\llbracket Pi MU EPSILON
 Fall 1970 NUMBER ?
 CONTENTS

The C.C. MacDuffee Award for Distinguished Service........... 105

Unicursal Polygonal Paths and Other Graphs on Point Lattices
Solomon Golomb and John Selfridge............................ 107
An Interesting Generalization of a Simple Limit Theorem
Stanley J. Farlow.. 118
The Cantor Set
Jerry L. West.119
Simplicial Decompositions of Convex Polytopes Allan L. Etronds. 124
The Recurrence Equation for Bounding Cubes
David Berman. 129
Problem Department 132
Book Reviews 146
Initiates. 149

Copyright 1970 by Pi Mi Epsilon Fraternity Inc.

PI MU EPSILON JOURNAL

the Official publication
OF THE HONORARY MATHEMATICAL FRATERNITY

Kenneth Loewen, Editor

ASSOCIATE EDITORS

Roy B. Deal
Leon Bankoff
OFFICERS OF THE FRATERNITY
President: J. C. Eaves, West Virginia University Vice-president: H. T. Karnes, Louisiana State University Secretary-Treasurer: R. V. Andree, University of Oklahoma
Past-President: J. S. Frame, Michigan State University

COUNCILORS:

E. Maurice Beesley, University of Nevada
L. Earle Bush, Kent State University

William L. Harkness, Pennsylvania Stote University
Irving Reiner, University of Illinois
Chapter reports, books for review, problems for. solution and solutions to problems, and news items should be mailed directly to the special editors found in this issue under the various sections. Editorial correspondence, including manuscripts, should Rōon̄" 215, The University of Oklahoma, Norman, Oklahoma 73069.
PI MU EPSILON JOURNAL is published semi-annually at The University of Oklahoma.
SUBSCRIPTIONPRICE: To individual members, $\$ 1.50$ for 2 years; to non-members and libraries, $\$ 2.00$ for 2 years. Subscriptions, orders for back numbers and correspondence concerning subscriptions and advertising should be addressed to the PIMU EPSILON JOURNAL, 1000 Asp Avenue, Room 215, The University of Oklahoma, Norman, Oklahoma 73069.

THE C. C. MACDUFFEE AWARD FOR DISTINGUISHED SERVICE

The fourth presentation of the C. C. MacDuffee Distinguished Service Award was made to Dr. Francis Regan, St. Louis University, at the Pi Mu Epsilon banquet, August 25, 1970, held in conjunction with the national meeting of Pi Mu Epsilon at Laramie.

The C. C. MacDuffee Distinguished Service Award was established in 1964, in honor of the late Professor C. C. MacDuffee (University of Wisconsin), former President of Pi Mu Epsilon. Pi Mu Epsilon's highest honor is awarded only when an individual's efforts to promote scholarly activity in mathematics are so distinguished that they merit commendation and recognition by all concerned.

It is indeed a great pleasure to present Dr. Francis Regan with our highest award in honor of his outstanding contribution to Pi Mu Epsilon and to mathematics, as exemplified by his particularly noteworthy editorship of the Pi Mu Epsilon Journal and his longtime sponsorship of the outstanding Missouri Beta Chapter of Pi Mu Epsilon at St. Louis University. Either achievement would be sufficient to merit sincere admiration - but to find both in one modest man makes us realize how fortunate the world is to have men blessed with leadership, ability, honesty, and unselfish devotion all residing in the same body.

Congratulations to Dr. Francis Regan, who is joining our earlier award recipients:

$$
\text { Dr. J. Sutherland } 1964
$$

Dr. Richard V. Andree 1966
Dr. John S. Gold 1967
Dr. Francis Regan 1970

Dr. Francis Regan

UNICURSAL POLYGONAL PATHS AND OTHER GRAPHS ON POINT LATTICES

Solomon W. Golomb and John L. Selfridge

1. INTRODUCTION
1.1 Description of the Problem

An old geometric puzzle asks the solver to construct a polygonal path of only four segments which goes through all nine points in Figure 1, Two unsuccessful attempts, yielding five-segment "solutions" are shown in Figure 2. The required four-segment solution is shown in Figure 3. The "trick" involves the fact that the polygonal path goes outside the convex hull of the nine-point configuration.

1.2 Historical Survey

Specific problems involving the construction of polygonal paths on $n \times n$ arrays of dots, using only $2 n-2$ segments, were posed by both Sam Loyd [1] and H. E. Dudeney [2], with additional constraints which will be noted later. In 1955, M. Klamkin [3] posed and solved the problem of showing that $2 \mathrm{n}-2$ segments is sufficient for a unicursal polygonal path on the $n \times n$ array, using the construction of Figure 4 He conjectured that $2 \mathrm{n}-2$ segments is also necessary, and this was proved by one of us (Selfridge, [4]), in a form which is generalized in Section 4 of this paper. Constructions for the 4×4 array were investigated extensively by F. Schuh [5], and there are doubtless many examples of other special cases in the literature. (We are indebted to Mr. Marti Gardner for assistance in compiling these historical citations.)

Figure 4. A polygonal path of 2n-2 segments covers the $n \times n$ array.

1.3 Summary of Principal Results

We show that a unicursal polygonal path of $2 \mathrm{n}-2$ segments exists on the $n \times n$ array for all $n>2$; that the further constraint that the path be closed can be satisfied For all $n>3$; that the further constraint that the closed path remain within the convex hull of the array of dots can be satisfied for all $n>5$.

On an a x b array of dots, a collection of a horizontal line segments or of \underline{b} vertical line segments will suffice to cöver all the dots. However, if such a collection of parallels is not used, it is proved that at least $a+b-2$ segments must be used to cover all the dots, even if it is not required that the segments form a unicursal path.

A collection of $a+b-2$ segments which covers all the dots in an $\mathrm{a} \times \mathrm{b}$ array, and does not include a complete set of horizontal or vertical segments, will be called a minimal net. We prove that every segment of a minimal net contains at least two "exclusive points ${ }^{\prime \prime}$ i.e. dots which are not traversed by any other segment. We exhibit several minimal nets for which each segment contains at least three exclusive points. One of these nets is in fact a closed unicursal path on the 8×8 array

Finally we consider the possible symmetries of minimal nets in general, and unicursal polygonal paths in particular. Although there are minimal nets with the full (dihedral) symmetry group of the square it is proved that this cannot happen if the net is a unicursal path.
2. BEST CONSTRUCTIONS FOR SQUARE ARRAYS
2.1 Squares of Even Side

In Figure 5, we see a 6-segment closed polygonal path which goes through all sixteen points of the 4×4 (square) point lattice. (It is not difficult to show directly that no 5-segment path can go through all sixteen points.)

> Figure 5. A 6-segment closed Dath for the 4×4 lattice.

Closed paths of $2 n-2$ segments exist for all even $n \geq 4$, as indicated for the first few cases in Figure 6.

Figure 6. Closed-
path solutions,
in $2 \mathrm{n}-2$ segments,
for even n.

The rule for constructing these paths is as follows: Draw the line $A B$ along the top of the square, and protruding one unit at each side. We will proceed by continuing both ends of AB. We draw the diagonals $A D$ and $B C$, which protrude one unit below the square. From C we generate a clockwise spiral, and from D a counterclockwise spiral each composed of alternating vertical and horizontal line segments These segments run to the diagonal AD, but stop one unit short of the diagonal BC, except at the very end of the construction, when the path is closed at the point X, which lies on the BC diagonal.

The solution to the 6×6 case shown in Figure 7 uses the minimum number of segments $(2 n-2=10)$, and exhibits two novel features: The pattern is entirely contained within the convex hull of the square lattice; and segments of slope $\pm 1 / 2$ occur, in additon to the slopes previously encountered ($0, \pm 1$, and ∞).
The fact that Figure 7 exhibits a
closed path can be verified by Euler's criterion, viz: we have a connected graph in which every node is a junction of an even number of edges

Figure 7.
A "compact' path on the 6×6 array

This solution can be extended to $\mathrm{n} \times \mathrm{n}$ for even n 2 6, as illustrated for $\mathrm{n}=8$ and $\mathrm{n}=10$ in Figure . Again, Euler's riterion may be used to verify the existence of a closed path in each case

Figure 8. Extension of the Figure 7 construction to larger even values of n.
The idea of enlarging Figure 7 to handle
 $\mathrm{n} \times \mathrm{n}$ constructions directiy, as shown in Figure 9, is unsuccessful. To be sure, all 64 points are covered by only $2 \mathrm{n}-2=14$ segments; but the graph they form is not a path. All four corner nodes are odd (five edges meet at each), whereas a closed path has no odd nodes, and an open path can have only two.

Figure 9. A non-unicursal "solution" to the 8×8 configuration (It will be shown in Section 6 that a minimum-segment graph with the dihedral symmetry group of the square, as in Figure 9, can never be unicursal.)
2.2 Squares of Odd Side

We now show the existence of closed paths of $2 n-2$ segments on the $n \times n$ square lattice, for all odd $n \geq 5$. In Figure 10, we see a closed path of $2 n-2=8$ segments for $n=5$. This remarkable construction contains a line of slope 2, and has turning points for the path which not only are not lattice points (as in Figure 8), but do not lie on the grid lines (horizontal or vertical) through the lattice points.

To get closed paths of $2 \mathrm{n}-2$ segments for odd $n>5$, we may extend either the body or the spirit of Figure 10. The

Figure 10. A closed path for the 5×5 configuration.

corporeal extension is shown in Figure 11. Note that for $n _9$, we - obtain a closed path solution, with $2 \mathrm{n}-2$ segments, which does not go outside the convex hull of the $n \times n$ lattice. Combined with the construction of Figure 9, we have established that for all n $>$ 5, except for $n=7$, there is always a $2 n-2$ segment closed path on the
$n \times n$ square lattice which does not go beyond the convex hull of the lattice. The gap at $n=7$ is filled in by Figure 15 in Section 3.2.

From an artistic standpoint, the "spiritual" extensions of Figure 10 as shown in Figure 12, are more appealing. For these cases., the "long diagonal" has a slope of $(n-3) /(n-1)$ for all $n \geq 5$.

$n=7$

$n=9$

$n=11$

Figure 11. Physical extensions of Figure 10 to larger odd n.

Figure 12. Spiritual extensions of Figure 11 to larger odd n.
3. OTHER CONSTRUCTIONS
3.1 The n x ($n+1$) Array

In anticipation of the General Theorem of Section 4 , we can expect the minimum-segment unicursal path on the $n \times(n+1)$ array to consist of $2 \mathrm{n}-1$ segments. On the 2×3 array, the best that can be done is a 3-segment open path. Two examples are shown in Figure 13, the second

- being preferable in that it avoids using a set of parallel lines to catch all the points.

For $n>2$, there are closed unicursal paths of $2 \mathrm{n}-1$ segments on the $n \times(n+1)$ array, as indicated in Figure 14,

Figure 13. Three-segment op:n paths on the 7×3 array.

Figure 14. Typical closed unicursal paths on $n \times(n+1)$ arrays.

3.2 Queen's Tours

Dudeney [2] posed and solved the problem of finding a 12-move re-entrant "queen's tour" on the 7×7
checkerboard. In our terminology, he finds
a minimum-segment closed unicursal path on the
7×7 array, with the further constraints that the path stay within the convex hull of the array, and that only segments of slopes $0, \infty,+1$, and -1 are permitted. His solution is given in Figure 15.

> Figure 15 Dudeney's $\begin{aligned} & \text { "queens's } \\ & \text { the } 7 \times 7 \text { arrav on }\end{aligned}$

This construction can easily be modified
 to give closed queen's tours on $n \times n$ boards fo odd $n \geq 7$, and open queen's tours for (even) $n \geq 6$. The problem of closed queen's tours for even $n \geq 8$ has also been solved. The 8×8 solution shown in Figure 16 is based on [1], page 42.

Figure 16. Loyd's "queen's tour" on the 8×8 array.
3.3 Miscellaneous Examples

Additional examples of 6-segment paths, both open and closed, on the 4×4 board, are given in Figure 17. These include, but are not limited to, examples given by Schuh [5].

Figure 17. Additional examples of 6-segment polygonal paths on the 4×4 array.

Besides the closed 8-segment path on the 5×5 array shown in Figure 10, two further examples are known, as shown in Figure 18.

Figure 18. Further examples of closed 8-segment paths on

the 5×5 array.

4. THE NECESSITY THEOREM AND ITS CONSEQUENCES

4.1 The General Theorem for Rectangular Arrays

We define a proper net on an x b rectangular array of lattice points to be a set of line segments which collectively cover all ab lattice points, but which does not contain either the set of a horizontal (l.e. row) segments of the set of b vertical (i.e. column) segments as a subset. (There is no requirement of connectivity in the definition of a proper net.)

Theorem 1. A proper net on an a x b array contains at least $a+b-2$ segments.

Proof. Let the proper net consist of h horizontal segments, of v vertical segments, and of q oblique segments. From the a $x b$ array, delete every row in which a horizontal segment occurs, and every column in which a vertical segment occurs, to form a reduced array. The reduced array has $a^{\prime}=a-h$ rows and $b^{\prime} \geq b^{-v}$ columns, which need no longer be uniformly spaced. (The inequalities arise because e.g. if two horizontal segments are in the sane row, $a^{\prime}>a^{-h}$.)

If $a^{\prime} \geq 2$ and $b^{\prime} \geq 2$, then the reduced array has $2 a^{\prime}+2 b^{\prime}-4$ lattice points around its (rectangular) perimeter. These points must be covered by oblique lines of the net, but one oblique line can cover at most two perimeter points. Hence $q \geq a^{\prime}+b^{\prime}-2$, and the total number of segments. in the net is $h+v+q \geq h+v+a^{\prime}+b^{\prime}-2 \geq a+b-2$

If $a^{\prime}=1, b^{\prime} \geqq 1$, then there are b^{\prime} lattice points on the "perimeter", but each requires a separate oblique line to contain it. Then the total number of segments is

$$
h+v+q \geq(a-1)+v+b^{\prime} \searrow a+b-1
$$

an even stronger result.
The possibility of $a^{\prime}=0$ or $b^{\prime}=0$ is ruled out by the definition of a proper net.

4.2 Corollaries and Consequences

Theorem 2. A unicursal polygonal path on an $a \times b$ lattice of dots ($a \leq b$) requires at least min(2a-1, $a+b-2$) segments. A closed unicursal polygonal path requires at least min $(2 a, a+b-2)$ segments.

Proof. If we do not include a complete set of parallel (row) segments, then at least atb-2 segments are needed, by Theorem 1. If e use a a non-horizontal segments to connect them into a closed path.

Note: We can improve on the 2 a segment "parallel" solution only if $a-b \mid<2$. Thus, the interesting cases are $n \times n$ and $n \times(n+1)$, which were treated in the earlier sections.

Theorem 3. A closed unicursal polygonal path on an a x b lattice of dots ($a \leq b$) which consists solely of horizontal and vertical segments must contain at least $2 a$ segments.

Proof. If there is a row without a horizontal segment and simultaneousiy a column without a vertical segment, then the point where they intersect is not covered. Hence the path must include either a set of a parallel row segments or a set of b parallel column segments However, horizontal and vertical segments must alternate, leading to at least $\min (2 a, 2 b)=2 a$ segments in all.
q.e.d.
4.3 Minimal Nets

We define a minimal net on a $\mathrm{a} \times \mathrm{b}$ lattice to be a proper net consisting of only $a+b-\frac{2}{2}$ segments. We may observe that a unicursal polygonal path on an $n \times n$ array with only $2 n-2$ segments is always a minimal net, but not conversely. In fact, a "bicursal" path (in which one interruption is permitted) which covers the $\mathrm{n} \times \mathrm{n}$ array in $2 \mathrm{n}-2$ segments, for $\mathrm{n}>2$, is always a minimal net.

The technique of constructing unicursal paths, in general, is to begin with minimal nets, and then to extend the segments in various ways in an attempt to achieve connectivity. Some typical examples of the minimal nets which may serve as skeletons for these constructions are shown in Figure 19. Not all can be extended to form unicursal paths.

Figure 19.
Some minimal nets on $n \times n$ arrays.

5. EXCLUSIVE POINTS AND SYMMETRY GROUPS
5.1 The Exclusive-Point Theorem

We define an exclusive point of a segment used in the covering of an $a \times b$ array to be a lattice point covered by that segment and by no other.

Theorem 4. Every segment of a minimal net on an $a \times b$ array contains at least two exclusive points.

Proof. We refer to the proof of Theorem 1. Every oblique segment has two exclusive points on the perimeter of the reduced array. Consider then a non-oblique segment--say a horizontal segment H. If we ignore this segment in the formation of the reduced array, we get a larger reduced array, we get a larger reduced array, $\left(a^{\prime}+1\right) \times b^{\prime}$, with at least two extra perimeter points. The q oblique lines can still cover only $2 q$ perimeter points, leaving at least 2 perimeter points now uncovered. These two points can be covered by no oblique line, no vertical line, and no horizontal line other than H, by the definition of the reduced array. Hence these are two exclusive points of H.

Note. It is instructive to re-examine Figures 3, 5, 6. 7, 8, 10. $11,14,15,16$, and 17 for the locations of the exclusive points. In all the cases just listed, there are at least 4 segments in each array with only two exclusive points each, the minimum allowed by Theorem 4. In each of the three arrays of Figure 12, there are 3 segments with only 2 exclusive points each. The average number of points per
segment for the $n \times n$ array is $n /(2 n-2)=\frac{1}{2}(n+1)+\varepsilon_{n}$, where
$\varepsilon=1 /(2 n-2) \rightarrow 0$ as $n \rightarrow \infty$. Hence it can reasonably be expected that in large enough arrays, the minimum number of exclusive points per segment can be increased. We next examine some examples.
5.2 Nets With Several Exclusive Points Per Segment

In Figure 20, we see three examples of minimal nets on square arrays with at least 3 exclusive points per segment. (The middle one is our old Figure 9.)

Figure 20. Three minimal nets with at least three exclusive points per segment.

These three examples have the following further properties in common: none of them is a unicursal path - in fact, each has four odd vertices; each has the dihedral symmetry group of the square; and the number of exclusive points per segment is always either 3 or 6 .

In Figure 21, we see
a closed unicursal path on
the 8×8 array, with either 3 or 6 exclusive points per segment. Note that this figure, also derived from Figure 9, has a smaller symmetry group. It is easy to verify that all the vertices are "even", but one must also verify that a procedure for traversing all the edges in only 14 segments exists. This is in fact the case.

Figure 21. A closed path on the 8 x 8 array with > 2 exclusive points per segment.

Figures 20 and 21 suggest an inquiry into the types of symmetries which minimal nets in general, and unicursal paths in particular, may possess. We now consider these questions

5.3 Graphs With Subgroups of the Square

From Figure 20 we see that minimal nets on $n \times n$ arrays may possess the full dihedral group of symmetries of the square. However, each of these examples had several odd vertices, which precluded unicursality. In Figure 22 we see three closed unicursal paths on $\mathrm{n} \times \mathrm{n}$ matrices with various symmetry groups. Case A exhibits reflectional symmetry in the mid-vertical. Case B has rotational symmetry by 180° around the center. Case C has the four-fold symmetry group of the rectangle.

Figure 22. Three symmetric examples of closed unicursal paths.
In Figure 23, we see a minimal net on the 7×7 array, which has the rotational symmetry group of the square. This graph is closed unicursal in Euler's sense (all the vertices are even), but it is bicursal for our purposes, because a unicursal path cannot be found on it consisting of only twelve segments! It is not known whether a true unicursal path with this symmetry group exists on any $n \times n$ array, though there is no obvious reason to doubt the possibility.

90° rotational
symmetry and only even vertices.

The status of reflectional symmetries is rather completely settled by the following three theorems.

Theorem 5. For every $n \geq 2$, there exists a minimal net on the $\mathrm{n} \times \mathrm{n}$ array of dots which possesses the full dihedral symmetry group of the square.

Proof. It suffices to observe the two constructions in Figure 24 which correspond to even and odd values of n, respectively.

Figure 24. Concentric symmetric construction of minimal nets, for even and odd n, respectively.
Although there are numerous modifications and variations of the symmetric minimal nets of Figure 24, the following feature is common to all examples:

Theorem 6. If a minimal net on an $n \times n$ array of dots has a symmetry axis $\overline{\mathrm{L}}$ on which there are dots, then the net must include a segment on the axis L. (In particular, there must always be a segment on a diagonal symmetry axis; and there must be a segment on a horizontal or vertical symmetry axis whenever n is odd.)

Proof. Suppose that L is a symmetry axis for a minimal net on the $n \times$ marray, and that there are dots on L. In the terminology of L with the perimeter of the "reduced array". By symmetry in L, if there is porme (1) at least one two points is an intersection of two oblique lines, in which case the two points is an intersection of two oblique lines, in which case the oblique lines do not cover enough distinct perimeter points for a minimal net, or (2) L is a diagonal, and the two perimeter points of L are cover
by (oblique) segments perpendicular to L - but such segments cover only one perimeter point each by the convexity of the reduced array, and one perimeter point each by the convexity
therefore cannot be part of a minimal net.

In contrast to Theorem 6 for minimal nets in general, we have the following result for unicursal paths:

Theorem 7. A closed unicursal path on an $n \times n$ array cannot have any segment along a symmetry axis L .
Proof. Each end of a segment along a symmetry axis L must be an odd vertex, but a closed unicursal path can contain no odd vertices

Notes: Combining Theorems 6 and 7, we learn that a minimal net which is a closed unicursal path can have no diagonal symmetry axes; and can only have horizontal or vertical symmetry axes if n is even. A fortiori, the full dihedral symmetry group of the
square never occurs in such a case. A minimal open unicursal path can have at most one symmetry axis with dots on it, since this gives rise to (only) two odd vertices, as in Figure 25 (When such a symmetry axis occurs, it must be a diagonal.)

Figure 25. Open unicursal paths with diagonal symmetry.

REFERENCES
[1] Loyd, S., Sam Loyd and His Chess Problems, compiled by Alain C. White, published 1913 by Whitehead and Miller, Dover reprint, 1962.
[2] Dudeney, H.E., Modern Puzzles, Problem 151, C. Arthur Pearson, Ltd., 1926.
[3] Klamkin, M.S., Problem E 1123, American Mathematical Monthly, vol. 61, No. 6, p. 423, and (Solution) vol. 62, No. 2, p. 124, 1955.
[4] Selfridge, J.L., American Mathematical Monthly, vol. 62, No. 6, p. 443, 1955.
[5] Schuh, F., Wonderlijke Problemen, W. J. Thieme ε Cie., Zutphen, 1943, pp. 264-266.

NEED HONEY?

The Governing Council of Pi Mu Epsilon announces a contest for the best expository paper by a student (who has not yet received a masters degree) suitable for publication in the Pi Mu Epsilon Journal.

The following prizes will be given

$\$ 200$.	first prize
$\$ 100$.	second prize
$\$ 50$.	third prize

providing at least ten papers are received for the contest.
In addition there will be a $\$ 20$. prize for the best paper frow any one chapter, providing that chapter submits at least five proers.

AM INTERESTING GENERALIZATION OF A SIMPIE LTMIT TUEORE

Stanley J, Farlow

University of Maine

It is well known that if $\left\{a_{k}\right\},\left\{h_{k}\right\} k=1,7, \ldots$ are seouences of real numbers and if $\lim _{k \rightarrow \infty}\left(a_{k} / b_{k}\right)<=, \lim _{k \rightarrow \infty}\left(b_{k}\right)=0$ then $\lim _{k \rightarrow \infty}\left(a_{k}\right)=0$.
Since matrices are pencralizations of real numbers, one might ask if the above fact could be peheralized to more peneral objects. The following proposition is a simple but interesting generalization of the above limit theorem to matrices.
PROPOSITION:
If: i) A is an $n \times n$ real constant matrix
ii) $b(s)$ is an $n x 1$ real vector, each component beinf a continuous function of the complex variables.
iii) $\lim (A-s l)^{-1} b(s)$ exists for each component $\mathrm{s}+\mathrm{s}$.
where $\boldsymbol{s}_{\boldsymbol{i}}$ is an eigenvalue of α_{1}
tnen; all the components of (A-sl) ${ }^{\text {b }} \mathbf{b}(\mathrm{s})$ vanish at the eipenvalues of A, where ($A-s 1$) : is the adjoint matrix of (A-sl).
Proof: Since $(A-s 1)^{-1} b(s)=\frac{1}{|A-s 1|}(A-s l)+b(s)=\frac{1}{|A-s| \mid} C(s)$
where $C(s)=(A-s l) * b(s)$, then calling the transpose $C^{T}(s)=(c,(s), \ldots$, $\left.c_{n}(s)\right)$ we have that $\lim _{s \rightarrow s}\left\{c_{k}(s) /|A-s| \mid\right\}<=$ for $k=1, \ldots, n$ where s_{i} $\mathbf{s}_{\boldsymbol{s}} \mathbf{s}_{\text {; }}$
is an eigenvalue of $A . \quad$ But $\underset{s \rightarrow \mathbf{s}_{i}}{\lim }|A-s l|=0$ and so $\underset{\mathbf{s} \rightarrow \mathbf{s}_{i}}{ } \lim _{k}(s)=c_{k}\left(s_{i}\right)=0$.
This completes the proof. One can also observe a stronger but less aesthetic result than the above proposition. This can be stated:
COROLLARY: The above conclusion Is still true if condition if) is replaced by: ii') all components of (A-sl) ${ }^{\prime}$ b(s) are continuous in \mathbf{s}, for all s.
Proof: This can easily he seen by direct observation of the previous proof.
One can also observe that the matrix A and vector b could be complex with a slight modification of the proof.

THE CANTOR SET

Jerry U. West
Southern University
The Cantor set, first given by George Cantor, should give a student a better insight into the study of open. closed, dense, and "nowhere dense perfect" sets. Students may easily develop false ideas concernin dense and nowhere dense sets by making a somewhat plausible assumption upon the antecedent "nowhere". The Cantor set may serve as a reminder of the consequences of making these intuitive assumptions.

The Cantor set S is a subset of the closed interval $[0,1]$. It is more convenient to define its complement, $\mathrm{C}(\mathrm{S})$, relative to [0,1]. $C(S)$ is the union of the following denumerable set of open intervals:

1) the open middle third, $(1 / 3,2 / 3)$, uf $[0,1]$,
2) the open middle thirds $(1 / 9,2 / 9)$ and $(7 / 9,8 / 9)$ of the two closed intervals in $[0,1]$ which are complementary to $(1 / 3,2 / 3)$,
3) The open middle thiras $(1 / 27,2 / 27),(7 / 27,8 / 27),(19 / 27,20 / 27)$, and $(25 / 27,26 / 27)$ of the four closed intervals in $[0,1]$ which are complementary to $(1 / 9,2 / 9),(1 / 3,2 / 3)$, and $(7 / 9,8 / 9)$ and so on, ad infinitum.

The graph shows three stages of removing open middle thirds of [0,1].

Observing the bum of the lengths of the cpen intervals removed at the lst., 2nd., ..., ntn stage:

$$
\begin{gathered}
\mathbf{s}_{n}=1 / 3+2 / 3^{2}+2^{2} / 3^{3}+\cdots+2^{n-1} / 3^{n}=1-(2 / 3)^{n} \\
\lim _{n \rightarrow \infty} \mathbf{s}=\lim _{n \rightarrow \infty}\left[1-(2 / 3)^{n}\right]=1
\end{gathered}
$$

However, the set remaining on the closed interval $[0,1]$ is the cantor set and may seem so sparse as to be insignificant. Points surely io the Cantor set are

$$
0,1 / 3,2 / 3,1 / 9,2 / 9,7 / 9,8 / 9, \text { etc. }
$$

for all endpoints of those open intervals which were erased. ミ: there are points of the Cantor set other than these encpoiats. To see this, we will modify the Cantor set S to the Cantor ververy se: s'.
Def. $0,1,2$, are called ternary digits. if $\sum_{n=1}^{\infty} a_{a} / 3^{2}$ cerveres.
with each a a ternary digit, then the ternay expocs= $=\mathbb{Z}$
is $x=0_{3} a_{1} a_{2} a$. where the subscript ${ }_{3}$ indicates that the expression is ternary.
Example: Suppose that we express the open interval ($1 / 3,2 / 3$) in its ternary form:

$$
\begin{array}{ll}
1 / 3={\underset{3}{3}}_{0.100 \ldots} & \text { or } 1 / 3=\underset{3}{0.0222 \ldots} \\
2 / 3={\underset{3}{3}}_{0.200 \ldots} & \text { or } 2 / 3=\frac{0.122 \ldots}{3}
\end{array}
$$

Note that we have expressed each number in two ways: one with only 0 's and 2's among the a.'s and the other with 1 as a digit.

Lemma 1. If $1 / 3<x<2 / 3$ and a ternary representation of x is
$x=0 . a_{1} a_{2} a_{3} \ldots$ then $a=1$ and among a_{1}, a_{2}, \ldots there is at least
one $a_{i} \neq 0$ and at least one $a_{j} \neq 2$.
one $a_{i} \neq 0$ and at least one $a_{j} \neq 2$.
Proof. Suppose $a_{1}=0$. Then $x=0 / 3+\sum_{n=2}^{\infty} a_{n} / 3^{n} \leq \sum_{n=2}^{\infty} 2 / 3^{n}$

$$
=2 / 3^{2} \sum_{k=0}^{\infty} 1 / 3^{k}=2 / 3^{2}(1 / 1-1 / 3)
$$

contradicting $1 / 3<\mathbf{x}$.

$$
=1 / 3
$$

Suppose $a_{1}=2$. Then $x \geq 2 / 3$, contradicting $x<2 / 3$. Thus $a=1$
Now the supposition $a_{2}=a_{3}=\ldots=2$ gives $x=2 / 3$, contradicting
$x<2 / 3$, while the supposition that $a=a=\ldots=0$ gives $x=1 / 3$
contradicting $x>1 / 3$. Q.E.D.
It should be seen, conversely, that
Lemma 2. If $x=0 . l_{3} a_{2} a_{3} \ldots$ with at least one $a \neq 0$ and at least one
a $\neq 2$, then the point x is on the open interval $(1 / 3,2 / 3)$ and
hence is not a point of the Cantor set S^{\prime}.
A way of indicating " x has a ternary representation not involving
the 1 " is "x has a ternary representation of the form

$$
\text { i) } x=0_{3}^{0 .\left(2 a_{1}\right)}\left(2 a_{2}\right) \ldots \text { where } a_{n}=\left\{\begin{array}{l}
0 \\
1
\end{array}\right\}
$$

All of this is motivation for
Theorem 1. A point is in the Cantor set S^{\prime} iff at least one ternary representation of x does not have the digit 1 in any place, that is,

$$
\left.S^{\prime}=\{x \mid x \text { has a ternary representation of the form } i)\right\}
$$

A proof of this theorem will be given after the next lemma.

Whenever a ternary representation has only zeros from some place on these zeros will not be indicated. For example,

$$
1 / 9=\underset{3}{0.01} \quad 2 / 9=\underset{3}{0.02} \quad 7 / 9=\underset{3}{0.21} \quad 8 / 9=\underset{3}{0.22}
$$

In defining the Cantor set, the open intervals erased at the second stage were $(1 / 9,2 / 9)$ and $(7 / 9,8 / 9)$.

From the above comments it will be seen that the following lemma holds for $\mathrm{n}=1$ and $\mathrm{n}=2$.
Lemma 3. In defining the Cantor set S^{\prime}, the open interval (x_{n}, \bar{x}_{n}) was erased at the nth stage iff ${\underset{x}{n}}$ and \vec{x} can be written as

$$
\begin{array}{ll}
\text { ii) } x_{n}=0 .\left(2 a_{1}\right)\left(2 a_{2}\right) \ldots\left(2 a_{n-1}\right) 1 & \text { with only } 0^{\prime} s \text { and } 2 \text { 's among } \\
\text { iii) } \bar{x}_{n}=0_{3}^{0 .\left(2 a_{1}\right)\left(2 a_{2}\right) \ldots\left(2 a_{n-1}\right) 2} \quad \text { the } a_{k}^{\prime} s .
\end{array}
$$

Proof: To make the induction step, let $n \geq 2$ be an integer for which the lemma is true. Then the open interval $\left(x_{n+1}, \bar{x}_{n+1}\right)$ was erased
at the $(n+1)$ th stage iff $x_{n+1}=0+1 / 3^{n+1}$ or $x_{n+1}=\bar{x}_{n}+1 / 3^{n+1}$ with
$\overline{\mathrm{x}}$ in the form iii); i.e., respectively,

$$
\begin{aligned}
x_{n+1} & =1 / 3^{n+1}=\underbrace{0.000 \cdot 0 \cdot 1}_{3} \text { where } a_{n}=0 \text { or else } \\
x_{n+1} & =\int_{3}^{0 .\left(2 a_{1}\right)\left(2 a_{2}\right) \ldots\left(2 a_{n-1}\right) 2+1 / 3^{n+1}} \\
& =0_{3}^{0 .\left(2 a_{1}\right)\left(2 a_{2}\right) \ldots\left(2 a_{n-1}\right)\left(2 a_{n}\right) 1 \text { where } a=1 .}
\end{aligned}
$$

With a so determined, then $\bar{x}_{n+1}=x_{n+1}+1 / 3^{n+1}$ so that

$$
\bar{x}_{n+1}=0 .\left(2 a_{1}\right)\left(2 a_{2}\right) \ldots\left(2 a_{n-1}\right)\left(2 a_{n}\right) 2
$$

Since these representations are in the forms ii) and iii) with n replaced by $n+1$ the lemma is proved.

Then. as in the proof of lemma 2, a number x is such that

$$
x_{n}<x<\bar{x}_{n},
$$

with x_{n} and \bar{x} in the forms ii and iii, iff

$$
x=0 .\left(2 a_{1}\right)\left(2 a_{2}\right) \ldots\left(2 a_{n-1}\right)(1) b_{n+1} b_{n+2} \ldots
$$

with at least one $a_{n+k} \# 0$ and at least one $a_{n+k} \neq 2$. Hence a point x is erased at some stage iff either (in case there are two) ternary representation of x has a 1 in some place. Hence a point of [0,1] is not erased at any stage iff it can be written in ternary form without using the digit 1 . Thus Theorem 1 is proved.

Intuitively, the Cantor set S^{\prime} seem to be sparse. Again, here is a case where our intuition fails us. In fact, the set S^{\prime} is as large as the interval $[0,1]$ itself.
Def. 0,1 , are called binary digits. If $\sum_{n=1}^{\infty} a_{n} / 2^{n}$ converges to x,
with each a a binary digit, then a binary representation of x is

$$
x=0 . a_{1} a_{2} a_{3} \cdots
$$

- Theorem 2. There is a function with domain the Cantor set S^{\prime} and range the interval $[0,1]$

Proof: One such function f is defined in the following way
With $x \varepsilon S^{\prime}$, represent x in its unique ternary form without using the digit 1:

$$
x=00_{3}\left(2 a_{1}\right)\left(2 a_{2}\right) \ldots\left(2 a_{k}\right) \ldots, \quad a_{k}=\left\{\begin{array}{l}
0 \\
1
\end{array}\right\}
$$

Then use binary notation and set

$$
\text { iv) } f(x)=0_{2} a_{1} a_{2} a \cdot \cdot a_{k} \cdots
$$

As examples:

$$
\begin{array}{rl}
f(1 / 3) & =f(0.022 \ldots)=0.011 \ldots=1 / 2 \\
3 & \\
f(3 / 4) & =f(0.2020 \ldots)= \\
3 & 0.1010 \ldots=2 / 3
\end{array}
$$

In iv) $0 \leq 0_{2} a_{1} a_{2} \cdots \leq 1$ and hence f is on $[0,1]$ into $[0,1]$. To show that f is onto $[0,1]$, that is, that $[0,1]$ is the range of f, selec $0 \leq y \leq 1$ arbitrarily. Represent y in binary form:

If y has two binary representations, either may be used. Then x defined by $x=0 .\left(2 b_{1}\left(2 b_{2}\right) \ldots\left(2 b_{k}\right) \ldots\right.$ is in the Cantor set S^{\prime} and $f(x)=y$
Hence the theorem is proved.
With f defined as above, experiments showed that $f(1 / 3)=f(2 / 3)=1 / 2$. In fact, if ($\boldsymbol{X}_{\mathbf{h}}, \bar{x}_{n}$) is one of the open intervals erased at the nth stage, then $f\left(x_{-n}\right)=f\left(\bar{x}_{n}\right)$. (To see this, write x_{n} and \bar{x} according to lemma 3.) Also, associated with this function is a particular function Ψ known as the Cantor function

Def. The Cantor function $\Psi:[0,1]+[0,1]$ is defined by setting

$$
\begin{aligned}
\Psi(x) & =f(x) \quad \text { if } x \in S^{\prime} \\
& =f(\underline{x})=f(\bar{x}) \quad \text { if } \underline{x}<x<\bar{x}
\end{aligned}
$$

for each open interval $(\underline{x}, \bar{x}) \quad[0,1]-S^{\prime}$ with $\underline{x} \in S^{\prime}$ and $\bar{x} \varepsilon S^{\prime}$.
Summarizing our findings:

1) The Cantor set is closed.

The Cantor set, if closed, must contain allof its limit points
If not, there is some point y on the open interval such that every
neighborhood of y contains some points in S^{\prime}. However, this is
not the case since every member of the open interval has a neighborhood with no points in S^{\prime}; therefore \mathbf{S}^{\prime} contains all of its limit
points; hence, S^{\prime} is closed.
2) The Cantor set is dense in itself

If S^{t} is dense in itself, then every point in S^{\prime} must be a limit
point. However, this was taken care of by considering the ternary
terminating expansions of every member in S^{\prime}. Therefore, every
member in S^{\prime} is a limit point because of its terminating expression.
3) The Cantor Set is nowhere dense.

We recall from a theorem that stated: If a closed set F contains no intervals, then F is said to be nowhere dense. S^{\prime} contains no interval since the middle third of each closed interval is always removed at the succeeding stage. The proof of the theorem will be omitted here but it is simply done by applying the indirect method of proof.
4) The Cantor set is perfect.

Since S^{\prime} is closed and dense in itself, then S^{\prime} is a perfect set.
5) The Cardinal number of S^{\prime} is c

We know that the cardinal number of $[0,1]$ is c and we have shown that S^{\prime} is just as numerous as $[0,1]$ itself. Therefore, the set S^{\prime} is of cardinal number c.
Observing the above conclusions of S^{\prime}, especially 2 and 3 , we are reminded not to be so hurried in establishing implications in mathematics.

REFERENCES

Randolph, John F., Basic Real and Abstract Analysis, Academic Press Inc., 1968.
Goffman, Casper, Real Functions, 1953, Prindle, Beban ε Schmidt, Inc., Boxton, Massachusetts.
Hobson, E. W., The Theory of Functions of A Real Variable, Cambridge, 1927.

Kamke, E., Theory of Sets, Translated by F. Bagemihl, New York, 1950

GLEANINGS HOM CHAPIER REPORTS

Sample Lecture Topics.
Disks, Ovals, and Characteristic Roots--Minnesota Gamma
Existential and Universal Quantifiers as Related to Graph Theory-Ohio Nu

Relationship Between Mathematics and Physics--Louisiana Epsilon
California Eta instituted an initiation proceedure. The student initiates were given five problems from different fields of mathematics The problems were solved before initiation.

Ohio Delta Chapter took an active role in trying to save the departmental library from being absorbed into the main library.

Nebraska Alpha sponsors a prize contest open to all students in the first four introductory mathematics courses. Two exams are given, he second for students with at least two semesters of calculus They are graded by a panel of chapter members.

SIMPLICIAL DECOMPOSITIONS OF CONVEX POLYTOPES

Allan L. Edmonds

University of Michigan

1. Preliminaries

A natural extension of the usual convex polygons and polyhedra
of euclidean spaces \boldsymbol{E}^{2} and $\boldsymbol{E}^{\boldsymbol{J}}$, a convex d-polytope P is defined to be the bounded intersection of a finite number of closed half-spaces in E^{d}, where P contains d-dimensional interior. Equivalently, we may define P to be the convex hull of (i.e., the smallest convex set containing) a finite set of points. For each $k, 0<k<d-1$, a k-face of P is the k -dimensional intersection of P with a supporting hyperplane The 0 -faces are just the vertices, the 1 -faces the edges, etc. Each k-face is itself a k-polytope. In the following $f_{k}(P)$ denotes the number of k-faces of P.

Any d-polytope must have at least d+l vertices, and the simples d-polytopes, the d-simplices, have exactly d+l vertices. The faces of a simplex are themselves simplices, and a d-simplex has exactly $\binom{\mathrm{d}+1}{\mathrm{~d}+1} \mathrm{k}$-faces, $0 \leq \mathrm{k} \leq \mathrm{d}-1$.

It is the object of this paper to show that any d-polytope can be expressed as the union of d-simplices whose vertices are vertices of the polytope, and whose interiors are pairwise disjoint. Further, given the dimension and number of vertices of a polytope, we seek bounds on the number of such vertex-simplices required.

A simplicial complex K is a finite collection of simplices such that if A is in K, the faces of A are in K, and A and B are in K, $\mathrm{A} \cap \mathrm{B}$ is either empty or a common face of A and B . The number of \mathbf{r}-simplices in K is denoted by $\mathbf{s}_{r}(K)$. The underlying polyhedron of \mathbf{K} is $/ K /=(A: \quad A$ is a simplex of $K\}$.

With the preceding concepts in mind we make the following definition. $\frac{\text { Definition: }}{\text { to be a simplict } P \text { be a d-polytope. }} \frac{\text { A simplicial complex }}{} K$ to be a simplication of $P \frac{p}{\text { provfding }} / \bar{K} /=P$ and the vertex set of K is precisely equal to the vertex set of P

2. Existence of Simplications

- Theorem 1: Any polytope has a ~implication.

Proof: Let P be a d-polytope with v vertices, and well-order the set of vertices of P. We use an inductive process to simplicate the faces of P. The 0 -faces and 1 -faces are already simplices. For $k>1$ the general inductive step is as follows. In an arbitrary k-face

F, let x be the first vertex of P in F. We assume that the ($k-1$)-faces of F, which are also $(k-1)$-faces of P, have been appropriately simplicated The pyramids with apex x and bases the ($k-1$)-simplices in each ($k-1$) The pyramids with apex x and bases the ($k-1$-simplices in each ($k-1$)
face of F which does not contain x, together with the faces of these pyramids, constitute a simplication of F.

Having simplicated all the ($d-1$)-faces of P, let y be the first vertex of P, and form the pyramids with apex y and bases the ($d-1$)simplices lying in the ($d-1$)-faces of P not containing y. The ordering of the vertices insures the required intersectional properties, so these pyramids, together with their faces constitute a simplication

Theorem 1 can also be proved by induction on v, the number of vertices of P. Clearly a simplication does not have to be formed as in the proof of the theorem. A simplication in which all the d-simplices contain a common vertex is called a fixed-vertex simplication

3. The Minimum Number of Simplices in a Simplication

Let $m(v, d)$ denote the minimum possible number of d-simplices in a simplication of a d-polytope with v vertices. In what follows we generally ignore the trivial one-dimensional case.

Theorem 2: For every $v>d \geq 2, m(v, d)=v-d$.

Proof: First we show that $m(v, d) \geq v-d$, and second that for every v>2 2 there exist d-polytopes with vertices having simplications with exactly $v-d$ d-simplices.

Let P be a d-polytope with v vertices and K a simplication of P. Arrange the d-simplices of K in a sequence so that any simplex after the first has a ($\mathrm{d}-1$)-face in common with some preceding simplex Clearly this can be done, since $/ \mathrm{K} /$ is a topological d-ball. We count the vertices of P in terms of $s_{d}(K)$. The first simplex in the sequence contributes $d+1$ vertices; each of the next $s_{d}(K)-1$ simplices contribute at most one additional vertex. Thus we have $v \leq d+1+s_{d}(K)-1$ or $\mathbf{s}_{\mathrm{d}}(\mathrm{K}) \geq \mathrm{v}-\mathrm{d}$. Since P was arbitrary, we thus have $m(v, d) \geq v-d$.

Now it is easy to see that any simplication of a 2 -polytope with v vertices must have precisely v-2 2 -simplices. Suppose $v>d>2$, and, proceeding inductively, let Q be a (d-1)-polytope with v-1 vertices, and K a simplication of Q such that $\mathbf{s}_{d-1}(K)=v-1-(d-1)=v-d$. Let
P be a d-pyramid with Q as base and arbitrary apex x. K induces a simplication K^{\prime} of P (in fact a fixed-vertex simplication) such that $s_{d}(K)=s_{d-1}(K)=v-d$. This completes the proof.

Remarks: (1) Clearly a simplication is minimal in the sense of Theorem 2 if and only if the d-simplices can be arranged in a sequence as described in the proof so that each after the first has precisely one ($\mathrm{d}-1$)-face in common with some preceding simplex. (2) Using the same counting technique as in Theorem 2, we get $s_{k}(k) \geq v-k$, for each $k, 0 \leq k<d-1$. But in general this is not the best possible bound. We might introduce the symbol $m_{k}(v, d)$ for the minimum possible number of k-simplices in a simplication of a d-polytope with vertices. The value of $m_{k}(v, d)$
for $0<k<d-1$ seems to be an open question at this time. (3) The reasoning of the proof of Theorem 2 actually proves that if K is any simplicial complex with v vertices such that /K/ is a topological d-ball, then $s_{d}(K) \geq v-d$, and that there exist such complexes K so that $s_{d}(K)=v-d$.

4. The Maximum Number of Simplices in a Simplication

The problem of finding the maximum number of simplices in a simplication is considerably harder than that of finding the minimum. In the following $M(v, d)$ and $N(v, d)$ denote the maximum possible number of d-Simplices in a simplication and a fixed-vertex simplication, respectively, of a d-polytope with v vertices. To facilitate the following discussion $\boldsymbol{\mu}_{\mathrm{d}}(\mathrm{v}, \mathrm{d}+\mathrm{l})$ denotes the maximum number of d -simplices possible in a
simplicial complex with v vertices whose underlying polyhedron is a topological d-sphere. Also C(v,d) denotes a cyclic d-polytope with v vertices, the convex hull of v distinct points on the moment curve
$\left\{\left(t, t^{2}, t^{3}, \ldots, t^{d}\right): t\right.$ real]. A cyclic polytope is simplicial (i.e., are combinatorially equivalent, and their special structure allows one to calculate that

$$
f_{d-1}(C(v, d))=\left\{\begin{array}{cl}
\frac{v}{v-n}\binom{v-n}{n} & \text { if } d=2 n \\
2\binom{v-n-1}{n} & \text { if } d=2 n+1
\end{array}\right.
$$

Cyclic polytopes lead to the following conjecture.
Upper Bound Conjecture: For all $v \geqslant d \geq 2, \mu_{d}(v, d+1)=f_{d}(c(v, d+1))$.
It is known that the Upper Bound Conjecture is true as stated here at least when $\mathrm{d} \leq 7$ (i.e., for 8 -polytopes) and when v is comparatively large or small with respect to d. (See Grunbaum, pp. 6lff)

We now begin with $\mathbf{N}(\mathbf{v}, \mathrm{d})$. First consider the following construction. Let $v>d+1$ and let P be a polytope obtained from the cyclic polytope $Q=\mathbf{C}(v-1, d)$ as follows. Let F be any (d-l)-face of Q and x any point not in Q such that (convex hull of $\{x\} \cup Q$) : (convex hull of $\{x \mid \cup \mathcal{F}) \mathbf{U Q}$ (i.e., x is "beyond" F and "beneath" all other (d-1)-faces of Q. Let P be the convex hull of $\{x\} \cup Q$ and K the fixed-vertex simplication with respect to x. Then since P is simplicial $s_{d}(k)=f_{d-1}(c(v-1, d))-1$. This construction leads to the following conjecture.
Conjecture 1: If $\mathrm{v}-2 \geq \mathrm{d} \geq 2, \mathrm{~N}(\mathrm{v}, \mathrm{d}) \leq \mu_{\mathrm{d}-1}(\mathrm{v}-1, \mathrm{~d})-1$, with equality when the Upper Bound Conjecture holds for d-polytopes with $\mathrm{v}-1$ vertices.

The preceding construction shows that $N(v, d) \geq \mu_{d-1}(v-1, d)-1$ when the Upper Bound Conjecture holds. Thus it remains to show that $-\sim_{0}(v, d) \leq \mu_{d-1}(v-1, d)-1$ in general. We show that this is true for $d \leq 4$.

Clearly $N(v, 2)=v-2$ and since $\mu_{1}(v-1,2)-1: v-1-1=v-2$, the relation holds for $d=2$.

Now let P be a 3-polytope with $v>4$ vertices, and K a fixed-vertex simplication of q, each 3-simplex of which contains the vertex x.

Then K induces a triangulation K^{\prime} of the boundary of P, a 2 -sphere. Each 3 -simplex in K has its 2 -face opposite x in K . In addition there are at least 3 2-faces of P containing x. These facts yield $\boldsymbol{s}_{\mathbf{3}}(K)+3 \leq \boldsymbol{\mu}_{2}(v, 3)$ or $\boldsymbol{s}_{3}(K) \leq \boldsymbol{\mu}_{2}(v, 3)-3$. Since P is arbitrary we have $N(v, 3) \leq \mu_{2}(v, 3)-3=2 v-7=\mu_{2}(v-1,3)-1$.

Finally suppose P is a 4 -polytope with v >5 vertices, and let K be a fixed-vertex simplication of P. Let Q be a 5-pyramid with base P and arbitrary apex x. K then induces a triangulation K^{\prime} of the boundary of Q, a 4-sphere. The 4-simplices of K^{\prime} are just those of K plus those which are the convex hull of x with the 3-simplices of K lying in the boundary of P. There must be at least $\mathbf{s}_{4}(K)+4$ of the latter variety, since K is a fixed-vertex simplication. Thus

$$
s_{4}(K)+s_{4}(K)+4 \leq \mu_{u}(v+1,5) \text { or } s_{4}(k) \leq\left(\mu_{4}(v+1,5)-4\right) / 2 .
$$

(The numerator is always even.) Again since P is arbitrary we have

$$
N(v, 4) \leq\left(\mu_{4}(v+1,5)-4\right) / 2
$$

A little calculation shows that the right side of this inequality is precisely $\boldsymbol{\mu} 3(v-1,4)-1$. Therefore $N(v, 4) \leq \boldsymbol{\mu} 3(v-1,4)-1$.

The preceding work proves the following theorem.
Theorem 3: If $2 \leq d \leq 4$ and $v>d+1$ then $N(v, d)=\mu_{d-1}(v-1, d)-1 / /$
Unfortunately the techniques used above are not sufficient when $d \geq 5$.

We now consider $\mathbf{M}(\mathbf{v}, \mathrm{d})$. Clearly $\mathbf{M}(\mathbf{v}, \mathrm{d}) \geq \mathbf{N}(\mathbf{v}, \mathrm{d})$. For given $v-2 \geq d \geq 2$ Peter McMullen has constructed a \bar{d}-polytope with v vertices and a simplication of the polytope such that the simplication contains exactly $f_{d}(C(v, d+1))-v+d$ d-simplices.

His construction suggests the following conjecture which is trivially true for $d=2$.
Conjecture 2: Given $v-2 \geq d \geq 2, M(v, d) \leq \mu_{d}(v, d+1)-v+d$, with equality when the Upper Bound Conjecture holds for $(d+1)$-polytopes with v vertices

Remark: As we did with $m(v, d)$ we might more generally define $M_{k}(v, d)$ and $N_{k}(v, d)$ to be the maximum number possible of k-simplices in a simplication and a fixed-vertex simplication, respectively, of a dpolytope with v vertices.

5. Conclusion

The problem treated in this paper is a special case of the following more general question: Given a simplicial complex which satisfies certain combinatorial and topological restrictions, what more can one say about the complex? The Upper Bound Conjecture introduced in Section 4 is another aspect of the same problem. There are a number of easily posed open questions in this area, and convex polytopes provide a natural setting for many of them--in particular for extremal problems such as those considered here.

REFERENCES

B. Grunbaum. Convex Polytopes. New York: Interscience, 1967.
P. McMullen. Partitions of Polytopes into Simplices (unpublished paper).

The author first became interested in the subject of this paper during the summer of 1968 --between his junior and senior years at Oklahoma State University--in a National Science Foundation Undergraduate Research Participation Project, at Clemson University, under the direction of Professors W. R. Hare and J. W. Kenelly. Special thanks is due to Professor Kenelly with whom the author worked most closely.

UNDERGRADUATE RESEARCH PROPOSAL

Harold Diamond

University of Illinois

1. Suppose we wish to obtain a numerical estimate for the sum of the series $\sum_{1}^{\infty} \mathrm{n}^{2}$ accurate to within .001. One method would be to write

$$
\sum n^{-2}+\int_{N+1}^{\infty} t^{-2} d t<\sum_{1}^{\infty} n^{-2}<\sum n^{-2}+\int_{N}^{\infty} t^{-2} d t
$$

find an N for which $\int_{N}^{\operatorname{NiN}+1} \mathrm{t}^{-2} \mathrm{dt}<.001$ (e.g. $N=32$) and use the approximation

$$
\sum_{1}^{\infty} n^{-2}=\sum_{1}^{N} n^{-2}+1 / N+\text { Error }
$$

Can you give a more efficient method? (Incidentally, it is known that $\sum \mathrm{n}^{2}=\pi^{2} / 6.1$
2. The inequality sign in the Cauchy Schwarz relation

$$
\left(\cdot \int \mathrm{fg}\right) \leq\left\{\int \mathrm{f}^{2} \cdot \int \mathrm{~g}^{2}\right\}^{1 / 2}
$$

becomes an equality if $f=c g$ for some constant c. If h is a real function for which $h^{2} \approx c f$, some $c>0$, then the inequality

$$
\int f=\int \frac{f}{h} \cdot h \leq\left\{\int(f / h)^{2}\right\}^{1 / 2}\left\{\int h^{2}\right\}^{1 / 2}
$$

is rather sharp. Find some useful applications for this idea.

THE RBCURRENCE BQUATION FOR BOUNDING CUBES

David Berman

Trinity University

1. Introduction. By a j-cube we will mean the j-dimensional object resulting from moving ${ }^{\frac{1}{2}} \mathbf{j}-1$ cube at an angle $\theta(\theta \neq 0)$ a distance $\mathbf{z}(\mathbf{z} \neq 0)$ into the $\dot{j}^{\text {th }}$ dimension. In Euclidean space, $\left|\mathbf{z}_{\mathbf{j}}\right|=\left|\mathbf{z}_{\mathbf{j}-\mathbf{1}}\right|$ and $\boldsymbol{\theta}=\frac{\pi}{2}$.

The purpose of this paper is the derivation and solution of the difference equation
in which $N_{\underline{i}, \underline{j}}$ is the number of \underline{i}-cubes bounding a \boldsymbol{j}-cube ($\underline{\underline{1}} \geq \underline{\underline{i}}$).
The solution will be shown to be
(2)

$$
N_{i, j}=2^{j-i} j c_{i}
$$

where jCi is the symbol for combinations. The solution will be generalized to gamma functions. Finally, Euler's Theorem for n-dimensional polyhedra will be stated and proven for bounding cubes.

2. Derivation. To find the number of i-cubes bounding a j cube, we first must find the number of i-cubes bounding the initial j-1 cube and add this to the number of connecting i-cubes and finally add the number of i-cubes bounding the final $\frac{1}{N}-1$ cube. This is illustrated in Figure \mathbf{I}. Using the notation $\mathrm{N}_{\boldsymbol{i}, \mathbf{j}}$ for the number of i -cubes bounding a \mathbf{j}-cube we have

$$
\text { (3) } \quad N_{i, j}=N_{i, j-1}+\left(\text { connecting cubes) }+N_{i, j-1}\right.
$$

We note that at the initial and final positions the quantity $\mathbf{N}_{\underline{\mathbf{i}}-\mathbf{1}, \mathbf{j}-1}$ expresses the number of $\mathbf{i}-1$ cubes bounding a $\mathbf{j}-\mathbf{1}$ cube.
By definition of a cube we can say that each $\mathbb{i}-1$ initial cube generates one i-cube (connecting cube). From the last two statements we merely have to find the number of $\mathbf{i}-\mathbf{1}$ cubes bounding the initial $\mathbf{i - 1}$ cube and we are guaranteed that this corresponds to the number of connecting i-cubes. See Figure II. Substituting $N_{\underline{i}-1, \underline{1}-1}$ in eq. (3) for the nutber
of connecting i-cubes we get
(4) $\quad N_{i, j}=2 N_{i, j-1}+N_{i-1, j-1}$,
the recurrence equation for bounding cubes.

i-1 cube (by def.)
3. Solution. Replacing $\underline{\boldsymbol{i}}$ and \boldsymbol{i} by x and y respectively and N by f, eq. (4) can be written in the more tractable form
(5)

$$
f(x, y)-2 f(x, y-1)-f(x-1, y-1)=0
$$

If we let
(6)

$$
f(x, y)=2^{a x+b y} g(x, y), \text { then }
$$

(7) $\left.2^{a s+b y} g(x, y)-2^{a x+b y-b+1 g(x, y-} 1\right)=2^{a x+b y-a-b g(x-1, y-1)}=0$.

Assigning the values $b=\mathbf{1}$ and $a=-1$, eq. (7) can be simplified to
(8) $\quad 2^{y-x}[g(x, y)-g(x, y-1)-g(x-1, y-1)]=0$, or
(9)

$$
g(x, y)-g(x, y-1)-g(x-1, y-1)=0
$$

Eq. (9) is readily solved by methods of finite differences [1] to be
(10)

$$
g(x, y)=y^{C} x
$$

Substituting eq. (10) back in eq. (6) we have
(11)

$$
f(x, y)=2^{y-x} y^{c} x, \text { or }
$$

(12)

$$
N_{i, j}=2^{j-i}{ }_{j} C_{i}
$$

4. Generalization. Eq. (12) can be used only when \boldsymbol{i} and \underline{j} are integers. It would be desirable to generalize this equation so that all real values could be used. The natural generalization is to use the identity $\Gamma(j+1)=j!$ and substitute gamma functions for to use the identity $r(j+1)=j$ and substitute gamma functions for
factorials. This generalization will be permissible if and only if factorials. This generalization will be permissible if and only if the resulting equation satisfies the original recurrence r
ew. (4). Generalizing eq. (12) to gamma functions we get

$$
\begin{array}{ll}
\text { (13) } & N_{i, j}=\frac{\Gamma(j+1) 2^{k}}{\Gamma(i+1) \Gamma(k+1)} \quad k=j-i \\
\text { (14) } & N_{i, j-1}=\frac{\Gamma(j) 2^{k-1}}{\Gamma(i+1) \Gamma(k)} \\
(15) & N_{i-1, j-1}=\frac{\Gamma(j) 2^{k}}{\Gamma(i) \Gamma(k+1)} .
\end{array}
$$

By direct substitution of eqs. (13), (14), and (15) into eq. (4) we write
(16) $\quad \frac{\Gamma(j+1) 2^{k}}{\Gamma(i+1) \Gamma(k+1)}=\frac{\Gamma(j) 2^{k}}{\Gamma(i+1) \Gamma(k)}+\frac{\Gamma(j) 2^{k}}{\Gamma(i) \Gamma(k+1)}$
(17)

$$
\Gamma(j+1)=k \Gamma(j)+i \Gamma(j)
$$

$$
\begin{gather*}
\Gamma(j+1)=(k+i) \Gamma(j) \quad k=j-i \tag{18}\\
\Gamma(j+1)=j \Gamma(j),
\end{gather*}
$$

showing that the generalized solution does indeed satisfy the recurrence equation.
5. Euler's Theorem. Euler's Theorem for bounding cubes may he stated as follows: For a j-cube,
(20)

$$
\begin{gathered}
N_{0, j}-N_{1, j}+N_{2, j}-\ldots+N_{j, j}=1, \text { or } \\
\sum_{i=0}^{j}(-1)^{i}{ }_{2}{ }^{j-i} j_{i}=1 .
\end{gathered}
$$

Writing eq. (21) in expanded form, we have

$$
\sum_{i=0}^{j}(-1)^{i} 2^{j-i} j_{i}=1
$$

Making use of the binomial expansion $(a-1)^{j}$, we can write
(23)

$$
(a-1)^{j}=\sum_{i=0}^{j}(-1)^{i} a^{j-i} j^{C_{i}}
$$

If we set $a=2$ in eq. (23), we get the desired result, eq. (22), hence proving Euler's Theorem for bounding cubes.

REFERENCE

1. Charles Jordan,
Calculus of Finite Difference
Chelsea, New York, 1960, pp. 604-613.

MATCHING PRIZE FLD

The Governing Council of Pi M Epsilon has approved an increase in the maximum amount per chapter allowed as a matching prize from $\$ 25.00$ to $\$ 50.00$. If your chapter presents awards for outstanding mathematical papers and students, you may apply to the National Office to match the amount spent by your chapter--i.e., $\$ 30.00$ of awards, the National Office will reimburse the chapter for $\$ 15.00$, etc., --up to a maximum of $\$ 50.00$. Chapters are urged to submit their best student papers
to the Editor of the Pi M Epsilon Journal for possible publication. to the Editor of the Pi Mi Epsilon Journal for possible publication These funds may also be used for the rental of mathematical films. Please indicate title, source and cost, as well as a very brief comment as to whether you would recommend this particular film for other

MOVING?

EE SURE TO LET THE JOURNAL KNOW!
Send your name, old address with zip code and new address with zip code to:

Pi Mi Epsilon Journal
1000 Asp Ave., Room 215
The University of Oklahoma
Norman, Oklahoma 73069

PROBLEM DEPARTMENT

Edited by

Leon Bankoff, Los Angles, California
This department welcomes problems believed to be new and, as a rule, demanding no greater ability in problem solving than that of the average member of the Fraternity. Occasionally we shall publish problems that should challenge the ability of the advanced undergraduate or candidate for the Master's Degree. Old problems characterized by novel and elegant methods of solution are also acceptable. Solutions should be submitted on separate, signed sheets and mailed before May 31, 1971.

Address all communications concerning problems to Dr. Leon Bankoff, 6360 Wilshire Boulevard, Los Angeles, California 90048.

PROBLEMS FOR SOLUTION

239. Proposed anonymously. Information regarding source is solicited.

A circle (0) inscribed in a square $A B C D,(A B=2 a)$, touches $A D$ at G, $D C$ at F, and $B C$ at E. If Q is a point on $D C$ and P a point on $B C$ such that $G Q$ is parallel to AP, show that $P Q$ is tangent to the circle (0).

240. Proposed by Charles W. Trigg, San Diego, California. The palindromic triangular number $\Delta_{10}=55$ and $\Delta_{11}=66$ may each be considered to be a repetition of a palindromic number Find another palindromic number which when repeated forms a triangular number.
241. Proposed by Solomon W. Golomb, University of Southern California. What is the simplest explanation for this sequence:

$$
85491763207
$$

242. Proposed by the Problem Editor

If m_{a}, m_{b}, m are the medians corresponding to sides a, b, c of a triangle ABC, show that

$$
m_{a}^{2} m_{b}^{2}+m_{b}^{2} m_{c}^{2}+m_{c}^{2} m_{a}^{2}=(9 / 16)\left(a^{2} b^{2}=b^{2} c^{2}+c^{2} a^{2}\right) .
$$

243. Proposed by Alfred E. Neuman, Mu Alpha Delta Fraternity, New York. Provide a geometrical proof for the well-known relation

$$
\frac{\pi}{4}=\arctan \frac{1}{2}+\arctan \frac{1}{5}+\arctan \frac{1}{8}
$$

244. Proposed by Charles W. Trigg, San Diego, California.

The spots on a standard cubical die are distributed as indicated on the accompanying Schlegel diagram, the sum on each pair of opposite faces being 7. A square grid is composed f squares the same size as a die face. When a die is placed on a square and rotated 90° about an edge to come into contact with another square, the motion will be called a

What is the shortest roll sequence that
will return the die to the starting square in its original attitude?
245. Proposed by R. S. Luthar, University of Wisconsin, Waukesha. Prove that for positive numbers x and y the following inequality holds

$$
\left(x^{2}-x y+y^{2}\right)^{(x+y) / 2} \geq x^{x} y^{y} .
$$

246. Proposed by Bob Prielipp, Wisconsin State University, Oshkosh. If x is an even perfect number >6, prove that $\times 54$ (mod 12).
247. Proposed by Alfred E. Neuman, Mu Alpha Delta Fraternity, New York. Construct diagrams illustrating four (or more) different theorems characterized by the relation $A Z \cdot B K \cdot C Y=|A Y \cdot B Z \cdot C X|$.

SOLUTIONS

212. (Fall 1968) Proposed by J. M. Gandhi, University of Manitoba, Winnipeg, Canada.
Solution I by the Proposer.

If

$$
M(n)=\sum_{s=0}^{n-1}\binom{n}{s+1}\binom{n+s}{s}
$$

show that
(A) $M(5 m+2) \equiv 0(\bmod 5)$
(B) and
(B) $M(5 m+3) \equiv 0(\bmod 5)$
[Ref. George Rutledge E R. D. Douglass, Integral functions associated with certain binomial sums, Amer. Math. Monthly 43(1936), pp. 27-33].

Solution. Rutledge E Douglass see the above ref., proved that
$(2 n-3) n M(n)=\left(12 n^{2}-24 n+10\right) M(n-1)$. (1)
Let $n=5 m+2$, so that from (1) we pet

$$
(10 m+1)(5 m+2) M(5 m+2)
$$

$=\left\{12(5 m+2)^{2}-24(5 m+2)+101 M(5 m+1)\right.$
$-\left\{2(5 m+2)^{2}-5(5 m+2)+2\right\} M(5 m)$
$\equiv\{48-48+101 \mathrm{M}(5 m+1)$
$-(8+2) M(5 m)(\bmod 5)$
$-\quad$ (Mod 5).
Thereby congruence (B) follows.
Now considering $n=5 m+3$ from (1) we get ($10 m+3$) ($5 m+3$) $M(5 m+3)$

$$
=\left[12(5 m+3)^{2}-24(5 m+3)+10\right] M(5 m+7)
$$

$=\left[2(5 m+3)^{2}+2\right] M(5 m+1)$
$\equiv M(5 m+2) \quad(\bmod 5)$
$\equiv 0(\bmod 5)$ in view of conpruence (B) and hence
we get congruence (A).
Solution-II by L. Carlitz, Duke University.
We shall make use of the Lucas congruence

$$
\binom{a p+h}{r p+s} \equiv\binom{a}{r}\binom{b}{s} \quad(\bmod p)
$$

where p is prime and

$$
a \geq 0, \quad r \geq 0, \quad 0 \leq h<p, \quad 0 \leq s<p
$$

Then

$$
\begin{aligned}
M(5 m+2) & =\sum_{s=0}^{5 m+1}\binom{5 m+7}{s+1}\binom{5 m+s+2}{s} \\
& \equiv \sum_{t=0}^{m}\binom{5 m+2}{5 t+1}\binom{5 m+5 t+7}{5 t}+\sum_{t=0}^{m}\binom{5 m+2}{5 t+2}\left(\begin{array}{c}
5 m+5 t+3 \\
5 t+1
\end{array}\right. \\
& \equiv ? \sum_{t=0}^{m}\binom{m}{t}\binom{m+t}{t}+3 \sum_{t=0}^{m}\binom{m}{t}\binom{m+t}{t} \\
& =Q \quad(\bmod 5) .
\end{aligned}
$$

Similarly

$$
\begin{aligned}
M(5 m+3)= & \sum_{s=0}^{5 m+2}\binom{5 m+3}{s+1}\binom{5 m+s+3}{s} \\
\equiv & \sum_{t=0}^{m}\binom{5 m+3}{5 t+1}\binom{5 m+5 t+3}{5 t}+\sum_{t=0}^{m}\binom{5 m+3}{5 t+2}\binom{5 m+5 t+4}{5 t+1} \\
& +\sum_{t=0}^{m}\binom{5 m+3}{5 t+3}\binom{5 m+5 t+5}{5 t+2} \\
\equiv & 3 \sum_{t=0}^{m}\binom{m}{t}\binom{m+t}{t}+12 \sum_{t=0}^{m}\binom{m}{t}\binom{m+t}{t} \\
= & 0 \quad(\bmod 5) .
\end{aligned}
$$

We can generalize the ahove result in the following way. Let $n=p m+k$, where p is prime and $0 \leq k<p$. Then

$$
\begin{aligned}
& M(p m+k)=\sum_{s=0}^{p m+k-1}\binom{p m+k}{s+1}\binom{p m+k+s}{s} \\
& =\sum_{s=0}^{m} \sum_{t=0}^{p-1}\binom{p m+k}{p s+t+1}\binom{p m+p s+k+t}{p s+t} \\
& \equiv \sum_{s=0}^{m} \sum_{\substack{t+l<k \\
k+t<p}}\binom{m}{s}\binom{k}{t+1}\binom{m+s}{s}\binom{k+t}{t} \\
& \equiv \sum_{s=0}^{m}\binom{m}{s}\binom{m+s}{s} \sum_{\substack{t+1<k \\
k+t<p}}\binom{k}{t+1}\binom{k+t}{t} \quad(\bmod p) . \\
& \text { (fán)ce } \quad \sum\binom{k}{t+1}\binom{k+t}{t} \equiv 0 \quad(\bmod p) \\
& t+1<k \\
& k+t<p \\
& \text { is a sufficient condition for } \\
& M(p m+k) \equiv 0 \quad(\bmod p) . \\
& \text { For example if } k=4 \text { we have } \\
& \sum_{t=0}^{3}\binom{4}{t+1}\binom{4+t}{t}=4+\binom{4}{2}\binom{5}{1}+\binom{4}{3}\binom{6}{5}+\binom{7}{3}
\end{aligned}
$$

so that
$M(43 \mathrm{~m}+4) \equiv 0 \quad(\bmod 43)$.
220. (Spring 1969) Proposed by Daniel Pedoe, University of Minnesota.
a) Show that there is no solution of the Apollonius problem of drawing circles to touch three given circles which has only seven solutions.
b) What specializations of the three circles will produce $0,1,2,3,4,5$ and 6 distinct solutions?

Solution by the Proposer.

The circle C_{0} which is orthogonal to each of the given $C_{i}(i=1,2,3)$
is uniquely defined, unless the C. belonp to a pencil of circles.
In the latter case the only tanpent circles are two point-circles, in the case when the pencil is of the intersecting type. The circle C plays a very special role with regard to the C_{1}, since inversion in C_{0} maps each C_{i} onto itself, and maps a tangent circle C onto a tangent circle C^{\prime}. When there are 8 tangent circles (which may be called the general case) these can be split into four pairs. We call the circles in a pair "conjugate circles". (For all this, proved algebraically, see Pedoe,
Circles, Pergamon Press, 1957). If we specialize the C_{i} so that
there are only 7 tangent circles, the specialization must aim at making a pair of conjugate circles identical, since if two tangent circles which are not conjugate become identical, the conjugates also become identical, and the number of tangent circles would reduce to 6 , at most.

We therefore specialize the C_{i} so that a conjugate pair C, C^{\prime} become the same circle, D, say. This means that inversion in C maps the tangent circle D onto itself. If this is the case D° must be orthogonal to C_{0}. We therefore find ourselves with three circles C_{i}, a circle C_{0} orthogonal to the C_{i}, and a circle D which touches the C_{i} and is also orthogonal to C_{0}. We show that this means that two of the C_{i} must touch each other.
Invert with respect to a center of inversion on C. We obtain three circles $C_{i}{ }^{\prime}$, with diameters which lie along the line $C_{0}{ }^{\prime}$. These three circles are touched by a circle D^{\prime} whose diameter also lies along C '. If two circles with diameters along the same line touch on a point not on this line, they have the same center, and must therefore coincide. If the circles are distinct, contact can only take place at an endpoint of a diameter. Since D^{\prime} has only two points of intersection with the line $C_{0}{ }^{t}$, and has to touch each of $C_{1}{ }^{\prime}, C_{2}{ }^{\prime}, C_{3}{ }^{\prime}$ at a point on $C_{0}{ }^{t}$, the three points of contact cannot be distinct. Hence at least two of the circles C_{i}^{\prime} intersect C_{o}^{\prime} at the same point. That is, at least two of the circles C_{i}^{\prime} touch each other. But if at least two of the circles C_{i} touch each other, the number of circles tangent to the three C_{i} is readily seen to be 6 , at most.
Also solved by Charles W. Trigg, San Diego, California. To do justice to Trigg's detailed analysis of the problem and to the numerous diagrams accompanying his solution, the editor has found it necessary to postpone publication until the Spring 1971 issue.

Editor's Note: An expanded version of Pedoe's solution has been published in his paper The Missing Seventh Circle, Elemente der Mathematik, January 1970, page 14.
222. (Fall 1969) Proposed by Jack Garfunkel, Forest Hills High School, Flushing, N.Y.
In an acute triangle ABC, angle bisector $B T$, intersects altitude
AH in D . Angle bisector CT_{2} intersects altitude BH_{2} in E , and angle bisector AT_{3} intersects altitude CH_{3} in F . Prove

$$
\frac{\mathrm{DH}_{1}}{\frac{\mathrm{EH}_{2}}{\mathrm{AH}_{1}}+\frac{\mathrm{FH}_{3}}{\mathrm{BH}_{2}}+\frac{\mathrm{CH}_{3}}{} \leqq 1 ~}
$$

Solution by the Proposer.
Since $D_{1} / A H_{1}=\tan (B / 2) / \tan B=1-\tan ^{2}(B / 2)$, etc., the
problem is equivalent to that
of showing
$\tan ^{2}(A / 2)+\tan ^{2}(B / 2)+\tan ^{2}(C / 2) \geqq 1$,
equality holding if and only
if $A=B=C$. The proof of
this inequality follows from the
relation $1-\tan (A / 2) \tan (B / 2)$
$\tan (C / 2)=\frac{\tan (A / 2)+\tan (B / 2)}{}$
whence $\Sigma \tan (A / 2) \tan (B / 2)=1$.
It follows that $\Sigma \tan ^{2}(A / 2) \geqq 1$,
thus completing the proof.

Also solved by Sid Spital, Calif.
State College at Hayward, who
noted that the triangle
need not be acute.
223. (Fall 1969) Proposed by Solomon W. Golomb, University of Southern California. Los Angeles.
In the first octant of 3 -dimensional space, where $x \geqq 0, y \geqq 0$, $\mathbf{z} \xrightarrow{\geq} 0$, identify the region where the following "associative law" holds:

$$
x^{\left(y^{z}\right)}=\left(x^{y}\right)^{z}
$$

Solution by the Proposer.
Both expressions are indeterminate on the line $x=y=0$. The left side is also indeterminate on the line $y=z=0$. Otherwise, the identity holds in the four planes

$$
\begin{aligned}
& x=0 \\
& x=1 \\
& \mathbf{x}=0, \\
& z=1 \\
& y=z^{1 /(z-1)} \text { for } z \# 1 .
\end{aligned}
$$

and along the surface
If $x \# 0$ then $x^{a}=x^{b}$ requires $a=b$, which in this case means $y^{2}=y z$, so that there are no other solutions.
Also solved by R. C. Gebhardt, Parsippany, N.J.; Richard L. Enison, New York; C. B. A. Peck, State College, Pennsylvania; C. L. Sabharwal, Saint Louis University; and Sid Spital, Calif. State College at Hayward.
Peck notes that on the cylinder $y=z^{1 /(z-1)}, \lim z_{z_{+\infty}} y=1$ and $1 \mathrm{imy}=\infty$. The cylinder is thus asymptotic to two of the planes, namely the $x y$ - and the $x z$-planes, and intersects the other two (the ones parallel to the yz-plane).
224. (Fall 1969) Proposed by Charles W. Trigg, San Diego, Calif.

In the following cryptorithm, each letter represents a distinct digit in the decimal scale:

$$
8(M A D A P E)=5(A P E M A D)
$$

Identify the digits.

Solution by Jeanette Bickley, St. Louis, Missouri.
Below is the computer program and output from a SDS 940 computer.
The program tests all possible difit replacements for M, A,
D, P, E and gives the unique solution $M=1, A=7, D=8$,
$P=0, E=5$.
CCOM-SHARE CENTER E 52
PLEASE LOG IN:E285; WJGEE
READY, SYSTEM WO4
FEB 4 8:38
LAST LOGIN FEB 3 16:26
-XTR
VER. JAN 71
+QFD
*A /JBMADAPF/
*/
INTEGER A,D,P, $\mathrm{\Gamma}, \mathrm{RIGHT}$
DIMENSION M(10),A(10),D(10),P(10),E(10)
90 FORMAT (9HMADAPE $=, 17$)
91 FORMAT (1012)
$\operatorname{READ}(0,91) \mathrm{M}, \mathrm{A}, \mathrm{D}, \mathrm{P}, \mathrm{E}$
$\operatorname{WRITE}(1,91) \mathrm{M}, \mathrm{A}, \mathrm{D}, \mathrm{P}, \mathrm{E}$
DO $20 I=1,10$
DO $20 \quad I=1,10$
DO $20 \quad \mathrm{~J}=1,10$
DO $20 \mathrm{~K}=1,10$
DO $20 \mathrm{~N}=1,10$
DO $20 \mathrm{~N}=1,10$
EFT $=M(I) * 100000+A(J) * 10000+D(K): 1000+A(J) * 10 n+P(L) * 1 n+F .(N)$
RIGHT $=A(J) * 100000+P(L) * 10000+E(N)=1000+M(I) * 100+A(J): 1 n+D(K)$

30 WRITE (1,90) LEFT
20 CONTINU
STOP

"XTRAN

$+\mathrm{C}$
OUTPUT:
OPTIONS: CARD

+ R
OPTIONS:
SPROG:
XLIBE JAN 14
0123456789
0123456789
0123456789
0123456789
$\begin{array}{llllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$
$\begin{array}{rlllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$
$-\begin{array}{rlllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ - & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$
$\begin{array}{llllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$
$\begin{array}{llllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$
$\begin{array}{llllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$
MADAPE =
MADAPE $=128205$
MADAPE $=1205$
MADAPE
(SMAIN:) 20+1
+EXIT
+EXIT
-LOG
USAGE
CCU: 078
CLT: 0.06 HOURS
Solution II by R. C. Gebhardt, Parsippany, N.J.
The problem can be written as
$8000($ MAD $)+8($ APE $)=5000($ APE $)+5($ MAD $)$.
Thus $7995($ MAD $)=4992(A P E)$ or 205(MAD) $=128($ APE $)$.
Since 128 and 205 are relatively prime, this equation is solved by MAD $=128$, $\operatorname{APE}=205$.

Also solved by Charles H. Culp, Socorro, New Mexico; Clayton W. Dodge, University of Maine; Elliot D. Friedman, Plainview N.Y.; Walter Wesley Johnston, Springfield, Illinois; Donald Marshall, Pasadena; Donald R. Steele, Pine Plains Central School, Pine Plains, N.Y.; Gregory Wulczyn, Bucknell University; and the propser.

A 4-page solution offered by Alfred E. Neuman, of the Mu Alpha Delta Fraternity, turned out to be incorrect.
225. (Fall 1969) Proposed by Wray G. Brady, University of Bridgeport. Show that any proper fraction, a / b, can be written as the product of fractions of the type $n /(n+m)$ for fixed m.
Solution by Charles W. Trigg, San Diego, California.
If $k=b-a>1, m=1$, clearly
$\frac{a}{b}=\frac{a}{a+1} \cdot \frac{a+1}{a+2} \cdot \frac{a+2}{a+3} \ldots \frac{a+(k-2)}{a+(k-1)} \cdot \frac{a+(k-1)}{a+k}$.
If $b-a=1$, then
$\frac{2 a}{2 b}=\frac{2 a}{2 a+1} \cdot \frac{2 a+1}{2 a+2}$, or in general,
$\begin{array}{lcc}r a & r a & r a+1 \\ r b & r a+1 & r a+2\end{array} \quad \begin{aligned} r a+(r-1) \\ r a+r\end{aligned}$.
If $\mathrm{b}-\mathrm{a}$ is composite, say $\mathrm{b}^{-} \mathrm{a}=\mathrm{pm}$, then the multiplicative sequence may be shortened, i.e.,

$$
\frac{a}{b}=\frac{a}{a+m} \quad a+m \quad \frac{a+(p-1) m}{a+2 m}
$$

Also solved by Clayton W. Dodge, University of Maine; Richard L. Enison, New York; Murray S. Klamkin, Ford Motor Company Scientific Research Staff; Frank P. Miller, Jr., Pennsylvania State University; Bob Prielipp, Wisconsin State University Oshkosh; Gregory Wulczyn, Bucknell University; and the proposer, who gave the reference to Dickson's Theory of Numbers, Vol. II, p. 687, Chelsea, 1952.
226. (Fall 1969) Proposed by B. J. Cerimele, North Carolina State University at Raleigh.
Derive a formula for the n-th order antiderivative of $f(x)=\ln x$ Solution I by Murrary S. Klamkin, Ford Motor Company.

We solve the more general problem of finding the $n-t h$ order antiderivative of $\boldsymbol{x}^{\boldsymbol{m}} \log x$. This is equivalent to solving the n -th order differential equation

$$
D^{n} y=x^{m} \log x
$$

Let $x=e^{z}$. Then,
(1) $D(D-1)(D-2) \ldots(D-n+1) y=z e^{(m+n) z}$

The complementary solution is given by

$$
y_{c}=a_{0}+a_{1} e^{z}+\ldots+a_{n-1} e^{(n-1) z}
$$

To find a particular soltion, we multiply (1) by $\mathbf{e}^{-(m+n) z}$ and use the exponential shift theorem, to give

$(D+m+n)(D+m+n-1) \cdots(D+m+1) y^{-(m+n) z}=z$.

Thus, $y_{p} e^{-(m+n) z}=a z+b$ and to determine the constants a and
b, we substitute back. Thus,
$(m+1)(m+2) \ldots(m+n)(a z+b)+a \frac{1}{m+1}+\frac{1}{m+2}+\ldots+\frac{1}{m+n} \equiv z$ and

$$
a=\frac{\Gamma(m+1)}{\Gamma(m+n+1)}, b=-a \frac{1}{m+1}+\frac{1}{m+2}, \ldots+\frac{1}{m+n}
$$

Finally,
$y=a_{0}+a_{1} x+\ldots+a_{n-1} x^{n-1}+\frac{x^{m+n} \Gamma(m+1)}{\Gamma(m+n+1)} \log x-\frac{1}{m+1}-\frac{1}{m+2} \cdots-\frac{1}{m+n}$.
The proposed problem corresponds to the special case $m=0$ and here

$$
y_{p}=\frac{x^{n}}{n!} \log x-1-\frac{1}{2}-\ldots-\frac{1}{n}
$$

Solution II by the Proposer.
Successive integration by parts yields the pattern
$D^{-n} \ln x=\left(x^{n} / n!\right) \ln x-d_{n} x^{n}+\sum_{i=1}^{n} c_{i} x^{n-i} /(n-i)!$
where $d=\left(1 / n d_{n-1}+1 / n n!, d_{\mathbf{1}}=-1\right.$, and the C_{i} 's are arbitrary constants. The solution of the difference equation in d is

$$
d_{n}=\Psi_{0}(n+1) / n!\text { where } \Psi_{0}(n)=\sum_{i=1}^{n-1}(1 / i)
$$

Hence, the formula takes the form

$$
D^{-n} \ln x=(1 / n!)\left[\ln x-\psi_{0}(n+1)\right] x^{n}+P_{n},
$$

where $P_{n}=\sum_{i=1}^{n} c_{i} x^{n-i} /(n-i)!$,
which is readily verified by induction.

Also solved by Michael A. Brodtrick, Affton, Missouri; Clayton W. Dodge, University of Maine; Richard L. Enison, New York City W. Wesley Johnston, Springfield, Illinois; Peter A. Lindstrom, Genesee Community College, Batavia, N.Y.; Frank P. Miller, Jr., Pennsylvania State University; Mavrigian, Youngstown State University, Youngstown, Ohio; William G. Nichols, Blacksburg, Virginia; C. L. Sabharwal, Saint Louis University; Sid Spital, California State College at Hayward; Gregory Wulczyn, Bucknell University.
227. (Fall 1969) Proposed by R. Sivaramakrishnan, Government Engineering College, Trichur, South India
If $\boldsymbol{\tau}(\boldsymbol{n})$ denotes the number of divisors of n, and $\boldsymbol{\mu}(\boldsymbol{n})$ the Moebius function, prove that

$$
\tau(n)+\mu^{2}(n) \leqq \tau\left(n^{2}\right)
$$

with equality if and only if n is a prime.
Solution by C. B. A. Peck, State College, Pennsylvania.
If $n=1$, the statement is false, since each term is 1. If $n>1$ is not free of square factors, $\mu(n)_{2}=0$ and $\tau\left(n^{2}\right) \geqslant \tau(n)$ since every divisor of n divides n^{2} but n^{2} does not divide n. If $n>1$ is free of square factors, $\mu(n)=1$ and $\tau\left(n^{2}\right)=3^{k}>2^{k}=\tau(n)$ when n is the product of k distinct prime factors. If n is prime, $k=1$ and equality holds. If n is not prime, $k>1$ and inequality holds strictly.
Also solved by Peter A. Lindstrom, Genesee Community College, Batavia. N.Y.; Donald E. Marshall, Pasadena, Calif.; William G. Nichols, Virginia Polytechnic Institute; Bob Prielipp, Wisconsiı State University-Oshkosh; Sid Spital, California State College at Hayward; and the Proposer.
228. (Fall 1969) Propsed by Charles W. Trigg, San Diego, California In the decimal system, 1122 is a multiple of $\mathbf{1}^{\mathbf{5}}+\mathbf{2}^{\mathbf{5}}$ and contains no digits other than 1 and 2. Also, 3312 is a multiple of $\mathbf{1}^{\mathbf{5}}+\mathbf{2}^{\mathbf{5}}+3^{\mathbf{5}}$ and contains no digits other than $\mathbf{1}, 2$ and 3 , and contains each of these digits at least once
multiples exist for $1^{5}+2^{5}+3^{5}+4^{5}$ and $1^{5}+2^{5}+3^{5}+4^{5}+5^{5}$? Solution by the Proposer.
$M=1^{5}+2^{5}+3^{5}+4^{5}=1+32+243+1024=1300$, so all multiples of M terminate in 00 . Curiously enough, no digit >4 occurs in any of the expanded powers or their sum. In the ensemble, each of the digits $0,1,2,3$, and 4 occurs with the sane frequency, except that there is one 4 short.

Similarly, in $P=\mathbf{1}^{\mathbf{5}}+\mathbf{2}^{\mathbf{5}}+\mathbf{3}^{\mathbf{5}}+\mathbf{4}^{\mathbf{5}}+\mathbf{5}^{\mathbf{5}}=\mathbf{1}+32+243+1024$ $+3125=4425$, no digit >5 appears. If all five positive digits are to appear in kP , then k must be of the form $1+4 \mathrm{n}$. For $\mathrm{k}=5,53,93,121$, and $\mathbf{1 2 5}$, the integer $\mathbf{k P}$ is composed only of some of these five digits, but the smallest multiple of P in which all five and only these five digits appear is $1243425=281(4425)$.

Extending the series, the smallest values are:
$216\left(1^{5}+2^{5}+\ldots+6^{5}\right)=2635416$
$2564\left(1^{5}+2^{5}+\ldots+7^{5}\right)=74376512$
$257\left(1^{5}+2^{5}+\ldots+8^{5}\right)=15876432$
$1063\left(1^{5}+2^{5}+\ldots+9^{5}\right)=128436975$.
In the last two cases, each digit appears only once in the product.
Also solved by Jeanette Bickly, St. Louis, Missouri; Clayton W. Dodge, University of Maine; R. C. Gebhardt, Parsippany, N.J. W. Wesley Johnston, Springfield, Illinois; Donald E. Marshall, Pasadena, Calif.; C. B. A. Peck, State College, Pennsylvania; William G. Nichols, Virginia Polytechnic Institute; and Gregory Wulczyn, Bucknell University
Wulczyn added multiples of 17,700 to 4425 on a desk calculator to produce the following products, listed with corresponding multipliers of 4425:

$1243425-281$	$31333425-7081$
$1314225-297$	$32513125-7325$
$1544325-349$	$34112325-7709$
$3314325-749$	$34413225-7777$
$5314425-1201$	$35245125-7965$
$11332425-2561$	$35422125-8005$
$12341325-2789$	$42325125-9565$
$14111325-3189$	$42431325-9589$
$14235225-3217$	$44431425-10041$
$14341425-3241$	$45334125-10245$
$21545325-4869$	$51334425-11601$
$22324125-5045$	$54113325-12229$

22324125

25315425-5721
229. (Fall 1969) Proposed by Carl L. Main, Shoreline Community Colleqge, Seattle, Washington.
Let A_{1} and A_{2} be tangent unit circles with a common external tangent T Define a sequence of circles recursively as follows: 1) C_{1} is tangent to T,
A_{1} and A_{2}; 2) C. is tangent to C_{i-1}, A and A, for $\mathbf{i}=2$,

Find the area of the region $\mathbf{C}_{\mathbf{i}}$.
Solution by Murray S. Klamkin, Ford Motor Company Theoretical Sciences Department.

Using the formula [H.S.M. Coxeter, Introduction to Geometry, John Wiley, N.Y., 1961, p. 15]

$$
2\left(a^{2}+b^{2}+c^{2}+d^{2}\right)=(a+b+c+d)^{2}
$$

relating the four quantities $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$ which are the reciprocals of the radii of four mutually tangent circles, we get
(1) $A_{n+1}=A_{n}+2+2 \sqrt{2 A_{n}+1} \cdot A_{0}=0$,
where A denotes the reciprocal of the radius of circle C . It follows that

$$
A=2\left(n^{2}+n\right)
$$

Whence,
Area $C_{i}=\frac{\pi}{4} \int_{i=1}^{\infty} \frac{1}{n^{2}\left(f+\eta_{i}\right)^{2}}=\prod_{i=1}^{\infty} \int_{i=1}^{n^{2}}+\frac{1}{(n+1)^{2}}-\frac{2}{n(n+1)}$
or
Area $=\frac{\pi}{4} \frac{\pi^{2}}{6}+\frac{n^{2}}{6}-1-2=\frac{\pi^{3}}{12}-\frac{3 \pi}{4}$.
Remark: It is to be noted that the sequence generated bv (1) is such that A_{n} is always integral. A more general sequence with this property is given by
$B_{n+1}=a B_{n}+b+\left(a^{2}-1\right)\left(B_{n}^{2}-B_{0}^{2}\right)+2 b(a+1)\left(B_{n}-B_{0}\right)+c^{2} d^{2 / 2}$
(see also Math. Mag. 42 (1969) pp. 111-113).
Also solved by Sanford A. Bolasna, University of California at Riverside; Laura DiSanto, Calgary, Alberta, Canada; Clayton W. Dodge, University of Maine; G. Mavrigian, Youngstown State University, Ohio; Frank P. Miller, Jr., Pennsylvania State University; Ronald W. Prielipp, University of Oregon; Sid Spital, llayward, California; Gregory Wulczyn, Bucknell University; and the Proposer.
230. (Fall 1969) Proposed by Murray S. Klamkin, Ford Scientific Laboratory.
Determine a single formula to represent the sequence $\left\{A_{n}\right\}$, $\mathrm{n}=1,2, \overline{3, \ldots}$ where

$$
\begin{array}{ll}
A_{p n+1}= & B_{n 1}, \\
A_{p n+2}= & B_{n 2}, \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
A_{p n+p}= & B_{n p},
\end{array}
$$

and where the $\left\{\mathrm{B}_{\mathrm{n}} \mathrm{r}^{\}}, \mathrm{r}=1,2, \ldots, \mathrm{p}\right.$ are p given sequences.

Solution by the Proposer.

The problem is equivalent to finding a simple representation for the periodic sequence $\mathbf{1}, 0,0, \ldots, 0, \mathbf{1}, 0,0, \ldots, 0,1, \ldots$, of period p. If w denotes a primitive $p^{\text {th }}$ root of unity, then

$$
1+w^{r}+\omega^{2 r}+\ldots+\omega^{(p-1) r}=p
$$

if r is a multiple of p; otherwise it is zero. Thus,
$a_{n}=\frac{1}{p} \sum_{r=1}^{p} B_{n r}\left\{1+\omega^{n-r}+\omega^{2(n-r)}+\ldots+\omega^{(p-1)(n-r)}\right\}$

$$
=\frac{1}{P} \sum_{r=1}^{p} \sum_{s=0}^{p-1} B_{n r} \omega^{s(n-r)}
$$

Solution II by C. B. A. Peck, State College, Pennsylvania. $A_{n}=B_{a, b}$ where $a=[n / p]$ and $b=n-[n / p] p$ and $[c]$ is the largest integer not exceeding c.
Similarly solved by Richard L. Enison, New York; and Sid Spital, Hayward, California.
231. Proposed by David L. Silverman, Beverly Hills, California.
a) What is the smallest circular ring through which a regular tetrahedron of unit edge can be made to pass?
b) What is the radius of the smallest right circular cylinder through which the unit-edged regular tetrahedron can pass?
Solvers are invited to generalize to the other Platonic solids.
Solution by Charles W. Trigg, San Diego, California.
a) $M N$ is the bimedian joining the midpoints of the opposite edges $A B$ and \mathbb{D} of the unit tetrahedron. Sections of the tetrahedron by planes perpendicular to $M N$ are rectangles with a constant perimeter of 2 . The one joining the midpoints of radius, $\sqrt{2} / 4$, of the sections' circumcircles. B
Take $A E=A F=x$ on $A D$ and $A C_{2}$ respectively.
T en $E F=x$, and $y^{2}=\mathrm{BF}^{2}=\mathrm{BE}^{2}{ }^{2}=$
$+1^{2}-2(1)(x) \cos 60^{\circ}=x^{2}-x+1$
The altitude to $E F$ from $\frac{B}{2}$ is
given by $h^{2}=y^{2}-(x / 2)^{2}=$
$\left(3 x^{2}-4 x+4\right) / 4$. The area
of triangle EFB is $x h / 2$. Hence the circumradius of the triangle is given by $R=x y y / 4(x h / 2)=y^{2} 2 h$.
Consequently,
$R^{2}=\left(x^{2}-x+1\right)^{2} /\left(3 x^{2}-4 x+4\right)$.
Setting the derivative of $\mathbf{R}^{2} \boldsymbol{A}$ with respect to x equal to zero and simplifying, we have
$\left(x^{2}-x+1\right)\left(3 x^{3}-6 x^{2}+7 x-2\right)=0$.

The first factor has only imaginary zeros.
The graph of the second factor has no
horizontal tangent, but does have a point of inflection at
$(2 / 3,8 / 9)$. Hence there is only one real root of the equation.
This can be found by Horner's method, or otherwise, to be
0.3912646668 . This corresponds to $\mathrm{R}=0.4478$, which is the
radius of the smallest circular ring (of negligible thickness) through which the tetrahedron can pass
The ring can be placed in contact with the tetrahedron at E and F and barely passes over B. It then can be dropped down into contact with corresponding points E^{\prime} and F^{\prime} on the triangle
$A B C$ and rotated to pass over D and hence over the tetrahedron.
b) If the tetrahedron resting on a plene is rotated about an edge until it rests on another face, its projection on the plane varies. The circumcircle of the projection is smallest when the tetrahedron is at midposition. There the projection is square with a circumradius of $1 / 2$, whicl is the radius of the smallest rigid right circular cylinder through which the tetrahedron can pass
If the cylinder is flexible, it need have a radius of only $1 / \pi$ to permit passage of the tetrahedron. (See, Charles W Trigg, Mathematical Quickies, McGraw-Hill Book Co., 1967, pages $49,158-159)$.

Remarks by the Editor

Solvers are invited to comment on the following fine points posed by \mathbf{M} Trigg:
A rigorous proof would require also that it be shown that

1. The ring as it rotates onto the tetrahedron will not catch on B and BC before it reaches the level of the 0.88865 by 0.11135 rectangle which has a diameter of $2 R$.
2. No non-isoscelesplane section through B has a smaller circumcircle
3. In part b), no other attitude of the tetrahedron will have a projection with a smaller circumcircle.
With regard to item 1, the editor notes the following:
Consider the circumsphere of the rectangular pyramid determined
by B, E, F, G and H, where G and H are points on B and $B C$ such that $B G=A E=B H=A F$. Thus the plane containing EGHF is perpendicular to the bimedian $M N$ connecting the midpoints of $A B$ and DC. Since the dihedral angle between the planes containing BGH and EGHF is obtuse, the plane of BEF is nearer the center of the sphere than is the plane of EGHF. Consequently the circumcircle of triangle BEF is larger than that of the rectangle EGHF. It is therefore clear that the circumcircle BEF can be rotated about EF so as to contain EFGH, and can then be slid perpendicular to the bimedian (or in many other ways) past the midpoint of the bimedian and on to a position with relation to D that is symmetrical to its former relation to $A B$. From that point, it slides off the tetrahedron in a manner similar to the way it slid on.

As for item 3, when the tetrahedron is at the extremal position described in Trigg's solution, the central axis of the cylinder coincides with one of the bimedians of the tetrahedron. In his position the two edges of the tetrahedron connected by this bimedian must lie on diameters of circular cross-sections of the alleged minimum cylinder. It is apparent that any attempt to increase the length of either one of the edges would necessitate tilting or displacing the bimedian, thus reducing the length of the opposite edge and destroying the regularity of the tetrahedron This verifies Trigg's conclusion in part b).

The Editor invites comments on the question raised in item 2, regarding the possibility of a non-isosceles plane section through B with a smaller circumcircle.

Book Review

Edited by

Roy B. Deal, Oklahoma University Medical Center

1. Squaring the Circle and Other Monographs By E.W. Hobson, H.P. Hudson A.N. Singh and A.B. Kempe, Chelsea Publishing Company, Bronx, N.Y., $\mathrm{xi}+51 \mathrm{pp} . \$ 4.95$

This series of four monographs, Squaring the Circle by Hobson, Ruler and Compass by Hudson, The Theory and Construction of Non-Differential Functions by Singh and How To Draw A Straight Line; A lecture on Lingages by Kempe are not only interesting and informative but scholarly and stimulating from a historical standpoint as well.
2. Congruence of Sets and Other Monographs By W. Sierpinski, F. Klein, C. Runge and L.E. Dickson Che lsea Publishing Company, Bronx, N.Y. $\mathrm{V}+104 \mathrm{pp}$.

The monographs in this book: On the Congruence of Sets and Their Equivalence By Finite Decomposition by Sierpinski, The Mathematical Theory of the Top by Klein, Graphic Methods by Runge, and Introduction To the Theory of Algebraic Equations by Dickson, like those in the previous book are of interest for content as well as history.
3. A Short History of Greek Mathematics By James Gow, Chelsea Publishing Company,, New York, N.Y. xii +325 pp

The background, the side effects, the details and the demise of Greek mathematics presented in a throughly facinating account.
4. Sets, Lattices, and Boolean Algebras By James C. Abbott, Allyn and Bacon, Inc., Boston, Mass., $\frac{1969, x i i i}{+} 282$ pp. $\$ 11.50$

The basic results of naive set theory, lattices, and Boolean algebras are developed in a very readable manner from an axiomatization of sets. The Zermelo-Fraenkel Skolem system is used for the development and a brief description of the von Neumann-Bernays-Godel theory of classes is included in an appendix.
5. Commutative Ring: By Irving Kaplansky, Allyn and Bacon, Inc., Boston, Mass. 1970, $\frac{x+180 \mathrm{pp} . \$ 10.95 . ~}{\mathrm{x}+1}$

For the reader who is familiar with the fundamental concepts of modern algebra, including a little homology theory, this is an excellent account of many of the basic theorems of commutative rings.
6. An Introduction to Algebraic Topology By John W. Keesee, Brooks/Cole Publishing Company, Belmont, California, 1970, ix +140 pp.

- This very readable introductory acoount develops the basic parts of simplicial homology, the homotopy category, the homology groups, and simplicial approximations directed to a chapter of interesting applications, including some classical fixed point theorems and theorems on mappings of spheres.

Bon Re-Continued
7. Topics in Complex Function Theory By C.I. Siegel, Wiley-Interscience, New York, N.Y. 1969, IX + 1 $\overline{86} \mathrm{pp} . \$ 9.95$

Only a modicum of complex function theory is necessary to read this excellent account of elliptic functions and uniformization in this first of three volumes on complex function theory by this outstanding mathematician
8. Numerical Methods for Partial Differential Equations By William F. Ames, Barnes and Noble, Inc., New York, N.Y., 1970, x + 291 pp., \$10.50.

For the reader with a modest background in advanced calculus, a little numberical analysis, and an interest in this type of applied mathematics, this is a very practical hook. It provides background, including important comments on classification, insight, pitfalls, and an extensive bibliography. Basically the book deals with the classical parabolic, elliptic, and hyperbolic equations with initial value, boundary value, and eigenvalue conditions, but comments are made on non-linear and hipher dimensional problems.
9. Probability For Practicing Engineers By Henry L. Gray and Patrick L Odell, Barnes and Noble, Inc., New York, N.Y., 1970, xi +717 pp.

A useful introduction to basic probability, statistics, and stochastic processes for engineers.
10. Applied Probability By W. A. Thompson, Jr., Holt, Pinehart, and Winston, New York, N.Y., 1969, xiii + 175 pp.

An interesting introduction to probability where the emphasis is on the use of a wide variety of applications as a means of introducing the subject. The result is that the book may have a much wider appeal than was originally intended, because one who is more theoretically inclined would find his maturity and insight enhanced, and one who has specific needs for the applications would find it practical.
11. Computers, Chess and Long range Planning By M.M. Botvinnik, SpringerVerlog, New York, N.Y., 1970, xiii + 89 pp. $\$ 3.50$.

Facinating for the mathematically inclined chess aficionado.
12. Percentage Baseball By Earnshaw Cook, Waverly Press, Inc., Baltimore, Maryland, 1964 and 1966 , xiii +417 pp

The reader with some knowledge of mathematical statistics and a bent in this direction will find a variety of stimuli to ask a variety of additional question for which the data is available in this book to undertake finding answers.
13. Mathematical Sociology By Janet Holland and M.D. Steuer, Schocken Books, New York, N.Y., 1970, viii + 109 pp.

A selected bibliography of 451 annotated items on mathematical sociolopy which includes 340 articles and 111 books.

1. A Table of the Complete Elliptic Integral of the first kind For Complex Values of the Modulus: III. Auxiliary Tables By Henry E. Fettis and James C. Caslin, Aerospace Research Laboratories, Office of Aerospace
Research, United States Air Force, Wright-Patterson Air Force Base, Ohio, 1970, IV + 162 pp.
2. Barlow's Tables Edited by L.J. Comrie, Barnes and Noble, Inc. New York N.Y., $1970, \times 11+258$ pp. $\$ 3.25$ paper, $\$ 5.50$ cloth.
3. Programmed Statistics By Richard Bellman, John C. Hogan, and Ernest M Scheuer, Holt, Rinehart and Winston, Inc., 1970, vili + 115 pp .
4. Elementary Differential Equations By R.L.E. Schwarzenberger, Barnes and Noble, Inc., New York, N.Y., 1970 , xi +98 pp. $\$ 3.75$
5. Single Variable Calculus By Melvin Henriksen and Milton Lees, Worth Publishers, Inc., New York, N.Y., 1970, XV + 624 pp. \$10.95
6. Calculus Explained By W.J. Reichman, Barnes and Noble, Inc. New York, N.Y. 1969, vili + 331 pp. $\$ 3.00$ paper, $\$ 5.75$ cloth
7. Elementary Algebra By Lee A. Stevens, Wadsworth Publishing Company, Inc., Belmont, California, 1970, xii + 319 pp.
8. Mathematics For Elementary School Teachers By Meridon Vestal Garner, Goodyear Publishing Company, Inc., Pacific Palisades, California, 1969, xii + 384 pp

PLANIDROMES

A planidrome reads the same backwards and forwards.

ALABAMA ALPHA, University of Alabama

Deborah Ashford	Charles Gmen
Lawrence Billits	Robert Hardy
Cary Bradford	Virginia Harrison
Jerry Canpbell	Janice Haynes
Marla Chiepalich	Virginia ${ }^{\text {em m }}$
Sally Davenport	Dudley J. Herrin, Jr.
Deborah Davis	Randall Hlam
Margaret Davis	Linda Hodo
Lucretia DeHaney	Joseph Hugging
Hugh DeJarnette, Jr.	Ann Jobson
Edvard Eadon	Marjorie Johnson
Rita Ellison	Andrew Jones
James Entrakin	Hiley Justice
Larry Evans	Nina Knight
William Farr	Dennis Kross
Catharine Finch	Kenneth Lancy
Patrick Frederic	Neal Lawrence
Hugh Galin	Sheryl Lothrop
Gmg Glasscock	
ALABAMA BETA, Aubur	iversity
Deborah Booher	Virginia Buck Fonde
Linda Rae Bostwick	Patricia Ann Huffmas
N. Carolyn Claybrook	Douglas Carroll Hunt
Glenda Paulk Cody	Gregery Alfred Johnson
Emily Heege Cola	Mary Sanders Lavender
Hrenda Gail Davis	William Arthur Mastin
James Edward Edgar	Susan Louise Merwin

alabama gamma, Samford University

Marvin C. Champion	David G. Hunt
Robert D. Cuublie	Milton C. Lovelady
Roxlanne S. Davis	Catherine I. Mitchell
Ernest G11mer, Jr.	

ARIZONA ALPHA, University of Arizona
Duncan A Buell Gervase M. Chaplin
ARIZONA BETA, Arizona State University
Terry Branson
california alpha, u. c. L. A.

Gary W. Maeder
Alan Harder
Donald E. Marshall
Winliam R. Harsoen
Kadiko Miretas
Patrick Murphy
Shahbaz Moorvash
Eric oberhand
Gaoff oblath
Alan J. Pickrell
Ronald v. PIeger
Renneth Pletz
Steven E. Poltrock
Ruth E. Poulsen

Daniel I. Robert
rry D. Rosen
Betty Rostagno
John Scheld
Janet M Seaton
Sylvia J. Shields
Paula R. Sloan
Andrew M. Smith
Jerry L Stahl
James D. Steele
Themas E. Stewart
Clement L Tai, Jr.
Peter M Woiceshyn
Jahnarilyghylde
Richard P. Yang

CALIfornia epsilon, Ponona College			
Daphne Allister	D. Kent Cullers	Gary L. Larson	
Robert P. Archibald	Jack M Cuzick	William J. Lisokski	Ronald A. Piper
Paul Argo	Christine Eberhardt	Guy Lohman	
Anita K. Babcock	Charles A Eldridge	Brian H. Marcus	V1ttz-James L. Ramsdell
Thomas Bassarear	Joanne L. Grover	Andrew Martin	Paul C. Relsser
Kim B. Bruce	Janes M Gullett	Dale Miller	Roger R. Riffenburgh
John J. Cameron	Mac Hawley Donna L. Heinle	Margaret Nakanura	Shirley A Roe
James R. Carlson	Gragg Hove	Ralph 0'brien	Robert Szejn
David S. Chandler	Gary w. Kiefer	Chi-Yin C. Pang	Richard Threlkeld
Loveday L. Conquest	William R. Koteff	Linda Perkins Ingrid M. Peterson	Lynn Heidman
CALIFORNIA ETA. University of Santa Clara			
John 日. Drahmann	Elgin m. Johnston	Mary T. Riordan	Cathy E. Switzer
Michael D. Henry	Phillip T. McCornick	Stephen Strasen	Michael J. Thibodea
David A. Hesson	Steven P. Plazzale	William E. Straw	Kathleen M Truxaw
CALIFORNIA GAMMA, Sacranento State College			
John Fotopoulos	Kim Leeper	Gerhard Plen	Keith Spence
	Marjorie s. Okazak	Laurie Reid	Kenneth H. Hendt
COLORADO BETA, University of Denver			
David Davis	Kathryn Harrelson		
Carleton Ekberg	Panala Hurst	Mary Moran	Janie
Richard Finley	Gail Kahler	Sharon 0'Brien	Linda Riede
	Mary Krimel	Joseph Pagone	Todd Snith
COLORADO DELTA. University of Northern Colorado			
Jean Ace			
Mark Anderson	Janes Ernst	Cythia Hoffman	
Duane Brandau	Linda Glauque	Ric Jackson	Sharon Shulke
Sharon Breyer	Sandra Hergenreder	Ruth Lintner	Claudia Winter
CONNECTICUT ALPHA. University of Connecticut			
Andrea's. Apter	Mrs. Kathy A Cherry		
Walter w. Beckernan	Sr. Anne H. Fitznaurice	Janes V. Peters	Jeremv D. Spingarn
Donna L. Beers	David E. Greenleaf	Richard A. RackowskI	
David E. Brown	(Mr.) Dale T. Hoffman	Richard I. Resch	Ronald A. Wilus
Linda M Cardillo	Harry J. Norton	Hancy S. Rosenberg	
DELAWARE AIPHA. University of Delaware			
Brenda D. Brewer	Susan H. Foote		
John R. Clark	Roy w. Gripp	Robert J . Mazzio	
Joan A Di Giacobbe	Thonas M. Harr		Barbara L. Wirlck
Bruce E. Fad John J. Falkowsk	Linda C. Higginson	Maryellen F. Mosko	Deborah 0. Wright
D. C. ALPHA, Howard University			
Adepeiu Adelaia Valerie Chin	Natalie Fisher Yolanda Lyda	Valerie Oldwine	Marcelle Higgs
D. C. GAma, George Washington University			
Kathleen Alligood	Alan S. Dohne		
Ahned Altaf	Rudolfo E. Gutierrez	Alex Prengel	Arthur Valllere
Eugene BaskIn	Stephen J. Horwitz	Janes Seal	Kounei Machi
Daniel R. Batigne		Carl Scheffey	Alan C. Haldron
Robert J. Bishop	Robert Lee	Curtis A Schroeder	Willian Watson
Joseph c. Brown	Richard A Lichtenberg	Gerald J. Sullivan	
Harrison P. Butturff	Willian B. Lincoln	Stuart M Terl	John W. Wicker J. Lyndon Yoodall
FLQRIDA BETA, Florida State University			
Debra Albrecht	Edward Flynn	Dennis Konkel	
Betty Altman	Donna Goodln	Shaukat Mahnood	
Eduardo Bastida	Peter Gretz	M. Steven Hcßurnett	
Dorothy Bennett	Phyllis Jane Haslam	Barbara Naeseth	Michael Sonshine
Philip Boggs	Ernest Holder, Jr.	Denise Patronas	Joyce Steven
Pegry Capell	Martha Holmbeck	Kathryn Riley	Sandra Tallman
Janes Caristi	Brenda Joyner	Richard Serge	Candace Tilton
Robert Chestney	Annette Kilgore	James Sheehan	Margaret W111ianson
	Cynthia King	Roger Shih	Sharon Hrieht

FLORIDA EPSILON, University of South Florida

Harry Peter Ackernan	Paul Glanniotes	Dale W. Harkley	Jeffrey C. Stalnaker
Charles Davis Burnside	Willian H. Jones	artin E. Newell	vid A. St
JoAnne Marie Castellano	Joel S. Levine	Dulght Howard Newsom	Richard W. Thurn
Harold R. Gaston	Richard Milton Livingston		

georgia alpha, University of Georgia
B. J. Ball
Robert T . Ha
11, Jr. $\begin{aligned} & \text { Robert Mill } \\ & \text { Don Hinton }\end{aligned}$

GEORGIA BETA, Georgia Institute of Technology
James Willian Brau Louis Kramarz
illinoIS ALPHA, University of Illinois

Douglas A Anderson	Sandra. Hinsley Michael Hoffman
David Bauer	
Benjamin Calleb	Rhoda Hornkoh1
Michael Clancy	Stanley Kerr
Rent Dana	Alan Kulczewski
Kathleen Hilenan	Patricia Lang
John Hilliard	

Jan Lev	Phillip Schewe
Cecilia Hccane	Carol Simon
Ronald Meyer	Ira SlotnIck
Stephanie Magurny	Linda Fatts
Chistopher Peterson	Gayle Yaamani
Bojan Popovie	Gregory Zack

indiana gamya, Rose Polytechnic Institue

Kenton Lee Anderson	David Charles Jordan	Dennis Wayne Rogers	ed Whitesell
	William Arthur Odefey	Anthony Franklin Sullivan	Dale Alfred Millman
Stephen Fraser Duncan	Wolfgang Pelz	Anhony Frankin Sulivan	

IOWA ALPHA, Iowa State University
$\begin{array}{ll}\text { Michael G. Brandenburg } \\ \text { Don Arnold Burkhead } & \begin{array}{l}\text { Linda Ann Gorman } \\ \text { Roger C. Hall }\end{array}\end{array}$
 Lawrence Wayne Danforth John R. Hull Lois V. Dunkerton John A. Freshwater
Bernard Kwok-Keung rung Linda R. Jensen
Gary LLee Kaufran
Charles L. Kent
Becky Jo Kiser $\begin{array}{ll}\text { Brian C. Gableanan } & \begin{array}{l}\text { Rechert. W. Klaver } \\ \text { Kristine Klemensen }\end{array} \\ \text { Dennis D. Georg } & \end{array}$
KANSAS ALPHA, University of Kansas

$$
\begin{array}{ll}
\text { L.B. Wade Anderson } & \text { Janes D. Rmery } \\
\text { Lester } M \text { Bartley } & \text { Robertr } D \text {. Frunk } \\
\text { Susan Day Breshears } & \text { Daryl George } \\
\text { Mark Allan Cordir } & \text { Steven M Hollis } \\
\text { Douglas L. Costa } & \text { David C. Lantz }
\end{array}
$$

David M. Rindskopf illiam Frank 1 Mimtz Berton E. Oaks, Jr Janes w . Opoien Norman Neil Parker
Ronald G. Parker Ronald G. Parker
R Edward Payne
Randy R. Rhonds Cichard R. Ripperger
Charles Dennis Rowe Paul Henry Royer
Mary Susan Harvey P. Terpstra Dennis Joseph Trchka David Yellendorf
Edwin Keith Winkel Martin P. Young

KANSAS BETA, Kansas State University

Rable Abdel	Barbara L. Grover
Tej K. Agrawal	Joan Harie Haig
Lynn J. Brun	Ronald L. Iman
Janes R. Chelikousky	Judy Jakowatz
Gilbert K. C, Chen	Chester C. John, Jr
Bobby Glen Collings	Paula Keep
Raymond L. Copeland	Hung-Chung Leur
Shu Geng	Robert W . MaI
Keith E. Goering	teven Duane Mil

Susan Kay Lohoefener	Nathaniel D. Reyno
Chery M M MCEIhose	Nanes R. Schap David R. Miller Carl E. Taylor
Mark L. Miller	Harold Taylor
Diana G. Pike	Susan E. Wagner

Glen Adkins	Janes Clark	Scott Mansour	Walter Steinma
Yohng-Hak Ahn	Kenneth Eades	Kathy Mueller	Hifuagwidigce
ziad Ali	Sandra Elliott	Victor Nelson	
Crump Baker	Yvonne Isaacs	Gregory Richardson	Charles E. Withec
Jane Bickford	Johnny Lindle		
Louisiana alpha, Louisiana State University			
Brenda J. Adams		Anna H. Knapp	Maria G. Rodriguez
James A Cagle	Laura J. Grishan	Paul e. LaRose	Thomas H. Shea
Albert C. Deblanc	Mary H. Holly	Linda A Maggio	Gregory Snith
Carol S. Depa	Karen J. Kam	Jacob A Martin	Donna L. Tyler

Louisiala deta, southeastern Louisiana College
Pamela K, Addison
Dave J. Bod 1
Raul E. Mejfa
Anita \mathbf{F}, Pearson

Jesoie E. Tyler
Cynthia M, Young
Louisiana EPSLLON, Melleese state College

Mary Ann Carter	Glynda S. Huley	Alix A, Latiendola	Brenda J. Reder Janea T. Dw
Sondra J. Hebert	Rita A, Hunn	Helen B. shorten	

louisiama Iota. grambling college

Arun Agarwal	Sadie F. Flucas	Michael R. Johnson	Claudia J. Reynold-
Willie R1ack	Rosalind J, Foran	Johnie M. Jones	Edward Sherman
E. K, Blakelv Cddie Boyd	Carolyn Gafford	Ralph W. Emerson Jones	Walter E. Spain
Rose A, Brooks	George Glenn		${ }^{\text {Authur }}$ J. Toston
Linda \mathbf{F}, Brown	Teddy V. Hall	Patricia A. Machen	Gloria J. Underwood
Jeff Carter	Jay T. Humphrey	Dalsy V. Moore	Walter kalker
${ }^{\text {Brenda }} \mathrm{F}$. Chovce	Valerie J, Jackson	Annette Moble	Jesoie B. White
Catherine M. Cox	Frank Janes	Raymond Porter	Robert L, Yearby
Santuel H . Douglas	Emett Johnson		Robr li, Yeard
Louisiala theta Lovola University			
Rov A. Broussard	James P. Flatley	Robert T. McLean	Robert R. St
Michele D. Colonel	Chriotine E. Garell	Ann L. Moore	Lawrence s, stewart
Mary S, DeConpe		Kazumi Hakano	Judith A, Threadgill
David \% 4 . Denny	Kathleen A. Hall	Charles J. Haples	Lewis J, Todd
Michael L . Denny	Marylee K. Heupann	Gail M, Niezeyer	Bernard A. Tonnar
Leonore C, Doody		Gregory J. Reibensples	Marguerite M, Villere
Cecelia \mathbf{F}. Fanularo			Brian G. Von Gruben Ray H, Whitham
LOUISIANA ZETA University of Southwestern Louisiana			
Frank H, Allen	Robert P. Duverney	Yvonne B. Jutonville	Richard McLaughis
Judy Arceneaux	Steven Giambrone	Paul Katz	Arnold Regan
Barry L Batman	Mason Gilfoll	Marguerite Landry	buzanne schwarz
Hary Lou Bell	Becky Griep.	James Larke	Donald J, siron
Cathy BopRn	Edward G. Grimsal	Donald Lenoine	Clarence E. bins
G1ynn R: Broussard	Berton Guidry	Lois M. Lundberg	Kathleen \mathbf{P}, stevenson
Lynn B, Coneaux	sherrel Hamack	Donald L. Letle	Henry stekart
Vernie L, Davenport	Suzanne L. Hebert	Louis Maraist	Donald J. Vincent
Barbara T, Deblanc	Rose Anna Henry	Anthony J, Hark	Kenneth L. White

maine alPHA University of Maine

Robert W. Beal	Janice E. Greene	Raymond J. HeGeechan	Andre Edgar Samoon
Glenn E. Bushel	Miriam H, Grepg	James E. Melson	Gordon B, smith
Audrey A. A, Carter	Susan J, Hall	Elizabeth B. Olsen	bandra J , bpeare
Dennls A. Cassily	Susan M. Harper	Kathleen A. Perry	Marshall A. Todd
Nat Diamond	Robert J. Holmes	Janet M, Poliquin	Jares В B , Magner
Pamela S. Edwards	Gerald R. Kidney	Lewis G. Purinton	Donald K. Wood
Richard B. Fuller	Eric b. Langford	David J, Ryan	
maryland alpha, Univeraity of Maryland			
Julie E, Cosner	Maxine Hormats	Barbara S, Latterner	Barbara L. Turn
Mary H. W. Fang	Rae B. Hurwitz	suaan C. Loube	Jean 3. heeka
Barbara Feinglass	Minnie C. Kung	Barry H, Philipp	Frank. W. Wilkins
Thocias V. Hall	Hark E, Lachtman	Brian R, stanley	Carol N. Yudkoff Carol Zyakowak
marlind beta, Morgan btate College			
Michael 0. Armstrong	Cynthia C. Harvey	Larry L. Lewid	Sheila C, Ray
Mrra $\mathrm{h}, \mathrm{Curtio}$	Eldridge h. Hayes	Pegry A. Mason	socrates k . Saunders
Earl 0. Enbree	Beverly A, Heyrurd	Mary J, Mckesson	Linda A. Stockton
yera : Grady	Mellie B. Howard	Killie $\mathrm{B}, \mathrm{Rajanna}$	
Thomas L Gre			

MASSACHUSETTS ALPHA, Worcester Polytechnic Institute

Martin K. Anderson	David W. Hobil1	Lorenzo M. Marducci	Richard P, SanAntonio Barry F. Belanger
Roveo L. Moruzzi	Eupene E. Pettinelli	John C. Sexton	

massachusetts beta, College of the Holy Cross

John P. Balser	Jeffrey M. Dowd	Francis J. Lattanzlo	David F_{1} Perri
Robert s. Honney	James R. Fienup	Elizabeth L. Michael-	Robert r. Putes
Frank L. Capobianco	Janea E, Gable	Joseph W. Paciorek	William R. btout
Patrick W. Devaney	John J, Kane		
michigan beta: University of Detroit			
	Karl W. Folley	Paul Oser	Barbara Undv
Donna Boris	Edward \mathbf{F}, Gehringer	Linda Rainone	Mary R. Wingki
Kathleen Broniak	susan Langenhorst	Michael Ricci Francis biu	Chabasi Moztilak
Mary l, Caspers.	Patricia McMahon	Francis biu	

Roy A. Benton	Theodore R, Hatcher	Markarita C, Krieghoff	Erik K, Sorensen Barbara A. swope
Ralph E. Connell	Helton L. ingram	Martha Ann Lusa	Barbara A swope H Carsten Thomsen
Thomas C. b, Dang	${ }_{\text {Roy A, }}$, Jorgenaen	Roger H, May Donald H, Rhoads	$\xrightarrow{\text { H Carsten Thomsen }}$
Phyllis J, Evanenko	Bruce A. Kessoining	Donald H , Rhoads	
mingesota alpha carleton Collene			
James Bleeker	Elizabeth A Downton	David W. Hunter	David L, Libby Hugh H, Mavard
Donald A Camp	buzanne Gednev	Simon Yat-sing Kan	Hugh M, Mavnard

minhesota beta, College of St. Catherine

minnesota gamha, Macalester College

Kathleen M, Beall	Allan H, Jensen	James E, O'Connor	Gary L, Webber
Dona W. Conklin	Abdullah Khoury	Richard A. Reid	Dennis M. Yilde
Tana L L Cushan	Lothar W. Hacrtin	Jerry L, Roger	Wesley D. Kinkier
James R, Dobesh	Martin J, McFadden, Jr.	Sam H, Sperry	

sallee B, Abbas	Moira χ_{1} Davis	Russell J. Leland	${ }_{\text {Pat Teigen }}$ Edward 0 ${ }^{\text {a }}$
Margaret ${ }^{\text {8 }}$. Banning	Harlen $\mathrm{K}^{\text {. }}$. Homes	Connie ${ }_{\text {L }}^{\text {L, Murphy }}$	Alfred \mathbf{W}, Turtle
Margaret ${ }^{\text {J, }}$, Berner	Marcia heiser	Jean Paterson	Ted R, wiest
Robert D. Chew	Bernice Hildreth	Leon C. Peterso	Marilyn R. Yofford
Winifred T, Corcoran susan Curaings	Vicky L, Kouba	Julia A sweet	Edith J. Bright
missouri alpha, Univeralty of Minsouri.			
Charles E. Ader Edward R, Atkiason	Denis E. Fessler Marsha Harlan	Gregory W. Mav Martin Kent Perry	Hary Petty Thoenen Helen Veith
William L. Block	Calvin Case Henderson	Leo Anthony bander	Richard J. Voss
Karen Brown	Chris Korschgen	Vicki butherland Maureen M. Sweenay	Tom Winkler ${ }_{\text {Kenneth }} \mathbf{J}$, York
John Paul Dittman Robert Jay Eller	Kai-Ming Li	Maureen M. Sweenay	Kenneth J. York

Missouri gama st. Louis University

MEX YOK BETA, Hunter College
stanley Klausner :adaline Rader
ustin susth

HEK YOPK EPsiLo:I, tit. Lawrence Univeroity
Larry R, Latimer

Ronald rorman	Naftall Landerer	Joseph :exmark	Judith Shaniro
Oscar Fried	isaac :1ashitz	bincha Pollack	kalter ha
ond Hass	irving "Hoskovits	sheldon Rosenberg.	flarvey kilensky

isaac :"ashitz
irving lioskovits flarvey $k+1$ ensky
reh Yof IOTA. Rensselaer Pniytechnic institute

"arl J. Appeloteın	Alexander J. Kraewrenaki	Paul J. Fytelewak	Glenn : ${ }^{\text {a }}$ keber
Richard A. ravello	Mike Mortiowitz	\#iktor schmid-Blelenbery	Ehribit heebaer
Bill redreux	Waiter L. Potaznick	Fernard J. sterel	

HEH Y(XK LAMBDA, Manhattan Collect

Albert J, Beer	Laxrence T. Court	Juan C. Gonzaler	Henry J. Micardo
Geoffrey T. Burnha*	Gerald J. Dalzell	Hicholas J. Raccioppo	Robert K_{1} Smidt
Frank A, Ele-ente	Richisd J. Feil	frorge F. Ramb	
Hek York liu, hiok Yort University			
Felix Chan	David Pi Fried ander	samuel tan	Teddy H, sam
Diane Finearan	Roy Friedtuan	Sancy Laskan	E1issa spiepal
HEW York owicroh. Clarkson College of Technolopy			
Frank Agovino	Lawrence Crone	Paul Mildeabrand	sydney soderhoin
Whlliain Baker	Warren Ferguson	Robert Macfachron	Gcorpe swartele
garrell Carlsen	Daniel Flening	Eric Prince	Frederick Ulinan
H:EX YORK Pi, state University College			
Russel L. Baker	Charles* Cutrona	Paul 4. Hedberp	"ary A, holf
Timothy D. Bolling	Peter H , Gidos	John L, Kollip	
HV YORK RHO st. John's University			
Lucille Abate	Gordon Feathers	Patricia A. Ludwip	Robert Reativo
Linda Albert	Screen Foley	Marv A. Manev	Diana Ruocica
Louise Arena	George Gillen Deborah M, Gorry		Tranetre Rybaczyk rlara saleado
"ichael Capobianco	Deborah M. Gorry		Frank boccoli
Barbara A. Czizık	Line Ling Huans	Takvor 0 zan	Charles bulc
Barbara Davis	Anne Hughes	Rose Pirro	Rosenary C. Molli
"ichael Dimarco	Gene Jannotti	Marie Pupliese	Frances Varvaro
Denise Dvorak	Phillip Leany	Edward Rath	

TEh Yow sigun. Pratt institute of Brooklyn
John Brunner Gerald slovikowski
Peter s-ullen
HEK YOFK TAU, Lehrann Collere

HEW YOK UPSiLO!, ithaca College
Kullins
Gloria R , Jcapn
"ichael sivak

屋
stephen Hilbert
Darrylin $\%$, Kolb
Kiendy G. Philipp
Diane schmidt
Wichacl D, schinartz

REW YORK XE, Adelphi Univeroity

Christine Cardell	Janice Krupar	Gloria "alley	Michele Pastor
Jerrold Clifford	Judith Langer	Particia :arino	Dr. hillian ouirın
Linda Conron	Christine Leiterrann	Linda Mazer	Richard slivestri
Frank di Libero	Joan Ann Loobv	Gerald H. Meyer	Susan smotherghll
Adrian Fisher	Eurene Leve	Dr. Walter Meyer	william Yojir
Barbara Kirschner	Charles : lacrina		

NORIH CAROUNA DELTA, University of East Carolina

M. Terry Biggo	William F. Dickenson	Willie Little	Beverly J, Quick
David Brunsion	William Lee Durham	Elaine M. Lytton	Hunter bholar
Martha A. Bullock	M. Yvonne Eure	Nary Dickey HcLean	satoru Tanabe
Sanuel P. Colvin	Terry Gardner	Mary MeNeill	Robert M. Usisery, Jr.
Barbara H, Covington Vivian Ann Dean	Wallis b. Green Gurney I. Lauhley	Linda Bolton. Hedlin Dorothy D. Pierce	Patricia B. Wood ${ }^{\text {a }}$
NORIH CAROLNA EPsilon, University of North Carolina			
Betty R. Beckham Petrice Dow Brown	Carolyn Marie A. Marrell	Rita D. Rountree Ronald E. Shiffler	Terryl ${ }^{\text {S }}$
NORIH CAROLNA GAMA North Carolina btate University			
Saundra R, Bripht	Sarah J. Mahikian	Raymond Reith	Michael k, Stadelinaier
Repina Carver	Jacquelia Padgett	Nitin J, bhah	Terry straeter
Haailton W. Fish	Willian Perkinson	Joserh shoenfelt	Ragaowani Varadarajas
Malcolm Frye Acheson A. Harden	Dean Pershing David Rehn	Stephen smeach	Charles Weitzel
NORIH DAKOTA ALPHA, North Dakota btate University			
Linda Lee Beierle	James C, Jurgena	Lesley Ronanick	Robert h, Triebold
Phyllis. A Borlaug Marilyn Gunderson		Renee J. Selig	Brian D, Wolff
Donald R. Hill	Rebecca R, Richer		
OHIO BETA. Ohio Wesleyan Univeraity			
Robert M. Bell	Robert Erickaon Parela J Hand	Colleen springer	Julie he
Ann $L_{\text {, Brade }}$	John Reynoldo	Lillian Tye	
Ola olu A. Daini		svivia Wenden	
OHIO Delta' Miami University			
Barbara A. Dodge	Rona B, Gumbiner Susan L, Hubbell	Ronald R. Miller	Richard White
Roger W, Foster	Rebecca ${ }^{\text {a }}$, Klerse	Robert R, Starbuc	Janea P. Killiams
Roper h , Foster	Rebecca J, Klema	Carolyn J. heiss	Wendy L. Zak
OHIO EPsiLON, Kent btate University			
Alyce Baker	Thomas Loader	William A Papay	Teresa A. smith
Michael T, Battista	Bonnie E, Hallett	Garv H Pastorelle	Ann N, Tifford
Jack Corothers		Jean M. Perrine	Thesas A. Vyrootek
David Fairbanks	John W, Mishak	Daniel P. Rothstein Michael D. Schloseer	Avis Jean Wataon Richard P. Weber
Mary Catherine Ford	Jeffrey D. Moll	Milton G. Schwenk	Cynthia L, Williami
busan D, Fosselman Marianne Kobe	Gary M, Hotz	Harry L. Siskind	Kally kong
OHIO ETA. Cleveland btate University			
Mitchell Bednarek Robert Gripas	Catherine Hoffmaster steve Kaoper	Kathleen Kravetz Mary Ann Marchlo	Jennie Marsik Virginia Obal
Tam Grundelsberger			
ohio gamma, Univeraity of Toledo			
ane An Abrams	Dennis A. McDonald	Vivian Jane Panning	
Parviz S. Bavanati	Darius Movasseghs	Cloyd A. Payne, Jr.	Linda L. Wohlever
Patricia Faye Martin	Frank C. Ofg, Jr.	Patricia L. sholl	
OHIO IOTA*', Denison University			
Gall Bozic ane Handy	Glenn S. Masline Julie Roever	Gwynne Roshon	Barbara Weyrich
OHO LAMEDA John Carroll University			
Lan Brown	James Cogan	Tinothy follen	Robert Haas

OHO w, University of Ohio

Lawrence D. Allwine	Jerome Doubler	Willian Knopf	Phillip Pfefferle
Ronald Armatrong	Roger Dugan	Melson Kohnan	Arthur Reeves
Edwin Bell	Joseph Eichel	Gladya Mai-Shiu Lee	Kaaminel Istpeapain
William Bock	Robert Ekelman	Paul Leitch	
Joseph Butt6	Dennis rrizzell	Susan Lozan	
Pamela M. Carroll	Michael Hargraves		
Edzund Kai-Lien Cheng	John Hart		Lowrence Jan
Craip R. Cobb	btephen Haten	Mtcheal I. Desthaoghne:	Joyce Vesser
Kirk T. Cobb	Delmar Haynea	Donald 0x	Jobn Wharton
Carol Cruciottl	Charles Herrip	Donald Oxenrider	
Gonzalo F. Cruz-sainz	Willian Huntiman	Gregory Pavlin	Connie Zonner
Pamela Dav	villiam Kelt	btanlev Perry	

Stephen Ganoc

Raryammellotth Ploeger Richard Kelvin bchoen
$\begin{array}{ll}\text { Joseph David Belna } & \begin{array}{l}\text { Glen Albert Grimme } \\ \text { Jerone Edward Cemes } \\ \text { Francio Robert Lad }\end{array}\end{array}$
OKAHOMA ALPHA, University of Oklahoma
David D, Andree
Janea R, Artman
Mary L, Bertalan
John R., Brook
John A Burna
Maria D. Bustille
Patricia M, Callaghn
John E, Cain
James O, Chen
Donald E. Clegg
Patrick S, Cross
Ravound J, Dryz
Eric L Hindman
Michael
M. Keep
Mauren. Kinard
John T, Kontogianes
Kenneth G, Krausa
Joan C. Markeas
Louise I, Matula

Itt M. Mayfield	Paula
	Junet R, Re
Linda G. Moss	Carl G stephensor
Zensho Nakao	Richard J. burro
Lawrence W, Meylor	Dorothy J. Tate
Nathanael Pollard	Thad T. Taylor
Janes C. Poafret	Richard E. Thiessen
Barbara A, Porter	Danny J, Tillman
Ernest \mathbf{F}. Ratliff	Richard D. Wrirt

aRBCON ALPHA, University of Oregon

Lawrence H , Bandor	Jonathan J, Greenwood	Randi C. Martin	Hilliam D. Raddatz
Arthur J, Bowers	Richard A, Greaeth	Sdures Lne Mki, liminor	Tauyosh1 Takada
Patrick A, Bovd	Richard T, Horn		Lawrence $\mathbf{B}_{\text {, Taylor }}$
Janet M. Colva	Kyoko N, Kuga	Stahepas , N(1 i tchell	Dallas V. Thoopson
Richard E, Cowan	Brian R, Lasselle		${ }_{\text {Virginia }} \mathrm{L}$ Wertz
Catherine A, Deonier	Lee Ann Lefler	Donald L, Ph[111pa	${ }_{\text {Patriciac }}$ Robert D. Western
Judith K, DeVore	Tu Hu Ly	Dale E. Quinnell	Robert D. Wlluon

artoon gama Portland btate College

Kathleen Bennett	Thosas S. Fischer
John A ABerke	Roger X, Lenard
Dorsey Bj Drane	Patricia L. Lent
Kenneth G. Enz.	Vera A. Letetkus
Gary D, Filainger	Carol L. Lewis

ith Long	Elizabeth Tice
WaitithrMabdeLong	Teddy B, Ton
Lowell \#. Palmer	Panels K Milaon
Thomas C. I. Stephene	Nancy L. Woznia

pewnsylvania delta, Pennsylvania btate University
Judith A Anderman
Deanna L. Balmer
Alice C. Blough
Stephen Cristiansen
Michael Cohen
Edward J, Dahmus
Sal
Barbara J, Green
Helen E. Green
Marion L. Hart
Donald L. Lausch
Jefrrey R. Rindenuth
Carole McGaugh
Peter Hokence
Robert L, MeLaughlin
Carol Meranti
James R Measinger
Alan Miller
Gary E, Miller
Brvon J, , Moon, II

James T, Royston oyoton Roy G Shrum Barbara J . stevart Kdward \mathbf{F}. Vozenin

pehmsylvania Epsilon, Carnegie-Mellon University

Charles Bird	Jospeh Dorczuk	Nark Hoover	Dennis svitek Paul Catlin
Jaypleischer	John Knechtel	Mary Tubello	

Barbara Bennett Bruce Blanchard	David Gaodrich Bruce Graves	Ronald Harris Peter Rosa	Thomas siciliann Philip Zoltick

RHOE ISLAND ALPHA University of Rhode Island
Michael A Lindemann Paul \boldsymbol{A}, Shawver Jeffrey N. Hainger
rhode island beta, Rhode Island College

Constance B, Anderson	Lois E, Francazio	Patricia A Heinaohn	Harjorie A, Mashawaty
Dr. James E. Hierden	${ }_{\text {James }} \mathbf{F}$. Geendren	George $\mathbf{H}_{\text {, }}$ Lafond, $\mathbf{J r}_{\text {, }}$	Audrey A Perry
Dinda J, DeBiasio			Linda A, Rozzi
SOUIH DAKOTA ALPHA University of south Dakota			
Donald Baer	Richard J, Hennies	Robert J, Murphy	Garrie L. Saylor
Gloria J, Becker	Vincent J, Herried	Robert E, Heloon	Roger B. Schaffler
Don $\mathrm{D}_{\text {, }}$ Christjana	Nick A. Hove	Ronald H Oorlog	Robert C, scott
Agnes Cunningham	Robert C. Hubner	Rodney C, Parsons	Richard D, shogren
Delane Dalton	Jerry $H^{\text {a }}$ I Isaman	G, Ken Patterson	Richard A, slattery
Julie A. DeGroot	Dean W, Johnson	Roger E. Peterson	Willard 0. Thoapson
Joseph P, Egger, Jr.	Wayne A, Kadrwas	Gerald D, Polley	Delores J, Vavra
Diane L, Frazier	Jean A, Kotas	Tracie A Ruch	Peter C. Vergeldt
${ }_{\text {John }} \mathrm{E}_{\text {, }}$, Gillaspie	Henry H, K Kramer	Lasty D. Ruiter	Kenneth B , Zamberlan
${ }_{\text {Ann }} \mathrm{L}_{1}$ Helen Haminon	Sookney Lee	Darwin A, sampson	David Zolnowsky

SOUIH DAKOTA BETA South Dakota School of Hinea 6 Technology

Arthur J, Abington	Jan M, Dunker	Dennis H, Gu Gase	Keith D. Mutchler
Gerald R, Brunskill	Lymn R, Ebbesen	Roger F. Hawley	John G. Medrud
Wayne M , Buck	Greg A, Farke	Russell M, Healy	Roger D, Olsen
Milliam L, Bundschuh	Richard L. Fetzer	Philip D, Jacobs	Tinothy H. Paranto
${ }_{\text {Dennis }}$ J, ${ }^{\text {Kirk Carabell }}$		Steven L. Kaufnan	Joe L. Ratigan
Erie L, Cole	Jay R, Gaudir	Norman R. Koib	Thoras G. Reeve
Jerry L, Davey	Karl F , Gerdes	John \boldsymbol{W}, Kopp ${ }^{\text {a }}$	${ }_{\text {deorge }} \mathbf{C}$, shea
Theodore E, Dellike	Wayne R, Greaves	David A. Larson	Arlo \boldsymbol{E}, Fossum
temmessee alpha Hemphie State University			
Je rry Mracey	Haxine V. Froed, am	Dale M. Lozier	Frances Prewitt
Susan $\mathrm{R}_{\text {, }}$ Burrow	Stewart E. Lewis	Virginia L, HeCrary	Sherwin A Yaffe
Sandra L, DeLozier	Robert C, Limburg		
teXAS alpan; texas Christian University			
Sharon Biesenefer	Ronald E, Dover	Jack C. Martin	Susan Claire stevens
Morris L. Blankenship	Rebecca Anne Evans	David E. MeConnell	William Robert sullivan, Jn
Christian Earl Boldt	Don H. Huckaby	James Donald Hyeru	Joan 3. Ward
Timothy $\mathrm{Rr}_{\mathbf{1}}$ Brown	Guinn S. Johnson	Twila sue Overstree	Kenneth Wa
David J, Cochener	Gloria Ann Kieschnick	Fred L Reagor	Raydel Wyatt
Carol Ann Council	Linda J, Kyle	Dorinda saulsbury	Rel Wolt
Laura Kay Davis	Richard R, Lauridia	Fred G. staudhanmer	
TEXAS BETA, Lamar Mate College of Technology			
Bever 1y A AradenNora BrueRuth E. Cox	Jean Marie Hays	Forest D. McElroy	Gabriel K, Tan $\mathbf{R}_{\mathbf{\prime}}$ Paul Turner
	Gordon Julian	Carole A. Pastorick btephen H. Richardson Darla J. Swith	
	Edward P. HeCartney		Julia Mahrmund
	Frank E, MeCreery		Tomy E. Webb

texas Dela, btephen \boldsymbol{F}, Austin State University
TEXAS EPbiloN, Sam Houston State University

Thimas Adams	Linda Hej1	Dr. Glen Hattingly	Steed Smith
Linda Andersen	Ann Helm	Helanie McDonald	Dr. Julianne souchek
Stevart Angel	Linda Herron	Dr. Herbert Muecke	Darrell streater
Paula Bell	Jerry Jordan	Michelle Petty	Patsy surovik
Tomie Caldcleugh	Juanita Jorgensen	Dr. Daniel Reeves	Dr. George Vide
Lynda Cerrone	Dr. Harry Konen	Kathryn Rice	Darrell Wells
Dr. William Clark	Marjorie Knuppel	Mr, Franklin Rich	Patti wells
Hr, Max Colenan	Cynthia Lewis	Janelle Schindelwolf	Anna $\mathbf{w i g g i n g}$
Alfred Ermis	Kenneth Li	Susan Schaidt	Alice Williams
Paul Frank	Loretta Lt	Judith schulze	

texas gahin, Prairie view ath College

Hoser Ray Brown	Frederick Gray	Jerry Madkins	bandra Roberaon
Kenneth L. Brown	Wayne Harris	Pedre (Dr.) A Oliver	Jean A. scurlock
Wilma J, Burren	William H Jack	Shirley A Palmer	Shirley A, Thoeas
Julia N, Coleman	Zollie L, Johnson	Thadis C. Pegues	Evelyn (Mrd, Thorton
UTAH ALPHA, University of Utah			
Peter W, Bates		Thowela shtelurrell	David Plicher
Dave Houcher	Marlin L. Diamond		Gary Stevens
Winston K, Crandall	Steven M, Fall	${ }_{\text {James }}$ Newton ${ }_{\text {Stephen }}$	Ching-Yen Tsav btan Tschaggeny
Daniel Cumings	Ted H, Greaves	Stephen K, Parker	btan Tschaggeny
James H, Day	Dan Harvertson		

UTAH GAMRA, Brighaim Yoang University
$\begin{array}{llll}\begin{array}{lll}\text { Annette Barnes } \\ \text { Robert Lee }\end{array} & \begin{array}{l}\text { Michael I. Gray }\end{array} & \text { Arnold Loveridge } & \text { Linda Ten } \\ \text { Doyal Glen Landon }\end{array} \quad$ (
VIRGINIA BETA, Virginia Polytechnic Institute

Barbara \mathbf{L}_{1} Azalos	Robert C. Dunatan	Paul A, Lutz	Lee R, Steeneck
Norton D, Bragg, III	Bovce E. Falls	Linda S. Payne	Alfred D, sullivan
Richard E, Browning	Charles E. Ford	Wyatt $\mathrm{M}, \mathrm{Rider}$	John W. Varney
Janet H, Campbell	Janice C. Frye	Jeffrey A Robinson	
Chin-Hong Chen	James H Godbold	Frances L, Ropelewski	irene R, Wild
Lloyd E. Cole	Michael E. Golden		Sarah S. Winslow
Andrew I. Dale Joel I, Dodson	Kenneth E, Hawkes Jeffrey J, Kelly	William R. schofield	Lawrence C, Holfe, Jr
WASHINGION ALPHA, Kashington Mate University			
Joseph P. Barrett	Michael H. Extine	Betty Meil Jen Luan	Terry L, Perkins
Neill B, Bickford	Evelyn I. Gratix	Kenneth A Lueder	Terence Kin-Hong Poon
Ruth E. Caputo	Marlene Huntsinger	Ilona M, Haves	Loretta J. Rippee
Joseph L, Devary	Stephen shic-Chu Kung	Carl A Paul	Janes A. suckow
WASHNGION BETA, University of Washington			
Mary Hilda Brant	Bette J, relton	Lee M, Hess	Patricia J, Kozu
inge K, H. Chi	Janet L, Flickinger	Ralph D, Jeffonds	
David E. Clark	Paul D, Frank		
ASHINGION DELTA Western Washington State College			
Edward \boldsymbol{W}, Allen	ne A. Easter	\$hoplanEE.KXeney	Lorel J, Sousl
Peggy A Craigen	Lynn S, Erickson		David L. Veum
Dorothea L. Culpepper	Barbara D. Friele	Melvin J. Schauer	
WASHINGION EPSILON, Gonzaga University			
James T, Abbott	Elizabeth ressler	Thosas D. Jovick	Osvaldo Panicgua
Stephen E. Bowser	Hacy Ann E, Gaug	John C. Kerkering	Douglas R, Tesarik
${ }_{\text {Francis }}$ Francis J, Callan	Walter K, HIghberg	Thomas Hchilliams	Edward L. Tyllia
Diane Van Drieache	Richard T, Hottell	Willian C. Miller	Joapeh F,Tyllia

WEST VIRGINIA BETA, Marshall University

Harold Albertson	Sandra M, Crosson
Phillip W, Alexander	Linda K. Dean
Prof, Thowas Bauserrian	Fred J, Dooley
William Givens Brubeck	John A Praser
Ronald \boldsymbol{E}, Christian	Donna Jo Harbold
Louise Cox	Hunter Hardman
WISCONSIN ALPHA, Marqu	ette Universitv
James J, Ackmann	Ronald 5 , Hosek
Robert \mathbf{J}, Adams	Themas si, Kaczarek
Hark \boldsymbol{W}, Anders	Janice \mathbf{H}_{1} Knapp
Richard \boldsymbol{E}, Byrne	Charles Kronemwetter
Michael \mathbf{F}, Flynn	Elizabeth A, HeElearney
Gary A, Glatzaier	Harlene Helzer
Rhaoul A, Guillaume	Andrew M, Hauler
George E , Haas	Michael Hurphy
william F . Harmette	Catherine Mornan

even J, Hatfield yllis L Justic of, James R, Ke

David Pollock Ompornispthboormaihompson
Elizabeth Underwood
Bernadine R. Weddington

M, Richard Tokelkis
Marilyn E. Traeger
Philip A A. Twoney
Philip A. A, Twow
Janes Utzerath
Janes Utzerath
Thomas R, Werne
Thoceas R,
Avery Hight
Edward D. Winkler
Edward Di Winkler
Serge 2i.ber
Edward J, Zuperku

Colorado Delta
oulsiana Iota 15?-137:

Louisiana Theta 154-1370

Maryland Beta 158-1975
:iichigan Gamma 157-1974

Hew York Fini 151-196

Pennsylvania Kappa 159-1370

South Dakota Beta 155-1:370
lexas Delta 153-1370

Texas Lpsilon

Tennessee beta

West Virginia Beta 156-1970

Dr. Robert L. Heiny, Dept. of Hath. University of :lorthern Colorado, Greeley

Samucl II. Douglas, Dept. of Math., Grambling College, Grambling 71245
R. T'. :ScLean, Dept. of Math., Loyola University, New Orleans 70118

Dr. Walter R. Talbot, Dept. of Math., Horgan State College, BAltimore 21212

Harold T. Jones, Dept. of Math.,
Andrews University, Berrien Springs 49104
James F. Calarco, Dept. of Math., State University College, Potsdam 13676

Prof. Judith Gumerman, Dept. of Math. West Chester State College, West Chester
Harold A. Heckart, Dept. of Math., South Dakota School of Mines \& Tech., Rapid City
Harold E. Bunch, Dept. of Math., Stephen F Austin State University, Nacogdoches 79561

Prof. Glen と'. Nattingly, Dept. of Math. Sam Houston State University, Huntsville

Prof-. James G. Ware, Dept. .of Math., University of Tennessee, Chattanooga 37403

Dr. Thomas Bauserman, Dept. of Math., Marshall University, Huntington 25701

YOUR BADGE - a triumph of skilled and highly trained Balfour YOUR BADGE - a triumph of skilled and highly trained Baifour

Official Badge

Official one piece key
Official one piece key-pin
Official three-piece key
Official three-piece key-pin
WRITE FOR INSIGNIA PRICE LIST

OFFICIAL JEWELER TO PI MU EPSILON

