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m and e

Bob Prielipp
W sconsin State University

Two of the nost famous nunbers of mathematics are » and e, where
nis the ratio of the circunference of a circle to its diameter and
e is the base for the systemof natural logarithms. Since even secondary
school students are familiar with these nunbers, it night be assuned
that many years apgo mathematicians determned answers to all of their
questions about = and e. This, however, is not the case.

It may he of interest to note that Euler is largely responsible
for our current use of the synbols » and e  The first appearance of
the Greek letter » for the circle ratio seems to have occurred in 1706
in the Synopsis Palmariorum Matheseos. or A New Introduction to the
Mat hemefics by WITTamJones. But it was Euler' s adoption of the synbol
min 1737. and its use by himin his many popul ar textbooks, that made
it widely known and enployed. In a manuscript entitled " Meditation
upon Experinents nade recently on the firing of Canon" (Meditatio in
Experinenta explosione torment orum nuper instituta), probably witten
in 1727 or 1728, Euler used the letter e sixteen different tines to

represent 1im(1 + %)". The letter e was agai n enpl oyed by Euler to
noeo
denote "that nunber whose hyperbolic logarithm= 1" in a letter to
Gol dbach which was written in 1731.  This notation first appears in
print in Euler's Mechanica, which was published in 1736. ("Meditation
upon Experiments made recently on the firing of Canon" was first
printed in 1862 in Euler's Opera postuma mathematics et physica edited
by P H Fuss and N. Fuss). T has been suggested that pernhaps the
synbol e was derived fromthe initial letter of the word "exponential®.
Incidental ly, the synmbol i for v=I is another notation introduced by
Eul er, although in this case the adoption came near the end of his life,
in 1777.

Bef ore presenting sone open questions involving » and e, let's
briefly review a portion of the historical background of these two nunbers.
W& begin by recalling that an algebraic nunber is a conpl ex nunher that
satisfies an equation of the form x" t an-lxn-l t.ot ax+a = 0,

where the a,'s, i =0, 1, ..., n -1, are all rational nunbers and n

is a positive integer. Sone exanples of algebraic nunbers are l,

Y2, and i. (%is a root of the equation x - %: 0, /5 is aroot of

2 : 2 . )
x7-2=0 and i is aroot of x* + 1 =0.) A polynonmal having |eading
coefficient 1, such as the one indicated in the definition of an al gebraic
nunber, is called nonic. Every al gebraic number a satisfies a unique
moni ¢ pol ynomi al equation of least degree. This unique nonic pol ynom al
of least degree is called the miniml polynomal of a The decree

of the minimal polynonial of ais also the decree of a The concept

of al gebraic nunber is a natural generalization Of rational nunher.
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Indeed, the rational nunbers coincide with al gebrai c nunbers of degree
1. A conplex number that is not an al gebraic nunber is called a
transcendental nunber.

Every transcendental nunber is not a rational nunber. The preceding
is generally stated in the form "Every transcendental nunber is
irrational." Qur wording (following that of Niven) is an attenpt
to avoid the suggestion that a transcendental nunber nust be a real
nunber. Sone al gebrai c nunbers are rational nunbers (2/3 and 5/8,
for_ exanple) and sone al gebraic nunbers are not rational nunbers
(Y2 and 1, for exanple). Thus knowing that a nunber is not a rational
nunber is not sufficient to tell us whether the nunber is transcendental
or al gebraic.

It is not always a sinple matter to determine if a particul ar
real number is rational or irrational. However, using the standard
infinite series expansion for e,

e=1+%—+?l!-+31,+...,

where n = n{n-1),..2*1, arelatively sinple proof that e is an irrational
real number can be given. Suppose that e is a rational nunber.
Then e = E\Alnere mis an integer and n is a positive integer. Hence

1 (e-1-2 -2 _ L1 _ -1
ntle-l-gr-gr-3r- o "7D
is an integer. Replacing e by its series expansion and sinplifying,
we have that

1 1
t e P e (e (ney Tt

is an integer. But

1 1 1 1 1
s * * ’ » o € m— + +
ntl  (n+1)(n+2) * (n+1)(n+2)(n+3) n+l (n+l)2 (n+1)3

t wee sl using the formula for the sumof an infinite geonetric

= 1 Thus

1 1 1
n+1 D (nr2) T D) (ne2)(ne3)

is aseries of positive terms which converges to a positive value | ess

than one and therefore is not an integer. Fromthis contradiction

we conclude that e is not a rational nunber. It can, in fact be established
that if r is arational nunber and » # O then eT is not a rational nunber.

=

series <

+ ...

The irrationality of w was initially proved by Lambert in 1761
using continued fractions. Later it was also denonstrated that =2
is irrational. This know edge was not enough to settle the probl em of

"squaring the circle" which we will discuss in greater detail a little later.

In 1873. Hermite proved that e is transcendental. It has been
reported that in that same year Hermite stated, "I shall risk nothing
on an attenpt to prove the transcendence of the nunber . |f others
undertake this enterprise, no one will be happier than | at their success,
but believe ne, ny dear friend, it will not fail to cost them sone
efforts.” N ne years later (1882) Lindenmann succeeded in denonstrating
that = is a transcendental nunber. To produce his proof Lindemann
devel oped an extension of the technique enployed earlier by Hermite.
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Before nmoving on, perhaps we should note that today we know that e

is transcendental for any non-zero al gebraic nunber a
One of the nost famous probl ens of antiquity was "squaringthe
circle", that is, constructing a square equal in area to a givencircle
using only the methods of the straight-edge and conpass. The inpossibility
of this construction was established when Li ndemann proved that n
is transcendental . For, on the one hand, all line segnents that can
be constructed froma given unit length by a finite nunber of conpass
and straight-edge constructions have |engths that are al gebrai ¢ nunbers.
On the other hand, given any circle, we may regard its radius as the
unit of Iength so that the circle has area = square units. Thus
the problemof "squaring the circle" is equivalent to the probl em of
constructing a line segment of length v¥= froma given unit |ength.
Suppose this could be done. Then ¥@ would be an al gebraic nunber,
and fromthis it would followthat == /& * vx would be an algebralc
nunber since the al gebrai ¢ nunbers are closed under nultiplication
(indeed, the set of all nunbers which are al gebrai ¢ over any nunber
field Fis afield). Therefore it is inpossibleto "square the circle".

Anot her out standing contribution to the theory of transcendental
nunbers was the proof Of the Hilbert-Gelfond-Schneider theorem This
theorem provided a solution for the seventh of Hilbewt's fanous |ist
of twenty-three outstanding unsolved problens. Although the list was
announced in 1900, it was not until 1929 that Gelfond nade the first real
contribution to the solution of the seventh probl em Addi tional partial
results were obtained by Kusmin, Siegel, and Boehle, and in 1934 a conplete
proof was given by Gelfend. Shortly thereafter an independent proof
was supplied by Schneider. The Hlbert- Gel fond- Schnei der theorem st ates
that if a and 8 are algebraic nunbers. 8 is not a rational nunber, and
ais neither 0 or 1, then any value of of is transcendental. The hypot hesi s
that "8 is not a rational number” is usual ly stated in the form"g

isirrational™. Once again our wording is an attenpt to avoid the
suggestion that 8 nust be a real number. |n general,

a
af = P19 s miti ple-valued. This is the reason for the phrase

"any val ue of " |n the stat enEnt of the theorem (ne value of i-2i =
"2 logei is e Hence e" is transcendental. The theoremal so establishes

tf}e_ transcendence of such nunbers as 5 and so-called Hilbert nunmber
2
2°“

Sonetines the Hilbert-Cel fond- Schnei der theoremis stated in the
following equivalent form |f a and e are al gebraic nunbers different
fromo and if 8 # 1, then log, «/log,B is either rational or transcendental.
Fromthis formof the theoremit follows that the logarithmof a positive
rational nunber r to a positive rational base b # 1 is either a rational
nunber or a transcendental nunber. This can be readily seen if one
recalls the fact that logyr = Ioger/logeh Hence if rand b # 1 are

positive rational numbers then log, r is transcendental unless there
exist integers mand n such that p™ = pBn,

Even though over the years much information has been gathered
concerning = and e, it is not known if wte, me, €€, «", or =% are
transcendental nunbers. In fact, it is not even known if any of these
nunbers is irrational. Methods of attack which will tell us nore about
the character of the five nunbers |isted above do not appear to exist
at the present time. The world is waiting for some clever mathenmatician
to achi eve anot her breakt hrough.
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AN ARCLOGY

In the Fall, 1970 issue, page 105, Dr. Francis Regan
was inaorrectly described as belonging t0 the Missouri
Beta Chapter Pi Mu Epsilen at St. Louis University.

He has been associated with the Missouri Gamma Chapter.
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PHI AM CUROUS YHLOAM THE GODEN RATIO

Linda Riede
University of Denver

All of you are undoubtedly familiar with mv sister oi, the ratio of the
circumference of a circle to its diameter. Being fiemining, | an also irratioal
and have been accused of going on and on. In defense, | can only argue that
| don't repeat myself like certain gentlemen I know. | feel somewhat slighted
that pi gets so much attention, while | have as much to offer -- if not more.
So few people these days recognize ny inherent beauty and natural charm, mis-
sing the sheer delight that knowing me can brine them. 1'd like to take this
opportunity to barely introduce myself and to give you a somewhat meager taste
of ny curious talents.

Perhaps | can best describe myself geometrically.

A / R

A+ B A

A B

If you let B = 1, you can easily compute ny value from the following equa-

tions: A+ _ A 2 2

AT = A+ 1 AN -A-1=20
A 1
By solving the quadratic equation above, one can see that | an exactly equal
tol+ v¥§ . M decimal expansion is 1.61803390 + + «. |If instead, the
2

length of A is taken as 1, then B will be my reciprocal; ie., 1l/phi.
Curiously, this value turns out to be .61803398 + « -. I am the only pes-
itive number that becomes its own reciprocal by subtracting one.

Like pi, I can be dressed in numerous outfits such as the sum of an
infinite series. Since | have simple taste, the following show off nv fun-
damental character:

Phi = 1+ 1
l1+1
1+1
T+ s o e
Phi“'li‘/i—T—l*
N ey

When I'm in the mood, | enjoy making myself into lovely figures --
with my ratio intact, of course. Two of ny favorites are the pentagram and
the golden rectangle (rectangle with sides in golden ratio). | don't like
to brag, but the Pythagorean brotherhood adopted the pentagram or five-
pointed star as the symbol of their order because every segment in this Fir-
ure is in golden ratio -- that's me -- to the next smallest segment.

The golden rectangle is perhaps nv most fascinating figure. |f you would
like to construct a golden rectangle, here's how you go about it.



A D &

The rectangle begins with a square, which is then divided into two equal parts
by the dotted line E F. Point F now serves as the center of a circle whose
radius is the diagonal F C. An arc of the circle is drawn (C G) and the base
line A D is extended to intersect it. This becomes the base of the rectangle.
The new side H G is now drawn at right angles to the new base. with the line

B H brought out to meet it. That's all there is to it--or so it seems at first
glance. Look!

If you cut off the original square, what remains will be a smaller golden
rectangle. You can keep snipping off squares, leaving smaller and smaller gol-
de?, retcta;]gles. (This 18 an example of a perfect squared rectangle of order
infinity.

Su{cessive points marking the division of sides into ny golden ratio lie
on a logarithmic spiral that coils inward to infinity, its pole being the in-
tersection of the two dotted diagonals in the figure. O course these "whirl-
ing squares,” as they have been called, can also be whirled outward to infin-
ity by drawing larger and larger squares.

~ /
~ /
~ ’

If you place three golden rectangles so that they intersect each other
symmetrically, each perpendicular to the other two, the corners of the rect-
angles-will mark the 12 corners of a regular icosahedron, as well as the cen-
ters of the 14 sides of a regular dodecahedron. You see. | do have the curious
propensity for popping up when | an least expected. Many of you have probably
seen ne in art, architecture, nature, and so on; but, as has been ny usual
plight in life, |1 go unrecognized more than not. Leonardo Da Vinci used ne in
his figure of St. Jerome. |f you draw a rectangle around the figure of St.
Jerome, you will find a golden rectangle. Salvador Dali's "The Sacrament of
the Lagt Supper” is painted inside a golden rectangle and other golden rect-

angles were used for positioning figures. Also, part of an enormous dodeca-
hedron floats above the table. The Parthenon at Athens fits into a golden

rectangle almost precisely. 1 could give you numerous elegant examples, but
| fear ny modesty would be endangered.
While | was still in ny youth, I found that I was intimately involved

with Mr. Fibonacci Series. Don't judge hastily == we were married soon after..
Perhaps you have met him before. He looks like this: (1,1,2,3,5,8,13,21,
34, «ux ). Each term is the sum of the two preceding terms. As with many
married couples, we get more alike as tine goes on. That is, if you take two
successive terms and form a series of ratios as follows -- 5/3, 13/8, 21/13,
. -- Fibonacci approximates ny value more closely with each succeeding
ratio in the series. Yes, he knows me well, but not perfectly -- one always
needs that dash of mystery to be more interesting.

I will close ny introduction with one last point of interest to you
humans. A men named Frank A. Lone had the audacity to measure the heights
of 65 human women and compared these figures to the height of their navels.
He happened to find me in that ratio. | was some what embarrassed and still
blush whenever | think about it. but then -- | an curious.
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AN APPLICATION OF BOOLEAN ALGEBRA TO FINITE TCROLOGY

Robert llaas
John Carroll Universitv

A topology is essentially a set of subsets of a set, closed under the
operations of union and intersection. So too is a Boolean algebra. Thus far,
however, this relationship seems to have been ignored. 1t is the purpose of
this paper to bepin the development of this connection. This paper will re-
strict its attention to finite sets which will be denoted by X.

A glance at the list of postulates for a Boolean algebra, viewed as an

alpebra of sets, will show that a Boolean algebra satisfies all the require-
ments to he a topology. The only difference between the two types of structure
is that a Boolean algebra contains the complements of all of its sets, or in
topological terms, it contains all of its closed sets. This prompts an im-
mediate definition:
Definition 1: A boolean topolopy iS a topolospy containing its closed sets.
The discrete and indjscrete topologies are Boolean; so is 7= {#, {a), {b,c},
x}, where X = {a,b,c}.

Boolean topologies are a particularly simple type, which since they are

Boolean algebras all contain a convenient number 2™ of open sets. To convert
an arbitrary finite topology,te a boolean One, it will be necessary either
to add (redefine as open) closed sets that are not open, or to remove open
sets that are not closed. In either case, the closed sets of the topology
must receive some attention.

Lemma 1@ The closed sets of a finite topology J form a topology.

Proof: ¢ and % are closed. Finite unions and intersections of closed sets
are closed. Since J is finite, only these finite cases are relevant to the
discussion.

Definition 2: The topology formed by the closed sets of the finite topnlogy
J is called the complementary topologv to ¥, and denoted 7',

Since infinite unions of closed sets do not necessarily yield closed sets,
the above lemma is not true for all infinite topologies. This is the main
reason why this paper is restricted to the finite ones.

Several verv easy results will help to link these new ideas to the more
usual topologsical concepts.

Proposition 1: J is a Boolean topology iff 9" =2J",

Proposition 2: J is connected iff 7 and J' have only # and X in common.
Proposition 3: J is a door space iff every subset of X isin Jor J7,
Propositions 1 and 2 together indicate how very disconnected a Boolean topologv,
in which every open set is closed, must be.

As is well known, the set of topologies on X forms a complete lattice under

the operations v and n.l An arbitrary topology can be made Boolean by com-
bining it with its complementary topology under either of these operations:
Theorem 1: Jv3J” is the coarsest Boolean topology finer than J(or J').

Proof: JvJ' is the topology having as subbasis the open sets of ' and ', so
it is certainly finer than either. Since all topologies under consideration

lr)up.undji, Topology, p. 91.
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are finite, an extension of the distributivity laws allows the usual subbasis
characterization to be reversed to say that I%J' has as open sets all finite
intersections of all finite unions of open sets from X orJ'. Hence if G is
an open set of JvJ', G = 0y G o Where the G, are open inTorJ'. p

\ =y - . . - 7
DeMorgan's laws, X ~¢ X QH (;“m H(x i Gm) ] Q [6.4 Gm), which is
inJvT since X — G is open inY or ¥', Therefore IvJ' is Boolean. Any

Boolean topology finer than ¥ contains all the open sets of 7, contains all
open sets of J' since it is Boolean, contains all unions and intersections of
such sets since it is a topology, and consequently will be finer than IvJ',
The statement for 3’ may be proved similarly.
Theorem 2: INJ' is the finest Boolean topology coarser than J(or 7'),
Proof: IN% is a topology coarser than 7 and7', |If G isopen inJINY, it
isopeninJand J', so X~G isopening' andd, so X~ G is open inJn",
Consequently JI12' contains all of its closed sets, and thus is Boolean. If
G is any set in a Boolean topology coarser thanJ, G and X~ G are inJ, or
G isin bothJ and>', so G isopen inIN3. Hence INI' is the finest Boolean
topology coarser than 2. SinceJ'' = J, the similar argument proves the
statement for 0!,

Theorems 1 and 2 show that any topology & can be expanded or contracted
to a Boolean topology by taking v or nwithJ?', |If ¥ is already Boolean,
then by Proposition 1, & =J"', and either procedure will leave J unchanged.
More generally than this, v or n of any two Boolean toPOI?E;ES will be Boolean.

Theorem 3. |If 9’1 and :J"z are Boolean, SO are 3‘1v3'2 and 3'1 T

Proof: If Gisopenin 3'1v3“2. then as in the proof of Theorem 1, G - 5
where Gan will be open inﬂ'l or J,, and X~ G = Hg(x'v(;m). open in C]’lv’.l’2
since 3’1 and 3’2 are Boolean.

If G isin both Qi and 3’2, sois X™~G.,

The discrete and indiscrete topologies are Boolean, so the above theorem
shows that the set of Boolean topologies of X forms an algebraically complete
sublattice of the lattice of all topologies of X.

The collection of all topologies of X can be divided into the non-Boolean
ones, which occur in complementary pairs, and the Boolean ones, which are self-
complementary. The number of finite topologies of X will then have the form
2k + b, where b is the number of Boolean topologies. b can be determined as
follows:

Theorem 4 The number of Boolean topologies with n elements is equal to the
number of partitions of a set of n elements.

Proof: It will be shown that each such partition determines, and is determined
by a Boolean topology.

Let P be a partition of the set X, and Iet J be ghe topology having the
sets of P as a basis. If Gisan opensetof J, it is the (finite) union of
some of the sets of P. Let H be the union of the sets of P not contained in
G. Sipce the sets of P form a basis, H isopen. Since they are exhaustive,

G UH X. Since they are pairwise disjoint, G N H =f. Hence H = X ~G,
T contains its closed sets, so 7 is Boolean.
Conversely, assume that ¥ 1s Boolean. Since it is finite, its open sets
G, and X~ G, form a partition of X.

)

~i-can be ordered into pairs Gi and X ~ Gi' 1 1

Gl n Gz. (X-*Gl) n cz. Gl n (X~GZ). and (X~ Gl) n ~Gz)(some may be
empty and can be neglected) form a partition of X. If Al""' A is a part-
ition of X, so is Ay NG yooey A ncn, Ay nE~ cn),.... AL n (x~cn).
Proceeding in this manner, J" determines a partition of X.
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Each partition of X determines a Boolean topology, and each Boolean
topology determines a partition. It can be seen that each of these deter-
minations is unique. Therefore the number of partitions and Boolean top-
ologies is the same.

Corollary 4-1: There are as many Boolean topologies on X as there are

equivalence relations among the elements of X2.
Proof: Every partition determines an equivalence relation and conversely.
One reason that the Boolean topologies are useful is that they have a

well - characterized number of elements--zm, where m < n, the number of elements

in X. Theorems 1 and 2 give uniquely the Boolean topologies " closest" to 7.

It isof interest to study the number of open sets of T in relation to its
associated Boolean topologies.

Definition 3: The number of open sets of finite topolegy J is denoted by #(J).
Definition 4: The coefficients of finite topology J are the numbers ¢ and

d given by 2 = #(InJ"), 2 = #(T vI'). Some consequences of these def-
initions are contained in the following theorem.

Theorem 5: If ¢ and d are the coefficients of J, and X has n elements, then:
1) 1¢cgdgn
2) c=diff Jis Boolean
3) ¢c=21iff 7is connected
4) c=niff Tisdiscrete
5) d " 1iff 5°1s indiscrete

6) J' has the same coefficients c and d.

Proof: 1) I N3J" is finer than the indiscrete topology, and obviously
coarser than JTv J', which is coarser than the discrete topolQgy.

2) If T is Boolean, 3 = ¥' (Proposition 1), and XYn73J' TNY «T .
JvY =TvDI'. If c =d, then since N3 isin general coarser than
Tvd, 3N =3vI', Big coarser than IvI', so it is coarser than INT1,
which implies that every set open in J is open in both J and J', so Y is Boolean.

3) This follows immediately from Proposition 2.

4) If Jis discrete, soisJ", and consequently so isJ NJ'. Hence

¢ " n, since the discrete topology has 2 open sets. If c = n, Tnyis
discrete, so 2 which is finer than 3 NJ* is also discrete.

5) If T isindiscrete, so isJ", hence so isJvJ*', and d = 1L If
d: 1, T, isindiscrete, and F which is coarser than Iv T is also
indiscrete.

6) TvX aJ v, and I NJ =T v I,

The effect of v or non the # function is described i n the next theorem. 3
Theorem 6: If J’l and ﬂi are two finite topologies on X, then #(J}) + 0(’.'5)

s HT v T + T T,

h er e are consequently 1,2,5,.5, and 87 Boolean topologies with 1, 2,
3, 4, and 5 elements respectively. It may be noted that in the first four
cases, except for a minor correction factor of 0, 0, 1, and 5 (= (n-1)! = 1 7?)
to be subtracted, that the total number of topologies with n elements equals
n! times the number of Boolean topologies with n elements.

similar formulas recur throughout mathematics when a measure i s de-
fined on the elements of a lattice. For instance, P(A) + P(B) = P(A U B)
+ P(A n B) in probability theory, or dim Vv + dim w = dim (v + w) * dim (v n W)
The triangle inequalities of analysis also are of a related form.
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Proof: All the open sets of Jl will be counted
but not in 3’1 will also he counted in #O’l v 3'2).
3’2, which are counted twice on the left side of t
counted twice on the right because thev are in 3’1

Full equality will occur in Theorem 6 if all the
already to be open in either 3'1 or 3’2. Two suffi

are: 1) one topology is fir_1er than the other, s
finer one; 2) one topology is a door space, and
(see Proposition 3).

in#( vT,). Aset inJ,
Sets open in both jl and

he inequality are also

a] f}’z

sets of J v T, happened

cient conditions for this

o that ¥V simply gives the
the other IS its complement

Letting 9’1 = T and 9’2 = J' in the theorem gives the following corollary;

Corollary 6-1: 2#(J) b 2+ 2 , where ¢ and d ar

e the coefficients of J,

Proof: #@) = #(3"), 2% = 4@ N3, 20 = 2TV I,
This corollary is important because it gives a certain amount of struc-

tural information about a general finite topology
discrete, then by parts 1 and 4 of Theorem 5, c <
dgn, and 260 ¢ 1y 2%, or £ < 3.272,
discrete topology has more than 3/4 of the subset
generalized:

Theorem 7. If J is not Boolean, then #(3) ¢ 3/4

Proof: By parts 1 and 2 of Theorem 5, ¢ < d, or

. For example, if J 1s not
n, whiled ¢ n, soc g n-1,

This means that only the
s of X. The result can be

1O Ty = e 2
¢ ¢ d-1. From Corollary 6-1,

P Yo N S S AR 10o JPRE VPR S VI T gV P

Various further conclusions can be obtained
For example, if & is connected, Theorem 5 part 3

6-1 becomes #(3) ¢ 1+ 22l e+ ™ g o
cussion after Theorem 6 shows that d = n and the

is an exact equality, so #(]) = 21 4 -2 2 2"

for specialized topologies.
shows ¢ = 1, and Corollary

a door space, then the dis-
inequality of Corollary 6-1

1y Combining these two

results, all connected door spaces have #(Q) = 2“_1 + 1
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UNDERCRADUATE  RESEARCH FROPOSAL

John E, Wetzel

University of Illinois at Urbana-Champaign

It is not difficult to see that for each A >

n = 2 there is an open,

simply-connected subset of the closed unit disk whose closure contains a
circle of radius r for each r, 0 < r < 1, and whose area IS less than

A Is there such a set with area equal to n = 2%
with smaller area? Wha is the least such area?

Are there such sets
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NENTON AND THE DEVHORMVIENT OF THE CALQULUS

Thomas R. Bingham
State University of New York College at Fredonia

This paper is intended to give a brief sketch of Sir Isaac Newton's role
in the development of the calculus. |n order to appreciate Newton's role some-
what better, a short description of earlier highlights in the development of
the calculus will be given. Detail will be kept at a minimum because of the
scope and complexity of the subject. A cursory glance at the celebrated pri-
ority controversy with Leibniz will also be offered.

D. E. Smith lists four steps in the development of the calculds: The Greek
"method of exhaustion”: the method of infinitesimals of Kepler and Cavalieri:
fluxions, the method of Newton; and the method of |imits, as used in the

present day.*
The Greek method of exhaustion developed in the 5th century BC. The four
paradoxes of Zemo of Elea (495-435 B.C.) led to a consideration of infinite-

simally small magnitudes." The germ of the exhaustion method was introduced
by the Sophist. Antiphon (e. 430 B.C.). Credit for developing this method to
its most useful form is usually given to Eudoxus (408-355 B.C.).

According to W. W. Rouse Ball, Eudoxus' method "depends on the proposition
that 'if from the greater of two unequal magnitudes there be taken more than
its half, and from the remainder more than its half, and so on, there will at

length remain a magnitude less than the least of the proposed magnitude. 13
This method allowed the Greeks to sidestep the use of infinitesimals, which
use wes questioned by Zemo. The method was rigorous but awkward. Polygons
whose boundary and area were successively less from the curve were inscribed

and circumscribed about the curve to find the area bounded bv it.4
According to Smith. "It is to Archimedes himself (e. 225 B.C.) that we

owe the nearest approach to actual integration to be found among the (:reeks."S
His method consisted roughly of drawing triangles under a curve such that the
sum of the areas of two triangles equals 1/4 the area of an inscribed triangle.

He then repeated this process with smaller triangles whose sum was (1/“)z of

the original triangle, then (1/u)3, etc. "He arpgued that by repeating this pro-
cess indefinitely (in imagination) the parabolic segment would approach 'as

; . : 6 . S
near as one wished' to 'exhaustion'."" This process utilized the modern concept
of a sum of an infinite series, a concept unknown to the Greeks.
Although there was some activity in this area of mathematics in the years

following Archimedes,7 the next great achievement was by Bonaventura Cavalieri
(1598-1647), who (influenced by Johannes Kepler (1571-1630) and his problem of
determining the volume of wine barrels. in which he used a "rude kind of inte-

gration"a) developed his "method of indivisibles™. |n this method, a solid is
regarded as being made of surfaces, a surface made up of lines, a line made of
points, in each case "these component parts being the ultimate possible elements

in decomposition of the magni'cude."9 To find volumes, areas, or lengths, these
"indivisibles” must be summed (an infinite sum of infinitesimals).

There was now a flurry of activity in this area, the most important steps
being taken by Pierre Fermat (1601-1665), John Wallis (1616-1703), and Newton's

teacher, Isaac Barrow (1630—1677).10
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T £rought with rich and varied suggestions."”

Fermat has been credited with the invention of calculus by the eminent
mathematician, Joseph Lagrange, because "in his method Re_maximis et minimis
he equates the quantity of which one seeks the maximum or the minimum to the
expression of the same quantity in which the unknown is increased by the in-

determinate quantity."ll He then causes radicals and fractions to disappear
and takes this quantity to zero. While this is certainly part of the calculus
and did influence Newton, it is no more "the calculus" than Cavalieri's summing
of indivisibles is integration.

Wallis developed the limit concept and performed many useful integrations.
He created the Iimit concept "by considering the successive values of a fraction
formed in the study of certain ratios; these fractional values, steadily approach
a limiting value, so that the difference becomes |ess than any assignable one

. . . . . 12
and vanishes when the process is carried to infinity."”
Barrow was the first to realize that differentiation and integration were

inverse operations.13 His great achievement, at least as far as influencin

Newton, was what we now call “Barrow's differential triangle™. (See Appendix,
Figure 1). This triangle has an important use in picturing the x-axis as
being "in motion" or "in flux". Because of this, J. M. Childs says,

"|saac Barrow was the first inventor of the Infinitesimal Calculus: Newton
got the main idea of it from Barrow by personal commuﬂication: and Leibniz
was also in some measure indebted to Barrow's work.” 1

Newton was certainly influenced bv Barrow. However, neither Fermat
nor Barrow can be credited with discovering the calculus, no matter how
close they may have come. Barrow used geometrical notions and had no

notations for first and higher rleriva?:i.ves.l5 Neither man had a complete
system which would suffice for differentiation and interration of all curves
and not just a number (however large) of special cases. It was the wide
range of applications, along with a notation and reneral method, that
constituted the discovery of the calculus. It was not an accident, even
though earlier men had come more or less close to the discovery. It
required a great deal of patience, thought, and insight to develop a
method so general and useful as the calculus from a set of facts and methods
relating only to specific cases. The only "accidental™ feature involved
is that Newton and Leibniz discovered the method independently within ten
years of each other. The accomplishments of neither men IS lessened because
of the fact that certain specific parts had been in use before.

Whn Newt®n was at Cambridpe in 1664, he had little mathematical

background.ls He later told the story of buying an astroloev book. Because

he could not understand the diagrams in it, he consulted Fuelid's Elements
for help. He regarded Greek peometrv as self-evident and turned to
Descartes' Geometric, not an easy book. However, "there can be no doubt
that Newton's reading of Descartes''Geometrie'... was his kev to the

reaches of higher mathematics." 17 He also studied Barrow and Wallis, being
"particularly delighted with Wallis' Arithmetic of Infinities, a treatise
18

Newton solved the problem of

expanding (1 - x2) 1/2, 19 which Wallis could not do and in the process

developed his Binomial Theorem.

Newton also studied Fermat's method 8f drawing tanpents to curves
and admitted his indebtedness to Pennat.2 As a student of Barrow. he learned
to use Barrow's differential trianele. which became his starting point

for developing his calculus.21

Another influence on Newton was Kenler's Law. #or which he needed

a powerful mathematical tool to find an exnlanation. *’

During the plapue vears of 1665 and 1666, the universitv at rambridee
was forced to close. Newton went home to Wonlsthoroe, where he spent
much time on his researches in epravitation and ootiecs: It is at this
period that Newton first worked on develonine his fluxionarv calculus.
There is a manuscript dated Mav 7R. 1665. where he stated some of his

. N 23 . .
earlv resnlts in drawinpg taneents, The "hirect “ethod of Fluxions,"

what we now call the differential calculus. was set down in a manuscrint

dated November 13, 1665.2” Ry Mav 1666. he was workine on the Inverse
Method of Fluxions.
Newton stated twelve problems which he proposed to solve throurh
fluxions:
1. To draw tanpents to curve lines.
2. To find the quantity of the crookedness of lines.
3. To find the points distinguishing between the concave and convex
portions of curved lines.
4. To find the point at which lines are most or least curved.
5. To find the nature of the curve line whose area is expressed
by any given equation.
6. The nature of any curve line being riven. to find other lines
whose areas may be compared to the area of that riven line.
7. The nature of any curve line being riven. to find its area when
it mey be done; or two curved lines being riven, to #ind the relation
of their area when it mav be.
8. To find such curved lines whose lensths mav be found, and also
to find their lengths.
9. Arv curve line being given, to find other lines whose lengths
mey be compared to its lengths. or to its area. and to comnare them.
10. To find curve lines whose areas shall be eaual, or have anv riven
relations to the length of anv piven curve line drawn into a riven rieht
line.
11 To find the length of any curve line when it mav he.
12. To find the nature of a curve line "h"’§§ length IS expressed
by any given equation when it mav be done.
Newton's first work revealing his fluxionary method is be Analvsi
der Aequationes Numero Terminorum Infinitas. a tract he pave™To Barrow
in 1669.

In this treatise the principle of fluxions, though
distinctly pointed out, it is only partially developed
and explained... The expression which was obtained for
the fluxion (of a curve) he expanded into a finite or
infinite seriesgf monomial terms, to which Wallis' rule
was applicable.

Infinitely small quantities were "treated in the dynamic form...of
the conatus of Hobbes rather than in the static form of Cavalieri's
indivisible." This is in keeping with the notation of a fluxion as a
point in motion.

In his Method of Fluxions, Newton gave the most complete expose
of his new calculus. He explains the expansion of fractional and

irrational quantities into series. He then turns to the solution of the
two problems

which constitute the pillars, so to speak, of the abstract calculus:
'I. The length of the space described being continually ({.e. at
all times) given; to find the velocity of the motion at any time
proposed.
II. The velocity of the motion is being continually given; to find
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the length of the apace described at any time proposed.

He generalises, saying time does not necessarily have to be consi=
dersd, "but | shall suppose SOar of the quantities proposed, being of the
same kind, to be increased by an equable fluxion, to which the rest may be
referred, as it were to time, and therefore, by way of analogy, it may not
improperly receive the name of time. He then makes his most important
definition*:

Those quantities which | consider as gradually and Indefinitely

increasing, I shall hereafter call fluents, or flawineg gquantities,

ard shall repretent them by the final latter of the alphabet,

V, x, y, and 2i,., and the velocity by which every fluent is

increased by ItS generating motion (which | may call £luxiona)

or simply velocities, or celerit&ss), | shall represent by the

same letters pointed ¢, %, ¥, £.

The fluxicne themselves are not infinitely small, but the mamenia
of the fluxions, denoted xo, \70, etc are infinitesimally small. Theae
n t s are analogous to Leibnis® differentizls, dx, dv, etc. Theae
coments are important in that the fluenta x and y, when increased, after
every indefinitely s=all interval of time, become x T %o and y T yo. That
ia. %o and ¥o are the indefinitely small lengths the fluents increase in an
indefinitely mall time. 2
. Por ixample, given y = 3x « x , substitute x + %o for x, y + yo for y
in3x  x° <« y™0and we obtain

3x + 30 = x2 = 2x (Ro) = (#0)2 -y - Jo = O

";gno;}ng (1':0)2 as negligible, and subtracting the original equation
x - x° - = 0, obtain . W 31
. Jo * 3 - 2x.
3%o = 2x(X0) - yo =0 ; %o

This, of course, IS the sams reault a8 in,modern procedures.
Because t 0 18 infiniteaimally small, (xo) 18 ignored. Newton became
wary of this procedure after a while.

In® portion of Ba_gusdmstura (cyrvarum) which appeared in
Wallis's Algebra ef 1693, Newton had said that terms multiplied
by o be omitted as infinitely sma&ll, thus obtaining the result.
In the 1704 publication of the work, on the other hand, he said
:clearly that 'arros, are not to be disregarded in mathematics, no
matter hov small.’

Instead, one oust find the "ultimate ratios" as theae terns become
"gvanescent”, i.e. vanish. All traces of 1nf1n1tel1mg ly small terms were

to be eliminated, although in practice they Were not. ~- For example,

| I [ if it (i
the fluxion of x“.

= " In the sapa time that the 1uan51ty x, by flowing, becomes x + 0O,
the quantity x will become (x T 0)", that is, by the method of infinite

series, 2 "
n ~-n N
‘n + n“n-l 4 =g OOX + &c.

" And the augment& and
noxn-l +n2.2'_‘l oox?"2 + &2,
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are to one another as 1 and

2
. _“.2:“_ ox-2 g,

Nw | et these augments vanish, and their ultimate ratios
will be 1 to nx™ .
This is again, the same result we obtain now.
Perhaps Newton's greatest problem was his system of notation. an
excerpt from De quadratura curvarum will demonstrate this:

In what follows | consider indeterminate quantities as
increasing or decreasing by a continued motion, that is, as
flowing forwards, or backwards, and | design them by the letters
2z, y, x, v, and their fluxions or celerities of increasing |
denote by the same letters pointed 2, y, %, v. There are like-
wise fluxions or mutations more or less swift of these fluxions,
which may he called the second fluxions of the same quantities
z, ¥, x, vV, and mey be thus designed 2; ¥; %; ¢; and the first
fluxions of these last, or the third fluxions of z, y, x, v, are
thus denoted £, ¥, %, v and the fourth fluxions thusz, y, x, Vv
and after the same means that z, y, x, v are the €luxiogs of the
quantities'z, y, %, v, and these the fluxions of the quantities
2, y, x, v; and these last the fluxions of the quantities z, y, x, v,:
so the quantites z, y, X, v ngey be considered as the fluxions of
others which I shall design thus 2z, y, X, v; and these as the
fluxions of others z, y, x, v; and these last still as the fluxions
of others z, y, x, v. Therefore, %,2,2,%,2,%,%,% &c. design a
series of quantitieswhereof everyone that follows is the fluxions
of the one immediately preceding, and everyone that goes before,
isa flawingaguantity having that which immediately succeeds, for

its flfuxion.
It should be clear that this is a very tedious notation. It is
hard to keep straight while writing. |t is hard to read, especially for

higher derivatives with an interesting number of dots over the variable.
There is a possibility of confusing x for x (x-prime). Newton sometimes
used [x] for x. But "the rectangle was inconvenient in preparing a
manuscrigt and well-nigh impossible for printing, when of frequent occur-
rence. '3

It is no wonder that Leibniz' d-notation gained immediate acceptance
in Europe. Not only was his work published before Newton's but his notation
was much superior. Despite continued British use of Newton's notation,
mainly due to nationalistic pride and honor in the priority controversy,
Cajori shows that Leibniz' differential notation was used in England
as early as 16”5. |n fact, even John Keill, Newton's staunchest defender in
the Leibniz dispute, used differential notation,37 Howev.elr3 as Struik notes,
the time derivative of x is to this day often denoted as %. 8

Leibniz originally used omn, (for omnia- "all") for his integrals, as
in a manuscript from three days later, he wrote, "it will be useful to
write f for omn, as f1 for em. 1, that is the sum of these 1's. 39 The
term f is the long form of s, which is the first term of summa or sum,
which an integral is. Leibniz denoted the difference between "two proximate

x's" as dx, or g-. The differential of y was succesively denoted w, 1, g-,
and finally by the standard form dy. He also introduced the derivative :_X_'
Ed

The connection between differentiation and integration as inverse operations,
as denoted by Barrow, is accounted for by denoting an integral in the form

! de' Thus, we see that today's differential notation originated with
Leibniz.

4o

The celebrated priority controversy over who developed the calculus
first, soon degenerated into a series of charges and countercharges over
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whether or not Leibniz plagiarized his discovery of the calculus from
Newton's writings. Newton never published any of his writings until
years after they were written. Thus, when Leibniz, who, it Is safe to
say, developed his differential and integral calculus independently

of Newton's method, published his findings and Fatio de Duillier, a Swiss
mathematician and adventurer, who held a grudge against Leibniz accused
Leibniz of plagiarism (some 15 years after Leibniz' publication),

Leibniz was accused of the lowest kind of plagiarism, stealing Newton's
ideas "from personal letters solicited from him, and from private

conversations with his friends."
Both Brewster and More have written exhaustive accounts of the

controver'ﬁy,qz whien is beyond the scope of this paper. The controversy
revolved mostly around a letter sent by Newton to the Secretary of the
Royal Society, Henry Oldenburg, on October 24, 1676, which letter was to be
forwarded to Leibniz. Krmoamn as the Epistola Posterior, the letter
contains Newton's method of drawing tangents and certain maxima and minima
problems. After these, Newton wrote to Leibniz, who has requested infor-
mation on Newton's methods,
The foundationof these operations is evident enough,
in fact; but because | cannot proceed with the explanation
of it now, | have preferred to conceal it thus:
6accdaelldeff7i319nuolqrrisBtl2vx
O this foundation | have also tried to simplify the theories
which concern the squaring of curves, and | have arrived at

certain general theorems.
Turnbull explains,

The cipher is simply a transposition of the letters
in the sentence: . Data aequatione quotcunque fluentes
quantitates involvente, tluxiones invenire; at vice versa
{Tgiven an equation involving any number of fluent
quantities to find the fluxions, and conversely')...

Such concealments were not unusual in the seventeenth

century. 44

Later in the same letter. Newton drops another "clue", which, when
deciphered and translated into English reads:

Ore method consists of extracting a fluent quality

from an equation at the same time involving its fluxion;

but another by assuming a series for any unknown quantity

whatever, from which the rest could conveniently be derived,

and in collecting homologous terms of the resulting equation

in order to elicit the terms of the assumed series.”"

Oldenburg did net send this letter to Leibniz until May 2, 1677. ug
Leibniz answered it on June 11, 1677 and described some of his method.
Regarding the scrambled jumble of letters, More writes:

It is evident that no translation could by any pos-
ibility be made, and it was intended by the author that

o~ no one should be able to make any sense out of it till

he chose to publish the key sentences. Futhermore, no
mathematician could have obtained any help from such
brief and obscure sentences i f they had been written

. . . 47

in plain English.

Raphson, one of Newton's rabid supporters, claimed Leibniz solved
the letters and found his calculus from these sentences. |t should be
clear that this could not be true. |f the above was not convincing
enough, More adds:
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The time between Newton's epistola posterior of 24
October, 1676, and the announcement t0 Oldenburg by
Leibniz of his discovery of the Differential Calculus on
21 June, 1677, would have been absurdly short for him to
have invented the calculus even if he had deciphered Newton's
sentences. But, the fact is, the forwarding of Newton's
letter was delayed for months. This is verified by incon-

testable evidence. 48

Thus, Leibniz had a very short time to decipher a jumble of letters
which would yield only a vague hint of Newton's method, and develop g
complete mathematical analysis from this. '"For in his answer he frankly
described his differential calculus, (and) pave its algorithm, or symbolic

nomenclature, so perfectly that it is used today,""g

Unfortunately, both sides, including the eminent mathematicians
themselves, played the game very dirty. |n fact, Newton even attacked Leibniz
after the latter's death. This controversy is a blotch on the history of
mathematicians. It is now unthinkable that Leibniz was a plagiarist
in any sense.

Despite the detrimental effects of the controversy to Newton's repu-
tation (not to mention Leibniz), it cannot be doubted that Newton's
achievement in the development of the calculus was great indeed.

AFFENDIX
Barrow's Differential Triangle50
In figure 1, part of a parabola is drawn. As x increases from

A to B, y increases from Pto Q. Triangle-PQR is "Barrow's differential
triangle."

Y A

Figure 1
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FOLYNOMIALS WHICH ASSUME INFINITELY MANY PRIME VALUES

E. F. Ecklund, Jr.

V¢ will begin with Euweliu, wno stated and proved the following theorem:
The number of primes is infinite. Without this theorem, our discussion would
be moot.

Some time later, mathematicians began asking i f there existed a function,
p, for which p(i) is the i-th prime, for each integer i. There is no known
way to define such a function except by a pointwise definition. It was then
asked if there is a function f such that £(i) is a prime for each integer i.
Note: f need neither assume values of all the primes, nor assume its values in
any particular order. One attempt to produce such a function was Fermat's

n
conjecture that F(n) = 22 +1 was always prime. In 1732, Euler proved that
F(5) was composite. By the 1800's, it had been proven that no polynomial
could assume only prime values. The next logical question would seem to be:
Is there a function whose values are prime infinitely often? The answer was
known to be yes, since it had been proven that 4x+3 and 6x+5 both produced
sequences which are prime infinitely often. A search for conditions which
would characterize such functions was now begun.

In 1837, G. L. Dirichlet proved that for mx+n to represent infinitely
many primes, it is necessary and sufficient that (m,n) = 1, where (m,n)
denotes the greatest common divisor of m and n.

In 1854, v. Bouniakowsky conjectured that if f(x) is a polynomial in
X over the integers such that the coefficients of f(x) have no common fact-
ors, and if N is the greatest common divisor of all integer values of f(x),
then if f(x) is frreduciple, £(x)/N represents an infinitude of primes.

In 1904, L. E. Dickson introduced a new direction to these considera-
tions. He asked if aix+bi, i=1,..,nrepresented an infinitude of sets of

n primes. W may ask what conditions are necessary for this to be true.
First, for each i, the sequence .aix-c»bi must be prime infinitelv often: hence

(ai’bi) = 1. Since each prime can occur only n times = once in each progres-
sion - we see that (aix+bi; is 1,..,n}n{aiy+bi; i=1,..,n} =0, for some

integers x and y. If we let P(x) = n2=l(aix+bi), we may restate this as

(P(x),P(y)) = 1 for some integers x and .y.
In 1958, A. Schinzel announced a conjecture which seems to combine the

directions of thought of Bouniakowsky and Dickson.
First we introduce a necessary condition:

2 Condition S: Each of the polynomials fi(X)’ i =1,..,nisirreducible:
its leading coefficient is positive; and there is no natural number d > 1
that is a divisor of each of the values of P(x) = "2=1fi(")' (x = 0,1,2,...).

Schinzel's conjecture is as follows:
Conjecture H: If n is a natural number and fi(x). i=1,..,n, are nolv-

nomials with integral coefficients satisfying condition S, then there exist
infinitely many natural numbers x for which each of the numbers Fi(X) is prime,

i=1,..,n,
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% now present some other conjectures which are corollaries to conjecture

Corollary 1. There occur infinitely often four consecutive primes LI
PyiPas and Py whose local distribution is such that PyPy * PyPy = 2 and
p3—p2 = L,

2" 2" 2" 2"
Proof: Let fl(x) = x° +1, fz(x) = x° +3, f3(x) = x° +7, and fq(x) = x° 49,

for fixed n. Clearly for each i, fi(x) is irreducible and has positive lead-

ing coefficient. Let P(x) = n:=lfi(x)- P(0) = 14379, and P(1) = 2¢4:8-10.

Thus condition S is satisfied, and by conjecture H, the fi(x)'s are simultan-
eously prime infinitely often.

Corollary 1.1. There are infinitely many twin primes.

Proof: The pair fl(x) and f2(x) in Corollary 1 are twin primes when thev

are simultaneously prime, which by Corollary 1 occurs infinitely often.
Corollary 1.2. There are infinitely many primes of the forms x2+1 and

xu+1.
v A .
Proof: By Corollary 1, x” +1 is prime iffinitely often. Letting v =
2n-l 2n 2 . ) ) o o
X , We have x” +1 = y“+1 is prime infinitely often. Similarly letting v =
2n-2 of 4
X , We have x” +1 = y +1 is prime infinitely often.

Corollary 2. There exist infinitely many sets of three consecutive in-
tegers n, n+l, and n+2 such that each is the product of two distinct primes.

Proof: Let p(x) = 10x+l, q(x) = 15x+2, and r(x) = 6x+l. Clearly p(x),
q(x) and r(x) are irreducible and have positive leading coefficients. Let
P(x) = p(x)q(x)r(x); then P(1) = 7-11-17 and P(3) = 19-31-47. Hence (P(1),
P(3)) = 1. Thus condition S is satisfied and by coniecture 11, there exist
infinitely many integers x such that p(x), q(x), and r(x) are prime. For
such an x, let n = 3-p(x), n+l = 2-q(x), and n+2 = Ser(x): ie n = 30x+3,
n+l = 30x+4, and n+2 = 30x +5. Then n, n+l, and n+2 are each the nroduct of
two distinct primes.

Note that we cannot find four such consecutive integers since one of
them would be divisible by four. W may ask, however, how manv consecutive
odd integers there are which are the product of two distinct primes. W see
immediately that the maximum is eight since one of nine consecutive odd in-
tegers must be divisible by nine. 1t appears that the existence infinitelv
often of eight such consecutive odd integers would be a corollary to conjec-
ture H. In closing, we offer the following generalization of Corollarv 2:

Conjecture J. Given a natural number n, let m be the product of primes

less than n. fhen there exist infinitely many sets of n2-1 consecutive ele-
ments of arithmetic progressions with common difference m such that each is
the product of two distinct primes.
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An example of a group may be presente? In many ways. One method 7 N
is to define a set of generators ard reiaz.ons. Thus, for example. <a> " <a,g> il . “
<ar, a" = e a' = e :b - ga v e al
descrives the cyclic group of order four: there Is one generator, a, <a,b>
ana cn this generator we impose the r=stri:iior tnat it have oraer ) P — ab = ba
.=z Similarly, the kiein group iz given vy r a* = p2 =z e
€a,b?, a® 3 b7 = 2, a0 73 c ac A »-
. . . st S
The relations, of course, muzt e .cneistent: We do not concern our- O L
selves here with the problem or indepengence. 3 < ‘
b b ab)
Every formal expression which :an e constructed by juxtaposition & A ¥
¢f generators, or integral powers (p¢sitive, negative, or zero) of A
generators, is a group element, called a word. The group operation is D T IR (). adb . alb
juxtaposition of these words. Two words are equivalent if one can be B o> Iy = .
transformed into the other by means of firitely wany applications of ab‘=‘ba P ‘o
che group relations. An empty word is a word equivalent to the identity. S :d < s
A generator is free if it is unbound by any relation. A group is free BE § ob a a

if all its generators are free. V¢ notice, *nen, that the free group on
one generator is isomorphic to the group of integers under addition.

Consider, for example, the free group with three generators,

da,k,cy. An example of a wore in this group is

. \ , ‘

alb~%adchpall

Since tne greup is free, this word is not equivalent to any other possible
juxtaposition of powers of tne generators. Mw consider another group
with tsne same generators: <a,b,c>, a = B¢ = c3 =z e, ba: afb, ac = ca,
bc = ct. In this group, the word a2:-%3%:ba3! is equivalent to a?c. 1
this way, the elements of the group are the equivalence classes induced
on the set of words by the (equivalence; relations..

PP

a
These groups may be given a pictcrial representation, called a grapi.
or Cayley diagram: an array of poinvts /v r.lces) and directed line seg-
ments (edges) of various colors. (n yrin® “-he colors are usually regpre- .
sented by differently printed lines (s< i, uasnec, dotted, =tz.}. A a

Cayley diagram, then, is an array { vertices and edges wtizr nas the

properties that A é A A
: . (- i ] 1
- .- 1} at each vertex there is an eage ¢t eazr color directed toward the —d2 lb; 1B 'ab o a2
- vertex and an edge of each :oic: uirected away from the vertex; [ ‘.' ' g i
1
. . . A
2) the figure is symmetric in eaun vertex. A A i ]
| ' : '
This second condition means tnat the stricture of tne ~iagram IS ccastant, 1 -1 N e :. _ ‘a2 ;’;b;
no matter from which vertex it Is "viewed". This does iot necessariiy T T 3 L f N 8 a
mean a geometric symmetry in the piane, as several of tne diagrams below A ' ! A
illustrate, but rather an invariance under any permutation of the vertices. ! :l\ 'f :
. . . . ! 1,71 hel v '
The Cayley diagram corresponds to its group in this wav 12 MR jab~ 13201
yley S s e e

1) there is a one-to-one corres; onder.ce tetween =+« =1 * get€rators
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ana the set of colors. use: in tne Jiagraa,

2) tnere IS a one-to-one currespondence between the set of group
elements and the set of vertices;

+) the vertex corresponding 1. tne ilentivy rmay be arbitrarily

chosen

Ly if x and y are group elements cc:respw.ilng to vertices X and Y
respectively, and if a is a generst.r —orresronding to color A,
then xa = y if and only it there I au cuge ot color A leading

from 4« to v.

A path in a Cayley diagram IS any conncctea sequence of edges.
La=i path corresponds to a worl; if the patn - ieads from vertex g
vz vertex S, and it n, R, and . correspond respectively to W, r, and
s in the group, then rw = s, and cc.versely. Thus a civsedi patn
zerresponds to an empty word. If Two patns have tne same initial
point and the same terminal point, they correspond to equivalent words.

V¢ present at the end of the paper the graphs of several groups.
fie remark that movement along an edge against its direction corresponds
to multiplication by the inverse of tnat generator. W also remark
that if a generator has order two, it is unnecessary to indicate direc-
tion alung the corresponding edge - traffic can B considered to move
in both cirections along that street.

The graph <: a group is not unique. The edges need not be straight
lines, and variations are limited only by the artistic imagination of
the individual. Some graphs are closed designs and other graphs fill
the plane. There are seventeen groups whose graphs fill the piane with
a continually repeated pattern. The group <a,b)>, ab = ba i s one such
group. fne pursuit of tnis colorful topic can lead the mathematician
into such useful occupations as designing tile floors, wallpaper, and
Christmas cards.
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A SEMI-NUMBER _SYSTEM

Ann Miller
St. Louis University

I'n the June-July, 1966 issue of The American Mathematical MmLW
Samuel Stern presented a paper entitled "The Semi-natural Numbers." n
this article he outlined the development of a number system from four
basic axioms in a manner similar to the development of the natural num-
bers from the Peano axioms. He also suggested a method of extending the
semi-natural numbers to a larger set in which a certain hind of subtrac-
tion is possible. What follows is a description of the axioms for a
semi - natural number system with a few consequences and examples and an
extension of semi-natural numbers to a larger set of semi-integers. Then
preceding beyond the limits of the original article, we shall construct
ordered pairs of semi-integers to form semi-rational numbers and finally
we shall define and briefly discuss semi~real numbers. . .
Definition. Let N be a set and < he a binary relation on N. N is said
to be system of semi-natural numbers if the following axioms are satisfied:

Axiom 1. N is simply ordered with respect to <.

Axiom 2. N is not the empty set.

Axiom 3. If x is an element of N, then there exists y in N such that

X < y.
Axiom 4. If G is a subset of N such that, for all x in N, T(x)&EGC
x is an element of G, then G = N. By I(x) we mean
{y yisinNandy < x}.
The article [St] by Stetn demonstrates that this definition implies that
a semi-natural system iswell ordered by <, .i.e. each non-empty subset has
a least element.
Definition. For x, y ¢ ¥ such that x < y and x < z <y for no z € N, then
X Is the immediate predecessor of y and y is the immediate successor. of x.
If an element p of N is such that p has no immediate predecessor, then p is
said to be a primary semi- natural number.
Definition. The binary operation of addition is defined on N by:
(). x*+ps=x, for all p, primary;
(i1). x ¥ Sv = s(x T y), where Sk denoted the successor of k.

The binary operation of multiplication is defined on N by:
(1). xp = p; (11). xsy = xy + x.

Addition and multiplication can be shown to be well-defined and associative.
In seeking to find models for a semi-natural system, it iS easy to

verify that the natural numbers in union with zero, i.e. the non-negetive
integers, in their usual order form such a system. As another, somewhat

arbitrary example, consider P= {0, 1, 2, ..., 0', 1', 2, ««:}, where
“the elements of P are ordered as they appear in the array. This set P de-
inonstrates that addition and multlpllcatlon are npt necessarl[){ commutative

in a semi-natural system. InP, 1 =1+s@1") =sQ

S(1+s(0") = S(sQ +0')) =S¢ s(1)) = S(2) = 3; while 2 +1*

2' + 5(0) = s{2' ¢u,=s(z')~3'. Also, 28 * 1 =2 . S(0) =2' 0+ 2

» 0+ 2 = 2 whilel® 2" =1, S(1') = 1*1' + 1 = 1° 5(0') +1 = 1. 0" + 1 +1

w0 t1t1-e 2,

Although a semi- natural system is not necessarily abelian, there are
several properties which provide us with a weakened commutativity. Among
these are: xty* z «x*t z+yand xyz = yxz. Both of these sratements
are proven by using Axiom 4, the principle of transfinite induction, on z.

Also, the distributivity of multiplication over addition holds. There
exist right additive identities, the primary elements, and left multi-
plicative identities, the successors of prlmary elements.

Let us consider the set M = 1 (a,b) : ¢ N }. Therelation of
equality is defined on M by: (a,b) = (e, d) 1Ea +d=c+b It follows
from this definition that equality on M is an equivalence relation. Let

us denote the equivalence class of (a,b) by (a,6) and set | = { (a,b):
a, be N}, Theset | will be called a system of semi-integers.
Definition. The operation of addition is defined on 1 by:

(a,b) ¥ (c,d) = (atc, b+dl.
The operation of multiplication is defined on | by:
(a,b) 6 (c,d) ~ (ac + bd, ad T be).
Again, these operations on I, just as the rorrespording operations on N,
are well-defined and associative, but not commutative. An important result

regarding semi- natural numbers is that for any two numbers, a and b € N,
eithera = m*+borbent a, for somem, ne N Thus, the elements Of | are

of two forms: (a, n+ a) or (m* b, b). Furthermore, « semi-integer of

the form (m ¥ b, b) equals (m, p), which equals (m, 0), where O is the least
element of N. For m ¢« N such that m is not primary, m = (m, 0) iS said to

be a positive semi—integer; for p ¢ N such that p is primary, (p,0) = pisa
primary semi-integer. Before defining a negative semi-integer, it should be

noted that (0,k) # (p,k) for all k ¢ N3 and hence we must first find unique

representations for elements of the form Tp,m). To do this, we shall
define the absolute value of semi-natural numbers: |f m ¢ N, then the
absolute value |{m| of m=m if 0 <m < p, for all primary p such that O < p;
= k if ms p+k for some non-zero primary p such that,
for all p* < = with p* primary, p* < p; k| = k;
=0if mis primary
Then from the definition of equality. it follows tuat (p, m) = (p, ImI).

Thus, for nen-primarv m, (p, 'm]) = -m is said r~ be negative semi-integer.
May familiar results reparding the integers also apply to the semi-integers;
e.gey, =(-m) = m, m(-n) = (-r)n = -(mn), and (-w)(-n) = mn. A relation can
be defined on | which preserves the relation sf < on the semi-integers of the

form (m,0) = w which can also be regarded as -.mi-natural numbers.
Definition. The relation << is defined on | bv:

me(a b) <« n=(c, d) iff atd<c+bh

If the non-negative integers are selected as the semi-natural system,
the resulting set of semi-integers would be the familiar set of integers. |If
the set P, defined above, is chosen as the semi-natural system, then the set

Poe{ieay -2 -1, ,,,, -2', -1', 0,1, 2, ..., 0', 1", 2',...Hs the cor-
responding system of sem|—|ntegers

Consider the set ¢ { (a,b) - a, be | and v is not primary) , with
tie relation of equality defined on q by: (a, b) = (¢, d) iff da = be.
This relation is in fact an equivalence relation and partitions Q into
mutually disjoint equivalence classes. Denote the equivalence class of
(a, b) by ((a, b)) and define R { (@ b®):a b= | with b # primary }
to be a svstem of semi-rational numbers.
pefinition. The operation of addition is defined on R by:

((a, b3) <+ ({c, d)) = ((da + bc, bd)).

The operation of multiplication :s defined on R by:

((a, 6)) <*> ((¢, d)) ® ((ac, db)).
“lany properties of the semi-natural numbers ane ric semi-integers induce
corfesponding properties in the semi-rational numbers; e.g., left cancel-



190

lation of nultiplicationby a non-primary element. Further, the sem-integers
can be enbedded in the senm -rational nunbers by the mapping9: | —— R
given by m6 = ((m ,S0)).

Among the new features of the seni-rational nunbers, we can define the
inverse of an elenent ((aa b)) where a is also non-primary, to be the semi-
rational nunber ((b, |a])). This definition allows us to consider a new
operation:

Definition. The operation of division is defined on R by:

Sl - e, T (e, b)), vhere (G, a7 = (@, el

Another inportant result can be expressed as the follow ng:

Theorem Equations of the formax = b, where ab ¢ Rand a # primary have
a unique solutionin R, 1

Proof: dearly x = a - bis asolution since ax = aa *b)=(SO b=~h
Further, assune that x and y are both solutions to the equation. Then

ax = b =ay, i.,e.,, ax = ay. B left cancellation nultiplicatively by a
non-primary elenment, it follows that x = y; hence the solution is unique.

It is interesting to note that while equations of the formxa = b are
soluble in R these solutions are not unique; it is readily seen that the
proof breaks down because there is no right cancellation nultiplicatively

by a non-primary elenent. As an exanple, choosing the set P defined above

and denoting the resulting systemof sem -rational nunbers by ?, the equation
X * 2 =6 has two distinct solutions, viz., x = 3 and x = 3. Another inter-
esting property of sem -rational numbers is that for any two sem-rationals
x and y such that x < y, there exists a seni-rational z such that x < z <y,
i.e., the senm-rational nunmbers are dense.

In attenpting to enlarge the sem-rational nunbers into a nore conpre-
hensive type of sem -nunber, we are net with the same difficulty found in
the extension of the rational nunbers to formthe real nunbers; the nethod
of constructing ordered pairs fails. In a manner conpletely anal ogous to
Dedekind's method of "cuts™ in the rational nunbers, we proceed as foll ows:

Definition. Gven a system R, of sem-rational numbers, a cut is a partition

of R denoted (A B), into two sgts A and B such that

(1). AUB =R AfNB ¢

(ii). A¥# 0 B # 0

(i4i). For all a e Aand b € B ac<b.

(1v), For any a ¢ A there exists & € Asuch that a<a’'.
Thus, there are two types of cuts: (a) A has no largest element and B has a
smal | est element, this type of cut is said to define a sem -rational nunber,
i.e., the seni-rational nunber which is the least elenment of B; (b) A has
no largest element and B has no smallest elenent, this type of cut is said
to-define a sem-irrational number. The set of all cuts will be termed the
set of sem -real nunbers.
The four standard arithnetic operations can be defined on R#, a system of
sem -real nunbers; in addition, extraction of roots is possible on R#. Many
of the consequences regarding seni-real numbers follow fromsimlar proper-
ties of sem -rational nunbers, including the characteristic of density.
Exanpl es of semi-irrational nunbers can also be given and proven to be
sem -irrational, with the nost obvious exanple being /5050
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W onskian ldentities

Martin Swi at kowski

Nei ther the statement nor the proof of the main result of this paper
(Corollary 3.1) are original with this author. G Polya [2, p.315] prefaces
his use of the result with the words "..ly the usual fornula for a mnor
of the adjoint determinant." The proof given here is essentially that in-
dicated by Philip Hartman [1,p.310]. .

The purpose of this paper is to provide an elenmentary and direct proof
of Corollary 31 for those who lack the notivation and/or backgroundto
read Hartman's paper on differential equations and who are not famliar with
"the usual formula for a mnor of the adjoint determnant."

Definition. Let f,...,f be functions n-1tines differentiable over

(a,b). The "Wronskian of £ sereaf s WE ,0uuy £) i's the folloving
det er mi nant

|
[ fl f"2 fn
(1) (1) veeg(l)
f1 1=2 fn |
£ (n-1) £ (n-1) ... £ (n-1)

1 2 n |

(ne of the nost basic identities involving Wonskians is the fol | owi ng
fact: .-
v u

(6.1) [_ll]' _owl T ouv! v u! W(v, u)
v - 2 2 - 2
v v
Two identities will be proved which allow certain manipul ations of
Wonskians. Theorem1 presents a sort of "factoring,” theorem2 pernits an
alteration in a Wronskian's sSize.

Theorem 1. EY.(t) # o for t ¢ (a,b), then w(Yzl...., YZJ.) =

YjH(Zl,..., ZJ.) on (a,b),
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Proof. w(vzl,....'{::) =

¥z, vz:. |
YZI' + ‘{'Z1 YZ':. + ‘{'.-':j '
i
: I
i-1 j-1
j-1 k), (i-1-k) sen j=1] k), (i-1-k)
[ X ] Y Zl 2: K Y Z:.I
k=0 k=0
Row operations eliminate all but the first terms of each element.
WYZ ,o0y Y2,) 2
a
YZ1 YZj Z1 Zj
3 ; = ¥ .
yz (3-1) "'Y7 (] 1) (j-1) "'Z.(]'l)
1 3
: Y]W(Zl,..., zr).
Theorem 2. If Y(t) # 0 for t e (a,b), then W(Y, Ziyeeny Zl.) =
y z. )" z.|"
e
YW I on b).
‘o I | o NN

Proof. By theorem LAY ,Z g00e, 2,) °

. z )
1
A [1,Y_1.,.,._ ?‘2';‘

<]

Therefore

- (n+2)k[u1-(n+l)

g (02K = (a+1)(k-1) - (n+k+l)[
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An ingenious identity indicated by Hartman can now be proved.

k-1
(W(ul..... un))

w(w(ul..... u o, xl)..... W(ul...-. U xk))-

Theorem 3, W(ul.... U Xyseees xk)

n

Proof.
Basis: n=1l:

By induction on n.

WD NG, e 1) = WG XD,y Wy, X))

(w(ul))k’lw(ul, Xppeves %) ® ulk'lw(u]. Xyseees X))
(1%, 1" x, }'
k-1, ke, II-J LJJ | iy, w(“1' i {ﬂ_f~'“k) ]
- 1 1 \‘hl' sevey ull j -, l peeay l s
- u12ku1 ), XD Wx)) - w(w<u1, i Vs 4 W(ul.xk)).

The first equality is by the value of a one element determinant, the second by
the fourth by theorem 1, the last by adding

theorem 2, the third by fact 0.1,
exponents.
Induction hypothesis: Theorem 3.

. k-1
Inductionstep: n+l: (w(ul,..., un+|))

W(ul..... UL Xpreen xk)
W(w(ul..... U oy xk)).
w(w(ul..... Ui xl)..... W(ul,.... LI xk)) =

I A T S
ol ) [

|
ol
o b

H(ul,..., “n+1)] -
u -(n+k+l)

’ xl),..., W(ul...., u

T
el

1

1

W(ul,..., U1 Xpeeees xk)

RLSY
W(ul.... . un+1}J

1
W(ul,..., U L1 Xpeeees xk)

k=1,
z [W(ul,..., "ml)] WO geaey U e Xpseeey X ).



The first two equalities, by theorems 2 and 1, change a Wronskian of nt2
= X n+2 Wronskians to a product including a Wronskian of n+l x n+l

Wronskians, facilitating the use of the hypothesis. The fourth equality

reinstates ulinto the Wronskians by theorem 2, and the fifth gathers the

exponents of vy which sum up to zero.

Polya's formula for a minor of the adjoint determinant is a specific
case of theorem 3. Although probably proved by a tedious determinant
method originally, it now becomes a simple corollary.

[W(ul,..., u v)]' .
W(ul.... s U, X)

Corollarx 3.1

W(ul..... un) W(ul,..., uy X, Y)

(W(uppeuny uy X))

Proof. [W(ul...., u Y’ )
mul,.... U 9]

W(W(ul,..., un,X), W(ul...., un.Y))

(W(upyeney X))

z W(“.l""' un) W(ul,..., U X, Y)

oy 2

The proof uses fact ,1 and theorem 3 with k = 2.

Hartman's article is suggested to the reader who is interested in
further Wronskian identities and in their use in determining properties of
solutions to linear differential equations.
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AN EXTENSON CF HERMITIAN MATRICES

Robert Haas
John Carroll University
Hermitian matrices, defined to be identical with their transposed
conjugates (A* = A), possess so maly interesting and useful properties

that it is only natural to inquire what would happen i f A* = An, where
n is an integer greater than 1. In this paper, such a type of matrix,
and the analogously defined type of operator in Hilbert space will be
considered.

A square matrix A satisfying the relation A* = A", where n is an
integer greater than 1 will be called a Hermitian matrix of degree n,

*
or for short, an B matrix. Since A& = AAn ® A“+1 = ATA = A A, any
B matrix is normal. This implies that an 1 1 matrix is simple (di-

agonalizable--geometric = algebrajc multiplicity for each eigenvalue),
hence is unitarily similar to the diagonal matrix of its eigenvalues,
and that eieenvectors associated with distinct eigenvalues are orthogonal.

A relationship can be obtained from A* = A" not involving A*.  For

* *
since (as can easily be shown by induction) (A )™ = (A™", it follows

2 ~
that A = A** = (An)* = (A*)n = (AN = A" , SO A'an fOl' any 11 matrix

2

A If A-l exists, this in turn implies that AP -1 = I, Conversely, if
2 2

A" "1 < |, then since by assumption n>1, A" 2

1

exists and is A™L. Hence

2
if Aisan Hn matrix, A" T = | iff A is nonsingular. This can also he

expressed by saying that if A is a nonsingular H matrix, its powers will
form a cyclic group of order n2 = 1, or some divisor of nz - 1.
Since any Hn matrix is unitarily similar to the diagonal matrix of

its eigenvalues, it would he worthwhile to consider these eipenvalues
themselves. The relations they satisfy arc similar in form to those
P3
obtained for the matrix: if u iS an eigenvalue, u = u", and v = u" .
The first of these is proved in the same way that it is shown hat the

. . —_ %
eigenvalues of a llermiti&® matrix are regl: AXx = ux implies x A = ux,

* * - * x ok * n R = - n *
50 X A x=pux x, but X A x =X AX=uyXZX, SO Ux Xx=puxx. x1is an

. * = n L n
eigenvector, x # 0, x x ¥ 0, so # = u . similarly, wx = ax = A" x
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2
= " X, and X ¢ 0 yields y = "
. . * n - - . .
implies A x = A"k = U'X = ¥x, SO u is an eigenvalue of A* with the same
associated eigenvector x.

The scalar field will here be assumed to he the complex numbers, and

r'4

sou = " requires either that u = 0, or 4 is an n2 - 8¢
should be noted that while the eigenvalues of an B matrix,

If v is an eigenvalue of A, ux = AX

root of 1. |t
unlike those of

a Hermitfan matrix, are not necessarily real,
all must I'ie on the unit circle (or at 0).

they can be ordered since they
The normality of an B matrix now

implies that such a matrix will be unitarily similar to a diagonal matrix of

0's and n2 - 1°% rootsof 1. If Aisa nonsingular i matrix, it has no

zero eigenvalues, and so this similarity description implies that |det A] = 1.

The above requirement that y be 0 or an nz - 15t

necessary, not sufficient,
H matrices really exist.

root of 1is only
and so actually there is so far no proof that any
This situation will now be remedied by showing

that a matrix A is H iff it is unitarily similar to a diagonal matrix con-

sisting of 0's and n + 1%% roots of 1

*
since if A = U DU, where U is unitary, and D is a

then a® = 0™ = (U*(E)"U)* = A* provided that ()" =

or, taking conjugates. " = 5. If the eigenvalue u, an element of n, is O,
- . 1 -ig
0" © 0. 1f un+1 =1, pt = -:—', SO expressing u as eie' T % Ty = e =
e
u.

Sufficiency is clear,
diagonal matrix,

Necessity is shown as follows. As was proved above, the nonzero

elgenvalues of an H matrix must be n? =1 roots of 1, 1. e. must have the

2 0
form y ﬂhl(n where k can ranee from 0 to n2 - 2. Sincew" = 1.
A2okn/ (- i
- » wherem is an integer. Solvmg,
nk = (n = 1)m - k, (n+1) = (n'l)(n+1)m, or sincen > 1, —l‘ﬂm, an
integer. Resubstituting, u = einmr/(n+1). where m is an integer, and it can

be seen that ¥ isindeed an n+ 1 root of 1
From this characterization, it can now be seen that all H matrices
* *
for if A= U DU as above, then aA = A"
. A“ﬂ = U D“‘H'u. Since A is nonsingulag, D is a diagonal matrix entirely

of n+1%% roots of 1, "o 1)"4'1 =1l,and AA = U |U = U*U = .

There is an unlimited number of Hermitian matrices, since in the 'lunit-
arily similar to diagonal of eigenvalues™ representation, any real number
could serve as a possible eigenvalue. As was just shown, however, H_ matrices

haveonly a finite number of choices available for eigenvalues, namely O and
then+ 1 (a+1)% roots of 1 Consequently only a finite number of H-
matrices are distinct under unitary similarity transformations. This number

which are nonsingular are unitary,
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can easily be determined. Suppose all r x r Hn matrices are under considera-

tion. A permutation matrix is unitary, so the r positions on the diagonal
matrix of eigenvalues are indistinguishable under unitary similarity trans-

formations. The number of different diaeonal matrices is then the number of
ways r indistinguishable positions can be assigned to n + 2 possible eigen-
values, which from occupancy theory is mr*l).

The analysis up to this point has concentrated entirely on the original

n . . .
problem of A* = A", where n is an integer > 1. However, in the process several
related questions have also been solved. For instance, one might consider

E
matrices, for n an integer > 1, by the relation (A » =
1/n

defining Hl/n

suggesting A* = A However, §aking conjugate trans-
< (A = Al
is back to the original problem A = A", so an H1/n matrix is simply Hn®

Similarly, one might try to extend the concepts of both H and unitary matrices

, if the root exists «

" A _
poses of both sides, this quickly becomes At ) which

e
by considering matrices which satisfy ATA" = I for n an integer > 1 (suggest-

# -n . . . . . #
ing A" = A" if inverses exist), to be termed H_n matrices. But if A A" = I,
det (A a") = 1, det A # 0, A"Y exists, and A* = A", An analysis of the eigen-

values exactly analogous to the one done for Hn matrices will show that H-n

matrices are unitarily similar to diagonal matrices of n-lst roots of 1 (0 is
excluded since the matrices are nonsingular), and so for n > 3, the H
(The H_, and

matrices are unitarily similar to diagonal

matrices correspond exactly with the nonsingular Hn_2 matrices.

H 3 matrices are trivial cases--H_3

matrices of *1's, and only | isH_,.)
Similar conclusions can also be obtained in the more general context of
bounded linear overators in Hilbert space. Fer if T is such an operator

which satisfies the relation T+ = T (here, T is the adjoint of T, and ™
denotes the mapping T comocsed with itself n times), for n an integer >1, then

again T T S A TT", sc T is normal. Also, if u isS an eigenvalue (element
2
. . ik n
of the point spectrum) of T, then since T =T =T , for some x # 0, ux =

2 2
T =T x=u"x, sou=u" ,andif w#0, [ul =2 IfThasno zero eigen-
value, then a finite-dimensional spectral theorem can be used to show that T
is unitary in a finite-dimensional inner product space, and the same result
can be obtained in the infinite case under the added assumption that T is

x|l

and if T # 0, ||T]| > 1.

completely continuous. Incidentally, since T = , for all x,

2 2
HT™ x]] g )™ Hxll, so 1Tiig 1lT])®

Returning now once again to the case of the H matrices, the representation

in terms of the diagonal matrix of eigenvalues allows powers, roots, and
finally, approximation of normal matrices by H matrices to be discussed.

If A and 8 are two H matrices for which B = BA the AB is also Hn, since
* £ IR
(AB) = B A = a"A" = (aB)".

mutativity of A and B isfor A = U'DU and B = U EU, where U is the same unitary
matrix for both A and B, and D and £ are the diagonal matrices of eigenvalues
of A and 8, A special case of this is of course when A = B, andso if A

One sufficient Cogdition for the required com-

is Hn’ so are all powers of A. The representation as A = U DU
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gives slightly more information than this.

If Alis "n’ a nonzero element of
D will be an n+1®% root of 1.

If ntl = ab, where a, b are integers > 1, then
a * a . th a . .
- A% = u'p%, and the elements of p® will be b"" roots of 1 (or n), so A® will

be Hb-l (if b =2, A? will be unitarily similar to a diagenal matrix of +1's

or N's, which if nonsingular will be idempotent). |p g similgr way, all

rational roots of A can be defined (though not uniquely) as U RU, where R
is a diagonal matrix of the corresponding roots of the elements of n. If
Alis Hn and r is an integer, then it can easily he verified that Allr is

Hor + ¢ - 1°
The set of all rational roots of 1, the set of possible eigenvalues for

B matrices, forms a dense subset of the unit circle. u15 would suggest

that other matrices might be approximated in terms of H |(5trices.
If N is an arbitrary normal matrix,*then it isunitarily similar to the diagon-

al matrix of its eigenvalues, ! = V FV. A || rational roots can be taken
(again not uniquely) by taking the corresponding roots of F. is clear that
there is an integer m, depending only on F (hence N), so that if r is an

YT Wil have modulus less than 2. they
are nonzero, they can he resolved uniquely into the sum of two points on the
unit circle. (Using the familiar parallelogram law for addition, the points
will be the intersection with the unit circle of the perpendicular bisector
of the segment between the given point and the origin.)

element of Fllm

integer > m, all elements of F

Thus for the 1-1

, there is an integer n, such that the two points into which 3,

the element has been resolved are approximated to the desired closeness by the

two nlSt roots of 1, vy and vy- (If the element is 0, simply let y; = vy = 0,

and disregard nl.) There are similar numbers n n yielding the n,,
p
st
ey nP roots of 1, Hgseres Hp and Vo seens Vp where F is a p x p matrix.

Let n + 1 be the least common multiple of n

g rere
7003 Bpe Then wy y...y u and

Vi s vP are all n + lst roots of 1, and I-‘l/m ~ diag (”1 + V] seees uP

+ vP). Let A = diag (u1 T up) and B = diag (\»1 sumny vp). Then V*Av
*
and V BV are H matrices, and [V*Av + vyl - V*(A + B)v]’“ = V*(A + ™
* *
aV FV = N On the other hand, |V Av + V*BVJ'" may be expanded immediately tO

m
Eo (3“) V*A iy (Ao = BO = 1), and each term V*AJB'"'JV is also Hn‘ Con-
j-

sequently, any normal matrix can be approximated as the mth power of the sum

of two H matrices, or as the sum of 2" # matrices (counting the sum as

m
Eo ) terms), where m depends only on the normal matrix itself.
=0~
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Bete REvEWS
Edited by

Roy B. Deal, University of Oklahoma Medical Center

Elementary Number Theory By Ethan D. Bolker, w. A. Benjamin, Inc.,
New ?orE.zN. Y., 1970, xi + 180 pp., $8.50.

For the reader with the bare essentials of modem algebra, this
introduction t o number theory should prove interesting and should
further enhance his insight into modern algebra, particularly if he
works through a good portion of the exercises.

Compiitatienal hevieds ip Daveisl Dvfferential HQUATITRS py o R Mitchell,
John Wiley and Sons, Inc., New York, y, v. 10018, 1%¥8- ii + 255 pp.,
$11.00.

A reader with calculus, some matrix theory, and access to a high
speed computer can learn a great deal about numerical analysis, partic-
ularly the use of finite difference techniques in solving partial dif-
ferential equations, and gain a great deal of insight into the basic
partial differential equation of matheématical physics from this very
practical, but sound* introduction to the subject.

A Collection of Matrices for Testing Compiitational Al orithms By
ToBert T. Gregory and David L. Karmey, goﬁn Wiley and Soms, Tnc.,
New York, N. Y. 10016, Oct., 1969, ix t 154 pp., $9,95,

Although designed as a reference to assist in testing algorithms,
anyone interested in computational methods invelving matrices, and
who has not already had a great deal of experience, will find the

information on a wide variety of matrices to be of considerable use
initself,

Lie Algebras and Quantum Mechani By Robert Hermann, ¥, A. Benjamin,

Tne., New ork, N. Y. 10016, 1970, xvi *+ 320 pp., $17.50 paperbound $7,95.
Vector Bundles in Mathematical Physies, Y§lyme 1 By Robert Hermann,
V. A. Ben)amin._rnc., Nav YOrR, N, Y. 10016, 1970, xiii t usl pp.°*

$17.50 paperbownd $7,.95.

Vector bundles in Mathematical Physies, Valufie II By Robert Hermann,
W. A. Benjamin, inc,, New York, N. Y., 100161, 1970, ix + 400 pp.

$17.50 paperbound $7.95.

These three books are probably too esoteric for most Pi Mi Epsilon
Journal readers, but they represent am important contribution to the
recent trend of bringing some of the medern mathematical concepts in
Lie algebras and differential topology back to the modem ghysics
from which it evolved. The reader must have some experience with these

concepts and be seriously interested in this development before under—
taking these volumes.

Beginner's Book of Geomet By Young and Young, Chelsea Publishing
ompany, Bronx, New York, 5970. xvi~t 222 pp., .50,

Flane Trigonometry By leonard E. Dickson, Chelsea Publishing Company,
Bronx, New Jork, §970. x + 176 pp., $3.95.
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B3X REVIEWS~--Continued

Formulas and Theorems in Mathematics By George S, Carr, Chelsea
Publishing Company, Ne New York, Wi T, 1970 xxxvi + 935 pp. $12.50.
1

These are reprints of old books by the masters. gycept for some
interesting insights into elementary geometry in the book Dy the famous
Youngs the first two books are basically of historic interest, The
book by Carr is, however* unique. This amazing collection of about
6,000 propositions was written as a review book for the Tripos about
1880. The reviewer has found his original editions of two volumes
from a second-hand bookstore a useful reference* even today* in such
topics as infinite series, theory of equations* determinants, peo-
metry of conics, elementary differential geometry* formulas of cal-
culus, calculus variations, ordinary and partial differential equations*
affine geometry, theory of plane curves, and solid analytical pgoemetry.
I't is perhaps of both pedagogical and historical interest that this
work was the basis of the education of the largely self-taught Indian
mathematical genius, Srinivasa Ramenujan.

EPSTED BOCRS

Table of Modified Bessel Functions By Henry E, Fettis and James C,
EasJ-.m, Applied Mathematics Rosearch Laboratory* Aerospace Research

Laboratories, Office of Aerospace Research, United States Air Force
Wright- Patterson Air Force Base, Ohio, February 1969, iv + 232 pp. °*

Ravionai Approximations To A Class G-Functions By Jerry L. Fields*
Midwest Research Institute, Kansas &t.'ty—mo.,—)!rerospace Research
Laboratories, Office of Aerospace Research, United States Air Force,
Wright-Patterson Air Force Base, Ohio,

A Convergenece Theorem For Nooncommutative Continued Fractions By
Wyman Fatr, Midiest Rosemrs i
Aerospace Research Laboratories, Office of Aerospack Research®
United States Air Force, Wright-Patterson Air Force Base, Ohio,
March, 1970, iii + 5 pp.

Derivative-Free Iteration Processes of Higher Order, Jet Wiing
Energetics Resear ADOTAlOTy s Midwest Research Institute, Kansas
City, Mo., Aerospace Research Laboratories* Office of Aerospace
Research* United States Air Force, Wright-Patterson Air Force Base,
Ohio, iv + 10 pp.

_u?__ﬁ,l“ ‘-‘ali,fl;:fes For Generailzed Hypergeometpric Functions By Yudell L
Tiuke, Midwest Kesea¥eh-Institue, Kansas .1 Eypace Re-
search Laboratories, Office of Aerogpace Research? United States

Air Force, Wright-Patterson Air Force Base, Ohio, March 1970,
iv + 32 pp.

6. ~More Zeros of Bessel Function Cross Products By Henry E, Fettis and

James C. Caslin, Applied Mathematics Research Laboratory —Aerospace
Research Laboratories* Office of Aerospace Research, United States
Air Force, Wright~Patterson Air Force Base, Ohio, Dec, 1968, v + 56 pp.

10,

LISTED BOOKS--Continued

A Table of the Complete Elliptic integral or tne Li.ciKind Lo
Complex VALUES O the Modulus, Part T By Henry E. Fettis and

James C. Casiln, Applied Watneratics Rescarch Laboratory® Aerospace
Research Laboratories, Office of Aerospace Research, United States
Air Force Base* Wright-Patterson Air Ferce Base, Ohio, Nov. 1969,
iv + 298 pp.

A Table of the fomplete Liliptic integral of the First Kind For
Complex VAluss 'u'f“"%moaulus, Fart 11 0y Teury E, fettls and
Tames . Caslin, App jed Ja.rematics Research Laboratories® Aerospace
Research Laboratories, Office of Aerospace Research, United States
Air Force, Wright-Pattarson Ajr Force Base, Chio, November 1969,

iv t 250 pp.

Tablesof Toroidal Harmonics, 11- Orders 5-10, All SignitizaRi Ddgrees
By Wenry ¥, Totils and James T, Caslin, Applied Wathematics R'esea%
Laboratory, Aerospace Research Laboratories, Office (R:{ Aerospace
Research, nited States Air Force, Wright-Patterson r Force Base?
Ohio, December 1969, iv t 179 pp.

. ) 1: Orders 0-5, All Significant Degrees
Jabtes of Topeldal samanics: ' 9 R84 A Varhenatics asearsh
Laboratory, Aercspace Research Laboratoriess Off ice of Aerosp
Research* United States Air Force, Wright-Patterson A Force Base,

Ohio, February 1969, iv + 209 pps

calculus bgzglemm oy Robert A, Kurtz, W. A Benjamin, Inc.’ Neyw York,
970, 1x + 274 pp.

:
:

The Governing Council of Pi Mi Epsilon announces a contest for
the best expository paper by a student (who has not yet received a
masters degree) suitable for publication in the P+ :

The following prizes will be given

$200. first prize
$100. second prize
$50., third prize

providing at least ten papers are received for the contest.

In addition there will be a $20.00 prize for the best paper from
any one chapter* providing that chapter submits at least five papers.
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PROBLIM DEPARTMENT

Edited by

Leon Bankoff, Los Angeles, California

This department welcomes problems believed to be new and, as a rule,
demanding no greater ability in problem solving than that of 'the average

member of the Fraternity. Occasionally we shall publish problems that
should challenge the ability of the advanced undergraduate or candidate for
the Master's Degree. Old problems characterized by novel and elegant-
methods of solution are also acceptable. ggjyutions should be submitted on
separate, signed sheets and mailed before November 15, 1971.

Address all communications concerning problems to Dr. Leon Bankoff,
6360 Wilshire Boulevard, Los Angeles, California 90048.

PROBLEMS FOR SOLUTION

248. Proposed by R. S. Luthar, University of Wisconsin, Waukesha.
For any positive integer n, prove that the following inequality holds: -

n(n + 1) 1
{n(n + 1)} z 2n(“-‘-%(n!)n_
o=
n k!
k=2

249. proposed hy R. S. Luthar, University of Wisconsin, Waukesha
Prove that

m
P ’ @+myE====3" %1 | P 4,

where p is an odd prime and m is any'non-negative integer.

250. Proposed by Charles W. Trigg, San Diego, California.

Identify the three mathematical terms represented by the following
items:

(a) Bass made five yards over his own right tackle. j,gt h
peing tackled he tossed the hall back to Gabriel, who imegisatgfy e was

flipped it back to Casey. After advancing ten yards, Casey threw
the pigskin back to Mason, who lobbed it back to Bass, who continued on
to a touchdown.

(b) As | was going up the stair

I met a man who wasn't there.
lle wasn't there again today

I wish, | wish he'd go away.

251,

252.

253.

254.

255.

256.
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(c) Yukon Jake's tale was characteristically long, detaileds and
profane: “At noon | found that a *** bear hgq discovered ny cache

and destroyed,a] | the supplies. | was hungry and the nearest
food was ten miles away, so | got the *** out of*mere fast.
I got to the cabin it was almost dark and | was tired. hem
#%% peans tasted good."

San 0

3
I f T)» Ty Tgare roots of x_ + px +q * 0, show that

2 5 3 4
3Iri Iri . 5|ri tri

Proposed by Solomon ¥, Golomb, University of Southern California.

There are 97 places where a 2 X 3 rectangle can be put on an 8 X 9
board. In how many of these cases can the rest of the board be

cwered with eleven 1 X 6 rectangles (straight hexominoes) and where
are these locations?

) " [ . . .
of New York.

If P(x) isan irreducible polynomial over the rationals and there

exists a positive integer k # 1, such that r and rk are both zeros of

P(x), prove that P(x) 1s cyclotomic.
A‘ ] é go
- ﬁ
Se—

euma! i
[] C [o]
e D

In the adjoining diagram, © is

a half-chord perpendicular to the
diameter AB of a circle (0). The
circles on diameters AC and B are
centered on 01 and 02 respectively.

The rest of the figure consists of
consecutively tangent circles in-
scribed in the horn-angle and in
the segment as shown. |f the two
shaded circles are equal, what 18
the ratio of AC to AB?

Find a 3-digit number i n base 9 which* when its digits are written in
reverse order, yields the same number in base 7. rove that the solu-
tion is unique.

AB(DE is a pentagon inscribed in a circle (0)
with sides AB, O and EA equal to the radius

of (0). The midpoints of BC and CE are denoted
by L and M respectively. Prove that AM is an
equilateral triangle.




204

257.

220.

Proposed by Mike Louder and Richard Field, Los Angeles, California.

If x, y, z are the sides of a primitive Pvthagorean triangle with
z>x >y, can x and (x = y) be the legs of another Pythagorean
triangle?

SOLUTIONS

(Spring 1969 and Fall 1970) Proposed by Daniel Pedoe, University
of Minnesota.

a) Show that there is no solution of the Apollonius problem of drawing
circles to touch three given circles which has only seven solutions.

b) What specializations of the three circles will produce 0, 1, 2, 3,
4, 5 and 6 distinct solutions?

Solution | by the Proposer was published in the Fall 1970 issue,

11. Solution by Charles W. Trigg, San Diego, California.

Since the proposer did not specifically state that straight lines
would be considered circles of infinite radius, the following solu-
tion deals with circles of finite radius only.

Given three non-tangent circles, 01, 02, 03, in the plane with

r) <r, <ra. Let T represent the common external tangents of 02

and 03. and T1 their internal tangents. This discussion will be based
generally upon fixed O2 and 03 with a moving 0.

Gase - No circle lies between the common external tangents of the
other two.

In general* there are eight circles tangent to the three Oi: Coe

12°
encompassing all three 0

including none of the three; € c3, covering one (’)i only ; ¢

1 o
Cy3» C33» surrounding two 04 only; and C,,4
The subscripts indicate the Oi's encompassed by the particular c,.
Neither a straight line (circle with infinite radius) nor one of the
Oi can qualify as a ci.

As 0, approaches a T, between the T , r,, increases. At tangency

s

C23 merges with the T , generally leaving 7 solutions.

Case |
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When 01 rolls along the T tovard 02 until it hecomes tangent to
a Ti' C13 merges with the Ti' leaving 6 solutions.
tthen nl continues to tangeney with 0,, C; merges with the Te.

leaving 5 solutions. )
When nl continues to tangency again with the Ti’ C3 vanishes,

leaving 4 solutions.
In the |ast situation, if 02 and 03 are tangent, the only 3 sol-
. PR .
o Gy and 0123, and if ) IS tangent simultaneously to-
the Ti and 02. the only 2 solutions are C, and C123° Indeed, this is

utions are C

also true when the three circles are tangent by two's,

Case 11. 01 is between T with 0, between 0, and 0..
[ 2 1 3

llere, Situations may exist where two circles, Cand €', include
a particular circle and are tangent to the other two, and so on.

02 and 03 not tangent, 01 and N, not tangent

" not tangent to either Te, then we may have
' ' ' J - 8 solutions
Cra3s C1230 Cppp €'yp0 Cp3e Cpge €y and Ly
01 tangent to one Te. then only one C123 - g solluti_ons
n = 6 solutions
1 tangent to both Te, hence no (:123
02 and 03 externally tangent, 01 and 02 not tangent
01 not tangent to either Te, then we may have C123,
' ' = 6 solutions
€' p30 Crgs Cogs C'pqe and Cy )

0, tangent to one 'I'e = 5 solutions

1
01 tangent to both Te = 4 solutions
n 0
n, tangent to both 3 and 0y
01 not tangent to either Te = 4 solutions
0, tangent to one T, - 3 solutions

= 2 solutions

0l tangent to both '1"3

Case II




Case 111 O1 is between the T and between 02 and 03‘

In some of the situations in this category, the relative values
of T1e Ty and ryare critical.

0, and O3 not tangent

2
01 not tangent to the T nor to 02 or 03, then we may
have co, c'o. Cp» C'l, two of cz, C'z, c13’ c'u, and two of
CJ, c'3, 012' c'12 = 8 solutions
0, tangent to one T put not the circles, there can be
only one CO = 7 solutions
01 tangent to one circle but no T = 6 solutions
01 tangent to a circle and one ‘1‘e = 5 solutions
01 tangent to both circles but no T = 4 solutions
01 tangent to both circlesand a T - 3 solutions
Oz and 03 externally tangent
01 not tangent toa T or to 02 or 03, we magy have CO' c'o,
Cl, C'l. one of Cz, 013, and one of Ca» (:12 - 6 solutions
01 tangent to T but no circle - 5 solutions
01 tangent to one circle but no T - 4 solutions
01 tangent to one circle and T = 3 solutions
01 tangent to both circles but no T = 2 solutions
01 tangent to one circle, to Te, and to the
internal tangent of 02 and 03 - 2 solutions
01 tangent to T_, 0, and 0, = 1 solution

Case III
Gase B One or two circles inside the third
0, outside L both inside 03
No tangencies - 8 solutions
One tangency - 6 solutions

Two tangencies 4 solutions

207

Three Tangencies = 2 solutions
In general - (8 = 2t) solutions

”1 inside 0,, both inside 0,

N> tangencies -0 solut_ions
One or two distinct tangencies - 2 solutions
All tangent at a point = an infinity of solutions
nl inside 02, both outside O3
No tangencies = 0 solutions
One tangency = 2 solutions
Two distinct tangencies - 1 solution
All tangent at a point = an infinity of solutions

Sese ¥= |ntersecting circles, none completely including another.
Each circle intersects every other with no triple point

No common tangent - 8 solutions

One common tangent = 7 solutions

Two common tangents = 6 solutions
Two tangent circles, each intersected by the third, no triple
point .

No common tangent = 6 solutions

One common tangent = 5 solutions

Two common tangents = 4 solutions

One circle intersected by two others. no tanacncies or triple

No common tangent - 4 solutions
One common tangent = 3 solutions
Two common tangents = 2 solutions

Three circles having one common point

No tangencies = 4 solutions
Two circles tangent at the point = 2 solutions
Three circles having two common points =~ 0 solutions

Only two circles intersecting
No common tangent - 2 solutions
One common tangent ~ 1solutions
Two common tangents 0 solutdons

Clearly, this is not a complete census, either of configurations
or of special cases, such as those where 0q intersects a T, the three
radii are equal, when a particular placement of the circles modifies
the announced number of solutions, etc.

FDITOR'S NOTE Diagrams for Case |V and Case V are left as an
exercise for the reader,
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233.

(Spring 1970) proposed by Solomon W, Golomh, University of Southern
California, Los Angeles.

234.
Find a direct combinatorial interpretation of this identitv:
\;) n+1
= 3
2 4

Solution by Murray S. Ilamkin, Ford fotor Company

If we have n points A, B, C,... then the left hand side can he inter-
preted as the number of pairs of sepments formed by the n points.

Now add an extra point O and consider the number of combinations four
at a time. The combination q, A. B, C gives rise to three pairs of
segments, i. e., AH. AC AB, BC; BC AC. The combination A, B, ¢, D
also gives rise to three pairs of segments, i. C., AB, CD;

An. BC And the number of these is then the right hand S|de of tﬁé
identity.

Also solved by Kenneth Rosen, University of Michigan and by the
proposer. 235
(Spring 1970) Proposed by Charles W. Trigg, San Diego, California.

The director of a variety show wanted to give the femalm imnersomator
a job. but questioned his ability to dance with the high-kicking
Folies Bergere chorus. |n reply to the director's query, the imper-
sonator's Spanish agent said:

"SI/IE = . GAN CAHCAN...,

but CAM be less than one~fourth effective in his demonstration today."
If each letter of the crvptarithm uniquely represents a digit in the
scale of eleven, what is the sole solution?

Solution bv the Proposer

Let F = +CANCAMNCAN «+o

Then 1000 F = G ,CANCANCAN ...

whereupon (1000 = 1)F = CAN, in the scale of eleven.

Hence SI/HE = CAN/XXX = CAM/ (13) (37)

= CAN (32) (35) = CAN (18) (64).

The denominators contain the only two-digit factors of ¥Xx, Consequently
HE equals one of them. and its associate times SI equals CAN.

L.CAN < 1/4 = ,2828 ++«-, llow 282/12 & 24, so the associate of is
13 or IS The three-digit multiples of these two numbers < 282 are
listed and those with duplicate digits or digits in common with SI or
HE are discarded, leaving the unique solution: 19/87 = ,235235235 +++,
The ratio of the first two digits of the repetend happens to be the
ratio of the sums of the digits of_the numerator and the denominator.
Also solved by Wesley Johnston, Springfield, Il1linois; ponad g,
Marshall, U, C. L. A.; and Kenneth Rosen, University of Michigan in
Ann Arbor. 236.
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Spring 1970) Proposed by Charles W. Tri San Dicgo, California.

Show that when the nine positive digits are distributed in a square
array so that no column, row, or unbroken diagonal

2 8 7
has its digits in order of magnitude, the central 6 1 4
5 3 9

digit must always be odd.

Solution by D. J. Deignan, Indiana University.

Consider the eight outside digits as four diametrically opposite pairs.
If an even digit occupies the central position, there remain_an odd
number of lower digits and an odd number of higher digits. Thus at
least one of the four pairs must consist of one lower and one higher
digit, thus contradicting the hypothesis.

Also solved by Al Davis, Albany, N. Y.; Joel Feingold, Sheepshead Bay
High School, Brooklyn, N. Y.; Wesley Johnston Springfield, I‘II|n0|s;
Donald E. Marshall, Pasadena, California; Kenneth Rosen, Madison,
Wisconsin; Donald R. Steele, Elizaville, N, Y.; and the proposer.

n
n d .
Prove that a™ * divides (ab + c)(ad) 9 gor integers a > 0,

b, ¢, d>0andn >0,

l. Solution by the Proposer.

k+1
Using |nduct|on on n, the case n = 0 is clear. Suppose a divides

(ab + c)(ad) (ad) for k = 0. Then fOr some intege{ ¥ we have
4
(b + 0@ - c@ L @bt e)an)ad @O
k k+l
. [(ab + c)(ad)k (ad)k + c(ad) ]ad - c(ad)
k+l

- (a k+1 N+ ¢ (ad) ) C(ﬂd)

2ad (ad) (ak+1N)i(c(ad)k)ad—i

=17 k+2
which is divisible by a
We note that the result also follows from E 2058, tzes—Hathv—ioathly,

75(1968)189; 76(1969)196.
II. Solution by Murray §. Klamkin, Ford Motor Company

Expanding by the binomial theorem, the term of lowest degreeina is

-1 ntl
ab@d™ @ =1, hich is divisible by an .
D. E Marshall. Pasadena.

Also solved by Genevieve Lento, Philadelphia;
California; and Larry E Miller, University of California, Riverside.

¢16k+2

If k is a positive integer, prove that ( /2) = 1 is not a prime.
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237.

l. Solution by Bob Prielipp, Wisconsin State University. Oshkosh.

+ -
We shall show that 17 divides (616k 2/2) - 1 for each positive
integer k. Since 6 = 2 (mod 17). 616k+2 = 28]'{."1 (mod 17) where k is
an arbitrary positive integer. Thus 616k+2/2 = 28k (mod 17). But

8 _ 8k . 16k+2,,
2° =21 (mod 17). Wence 27 = 1 (mod 17). /2 =1

(mod 17), or 17 divides (6X%%*%/2) - 1.

Therefore 6

II. Solution by the Proposer
16k+2

/2) - 1= (6%/2) &Y% - 1) + (6%/2) - 1
=18 [ -1 +17,

and since Fermat's theorem guarantees that (Gk)16

17, it follows that (616“’2

Since (6

= 1 isdivisible by
/2) -~ 1lisdivisible by 17.

Also solved by Walter Wesley Johnston, Springfield, Illinois; *urray
S. Klamkin, Ford Motor Company; Donald E, Marshall, U. C. L. A.;
Kenneth Rosen, University of Michigan, Ann Arbor; Donald R. Stecle.
Elizaville, N. Y.; C. L. Sabharwal, Saint Louis University; and
Richard Zanghi, Deer Park, N. Y.

(Spring 1970) Proposed by Leonard Barr, Beverly Hills, California.

The diameter of a semi-circle is divided into two segments, a and b,
by its point of contact with an inscribed circle. Show that the
diameter of the inscribed circle is equal to the harmonic mean of

a and b.

Solution by Robert J. Herbold, Cincinnati. Ohio.

A B D B

Let C be the center of the inscribed circle and D be the center of the
larger circle. |If B is the point where the inscribed circle is tangent
to the diameter of the semi-circle, then angle (BD = 90°, |If we let
r be the radius of the inscribed circle then RC = ¢B = r. Also if
AB = aand BE= b then D = (a+h)/2, D = (a +b)/2 = a, and O =
(a+ b)/2 = r. Since angle B is a right angle,

€»? + @)? = (cp)?
and  ri+ (@ w3/2-a% = [@ tb) /2- 1
Solving for r, we obtain r = ab/(a + b). So the diameter of the
inscribed circle is equal to the harmonic mean of a and b.
Also solved by Robert C Gebhardt. Parsippany, N. J.:. Theodore
Jungreis, Brooklyn, N. Y., Bruce~.King, Adirondack Community College,
Glen Falls, N. Y,; Donald £, Marshall, U. C L. A; Kenneth Rosen,
University Michigan, Ann Arbor; and Donald R Steele, Elizaville, N. Y.

Rosen located the problem in Eve's A Survey of Geometry, Volume One,
page 103, problem 2.6-14.

238.
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(Spring 197n) Proposed by David I. Silverman, Beverly Hills, California.

A necessary and sufficient condition that a triangle exist is that its
sides, a, b, and c satisfy the inequalities (1) a<b+c, (2) b <
atec, (3) c<ath Express (1), (2) and (3) in a single inequality.

I. Solution by Joseph D, E. Konhauser, Nacalester College.

Applying Hero's formula, a necessary and sufficient condition that a,
b, ¢ be the sides of a non-degenerate triangle is that
(a+b+c)(a+b-e)(b+c-a)(c+t+a-D>b)>0o0r

2(a2b2 + hzcz + czaz) > a4 + b4 + C4

II, Solution by Charles W. Trieg, San Diego, California.

This is problem 3188, School Science and Mathematics, 69 (April, 19€9),
p. 350.

Method |. The riven inequalities may be written in the forms
a-c<h,b-c<a,c=-D>b¢<a, snlh—c|<a<h+c.

Method II, Represent the three quantities as a , a‘, a with i, §, k=

1, 2, 3; 1 #1#Kk; then a; < a, +ay.

111, Solution hy Sid Spital, Hayward, California.

Clearly the three inequalities are equivalent to

max (a, b, €) <a+b+c-max (a, b, c).
with max(a, b, ¢) = max (max(a,b), c) and max (x,v) =

= (xty+x=y)2, this becones
a-b|lt|la+h-2c+|a-b||<a+h,

Also solved by Steven Blumenthal, Bayside, 1. Y, Steven R, Conrad,
Bayside, M. Y., TRobert J. llerbold, Cincinnati, Ohio; Wesley Johnston,
Springfield, Illinois; ‘Jurray S. Klamkin, Ford ilotor Company; C. B. A
Peck, State College, Pennsylvania; Kenneth Rosen, University of .
‘ichigan, Am Arbor; and the proposer.

EDITORS NOIE llerbold, Peck and Rosen offered the solution max

{a, b, ¢} < min {b+c, atc, a+h} , following the assumption that
a ¢ b g c . Johnston, using the methods of Solution II, remarted

that Method | is a single sentence hut is actually a double inequality
while method II represents the conditions in a single inequality form
hut not as an actual inequality in a single sentence. Klamkin rave

the references 0 269, "lath. Magazine, Sept. = Oct., 1960, p. 58;

D. S. Mitrinovic, Flementarv Inequalities, Noordhoff, Netherlands, 1964,
p. 113, (6.7). Trigg called attention to Problem 423. Mathematics
Magazine, Sept,-Oct, 1960, p. 50 and Sept. = Oct., 1961, pp. 364-365,
as well as Silverman's comments on problem 423 on page 62 of the Jan.—-
Feb, 1962 issue of the Mathematics Magazine.

ERRATA: The following errors and misprints were called to the
attention of the Editor by Alfred E. Neuman of the Mu Alpha Delta
Fraternity:
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Page 132, line 3: "Angles" should read "Angeles".

Page 132: The line connecting C and 0 should not have terminated on
the circumference of the circle.

Page 132, bottom line: The minus sign on the right side should be a
plus sign.

Page 132: the word "number’ in problem 240 should read *"*numbers”.
Page 131, line 19: "propser" should read " proposer™.

Tage 142, 6th line from bottom: ,¢, should read UiCi.

i1
Page 144, line 2 "a " should read "Anl'.
The last proposal in the Spring 1170 issue and the first proposal in
the Fall 1970 issue were both Inadvertently numbered "230". Henceforth
the former problem will be referred to as 239-a

Mr, Neuman was also disturbed about the use of the neologism "Plani=
drome™ for the more conventional, tried and true word ' Palindrome™
(page 148).

There was a misprint on the cover of the Fall 1970 Journal.
Volume 6 was printed on it, but it should have read Volume 5.

MEETING  ANNCUNCEVIENT

Pi M1 Epsilon will meet en August 31 and September 1, 1971, at
Pennsylvania State University, University Park, Pennsylvania, in conjuction
with the Mathematical Association of America. Chapters should start
planning MOW to send delegates or speakers to this meeting, and to
attend as many of the lectures by other mathematical groups as possible.

The National Office of Pi Mu Epsilon will help with expenses
of a speaker OR delegate (one per chapter) who is a member of Pi M
Epsilon and who has not received a Master's Degree by April 15, 1971,
as follows: SEAKERS will receive 5¢ per mile or lowest cost, confirmed
air travel fare; DHEGATESwill receive 2-1/2¢ per mile or lowest cost,
confirmed air travel fare.

Select the best talk of the year given at one of your meetings
by a member of Pi Mu Epsilon who meets the above requirements and have
him or her apply to the National Office. Nominations should be in our
office by May 15, 1971. The following information should be included:
your name; Chapter of Pi Mu Epsilon; school; topic of talk; what
degree you are working on; if you are a delegate or a speaker; when
you expect to receive your degree; current mailing address; summer mailing
address; who you were recommended by; and a 50-75 word summary of talk,
i f you are a speaker. MAIL TO. Pi Mi Epsilon, 1000 Asp Ave , Room 215,
Norman, Oklahoma 73069.
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