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THE C. C. MACDUFFEE AWARD
FOR DISTINGUISHED SERVICE

The fourth presentation of the C. C. MacDuffee Distin-
guished Service Award was made to Dr. Francis Regan, St.
Louis University, at the Pi Mu Epsilon banquet, August 25,
1970, held in conjunction with the national meeting of Pi Mu
Epsilon at Laramie.

The C. C. MacDuffee Distinguished Service Award was
established in 1964, in honor of the late Professor C. C.
MacDuffee (University of Wisconsin), former President of
Pi Mu Epsilon. Pi Mu Epsilon's highest honor is awarded
only when an individual's efforts to promote scholarly ac-
tivity in mathematics ar e so distinguished that they merit
commendation and recognition by all concerned.

It is indeed a great pleasure to present Dr. Francis
Regan with our highest award in honor of his outstanding
contribution to Pi Mu Epsilon and to mathematics, as ex-
emplified by his particularly noteworthy editorship of the
Pi Mu Epsilon Journal and his longtime sponsorship of the
outstanding Missouri Beta Chapter of Pi Mu Epsilon at St.
Louis University. Either achievement would be sufficient
to merit sincere admiration - but to find both in one modest
man makes us realize how fortunate the world is to have men
blessed with leadership, ability, honesty, and unselfish de-
votion all residing in the same body.

Congratulations to Dr. Francis Regan, who is joining
our earlier award recipients:

Dr. J. Sutherland 1964
Dr. Richard V. Andree 1966
Dr. John S. Gold 1967

Dr. Francis Regan 1970
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UNICURSAL POLYGONAL PATHS AND OTHER GRAPHS ON PO NT LATTI CES

Sol omon W Gol onb and John L Sel fridge

1. 1 NTRODUCTI ON
11 Description of the Problem

An ol d geonetric puzzle asks the solver to construct a pol ygonal
path of only four segnments which goes through all nine points in
Figure 1, Two unsuccessful attenpts, yielding five-segnent "solutions",
are shown in Figure 2. The required four-segnent solution is shown
in Figure 3. The "trick™ involves the fact that the pol ygonal path
goes outside the convex hull of the nine-point configuration.

[

Figure 1. Figure 2a. Figure 2b. Figure 3
The nine The boustrophedon The spiral The required
point con- "solution" requires "solution" requires 4 segnent
figuration. 5 segnents. 5 segnents. sol uti on.

I'n this paper we exam ne m nunmum segnment pol ygonal paths as wel |
as certain other graphs, on a x b point [lattices.

1.2 Hstorical Survey

Specific problems involving the construction of polygonal paths
on n x n arrays of dots, using only 2n-2 segnments, were posed by both
Sam Loyd [1] and H E Dudeney [2], with additional constraints which
will be noted later. |In 1955, M Kl ankin [3] posed and sol ved the
probl emof showi ng that 2n-2 segnents is sufficient for a unicursal
pol ygonal path on the n x n array, using fhe construction of Figure 4

, He conjectured that 2n-2 segments is al so necessary, and this was proved

by one of us (Selfridge, [41), in a formwhich is generalized in Section 4
of this paper. Constructions for the 4 x 4 array were investigated
extensively by F. Schuh {5], and there are doubtless many exanpl es of
other special cases in the literature. (W are indebted to M. Mrtin
Gardner for assistance in conpiling these historical citations.)

Or. Francis Regan

Figure 4, A polygonal path of 2n-2
segnents covers the n x n

array. I




1.3 Summary of Principal Results

Ve show that a unicursal polygonal path of 2n-2 segments exists
on the n x narray for all n > 2 that the further constraint that
the path be closed can be satisfied For all n» 3; that the further
constraint that the closed path remain within the convex hull of the
array of dots can be satisfied for all n> 5

On an a x b array of dots, a collection of a horizontal |ine segnents
or of b vertical line segnents will suffice to cover all the dots.
However, if such a collection of parallels is not used, it is proved
that at least a + b - 2 segnents nust be used to cover all the dots,
even if it is not required that the segnents form a unicursal path.

A collection of a + b - 2 segnents which covers all the dots in
an a x b array, and does not include a conplete set of horizontal or
vertical segnents, will be called a ninimal net. Ve prove that every
segnent of a nminimal net contains at least two "exclusive points"--
i.e. dots which are not traversed by any other segment. W exhibit
several nminimal nets for which each segnent contains at |east three
exclusive points. One of these nets is in fact a closed unicursal
path on the 8 x 8 array.

Finally we consider the possible symetries of mninmal nets in
general, and unicursal polygonal paths in particular. Al though there
are miniml nets with the full (dihedral) symetry group of the square,
it is proved that this cannot happen if the net is a unicursal path.

2 BEST CONSTRUCTI ONS FOR SQUARE ARRAYS
21 Squares of Even Side

In Figure 5 we see a 6-segnent closed
pol ygonal path which goes through all sixteen
points of the 4 x 4 (square) point lattice.
(It is not difficult to showdirectly that
no 5-segnent path can go through all sixteen
points. )

Figure 5 A 6-segnent closed
path for the

4 x 4 lattice.

Cl osed paths of 2n-2 segnents exist for all even n 2 4, as indicated
for the first few cases in Figure 6.

Figure 6 Closed- N

path sol utions,
in 2n-2 segnents,
for even n.

The rule for constructing these paths is as follows: Drawthe
line AB along the top of the square, and protruding one unit at each
side. Ve will proceed by continuing both ends of AB. V& drawthe
di agonal s AD and BC, which protrude one unit below the square. From
C we generate a clockw se spiral, and from D a countercl ockwi se spiral,
each composed of alternating vertical and horizontal |ine segnments.
These segnents run to the diagonal AD, but stop one unit short of the
di agonal BC, except at the very end of the construction, when the path
is closed at the point X which Iies en the BC diagonal .
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The solution to the 6 x 6 case shown in Figure 7 uses the nininmm
nunber of segnents (2n-2 = 10), and exhibits two novel features:
The pattern is entirely contained within the convex hull of the square
lattice; and segnents of slope %1/2 occur, in additon to the slopes
previously encountered (0,+1,and=).
The fact that Figure 7 exhibits a

cl osed path can be verified by )

Euler's criterion, viz: we have Figure 7.
a connected graph in which every A " conpact "
node is a junction of an even path on the
nunber of edges. 6 x 6 array.

Thi s solution can be
extended to n x n for even
ng 6 asillustrated for
n=8andn =10 in Figure
8. Again, Euler's
criterion may be used
to verify the existence
of a closed path in
each case.

N

Figure 8 Extension of the Figure 7 construction
to larger even values of n.

The idea of enlarging Figure 7 to handle

n x n constructions direct y,gas shown in Figure 9,
is unsuccessful. To be sure, all 64 points are
covered by only 2n-2 = 14 segnents; but the graph
they formis not a path. Al four corner nodes
are odd (five edges neet at each), whereas a closed
path has no odd nodes, and an open path can have
only two.™

N
XS
N

Figure 9 A non-unicursal "solution" to the 8 x 8 configuration.

(It will be shown in Section 6 that a ninimm segnent graph with the
di hedral symmetry group of the square, as in Figure 9, can never be
uni cursal .)

22 Squares of Odd Side

V¢ now show the existence of closed paths of 2n-2 segnents on
the n x n square lattice, for all odd n 2 5 In Figure 10, we see
a closed path of 2n-2 = 8 segments for n = 5. This remarkabl e construction
contains a line of slope 2, and has turning
points for the path which not only are not
lattice points (as in Figure 8), but do not
lie onthe grid lines (horizontal or
vertical) through the lattice points.

To get closed paths of 2n-2 segments
for odd n> 5 we nay extend either the
body or the spirit of Figure 10. The

Figure 10, Aclosed path for the 5 x 5 configuration.
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corporeal extension is shown in Figure 11. Note that for n 29, we
obtain a closed path solution, with 2n-2 segnents, which does not go
outside the convex hull of the n x n lattice. Conbined with the
construction of Figure 9, we have established that for all n» 5
except for n = 7, there is always a 2n-2 segnent closed path on the
n x nsquare lattice which does not go beyond the convex hull of the
lattice. The gap at n =7 is filled in by Figure 15 in Section 32

Froman artistic standpoint, the "spiritual " extensions of Figure 10

as shown in Figure 12, are nore appealing. For these cases.. the "long
diagonal " has a slope of (n-3)/(n-1) for all n ) S.

A ' .

% , Z
y/4 //

n=7 n=29 s il

Figure 11. Physical extensions of Figure 10 to larger odd n

#

Figure 12. Spiritual extensions of Figure 11 to larger odd n.
3. OTHER CONSTRUCTI ONS
3.1 The n x (n+l) Array

In anticipation of the General Theorem of Section 4, we can expect
the minimum segnent unicursal path on the n x (n+l) array to consist
of 2n-1 segments. On the 2 x 3 array, the best that can be done is
a 3-segnment open path. Two exanples are shown in Figure 13, the second

=:sc.being preferable in that it avoids using a set of parallel lines to

-

catch all the points.

For n > 2, there are closed
uni cursal paths of 2n-1 segments
on the n x (n+l) array, as

indicated in Figure 1u,

N

Figure 13. Three-segnent opsn
>aths on the 7 x 3
array.

KX

n=3 n=4 n=25 n==6
Figure 14. Typical closed unicursal paths on n x (n+l) arrays.
3.2 (Queen's Tours

Dudeney [2] posed and sol ved the problemof finding a 12- nove
re-entrant "queen's tour™ on the 7 x 7
checkerboard. In our terninology, he finds
a mni num segnment cl osed unicursal path on the
7 x 7 array, with the further constraints that
the path stay within the convex hull of the array,
and that only segments of slopes 0, =, +1, and -1
are permtted. His solution is givenin
Figure 15.

Figure 15. Dudeney's

"queens's tour™ on
the 7 x 7 array.

This construction can easily be nodified
to give closed queen's tours on n x n boards for

% odd n 2 7, and open queen's tours for (even) n 26
The problem of closed queen's tours for even n » 8

has al so been solved. The 8 x 8 solution shown
in Figure 16 is based on {11, page 42.

Figure 16. Loyd's "queen's tour™ on the 8 x 8 array.

3.3 M scell aneous Exanpl es

Addi tional exanples of 6-segnent paths, both open and cl osed,
on the 4 x y board, are given in Figure 17. These include, but are
not limted to, exanples given by Schuh [5].

s B o o fie
M sz sw s
XK ¥ K &@




112

Figure 17. Additional exanples of 6-segment polygonal paths on the
4 x 4 array.

Besi des the cl osed
8- segnent path on the
5 x 5 array shown in
Figure 10, two further
exanpl es are known, as
shown in Figure 18.

Figure 18. Further
exampl es of closed
8- segnent paths on A\
the 5 x 5 array.

4, THE NECESSITY THEOREM AND | TS CONSEQUENCES
4.1 The General Theoremfor Rectangul ar Arrays

Vié define a proper net on an a x b rectangular array of lattice
points to be a set of |ine segments which collectively cover all ab
lattice points, but which does not contain either the set of a horizontal
(1,e. row) segments of the set of b vertical (i.e. colum) segnents
as a subset. (There is no requirement of connectivity in the definition
of a proper net.)

Theorem 1l A proper net on an a x b array contains at |east
a+b-2 segnents.

Proof. Let the proper net consist of h horizontal segnents, of
V vertical segments, and of g oblique segnents. Fromthe a x b array,
del ete every row in which a horizontal segnent occurs, and every col um
in which a vertical segment occurs, to forma reduced array. e
reduced array has @ =a - hrows and b' 3 b = v colums, which need
no longer be uniformy spaced. (The inequalities arise because e.g.
if two horizontal segments are in the sane row, a's> a = h.)

If & 2 2and b' 2 2, then the reduced array has 2a' + 2b' - 4
lattice points around its (rectangular) perineter. These points nust
be covered by oblique lines of the net, but one oblique Iine can cover
at nost two perinmeter points. Hence g 2 a'+ b' - 2 and the total

nunber of segments inthe net ish+v+tgyhtv+d +b*'-232at+tbh-2
If d =1, b* 2 1, then there are b' lattice points on the "perineter”

but each requires a separate oblique line to contain it. Then the
total number of segnments is

h+v+q2(a-l)+vedb 2at+b-1,
an even stronger result.
The possibility of @ =0or b' =0 isruled out by the definition
of a proper net. q.e.d.
4.2 Corollaries and Conseguences

Theorem 2. A uni cursal polygonal path on an a x b lattice of
dots {a £ b) requires at |east min(2a-1,a+b-2) segnents. A closed
uni cursal pol ygonal path requires at |east min(2a,a+b-2) segments.

Pro I'f we do not include a conplete set of parallel (row
segman'l-r't hen at |east ath-2 segments are needed, by Theoreml |f
we use a set of a parallel rowsegnments, we need at |east a-1 non-

hori zontal segments to connect theminto an open path. and at |east
a non- horizontal segnments to connect theminto a closed path, e.d
Note; V€ can inprove on the 2a segment “parallel™ solution only if

— a - b]< 2 Thus, the interesting cases are n x n and n x (n+l),

which were treated in the earlier sections.

Theorem 3. A closed unicursal polygonal path on an a x b lattice
of dofs {a g b) which consists solely of horizontal and vertical segments
nust contain at |east 2a segnents.

Proof. If there is a roww thout a horizontal segment and
simultaneously a col unm without a vertical segment, then the point
where they intersect is not covered. Hence the path nust include either
a set of a parallel row segnents or a set of b parallel colum segnents.
However, horizontal and vertical segnents must alternate, leading to
at | east min(2a,2b) = 2a segnents in all. q.e.d

4.3 Mninml Nets

W define a minimal net onaax b latticeto be a proper net
consisting of only a T b - 2 segnments. W may observe that a unicursal
pol ygonal path on an n x n array with only 2n - 2 segments is al ways
a mninml net, but not conversely In fact, a "bicursal® path (in
whi ch one interruption is permtted) whi ch covers the nx narray in
2n - 2 segments, for n» 2, is always a miniml net.

The techni que of constructing unicursal paths, in general, is
to begin with mninmal nets, and then to extend the segnents in various

ways in an attenpt to achieve connectivity. Some typical exanples of
the mniml nets which may serve as skel etons for tKese constructions

are shown in Figure 19. Not all can be extended to form unicursal

pat hs.

X

NP %
Figure 19. — -
Sone minimal nets % l % ] % —_
on n x n arrays. M
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5  EXCLUSI VE PO NTS AND SYMVETRY GROUPS
5.1 The Excl usive-Point Theorem

V¢ define an exclusive point of a segment used in the covering
of an a x b array to be a lattice point covered by that segment and by
no ot her.

Theorem 4. Every segnent of a minimal net on an a x b array
contalns at |east two exclusive points.

oof. Ve refer to the proof of Theoreml Every oblique segment
has twu—e'xcl usive points on the perimeter of the reduced array. Consider
then a non-oblique segment--say a horizontal segment H |f we ignore
this segnent in the formation of the reduced array, we get a larger
reduced array, we get a larger reduced arr ?/ (a' + 1) x b', with at
least two extra perimeter points. The g oblique lines can still cover
only 2q perineter points, leaving at least 2 perinmeter points now
uncovered. These two points can be covered by no oblique line, no
vertical line, and no horizontal line other than H, by the definition
of the reduced array. Hence these are two exclusive points of Hd

q.e.d.

Note. It is instructive to re-examne Figures 3, 5, 6 7, 8, 10.

11, 14, 15, 16, and 17 for the locations of the excl usive points.

In all the cases just listed, there are at least 4 segments in each

array with only two exclusive points each, the mninumallowed by

Theorem 4. In each of the three arra?;s of Figure 12, there are 3 segnents
with only 2 exclusive points each. e average nunber of points per

. 2
segment for the n x n array is n /(2n-2) = 5 (n+1) + € wher e
€ = 1/(2n-2) - 0 as n > =, Hence it can reasonably be expected that

in large enough arrays, the mnimumnunber of exclusive points per
segment can be increased. V¥ next exanine some exanpl es.

5.2 Nets Wth Several Exclusive Points Per Segnent

In Figure 20, we see three exarrpl es of nminimal nets on square
arrays with at least 3 exclusive points per segnent. (The niddle one
is our old Figure 9.)

e

Figure 20. Three mininmal nets with at |east
three exclusive points per segment.
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These three exanpl es have the followi ng further properties in comon:
none of themis a unicursal path = in fact, each has four odd vertices;
each has the dihedral symretry group of the square; and the number

of exclusive points per segnent is always either 3 or 6.

In Figure 21, we see
a closed unicursal path on
the 8 x 8 array, with either —
3 or 6 exclusive points per
segnent. Note that this
figure, also derived from
Figure 9, has a smaller
symetry group. It is
easy to verify that all
the vertices are "even",
but one nust also verify
that a procedure for Figure 21. A closed path on the
traversing all the edges T 8x8array with »2
inonly 14 segments exists. excl usi ve points per
This is in fact the case. segnent .

Figures 20 and 21 suggest an inquiry into the types of symretries
which mninmal nets in general, and unicursal paths in particular, my
possess. \& now consi der these questions.

5.3 Gaphs Wth Subgroups of the Square

From Figure 20 we see that ninimal nets on n x n arrays nmay possess
the full dihedral group of symmetries of the square. However, each
of these exanples had several odd vertices, which precluded unicursality.
In Figure 22 we see three closed unicursal paths on n x n matrices
with various symmetry groups. Case A exhibits reflectional symmetry
inthe md-vertical. Case B has rotational symetry by 18c° around
the center. Case C has the four-fold symretry group of the rectangle.

7 B3¢

Figure 22 Three symetric exanples of closed unicursal paths.

In Figure 23, we see a ninimal net on
the 7 x 7 array, which has the rotational
symmetry group of the square. This graph
is closed unicursal in Euler's sense (all
the vertices are even), but it is bicursal
for our purposes, because a unicursal path
cannot be found on it consisting of only
twel ve segnents! |t is not known whet her
a true unicursal path with this symetry
group exists on any n x n array, though
there is no obvious reason to doubt the

possibility.  pgioire 23 A minimal net with \/
goe rotational
symetry and only even vertices.
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The status of reflectional symretries is rather conpletely settled
by the follow ng three theorens.

Theorem 5  For every n 2 2, there exists a nminiml net on the
n x n array of dots which possesses the full dihedral symetry group
of the square.

Proof. It suffices to observe the two constructions in Figure 24,
which correspond to even and odd val ues of n, respectively.

* K

Figure 24 Concentric symetric construction of
mniml nets, for even and odd n, respectively.

Al though there are numerous nodifications and variations of the
symetric mninmal nets of Figure 24, the following feature i s common
to all exanples:

Theorem6. |f a minimal net on an n x n array of dots has a symetry
axis Con which there are dots, then the net nust include a segment
on the axis L. (In particular, there nust always be a segnent on a
di agonal symmetry axis; and there nust be a segnent on a horizontal
or vertical symretry axis whenever n is odd.)

Proof, Suppose that L is a symmetry axis for a minimal net on
the n=rarray, and that there are dots on L In the terninol ogy
of the proof of Theorem 1, consider the intersection(two points)
of Lwith the perineter of the "reduced array”. By symmetry in L,
if there is no segnent along L, then either (1) at |east one of these
two points is an intersection of two oblique lines, in which case the
oblique lines do not cover enough distinct perimeter points for a nininal
net, or (2) L is a diagonal, and the two perineter points of L are covered
by (oblique) segnents perpendicular to L - but such segnents cover only
one perineter point each by the convexity of the reduced array, and
therefore cannot be part of a nminiml net.

In contrast to Theorem6 for nminimal nets in general, we have
the following result for unicursal paths:

Theorem 7. A closed unicursal path on an n x n array cannot have
any segnment along a symetry axis L

- Each end of a segnent along a symmetry axis L nust be
an odd—v-ert ex, but a closed unicursal path can contain no odd vertices.

Notes:  Conbining Theorens 6 and 7, we learn that a mininal net which
is aclosed unicursal path can have no diagonal symetry axes;
and can only have horizontal or vertical symetry axes if n
is even. Afortiori, the full dihedral symetry group of the
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square never occurs in such a case. A niniml open unicursal
path can have at nmost one symretry axis with dofSon it, since
this gives rise to(only) two odd vertices, as in Figure 25
(Wien such a symmetry axis occurs, it must be a diagonal.)

% B S
/

Figure 25. Qpen unicursal paths with
di agonal symmetry.
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AM | NTERESTI NG GENERALIZATION OF A SIMPLE LIMIT THEOREM

Stanley J. Farlow
Universitv of Mine

It is well known that if {ak}, {bp} k =1, 7,

real nunbers and if 1irn(ak/bk) < =, J.im(bk) = 0 then lim(ak) = 0.
k>0 k> Y+

Since matrices are pencralizations of real nunbers, one might ask

if the above fact could be geheralized to nore general objects.

The following proposition is a sinple but interesting generalization
of the above linit theoremto matrices.

. are seouences of

PROPCS! Tl ON
[ E:
i) Ais ann x nreal constant matrix
ii) b(s) is ann x 1 real vector, each conmponent
being a continuous function of the conpl ex
variables._,
iii) im (A-sl) “h(s) exists for each conponent
8§+S.

wher e s; is an eigenval ue of a.

tiem; all the conponents of (A-s1)®b(s) vanish at the
eipenvalues of A where (A-sl)® is the adjoint
matrix of (A-sl).

where c(s) : (A-s1)¥b(s), then calling the transpose CT(s) : (e (s),...,
c (s)) we have that 1im {ck(s)/lA-sll} <=for k = 1,...,n wher & 5;
S*s,
is an eigenvalue of A But 1im |A-s1| : O and so 1lim ¢ (s) = ¢ (s,) = 0
S"Si S"Si
Thi's conpl etes the proof. (ne can -alse observe a stropger but |ess
aesthetic result than the above proposition. This can be stated:

OOROLLARY: The above conclusion Is still true if condition ii) is
replaced by: ii') all conponents of (A-sl)®b(s) are continuous
ins, for all s.

Proof: This can easily he seen by direct observation of the previ ous
proof .

(ne can al so observe that the matrix A and vector b could be conpl ex
with a slight nodificationof the proof.
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THE CANTOR SET
Jerry L. West
Sout hern University
The Cantor set, first given by George Cantor, should give a student
a better insight into the study of open. closed, dense, and "nowhere
dense perfect” sets. Students may easily devel op fal se i deas concer ni ng
dense and nowhere dense sets by maki ng a sonewhat plausibl e assunption
upon the antecedent "nowhere". The Cantor set may serve as a remi nder
of the consequences of making these intuitive assunptions.
The Cantor set s is a subset of the closed interval {0,1]. It
is more convenient to define its conplenent, c(s), relative to {o0,1].
C(s) is the union of the follow ng denunerabl e set of open intervals:
1) the open nmddle third, (1/3,2/3), uf [0,1],
2) the open nmiddle thirds (1/9,2/9) and (7/9,8/9) of the two
closed intervals in [0,1] which are conplenentary to (1/3,2/3),
3) The open middl e thirds (1/27,2/27), (7/27,8/27), (19/27,20/27),
and (25/27,26/27) of the four closed intervals in [0,1] which
are conpl ementary to (1/9,2#9), (1/3,2/3), and (7/9,8/9)
and so on, ad irfinitum
o X 2L 27 81 219 207 825 %,
27 27 3 9 77 37 3 327 77 39 927 T
v ) P — e s e e ]

The graph shows three stages of renoving open niddle thirds of
fo,11.

(oserving the bumof the lengths of the cpen intervals renoved
at the 1st., 2nd., ., ntn stage:

s, U3+ 2752+ 22738 & L+ 2P0 s 1 - (pa)®

lims = 1im [1 - (2/3)"] = 1
n+= n-o
However, the set remaining on the closed interval {0,1] is <he ¢
set and may seem so sparse as to be insignificant. Points sure!
the Cantor set are
0, 1/3, 2/3, 1/9, 2/9, 7/9, 8/9, etc

for all endpoints of those open intervals which were er
there are points of the Cantor set other than these e
see this, we will nodify the Cantor set S to the Cant
gr.

Def. 0, 1, 2, arecalled ternary digits. if

with each a a ternary digit, then th




isx = 0.a)a,a where the subscript indicates that the
3
expression is ternary.
Exanpl e:  Suppose that we express the open interval (1/3,2/3) inits

ternary form

3

1/3 = 0.100... or 1/3 = 0.0222...
3 3

2/3 = 0.200... or 2/3 = 0.122...
3 3

Note that we have expressed each nunber in two ways: one with only
0's and 2s anong the a.'s and the other with 1 as a digit.

Letma 1. If 1/3 ¢ x ¢ 2/3 and a ternary representation of x is

X = o,alazaa,,, then a =1 and anong 81585500 there is at |east

one a, # 0 and at |east one aj # 2
Proof. Suppose a; = 0. Then x = 0/3 + Zanlan < ) 2/3"
n=2 n=2

2732 § 173% = 27320171 - 1/3)
k=0

n

= 1/3
contradicting 1/3 € x

Suppose a, = 2. Then x » 2/3, contradicting x < 2/3. Thus a =1

Now the supposition a, = a, = «aa = 2 gives x = 2/3, contradicting

2 3
X < 2/3, while the supposition that a =a = ... =0 gives x = 1/3
contradicting x » 1/3. QED

It shoul d be seen, conversely, that

Lemma 2 If x = 0.1a2a3... with at least one a # 0 and at |east one
3

a # 2 then the point x is on the open interval (1/3,2/3) and
hence is not a point of the Cantor set S'.

A way of indicating "x has a ternary representation not involving
the 1" is "x has a ternary representation of the form

'

. - _ o
i) x = Oé(2al)(2a2)... where aj = {J
Al of this is notivation for

Theorem 1l A point is inthe Cantor set S8' iff at |east one ternary
representation of x does not have the digit 1 in any place, that is,

§' = {xlx has a ternary representation of the form }.
A proof of this theoremwill be given after the next |emma.

Wienever a ternary representation has only zeros from sone place
on these zeros will not be indicated. For exanple,

1/9 = 0.01 2/9 = 0.02 7/9 = 0.21 8/9 = 0.22.
3 3 3 3
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I'n defining the Cantor set, the open intervals erased at the second
stage were (1/9,2/9) and (7/9,8/9).

From the above coments it will be seen that the following lemma
holds for n =1 and n = 2

Lemma 3 In defining the Cantor set S', the open interval (i‘-n';n)
was erased at the nth stage iff % and x can be witten as

ii) x_ = 0.(2a.)(2a,)...(2a_ .)1

- 3 1 2 n-1 with only 0's and 2s anong
- _ the a, 's.
iii) x, = Oé(2al)(2a2)...(2an_l)2 k

Proof: To make the induction step, let n » 2 be an integer for which

the lemma is true. Then the open interval (§n+l’xn+l) was erased
. - + n+l -z + n+l .
a_t the (n+l)th stage iff X4 0T L3 or x ., =%, t1/3 with
X inthe formiii); i.e., respectively,
SRR |3 S
X = 1/3 = 0,000...01 where a_ = 0 or else
-n+l 3\-—?4 n
- n+l
Rowl © 05(231)(232)"'(2an-1)2 +1/3

Oé(2al)(2a2)...(2an__l)(2an)l where a = 1

Wth a so deternined, then ;n-'-l =Xt ]./3'"'l so that
X1 0.(2al)(232)...(2an_l)(2an)2.

Since these representations are in the fornms ii) and iii) with n replaced
by n+ 1 the lemm is proved.

Then. as in the proof of lema 2, a nunber x is such that
X_ € X & X,
=N n
With)inand; inthe forms ii and iii, iff
x = 0.(2al)(2a2)...(2an_l)(1)b

n+lbn+2"'
with at |east one a+k # 0 and at |east one a ik # 2. Hence a point

X is erased at some stage iff either (in case there are two) ternary
representation of x has a 1 in sone place. Hence a point of [0,1]

is not erased at any stage iff it can be witten in ternary form w thout
using the digit 1. Thus Theorem 1 is proved.

Intuitively, the Cantor set §' seemto be sparse. Again, here is
a case where our intuition fails us. In fact, the set S' is as large
as the interval [0,1] itself.

Def, 0,1, are called binary digits. If z an/'..)n converges to X,
n=1
with each a a binary digit, then a binary representation of x is

X = oéalazas... .
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Theorem 2. There is a function with domain the Cantor set S* and range
the interval [0,1].

Proof: One such function f is defined in the following way.
With x ¢ S8, represent x in its unique ternary form without using the
digit 1= )
R .40
X = 03(251)(2a2)...(2ak)..., a = bg
Then use binary notation and set

iv) f(x) = 0.2a1a2a. crdp...

A's examples:

£(1/3) = f(0.022...) = 0.011l... = 1/2
3 2

£(3/4) = f(0.2020...) = 0.1010... = 2/3
3 2

In iv) 0 ¢ 0.a.a .< 1 and hence f ison [0,1]) into [0,1]. To show
2

1°2°°
that f is onto [0,1], that is, that [0,1] is the range of f, select
0 ¢y ¢Xdarbitrarily. Represent y in binary form:

_ _ 0
y = oéblb2b3"'bk"" bk = g

If y has two binary representations, either may be used. Then x defined
by x = 0.(2b1(2b2)...(2bk)... isin the Cantor set S' and f(x) = vy.

3
Hence the theorem is proved.

with f defined as above, experiments showed that £(1/3) = £(2/3) = 1/2.
In fact, if (’§1’xn) is one of the open intervals erased at the nth

stage, then f(x_) = f(x_ ). (To see this, write x_ and x according to
“n n N

lenma 3.) Also, associated with this function is a particular function
¥ known as the Cantor function.

Def, The Cantor function ¥: [0,1]+[0,1] is defined by setting
¥(x) = £f(x) if x ¢ S
= f(x) = £(X) if X« X< X
for each open interval (x,x) [0,11 - ' with x ¢ §' and x ¢ S,
Summarizing our findings:
1) The Cantor set is closed.

The Cantor set, if closed, must contain all of its limit points.

If not, there is some point y on the open interval such that every
neighborhood of y contains some points in S'. However, this is

not the case since every member of the open interval has a neighborhood
with no points in S'y therefore S' contains all of itslimit

points; hence, S8' is closed.

2) The Cantor set is dense in itself.

If St isdense in itself, then every point in S' must bea limit
point. However, this was taken care of by considering the ternary
terminating expansions of every member in §'. Therefore, every
member in S' isa limit point because of its terminating expression.

3) The Cantor Set iS nowhere dense.

We recall from a theorem that stated: |If a closed set F contains
no intervals, then F is said to be nowhere dense. S' contains no
interval since the middle third of each closed interval is always

removed at the succeeding stage. The proof of the theorem will be
omitted here but it is simply done by applying the indirect method
of proof.

4) The Cantor set is perfect.
Since S' is closed and dense in itself, then S' is a perfect set.
5) The Cardinal number of S' is c.

Ve know that the cardinal number of [0,1] iS ¢ and we have shown
that S' is just as numerous as [0,1] itself. Therefore, the set
S' is of cardinal number c.

Observing the above conclusions of S', especially 2 and 3, we
are reminded not to be so hurried in establishing implications in
mathematics.
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SIMPLICIAL DECOMPOSTIONS CF GONVEX POLYTOFES

Allan L. Edmonds
University of Michigan

1. Preliminaries
A natural extension of the usual convex polygons and polyhedra

of euclidean spaces }22 and E", a convex d-polytope P iS defined to
be the bounded intersection of a finite number of closed half-spaces

in Ed, where P contains d-dimensional interior. Equivalently, we

may define P to be the convex hull of (i.e., the smallest convex set
containing) a finite set of points. For each k, 0 < k <d-1, a k-face
of Pis the k-dimensional intersection of P with a supporting hyperplane.
The O-faces are just the vertices, the 1-faces the edges, etc. Each
k-face is itself a k-polytope. In the following fk(P) denotes the number
of k-faces of P.

Any d-polytope must have at least d+1 vertices, and the simplest
d-polytopes, the d-simplices, have exactly d+1 vertices. The faces
of a simplex are themselves simplices, and a d-simplex has exactly

d+l
(d+1) k-faces, 0 ¢k ¢ d-1.

It is the object of this paper to show that any d-polytope can
be expressed as the union of d-simplices whose vertices are vertices
of the polytope, and whose interiors are pairwise disjoint. Further,
given the dimension and number of vertices of a polytope, we seek
bounds on the number of such vertex-simplices required.

A simplicial complex K isa finite collection of simplices such
that if A isin K, the faces of A arein K, and A and B are in K,
AN B iseither empty or a common face of A and B. The number of
r-simplices in K is denoted by sr(K). The underlying polyhedron of

Kis/K/ = (a. A isa simplex of K}.

With the preceding concepts in mind we make the following definition.

Definition: Let P be a d-polytope. A simplicial complex K is said
to be a simplication of P providing /K/ = P and the vertex Sef of K
IS precisely equal to the vertex set of P.

2. Existence of Simplications

- Theorem 1: Any polytope has a ~implication.

Proof: Let P be a d-polytope with v vertices, and well-order
the set of vertices of P. W use an inductive process to simplicate
the faces of P. The O-faces and 1-faces are already simplices. For
k > 1 the general inductive step is as follows. In an arbitrary k-face
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F, let x be the first vertex of Pin F. W assume that the (k-1)-faces

of F, which are also (k-1)-faces of P, have been appropriately simplicated.
The pyramids with apex x and bases the (k-1)-simplices in each (k-1)-

face of F which does not contain x, together with the faces of these
pyramids, constitute a simplication of F.

Having simplicated all the (d-1)-faces of P, let y be the first
vertex of P, and form the pyramids with apex y and bases the (d-1)-
simplices lying in the (d-1)-faces of P not containing y. The ordering
of the vertices insures the required intersectional properties, so
these pyramids, together with their faces constitute a simplication.

Theorem 1 can also be proved by induction on v, the number of vertices
of P. Clearly a simplication does not have to be formed as in the
proof of the theorem. A simplication in which all the d-simplices
contain a common vertex is called a fixed-vertex simplication.

3, The Minimum Number of Simplices in a Simplication

Let m(v,d) denote the minimum possible number of d-simplices
in a simplication of a d-polytope with v vertices. In what follows
we generally ignore the trivial one-dimensional case.

Theorem 2: For every v > d > 2, m{v,d) = v-d.

Proof: First we show that m(v,d) > v-d, and second that for
every v > 2 > 2 there exist d-polytopes with v vertices having simplications
with exactly v-d d-simplices.

Let P be a d-polytope with v vertices and K a simplication of
P. Arrange the d-simplices of K in a sequence so that any simplex
after the first has a (d-1)-face in common with some preceding simplex.
Clearly this can be done, since /K/ is a topological d-ball. W count
the vertices of P in terms of sd(K). The first simplex in the sequence

contributes d+1 vertices; each of the next sd(K)—l simplices contribute
at most one additional vertex. Thus we have v ¢ d+I + s;(K)-1 or
sd(K) > v-d, Since P was arbitrary, we thus have m(v,d) » v-d.

Nw it is easy to see that any simplication of a 2-polytope with
v vertices must have precisely v-2 2-simplices. Suppose v> d > 2,
and, proceeding inductively, let Q be a (d-1)-polytope with v-1vertices,
and K a simplication of Q such that Sd-l(K) = v-1-(d-1) = v-d. Let

P be a d-pyramid with Q as base and arbitrary apex x. K induces a
simplication K* of P (in fact a fixed-vertex simplication) such that
S4{K ) = sy 1(K) = v-d. This completes the proof.

Remarks: (1) Clearly a simplication is minimal in the sense of Theorem 2
T and only if the d-simplices can be arranged in a sequence as described
in the proof so that each after the first has precisely one (d-1)-face

in common with some preceding simplex. (2) Using the same counting
technique as in Theorem 2, we get sk(K) » v-k, for each k, 0 <k < d-1.

But in general this is not the best possible bound. W might introduce
the symbol mk(v,d) for the minimum possible number of k-simplices in

a simplication of a d-polytope with v vertices. The value of mk(V.d)
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for 0<« k ¢ d-1seens to be an open question at this time. (3) The Then K induces a triangul ation k' of the boundary of P, a 2-sphere.
reasoni ng of the proof of Theorem 2 actual ly proves that if Kis any Each 3-sinplex in K has its 2-face opposite x in K. In addition
sinplicial conplex with v vertices such that /k/ is a topol ogical d-ball, there are at |east 3 2-faces of P containing x. These facts yield
t hen sd(K) > v-d, and that there exist such conpl exes K so that SyK) = v-d. sa(K) t3¢ “2("'3) or SS(K) < u2(v,3)—3. Since Pis arbitrary we have
N(v,3) ¢ uz(v,a)—a = 2v-7 = uz(v-1,3)-—l.
4. The Maxi num Nunber of Sinplices in a Snplication -
The probl emof finding the maxi mum nunber of sinplices in a sinplication Finally suppose P is a 4-polytope with v > 5 vertices, and | et
i's considerably harder than that of finding the mnimum In the follow ng K be a fixed-vertexsinplication of P Let Qbe a 5-pyramd with base
M(v,d) and N(v,d) denote the naxi num possi bl e nunber of d-S nplices P and arbitrary apex x. K then induces a triangul ation k' of the
inasinplication and a fixed-vertex sinplication, respectively, of boundary of Q a 4-sphere. The 4-simplices of K' are just those of
a d-polytope with v vertices. To facilitate the follow ng di scussion, K pl us those whi ch are the convex hull of x with the 3-sinplices of
uq{v,d+1) denotes the maxi numnunber of d-sinplices possiblein a Klying in the boundary of P. There nust be at least s (K)+4 of the
sinplicial conplex with v vertices whose under|ying pol yhedronis a latter variety, since Kis a fixed-vertex sinplication. Thus
t opol ogi cal d-sphere. A so c(v,d) denotes a cyclic d-polytope with v
vertices, the convex hul | of v distinct points on the nonent curve Sy (K) + 5, (K) + 4 < u,(v+1.5) or 5, (K) < (u, (v41,5)-4)/2.
{(t,tz,ta,...,td): t real]. Acyclic polytopeis sinplicial (i.e., (The nunerator is always even.) Againsince Pis arbitrary we have
its k-faces are k-sinplices), any two cyclic d-polytopes with v vertices R
are conbi natorially equivalent, and their special structure allows N(v,b4) < ‘“u(""l’s)"‘)”
one to cal cul ate that Alittle calculation shows that the right sideof this inequality
v (v-nm is precisely u3(v-1,4)-1. Therefore N(v,4) < u3(v-1,4)-1.
—_n(n) if d = 2n -
fd_l(C(v,d)) = en=] The precedi ng work proves the fol | owi ng theorem
270 if d = 2mm Theorem3 I£2 < d <4 and v > 4 then N(v,d) = u_ (v-1,d)-1 //
Qyclic polytopes lead to the fol l ow ng conjecture. Unfortunatel y the techni ques used above are not sufficient when
d> 5.
Upper Bound Qonjecture: For all v> dy 2 ug(v,d+l) = £ (Clv,d+1)). -
) ) ) V¢ now consi der M(v,d). Qearly M(v,d) > N(v,d). For given
It is known that the Upper Bound Qonjecture is true as stated ) v-2 > d > 2 Peter McMullen has constructed a d-pol ytope with v vertices
here at least when d ¢ 7 (i.e., for 8-pol ytopes) and when v is conparatively and 2 sinplication of the polytope such that the sinplication contains
large or small with respect to d (See Gunbaum pp. 61ff) exactly fd(c(v,d+1))-v+d d-sinplices.
V¢ now begin with N(v,d). First consider the follow ng construction. H's construction suggests the fol | ow ng conjecture which is trivially
Let v > d+l and let P be a pol ytope obtained fromthe cyclic pol ytope true for d = 2
Q= c(v-1,d) as follows. Let F be any (d-1)-face of Qand x any point Gonj ecture 2 Given v-2 > d > 2, M(v,d) < uy(v,d+l)-v+d, Wth equality

not in Qsuch that (convex hull of {x}u @) :(convex hull of {x}u FYuUQ
(i.e., X is "beyond" F and "beneath” all other (d-1)-faces of Q.

Let P be the convex hull of {x}y Qand Kthe fixed-vertex sinplication
with respect to x. Then since P is sinplicial s4(K) - £y (Clv-1,d))-1.

This construction | eads to the fol | owi ng conjecture.

when the WUoper Bound Gonjecture hol ds for (d+1)-polytopes Wth v vertices.

Renark: As we did with m(v,d) we night nore general ly define Mk(v,d)
and N((v,d) t o be the maxi numnunber possibl e of k-sinplices in a

) . ) sinplication and a fixed-vertex sinplication, respectively, of a d-
Gonjecture 13 Ifv-2>d » 2 Nlv,d) ¢ ud_l(v-l,d)—l, wth equality - pol ytope with v vertices.

when the Uoper Bound Conj ecture hol ds for d-pol ytopes with v-1 vertices.

5.  Concl usi on

The precedi ng construction shows that N(v,d (v-1,d)-1 when . . . . .
P 'ng uet! vsd) 2 g, v ! The problemtreated in this paper is a special case of the follow ng

» the Uper Bound Conjecture holds. Thus it remains to show that more general question: Given a simplicial complex which satisfies
STN(v,d) ¢ Ud_l("'lad)'l ingeneral. V¢ showthat thisis truefor d ¢4 certain combinatorial and topological restrictions, what more can one
say about the complex? The Upper Bound Conjecture introduced in Section
Qearly N(v,2) = v-2 and since ul(v-l,2)-l :v-1-1: v-2, the 4 is another aspect o_f the_ same problem. There are a number' of easiliy
relation holds for d : 2 posed open questions in this area, and convex pol ytopes provide a
natural setting for many of them-in particular for extremal croblems
Now | et P be a 3-polytope with v > 4 vertices, and K a fixed-vertex such as those considered here.

sinplication of o, each 3-sinplex of which contains the vertex x.
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UNDERCRADUATE REFFARCH  FROPOSAL

Harold Diamond
University of Illinois

1. Suppose we wish to obtain a numerical estimate for the sum of
o

the series J n 2 accurate to within .001. Ore method would be to write
1

2-2"-2 Toe2  p =@ r o2
n +t{+§ dt<§n <in +r{t dt,

find an N for which IE‘HI t_2 dt < .001 (e.g. N = 32) and use the approximation
o N
) n? - ) n~2 + 1IN + Error.
1 1

Can you give a more efficient method? (Incidentally, it is known
that § n 2= 72/6.)

2. The inequality sign in the Cauchy Schwarz relation

o £ < (f 12 [ g2t/2

becomes an equality if f = cg for some constant c. If his a real
function for which h2= cf, some c > 0, then the inequality

[f- f%- h<{f (f/h)z}llzq n2)3/?
i s rather sharp. Find some useful applications for this idea.
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THE REOURRENCE BQUATION KR BOUNDING QUBES

David Berman
Trinity University

1. Introduction. By a j-cube we will mean the j-dimensional
object resulting from moving a j-1 cube at an angle & (8 # 0) a distance

z (z # 0) into the j_th dimension. In Euclidean space, ]zj] s Izj_ll
and 8 = %

The purpose of this paper is the derivation and solution of the
difference equation

(1) LR R R Y
in which N, , is the number of i-cubes bounding a j-cube (j > i).
= -
The solution will be shown to be
R
(2) N2 g,

where jCi is the symbol for combinations. The solution will be gen-
eralized to gamma functions. Finally, Euler's Theorem for n-dimensional
polyhedra will be stated and proven for bounding cubes.

Figure I : j-1 cube 'final’

rd
e

j-1 cube - .
'initial’ 7 1T connecting cubes

2. Derivation. To find the number of i-cubes bounding a j-
cube, we first must find the number of i—cubgs bounding the ini%i al
J-1 cube and add this to the number of connecting i-cubes and finally
add the number of i-cubes bounding the final j-1 cube. Thisis

illustrated in Figure I. Using the notation Ni . for the number of
i-cubes bounding a j-cube we have 20l
(3) Ni,j = N, + (connecting cubes) * N,

lij-l 1;]"1.

VW note that at the initial and final positions the quantity

Ni-l,j_—l expresses the number of i-1 cubes bounding a j-i cube.

By definition of a cube we can say that each i-1 initial cube generates
one i-cube (connecting cube). From the last two statements we merely
have to find the number of i-1 cubes bounding the initial j-1 cube

and we are guaranteed that this corresponds to the number of connecting
i-cubes. See Figure II. Substituting Ni-l,i—l in eq. (3) for the nusber

of connecting i-cubes we get
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= 4 . s = 2N, . @ o 3
(4) N1,3 2N1,J_1 + Nl_l’]_l,

the recurrence equation for bounding cubes.

Figure II

’e"____

j=-1 cube i cube (generated)

i-1 cube (by def.)

3. Solution. Replacing i and j by x and y respectively and N
by £, eq. (4) can be written in the more tractable form

(s) flx,y) ~ 2f(x,y-1) - f(x-1,y-1) = 0.
If we let
(8) f(x,y) = gaxtby g(x,y), then
N 2as+byg(x’y) . 2ax+by—b+lg(x,y—l) _ 2ax+by-a-bg(x—1,y-:|_) = 0.
Assigning the values b = 1 and a = -1, eq. (7) can be simplified to
(8) 2 *[glx,y) - glx,y-1) - glx-1,y-1)] = 0, or
(9) glx,y) - glx,y-1) - g(x-1,y-1) = 0.
Eq. (9) isreadily solved by methods of finite differences [1] to be
(10) glx,y) = yox.
Substituting eq. (10) back in eq. (6) we have
(11) £x,y) = 297 yCx, or
(12) Nig T 231 jCi.

4. Generalization. Eq. (12) can be used only when i and j
are integers. It would be desirable to generalize this equation so

that all real values could be used. The natural generalization is

to use the identity T(j * 1) = j! and substitute ganma functions for
factorials. This generalization will be permissible if and only if
the resulting equation satisfies the original recurrence relationship,
ew. (4). Generalizing eq. (12) to gamma functions we get

. k
_P(§+1)2 P
(13) My T DresDn k=3-4
_ I(3)2k-t
k1) ¥i,9-1 ° T3+ D0
_ I(4)2k
s Ni1,5-1 T TOOTR+ 1) °
By direct substitution of eqs. (13), (14), and (15) into eq. (4)
we write
- : K ok P
(16) r(j +1)2 r(j)2 r¢j)2

T+ DIk s ) - TG+ DTG0 T Tk # D

(17) r(j + 1) = xr(j) + ir(3)
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(18) r¢y +1) = (k+ M9 k=3-14

(19) r(j + 1) = jr¢dd,

showing that the generalized solution does indeed satisfy the recurrence
equation.

5. Euler's Theorem. Euler's Theorem for bounding cubes may he
stated as follows: For a j-cube,

- .+ N_ .- ...+N, . =1, 0r
(28) Nosj Nl,J 2,3 1]
J i,3-1 .C,
(21) % (-1)* 2371 571 = 1.
i=0

Writing eq. (21) in expanded form, we have

(22) TRt LT
i%0

Making use of the binomial expansion (a-l)], we can write

(23) -0l = § i IS
ifo

If weseta=2ineq. (23), we get the desired result, eq. (22), hence
proving Euler's Theorem for bounding cubes.
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PROBLEM DEPARTNMENT

Edited by
Leon Bankoff, Los Angles, California

This departnment wel cones problems believed to be new and, as a

arule, demanding no greater ability in probl em selving than that

of the average menber of the Fraternity. Cccasionally we shall publish '

probl ens that shoul d challenge the ability of the advanced undergraduate
or candidate for the Master's Degree. Add problens characterized by
novel and el egant nethods of solution are also acceptable. Solutions
shoul d be submitted on separate, signed sheets and mailed before My

31, 1971.

Address al | comuni cations concerning problens to Dr. Leon Bankoff,
6360 Wilshire Boul evard, Los Angeles, California 90048.

PROBLEMS FOR SOLUTI ON

239. Proposed anonymously. Information regarding source is solicited.

Acircle (0) inscribed in a square
ABCD, (AB = 2a), touches AD at G A [ D
DCat F and BCat E If Qis a point
on DC and P a point on BC such

that GQis parallel to AP, show that

. F
PQis tangent to the circle (o). \ q

240. Proposed by Charles W Tripg, San Diego, California.
The palindrom c triangul ar number A

10 ° 55 and 8y, = 66 may

each be considered to be a repetition of a palindronic nunber. l
Find anot her palindromnic nunber which when repeated forns a
triangul ar nunber.

241. Proposed by Solonon W Col onb, University of Southern California. l
What is the sinplest explanation for this sequence:

85491763207

242, Proposed by the Problem Editor.
If m_,m, m are the nedians corresponding to sides a, b, ¢
of a triangle ABC, show that

2 2 2 2 _ 22 _ .22, 22
mm S em e e m = (9/16)(a"b” = b e” + ¢“a’).

243.

244,

245.

246.

247.

212.
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Proposed by Alfred E. Neuman, Mi Al pha Delta Fraternity, New York.
Provide a geonetrical proof for the well-known relation

4l = arctan %‘*‘ arctan %+ arctan 23'

Proposed by Charles W Trigg, San Diego, California.

The spots on a standard cubical die
are distributed as indicated on the
acconpanyi ng Schl egel diagram the

sum on each pair of opposite faces °

being 7. A square grid is conmposed %

of squares the sane size as a die Y
face. \Wen a die is placed on a ° ::: ® | o
square and rotated 90° about an edge ° oo
to come into contact with another

square, the notion will be called a s

roll.

What is the shortest roll sequence that
will return the die to the starting
square in its original attitude?

Proposed by R S Luthar, University of Wsconsin, \Wukesha.

Prove that for positive nunbers x and y the follow ng inequality
hol ds:
(x? - xy + yHX2 2 %Y,

Proposed by Bob Prielipp, Wsconsin State University, Gshkosh.
If x is an even perfect number > 6, prove that x 5 4 (nod 12).

Proposed by Alfred E. Neuman, Mi Al pha Delta Fraternity, New York.

Construct diagrams illustrating four (or nore) different theorens
characterized by the relation AZ « BX + CY = |AY « BZ » CX].

SOLUTI ONS

(Fall 1968) Proposed by J. M Gandhi, University of Manitoba,
Wnni peg, Canada.
Sol ution | by the Proposer.

n-1
- n \/n+s
e ww s 1))
show t hat
(A) M(5m + 2) =0 (mod 5)
and
(B) M(5m *+ 3) = 0(nod 5.

[Ref. CGeorge Rutledge § R D Douglass, Integral functions associated
with Sertai n binomal sums, Amer. Math. Monthly 43(1936), pp.
27-33].

"
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Sol ution. Rutledge & Dougl ass see the above ref. , proved that

(7n-3)nM(n) = (12n° - 2un + 10M(n-1). (1)
Let n=5m+ 2 so that from (1) we pet
(10m+l) (Sm+2) M(5m+2)

{12(5m + 2)2 - 2u(sm + 2) + 101 M(Sm + 1)

{2(sm + 2)% - 5(sm + 2) + 2} M(Sm)
{ug - 48 + 101 M(5m T 1)
(8 + 2) M(sm) (mod 5)

(Md 5).

Thereby congruence (B) fol | ows.
Now considering n = 5m + 3 from (1) we get (10m+3) (Sm+3) M(5m+3)
= [12(5m + 3)7 - ou(sm + 3) + 10] M(sm + 7)

[2(sm + 32 + 3] M(sm + 1)
M(sm * 2) (mod 5)

O (mod 5) in view of conpruence (B) and hence
we get congruence (A).

o

o

nweom ot

Solution IT by L Carlitz, Duke University.
V% shal |l make use of the Lucas congruence

(Fre) (D) tmoa o,

where p is prine and

a>0, r>0, 0<h<p, 0<s <p.

Then
Sm+1
- Sm+2 \/5m+s+2
M(5m+2) = szo s+1>( s )
T /5mt2\/Sme5t+r T /5mt2y/5Sme5t+3
: tzn(St”) st )" yn 5t+?_) St+l .
m m
592 mm+t+azmm+t)
s Foe
o - Q (mod 5).
Simlarly
Sm+2
& 5m+3)\/ Sm+s+3
ME SRS = szo s+l >( s )
m
= 5m¥3\ (5Sm+St+3 5m+3 5m+5t+u)
- tEO(StJrl) )+ 5t+2)( St+l

R rE':"(5m+3Xs,ma-s'a»s)
+20 5t+3 St+2

B+ F e

=0 (mod S).

220.

V¥ can generalize the above result in the follow ng way.
Let n = pm*k, where pis prime and 0 <k < p.  Then
mek l(pmk) pm+k+s>

Higpm & ic) s+l s

= 'f pz pmtk )pm+ps+k+t
§20 t=0 ps+t+1 ps+t

=0 t+1:k(:)(ttl)(m;s)(k:t)

o

t+1<k(“1 <k+t) (miod )
k+t<p

tence ) (ttl)(k:t) ] (mod p)

tt+i<k
k+t<p

is asufficient condition for
M(pmtk) =0 (nod p).
For exanple if k = 4 we have

3
2 (e)(T) =+ (D)0) + ()5 + (3)
4 +30 %60+ 35=179 =3 « 43,
so that

M(43m+4) = 0 (mod  43).

(Spring 1969) Proposed by Daniel Pedoe, University of M nnesota.

a) Showthat there is no solution of the Apollonius problem
of drawing circles to touch three given circles which has only
seven sol utions.

b) Wat specializations of the three circles will produce
0, 1, 2, 3 4, 5 and 6 distinct solutions?

Sol ution by the Proposer.

135

The circle C0 whi ch is orthogonal to each of the given Ci (i =1,2,3)

i's uniquely defined, unless the C belonp to a pencil of circles.

Inthe latter case the only tangent circles are two point-circles,
in the case when the pencil is of the intersecting type. The
circle C plays a very special role with regard to the Cl’

since inversion in Co maps each Ci onto itself, and nmaps a tangent

circle Conto a tangent circle €'. Wen there are 8 tangent
circles (which may be called the general case) these can be
split into four pairs. W call the circles in a pair "conjugate
circles". (For all this, proved al gebraically, see Pedoe,
Crcles, Pergamon Press, 1957). |f we specialize the C,- so that
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222,

there are only 7 tangent circles, the specialization nust aim
at meking a pair of conjugate circles identical, since if two
tangent circles which are not conjugate becone identical, the
conj ugat es al so becone identical, and the number of tangent
circles would reduce to 6, at nost.

V¥ therefore specialize the C, so that a conjugate pair C €'

i
becone the same circle, D, say. This neans that inversion in
C_maps the tangent circle Donto itself. |f this is the case,

p°must be orthogonal to C,- Ve therefore find ourselves with
three circles ci’ acircle co orthogonal to the ¢,, and a circle

1!
D whi ch touches the c; and is also orthogonal to €, Ve show

that this neans that two of the Ci must touch each other.

Invert with respect to a center of inversionon C. \& obtain
three circles ci" with diameters which lie al ong'the l'ine co'.

These three circles are touched by a circle p' whose diameter
also lies along C'. If twocircles with dianeters along the same

line touch on a point not on this line, they have the same

center, and nust therefore coincide. If the circles are distinct,
contact can only take place at an endpoint of a dianeter.

Since D' has only two points of intersectionwith the line

t 1] ] L H t
CO, and has to touch each of c1 , c2 R C3 at a point on Co’

the three points of contact cannot be distinct. Hence at |east
two of the circles Ci' i ntersect Co' at the same point. That

is, at least two of the circles Ci' touch each other. But if
at least two of the circles c1 touch each other, the nunber of

circles tangent to the three ¢, is readily seen to be 6, at nost.

i
Al'so solved by Charles W Trigg, San Diego, California. To

do justice to Trigg's detailed analysis of the problemand to
the nunerous di agrams acconpanying his solution, the editor has
found it necessary to postpone publication until the Spring
1971 issue.

Editor's Note: An expanded version of Pedoe's solution has been
published in his paper The Mssing Seventh Gircle, Elenmente der
Mat hemati k, January 1970, page 14.

(Fal'l 1969) Proposed by Jack Garfunkel, Forest Hills H gh School,
Flushing, NY )

In an acute triangle ABC, angle bisector BT, intersects altitude
AHinD Angle bisector cT, intersects altitude BH2 inkE,
and angl e bisector AT, intersects altitude CH, in F  Prove

3
m{_l+gk+m_3< 1
AHl BH2 CH3=

Sol ution by the Proposer.
Si nce Dl-il/m-il = tan(B/2)/tan B = 1 - tan2(3/2), etc., the

223.

224,

problemis equivalent to that

of show ng

tan?(A/2) + tan?(B/2) + tan’(c/2) 3 1,
equality holding if and only -
if A= B=C The proof of

this inequality follows fromthe
relation 1-tan(A/2)tan(B/2)

tan(C/2) =

tan(A/2) T tan(B/2)

whence Itan(A/2)tan(B/2) =
It follows that Itan2(A/2)
thus conpl eting the proof.

Al'so solved by Sid Spital, Calif.
State Col | ege at Hayward, who
noted that the triangle

need not be acute.

sty

1

(Fall 1969) Proposed by Sol onon W. Gol omb, University of
Southern California. Los Angeles.

In the first octant of 3-dinensional space, where x 2 O

>
20, 20,
z 20, identify the region where the follow ng " associative
aw" hol ds:

Z
LY 2 )z

Sol ution by the Proposer.

Both expressions are indeterninate on the line x =y =0, The
left side is also indetermnate onthe liney =z =0 Qherwise,
the identity holds in the four planes

N < X X

oonaronn

N OO
.

1/(z - 1)
and al ong the surface y for = # 1

If x #0 then x? = x‘b requires a = b, which in this case neans
y® = yz, sothat there are no other sol utions.

Al'so solved by R C Gebhardt, Parsippany, N.J.; Richard L
Enison, New York; C B A Peck, State College, Pennsylvania;
C L Sabharwal, Saint Louis University; and Sid Spital, Calif.
State Col |l ege at Hayward.

) 1/(z-1)
Peck notes that on the cylinder y = 2

| i my =, The cylinder is thus asynptotic to two of the

, limz_my =1 and

pl anes, namely the xy- and the xz-planes, and intersects the
other two (the ones parallel to the yz-plane).

(Fall 1969) Proposed by Charles W Trigg, San Diepo, Calif.

Inthe following cryptorithm each letter represents a distinct
digit in the deciml scale:

B(MADAPE)=5(APEMAD).
Identify the digits.
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i

cOoocococooo
PRrRrRrRrR R PR e
N R NN RN NN R

Sol ution by Jeanette Bickley, S. Louis, Mssouri.

Bel ow is the conputer programand output froma SDS 9un conputer.

The programtests all possible dipit replacements for M, A
D P, E and gives the unique solution ¥ =1 A=7 D=8,
P=0,E =5,

CCOM SHARE CENTER E 52
PLEASE LOG IN:E285;WJGEE
READY, SYSTEM wou

FEB 4 8:38
LAST LOGN FEB 3 16:26
-XTR
VER JAN 71

+QFD
*A /JBMADAPE/
v/
| NTEGER A,D,P,F,RIGHT
DI MENSI ON M(10),A(10),D(10),P(10),E(10)
90 FORMAT(SHMADAPE = ,17)
91 FORMAT(1012)
READ(0,91) M,A,D,P,E
WRITE(1,91) M,A,D,P,E
DO 20 1=1,10

LEFT = M(I)*100000+A(J)*10000+D(K)*1000+A(J)*100+P(L)*10+E(N)
RI GHT= A(J)*100000+P(L)*10000+E(N)*1000+M(I)*100+A(J)*ln+D(k)
IF(8%LEFT-5*RIGHT)20,30,20
30 WRITE(1,90) LEFT
20 CONTI NUE
STOP
END
#XTRAN
+C
QUTPUT:
CPTIONS.  CARD

+R

OPTI ONS:
SPROG

XLIBE JAN 14

012

WO L W W W W W W W W
AR DN
oo agal
S ¥ N N N e We e e o)
NN NN N N
00 0O 0O 0O CO OO OO CO OO CO
O (O (O (O © © © © © ©

o

MADAPE
MADAPE
* STOP*

($MAINE)20+1

128205

+EXIT

?
+EXIT

-LOG

USAGE
o
aT

225.

078
0.06 HOURS

Solution IT by R C Gebhardt, Parsippany, NJ.

The problem can be witten as

8000(MAD) + 8(APE) = 5000(APE) + 5(MAD).
Thus 7995(MAD) = 4992(APE) or 205(MAD) = 128(APE).
Since 128 and 205 are relatively prime, this equation is solved
by MAD = 128, APE = 205.

Al'so solved by Charles H Culp, Socorro, New Mexico; O ayton

W Dodge, University of Maine; Elliot D Friedman, Plainview,
NY.; \Walter \Wesley Johnston, Springfield, Illinois; Donald
Marshal |, Pasadena; Donald R Steele, Pine Plains Central School,
Pine Plains, NY; G egory Wil czyn, Bucknel|l University;

and the propser.

A 4-page solution offered by Aifred E Neuman, of the Mu A pha
Delta Fraternity, turned out to be incorrect.
(Fall 1969) Proposed by Way G Brady, University of Bridgeport.

Show that any proper fraction, a/b, can be witten as the product
of fractions of the type n/(n + m) for fixed m

Solution by Charles W Trigg, San Diego, California.
If k=b-a>1,m=1,clearly

. a ,a+l a+? at+k-2)_ a+(k-1)
P a+1 a+2 a+3 "atrlk-1) a+ k :
If b - a=1, then
2a 2a 2a + 1

5 = 5a + 1 . 22t 2° or in general,

ra ra ra +1 ra+ (r-1) .

rb ra+l ra+2 ra Tr
If b-ais composite, say b = a = pm then the nultiplicative
sequence may be shortened, i.e.,

a+(p-1m
a + pm

a a a+m

b a+m a+2m

Al'so solved by Cayton W Dodpe, University of Maine; Richard

L Enison, New York; Mirray S Klamkin, Ford Mtor Conpany
Scientific Research Staff; Frank P. Mller, Jr., Pennsylvania
State University; Bob Prielipp, Wsconsin State University -
Cshkosh; Gegory Wil czyn, Bucknell University; and the proposer,
who gave the reference to Dickson's Theory of Nunbers, \ol. II,

p. 687, Chelsea, 1952.
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(Fall 1969) Proposed by B. J. Cerimele, North Carolina State
University at Raleigh.

Derive a formula for the n-th order antiderivative of £f(x) = 1n Xx.
Solution | by Murrary S. Klamkin, Ford Motor Company.

~ V¢ solve the more general problem of finding the n-th order
antiderivative of «™ log x. This is equivalent to solving the
n-th order differential equation

n m
D = x log x.
; y g 227.
Let x = €. Then,
(1) D(D-1)(D-2) ... (D-n+l)y = ze(m+n)z
The complementary solution is given by
- + Z 4 ot (n-1)z
Yo =8, T e a _e
To find a particular soltion, we multiply (1) by e"(""")z and
use the exponential shift theorem, to give
(D4mtn)(D4mtn-1) +.. (Démsl)ye (™RIZ o o,
-{m+
Thus, y e (m+n)z = az t+ b and to determine the constants a and
b, we substitute back. Thus,
s 1
+ +2) ... = z
(m+1)(m+2) (m#n) (az+b)+a Lttt 2
and
. _I(m+l) 1 1 1
a'—(__yrm+n+l b-—am +—m*2+...+rn+ .
Finally,
i
- n-1 T'(m+1) 1 1 1
y ao + alx +...#-an_lx m log x - v il ARy 555
The proposed problem corresponds to the special case m = 0 and here ’
n
X 1 1
yp = a1 log x - 1 - T T

Solution II by the Proposer.

Successive integration by parts yields the pattern

n

D ™n x = (x"/n1)ln x - dx + ): C, x /(n-i)!
'l
where d = (llndn-l + 1/nn!,, dl = -1, and the ci's are arbitrary
constants. The solution of the difference equation ind is
- n-1
d, = ¥ (n+1)/nt where ¥ (n) : i21(1/1).

Hence, the formula takes the form

p™"1n x = (1/n!)[1n x - ‘l’o(n+l)]xn ¥ B

n s
Yo" -t

where P_ =
n .
i=1

which is readily verified by induction.

14l

Also solved by Michael A. Brodtrick, Affton, Missouri; Clayton
W. Dodge, University of Maine; Richard L. Enison, Nav York City;
W. Wesley Johnston, Springfield, Illinois; Peter A. Lindstrom,
Genesee Community College, Batavia, N.Y.; Frank P. Miller, Jr.,
Pennsylvania State University; Mavrigian, Youngstown State
University, Youngstown, Ohio; William G. Nichols, Blacksburg,
Virginia; C. L. Sabharwal, Saint Louis University; Sid Spital,
California State College at Hayward; Gregory Wuleczyn, Bucknell
University.

(Fall 1969) Proposed by R Sivaramakrishnan, Government Engineering
College, Trichur, South India.

I f v(n) denotes the number of divisors of n, and u{n) the Moebius
function, prove that

) + uin) £ tnd
with equality if and only if n is a prime.

Solution by C. B. A. Peck, State College, Pennsylvania.

If n =1, the statement is false, since each term is 1. |If

n > 1is not free of square factors, u(n)_: 0 and ©(n?) > (n).
since every divisor of n divides n2 but n“ does not divide n.
If n>1isfree of square factors, u{n) = 1 and t(n?2) = 3
when n is the product of k distinct prime factors. If nis
prime, k = 1 and equality holds. If n is not prime, k > 1 and
inequality holds strictly.

k

> 2" = 1(n)

Also solved by Peter A. Lindstrom, Genesee Community College,
Batavia. N.Y.; Donald E. Marshall, Pasadena, Calif.; William

G. Nichols, Virginia Polytechnic Institute; Bob Prielipp, Wisconsii
State University-Oshkosh; Sid Spital, California State College

at Hayward; and the Proposer.

(Fall 1969) Propsed by Charles W. Trigg, San Diego, California.

In the decimal system, 1122 is a multiple of 15 + 25 and contains
g glts ogher than 1 and 2. Also, 3312 is a multiple of
and contains no digits other than 1, 2 and 3, and

contalns each of these digjits at |east once, Dn comp rab
multiples eX|stforSg 2§ §+u and 1° + 25 + § g+5?
Solution by the Proposer.
5 5 5 5 _
M=21"1+2°4+3+4% =1 +32+ 243 + 1024 = 1300, so all

multiples of M terminate in 00. Curiously enough, no digit

> 4 occurs in any of the expanded powers or their sum. In the
ensemble, each of the digits 0, 4, 2, 3, and 4 occurs with the
sane frequency, except that there is one 4 short.

Similarly, inP=1%+ 2%+ 3%+ WS+ 5% .1+ 32+ 243+ 1024
+ 3125 = 4425, no digit > 5 appears. |If all flve positive digits
are to appear in kP, then k must be of the form 1 + 4n. For
k = 5, 53, 93, 121, and 125, the integer kP is composed only of
some of these five digits, but the smallest multiple of P in which
all five and only these five digits appear is 1243425 = 281(4425).

Extending the series, the smallest values are:

216(].5 + 25 * e ¥ 65) = 2635416

256‘4(15 + 25 + ... t 75) = 74376512



142

229,

257(15 + 25 oy

5

+ 85) = 15876432
1063(15 + 27+ ... 5

+ 97) = 128436975,

In the last two cases, each digit appears only once in the
product.

Also solved by Jeanette Bickly, St. Louis, Missouri; Clayton

W. Dodge, University of Maine; R C. Gebhardt, Parsippany, N.J;
W. Wesley Johnston, Springfield, Illinois; Donald E. Marshall,
Pasadena, Calif.; C. B. A. Peck, State College, Pennsylvania;
William G. Nichols, Virginia Polytechnic Institute; and Gregory
Woulczyn, Bucknell University.

Wulczyn added multiples of 17,700 to 4425 on a desk calculator
to produce the following products, listed with corresponding
multipliers of 4425:

1243425 - 281
1314225 - 297
1544325 - 349
3314325 - 749
5314425 - 1201
11332425 - 2561
12341325 - 2789
14111325 - 3189
14235225 - 3217
14341425 - 3241
21545325 - 4B69
22324125 - 5045
23421525 - 5293
25315425 - 5721

31333425 - 7081
32513125 - 7325
34112325 - 7709
34413225 - 7777
35245125 - 7965
35422125 - B800S
42325125 - 9565
42431325 - 9589
Lu4u31425 - 10041
45334125 - 10245
51334425 - 11601
54113325 - 12229

(Fall 1969) Proposed by Carl L. Main, Shoreline Community Collepe,
Seattle, Washington.

Let Al and A2 be tangent unit AL A,

circles with a common external
tangent T. Define a sequence
of circles recursively as fol -
lows: 1) Cl is tangent to T,

A, and A,; 2) C. is tangent . £x
toC, ., A and A , fori = 2,
i-1 )

3y aas
Find the area of the region 1C1'

Solution by Murray S. Klamkin, Ford Motor Company Theoretical
Sciences Department.

Using the formula [H.S.M. Coxeter, Introduction to Geometry,
John Wiley, N.Y., 1961, p. 15]

2

2(a2 + b2 + ¢+ d2) =(a+b+c+ d)2

230.

relating the four quantities a, b, ¢, d which are the reciprocals
of the radii of four mutually tangent circles, we get

= + =
(1) A, =A +2 2/§‘/§+_1.A0 0,

where A denotes the reciprocal of the radius of circle C . It
follows that
A = 20+ n).

Whence,
T o 1 i 1 2
Area .C. = ¢ ¥ =f V==t =
[ e ity Dz~ v 421 0 [EYSD LAY YY)
or
2 2 3
_nw n _n’  3m
Area-:-é—-f —&3—--2!.—2-1—2 T,
Remark: It is to be noted that the sequence generated bv (1)

is such that Ay is always integral. A more general sequence with
this property IS given by
29 1/2

_ 2 2 2
Bn+1 S aBn +b+ (a -l)(Bn -B, ) + 2b(a+1)(Bn»B0) + c'd

(see also Math. Mag. 42 (1969) pp. 111-113).

Also solved by Sanford A. Bolasna, University of California

at Riverside;, Laura DiSanto, Calgary, Alberta, Canada; Clayton
W. Dodge, University of Maine; G. Mavrigian, Youngstown State
University, Ohio; Frank P. Miller, Jr., Pennsylvania State
University; Ronald W. Prielipp, University of Oregon; Sid
Spital, layward, California; Gregory Wulczyn, Bucknell University;
and the Proposer.

(Fall 1969) Proposed by Murray S. Klamkin, Ford Scientific

Laboratory.

Determine a single formula to represent the sequence {A_},
n=121, 2, 3, ... wWhere n

Apn+l = Bnl &

Apn+2 = Bn2 ?
. . n=1, 2, 3, ...
AP“*P } B“P ’

and where the {Bn }yr=1,2 ...,p arep given sequences.

r

Solution by the Proposer.

The problem is equivalent to finding a simple representation
for the periodic sequence 1, 0, O, .+s, 0, 1,0, O, vau, O, A, .uu,
of period p. |If w denotes a primitive pth root of unity, then

R i

143
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if risamultiple of p; otherwise it is zero. Thus,

E Bnr“' + ™ T4 m2(n—r) + wss ¥ w(p-l)(n-r)}
r=1

il 5 LS(ar)

0

EP
r=l s=

Solution II by C. B. A. Peck, State College, Pennsylvania.

]
0
d |-

[
o~

An = Ba,b where a = [n/p]l and b = n - [n/plp and [c] is the

largest integer not exceeding c.
Similarly solved by Richard L. Enison, Nev York; and Sid Spital,
Hayward, California.

Proposed by David L. Silverman, Beverly Hills, California.

a) Wha is the smallest circular ring through which a regular
tetrahedron of unit edge can be made to pass?

b) Wha is the radius of the smallest right circular cylinder
through which the unit-edged regular tetrahedron can pass?

Solvers are invited to generalize to the other Platonic solids.
Solution by Charles W. Trigg, San Diego, California.

a) MN is the bimedian joining the midpoints of the opposite
edges B and @ of the unit tetrahedron. Sections of the tetra-
hedron by planes perpendicular to MN are rectangles with a
constant perimeter of 2 The one joining the midpoints of

AC AD, BD, and BC is a square. Its circumcircle has the smallest
radius, /f/u, of the sections' circumcircles. B

Take AE = AF = x on AD and AC, respectively.

TenEF-x,andy:BF:BE:
+ 12 - 2(1)(x) cos 60° = x* - x + 1,
The altituge to EF from B is
givgn by h° = y2 - (x/2)2 =
(3x° - u4x + 4)/4. The area '
of triangle BB is xh/2. M
Hence the eircumradius of

“ 'H;ni'nu‘~
the triangle is given by , x-section
R = xyy/4(xh/2) = y“2h.

Consequently, ‘
R? = (xz-x+l)2/(3x2-l&x+l&). "\ C
Setting the derivative of RZ A - v

with respect to x equal to zero E

and simplifying, we have N
(x%-x+1)(3x°-6x 247%-2) = 0. D

The first factor has only imaginary zeros.

The graph of the second factor has no

horizontal tangent, but does have a point of inflection at
(2/3,8/9). Hence there is only one real root of the equation.

This can be found by Horner's method, or otherwise, to be
0.3912646668. This corresponds to R # 0.4478, which is the

radius of the smallest circular ring (of negligible thickness)
through which the tetrahedron can pass.

The ring can be placed in contact with the tetrahedron at E and
F and barely passes over B. It then can be dropped down into
contact with corresponding points E' and F' on the triangle
ABC and rotated to pass over D and hence over the tetrahedron.

b) If the tetrahedron resting on a plune isS rotated about an
edge until it rests on another face, its projection on the plane
varies. The circumcircle of the projection is smallest when
the tetrahedron is at midposition. There the projection is a
square with a circumradius of 1/2, whica is the radius of the
smallest rigid right circular cylinder through which the tetra-
hedron can pass.

If the cylinder is flexible, it need have a radius of only

1/w to permit passage of the tetrahedron. (See, Charles W.
Trigg, Mathematical Quickies, McGraw-Hill Book Co., 1967, pages
49, 158-159).

Remarks by the Editor.

Solvers are invited to comment on the following fine points
posed by Mk Trigg:

A rigorous proof would require also that it be shown that

1. Thering as it rotates onto the tetrahedron will not catch
on B and BC before it reaches the level of the 0.88865 by
0.11135 rectangle which has a diameter of 2R.

2. No non-isoscelesplane section through B has a smaller circumcircle.

3. In part b), no other attitude of the tetrahedron will have
a projection with a smaller circumcircle.

With regard to item A, the editor notes the following:

Consider the circumsphere of the rectangular pyramid determined
by B, E, F, G and H, where G and H are points on B and BC

such that B5 = AE = B = AR Thus the plane containing EGHF is
perpendicular to the bimedian MN connecting the midpoints of

M and DC Since the dihedral angle between the planes containing
BGH and EGHF is obtuse, the plane of BH- is nearer the center

of the sphere than is the plane of EGHF. Consequently the
circumcircle of triangle BEF is larger than that of the rectangle
EGHF. It is therefore clear that the circumcircle BEF can be
rotated about EF so as to contain BEFGH, and can then be slid
perpendicular to the bimedian (or in many other ways) past the
midpoint of the bimedian and on to a position with relation to
OC that is symmetrical to its former relation to AB. From that
point, it slides off the tetrahedron in a manner similar to

the way it slid on.

As for item 3, when the tetrahedron is at the extremal position de-
scribed in Trigg's solution, the central axis of the cylinder
coincides with one of the bimedians of the tetrahedron. In

this position the two edges of the tetrahedron connected by this
bimedian must |ie on diameters of circular cross-sections of

the alleged minimum cylinder. It is apparent that any attempt

to increase the length of either one of the edges would necessitate
tilting or displacing the bimedian, thus reducing the length

of the opposite edge and destroying the regularity of the tetrahedron.
This verifies Trigg's conclusion in part b).

The Editor invites comments on the question raised in item 2,
regarding the possibility of a non-isosceles plane section through
B with a smaller circumcircle.
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BOCK REMIEVS
Edited by
Roy B Deal, klahoma University Medical Center
1. Squaring the Grcle and Qher Mnographs By EW Hobson, HP. Hudson,

AN Singh and AB Kenpe, Chelsea Publ1shi ng Conpany, Bronx, NY.,
xi + 51 pp. $4.95.

This series of four monographs, Squaring the Grcle by Hobson, Rul er

and Conpass by Hudson, The Theory and Construction of Non-Differential
Functions by Singh and How To Draw A Straight Line; Alecture on
Lingages by Kenpe are not only interesting and informative but scholarly
and stimulating froma historical standpoint as well.

2. Congruence of Sets and O her Mnographs By W Sierpinski, F. Klein,
C Runge and L E D ckson Chel sea Publi shi ng Conpany, Bronx, NY.
V + 104 pp.

The monographs i n this book: On the Congruence of Sets and Their

Equi val ence By Finite Deconposition by Sierpinski, The Mat henati cal
Theory of the Top by Klein, Gaphic Methods by Runge, and Introduction
To the Theory of Al ?ebrai ¢ Equations by Dickson, like those in the
previous book are of interest for content as well as history.

3. A Short Hstory of Geek Mathematics By James Gow, Chel sea Publi shing
Company, New York, NY. xiT + 325 pp.

The background, the side effects, the details and the denise of G eek
mat hematics presented in a throughly facinating account.

4. sets, Lattices, and Bool ean Al gebras By James C. Abbott, Allyn and
Bacon, Inc., Boston, Mass., 1969, xiii + 282 pp. $11.50

The basic results of naive set theory, lattices, and Bool ean al gebras
are devel oped in a very readabl e manner froman axi omati zation of sets.
The Zernel o- Fraenkel Skol emsystemis used for the devel opnent and a
brief descriptionof the von Neumann- Ber nays- Codel theory of classes
is included in an appendi x.

5. Commutative 2ings By Irving Kaplansky, Allyn and Bacon, Inc., Boston,
Mass. 1970, x *+ 180 pp. $10.95.

For the reader who is faniliar with the fundanental concepts of nodern
al gebra, including a little honology theory, this is an excell ent account
of many of the basic theorens of comutative rings.

6. An Introduction to Algebraic TOFOI 09y By John W Keesee, Brooks/Cole
Publ 1 shi ng Conpany, mont, ifornia, 1970, ix + 140 pp.

Thi's very readabl e introductory aceount devel ops the basic parts of
sinplicial homol ogy, the honotopy category, the honol ogy groups, and
sinplicial approximationsdirected to a chapter of interesting

appl i cations, including sone classical fixed point theorens and theorens
on mappi ngs of spheres.

7.

10.

11.

12.

13.
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Siegel, Wiley-Interscience,

Topi cs in Compl ex Function Theory By CI.
New York, N.Y. 1969, IX + 186 pp. $9.95.

Oly a nmodi cum of conpl ex function theory is necessarytoread this
excel | ent account of elliptic functions and uniformization in this
first of three volumes on conplex function theory by this outstanding
mat hemat i ci an.

Nunerical Methods for Partial Differential Equations By WlliamF Anes,
Barnes and Noble, Tnc., New York, NY., 1970, x + 291 pp., $10.50.

For the reader with a nodest background in advanced cal culus, a little
nunberical analysis, and an interest in this type of applied mathematics,
this is a very practical hook. It provides background, including
inportant comments on classification, insight, pitfalls, and an extensive
bi bl i ography. Basically the book deals with the classical parabolic,
elliptic, and hyperbolic equations with initial value, boundary val ue,
and ei genval ue conditions, but coments are nmade on non-linear and hipher
di mensi onal probl ens.

Probabil ity For Practicing Engineers By Henry L. Gray and Patrick L.
ell, rnes and Noble, Inc., New York, NY., 1970, xi + 717 pp.

A useful introductionto basic probability, statistics, and stochastic
processes for engineers.

lied Probability By W A Thonpson, Jr., Holt, Pinehart, and W nston,
New York, NY., 1969, xiii *+ 175 pp.

An interesting introductionto probability where the enphasisis on the
use of a wide variety of applications as a neans of introducing the
subject. The result is that the book may have a much wider appeal than
was originally intended, because one who is nore theoretically inclined
woul d find his maturity and insight enhanced, and one who has specific
needs for the applicationswould find it practical.

Conput ers, Chess and Long range Planning By MM Botvinnik, Springer-
Verlog, New York, H.Y., %970, XiTT + 89 pp. $3.50.
Facinating for the mathematically inclined chess afici onado.

Per cent age Basebal | By Earnshaw Cook, \Waverly Press, Inc., Baltimore,
Maryland, 1964 and 1966, xiii + 417 pp.

The reader with some know edge of mathematical statistics and a bent in
this direction will find a variety of stinmuli to ask a variety of
addi ti onal question for which the data is available in this book to
undert ake findi ng answers.

Mat hemat i cal Soci ol ogy By Janet Holland and MD Steuer, Schocken Books,
New York, N.Y., 1970, viii + 109 pp.

A sel ected hibliography of 451 annotated itens on mathematical soci ol opy
whi ch includes 340 articles and 111 books.
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——— e e —— NEW | NI TI ATES
Values of the Mudulus: ITII. AuxiTiary Tables By Henry E. Fettis amdt
Janes c. Caslin, Aerospace Research Laboratories, (fice of Aerospace
Resear ch, Uhi ted States Air For ce, Wright—Patterson Ar Force Base, (hio, AL AFHA  University of AL
1970, IV + 162 pp. ' .
Debor ah Ashford Charl es Gmen India Lowery W1 |iam Roper
Law ence Billlits Robert Hardy Shl r! ey Mahan Donal d Rowell
2 Barlow's Tabl es +Ed| ted by LJ. Comrie, Barnes and Noble, Inc. New York, cary Bradford Virginia Harrison V’vglllachAllluter gan; sglke| ds
:l Ig;o bell Janice Haynes ry McCain amela Sketo
‘ xd 258 pp. $3 25 paper, %.50 cloth. }]q(:;-rgi &‘."gp; ich Vi rgrni a ﬂ"e m $ahaikdr Blasloff Suzanne Sloan
— Sal 'y Davenport Dudley J. Herrin, Jr. Jades Snowden, Jr.
3 Programmed Statistics By R chard Bellman, John C Hogan, and Ernest M Debor ah Davi s Randal | Hian John Musselman Jani ce Spangler
Margaret Davis Li nda Hodo Rebecca Nel son Nancy Spencer

Scheuer, Folt, Rnehart and Whnston, Inc., 1970, viii T 115 pp. e ooy Joseph Huggins Victor Norman Ronal d St ael e

v H . High DeJarnette, Jr. Ann Jobson Ani ta 0'Neal Andr ew Stergiades
4. Henentary Differential Equations RLE Schwar zenber ger, Barnes Edward Eadon Marj ori e Johnson Mel i ssa Pardue JesseI 'll'!.ltun, 11
and Noble, Inc New York, NY., 1970, xi + 98 $3. 7 Rita Ellison Andr ew Jones Phillip Partridge Russel | Turner
' ! ' v Pp. ’ Janes Entrekin Wiley Justice M chael Patterson Denni s Utley
Larry Evans N na Kni ght Terry Peak I’\BAarﬁarla mll}ers
WII1amF Denni s Kross Jane Pearson chael s
5 Single Variable CGalculus By Melvin Henriksen and MIton Lees, Wrth WiliamFare RS o Jane Pearsar M chae, Ve

Publ ishers, Tnc., New York, NY., 1970, xv + 624 pp. $10.95 Patricia Wright
Willfam Wi ght

Martha 7iegler

Neal Law ence Ti m Raines

Patrick Frederick
John Rasberry

Hugh Galin Sheryl Lothrop
Gmg 4 asscock

ALABAMA BETA,  Auburn University

6. Cal cul us Expl ained By WJ. Reichman, Barnes and Noble, Inc. New York, NY.,
1969, viii + 331 pp. $3.00 paper, $5.75 cloth.

Henentary A gebra

Bel nont, California, 1970, xii + 319 pp.

By Lee A Stevens, Wdsworth Publ i shing Gonpany, Inc.,

Debor ah Booher

Li nda Rae Bostwick
N Carol yn Claybrook
Glenda Paulk Cody

Virginia Buck Fonde
Patricia Ann Huffmaster
Dougl as Carrol | Hunt
Gregery Al fred Johnson

Willa Dean Mtchell

Ear| Robert Merecock
W/ liamLouis Overcamp
Denni s Benton Parkhurst

Janie Marie Povers

Dor ot hy Sherling

Bet hany |rene Thospson
Enly Elen Vann

Carol Lee Weston

Mary Sanders Lavender Maria Paul
W1 1iamArthur Mastin John Leo Post
Susan Loui se Merwin

Emily Heege Col a
Brenda Gai | Davis
Janes Edward Edgar

8. Mathematics For Henentary School Teachers By Meridon Vestal Garner,
Goodyear Publishi ng Conpany, Inc., Pacific Palisades, California,
1969, xii + 384 pp.

ALABANVA GAMMA, Samford University

A planidrome reads the sane backwards and forwards.

etc,

Marvin C Chanpi on

David G Hint

Hughlen |. Murphree

Mry R Tayl or

PLAN DROMES Robert D. Cumbie Mlton C Lovelady Lea R. Riggs Sandra J. Terry
Roxianne S Davis Catherine I. Mtchell Donna C  Starcher Donna H Vanderver
6 -5 =1 10-1 - Ernest Gilmer, Jr.
62 _ 52 =1 102 _ 12 AR ZONA ALPHA,  Uni versity of Arigona
2 2 =9 Duncan A Buell Gervase M. Chaplin F. C. Druseikis David E Lews
562 = M5 5 = 1111 60° - 512 = 999 Themas E Canavan
5562 - 445 = 111111 5602 - 551 : 9999 AR ZONA BETA  Arizona State University
2
55567 - su4s® s 11111111 5560° - 55512 : 99999 Terry ranson
etc CALIFORNIA ALPHA, U. C. L. A.
! etc
9-2 =7 _ Hernan Lee Alberts Dani el Evans Gary W. Maeder Daniel |. Roberts
2 8- 3 =5 Candace N Aral Ceor ge Fox A an Har der Lorry D, Rosen
- 2? = 2 2 L Ballard, Jr. Stave Goldsworthy Donald E Marshal | Betty Restagno
9 2 = 77 8 - Ross ’ ona;
2 -3 = 55 Igor Bazovsky, Jr. Cheryl Gurevitz WIliamR. Marsoen John' Scheld
59" - 522 = 777 2 2 Jerry Burman Ruth L. Hail Retkn Mirates Janet M Seaton
9 9 - 58" - 53 = 555 John' T Carlan Arthur | chnoweki ) ) §" }/I aRJ. S:Sth el ds
= = Al an R. Chal ek Jeannie S Joe Patrick Mirphy aul a R. Slean
2 332 2 =177 5582 = 5532 = 55855 R chard Cho Lynda M. Johnson Shahbaz Noorvash Andrew M. Srrihtlh
859" - 3552 = 77777 ssss” - 5353% = 59555 G Qe e T T L
— t M chael E, Costanza Dale B Kaz Aan J. Pickrell Thomas E Stewart
" etc etc M chael Cravits Kalrman Ketzlach Ronald V| Pleger Clement L Tai, Jr.
7 4 = ' Agatha M Donatto A an Cary Krinik Kennet h Pietz Peter M Woiceshyn
- =3 11 -0 = 11 Vita Drucker \ﬁlct of LaForest S even B, Poltrock JahBsHighylde
2 2 Gary Alan Engel Dale A Larson th E. Poulsen )
5 -n 5 = 33 112 _ g2 = 121 c‘nr\i/stopher J. Ennis Richard P Yang
- 54 = 333 612 - 50° = 1221
~ 554 = 3333 561° - 5502 = 12221
2 _ 55542 = 33333 55612 - 55502 = 122221
etc,
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Leslye E bSanders

LOUISIANA ZETA.  University of Southwestern Louisiana

Frank H, Allen
Judy Arceneaux
Barry L. Batman
tary Lou Bell
Cathy Bogne

Glynn R, Broussard
Lynn B, Comeaux
Vernie L, Davenport
Barbara T. DeBlanc
sally Dorr

Robert P. DuVerney
Steven Giambrone
HMason Gilfoil
Becky Griep

Edward G. Grimsal
Berton Guidry
Sherrel Hammack
buzanne L, Hebert
Rose Anna Henry

MAINE ALFHA. University of Maine

Robert W. Beal
Glenn E, Bushel
Audrey A. A, Carter
Denni{s A. Cassily
Nat Diamond

Pamela S, Edwards
Richard B, Fuller

Janice E Greene
Miriam H, Gregg
susan J, Hall

susan M. Harper
Robert J, Holmes
Gerald R, Kidney
Eric b. Langford

MARYLAND ALRHA, University of Maryland

Julie E, Cosner
Mary H ¥, Fang
Barbara Feinglass
Thomas V. Hall

Maxine Hormats
Rae B, Hurwitz
Minnie C, Kung
Hark E, Lachtman

MARLAND BETA, Morgan btate College

Michael 0. Armstrong
Myra ¥, Curtis

Earl 0. Embree
btephen J. Gewirtz
.Yera I, Grady
Thomas L. Green

Cynthia ¢, Harvey
Eldridge ®, Hayes
Beverly A, Hepward
Elizabeth L, Holley
Hellie B Howard
Lew Kowarski

Yvonne B. Juttonville
Paul Katz
Harguerite Landry
James Larke

Donald Lemoine

Lois M, Lundberg
Donald L. Lytle
Louis Maraist
Anthony J, Hark

Raymond J. McGeechan
James E. Nelson
Elizabeth B. Olsen
Kathleen A. Perry
Janet M, Poliquin
Lewis G Purinton
David J, Ryan

Barbara 5, Latterner
susan C. Loube
Barry W, Philipp
Brian R, stanley

Larry L. Lewis
Pergy A. Mason

May J, McKesaon
Henry L, Hurray
Willie B, Rganna

MASSACHUSETTS ALFHA, Worcester Polytechnic Institute

Martin K, Anderson
Barry F. Belanger
William F, Dudzik

David W, Hobill
Romeo L. Moruzzi

Lorenzo M, Narducci
Eupene E Pettinelli

Cynthia M, Young

Brenda J, Reder
Helen B. shorten

Claudia J, Reynold-
Edward Sherman
Walter E, Spain
Authur J, Toston
Lorene Turner
Gloria J, Underwood
Walter ®alker
Jesaie B, White
Robert L. Yearby

Robert R, stevens
Lawrence s, dStewart
Judith A, Threadgill
Lewis J, Todd

Bernard A. Tonnar
Marguerite M, Villere
Brian G, Von Gruben
Pay H, ®Whithan

Richard “cLaughlin
Arnold Regan

buzanne schwarz
Donald J, siron
Clarence E, bins
Kathleen P, stevenson
Henry stewart

Donald J. Vincent
Kenneth L, ¥hite

Andre Edgar Samson
Gordon B, smith
bandra J, bpearen
Marshall A. Todd
James B, Wagner
Donald w, Woxd

Barbara L, Turner
Jean », Weska
Frank. %, Wilkins
Carol 4, Yudkoff
Carol Zyakowski

Sheila ¢, Ray
socrates W, Saunders
Linda A. Stockton
Walter R, Talbot
Larmour B, Templeton

Richard P, sanAntonio
John C. sexton

MASSACHUSETTS BETA, College of the Holy Cross

John P, Balser
Robert », Bonney
Frank L. Capobianco
Patrick W, Devaney

Jeffrey ¥, Dowd
James R, Fienup
Janea E, Gable
John J, Kane

MICHIGAN BETA, University of Detroit

Haryann ¢, Barron
Donna Boris
Kathleen Broniak
Mary L, Caspers
Ralph M, Cellars

Karl W, Folley
Edward F, Gehringer
susan Langenhorst
Patricia McHahon

MICHIGAN GAVIVA  Andrews University

Roy A. Benton
Ralph E, Connell
Thomas €, b, Dang
Phyllis J. Evanenko
Richard H. Guth

Theodore R, Hatcher
Welton L, Ingram
Ray A, Jorgensen
Bruce A. Kessalring

MINKESQTA ALFHA.  Carleton Collene

James Bleeker
Donald A. Camp
David H, Casmer

Elizabeth A Downton
buzanne Gednev
Jeffrey E, Hoskins

MINNESOTA BETA, College of St. Catherine

Virginia ¥, Babezak
Kristine ¥, Jensen
Am Marie Johnson

sister Charlotte HWills
Hary E, Olden

MINNESOTA GAMMA, Macalester College

Barbara J, Bullis
Carol A. Erdahl
April J, Evans

Dennis R, Falk
Justin E, Halverson
Thelma Hedgepeth

MisSIsSIPPI ALPHA, University of Mississippi

Prentiss K, Alford
Lynda L, Allen
James D, Bovles

Kathy €. Haskett
Hartha H, Johnson
Paul A. Landry

sallendra N, Chatterjee Harry C, Leeper

Edward F, Donovan
John M, Flowers, Jr,

Arthur B, Lewis
Michael R. Long

MONTANA ALFHA, University of Montana

Kathleen M, Beall
Donna W. Conklin
Tana L, Cushman
James R, Dobesh

Allan ¥, Jensen
Abdullah Khoury

Lothar W, Maortin
Martin J, McFadden, Jr,

MONTANA BETA, Montana btate University

sallie B, Abbas
Margaret B, Banning
Margaret J, Berner
Dave Burton

Robert b, Chew
Winifred T, Corcoran
susan Cumaings

Moira X, Davis
Harlen K. Homes
Marcia Heiser
Kathleen Hendricks
Bernice Hildreth
Vicky L, Kouba

MISSOURI ALFHA, University of Missouri,

Charles E. Ader
Edward R, Atkisson
William L. Block
Karen Brown

John Paul Dittman
Robert Jay Eller

Denis E, Fessler
Marsha Harlan

Calvin Case Henderson
Chris Korschgen
Kai-Ming Li

Francis J, Lattanzlo
Elizabeth L, Michael-
Joseph W. Paciorek

Paul Oser
Linda Rainone
Michael Ricei
Francis biu

Margarita C, Krieghoff
Martha Am Luss

Roger W, May

Donald H, Rhoads

David W. Hunter
Simon Yat-bing Kan

Kristin ¥, Palan
Am €, Rothstein

Timothy Hultquist
J, Elaine Lockley

Benjamin A. Hoore
Am L, Van Ostenbridge
Linda A. Patterson
Milford B, Puckett
Cheater W, Richards
Richard J. Shams

James E, 0'Connor
Richard A. Reid
Jerry L, Roger
sam H, bperry

Russell J, Leland
Connie L, ¥urphy
Bonnie Nelson
Jean Paterson
Leon C. Peterson
Julia A bweet

Gregory W, Mas
Martin Kent Perry
Leo Anthony bander
Vicki butherland
Maureen M. Sweenay

David ¥, Perri
Robert F, Putea
William R, btout

Barbara Undv
Mary R, Winski
Dadtaes | Rz ik

Erik N, sorensen
Barbara A. Swope
H Carsten Thonsen
Robert A, Wonderly

David L, Libby
Hugh ¥, Mavnard

Mary A, schwartzbauer
Joan €, Vogel

sady Matalon
Jean Probdt

Jane A, blade
Lawrence B, btrong
Bettye K, Weeks
Nancy L, White
David L, Kicker

Gary L, Webber
Dennis M. Wilde
Wesley D, Kinkier

Pat Teigen

Edward O, Thompzon
Alfred W, Turtle
Ted R, Wiest
Marilyn R, Wofford
Edith J, Bright

Mary Petty Thoenen
Helen Veith
Rchard J, Vosa
Tan Winkler
Kenneth J, York
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MISSOURI GAMIVA  st, Louis University

Alfred C. Beradino Linda J. Gentile
Kathleen ¥, Sadie sr, Katherine Glosenger
Catherine 5, Broughton Paul G, Griesemer
Patricia A. Buder Marv K, Harris

Linda M, Bunn Ronald E, Haynie
Robert Bunting Gary G, Hendren
Patricia R, Carroll Michael ¢, Hrize, Jr,
Kenneth ®, Chaplin, Jr, Thomas W. Hughes
Tak-Yuen J, Chong Janice ¥, Hummel

Mav Am Collier Marv Theresa Hutchinson
Arjun Daagupta Michael L, Kelemen
(5ister) Anne D'Alessio Patricia A. Kelly

Lee R, Eakin Donald J, Kenney

Lois M. Eason Aaron H, Konstar

John J, Engelhardt Karen A. Xribs

Paul C, Figura Robert E, Lanb
Chauncey E, Finch Kenneth D, Lapenta
Kathleen M, Flood Kenneth R Lauberg
Nanev A, Fook Thomas M, Lester. 8,1,
Robert A, Ganse James T. Linnemenn

NEBRASKA ALFHA. University of Hebraska
Kenneth A. Brakke

Jo Janet Holcomb
Ronald b, Hdm

Marilyn F, Johnson
Gerald I, Keasling
Terrance R, Price

UER HAMPSHIRE ALPHA, University of New Hampshire

Edward G. Fisher
John M, Foley
Maurice L. Fortier
Carroll E, Haseltine

Margaret C. Hill
Kathy King
Beverly G Mam
Albart Mavhew

NEW JERSEY ALPHA, Rutrers University

Jesse Greene Peter Jewell

Charles Handel Robert King
Harvey Hirschhorn Nicholas Migliozz
Stephen Hoyle Kenneth Kappa

NEW JERSEY BETA, Douglass College

susdn ¥, Graham
Linda C, Holmes
Virginia Homberger
Dawn C. Kleinfield

sharon Anderson
Kathleen A. Bilbao
Nancy E, Carle
Carol T, Clairmont
May E, Figliuzzi

M2V JERSEY EP5ILON, saint Peter's College

Joan Balder John Harrison
Elaine Ciarkowski Donna Hauptvogel
Richard Drozd Stephen Janiszewski
Karen Fristensky Linda Jannuzzi
Jose Gallo Walter Jaronski

Kenneth Hamilton

HEW JERSEY GAVMA Rutgers College of South Jersey

Linda Bonanno Edward H, Krystek

NEW JERSEY ZETA, Fairleigh Dickinson University

John J, Carpolieto
Richard J, Crowe
Gary G Gunderson

Wayre H, Kempton
Aram 5, Kratlian
Jacqueline C, Mianowski

NEW MEXICO ALRHA.  New Mexico state University

Deborah Allrmon
=*Den®, Cleveland

Cdrleton Evans

Lawrence T, Fisher

Willian Bryan Harvey
Donald %, Hoock
Carolyn Joyce Jacobs

HEW YORK ALPHA, byracuse University

5, Willjam Becker
Kathleen G Blau

Lawrence E, Copes
Kaniel Kerschensteiner

sr, Joan Lipsmeyer
John R, Lonigro
Donald G, Marks
Ichiro Matsuda
James R, Metz
Patricia M. Moore
Grace E, Murphy
Kevin T, 0'Brien
Kar‘en E, Oelschlaeger
Anne E Phillips
Jean E, Powell
Ruben Prieto-Diaz

sr. Rose M, Przybylowicz

Mohamad R, Radmanesh
Barbara E. Ravnolda
John M. Ritter
Kathleen A. Russell
Mary Ellen Rvan
Charder L. babharwal
James D, saffa

Eugene Rasschaert
Jesse C. Rhodes
Marjorie L., Roemmich

Barry G. Morgan
Christopher Moulton
Patricia Murphy
Carolvn Pastor

James Perchik
Bruce Reeser
Robert Rosati
steven bharf

Barbara N, Lee
Am sandlin
Heide bchneider
Kathleen B. bhav

Maureen Kennedy
Lynn Kodrich
Michael HeManus
Ramiro Miqueli
Andrew Pascale

Elaine Kyrlacou

John P, Pilch
Rayrond J, Raggi
Sharon A. bullivan

sharon A, Mcleal
Randolph Lee Reese
sheryl Parker

israel ¥, Knobel
Daniel G, 0'Connor

John L, saino
Barbara €, Schmidt
Mak J, sebern b.J,
Barbara A. seiffertt
Mary Ellen shea
Dominic C, boda
Robert L, sorrek
JoAnn btanton
Richard W, stodt
David ¥, Thissen
Barry Titcomb
Louis A, Vlasaty
Anne L, Vogel
Richard A, Warren

sr. May Walter Whited
Frederick %, Wiese, Jr,

Doris E. Wolff
Leonard J, Wrobel
Thwas E, Yager

Gregg R, badler
James W, Schulte

Linda J, Patterson
John J, Pazdon, Jr,
Douglas Richter
Gall E, bandberg

David ®einstock
Roy Wilsker
Robert Yarmechuk

Irene A, stia
Ann Marie C, stolfo
Mav A. Tomas
Judith Trachtenberg

John Piazza

Irene Psak

Dr. John K, Reckzeh
William Reilly

Jody bealera

Lester Weiss
Marilyn Wood

Diane bchwartine
Veronica schweiss
Robert D, small

Darya A. Porcelli
£rland V. borensen

NEW YOX BETA, Hunter

stanley Klausner
NEW YORK EPSILOM,

Larry R, Latimer

tit.

College
Madaline Rader

Lawrence Universitv

YEW YORK GAYPA, Brooklyn Collere

Ronald Forman
Oscar Fried
Raymond Hasselbrock
steven Katz

NEW YOXK IOTA. Rensselaer Prlytechnic institute

“ark J, Appelstern
Richard A. TFavello
Bill redreux

Walter J, Clusiec

Naftalf{ Landerer
isaac Nashits
irving Moskovits

Alexander J, Krzemienski
Mike Mortkowitz
Walter L. Potaznick

NEW YO LAMBDA, Manhattan Collect

Albert J, Beer

Geoffrey T, Burnha=

Frank A, {le-ente

Lawrence T. Court
Gerald J, Dalzell

Richird J, Feil

NEW YORK NU, New York !lmiversity

Felix Chan
Diane Fineran

HEW YORK OHiCRON,
Frank Agovino

¥illiam Baker
Marrell Carlsen

David Py Fried arnder
Roy Friwdisan

Clarkson Collere of Techrolopy

Lawrence Crone

Warren Ferguson

Daniel Fleming

NEW YORK PI, bstate University College

Russel L, Baker
Timothy D. Bolling

Charles* Cutrona
Peter ¥. Gidos

HEV YOX RHQ 5t, John's University

Lucille Abate
Linda Albert
Louise Arsena
*ichael Capobianco
Donna P. Casaidy
Barbara A. Czizik
Barbara Davis
“ichael Difarco
Denise Dvorak

YEW YO 5IGHA, Pratt

John Brunner

Gordon Feathers
Screen Foley
George Gillen
Deborah ¥, Gorry
#ichael Hehir
Line Ling Huanm
Anne Hughes
Gene Jannotti
Phillip Leany

institute of Brooklyn

Gerald slovikowski

NEW YOXK TAU, Lehmann College

Lee ¥, Chin
Janis Chu

NEW YOX UPSILOY,

stephen Hilbert
Darrylin %, Kolb

Ely H, Gutfreund
Hee sun Hahn

ithaca College

Wendy G. Philipp

NEW YORK XI, Adelphi University

Christine Cardeéll
Jerrold Clifford
Linda Conron
Frank di Libero
Adrian Fisher
Barbara Kirschner

Janice Kruper
Judith Langer
Christine Leiternann
Joan Am Loobv
Eugene Lecwe

Charles acrina

lustin smith

Joseph Newmark
simcha Pollack
sheldon Rosenbe

Paul J. Pytelewskl

viktor schmil-Bielenbery

Rernard J, »ierel

Juan ©, Gonzalez
Nicholas J. Racciopp™
George T, Raeb

sa=uel Lawn
Naney Laskin

Paul tildenbrand
Robert MacFachron
Eric Prince

Paul 4, Hedbery
John L, Kollip

Patricia A. Ludwig
Mary A. Haney
Joseph T, icDermott
Banber i #etbuso

Takvor Ozsan
Rose Pirro
Marie Pugliese
Edward Rath

Peter s=ullen

Robert £, ¥ullins
Gale E, Rapoport

Diane sehmidt

Gloria “alley
Particia rarino
Linda “azer
Gerald H, Heyer
Dr. Walter Meyer

Judirth shapiro
Walter wWang
Harvey Wilensky

Glenn #, Weber
Ehiiiop waeiner

Henrv J. Aicardo
Robert Ki smidt
John G, Stuar*

Teddy H, 24
Flissa spiepel

sydney soderholm
Georee swartele
Frederick Ullnan

tary &, Wolf

Rotert Restive
Diana Fuscica
Tranetrte Rybaczyk
Flara salpade
Frank soccoli
“harles sulc
Rosemary C, Toll:
Frances Varvaro

Gloria R, »carnelli
“ichael sivak

tichael D, Schwartz

Michele Pastor
Dr. willja= fuirin
Richard silvestri
susan S*othergill
William Yojir
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NCRH CARCLINA DELTA, University of East Carolina
M, Terry Biggs William F. Dickenson Willie Little
David Brunson William Lee Durhem Elaine M. Lytton
Martha A. Bullock ¥, Yvonne Eure Nary Dickey McLean
sarmuel P. Colvin Terry Gardner Mary McNeill
Barbara H, Covington Wallis s, Green Linda Bolten Hedlin

Vivian Am Dean Gurney |. Lashley Dorothy B, Pierce
NORH CARCLINA EPSILON, University of North Carolina

Betty R. Beckham Carolyn W, Harrell
Petrice Dow Brown Marie A. inman

Rita D, Rountree
Ronald E. Shiffler

NRH CARCLINA GAMHA  North Carolina btate University

saundra R, Bright
Regina Carver
Hamilton W. Fish
Malcolm Frye
Acheson A. Harden

sarah J, Nahikian
Jacquelia Padgett
Willian Perkinson Joseph Shoenfelt
Dean Perahing Stephen bmeach
David Rehn Walter smith

Raymond Reith
Nitin J, bhah

NRH DAKOA ALFHA,  North Dakota btate University

Linda Lee Beierle

James C, Jurgens Lesley Romanick

Phyllis A Borlaug Rodney ®, krogh Renee J, veli|
Marilyn Gunderson Chengei/shlh Lgﬁ JoAnn 'l'hlmjloﬂg
Donald R Hill Rebecca R, Richer

COHIO BETA. Ohio Wesleyan University

Robert ¥, Bell
bandra Bowen
Am L, Bradley
Ola Olu A. baini

Robert Erickson
Pamela J, Hand
John Reynolds

Colleen springer
Lillian Tye
bSylvia Wenden

OHIO DELTA. Miami University

Rona B, Gumbiner
susan L, Hubbell
Rebecca J, Klemn

Barbara A. Dodge
Jean A. Fckstein
Roper W, Footer

Ronald R, Miller
Robert R, starbuck
Carolyn J. Weiss

William T, Franke
OHIO EPsILON, Kent btate University

Thomas Loader

Bonnie E, Hallett

Elaine €, Mantsch
bteven W, Marcinko

John %, Mishak

Jeffrey D, Moll
Gary M, Motz

Alyce Baker

Michael T, Battista
Jack . Carothers
Mak Coenen

David Fairbanks
Mary Catherine Ford
Susan D, Fosselman
Marianne Kobe

William A Papay
Garv H Paatorelle
Jean M, Perrine
Daniel P. Rothutein
Michael D. bchlosser
Milton G schwenk
Harry L, siskind

COHIO ETA.  Cleveland btate University

Mitchell Bednarek
Robert Grigas
Tan Grundelsberger

Catherine Hoffmaster
bteve Kasper

Kathleen Kravetz
Mary Anmn Marchionna

OHIO GAMMA, University of Toledo

Jane Am Abrams Dennis A. McDonald
Parviz 5, Bavanati Darius Movasseghi
Patricia Faye Martin Frank e, ogg, Jr.

Vivian Jane Panning
Cloyd A. Payne, Jr,
Patricia L, sSholl

OHIO IOTA*! Perison University

Gall Bozic
Jane Handy

Glenn 5, Masline
Julie Roever

Gwynne Roshon
William H schorling

COHO LAVEDA  John Carroll University

~=Alan Brown James Cogan

Timothy Follen

Beverly J, Quick
Hunter bholar

bSatoru Tanabe

Robert M. Ussery, Jr,
Patricia B, Wad

Terryl b, Swaim
Barbara L. Thacker

Michael ¥, stadelmaier
Terry straeter
Ragaswami Varadarajas
Charles Weitzel

Robert ¥, Triebold
Brian D, Waolff
Judy Wong

Julie West

Richard White
James P. Williams
¥Wendy L, Zak

Teresa A. smith
Am N, Tifford
Thosaa A. Vyrostek
Avis Jean Watson
Richard P. Weber
Cynthia L, Willlams
Kally Wong

Jennie Marsik
Virginia Obal

Richard L. stevens
Linda L, Wohlever

Barbara Weyrich

Robert Haas

OHIO ¥u, University of

Lawrence D, Allwine
Ronald Armstrong
Edwin Bell

William Bock

Joseph Butt6
Pamela M. Carroll
Edmund Kai-Lien Cheng
Craig R Cobb

Kirk T. Cobb

Carol Cruciotti
Gonzalo F. Cruz-bainz
Pamela Dav

OHIO nu,  University of

sénol Altuglu

Ohio

Jerome Doubler
Roger Dugan
Joseph Eichel
Robert Ekelman
Dennis Frizzell
Michael Hargraves
John Hart
btephen Hatem
Delmar Haynes
Charles Herrig
Willian Huntsman
¥illiam Kelton

Akron

stephen Ganocv

COHIO ZETA, University of Dayton

Joseph David Belna
Jerone Edward Cemes

Glen Albert Grimme
Francis Robert Lad

QLAHMA ALFHA,  University of Oklahoma

David D, Andree
James R, Artman
May L, Bertalan
John R, Brook

John A Burna

Maria D, Bustille
Patricia M, Callaghn
John E, Cain

James 0, Chen
Donald E, Clegg

Patrick », Cross
Raymond J, Dryz
Eric L. Hindman
Michael G, Keep
Maureen Xinard

John T, Kontogianes

Kenneth G, Krauss
Joan C, Markes
Louise |, Matula

Willian Knopf

Nelson Kohman

Gladys Wai-bhiu Lee

Paul Leitch

susan Lozan

David Martin

Ronald Nelson

Hivhdaes B, Béuhanghne:
wy

Donald Oxenrider

Gregory Pavlin

btanlev Perry

David Wolfe

BarpandeJ¥oeph Ploeger

Britt |. Mayfield
Willian R, Meredith
Linda 6. Moss
Zensho Nakao
Lawrence W, Naylor
Nathanael Poliard
James C. Pomfret
Barbara A, Porter
Ernest F, Ratliff

CRN ALFHA,  University of Oregon

Jonathan J, Greenwood Randi C, Martin

v st £ eMil |6t nor

Lawrence #, Bandor

Arthur J, Bowers
Patrick A, Bovd
Janet M, Colva
Richard E, Cowan
Catherine A, Deonier
Judith X, DeVore
Noel R, Drimmond

Richard A, Greseth

Richard T, Horn
Kyoko N, Kuga
Brian R, Lasselle
Lee Am Lefler

Tu Wu Ly

CRN GAVMA  Portland btate College

Kathleen Bennett
John A. Bjerke
Dorsey B, Drane
Kenneth G, Enz,
Gary D, Filsinger

Thomas 5. Fischer
Roger X, Lenard
Patricia L, Lent
Vera A. Letzkus
Carol L. Lewis

KidheFas Nglitchell

Donald L, Phillipa
Dale E Quinnell

Faith Long
DallichrMaiidelong

Lowell 8. Palmer
Thomas C, |. Stephens

PENNSYLVANIA DH.TA, Pennsylvania btate University

Judith A Anderman
Deanna L, Balmer
Alice ¢, Blough
Stephen Christiansen
Michael Cohen
Edward J, Dahmus
Jay C, Dougherty

PENNSYLVANIA EPSILON,
Charles Bird

Paul Catlin
Mark Ciancutti

PENNSYLVANIA ETA, Franklin 6 Marshall College

Barbara Bennett
Bruce Blanchard
Gene Goldman

Barbara J. Green
Helen E, Green
Marion L, Hart
Donald L. Lausch

Jeffrey R, Lindemuth

Carole McGaugh
Peter W, HcKenna

Carnegie-Mellon Unijversitv

Jospeh Dorczuk
Jay Fleischer
Patrick Haves

David Goodrich
Bruce Graves

Robert L, McLaughlin
Carol Meranti

James R Mesainger
Alan Miller

Gary E, Miller

Bryon J, Moon, II
David T. Moser

Nark Hoover
John Knechtel

Ronald Harris
Peter Rosa
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Phillip Pfefferle
Arthur Reeves
Ratiel sShpgmpain

Charles Stauffer
bteven bdwartz
Lawrence Tan
Joyce Vessey
Robert Vovtilla
John Wharton
Connie Zonner

Richard Kelvin bchoen
Janice Claire Tonnis

Paula V. Reid
Junet K, Reurdon
Carl G stephenson
Richard J, burro
Dorothy J. Tate
Thad T. Taylor
Richard E, Thiessen
Danny J, Tillman
Richard D, Wirt

William D, Raddatz
Tsuyoshi Takada
Lawrence B, Taylor
Dallas V. Theapson
Virginia L. Wertz
Patricia €, Western
Robert b, Wilson

Elizabeth Tice

Teddy B, Ton

Alfred J, vanderzanden
Panels K #ilaon
Nancy L. Wozniak

James T, Royaton
Hark ¢, Schoenberger
Roy G Shrum

Russell sinclair
Barbara J, stewart
Edward F, Vozenilek
Kevin M. Winne

Dennis bvitek
May Tubello

Thomas biciliann
Philip Zoltick




FENNSYLVANIA THETA.  Drexel Institute of Technology

Hark €, Abrama
Roger B, Bradford
David Bradwav

Paul J, Claffey

Beverly d, Farr
steven C, Cohen

Stephen sligar
FHTE ISAND ALAFHA. University of Rhode Island
Michael A Lindemann Paul A, shawver Jeffrey M, Wainger
RHCE IsLAND BETA, Rhode Island College

Patricia A Heinaohn

n George H, Lafond, Jr,
?.U.lan Anne’E, HcLee

Constance B, Anderson Lois E, Francazio
Dr. James E, Bierden James F, Gendr
David A, Capaldi Barbara' J, Gil.
Linda J, DeBiasio

SUTH DAKOA ALRHA. University of south Dakota

Donald Baer
Gloria J, Becker
Don D, Christjana
Agnes Cunningham
Delame Dalton Jerry W, Isaman
Julie A. DeGroot Dean W, Johnson
Jqueph P, Egger, Jr, Wayne A, Kadrmas
Diane L, Frazier Jean A, Kotas
John E, Gillaspie Henry W, Kramer
Am L, Hamjlton Sookney Lee

Helen M, Heiberger Larry G, Lienemann

Richard J, Hennies
Vincent J, Herried
Nick A. Hove
Robert €, Hubner

Robert J, Hurphy
Robert E, Nelson
Ronald H Oorlog
Rodney €, Parsons
G, Ken Patterson
Roger E, Peterson
Gerald D, Polley
Tracie A Ruch

Lary D, Ruiter

Darwin A, sampson

SOUTH DAKOTA BETA.  South Dakota School of Mines 6 Technology

Arthur J, Abington
Gerald R, Brunskill Lynn R, Ebbesen
Wayne M, Buck Greg A, Farke
William L, Bundschuh Richard L, Fetzer
Dennis J, Burfeindt Arlo F, Fossum
Kirk Campbell Kurt T, Frost
Erle L, Cole Jay R, Gaudig
Jerry L, Davey Karl F, Gerdes
Theodore E, Deilke Wayre R, Greaves

Jan ¥, Dunker Dennis M, Gusse
Roger F, Hawley
Russell M, Healy
Philip D, Jacobs
Steven L, Kaufman
Norman R, Kolb
Frances A. Kopp
John W, Kopp
David A. Larson

TENNESSEE ALFHA.  Memphis State University
Dale M, Lozier

Virginia L, MeCrary
Belinda K. Pigue

Jerry Bracey
susan R, Burrow
Sandra L, DeLozier

Maxine V. Froed,am
Stewart E, Lewis

Robert ¢, Limburg
TEXAS ALPHA, Texas Christian University

Jack €, Martin
David E, ¥cConnell
James Donald Myers
Twila bue Overstreet
Fred L, Reagor
Dorinda baulsbury
Fred G, staudhacmer

Sharon Biesemeier Ronald E, Dover
Morris L, Blankenship Rebecca Anne Evans
Christian Earl Boldt Don H, Huckaby
Timothy R, Brown Guinn 5, Johnson
David J+ Cochener Gloria Am Kieschnick
Carol Am Council Linda J, Kyle

Laura kay Davis Richard R, Lauridia

TEXAS BETA, Lamar Mate College of Technology

Beverly A Braden
Nora Bruce

Ruth E, Cox
Donald L, Duyka
Daryl Amn Hansen

Jean Marie Hays
Gordon Julian
Edward P. McCartney
Frank E, McCreery

Forest D, McElroy
Carole A. Pastorick
btephen M. Richardson
Darla J, saith

TEXAS DELTA, Dbtephen F, Austin State University

Pat Barton Lana Carole Branam bandra K, Welch

. TEXAS EPSILON, sam Houston State University

Thomas Adams Linda Heji Dr. Glen Hattingly
Linda Andersen Am Hdm Melanie McDonad
Stewart Angel Linda Herron Dr. Herbert Muecke
Paula Bell

Michelle Petty

D. Daniel Reeves
Kathryn Rice

Mr, Franklin Rich
Janelle bchindelwolf
Susan schmidt
Judith schulze

Jerry Jordan
Juanita Jorgensen
Or. Harry Konen
Marjorie Knuppel
Cynthia Lewis
Kenneth Li
Loretta Lk

Tomnie Caldcleugh
Lynda Cerrone

Or. william Clark
Mr, Ma Coleman
Alfred Ermis

Paul Frank

Jerald P. sinay
Dale ¥, smith

Harjorie A, Nashawaty
Audrey A Perry
Linda A, Rozzi

Garrie L, Saylor
Roger B, Schaffler
Robert €, scott
Richard P, shogren
Richard A, slattery
Willard 0. Thompson
Delores J, Vavra
Peter C, Vergeldt
Kenneth B, Zamberlan
David Zolnowsky

Keith D, Mutchler
John G, Nedrud
Roger D, Olsen
Timothy M, Paranto
Joe L, Ratigan
Thomas G, Reeve
Dale Rognlie
George C, Shea
Arlo F, Fossum

Frances Prewitt
sherwin A Yaffe

susan Claire stevens

William Robert sullivan,Jn

Joan s, Wad
Kenneth Wad
Raydel Wyatt

Gabriel X, Tan
R, Paul Turner
Julia Wahrmund
Tommy E, Wdb

Steed Smith

Dr. Julianne souchek
Darrell Streater
Patsy surovik

D. George Vide
Darrell Wells

Patti Wells

Anna Wiggins

Alice Williams

TEXAS GAMMA, Prairie View AEB College

Jerry Madkins

Pedre (Dr.) A Oliver
Shirley A. Palmer
Thadis C. Pegues
Mary Phillips

Homer Ray Brown Frederick Gray
Kenneth L, Brown Wayne Harris
Wilma J, Burren William H Jackson
Julia N, Coleman Zollie L, Johnson
Evelyn J, Glass Deborah Leno
Lonnie L, Glenn

UAH ALFHA, University of Utah

Peter W, Bates
Dave Boucher
Winston K, Crandall
Daniel Cummings
James H, Day

Klancy deNevers
Marlin L, Diamond
Steven M, Fall

Ted H, Greaves
Dan Harvertson

UAH GAMHA, Brigham Yoang University

Annette Barnes
Robert Lee Clements

Michael |. Gray
Doyal Glen Landon

VIRGINIA BETA, Virginia Polytechnic Institute

Barbara L, Azalos
Norton b, Bragg, III
Richard E, Browning
Janet W, Campbell
Chin-Mong Chen
Lloyd E, Cole
Andrew |. Dale

Joel |, Dodson

Robert ¢, Dunston
Boyce E, Falls
Charles £, Ford
Janice C. Frye
James H Godbold

Michael E. Golden
Kenneth £, Hawkes

Jeffrey J, Kelly

WASHNGICN ALFHA, Rashington Mate University

Joseph P. Barrett
Neil B, Bickford
Ruth E, Caputo

Joseph L, Devary

Michael W, Extine
Evelyn |. Gratix
Marlene Huntsinger
Stephen shic-Chu  Kung

WASHNGICN BETA, University of Washington

Mary Hilda Brant
Inge K, H, Chi
David E, Clark

Bette J, Felton
Janet L, Flickinger
Paul D, Frank

DlestglasHiedarrell

James Newton
Stephen K, Parker

Arnold Loveridge

Paul A, Lutz

Linda s, Pavne

Wyatt ¥, Rider
Jeffrey A Robinson
Frances L, Ropelewski
E, Lewis Rumpf, III
William R, bchofield

Betty Wei Jen Luan
Kenneth A. Lueder
Ilona M, Haves
Carl A Paul

Lee M, Hess
Ralph B, Jeffonds

WASHNGION DELTA.  Western Washington State College

Edward W, Allen
Peggy A Craigen
Dorothea L, Culpepper

Jane A. Easter
Lynn $; Erickson
Barbara D. Friele

WASHNGICN EPSILON, Gonzaga University

James T, Abbott
Stephen E, Bowser
Francis J, Callan
Francis J, Cheyney
Diane Van Drieache
Andrew J, Dzida, 5, J,

Elizabeth Fessler
Macy Am E, Gaug
Walter K, Highberg
Peter $. Hill
Richard T, Hottell

WEST VIRGINIA BETA, Marshall University

Harold Albertson
Phillip W, Alexander
Prof, Thomas Bauserwan
William Givens Brubeck
Ronald E, Christian
Louise Cox

Sandra M, Crosson
Linda X, Dean
Fred J, Dooley
John A. Fraser
Donna Jo Harbold
Hunter Hardman

WISCONSIN ALAHA, Marquette Universitv

James J, Ackmann
Robert 4, Adams
Hark W, Anders
Richard E, Byrne
Michael F, Flynn
Gary A, Glatzmaier
Rhaoul A, Guillaume
George E, Haas
William F, Hammetter
Gerald J, Van Handel

Ronald s, Hoaek

Thomas &, Kaczmarek
Janice M, Knapp
Charles Kronemwetter
Elizabeth A, McElearney
Harlene Melzer

Andrew W, Hauler
Michael Murphy
Catherine Norman

‘BhephsnEC, Kkeney

Melvin J, schauer

Thosias D, Jovick
John ¢, Kerkering
John P. McGahan

Thomas McWilliams
William C, Miller

steven J, Hatfield
Phyllis L. Justice
Prof, James R, Keller
Danny D, Maynard
Bernard €, McCarty
Photios Photiades

James S, Notch
Thaddeus Orzechowski
Richard J, Panlener
Kathleen Paravich
Thomas E, Pelt
Marguerite Riedl
Thomas F, Roensch
James A. Smentek
Gary D, Swanson

159

bandra Roberson

Jean A. scurlock
Shirley M, Thomas
Evelyn (Mrs,) Thorton
Genevieve Wae

David Pilcher
Gary Stevens
Ching-Yen Tsav
btan Tschaggeny

Linda Ten

Lee R, Steeneck
Alfred D, sullivan
John W. Varney

Wilma L, Whitley
irene R, Wild

sarah 5, Winslow
Lawrence €, Wolfe, Jr,

Terry L, Perkins
Terence Kin-Hong Peon
Loretta J, Rippee
Janes A. buckow

Patricia J, Kozu
Karen J, Lew

Lorel J, Sousley
David L, Yeum

Osvaldo Panicgua
Colleen A, Roe
Douglas R, Tesarik
Edward L, Tyllia
Jospeh F,Tyllia

David Pollock
GupérmLaytrdhodnmd hompson

Elizabeth Underwood
Bernadine R, Weddington

J, Richard Toketkis
Marilyn E, Traeger
Philip A. A, Twemey
James Utzerath
Thomas R, Werner
Avery Wight

Edward D, Winkler
Serge Zilber
Edward J, Zuperku
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LColorado Lelta
oulsiana lota
152-137:

Louisiana Theta
154-1370

Maryland Beta
158-1975

viichigan Gama
157-1370

Hav York Fii
151-1964

Pennsylvania Kappa
159-1370

South Dakota Beta
155-1370

lexas Delta
153-1370
Texas Lpsilon

Tennessee Beta

West Virginia Beta
156-1970

HEW CHAPTER OF Pl #y LPSILON

Dr. Robert L. Heiny, Dept. of Hath.,
University of llorthern Colorado, Greeley

Sawmuel H. Douglas, Dept. of Math,,
Grambling College, Grambling 71245

R. T. iicLean, Dept. of Math., Loyola
University, Nav Orleans 70118

Dr. Walter R. Talbot, Dept. of Math.,
Horgan State College, BAltimore 21212

Harold T. Jones, Dept. of Math.,
Andrews University, Berrien Springs 49104

James F. Calarco, Dept. of Math.,
State University College, Potsdam 13676

Prof. Judith Gumerman, Dept. of Math.,
West Chester State College, West Chester

Harold A. Heckart, Dept. of Math., South
Dakota School of Mines & Tech., Rapid City

Harold E. Bunch, Dept. of Math., Stephen F,
Austin State University, Nacogdoches 79561

Prof. Glen &, Mattingly, Dept. of Math.,
Sam Houston State University, Huntsville

Prof-. James G. Ware, Dept..of Math.,
University of Tennessee, Chattanooga 37403

Dr. Thomas Bauserman, Dept. of Math,,
Marshall University, Huntington 25701






