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Comments on the Properties of Odd Perfect Numbers

Lee Ratzan
Courant Institute of Mathematical Sciences

I. Regarding Background

Perfect numbers are positive integers with the unusual property
that they are equal to twice the sum of their divisors, that is,

ifJ(x) =} d, then J(N) = N for any perfect number N.

a/x
No odd perfect number has thus far been discovered, (and for goad reason
as will soon become apparent), but restrictions on their existence have
been demonstrated in that if in fact they do exist, they must have certain
definite properties with regard to size, number of prime factors, general
form and miscellaneous unusual bounds on the sums and products of the
reciprocals of the primes which divide them.

Euclid proved all numbers of the form N = (2k-l)(2k-l) are perfect

if (2k-l) is prime. Euler demonstrated that in fact all even perfect
numbers are if the same form, the first three perfect numbers being 6,
28, and 496. It is curious to note that even perfect numbers all end
in 6 or 28 (Novarese, 1887), but this is not an alternmating sequence for
the sixth perfect number (8,589,869,056) ends in '6' and not 'g!' as
anticipated (Reid, p. 87). But so much for even perfect numbers.

The bulk of research regarding odd perfect numbers stretches backward
several hundred years (including such names as Alcuin of York, Descartes,
Fermat, Leibnitz, and Euler) while present day research primarily concerns
itself with determination of bounds on the number of prime factors and
size of the number through the use of computing machinery. Example:

While Euler determined the necessary structural form of all odd perfect
numbers t o be p@X2 where p = a = 1(4) and (p,N) = |, Norton (1961)
determined that if 17 is the smallest prime factor of an odd perfect
number, then the number has at |east 509 prime factors.

Let us examine only some of the necessary properties of the odd
numbers which we deem perfect. The following will prove useful:

Lenmma (Bourlet, 1896)

If P* is any perfect number, then J (1/d) = 2
d/p*
Proof: Consider P%/d; where the dj are the divisors of P
note that P*/dl, P*/dz, ...P*/dp* range over all the divisors of P*

"*there are 23 known even perfect numbers and the largest of these

s 2310212 (p11s213 3y Uik has 6751 digits. Editor.
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and if 1 =4, 4, d,... d = P¥, then P¥/4, = P* and PE/d,, = 1.
thus 1, di =d, +d_ + ... dp,. =2

2. px § G = epw

3/p+
3
3, 7 = g
a/p*
aQ o a
Lemma: If n = 1l P22...P}(3 where the Pi

are distinct primes and the a, are positive integers

K a; + 1
then J(N) = n E}_______:_}
izl P. & 1
T
K a ., ) )
Proof of gketch: Note J{(¥) = I J(p; 1) since J(x) is
i=1

multiplicative and the Pi are relatively prime to each other. Consider

2

the terms of J(Piai) which are merely l+Pil + Pi + aus Pil whose

sum is (Piui ¥ J')/(Pi = 1). Continue for all k terms and the result
follows.

II. Regarding the Form of an Odd Perfect Number

Euler was the first to prove that if N is any odd perfect number then

N is of the form F'an where P is a prime and a is a positive integer
note: henceforth N shall be used to designate all odd perfects.

Proof 1. Let N be an odd perfect number with k prime factors such that
— a

N o= Pl 1 P22
o, are positive integers.

2, J(N) = 2N

Pkuk where tlie Pi are distinct odd primes and the

Using the fact that J(X) is multiplicative one obtains

o a a [+3
1 Ky L b X
3, J(N) - J(Pl o Pk ) o= J(Pl ) . J(Pk )
Qa a a
. 1 Ky _ 1 k
But b, U(Pl ) aea J(Pk ) = 2Pl e Pk
&5
5. Thiz one of the J(Pi ) is the double of an odd number, let it

a a,
be J(Pl l) and all the other J(Pj i ¢ j are odd.

a.
6. J(Pj 7 being odd implies aj are even,
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a [+ [+ 3 o
_ 1 2 k 1 2b 2b.
7. Thus N = Pl P2 « oo Pk = Pl P2 2 4 Pk k
2 _ k
and thus PPQ° where Q = (Poby Poby o,y BB,
Q.E.D
Euler also proved that if m fact N = PaQ2 then P = a = 1 {4) and

in particluar no N was of the form 4 t + 3.
Pepin (1897) proved no N was of the form 6 t + 5 and Touchard (1953)
proved N is either of the form 12 t + 1 or 36 t + 9.

I1I. Regarding the Prime Factors of N

The question no doubt is raised that assuming the existence of N,
might N be a prime or even an even power of a single prime. The answer to
both questions is no as follows:

Case 1- N is a prime, If N is an odd prime and is perfect,then J(N)=J(F)=2P
by definition. But J(P)=P+1 since P has no divisors apart from itself and
1 Thus P+ 1 =J3(P) = 2P implies 2P = P + 1 implies P = 1 which is an
absurd condition.

Case 2: N is an even power of a single prime, If N is an even power of an

Pk is odd for P> 2 and

odd prime, then J(PR) = 2Pk if PK s perfect.

Since all of the divisors of Pk are odd, Pk must have an

even number of divisors; but Pk has exactly (k+1) divisors (l,P,PQ...Pk)

and thus k must be odd which is a contradiction.

J(Pk) is even,

Hov many prime factors may an odd perfect number contain? Or rather what

is the minimum number of prime factors? The necessity for at least three
distinct prime factors is attributed to Nocco (1863) by the following
argument:

Let a™" be an odd perfect number where a,b are distinct odd primes
and m,n are positive integers not necessarily distinct.

n+l o
1 22" = % p" = aml - 1 (proceeding lemma)
a- 1
a™? A" {a-1)b" + 1
2) a/2(b-1) = = =
Qam(b—l) bn+l_l bn+1 1

= arb(ab™s2om 142y = 245 (2b"4 22"

a+tb™ 1 (a-2) = a+2b™(a-1)-2b
b(a-2)" + a = 2(a-1)b" + 2 - 2b

b(a-2)p" > 2(a-1)b"

n~1

3) ab-2b > 2a-2and ab™-2b" = b bla-2) > b 1(2a-2)

ab"-2p" > 2ap""1 - Y

n-1 n=-1 " n

%) ab" + 2677% > 2ab 2b

] -]
a+b(ab™+2b™ 142) = 24b(26" + 2ap""

Reconsider now:
Thus: b(2p" + 2ab™" 1) > b(ap® + 2771
5) 26" + 2ap™ % > ab™ + 2°°% Contradiction to ()
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In 1908 Turcaninov proved that N has at least 4 distinct prime
factors. In 1949 Kthnel increaded the minimum number of distinct prime
factors to he 6 (implying that N > 2%106),

In 1888 Servais proved a theorem to the effect that if N has k distinct
prime factors then the smallestprime factor is less than or equal to k.
The proof rests on the fact that if N = abe...2z where a,b,z are distinct

odd primes h atl . 242

. <
then: bel =T < =1 etc.
and 2<;:a—1'f>% ...-9-3-&<a§-&'g-23.c %Er-};%

whence 2{(a-1) <a+n-1 where a < n=|

if L is the (m-1) st prime factor and a is the mth prime factor and if
a b 2
T BT T L2
stl s+n-m : .
then L - . . TraomTl by cancelling out adjacent nun-

erators and denominators except for the first and last terms one obtains:

L(s+n-m) > 2
s-1
Ls - 28 Im - Ln -2

Lm - Ln -2

L-2
L{n-m) + 2

- =T < L{n-m) + 2

< 2(n-m) + 2 n

When n is sufficiently large, the n "swamps' the values of m (and 2)
such that 2(n-m)+2 < n and thus s § n.

Q.E D.
This is a statement from the result of Cesano (1887) to the effect that
s < k Y2 . Grun (1952) proved that the smallest prime factor of N was
strictly less than (2/3) (k+3) vhere N has k distinct factors.
|V.  Regarding: the Size of N

Muzkat (1965) in his undergraduate thesis proved that any odd perfect
number must be divisible by a prime power greater than 108, put later
increased his lower bound to 1012 thru the use of the University of
Pittsburgh's computing facilities in the following theorem:

Theorem {(Muzkat 1965}

10 Any odd perfect number must be divisible by a prime power greater than
1042,
Proof Sketch:
an odd prime and k is a positive integer,

_ o3, 2b
N-—PQl

Assume each Pk that divides N is less than lOJ‘2 where P is
Steurwald proved that if

1 ,..Qiu .,.kabk (Euler) then at least one of the bi is

greater than 1. Let it correspond to Qi' Then,

2b y
1042, n = p%, %P0, 2. 5 20,71 L g

1
u 12 .,

2b
‘e Qk k 2Qi .

R R TAAA
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Nw consider all odd primes Qi such that Qi 1000 and Qi4 1012.

Computations courtesy of the University of Pittsburgh's IBM 7070/7030
reveals that of the 168 possible primes, each is succesively eliminated2
and thus an odd perfect number must have a prime power greater than 10 ~.
Norton (1961) using unpublished results of Rosser and Schoenfeld as
well as the computing facilities of the University of Illinois produced
bounds on the number of distinct prime factors of N as well as the size of
the least prime factor.
Theorem (Norton-1961)
Let N be an odd perfect number with smallest prime factor P and let b
be any number less than 4/7,

Then N has at least a(n) distinct prime factors where a{(n) = fpn2 .Iq-rtﬁ. +
o
2,-1nPn - 2
o(n“e b)), Also N has a prime factor at Ibeast as large as Pn +
- 2 20-1nPn
o(ne Inny ., and log N 2P "t O(n"® ).

Norton's theorem offers a relation between the least prime factor and the
number of prime factors and is useful for generating estimates on the size
of N. For example, if 3+, then N has at least 7 distinct prime factors
while 541 is the least prime factor of N then N has at least 26,308 distinct
prime factors and log N > €00,000!!!!! A sample of the Norton table is
enclosed to demonstrate the rapidity at which the minimum number of prime
factors of N increases.

Smallest Prime Factor Number of Prime Factors

P a(n)
“n an)
3 3
5 7
7 15
11 27
13 41
17 62
19 85
23 115

(From Karl Norton, "Remarks on the Number of Factors pof Odd Perfect Numbers”,
Acta Arith, 6(1960-81) pp. 365-74),

Norton's estimates on the size of N rest upon successive knowledge of
the least prime factor of N. Kanold (1857) place a lower bound on all

odd perfect numbers by proving that for all N, N > 1020.

The evidence appears that odd perfect numbers are few and far between
if in fact they are at all. It is not a surprise in the light of these
theorems that none of the past mathematicians ever discovered any such beasts.
Euler himself who elucidated the properties of all even perfect numkters
could do no better than hypothesize.

V. Regarding } 1/P and ¥ F-1
P/N P/N

Curiosity on the phenomena of odd perfect numbers has stimulated
investigators into peculiar and rather unusual relationships between the zums
and products of the primes which divide N, The most prolific of these
investigators is Perisastri (1958) and Suryanarayana (1962,1966) who have come
forth with the following inequalities:

N is an odd perfect number, p is a prime

_é_< I %< 2 log (w/2)
P/N

i) Perisastri (1958)
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(Ah, sweet mystery of 7 111)
lo 2 1‘ < _J.‘_
i) 5Tegsm < LT 168 & w998 if N =12t +1
P/N
= 1 18 53
e, B dEES T F 1 I3 *21%0 if N = 36t + 9
iii) 3 + 5 <P/N
5 log u

(ii1) and (iii) are both due to Suryanarayana (1962). Recently these
bounds have been improved by the forenamed mathematician as follows (1966):

1 1 log 48/3% .1 1
a) T + T+ 11 log 11710 < | P %+ 2738  if N =12t + 1 and 5/N
P/X

1
log 12/7 <1 F

11 log 31/10 P/N

)y 1, < log 2 if N =12t + 1 and S5XN

1 65
1,1 log 16/15 z— AT | 1 T
51 Pt < P g+z+tyy tlog if N = 36t + 9 and
) I3TT T ITIog 1716 Gy 37571 s
1
1, log u/3 5
_+__E——7—-’ < P 1 1 18
d4) 3 7 log 778 g,N F+38+ B T3 if N = 36t+ 9 and 5X¥

The prrofs of (a), (b), (<), (d) are rather long and the reader is

referred to Suryanarayana, On Odd Perfect Numbers II, Proceedings American
Mathematical Society 14(1963),

The relationship between odd perfect numbers and the Rieman zeta funcatio®
have been zhown to involve the expression §(3) as follows (Suryanarayana, 196671

1 . 56791 R +
V2<l P/P-1) < Fmes g(3) if N=12tF 1and 5/W
P/(P-1)
2) 2 <0 1760521 PN Eqy
P/N < Toeogs ) if =12t + 1and 5%
LJ
1
3) 2 < P/(P-1) 318897 e
P/N Sess (3 if N = 36T + 9 and 514
4) 2 < y
p/w P/(B-1) < 37061 ,(3)  if N = 36t + 9 and 5K

The proofs of these results are equally long and the reader is referred

to On Odd Perfect Numbers III, Proceedings American Mathematical Society,
18(1967).

In summary, the following conclusions can be drawn regarding the
properties of odd perfect numbers:

1. N = Pa02 where P = a & 1(#), P prime Euler

2 N =12t + 1lor 36 t+ 9 Touchard‘

3. N# ut+3, N#F6k+5 Euler/Pepin
4. N has at least 6 (distinct) prime factors Kuhnell

5 N >lO20 Kanold

6. If P*/u, then P > 1012 Muskat

7 It obeys rhe Suvvanaravana inequalities Survanaravana

some mathematician proves these strange beasts out of existence,
certainty can be achieved.

10.

.12,

13.

14.
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It appears unlikely that there are any odd perfect numbers, but until

no real
Fata viam invenient,
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process allows us to continue choosing qi's. even after enough have been

chosen to make Ej < ¢, For every integer n = qi where r 3 s,s N satia-
4y
fies the conclusion of the theorem. Consequently, there are infinitely many
such n.,
For R = 2, this theorem states that there are infintely many "almost
unitary perfect™ numbers. By choosing 9 such  that q; 2 3. we can

show that infinitely many odd "almost unitary perfect" numbers exist, al-
though there are no odd unitary perfect numbers.

It is interesting that all of the n's produced by the method of the

T
above theorem are of the form g ay. Consider instead, integers of the form
II qiz. =1
i=1
r r 5 r
Unlike U( H qi) u(n a; ) i s bounded above. U( R 9, Y= 11+ 1/q. .
n i=1 i=1" i=i* i=1
1
tl+—==7 1 where a, = 0 or 1 and the sum is
i=1 D ay az ap i
i pl » 92 [Yp— Pn
taken over all combinations of a , Bpy seey A Hence,
n {1+ pi n -2)-1 i -
izl izl i=1

;1 (k‘2> kzl (k-LD = <w2/6> G”/ch = 15/7° . < 2.

Thus we have proved the following theorem: r
Theorem 2. There are no unitary perfect numbers of the form & 9 31
i=0

where a 2 2 for all i,
A similar proof can show that there are no unitary perfect numbers of

the form I qiai where a, > 2 for i # sanda_ = 1
N i s

i=
r r 2
Wng)y=@a+dyo(n 1+2 )< %*L 9 Ll
i g Tk q q,2 — =
i=1 s i=1 i q 2 6
s s aQ + 1
a2+ q 2 fies 2 $ 2
- +
L= L 1f g0 = 5IE thengt(x) = gl LL X
9,  + 1 x" 4+ 1 (x°+ 1)
Thus g'(x) = 0 for x = 1 + /2, and g'(x) O for all x > 1++¥2., Thus
2
g{x) is monotonically decreasing for x > 1++/2 = 2,44, Hence, g * 9
is a maximum for either qg = 2o0r 3. Since g(qs) = 6/5 for s
both q_ = 2 and 3 %, s 1° < 6 n’
oth 9 *® RG 3, _S . ="z . T 2. Thus there are no

qs+l

r
unitary perfect numbers of the form N qiai where a; 2 2 for i #s and
a =1 i=l
r a,
There are two known unitary perfect numbers of the form = q; 3 where
. _ oAl izl
aizz foralllfs,tandas-at-:l_ namely60=22.3.Sand

90 =2 * 3 « 5, Using IT2/6 as an upper bound for Z 1/k2, an upper
k€S
bound of U({ n 9 #1) where a; 2 2 fori#s,tanda =a = 1dcan be
i=1
obtained. It is (6/5) « (6/5) « * /6 2.37,

UNDERGRADUATE RESEARCH PROPOSAL

Arthur Bernhart
The University of Oklahoma

In the real number system there are three kinds of numbers: positive,
zero, and negative. There are laws concerning these like the product of
two positive numbers is positive, a positive times a negative is negative
and so forth.

In afinitefield we do not have the distinction between positive and
negative, but there is another analogy which we can look at. In the reals,
each non-zero number has a square which is positive. In a finite field,
there are numbers which are sqaures and those which are not. Consider
those which are squares (quadratic residues) in one class and those which
are not squares (quadratic non-residues) in another, with zero in a sepa-
rate class by itself. The product of two quadratic residues is a quadra-
tic residue; the product of a non-residue and a residue is a quadratic
non-residue. The product of two non-residues is a quadratic residue.

Here we have an analogy with the law of signs where the quadratic
residues play the part of positive numbers and the non-residues play the
part of negative numbers. Hw far can this analogy be pushed? Yau may
want to consider vector spaces over the field and the resulting geometry.
Try also to interpret distance relations and other parts of analytic
geometry as well as purely algebraic results.
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Bi natural Nunbers

D R Morrison
Sandi a Laboratories

The natural numbers are, no doubt, the ol dest, nost fundanental,
and nost universiallv recogni zed and w dely used mathematical svstem
The operation of counting, which fives rise to them is probably the
nost el ementary mathemati cal process. Kronecker is alleged to have
said, "Pod gave us the integersz; all the rest is due to man." Manv
civilizations, the Egyntians, the Romans, the Arabs, and the Mavans,
to mention a few, invented systens of notation for natural numbers, all
different in formand yet all representing the sane abstract system

Peano characterized the-system 1 of natural nunbers In terns of a
first element 1 and a successor function S, under vhich ¥ is cl osed,
by three axions.

N1 S is one-to-one.

¥2 1 is not in the range of S

N3 The only subset of S vhich includes 1 and is closed
under S is s,

The function S is, of course, the counting function, s{n) =n + 1. Al
the operations such as +, x, etcetera, which are traditionally defined
in N, are defined inductivelv from1l and S; and all their alpebraic
properties, such as comutativity, associativitv, etcetera, are proved
from¥N1, N2, and N3.

An obvi ous extension of the foregoine is a system B, of binatural

nunbers, characterized bv a first menber 1, and a pair L(left successor)

and R (right successor) of successor functions, under each of which B
is closed and «hicn satisfies the three axions:

Bl L and R are both one-to-one.

B2 The ranres of L and R are disjoint, and neither includes 1.

B3 The only subset of B which includes 1 and is closed under
both L and R is B,

While ¥ has many representations, all of which are used ezzentiallv

as counting svstems, B has manv representations which differ not only
in formbut also in use.
(see followins fipure) and note the different forns of B to which they
| ead.

In examnle 2 the ranres of |, ®, LL, LR, RL, RR LLL, etcetera
liein finer and finer martitions of the ormen interval (0,1) and have

obvi ous apvlication t0 the vprocess of zearchine by halving, an imnortant

nrocess in mimerical analvsis, neasure theory, and other areas.
The natural vectors vhich arise in exarmle 4 are a natural set of

| abel s for things that mav reouire extensive subdivision: organizations,

subiect matter categories, nmaragraoh and section subdivision; of docu-
nments, etcetera. Exammle 5 is the free monoid with two penerators,
wvhich plays and essential role in the coding of information for binarv
digital conputers.

In each of these armplications there are certain relations and
onerations that arise naturally in nuch the sane way that + and X

Consider the different definitions of L and
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arise naturally in 1, 1In each of themthere is at |east one "natura
order," and in several of themthere are one or nore natural definitions
of lenpth, magnitude, dinension, or some other neasure that maps B into
1 which has useful procerties relative to the operations that arise
naturally. In several of the exanples, concatenation, addition, and/or
multinlication are defined for pairs. Involutions such as reversal or
coml enentation are defined for individual elenments, and these are in
many Cases automorphisms relative to the onerations

It is not hard to show that the hinatural nunmhers, |ike the natural i
nunber ?, are uniaue un to an isemornhism, Tt follows that anv opera- i
tion, relation, or neasure that arises in any representation of B has
an analogous oneration, relation, or measure in each representation of
B, This sivez rise to a virtuallv inexhaustible list of interesting
aueztions,

g

What oneration on natural vectors corresnonds to + and x on
nat ural numnhers?

What operation on natural nunhers corresnonds to concatenation
of natural vectors, or of =ztriness of zeros and ones?

“hat order relation on nunmhers in (0,1) corresponds to the
well orderines hv < amone the natural nunhers

There are twel ve kindsz of al phabetical order among the strings
of zeros and 1's, corresnondine tO the SiXx permutations of 0,1
and © and the two directions (left and right) of concatenation
Wiat are the correzponding twelve order rel ations amonp natu-
ral nunbers" Amone natural vectors?

And o on. Sone of these are easv to answer and sonme are hard. Sone are

interestine and some are not. I'll leave it to the reader to sort
t hem out .

The on-to-one correzsnondencez anonp the various forns of binatural
numberz are al so interezting and useful. A function vhich assigns to

each natural vector a unicue natural integer nakes it possibleto
nrocess natural vector identifiers as sinegle integers. This zimolifies
comnuter storape requirements, thouph it does penerate rather large
identifiers. Perhan:z the readers can find other useful aoplications of
these correspondence

NEED MONEY?

The Governing Council of Pi M Epsilon announces a contest for
the best expository paper by a student (who has not yet received a
master's degree) suitable for publicationin the Pi_Mi Epsilon Journal

The followi ng prizes will be given

$200. first prize
$100. second pri ze
$50. third prize

providing at |east ten papers are received for the contest

In addition there will be a $20.00 prize for the best paper from
any one chapter, providing that chapter submts at |east five papers

L}
~3
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SOVE COMMENTS ON
"A CLASS OF FIVE BY FI VE MAG C SQUARES"
Robert C Strum

Inthe Fall, 1971 issue of the Pi M Epsilon Journal, Marcia Peterson
presented a class of five-hy-five magic squares with a three-by-three
magi ¢ center. The purpose of the current comments is to point out four
errors in the magic square as it appeared in print, and to offer two correct
magi ¢ squares

The magi ¢ square as published is shorn in Figure 1. Let each el enent
of the five-by-five magic square be identified by E(i,§) where:

i=1,2,3,4,5, and indicates the row;

j = 1,2,3,4,5, and indicates the colum
oserve that each el ement is of the form (n + kb) where k takes on twenty-
five distinct values for the five-by-five magi c square. The errors are as
fol l ows:

1) The set defining k in Figure 1 has only 22 elenents. Gven that O
is also a menber of that set, since it is used in E(3,3), the set defining
k is inconplete since 25 el enents are required

2) Because of 1), duplicate usage of twe values of k (kx = +3c and
k = -3¢) is enployed in E(2,3), E(3,1), and in E{3,5), E(u4,3),

4

y
3) Z E(2,m) # 3n and Z E(u,m) # 3n but they should for a magi c square
m=2 m=2
three-by-three
5 5
4) E(m,1) # 5n and Z E(m,5) # 5n but they should for a nagic square
. m=1
five-hy-tTive
To obtain a correct class of magi c squares, one nmust add two nenbers
to the set defining k. Let these menbers be k = +4c and k = ~tc., Then a
class of five-by-five nmagic squares with a three-by-three magic center is
given in Figure 2
It is interesting to note that, with two exceptions, the values of k
are given by:
k=qc+p
wher e
q : -4,-3,-2,-1,0,1,2,3,4

and for each value of q except q = -4, q = +4,

p = -lioil
and for q = -4, q = +4,
p = -1,0
The exceptions to this symmetric pattern are k = +(2¢ + 2) and k = -(2¢ + 2)

which are used instead of k = +(3¢c = 1) and k = -(3¢c = 1), A class of
five-by-five magi c squares with a three-by-three magic center using, for
the values of k the set defined by k = qc + o as descri bed above is given
in Figure 3
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n-(c-1)b n-(2c+1)b n-(3c+1)b n+(2c+2)b n+(4c=-1)b
n-(2c~1)b n-b n+3ecb n+cb n-2cb
n+3cb n+{c+1)b n n-{c+l)b n-3cb
n+2ch n-cb n-3cb ntb nt{2c+l)b
n-(4c-1)b n+{2c+1)b | n+(3c+1)b n-(2c+2)b nt(c-1)b ]

In the above, b and n are arbitrary whole numbers.

To be certain

that all of the above entries are distinct we require only that the
members of the set
[-l,l,c,-c,c+l,c-l,20,2c+l,20-l,2c+2,3c,3c+l,uc-l,—(c+l),-(c-l),-20,}

(2¢41),-(2¢c=1),-(2c+2),-3¢c,~(3c+1),=(l4c-1)

are all distinct. This will be true, for example, if c 2 3
Figure 1
m-{(2¢c-1)b n-{2¢)b n-(2c+2)b n+(4c)b n+{2c+1)b
n-(3c)b n-b n-(c-1)b nteb n+{(3c)b
n+(3c+1)b n+{ct+l)b n n-(ec+1)b n-(3c+1)b
n+(tec-1)b n-cb n+{c-1)b n+b n-(4c=-1)b
n-(2c+1)b n+(2c)b n+(2c+2)b n-(4c)b n+{2c-1)b
Figure 2
n-(2c+1)b n=-{3c-1)b n-(2¢c-1)b n+{(bec-1)b n+(3c)b
n+(3c+1)b n-b n-(c-1)b n+cb n-{(3c+1)b
n-(2c)b n+{c+l)b n n-(c+l)b n+(2¢)b
n+(4c )b n-cb n+(c-1)b n+b n-(4c)b
m-(3c)b n+(3c-1)b n+(2c~-1)b n-(4c=-1)b n+{2c+l)b
Figure 3

i

of containing the point.

Monte Carlo Estimate for Pi

J, H. Mathews
California State College, Fullerton

The purpose of this note is to provide a somevhat simpler

exoeriment for caculating Pi than Buffon's needle exveriment [2].

Let a region A be inscribed in a unit sauare. Assume that it is
poszible to select a noint at random in the square. By " at random",
we mean that every rectanpular region R of area » has probability p
Then the probability that the point will

lie in the repion A is equal to the area of A (see fipure 1). This
method of estimating the area of A iz called a Monte Carlo Method 1]
In particular, let a circle he inscribed in a unit square. If a
point is selected at random in the square, then the probahility that

it will lie in the circle is ¥ (See figure 2).
A
1 i / \
0 Figure 1 4 0 L

Figure 2

An experiment iS constructed to calculate Pi as follows. A
#rid of perpendicular lines is drawn so that the distance between
adjacent parallel lines is the diameter of a penny. A penny Is
thrown at random on the prid. The preobability that the penny will

cover an intersection of two grid lines is g, This may be verified

by considering the center C of the penny as our random point. The
center C of the penny will lie in the dotted circle, inscribed in a
dotted square, if and only if the pennv cover? an intersection of

two grid lines (see figure 3). In a classroom experiment 2500 nenniesz
were tossed and 1961 hits were recorded. The anproximate value for Pi
obtained was 3.138. This particular experiment was somewhat better
than expected. The exveriment is a series of binomial trials, each
of vhich has a probability = of success. The standard deviation for

1 —
. . N w411
such an exreriment iz known to he /g -
TR
2500 trials is approximately 20, which gives an accuracy of 0.8% for
the estimation of Pi.

The standard deviation for
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REFERENCES

{1} Y. A. Shreider, The Monte Carlo Method, Pergamon Press, 1966
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MOVI NG?

BE SURE TO LET THE JOURNAL KNOW

Send your name, old address with zip code and new address
with zip code to:

Pi Mu Epsilon Journal

601 Elm Avenue, Room # 423
The University of Oklahoma
Norman, OK 73069

A Note on the Integral and the Derivative
——!_Fh;rF'or € INVerse sine _Function
Peter A. Lindstrom
Genesee Community College

In a beginning calculus course a student encounters quite offin
the integral and the derivative of the inverse sine function, sin
The integral of sin~! is usually obtained by integration by parts while
the derivative can be obtained by applying the Inverse Function Theorem
for Derivatives. This note shows how to handle both situations by
means of a geometric argument.

O a single coordinate system, consider the graphs of y = sin"tt
where 0 £ t < X (arbitrary x being positive for reasons of simplicity)
and y = sin t where 0 £ t < sin~1x, as shown in the following figure.

AY
=1
=sin 't
-1 ¢ Yt
(0,sin %) 4 - _ (x,sin‘/lx)
,
| v
| //
; y=sin t
/1 sin~1x,x)
. ;
. t H
i [
! s 5
T - t
,/ (0,0) (x,0) (sin1x,0)
v
7

The area of the region bounded by the curve y = sin t, the t-axis,

sin_JX

and the vertical line t = sin_lx is given by sin t dt. Rotating
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this region about the line y = t, the region will have the same area
although the equations of its boundries become the curve y = sin~lt,
the y-axis, and the horizontal line y = sin“lx. This area can be

X
expressed as x-sin"Ix - J sin-1t dt.
0
sin-1x
Hence, f sin t dt = x-sin~1x - sin~lt dt,
0 0
X sin”"x
or, j sin-lt dt = x+sin~lx - { sin t d4t,
0 0
sin~1x
= xesin~ix + cos t] ,
0
_ s =1 =1
= x+sin "x 4+ cos (sin “x) - cos 0,
= x sin"Tx t Jl—sinQ(sin'lx) -1,
Th, sin—lt at = X sin-lx t s’].—x2 -1 (A.)
0
As said before, the same result can be obtained by integration by

parts although it is necessary to know that a—i— sin_lx =

; this
l—xg
derivative was not used to obtain (A.). To obtain such, one needs to

differentiate both sides of (A.), assuming that the derivative of
the sin~1 function exists.

-} (x sin_lx + Vl-x2 -1),

X
A f sin" Yt dt)

dx o dx
=1 .o=1 d . -1 X
sin "x = 1l+sin "x + x*==—sin "X - ——- |
dx 3
Ax
or d sin_lx = 1
dx ;l-x§

MATCHING PRIZE FUND

The Governing Council of Pi Mi Epsilon has approved an increase
in the maximum amount pep chapter allowed as a matching prize from
$25.00 to $50.00. If your chapter presents awards for outstanding
mathematical papers and students, you may apply to the National Office
to match the amount spent by your chapter-~i.e,, $30.00 of awards,
the National Office will reimburse the chapter for $15.00, etc.,--up
to a maximum of $50.00. Chapters are urged to submit their best
student papers to the Editor of the Pi M1 Epsilon Journal for possible
publication. These funds may also be used for the rental of mathema-
tical films. Please indicate title, source and cost, as well as a
very brief comment as to whether you would recommend this particular
film for other Pi Mi Epsilon groups.

<

Spec (R) For A Particular R

Frank L. Capobianco
College of the Holv Cross

Let R be a commutative ring with identity. Define
Spec (R) = {PcR: P is a prime ideal}.

W remark that the word "ideal™ denotes "proper ideal." W shall write
[P] for the element of Spec (R) given by the prime ideal P.

The Zarizki topology on Spec (R) is riven by: The closed sets are
those of the form {TPJ]: P2 A} where A is a (possibly improper) ideal
of R. W denote such a set by v(A), It is not hard to prove:

D V(g ) QW (Ag)
ii) vanB) = V(A U V(B)
So the collection of closed subsets {vV(A)} does define a topology.
Let Spec (R)f = {[P7: f¢P}. Since Spec (R)f = Spec (R)

- V((f)), Spec (R); is an oven subset of Spec (R). These sets form a base

for the open sets in Spec (R) since any open set Spec (R) = V(A) =
f\éJASDec (R)g.

Let X he a field, and consider the commutative ring with identity
R =1E1k' W remark that (ul, u, «:.) is awunit of Rif and only if for all
ieN, uy £ 0,

In the preliminary version of his Introduction to Algebraic Geometry,

. - id M = @ .
(3, pP. 12u4-125 , 140), David Mumford states that for R 5 k. Spec () is
the Stone-Cech compactification of ¥, the positive integers. This paper
intends to present a proof of that statement, using the following charac-
terization of the Stone-Cech compactification found in Giliman and Jeri-

son's Rings of Continuous Functions, (1, page 86):

Theorem. Evervy completely regular space X has a Hausdorff compactification
BX with the property that any two disjoint zero-sets in X have disjoint
closures in B8X. Futhermore, 8X is unique: if a Hausdorff compactification
T of X satisfies this property, then there exists a homeomorphism of B8X
onto T that leaves X pointwise fixed.

Proposition 1. The set MP = {(kl, kQ...)eR: kD = 0} is a maximal ideal
in R,
Proof: MD # ﬂsince (0, 0 ---)EMD. MD £ R since (1, 1...)does not

" 1,1
belong to MD. Suppose (kl’kz’ «aa) and (kl, > «+.) belong to My Then
1 oLl S !
kD = kP = 0 and kP kn = 0 and (kl, kQ, el (kl, k7, van)E MD. Suppose
(kl, k2,...)€MD and {r, r , ..u)eR, Then kD-rDZOand (kl‘ Ko vea) t

(rl, Toy ven) ch. Hence MP is an ideal in R.

Suppose M is an ideal of R containing Mn' Assume (r . L)EM - MD'

17 To0
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pth place pth place
1 {
Then T # 0. Nov, (rl, T, wen) (0, «ouy 0, = 0, een) = (0,0..,0,1,0.00)e M,
P

pth place
Since (1,...,1,%,1...)5~Mn, we have (0ys00,0,1,000a) T (1,...1,0,1,004) =

(1,1,..4)€ M contradicting the fact that M is an ideal of R. Thus, M = Mp.

pth placeé
Corollary 1.1. Mp is principal; that is, Mp = (£), where f = (1,.,..521,0,1,..).

Hence, M_ is maximal.

Proof: Suppose (kl, |3

(kl’ kQ,...) o f.
Proposition 2. {[Mp]} i s open-and-closed.
Proof: {[¥ 1} is closed since {[MP]} = V(MP). Let g = (L,1yuua) = f
p

2,...)5 MD. Then k = 9. Hence (kl.
Thus, Mpc(f). Hence, (f) = Mp.

Kosees) =

vhere f iS the generator of M_. Suppose P is prime and g¢P. We claim that
P = Mp. PcMP since otherwise there would existl(rl, r2,...)eP such that
: prere) 0 (04000, T2 00400

PP # 0.
It suffices to show fe P. Assume f¢P,

In which case (rl, r g belongs to P.

Let (rl,rQ,...)e P. Then
(rl. T, ves) ® o0 (rl, Tos eees Ppogs Ly vy eev). But
(rpThs ooes oo b Pps1® sea)f P since PCMP’ and we have assumed f£ P.

Contradiction of the fact P is prime. Hence fe Pand P = Mp. Therefore,

Spec (R), = {[¥ 1} and {[MD]} i's open.
Corollary 2.1. N is homeomorphic with the subspace ”Mp}peN of Spec (R).

Proof: N and {[MP]}DEN are in one-one correspondence by the map
<« M ],
Proposition 3.
in R containing P; i,e., {[P%; = v(P),

Since both spaces are discrete, this map is a homeomorphism.
Spec (R) is a T-space. In fact, P is the only prime ideal
Proof!  Suppose Py is prime and contains P. Assume {k 1 kQ. ...)ePl -
We may assume k. = 1 or O for each iéN, since (k,a,, k.,a,, ...)EP =P

1 171 "2%2 1
where ai = {ki if ki =0 i‘(-i otherwise}

Let (rl, Ty ee) = (1,4, 4ua) " (kl, kz, vee )
(rl, T e 1 (kl, k

(ryy v, ...)¢Pl since
.) = (1, 1, ...). Hence (rl, Ty «a )PP,
Y = (0, 0, ,«s)EP,

gy e
Contradiction of the

But (rl, LIPS yue) * (kl, Koy wne
fact P is prime. Therefore, P, = P. Therefore, {{P]} = V(P) and is closed.
Corollary 3.1. Every prime ideal in R is maximal.

Proof: Since R is a commutative ring with identity, every prime ideal
P is contained in a maximal ideal M. Since M iS prime, M = P.

Proposition 4. Spec (R) is Hausdorff.

Proof: Suppose [ Plj and [Pz] are distinct voints in Spec (R), Then
Thus there exists PL = (Pi, P;,...)
We may assume each P:.IL is either L or 0 since

Pl and P? are distinct prime ideals in R.

such that PlePl = P2 say.
vy, pla,

s 11x) £ P, 7 P_ where a, =

(0 if p§ =0 ).

1 2
Let p2 = (pi, Dg, wen) = (1, 1, wua) - (Di} pg} vea). Clearly b ep” =

(0, 0, «aa), Thus pl. p2€P for all prime ideals P in R. Hence, pQEPQ.

But DziP since p1+ p2 = (1, 1, ...). Now, Spec (R)pl and Spec (R) o2 are
nelghborhoods of rP } and fP ] respectively, Futhermore, Spec (R) 1ﬂSnec(R) 2

iS empty since p . p29P for aII [PleSpec (R) and hence pl or 2 muht belong
to P, Therefore, Spec (R) is Hausdorff.

Proposition 5.
Proof: Suppose {V(Ai)}isl

Spec (R) is combact.

is a family of closed sets in Spec (R)

with the finite intersection oroperty, Assume /igI\ V(A;) is empty. Hence

since @ V(ay) = V(zIAi), V(g IAi) = # « Thus no ideal in R contains
1€ 1€

A since R is a commutative ring with 1. (Hence,$ A= R.) Thus,

1=r lj))9‘(?5, there

15 + ... +r.s for certain s.eA,., Since ( - V(A

1 n n i1y
s=1
n

exists a maximal ideal M containing I A. . Hence M contains rys, +... +
=1 3

r,S, = 1. Contradiction of the fact 1 M. Therefore,/ielIV(A,) # £.

Proposition 6. The subspace {[MP]}pEN is dense in Spec (R).

Proof: Suppose [P] ¢ Spec (R), Let Spec (R)f be a basic open neighbor-

hood of [P]. It suffices to show that there exists p € N such that f£ M .,

Assume f ¢ M_ for all pe N. Then f = (0, 0, «ss). Hence (0, 0, +.4)¢ P.
Contradictioh of the fact P is an ideal. Hence there exists peN such that
[Mp] e Spec (R)g. Thus [P] e cl {[MD]} Therefore, Spec (R) =

peN’
cl {[MD]}DeN
Proposition 7. Any two disjoint subsets of {[Mp]}pgN have dizjoint closures
in Spec (R),
Proof: Suppose ny and n, are disjoint subsets of [Mp]}peN

Assume alspec (R)"'mdspec (Ryng # 0. Let [Ple cl ”,mCl”

B3] t{[Mp]}pEN.
n, and n, must both be infinite; otherwise, n, say it isfinite and hence
Thus [P] eny C:{[Mp]}peN,

So we mav write n, = {M, M, «:.} and n, = {Mql, M, anrlte

2°

Otherwise [P] eny M Ny by Proposition 2. Futhermore,

closed in Spec (R},

P2
Define o’ = (ni‘, n:;', ...) vhere n:ll‘ isoifi= Py and 1 othervise.
. 2 2 2 2 S s :
Define n” = (nl, Lo .. ) Where ny isl1if i =p and O otherwise,
Clearly nl . n2 = (0,0,...). Thus, nl say belongs *o P. n0 ¢ P since

nt 4 n? = (1,1,.s,). Hence, Spec (R) 2 is a neighborhood of [P]. Thus,

Spec (R)nzmn2 # 0. Let qul] en, mSpec (R) n2* Then n ¢ Mq;. But

. 2 . 2 Lo
since ny M ny v p, n . = 0. That is, n ¢ Mgj. Contradiction.

qi

Therefore, ClSpec(R) nlﬂ ClSpec(R) n, = 2.
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Theorem. Spec (R) is BN, the Stone-Cech compactification of N.

Proof: Spec (R) is a compact Hausdorff space, and N is homeomorphic
to {[MD]}DeN , a dense subspace of Spec (R). Since a zero-set is merely

a special form of subset, any two disjoint zero-sets in N have disjoint
closures in Spec (R), Therefore, by theorem Spec (R) is 8N.

REFERENCES

(1) Gillman, Leonard and Jerison, Meyer, Rings of Continuous Functions,
D. Van Nostrand Company, Inc., 1960.

(2) Kelley, John L., General Topology, P. Van Nestrand Company, Inc.,
1955

(3) Mumford, David, [ntroduction to Algebraic Geometry, (preliminary
version of first three chapters).

MEETING ANNOUNCEMENT

Pi M1 Epsilon will meet from August 28-30, 1972 on the Dartmouth
campus, Hanover, Nav Hampshire, in conjuction with the Mathematical
Association of America. Chapters should start planning ¥OW to send dele-
gates or speakers to this meeting, and to attend as many of the lectures
by other mathematical groups as possible.

The National Office of Pi Mi Epsilon will help with expenses of a
speaker OR delegate (one per chapter) who iS a member of Pi Mi Epsilon
and who fias not received a Master's Degree by April 15, 1972, as follows:
SFEAKERS will receive lowest cost confirmed air fare (maximum of $300)
from home or school, whichever is nearer, to Hanover, NH; or actual
travel expenses, whichever iS less; DELEGATESwill receive 1/2 of the
speaker's coOst.

Select the best talk of the year given at one of your meetings by
a member of Pi Mu Epsilon who meets the above requirements and have him or
her apply to the National Office. Nominations should be in our office
by April 15, 1972. The following information should be included: Yyour
name; Chapter of Pi Mu Epsilon; a school; topic of talk; what degree you
are working on; if you are a delegate or a speaker; when you expect to
receive your degree; current mailing address; summer mailing address;
who you were recommended by; and a 50-75 word summary of talk, if you
are a speaker. MAILL TO. Pi M1 Epsilon, 601 EIm Ave,, Room 423, The
University of Oklahoma, Norman, 0K 73069.
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A REGULAR NON-NORHMAL TOPOLOGICAL SQUARE

William L. Quirin
Adelphi University

If P={(x,y): x,y eR ,y > 0} is the open upper half-plane with
the Eulcidean topology, and if L = {(x,0): x e R} isthereal axis,
we define a basis for a topologyj on X = Py L as follows: for
(x,yJef, the open disks with center (x,y)} and radius r & y; for xeL,
all sets of the form {x}J D, where D is an open disk lying in'the upper
half-plane tangent to L at x. Such a set {x} D with radius r will be
denoted ¥ (x), Note that if r. > r_, then H_ (%) D N_ (x).

s 1 2 . ry r,

The Topological space (X ,D), known as MNiemytzki's Tangent Disk Space,
is the classical example of a regular space which fails to be normal.
However, an elementary proof that this space is not normal, which could be
presented in an introductory undergraduate topology course, has to the
author's knowledge, never appeared in print. In this article we present such
a proof.

V¢ begin with the following definition:

Definition: If x € L and r > 0, the shadow of the basic open set Nr(X) is
defined to be the set

< Shad(Nr(x)) = {yel: x £y &% +rh

Note that Shad(Nr(x)) is aclosed subset of L, in the Euclidean sense.
Nr(X)

X : X+r

o)
Shad(Nr(x))

To prove that (X,)) is not normal, we exhibit disjoint closed subsets
of X which are not contained in disjoint open sets. Let

A
B

Since L is a closed subset of X and since the relative topology on L
is discrete, A and B are disjoint closed subsets of X. Suppose U and V are
disjoint open sets such that A€ U and Bc V.

Choose Xy € A. There is a basic open set U (xl) € U. Since there

{x e L. x isrational}
{x e L. x isirrational}

u o

are irrational numbers arbitrarily close to any rational number, we can
choose X, € BN Shad(Nel/z(xl)), and we can find ch(xg) < V such that

Shad(Ng 2(x2))<: Shad (N (xl)). In like manner, we can find x.€ AN
1

Shad(N‘Z/z(xg)) and N¢3(x3) ¢ U such that Shad(ng(x3)) c Shad(N‘z(xQ)).
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Continuing in this manner, we construct a sequence {xn} of points of L and
a sequence of open sets {NE (xn)} such that:

n
(a) Xon €A and %€ B for alln2 1,
B) x_,,¢ Shad(Nen/z(xn)) for all n 2 1,
(e) N, (e ) U and N (x, )c V forallngzd,
20+l 2n
(d) Shad(N_ (x )} < Shad(N (x_.)) forall nz 2
e 'n € n-l -

n n-1
Hence the sequence {x } is a bounded increasing sequence of real numbers
with the additional property that if n 2 k, then x ¢ Shad(NE (xk)). In the
k

usual topology on L, the sequence {x } converges to some xeL. Since

Shad(NE (xk)) is a closed set for each k, we have
k

A
xe | Shad(Nek(xk)).

Nov we must have either xeA or xeB. However, if xeA, then there exists
N _(x)e U. Since {x } converges to x, there exists x, such that ]x2k'x] <

Since x¢ Shad{N (x..)), we see that
E2k 2k

N )N NEQk(ka)) £ o4,
and since N {x)< U and N (x k))C V, we have UMV # ¢, contradicting our
%k 2

assumption that U MV = ¢, W& arrive at a similar contradiction if we assume
xeB, Hence x¢A and x£B, and this final contradiction establishes the fact
that (X, is not normal.

We conclude by noting that the identical proof can be used to show
that the following space, which is regular, is not normal. Let Y be the
real line with topology generated by the intervals of the form [a,b), and
let X = Y*Y with the product topology. The line L = {{x,y): x +y = 0}
is a closed subspace of X and the relative topology on L is discrete. If

A
B

then A and B are disjoint closed subsets of X which are not contained in
disjoint open sets.

For a higher level of proof, see Counterexamples in Topology by
Steen 6 Sesbach, Holt, Rinehart, & Winston, Inc., (1370), p. 100.

{{x,y)el: =x,y are rational]
{{x,y)eL: x,y are irrational}

291

VECTOR GEOMETRY OF ANGLE-BISECTORS

Ali R. Amir-Moez
Texas Tech University

Problems involving anple-bisectors are usually very difficult; some-
times there is no peometric solution for constructing trianples for which
some of the given parts are angle-hisectors. In this article we study
the angle bisector of an anple through vectors and give some applications.

In what follows all vectors are in a Euclidean plane and will he
denoted by Greek letters. The inner product of a and 6 will be denoted bv
(a,B) which is defined hy

(a,8) = [laf] [[&]] cos t,

where, for example, |{a}] means the norm of a and t is the angle between a
and B, Other properties of vector algebra will he assumed and used

[13 pp 1 = 747,

1. Bisectors: Let {a,8} be linearly independent (Fig., 1)¥% Let 6 he a non-
zero vector on the bisector of an anple between a and 8. Then the anple
between a and é is the same as the one between 5 and 6. This means

o e+ 7). - (H:H,_!TEW).

This tmplies that

D ) - b
Hall Hell
which means that the algebraic projection of 6 on the axis (,...__“ n) is the same
ol
as its algebraic projection on the axis whose unit vector is —t (Fip, 2),
flalt

V¢ may set
= 6;——2—— ——E—— ad = 6,——1—— ——;uu
( Hal|> TR [ ueu>asn
Then |[A]] = [lull.
One observes that (1) implies that

(3 o o f(a,8)

{18!} (8,6)

We shall give a geometric interpretation. Let

o = G y'-i-—> "é-” y 5% <51 "”i-‘) “m;—’
Hett/7 dls]] AERFAREE N

**Figures are at the end of the article
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which means that p and 8 are respectively proiections of a and 6 on the

axis g (Fig, 3.)

el
Then (3) implies that:

(1) [a o etl .
[1el] flol]

2. The convex hull of two vectors:

Let {a,8} he linearly independant
(Fig, &, and

£= an +bB, a+b=1,a>0,>b>a0,
This means that £ ends on the open line segment connecting the and-prints

of a and 6. This line segment is called the convex hull of {s,R}., Then
we observe that
E~a= aa +bB - a= b(g - a).
Similarly
£~ 8 =ala - B).
Then

e -oll” |
5 =
e - 8]l
This implies that

(5) g-ql _R

e - 8] @

h? 8 - all

a’lla - 8]}

o o
N

3. The angle-bisector of a triangle: Let {x,R} be linearlyv indenendent am
6 be the angle bisector of the anpgle between a and 8 in the triansrle ‘ormed
by a and 8. (Figure S). Then

§ = aa + b8, a+b=1, a>0, L>n,
and
(6,0)  _ (8,8)

Hall 18l

(aa + bB,o) (aa_+ bB,B)

Holl 18]

This implies that

or 2 7
allall © + bla,8) _ ala,B) + h |8l

[Hall Hall

This equality implies that

i) b . Llall 8y = {[all2[]s]]

-, a

2 el
Hall Cay8) = [{at] a1z []g]!

By (5) ve obtain

(7) s -all . [lofl
s - &l [lal

4. The length of the bisector:

Let 6 be the same as in 53, i,e.,

§ =an + bB, a+b=1, a>90, b >0 and

(6,0)  _ (8,8)
ol 8]

V¢ note that
118112 = a?f]al]? + 2avla,e) + v2(]8]] %
He can write
2
1 2 2 b b 2
;5116!! = [18]{7 + 2= (a,8) + " |18}

Using (6) we get

(8) 1 2
=|l&]1° =
a? BB

1
N
2

fae
+
o~
F
-~
Q
-
w
~—

Similarly we obtain
) Lisl1? = 2l {el]? + 2 %%E%+ (a,8) .
b” a

We compute a and b, we get

eI

a = |[s}]

.

211a] [[1all 118]] + (a,2)]
" sl
> el 2018l [el] 1I8]] + (o8]
Thus
_ Ll 1 <Hall + HBJL)
a+b=1-=
3z Hall 1181l + @8y \iTslT [Tsl]

Therefore we get

2llall [l ]al] 1i8l] + (a,8)]
lall + {elD?

(10) 1812

Now we write this formula in terms of sides and angle:z,
respectively correspond to the end points of a and 8.
sane as the origin (Fig. 8). Then we observe that

el = vy llall = b, 11811 = a,
and
(a,B) = ab cos C.
Thus -~ , L
,  2ablab(y # cos C)] _ 4&DT cos” 5
Ve © (a + b)?

(a+h)?

Let A and B
Thus C is the

293
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C
Since C < n, cos 2 >0, Therefore we obtain
2ab cosg
(11) VT e——
c a+ b

This formula contains an angle. W shall obtain a formula in terms of
sidez of the triangle. It is clear that

o = 8]1% = [lal]?+ [1]]? - 2(a,8)
Thuz ve obtain
2a,8) = fal Pe Ifel]? - 1" - 8] )7

Substitutine in (10) we eft:

2y flsl1®= Lol [l lall + 11817 - 1o - 81|
(Hall + HelD?

This can he written as

abl(a +b)2 - c2

ta s B

]

o

5. Equal bisectors: The triancle for which two angle bisectors are
equal 1S isosceles. To prove this we set, for example, v2 2

b~ Ve -
This amounts to
2 2 2 2 2 .
(b-c) {[be/(cta)” (a+b) T Ta“+Palb+c)+(bT+be+c”) #1 1} = 0.
Since the interior of braces is positive, we pet
be~c=0orb-=c

W leave the details of the algebra to the reader.
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FROBLEM DEPARTMENT

Edited by
Leon Bankoff, Los Angeles, California

This department welcomes problems believed to be new ana, as a rule,
demanding no greater ability in problem scolving than that of the average
member of the Fraternity. Occasionally we shall publish problems that
should challenge the ability of the advanced undergraduate or candidate
for the Master's Degree. Old problems characterized 5y novel and elegant
methods of solution are also acceptable. Proposals should pe accommanied
by solutions, if available, and bv any information that will assist tne
editor. Contributors of proposals and solutions are requested to enclose
self-addressed postcards to facilitate acknowledgements,

Solutions should be submitted on separate sheets containing the name
and address of the solver and should be mailed before Novemper 1, 1972,

Address al | communications concerning problems to Dr, Leon Bankoff,
6360 Wilshire Boulevard, Los Angeles, California 40048,

FROBLEMS FOR SOLUTION

270. Proposed by Leonard Carlitz, Puke University.

Let a, 6, v, denote the angles of a triangle. Show that

1 1 1 1 1 1
€ - + =~ 6+ - 3 o= “ + tan = v
cot 5 3 COt96 cotgyéa(tanza+tan28 2”
> 2(sin a + sin 8 + sin y),

271. Pro osed by Solomon W. Golomb, California Institute of Technologpy
andotse University of Southern California.

Assum‘Léethat birthdays are uniformly distributed throughout the year,

In a group of n peovle selected at random, what is the propability
that all have their birthdays within a half-year interval? (This
half-year interval is allowed to start on any day of the year, in
attempting to fit aili n birthdays into such an interval.)

7 Proposed by Charles W. Trigg, San Diego, California.

A timely crvptaritnm isS tne calendar verity
7(DaY) = WEEK
The letters in some order represent consecutive positive digits
What are they?
-

273. pPrecrosed by Charles W, Trigeg, San Diego, California.

Twelve toothpicks can be arranged to form four cengruent equilateral
triangles, Rearranpe the toothpicks to form ten triangles of the
same size.

274,

275,

276,

277.

278,

279,

280,

Proposed by Peter A, Lindstrom, Genesee Community College,

Batavia, N.Y. Kk

T —cmca— " y
=<3 b3 j 4 'j

Find the value of _ L

k> 1. i=1

for an arbitrarv integer
(%) (1+1)%
Proposed by Gregory Wulczyn, Bucknell University. Lewisburg,
Pennsylvapia.
If t(n) = % (n + 1), show that there are an infinite number of

solutions in positive integers of
r-l s-1

:E: ta t1) = ji: tla + 1 + i),

i=0 i=0

Proposed by R. 8, Luthar, University of Wisconsin, Waukesha

Find a such that the roots of 23 + (2t a)z2 - az-2a+4=0
lie along the liney = x.

Proposed (without solution) by Alfred E, Neuman, Mi Alpha Delta
Fraternity. N.Y.

According to Morley's Theorem, the
intersections of the adjacent internal
angle trisectors of a triangle are the
vertices of an equilateral triangle. |If
the configuration is modified so that the
trigectors of one of the angles are
omitted, as shown in the diagram, show
that the connector DE of the two
intersections bisects the angle BDC.

Proposed by Paul Erdds, University of Waterloo, Ontario, Canada.

Prove that every integer £ n! is the sum of < n distinct divisors
of nl  Try to improve the result for large n; for examnle, let f(n)
be the smallest integer so that every integer < n! is the sum of
f(n) or fever distinct divisors of n. W know £(n) < n.

Prove n = £(n) = o0

Proposed by Stanley Robinowitz, Polytechnic Institute of Brooklyn.

Let FO, Foy F?, .+« be a sequence such that for n z 2,

F = F + F

& -~ ne2* Prove that

n

n

2 (k) B = Fon.
k=0 */

Proposed by Kenneth Rosen, University of Michigan.

Find all solutions in integers of the Diophantine equation

x? + 17x%y + 73xy? + 15y3 + x3y3= 10,000,
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248.

249.

SOLUTIONS

[Spring 19711.
Waukesha.

Proposed by R. Luthar, University of Wisconsin,

For any positive integer n, prove that the following inequality holds:

n{n + 1) ( 1). Wy
n{n + 1) 2 2oin * D)+ (nt)

n-1
1T ki

k=2

Solution by N.J. Kuenzi and Bob Prielipp, Wisconsin State University,

Jshkosha

The given inequality can be greatly improved.
positive integer n.

[n(n + 1ln(n+l) > (2n)
with equality only when n = 1. =

1fn=1, [ntnt DI o oyt ym+l 0 hat follows,
we shall assume that n 3 2. Using the arithmetic mean-geometric
mean inequality (see Beckenbach and Bellman, An Introduction to
inequalities, New Mathematical Library, Random House, 1961, pp 54-59
Tor a detalled proof of this result), we have 1/

(Lt 2t 3+ austnd/nz(le2e3.n)
Since1t2t3t... tTn=nlnt1)2, itfollows that

(atn t DI° 2 (201« Thus [n(n + DIalarl) , o, ynatl)
Also solved By Peter A. Lindstrom, Genesee COI’T]I%JI’]I y Collegé?'

Batavia, NY,; C. B. A. Peck, State College, Pennsylvania; and
the proposer.

In fact, for each

n{n+1) n+l

(n!)

n+l

[Spring 19711 Proposed by R. S. Luthar, University of Wisconsin
Waukesha.

Prove that

+ 1
plea+2) e=m p | ¥ 467,

where p is an odd prime and m is a non-negative integer.

Solution by David Ballew, South Dakota School of Mines and Tech-
nology, Rapid City, South Dakota.

m+l| pm pm . . .

Ifp (a” t b" ) is true for? all non-negative m, then it is true
form= 1 and we have p")l(ap + bP)., By Format's Theorem,

a® 5 a(mod p) and bP z b{mod p) so ap tbP=athbt xp. Then we

must have pl(a t b).

Conversely assume that pl(a t b), First we notice that

mtl
+ .
pm l|(a +b)P and since
pm+l m+1 (pm+l m+l 1 m+l
(a +b) =a” el 1 fa® Thha P
m+l mei
m+l .
we have p (af + b° Y. Agan by Fermat's Theorem a” = at up

250.

251.

299

2 Py __
andbp=b+vp,soa =ap+(1)a't’lup+...*f(un)D and

m+1l m

apz z a®(mod p2). By induction aP z &P (mod oml) and
m+ 1 m m+1l m+l m ™
bP z b (mod pmtl)' Thus a” + P za® + b” (mod pm”),
m m
so pml (a® + bP ).

Also solved by Bob Prielipn, Wisconsin State University, OJshkosh,
and the proposer.

[Spring 19713 Provosed by Charles W. Trigp, San Diepo, Calif.

Identify the three mathematical terms represented by the following
items:

(a) Bass made five yards over his own right tackle. Just as
he was being tackled he tossed the ball back to Gabriel, who
immediately flipped it back to Casey. After advancing ten yards,
Casey threw the pigskin back to Mason, who lobbed it back to Bass,
who continued on to a touchdown.

(b) As | was going up the stair
I met a man who wasn't there.
He wasn't there apain today.
I wish, | wish he'd go away.

(c) Yukon Jake's tale was characteristically long, detailed,
and profane: ' Atnoon | found that a wsx bear had discovered ny
cache and destroyed all the wxs supvliies. | was #wi hungry and
the nearest food waz ten #a% miles away, so | got the asx out of
there fast. When | got to the %% cabin it waz almost dark and
| was #%% tired. Tham wxs beans tasted wan good.”

Solution by the Proposer.

(a) Complete quadrilateral, (b} imaginary number, (c) ellipses.

[Spring 13711 Prevosed by Charles W, Tripgg, San_Dlego, Calif,

I f vy T, I are roots of x3 t px + q = 0, show that

2!
3fr,2Iro=5zr,3zpt
1 1 1 1

|. Solution by Sid Spital, California State Collepe Hayward.

Since the given cubic is reduced {(x? term missing), it easily
follows that I r, = 0 and ¢ ri2 = -2p, Use of ri3 = -pr . -q
then yields & ri3 - 3q, L ri‘* = 2p2, and | ri5 = 3pg t 2pg = 5vq.

Hence 3 & ri2 Iy ‘.

"

wn

= . 24 = 3
= ~30p“q 51 ry L T,

1I. Solution by Provozer.

By Newton's Theorem,
x £'(x) Iry Zriz Zri3
L R I i T A
X X XZ x3
where n is the degree of the eauation.

In the case under consideration,

2
:3+2-2.E-3.3,+.7£. +223.+,“
5

x¥ + px + g *ox2 0 x¥ o ox ®

x £'{x) _ 3x3 + px
(=)
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ON "ALMOST UNITARY PERFECT"" NUVBERS

Sidney Graham
The University of Oklahoma

A perfect number n is an integer n with the property that 8(n)=2n
where 8 (n) is the sum of the divisors of n. All known perfect numbers are
even, but it has not been established that no odd perfect numbers exist.

Cramer [1] defined an "almost perfect”™ number to be an integer n
vith the property that |2 = (8(n)/n))| < ¢ for any preassigned ¢ > 0. He
shoved that for any e, there exist infinitely many odd "almost perfect"
numbers. Indeed, for any real A > 1, there exist infinitely many integers
n with the property that 8(n)/n differs from A by less than ¢.

Subbarao {4] defined a unitary divisor to be a divisor d of n with
the property that (d,n/d) = 1. He also defined n to be unitary perfect if
é*(n)=2n where 6#(n) is the sum of the unitary divisors of n. It can
easi}ly be shown that no odd unitary perfect numbers exist. Subbarao and
his associates have shown that 6, 60, 90, and 87,360 are the only unitary
perfect numbers |ess than 1019, Although a unitary perfect number greater

than 1 0 has been discovered, Subbarao conjectures that only finitely many
unitary perfect numbers exist.

Define an "almost unitary perfect” number to be a positive integer n
such that |2-(8%*(n)/n)| < e, for arbitrary fixed ¢ > 0. This paper will
give a method for constructing infinitely many "amost unitary perfect"”
numbers.

First | wish to establish some notational conventions, Pi shall denote

the ith prime; pl:Q’ p2=3’ etc. a; shall denote an arbitrary prime with
the restriction that q; > Qs if anonly if i > 4,

O primary importance is the formula for the sum of unitary divisors{s].
a a a

Ifn=gq t a 2 cee Gy k, then d is a unitary divisor if and only if
2
el 62 ek ai ai
d =gy a seeo where e, =a oro0 <Si‘=(qi )=1tq; " and §(n)
2 k a, k a,
is multiplicative. Thus 5*(i§1qi )= L+ a0

Define U(n) = 8%(n)/n., n is unitary perfect if and only if
a.
U{n) = 2.

If ay is fixed, U(qiai) iS a maximum when ai = 1. If a. is fixed,

a
U(qi i) iS a maximum when a is 2. Also, U(qi) < U(q-j) if and only {f
a, a.
a; > a, and lim Ul ) = 1= lim Ulq, '),
) qi»m a,e

a. a, a
Ulq, I = (q, I+ Dfqg = =1 t 1/q; “, and U(n) is multipjcative.
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n n

noltl/p; > ) 1/p;. It is well knohn

i=1 i=}

n

(e.g., [2]) that 1im ]
nse j=|

Theorem 1. Given any rational R > 1 and any real ¢ > 0, there exist infin-

itely many integers n such that |R-U(n)| < e,

Proof: The proof will be a method of constructing the required n's. All

of the n's constructed here will be of the form:

U(Pli p2' srey pn) =

l/pi = =, thus U(n) is unbounded above.

ih 9
but it is not necessary to restrict n in this manner.
1 ]
nilt l/qi, and €, = R = Q,., Since Mm U{(p,) = 1,
3 3 1+ i :

i=1
there exists some prime Pe such that U(pe) s R

1
Denote Qj = U( ]1qi) =
i=1

Let Q) = Pg- W could have
e
have chosen q to be any prime greater than pe, The following method will
be used to choose the remaining qi's.
Case |I. |If P, is the prime immediately following dys and if

1 .
(1t pk) . Qj s R, then let qj+l =P This process cannot be repeated

indefinitely, however, for, as has already been pointed out, the infinite
product f 1t% diverges. Since Q

1=l i
chosen under this case.

541 > Qj' gj+l < g]_ for every Uy

Case 11, If (1 t %‘) . Qj » R for the prime Py immediately following
k

» l =
g then let Ql (1 + Ej) R.

it can be determined by the formula bj = Q_‘/(R = Qj), One form of Bertrand's

bj need not necessarily be integral, and

Postulate states that for any real x » 1, there exists a prime p such that
x < p<2x, [3]Let 941 be a prime satisfying the condition:

1 = -
by f g,y by THen ey =R-Qg=0p ., and gy =R Oy

1 1 1
R-0Q(1+= )=Qs «= ).
4 9341 LRI T TSt
1 1 1 1 1 1
Since = >% , we have Q. (& ~ = ) < Q.iz), or e, <3¢,
Gap P IR L 3

Let g represent the first prime chosen by the method of Case II,
“ I

I Beo. Because of the divergence of the product 1. 1t Py s

es, < %e &y

1 81"
Case II must be continually re-utilized. After t applications of Case II,
N .

< <
t:st x €4» and for t sufficiently 1;:u~ge.s§8.C €» for any preassigned
R -Q =R -U(R qi)' Futhermore, the above
s .

positive ¢, Hence e
t t i=1
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252.

Mw 3(-2p)(5pq) = -30p2q = 5(-3q)(2p?).
So 3t riz):ri5 =55 r3;: ri“ , as was to be proved.

Also solved by Michael Mikolajczyk, New York lota, Polytechnic
Institute of Brooklyn; Joseph O'Rourke, Saint Joseph's College.
Pennsylvania; Bob Prielipp, Wisconsin State University, Oshkosh;
Kenneth Rosen and Jonathan Giauzer (jointly) of the University of
Michigan; and Gregory Wulczyn, Bucknell University, Lewisburg,
Pennsylvania.

[Spring 18711
California,

Proposed by Solomon W. Golomb, University of Southern

There are 97 places where a 2 x 3 rectangle can be put on an 8 x 9
board. In how many of these cases can the rest of the board be
covered with eleven 1 x 6 rectangles (straight hexominoes) and
vhere are these locations?

I. Solution by the Proposer.
By Divine Inspiration, we introduce the

1l2]23l4is51681121] coloring (numbering) of the 8 x 9 board as
21314 5756 112 T 37 ehown. Ve observe that a straight
| hexomino placed anywhere on the board must
4151611 12131% 15} cover one equare of each color. Removing
: ; eleven squares of each color, we find that
35161112 '!3 * the left- over squares have the colors 1, 2,
siéi1i2|3|415]61 3, 4,5, Examing all 97 locations for
- the 2 x 3 rectangle, we discover that only
611123 41516 ‘11 the four corners, in the orientation
1234156} tg indicated, are possible positionings. To
% verify that the corner location succeeds,
BE 5 112 l3 we exhibit the "flag pattern”™ as shown
41516 ‘1 3]t {51 in the second figure.

Also solved by Catherine Yee, Ohio
State University. Miss Yee's solution is

= based on the observation that the 97 places
|| available for the 2 x 3 rectangle can be

into account reflections about the horizontal

|
| | reduced to 28 basic positions by taking
! and the vertical axes of the board. Twenty-

seven of these basic positions are then

systematically eliminated from consideration
by showing conflict with all possible place-

ment of the eleven hexominoes.

The four patterns used in the elimina-
tion procedure are shown here. In each of

the two diagonal patterns, a straight

— hexomino will cover only one black square.

Since no black squares now remain for the

2 x 3 block, twenty-one of the twenty-
eipght basic pozitionz are eliminated.

In the striped patternz, the number of black squares covered pv a
straight hexomino is either 0, 3, or 6, with the result that the
total number of squares covered by straight hexominces is a multiple
of 3. Thus five more of the 28 basic pozitions are eliminated in tne
narrow-striped pattern, shile the wide-striped pattern eliminates still
another pozition, The remaining corner placement, with the lonp edge
of the 2 x 3 block parallel to the long edge of the board constitutes
the only solution. If we add the three reflections we find that the
four corner positions are the onlv ones to survive the elimination
process.

253.

254.

301

[Spring 19711 Proposed by Erwin Just, Bronx Community College of

the City University of New York.

If P(x) is an irreducible polynomial over the rationals and there
exists a positive integer k # 1 such that » and r* are both zeros
of P(x), prove that P(x) is cyclotomic.

Solution by the Proposer.

Since P(xk) and P(x) have a common zero, r, it must be the case that

P(x)[?(xk), so that every zero of P(x) izs a zero of P(xk). from

m

which it is easily found that r, rk, rk I ,..bare zeros
. a

»f P(x), Therefore, for some integers a and b, rk® = k7 or

K2 OB

r (1-or } = 0, which implies that r is a root of unity.

Since P(x) is irreducible, it follows that P{x) is cyclotomic.

[Spring 1971]
New York,

Proposed by Alfred E. Neuman, Mi Alpha Delta Fraternity,

In the adjeining diagram, ®©
is a half-chord perpendicular
to the diameter B of a circle
(0). The circles on diameters
AC and B are centered on 0

1
and 0 respectively. The
rest of the figure consists
of consecutively tangent
circles inscribed in the horn-
angle and in the segment as
shown. |If the two shaded Al
circles are equal, what is
the ratio of AC to AB?

Solution by the Problem

Editor.
Let AB = 2r, AC = 2rl,
CB = 2r2. Starting with the

circle touching (02), the

radii of the circles {(w.) in
the horn angle are denoted by
Pie and those of the circles (“"i) in the half-segment by o; N

(i =1, 2, aas , n)s The formula for the radii of the circles in
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the Pappus chain (i.e., in the horn angle) is o = rrlrz/(r-r2 + nzri),;
while the radii of the circles in the chain inscribed in the half-

segment are given by

n
P rory
Ie] =

L O /;2)“ RN

For our purposes here, we use the simplified formulas,

n Y = /Crr, + 25r. 7
oy = T, YT, and  Pg = Iy irr, i

Substituting r o+, for r and equating 9'2 and pgy € readily obtain
2 =

(rl + r?) /1:~lr~2 25/4, Thus 25r1r2

Then 25kr,2 = 4r 2(k + 1)? and k = 4. Hence AC = u(CB),

(Note: 1he solution k = 1/4 applies to the reflected figure, in which
AC and B are transposed. The formula for the radii of the circles
in the half-segment was derived by a complicated inversion. Readers

= 2 =
“(rl + rz) . Let r, krz.

are invited to derive the expressionfor g; by synthetic geometry.)

255. [Spring 1971] Proposed by C. Stanley Ogilvy, Hamilton College, Clinton
Find a 3-digit number in base 9 which, when its digits are written
in reverse order. yields the same number in base 7. prove that the
solution is unique.
I. Solution by Jeanette Bickley, Webster Groves Senior High School,
Web3Ter Groves, MI15sourt.
Below is a computer program and output from a XDS 940 computer.
This program tests all possible digits (o, 1, 2, 5, 4, 5, 6 since base
7 is involved) and obtains the unique solution (other than the trivial
solution): 305 in base 9 = 503 in base 7.
INIEGER A»BsC
DI FuSIaN ACTIsBCYYCCY)
J0 FORNAT (12,115,115 1IN PBASE 9 =%,12,11,11,% [N 3858 7%)
DAL A/0215253:45556/
DATZ 3/09 152532455267/
DATE C/0512053,4+5,6/
DO 20 I=1,7
DO 20 J=1,7
N0 20 K=1,7
IF (40%AC1)+B(J) ~24%CCK)) 20, 30,20
30 WRITE (1,900 ACII S BCII s CCHI L CLAI L BCIY»ACT)
20 CONTINUE
Sros
FND
*ATRAN
000 IN BASE 9 = 000 1IN BASE 7

305 IV RBASF 9 = 503 IN BASE 7

*5ope

256.

I1I, Solution by Edward G. Gibson,

Let the 3-digit number be ABC
Thus 81A + 9B + C = 49C + B + A
B 48C = 80A
B = 8(3¢ - 54).
Since B < 7, B = 0. Hence I = 54,
Since C< 7, C= 5and A = 3, a unique solution.
Hence the unique solution (305)9 = (503)7.

Note: This problem appears as Problem 93 on page 304 of Beiler's
Recreations in the Theory of Numbers, Dover Publications, Newv York.

Xavier University, Cincinnati.

Also solved by Richard Ball, Portland State University, Portland,
Oregon; S, Gendler, Clarion State College, Clarion, Pennsylvania;
Marilyn Hoag, Lake-Sumter Community College, Lessburg, Florida;
Carol Lancaster, St. Lawrence University, Canton, NY. ; Lamxy E
Miller, Riverside, California; James R, Metz, St. Louis University;
Bob Prielipp, Wisconsin State University, Oshkosh; Kenneth Rosen,
University of Michigan; S, Swetharanyam, McNeese State University,
Lake Charles, Louisiana; Charles W. Trigg, San Diego, California;
and Gregory Wuleczyn, Bucknell University.

Spring 13713 Proposed by R. S. Luthar, university of Wisconsin,
anesville.

ABTE is a pentagon inscribed in a circle (0) with sides AB, O and
EA equal to the radius of (0). The midpoints of BC and [E are de-

noted by L and M respectively. Prove that AM is an equilateral
triangle.

g, DC g ¢
E!IIIIIIIIIIII!!)B E !! !IIIIIIII B
A

Solution by Charles W._Trigg, San Diego, California.

Let P and Q be the midpoints of the radii OD and OA, respectively.
Then CP and BQ are equal altitutes of the congruent equilateral
triangles @D and BOA.
3L is the perpendicular bisector
of the base of the isosceles tri-
angle COB. Consequently, @ = B
and LOJCL = £ O0BL. Then since

L PCO = 30° = L QBP, tirangles

RQL and (BL are congruent, and

AR = QL.

Two Oopposite angles in each of the
quadrilaterals OLBQ and JLPC are
right angles, so the quadrilaterals
are inseriptible, Hence

L. OLP = £.0OCP = 30° and

£.0L0 = L0BQ = 30°,

It follows that)PLQ = 60° and tri-
angle AQ is equilateral.
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MP is parallel to EG, and so makes an angle of 60° with AQ. H-
makes an angle of 602 with QL. Hence /ZMPL = LAQL. Then

MP = EO/2 = A0/2 = AQ and AL = QL, so triangles MR and AQL are
congruent.

Hence, M = AL and £4PLM=/QLA. Thus, 60° = LPLQ =/PLQ = LPIM

t LQLA = ¢MLA, Therefore, triangle AM is equilateral.

Editor's Note:

The stated problem does not require OC to be parallel to BB although
the diagram inadvertently creates the impression that it is. Con-
sequently, it was necessary to reject several solutions.stemming
from this misleading hypothesis. If DC and EB are parallel, the
problem is considerably simplified and lends itself to an easy
synthetic solution. One such solution, offered by Alfred E, Neuman,
Mi_Alpha Delta Fraternity, Nav York% notes that the sum of the
angles DOC. AE and BOA 1S 180° with the result that ED and O3B are
isoseeles right triangles. |t follows that Q. = LB = M = ME and
that triangles OMA, OLA, BMA, and BA are congruent. Since MA and
LA are bisectors of the angles 2O and OAB, the equal segments MA
and AL bave a mutual inclination of 80°, thus making triangle HAL
equilateral.

Samuel L. Greitzer, Rutgers University offered a synthetic solution

for D = CB and called attention to the fact that this problem is
a special case of Problem B-1 of the William Lowell Putnam Mathe-
matical Competition held on December 2, 1967. (See The American

Mathematical Monthly, Aug.-Sept. 1968 po 732-739. The more general
problem reads as Toilows;

Let (ABCDEF) be a hexagon inscribed in a circle of radius r. Show
that if B = CD = BEF = r, then the midpoints of BC, DE, FA are the
vertices of an equlateral triangle. (This problem and its solution
also appear in A Survey of Geometry, Howard Eves, p.184, Vol. 2.,
Allyn and Bacon, 1965.)

In the special case of Problem 256, the vertices F and A coincide
with the "midpoint” of FA. The various methods of solution of the
general version of the problem are, of course, applicable here.
Despite the elegance of the solution by the use of complex numbers,
a solution by synthetic, Euclidean, high-school geometry may be of
interest.

Let X, ¥, Z, P, Q, R 8, T, U denote the midpoints of DE, FA, BC
OA, 0B, OC, 0D, QE, and OF, respectively.

In the congruent triangles EUX, DRX, we have UX = RX, Since XORD
is acyclic quadrilateral, Z4RX0 = LRDO = 30°, So LRXU = 60°
and triangle URX is euqilateral,

Since UY is parallel to OA and equal to 0A/2, and since RZ iS
parallel to OB and equal to 0B/2, we have UY = RZ and £(UY,RZ) = 60°,
By a rotation of &0° about X, triangle XUY may be made to coincide
with triangle XRZ So XY = XZ and LYXA = 60°, Hence triangle XYZ
is equilateral.

Also solved (analytically) by Lew Kowarski, Morgan State College,

Baltimore, Maryland and by the proposer. Both solvers used a rect-
an_gumm%%%gin and with A 1ying on the
Y-axis. Letting the radius of the circle equal unity, the coordi-
nates of the points are: A(d,-1); B(/3/2, -1/2); C(cos a, sin a);

D (cos (60°+ a), sin (60° + a)); E ( -/3/2, -1/2). The coordinates
of M and L are now easily found and the distance formula yields the

solution AL = IM = MA = é-/ls + 12 sin o t 4/3 cos a.
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[Spring 1371]) Proposed by Mike Louder and Richard Field, Los
Ehggles, Callforn;a.

It =, y, z are the sides of a primitive Pythaporean triangle with
z % > v, can x ana (x = y) be the lees of another Pythagorean
triangle:

c b 5y Charles W Trigg, San Diego, California.

The two iers Of everv primitive Pythaporean triangle have the forms

m’ -~ anz 2mn, wnere M and n are relatively prime and have differ-

ent parities. The hypotenuse, z = m2 + n2. Hence one leg iS even
and the other two sides are odd.

Iz non~primitive trianwies, bpoth legs may be even, but both
may not be wcaa,

First case. x = mé =n’, v = 2mn, x = v = m? - n2 - 2m,

Since x and x = V are both odd, they cannot be the legs of
another Pythagorean triangle, This is confirmed by the identity
(m® = n?)2 + ((m& = nd " 2m)? = 2(x* = 2m3n - 2mnd + nY),
The quantity in the parentheses on the right is odd, so the entire
expression cannot be the square of a hypotenuse.

Second case. x = 2m, y = m? - n2 x -y = 2m = m + n2

If x and x - y, which are relatively prime, are to be legs of
a Pythagorean trianfle, it must be primitive. Then the odd x = y

will have to have the form p2 - q?, and the factors of x must be
repgroupable into 2pg, with p and gq relatively prime and of
opposite parity.

Furthermore, p? + q? < m2 + n2. Also, 2mn =~ m2 + n2 > 0.
That IS, (m+ n)2 > 2m2, som > n > m{(v2 - 1),

If m=ab and n = cd, the factors of nn may be regrouped in
four basic wavs:
A p=m,q=1

Now (m? -1)(n? = 1) 2 0,
so m2n2t 1 2 m2 + n2, Hence, this regrouping is impossible,
B. p=mc q=d>1,c>1 Thusm>n>d, so
(m? - d2)(c? = 1) > 0, whereupon
m2c2 + d2 > m2 + ¢?d2 = m2 + n2,
impossible,
¢, p=a>»q=bn, b>21 Then

a2 = b?n? = 2abn " a?b2 + n?2
n?(b2 + 1) + 2 abn = a2(b? + 1) = 0.

Therefore, this regrouping is



n=a(-bzx v (62 + 12+ b2)/(b 2+ 1),
Nw n > ab{yZ - 1), so
b 2 /b2 + 1)2+b2Z > (b2 + (2 - D= (b3 +1)WZ"Db3" b
b* + 3b2 + 1 > b%(3 = 2/2) t 2b4a - V2) + 2b?
b2 + 1> (p® + b*)3 = 26)

1> b%(3 - 2/51 = b4(0.1716)
This inequality clearly does not hold for integer values of b > 1.

Otherwise. Since n is an integer, (b2 *+ 1)2 + b2 = x2. Then
up® + 12b2 + 9 = ux? + 5.
Let 2b2 *+ 3=z z and 2x = vy,

Then (z = y)(z t y) = 5.
Solving z +y = 5and z

y = 1 simultaneously, y = 2 and

z = 3= 2b2+ 3, Whereupon b = 0, contrary to the hypothesis.
v - ac, q = bd = bn/e, where a, b, ¢, d are relatively prime
integers, and each is greater than 1. Then

a2c2 = b2n2/c2 = 2abn " a2b2 * n?

(b? + ¢?)n? + 2abc2n = a2e2(b? + e2) = 0

n = acl -bc + ¥ b2c2 t (b2 + c2) 1/(b2 + ¢2).
Necessarily, b2c2 + (b2 + ¢2)2 = x2

4b* + 12b2c2 + 9c% = 4x2 + 5c?

Let 2b2 + 3c2 = z and 2x = y, then

(z + y)(z = y) = 5¢",
The factors on opposite sides of this equation may be matched in
Si X ways;

I. z+y=5c*and z-y =71 Simultaneous solution gives
z = (5¢% T 1)/2 = 2b2 + 3¢2, so
b2 = (5¢* = 6¢2 + 1)/u = (5¢% = 1)(e? = 1)/u,

If b2 isto be an integer, ¢ = 4k + 1 or c = 4 t+ 3

Forc =4k t1

b2 = 80k2(x * 1)2 and b = sk(k t 1) ¥5, which is not an integer.

For c = 4k + 3,

b2 = 8(20k2+ 30k + 11){k2 + 3k + 1) = 8(an odd integer),
which is not the square of an integer.
1I. z+y =5c3 and z - y = ¢, whereupon
z = (5¢3 + ¢)/2 = 202 + 3c2
2= ¢(5¢ = 1)(e = 1)/4,

If ¢ = 4, b2 = 57, which is not a square.
have a common factor,

Hence,

Otherwise, ¢ and b
contrary to the hypothesis.

111, z+y =5 andz "y =c’, Then

z = 3c2 = 2b2 + 3c2. Hence, b = 0, contrary to the hypothesis,
Then

= (¢ + 5)/2 = 2b? + 3c?, so

IV, z+y=c*andz "y =5

N
]

b2 = (2 - 1)(c? = 5)/u,

c =

If ¢z 4k + 1, b2
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If b2 is to be an integer then

4k * 1 or 4k + 3,

u(2k)(2x + 1)(uk® + 2k - 1), but the

three quantities in parentheses are relatively prime, so the
a

product cannot be

square integer.

¥

If ¢ = 4 + 3, b2 = 8(2k2Z + 3k + 1)(ux2 + 6k + 1) = 8 (an odd number),
which cannot be a square integer.

V, z+y=c3andz-y= 5 c> 2 Hence
z = c(c2+ 5)/2 = 2b2 + 3c2. Consequently, b2 = e(c = 5)(c = 1)/4,
If ¢ = 4, b2 = -3. Otherwise, b and c have a common factor, con-
trary to the hypothesis.

Vi, z+vy=5cand z =Yy = c3, ¢ = 2. Hence 2x=y = land
x = 1/2, which is not an integer.

Therefore, in no case can X and x = y be legs of a Pythagorean triangle.

Editor's Note:

Mr. Charles W, Trigg was kind enough to point out the

Tollowing efrata in the problem department of the Fall 1971 issue of the
Pi M1 Epsilon Journal.
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In proposal 258, "werticle" should read " vertical™

The symbol "h", representing the segment ON, has been
left out of Figure 2, which should be rotated counterclock-
wise so that GE becomes the X-axis and FH becomes the Y -axis.

Twenty first line from the bottom = "plaindrome" should read
'‘palindrome™ .

Seventh line from the bottom should read [v2NI[VZ2R + 17 =

Line 11 - "figure 1 should read "figure 3".
Line 16 should read ZAEC = £DAC (1),
Fourth line from the bottom - "synthetic" should not have

been capitalized.

In Figure 4, the "I"
Line 7 = The "t" of "
ized.

Line 8 -

should read "1",

triangles"™ should not have been capital -

"pworportional” should read " proportional™
porp ‘P p.LQMP

- Line 8 = /L MPR = £ QMP should read / MRP

Line 10 - This and the following line are editorial comments
and are not part of the submitted solution,

" Proposer" has been misspelled.
"Proposed" was misspelled.

Line 3 -
Line 4 =~
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Cathy S. Lerah
Donna M. McWatters
Frances A. Mears

Rosemary H. Krummenoehl
Maria 0. Listine
Francis X. McIivaine
Wayne D. Richards

Russell K Rickert
Carol A. Senausky

Melvin A. Mitchell
Patricia S. Novak
Melanie S. Parker
Kathleen A. Postler
Ronald R. Proper
Harold L. Putt

Jay V. Raspat
Marilvn A. Rich
Sallv J. Ringland
Carol J., Schrecengost

SOUTH CAROLINA ALPHA, University of South Carolina

Joseph C, Ard
Charles R. Caldwell
Carol A. Calhoun
Bonnie L. Cantle?
Tony Daniels
Thomas =, Deas, Jr.
Charles Dorschuck
Janet £, Ellis
Alan H, Fechter

SOUTH DAKOTA ALPHA,

Douglas L. Afdahl
Charles V. Briney
Carol J. Camp
Robert J. Donaldson
Daniel R, Gebhart
Kathleen Qutzman
Lloyd D. Harless

SOUTH DAKOTA BETA,

Michael Ackerman
Sudhir S, Avasare
f£ric R, Barenburg
Daniel M. Bylander
Stuart J. Calhoon
David A. Cappa
Richard C. Carleon
Garv E. Christman
James A. Christman
Patrick 5. Dady
Jerrv N. Demos
Vickie M, Deneui
Dariug L. Deneui
Wayne N, Evenhuis
Andrew Furisga

Dorsay A. Glenn
Norman K. Hapgerty
Nancy P. Hamby
Richard D. Hardin
Anne G, Harman
Gerald E. Harmon
Larry E. Bawking
Judy E. Johnson
James E. Kelly

University of South Dakota

Leslie 0. Hernes
Louis H. Hogrefe
Richard Knox
Steve Krause
Becky 0. Kegvboth
Barbara S. Krogh
Marv L. Mead

Richard E. Giere
Woodrow V. Hafner
James B. Hall

Teddy R. Heidrich
Francis D. Hansen
Witharh. Hiatterman

William A. Hernlund
Jacob J, Hess
Bruce Hoogestraat
Kenneth E, Juell
Lynn R. Xading
James . Klein
Dale C. Koepp

TENNESSEE ALPHA, Memphis Staté University

Harry E. Downs, Jr.
Jimmy Chiu
William ¥, Ellis

Richard C. Foster
Dennis R Givens
Nancy M. Huddleston

Larry 0. Kev
Mellie A. LaRoche
Wayne D. Leslie
Amber £, ¥alloy
John H, McElreath
James B, McGiil
Garen L, Oberdorfer
Lila Amn Ott
Michael R. Parker

William Menzel, Jr,
Judith K. Mickelson
Steven W, Moses
Michael ¥. 0'Heeron
Terry M, Ohnstad
Marlene M. Pearson
Ronald E. Persing

South Dakota School of Mines and Technology

Curtis R, Lamb
Glenn A. Lambert
Stephen P, Lux
Max S, Main

Lois J. Maxson
William J. Mav
John ¢, Mickelson
Helly X, Moore
Anthonv L. Peterson
James R. Ouinn
Paula C. Reynolds
Terry Rinehart
Randy R. Sauter
James E. Schnabel

June C. Joyner
John L. McDaniel
Nancy C. Miller

TENNESSE BETA, University of Tennessee at Chattanooga

Betty A. Adams
Charles H. Adams
Betty L. Bramnen
Janice C. Brown
Charles #. Bryant

Teresa Cardwell
Karen R, Carter
Calvin E. Chapman
Mary P, Childress
Virginia Strauderman

| d ¥, Dalton
John W, Javne
Phillip E. Johns
Brenda |. Johnson

Cynthia ¥. Thompson

Marc S. Schwars
Paula S. Sedlacek
Linda K. Thomas

Diane 8. Sullivan
Loretta J. Yerry

Sahib Singh
Vivian ¥, slocum
Chervl E, Stark
Robert F. Stein
Janet L. Steiner
David W. Thompson
Donnie M, Urbano
Barbara M. Wickham
borathy L, Yeany

Robin E. Perrin

Danny 0. Rush

Larry E. Shumpert
Carol B. Sorrell
Benjamin H. Thomas
Jams R, Walker
Janice |. Watson
Elizabeth D, Wimberly

Tanya Poppe

Connie M, Ranard
Bernard V. 5chuurmans
Charles %, Scott
Alan B. Ward

Cynthia N. Winauist

Charles M. Schultz
Tary L. Schumacher
Jerry L. Schley
Larry A, Simongon
8forn Jan Solheim
Eldon D, Strid
Merle R, Symes
Tor Tylden

Ronald Van Horssen
Robert N. Waxdahl
Robert M, Wegman
Robert A. White
Dale v, Wilhelm
Randahl E Wischmann

Connie Niemever
Dr, C. C., Rousseau

Sue C, Keene
Valerie J. Lawson
Carol M. Lynekv
Ishmael L, Lvons
Sheila Rrav
Patricia 5. Yancev
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TENNESSEE GAMMA,

Nancy K. Anderson
Ted Aseltine
Joyca Balas

Tommy Baas
Deborah Bohannon
James W. Bond
Larry Bouldin
Barbara Brown
Carolyn Browning
Josl Buntley
Norma Chadvell
Carolyn 8, Clark
James R, Daugherty

David Davanport
Dorris S. Edvards
Dr. Joe Evans
Ronnie F. Floyd
William Forbes
Dr. Tam Forrest
Thomas Fox

June £, Gilmore
Frederick Hunter
Johnny Jackson
Dr. K, Jamison, Jr.
Edith F. Johnaon

TEXAS BETA, Lazar University

Harold Camp

Jane Carlsen
TE%A8 DELTA,
Brenda L. Atwvood

Gary #, Brice
Desna J. Castloo

Tim B, Crawford
Judith L. Hughes

Stephen F, Austin State University

Sondra L. Fulbright
Barbara C Lana
Mary X. Montes

UTAH ALFHA, University of Utah

Fred O. Benson, Jr.
Orville L Blerman
Alan D, Blackburn
Paula X, Bown
Robert P. Burton
Erveguang Cheng
Cynthia A. Dolan
John P. Drost
Roland P. Dube
Xenneth R, Ekrem

UTAH GAMMA,

Russal)l L Austin
Xathie A Tletcher
R, Jay Hamblln

Joseph L, Hayvood

Sandra Jackson

Thomas W, Gage
Duane H Gillamn
Michael D Grady
Winfried Gruhnwald
Grant Gustafson
Werner J, Heck
Tony $. Johnson
Melville R, Klauber
Tai-Chi Lee

Brigham Young University

Angela Xenison
David ¥. Larsm:
Chisn<Min Liu
Vicki A Lyons
Alan K Melby

VIRGINIA ALPHA, University of Richmond

Magusrite Crafts
Mary 8. Davis
Tran Dinh Hea
Margaret G. Kemper

YIRGINIA BETA, Virginia Polytechnic Institute

Sum Berkewits
Russell B, Bosserman
Thomas J, Brownfield
Christopher Chambera
Richard Chiaechierini
Charles V. Cosner, Jr.
Virginia L, Crie

WASHINSTON EPSILON,

Marcus Duff

YEET VIRGINIA ALFHA, Univeraity of West Virginis

Darrell G, Collins
Sharon L. Davis

Judith E. Lewis
Nancy P. MacCaffray
Charles |. Noble
Frances [, Pcehler

Evelyn J, Dripps
Roy T. Duggan, III
Roger R, Ellerton

Frank C, Fuller, Jr,

Xenny A Gunderson
William H Horton

Benjamin F, Klugh, Jr,

Gonsaga University

Patricia Larguler

Ronald R, Plchtner
James ', Godfray

Middle Tennesses State University

Susan Justus

Dr. Richard McCord
Jimmie |. McDowaell
Florence McFerrin
Susan Mitchell
James Moore

Norma Nichols
Elaine Officer
Kathy Petty

Bill Price

Charles A. Purcell
Vicki Randolph

Gerald ¥, Langham
Donna Matsen

Barbara J. Moors
Barbara A. Mott
Shirlay Nalley

Michasl J. Liddell
Carl A Lindgren, Jr.
Alan E. Lundquiat
Walter L. McKnight
David B, McOmber
Carlesn J, Matakovic
Gregory B, Monson
Frank R. Nelson
Francis X, Neumarn, Jr.

Norman Hurray
Michael E. Patty
Joyce Resder
Marlene Ricks

Elizabeth B, Rhatt
Richard Rickstts, Jr.
Norbert L. Rieder
Michasl H, Robertson

Battibel C, Kreye
Mary E. Lester
Daniel B. McCallum
Melvin L. Parka, Jr.
Paris Rzenic, Jr,
Peter H, Schnaars
Susan D, Seaman

Ronald Patterson

John ¥, May
Steven J. Summers

Linda Reese

Mr, Jesse Smith
Audrey Smithson
Dr. Harold Spraker
Francis Stubblefield
Dr. Sam Truitt

M Roger Turney
Dr. T. L. Vickrey
Linda Walker
Charles Wrenn
Marilyn Wyatt
David Welborn

Phillip L. M=Duffie
Sharon W, Ramsey

Daborah L, Otto
Sherry L. Petty

Champak D, Panchal
Ramana K. FRao
Glenn E, Rasch
James C. Reading
24vry R, Ruhlander
Scott D, Smith
William V. Smith
Jim J, Tseng
Duane M. Young

Paul Roper

David H Vetterlein
Gerald A. Williams
Philip W. Winkler

Elizabeth L. Rodman
Rebecca L. Waggoner
Michael 6. William

Dr. A H. Sherdon
Donna X, Spencer
Joyca E. Thomas
Richard Toothman
Suzanne Tyson
Samuel E, Urmey
Dorine A. Vest
Sherry E. Wad

Julia €, Roberts

George E. Trapp






