,%)
2i-3__ 2i-3 2 2.3, 3
't Lot 6 EY t, -ty ve get Yy LRI L P t,"0
we |l e = — — =
i=2 1 X2-x1 tltz(t1+t2)
By the addition formula,
2 2 3,3
N _(tl HE Tt e 0 i (L., _1_2)
N t.t,(t,+t,) ! 2
1:3 172771 "2 tl t,
1 2 2 L 2
= (1-2t,t,(t, "+t t40,7) + £ t, %)
ltl-ftz;z 172771 172
t -
3 e 2 2 +t '-lt “02 1/2
= e (1-2tlt2(tl Tttty ] 1 % )
172
The right side of the above may be expressed as a power series using
(l-u)-llz =+ %’-u + %uz T e

2 2 2
We know v(tl)g n, v(tz) 2 n, and v(tl te tott, ) = v(t; )2 oy,

67

2 2.y _ 2 2
Therefore, v(tltz(tl AT AN )) = "(tl)*“(tz)w(tl +t t,tt, )2 3n,+n,.

172
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If p # 2, 9 isan integer (since the denominators of the 71 are powers For n > 1 the series converges, and then
2 2 i-n.(27-4) € i-(2,-4) = 4-1 ¢ 2, since the series starts at i = 2
of 2,) Then "(tltz(tl Tttty )e) 2 3n,+n, {2 < 1 £

. 2 2
t Again we have v, (t .t (t,“+t t +t,“)) 2 3n +n,. But now,
T it = v(tlt2t12+t1t2+t229-%- t1"t2“92+...) g ) 22 172°71 "1t 2 2
1 "2 - . .
V2(t1t2(t1 Tt Jo)2 :snlm2 2. Mw if Pl,P2 e T, withm2 1,
2 2 i = > -
= v.(t.-(t1+4t2)) 2 9n2 Proceding as before, v, (t(2P)-2t(P)) > Sm-2,
vt t 0, et t+t,7)8) 2 3n 40, o{ts g 2
t(2P)
t v, ( - 1) » un-3,
I€ P ,Pel , v(pa - 1) 2 tm 2\ (P)
mn t,+t
v v, (B2 - 1) 5 wnea.
t rNTI6) 2
v(ty-(t,4t,)) = v[-t-i—t -1)+ v(t1+t2) 2 4m#m = Sm. So again for P e rand 1= mp° f r, we have n(2P) = n(P) + s.
1 72
Consider now multiples of a point P. By induction on 1in the What this means is that n acts on the points of I‘m in exactly
above equation. we get (writing t for the parameter of P): the save way v acts on the p-adic integers. In fact, we have the
v(t(LP) - 2t(P)) 2 S If 1= ¢, v(t(pP) - pt(P}) > Sn, and so following theorem:

Theorem 3.5 Form2 1, I‘m is isomorphic to the additive group of

t(pP) _ _ _ _ _
vy 1) = v(t(pP) - pt(P)) - v(pt(P)) > 5n - (1+n) = 4n - 1. b-adic Tnicgers.

Then, by induction on s V(E.(."S_P) -1)» un -1 Thus for all integers roof: V& need t-o show that there exists a Py e T éuch that -any
’ pst(P) - P rm can be uniquely expressed as P = cPo where § is a p-adic integer.
= m+l
e, Q:H;) -1 4n - 1. Therefore, for Pe ) (i.e. n2 1), if From the values of t : 0 (mod p') choose a ty 50 (mod P 7).

Let By be the point with t, @S its parameter. Let P. = DiPo and t,

. _8 - . -_s
1 = rp® where p} r then we have v(t{2P) = 2t(P)) = v(t(£P) ~ rp"t(P)) be the corresponding parameter. The preceding result gives

= “(%- 1) + w(rp3t(P)) > (un-1) + s> n* s, n(Pi) :n(P) T i, fe Pe Tnegs SO
That is, n(2P) = n(P) ts. t. £ 0 (mod pm*i).
For p = 2, 8 isnot in general an integer. Therefore, we must . . _ m .
make sure that it is not too bad---that is, that v2(s) is not too Let P be any point in Tos and let t = 0 (mod p7) be its parameter.
+
much below zero. Let ny be the unique integer nod p such that t = Bgty (mod o™,
= )y _, - 1) (1) - 5m
Going back to (1+u)1/2 1+ ZQI_'_‘l - %ﬂz . %3 o Z Biui, Let P = P nyP,. Then t :t(P"7) 5t ngt, (mod ™)
i=0 -
R : i 1) 0 (mod mtly
we see that "2(81)3 -2i, In the expansion for e(t), the u tern expands So, P € rmﬂ P .
to terms in t“i (and higher order terns). The coefficient of the Let n, be the unique integer mod p such that t(l) =t (mod pm+2).
i : s
tt is ; 2 -2 hereb: > -1,
erm IS vp3s S0 Valrg )2 -21, whereby vyly,) 2 -i Let p(2) = p) nPy e I ,and et P2 have parameter t(z)-
. ¢ 2473 2i-3 m
He have 6 = § v 2 1 . Continue by induction:
=2 T p(k) | plk-1) B kil LE o
2i-3_, 2i-3 M- k-1 o 1 E ok
v (-2 1 ). vz(tzzl-“ﬁ'tltzz‘-s‘k...+t12‘-u) oy | Kl x)
P=P "+ ] nP,. Askss, P +0. So,
-4 i=0
3> \02(1:l ) (2i-u)nl.

Thus, vz(ith term of 8) > (21-4)nl-1.



P =

ne-18

1 v o
nP, =] npP) =P (] nph)
ioi:l i 0 01=°1

Here Z nipI is a p-adic integer, unique since the ng are unique nod p.

Corollary 3.6 A point P¢ I' of finite order is not in Fy. That is,
t must have integer coordinates.
These results over p-adic fields have interesting consequences
for the group of points on the curve over the field of rational numbers.

Theorem 3.7 (Nagell-Lutz) Let yz = x t At B be non-singular and
have Tnteger coefficients. Then all rational points P = (x,y) of
finite order have integer coordinates such that y = 0 or

y2|-uA3 - 278,

Eroof: If P isof finite order in the group of rational solutions,

t 1s of finite order in the group of p-adic solutions for each p.

Thus by the above corollary, x and y are integers in every p-adic field.
But then they must be integers in the field of rationals.

If Pisof order 2, theny = 0,

Otherwise, consider the point 2P. It is non-zero and of finite
order. Thus it too has integer coordinates. The addition law gives

£1(x)y2
|

the x-coordinate of 2P as ( - 2x. For this to be an integer
we must have 2y|£'(x) and then y|£'(x). But we have the identity
-ua3 - 2782 - £(x)P(x) T £'(x)Q(x) given in the proof of Theorem 3.3.
y2 = £(x) so certainly y]f(x)._ Now, ylf(x) and y]£'(x). Therefore,
ylEGOP(x) T £7(x)Q(x). That is y|-4a% - 2782,

Footnoted References

Chapter 1 Chapter 2

lgassels, p. 211 1Borevich and Shafarevich, Chapter 1.
2531ate, Chapterl. 2cassels, p. 242.
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lLutz, pp. 239-244.
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A DEOMAL AFFROXIMATION TO 7 UTILIZING A ROAER SERIES

Tim Golian and John Hanneken
Ohio University

CAN A ORCLE BE SQUARED? This question has puzzled mankind since
antiquity. Even before the 17th century mathematicians believed that
the key to answering this question lie in a very special number = pi,
the ratio of the circumference of a circle to its diameter. Since
that time, mathematicians have tried to find a unique value for pi.
Their attemps can be divided into three distinct periods.

In the first period, which was from the earliest times to the
middle of the 17th century, the principle aims of mathematicians'
studies were directed toward the approximation of pi by calculations
of perimeters or areas of regular inscribed and circumscribed polygons.

From the middle of the 17th to the middle of the 18th century,
the calculus of infinite series was utilized in the development of
expressions for pi.

The last period, extending more then 150 years, pertained primarily
to investigating and characterizing pi. In 1761. JH. Lambert proved
the irrationality of pi and in 1882 transcendence was established by
F. Lindeman.

In the following development of i1 the specific objective relates
to the second period, and thus the basic relations introduced in that
erawill be examined. Early expressions such as:

n.2.2.4%,4,6.6.8.8., 007 _, 1,1 1, 1 ...,
2°IT 3 3 5§ % 7 7 9 T ITETTTS

do not converge rapidly enough for practical use. For example, the
latter expression, according to Newton, would require 5 BILLION terms
to accurately calculate the value of pi to 20 decimal places. These
relations were replaced by relations based upon the power series

3 -]
arctan (x) : X - % + % - é o (21 Sx _‘_ 1), which was discovered

by James Gregory in 1671.

There are nine Important relations based on Gregory's series.
These are:

#1, % : arctan %“f‘ arctan 33' Charles Hutton = 1776
#2 2 s 4 apctan 1. arctan 1 John Machin = 1706
4 5 239
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no 1. a - 4 -
#3., 7° 8 arctan 10 4 arctan ETg ~ aretan 5ug S. Klingenstierna - 1730
LS 1 Eul = 1755
f4, ¢ = 5arctan 5 + 2 arctan 79 uler
T _ 1. 1 1 -
#5, 7 = 4 arctan T ~ arctan 75 + arctan % Euler = 1764
#6. % = arctan %‘ + arctan :BI-‘+ arctan :SL LK. Schulz von Strassnitzky -
1844
1 1 -
#7, ':‘ = 2 avctan 7 t arctan 7 Button = 1776
#8, -:T = 3 arctan :ZI1_+ arctan ;—0- t arctan 1:9L85 SL. Loney ~ 1893
#9. -ZT z 12 arctan :1|'_§ + 8 arctan -:;1‘7 = 5 arctan 5;3L§ Gauss

The oroofs of these nine relations follows easily from the next
example. Therelations are found in "The Evolution of Extended Decimal
Approximations to #," Wrench, Jr., J.W., The Mathematics Teacher,
December, 1960, pp. 644 = 650, which did not contain the proofs.

1 - 14 A
#1., SHOw 2 aretan 5 arctan 3 arctan 515
. A= i ¢Act
Let: A-arctanﬁ O-A(“
- 1 L
B = arctan T 0_<_B<F
1 L
C = arctan 515 0sccy

tan (B ) tan B + tan C
1 - (tan B)(tan C)
1.1

tan (B + C) = 2 21>
1 1
1- (‘g)(m)

_ 20
tan (B t ¢) = Y
tan (24) = 2tanA A2
1. tan” A
1
2(5
tan (24) = 10) 5
1 - 1
10
tan (2a) = 20

99

#2,

#3.
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tan (24) = tan (B t C)
1 1 1
2A =B+ C Therefore: 2 arctan Ip ° arctan g + arctan 15

or: arctan %‘ : 2 arctan Jfo arctan %—5-

n 1 1
SONM % = 4 arctan T = arctan Z3®

. N 1
Let: A-arctan5 0$A<l-

1 Ll
B = arctan 239 °$B<‘a'

tan (4A) = 2 tan (31\)
1~ tan” (24)
4 tan A 2
tan (4A) = 1 - tanz A (4 tan A;(l ) tan A)2
2 (1 - tan® A)® " 4 tan® A
1- 4 tan™ A
(1 - tan2 A)2
4y (24
FE 120
tan (4A) = —5——
2 119
& .3
25 25
_tan (4A) " tan B
tan (A - B) = T 0 (wA) tan B
20 - 1—
tan (4A = B) =
1 1 =
1+ (379 4
tan 'jT =1
T -
tan ¢ = tan (4A ~ B)
LU - . l = 1‘ - -4
7°* 4A T B Therefore: 7 4 arctan 3 arctan 239
LR 1 - - . i
SN it 8 arctan 10 4 arctan 15  arctan oo
M - i
Since: Z 4 arctan i3 arctan 239

2
515

And; arctan 1 2 arctan 1. arctan
! S 10
8

1 . 1 i
arctan 10 4 arctan 5E arctan 539

This, therefore, completes the proof of relation number three.

Therefore substituting: % =
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In this development relation number three will be used. The
relation was originally discovered in 1730 by S. Klingenstierna and
rediscovered by Schellbach in about 1830. In 1926 it was used by
CC. Carp to evaluate n/4 to 56 places. Pi was calculated to 10021
places on a Pegasus computer by GE Felton on March 31, 1957, at the
Ferranti Computer Center in London. Thirty-three hours of computer
time were required to accomplish this. A later check revealed that
the computer erred and the result was only accurate to 7480 decimal
places. This relation was later replaced by more efficient relations,
such as relation number two.

After choosing which relation to use, the next logical step is
to determine bounds on the error.

Theorem #1: The magnitude of the partial sums of a convergent continually
decreasing alternating series is less than the magnitude
of the first term.

Proof:
Consider the convergent alternating series,

- eee t (-1)mla L SN

+a3 n

e i+l
izl (-1) a; =a -a

with the two partial sums,

2

Syl -a))t(@;-a)tlag-agdt...tla ;~a)

S = a =

n+l - (a

1 2 " 83) = (a, - ag) T (an - aml).
The quangties in parenthesis are positive because

0<a a for all positive integers (definition of
convergence). Since all quantities are positive Sn) 0
and Sn+l< a; for all positive integers. Furthermore

since s ., =S ta, thens < S,y @d O < sn< Sn+l< a,.

Theorem #2: ™ .
1f Z l)1+1

ai = al -a,+a, - ... t (-1)n+1 an + s
i=lI

2 3
is a convergent alternating series, then the error (Rn)

in approximation the aum of the series after its first
n terms is less than the absolute value of the first
neglected term (aml). -

Proof:

Consider the convergent alternating series as:

e+ ()™ 4R

T i+l
I D 8 3 n n’®

i=1

= - +
al a a

i 2
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where Rn is the error in approximating the sm of the
series after itsfirst n terms. Rn mey also be written

as: ] (-1
i=n+l

A6l a5, which would also be a convergent

alternating series. As shown in Theorem #1, the magnitude
of each of the partial sums of R_ isless than the magnitude

of a 1 and consequently |Rn| < |a

n+ n+l| -

Theorem #3: |If |Rn(x0)| < 5+ 10P, then a decimal approximation
for arctan (xo) correct to p-1 places can be obtained by
using the first n terms of the power series (this follows
directly from rules of round off).

HAND THE NVER OF THRVIS NECESSARY 1O OBTAIN i1 GORRECT 1O 16 DEOMAL HLACES

) 1 1 . -1
Since T = 32 arctan 15 = 16 arctan 15 4 arctan 539
m 1 2n-1 n-1
or m=32 § (-1)™E +5.|-16 {(__1)_“2_(______') +7, |-
n=1l 2n - 1 2n - 1
2n-1
v 1
¥ .t 79+ Q,
n=l 2n - 1
where §_, T, and Q, are the respective remainders after the mth

m® W
wth, and vth term. By theorem #3, the total remainder must be |l ess
than (5)(1077
that |s2-s_ - 16T, = 4-Q | < 52077, Now,

[32+5m - 15°Tv - 4. Qvl $.32|Sm| + 16|Ty| Rt 4lav|. According to theorem #2,
when: m 7 |azsl<213344x1 7

) for 16 place accuracy. Thus choose =, w, and v such

w=2 |16 | <8e23.12 x 107

v=2 |u-q, | < 102588.924 x 20717
Since each remainder taken separately iS greater than (5)(10'17)
then at least one more term must be taken from each series.
when:  m=8 32.5 < 1888 x 107

w=3 16T < 0,016 x 207

v=3  uq, <1284 x 107V,
Therefore, 32s | t 16]7,| t ulo | < 3188 x 10717 € (5)(20™").
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Thus, nwill be correct to 16 decimal places when 8 terms of arctan

and 3 terms of arctan % and 3 terms of arctan (Flg' are calculated

according to the idenity for n, which is: -

3 5 7 9 11 13 15
1 1 1 1 1 1 1
BB BB G & 6
=173 5 7 5 1T T 15 -
3 5 3 5
1 1 1 1
2 @ 6P| L &,
51573 5 |~“'zm@- 3 0t T |
BOUNDS N ERRCR DUB TO ROUNDI NG CFF.
* = 32 arctan ‘;l—b ~ 16 arctan % ~ 4 arctan 23%

1

10

Madmum error in arctan J—‘-: 8 terms, each with $05 error in the last

10

digit used, or (8)(0.5) = 4; therefore, maximum eror in 32 arctan i

is (32)(%) = 128, and

Madmum error in aretan ’slf’ 3 terms, each with $05 error in the

last digit used, or (3)(0.5) = 1.5; therefore, maimum error in
16 arctan '5?.;5 Is (16)(1.5) = 24, and

Madmum error in aretan 2%: 3 terms, each with $0.5 error in the
last digit used, or (3)(0.5) = 1.5; therfore, maimum €rTor in

4 aretan 5= is (4)(1.5) = 6.

Total madimum error due to rounding off is128 + 24 + 6 = 158
Therefore,calculations oust be carried out to 20 decimal places to
assure 16 place accuracy.

— = 0,10000000000000000000 1= = 0.00194174757281553398
?ﬁ%)-a = 0.00033333333333333333 5(3%5-3 = 0.00000000244037775828
S(i5ys = 0.00000200000000000000 Sreteys = 0-00000000000000552070
’7'('1‘67’ = 0,00000001428571428571 '7'(3‘]1*57’ = 0,00000000000000000001
-5-5}“-9 = 0,00000000011111111111 =

- TTCIgyi! = 0-00000000000030909091 %= = 0,0041841004184100418
T3(Ioy13 = 0-00000000000000769238 srstess = 0,00000002441659178708
TSTigys = 0.00000000000000006667 STaagys © 0.00000000000025647231
T7Tigy17 = 0.00000000000000000059 7rmisy7 = 0.00000000000000000321

10

arctan -i—oz

term # positive terms negative terms
1 0.10000000000000000000
2 0.00033333333333333333
3 0.00000200000000000000
4 0.00000001428571428571
5 0.00000000011111111111
6 0.00000000000090909091
7 0.00000000000000769238
8 0.00000000000000006667

aum 0.10000200011111880349 0.00033334761995677662

32 arctan Y 3,18939687971718485984

0,.10000200011111880349

-0.00033334761995677662

0,09966865249116202687

10 ~
arctan slﬁ:
term # positive terms negative terms
1 0.00194174757281553398
2 0.00000000244037775828
3 0.00000000000000552070
sum 0.00194174757282105468 0.00000000244037775828
0.00194174757282105468
-0.00000000244037775828

0.00194174513244329640

16 arctan e 0.03106792211909274240

515 ~
arctan -,‘,]3'—9:
term # positive terms negative terms
1 0.00418410041841004184
2 0.00000002441659178708
3 0.00000000000025647231
sum 0.00418410041866651415 0.00000002441659178708

4 arctan se= 2 0.01673630400829890828

0.00418410041866651415
-0.00000002441659178708
0.00418407600207472707

239
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m = 32 arctan 1—0 = 16 arctan 5% = 4 arctan 2‘:!3_9
3.18939687971718485984
-0,03106792211909274240
3.15832895759809211744
-0,01673630400829890828
m 2 3,14159265358979320916

According to theory the answer is only correct to 16 deci mal places,
therefore: was 3.1415926535897932

Establ i shed val ue accurate to 16 deci mal places: = 3.1415926535897932
(from page A9 of Handbook of Chenistry and Physics, The Chenical
Rubber @., develand, 47th H, 1966).

Student paper presented at the nmeeting of Pi Mi Epsilon in Eugene,
Oregon, August, 1966.

NEED MONEY? AND MATCHI NG PRI ZE FUND

The Governing Council of Pi Mi Epsilon announces a contest for
the best expository paper by a student (who has not yet received a
masters degree) suitable for publicationin the Pi_ M Epsilon Journal.
The following prizes will be given

$200. first prize
$100. second prize
$ 50. third prize

providing at |east ten papers are received for the contest.

In addition there will be a $20. prize for the best paper from
any one chapter, providing that chapter submts at |east five papers.

The Governing Council of Pi M Epsilon has approved an increase in
the maxi num anount per chapter allowed as a matching prize from $25.00
to $50.00. If your chapter presents awards for outstanding mathematical
papers and students, you may apply to the National Office to match the
anount spent by your chapter--i.e., $30.00 of awards, the National
Ofice w !l reinburse the chapter for $15.00, etc.,--up to a maximm
of $50. 00. Chapters are urged to subnit their best student papers
to the Editor of the Pi Mi Epsilon Journal for possible publication.
These funds may al so be used for the rental of mathematical filns.
Please indicate title, source and cost, as well as a very brief coment
as to whether you woul d recommend this particular filmfor other Pi
M1 Epsi | on groups. -

SOVE_COWWENTS CN TERM NOLOG ES
RELATED TO DENSENESS

R Z Yeh, University of Hawaii

The definitions of denseness, nowhere-denseness, and denseness-
in-itself can be very confusing to the students |earning about them
for the first time. Perhaps nore than anything the termnologies are
at fault.

The famliar topol ogi cal descriptions of sets, such as conpact -
ness, connectedness, openness and cl osedness, are either invariant or
non-invariant with respect to subspace topol ogies. V¢ recall that
given a topol ogi cal space X a subset Ais said to be dense in a subset
Bif the closure of Acontains B; in particular Ais said to be dense
in X(or dense everywhere) if the closure of Ais X, A subset Ais
said to be nowhere-dense in B if the conplement in B of the closure
of Ais dense in B; in particular Ais said to be nowhere-densein X
if the conmplenent of the closure of Ais dense in X Qoviously,
denseness and nowher e- denseness are non-invariant concepts. For
exanple, the set of all rationals is dense in the real x-axis, nowhere-
dense in the entire xy-plane, and neither in the union of the x-axis
and the first quadrant. The often used phrase "dense everywhere",
though convenient, is not really appropriate. It is alnost as bad as
if one were to say that Ais "open everywhere" when one real |y neans
that Ais open with respect to the topology of X The word " nowhere"
can be confusing al so, especially when one has to consider "nowhere-
dense2 in the whol e space X? or in some set B?" \¢ also recall
that a subset A of a topological space is said to be dense-in-itself if
every point of Ais alimt point of A It is not difficult to show
that if Ais dense-in-itself with respect to the subspace topol ogy of
some set containing A it is dense-in-itself with respect to the subspace
topol ogy of any set containing A Denseness-in-itselfis thus an
invariant concept, and the termis suggestive of this. Only the word
"dense" used here has nothing to do with the sane word used earlier. (ne
shoul d keep this in mind or el se substitute a newtermfor "dense-in-
itsel f".

Hocki ng and Young (1] points out that the termnol ogy "dense in
itsel f" (meaning of course dense-in-itself, since every set is trivially
dense in itself) is nisleading. Dugundjl [2] parantheticallycalls a
nowher e- dense set a sieve. The choice of a noun instead of an adjective,
however, might obscure the fact that nowhere-densenessis only a non-
invariant concept.

Ref erences

1 J. G Hocking and G S Young, Topology, Addison-Wesley, Reading,
Miss., (1961) p. 88.

2. J. Dugundji, Topology, Allyn and Bacon, Boston(1966) p 250.
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A NECESSARY AND SUFHCIENT CONDITION FER CERTAIN. TAUBERAN THECREMS

A. M. Fischer
West Virginia University

1. INTRODUCTION

This study is concerned with certain questions | eft open about
Tauberian theorems by previous authors. Specifically, this paper
demonstrates a necessary and sufficient condition for a generalization
of a class of Tauberian theorems studied by Hardy and Littlewood {1]
and more recently by AE Ingham [2]. For a brief discussion of the
history of these theorems and eveolution of the methods employed in
their proofs, the reader is referred to Ingham [2].

Ingham's theorem [2, Th. A, p. 160], in fact a generalization
of Hardy and Littlewood's, states:
""Suppose that

F(s) = [ Au)e %%au (s > 0),
[o]

where A(u) is positive and

forus 0. Let L(u) be a (strictly) positive function such
that L{ecu) ~ L(u) as u+ for each fixed e » O; and suppose
a> -1 Suppose, further, that

F(s) ~ Aiigg%l L(1/s)  as s,

Then

Alu) » Au®L(u) as u+e,"
What this paper demonstrates is the following generalization:
THECOREM 1. Let

g(1/x) = xF(x) = x [ A(t)e ™ tat (x > 0),
0

where A(t) iS non-negative and monotonic (in the wide sense) but not

identically zero, for t > 0. Thenif £> 0, the following statements
are equivalent:

“(1)  EA(x) ~ g(x) as x+o

2 £g(x) ~ £ g(xt)e-tdt as x—

Bl

Although the proof is omitted, it is interesting to note that
Ingham's theorem can be deduced directly from Theorem 1.
Theorem 1 is a conclusion of Lemmes 2 and 4: Lenma 2 establishes
that (1) % (2); Lemmm 4 shows that (2) implies
lim sup A(x)/g(x) £ 1/f < lim inf A(x)/g(x),
X o X
which completes the proof. Lemnmes 1 and 3 pertain to the behavior

of g Lemmlisinteresting in its owm right insofar as it demonstrates
a necessary restriction on the rate at which g can decrease.

2. NOTATION AND ASSUMPTIONS

The notation employed herein should be construed as follows:
+ and x respectively signify 'strictly increasing' and 'non-decreasing'
just as + and X respectively signify 'strictly decreasing' and 'non-
increasing'. In addition t= indicates 'increasing and unbounded'.

Since Theorem 1 i S the goal of this paper, its hypotheses are
assumed without further mention. Furthermore, the convergence of the

integrals | A(t)e*%at and i g(xt)e-tdt for x > 0 is also assumed.
0 0

3. HROCF

Before starting any proofs, it is wise to note two important facts:
first, from the definition of g, it follows that g(x) > 0 (x > 0},
and that if A(x)aorX, then g{x) behaves in the same respective manner;
and second, that

o« -1
-t e “A(x) for A/
(x) = [ A(xt)e dt
B { 2 {(l-e—l)A(x) for AV

so that 1im inf A/g and |im sup A/g actually exist.
IBvVA 1. If either (1) or (2) is true, then xg(x)t=,

Proof: Under the hypotheses of Theorem 1, xg(x) = é A(t)e't/xdt

so that xg(x)+. Asume that xg(x) is bounded, then ,]alﬂ xg(x) = C> 0.
CAE i. If (1) is true, then Ix"3vx > x': ExA(x) > C/2

-t/x% -t/x 'le-t/xdt y

at > c/(26) [ t

at > [ Altde
' X

xg(x) = [ A(t)e
0 x

which indicates xg(x) is unbounded. This is a contradiction; consequently
xg(x) is unbounded.

CAE ii, If (2) is true, then3axBvx > x' we have both xg(x) > C/2

-t/x

and 26xg(x) 3 [ glt)e ~'*dt. Hence
0

-t/xdt sc I t'le't/xdt,

ugxg(x) > 2 f g(t)e
X' x'

which also indicates xg(x) is unbounded, a contradiction.
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LEBMVA 2. (1) > (2).
Proof: (1)3V e > 0, 3x3vx > x': |g(x)/A(x)-£| < €. Hence

Ig(x)-l ) glxtde Tat - el ,sg(x)_l / lg(xt)-EA(xtHe_tdt
0 0

< glx) -1 f eA(xt)e” Tae + %~ g(x) 17 lelt)- EA(t)Ie dt
x'/x

xl
<etl f g(t)+EA(t)dt]/[xg(x)].
0

A's a consequence of Lemma 1, and since e is arbitrary, it follows
that (1) 3 (2), which was to be shown.

Lemmes 3 and 4 are devoted to showing that (2) 3 (1).

In Lemmes 3 and 4 we shall take v=+l if A%, wv=-1 if AY (if A
is constant, arbitrarily take vs+1).

[BWA 3. Define B(q) = lim sup g(xq)/g(x). If (2), then B(q)
exists for every q and liT B(q") :
o4

CAE i. If A then gy and v=-1. B(q) exists for q » 1 simply because
g is non-increasing. If g » 1, then by Lema 1 we have

(x/q)g(x) g (x/q)g(x/q) < xg(x)

from which we infer that B(q_l) exists and that 1 ¢ B(q"l) £ 0
CAE ii. If An, from (2) wesee: ve > 0,3x"3vg » 0, Vx » x':

(3) (E+edg(x) > [ g(xt)e Tdt 2/ g(xq)e_tdt = e 9g(xq)
q

q
and also

(E+el)g(x/log2) > log2 f g(xt)2” tae s 2 log2 fg(xq)z dt
o q

»”

2"%(xq),
consequently B(q) exists. Put q = 1/log2 in (3) and obtain

(4) g(xq) < (E+e)2exp(1/10g2)2qg(x).
Nw consider 1< ¢ < 1/log2. For Ve » 0 and for x sufficiently large

E+€ glxq) - 1—“:-g(x) <f [g(xqt)-g(xt)Je” tat

</ g(xt)e‘t/q[q-l-exp(-t(l-q-l))]dt
1

14 fg(xt)e-t/q(q-l-q-t)dt < coglx) f 2_te't/q(q-1-q-t)dt,
1 1
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by (4), where e =(5+1)%xp(1/10g2). Divide this by g(x), take the
1im sup as x+=, the |imit as e+0, and note that gA. This results in

15B@) g1t 2coq(l-qlog2)_2e_l/qlog g.
The lemma follows immediately.
LBMWA 4. Define 19 and Ly respectively as %g\, inf and

1im sup of 2—5—’)- ; then (2) T o2l

onIy the first inequality will be shown |n full detail, the proof of
the second is conceptually the same.

In the interest of brevity

Proof: Consider an arbitrary q (1< q < 1/log2). Define p(t) = w(27t-27%%)

and select an N 3 2, then set H(t) = p“(t) and h(t) = H(t)—eu'lp(t)
where 8=8(q) = max{p(q~1),p(q)}. Since p(t)+ (0gtel) and p(t)+ (21),
obviously 8 < 1. Furthermore

(s) H(t) and h(t) are both of the form Z v.e ~thy (pr > 0),
r=I

(6)  H(t) 20 (£20) and h(t) g { H(t) ‘=) .
0 té(q ~,q)

For an additional ease of notation also define

® I
_ J(x)y _ H(t) H(t)
= ?-lﬂ(t)dt, jo0t = {;A(xt){h(t)}dt, and 3 (x)} = } A(xt){h(t)}dt.
q

It follows from (6) that
(7) 0 < J(x) 2 2 Jq (x) } j (x) 2 §(x).

It will be clear that (8) through (13) hold for any particular € > o
if x issufficiently large. Nw observe that

§x)-q~1a(x) = [ AGt)LH(E)-8Y " 2p(t)-q tH(E) Jdt
0

> —ueN-1 f Alxt)2 %t = --1-%5 o~ Lg(x/10g2)
(8) > —clen-lg(xqv)
where ¢ 4[B(q"/10og2)+1]1/10og2 > O. In view of (7), this leadsto
36 £ ald (-3 0-a" G < q 1 MxEH(EME + eyq qe" g(xq")
q

(9) kY qA(xq\’)Jq +c qﬁ"‘lg(xq“).

1
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[ ]
Clearly £ [ A(xt)vre-tprdt ~ g(xt)vre-tp"dt (> 0); hence, in light
o 0

of (5) [since x is sufficiently large]

J(x) = [ a(xt)H()dt _>_,(5+c)'1 [ g(xtH(r)at > (e+e)7t 7 g(xt)H(t)dt
0 0

(10) 3 (g+e) glx/a")a > (5+e)'1(n(q2")+=)’1g(xq")Jq.

where the last step isa result of Lemma 4. Combine (9) and (10) and
divide by g(xqv)qu to obtain
1 < A(xq:) R :_;, gh-1
(E+e)X(B(q“ )+e)q glxq ) q
Nw | et us momentarily consider J_. Since p''(t) £ 0 (042,
p(0) = Oand p(1) =1 it is evident that p(t) > t (0gt&l). Thus

(11)

L

—N-l)
N+l

(1-q E

1N
J = ? H(t)dt > [ tdt =
q o =1

However, q'1 _<_p(q'1) _gmax{p(q_l),p(q)} =98 <1, so

1 N+l
(12) 9g> W (-8 )

Combine (11) and (12) and then take limits as x+= and e+0; We readily
obtain

(13) g, 2 [£e(q?")q1™?! - e, (N+1)(2-0

N-!-l)-lell-l.

Because N was chosen as any integer 3 2, it can be taken large enough
so that the last term in (13) is arbitrarily close to zero (recall .
that 8 < 1). Finally take the limit as q->l+ and apply Lerma 3. This

proves the first inequality of Lemm 4.

To prove the second inequality, alter the definitions of J(x),
j(x), Jq(x) and jq(x) by replacing A with g. Then in parallel to

(8), (9) and (10), we obtain
jx)-q"Lax) > 40" 1(z+e)gx/1082) > —czen—lg(xqv),

N-1

J(x) ¢ qg(xq“)(Jq+c26“'1) < qg(x/qv)(B(q2V)+c)(Jq+c20 )s

and

360 > (e b | aGedmcedat 3 (1+e)'1za(x/q")aq,
-1

from which ¢, £ 1/¢ is a simple deduction.
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Student paper presented at the meeting of Pi M1 Epsilon in Eugene,

Oregon, August, 1969.

1)

2)

3)

4)

UNDERCRADUATE REFFARCH FROFOSALS

Bernard McDondd
University of Oklahoma

Develop a theory for the n x n matrices over a field having the
property such that every submatrix has non-zero determinant. Is
the Vandermond matrix of this form?

Two matrices over a finite field GF(pn) are to be considered equivalent
if they differ by a row or column permutation. Count the number
of equivalence classes and number of matrices in each class.

Determine a cannonical matrix for the ring Hn(R) of n x n matrices

over a principal ideal domain R under operation on the left by
unimodular matrices and on the right by permutation matrices.

Let m > O be square free. Take a = a t bv¥m , where a and b are
from Q, the set of rationals. Let G be the multiplicative group
of Q[vm] and H be Q = {0}. Is the quotient G/H finitely generated?
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A CHARACTERIZATION CF HOMEOMIORAHIC T1 SPACES

W. M. Priestley

Beginning students of topology appreciate the following theorem,
whereas writers of elementary textbooks apparently do not.

THEOREM:  Let (X, d), (v,d) be t1 spaces. (X,JS) and (Y,d) are
homeomorphic ¢== (§,¢) and (J , ) are isomorphic as partially
ordered sets.

PROOF (=) If f:X = Y is a homeomorphism, then I:j * J defined
by I(G) = {£(x) |x e G} for G ¢ J is an order isomorphism.

(== ) If I: i +J is an order isomorphism, consider the complemen-
tary lattices §' and JJ' of closed subsets and the induced order
isomorphism I': &' + 4! defined for F e §' by I'(F) = I(F")', where S'
denotes the complement of the set S. In Tl spaces singleton sets are
closed. They are also minimal in the sense that each is preceded by
exactly one other set (the empty set ¢) in the ordering & . An order
isomorphism sends minimal elements into minimal elements, and it there-
fore makes sense to define a function f:X + Y by {£(x)} = 1'({x}) for
x € X. f is one-one and onto since |I' is, by an elementary argument
similar to that given in [1]. It is a simple exercise to show that for

each F ¢ 4', £(F) = I'(F), from which it follows that both f and £-1
are continuous.

The example of X = {1}, Y = {1,2}, J = o = {¢,6"} shows the T1
hypothesis to be essential.

Compare Kelley's final remark on p. 130 of [2].
References

1. Chan Kai-Meng, An alternative formulation of an unsolved problem of
set theory, Amer. Math. Monthly, 76(1969) 53.

2. John L. Kelley, General topology, van Nostrand, Princeton, 1955.
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BE SURE TO LET THE JOURNAL KNON

Send your name, old address with zip code and new address
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Pi M1 Epsilon Journal

1000 Asp Ave., Room 215
The University of Oklahoma
Norman, Oklahoma 73069

FRCBLEM  DEPARTMVIENT

Edited by
Leon Bankoff, Los Angeles, California

This department welcomes problems believed to be new and, as
a rule, demanding no greater ability in problem solving than that of
the average member of the Fraternity, but occasionally we shall publish
problems that should challenge the ability of the advanced undergraduate
or candidate for the Master's Degree. Solutions should be submitted
on separate, signed sheets and mailed before August 1, 1970

Address al |l communications concerning problems to Leon Bankoff,
6360 Wilshire Boulevard, Los Angeles, California 90048.

FROBLEVIS FOR SOLUTION

232. Proposed by Solomon W. Gelemb, University of So. Calif., Los
Angeles.
Find a direct combinatorial interpretation of this identity:

(&)

233. Proposed by Charles W. Trigg, San Diego, California.

The director of a variety show wanted to give the female imper-
sonator a job, but questioned his ability to dance with the
high-kicking Folies Bergere chorus. Inreply to the director's
guery, the impersonator's Spanish agent said:

"SI/HE = CAN CANCAN..,

but CAN be less than one-fourth effective in his demonstration
today."

If each letter of the cryptarithm uniquely represents a digit
in the scale of eleven, what 1S the sole solution?

234. Proposed by Charles W. Trigg, San Diego, California.

Show that when the nine positive digits are
distributed in a square array so that no column,
row, or unbroken diagonal has its digits in order
of magnitude, the central digit must always be odd.

aonN
wkF o
[Co IS

235. Proposed by James E. Desmond, Florida State University.

n n
Prove that a™** divides (ab + c)(ad) - c(ad) for integers
a)» 0, bye,d>»0and n 0.
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213.

Proposed by Erwin Just, Bronx Community College.
16k+2

If k is a positive integer, prove that (6 /2) - 1is not

a prime.

Proposed by Leonard Barr, Beverly Hills, California.

The diameter of a semi-circle is divided into two segments,

a and b, by its point of contact with an inscribed circle.
Show that the diameter of the inscribed circle is equal to the
harmonic mean of a and b.

Proposed by David L. Silverman, Beverly Hills, California.

A necessary and sufficient condition that a triangle exist is

that its sides, a, b, and ¢ satisfy the inequalities (1) a< b *t ¢,
(2)b<atc, (3)c<ath Express(l), (2), and (3) in

a single inequality.

Proposed by David L. Silverman, Beverly Hills, California.

A pair of toruses having hole-radius = tube-radius = 1 are

linked. a) What is the smallest cube into which the toruses

can be packed? b) Wha convex surface enclosing the linked toruses
has the smallest volume? ¢) Wha convex surface enclosing the
linked teruses has the smallest area? 4) Wha is the locus of
points in space equidistant from the two links?

SOLUTIONS

(Spring 1969) Proposed by Gregory Wulczyn, Bucknell University.

Prove that a triangle is isosceles if and only if it has a pair

of equal ex-symmedians. (Editorial note: See Mathematics Magazine,
Problem 637, November 1966, May 1967 and January 1968, for the
corresponding problem involving symmedians.)

Solution by the Proposer.

Let a, b, c denote the sides opposite vertices A, B, C of the
triangle and let x_. and x denote the lengths of the ex-symmedians
issuing from A and B and terminated by the opposite sides.

1. If a:= b, we have

b sin C
X =
a zlgi ?{i [Davis, "Modern College Geometry",
*b = 5In(A<CT p. 1711
Then, since b sin C = ¢ sin B,
_bsinC _csinB _csinA

%3 % 3In(B-C) _ sIn(B-C) _ sin (A-C) ~ *b

11, |If Xy f Xy, then
bsinC _csinA _csinB
sin(B-C) sin(A-C) ~ sin(B-C)

It follows that sin A sin (B-C) = sin B sin (A-C), which simplifies
tosin (A-B) = 0. Hence A = B, and the triangle is isosceles.
The proposer also supplied a geometric solution.

214.

215.
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(Spring 1969) Proposed by Charles W. Trigg, San Diego, California.

Find the unique nine-digit triangular number A which has distinct
digits and for which n has the form abbbb.

Solution by the Proposer.

In A =n(n * 1)/2, the last three digits of n{n + 1) determine
the last two digits of A . Thus we find that for b = 0, 3,

6, 9, duplicate digits terminate A . Nw

a2 ¢ uln + 13 € ta ¢ 1%, son=[ /71,

Therefore, since A has nine digits, n & [ v2(987654321) 1 = 44444,

and a £ 4. Furthermore, n 2 [ /2(102345678) ] = 14307. Consequently,
there are only seventeen possible values of n, all of which yield
a A having duplicate digits except 85555 ° 326541790.

Answers (without solutions) were also supplied by Carl A. Argila,
TRV Inc., Houston, and by Kenneth A. Leone, Michigan State
University.

(Spring 1969) Proposed by Leon Bankoff, Los Angeles, California.

In an acute triangle ABC whose circumcenter is 0, let D, E, F
denote the midpoints of sides BC, CA, AB, and let P, Q R denote
the midpoints of the minor arcs BC, CA, A of the circumcircle.
Show that

DP+EQ+FR - sin2(A/2)+sin2(B/2)+sin2(C/2)
0B+0D+0C+0E+0A+OF cosz(A/2 )+cosz(B/2 )+cosz(C/2) :

Solution by Alfred E. Neumann, Nav York City.

It is known that OD+OE+OF = R+ r. Since [ cos?(A/2) = 2 + r/2R
and § sinZ(A/2) =1 - r/2R, we have

Zs :l'.n2 (A/2) -2R-r_3R- (R+r) -OP+0Q+0R- (OD+OE+OF) _ DP+EQ+FR

Zcos2(A/2) 4R+r 3R+(R+r) OB+0C+0A+(OD+OE+OF) OB+0C+0A+0D+0E+OF

A
R
Also solved by Guy Gardner, USAF
Academy, Colorado; Gregory Wulczyn, Q
Bucknell University; and the g
proposer.
B D c
P
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216.

217.

(Spring 1969) Proposed by Erwin Just, Bronx Community College.
Prove that the Diophantine equation

x9+2yg+azg+uw9=k
has no solution if k ¢ {11, 12, 13, 14, 15, 16},

Solution by the Proposer.
18

Since @(27) = 18, x g 1 (mod 27) when (x, 27) = 1. This

implies 2 - l)(x9 +1) = 0 (mod 27), from which it may readily
be concluded that x® = $1 (mod 27). (n the other hand, i f
(s,27) # 1, then it must follow that x9 50 (mod 27). Thus,

in all cases either x® = 0 (mod 27), x9 = 1 (mod 27), or x9 2 -1
(mod 27).

As a result, when the given Diophantine equation is viewed as

a relation among the integers (modulo 27), it is apparent that
none of the permitted values of k will enable the equation to

be true. Since there can be no solutions (modulo 27), it follows
that the given equation has no solutions in integers.

(Spring 1969) Proposed by C.S. Venkataram, Sree Kerala Varma
College, Trichur, South India.

A transverse common tangent of two circles meets the two direct

common tangents in B and C.  Prove that the feet of the perpendiculars
from B and C on the line of centers are a pair of common inverse
points of both the circles.

Solution by the Proposer.

Let the direct common tangents meet in A. Then the two circles
are plainly the incircle and excircle opposite to A of triangle
ABC. Therefore |l et us denote their centers by I, I , respectively..
Let M, N be the feet of the perpendiculars from B, C on Hl’
the line of centers, and let Y, 2 be the points of contact of
the incircle with AB, AC respectively. Join BI, CI.

Adopting the usual notation for a triangle ABC, we obtain readily
that: IN = Cl cos NIC = Cl cos (A/2 + €/2) = Cl sin (B/2)

IM = BI cos BIM = BI cos (A/2 + B/2) = BI sin (C/2).
Therefore INIM = (BI sinD)(CI sing) = IY-1Z = r?
So N,M are inverse points with respect to the circle (I).
Similarly, they are inverse points with respect to the circle
(1,).

1

Also solved by Alfred E. Neumann, Nav York City, who found the
problem stated but not solved in Forder's "Higher Course Geometry",
page 182, problem 48.

218.
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(Spring 1969) Proposed by Charles W. Trigg, San Diego, California.

Find the three 3-digit numbers each of which is equal to the
product of the aum of itsdigits by the aum of the squares of
its digits.

Solution by the Proposer.

If three digits, a, b, ¢, have a fixed sum, the minimum value
of ar t b* + &
3(5)[3(59)] » 1000, then a + b + ¢ < 15.

N = (a+b+c)(a2+ 2t+c®)yz(atbte)
(a+bte)al+bi+tc?-1)z0 (mod 9).

is attained whena = b = c. Since

(mod 9), so

V¢ need consider only those digit sets whose am = 0, and those
the am of whose squares = 1 (mod 9). In the latter case, one
square must be = 1 and each of the other two squares = 0 (mod 9).
It is necessary to examine only the twenty-four sets, 009, 018,
027, 036, 045, 117, 126, 135, 144, 225, 234, 333, 001, 008,

031, 038, 061, 068, 091, 331, 338, 361, 391, 661, to seeif the
product of the aum of the digits by the sum of the squares of
the digits in any of these sets is equal to one of the six
permutations of the set.

The three solutions are: 133 = 7(19); 315 = 9(35); and
803 = 11(73).

Also solved by Carl A. Argila, RV Systems, Houston and by Kenneth
Leone, Michigan State University.

(Spring 1969) Proposed by Stanley Rabinowitz, Polytechnic Institute
of Brooklyn.
Consider the following method of solving X2 - IIx2 t36x - 36 = 0.

Since (xa - IIx2 + 36x)/36 = |, we may substitute this value
for 1 back in the original equation to obtain

x3 - 11x2 + 36x(x3 - 11x° + 36x)/36 - 36 = 0,

or x* - 10> ¥ 25x% - 36 = 0, with roots -1, 2, 3, and 6. W&
find that x = -1 is an extraneous root.

Generalize the method and determine what extraneous roots are
generated.

Solution by Charles W. Trigg, San‘Diego, California.

The polynomial equation £f(x) = O has a constant term a . When
"the method" is applied to this equation by multiplying the term
an_kxk by 1, that is, by [f(x) ~ an]/(-an), we have

£(x) - an_kxk + an_kxk[f(x) - an]/(-an) = 0.
This simplifies to
(a“_kxk - an) £(x) = 0.
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221.

37.

Consequently, the extraneous roots introduced by " the method"
are the roots of a xk s a_.
n-k n

Also solved by the Proposer.

(Spring 1969) Proposed by Daniel Pedoe, University of Minnesota.

a) Show that there is no solution of the Apollonius problem of
drawing circles to touch three given circles which has only seven
solutions. b) Wha specializations of the three circles will
produce O, 1, 2, 3, 4, 5, and 6 distinct solutions?

The solution to problem 220 will appear in the next issue.

(Spring 1969) Proposed by Murray S. Klamkin, Ford Scientific
Laporatory.

Determine 8 vertices of an inscribed rectangular parallelepiped
in the sphere

(x - xl)(x - x2) + (y - yl)(y - y2) + (z - zl)(z - 22) = 0.

Solution by Charles W. Trigg, San Diego, California.

Obviously, the following eight points fall on the surface of
the sphere:

A(x1$ Yl' 21)9 B(xla yl’ 32)3 C(x29 YI, 22)' D(x29 yl' zl)’
A'(xls }’2, zl)s B'(xls yz, 32), C'(xz, y2a 22); D'(x2’ y2. zl)'
Clearly, AA' = Iy1 - y2] = BB' = CC' = DD',
Mm = ]zl - z,| = CD = A" =cC'D',
AD =[xy T x,| = BC = A'D' = B'C',
SO ABCD-A'B'C'D' is a parallelepiped. Also,
(a8)? = ( 24 Gy, ~y)%+ (2, - 2222 = (an? + ap)?
= () - xl) (yl y2) (zl 277 = (AAY) (AB)“,

(DB)2 = (xl - x,‘,)2 + (yl - y1)2 + (zl - 22)2 = (AD)2 + (AB)2,

2 _ - 2 _ 2 - 2 _ 2 2
(A'D)* = (xl x,) + (yl ¥y) + (z), = 2)° = (AD)“ + (AA")“,
and the tree face angles at A are right angles. Therefore,
ABCD-A'B'C'D' is an inscribed rectangular parallelepiped.

Also solved by the Proposer.

(April 1952) Proposed by Victor Thebault, Tennie, Sarthe, France.

Find al | pairs of three-digit ndmbers, M and N, such that
(M)(N) = Pand (M')(N') = P', where M*, N', and P' are the numbers
M, N, and P written backwards. For example:

(122)(213) = 25986
(221)(312) = 68952

I. Solution by Charles W. Trigg, San Diego, California.

A) If M = abe, N = def, P = vwxyz, (M)(N) = P, M* = cba, N' = fed,
P' = zyxwv, and (M')(N') = P', clearly no columnar am can exceed
9 in the multiplication

def
abc

LI ]
%ok &

VWXYZ

No one of a, ¢, d, f can be zero. To avoid duplication of pairs,
Keep M S N.

If M = 101, then e may be any one of the ten digits, and d * f L9
Thus there are 20(8 + 7 +... + 1) or 360 accompanying values of
N.

If M =102, then 2d t f $9and d, e, f < 5 Hence there are
s(u t 4131 1) -2 o0r 59 accompanying values of N > M,

For other possible values of M < N, either the restrictions on
the digits of N or the values of N accompanying that M are
tabulated below together with the frequency of the N's for that M,

M N Frequency
103 3d+f £9; d,e, f<H 2
104 111, 112, 121, 122, 201, 211, 221 7
105 - 108 In each case, 111 only y
111 d+e+f<£9;d,e, f<8 112
112 2tfg9;2dtetf £9;d, e f<5 32
113 113, 121, 122, 123, 201, 202, 203, 211, 212, 221 10
114 120, 121 2
121 2d+eS9d+2e+f<L9 et 2f <9 34
122 d+e<9; d+2+fl9e+flSs 15
123 201, 202, 203, 211 4
124, 134, 144 201 3
131 201, 202, 203, 211, 212, 221, 301, 302, 303 9
132 201, 202, 203, 211, 212, 301, 302, 303 8
133 201, 202, 203 3
4l 201, 202, 211, 212 4
142 201, 202, 211 3
143 201, 202 2
201 d+2f¢€9;d,e, £<5 40
202 d+f<¢s5,d, e, £<5 1w
203 211, 221, 231 3
211 d+2¢9;d+e+2f L9 d, e, F<5 20
212 212, 221, 231, 301, 311 5
221 221, 301, 302, 303, 311, 312, 401, 402 8

222, 232, 301 2

93
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231 301, 302, 303 3
301 3ol, 302, 311, 312, 321, 322, 331, 332 8
302 311, 321, 331 3
311 311, 321 2

Total for all 36 values of M 801

For each M, N the corresponding M', N' necessarily also appears
in the tabulation.

B) If (abc)(def) = uvwxyz and (cba)(fed) = zyxwvu, then (c) (f) = pn,
where n = p t 1. The only possible terminal duos are 2(6) = 12,
3(4) = 12, 5(9) = 45, and 7(8) = 56.

Nw in P', 399(499) = 199101, so 3, 4 may not be a terminal duo.
Also, 299(699) = 209001, but (b2)(e6) = 100be + 20(e + 3b) + 12,
so in P the penultimate digit is not zero, which rules out 2,

6 as a terminal duo.

If (5b5)(9e9) or (7b7)(8e8) provide a solution, the P = P', so
the product must be palindromic and therefore divisible by 11
Hence, any solutions must come from (5b5)(979), (7b7)(858),
or (737)(8e8). There are only four such solutions:

(555)(979) = 543345, (737)(888) = 654456,

(707)(858) = 606606, (858)(777) = 666666,
No other solutions appear when the products (5b9)(9eS), (7b8)(8e7),
(5b7)(9e8), and (5b8)(9e7) are exhausted.

II. Solution by Carl A. Argila, RV Systems, Houston, Texas.

Given any three digit integer, I, we define the function B as
follows:

© I
I I - 100|===
B(I) = 100{I - 100|{——| - 10 100
-] - of 20l
I
+ 10 I- IOO[TO—OJ
10
I
+ [l

where [A] is the greatest integer in A. Note that 8(I) is just
| written backwards. V¢ wish to find all pairs of three digit
integers, M and N, for with B(M) and B(N) are also three digit
integers and for which

B(MxN) = B(MIxB(N).

By means of a simple computer program we determine that there
are 805 distinct pairs of three digit numbers which satisfy this
condition.

(Spring 1956) Proposed by G.K. Horton, University of Alberta.
Evaluate

I=/[ fexp - {'l(x—l)2+ 2t 2, (y_l)2}dxdy.

Solution by Murray S. Klamkin, Ford Scientific Laboratory.

It follows by symmetry that Y )
& (x,r
1= [ f e-(rlﬂ‘z)dxdy B
-0 - 1)

(P}
where ¢ = /2,

7 X
-c ! /4

Ve first transform the rectangular coordinates (x,y)} into elliptic
coordinates (g,n) (see Stratton, Electromagnetic Theory, McGraw-
Hill, N.Y. 1941, pp. 52-54.)

Here

v, tr
1o = !%f:?
£ = —p¢— n 3

and the region of integration is§ » 1, -1 <n ¢ 1

Also 2 2 12
2 - Zone
dxdy = C { E___ﬂ_ . i—"} dEdn.
£2-1 1-n?
Thus,
= 1,2 2y,-2¢E
I=2c2fd5f(i—n-19———-dn -
1 o YTE2-1)(1-n%)
® o208, 1 2 -n2
I=2c2fe dEI El+1n }dn.

12T o /1n? Y1mn?
Integrating with respect to n;
o =  -2cf
21 -2cE e dg
=2 [ /BT &7 %ag + [ S—=.
e 0 0 /B2 1
Nw let £ = cosh® giving

o« o
1%2_ =2 f sinh2e e-2c COShede + f e-2c coshede.
0 0

Differentiating the known integral
Ky(a) = [e? coshlyg (kg = modified Bessel function)
0

twice with respect to a, we obtain

I 2 _-a cosh®
KO"(a) = K2(a) - %l(a) = (f)cosh 9 e de.
Whence,
[ sinn%e &7 %P0 = k (a) - ¢ (a) - K (a).
0

a5
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and
2L - 2{ K (20) - 2K (2¢) - K (2¢) } + K.(2¢)
7e? 2 Ze 1 0+ “¢ 0" <€
or
ncz 1
I = - { 2K,(2e) - K (2) = Ky(2) }.

Now just replace ¢ by vZ .

(Fall 1956) Proposed by Nathaniel Grossman, California Institute
of Technology.

Prove that

I a:TMd) = neT(n)
d/n
where T(n) denotes the number of divisors of n, o(n) is the
am of the divisors of n, and ¢(n) is the Euler Totient function.

1. Solution by James E. Desmond, Florida State University.

It is well known that a, ¢ and T are multiplicative number-theoretic
functions. As shown in (Calvin T. Long, Number Theory, D.C.
Heath and Co., Boston, 1965, p. 103),

F(n) = Z a(n/d)¢(d)
d/n

is multiplicative. W note that

o(p"5)e(p®) = p¥ - pot

for any prime p and integersr 3 s > 0. Therefore F(pT) = p-+T(p*).

3 %2 3
Write n in standard form, n = Py Py «+oP) * Then

a a a
o S/ = Fa) - F(p, JE(p, ). F(p,®) = neT(n).
n

VW note that the result appears without proof in History of the
Theory of Numbers by Leonard E. Dickson, P. 285, and 1S generalized

to at(n) = Z a* on p. 286.

d/n

II. Solution by Solomon W. Golomb, University of Southern California.

For R"(s) > 2, the following identities hold:

v é(n) _ g(s-1) i

ngl 2 = B Titchmarsh (1.2.12) page 6
7 a(:) = t(s)gp(s-1) Titchmarsh (1.3.1) page 8
n=l n

97

Z T(:) - (2(5)
n=l n

Titchmarsh (1.2.1) page 4

Therefore, since both

nT(n) _ E Tn) | 2009y

and

1t~ 8

¢(d)a(§) = E

L
s

Z ): o(b) _ z(s-1)
1n” d/n =

R T(?)—'C(S)((S-l) = Cz(s-l)
b

n

the corresponding coefficients of n~% must be equal:
nT(n) = ] ¢(dde(3F
d/n (d)

Reference: E.C. Titchmarsh, The Theory of the Riemann Zeta
Function, Oxford, Clarendon Press, 1951.

Also solved by Marco A. Ettrick, Brooklyn, NY., Murray S. Klamkin,
Ford Scientific Laboratory; Bob Prielipp, Wisconsin State University;
Cary C. Todd, Buies Creek, North Carolina, and Alfred E. Neumann,
Nav York City.

(Spring 1960) Proposed by M.S Klamkin, AVCO RAD, and D.J. Newman,
Brown, Universitx.

It is conjectured by at most N - 2 super-queens can be placed
on an NxN (N > 2) chessboard so that none can take each other.
A super-queen can move like an ordinary queen or a knight.

(1t should have been stipulated that N is even. For N = 5,
Michael J. Pascual has shown that one can place 4 super-queens.)

Commat by Martin Gardner, Hasting-on-Hudson, N.Y.

"In 1965 a reader of Scientific American Column, Hilario Fernandez

Long, (of Fernandez Long y Reggini, Esmeralda 356, Buenos Aires)
sent ne the following counter-example to the conjecture---10

super-queens on the 10 x 10.
1

10

He said a computer program had shown this to be a unique solution
for 10 super-queens on the 10 x 10."
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166.

Commeat by the Editor.

Solomon W. Golomb notes that if n ) 10 is either a prime or one
less than a prime, there is a construction which places n mutually
non-attacking super-queens on the n x n board. Furthermore,

for n prime, the board may even be regarded as a torus! In

the example shown above, if a row is added above the board and

a column to the left, a super-queen can be placed in the upper
left corner thus rendering the solution applicable for a torus.

Also solved by George S. Cunningham, University of Maine; Richard
E. Sot, University of Toledo; and Stanley Rabinowitz, Far Rockaway,
N.Y.

(Spring 1961) Proposed by Robert P. Rudis and Christopher Sherman,
AVCO RAD.

Given 2n unit resistors, show how they may be connected using
n single throw (SPST) and n single pole double throw (SPDT)
(the latter with off position) switches to obtain, between a
single fixed pair of terminals, the values of resistance of
where i = 1, 2, 3,..., 2n.

Editorial Note:

iand it
Two more difficult related problems would be
to obtain i and it using the least number of only one of the
above type of switches.

Solution by CW. Dodge, University of Maine, Orono.

The accompanying circuit is minimal since, for the series resistance
2n connection, switch 2n®* must be closed with al |l others open,

and for the parallel resistance 1/2n connection, all other switches
must be closed. Thus the number of permanent connections is

a maximum. W see that 2n - 1, SPST switches and 1. DT switch

are used. l

1l 3l zn-sl 2n-1 »
l R A S S

A B
The series resistances are obtained by closing switch 2n* and
also switches 2n - 2and 2n =1, 2n = 2, 2n - 4and 2n - 1,
2n =4, wuw , 2, 2n -1, none, for 1, 2, 3, 4,...,2n " 2, 2n -1,
2n ohms resistance, respectively. The parallel resistances require
closing switches 1 and 2n*, 1. and 2 and 2n, 1 and 2 and 3 and
2n*,,.., 1 through 2n, for 1, 1/2, 1/3,..., 1/2n ohms resistance,
respectively.

Finally, observe that the lone SDT switch does not need to
have an off position.

(Fall 1964) Proposed by Leo Moser, University of Alberta.

Sow that 5 points in the interior of a 2-by-1 rectangle always
determine at |east one distance less than sec 15°.

Solution by Charles W. Trigg, San Diego, California.

In the 2-by-1 rectangle ABD connect the midpoint E of a long
side DC to the extremities and midpoint F of the opposite side.
From A draw lines making angles of 30° with AE, meeting DC in
Gand BF in H. Also, from B draw lines making 30° angles with
BE, meeting DC in K and (by symmetry) BF in H. Thus the triangles
AGH and BKH are isosceles, and consequently are equilateral
triangles inscribed in. unit squares. As may be seen from right
triangle AHF, each side of the triangles is sec 15°., The five
points A, G, H, K, B are as widely separated as possible in or
on the boundary of the 2-by-1 rectangle. Clearly, any movement
of one of these points will reduce the distance between it and
at least one of the other points. Since the boundary is excluded
inthis problem, it follows that at least one distance between
two of the points is less than sec 15°.

This method follows that of Dewey Duncon in dealing with
substantially the same problem in Mathematics Magazine, 23
(March, 1950), page 206.

D G

K c

A 1 F 1 B
Solution II by CW. Dodge, University of Maine, Orono, Maine.

First we show that 3 points on a unit square determine at |east
one distance not exceeding sec 15°. The maximum distance between
the points occurs when one point A is at a vertex of the square
and the other two points X and Y |ie on sides BC and @ of the
square to form an equilateral triangle. By symmetry it follows
that angle BAX = 15° = angle YAD. Then AX = XY = YA = sec 15°.
Since mow angle YYXC = 45°, then CY 3 (sec 15°)/2. Reflecting
this figure in side BC produces a 1 by 2 rectangle with 5 points
thereon and inside determining distances of at |least sec 15°.

By symmetry, see 15° is the largest value this minimum distance
can have. It follows that 5 points all strictly interior to
the rectangle cannot obtain this minimum value.
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ALABAMA ALPHA, University of Al abama

Li nda Atchl ey

Luther Bailey, III
Alice Barker

James Barr

Bruce Berman
Richard Boswell, Jr.
Ri chard Bradl ey
Edward Chanpi on, Jr,
Johnny Cook

St ephen Curry

Terry Dawson
Charl es Dyas, Jr.
Cat heri ne Engleman
Ceor ge Feigley, Jr.
Betty Fitch

Herbert Forsythe, Jr.

Eddi e Friday

Ben J. George
M1licent Gbson
Shei la @ asscock
Anne Grier

Danny Hammond
Mar sha Hanks
Larry Harper
Norman Harris
John Haynes

Kat hy Hemphill
Tracy Howel |
Danny Jones
Kennet h Kear | ey
Kennet h Kellum

ARI ZONA BETA, Arizona State University

Janes Bowlus
Chuck difton, Jr.
Ni chol as Fair
Peter Gadwa

Sandra Gar ner
Merilyn George
Timothy Hoffman

FLORI DA BETA, Florida State University

Sue Achtemeier
Darrel | Batson
Ear| Billingsley
Erwin Bode

Meg Brady

Mary Donal dson
M chael Flynn

Sharon S, Gibbs
Robert Harper, Jr.
Donna Hoberg
Donna Kal |

Ramesh Malmaddi
Ral ph Layton

FLORI DA GAMMA, Florida Presbyterian Col | ege

MIdred Adkins
Cat herine Cornel i us
Thomas Cutts

W1 1liamHulick
Donal d Luery
David McDonald

FLORI DA EPSILON, University of South Florida

WIliamBess 11
Nancy Carter
Virginia Debbs

Sherry Hai nes
Donal d Jacobs
Dougl as MacLear

GEORG A ALPHA, University of Georgia

Carol L Andrews
cariton Arnol d
John Brock

Bar bara Col ey
Mary Debnam
Janes DeVane

Bar bara Dodson

Kayron Fi nney
Joseph Fowler, Jr.
Bar bar a Greene

E Neal Gruetter
Elizabeth Harris
Van Haywood

INDIANA BETA, Indiana University

Joan Allison
M chael Conley
Paul Dawson
Ral ph Fel der

Char | es Hornbostel
Judi th Johnson
Thomas Kwyer

Madel yn Hor sy

I NDI ANA DELTA, |ndiana State University

Patricia Butwin
Gary O inkenbeard
Nancy Emberton
Karen Erazmus

Merry Anne Foster
Ceor ge Frey

Mary G annan
Fred Haver

MEW | NI TI ATES

Lawr ence Love
Jackie Lowery
Debor ah Lundberg
Richard Lyerly
Ri chard McNider
Thomas Merrill
Larry Mller
Harvey M1 ler
W 1iam Monroe
Cheryl Patton
WIliamPeters
Timothy Pl unkett
Ri chard Redd
Danny Richards
Gary Robi nson

Joseph Hogg
Jeani e Hoshor
M chael Koury

St ephen Leach

Li nda Mathis

Cat heri ne McCann
John Patin

Law ence Peel e
J. Ramalakshnmi

Pabl o Perhacs
Richard Plano
Sherry Prior

Scott Metcalf
Jose Moura
John Pennington III

Lynda Hodges
Davi d Johnson

Al an Kal i ski
Cullen Lovvorn
Robi n Mbore
Cynt hia Nunnal |y

Clarine Nardi
Davi d Ri chardson
Al exi s Shipley
Eva Tang

Bar bara Lockhart
Jenny MIler

St ephen Moore
John Purcell

N. Sidney Rodgers
Sarah Shugart
Janes Silva

John Sins

Hoyt Smith, dr,
darence Sokol

M chael Sparks
WIliam Stanl ey
Brenda Sumner

Li nda Swi ndal
Susan Thompson
WI1liam Trapp
James Vaughan, Jr,
Harry Wessinger
Lilian Wite
Robert Willis

Richard Louie
Laurence Nixen
Laird Sechroeder

Mary Sal t snan
Michel Schexnayder
Law ence Strickl and
Pasqual e Sullo
Roger Tayl or

Thomas Tomberlin

David Ritter
Charl es Zirmerman

Gene Tagliarini
Richard Vel ch
Arlin Wilsher, Jr.

Dougl as Onens

Mar gar et Peabody
Franci s Rapley
Lucile swart

Billy Thompson, II
Sharon \al |

Harol d Williford

St ephani e Thorne
Hervert Wi nryb
Chri st opher Westland
M chael Georges

Richard Stoz
Di ane Vaal
Susan Wod

LOUI SI ANA BETA, Sout hern University

daude Eubank. Jr.
Everett G bson
Rosie Hoskins

Robert Johnson
St ephen MeGuire

Jean- Robert M rabeau

LQUI SI ANA EPS| LON, McNeese State Col | ege

Leo P. Boutte
Bar bar a Godwin
Edward Gui mbel | ot

Anand Datiyar
hnat han Lalitha
Joseph Lee

Luicien Hirabeau
Phyl lis Norris
Grendol yn Veal

Kuang- Nan Li n
Bill Qiver
Mary Lou Pollard

MASSACHUSETTS ALPHA, Worcester Pol ytechnic Institute

Peter Billington
Ronal d Grezel ak
Paul H nmottu

Bernard Howard
Ceor ge Iszlai

M CH GAN ALPHA, M chigan State University

Kathryn Andersen
Sigfrid Anderson II
Adrian Bass
Vicki Bilek
Jack Bosworth
Kat heri ne Braun
Philip Charvat
Al an Bebban

Di ane Denni ng
Karen DeVreugd
Hugh Embree
George Fehl haber
Robert Fel ker

M SSI SSI PPl ALPHA, Uni versity of M ssissippi

John Brashear
Roy Keeton

Ri chard Goldbaum
Jan Gunkl er

Gai| Herbert
Kevi n Hollenbeck
Denni s Jacobs
Denni s Jespersen
Jani ce Kitchin
M Donal d Kowitz
Jerome Kulig

Li nda Leeson
Robert Love
Robert McPhee

Rebecca Lovelace
Frederick orton

NEBRASKA ALPHA, University of Nebraska

John Barrows
Roger Booker
Katharine Curtis
Arthur Denny
Marilyn Doerfel
Michael Orickey

NEW JERSEY GAMMA, Rutgers Col | ege of South Jersey

Franci s Keefer
Stanl ey Macbonald

NEW JERSEY ZETA, Fairleigh Dickinson University

Christine Agnello
Linda Ballerini
Randol ph Forsstrom
Stuart Helfgott

Kat hl een Eggleston
Nancy Ellermeier
Randal | Gei ger

St ephen Hender son
Jackyl ene Hood

Brian 0'Malley

Theodore Her man
Dol ores Loyko
Ronal d Hinafri
G nny Restivo

NEW YORK BETA, Hunter Col | ege of CUNY

Janes Baker

d adys Bensen
Rosenari e Colucei
Chri st opher baGanarc

Cat herine Fahner
Ei | een Hopwood
Raynond Horvat h

NEW YORK GAMMA, Brooklyn Col | ege

Howard Allen
WIlian Amadio

M chael Bl assberger
David Bl own

Neal Crystal

Sal vatore D'Ambra

HEW YORK EPSILON, &.

Jane Appleby

Donna Chri stian

Paul a Connel |y
Annette D'Arcangelis

Harry Goldberg
Hans-Georg Heyn
Barry Jacobs
James Jant osci ak
Stanl ey Krasner
Sal Leggio

Lawr ence University

Rol f Gerstenberger
M chael Gifford
Sharon Kintner
Judy Kurtz

Janes Metzler
Al exander Murdoch 1T

CGeorge Moore
Mary Moynes
Barbara O sen
Leanne Perkins
Robert Pesek
Lillian Peters
Lawr ence Pienta
Gary Pohl
Robert Popiel
Dani el Ramey
Robert Rietz
Susan Roth

Henry Rhaly, Jr.
Lillian Toney

David Jackson
Car| Olenberger
Marjori e McMaster
Li nda Nobl es
Loren Petersen

Mel Sanzon

G na Roth

John Schnuck

W lian Schneider
Joan Snith

Anne Mannion
John Niman
Tony Siciliano

Norma Levy

Wllian Killer
Barry Mttag

Ronal d Pri shival ko
Warren Sass

Laurie Spatz

Alison Labdon
Robert LaFlair
Carol Lancaster
Susan Lane

Shirley Washi ngton
Al ona Winbush

Bariy Rybh

Kennet h Schoen
Robert Sinierope
James Troutman

El | en Rottschaefer
Kel |y Runyon
Robert Sacks

Hary Schaef er
Martin Schnitzer
Law ence Schrauben
Franci ne Serra
Philip Stickney
James Tamialis
Peter Thall

Randal | Thonas

LI oyd Turner

Beth VandeMheen

Andr ew Wong

Gary Petersen
Mary Settgast
Robert Smallfoot
Rita Sanowden
Karen Vegener
Patricia Wrth

Angel a Savarese

Ri chard Toomayan
Frank Van Rood
Susan Vieo

CGen Yen Tan
Caroline Vardl e
BaiiGhurelenng

Mordecai Soloff
Aar on Tenenbaum
Harvey Wachtel
Ira Widman
Jonah Wilamowsky
Erwin Zafir

Janet Langloi s
Sharon Moir
Susan Zgei ghaft

lol
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NEW YORK KAPPA, Rensselaer Pol ytechnic Institute
Ceor ge Efthimiou
NEW YORK Mu, Yeshiva Col | ege

Ezra Bick Michael Friend
Leo Brandstatter Robert Grosberg
Leon Carp Abr aham Gulkowitz
Reuven Cohn

NEW YORK s1GMA, Pratt Institute of Brooklyn

Loui s Guccione
John Kuras

M chael Nahony
Abraham Mittleman

Geor ge Chan

Phil Cicero
Henry Danziger
Phillip Friedman
Karen Gaglione

NEW YORK TAU, Herbert H Lehnann Col | ege of CUNY

Lorrai ne Bone Rita Hehauser

Regi na Cohen

Kennet h Hochber g
Solomon Hochberg
Morris Kal ka

Himi My

John Rithardson
David Ronnko
David Spokony

Lei f Karell

NORTH CARCLI NA GAMHA, North Carolina State University

Carol yn Chanbl ee Ronni e Gool shy
Denni s Connaughton Rayrmond Green, Jr.
Ann Donaldson David Hel ms

St ephen Doss Kay Hinson

Susan Ganbi | |
Wlliamdenn, Jr.

Freddy Home
Di ane Johnson

James Ki shpaugh

Virginia Lorbacher
Harriet McLaughlin

Moharmed Misazay
Ronal d Pai nter
Randal | Raynor

NORTH CARCLI NA EPSI LON, University of North Carolina

Elizabeth Bray
Jane Brookshire
Anelia Cheek
Kathryn Chicelli
Mar garet C evel and

Dar gan Frierson, Jr.
Georgia Giffin
Patricai Giffin
Ellen Harris

Eva Lambert

OH O DELTA, Mani University

Fred Bl akesl ee Jim Lutz

M Iton Cox Kat hryn Miffet
Hora Eyre Davi d Huttersbaugh
Al an Good Mar garet Myers

Li nda kraus

OH O ETA, Oeveland State University

Wl ter Gawrilow
Theresa G uss

Jerzy Maj czenko
Charl es Meyers

OH O THETA, Xavier University

John Grebeyer
Larry Knab

Wwiliiam Bl azer
Edward G bson

OHIO. LAMBDA, John Carrol| University

Nancy Di el man Bruce Firtha

Robert Dietrich
OH O NJ, University of Akron

Hassan Ahmadi Larry Gold

Dal e Al spach St ephen Hudacek

Sheil a criss David Jessie

Ronal d Ealy Tiong Kuan

Darleen Evans Pricha Lorchirachoonkul
Linda Gardner

~ PENNSYLVANI A ALPHA, University of Pennsylvania

Janet DeClarke Bar bara Gor don

Panel a Fay

WIliamLink, Jr.
Jewell Perkins
Q. Lois Reid
Sandra Sherriff
Steven Simmons

Harry Nystmn
Anne Pi per
David Pond
Bryan Sellers

Frank Novak
Chri stine Rodic

Q. Carlos Moreno
Kennet h Palmisano

Donal d Grazko

Cherly Matthews
Beverly Mugrage
Harish Patel
Ajit Raj

Robert Ral ph

Elaine Gick

Schlono Mandel
Ronal d Mintz
Yehuda Sylman
Joel Yarmuk

Ceorge Streeter
Hel en Teppeman
Theodor e Valerio
Tracy Varvoglis

Susan Kreutzberg

Jeffrey Snmowden
Charles Starrett
St ephen Wl |
Carter Warfield
David Varren

Mary Sni der

Linda Stanfield
Grendol yn Supulski
Joyce Veéster
Brenda W son

Lavada Smith
Sandra Stangler
Sandra Treffinger
Sue Wherley

Chri stine Witkowski
| saac Yomtoob

Joseph Schehr
W 1iamStewart

John Miniello
Mary Jane Strauss

Robi n Redabaugh
Velliyur Sankaran
Franci sco See

Ted Shaffer
Stephen Stehl e
Benj ani n Thrams

G ace Jefferies

PENNSYLVANI A BETA, Bucknell University

Judi th Baran Beth Gladen
Charl es Barber Hary Hal |

Arl ene Danilowicz Shirley Heffner
Janes Fagan David Hil'l
Debor ah Fitze Elinor Jackson
Susan Frost Kat hy Kircher
Davi d Berges John Koch

PENNSYLVANI A DELTA, Pennsyl vania State University

David Armpriester Kerry Hovey
Robert Cover Ri chard Jackman
Theresa Defina David LaFlame
Li nda Ferri David Lipfert
Barbara G een Luana Matto

PENNSYLVANI A ZETA, Tenpl e University

Jerome G bbs
Priscilla Glbert
Jonat han Joe

Maxine Brown
Barry Burd

Donal d Car danone
Arl ene Fishgold

PENNSYLVANI A | OTA, Vil lanova University

Robert Altieri
Marguerite Bonner
Joseph Cartlidge
John Casey
Patricia Corgan
Mar el i zabet h Depp
Ant hony DeStefano
Paul Dougherty
John Fields

Tyl er Folsem
Margaret Hagerty
M n-Ju Horng
Martin Kl ei ber
Dani el Laline
Robert Lentz, Jr.
M chael Leonowicz
Rita Margraff

SOOTH CAROLI NA ALPHA, University of South Carolina

Li nda Barbanel
Leonard Bowen
Larry Gardner

Li nda Haynes
Mary Janicki

Davi d Lohuis
Robert Lott
Joanne Mayer

M chael Hestarick
Anne Oiver

Charl es Parilla
Har ol d Pressberg

Irene Heyer
Patricia Piras

Kat hl een Pozasbanchuk
Carl Rothenberger
Robert Sadl er

Ani ta Lankin
Sandra McLean
Barbara Pol | ack

Robert Martin
Tonr HeAMdCiellan

Janes McEnerney
Loui s Moore
John Mullen
Demott Mirphy
W 1iam Mirphy

Mario Lagunezguevara
Thomas Ddon, Jr.

SOOTH DAKOTA BETA, South Dakota School of Mnes & Technol ogy

David Bal | ew Robert Giffith
W1 1iam Barber Carl Grimm
Dean Benson Cyde Harbison

d enn Beusch
Raynmond Bryant
Gary Carlson
Bjorg Corneliussen
Richard Craven

Ral ph Doutt

Hel vin Frerking

Har ol d Heckart
Di anne Heeren
John Heinricy
Dani el Hofer
Jerald Johnson
Kent Knock

TEXAS BETA, Lanar State Col | ege of Technol ogy

Gordon Allen

Ernest Day
David O ark

Raynond Henry
TEXAS DELTA, Stephen F Austin State University

F, Doyl e Al exander Sue Cooper

Roy Alston Thonas Cooper
Laura Bates Penny Cummings
Rebecca Bray Robert Feistel
Harol d Bunch Martha Garcia
Julius Burkett Robert Harris

Sharon Bur ner
El ton Chancy
Wllian dark

Janes Hertwig
Hary Kenneaer

VIRG NI A ALPHA, University of Richmond

John Edwar ds
WIliamFitchett
Linda Fries
Arthur Hoover
CGeor ge Latimer
Thonas Lee III

Wayne Boggs

Debor ah Bost
Vickie Bowman
Rachel Brown
CGeor ge Busick, Jr.
James Callis

Teresa Catasus Al bert Link
Robert Court ney Robert Maxey
Mar garet Dougl as Marcia MCoy

James Kocer
Jon Lehner
Tanya Lung

Hel en Heines
James M| |er
Ceor ge Moore
Carol Mers
Janes Newman

J. D Patterson

Joe Magliolo
Joseph Michalsky, Jr.

Ral ph Kodell
Layton

Pat sy Lucas

Vicky Lymbery

Bar bar a Maaskant

Kent MacDougall

El ai ne McBurnette

Enni s McCune

Rebecca M11s
Carroll Morrow, Jr.
Ronal d Nichol | s
Victor Ownen, Jr.
Carl Quann

W 1iamRenner

Li nda Simmons
JanesTayhot ey, Jr.

Steven Rivers
Lynne Rogersen
Beverly Sackrin
Susan Sehreck

Al en Schweinsberg
John Wl son

El ai ne Zalonis

Gry Schaefers
Mari e Smelik
Bhpt t i Snit bwar t

Mrris Taradalsky

Ber ni ce Rosner
Lynne Tayl or
Robert a Wenocur

John Petrie

Joseph Popl aski. Jr.
Thomas Prince
Vincent Quaresima
Peter Schnopp
Janes Solderitsch
Victoria Witomki
Angel a Yuan

WIliam Rol | er
Humphrey Theysen
Barbara Willians

Ronal d Rehfuss
Karl Rist

Einar Skare
Oivind Sovik
Eric Stechmann
Thomas Stechnann
Edgar Swanson
Eric Thompson
Timothy Thozpson
John Venables

KeadaaR8pahl

Sharon Milligan
Alan Hinter

Joe Neel
William Peterman
Bonnie Pitts
Janes Reid

David Skegl und
Paul Stein

Ton \Mi t aker

Preston Taylor, Jr.
Susan Tinsley

Robert Traylor, Jr.
Patrick Turchetta
Carol e Waite

Janes \ér, Jr.

Mary Watson
Reinhardt Woodsen, Jr.
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WASHI NGTON ALPHA CHAPTER, Washington State University

Carol Altenburg Regi nal d Laursen Francis 0'Neil, |V
Terry Barr Ted Leavitt Steven Poquette
David Baxter Raymond Lewin Jon Rickman

Al bert Carbaugh Chi Yu Lin Denni s Roberson
Thomas Fow er Ross Marsden, Jr. Carol Ross

Don Goedde Carol Meyer Robert Russel |
Terry Hastings Jon Ochs Cark satre

WASHI NGTON DELTA, Western Washington State Col | ege

Amberse Banks John Johnson Andr ew Ragnes
carveth Enfield Mke Lemon Ginny Sikonia
Gary Isham Ronald Leonard Mar| ene Steiner

Chun-Yen Shih
Joe Smith
Ming-Fat Sze
Norman Vordahl
Shin Shut Wong
Steven Wright
Joseph Yip

M chael Ut
Ashl ey Watson




