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ON GENERALI ZATI ON OF DERI VATI VES

Lokenat h Debnath and Thomas B. Spei ght
East Carolina University

1 | NTRODUCTI ON

It is well known that the differential operator D satisfies the
foll owing al gebraic properties

pla £(x) + b g(xJ = a p{e(x)] + b pla(x) (1.9)

p"P" £(x)) = p™™ [£(x]] = 0" [D™ £(x)] (1.2)
where f(x), g(x) are differentiable functions of a real variable x;
a, b are two constants, m n are positive integers so called the orders
of derivative; and the operator Dis defined in the Leibnitz sense
by
f(x+ax) - £(x)

D [£x)] = £ £0) = Lim L ,

Ax+0
provided the limt exists.

Hi storically, it appears that Leibnitz and Liouville had indicated
the possibility of generalization of the operator p® f£(x) for fractional

order n = QE; p, q being integers and g # 0. However, answers to sinple
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1
probl ens such as p? x2, D3 xz, b’ eX, pP/a x" seemto be neither
wel | known nor readily available in Cal cul us.

On the other hand, the Cauchy integral fornmula in conplex analysis
and Abel's integral equation provide the existence of derivatives of
rational, real and conplex orders. Fromthese results, it is not
imedi ately clear and al ways easy to conpute the fractional order derivatives
of sinple polynonial functions.

It is thus natural to ask some sinple questions and find out
answers. |s it possible to calculate fractional order derivatives
of sinple and el ementary functions? Even, if it is possible, does the

oper at or Dp/q obey the algebraic rules (1.1) - (2.2)? It seens a little
surprising that the answers to these sinple and el ementary questions
are not readily available in the literature.

Wth a viewto providing some answers to the above questions from
the el ementary stand point, we make sone el ementary di scussion with
sinmple exanples. Anticipating a rigorous treatnment, the derivative
of rational, real and conplex orders is introduced in a formal way.




2 FRACTI ONAL ORDER DERI VATI VES

Fromthe el ementary cal culus, the derivatives of integral order
m(>0) is given by the well known result

n! n-m (2.1)
n-myt X

m n
D" x =

Using the generalized factorial notation so called the Gamma function
F(x), we generalizeresult (2.1) in the form

r(g+l)  _B-a
T(B-atD) =

for all rational nunbers a, 8 with 8 >0, where I'(z) is defined for
a conpl ex variable z except the negative integers including zero with
the property r(z+1) = z2F(z) and M'(n+l) = n, n being a positive integer.

“x8=

D (2.2)

Al'so, the well known result of calcul us

m -0 _ ,_,y0 (n¢m-2)! -(n+m)

D x = (-1) 1)t ,n>0 (2.3)
can similarily be generalized in the form

p* 1B = (-t LutB) (8 g g (7.4)

r(g)

Thus the results (2.2) and (2.4) appear to provide a sinple nethod
of conputation of fractional order derivatives of at |east polynom al
functions. Further, they may be treated as definitions of derivatives
of rational orders.

More generally, we obtain

a n Mr+l) r - a
D" f(x) = f 2. Flr-otl) (2.5)
r=0

n

where f(x) = 2 a xisa pol ynomi al of degree n with constant
r=0

coefficients.

Asimlar result can also be witten down as

n
a _ r Ir'{a+r) _-(a+r)
p* £(x) = rZO -7 a, 75y * (2.6)

n
where f(x) = [ a, xT,r>0 (2.7)
r=1

Fromthe above discussion together with sinple properties of the
Ganma function, it can readily be verified that the operator D? satisfies
the basic al gebraic properties(l1) = (1.2) at least for the polynonial
functions. This clearly shows that D® is a |inear operator for any

~ == rational order a

3 SOME SIMPLE EXAMPLES

N

W22 1) 372

D
3
l'('2-+1)

PR AR IO IR TR CTEY

Da 0 _ x-u (3.2)
X = m_)'-u .
-a
p* a-= Ta(xi-_a')' , a being a constant (3.3)
p* x® = I'(l-a) (3.4)
1 1 1
= 8 3/2
D x% = D2 (D7 x2)=nf[3_,-;"‘ J = 2x (3.5)
1 1
0 k7t = (1) rad Y3 (3.6)

1 1 1 .
D x'l = D? Dg {Dg x-ls = -x_2 (3.7)

4  DERI VATI VES OF PONER SERI ES

Assumi ng the usual requirenments such as uniform convergence for
termby-termdifferentiation of an infinite power series representation
of a function £(x), we obtain

a _aflg ry. % F(r+l) r-a
D" £(x) = D (rZO agx ) - rZO 2 Tlr-at ’ (3.1)

Adnitting the validity of the above result, we imediately obtain
the follow ng results

* (e =a"] (ax) e

r=0 T(r-a+ 1) (4.2)
@ 2r+l ® r _2r-o+l
. r % - (-1)" x (4.3)
0* (sin ) = 0% [ (-1 Fommy = L Wommay
r=0 r=0
© r 2r-a
p® (cos x) = Z SR (1)

r=0 IP(2r-a+l)
Al of these results agree with those for integral order derivatives.

5 REAL AND COVPLEX ORDER DERI VATI VES

W recal | the basic and generalized results (2.2) and(24) for the
fractional order derivatives. Since the Gamme function T(z) i's meromorphic

inthe entire conplex plane except the poles at z =0, -1, -7, =3...,
fornulae (2.2) and (2.4) appear to remain valid even when a is a real or

conpl ex number with 2% in pl ace of x® and R(8) > 0. This indicates that
real and conplex order derivatives of a polynomial function f(z) can he
conputed by the generalized results.

V¢ define

D% 3% o ,0.3Z (5.1)

for conplex order a and a, z are conpl ex numbers.
Thus we have
= i% ¥ (5.2)

w
- eix - EI(u) {cos %’R(u)d sin "—;R(u) }

p% eix

(5.3)
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where R(a) and I(a) denote the real and imapinarv cart of the order a.
Equating real and inaginary parts of (5.3), it turns out that

e-n/2 I{a)

p” (cos x) = cos (x * % R(a)) (5.4)

o1/2 I(a)

RS RS TR )

b¥ (sin x) = sin (x T 5 R(a)) (5.5)

It is interesting to notice that these generalized results are
in excellent agreement with those of integral order derivative of the
trigonometric functions.

As a concluding remark, it mav be added that besides the rigorous
treatment of the generalized derivatives, numerous questions and nrohlems
involving the interpretation of such derivatives, computation of fractional
order partial derivatives of simple functions, solutions of fractional
order differential equations etc. may be raised.

BIBLIOGRAPHY
H. T. Davis, Linear Operators, pp. 17-27
A. Zygmund, Trigonometric Series, Vol. | (1935)
D. £, Smith, Source Book of Mathematics, pp. 656-662
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ponp

NEED MONEY?

The Governing Council of Pi Mu Epsilon announces a contest for
the best expository paper by a student (whe has not vet received a
masters degree) suitable for cublication in the Pi Mi Epsilon Journal.

The following prizes will he given:

$200 first prize
$100 second orize
$50 third prize

providing at least ten capers are received for the contest.

In addition there will be a $20.00 orize for the best paper from
any one chapter, providing that chanter submits at least five papers.

A CIRE FOR "INSTANT INSANITY"

Edward J. Wegren
The University of North Carolina

In recent months, puzzles of the type exemplified by " Instant Insanity"
have proliferated on the shelves of toy shops. "Instant Insanity” is a
puzzle consisting of four multicolored unit cubes. Each face of each cube
is colored with one four colors, red, blue, white, and green. The object
of the puzzle is to assemble the cubes into a 1x1x4 prism such that all
colors appear on each of the four long faces of the prism. T. A. Brown (1)
presented a solution based on characteristic numbers for the cubes. Busacker
and Saaty (2) indicate that a graph-theoretic analysis may be applied to this
type of problem. The purpose of this note is to apply this graph-theoretic
method to the solution of "Instant Insanity™ in order to illustrate the charm
of this type of method.

A graph G consists of a finite non-empty set of points (called vertices)
together with a prescribed set of pairs of distinct points. Each pair of
points is called a line or an edge. A line is directed if the pair of points
is an ordered pair. A path in a graph is a finite sequence (80541581, Agyener

ALi8n) where a,, 81,..., 8, is a finite sequence of vertices and Aq, Az,...A
i s a sequence of edges such that the endpoints of Ay are aj. and ay. A

circuitis a path in which no edge appears more than once and in which a - a,.

It i s customary to represent a graph by means of a diagram (as in figures 1,
2, and 3) and to refer to the diagram as the graph.

In the application of graph theory to " Instant Insanity' each color on the
cube is represented by a vertex on a graph. Hence, we will have four vertices
labeledred, blue, white, and green. For each cube, draw a partial graph by
connecting two vertices by an edge if and only if they correspond to
opposite sides of the cube. Label each edge according to the cube from which
the edge arose. See Figure 1 for the description of the cubes and the partial
graphs. Combine the partial graphs into a graph as illustrated by Figure 2.
The solution is found by obtaining two complete circuits having no edges
in common. Each circuit must obtain one and only one edge for each cube and
must pass only once through each color. Such circuits are usually easily
found by inspection of the graph. See Figure 3 for the explicit diagram of
the two circuits.

In order to translate these circuits into a solution, stack the
cubes with number one on top and number four on bottom and, of course, the
other two in the appropriate order. Choose one circuit. Label the circuit
with a direction by proceeding counterclockwise around the circuit. Beginning
with the edge corresponding to cube 1, place that cube so that the "tail™
color, 1,e. the color at the tail end of an arrow directed counterclockwise,
faces back and the "head" color faces forward. In our example, red faces
away, green forward. The next edge determines the orientation of its corres-
ponding cube in a similar manner. In our example, cube 3 will have green
facing away, white facing forward, cube 2 will have white facing away, blue
forward, cube 4 will have blue facing away, red forward. It is easy to see
howv this directed circuit corresponds to the solution by imagining the circuit
through the faces of the cubes. The reason for the requirement that each
edge number appear only once and each color only once is also clear.
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Once al |l four cubes have been orientated properly in the front to rear
direction according to circuit one (notice that on the front and back of the
stack, each color appears only once), we must orientate the left-right faces.
Notice also by rotating each cube around a front to rear axis, any one of
the four unused face pairs on each cube may be broughtto right-left orientatio=.
Circuit two determines the right-left orientation of the remaining face
pairs in a similar manner except that right and | eft replaces front and
back and that the front-rear orientation of the cubes must be carefully
preserved. The requirement that the two circuits share no common edges
follows from the fact that no face pair can have both a front rear orientation
and a right-left orientation. In this example, cube 1 has blue facing right,
white left, cube two has red facing right, blue left, cube 3 has green
facing right, red left and cube 4 has white facing right and green facing left.

Other similar puzzles are solvable in a similar manner.

REFERENCES

Brown, T. A (1968), "A Note on 'Instant Insanity'," Mathematics Magazine,41,
pp. 167-169.

Busacker, R. G. and Saaty, T. L. (1965), Einite Graphs and Networks: An
Introduction with Applications, McGraw-Hill (see pp. 153-155).
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AGURE III

MATCHNG PRIZE FUND

The Governing Council of Pi Mi Ensilon has aporoved an increase
in the maimum amount per chapter allowed as a matching prize from
$25.00 to $50.00. If your chanter presents awards for outstandinp
mathematical papers and students, you may applv to the National Office
to match the &mount spent by your chapter--i.e., $30.00 of awards, the
National Office will reimburse the chanter for $15.00. etc.,--up to a
mamum of $50.00. Chanters are urged to submit their best student paoers
to the Editor of the Pi Mi Ensilon Journal for possible nublication,
These funds may also be used for the rental of mathematical films.
Please indicate title, source and cost, as well as a very brief comment
as to whether you would recommend this particular film for other
Pi M1 Epsilon groups.
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ANGLES SIN(A) SIN(B) SIN(C) SIN A/A SIN B/B SIN C/IC

THE UNIQUE EQUILATERAL TRANGLE

57 57 66 .8387 .8387 .9135 014714 01471y .013842

By Jan Blumenstalk McDonad 57 58 65 ,8387 .8480  ,9063 014714 014622 .013943
57 59 64 .8387 .8572 .8988 .01471Y .014528 L0104y
Within the classroom the professor often presents hypothetical 57 60 63 ,8387 .8660 .8910 014714 014434 2014143
questions which it seems no one has yet found an answer. The following 57 61 62 .8387 8746 .8829 014714 .014338 .01424]
questions were posed by Dr. Ernest Ranucci ---- Does there exist any 57 62 61 ,8387 +8829  ,87u6 014714 014241 .014338
triangle, other than the equilateral triangle, in which the relation 57 63 60 .8387 .8910  .8660 014714 014143 .01443y
among the sides equals the relation among the angles? ---- One can
easily confirm the case of the equilateral triangle in which the relation 57 73 50 ,8387 .9563  ,7660 014714 .013100 .015321
among the angles is 1:1:1. This is equal to that of the S|des A 57 74 u9 .8387 .9613 « 7547 014714 .012990 .015u02
simple example which does not exhibit this property is the 30 °-60°-90° 57 75 u8  .8387 «9659  ,7431 2014714 .012879 .015482
right triangle whose angles are in a 1:2:3 relationship while the corres-
ponding sides are in the ratio of 1:/3:2, 57 99 24 .8387 .9877  .u4067 014714 .009977 .016947
But, is the equilateral triangle the only triangle which exhibits
this property? Using conventional notation as in Figure 1 below, we see §7 100 23  .8387 .9848  ,3907 014714 .0098u8 .016988
that we would like to establish what conditions must hold in order for 57 101 22 .8387 .9816 <3746 014714 .009719 .017065
@to be true. 57 102 21 .8387 .9781 .3584 014714 .009590 .017065
a 3 b 2.c The complete output from this computer programmed investigation
@ ----- shows that there are no "whole-angled" triangles which satisfy our con-

ditions; but what about the infinite number of othegr tmmngles? Let
us first examine the conditions to make equality hold, since clearly
@must hold in order for the continued equality @to be true.

B . .
@ sin A ? sin B
A B
S Since we are looking for solutions other than the equilateral triangle,
at least two of the angles will not be equal. So, we can set A # B, or,
for some k, k # 1, A = kB, W can set a further restriction on_k of k»1
A b ¢ by always chogsing the smaller angle for B So, our Equation @reduces
to Equation é
FIG. 1 (® Kk sinB=sinks
Our restrictions on B and kB remain 0°<B<180° and 0°<kB<180°,
By introducing the Lav of Sines @ we see the necessity that A trip back to our handy computer and a program on the plotter,
Equation @ also be true. plotting y = k sinB and y = sin kB for so arbltrarlly chosen k's
. . gives us further graphical confirmation that "&5 will never be true Wlfhln
@ sin A _sin B _ sin C our restrictions. (See Figures 2 and 3 below.)
a b c
@ sin A ? sinB ? sinC
a ~ b = c
Intuitively, at least, it doesn'tseem that we could ever find three 2T A T
angles whose sines are in the same ratio as the angles. | decided y X2 sin B
to investigate this by letting the L,NI\/AC 1108 do the work for me u/3+
= The output revealed that the 60°-60°-60° combination was the only 14 1
one which would conform to Equation , This, of course, was no proof, 1 sinydRau/3 s B
but it gave further support to our conjecture. The computer proves to v sin 2B YN sin /3
be a very useful tool for such investigations.
A closer examination of the output gave additional information. 73 o |
The differences in the values for sin A/A, sin B/B, and sin C/C-de~ v w /b hd

creased only as A, B, and C approached equality. Samples of the data FG. 2 HG. 3
are given on the next page.



By examination of such plotter graphs as those above we find our proof.
Under what conditions could the graphs of our two functions intersect?
Since both B and kB are restricted to values between 0%and 180° we need
concern ourselves only with 0<B<w/k as in Figures 2 and 3 above (where
k is 2 and 4/3 respectively).

V¢ have only three possibilities: *

1) The curves will be tangent at some point x
2; They will intersect at one or more points.” "
3) They will never intersect.

CAE 1. If the curves were to be tangent at some point Xgy VO would have
a situation similar to that in Figure 4.

k4~
14 y 2Nk sin B
y A sin kB
n/k "
HG. 4

There would be some X where sin kx_ = k sin x_ for 0< x_<n/k. In order
for the two graphs to be tangent, their derivafives must be equal at Xy
or,

@ kcoskx°=kcosx

(@ cos kx = cos x

However, @ can be true only if k = L or x_ = 0, neither of which is
within our restrictions. Therefore, k sin 8 will never be tangent to sin
kB within our restrictions.

CAE 2. Perhaps the curve y= sin kB crosses y = k sin B at least once.
Since the slope of y = sin kB for values close to zero is less than that
of y = sin B, we could never have a situation similar to that in Figure 5
where y = sin kB starts out above the curve y = k sin B. Thus we would
have to have a situation similar to that in Figure 6.

k4
y ™k sin B

I y { sin kB

n/k T
HG. 5

*approach inspired by Dr. Joe W. Jenkins

Since y = sin kB must reach zero before y= k sin B, they must cross
exactly twice. This means that there must exist some x, and X, where
sin kB = k sin B = 0. But, by Rolle's Theorem, there must exist some
% in (x, 4 "2) such that at the slope of the tangent line is
22ro. 'ﬂliis would require that 'k cos kxg « k cos xo = 0, or that
cos kxg, and this, , We have already shown to be impossible within
our restrictions.

Therefore, Case 3 m t be true, that is, Equation @ , k sin
B = sin kB, will be true for k # 1, and the versatile equilateral
triangle gains another unique property.

A AQASS GF HVE BY HAVE MAGIC SQUARES
WITH A THREE BY THREE MAGIC CENTER

By Marcie Peterson
The University ef Minnesota

The following is a class of five by five magic squares with a three
by three magic center.

227

n-(c-1)b n=-(2c+1)b n-(3c+1)b n+(2c+2)b n+(ke~1)b
n-(2c-1)p n-b n+3cb n+cb n=-2cb
n+3cb n+{c+1)b n n~(c+1)b n~3cb
n+2cb n-cb n=-3cb n+b n+(2c+1)b
n~(4c-1)b n+(2c+1)b n+(3c+1l)b n-(2c+2)b n+(e~1)b

In the above, b and n are arbitrary whole numbers. To be certain that all
of the above entries are distinct we require only that the members of the

set

[—l,l,c,-c,c+l,c-1,2c,2c+1,2c-1,2c+2,Sc,3c+1,uc-l,-(c+l) ,=(c-1) ,-2¢c,=(2c+l),

-(2¢c-1),=(2c+2),-3c,=(3c+l) ,=(4c-1)

are all distinct.

This will be true, for example, if e23.
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A GECMETRC LOIK AT DETERMINANTS

Ali R Amir-Moez
Texas Tech University

This expository article attempts to give elementary geometric
interpretations of the determinants of a matrix with real entries.

1 Notations: W shall use the standard notations of elemen-
tary linear algebra. The Euclidean space dimension n will be denoted
by R and we shall use Greek letters for vectors. The inner product

of & and " will be expressed by (§,1) and the symbol det A means the
determinant of the matrix A.  The symbol A will denote the cross pro-

duct of two vectors in R3.

2. Right-handed bases: L&t {a,,a,} be an orthonormal basis in
Rz. that is, suppose 1’“1) =z (az,uz) 2 1 and (ul,uz) = 0. W say

that this basis is a right—handed basis if the rotation through the

angle _m_ sends @, toa, and a, to . Thus the matrix of this rotation
is: 2

-1 0
Let g= xay + yo,. It isclear that the above rotation changes¢ to

x y) o 1
-1 0 = (-y x)

or 6 = -y 1 + x 2 We shall call 6 the right—handed perpendicular

to &€« Indeed one observes that given g, the vector 6 is uniquely defined.

3. The determinant of a two by two matrix: Let

Using a right—handed basis (ul. uz} in R, suppose that

Eexo+ya; , n=xaty,a.

Here we obtain 6, the right-hand perpendicular to & (Fig. 1).

$

Figure 1

% observe that the projection of n on the axis whose unit vector is

§ is{(n,_6 ) =h, Here |h| is the length of the altitude of

s !6[
the parallelogram formed by £ and n when £ forms the base. Thus we obtain:
(&) = nlls]] = nllel] .
Since 6 = -¥1%y + X180, Ve obtain (n,8) = X1¥5 T Xy¥5e

Here we define
det A = dEtE ,n] = XYy T Xy¥qe
Note that [Z,n] is an ordeted pair of vectorsand det  n] = fE ) is

a real valued function of , « Nw let us consider the matrix:
*2 i)
B =
*1 Y1

Here we are looking for det B = det [E,q] . As was done before we obtain
v, the right handed perpendicular to n (Fig. 2), 1i.e.,

v oty T,
Again (g, ) = k is the projection of & on the axis with the unit
Y
vector . Here |k| isthe length of the altitude of the parallelo-

Y
gram formed by & andn , when n forms the base. Thus
det B = det En,g] = X,¥) T XY, = T det A.

In either case the absolute value of the determinant of the the matrix

is equal to the area of the parallelogram formed by & and n, that is for
any two noncollinear vectors § and n, Idetft.n]|= area of the parallelogram
Esnjf.

L ]So far we have studied the subject for the case when {€,n}

is linearly independent. Indeed the other case will be examined. W shall
discuss it in the next section.

4. Sore properties: Let A, € and n, be the sameas in 53.
Then as a direct result of the definition we have:
l. det:[:n ,5:| = —det[&,rﬂ.
II. If {g,n} islinearly independent,_then det E.ﬂ =0.
11I. One can easily show that det at, 0l = a det I&, .

Indeed, the casesa > 0 and a < O should be studied.

Figure 2

229
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IV. Let & =af* n (Fig. 3). V& observe that the area of the

parallelogram formed by § and £ i s the same as the one formed by &
and n. Also we observe that
(n,

) = (g, )y

§ §
HEIL [tell

where 8§ is the ssmeasin 5 3. This implies that
det[g, n+ at] - det[t,n] .

The details will be omitted.

5. The cross roduct and determinants: Let fata,sa_l be a right-
handed orthonormal a s sin. s a sthat ol a 32 - 85, 0, A Gy =0y

and a Aa = ay (Fig. 4) Consider A, &, and nof 5 3. Indeed, to

%hﬁgd n respectively correspond ordered triplets (xl.Yl. 0) and (xzd'z.o)-

EAnN - (det A) a4,

Figure 4

Therefore to the set of all two by two matrices corresponds the
one —dimensional subspace of R, which is generated by @4.
Nw let us consider a thrée by three matrix

171 A
A= xz y2 z2
X3 Y3 %3

Let z= xlﬂl + ylcxz + 2103, n= xfl + }'202 + 2203' and

5= Xgay + Y30y + Zj04. Consider n Ag=8§ « Indeed, 6 isa
vector orthogonal to both n and £, It isclear that

6-ml+yu2+zu3.

231

where

<
N
N
N
]
N
N
x®

x = det s ¥ ==det

-«
W

N
W

td
W
N

w

®

Usually x, y, and z are called "cofactors™ of A respectively corres—
ponding to X5 Yp» and 2y But here we shall look at these geom<trically.

W observe from well-known properties of the cross product that |18]]

is equal to the area of the parallelogram formed by n and & and, for
example, |z| is the area of the projection of this parallelogram on

the icy-plane. Nw let us consider the parallelepiped formed by g€, n, % and
consider the paralleolgram formed by 1. and & for the base. Then the
corresponding altitude will be the absolute value of

[
(1) (&, W) = h
which is the projection of € on the axis perpendicular to the parallelo-
gram formed by n and § (Fig. 5). Thus (1) implies
(E,8) = h||6l| = X% + ¥y + 22
This way we define
det A = det[E,n, 2] = (£, 9,

where 1€ mg| isan ordered triple of vectors. Therefore according

to this definition det A is a signed measure of the parallelepiped formed
by &n, and . All the properties mentioned in 5 4 can be extended

to this case. In particular, we mention, for example:

I. det[t,n,z] = -det[n,£,Z] .

i.e.,, if we interchange two rows of the matrix, then the determinant
of the new matrix is the negative of the determinant of A.
II, Consider the plane through the endpoint of & parallel

to the plane of n and ¢ (Fig. 6). Any vector X which ends in this plane
has the form

A=E +at +bn,

W observe that the parallelepiped formed by A,n, and £ has the same
signed volume as the one formed by €,n, and Z.

det [\, n, 2] = detlE,n, 2] .

T
s s
/ . 4 .
A RO
; / ’." Figure 5
g i ;
#.s........_.......l‘...’.'
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Figure &

6. Other geometric interpretations: As has been done in 55\
we may choose a right- handed orthonormal basis {a 19%22%5 ,u,‘} in \-

Let / N
TR TS |
A= ¥ Y2 %
¥y Y3 23

Let & m ¢ represent row vectors of A.  Then to these vectors respectively
correspond ordered quadruples (xl,yl,zl,o), (xz,yz,zz.o), (x3,y3,z3,0).which

arc respectively sets of eemponants of &7, and &Lin R,. "hus we define
EANAZ = (det A) o,

Indeed this is the Grassman product of these vectors in the given order.
Thus to the set of all three by three matrices corresponds a one-
dimensional subspace of R, spanned by ®,. Here again one nay repeat the
ideas of § 5 and study geometric properties of determinant of four by
four matrices.

Since for RN 2 4, one cannot supply diagrams, one has to use
one's imagination. The ideas discussed in sections 1 ™ 5 can be generalized
to higher dimensions; for more details the reader is referred to 11, (31 ,
and [6] of the bibliography.
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SIVE THOUGHTS ON THREE TYFES CF FROCF

Robert E. Kennedy and Clarence H. Best
Central Missouri State College

INTRODUCTION. As the student progresses in his mathematical
education he should become more and more aware of the concept of proof.
However, it is a common experience of the teacher to find that sometimes
the majority of his students really do not understand the logic behind
a certain method of proof. For example, a student may set up a proof
by mathematical induction perfectly but may be in reality merely pushing
symbols about. He may actually have the feeling that he assuming what
he is trying to prove, which he has been told is wrong. |t often happens,
also, that after he makes his inductive assumption, he sees no reason
why he cannot simply replace the "k" by "k+1" and be done after stating
the magic phrase: "...and thus by the Principle of Mathematical Induction,
the statement is true for all n greater than or equal to one."

It is also a common experience to have a student not understand

the difference between disproving by counterexample and proving Ly example.

The former, of course, is perfectly respectable while the latter is
frowned upon for good reason. C course, one could go on and on with
such examples of student misunderstanding, but one does not have to
teach very long for an awareness of this problem.

The purpose of this paper is not to complain about the shortcomings
of students but to perhaps clarify some of the underlying logic of
the three most common types of proof: (1) the direct proof, (2) the
indirect proof, and (3) proof by contraposition. Some relationships
between these three types of proof will also be discussed. In what
follows, the usual notation will be used for "and", "negation™,
"equivalence” and "implication™, which are, respectively, A,~ =,
and=> .

DIRECT FROOF. Consider the theorem: |f a and b are odd integers,
then a+b is an even integer. The hypothesis consists of the conjunction
of the statements: a is an odd integer; b is an odd integer, while
the conclusion is the statement: atb is an even integer. The formal
proof of this theorem usually appears as:

1 ais an odd integer and 1. Given
b is an odd integer.
2. a= %+t 1for some k and 2. Every odd integer is
b =2t 1for some p. of the form, 2n + 1.
3. a+b=(2k+1)t (2pt1) 3. Addition property of
equality
4, a+b=2(k+p+1) 4. Associative and commutative
laws of addition and
the distributive law.
5. Therefore, a + bis an 5. Ary integer of the form,

even integer. 2n, is even.
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Letting c,, ¢,, ¢, be respectivelv the statements (2), (3), and (4),

we can represent the proof as the logical chain:
H=> clé c, %c:’;\,c,

where H designates the hypothesis and C, the conclusion.

It should be noted that more information than given by the hypothesis
was used. For example, to obtain the implication, cl=) €y the addition

property of equality was needed. In fact, it was necessary to use
additional facts besides the hypothesis to develop each implication

in the above chain. This suggests that the hypothesis could have included
al | mathematical facts that did not follow from the theorem. However,
most authors in discussing the concept of proof, seem to agree that

the hypothesis is the explicitly stated facts as given by the theorem.

To demonstrate the above remarks in general. some notation will be
developed to facilitate this discussion.

Let T designate the set of all statements comprising the hypothesis,
H, and let 0 designate the class of all mathematically true statements
which do not depend on H=> C. Then we will agree that H &3 AT,
P S AD, Hi@ I\I‘i, and Pib) Aoi‘ where I‘ic r, Oic 0. Here, AT
represents the conjunction of all the statements in set, F, and similarly
for AS AG;, and AT,. Thus, a direct proof of H Cisof the form:

H%cl#c2=>... =)cn=)c

where transitivity of "= " gives H = C.

The implication, H=> ¢, is obtained by an implication of the form:
Hy APy =e

and since
H=)Hl A Pl

we have

H=)cl.
The implication, cl=) €9 is obtained by an implication of the form:

H, AP, A clé <,
and since

cl=) H2 A P2 A )
we have

cl: c,:
In general, ciﬁ Ci41® 2 ¢ i ¢ n-1, is obtained by an implication

of the form:

Hi+1 A Pi+l e ¢ = Ciel
and since

c;=Hi APjg Aoy

we have. by transitivity
€3 = %1

Finally, there exists an n such that cn=)(: and we have the logical
chain
H:}clz}c2ﬁ...$cn_=)c,

so that H=C by the transitive property of " =",

FROOF BY CONTRAPOSTIVE  To prove the theorem, H=jc¢, by
contraposition, we use the fact that (H=>C)$&= (~¢ =>~H). V¢ then
proceed to prove ~C==~H by the direct method as before, where ~C
is the hypothesis and ~H is the conclusion. By the equivalence stated
above, we conclude that H=C.

It should be emphasized that we are not using the direct method
of proof on the theorem, H==C, but rather on the equivalent theorem,
~C=~H.

INDIRECT PROOF. The indirect method of proof, sometimes called
proof by contradiction, iS perhaps the most difficult of the three
types of proof for the student to grasp. Stated briefly, the indirect
method assumes the negation of-the conclusion to be true and by a
logical chain (the direct method) reaches the conclusion that— qis
true for some known mathematically true statement, . This being impossible
suggests that to assume the negation of the conclusion to be true leads
to a contradiction. Therefore, by the law of contradiction, the conclusion
must be true.

Symbolically, we have H=>C provided ~C =»~q where g ¢ T U 0.
W prove C==3~q by the direct method. Since [{~q) A q] is logically
false it follows that— Cis false. Hence. C is true and we have,

H=C.

SIMVARY. Summarizing, it is found that a proof by contraposition
is an indirect prooof, while an indirect proof IS not necessarily a
proof by contraposition since for q ¢ ' U ®, “C =¥~q yields a proof
by contraposition of H=% C only when q &> H.

However, if a direct proof of a theorem is known, a proof by
contraposition can be found immediately, since

H =)cl=)c2=)... e =>C

is logically equivalent to
~C =>~cn=>... = w~e, = ~e, =ik

On the other hand, for a given theorem the existence of an indirect
proof does not readily indicate a direct proof. Euclid's classic
proof of the infinitude of primes iS an example of this.

It may be desirable for the classroom teacher to ask his students
to examine some other types of proof, such as mathematical induction,
proof of existence and proof of uniqueness, and ask that they classify
these as being one of the three types discussed in this paper or as
being a different type of proof entirely.
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A PROGRAM FOR FI NDI NG ENDOVORPHI SMS
AND ASSOCI ATED NEAR- RINGS OF FI NI TE GROUPS

Russel I Schexnayder
University of Southwestern Louisiana

Thi's paper is a report on a FORTRAN IV programthat cal cul ates
the set of endonorphisns, autonorphisnms and inner autonorphisns, and
the near-ring generated by each set on a non-abelian finite group.
The object of this undertaking is a programthat will characterize the
ideal structure of exanples of these near-rings, and, hopefully, point
to some general theorens about their structure. Olivier [21 has discussed
some of the recent work on this problem This program has net with only
limted success because of the enormous size of some of these near-
rings.

DEFINNTION. A near-ring is an ordered triple (N,+,e) such that
1) (N,+) is a group
2) (N,e) is a semgroup
3) o isright distributive with respect to +, i.e.
(a + b)ec = (aoc) + (bec) for each a, », c € N

Let (G,+) be a group, and T(G) be the set of mappings from Ginto
G Define t and ¢ as follows

£ + gl(x) = £(x) + g(x)
Fegd (x) = £(g(x))
for x e Gand £, g € T(G): (T(G),+,0) is a near-rinp.

THEOREM 1  Let E(G), A(G), and I(G) be the subproups of T(G)
generated additively by the endonorphi sns, autonorphisms, and inner
aut omor phi sns respectively of G Then (E(G),+,°), (A(G),+9), and
(I(G),+,°) are near-rings.

Atheoremsinilar to this was proved by Fréhlich [1].

The elements of a group G of order N can be represented by the first
N positive integers. The operation + can be represented by an N X N
array Asuch that i + j = k €@A(i,j) = k. This representation of a
group is useful for calculations on a conputer, but a representation
that reflects the group structure in ternms of its penerators is a nore

desirable form of output. For instance s3 woul d have the internal

representation (1,2,3,4,5,6), but the output form would be
(0,A,2A,B,A + B,2A + B). An endonorphism E may be represented on a

-one-di mensional array H whose ith elenment is the image of the i th

el ement of Gunder E Since H{1) = 1 where 1 is the identity of G
H need only have N = 1 variables.

The al gorithm for conputing the group endonorphisnms uses two procedures

for assigning values to elements of H Procedure one is a systematic
trial of the Nelements of G Procedure two is the sinultaneous solution

of a set of equations utilizing the defining equation for an endomor-
phism Hi + 3§) = H(i) + H(3), |f the first procedure is usedto
assipn a value to H(i), say |, then all equations of the form

H(3) = J are sought. When one is found, and when H(k), where k = i + jJ,
has an assigned value, it nust be K, where K =1 + J, otherwise a new
val ue of H(i) is sought by procedure one. If H(k) does not have an
assigned val ue the second procedure assigns it the appropriate value

K The equations used in the sinultaneous solution are:

1) HE) =1
2) H(j§) =4
3) k=41+3
4) H(i + j) = H(L) + H(I)

The solution used is H(k) = | + J. Because the programis to handle

non- abel i an groups procedure two also solves for k = § + i. COther

sol utions using equations 1 and 2 are possible, i.e. k =i - J and

k = -i+ 43 however, this would nmean increased coding, and probably
woul d not significantly reduce the run time. After procedure two has
been repeated for all possible values of j§, newentries in Hare systemat-
ically used in equation 1 until a new guess is required or until all
entries in Hare filled. After an endonorphi sm has been found it is
tested for the autonorphic and inner autonorphic properties.

The al gorithm for calculating the near-rings uses the appropriate
set of generators to get the sets I(G), A(G) and E(G), using the fact
that I(G) c A(G) c E(G). Each element His stored as a rowin two
two- di nenstonal arrays. The array C preserves the N - 1 elenents of
each mapping, as well as the order in which the mappings were found.
The array B contains a nore conpact form of the mappings, and stores
the mappings in nunerical order. The more conpact formused in Bis
a polynonm al representation, i.e. if Fis the i th mappi ng stored in
Bthen B(i,j) = F(3j5 - 2) X N2 + F(3§ - 1) X N+ F(3j). Possible
new el ements of the near-ring being calculated are found by systematically
conbining elenents of C Then a binary search is made of B to deternine
if it is a new elenent.

This double entry of elements of the near-ring is required to reduce
processing time. The polynom al representation used in B besides signifi-
cantly reducing menory requirenents al so reduces search time. Table
1 contains information on the data sets run. S, is the symetry group
on 3 objects, A is the alternating group on 4 objects, Dy and D
are the dihedral groups of order 8 and 12 respectively. END(G) is the
set of endomorphisms on the group. S, and D were previously known.

Investigations will be carried on for groups of order 16, 18 and 20.

TABLE 1
run )
# in time #in # in # in
Group END(G) in sec. I1(G) A(G) E(G)
83 16 1 54 Sy S4 30 sec
D, 36 y 16 32 256 10 min
D 64 13 54 108 >1728 2 mn
12 for A
A 33 10 3072 23072 >3072 10- 15
4 hr for
1(G)
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FAMOS MATHEMATICIANS

In the arrav of letters below you may find the names of forty
famous mathematicians. These may be spelled forward, backward, or
diagonally. Some examples are shown,

DED
LER
MYY
ULI
NBV
TAB
IHB
NLNTATSLER NIOP
OEGSCAUCHYHERONY
BRARHMCUIZSELAHT
ISLEERNEHRPEMJQH
FUIITVEIAOAEOBWLA
MXLESFRTPJBHDVXG
WOEWKDNPUIBOCAJO
QDOKYAUTULEBACDR
XUKRCSUSMADRACAA
CEVAERATOSTHENES

LEIBNIZ[M

A Z A MmO =

oM< WO <o
M X O mCc m

D
A
P
B
0
Y
T

0O O H - = & MmoR

(Answers can be found on page 264)

By

James A. & Doris L. Bell

A REVARK ON A THEOREM CF LEAVITT

AA.  Khan

1 Let La be a given infinite series with s as its n-th partial

um. Ve write

i n a-1 ) o 1 a-1

x %k * tn s 2 Ak
o= A> kO nk s
(a+l) (a+2) ... (a+n)

n!

[
a > -1 vhere An =

I'f %5 we say that the series La is summable (C,a) to the sum 3.

It is said to be summable (A) to 3 if ):anxn is convergent to a
function f£(x) in 0<x<l and

lim £(x) =8
*+1-0

I't is known (C,a)===>(A} but the converse need not be true.

2 In this journal Leavitt (3] proved the following theorem.

o
Theorem A. [ ak=s=)°l-»8andti»0asn*ﬂ.
) k=1 n

1 He also raised the question whether it is possible to replace

a =S by some other simpler condition.

In this note we wish to remark that the above theorem is known
in more general form. Also an answer to his question is available in

existing literature.
Using the well-known identity of Kogbetliantz [2]

at+l
n

t = (a+l) (o: -2

we immediately have the following result.

ssary suffici itions hat fa pe summable
Theorem 1. Necessary and sufficient conditions Ian

(C,a) to S, a >~ 1, are that
(i) £an be summable (C, a+l) to S and

atl | 0(1), as n ~» =,

(ii) t

The result of Leavitt is the special case a = 0 of this theorem.
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The following theorem [1, p. 150, Theorem 861 answers the ques-
- tion raised by Leavitt.

Theorem 2. Necessary & sufficient condition that yan B8 convergent
toSare that

(i) Za be summable (A) to S and

(ii) ti = 0({n), n-=,

I wish to thank Dr. S M. Mazhar for his help in the preparation
of this remark.
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Undergraduate Research Proposals

By Richard V. Andree
University of Oklahoma

1. It is well known that the reciprocals of the integers form repeating
decimals of period n { = 0 if the expansion terminates as for
1/2 = .5000,..3 b = 1 for 1/3 = ,333,.., etc.).

Create a table which fill give the smallest positive integer n{k) such
that its reciorocal has a repeating decimal expansion of length k.

2. If N is a positive integer, generate the sequence Nk -y F the sum of

the saquares of the dipits of N, It can be shown that this sequence will
either converge to 1 or will eventually reduce to the self repeating
cycle, 37, 58, 89, 145, 42, 20, 4, 16, 37,...

Investigate the behavior for similar sequences using the sum of
higher covers of the digits.

4]

FRCBLEM  DERARTMENT

Edited by
Leon Bankoff, Los Angeles, California

This department welcomes problems believed to be new and, as a rule,
demanding no greater ability in problem solving than that of the average
member of the Fraternity. Occasionally we shall publish problems that
should challenge the ability of the advanced undergraduate or candidate
for the Master's Degree, OIld problems characterized by novel and elegant
methods of solution are also acceptable. Solutions should be submitted
on separate, signed sheets and mailed before May 31, 1972.

Address al | communications concerning problems to Dr. Leon Bankoff,
6360 Wilshire Boulevard, Los Angeles, California 90048.

FROBLEVIS FCR SOLUTIONS

258. Proposed by Charles W. Trigg, San Diego, California

Tetrahedral numbers constitutethe fourth row (or column) of the
arithmetic triangle as Pascal wrote it (a horizontal row of 1's

on too and a verticle column of 1's on the left). Only one of these
numbers is a permutation of nine consecutive digits. Find it and
show it to be unique.

259. Proposed by John Bender, Rutgers University

Prove that the product of the eccentricities of two conjugate
hyperbolas is equal to or ereater than 2.

260. Proposed by Paul Erdos, Budapest

Given n points in the plane, what is the maimum number of
triangles you can form so that no two triangles have an over-
lac in area?

261. Proposed by Solomon W. Golomb, California Institute of Technology

Assume Goldbach's Coniecture in the form that every even integer
> 6 can be written as the sum of two distinct primes. Use this
to prove directly:

1) Bertand's Postulate: For every integer n > 1, there is
a crime between n and 2n.

2) There exist infinitely many sets of three primes in
arithmetic progression, i.,e,, trioles p, p+ a = (q,
p+2a=r, for some a > 0, and p, q, r all primes,
(Different triples may use different values of a,)

262. Proposed by Solomon W. Golomb. University of Southern California

Ted: | have two numbers x and y, where x + y = z.  The sum of
the digits of x is 43 and the sum of the digits of y is
68. Can you tell me the sum of the digits of z?
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263,

285,

266,

267,

268,

269,

239,

Fred: | need more information. Wha you added x and y how may
times did you have to carry?

Ted: Let's see....It was five times.

Fred: Then the aum of the digits of z is 66.
Ted: That's right! How did you know?
Question: Hw did he know?

Proposed Gustave Solomon, RV stems. Los Angeles, California

Let x2+ bx + ¢ = 0 be the quadratic over a finite field of
characteristic 2, GF(2). Give necessary and sufficient con-

ditions for solutions x4 and %, + btoliein GF(2X), in terms

of b and c for the case k odd. (Note: It is necessary to
define a (new) discriminant as the old one clearly does not work.)

Proposed by Bruce B, 0laf, Bethlehem. Pennsylvania

There are three prisoners: A, B, C.

The prisoner with the highest degree of guilt will be executed.
Prisoner A sees the warden and asks for any information he has.
The warden says that B will not be executed and A's case has not
yet been considered.

Assuming no ties in the degree of guilt, what are A's chances
that he will be executed?

Proposed Lav Kowarski, Morsan State College, Baltimore

Prove that if a # t1, a% + 4 is not a prime number.

Proposed Frank P. Miller. Pennsvlvania State Universit
Prove or disprove that the only integral solution of the equation

r2 + 3s? = 4t2 is the trivial one, r = s = t.

Proposed by Charles W. Trigg, San Diego, California

Consecutive odd integers are equally spaced around a circle in
order of magnitude. Under what conditions can a straight |ine

be drawn through the circle dividing the integers into two groups
with equal sums?

Proposed by Gregory Wulczyn, Bucknell University

List all the primitive roots of 3%, where n i s a positive integer.

Proposed by the Problem Editor

If A+ B+ cC = 180° show that cos (A/2) + cos (B/2) + cos (C/2) 2
sin At sin Bt sinC.

SOLUTIONS

(Fall, 1970) Proposed anonymously.

A circle (0) inscribed in a square ABCD, (AB = 2a), touches
AD at G, DC at F, and BC at E If Q is a noint on DC and P a

point on BC such that GQ is parallel to G D
AP, show that PQ is tangent to the cir- A
cle (0).

Solution by Charles W. Trigg,
San Diego, California

Let FQ = b and FE = c. Then, since

triangles GDQ and FBA are similar, 0 F
a/{a T b) = (a + ¢)/2a, Whereupon.
c=2a2/(atb) - a=ala-b)lathb). Q
FiEure 1
B E P C
Method I. QP g ¥(QC)2 + (cP)2 = a -b)2 + (a = ¢)2
=Vla-1b)2+[2ab/Ca+b)] 2 = (a2 - b2)? + 4a®b?I/(a + b)°

=(a2+b%)/(a+b)=b+ala-b)a+b) =b +c
Thus PQ is equal to the aum of the tangents to (3) from P and Q,
so PQ is tangent to (9).
Method II. 9P = h(QP)/2 = h(a? + b?)/2(a + b), from Method I.
AQP = CJOFCE - 40FQ = AQCP- ACEP

= a2 - ab/2 - (a - b)(a - ¢)/2 - ac/2 = a(a + b?)/(a + b).
Equating the two expressions for the area of AQORP, h = a.

Thus the perpendicular from O to QP equals the radius of (3), so
QP is tangent to (9).

Method 1II. Drav the tangent to (9) from Q touching the circle
at N and meeting CB at P', with P'E = ¢'. Then GF is perpendicular

to FC and ON is perpendicular to QP, so /FON = /PQc = @,
FQ = QN and FO e NO, so [FoQ =/ NOQ = 3/2,

tan 8/2 = b/a, so tan 9 = (2b/a)/(1 - b2/a?) = (a~ e')/(a -b).
Solving,

c' = a(a -b)/(a + b), s0o a + ¢' = 2a2/(a + b).

tan /GAP = tap/APB = 2a/{a t+ c') = 2a(a * b)/2a2 = (at b)/a
= tan /DGQ.

Hence, GQ and AP' are parallel, P' and P coincide, and QP is
tangent to (9).

Method |IV. With reference to the coordinate axes G and FH, the
extremities of the possibly tangent lines are Q(b,a) and P(a,c).
The equation of QP is (y = a)/(x = b) = (e = a)/{a = b). Nw
a/(atb)=(atc)2, soc™ a= -2ab/(a* b)e Hence,

y = [-2abx + a(a® + b2))/(a? - b2)h
A

(o]
e N
|\\\9\ Figure 2
€ Q(b,a)
ok
\ e

i
|
B E Plae) C
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240,

Substituting this value in the equation of the circle (3},
x2 + y2 = a2, leads to
(a2 + b2)? - ua?b(aZ + b2) x + sa"? = 0.

This equation has the double root 2-’:1213/(«32 + b2), so QP is
tangent to (J).

Treating FQ and EP as directed lines with references to the co-
ordinate system, this method proves the tangency to the circle
for any position Q on the extended side OC of the square with the
corresponding P falling on BC or BC extended.

Also solved by J. Kevin Colligan, University of Wisconsin Grad-
uate School; R. C Gebhardt, Parsipoany, N. J.; Magjor Donnelly J.
Johnson, Wright-Patterson Air Force Base, Ohio; Lev Kovarski,

Morgan State College, Baltimore, Charles H. Lincoln, Fayetteville,
N. C.; Joseph J'Rourke, St. Joseph's College, Philadelphia; Joshua
H. Rabinowitz, Yeshiva University; M. Stapper, Technological Uni-

versity, Eindhoven, Netherlands, Gregory Wulczyn, Bucknell University.

Interesting generalizations for the ellipse enscribed in a
rectangle or a parallelogram were offeredby Colligan, Rabinowitz,
and Stapper.

Information regarding the source of this problem is welcome
at any time.

(Fall, 1970) Proposed by Charles W. Trigg, San Diego, California

= 55 and All

considered to be a repetition of a palindromic number. Find another
palindromic number which when repeated forms a triangular number.

The palindromic triangular number A =66 mavy each be

Solution by the proposer.

The number N = n(n *+ 1)/2 formed by repetition of the plaindromic
number will itself be oalindromic and will have an even number of
digits. If N has four digits they all must be alike. But Escott
(L. E. Dickson, History of the Theory of Numbers, Vol. II, Chelsea,
1952, pape 33) has shown that 55, 66 and 666 are the only triangular
numbers, with fever than 30 digits, eonsisting of a single repeated
digit.

If N has six digits it fill have the form abaaba, b # a, and will be
a multiple of 1001 = 7.11-13; specifically, N = (1001) aba. Nw if N
is triangular, a =1, 3, 5, 6, or 8 and if a= 3, b= 0orb5,

and if a =8, b =2o0r 7 Thus there are only 34 possible values

of N. These are reduced to 13 by coneidering the fact that all
triangular numbers are congruent to 0, 1, 3, or 6 (mod 9).

Sincen2 < n(n+ 1) < (n+1)2, if Nis a triangular number, then

/2N (/2N t 1) = 2N. One of these factors must be divisible by 11
or 7. This occurs only in the case A1287 = 828,828

Similar treatment of the possible values of the forms abbaabba and
abecbaabceba establishes that there are no other double palindromic
triangular numbers < 1010,

Also solved by R. C Gebhardt, Parsipvany, N. J. and by James
Padian , Jr., Stamford, Connecticut.

241.

242.

243.

(Fall, 1970) Proposed by Solomon W. Golomb, University of Southern Cal.
What is the simplest explanation for this sequence:
85491763207

Editor's Note

Although other explanations are possible, one must admit that the
simplest explanation is that the digits, when spelled out in their
English equivalents, are arranged in alphabetical order. This
solution was offered by Jeanette Bickley, Webster Groves, Missouri;
Kevin Colligan, Madison, Wisconsin; Larry E, Miller, University of
California at Riverside; Joseph 9'Rourke, Saint Joseph's College,
Philadelphia; and the proposer.

Charles W. Trigg, San Diego, California, and David A. Broderick,
St. Louis, Missouri, looked upon the sequence as a permutation of
the set of ten distinct digits. Trigg, also offered the not-so-simple
interpretatiom, "One period of the repeating decimal form of the
proper fraction 94990848/111111111". Several other versions did
not meet the editor's criterion for simplicity.

(Fall, 1970) Proposed by the Problem Editor
| f LI m’b‘ m, are the medians corresvonding to sides a,b,c of a

triangle ABC, show that

2 2 2 2 2 2 2,2 2 2
S + +
m m +m + m,m (9/16)(a“b b%e e

Amalpam of solutions by David A. Brotrick, St. Louis, Missouri;

R. C. Gebhardt, Parsippany, N. J.3 Charles A. Lincoln, Fayetteville,
N. C.3 Charles W, Trigg, San Diego, Californiaj; and Grepory Wulczyn,
Bucknell University.

2a2).

Substituting the values for LIPS and m, in the well-known formulas

2 2 2
2ma2=b2+c2-a2/2, 2mh2=c2+a2-b2/2, m,=a +b"-c/2

into the left side of the given equation and simplifying, we obtain
the stated result.

Editor's Note:

If, instead of multiplying ma2, n\b2 and mc2 by twos, each of the formulas

iS squared, we find uson simplification that
m®+ mb“ + mc" = (9/18)a" + b* + ).,

This is a most interesting result, esvecially when compared with the
well-known relation m 2 2 4 b2 + c2) This, in

. 2 . 2 _
a mP m © = (3/4)(a
turn, can be squared and related fo the sum of the fourth powers of
the medians to obtain the result of the pronosed problem.

(Fall. 1970) Proposed by Alfred E Neuman, Mu Alpha Delta Fraternity,
Nev Y ork

Provide a peometrical proof for the well-known relation:

% = arctan % + arctan :-é‘ + arctan %,
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I. Solution by R. C., Gebhardt, Parsippany, Nav Jersey
Consider three unit vectors in the complex plane, namely:

A = 1/ arctan 1/2 = (2 t i)/ /5.
B = 1/ arctan 1/5 = (5 + 1)/ /26,
C =1/ arctan 1/8 = (8 t+ i)/ /65.
Then A+B*C = 1/(arctan 1/2 + aretan 1/5 t arctan 1/8)

= (24 1)(5 + 1)(8 + 1)/ ¥ 5¢26+65
= (65t 65i)/ 65V2 = (1 + i)//2
= 14(n/4),

II, Solution by Charles W. Trigg, San Diego, California

In figure 1, a rectangle comuosed of eight unit squares,
AB = CB=DC=1,DB:E =FE=2 B=CE=5 6=:8, AC= /2,

AD = /5, /£ = /10, AF = /76, and AG = /35,
DC:CA:AD:: A: /27 v :: /2t 7: /10 :: CA:EC:AE.

Consequently, triangles DCA and AE are similar, amd
JAEC = /DAC.

FE:EA:AF:: v2: /10: /26:: /103 5. /65::EA:GE:GA.

Consequently, triangles FEA and AES are similar, and
[AGE = [FAE,

It follows that

JacB = jaDc + [DAC = fADC + [AEC
= [ADC + [AFE + [FAE = [ADC + [AFE + /AGE.

A
R e
L——/"—”/’//TI
/____.-—-—-—"/{’,
F E D c B
Figure 3

Then from figure 3
n/4% = arctan 1/2 t arctan 1/5 * arctan 1/8.

Equality (1) leads to #/4 = arctan 1/2 * arctan 1/3, the
fundamental relationship in the 3-square problem which appeared
in Martin Gardner's Mathematical Games column, Scientific American,
February, 1970, pv 112-114. In the April, 1971 ~Journal of
Recreational Mathematics, 54 Synthetic geometrical proofs are shown.

This geometrical method can-be extended to provide a general-
ized expression of wn/4 in terms of arctans. Consider Figure 4
where the dimensions are Fibonacci numbers, not to scale. n

4417_“
Q R4

F - F F
2n+2 2n+l F2n+l - F2n 2n

244,

By a well-known Fibonacci identity:

Font1Fom+t2 " Fonfon+a™1
Whereupon: 5
2
- = +
Fon+ 1F2n 42 = Fon Fon s 1 * Fon 4 2) * Foq am *1
2
(Fon v 1 = Fon)Fonen = Fop) = Fpp + 1
3 3 .

(Foper = Fap) V§2n *1 o VE, Tl 2 By F, )

their common angle are porportional. Thus [MPR : MP.,
It follows that /MPN = JQMP + /MQP = /MRE + [uqF.
That is, arctan 1/F, = arctan l/F2n+l ® arctan l/F2n+2

Hence, Triangles @ and MR are similar, since the Zédes including

Thus, we nmey write:

/4% = arctan 1/2 + arctan 1/3
arctan 1/2 + arctan 1/5 t arctan 1/8

= arctan 1/2 + aretan 1/5 + arctan 1/13 t arctan 1/21

n
=iz—| arctan l/l-‘2i+l + arctan l/F2n+2

n -
= I arccot F2i+l + arccot F2n+2 =iE:|arcott r21+1

This result was announced by D. H. Lehmer in 1936 and another method
of pro6f by M. A. Heaslet was published in ] L
45 (November, 1938), 636-637.

Also solved by Don Marshall, Pasadena, California; M. Stapper,
Eindhoven, Netherlands; and the proposer.

(Fall, 1970) Proposed by Charles W. Trigg, San Diego, California
The spots on a standard cubical die

are distributed as indicated on the
accompanying Schlegel diagram, the [ ]
aum on each pair of opposite faces ..
being 7. A square grid is composed
of squares the same size as a die ® PP
face. W a die is placed on a ® &
square and rotated 90° about an edge [ 000 lpg
to come into contact with another
sqaure, the motion will be called °
o ror. ®
e e
What is the shortest roll sequence that
will return the die to the starting square
in its original attitude? Figure 5

247
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245.

Solution by the Proposer.

O a 2-by-2 grid, there are 4 squares, but only 3 of the faces

of the die can come into contact with the surface, so 12 rolls

are required. On a 3-by-3 grid, 12 rolls are also needed. This
cannot be bettered on a 4-by-4 grid. But on a 5-by-5 grid, a
starting on any square and proceeding on a two-parallel circuit
will return the die to the starting square in its original attitude
in ten rolls. For example:

Crrree————
Figure 6
In this circuit, all faces come into contact with the grid surface,

Two trivial solutions were received, involving a roll about an edge
and back again.

247.

(Fall. 1970) Proposed by R. S. Luthar.

Prove that for positive real numbers x and y the following inequality
holds:

University of Wisconsin, Waukesha

)(x+y)/2 5 xxyy'

(x -xy +y

Solution by Bob Prielipp, Wisconsin State University = Oshkosh.

IfFx=vy, (x2 - xy * y2){x +y)/2 - xyY. In the remiander of this
solution we snall assume that x # y It is known that for all

bD+1
a+ 1 a .
positive real numbers a and b, a # b, b (—)
+1 > b

Elementary Inequalities, Stechert-Hafner,
5-66, Sec+ion 2.30. ]

D. S. Mitrinov -
w York, 1964 n-

+ 1

<%

%\ 3 X X
Le‘ca=y and b = s Then(() - + 1) >

(e +y) 2% 2
x**y%Y  frog which it follows that

(x—xy+y) >

2 (x + y)/2

(x2-xy+y) *gY

>xy.

Therefore, the given inequality holds for all positive real numbers

x and y, with equality only when x = vy.

246.

249

Also solved by Don Marshall, Pasadena, California, Ralph Pass, Baltimore,
Maryland; Stephen P. Stehle, Akron University, Ohio; and the
Porposer.

(Fall, 19708 Propsed by Bob Prielipp. Wisconsin State University

If x is an even perfect number >6, prove that = & 4(mod 12).

Solution by Sid Spltal,
It is well-known that every perfect number has the form

Hayward, California

x= 2P~ l(2p - 1), p (and 2P - 1) prime. Since x > 6 requires

p>2 itfollowsthat x = 2P ~ (3= 1)P - 1) = 2P ~ (ak) - 2P -

2P = Leak) - (3 - 1) ~ 2 = 2P = Y(3k) - u(3n) + 4, Hence

x = 4(mod 12).

Also solved by S. Sandier, Clarion State College, Pennsylvania;
Ralph Jeffers, University of Washington, Seattle; Donald E. Marshall,
Pasadena, California; Joseph J'Rourke, Saint doseph's College,
Philadelphia; James Padian, Jr. Connecticut Alpha; Ken Rosen,

Am Arbor, Michigan; R. C. Gebharst, Parsippany, Nav Jersey;

Charles W. Trigg, San Diego, California; and the proposer.

Proposed by Alfred E. Neuman, Mu Alpha Delta Fraternity. Nav York.

Construct diagrams illustrating four (er more) different theorems
characterized by the relation AZ«BX¢CY = AY<BZ*CX .

Solution by the Proposer. Y

A

B X Cc

CEVA'S THEOREM o

A.
y4 F

THEOREM OF BESARGUES

B < X

THEOREM OF MENELAUS
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235.

X

] MORLEY'S THEOREM

Comments on Problem 235

(Spring, 1970, p. 87; Spring, 1971, p. 209)
E, Desmond, Florida State University.

n
Prove that a" * ! divides (ab + c)(ad) -
a»>0, b, c,d>0andnz O

Comments by the Proposer.

In reference to Solution II of Problem 235, Vol.

Lad)?

Proposed bv James

for integers

5, No 4,

page 209, Spring, 1971, the ass;rtion that the term of lowest

. . n (ad)n - * . .
degree in a is ab(ad) ¢ i's not obvious.
difficult to prove than the proposed problem.235.

see E 2058, American Math, Monthly, 76 (1969) 196.

Reply by Murray S. Klamkin

It seems more
For example,

(ad)” ~ !

The assertion that the lowest degree term in a is ab(ad)"c
is perhaps too glib. However, it isn't difficult to show that
each of the terms is divisible by a"* 1, The worst possibility

(;)a" (A = (aa)")

we may be short some power of 2 due to the term r! in the

is that in

denominator. But this can be taken care of.
of thigy | defer to Solution 1.

However,

in view

BaX RRMBAS
Edited by

Roy B. Deal, Oklahoma University Medical Center

The Functions of Mathematical Physics, By H. Hochstadt, John Wiley and
Sons, Inc., New York, New York, 10016, 1971, xi + 322 pp. $17.50.

A rather thorough treatment at the advanced calculus level of the
principal theorems and formulas relating to the classical orthogonal
solutions to the differential equations of mathematical physics,
including Hill's equation, and related functions.

Metric Affine Geometry, By Snapper, Academic Press, Inc., Publishers,
Nav York, Nawv York, 10003, 1971, xx + 435 pp. $13.00

An excellent place for the serious mathematic stadent with an intro-
duction to linear and modern algebra to acquire the geometrical theorems
and intuition so useful in much of today's algebra, algebraic geometry,
and differential topology.

College Geometry, By David C. Kay, Holt, Rinehart and Winston, Inc.,
New York, New York, xiv + 369 pp.

A modern axiomatic treatment of Euclidean and Non-Euclidean geometry
vritten in a leisurely intuitive style with interesting illustrations,
comments, and historical notes.

Algebraic Topology, By Andrew H. Wallace, W. A. Benjamin, Inc.,
New York, Nav York, 1970, ix + 272 pp. $12.95.

Although the author recommends a geometric introduction to the subject
first, he still does an excellent job of leading from the intuitive
concepts of geometry to the modern abstract algebraic treatment of
this subject.

Topics in Complex Function Theory, Vol. 2, By C. L. Siegel, John Wiley
and Sons, Inc., New York, New York, 10016, 1971, ix * 193 pp. $12.95.

A continuation of the outstanding lectures notes by the master; his
time on automorphie functions and abelian integrals.

Ordinary Differential Equations, By William T. Reid, John Wiley and

Sons, Inc., Nav York, New York, 10016, 1971, xv + 553 pp.

An excellent comprehensive account of the mathematical theory of
ordinary differential equations, sans numerical methods, written

at approximately the first year graduate level. |ts value is enhanced
by good organization and many notes and remarks.

Topics in Ring Theory, By Jacob Barshay, W. A. Benjamin, Inc., New York,
Neav York, 10016, v T 145 pp.

These notes seem to glide from the standard Andergraduate treatment
of rings to generalizations of some of the more advanced classical
topics of ring theory.
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1.

BOOK REMI-EME- - Cont i nued

Commut ative Algebra, By Matsunura, W A Benjamin, Inc., 1970.

xii T 262 pp., $17.50, $7.50 paper bound.

Prerequisites are faniliarity with the basic theorens of rings,

nodul es, Galeis theory, and some know edge of honol ogical al gebra

and scheme theory. The course from which the notes evolved paralleled
a course in al gebraic geonetry and was pointed in that direction.

Fourier Analysis on Goups and Partial Wave Analysis, By Robert Hermann.
W. A Beniamin, Inc., New York, New York, 10016, xi + 302 PP.,
$17.50, paper bound $7.95.

Anot her of the author's excellent attenpts to present the inpacts.
each upon the other, of somewhat esoteric nodern mathematical concepts
and recent devel opments in mathematical physics. These notes deal
with Lie group Fourier analysis add descriptions of elenentary parti-
cles via the theory of the scattering operator.

Cel estial Mechanics. Part II, By Shlonmp Stermberg, W A Benjanin, Inc.,
New ¥ork, Net- York, 10016. 1969. xvii *+ 304 pp., $17.50.

A continuation of Part | in which recent work on pertubation theory
in celestial mechanics is presented. Some recent fork of Kol mogorov.
Arnol d and Moser on the nobody problemis given, along with the
applications to the restricted three body problem

Lectures on Topol ogi cal Dynamcs, By Robert Ellis, W A Benjamn, Inc.
New York. New York, 10016, 1969, xv + 211 pp.. $17.50, paperbound $7.95.

For the serious student ih this field, or closely related fields,
these notes present a unified account of recent research.

L-SFED BOoksS

Ten Place Tables of the Jacobian Elliptic Functions: Part III,
By Fettis and Caslin Aerospace Research Laboratories Air Force
Svstens Command. United States Air Force, Wight-Patterson

Air Force Base, Chio, 1971, iv + 449 pp.

paer bound $7.95.
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Richard A. Reed

Edgar Tim Hall
Edison Hogan, Jr.
Larry T. McGary

Robert £. Mildenberger

Gerhart Moore
James 0. Morgan

David A. Tanner
Dennis A. Turner
Thaddeus P. Vannice
Ules Samuel Wake
Wanda L. Wallace
Jesse Warren

Ruth A. S, Warren
Kirk P. Wilhelnus
Stanley ¥. Zeck

Michael J. Moloney
John D. Ritchison
Douglas P. Zapp

Maxine L. Bullet
William M. lNesbitt
Charles E Roberts

Martha L. Shanks
Meey KA. SBpencer

David L. Teater
Byron H. Welch
Mak A. Williamson
Steven W. Yee
Jerel L. Zarestky

John T. Patterson
John T. Peterson
Vincent L. Schvent
Kenneth R Spong
Walter S. Trombold
Ma M. Wells

Herbert S. Tillinghast
Donald ¥, Trotter. Jr.
Cynthia ¥, Halters
Mancy A. Wenstrand

Ruth L. Stubblefield
James E Wad

J. Peter D, Westergard
David H. Whitman
Betty Zakowski

Charles Richardson
Ratmrt EScanallwood

Judith R llelson
Larry L. Patrick
Janet L. Sellers

Johnnie Sorrells
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LOUISIANA ETA, Nicholl: State University
Bernard A. Angelo
LOUISIANA THETA, Loyola University

Gregory E. Blum Wallace E. Jeanfreau

Frederick J. Jay, I1I

Am Lowry

LOUISANA ZETA, University of Southwestern Louisiana

Barbara A. Bazar David Delaney

Rafael Bedia Eurella Derouen
May Lou Bell Latty Desonier
Andrew Blanchard Sally Dorr
Barbara Breaux Harvey Duhon
Wayrne Breaux Grady Ferry

Sigrid Fout
Denise Hebert
Elder Hzu

John Broussard
Lynn Comeaux
Majid Daneshomand
Nancy Daspit

MAINE ALFHA, University of Kaine

Terri W. Altholf
Dale R Barker

Nancy J. Churchill
Terry J. Duffy
Roger R. Bilodeau Judith R. Ellingwood
Anne P. Brénn Jacqueline A. Hatch
Jo Anmne B. Carpenter David W. Hattman
Curtis F. Chapman Charlotte K. lerrick

HARYLAND ALFHA, University of Naryland
David P. Anderson  Ruth E Dayhoff
Eric 9. Bazques Donad A. Johnson
Anita M. Blanar Phyllis Kolrus
MARYLAND BETA, Morgan State College
Roscoe J. Barkley Harriet C. Lewis

Winifred K. Berry Janice F. Matthews
Sylvia C. Hall

Don Iglehart
Yvonne Larve
Lois Lundberg
Patrick Mallett
Harenda Hatalie
Joe #cCuller
Susan Melady
Donald Ortamond
Susan Prather

Elizabeth E Kurdick
Robert J. L'Heureux
Errol C. Libby
George ¥. Manter
Albert ¥artin

John R Martin

Daniel Lari
Maryann Lorey
Charles Medani

Richard B. Mitchell
Lavrence W. Monroe

MASSACHUSETTS ALPHA, Worcester Polytechnic Institute

Francis B. Costa
Jares A. Hardy

Timothy C. Johnson
Thomas J. Kaninsgki

HASSACHUSETTS BETA, Holy Cross College

William C. Arzt Vincent F. Fenia
Tho 1. Brennan Francis W. lorvath

MICHICAN ALFHA. Michigan State University

Johniill. Beck
Rebecca F. Betts
David J. Borzenski
Jeffry F. Brown Shirley R, Hartline
Sandra Christen Cheryl L. Hibbott
Paula L. Christensen  Susan A. Horvath
Candace Confer Douglas R Howell
Paul 9. Davidson Gordon D. Jamison
Deborah DiFabio Mak E Janke
Michael B. Dillencourt Judith L. Johnson
Francois Duchesneau David J. Kaplan
May Jo Eckloff Paul V. Koprucki II
Jean A. Fitzmaurice Carol 4. Lankfer

Barry D. Floyd
James R Girvin
Louise E Green

Alfred J. Lebel
Edward H. Rezayi

David A. Luzignan
Richard P. Mackezsy

Jenean M. Lapprich
Janet M. Loescher
Stephen P. Marks
Michael P. HcAuliffe
Gregory G. MeDowell
Ellen B, McMacken
William J. Makosey
Catherine A. Meehan
Marvin Miller

William T. Mitchell III

John J. Heitzke
Nancy J. Noreyko
Martha J. Petrie

Gregson Payne
Sidney A. Usner

Russell Schexnayder
Lal Singh

Kathleen Stevenson
Harry Stewart
Rosana Wake
Darlene Wak

May Weddington
Daniel Welch
Hzi-Chao Wey
Kenneth L. White

Eleanor A. McDondd
Linda A. Richards
Elaine F. Sullivan
Sally C. Webster
Phyllis Weston
Richard H Wayg
Jacqueline M. Zegel

Eric W. Machlasz
Raul Ormerrta

Kaye M. Shedlock
Asta ¥. Vitenas

Richard G Smith
Victoria E Stewart
Albert A. Sturdivant

Gregory A. Robertshaw
Kenneth R. Wadland

Joseph A. McKenzie

John F. Reiser
Druce |. Roth
Janice E Sather
Mak A. Schaefer
Christopher Scussel

G Seeley, Jr.

Karen S. Stricker
Carol Van Beek
Margaret J. Walulik
Harold C Watkins
Nancy Zegaren
Carlton T. Weler

MICHIGAN BETA, University of Detroit

Maureen Armstrong
Carole Cocquyt
Barbara DeMaioribus
John Dwyer

May Dwyer

Michael Foley

Daniel Gadzinski
David Gadzinski
Kathleen Halloran
Patrick Higgins
Dennis Johnson
Robert Kane

MICHIGAN GAVIVA Andrews University

F. Hoffman
Donald E M. Hylton

lan G. Hartley
Raymond

Leroy R. Kirschbaum
Nit-Ying Ng
A. Pearlita Niles

MINNESOTA ALFHA, Carleten College

Larry Alquist
Linda Bair

Paul W. Brindle
Kenneth Cliffer
Susan Frefer

Phillip Gaarenstroon
Stephen Gaarenstroon
Nancy Gustafson
Norton Holschuh
Jack Johnson

MINNESOTA BETA, College of St. Catherine

Susan A. Adlis
Suzann M. Biszon

Deborah J. Grones
Am L. Hillesheim

MINNESOTA GAMMA, M acalester College

Mak E. Anderson
Barbara Brabets
Sarah Brown

Scott DeLong
John Freeman
Donald M. Lynch

MISSOURI ALFHA, University of Missouri

Lavrence W. Albrecht

Willian J. Briner
Donald Calking
Ronald Cordes
Helen Duerr
Kathleen Ebert

MISSOURI GAMVA = St.

Ran K. Agrawal
John H. Anderson
Karen L. Bachman
John A. Back
Thomas R. Barbour
Bruce Barton

Phillip L. Beck, Sr.

JoAnn E Becker
Virginia F. Behrens
Arthur A. Belmonte
Jack Bintz
Margaret Blessum
Daniel M. Bloom
Rita Bober

Walter F. Boron
James A Bouey

Rose M. Eissler
Bruce E. Harry
Kathleen Kovacs
Sandra kreisel
Debra Lavery

Louis University

Susan L. Lh-ochter
Patricia J. Durse
Rebecca L. Earney
Carl C Ewald
Deborah M. Eyerman
James D. Factor

Rosalie P. Filippone
Brother Thomas Fournelle

John B. Gage. Jr.
John b. Gagnon
Kathryn M. Gebhart
Irene . Gibala
Nina K Goerdt
Harley Gozdanovic
Sharon Grothe
Pamela Hager

Robert L. Bungenstock Eric D. Hamburg

Robert B. Cayton
Chun-hung Chan
Maureen Childress

May H. 'Hanlon

Sister Jean M. Harvey

Mak F. Haywood

Sister Kristin Cipolla Mary M. Hicks

Joseph P. Clabots
Theresa M. Costa
Donald R. Crissey
Kathleen Dailey
William P. Dannevik
Dr. Ganapati Desai
William R, Draghi

Rita Hill
Christine Hoefler
Harvey Hoichman

Brother Jerry J. Huels

Leslie M. Hunt
Lorraine Hunt
Robert L. Katz

William Kolasa
Richard Lell
Patricia Levis

Carl Longnecker, Jr.
David Matzke
Theodore Miller

Seth Okrah
Paul W. Perkins
George S. Plue

Edward Johnson
Kenny Jones

Janes Koehler
Rosalyn Lahner
John Markeson

Rita C Klees
Susan B. Kvasnicka

Douglas Riley
Stephen Rosenberg
Janes Sommerfeld

Geoffrey Probert
Janes Ragan

John M. Riddick
Gail Rosenkoetter
Steven V. Slemons

Richard Keys
Rosemary King
Carol S Kokenge

Rev. Joseph E. Kolb, S.J.

Walter A. Korfmacher
Michael Koziara
Marcia G. Kriese
Larry L. Kroninger
Thomas M. Lachajczyk
Gary Lanps

James Langan

Marcia M. Lazarz
Dollie M. Lewallen
Lynnette Loeffelman
Annette M. Lovett
John Maniaci

James R. Manion
Alvin J. Marcus, Jr,
Virginia Meyer
Margaret ¥, Mlynczak
Elliot J. Mulberg
May A. HcBryan
May A. McCarthy
Richard L. Nieman
Richard W. Niemann
Regina Nowotny

Sister May E. 0'Donnell

Garrett A. Jwler
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David Muzzy
Peggy Renard
Teresa Ross
John Shrall
Pamela Smith
Michael Somyak
Abigail Wad

Ruth Am Plue

Stephen Ritland
Jerry L. Wernick
Curtis G. Wiltse

Glenn MeDavid
Thonas Power
Thomas Schroeder
John Selden
Stanley Seltzer
Jon Wilbur

Margaret A. Ofstead
Diane M. Sandretsky
Am L. Winblad

Douglas Stubeda
Carol Svoboda
Milton Ulmer
Ruth Yeager

Cynthia Tatum
Philip Unell
Barbara Walter
Kathleen Walther
David E, Whiteman
Sally Young

May Paino

Geraldine Pitti
Patricia S. Preckel
Joseph C. Rieken
John Ryan

Peter Salamon

Albert E Schaefer
Barbara Schaefer
Stephen Schafer
Gordon T. Schmittling
Daniel J. Schoenekase
Richard A. Schaper
Paul A. Schneider
George P. Shubic
May C. Steuterman

G. L. Stockhausen
Sister Carolyn F. Sur
May J. Szawara
Prajot Thammakornbunju
Orley C. Towneend
Everett Truttmann
Thomas C. Vaughan
Robert Werdes

Richard L. Wilke
Pegay A. Willibrand
Dean Wotawa

Linda N. Wi

Steven W, Zeier
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MISSISSIPPI ALAHA, University of Mississippi

Daphne A. Bell
Kathleen A. Drude
David S. Edmondson

Marion H. Furr
Donna K. Idom

Ruby G Levis

NEBRAKA ALFHA, University of Nebraska

Gary A. Rath

David A. Ripa

NBADA ALRHA, University of Nevada

Ronad E Ainsworth
Brian S. Edelman
Myki E Labhard
Young K. Lim

NEV HAMPHIRE ALFHA, University of New Hampshire

Jean T. Callahan
Marc A. Cerriveau
Susan E. Dayton

Alice A. DeCoster

NEW ERSEY ALRHA,

Robert C. Amster
James Biller
Joseph G. DiGiacomo
Ldwvard S. Dolan

Virginia E Martin
Margaret K. Honsanto
Sandra G. Horace

Diana Petersdort

Michael J. Dubay
Cheryl A. Dugas
Elizabeth A. Ellicott

Rutgers University

Robert H. Andrevs
Dennis W. Englewski
Sheldon Freidenreich
Douglas D. Haislip
John Haley

HEW JERSEY BETA, Douglass College

Rita C. Bamberger
Patricia J.

Jeanne M. Cickay
Colette A. Francy
Ellen R. Goldfein

N®V ERSEY DHTA,

Franciz A. Bulzis

Merril D. Greenstein
Loretta J. Guastella
Ilene Halem
Kathleen M. Hoyt
Ellen J. Mackenzie

Seton Hall University

Angelo M. De Mattia

Jeanne M. Breitwieser William G Gilroy

Eugene J. Carracino
Dan B. Ciaraffo

Lorraine A. Ginch

James W.
Janet H. ONz:lxal/mdson
James B Rose

David 9. Wiebers

Raymond G. Pinson
Bernard Ponte
Alice Prezley
Thomas W. Roesler

William J. Gessner
Karen A. Grady
Jonathan B Hotchkiss

Robert L. Harrison
David H. Hochman
John D« Hurley
Edvin P. McDermott
Heil W. Neubarth
Anthony J. Os&i

Deborah J. Manners
Myrna L. Platner
Lynne M. Platt
Jean A. Polagye
Karla S. Schaffer

Kathleen N. Landisi

Thomas E. Nesman
John T. d'Connor

NV FREY GAVMA Rutgers College of South Jersey

George A. Articolo
Francis X. Felcon

William R. Franklin
Robert G Freeman

NEW EREY EPSILON, St. Peter's College

Darlene Amico
Lubomyr E Bilyk
Martin C. X. Dolan

NEW MEXIGO ALFHA, New Mexico State University

Mahmound Al-Khafaji
Berle T. Barnett
Leon J, Chandler

Paula Hinriche
William Hoatson
Jean M. Lane

Eileen F. Head
William H. Julian
John P. Musselman

David L. Gwalthney
Theodor Levine

Maria Leush
Elizabeth Long
Sharon A Pastore

Frank A. Oliva, 1I
Mak Orlicky
Jae U. Shim

NEW MEXICO BETA, Nav Mexico Institute of Mining and Technology

AL, da Costa
Lean

dro T, Gonzales

John ¥, Hagood
Abraham Kandel

NV YOX ALFHA, Syracuse University

Jeffrey D. Bein

Cary J. Warso

N®V YO BETA, Hunter College

Doris Ackerhalt
Helen Alexiadis
Roberto Cabrera
Kim Chin

Peter Dogan

Robert Fernholz
Elias Guth
Jeanette Hun
Fong Soo Hmo

Thomas R. Schellhase
William T. Scott

Kin Kwok Hui
V. N. Joshi
John Koehler
Barbara Krel

Julia G Stuart
William L. Townsend

Velda Shaby
William C. Stark
Aino E |. Tugmola

Diane E Joyal
Nancy J. Larson
Barbara M. Lehman
Alan R. Tupek

Andrew J. Peterson
Jay P. Rosenberg
Eric V. Sudano
James A. Telliver
Larry B Wattenberg
Larry A. Wentz

Laurie M. Sills
Sheila L. Weinberg
Elizabeth A. Wilson
Barbara G Zagorin
Linda E Zember

Doreen E. Price
M. Carmen Sanchez
Albert 11 Scott
Anthony F. Siliato

Dorothy C. Neiman

Linda S. Piccolc
Michael A Scura
Margaret Venditti
Dorothy Willms

Ralph Vincent
Randall Walters
John Werth

Charles R. Shearer
John Yeh

May Lee
Karen Heier
Anna Mo/
Helen Wi
Elizabeth Yee

NEW YOXK GMMA  Brooklyn College

Rhonda I. Bergen
Steven W. Bluth
Hyman Chansky

Smon H. Friedman
| saac Gorbaty
Hark Hunacek

Robert M. Koopersmith Leon Klapper

Norman Friedman

NEV YOX EPSILON, St. Lawrence University

David C Areson
Nancy A. Crowell

Deborah A. Graveson

Margaret Jenks
Eric J. Kuster
Pamela Mackiernan

Boruch S. Manela
Morris Muller
David Nuzsbaum
Menachem Rosenberg

Patricia A. Parsons
Kevyn A. Salsburg

NEV YOK ETA, State University of New Yok at Buffalo

Joel E Cohen
Mak J. Gardner
Marlene E Gewand
Judith F. Alter

Nadine P. Goldberg
Elaine C. Jacobson
James T. Krist
Paul Wasserstein

N&V YOXK XI, Adelphi University

Edward Bank
Linda A. Bauchle
Margaret Berryman
Arlene Blasius
Thonas Cato

Joyce Chappell
James Cox

Janet E Greenhouse
Bernard Hamnisch

HW YOX RHQ St. John's University

Jack E Barocas
Joanne Canco
Marianne be Rosa

NEV YOXK SGMA, Pratt Institute of Brooklyn

Armen R. Baderian
Rolando Diener
John C. Eiche

Alina Espada
Vivian Therea Fede
Frances LaMalfa

Laura Pasisis
Lisandro Quinones
Deminick Restagno

N&V YOXK TAU, Lehmen College, €. U N Y.

Elaine Katz
George J. Pagorek

NEW YORK UPSILON,

Kathleen R. Boyd

Isebel L. Saubel
Marysia Tarnopolska

Ithaca College

Harriet L. Beim

NEV YO PHI, State University College

Annie Alexander
Barbara Astemborski
Pduline Becker
Leenard Burdick
Chao-kun Cheng

Beth Danforth
Marie Fisher
William Ingersoll
Patricia King
Diane Krawetz

MEW YOX PI, State University College

Janet Anderson
Steven Cullinane

Rebecca Everhart
Kurt Eyrich

Rochelle M. Osdoby
Marcia S Paget
Harilyn A. Rosen
Edward F. Zakowicz

Nancy Hildebrand
Oscar Lindemann

Dr. David Lubell
Christine Madison

Barbara Marga
Eloise Merlino
Susan Murphy
Diane 0'Neil

David Sheby
Mak Silverstein
John Todd

Betty Tam

Glynn 1. Owens

Ramesh M. Kulkarni
Francis R. Landolf
May A Lapham
Roberta Reynolds
Ralph Stinebrickner

Paul Gill
Ronald Gould

N®V YOK CHI, State University of Nav York at Albany

Robert M. Bernstein
Jan Blumenstalk
Alan Brick

Evelyn Clementz
Am Diamant

Carol F. George
Mary Glinos

NEW YO IOTA, Polytechnic Institute of Brooklyn

Bill Baydalla
Roy Berglund
Fred Burg

Ronald Cohen

Linda H. Greene
Barbara Hermayer
Garry L Hurlbut
Gary Mv King
Irene Larsen
Wedy Lieberman
William Ma

Anne Cybulski
Bill Josephson
Myron Karasik
Randall Kiviat

Susan E 0'Brien
Doug Olson

Boy Rosenberg
Ted Rosenberg
Susan Rethschild
Michelle Sachs
Laura Shlesinger

David Lai

Neil Landman
Robert Lorenzo
Michael Mikolajczyk

Charles E Schvartz
Nathan N. Schvartz
Abraham Sehvartzman
Gary |. Teitel
Feige Tropper

Terry L. Stansfield
Philip G. Wak

Gretchen M. Schvenzer

Janet L. Stowell
Jeffrey A. Zveiben
Thomas A. Szczesny

Linda Najera
Kenneth Shanik
Mitchell Skrzytecki
Dr. Jack Sonn

Dr. William Stéinmétz

Evelyn Preise
Linda 3Stavola
Rochelle Verola
Linda Wolfe

Allan J, Volponi
Michael Wamnger

Helen Young

Elizabeth A. Squires

Linda S. Taggart
Nichele Terk
Ronald Turbide
Patricia Visconti
Sandra L. Wagoner

Marla Hira
Nary Mira
Janet Sibley

Phyllis Silverman
Janet Skrilow
David Sleeter
Paul Sclcmon
Sandra Sucher
Peter Van Schaick

Gil Munz
David Picker
Elliot Wiesner
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NRH CARCLINA BETA, University of Horth Carolina

Henry Brandis III
Joanna C. Buergey
Phillip B. Cheeson
Margaret Covington
Gwyneth Duncan

HORTH CARCLINA DHETA,

Bobby Beckon
Brenda |. Bone
Phyllis 1l Byrum
Jane Craft

HMORTH CARCLINA GAHMA,

Krishna K Agarval
Bal M. Aggarwal
Ernest Alexander
Adel A Aly

Jack N. Boone
Cherrie L. Bowling
Alberto M. Castillo
Amitava Chatter|ee
Harry v. Ellis, Jr,
Rainh U Ennis

L K. Goyal

James Hemmig
Martha Scott Hill

Sylvia G. Leaver
Michele ¥angum

Janes P. Jarvis Ralph My
Shang-Hsfu Hsiung Courtney H, Hoen
Ronad Johns Keith lluttall

East Carolina University

Mary M. Deal

Ruby Fields Dinkins
May Ella Guilford
Brenda F. Janes

Lorna Themas Morris
Jesse Outlaw, Jr.
Patricia E Scollin

North Carolina State University

James D. Harper Gregory A Losito
Peter J. Hauser Jim D.  Miller
Wenda M. Hinshaw Waller C. Moore
Joan M. Hrenko James E Morris
Yi-hziung Hsii Pamela J. Navlor
Buford G. Hutchins May M. Ogburn
Thomas N. Jernigan Babu Patel
Gardner D. Jones Dorothy Preston
John T. Kriece Victor Pfeiffer
Chun Cheng Lii Rebecca S. Sabyer
Janet E Lobien Maurice ¢. Sexton

NORTH CARCLINA EPSILON, University of North Carolina at Greensboro

Wenda D. Griffin
Sara 9. Hester
Jan E Jenkins

Erlene W. Kivett
Christine T. Martin

Larry D. Parks
Pamela §. Price
Susan 0. Stalls

NORIH DAKOTA ALFHA, North Dakota State University

Catherine Lea Elsberry
Steven J. Krahler

Antonette Marie Schatz
Daniel J. Smithwick

Cheryl Vogeler

CHO DHE.TA, Miami University

Margo Y. Adams
Michael L. Brue
Am Caldb'ell
Susan J. Carroll
Bruce R. Faurie
Patricia Fisher

Alan M. Feigenbaum
Robert M. French
Bonnie J. Gates
Larry J. Lovas
Barbara A. Luecke
Joe K. Garrett

Kristan L. McIntyre
Carole A Meaner
Christa R. Orlick
Judy H. Pollack

OHO GAMMA, University of Toledo

David B Baldwin
Cecilia H. Chu
Pierre M. Delsemme

Celina L. Kosier
Thomes J. McLouth

Max Hoetzl
Anne L. Hutchinson

OHO EPILON, Kent State University

Kenneth Fox

Cathe A, Gladd
Karen L. Glover
Francis Marie Hartis
Bruce Martin Hill

COHO ZETA, University

Stephen L. Adams
Thomes J. Banet
Barbara A Conlon
Nicholas D'Anniballe

Claudette 0. Nader
Judith A. Reho
Ronald L. Sigrist

Rose Am Johnson
Michael J. Kotowski
May Am Miller
Linda C. Morehead

of Dayton

Margaret A. Hoile
Kayleen M. Kill
Mary A. Koehler
Richard J. HecBride

Doqﬂa icolosi

Ricl arg <I:E Parent
Randy J. Rowekamp
Sandra J. Sivula

-0HIO-ETA. Cleveland State University

Richelle M. Bernabei
J. Biondi
Marilyn C. Bogiski

Louis L. Kriso, Jr.

Raymond Budrys
Michael A,dant.nnt Margaret Martinsek

OHIO LAMBDA, John Carroll University

Roger Crocker

Thonas Csank Dr. Edward Merkes

OHO THETA. Xavier University

Matthew Adamczyk

Terrance Conlizk
Joseph Goeke

David Meiners

WHH PRt Ps

Daniel Hennessey
Charles Knepfle
Thomas Logan

Martha Jane Lassiter

Robert A. Riemenscheider

Gail S Travaglianti

Lynn Palmer
Joseph Riegel
Robert Stovers
Stephen Strum
Tavan T. Trent
Nancy C. Willis

Carolyn Dale Stanford
Sandra J. Wilson
Mitzi C. Woodside

Mukundkumar A. $#AH
Heill Snith

Wayre F. Snith
William T. Smith
Clifton H. Stanley
Nancy A. Stanley
John S. Stewart
Delbert C. Summey
Joyce D. Trunbo
Johnson C. K. Wang

Wallace M. Winfree, Jr.

Joseph E. Love 111

Thomas L. Stowell
Burton W. Stuart. Jr.

Johnny Wong

Alexandria Rymar
R J. Seibold
May J. Simon
Kathy L. Taylor
Kathy Wurzelbacher
David K Younkman

Martin G. Myers
Jack E Riggs
Sharon S. Selmek

Rita M. Turkall
Thomas P. Webster
Susan L. West
Loring P. White
John F. Zeiger

Michael L. Woltennann
JoAnn F. Zelasko
Margaret L. Zucker

Douglas David Seaman
Karen |. Tischer
Shirley K. Vereb

Dr. Charles Pinzka

David Prekl
Laurence Rolfes

Maréia Ruwve

OHO MU, University of Ohio

Mak Borota
Bruce J. Brownlee
Sheldon W. Davis
Cathy Gebhard
Nancy L. Giles
Steve Ginsburg

Silas E Harsond
Joe B, Harford
Joyce A. Hodge
Michael A. Littleton
Charles A. Mathna

COHO HuU, University of Akron

Mrs. M. Berenson
James Blackstock
Carol A. Blanchard

Raymend S. Capatosta

Donna J. Elsner
Deborah A. Schmidt
Stanley Shondel
Christine A Singer
Barbara G Skaras

Dorothy A. Fieldman
Frances Carol Flower
Dr. Peter J, Gingo
Susan D. Hagerman
Sharon J. Semerville
John A. Steinbrunner
Marion J. Stith

Dr. Ronald C suich
Ellen S. Ulmansky

CHO IOTA, Denisen University

Richard E Findlay
Gail A. Havk

Gregory B, Hudsk
Katherine A. Lumm

GALAHOMA ALRHA. University of Oklahoma

Phyllis Adkins

Pamela M. Alexander

Brenda Blades
John Bley

Janice S. Boke
May Jo Bunch
Lois A. Burns
William Callaghan
Patricia Coulthard

Dennis R. Files
Cheryl Am Fpidstrom
Harvey J. Gatlin
Kathleen G. Gill
May-Li Hwang

Jimmie Lee

Rudy Loew

Danny Lovett

Terry B Lowery

M Robert D. Curley

CGREEN ALFHA,  University of Oregon

Blair A. Cook
Bruce A. Dodson
Sm Nath Dua
Michael K. Duffy
Gene LeRoy Enfield
Munzor A. Afifi

Jeffrey L. Fagan
Carl J. Fischer
William D. Fornall
May M. Gilbert
Linda Howe

Kwok Choi Hui

CGREBON GAMMA  Portland State University

Lavrence G Berdahl

Carol M. Brown
Charlotte L. Bruce
David Fullmer

FENNSYLVANIA DELIA,
Thomas M. Brubaker
Ralph E Droms
Daniel E Heisman
FENNSYLVANIA 1OTA,

John J. Correia
Kamad A Hazboun

FENNSYLVANIA KAFRRA,
Bonnie L. Heeter
FENNSYLVANIA THETA,
Charles G Everett
Clyde Fink

Leo P. Gilmore

H. Daniel Heist
FENNSYLVANIA ZETA,
Edward Beaumont
Harriet Beller

Elliot Berger
Eileen Bradley

Weaxy G. Goldstein
Michael L. Groves

Timothy A. Heizenrader

Lawrence T. Landis

Pennsylvania State University

Diane E Moravek
Janice A. Motel
Villanova University

Roy J. Hoffman
Alexandra Kelly

West Chester State College

Weaxdy L. Mackey
Drexel University

Carl Leypoldt

Gerald Markowitz
Edwin E MeCook
F. Lee Radzicki

Temple University
Gloria Dion

Geraldine Grazianni
Russell Herman

David R. MeFarland
Wayre E. Ogilbee
Lucie D. Parent
William T. Pearce
Donald G Reinhard

Atlas J. Heie

John B Kearney
Marcia C. Kozloski
Anne F. Lamonica
Janice Von Spiegel
Gregory E Wanstreet
Ton Whitehurst

Margaret A. White

H. Randall Nettling
Roxana L. Roth

Tassos Malliaris

Earl Marvil

Lee H. Mauldin
Michael Metzges
William G Musgrove
Ronad Nichols
Irene Nunley

Sarah Jane Roberts
Marcia Am Schupbach

Folkert Van Karssen
Robert J. Kidd

Richard H Kirklin
Jorge . Loiuz
Doug MeCallum

|sa Mohanzed

Am Louise Meuntais
Richard Petkua
Yuzuki Rizkara
Elizabeth 3. shell

Thozas R Parx

dary 5. Poczak

Joseph A. Margevicius
David C. McEnerney

Cassia M. Taraschi

M. G Rauer

Chris Rorres

Nadine NH. Rozénbauxn
Herbert C. Roy

Ronna Kohn
Diane Myers
Rochelle Paris

Maria L. Rizzo
Cynthia Rose

John M. Salvadore
Hancy Sheriff
Vivien L. Shirtz
Paul C. Wright

Peggy A. Mathews
Roxanne H., Meyer
Vicki 1. Miller
Louise E Moses
Kenneth J. Rachubka
Danny E. Wolfe

Janes Wortham
Ramamoorthy Rajagopal

Cynthia Sherman

Steve Schumacher
Janice Schvarzkopf
Richard Tan

0. B. Tobiaszon
Janet Trice

Bill Trout

Jerome Walker

Lane A. Whitesell
Donna J. William
M. David Paul Young

Arthur J. Porter
Linda Shanbeck
May S. Stewart
Richard R. Trebds
Allan Waltea
Mareha wWeed

arty Short

Mitchell Schwartz
William Shapiro
Mak Steinberger
Phyllis Sternthal
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FENNSYLVANIA EPSILON, Carnegie-Mellon University

Donald €. Keenan Anne N. Ritter

FENNSYLVANIA ETA, Franklin and Marshall College

Alan S. Keller
Barry A. Lukens

Edward J. Mckenna
Walter M. Richter

RHOIE IS AND BETA. Rhode Island College
Michael A. Carcieri Joseph Lere

Jeanne S. Cleland Sr. M. A. McBurnie
Carol Am Costa

SUTH DKOIA ALFHA, University of South Dakota

Janes P. Acherman
Leizime T. Brusoe
James R. Cink

Robert G. Clawson

Robert G Firman, Jr.
Ronald L. Florea
Arthur G. Friedrich

Joan A. Winer

Richard L, Stum

James Muro
Colette 0'Connell

Christopher J. Christiansen Larry N. Hornstra

Theodore A. Pelzl
John H. Maw
Richard M. Read

SWUTH DXKOA BETA, South Dakota School of Ming and Techmdlogy

Michael ., Keegan Douglas L. Michael

TENNESSE BETA, ‘'miversity of Tennesse at Chattanooga

William P. Edwards
Hubert H. Fowler
Lorraine P. Fox
Thomas G Greene
Jogeoh W. Hutcherson
Donald L. Hutzen
Gladys H. Crates Thomas D. Jamison
Davis K. Cooe John H. Jenkins
Cassandra Cunningham Damarest C. Jensen

Sandra J. Allen
Janes M. Arwood
Susan M. Bass
Frank L. Brooks
Sandra J. Burnett
Edward Chappell

TEXAS BETA, Lamar State College of Technologv

David Nelson Dudley Darvin T. Scott
Jo Am Goodwin Sharon Sue Recio

TEXAS ALRHA, Texas Christian University

Paul D, Axelson
Barbara G Booth
Yih-Shounr Chen
Arnell Crayton, Jr.
John M. Davidson

Sydna L. Delucia
Robert S. Doran
Jay F. Downs
Rosie Everts

TEXAS GAVMA ~ Prarie View A & M College

Barbara A. Edwards Cecelia A. Gibson

TEXAS EPILON. Sam Houston University

Geraldine M. Alexander Sandy Findeisen
Jim Bates Janes Godwin
Carol Beddingfield Brenda Griffith
Robert Brewer John Huber

Patti Bryan Marian Kainer
Francis G. Bryant Vernon King
Donna G Burdett John B. Koehl
Catherine Burleson Junette Lehuann
Rose 1. Cleveland Elizabeth Lindsay
Carolyn Davidson Charles C. Lindsey
Billy F. Dean, Sr. W. E Lowery

TEXAS ZETA, Angelo State University

Dr. Cass L. Archer Dr. John W. Duke
Kay E. Arledge Dr. Noel D. Evans
Dr. Johnny M. Bailey David M. Gould

Janice M. Hafmann
Paul &, Hendrix
George L. Hill
Franklin J., Hollk

Molly J. Beal
Telena L. Burk
Joan F. Clark
William M. Clark

Richard T. Jensen
Brian Jones

Ronald Kaplan
Winston L. Maszey
Harold A. MeAllister
Katherine E. McQueen
Nicholas B. Norris
Stan Pawlowski

Ma Vernon Trenck, Jr.
Georgeann Vann

Thomas E Gist
Richard D. Hoffman
Jerry King
Christopher Markos

Pearlanna Paul

Ronald MeConnell
Donnell Payne
Judy C Peterman
Ay llor King Poon
Mak Ponton
Robert D. Ray
John Romanek
May K. Sartain
Kenneth Skidmere
Russell Staley
Cynthia Tamasy

Jeanie Holtman
Linda Johnston
Patsy A. Kahlig

Janes A. MacDonald, Jr.

Carolyn 3. McGehee
Anne B, Paschal
Emmett D. Psencik

Frederick J. Yosua

John J. Weinhold
Michael J. Wilt

James J. Rainone
Helen E Salzberg
Sr. D. Sullivan

Larry E Silhacek
Janet M. Sullivan
Shirley A. Van Aelstyn
Duane R. Zuan

Glenda L. Rucks
Marsha M. Schoonover
George W. Spangler
David R, Sutton
Sandra A. Swafford
James G Ware
Samuel P. Woolsey
Paul D, Woethen

H C Vanzant

May H. Mulry
John L. Mundorff
May P. Reagor
Marilyn Sanbei
Tai-Jan Wang

Agnes Simon

Kenneth A. Thompson
Derrell J. Tooke
Tipanee Trikalsaransuh
Gary W. Tubb

Daniel £ Wagner
Margaret White

Linda L. Williams
Ronald Wilson

Roren W, Wong

Robbie York

Michael S. Rauch
Carolyn S. Seitzler
Vean L. Stahl

Mike A Torres
Daniel C. Vaughn
Frank P. Vince
Shirley J. West

UTAH GAMMA, Brigham Young University

David C. Adams

Diana Armstrong
Steven G Austin
David H Bailey

Alan 5. Craig

John R. Crane
Gregory W. Darlington
Lee N. Day

VIRGINIA ALAHA, University of Richmond
Charles M. Carter

Robb T. Koether
J. Tyler Lee

Bruce E  Booker
L. Michael Breeden
Drew C. Brown

VIRGINIA GAMHA, Madison College

Marie 1. Dodson
Patricia Hensley

Jancie M. Armentrout
Homer W, Austin

Linda F. Bowers May Hicks
Martha A. Bowles Keith A. Hope
Deborah L. Diehl Heda S. Lane

WASHNGTON BETA, University of Washington

Verna McCann
Marilyn Nulle

Katherine Carr
Gary S. Church
Lillian S Kawasaki

Michael W. Gardner
Carol Hawker

Kay P. Litchfield
David M. Mechkam

Blake N. Morris
Daniel L. Nichols
Stephanie K Roberts

Marilyn C L zorack
Constance E HcCook
Faye Redefer
Brenda S Reid
Judi Shobe

Bruce 91ch
Any Shinobu

WASHNGTON DELTA, Western Washington State College

Hartwell F. Bressler
Penni L. Burke
Carey S. Clark
Robert M. Cordell
Donna R, Cox

Gail H. Atneosen
Rodney L. Barkley
Helen M. Barr
Elyse Bensussen
Richard C. Boyes

WASHNGION GAMVA  George Washington University

Robert Garian
Owen Lagokas
Milton Lohr, Jr.

Robert B, Burke

Dr. Joseph Blum
Adam Chu

Frederick Cavanaugh

WASHINGTON EPILON, Gonzaga University

David M. Cook
Anthony Jazkowiak

Lavrence Bennett
James E Brilz

WES VIRGINIA ALAFHA, West Virginia University

James E Allison
Jamura P,Ambasht
Thomes E. Clayton
Katby L. Conrad
James B Derr
Tracey B. Dobbs

James E

David C. Haddad
Steven L. Everson
Helen A. Godfrey
Randall P. Hennis

WES VIRGINIA BETA, Marshall University
Thomas Hoopengardner ~ Marilyn Poff

WISOONSN ALFHA,  Marquette University
Jacqueline ¢, Janik

Michael McAsey
Paul Oehler

Jeffrey Brooks
Paul J. Coselli
Margaret DiPonzio

Elaine L. Eldridge
Thonmaz J. Folwy
Peter A. Hansen
Paulette R, Huizingh
Rosemary A. Morrell

Ernest Mabry
Frederick Scheuren
David Senzel

James M. Kilburg
Jerry P. 0'Connell

Carol F. Hoem=mrich
Jin Bai Kim

Daniel G Klimansky
Michael E Mays
Loulse C McKinney

Dennis Patrick
Richard Pehlesky
James R. Post

Michael W. Reeder
Douglas W. Ricks
Alyn P. Rockwood
Robert W. Wilson
Alice Chi«Fong Yan

Dan P. Rusak

Bernard H. Schopper
Alvin M. Stenzel, Jr,
bang-1 Yu

Vella South

Diane Spresser
William F. Sprinkel
Jean L. VWaggy
Effie J. Wells

J. Emnert Ikenberry

Allen Wy
Peter Yan-Shing Lau

Toshiko Nakaj ima
Gary A Olson

Donna L. Rader
Kenneth Schellberg
Wayre C. Sendenbaugh

Edward Sperandeo
Al Weaver

William W{lliamson
Bruce Yaffee

Joseph M. Petretta

Eugene M. Norris
Gary L. Reiger
Joanne Resso

J. Williaa Strider
Tien F Sun

Susan M. Youg

Susan Stilp
David P. Wesolowski
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Tennessee Gamma Dr. Thomes L. Viekrey, Dept. of Mah
Middle Tennessee State University, Murfreesboro

Florida Zeta Prof. Morris J. DeLeon, Dept. of Mah
Florida Atlantic University, Boca Raton

New York Psi Br. James G. Carr, Dept. of Mah
lona Bollege, New Rochelle

Alabama Delta Dr. Richard G. Vinson
University of South Alabama, Mobile

Pennsylvania Lambda Dr. Stephen 1. Gendler, Dept. of Math
Clarion State College, Clarion
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P K& MOVING?

Send your name, old address with zip code and new
address with zip code to:

Pi Mu Epsilon Journal

601 Hm Street, Room 428
The University of Oklahoma
Norman, Oklahoma 73069

(Answers to page 238)

Leibniz Euclid
Dedekind Galois
Cayley Fermat
Euler Riemann
Ptolemy Galileo
Pascal Boole
Fibonacci Heron
Eudoxus Mobius
Ceva - Pappus
Eratosthenes Saccheri
Hardy Bernouli

S Napier Vieta

r=g Cauchy Gauss

Thhles L ohachevsky
Pythagoras DeMoivre
Jacobi Newton
Poincare Cardan

) Hilbert Kepler
Abel Moore

Welerstrass Cantor






