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THE C. C. MACDUFFEE AWARD 
FOR DISTINGUISHED SERVICE 

The four th  presenta t ion of the C. C. MacDuffee Distin-  
guished Se rv ice  Award was  m a d e  to  Dr .  F r a n c i s  Regan,  St. 
Louis Univers i ty ,  a t  the P i  Mu Epsi lon banquet,  August 3, 
1970, held in conjunction with the  national meet ing of P i  Mu 
Epsilon a t  La ramie .  

The C. C. MacDuffee Distinguished Se rv ice  Award was  
es tabl ished in 1964, in honor of the l a t e  P r o f e s s o r  C. C. 
MacDuffee (Univecsity of Wisconsin) ,  f o r m e r  P r e s i d e n t  of 
P i  Mu Epsilon. P i  Mu Epsi lon 's  h ighest  honor i s  awarded 
only when a n  individual 's  ef for ts  to p romote  scho la r ly  a c -  
tivity in ma themat i c s  a r e  s o  distinguished that  they m e r i t  
commendat ion and recognition by a l l  concerned. 

I t  i s  indeed a g r e a t  p l easu re  to p resen t  Dr .  F r a n c i s  
Regan with ou r  h ighest  award  in honor of his outstanding 
contribution to P i  Mu Epsi lon and to ma themat i c s ,  a s  ex- 
emplified by his  pa r t i cu la r ly  noteworthy edi torship  of the 
P i  Mu Epsi lon Journa l  and his longt ime sponsor sh ip  of the 
outstanding Missour i  Beta Chapter  of P i  Mu Epsi lon a t  St. 
Louis University.  E i the r  achievement  would be  sufficient 
to m e r i t  s i n c e r e  admi ra t ion  - but to  find both in one m o d e s t  
m a n  m a k e s  us  r ea l i ze  how for tunate  the  world  i s  to have m e n  
b le s sed  with l eade r sh ip ,  abil i ty,  honesty,  and unsel f ish  de-  
votion a l l  res id ing in the s a m e  body. 

Congratulations to Dr .  F r a n c i s  Regan, who is  joining 
our  e a r l i e r  award  recipients :  

Dr .  J. Sutherland 1964 
Dr .  R icha rd  V. Andree  1966 
Dr .  John S. Gold 1967 
Dr .  F r a n c i s  Regan 1970 



Dr. Francis 

UMICURSAL POLYGONAL PATHS AND OTHER GRAPHS ON POINT LATTICES 

Solomon W. Golomb and John L. Selfridge 

1. INTRODUCTION 

1.1 Description of the Problem 

An old geometric puzzle asks the solver to construct a polygonal 
path of only four segments which goes through all nine points in 
Figure 1, Two unsuccessful attempts, yielding five-segment "solutions", 
are shown in Figure 2. The required four-segment solution is shown 
in Figure 3. The "trick" involves the fact that the polygonal path 
goes outside the convex hull of the nine-point configuration. 

a * .  

a * .  

. . 

Figure 1. Figure 2a. Figure 2b. Figure 3. 

The nine The boustrophedon The spiral The required 
point con- "solution" requires "solution" requires 4 segment 
figuration. 5 segments. 5 segments. solution. 

In this paper we examine minumum-segment polygonal paths as well 
as certain other graphs, on a x b point lattices. 

1.2 Historical Survey 

Specific problems involving the construction of polygonal paths 
on n x n arrays of dots, using only 2n-2 segments, were posed by both 

Repan Sam Loyd [11 and H. E. Dudeney [21, with additional constraints which 
will be noted later. In 1955, M. Klamkin 131 posed and solved the 
problem of showing that 2n-2 segments is sufficient for a unicursal 
polygonal path on the n x n array, using the construction of Figure 4. 
He conjectured that 2n-2 segments is also necessary, and this was proved 
by one of us (Selfridge, [&I),  in a form which is generalized in Section 4 
of this paper. Constructions for the 4 x 4 array were investigated 
extensively by F. Schuh C51, and there are doubtless many examples of 
other special cases in the literature. (We are indebted to Mr. Martin 
Gardner for assistance in compiling these historical citations.) 

m 
Figure 4. A polygonal path of 2n-2 

segments covers the n x n 
array. 



1.3 Summary of Principal Results 

We show that a unicursal polygonal path of 2n-2 segments exists 
on the n x n array for all n > 2; that the further constraint that 
the path be closed can be satisfied For all n > 3; that the further 
constraint that the closed path remain within the convex hull of the 
array of dots can be satisfied for all n > 5. 

On an a x b array of dots, a collection of 5 horizontal line segments 
or of b vertical line segments will suffice to cover all the dots. 
  ow ever, if such a collection of parallels is not used, it is proved 
that at least a + b - 2 segments must be used to cover all the dots, 
even if it is not required that the segments form a unicursal path. 

A collection of a + b - 2 segments which covers all the dots in 
an a x b array, and does not include a complete set of horizontal or 
vertical segments, will be called a minimal net. We prove that every 
segment of a minimal net contains at least two "exclusive points1'-- 
i.e. dots which are not traversed by any other segment. We exhibit 
E r a 1  minimal nets for which each segment contains at least three 
exclusive points. One of these nets is in fact a closed unicursal 
path on the 8 x 8 array. 

Finally we consider the possible symmetries of minimal nets in 
general, and unicursal polygonal paths in particular. Although there 
are minimal nets with the full (dihedral) symmetry group of the square, 
it is proved that this cannot happen if the net is a unicursal path. 

2. BEST CONSTRUCTIONS FOR SQUARE ARRAYS 

2.1 Squares of Even Side 

In Figure 5, we see a 6-segment closed 
polygonal path which goes through all sixteen 
points of the 4 x 4 (square) point lattice. 
(It is not difficult to show directly that 
no 5-segment path can go through all sixteen 
points. ) 

Figure 5. A 6-segment closed 
oath for the 
4 x 4 lattice. 

Closed paths of 2n-2 segments exist for all even n > 4, as indicated 
for the first few cases in Figure 6. 

Figure 6. Closed- 

path solutions, 
in 2n-2 segments, 
for even n. 

- -- - 
The rule for constructing these paths is as follows: Draw the 

line AB along the top of the square, and protruding one unit at each 
side. We will proceed by continuing b* ends of AB. We draw the 
diagonals AD and BC, which protrude one unit below the square. From 

. C we generate a clockwise spiral, and from D a counterclockwise spiral, 
each composed of alternating vertical and horizontal line segments. 
These segments run to the diagonal AD, but stop one unit short of the 
diagonal BC, exceptat the very end of the construction, when the path 
is closed at the point X, which lies 02 the BC diagonal. 

The solution to the 6 x 6 case shown in Figure 7 uses the minimum 
number of segments (2n-2 = lo), and exhibits two novel features: 
The pattern is entirely contained within the convex hull of the square 
lattice; and segments of slope Â±1/ occur, in additon to the slopes 
previously encountered (O,Â±l,and-1 
The fact that Figure 7 exhibits a 
closed path can be verified by 
Euler's criterion, v&: we have 
a connected graph in which every 
node is a junction of an e= 
number of edges. 

This solution can be 
extended to n x n for even 
n > 6, as illustrated for 
n = 8 and n = 10 in Figure 
8. Again, Euler's 
criterion may be used 
to verify the existence 
of a closed path in 
each case. 

Figure 7. 

A "compact" 
path on the 
6 x 6 array. 

Figure 8. Extension of the Figure 7 construction 
to larger even values of n. 

The idea of enlarging Figure 7 to handle 
n x n constructions directly, as shown in Figure 9, 
is unsuccessful. To be sure, all 64 points are 
covered by only 2n-2 = 14 segments; but the graph 
they form is not a path. All four corner nodes 
are odd (five edges meet at each), whereas a closed 
path has no odd nodes, and an open path can have 
only t z .  

Figure 9. A non-unicursal "solution" to the 8 x 8 configuration. 

(It will be shown in Section 6 that a minimum-segment graph with the 
dihedral symmetry group of the square, as in Figure 9, can never be 
unicursal.) 

2.2 Squares of Odd Side 

We now show the existence of closed paths of 2n-2 segments on 
the n x n square lattice, for all odd n > 5. In Figure 10, we see 
a closed path of 2n-2 = 8 segments for n = 5. This remarkable construction 
contains a line of slope 2, and has turning 
points for the path which not only are not 
lattice points (as in Figure 8 ) .  but do not 
lie on the grid lines (horizontal or 
vertical) through the lattice points. 

To get closed paths of 2n-2 segments 
for odd n > 5, we may extend either the 
body or the spirit of Figure 10. The 

Figure 10. A closed path for the 5 x 5 configuration. 
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corporeal extension is shown in Figure 11. Note that for n 2 9, we . obtain a closed path solution, with 2n-2 segments, which does not go 
outside the convex hull of the n x n lattice. Combined with the 
construction of Figure 9, we have established that for all n > 5, 
except for n = 7, there is always a 2n-2 segment closed path on the 
n x n square lattice which does not go beyond the convex hull of the 
lattice. The gap at n = 7 is filled in by Figure 15 in Section 3.2. 

From an artistic standpoint, the "spiritual" extensions of Figure 10 
as shown in Figure 12, are more appealing. For these cases. the "long 
diagonal" has a slope of (n-3)/(n-1) for all 1 

I = sl 

Figure 11. Physical extensions of Figure 10 to larger odd n. 

Figure 12. Spiriludl extensions of Figure 11 to larger odd n. 

3. OTHER CONSTRUCTIONS 

3.1 The n x (n+1) Array 

In anticipation of the General Theorem of Section 4, we can expect 
the minimum-segment unicursal path oKthe n x (n+1) array to consist 
of 2n-1 segments. On the 2 x 3 array, the best that can be done is - a 3-segment open path. Two examples are shown in Figure 13, the seconl 

-.being preferable in that it avoids using a set of parallel lines to 
* catch all the points. 

For n > 2, there are closed 
unicursal paths of 211-1 secments 
on the n x (n+l) array, as 
indicated in Figure 14, n 

Figure 13. Three-segment open 
?a?hs on the 7 x 3 
array. 

Figure 14. Typical closed unicursal paths on n x (n+1) arrays. 

3.2 Queen's Tours 

Dudeney [21 posed and solved the problem of finding a 12-move 
re-entrant "queen's tour" on the 7 x 7 
checkerboard. In our terminology, he finds 
a minimum-segment closed unicursal path on the 
7 x 7 array, with the further constraints that 
the path stay within the convex hull of the array, 
and that only segments of slopes 0, -, +1, and -1 
are permitted. His solution is given in 
Figure 15. 

Figure 15. Dudeney's IÃ‘Ã‘Ã‘Ã‘Ã‘Ã 
"queens's tour" on 
the 7 x 7 array. 

This construction can easily be modified 
to give closed queen's tours on n x n boards for 
odd n > 7, and open queen's tours for (even) n 2 6. 
The problem of closed queen's tours for even n 2 8 
has also been solved. The 8 x 8 solution shown 
in Figure 16 is based on [I], page 42. 

Figure 16. Loyd's "queen's tour" on the 8 x 8 array. 

3.3 Miscellaneous Examples 

Additional examples of 6-segment paths, both open and closed, 
on the 4 x 4 board, are given in Figure 17. These include, but are 
not limited to, examples given by Schuh 151. 



Figure 17. Additional examples of 6-segment polygonal paths on the 
4 x 4 array. 

Besides the closed 
8-segment path on the 
5 x 5 array shown in 
Figure 10, two further 
examples are known, as 
shown in Figure 18. 

Figure 18. Further 
examples of closed 
8-segment paths on 
the 5 x 5 array. 

4. THE NECESSITY THEOREM AND ITS CONSEQUENCES 

4.1 The General Theorem for Rectangular Arrays 

We define a roper net on an a x b rectangular array of lattice 
points to be a set of line segments which collectively cover all ab 
lattice points, but which does not contain either the set of 5 horizontal 
(1.e. row) segments of the set of b vertical (i.e. column) segments 
as a subset. (There is no requirement of connectivity in the definition 
of a proper net.) 

Theorem 1. A proper net on an a x b array contains at least 
a+b-2 segments. 

Proof. Let the proper net consist of h horizontal segments, of 
v verticalsegments, and of q oblique segments. From the a x b array, 
delete every row in which a horizontal segment occurs, and every column 
in which a vertical segment occurs, to form a reduced array. The 
reduced array has a' = a - h rows and b' ^,b - v columns, which need 
no longer be uniformly spaced. (The inequalities arise because e.g. 
if two horizontal segments are in the sane row, a'> a - h.) 

If a' ) 2 and b' > 2, then the reduced array has 2a' t 2b' - 4 
lattice points around its (rectangular) perimeter. These points must 
be covered by oblique lines of the net, but one oblique line can cover 
at most two perimeter points. Hence q >a' t b' - 2, and the total 
number of segments.in the net is h t v + q A h  + v t a' + b' - 2 L a  + b - 2. 

If a' = 1, b' ~ 1 ,  then there are b' lattice points on the "perimeter", 
but each requires a separate oblique line to contain it. Then the 

- total number of segments is 

an even stronger result. 

The possibility of a' = 0 or b' = 0 is ruled out by the definition 
of a proper net. q.e.d. 

4.2 Corollaries and Consequences 

Theorem 2. A unicursal polygonal path on an a x b lattice of 
dots (a 5 b) requires at least min(2a-1,atb-2) segments. A closed 
unicursal polygonal path requires at least min(2a,a+b-2) segments. 

Proof. If we do not include a complete set of parallel (row) 
segments, then at least atb-2 segments are needed, by Theorem 1. If 
we use a set of a parallel row segments, we need at least a-1 non- 
horizontal segments to connect them into an open path. and at least 
a non-horizontal segments to connect them into a closed path 

4.e.d. 

N E :  We can improve on the 2a segment "parallel" solution only if 
a - b 1 < 2. Thus, the interesting cases are n x n and n x (n+l), 
which were treated in the earlier sections. 

Theorem 3. A closed unicursal polygonal path on an a x b lattice 
of dots (a < b) which consists solely of horizontal and vertical segments 
must contain at least 2a segments. 

Proof. If there is a row without a horizontal segment and 
simultaneously a column without a vertical segment, then the point 
where they intersect is not covered. Hence the path must include either 
a set of a parallel row segments or a set of b parallel column segments. 
However, horizontal and vertical segments must alternate, leading to 
at least min(2a,2b) = 2a segments in all. 

q.e.d. 

4.3 Minimal Nets 

We define a minimal net on a a x b lattice to be a proper net 
consisting of only a + b - 2 segments. We may observe that a unicursal 
polygonal path on an n x n array with only 2n - 2 segments is always 
a minimal net, but not conversely. In fact, a "bicursal" path (in 
which one interruption is permitted) which covers the n x n array in 
2n - 2 segments, for n > 2, is always a minimal net. 

The technique of constructing unicursal paths, in general, is 
to begin with minimal nets, and then to extend the segments in various 
ways in an attempt to achieve connectivity. Some typical examples of 
the minimal nets which may serve as skeletons for these constructions 
are shown in Figure 19. Not all can be extended to form unicursal 
paths. 

Figure 19. 

Some minimal nets 
on n x n arrays. 



5. EXCLUSIVE POINTS AND SYMMETRY GROUPS 

5.1 The Exclusive-Point Theorem 

We define an exclusive point of a segment used in the covering 
of an a x b array to be a lattice point covered by that segment and by 
no other. 

Theorem 4. Every segment of a minimal net on an a x b array 
contains at least two exclusive points. 

P e .  We refer to the proof of Theorem 1. Every oblique segment 
has two exclusive points on the perimeter of the reduced array. Consider 
then a non-oblique segment--say a horizontal segment H. If we ignore 
this segment in the formation of the reduced array, we get a larger 
reduced array, we get a larger reduced array, (a' t 1) x b', with at 
least two extra perimeter points. The q oblique lines can still cover 
only 2q perimeter points, leaving at least 2 perimeter points now 
uncovered. These two points can be covered by no oblique line, no 
vertical line, and no horizontal line other than H, by the definition 
of the reduced array. Hence these are two exclusive points of H. 

q.e.d. 

Note. It is instructive to re-examine Figures 3, 5. 6. 7 ,  8, 10. 
r 1 4 ,  15. 16, and 17 for the locations of the exclusive points. 
In all the cases just listed, there are at least 4 segments in each 
array with only two exclusive points each, the minimum allowed by 
Theorem 4. In each of the three arrays of Figure 12, there are 3 segments 
with only 2 exclusive points each. The average number of points per 

2 1 
segment for the n x n array is n /(2n-2) = Ã (n+1) + en, where 

E = l/(2n-2) + 0 as n + -. Hence it can reasonably be expected that 

in large enough arrays, the minimum number of exclusive points per 
segment can be increased. We next examine some examples. 

5.2 Nets With Several Exclusive Points Per Segment 

In Figure 20, we see three examples of minimal nets on square 
arrays with at least 3 exclusive points per segment. (The middle one 
is our old Figure 9.) 

Figure 20. Three minimal nets with at least 
three exclusive points per segment. 

These three examples have the following further properties in common: 
none of them is a unicursal path - in fact, each has four odd vertices; 
each has the dihedral symmetry group of the square; and the number 
of exclusive points per segment is always either 3 or 6. 

In Figure 21, we see 
a closed unicursal path on 
the 8 x 8 array, with either 
3 or 6 exclusive points per 
segment. Note that this 
figure, also derived from 
Figure 9, has a smaller 
symmetry group. It is 
easy to verify that all 
the vertices are "even", 
but one must also verify 
that a procedure for Figure 21. A closed path on the 
traversing all the edges 8 x 8 array with > 2 
in only 14 segments exists. exclusive points per 
This is in fact the case. segment. 

Figures 20 and 21 suggest an inquiry into the types of symmetries 
which minimal nets in general, and unicursal paths in particular, may 
possess. We now consider these questions. 

5.3 Graphs With Subgroups of the Square 

From Figure 20 we see that minimal nets on n x n arrays may possess 
the full dihedral group of symmetries of the square. However, each 
of these examples had several odd vertices, which precluded unicursality. 
In Figure 22 we see three closed unicursal paths on n x n matrices 
with various symmetry groups. Case A exhibits reflectional symmetry 
in the mid-vertical. Case B has rotational symmetry by 180Â around 
the center. Case C has the four-fold symmetry group of the rectangle. 

Figure 22. Three symmetric examples of closed unicursal paths. 

In Figure 23, we see a minimal net on 
the 7 x 7 array, which has the rotational A 
symmetry group of the square. This graph 
is closed unicursal in Euler's sense (all 
the vertices are even), but it is bicursal 
for our purposes, because a unicursal path 
cannot be found on it consisting of only 
twelve segments! It is not known whether 
a true unicursal path with this symmetry 
group exists on any n x n array, though 
there is no obvious reason to doubt the 

pOssibility' Figure 23. A minimal net with 
90Â rotational 

v 
symmetry and only even vertices. 



The status of reflectional symmetries is rather completely settled 
by the following three theorems. 

Theorem 5. For every n 2, there exists a minimal net on the 
n x n array of dots which possesses the full dihedral symmetry group 
of the square. 

Proof. It suffices to observe the two constructions in Figure 24, 
whichcorrespond to even and odd values of n, respectively. 

Figure 24. Concentric symmetric construction of 
minimal nets, for even and odd n, respectively. 

Although there are numerous modifications and variations of the 
symmetric minimal nets of Figure 24, the following feature is common 
to all examples: 

Theorem 6. If a minimal net on an n x n array of dots has a symmetry 
axis L on which there are dots, then the net must include a segment 
01 the axis L. (In particular, there must always be a segment on a 
diagonal symmetry axis; and there must be a segment on a horizontal 
or vertical symmetry axis whenever n is odd.) 

P*. Suppose that L is a symmetry axis for a minimal net on 
the n x n array, and that there are dots on L. In the terminology 
of the proof of Theorem 1, consider the intersection (two points) 
of L with the perimeter of the "reduced array". By symmetry in L, 
if there is no segment along L, then either (1) at least one of these 
two points is an intersection of two oblique lines, in which case the 
oblique lines do not cover en~u~hdistinct perimeter points for a minimal 
net, or (2) L is a diagonal, and the two perimeter points of L are covered 
by (oblique) segments perpendicular to L - but such segments cover only 
one perimeter point each by the convexity of the reduced array, and 
therefore cannot be part of a minimal net. 

In contrast to Theorem 6 for minimal nets in general, we have 
the following result for unicursal paths: 

Theorem 7. A closed unicursal path on an n x n array cannot have 
any segment along a symmetry axis L. - - -  - P E .  Each end of a segment along a s.ymmetry axis L must be 
an odd vertex, but a closed unicursal path can contain no odd vertices. 

Notes: Combining Theorems 6 and 7, we learn that a minimal net which 
is a closed unicursal path can have no diagonal symmetry axes; 
and can only have horizontal or vertical symmetry axes if n 
is even. A fortiori, the full dihedral symmetry group of the 

square never occurs in such a case. A minimal o ~ u n i c u r s a l  
path can have at most one symmetry axis with dots on it, since 
this gives rise to (only) two odd vertices, as in Figure 25. 
(When such a symmetry axis occurs, it must be a diagonal.) 

Figure 25. Open unicursal paths with 
diagonal symmetry. 
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NEED HONEY? 

The Governing Council of Pi Mu Epsilon announces a contest for 
the best expository paper by a student (who has not yet received a 
masters degree) suitable for publication in the Pi Mu Epsilon Journal. 

The follow in^ prizes will be ~iven 

$200. first prize 
$100. second prize 
$50. third prize 

providing at least ten papers are received for the con 

In addition there will be a $20. prize for the bi 
any one chapter, providing that chapter submits at lea: 



AM INTERESTING GENERALI7.ATIOtI OF A SIMPLE LItAIT TI1EOPEk' 

Stanley J. Farlow 
University of Maine 

It is wpll known that if (ak), {h} k = 1, 7, ... are seouences of 
real numbers and if lim(a /b ) < -', lim(b ) = 0 then lim(a.1 = 0. 

k- k k k- k k- 
Since matrices are peneralizations of real numbers, one mipht ask 
if the above fact could be peheralized to more peneral objects. 
The followinp proposition is a simple but interestinp ,eenerali7atjon 
of the above limit theorem to matrices. 

PROPOSITION: 
T f .  
A & .  - 

1) A is an n x n real constant matrix 
ii) b(s) is an n x 1 real vector, each component 

beinp a continuous function of the complex 
variables. 

iii) lim (~-sl)b(s) exists for each component 
s+s . 
where s. is an eigenvalue of A .  

J. 

then; all the components of (A-sl)*b(s) vanish at the - 
elpenvalues of A, where (A-sl)* is the adjoint 
matrix of (A-sl). 

T 
where C(s) = (A-sl)l':b(s), then callinp the transpose C (s) = (c(s) ,..., 
cn(s)) we have that lim {ck(s)/~~-sl~ 1 < -' for k = 1,. . . ,n where s i 

s+s; 

is an eigenvalue of A. But lirn I A - S ~ I  = 0 and so lim ck(s) = ck(si) = 0. 
s+s i 

s+s i 

This completes the proof. One can -also observe a stronger but less 
aesthetic result than the above proposition. This can be stated: 

COROLLARY: The above conclusion Is still true if condition 11) i-! 
replaced by: ii') all components of (A-sl)̂ b(s) are continuous ' 
in s, for all s. - 

Proof: This can easily he seen by direct observation of the previous - 
proof. 

One can also observe that the matrix A and vector b could be complex 
with a slight modification of the proof. 
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THE CANTOR SET 

Jerry L. West 
Southern University 

The Cantor set, first ~iven by George Cantor, should give a student 
a better insight into the study of open. closed, dense, nnd "nowhere 
dense perfect" sets. Students may easily develop false ideas concerning 
dense and nowhere dense sets by making a somewhat plausible assumption 
upon the antecedent "nowhere". The Cantor set may serve as a reminder 
of the consequences of making these intuitive assumptions. 

The Cantor set S is a subset of the closed interval [0,1]. It 
is more convenient to define its complement, C(S), relative to [0,11. 
C(S) is the union of the following denumerable set of open intervals: 

1) the open middle third, (1/3,2/3), uf [0,1], 

2) the open middle thirds (1/9,2f9) and (7/9,8/9) of the two 
closed intervals in 10,lI which are complementary to (1/3,2/3), 

3) The open middle thirds (1/27,2/27), (7/27,8/27), (19/27,20/27), 
and (25/27,26/27) of the four closed intervals in [0,1] which 
are complementary to (1/9,2/9), (1/3,2/3), and (7/9,8/9) 
and so on, ad inf initum. 

The graph shows three stages of removing open middle thirds of 
r.o.11. 

Observing ihe bum of the lengths of the open intervals removed 
at the lst., 2nd., ..., ntn stage: 

2 3 
s = 1/3 t 2/a2 t 2 /3 t . .. t 2n"1/3n = 1 - (.  .n 

lirn s = lirn fl - (2/3In1 = 1 
n- n-- 

However, the set remaining on the closed interval [O 
set and may seem so sparse as to be insignificant. I 
the Cantor set are 

0, 1/3, 2/3, 1/9, 2/9, 7/9, 8/9, 

for all endpoints of those open intervals which were 
there are points of the Cantor set other than these e 
see this, we will modify the Cantor set S to the Can: 
st. 
Def. 0, 1, 2, are called ternary digits. if 

with each a a ternary digit, then th 



. where the subscript indicates that the is x = 0.a a a 

expression is ternary. 
Example: Suppose that we express the open interval (1/3,2/3) in its 
ternary form: 

Note that we have expressed each number in two ways: one with only 
0's and 2's among the a.'s and the other with 1 as a digit. 

Lemma 1. If 113 L x L 213 and a ternary representation of x is 
.... then a = 1 and among a , a ,  ... there is at least x = 0.a a a 

one ai # 0 and at least one a. # 2. 
3 m m 

Proof. Suppose a = 0. Then x = 0/3 + 1 a/3" 5 1 2/3" 
1 n=2 n=2 - 

= 2/3-' 1 l/sk = 2/3"(1/1 - 1/3) 
k=O 

= 1/3 
contradicting 1/3 x. 
Suppose a = 2. Then x >_ 2/3, contradicting x < 2/3. Thus a = 1. 

1 
Now the supposition a2 = a3 = ... = 2 gives x = 2/3, contradicting 
x < 2/3, while the supposition that a = a = ... = 0 gives x = 1/3 
contradicting x > 1/3. Q.E.D. 

It should be seen, conversely, that 

Lemma 2. If x = 0.1a2a 3... with at least one a # 0 and at least one 
3 

a # 2, then the point x is on the open interval (1/3,2/3) and 

hence is not a point of the Cantor set St. 

A way of indicating "x has a ternary representation not involving 
the 1" is "x has a ternary representation of the form 

' i) x = 0.(2a1)(2a2) ... where a 
3 

All of this is motivation for 

Theorem 1. A point is in the Cantor set S' iff at least one ternary 
representation of x does not have the digit 1 in any place, that is, 

S' = {x[x has a ternary representation of the form i)}. 
A proof of this theorem will be given after the next lemma. 

- - -  - Whenever a ternary representation has only zeros from some place 
on these zeros will not be indicated. For example, 

In defining the Cantor set, the open intervals erased at the second 
stage were (1/9,2/9) and (7/9,8/9). 

From the above comments it will be seen that the following lemma 
holds for n = 1 and n = 2. 
Lemma 3. In defining the Cantor set S', the open interval (x ) n' n 
was erased at the nth stage iff x+ and x can be written as 

ii) x+, = 0.(2al)(2a2)...(2an-l)l 
3 with only 0's and 2's among 

iii) Fn=0.(2al)(2a2)...(2an-l)2 theak's' 
3 

Proof: To make the induction step, let n > 2 be an integer for which 
the lemma is true. Then the open interval (x++l,xn+l) was erased 

- 
at the (n+l)th stage iff x++l = 0 + 113~" or s+l = xn + 113~" with 
- 
x in the form iii); i.e., respectively, 

n+1 
x = 113~" = 0 . 6 6 a  where an = 0 or else 
n +  1 

3 n  

= 0.(2a1)(2a2) ...(2an_1)(2an)l where a = 1. 
3 

With a so determined, then 
n+1 = %+1 + 1/3""'l so that 

Since these representations are in the forms ii) and iii) with n replaced 
by n + 1 the lemma is proved. 

Then. as in the proof of lemma 2, a number x is such that 

x < x < x  
-n n' 

with x and F in the forms ii and iii, iff -n 

with at least one a k  # 0 and at least one a ,  # 2. Hence a point 

x is erased at some stage iff either (in case there are two) ternary 
representation of x has a 1 in some place. Hence a point of C0,I.l 
is not erased at any stage iff it can be written in ternary form without 
using the digit 1. Thus Theorem 1 is proved. 

Intuitively, the Cantor set S' seem to be sparse. Again, here is 
a case where our intuition fails us. In fact, the set S' is as large 
as the interval [0,11 itself. 

m 

D g .  0.1. are called binary digits. If 1 an/2n converges to x, 
n=l 

with each a a binary digit, then a binary representation of x is 

x = 0.a a a 
1 2 3 - - -  . 



Theorem 2. There is a f u n c t i o n  with domain t h e  Cantor s e t  S' and range 
t h e  i n t e r v a l  [0,11. 

Proof:  One such f u n c t i o n  f is def ined  i n  t h e  fo l lowing  way. 
With x E S t ,  r e p r e s e n t  x i n  i ts  unique t e r n a r y  form without  us ing  t h e  
d i g i t  1: 

x = 0 (2a1)(2a2) ... ( 2 a )  ..., 3 
Then use  b inary  n o t a t i o n  and s e t  

Â¥ = 8 
i v )  f ( x )  = 0 . a a a  . . .  a . . .  

2 
A s  examples: 

f ( l / 3 )  = f(0.022 ... ) = 0.011... = 1/2  
3 2 

f ( 3 / 4 )  = f(0.2020 ... ) = 0.1010... = 2/3 
3 2 

I n  i v )  0 5 O . a a  . . . <  1 and hence f i s  on [0,1] i n t o  [0,11. To show 
2 

t h a t  f is onto  [0.1], t h a t  is, t h a t  [0.1] is t h e  range of  f ,  s e l e c t  
0 < y < 1 a r b i t r a r i l y .  Represent y i n  b inary  form: 

I f  y has two b inary  r e p r e s e n t a t i o n s ,  e i t h e r  may be used. Then x def ined  
by x = 0.(2b1(2b2) ... ( 2 b )  ... is i n  t h e  Cantor s e t  S t  and f ( x )  = y .  

3 
Hence t h e  theorem is proved. 

With f def ined  a s  above, experiments showed t h a t  f ( l / 3 )  = f ( 2 / 3 )  = 1/2 .  
I n  f a c t ,  i f  (x ,x ) is one of t h e  open i n t e r v a l s  erased a t  t h e  n t h  

n n 
s t a g e ,  then f ( x )  = f ( x n ) .  (To s e e  t h i s ,  w r i t e  x and x according t o  

n 
lemma 3 . )  Also, a s s o c i a t e d  wi th  t h i s  f u n c t i o n  is a p a r t i c u l a r  f u n c t i o n  
Y known a s  t h e  Cantor func t ion .  

D s ,  The Cantor f u n c t i o n  Y :  [ O , l ~ + ~ O , l ~  is  def ined  by s e t t i n g  

Y(x) = f ( x )  i f  x E S'  
- 

= f ( x )  = f ( x )  i f  x c  x < x 

f o r  each open i n t e r v a l  (:,>TI [0,11 - S t  with E S t  and x E S t .  

Summarizing our  f i n d i n g s :  

The Cantor s e t  is c l o s e d .  

The Cantor s e t ,  i f  c losed ,  must c o n t a i n  a l l  o f  i ts  l i m i t  p o i n t s .  
I f  no t ,  t h e r e  is some p o i n t  y on t h e  open i n t e r v a l  such t h a t  every 
neighborhood o f  y c o n t a i n s  some p o i n t s  i n  S ' .  However, t h i s  is 
not  t h e  c a s e  s i n c e  every member of  t h e  open i n t e r v a l  has a neighborhood 
w i t h  no p o i n t s  i n  S t ;  t h e r e f o r e  S '  c o n t a i n s  a l l  of its l i m i t  
p o i n t s ;  hence, S' is c losed .  

The Cantor s e t  is dense i n  i t s e l f .  

I f  S t  is dense i n  i t s e l f ,  then  every p o i n t  i n  S t  must be a l i m i t  
p o i n t .  However, t h i s  was taken c a r e  of  by cons ider ing  t h e  t e r n a r y  
te rmina t ing  expansions of  every member i n  S T .  Therefore,  every 
member i n  S' is a l i m i t  po in t  because of its te rmina t ing  express ion .  

The Cantor S e t  is nowhere dense.  

We r e c a l l  from a theorem t h a t  s t a t e d :  I f  a closed s e t  F c o n t a i n s  
no i n t e r v a l s ,  then  F is s a i d  t o  be nowhere dense.  S t  c o n t a i n s  no 
i n t e r v a l  s i n c e  t h e  middle t h i r d  of  each c losed  i n t e r v a l  is always 
removed a t  t h e  succeeding s t a g e .  The proof of  t h e  theorem w i l l  be 
omitted here  but  it is  simply done by applying t h e  i n d i r e c t  method 
of proof.  

The Cantor s e t  is p e r f e c t .  

S ince  S t  is c losed  and dense i n  i t s e l f ,  then  S '  is a p e r f e c t  s e t .  

The Card ina l  number of S f  is c .  

We know t h a t  t h e  c a r d i n a l  number of [0.11 is c and we have shown 
t h a t  S f  is j u s t  a s  numerous a s  C0.11 i t s e l f .  Therefore,  t h e  s e t  
S '  is of c a r d i n a l  number c .  

Observing t h e  above conc lus ions  of S ' ,  e s p e c i a l l y  2 and 3 ,  we 
a r e  reminded not  t o  be s o  hur r ied  i n  e s t a b l i s h i n g  impl ica t ions  i n  
mathematics. 
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GLEANINGS FROM CHAPTER REPORTS 

Sample Lecture Topics : 
Disks,  Ovals ,  and C h a r a c t e r i s t i c  Roots--Minnesota Gamma 
E x i s t e n t i a l  and Universal  Q u a n t i f i e r s  a s  Related t o  Graph Theory-- 

Ohio Nu 
Cobweb Cycles and Difference Theory--Michigan Alpha 
Rela t ionsh ip  Between Mathematics and Physics--Louisiana Epsilon 

C a l i f o r n i a  E t a  i n s t i t u t e d  an i n i t i a t i o n  proceedure.  The s t u d e n t  
i n i t i a t e s  were given f i v e  problems from d i f f e r e n t  f i e l d s  of  mathematics. 
The problems were so lved  before  i n i t i a t i o n .  

Ohio Dclta Chapter  took an a c t i v e  r o l e  i n  t r y i n f  t o  save  t h e  departmental  
l i b r a r y  from being absorbed i n t o  t h e  main l i b r a r y .  

Nebraska Alpha sponsors a p r i z e  c o n t e s t  open t o  a l l  s t u d e n t s  i n  t h e  
f i r s t  f o u r  in t roduc tory  mathematics courses .  Two exams a r e  (riven, 
t h e  second f o r  s t u d e n t s  with a t  l e a s t  two semes te rs  of  c a l c u l u s  
They a r e  graded by a pane l  o f  c h a p t e r  members. 



SIMPLICIAL DECOMPOSITIONS OF CONVEX POLYTOPES 

Allan L. Edmonds 
Univers i ty  of  Michigan 

1. P r e l i m i n a r i e s  

A n a t u r a l  ex tens ion  of t h e  u s u a l  convex polygons and polyhedra - 
of euc l idean  spaces  E and E ,  a  convex d-polytope P is def ined  t o  
be t h e  bounded i n t e r s e c t i o n  of a  f i n i t e  number o f  c losed  ha l f- spaces  

i n  Ed, where P c o n t a i n s  d-dimensional i n t e r i o r .  Equiva len t ly ,  we 
may d e f i n e  P t o  be t h e  convex h u l l  of  ( i . e . ,  t h e  s m a l l e s t  convex s e t  
c o n t a i n i n g )  a  f i n i t e  s e t  o f  p o i n t s .  For each k,  0 < k 4 d-1, a  k- face 
of  P is t h e  k-dimensional i n t e r s e c t i o n  of  P with a suppor t ing  hyperplane.  
The 0- faces a r e  j u s t  t h e  v e r t i c e s ,  t h e  1- faces t h e  edges,  e t c .  Each 
k- face is i t s e l f  a  k-polytope. I n  t h e  fo l lowing  f k ( P )  denotes  t h e  number 
of  k- faces of P. 

Any d-polytope must have a t  l e a s t  d+1  v e r t i c e s ,  and t h e  s i m p l e s t  
d-polytopes, t h e  d- simplices,  have e x a c t l y  d+1 v e r t i c e s .  The f a c e s  
of  a  simplex a r e  themselves s impl ices ,  and a d-simplex has  e x a c t l y  

[:ti) k- faces,  0 k 5 d-1. 

It is t h e  o b j e c t  of  t h i s  paper t o  show t h a t  any d-polytope can 
be expressed a s  t h e  union of  d- simplices whose v e r t i c e s  a r e  v e r t i c e s  
of  t h e  polytope,  and whose i n t e r i o r s  a r e  pa i rwise  d i s j o i n t .  Fur ther ,  
g iven  t h e  dimension and number o f  v e r t i c e s  of  a  polytope,  we seek 
bounds on t h e  number o f  such ver tex- s impl ices  r e q u i r e d .  

A s i m p l i c i a 1  complex K is a f i n i t e  c o l l e c t i o n  o f  s impl ices  such 
t h a t  i f  A is i n  K, t h e  f a c e s  of A a r e  i n  K,  and A and B a r e  i n  K ,  
An B is e i t h e r  empty o r  a  common f a c e  of  A and B. The number o f  
r;simplices i n  K is denoted by s ( K ) .  The underlying polyhedron of  

K is / K /  = (A:  A is a simplex o f  K.}. 

With t h e  preceding concepts  i n  mind we make t h e  fo l lowing  d e f i n i t i o n .  
Def in i t ion :  L& P be a d - p o l y ~ o v e .  A sim l i c i a l  com l e x  K ii s a i d  
t o  be a s i m p l ~ ~ t i o n ~  P providing (K-x s e t  of  K 
is p r e c i s e l y  equa l  t o  t h e  v e r t e x  s e t  of  P. 

2. Exis tence  of  S impl ica t ions  - - -  - Theorem 1: Any polytope has a ~ i m p l i c a t i o n .  

Proof:  Let P be a d- polytope with v v e r t i c e s ,  and well- order 
t h e  s e t  of  v e r t i c e s  of P. We use  a n  i n d u c t i v e  process  t o  s i m p l i c a t e  
t h e  f a c e s  of  P. The 0- faces and 1- faces  a r e  a l r e a d y  s impl ices .  For 
k 5 1 t h e  g e n e r a l  i n d u c t i v e  s t e p  i s  a s  fo l lows .  I n  a n  a r b i t r a r y  k- face - .  

F, l e t  x be t h e  f i r s t  v e r t e x  of P i n  F. We assume t h a t  t h e  (k-1)-faces 
of F, which a r e  a l s o  (k-1)-faces of P, have been a p p r o p r i a t e l y  s impl ica ted .  
The pyramids wi th  apex x and bases  t h e  (k-1)-simplices i n  each (k-1)- 
f a c e  of F which does no t  c o n t a i n  x ,  t o g e t h e r  with t h e  f a c e s  of t h e s e  
pyramids, c o n s t i t u t e  a  s i m p l i c a t i o n  of  F. 

Having s impl ica ted  a l l  t h e  (d-1)-faces of P, l e t  y be t h e  f i r s t  
v e r t e x  of P, and form t h e  pyramids with apex y and bases  t h e  (d-1)- 
s impl ices  l y i n g  i n  t h e  (d- 1)- faces of  P no t  conta in ing  y. The order ing  
of  t h e  v e r t i c e s  i n s u r e s  t h e  requi red  i n t e r s e c t i o n a l  p r o p e r t i e s ,  s o  
t h e s e  pyramids, t o g e t h e r  with t h e i r  f a c e s  c o n s t i t u t e  a  s impl ica t ion .  

Theorem 1 can a l s o  be proved by induc t ion  on v ,  t h e  number of  v e r t i c e s  
of  P. C l e a r l y  a s i m p l i c a t i o n  does no t  have t o  be formed a s  i n  t h e  
proof of t h e  theorem. A s i m p l i c a t i o n  i n  which a l l  t h e  d- simplices 
c o n t a i n  a common v e r t e x  is c a l l e d  a f ixed- ver tex  s impl ica t ion .  

3 .  The Minimum Number o f  Simplices i n  a S impl ica t ion  

Let m(v,d) denote t h e  minimum p o s s i b l e  number of  d- simplices 
i n  a s i m p l i c a t i o n  of a  d-polytope with v v e r t i c e s .  In  what fo l lows  
we g e n e r a l l y  ignore t h e  t r i v i a l  one-dimensional case .  

Theorem 2: For every v > d > 2, m(v,d) = v-d. 

Proof: F i r s t  we show t h a t  m(v,d) > v - d ,  and second t h a t  f o r  
every v > 2 2 2 t h e r e  e x i s t  d-polytopes with v v e r t i c e s  having s i m p l i c a t i o n s  
with e x a c t l y  v-d d- simplices.  

Let P be a d-polytope with v v e r t i c e s  and K a  s i m p l i c a t i o n  of 
P. Arrange t h e  d- simplices of K i n  a  sequence s o  t h a t  any simplex 
a f t e r  t h e  f i r s t  has a (d-1)-face i n  common wi th  some preceding simplex. 
C l e a r l y  t h i s  can be done, s i n c e  / K /  is a t o p o l o g i c a l  d- b a l l .  We count  
t h e  v e r t i c e s  of P i n  terms of  s,(K). The f i r s t  simplex i n  t h e  sequence 

- 

c o n t r i b u t e s  d+1 v e r t i c e s ;  each of t h e  next  sd(K)-1 s impl ices  c o n t r i b u t e  

a t  most one a d d i t i o n a l  v e r t e x .  Thus we have v 5 d + l  + sd(K)-1 o r  
- 

sd(K) k v - d .  S ince  P was a r b i t r a r y ,  we t h u s  have m(v,d) ~ v - d .  

Now it is easy t o  s e e  t h a t  any s i m p l i c a t i o n  of a  2-polytope wi th  
v v e r t i c e s  must have p r e c i s e l y  v-2 2- simplices. Suppose v > d > 2,  
and, proceeding i n d u c t i v e l y ,  l e t  Q be a (d-1)-polytope with v-1 v e r t i c e s ,  
and K a  s i m p l i c a t i o n  of  Q such t h a t  s d l ( K )  = v-1-(d-1) = v-d. Let 

P be a d-pyramid wi th  Q a s  base  and a r b i t r a r y  apex x. K induces a 
s i m p l i c a t i o n  K' of  P ( i n  f a c t  a  f ixed- vertex s i m p l i c a t i o n )  such t h a t  
s (K ) = s d l ( K )  = v-d. This  completes t h e  proof .  

d 

Remarks: ( 1 )  C l e a r l y  a s i m p l i c a t i o n  is minimal i n  t h e  sense  of  Theorem 2 
i f  and only i f  t h e  d- simplices can be arranged i n  a sequence a s  descr ibed  
i n  t h e  proof s o  t h a t  each a f t e r  t h e  f i r s t  has p r e c i s e l y  one (d-1)-face 
i n  common wi th  some preceding simplex. ( 2 )  Using t h e  same counting 
technique a s  i n  Theorem 2 ,  we g e t  sk(K) 2 v-k, f o r  each k ,  0 5 k < d-1. 

But i n  g e n e r a l  t h i s  is not  t h e  b e s t  p o s s i b l e  bound. We might in t roduce  
t h e  symbol m ( v , d )  f o r  t h e  minimum p o s s i b l e  number of  k- simplices i n  

a s i m p l i c a t i o n  of  a  d-polytope with v v e r t i c e s .  The va lue  of mk(v,d) 



for 0 ̂  k ^ d-1 seems to be an open question at this time. (3) The 
reasoning of the proof of Theorem 2 actually proves that if K is any 
simplicial complex with v vertices such that /K/ is a topological d-ball, 
then s (K) ~ v - d ,  and that there exist such complexes K so that s (K) = v-d. d d 

4. The Maximum Number of Simplices in a Simplication 

The problem of finding the maximum number of simplices in a simplication 
is considerably harder than that of finding the minimum. In the following 
M(v,d) and N(v,d) denote the maximum possible number of d-Simplices 
in a simplication and a fixed-vertex simplication, respectively, of 
a d-polytope with v vertices. To facilitate the following discussion, 
p (v,d+l) denotes the maximum number of d-simplices possible in a d 
simplicial complex with v vertices whose underlying polyhedron is a 
topological d-sphere. Also C(v,d) denotes a cyclic d-polytope with v 
vertices, the convex hull of v distinct points on the moment curve 

{(t,t2,t,. . . ,td): t real]. A cyclic polytope is simplicial (i.e., 
its k-faces are k-simplices), any two cyclic d-polytopes with v vertices 
are combinatorially equivalent, and their special structure allows 
one to calculate that 

Cyclic polytopes lead to the following conjecture. 

UJper Bound Conjecture: For all v > d 2, pd(v,d+l) = fd(C(v,d+l)). 

It is known that the Upper Bound Conjecture is true as stated 
here at least when d < 7 (i.e., for 8-polytopes) and when v is comparatively 
large or small with respect to d. (See Grunbaum, pp. 61ff) 

We now begin with N(v,d). First consider the following construction. 
Let v > d+l and let P be a polytope obtained from the cyclic polytope 
Q = C(v-1.d) as follows. Let F be any (d-1)-face of Q and x any point 
not in Q such that (convex hull of {x} U Q) = (convex hull of {x] U F l  U Q 
(i.e., x is "beyond" F and "beneath" all other (d-1)-faces of Q). 
Let P be the convex hull of fx} >J Q and K the fixed-vertex simplication 
with respect to x. Then since P is simplicial sd(K) = fdl(C(v-1,d))-1. 
This construction leads to the following conjecture. 

Conjecture 1: IS_ v-2 > d > 2, N(v,d) 5 \i(v-1,d)-1, with equality 

when the Upper Bound Conjecture holds for d-polytopes with v-1 vertices. - 
The preceding construction shows that N(v,d) > p(v-1,d)-1 when 

the Upper Bound Conjecture holds. Thus it remains to show that 
'N(v,d) 4 pd (v-1,d)-1 in general. We show that this is true for d 5 4. - - 

Clearly N(v,2) = v-2 and since p (v-l,2)-1 = v-1-1 = v-2, the 
relation holds for d = 2. 1 

Now let P be a 3-polytope with v > 4 vertices, and K a fixed-vertex 
simplication of P, each 3-simplex of which contains the vertex x. 

Then K induces a triangulation K' of the boundary of P, a 2-sphere. 
Each 3-simplex in K has its 2-face opposite x in K . In addition 
there are at least 3 2-faces of P containing x. These facts yield 
s3(K) + 3 5 p2(v,3) or s3(K) 5 u2(v,3)-3. Since P is arbitrary we have 

N(v,3) < v (v,3)-3 = 2v-7 = p (v-1.31-1. 2 2 

Finally suppose P is a 4-polytope with v > 5 vertices, and let 
K be a fixed-vertex simplication of P. Let Q be a 5-pyramid with base 
P and arbitrary apex x. K then induces a triangulation K' of the 
boundary of Q, a 4-sphere. The bsimplices of K' are just those of 
K plus those which are the convex hull of x with the 3-simplices of 
K lying in the boundary of P. There must be at least s4(K)+4 of the 

latter variety, since K is a fixed-vertex simplication. Thus 

s4(K) + S4(K) + 4 1 ~i/v+l.S) or s,,(K) (u4(v+l,5)-4)/2. 

(The numerator is always even.) Again since P is arbitrary we have 

A little calculation shows that the right side-of this inequality 
is precisely I! 3 (v-1.41-1. Therefore N(v,4) 5 u 3 (v-l,4)-1. 

The preceding work proves the following theorem. 
Theorem 3: 2 z d  54 &v > d+l z N ( v , d )  = !~~-~(v-l,d)-l / /  

Unfortunately the techniques used above are not sufficient when 
d > 5 .  

We now consider M(v,d). Clearly M(v,d) > N(v,d). For given 
v-2 2 d 2 2 Peter McMullen has constructed a d-polytope with v vertices 
and a simplication of the polytope such that the simplication contains 
exactly f (C(v,d+l))-v+d d-simplices. d 

His construction suggests the following conjecture which is trivially 
true for d = 2. 
Conjecture 2: e v - 2  > d  > 2, M(v,d) 5 ud(v,d+l)-v+d, with equality 

when the Upper Bound Conjecture holds for (d+l)-polytopes with v vertices. 

Remark: As we did with m(v,d) we might more generally define Mk(v,d) 

and N (v,d) to be the maximum number possible of k-simplices in a k 
simplication and a fixed-vertex simplication, respectively, of a d- 
polytope with v vertices. 

5 .  Conclusion 

The problem treated in this paper is a special case of the following 

posed open questions in this area, and convex polytopes provide a 
natural setting for many of them--in particular for extremal prob 
such as those considered here. 



REFERENCES 

B. Grunbaum. Convex Polytopes. New York: In tersc ience ,  1967. 

P. McMullen. P a r t i t i o n s  of Polytopes i n t o  Simplices (unpublished 
paper). 

The author f i r s t  became in t e re s t ed  i n  t he  subjec t  of t h i s  paper 
during the  summer of 1968--between h i s  junior and sen io r  years a t  
Oklahoma S t a t e  University--in a National Science Foundation Undergraduate 
Research Pa r t i c ipa t ion  Projec t ,  a t  Clemson University,  under the  
d i r ec t ion  of Professors W. R. Hare and J. W. Kenelly. Special  thanks 
is due t o  Professor Kenelly with whom t h e  author worked most c lose ly .  

UNDERGRADUATE RESEARCH PROPOSAL 

Harold Diamond 
University of I l l i n o i s  

1. Suppose we wish t o  obta in  a nunr r i ca l  es t imate  f o r  t h e  sum of 
m 

the  s e r i e s  7 n
2  

accurate t o  within .001. One method would be t o  wr i te  
1 

N+l -2 f ind  an N f o r  which & t d t  c .001 (e.g.  N = 32) and use the  approximation 

m N 
1 n-2 = 7 n-2 + 1 / N  + Error .  
1 1 

Can you give a more e f f i c i e n t  method? ( Inc iden ta l ly ,  it is known 

t h a t  7 n 2  = v2/6.) 

2. The inequal i ty  s ign  i n  the  Cauchy Schwarz r e l a t i o n  

f g )  < f /  f 2  / R2)1/2 

becomes an equa l i t y  i f  f = cg f o r  some constant c .  I f  h is a r e a l  
function f o r  which h2a ;  c f ,  some c > 0, then the  inequal i ty  

f = / L .  h c f /  (f/h)2?1'2{/ h2)^ 
J 

h - 
i s  r a t h e r  sharp.  Find some useful  appl ica t ions  f o r  t h i s  idea .  
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THE RECURRENCE EQUATION FOR BOUNDING CUBES 

David Bennan 
Tr in i ty  University 

1. Introduction.  By a 2-cube we w i l l  mean the  1-dimensional 
objec t  r e s u l t i n g  from moving a 1-1 cube a t  an angle 0 (0 # 0)  a d is tance  

z ( z  # 0)  i n t o  t he  1 dimension. In Euclidean space, lz 1 = lz 1 j j-1 
and 0 = L. 

2 

The purpose of t h i s  paper is  the  der ivat ion  and so lu t ion  of t h e  
d i f ference  equation 

i n  which N.  . is the  number of 1-cubes bounding a 1-cube (j>i). 
51 

The so lu t ion  w i l l  be shown t o  be 

(2 )  2 j - i  
' i , j  = jci, 

where 1 C i i . s  t he  symbol f o r  combinations. The so lu t ion  w i l l  be gen- 
e ra l i zed  t o  gamma functions.  F inal ly ,  Euler ' s  Theorem f o r  n-dimensional 
polyhedra w i l l  be s t a t e d  and proven f o r  bounding cubes. 

1-1 cube ' f i n a l '  

j- 1 cube 

2. Derivation. To f i n d  the  number of i-cubes bounding a 1- 
cube, we f i r s t  must f i n d  the  number of 1-cub& bounding t h e  i n i t i a l  
1-1 cube and add t h i s  t o  t h e  number of connecting i-cubes and f i n a l l y  
add the  number o f  1-cubes bounding t h e  f i n a l  1-1 cube. This is 
i l l u s t r a t e d  i n  Figure I. Using t h e  nota t ion  N . f o r  t h e  number of 
i-cubes bounding a ]-cube we have - 1.1 
(3)  " i , j  = Ni, j-l + (connecting cubes) + Ni, j-l. 

We note t h a t  a t  t he  i n i t i a l  and f i n a l  pos i t ions  t h e  quant i ty  
Ni-l,2-l expresses t h e  number of i-1 cubes bounding a 2-1 cube. 

By de f in i t i on  o f  a cube we can say t h a t  each i-1 i n i t i a l  cube generates 
one 1-cube (connecting cube). From the  l a s t  two statements we 
have t o  f i n d  t h e  number of i-1 cubes bounding t h e  i n i t i a l  1-1 < 
and we a r e  guaranteed t h a t  t h i s  corresponds t o  t h e  number of cc 
i-cubes. See Figure 11. Subst i tu t ing  N - i-1.1-1 i n  - 
of connecting 1-cubes we ge t  



t h e  recur rence  equa t ion  f o r  bounding cubes. 

i-1 cube (by d e f . )  

3. Solu t ion .  Replacing i and j  by x and y r e s p e c t i v e l y  and N 
by f .  eq.(4) be w r i t t e n  in t h e  more t r a c t a b l e  form 

I f  we l e t  

( 6 )  f ( x , y )  = 2ax+by g(x ,y) ,  then  

c7) 2 a s + b ~ g ( x , y )  - 2ax+b~-b+1 ~ ( x , Y -  1) - 2ax+by-a-b gcx-1.y-1) = 0. 

Assigning t h e  va lues  b = 1 and a = -1, eq. ( 7 )  can be s i m p l i f i e d  t o  

( 8 )  2y-x[g(x,y) - g(x,y-1) - g(x-1,y-l) l  = 0 ,  o r  

( 9 )  g (x ,y)  - g(x,y-1) - g(x-1,y-1) = 0. 

Eq. ( 9 )  is r e a d i l y  so lved  by methods o f  f i n i t e  d i f f e r e n c e s  [l] t o  be 

(10) 
c 

g(x ,y)  = y x. 

S u b s t i t u t i n g  eq. (10) back i n  eq. ( 6 )  we have 

(11)  f ( x , y )  = Px ycx, o r  

(12)  
, j - i  C 

N i , j  = j  1. 

4. Genera l iza t ion .  Eq. (12)  can be used only  when i and ] 
a r e  i n t e g e r s .  I t  would be d e s i r a b l e  t o  g e n e r a l i z e  t h i s  equa t ion  s o  
t h a t  a l l  r e a l  va lues  could be used. The n a t u r a l  g e n e r a l i z a t i o n  is  
t o  use t h e  i d e n t i t y  r ( j  + 1 )  = j! and s u b s t i t u t e  gamma f u n c t i o n s  f o r  
f a c t o r i a l s .  This  g e n e r a l i z a t i o n  w i l l  be permiss ib le  i f  and only  if 
t h e  r e s u l t i n g  equa t ion  s a t i s f i e s  t h e  o r i g i n a l  recur rence  r e l a t i o n s h i p ,  
ew. ( 4 ) .  Genera l iz ing  eq. (12) t o  gamma f u n c t i o n s  we g e t  

(19) r ( j  + 1 )  = j r ( j ) ,  

showing t h a t  t h e  genera l ized  s o l u t i o n  does indeed s a t i s f y  t h e  recur rence  
equation.  

5. E u l e r ' s  Theorem. E u l e r ' s  Theorem f o r  bound in^ cubes may he 
s t a t e d  a s  fol lows:  For a  j-cube, 

Writ ing eq. (21) i n  expanded form, we have 

(22)  
i = O  

Making use o f  t h e  binomial  expansion (a - l ) ' ,  we can w r i t e  

(23) = f (-l)i aj-i f i .  
i = O  

I f  we s e t  a  = 2 i n  eq.  ( 2 3 ) ,  we g e t  t h e  d e s i r e d  r e s u l t ,  eq.  (22).  hence 
proving E u l e r ' s  Theorem f o r  bounding cubes. 
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PROBLEM DEPARTMENT 

Edited by 
Leon Bankoff, Los Angles, California 

This department welcomes problems believed to be new and, as 
a rule, demanding no greater ability in problem solvina than that 
of the average member of the Fraternity. Occasionally we shall publish 
problems that should challenge the ability of the advanced undergraduate 
or candidate for the Master's Degree. Old problems characterized by 
novel and elegant methods of solution are also acceptable. Solutions 
should be submitted on separate, signed sheets and mailed before May 
31, 1971. 

Address all communications concerning problems to Dr. Leon Bankoff, 
6360 Wilshire Boulevard, Los Angeles, California 90048. 

PROBLEMS FOR SOLUTION 

Proposed anonymously. Information regarding source is solicited. 

A circle (0) inscribed in a square 
ABCD, (AB = Za), touches AD at G, 
DC at F, and BC at E. If Q is a point 
on DC and P a point on BC such 
that GQ is parallel to AP, show that 
PQ is tangent to the circle (0). 

Proposed by Charles W. Trigg, San Diego, California. 

The palindromic triangular number Alo = 55 and All = 66 may 
each be considered to be a repetition of a palindromic number. 
Find another palindromic number which when repeated forms a 
triangular number. 

Proposed by Solomon W. Golomb, University of Southern California. 

What is the simplest explanation for this sequence: - 
8 5 4 9 1 7 6 3 2 0 7  

Proposed by the Problem Editor. 

If ma, m ,  m are the medians corresponding to sides a, b, c 

of a triangle ABC, show that 

243. Proposed by Alfred E. Neuman, Mu Alpha Delta Fraternity, New York. 

Provide a geometrical proof for the well-known relation 

1 1 1 = arctan - + arctan - + arctan - 
4 2 5 8" 

244. Proposed by Charles W. Trigg, San Diego, California. 

The spots on a standard cubical die 
are distributed as indicated on the 
accompanying Schlegel diagram, the 
sum on each pair of opposite faces 
being 7. A square grid is composed 
of squares the same size as a die 
face. When a die is placed on a 
square and rotated 90' about an edge 
to come into contact with another 
square, the motion will be called a 
roll. - 
What is the shortest roll sequence that 
will return the die to the starting 
square in its original attitude? 

245. Proposed by R. S. Luthar, University of Wisconsin, Waukesha. 

Prove that for positive numbers x and y the following inequality 
holds : 

(x2 - xy + y2)(x+~)'2 > xxyJ'. 

246. Proposed by Bob Prielipp, Wisconsin State University, Oshkosh. 

If x is an even perfect number > 6, prove that x 5 4 (mod 12). 

247. Proposed by Alfred E. Neuman, Mu Alpha Delta Fraternity, New York. 

Construct diagrams illustrating four (or more) different theorems 
characterized by the relation AZ EX CY = I A Y  BZ CX). 

SOLUTIONS 

212. (Fall 1968) Proposed by J. M. Gandhi, University of Manitoba, 
Winnipeg, Canada. 

Solution I by the Proposer. 

show that 
(A) M(5m t 2) s 0 (mod 5) 

and 
(B) M(5m + 3) S 0 (mod 5). 

Chef. George Rutledge 5 R. D. Douglass, Integral functions associated 
with certain binomial sums, Amer. Math. Monthly 43(1936), pp. 
27-33]. 



Solution. Rutledge Â Douglass see the above ref. , proved that 
(7n-3)nM(n) = (l?n7 - 24n t ln)M(n-1). (1) 
Let n = 5m + 2, so that from (1) we pet 

(lOm+l) (5m+7) M(5mt2) 

= f12(5m + 7)' - 74(5m + 7) + 101 M(5m t 1) 

- f?(5m + ?I7 - 5(5m + 7) + 71 M(5m) 
Z {48 - 48 + 101 M(5m + 1) 
- (8 + 2) M(5m) (mod 5) 
0 (Mod 5). 

Thereby congruence (B) follows. 
Now considering n = 5m + 3 from (1) we eet (lOm+3) (5m+3) M(5mt3) 

= [12(5m t 3)? - 74(5m + 3) + 103 M(5m + 7) 
- L?(5m t 3)2 + 71 M(5m t 1) 
z M(5m + 7) (mod 5) 
Â 0 (mod 5) in view of conpruence (R) and hence 

we aet congruence ( A ) .  

Solution I1 by L. Carlitz, Duke University. -- 
We shall make use of the Lucas congruence 

(TI;) (;)(: ) (mod p). 

where p is prime and 

Then 

M(5m+7) = 

Similarly 
Q (mod 5). 

We can generalize the above result in the following way. 
Let n = pm + k, where p is prime and 0 L k  < p. Then 

Hence ( Â ¥  1 (ttl)c) z 0 (mod p) 

t + l<k 

is a sufficient condition for 

M(pm+k) s 0 (mod p). 

For example if k = 4 we have 

= 4 + 30 + 60 t 35 = 179 = 3 43, 
so that 

M(43m+4) z 0 (mod 43). 

220. (Spring 1969) Proposed by Daniel Pedoe, University of Minnesota. 

a) Show that there is no solution of the Apollonius problem 
of drawing circles to touch three given circles which has only 
seven solutions. 

b) What specializations of the three circles will produce 
0, 1, 2, 3, 4, 5 and 6 distinct solutions? 

Solution by the Proposer. 

The circle Co which is orthogonal to each of the given Ci (i = 1,7,3) 

is uniquely defined, unless the C. belonp to a pencil of circles. 

In the latter case the only tancent circles are two point-circles, 
in the case when the pencil is of the intersectinp type. The 
circle C plays a very special role with regard to the C 

1' 
since inversion in C maps each Ci onto itself, and maps a tangent 

circle C onto a tangent circle C'. When there are 8 tangent 
circles (which may be called the general case) these can be 
split into four pairs. We call the circles in a pair "conjupate 
circles". (For all this, proved algebraically, see Pedoe, 
Circles, Per~amon Press, 1957). If we specialize the Ci so that 



there are only 7 tangent circles, the specialization must aim 
at making a pair of conjugate circles identical, since if two 
tangent circles which are not conjugate become identical, the 
conjugates also become identical, and the number of tangent 
circles would reduce to 6, at most. 

We therefore specialize the C so that a conjugate pair C, C' 
i 

become the same circle, D. say. This means that inversion in 
C maps the tangent circle D onto itself. If this is the case, 
~Omust be orthogonal to C .  We therefore find ourselves with 

three circles Ci, a circle C orthogonal to the Ci, and a circle 

D which touches the Ci and is also orthogonal to Co. We show 

that this means that two of the Ci must touch each other. 

Invert with respect to a center of inversion on C .  We obtain - 
three circles C,', with diameters which lie along the line Cot. 

These three circles are touched by a circle D' whose diameter 
also lies along C '. If two circles with diameters along the same 

line touch on a point not on this line, they have the same 
center, and must therefore coincide. If the circles are distinct, 
contact can only take place at an endpoint of a diameter. 
Since D' has only two points of intersection with the line 
C
o

t, and has to touch each of Clt, C2', C3' at a point on C
o

t, 

the three points of contact cannot be distinct. Hence at least 
two of the circles C,' intersect C '  at the same point. That 

is, at least two of the circles Cit touch each other. But if 

at least two of the circles Ci touch each other, the number of 

circles tanpent to the three Ci is readily seen to be 6, at most. 

Also solved by Charles W. Trigg, San Diego, California. To 
do justice to Trigg's detailed analysis of the problem and to 
the numerous diagrams accompanying his solution, the editor has 
found it necessary to postpone publication until the Spring 
1971 issue. 

Editor's Note: An expanded version of Pedoe's solution has been 
published in his paper The Missing Seventh Circle, Elemente der 
Mathematik, January 1970, page 14. 

(Fall 1969) Proposed by Jack Garfunkel, Forest Hills High School, 
Flushing, N.Y. - 
In an acute triangle ABC, angle bisector BT. intersects altitude 

- 
A H  in D. Angle bisector CT2 intersects altitude BH in E, 2 
and angle bisector AT3 intersects altitude CH3 in F. h o v e  

Solution by the Proposer. 
2 Since DHl/AHl = tan(B/2)/tan B = 1 - tan (B/2), etc., the 

problem is equivalent to that 
of showing 

tan2(~/2) + tan2(~/2) + tan2(c/2) 2 1, 
equality holding if and only 
if A = B = C. The proof of 
this inequality follows from the 
relation 1-tan(A/2)tan(B/2) 

= tan(A/2) + tan(B/2) 
whence Etan(A/Z)tan(B/2) = 1. 
It follows that ~ t a n q ~ / 2 )  > 1, 
thus completing the proof. 

Also solved by Sid Spital, Calif. 
State College at Hayward, who 
noted that the triangle 
need not be acute. 

223. (Fall 1969) Proposed by Solomon W .  Golomb, University of 
Southern California. Los Angeles. 
-- - 

In the first octant of 3-dimensional space, where x 2 0, y 2 0, 
z 2 0, identify the region where the following "associative 
law" holds: 

Solution by the Proposer. 

Both expressions are indeterminate on the line x = y = 0. The 
left side is also indeterminate on the line y = z = 0. Otherwise, 
the identity holds in the four planes 

x = 0, 
x = 1, 
Y = 0, 
z = 1  

and along the surface 
y = z lICz - I) for z # 1. 

-b 
If x # 0 then xa = x requires a = b, which in this case means 

yz = yz, so that there are no other solutions. 
Also solved by R. C. Gebhardt, Parsippany, N.J.; Richard L. 
Enison, New York; C. B. A. Peck, State College, Pennsylvania; 
C. L. Sabharwal, Saint Louis University; and Bid Spital, Calif. 
State College at Hayward. 

Peck notes that on the cylinder y = z 
1/(7.-1) , l i m j  = 1 and 

l i m y  = -. The cylinder is thus asymptotic to two of the 

planes, namely the xy- and the xz-planes, and intersects the 
other two (the ones parallel to the yz-plane). 

224. (Fall 1969) Proposed by Charles W. Trigg, San Diego, Calif. 

In the following cryptorithm, each letter represents a distinct 
digit in the decimal scale: 

B ( M A D A P E ) = S ( A P E M A D ) .  

Identify the digits. 



Solution by Jeanette Bickley, St. Louis, Missouri. 

Below is the computer program and output from a SDS 94n computer. 
The program tests all possible dipit replacements for M, A, 
D, P, E and gives the unique solution M = 1, A = 7, D = 8 ,  
P = O , E = 5 .  

CCOM-SHARE CENTER E 52 
PLEASE LOG IN:E285;WJGEE 
READY, SYSTEM W04 
FEB 4 8:3B 
LAST LOGIN FEB 3 16:2B 
-XTR 
VER. JAN 71 

+QFD 
*A /JBMADAPE/ 
*/ 

INTEGER A,D,P,F,RIGHT 
DIMENSION M(10),A(10),D(10),P(10),E(lO) 

90 FORMAT(9HMADAPE = ,171 
91 FORMAT(1012) 

READ(0.91) M,A,D,P,E 
WRITE(l,ql) M,A,D,P,E 
DO 20 1-1.10 
DO 20 J=l,10 
DO 20 K=l,10 
DO 70 L=J ,10 
DO 20 N=1,10 
LEFT = M(I)*100000+A(J)*10000+D(K)*1000+P(J)*l~n+P(L)*l~+E(N) 
RIGHT= A(J)*100000+P(L~*lOOOO+E~N~*lOO~+M~I)*100+A(J)*l~+D(K) 
IF(8*LEFT-5*RIGHT)20,30,20 

30 WRITE(1,90) LEFT 
20 CONTINUE 

STOP 
END 

*XTRAN 
+c 
OUTPUT: 
OPTIONS: CARD 

+R 
OPTIONS : 
SPROG: 
XLIBE JAN 14 

0 1 2 3 4 5 6 7 8 9  
0 1 2 3 4 5 6 7 8 9  
0 1 2 3 4 5 6 7 8 9  
0 1 2 3 4 5 6 7 8 9  
0 1 2 3 4 5 6 7 8 9  

- - -  0 1 2 3 4 5 6 7 8 9  - 0 1 2 3 4 5 6 7 8 9  
0 1 2 3 4 5 6 7 8 9  
0 1 2 3 4 5 6 7 8 9  
0 1 2 3 4 5 6 7 8 9  
MADAPE = 
MADAPE = 128205 
*STOP* 
(SMAIN$)20+1 
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-LOG 
USAGE 
CCU: 078 
CLT: 0.06 HOURS 

Solution I1 by R. C. Gebhardt, Parsippany, N.J. 

The problem can be written as 

BOOO(MAD) + 8(APE) = 5000(APE) + 5(MAD). 
Thus 7995(MAD) = 4992(APE) or ?05(MAD) = 128(APE). 
Since 128 and 205 are relatively prime, this equation is solved 
by MAD = 128, APE = 205. 

Also solved by Charles H. Culp, Socorro, New Mexico; Clayton 
W. Dodge, University of Maine; Elliot D. Friedman, Plainview, 
N.Y.; Walter Wesley Johnston, Springfield, Illinois; Donald 
Marshall, Pasadena; Donald R. Steele, Pine Plains Central School, 
Pine Plains, N.Y.; Gregory Wulczyn, Bucknell University; 
and the propser. 

A &-page solution offered by Alfred E. Neuman, of the Mu Alpha 
Delta Fraternity, turned out to be incorrect. 

225. (Fall 1969) Proposed by Wray G. Brady, University of Bridgeport. 

Show that any proper fraction, a/b, can be written as the product 
of fractions of the type n/(n + m) for fixed m. 
Solution by Charles W. Trigg, San Diego, California. 

If k = b - a > 1, m = 1, clearly 
a a a + 1  a + 2  a + ( k - 2 ) a + ( k - l ) .  -=-.-.- 
b a + 1  a + 2  a + 3 ' " a + ( k - 1 )  + k  

ra ra r a + 1  r a + ( r - 1 )  . 
rb r a + 1  r a + 2 " '  ra + r 
If b - a is composite, say b - a = pm, then the multiplicative 
sequence may be shortened, i.e., 

a a a + m  a + ( p - l ) m  
- =- a-  

b a + m  a + 2 m " '  a + p m  ' 

Also solved by Clayton W. Dodee, University of Maine; Richard 
L. Enison, New York; Murray S. Klamkin, Ford Motor Company 
Scientific Research Staff; Frank P. Miller, Jr., Pennsylvania 
State University; Bob Prielipp, Wisconsin State University - 
Oshkosh; Gregory Wulczyn, Bucknell University; and the proposer, 
who gave the reference to Dickson's Theory of Numbers, Vol. 11, 
p. 687, Chelsea, 1952. 



226. ( F a l l  1969) Proposed by B. J. Cerimele , North Carol ina  S t a t e  
Universi ty a t  Raleigh. 

Derive a formula f o r  t he  n-th o rde r  a n t i d e r i v a t i v e  o f  f ( x )  = I n  x. 
Solu t ion  I by Murrary S. Klamkin, Ford Motor Company. 

We so lve  t he  more genera l  problem of  f i nd ing  t he  n- th o rde r  
a n t i d e r i v a t i v e  of xm l o g  x .  This is equiva len t  t o  so lv ing  t he  
n- th o rde r  d i f f e r e n t i a l  equation 

LlnY = x
m 

l og  x. 

Let x = e
z

.  Then, 

( 1 )  D(D-l)(D-2) ... (D-n+l)y = ze(m+n)z 

The complementary so lu t i on  is given by 

yc = a. + a
l

e
z + . . . + a (11-112 

n-1 

To f i n d  a p a r t i c u l a r  s o l t i o n ,  we mul t ip ly  (1 )  by e-(m+n)z and 
use t h e  exponent ia l  s h i f t  theorem, t o  g ive  

(D+m+n)(D+m+n-1) . . . ( ~ + m + l ) ~ e - ( ~ + ~ ) ~  = z. 

-(m+n)z - 
Thus, y e  - az  + b and t o  determine t h e  cons tan ts  a and 

b,  we s u b s t i t u t e  back. Thus, 
1 1  (m+l)(m+2) ... (m+n) (az+b)+a - 1 

m+l + = +  ... + -  E z m+n 
and 

r(m+i) 1 1  1 a = m, b = - a- + - +  .,. + - 
m+l m+2 m+n ' 

Fina l l y ,  

The proposed problem corresponds t o  t h e  s p e c i a l  case m = 0 and here  

Solu t ion  I1 by t he  Proposer. 

Successive i n t eg ra t i on  by p a r t s  y i e l d s  t he  p a t t e r n  

where d = (l/ndn-l + l /nn! ,. dl = -1, and t he  Ci's a r e  a r b i t r a r y  

cons tan ts .  The so lu t i on  of t h e  d i f f e r ence  equation i n  d is 
- n-1 

dn = YO(n+l)/n! where Yo(n) = 1 ( l / i ) .  
1x1 - - 

Hence, t h e  formula t ake s  t h e  form 

where P = ?C.xn-i/(n-i)!, 
i=ll 

which is r e a d i l y  v e r i f i e d  by induct ion .  

Also solved by Michael A. Brodt r ick ,  Affton,  Missouri; Clayton 
W. Dodge, Univers i ty  of  Maine; Richard L. Enison, New York Ci ty ;  
W. Wesley Johnston, Sp r ing f i e ld ,  I l l i n o i s ;  P e t e r  A .  Lindstrom, 
Genesee Community College,  Batavia,  N.Y.; Frank P. Mi l le r ,  Jr., 
Pennsylvania S t a t e  Univers i ty ;  Mavrigian, Youngstown S t a t e  
Univers i ty ,  Youngstown, Ohio; William G. Nichols,  Blacksburg, 
Vi rg in ia ;  C. L. Sabharwal, S a i n t  Louis Univers i ty ;  S id  S p i t a l ,  
Ca l i f o rn i a  S t a t e  College at Hayward; Gregory Wulczyn, Bucknell 
Universi ty.  

227. ( F a l l  1969) Proposed by R. Sivaramakrishnan, Government E n ~ i n e e r i n f  
College,  Tr ichur ,  South India .  

I f  ~ ( n )  denotes t h e  number of  d i v i s o r s  of  n ,  and p(n)  t h e  Moebius 
func t ion ,  prove t h a t  

2 2 
~ ( n )  + v ( n )  2 ~ ( n  

with e q u a l i t y  i f  and only i f  n is a prime. 

Solu t ion  by C. B. A. Peck, S t a t e  College,  Pennsylvania. 

I f  n = 1, t h e  statement is f a l s e ,  s i n c e  each term is 1. I f  
n > 1 is no t  f r e e  of  square f a c t o r s ,  v (n )  = 0 and T<n2) > ~ ( n ) .  
s i n c e  every d i v i s o r  o f  n d iv ide s  n2 bu t  n2  does no t  d iv ide  n. 
I f  n > 1 is f r e e  of  square f a c t o r s ,  y (n)  = 1 and r (n2 )  = 3k > 2k = ~ ( n )  
when n is t h e  product of  k d i s t i n c t  prime- f a c t o r s .  I f  n is 
prime, k = 1 and e q u a l i t y  holds .  I f  n is not  prime, k > 1 and 
i nequa l i t y  holds s t r i c t l y .  

Also solved by P e t e r  A. Lindstrom, Genesee Community College,  
Batavia. N.Y.; Donald E. Marshall ,  Pasadena, Ca l i f . ;  William 
G. Nichols,  V i rg in i a  Poly technic  I n s t i t u t e ;  Bob P r i e l i p p ,  Wisconsi~ 
S t a t e  University-Oshkosh; S id  S p i t a l ,  Ca l i f o rn i a  S t a t e  College 
at Hayward; and t h e  Proposer. 

( F a l l  1969) Propsed by Charles W .  Trigg,  San Diego, Ca l i f o rn i a .  

I n  t he  decimal system, 1122 is a mu l t i p l e  of  l5 + 2 and conta ins  
ng d i g i t s  o h e r  than  1 and 2. Also, 3312 is a mul t ip le  o f  s 1 + 25 + 3 and conta ins  no d i g i t s  o t h e r  than  1, 2 and 3,  and 
conta ins  each of  t h e s  d i g  ts a l e a s t  once Do comp r a b l  I ^ {  E! ? mult ip les  e x i s t  f o r  1 + 2 + 3 + b5 and 1  ̂+ Z5 + 3 + 4 + s5? 

Solu t ion  by t h e  Proposer. 

5 5 5  
M =  1 + 2 + 3 + b5 = 1 +  3 2 +  2 4 3 + 1 0 2 4 =  1300, s o a l l  

mu l t i p l e s  o f  M t e rminate  i n  00. Curiously enough, no d i g i t  
> 4 occurs i n  any o f  t he  expanded powers o r  t h e i r  sum. In  t h e  
ensemble, each o f  t he  d i g i t s  0 ,  1, 2, 3,  and 4 occurs with t h e  
sane frequency, except  t h a t  t h e r e  is one 4 s h o r t .  

S imi l a r l y ,  i n  P = l5 + 25 + 35 + b5 + 55 = 1 + 32 + 243 + 1024 
+ 3125 = 4425, no d i g i t  > 5 appears.  I f  a l l  f i v e  p o s i t i v e  d i g i t s  
a r e  t o  appear i n  kP, then k must be of  t h e  form 1 + 4n. For 
k = 5,  53, 93, 121, and 125, t h e  i n t e g e r  kP is composed only  of  
some of  t he se  f i v e  d i g i t s ,  bu t  t h e  sma l l e s t  mul t ip le  of  P i n  which 
a l l  f i v e  and only t he se  f i v e  d i g i t s  appear is 1243425 = 281(4425). 

Extending t h e  s e r i e s ,  t h e  sma l l e s t  va lues  a r e :  



I n  t h e  l a s t  two c a s e s ,  each d i g i t  appears  o n l y  once i n  t h e  
p roduc t .  

Also s o l v e d  by J e a n e t t e  Bick ly  , S t .  Louis ,  Missouri  ; Clayton 
W .  Dodge, U n i v e r s i t y  o f  Maine; R. C. Gebhardt ,  Pa rs ippany ,  N . J . ;  
W.  Wesley Johns ton ,  S p r i n g f i e l d ,  I l l i n o i s  ; Donald E . Marsha l l ,  
Pasadena,  C a l i f .  ; C. B. A .  Peck,  S t a t e  Col lege ,  Pennsy lvan ia ;  
William G. Nicho ls ,  V i r g i n i a  P o l y t e c h n i c  I n s t i t u t e ;  and Gregory 
Wulczyn, Bucknel l  U n i v e r s i t y .  

Wulczyn added m u l t i p l e s  o f  17,700 t o  4425 on a  desk c a l c u l a t o r  
t o  produce t h e  fo l lowing  p r o d u c t s ,  l i s t e d  wi th  cor responding  
m u l t i p l i e r s  o f  4425: 

( F a l l  1969) Proposed by C a r l  L. Main, S h o r e l i n e  Community Collefe, 
S e a t t l e ,  Washington. 

Let  A and A 2  be  t a n g e n t  u n i t  1 
c i r c l e s  wi th  a  common e x t e r n a l  
t a n g e n t  T. Define a  sequence 
o f  c i r c l e s  r e c u r s i v e l y  a s  f o l -  
lows: 1 )  C, i s  t a n g e n t  t o  T ,  

.L 

Al and A 2 ;  2 )  C. is t a n g e n t  - 
t o  C i ,  A and A ,  f o r  i = 2,  

,- 
3 ,  ... 
Find t h e  a r e a  o f  t h e  r e g i o n  .C.. 

1 1  

S o l u t i o n  by Murray S .  Klamkin, Ford Motor Company T h e o r e t i c a l  
Sc iences  Department. 

Using t h e  formula [H.S.M. Coxe te r ,  I n t r o d u c t i o n  t o  Geometw, 
John Wiley, N.Y. ,  1961,  p. 1 5 1  

r e l a t i n g  t h e  f o u r  q u a n t i t i e s  a ,  b ,  c ,  d  which a r e  t h e  r e c i p r o c a l s  
o f  t h e  r a d i i  o f  f o u r  mutua l ly  t a n g e n t  c i r c l e s ,  we g e t  

( 1 )  An+l = An t 2 + 2 4 2 ~ ~  t 1 . A. = 0 ,  

where A deno tes  t h e  r e c i p r o c a l  of  t h e  r a d i u s  o f  c i r c l e  C . I t  

f o l l o w s  t h a t  
2  

A = 2(n + n ) .  

Whence, 

m m 
1 

Area .C. = I vL = 5 I 1 1 2 
1 1 4 i=l n n+1  4 i=l n 2 " 0 2 - n ( n + l )  

Remark: I t  is t o  be no ted  t h a t  t h e  sequence genera ted  bv ( 1 )  
is such t h a t  An i s  always i n t e g r a l .  A more g e n e r a l  sequence wi th  
t h i s  p r o p e r t y  is given by 

* , m  

( s e e  a l s o  Math. Mag. 42 (1969) pp. 111-1131. 

Also s o l v e d  by Sanford A .  Bolasna,  U n i v e r s i t y  o f  C a l i f o r n i a  
a t  R ivers ide  ; Laura DiSanto, Ca lgary ,  A l b e r t a ,  Canada; Clayton 
W. Dodge, U n i v e r s i t y  o f  Maine; G.  Mavrigian,  Youngstown S t a t e  
U n i v e r s i t y ,  Ohio; Frank P. M i l l e r ,  J r . ,  Pennsylvania S t a t e  
U n i v e r s i t y ;  Ronald W .  P r i e l i p p ,  U n i v e r s i t y  o f  Oregon; S i d  
S p i t a l ,  llayward, C a l i f o r n i a ;  Gregory Wulczyn, Bucknel l  U n i v e r s i t y ;  
and t h e  Proposer .  

230. ( F a l l  1969) Proposed by Hurray S. Klamkin, Ford S c i e n t i f i c  
Laboratory.  

Determine a s i n g l e  formula t o  r e p r e s e n t  t h e  sequence ( ~ ~ 1 ,  
n  = 1, 2,  3 ,  ... where 

Apn+p = Bnp 

and where t h e  (B 1 ,  r = 1, 2,  ..., p a r e  p g iven  sequences.  
n r  

S o l u t i o n  by t h e  Proposer .  

The problem is e q u i v a l e n t  t o  f i n d i n g  a  s imple  r e p r e s e n t a t i o n  
f o r  t h e  p e r i o d i c  sequence 1, 0 ,  0 ,  . .. , 0 ,  1, 0 ,  0 ,  .. . , 0 ,  1, ... , 
o f  p e r i o d  p. I f  w deno tes  a  p r i m i t i v e  pth r o o t  o f  u n i t y ,  then  

1 + w
r + wZr + . . . + U ( P - ~ ) ~  = p 



i f  r is a m u l t i p l e  o f  p;  otherwise it is zero.  Thus, 

Solu t ion  I1 by C. B. A. Peck, S t a t e  College,  Pennsylvania.  

A = B where a = [n /p l  and b = n - [n/p]p and [c] is t h e  n a , b  
l a r g e s t  i n t e g e r  n o t  exceeding c .  

S i m i l a r l y  so lved  by Richard L. Enison, New York; and S i d  S p i t a l ,  
Hayward, C a l i f o r n i a .  

231. Proposed by David L. Si lverman,  Beverly H i l l s ,  C a l i f o r n i a .  

a )  What is t h e  s m a l l e s t  c i r c u l a r  r i n g  through which a r e g u l a r  
t e t r a h e d r o n  o f  u n i t  edge can be made t o  pass?  

b )  What is t h e  r a d i u s  o f  t h e  s m a l l e s t  r i g h t  c i r c u l a r  c y l i n d e r  
through which t h e  unit-edged r e g u l a r  t e t r a h e d r o n  can pass?  

Solvers  a r e  i n v i t e d  t o  g e n e r a l i z e  t o  t h e  o t h e r  P l a t o n i c  s o l i d s .  

So lu t ion  by Charles W. Tr igg ,  San Diego, C a l i f o r n i a .  

a )  MN is t h e  bimedian jo in ing  t h e  midpoints  of  t h e  oppos i te  
edges AB and CD o f  t h e  u n i t  t e t rahedron .  Sec t ions  o f  t h e  t e t r a -  
hedron by p lanes  perpendicu la r  t o  MN a r e  r e c t a n g l e s  with a 
cons tan t  per imeter  of 2. The one jo in ing  t h e  midpoints  of 
AC, AD, BD, and BC is a square .  Its c i rcumci rc le  has t h e  s m a l l e s t  
r a d i u s ,  i^2/4, of  t h e  s e c t i o n s '  c i rcumci rc les  . 
Take AE = AF = x on AD and AC, r e s p e c t i v e l y .  

B 
T en EF = x ,  and y2 = B F ~  =  BE^ = 

+ 12 - 2 ( l ) ( x )  cos  60Â = x2 - x + 1 ,  

o f  t r i a n g l e  EFB is xh/2. 
Hence t h e  c i rcumradius  o f  
t h e  t r i a n g l e  is g i v  n by 5 ' 
R = xyy/4(xh/2) = y 2h. 
Consequently , 

2 2 
R~ = (x2-x+l) / (3x  -4x+4). 

S e t t i n g  t h e  d e r i v a t i v e  o f  R A 
with r e s p e c t  t o  x e q u a l  t o  z e r o  
and s impl i fy ing ,  we have 

2 3 2 
( X  -x+l ) (3x  -6X + 7 ~ - 2 )  = 0. 

The f i r s t  f a c t o r  has on ly  imaginary zeros .  
The graph o f  t h e  second f a c t o r  has  no 
h o r i z o n t a l  t a n g e n t ,  bu t  does have a p o i n t  o f  i n f l e c t i o n  a t  
(2/3,8/9). Hence t h e r e  is only  one r e a l  r o o t  o f  t h e  equa t ion .  
This  can be found by Homer ' s  method, o r  o therwise ,  t o  be 
0.3912646668. This  corresponds t o  R * 0.4478, which is t h e  

r a d i u s  of  t h e  s m a l l e s t  c i r c u l a r  r i n g  (of  n e g l i g i b l e  t h i c k n e s s )  
through which t h e  te t rahedron  can pass .  

The r i n g  can be p laced  i n  c o n t a c t  wi th  t h e  t e t r a h e d r o n  a t  E and 
F and b a r e l y  passes  over  B. I t  then  can be dropped down i n t o  
c o n t a c t  with corresponding p o i n t s  E' and F' on t h e  t r i a n g l e  
ABC and r o t a t e d  t o  pass  over  D and hence over  t h e  te t rahedron .  

b )  I f  t h e  t e t r a h e d r o n  r e s t i n g  on a pl..ne is r o t a t e d  about an 
edge u n t i l  it rests on a n o t h e r  f a c e ,  its p r o j e c t i o n  on t h e  plane 
v a r i e s .  The c i rcumci rc le  of  t h e  p r o j e c t i o n  is s m a l l e s t  when 
t h e  te t rahedron  i s  a t  midposit ion.  There t h e  p r o j e c t i o n  is a 
square  with a circumradius o f  1/2,  whi~ . i  is t h e  r a d i u s  of  t h e  
s m a l l e s t  * r igh t  c i r c u l a r  c y l i n d e r  through which t h e  t e t r a -  
hedron can pass.  

I f  t h e  c y l i n d e r  is f l e x i b l e ,  it need have a r a d i u s  o f  on ly  
1/v t o  permit  passage of t h e  t e t r a h e d r o n .  (See,  Charles W. 
T r igg ,  Mathematical Q u i c k i e s ,  McGraw-Hill Book Co., 1967, pages 
49, 158-159). 

Remarks by t h e  Edi tor .  

So lvers  a r e  i n v i t e d  t o  comment on t h e  fo l lowing  f i n e  p o i n t s  
posed by Mr. Trigg:  

A r igorous  proof would r e q u i r e  a l s o  t h a t  it be shown t h a t  

1. The r i n g  a s  it r o t a t e s  on to  t h e  te t rahedron  w i l l  n o t  c a t c h  
on BD and BC before  it reaches  t h e  l e v e l  of t h e  0.88865 by 
0.11135 r e c t a n g l e  which has a diameter  of  2R. 

2. No non- isoscelesplane s e c t i o n  through B has a s m a l l e r  c i rcumci rc le .  

3. I n  p a r t  b ) ,  no o t h e r  a t t i t u d e  o f  t h e  t e t r a h e d r o n  w i l l  have 
a p r o j e c t i o n  with a s m a l l e r  c i rcumci rc le .  

With regard  t o  i t em 1, t h e  e d i t o r  n o t e s  t h e  fol lowing:  

Consider t h e  circumsphere of  t h e  r e c t a n g u l a r  pyramid determined 
by B, E, F, G and H, where G and H a r e  p o i n t s  on BD and BC 
such t h a t  BG = AE = BH = AF. Thus t h e  plane conta in ing  EGHF is 
perpendicu la r  t o  t h e  bimedian MN connecting t h e  midpoints  o f  
AB and DC. S ince  t h e  d i h e d r a l  angle  between t h e  p lanes  conta in ing  
UGH and EGHF i s  obtuse ,  t h e  plane of BEF is  n e a r e r  t h e  c e n t e r  
of  t h e  sphere  than  is t h e  p lane  of  EGHF. Consequently t h e  
c i rcumci rc le  o f  t r i a n g l e  BEF is l a r g e r  than t h a t  o f  t h e  r e c t a n g l e  
EGHF. I t  is t h e r e f o r e  c l e a r  t h a t  t h e  c i rcumci rc le  BEF can be 
r o t a t e d  about  EF s o  a s  t o  conta in  EFGH, and can t h e n  be s l i d  
perpendicu la r  t o  t h e  bimedian ( o r  i n  many o t h e r  ways) p a s t  t h e  
midpoint o f  t h e  bimedian and on t o  a p o s i t i o n  wi th  r e l a t i o n  t o  
DC t h a t  i s  symmetrical t o  its former r e l a t i o n  t o  AB. From t h a t  
p o i n t ,  i t  s l i d e s  o f f  t h e  t e t r a h e d r o n  i n  a manner s i m i l a r  t o  
t h e  way it s l i d  on. 

A s  f o r  i t em 3,  when t h e  t e t r a h e d r o n  is a t  t h e  extremal p o s i t i o n  de- 
s c r i b e d  i n  T r i g g ' s  s o l u t i o n ,  t h e  c e n t r a l  a x i s  o f  t h e  c y l i n d e r  
co inc ides  with one of  t h e  bimedians o f  t h e  t e t r a h e d r o n .  I n  
t h i s  p o s i t i o n  t h e  two edges of  t h e  t e t r a h e d r o n  connected by t h i s  
bimedian must l i e  on diameters  o f  c i r c u l a r  c ross- sec t ions  o f  
t h e  a l l e g e d  minimum c y l i n d e r .  It is apparen t  t h a t  any at tempt 
t o  i n c r e a s e  t h e  l e n g t h  of  e i t h e r  one of  t h e  edges would n e c e s s i t a t e  
t i l t i n g  o r  d i s p l a c i n g  t h e  bimedian, t h u s  reducing t h e  l e n g t h  
of  t h e  oppos i te  edge and des t roy ing  t h e  r e g u l a r i t y  o f  t h e  te t rahedron .  
This  v e r i f i e s  Tr igg ' s  conclusion i n  p a r t  b ) .  

The E d i t o r  i n v i t e s  comments on t h e  ques t ion  r a i s e d  i n  i tem 2 ,  
regard ing  t h e  p o s s i b i l i t y  o f  a non- isosceles plane s e c t i o n  through 
B wi th  a s m a l l e r  c i rcumci rc le .  
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LOUIbIAHA ZETA. Univertiitv of Southwesterti Louisiana Barbara J. Bul l in  Dennia R, Falk 
Carol A. Erdahl J u s t i n  E. Halverson 
Apr i l  J. Evans Thelma Hedgepeth 

Tloothy Hul tqui i t  
J. Elaine Locklev 

badv Matalon 
Jean Probdt 

Frank H. Allen 
Judy Arceneaux 
Barry L. Batman 
Flarv Lou Bel l  
Cathy B o ~ n e  
Glvnn R; Drouaaard 
Lynn B, Cmeaux 
Vernie L, Davenport 
Barbara T DeBlanc 
b a l l y  Dorr 

Robert P. DuVerney Yvonne B. Junonvi l le  
bteven Gianbmne Paul Katz 
Maron G i l f o i l  l la rguer i te  Landry 
Becky Griep, Jane- Larke 
Edward G. G r i w a l  Donald Lenoine 
Berton Guidry Lois H. Lundberg 
bherre l  Hamack Donald L. Lytle 
buzanne L, Hebert Louia Haraiat 
Rose Anna Henry Anthony J ,  Hark 

Richard fcLaurhlln 
Arnold Regan 
buzanne Schwarz 
Donald J .  biron 
Clarence E. b ins  
Kathleen P, btevenson 
Henry btewart 
Donald J .  Vincent 
Kenneth L. White 

HibbibbIPPI ALPHA, Univerditv of Miasidsippi 

Jane  A, blade 
Lawrence D, btrong 
net tye  K. Weeks 
Nancy L, White 
David L. Kicker 

P r m t i s s  K. Alford Kathy C. Haskett 
Lynda L. Allen Hartha H. Johnson 
James D. Bovlea Paul A. Landry 
bal lendra  N, Chat ter jee  Harry C. Leeper 
Edward F. Donovan Arthur B. Lewis 
John H. Flowers, Jr. Michael R. Long 

Benjamin A. Home 
Ann L. Van Ostenbridge 
Linda A .  Pa t terson 
n i l ford  B. Puckett 
Cheater W. Richards 
Richard J. Shams 

MAINE ALPHA. University of Maine HONTANA ALPHA, University of Montana 

Robert W. Beal 
Glenn E. Buahel 
Audrey A. A, Car ter  
Oennia A .  Caaaily 
Nat Diaraond 
Panela S. Edwards 
Richard B. F u l l e r  

J a n i c e  E. Greene 
Miriam H. Grepg 
busan J ,  Hal l  
bunan H. Harper 
Robert J. Holnea 
Gerald R. Kidney 
Er ic  b. Laneford 

Raymond J .  McGeechan 
Janea E. Helaon 
Elizabeth B. Olaen 
Kathleen A. Perry 
J a n e t  H. Poliquin 
Lewis G. Purinton 
David J .  Ryan 

James E, 0'Connm 
Richard A. Reid 
J e r r y  L. Roger 
ban H, bperry 

Gary L. Webber 
Dennis M.  Wilde 
Wesley D. Kinkier 

Andre Ednar b a n ~ o n  
Gordon B, bmith 
bandra J. bpearen 
Marshall A. Todd 
James B, Wagner 
Donald W .  Wood 

Kathleen M, Beal l  Allan V. Jensen 
Donna W .  Conklin Abdullah Khouw 
Tana L, Cuahaan Lothar W. Haortin 
James R, Dobesh Martin J ,  McFadden. Jr, 

MONTANA BETA, Montana b t a t e  University 

~ u a a e l l  J. Leiand 
Connie L. Murphy 
Bonnie Nelson 
Jean Paterson 
Leon C. Peterson 
J u l i a  A. bweet 

P a t  Teigen 
Edward 0 ,  Thcupaon 
Alfred W.  T u r t l e  

b a l l i e  B, Abbau Moira K. Davis 
Margaret B. Banning Harlen K. Homes 
Margaret J. Berner Marcia Heiser 
Dave Burton Kathleen Hendricka 
Robert D. Chew Bernice Hi ldre th  
winifred T, Corcoran Vickv L, Kouba 
buaan Cumainga 

HARYLAND ALPHA, Unll r e r a i t y  of Maryland 

Barbara L, Turner 
Jean b. k'eaka 
Frank. W .  Vilkina 
Carol 11. Yudkoff 
Carol Zvakowtiki 

J u l i e  E. Conner Maxine Homata 
Mary H. V. Fang Rae B. Hurwitz 
Barbara Feinp.la6a Hinnie C. Kuni; 
Thmaa V. Hal l  Hark E, Lachtnan 

Barbara b, L a t t e m e r  
buaan C. Loube 
Barry W ,  PhUipp 
Brian R. Stanley 

Ted R. Vies t  
Marilyn R. Wofford 
Edith J .  Bright 

MibSOURI ALPHA, UnKerdi tv  of Miasouri, MARYLAND BETA, Morgan b t a t e  College 
nary P e t t y  Thoenen 
Helen Veith 
Richard J. Voda 
Tom Winkler 
Kenneth J ,  York 

Charles E. Ader Denis E. Feaaler  
Edward R. Atkiaeon Maraha Harlan 
William L. Block Calvin Case Henderson 
Karen Brown Chr is  Kmschgen 
John Paul Dittnan Ui-HinE L i  
Robert Jay  E l l e r  

Gregory W.  Mav 
Martin Kent Perrv 
Leo Anthony bander 
Vicki butherland 
Maureen M.  bweenev 

- 
Michael 0. Am-trong Cynthia C. Harvey Larrv L. LeWid 
Hvra V. Curti- Eldridge V. Hayea Peugy A. Hation 
Ear l  0. Enbree Beverly A ,  Heyward Mary J .  HcKedson 

* btephen J ,  Gewirtz Elizabeth L. Holley Henry L, Hurray 
_Vera. I .  Grady l l e l l i e  B. Howu-d V i l U e  B. Rajanna 

Tlionaa L. Green Leu Koxanki  

Shei la  C, Ray 
bocratea V. baundera 
Linda A. btockton 
Halter R. Talbot 
Lamour B, Tmpleton 

MASSACHUSETTS ALPHA, Worcester Polytechnic I n s t i t u t e  

f a r t i n  K. Anderoon David W .  Hoblll  Lorenzo H. Narducci 
Barry F. Belancer Rmeo L. Horuzzi E u ~ e n e  E. P e t t i n e l l i  
V l l l n n  F, Dudzik 

Richard P, banAntonio 
John C. bexton 



tlEK YORK BETA, Hunter C o l l e ~ e  

btanley Klauancr ;'adaline Rader 

NEK YOPK EPbILO:!, tit. Lawrence Universitv 

MIbbOURi GAMMA, S t .  Louis University 

Alfred C. Beradino 
Kathleen M.  Sadie 
Catherine b, Broughton . P a t r i c i a  A. Buder 
Linda M. Bunn 
Robert Bunting 
P a t r i c i a  R. C a r r o l l  
Kenneth W ,  Chaplin, J r .  
Tak-Yucn J ,  Chong 
Marv Ann C o l l i e r  
Arjun Daagupta 
( b i a t e r )  Anne D'Aletiiiio 
Lee R. Eakin 
Lois M .  Eason 
John J .  Engelhardt 
Paul C ,  Figura 
Chauncev E. Finch 
Kathleen M.  Flood 
tlancv A, Fook 
Robert A, Ganse 

Linda J. Gent i le  
br ,  Katherine Glosenger 
Paul G, Griesener 
Marv K, Harr is  
Ronald E, Havnie 
Gary G, Hendren 
Michael C. Hrize, Jr. 
Thmas W .  Hughes- 
J a n i c e  H. Hummel 
Marv Theresa Hutchinson 
Michael L, Kelenen 
P a t r i c i a  A. Kelly 
Donald J ,  Kennev 
Aaron H. Konstan 
Karen A. Kriba 
Robert E, Lamb 
Kenneth D, Lapenta 
Kenneth R. Laubere 
Thwa- H, Lester.  b . i ,  
James T. Linnenenn 

b r ,  Joan Lipsnever 
John R. Lonigro 
Donald G. Marks 
i c h i r o  Matauda 
Janes  R. Metz 
P a t r i c i a  M.  Moore 
Grace E. Murphy 
Kevin 1. O'Brien 
Ka$en E, Oelachlaeger 
Anne E. P h i l l i p s  
Jean E. Powell 
Ruben Prieto-Diaz 
b r ,  Rose M ,  Przybylow 
Mohmad R, Radnanesh 
Barbara E. Ravnolda 
John H. H i t t e r  
Kathleen A .  Russe l l  
Mary El len  Ryan 

John L, baino 
Barbara C, bchaidt 
Mark J ,  bebern b.J. 
Barbara A. b e i f f e r t t  
Mary El len  bhea 
DOninic C, boda 
Robert L. bomek. 
JoAnn btanton 
Richard W.  btodt 
David M, Thissen- 
Barry Titco-ib 
Louis A, Vlabaty 

i c z  Anne L, Vogel 
Richard A, Warren 
br.  Mary Walter Whited 
Frederick W .  Wieae. J r ,  
Doris E. k'olff 

Larry R. Lat ia i r  

1:EV YORK IOTA. ?cnaaelaer P-lytechnic I n a t i t u t c  

J .  Alcxande- J .  Krse'-'iensik.i 
 chard A .  r a v e l l o  Yikc " w t * o v i t z  
B i l l  Pcdreux h a l t e r  L. Potarnick 
Walte- J .  Cluaiec 

Glenn 14 .  heher 
P h i l i p  E l l i o t  Wexler Vieaner 

Leonard J ,  Wrobel 
Thwas  E, Yager Charder L. babharwal 

James D .  baffa :JEW YORK LAMBDA, Manhattan Col lec t  

llcnrv J .  Ricardo 
Robert K .  b'-ldt 
~ o h n  G. btuar- 

tIEBR.4bK.A ALPHA. Univeraitv of llebraska Albert J .  Beer Lawr-nce 1. Court 
Geoffrey 1. Burnha-s Gerald J .  Dalzell  
Frank A ,  Cie-ente Rich-ird J. fell Kenneth A. Brakke Marilvn F. Johnoon 

J o  Janet  Holcomb Gerald C. Kea-ling 
Ronald D. Holm Terrance R. Pr ice  

Eugene Rasschaert 
Jeaae  C. Rhodes 
Marjorie L. Roemich 

Gregg R. badler  
Janed V, bchulte 

HEW HABPbHIRE ALPHA, Universitv of !feu Hampshire  elm Chan David P, Fried filler 
Diane Fine-an Roy F - i d - a n  

Edward G. Fisher Marparet C. H i l l  
John It. Folev Kathv Kine 

Barry G. Morpan 
Christopher Houlton 
P a t r i c i a  Murphy 
Carolvn Pas tor  

Linda J .  Patterson 
John J .  Pazdon, Jr, 
Douglas Richter  
G a l l  E. bandberg 

. -..., - -"  
Maurice L. F o r t i e r  Beverly G. Mann 
C a r r o l l  E. Itat,eltlne Albert Mayhew Paul Hilficnhrand 

Robert >!acF.achron 
Er ic  Prince 

bydnev hodorholm 
ricorcc hvar te le  
Frederick Ul lnan 

Fran'< Acovino Lawrence Crone 
Willia-i Baker Warren Fereuaon 
3 a r r a l l  Carlaen Daniel Fleninc 

Jeatie Greene P e t e r  Jewel1 
Charles Handel Robert King 
Harvey Hirachhorn !:icholaa H i ~ , l i o z z i  
btephen Hoyle Kenneth Kappa 

J a m s  Perchik 
Bruce Reeser 
Robert Roaati 
bteven hharf 

David Weinstock 
Roy Kllsker 
Robert Yamchuk Ruaael L, Baker Charles* Cutrona 

T ~ n o t h v  D. Bollinc P e t e r  :I. Gldoa 

HEW YORK RHO. bt.  Johns;* Unlveritity 

Paul !I, " c d b c r ~  
John L. Kolllf 

bharon Anderaon Susan M ,  Graham 
Kathleen A. Bilbao Linda C. Hohea 
Nancy E. Carlo Virginia Homberger 
Carol T. Cla imont  Dawn C. Kle inf ie ld  
Mary E, F i g l i u z z i  

P a t r i c i a  A .  Ludwip 
;!arv A. :4aney 
Joseph 7. :IcDcrnott 
Barbara Bruce Monte ;'elus0 

Takvor Ozaan 
Rose P i r r o  
Yarie Pudies>e 
Edvard Rath 

Barbara N. Lee 
Ann bandlin 
Heide hchneider 
Kathleen B. bhav 

I rene  A, &ti* 
Ann Marie C, btol fo  
Marv A .  Tomaa 
J u d i t h  Trachtenberc 

L u c ~ l l e  Abate 
Linda Albert 
Louise 4raena 
" ichael  Capobianco 
Donna P. Caaaidv 
Barbara A .  Czizik 
Barbara Davia 
"ichael Dl-arc0 
Deniae Dvorak 

Gordon Feathers 
Screen Folev 
George Gi l len  
Deborah Ã ‡  Gorrv 
MÂ±chae Hehir 
Line L i n ~  Huanp, 
Anne Huphes 
Gene J a n n o t t i  
P h i l l i p  Leanv 

MEW JERSEY EPbiLO::, M i n t  P e t e r ' s  College 

Joan Balder John Harriaon Maureen Kennedy 
Elaine Ciarkowfiki Donna Hauptvogel Lynn Kodrich 
Richard Drozd btephen Janitizevaki Michael HcManua 
Karen Friatontikv Linda Jannuzzi Raniro Miqueli 
Jooe Gallo Walter Jaronaki  Andrew Paacale 
Kenneth Ha-iilton 

John Piazza 
I rene  Paak 
Dr. John K ,  Reckzeh 
William Rei l ly  
Jodv bcalera 

'TW YORK bIGMA. P r a t t  institute of Brooklyn 

John Brunner Gerald hlovikowaki 

l:LK YORK TAU, Lohrann ColleRe 

Peter  b-ullen 

HEW JERSEY GAMMA, Rutcers College of South Jersev 
Glor ia  R. bcapnel l i  
"ichael aivak 

Lee X .  Chin Ely H. Gutfreund 
J a n i a  Chu Hec bun Hahn 

Robert E. Kulllna 
Gale E. Rapoport Linda Bonanno Edward H. Krvstek Elaine Kyrlacou 

!IEK JERSEY ZETA, F a i r l e i a h  Dickinson University t;EW YORK UPbIL0:l. Ithaca College 

John J .  Canpolieto Wayne H. Ke-pton John P. P i lch  
Richard J .  Crowe Aran b, Krat l ian  Raynond J ,  Raggi 
Gary G. Gundersion Jacquel ine  C, Mianowski Sharon A .  bu l l ivan 

Diane bchnldt Les ter  Weiaa 
Marilyn Wood 

IIEW KEXICO ALPHA. tlew Mexico s t a t e  University 
Glor ia  Valley 
P a r t i c i a  Marino 
Linda :!azer 
Gerald I!. Xeyer 
Dr. Walter Mover 

" ichclc  Paator 
D r .  hill.ia-1 '?ulrln 
~ i c h a r d  s i l v e a t r i  
.iuaan b - o t h e r ~ i l l  
W~llia-1 Vojlr 

Chris t ine  Cardel l  Janice Kru%cr 
Jnrro ld  Cl i f ford  Judi th  Lanp.er 
Linda Conron Cliriatine Leiterr-ann 
'rant' d-i Libero Joan Ann Loobv 
Adrian Fiaher E u ~ e n e  Lcwe 
~ ~ ~ b a r a  Kir-chner Charlea tiacnna 

Deborah Allron Willia-7 Bryan Harvey bharon A, Mctleal 
-Don*. Cleveland Donald V. Hoock Randolph Lee Reese 

CSrleton Evans Carolyn Joyce Jacobs bheryl Parker 
Lawrence 1, Fisher 

Diane bchwartine 
Veronica bchweiaa 
Robert D. b n a l l  

IIEV YORK M.P11A, byracusc University 

b, W i l l i a i  Decker Lawrence E. Copen I a r a e l  ' 4 .  Knobel 
Kathleen G. Blau Kaniel Kerachenateiner Daniel G. 0'Connor 

Darya A. P o r c e l l i  
Erland V. bore"-en 



NORTH CAROLINA DELTA, University of East Carolina OHIO UU, University of Ohio 

Willian Knopf 
Nelson Kohnan 
Gladys Wai-bhiu Lee 
Paul Leitch 
bu-an Lozan 
David Har t in  
Ronald Nelaon 
Hicheal Charles E. D. lleunan O'bhauuhnet 

Donald Oxenrider 
Gregory Pavlin 

P h i l l i p  P f e f f e r l e  
Arthur Reeves 
Kathy Daniel bhrimplin spear- 

Charlea b tauffer  
bteven bwartz 
Lawrence Tan 
Joyce Veaaev 
Robert Vovt i l la  

M.  Terry Uggs William F. Oickenaon Wil l ie  L i t t l e  
David Brunrion William Lee Dm-hf Ela ine  M .  Lytton 
Martha A. Bullock H. Yvonne Eure 
bamuel P. Colvin 

Nary Dickey HcLean 
Terry Gardner Haw McNeill 

Barbara H. Covington Wallis b. Green Linda Bolton Hedlin 
Vivian Ann Dean Gurney I .  Laahley Dorothy D. Pierce  

Lawrence D. Allwine 
Ronald Amatmng 
Eduin Bel l  
William Bock 
Joseph Butt6 
Pamela M.  C a r r o l l  
Edrsund Kai-Lien Chew 
Craig R. Cobb 
Kirk T. Cobb 
Carol C r u c i o t t i  
Gonzalo F. Cruz-bainz 
Pamela Dav 

Jerome Doubler 
Roger Dugan 
Joseph Eichel  
Robert Ekelnan 
Dennia F r i z z e l l  
Michael Harwavea 
John Hart 
btephen Haten 
Delnar Havnea 
Charles Herrie 
Willian Hunt~iaan 
K i l l i a n  Kelton 

Beverly J. Quick 
Hunter bholar 
batoru Tanabe 
Robert M.  Ussery, ~ r .  
P a t r i c i a  B. Wood 

NORTH CAROLINA EPbILON, Univeraity of North Carolina 

Betty R. Beckham Carolyn W. H a m e l l  Ri ta  D. Rountree 
P e t r i c e  Dow Brown Marie A. I m a n  Ronald E. b h i f f l e r  

John Wharton 
Connie Zonner Terry1 b, bwain 

Barbara L, Thacker 
btanlev Perry 

NORTH CAROLINA GAMHA. North Carolina b t a t e  University 
OHIO 1IU. University of Akron 

baundra R, B r i ~ h t  surah J .  l l a h ~ k i a n  Raymond Reith 
Reeina Carver Jacquel ia  Padaett 
Hanilton W. Fish 

Ni t in  J .  bhah 
Willian Perkinson 

Malcolm Frye 
Joseph bhoenfelt  

Dean Perohine btephen bmeach 
Achetion A. Harden David Rehn Walter bni th  

Michael V. b t a d e h i e r  
Terry b t r a e t e r  
Ragai.waii V a r a d a r a j a ~  
Charlea Weitzel 

benol Altuglu Stephen Ganocv David Wolfe 

OHIO 7,ETA, Univertiity of Dayton 

Marvanne Bernard Joseph Mott Ploeger Richard Kelvin bchoen 
Janice  Cla i re  Tonnis Joseph David Belna Glen Albert G r i m e  

Jeroae  Edward Cenea Francin Robert Lad NORTH DAKOTA ALPHA, North Dakota b t a t e  University 

Linda Lee Beier le  Jameti C, Jurrend 
P h v l l i a  A. Borlaug Rodney W.  Krogh 
Harilvn Gundenon Chene-bhih Liu 
Donald R. H i l l  Rebecca R, Richer 

Lesley Romanick 
Renee J ,  b e l i g  
JoAnn T h h j o n  

Robert W, Triebold 
Brian D, Wolff 
Judy Wong 

OKLAHOMA ALPHA, University of Oklahoma 

David D. Andree 
Janea R, Artman 
Mary L, Bertalan 
John R. Brook 
John A. Burna 
Maria D. B u a t i l l e  
P a t r i c i a  M, Callaghn 
John E. Cain 
James 0 ,  Chen 
Donald E. Clegg 

P a t r i c k  b. Cross 
Rayaond J ,  Dryz 
Er ic  L. Hindman 
Michael G, Keep 
Maureen KInard 
John T, Kontogianea 
Kenneth G, Krausa 
Joan C, Harkea 
Louise I ,  Matula 

B r i t t  M.  Mavfield 
Willian R. Meredith 
Linda G. Moss 
Zensho Nakao 
Lawrence W.  Naylor 
Nathanael Pol lard  
Jaaes  C. Poafre t  
Barbara A, Por ter  
Ernest F. Rat l i f f  

Paula V. Reid 
Junet  M.  Reurdon 
C a r l  G. btephenaon 
Richard J. burro 
Dorothy J. Tate  
Thad T. Taylor 
Richard E. Thieasen 
Danny J ,  Tillman 
Richard D. Wirt 

OHIO BETA. Ohio Wesleyan Univeraity 

Robert H. B e l l  Robert Erickaon 
bandra Bowen Panela J ,  Hand 
Ann L, Bradley John Reynold- 
Ola Olu A .  Daini 

Colleen Springer 
L i l l i a n  Tye 
bvlvia  Wenden 

J u l i e  Wemt 

OHIO DELTA'. Hiani University 

OREGON ALPHA, University of Oregon Barbara A. Dodge Rona 0 .  Gunbiner 
Jean A. Kckatein buaan L. Hubbell 
Roeer W, Footer Rebecca J ,  Kl- 
William T. Wanke 

Ronald R. Mil ler  
Robert R, btarbuck 
Carolyn J. Weid* 

Richard White 
Jmeu P. Wllliamn 
Wendy L. Zak 

W i l l i a i a  D. Raddatz 
Tsuyoshi Takada 
Lawrence B. Taylor 
Dal las  V. Thwpaon 
Virgin ia  L. Hertz 
P a t r i c i a  C. Western 
Robert D, Wilnon 

Lawrence H. Bandor Jonathan J ,  Greenwood 
Arthur J. Bowers Richard A, Greaeth 
Pat r ick  A, Bovd Richard T. Horn 
J a n e t  H, Colva Kyoko N. Kuga 
Richard E. Cowan Brian R, Lasse l le  
Catherine A, Deonier Lee Ann Lef ler  
J u d i t h  K. DeVore Tu Mu Ly 
Noel R, Driicaond 

Randi C. Hartin 
James Chr is t ine  E, Mil ler  L. Minor 

bidney Kwk F i t  S. Ng Mitchell 

Donald L. P h i l l i p a  
Dale E. Quinnel l  

OHIO EPbIWN, Kent b t a t e  University 

Alyce Baker Thcmati Loader 
Michael T. B a t t i s t a  Bonnie E. H a l l e t t  
Jack b. Carothers Elaine C. Hantach 
Mark Coenen bteven W ,  Marcinko 
David Fairbanks John W .  Hlihak 
Haw Catherine Ford J e f f r e y  D. no11 
buaan D, Foatielnan Gary M.  Motz 
Marianne Kobe 

UIl l Ian  A. Papay 
Garv H. Paatore l le  
Jean H. Perr ine  
Daniel P. Rothatein 
Michael D. bchloaaer 
Milton G. bchwenk 
Harry L. biakind 

Teresa A. binith 
Ann N .  T i f ford  
Thalaa A. Vyroatek 
Avio Jean Watnon 
Richard P. Webcr 
Cynthia L. Willlami, 
Kally Wonp, 

OREGON GAMMA, Portland b t a t e  College 

Fai th  Long 
William David Mandel E, Long 

Lowell B. Palmer 
Thooas C, I .  btephens 

Elizabeth Ticn 
Teddy B. Ton 
Alfred J ,  Vanderzanden 
Panels K. Wilaon 
Nancy L. Wozniak 

Kathleen Bennett Thcmaa b. Fiacher 
John A. Bjerke Roger X ,  Lenard 
Doraev B. Dram P a t r i c i a  L, Lent 
Kenneth G. Enz, Vera A. Letzkua 
Gary D, F i l s i n g e r  Carol L. Lewis 

OHIO ETA. Cleveland b t a t e  Univeriiitv 

Mitchell Bednarek Catherine Hoffmatiter 
Robert G r ~ ~ a a  bteve Kaaper 
Tom Grundelsbereer 

Kathleen Kravetz 
Mary Ann Harchionna 

Jennie  Har-ik 
Virgin ia  Obal 

PEWlbYLVANIA DELTA, Pennsylvania b t a t e  Univeraitv 

Judi th  A. Andeman Barbara J ,  Green Robert L, McLaughlin 
Deanna L. Balmer Helen E, Green Carol Neranti 
Alice C, Blough Marion L. Hart James R. Meaainger 
btephen Chriatianaen Donald L. Lausch Alan M i l l e r  
Michael Cohen Jeffrey R. Lindwuth Gary E. M i l l e r  
Edward J. D a h a ~ s  Carole McGaugh Bryon J ,  (toon, 11 
Jay C. Dougherty P e t e r  W. HcKenna David T. Waer  

Jamea T. Rovuton 
Hark C. bchoenberger 
Roy G. b h m  
Russel l  b i n c l a i r  
Barbara J .  btewart 
Edward F. Vozenilek 
Kevin M. Winne 

OHIO GAHMA. Univernitv of Toledo 

Jane Ann Abrana Dennis A .  HcDonald 
parviz  b. Bavanati Dariua Hovaaaeehi 
P a t r i c i a  Faye Martin Frank C. OR=, J r .  

Vivian Jane  Panning 
Cloyd A. Payne, Jr. 
P a t r i c i a  L, bhol l  

Richard L. btevens 
Linda L, Wohlever 

OHIO IOTA*.' Denlaon University PENNbYLVANIA EPMWN, Carnerie-Mellon Universitv 

Gal l  Bozic Glenn b. Hanline 
Jane  Handy J u l i e  Roever 

Gwynne Roshon 
William H. bchorling 

Barbara Heyrich Charles Bird Joapeh Dorczuk Nark Hoover 
Paul C a t l i n  J a r  Fle lacher  John Knechtel 
Mark C l a n c u t t i  P a t r i c k  Haves 

Dennis bvi tek  
Mary Tubello 

. OHIO LAMBDA. John C a r r o l l  Unlveraity 

PENNbYLVANIA ETA, Franklin 6 Marahall College -Alan Brown James Cora" 
* T h o t h v  Follen Robert Haas 

Thoaas b i c i l i a n n  
P h i l i p  Zol t ick  

Barbara Bennett David Goodrich Ronald Harr is  
Bruce Blanchard Bruce Graves P e t e r  Rosa 
Gene Goldman 



PENNSYLVANIA THETA. Drexel I n s t i t u t e  of Technology TEXAS. GAHHA. P r a i r i e  View AEH College 

bandra Roberaon 
Jean A. bcurlock 
Shir ley  M ,  T h n s  
Evelyn (WÃˆ.  Thorton 
Geneviwe Ware 

Hark C, Abrama Paul J ,  Claffey Beverly J ,  Farr  
Roger B, Bradford bteven C, Cohen Stephen b l i g a r  
David Bradwav 

J e r r y  Madkina 
Pedre (Dr.) A. Oliver 
Shi r ley  A. Palmer 
Thadis C. Pegues 
nary Phillips 

J e r a l d  P. binay 
Dale W,  smith 

Hmer Ray Brown Frederick Gray 
Kenneth L, Brown Wayne Harr is  
Wilma J. Burren William H. Jackson 
J u l i a  N, Coleoan Z o l l i e  L, Johnaon 
Evelyn J ,  Glass Deborah Leno 
Lonnie L. Glenn 

RHODE ISLAND ALPHA. University of Rhode Is land 

Michael A. Lindemann Paul A. bhawver Jeffrey H, Wainger 
UTAH ALPHA, University of Utah 

RHODE I5LAHD BETA, Rhode Is land College 
Thmaa Douglas H. Kehl J a r r e l l  

James Newton 
Stephen K, Parker 

David P i l c h e r  
Gary Stevens 
Ching-Yen Tsav 
b tan  Tachaggenv 

P e t e r  W. Bates Klancy deNevers 
Dave Bouchcr Marlin L, Diamond 
Winston K. Crandall Steven M. F a l l  
Daniel Cuiasiings Ted H. Greaves 
James H, Day Dan Harvertson 

Constance B. Anderaon Lois E. Francazio P a t r i c i a  A. Heinaohn 
Dr. James E. Bierden James F. Gendron George H. Lafond, Jr. 
David A, Capaldi Barbara J ,  G i l f i l l a n  Anne E. HcLee 
Linda J. DeBiaaio 

Har jor ie  A ,  Nanhawaty 
Audrey A. Perry 
Linda A, Rozzi 

SOUTH DAKOTA ALPHA. University of houth Dakota UTAH GAMM, Brigham Yonng University 

Donald Baer 
Glor ia  J. Beckar 
Don D, Chr ia t jana  
Aenea Cunningham 
Delane Dalton 
J u l i e  A. DeGroot 
Joaeph P, Enger. Jr, 
Diane L, F r a z i e r  
John E, G i l l a s p i e  
Ann L, Hamilton 
Helen N. Heiberger 

Richard J ,  Henniea 
Vincent J ,  Herried 
Nick A. Hove 
Robert C. Hubner 
Jer ry  W ,  Isaman 
Dean H, Johnson 
Wayne A ,  Kadmaa 
Jean A, Kotas 
Henry W ,  Kramer 
Soohey Lee 
Larry G, Lienemann 

Robert J ,  Hurphy 
Robert E. Nelnon 
Ronald H. Oorlog 
Rodney C, Parsons 
G. Ken Pat terson 
Roger E. Peterson 
Gerald 0 ,  Polley 
Tracie  A. Ruch 
Larry D. Rui ter  
Darwin A, banpaon 

Annette Barnes Michael I .  Gray 
Robert Lee C l w e n t a  Doval Glen Landon 

Arnold Loveridge Linda Ten Garr ie  L. baylor 
Roger B. Schaffler 
Robert C, b c o t t  

VIRGINIA BETA, Virgin ia  Polytechnic I n s t i t u t e  Richard 0 ,  bhogren 
Richard A ,  b l a t t e r v  
Willard 0. Thmnson Lee R, bteeneck 

Alfred 0. Smllivan 
John W. Varnev 
Wilma L. Whitlev 
I r e n e  R, Wild 
Sarah b. Winslow 
Lawrence C. Holfe. Jr. 

Barbara L, Azalos 
Norton D. Bragg. I l l  
Richard E, Browning 
J a n e t  W,  Campbell 
Chin-Hong Chen 
Lloyd E. Cole 
Andrew I .  Dale 
J o e l  I ,  Dodson 

Robert C. Dunston 
Bovce E, F a l l s  
Charles E, Ford 
J a n i c e  C. Frve 
James H. Godbold 
Michael E. Golden 
Kenneth E. Haukes 
Jeffrey J ,  Kelly 

Paul A, Lutz 
Linda b. Pavne 
Wyatt M ,  Rider 
J e f f r e y  A. Robinson 
Frances L, Ropelewski 
E, Lewis Rimpf, 111 
William R. bchofleld 

- . -  
Delores J ,  Vavra 
Peter  C. Vergeldt 
Kenneth B, Zamberlan 
David Zolnowaky 

SOUTH DAKOTA BETA. South Dakota School of Hinea 6 Technology 

Arthur J ,  Abington 
Gerald R, Brunski l l  
Wayne H. Buck 
William L, Bundachuh 
Dennis J ,  Burfeindt 
Kirk Campbell 
E r i e  L, Cole 
Jer ry  L. Davev 
Theodore E, DeiUe 

Jan  V. thinker 
Lynn R, Ebbesen 
Greg A, Farke 
Richard L, Fetzer  
Arlo F, Fosaum 
Kurt T. Fros t  
Jay R, Gaudle 
Karl I-. Gerdes 
Wayne R, Greaves 

Dennia H, Gusae 
Roger F. Hawley 
Ruaaell M ,  Healy 
P h i l i p  D, Jacobs 
Steven L. Kaufman 
Noman R. Kolb 
Frances A. Kopp 
John W, Kopp 
David A. Larson 

WASHINGTON ALPHA, Washln@on M a t e  University Keith D. Hutchler 
John G. Nedrud 
Roger D. Oluen 
Timothy H. Paranto 
Joe  L, Ratigan 
Thmaa G. Rewe 
Dale Rognlie 
George C, bhea 
Arlo F ,  Fossm 

Joseph P. B-ett Michael W. Entine 
Neil B, Bickford Evelyn I .  Gra t ix  
Ruth E, Caputo Marlene Huntsinger 
Joseph L, Devarv Stephen bhic-Chu Kung 

Betty We1 Jen  Luan 
Kenneth A. Lueder 
I lona  H. Haves 
Car l  A. Paul 

Terry L, Perkins 
Terence Kin-Hong Poon 
Lore t ta  J. Rippee 
Janes  A. buckow 

WASHINGTON BETA, University of Washington 

Mary Hilda Brant Bet te  J. Fel ton  
inge K. H, Chi J a n e t  L, F l ickinger  
David E. Clark Paul  D. Frank 

Lee M.  Hesa 
Ralph D, Jeffonds 

P a t r i c i a  J .  Kozu 
Karen J. Lew TEHMEIAEE ALPHA. Mwphia S t a t e  University 

Dale N. Lozier 
Virgin ia  L. McCrary 
Belinda K. Pigue 

J e r r y  Bracey Maxine V. Froed,am 
Susan R. Burrow Stewart E. Lewis 
Sandra L, DeLozier Robert C, Liraburg 

Frances Prewitt  
bherwin A. Yaffe WASHINGTON DELTA. Western Washington S t a t e  College 

Edward W. Allen Jane  A. Eas ter  
Peggy A. Craigen Lynn S. Erickaon 
Dorothea L, Culpepper Barbara 0 ,  F r i e l e  

Thmas Stephen E. C, Keeney K e r r  

Melvin J. bchauer 

Lorel J ,  bouslev 
David L. Veum TEXAS ALPHA>T~X~S Chr ia t ian  University 

Sharon B i e s w e i e r  Ronald E. Dover Jack C. Martin 
Morris L. Blankenahip Rebecca Anne Evans David E. HcConnell 
Chr is t ian  Earl Boldt Don H. Huckaby James Donald Hyeru 
Timothy R. Brown Guinn b, Johnson Twila hue Overstreet 
David J,, Cochener Glor ia  Ann Kieschnick Fred LReagor 
Carol Ann Council Linda J. Kyle Dorinda baulsbury 
Laura Kay Davis Richard R, Lauridia Fred G. htaudh-er 

busan C l a i r e  Stevens 
William Robert Sullivan,Jr,  
Joan b. Ward 
Kenneth Ward 
Ravdel Wyatt 

WASHINGTON EPSILON, Gonzaga University 

James T. Abbott El izabeth  F e s s l e r  
Stephen E. Bowser Hacy Ann E, Gaug 
Francis  J ,  Callan Walter K. Highberg 
Francis  J .  Cheyney Peter  5. H i l l  
Diane Van Drieache Richard T, H o t t e l l  
Andrew J ,  Dzida, b, J ,  

Thomas D, Jovick 
John C, Kerkering 
John P. HcGahan 
Thmas HcUillians 
William C. Mil ler  

Osvaldo Panicwa 
Colleen A, Roe 
Douglas R. Tesarik 
Edward L. T y l l l a  
Joipeh F.Tvllia 

TEXAS BETA, Lamar M a t e  College of Technology 

Beverly A. Braden Jean Harie Hays Forest D. HcElroy 
Nora Bruce Gordon J u l i a n  
Ruth E. Cox 

Carole A. Pastorick 
Edward P. HcCartney 

Donald L. Duyka 
btephen N. Richardson 

Frank E. McCreery Darla J. a i t h  
Darvl Ann Hansen 

WEST VIRGINIA BETA, Marshall University Gabr ie l  K. Tan 
R, Paul Turner 
J u l i a  Wahrmund 
T m v  E. Webb 

Harold Albertson bandra H, Crosson 
P h i l l i p  W ,  Alexander Linda K, Dean 
Prof, Thoaas Bausenaan Fred J ,  Dooley 
William Givens B~ubeck John A. Fraser  
Ronald E, C h r i s t i a n  Donna J o  Harbold 
Louise Cox Hunter Hardnan 

Steven J. Hatfield 
P h y l l i s  L. J u s t i c e  
Prof, James R, K i l l e r  
Danny 0. Haynard 
Bernard C. McCarty 
Photios Photiades 

David Pollock 
Umponn Prof, Layton biriboonma 0 ,  Thompson 

El izabeth  Underwood 
Bernadine R. Weddington TEXAb DELTA, btephen F, Austin S t a t e  University - 

bandra K. Welch Pat  Barton Lana Carole Branam 
WISCONSIN ALPHA, Marquette Universitv . TEXAS EPbIWN, ban Houston S t a t e  Univernity 

James b, Notch 
Thaddeus Orzechowski 
Richard J ,  Panlener 
Kathleen Paravich 
Thoaas E. P e l t  
Marguerite M e d l  
Thomas F. Roensch 
James A. Smentek 
Gary D, Swanson 

J. Richard Tokeikis 
Marilyn E, Traeger 
P h i l i p  A. A ,  TwoaeV 
Janes  Utzerath 
Thomas R, Werner 
A v w  Wight 
Edward D. Winkler 
Serge Z l l b e r  
Edward J ,  Zuperku 

Janes  J. Ackmann 
Robert J. Adams 
Hark W ,  Anders 
Richard E. Bwne 
Michael F. Flynn 
Gary A, G l a t m a i e r  
Rhaoul A, G u l l l a m e  
George E, Haas 
William F. H a m e t t e r  
Gerald J ,  Van Handel 

Ronald S, Hosek 
Thomas b, Kaczmarek 
J a n i c e  H, Knapp 
Char les  Kronenwetter 
El izabeth  A, NcElearnev 
Harlene Melzer 
Andrew W ,  Hauler 
Michael Murphy 
Catherine Nonnan 

"ThbÃ‘ Adams 
Linda Andersen 
Stewart Angel 
Paula Be11 
Toooie Caldcleugh 
Lynda Cerrone 
Dr. William Clark 
Kr, Max Colwan 
Alf red  Ermis 
Paul Frank 

Linda Hejl 
Ann Helm 
Linda Herron 
J e r r y  Jordan 
J u a n i t a  Jorgensen 
Dr. Harry Konen 
Marjorie Knuppel 
Cynthia Lewis 
Kenneth Li 
Lore t ta  L t  

Dr. Glen Hattingly 
Melanie McDonald 
Dr. Herbert Muecke 
Michelle Pet ty  
Dr. Daniel Rewea 
Kathryn Rice 
Hr, Franklin Rich 
J a n e l l e  bchindelwolf 
Susan Scheaidt 
J u d i t h  Schulze 

Steed Smith 
Dr. Ju l ianne  bouchek 
Darre l l  S t r e a t e r  
Patsy burovik 
Dr. George Vide 
Darre l l  Wells 
P a t t i  Wells 
Anna Wiggins 
Al ice  Williams 



:iEY CHAPTER OF PI MU EPSILOil 

D r .  Robert L. Heiny, Dept. o f  Hath., 
Univers i ty  of  Xorthern Colorado, Greeley 

. . ouisia:ia I o t a  
157-rJ7J 

Sa-suel 11. D o u ~ l a s ,  Dept. o f  Math., 
Grambliag C o l l c ~ c ,  Grambling 71245 

Louisiana Theta 
154-1370 

I<. T. :!cLean, Dept. o f  Hath., Loyola 
Univers i ty ,  New Orleans 70118 

Maryland Beta 
158- ̂ Ts 

D r .  Walter R. Ta lbot ,  Dept. of  Math., 
Itorgan S t a t e  College,  BAltimore 21212 

.'iichipan Gamma 
157-1970. 

Harold T. Jones ,  Dept. of  Math., 
Andrew;; Univers i ty ,  Berrien Springs 49104 

Hew York P u i  
151-1iIG.l 

James F. Ca la rco ,  Dept. o f  Math., 
S t a t e  Univers i ty  College,  Potsdam 13676 
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Pennsylvania Kappd 
159-1370 

Prof.  Jud i th  Gumerman, Dept. o f  Math., 
West Chester  S t a t e  College,  West Ches te r  

South Dakota Beta 
155-1370 

Harold A .  Heckart ,  Dept. o f  Math., South 
Dakota School of Mines Â Tech., Rapid Ci ty  

'lexau Delta 
153-1370 

Harold E.  Bunch, Dept. of  Math., Stephen F 
Austin S t a t e  Univers i ty ,  Nacogdoches 79561 

Texas Lpsilon Prof.  Glen L. Mattingly,  Dept. of  Math., 
Sam Houston S t a t e  Univers i ty ,  Huntsv i l le  

Tennessee ileta Prof-. James G. Ware, Dept..of Math., 
Univers i ty  of  Tennessee, Chattanooga 37403 

West Vi rg in ia  Beta 
156-1970 

D r .  Thomas Bauserman, Dept. o f  Math., 
Marshall Univers i ty ,  Huntington 25701 




