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THE C.C. MACDUFEE AWARD
FOR DISTINGUISHED SERVICE

The C.C. MacDuffee Award is Pi Mi Epsilon's highest
recognition of distinguished service. It has been presented
four times during the fifty-eight year history of our fra-
ternity. The prior recipients are:

Dr. J. Southerland Frame
Dr. Richard V. Andree
Dr. John s. Gold

Dr. Francis Regan

In 1972 the C.C. MaeDuffee Award for Distinguished Serv-
ice was awarded to Dr. J.C. Eaves. All of you know Dr. Eaves
as the President of Pi Mi Epsilon (1966-1972). Adding Dr.
Eaves t0 an organization is like adding yeast to a mixture.
Either introduces life, promotes growth, and produces a final
product with superior zest. Dr. Eaves has worked diligently
and imaginatively in "promoting scholarship and mathematics"
as our motto says. The number of NME chapters grew from 118
in 1966 to 175 in 1972 under his energetic guidance. Most of
these 57 additional chapters were personally installed by Dr.
Eaves -- who can relate some interesting stories concerning
travel to and from various colleges and universities.

Dr. Eaves is an excellent speaker, an inspiring leader
and a congenial companion in addition to being a devoted math-
ematician. He promotes mathematics whenever the opportunity
arises, and serves the needs of mathematics at all levels --
he has served as president of Mi Alpha Theta, the national
high school and junior college club, which was started in
1957 with the help of Pi Mi Epsilon. He has served as chair-
men of a large active university graduate program in mathemat-
ics. He has served as President of the most prestigious and
active honor society in America -- Pi Mi Epsilon.

Dr. Eaves is always a welcome committee member on any
project. |If Dr. J.C. Eaves undertakes a job, you can be sure
it will be done with a flourish, and that those who are asso-
ciated with the project will enjoy and appreciate this sly
humor as well as his uncanny ability to come up with feasible
solutions rather than additional problems. Pi Mi Epsilon is
indeed fortunate to have been included among the many projects
that have been more successful because the Eaves yeast was in-
cluded. It is altogether fitting and proper that Dr. Eaves'
name be added to the list of illustrious recipients of Pi Mi
Epsilon's highest award.

Presented at
Dartmouth College
August, 1972
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J. C Eaves

MATHEMATI CSL MODELS AND THE COMPUTER!

by John. G Kemeny
Presddent, Darntmouth College

This evening | would like to speculate on the likely impact
computers will have on modeling in the coming decades. | an
convinced that we are just beginning to explore this field and that
there is an enormous amount we still must learn about the full power
of the computer in this area.

Let me start by commenting briefly on the traditional mathemati-
calmodels, those in physics. A simplified impression of the role of
mathematics in science is that the physical scientist observes nature,
discovers a number of facts, then formulates a model of physical
reality which is usually expressed as a mathematical model. It is
left to the mathematician to solve the equations of this model, draw
conclusions from them, and derive answers which tell the physicist
something about the future of the world or about how to apply his
theory to practical situations.

A's mathematicians, we are spoiled because some of the best known
models of classical physics lead to closed analytic solutions. There-
fore, we have a tendency to oversimplify the role of mathematics in
analyzing mathematical models.

Perhaps one extreme example is Einstein's Unified Field Theory.
As far as | know, the equations still have not been solved and,
therefore, we do not know what Einstein's last theory says about the
physical world. There is no way of evaluating whether the theory has
any value or not.

At the other extreme, one says that Newton's laws lead to
analytic solutions which completely determine motion in practical
situations. But take as simple a problem as a rocket trip to the
moon. Although the equations are known and up to a certain point you
have analytic solutions, you eventually run into an elliptic integral,
which can't be integrated in closed form. Therefore, even at the
point where the mathematician says he has reached a solution, he has

IThis article is the text of an invited address by Dr. Kemeny which
was given at the annual meeting of Pi Mi Epsilon at Dartmouth College,
August 1972.
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not really found the solution in practical terms. At this point he
must turn to the computer to plot the rocket trip to the moon.

I an going to suggest that situations which are exceptional in
the physical sciences may turn out to be the norm in the social
sciences. Let me illustrate this with a very simple example: the
population explosion.

On a simplified scale, we have no difficulty in dealing with the
problem of a rapidly growing population. It is a standard exercise in
calculus to assume that the rate of growth is proportional to the
number of people present, express this as a differential equation, and
find that the solution is the initial population times ekt, k being a
measure of how fast things are growing. It's very beautiful; it's
even useful for long-range global predictions, but | submit that it
has little to do with the problems we are facing at the present time.

Suppose you wanted to know something about the population of the
world 20 years from now, and the next 20 years are critical ones. Or
suppose you are interested in hov many college-age students there will
be 20 years from now. The nice analytic solution is totally irrele-
vant, because it is an equilibrium solution, and we do not have an
equilibrium.

If you look at the age distribution of the population of the
United States -- which in equilibrium should be nearly a straight line,

which dips to zero beyond some age -- you find that the distribution

is not even approximately like that. It has very significant "wiggles"
init. If we use the 1970 census and look at the people in the 30 to
40 year age group, we find a substantial dip -- the population is

much smaller than it should be. If you look back in American History,
this dip corresponds to the period of the Depression when people
apparently decided to have fewer children.

At another point on the line there is a "bump" that corresponds
to the post-World Wa II baby boom. Thus the nice smooth solution
simply does not correspond to reality. It is off by as much as five
million people in a 10 year age group and therefore the solution is
not even approximately correct. The trouble with these "wiggles" is
that they tend to propagate. One speaks of birth rates and death
rates as though they were averages over the entire population, but

this is not true. It is mostly people within a narrow age range who
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have children, and it is mostly people at the high end of the age
scale who die. Therefore, rates of birth and death averaged over the
total population are misleading.

You have heard considerable publicity that even if Zero
Population Growth (ZPG) is completely effective, as people decide to
have only enough children so that in the long run the population
becomes stable, it will take something of the order of magnitude of
60 years to achieve stability in the population. The reason for this
is that those in the large post-War baby boom group are about to

become child-bearing parents. Even if this group has only the "right"
number of children, this generation is still going to have many more
children than their parents' generation and we must wait until the
transient effects die down.

Building al |l these elements into an analytic solution is
difficult and not worth the effort. Yet it's an ideal problem for a
computer model. We can feed into the computer the actual rather than
a hypothetical distribution, use actual data about what age people are
most likely to have children, and provide data on the death rates for
various age groups. W can make further assumptions about the
behavior of the next generation of child-bearing parents and about the
likely effect on the death rate of improvements in modern medicine.
And we can try out, under various assumptions, what the actual
population will be 20, 30, or 50 years from now.

This is an excellent example of where a mathematical model turns
into a computer model, and if one looks closely at the behavior of the
model, one finds out why oversimplified discussions are very dangerous.

For example, one sometimes hears statements about the increase
and decrease of the birth rate. Demographers tell us it is the child-
bearing rate that counts, and if you look only at birth rates from one
decade to the next, they are terribly midleading, as are death rates.
At the moment, the child-bearing age group is still, more or less,
from the Depression "dip" and, as such, isrelatively small. If not
as many children are being born, one therefore must ask how much of
this is due to the smaller population in the child-bearing age group?
On the other hand, a large bulge will soon be coming through the
population wave. Therefore, even if this group has fewer children

than their predecessors, it is quite possible that the national birth
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rate will shoot up.

Similarly, there has been considerable publicity given to the
decline of the death rate. Here again, one must be careful to
determine whether this decrease is due to better medicines and other
factors enabling people to live longer, or whether it is a result of
the very large number of young people in the United States who as a
group are not likely to die for some time to come.

The analysis of the growth in population is the simplest example
I can think of in which a computer model is crucial. Assuming you
have properly constructed the computer model you will observe as you
run it that the initial results suggest new questions you might not
have considered if you were immersed in a beautiful, long-range
analytic solution. Ore of the spectacular things you notice as you
run the population model through a hundred years is the change in the
percentage of people over age 65. A by-product of Z%G is a
significant increase in the percentage of people over age 65. To
some extent we would be noticing this now, but the increased
longevity of people has been balanced in the last 20 years by a large
birth rate, which is attributable to the post-War baby boom. put
simply, while the numerator of older people has increased, the
denominator -- or total population -- has kept pace, more or less, and
thus the change i s not as noticeable.

If we strive for Z&% by controlling the number of young people at
ome reasonable level, the bulge in the system moves on to older age.
Yau will find that while today the percentage of people over age 65
is under 10 per cent -- which is unusually high -- you will eventually
have as much as 15 per cent of the total population 65 years or older.
If that does indeed occur, it will make a qualitative difference in
the way our society lives. |f you are-planning for zero population
growth -- as many people are advocating -- you must come up with
centjrely new plans as to what society will do when more than one out
of seven people are in the retired age group.

Nw | et me turn to a discussion of specific computer models. |
will start by mentioning briefly the work of the MIT Group under the
leadership of Professor Jay Forrester, ably assisted by Professors
Donclla and Dennis Meadows, both of wom are now at Dartmouth College.
Jay Forrester pioneered in the construction of sophisticated large
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scale computer models for social problems. His approach is the
opposite of trying to solve all problems analytically. He by-passed
the stage of the ordinary mathematical model by building his models
directly inside the computer.

His models are extremely ambitious, whether he is modeling a
large company, a large city, or all the problems of the world. I'm
quite sure that, as with any initial model, the model is not perfect.
I think he would certainly admit some imperfections, but whether the
model is quite accurate isS not so important. He is pioneering in an
important new approach to modeling of complicated systems, an
approach | think deserves an enormous amount of study. Even if his
models are not quite right -- and usually the first models in science
turn out to be wrong -- he has discovered some qualitative behavior
that is fascinating.

I will concentrate on one aspect in particular which Forrester
describes by saying that his models in the social sciences are
"counter-intuitive.” | can see from his examples what he means by
the models being " counter-intuitive,"” yet the phrase bothered ne at
first. | couldn't see how a model could be inherently "counter-
intuitive,"” so | tried to analyze what his statement really meant.
For better or worse, here is ny reconstruction of it:

Intuition is not inborn; it is a matter of training. It isny
belief that these models have "counter-intuitive" behavior because
our intuition, particularly our mathematical intuition, has been
trained on models that behave quite differently from his. A where
has our intuition been trained? Certainly in applied mathematics it
has been trained primarily in the physical sciences. Forrester, then,
is saying that his models have features in them that make their
behavior qualitatively different from those we have become accustomed
to in analyzing physical problems; therefore our intuition, built
upon physical mathematics, misleads us.

Some of the elements that bring this about are the following:

In physics we have been spoiled by the fact that, although there are
may complicated systems, we can isolate simple sub-systems which are
relatively self-contained. By way of example, |et us take the
composition of the universe. |f the physicist had to start out by

building a model of all the stars in the universe, physics would
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“never have been born. Fortunately, there are simple sub-systems
available such as the sun and the planets. But even this system is
still too difficult for physics to have gotten started on.

W are even more fortunate in that the effect on the sun is so
strong compared with the effect of the other planets -= not to
mention the other stars -- that you can pretend, for your first study,
that the sun and one planet form a closed system. | would argue
that there would have been little chance of developing classical
mechanics if simple, isolatable models such as the sun and one planet
did not exist. Forrester also makes the important observation -- and
I think he isright with regard to the social sciences == that you
cannot take complex systems apart because the individual components
are too heavily inter-related.

Another thing that happens in the physical sciences -- and this
probably led to the discovery of both calculus and statistics -- is
that often you have a highly homogeneous system, either in time or
space, so you can pretend that you have infinitely divisible time, or
infinitely many similar objects, and therefore you can use calculus or
statistics to find the answers. Forrester would argue that one of
the major problems with social systems is that while you may have a
large number of pieces in the puzzle, they are not homogenous and the
differences among them are sufficiently significant so that the use of
statistics can give you highly misleading answers.

The next important observation is that with good luck, many of
the systems in physics, biology and economics are linear. \Whenever
you have a linear system, life is much easier. Any time scientists
can assume something is linear, they will intentionally close their
eyes to non-linearitiesto avoid turning an easy problem into a
hopeless one. While mathematics has made important contributions to
the solutions of non-linear systems, these have usually been in cases

.where the behavior of the system can be studied (at least locally)
Thpsugh linear approximations. Forrester would argue that complex
social systems are highly non-linear and that linear approximations
would produce qualitatively different results. He attributes thisto
the presence of feedback systems, though this may be an oversimplifi-
cation. | feel that this aspect of the Forrester models deserves
careful study by mathematicians.
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The final element is chance. Chance is essentially present in
all social systems and this leads to the difficult question of how
you build chance into your models. Probabilists and statisticians
have been doing this for a long time, but it turns out that whenever
you face a problem sufficiently complicated to be of real significance
in the social sciences, the probabilist runs into the same problem as
the analyst: he can solve the problem in principle, but he cannot
solve it in practice.

A great deal has been said about the importance of a special kind
of computer model known as "simulation," where you use the computer to
act out what happens in nature. Simulation has one great advantage;
it quickly gives you a good, rough feeling of what goes on. Yet
simulation has its shortcomings and | will mention some of them
shortly.

Let's take a concrete example of simulation. Suppose you are
interested in the flow of traffic in a fairly large city and you
would like to do something to improve it. It is entirely possible to
write a large computer program, building into it the layout of the
streets, the locations of the traffic lights and one-way streets,

Some information on the flow of traffic and the peculiar habits of
drivers. You would also want to include the chance element so as to
produce the right number of accidents at the right places and at
approximately the right times.

Then you ask the question: "What can we do to improve the flow
of traffic?" Let's take Manhattan as an example where the traffic
situation is miserable. Since I visit Manhattan frequently, Ifve
tried to analyze what that city does about its traffic problem and
have come to the following conclusion: Every once in awhile, somebody
has a brain storm and they change the timing on the lights on a few
streets or make some streets one-way and then they sit back and
watch the system for six months to see whether traffic flows any
better. Often it does not, or if it does the improvements are
insufficient to handle the increased volume of traffic.

There is absolutely no reason why the same approach to traffic
control cannot be formulated into a large-scale computer model
simulating in the machine what actually occurs in the streets. Yo
would have to write a program that simulates a traffic flow just as




miserable as it is in Manhattan. Then you could try out the changes
in traffic lights and turn your one-way streets around, letting the

computer grind awvay for hours to play out' gix months of experience to

see if traffic flow improves. |f a successful pattern isn't found the
first day, change the traffic lights and one-way streets again and | et

the computer run some more. |f you are lucky, you will eventually
come up with a plan that looks significantly better and then implement
it. While you will have used a good deal of computer power, you will
not have used a million humen beings as guinea pigs. Thisis an
excellent use of the computer because it will give accurate enough
answers to spot an order-of-magnitude of change.

The computer can be bad, however, in other kinds of simulation
modeling. Let me give you an example of something | did once for
amusement as an illustration for a book.

| was interested in determining whether the batting order in
baseball really made a significant difference. | an familiar with the
Hawthorne Effect, that everytime you change semething, people perform
better, and in that senser there is no doubt that shuffling the
batting orders may meke a difference, But | wanted to see whether
there was a real differencey in a probabilistic sense, in the order

players batted. | wrote a little model, based on an old Brooklyn
Dodgers lineup. | had the Dodgers play a full season and tried to
see how mary runs the team scored. | built in singles, doubles

triples, home runs, walks and other factors, and then tried different
batting orders to see what changes occurred. There were some changes,
but when | tested them they turned out not to be statistically
significant.

For the fun of it, | decided to run 10 seasons for several
different batting orders. Again, | tested the results carefully and
found very small but statistically significant differences. |
*eventually ran 70 entire seasons of batting orders and again came up
w;t‘h small differences. 1| can mow tell you that if you do something
that's obviously bad, like having the team bat in reverse order, the
team will score slightly fewer runs in a season, But the difference
isridiculously small, and only shows up if you use the stupidest
possible line-ups.

The above example illustrates one of the problems encountered

gl

when using simulation models, You do not get a good feeling as to
what the variance is. The best method is to run the program 10 times
to determine the differences between the largest and smallest outcome,
then try to estimate what the variances are most likely to be. But

it is a very shaky experience when you are working with a large,
complicated simulation model. |f you want to play it safe, accurate
results will require an enormous amount of computing time, because you
are substituting mere computing power for an idea, for some evaluation,
of what really goes on inside the system. This is a graphic example
of brute force substituted for intelligence, and as usual, it is not

a very good trade-off.

Nevertheless, | strongly believe that simulation models and
other computer models are coming. Indeed, | would like to refer to a
phrase we are al |l bored with -- that mathematics is the language of
science. I'm beginning to wonder that if mathematics is the language
of physical science -- which it is -- is it not possible that computer
programs will become the language of social science? I say this
seriously because of the interesting experiences I've had on the
Dartmouth campus.

Yau know how difficult it is for people from two different

scientific specialities to communicate at all. As a matter of fact,
two mathematicians often have enough trouble communicating that the
thought of a physicist and a sociologist communicating gives one a
hopeless feeling. They would probably need three months just to
arrive at a acammon language.

But | have found that people from highly diverse fields are mow
able to communicate in the language of high-speed computers. Ary one
of the general languages can be used. At Dartmouth, the language
commonly used happens to be BASIC, but it could be FORTRAN or ALGOL
at other institutions. The use of computer languages as languages for
modeling is interesting and intriguing; their use as such would
certainly break down a great deal of the language barrier amongst the
disciplines.

But you need more than a common language in order to build
these models. Yau need reasonable access to a computer, and one of the
sad facts in the United States today is that most institutions do not
have reasonable access to a computer. This includes some of the
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“largest and best known institutions which may think they have
accessible computers, but do not in any reasonable sense. Aside
from those institutions that don't yet have physical access to
computers, there are many others who think they are making a computer
readily available if a handful of people in those communities consume
enormous amounts of computer time, usually at federal expense. This
is not an acceptable criterion.

Computer modeling is an outstanding example of a situation in
which an occasional shot at the computer, or a 20-minute turn-around
time, is totally useless. Orne of the great break-throughs in time-
sharing systems is the capacity for research scientists to converse
with a computer. With a 20-minute turn-around time, however, you
might as well have somebody else do your computing for you. You are
never going to do the work for which computer models are ideal if
you don't have the opportunity to sit at a terminal, vary the parameters
of your data, watch the results come out, and, if the answers raise
still more questions, to begin exploring their implications fully.

In the typical batch processing system, you would never even get
your program debugged because the models | an describing are
sufficiently complicated that you need at least 100 runs before they
work properly. If you have to wait half a day before you get another
pass at it, you are going to be drawing retirement pay before the
program is debugged. But beyond the obvious advantage of a time-
sharing system, the fact that you literally work with the system in
the same way you work with a mathematical model with paper and pencil,
makes a time-sharing system absolutely crucial for the development of
computer models.

Let me try to give some evaluation of the role of computers in
this area. In any modeling, an obvious advantage of the computer is
that it isfast, accurate and cheap. That may sound strange coming

.from a college president because most of us complain about how
éxpeénsive computers are. But the work computers do in a given amount
of time makes them incredibly cheap and they are getting cheaper
every day. Secondly, it is much easier to mite a computer program
than to design a good mathematical model in closed form. This has
both its advantages and disadvantages. It is too tempting for many

amateurs to get into the act of writing models. Nevertheless, for
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those who work in this field, it isa lot easier than forming
mathematical models. Still another advantage is that while in
ordinary modeling you must work simultaneously in formulating the
model and solving the equations, once you have devised a computer
model, you can tell the computer to do the rest of the work and the
machine results will give you a good feeling of how the model behaves.

These are some of the advantages, and yet computer models have
a number of disadvantages. First of all, I believe all mathematicians
and scientists work with a trial and error system, whether they admit
it publicly or not. On the surface, the trial and error system
appears ideally suited for the computer. You can mite the model and
provide a large number of parameters, then ask the computer to run
through al | of the possible variations and tell you which variation
is best. There is, however, one major catch in this novel approach:
hov will the computer know what 'best’ means in this particular case?
While the computer is capable of generating enormous amounts of data,
if you are not careful, especially in a batch processing system, you
are likely to get stacks of information that still need many hours of
evaluation before you can arrive at a final answer.

I't would be a major breakthrough in the art of computer
programming if we could develop sound techniques for teaching computers
how to evaluate their results. The reason we are unable to develop
such techniques is because we don't exactly know how to evaluate our
own work. Therefore, the trial and error methods can often be
frustrating.

I can best illustrate this fact by telling a story on myself. In
a course | taught last spring we focused on one of Jay Forrester's
world models and discussed ways to evaluate how well off the world
will be in 2100 for various values of the parameters used by Forrester.
There were a great number of strategies and ways to change parameters
such as population growth, pollution control, and resource depletion.
Wha we wanted to do was try out a wide range of parameter values to
see which set would produce the best possible life on earth by 2100.

Obviously, obtaining the answers would require a tremendous
number of calculations, but the class insisted on trying out hundreds
of variations, each requiring a computer run of the model from 1970 to
2100, This exercise was going to be the grand finale of the course,
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SO we wrote the program and made the runs, changing the parameters
each time and letting the computer keep track of the payoff function
in terms of quality of life in the world. Fjnally the computer
produced the best solution. There was a unique optimum in it, and I
was happy, until | started studying the solution. The solution
provided by the computer had one very interesting property: there were
practically no people left.

So back we went to the computer to work through that one set of
parameters to see step by step what actually happened in that
particular simulation. The most horrible things you can imagine began
to occur during the next 100 years -- population explosions, famines,
and unparalleled starvation. As a result, almost all of the people in
the world were wiped out. W wound up with a situation where a
handful of survivors had all the resources on earth and no means to
generate pollution. |n a sense, it was a second Garden of Eden, but
it's not quite the solution we had in mind when we began.

This illustration is a perfect example of what a computer model
can do if the computer has no way of knowing which solution or set of
conditions is best to achieve the goals we are seeking. gyt 1 did
protect against this to some degree by re-running the whole program
and saying to the computer, "Incidentally, if along the way the
population gets wiped out, forget it."

In the end, however, this question still lingers: mwha is it
that we missed in the automatic recipe we gave the computer for
evaluating solutions that would not have been overlooked if we had
seen these thousands of printouts and had been able to follow the
computations in detail?"™ Trial and error is dangerous if we have
only crude ways of telling the computer how to evaluate success.

A second observation is that compyters seem to be very poor at
combinatorics. The machines are no better at combinatorics today than
they were before. Computers mey be faster so you can use them for
combinatorial problems, but they still do miserably.

A third observation is that in spite of some spectacular success
inartificial intelligence, computers are, in ny opinion, still poor
at pattern recognition. Here's ny favorite example of this fact.
Laymen are always amazed if you tell them the computer can do

differentiation for you. (I don't mesn numerical differentiation,
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but closed-form differentiation), because many people think computers
can't work with formulas. Computers can and do work with formulas.
To teach the machine everything you would teach in freshman calculus
about differentiation would result in a large but not terribly
difficult program. Obviously you will want the computer to do what
the student in freshman calculus must: find the derivative and
simplify it. The chain rule, which is a big stumbling block for
students, is perfect for computers. Everything isfine until you ask
the computer to simplify the answer, and here the machine does
miserably. While it may take the average freshman several minutes to

find the derivative, the computer can do it in a negligible amount of

time. n the other hand the simplification that even the average
freshman can do by merely looking at the answer may take the computer
may times longer than the differentiation took. YW is missing is
the ability to tell the computer "Now just look at the answer and
you'll see what you have to do."

Finally, because computers are so fast and models so complicated,
I suspect it iS much harder to find errors in the model. !f Newton,
in his Lav of Gravitation, had accidentally cubed rather than
squared the distance, it would have been immediately noticeable.

have a feeling that errors of that order of magnitude can sneak by
you in a computer model and it may take a long time to find them.

So what do | conclude from this discussion of mathematical models
and the computer? First, computer models are a crucial new tool for
the social sciences and for attacking the problems of society. Second,
mathematicians and others well trained in mathematics are particularly
good at formulating social science models. | want to avoid the arm-
ment of whether these models are mathematics or not, for | believe
that in 50 years they will be recognized as standard mathematics. The
same might be said of statisties, but, to avoid argumentation, | et ne
simply say that like statistics, computer modeling is a field in
which people with strong mathematical training do significantly
better than those without such training.

But unlike statisticsy we presently face one major hurdle with
regard to computer models, that we don't have a general theory. veé
need a theory of computer models, just as we have theories for the

behavior of systems of differential equations or for statistical
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" systems. Without such theories, formulating sound computer models is
too much a hit or miss method.

Thereforey | et me close by recommending to those of you wo are
looking for a fruitful career in the coming decades to give serious
study to the formulation of mathematical models, particularly
computer models in the social sciences’ for they have an important
futurerole to play.
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CHARACTERIZATION OF AN ANALYTIC FUNCTION
OF A QUATERNION VARIABLE

By Joseph J. Buf{
New York Univensity

In this brief paper we consider an attempt to define an analytic
quaternion valued function of a quaternion variable. Fundamental to the
theory of complex variables is the idea of an analytic function, a com-
plex valued function of a complex variable which is differentiable on
some region. Can we, and if so how shall we, extend this idea to quat-
ernions?

A quaternion, of course, is a number of the form

X1+ X2t X5t Xk, (D)
where X;, ... , X, are real "coefficients" and 1, i, 4§, and k are quan-
titi es multiplying according to the table

1 1 J k

1 1 1 J k
i i -1 kK -g
J J -k -1 i

k k J -1 -1
and otherwise obeying the laws of polynomial arithmetic. Nown, we may
consider a quaternion variable Q to be expressible in the convenient
form of (1), and we mey begin to study a quaternion valued, single val-
ued function of Q which may be written in the form

A1t Ay T Ad t Ak (2)
where again 4,, ... , 4, arereal coefficients, and in particular, each
isitself areal valued, single valued function of the four real vari-
ables Xy, «.. , X,. Hence, should we have a function of this type we
may write it in the informative form

F(@) = Ay(Xys e X)) + A (X000 X )
tAy(X s ninX gt A(X sl Xk,

exactly as is the case in the elementary theory of complex variables.
Naw, for clarity, we mention that in the future a funetion, mitten F(Q),
will mean a function of this type, a quaternion valued function of a
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quaternion variable.

Before we consider |imits and derivatives, we need a topology on
the space of quaternions, so we shall take an open set in quaternion
space to mean simply an open set according to E* (euclidean space of
dimension 4). Thus Q-space, being in effect E*, is now a metric space,
and we have no problem understanding the meaning of limit. In the fu-
ture we shall take our function F(Q) as being defined on some open, con-
nected set, or region, of E%.

VW may now get down to business and try to define an analytic func-
tion. A reasonable definition of a derivative must involve the famous
difference quotient AF/AQ. Note, however, that in Q-space since multi-
plication is not commutative, we must consider two distinct quantities
when speaking of difference quotients, these being

1 1
AF 1Y) and A_Q AF,

the two generally not being equal. W shall then speak of two deriva-
tives: A right derivative shall mean

lim  AF - A—:z

AQ+ O
and a left derivative shall mean

a0 A€
presuming the limits exist. A function sr‘1all be called right or left
differentiable @t a point when the appropriate derivative exists, and
right or left aialytic in aregion when it isright or left differenti-
able throughout ‘that region.

Now, we have encountered what seems to be a difficulty in defining

a derivative because the two derivatives might not be the same. However,
we see at once that when the two derivatives exist in a region they must
be equal. For, if F isright differentiable we may | et AQ vanish along
the X; axis and find

2 lim  oF - % = lim  AF . o
- AQ+0 AX, +0 1
which imit exists. If Fisleft differentiable we also have
lim \]_- AF = 1im Y voul AF
2Q+0 ax; +0 1

which limit exists, but AX, being real, the two limits are equal.
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Definition: A (single valued) quaternion valued function of a qua-
ternion variable is said to be analytie on a region if it is both right
and left differentiable on that region.

The derivative of an analytic function may also be defined.

Deginition: The derivative of a function that is analytic on a
region is the common value of itsright and left derivative throughout
that region.

VW shall now introduce a restriction on the functions we are con-
sidering.

Restrniction 1: The functions A,, 4
with respect to X;, X,, X3, and X,,.

29 A, and A, are differentiable

Now, suppose we have an analytic function F(Q) defined on some re-
gion. Wha does F(Q) look like?
Let us define, in a strictly formal sense, aF/axa to mean

94 94 34 94
1+_2«;+—3J-+—3X“k, a=1,2,3 4.
24 90X 39X a
a a a

Now, if F is analytic it isright differentiable, and so we have:

1 . 1 i 1
lim AF « —=— = 1lim AF * >==— = 1lim AF * =
ax, 0 My a0 M2 oaxgao 8%y
1
= lim A&F - TN
Ax, +0 Ax,
That is,
F F - 1 9F T F __ 1 —
X, & i YR ox, K °

which gives:

ax, a, 3x, ax,
=g 2y L By g Ay 5 4,
X, 9X, ax, 3,

My My My g 2
x, o & K,
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L R I . T
ax,  8x, X, X,

= -k

If we now equate the coefficients of 1, 7, §, and k, respectively, we

arrive at a system of equations

) _ 34, _ B, _ ¥4,
X, 93X, 23Xy X,

My My, M, ¥
X,  aX, aX,  ax,
My MMy M,
%, & o, oK,
My M, M, My
X, ax,  ax,  oX,

which are necessary conditions if # isright differentiable.

Nw let F be left differentiable. V& similarly must have:

8 1 . 1 1
lim =—%— ¢« AF = lim - < AF = 1lim -~ . AF
AY, +0 o AX2+01'AX2 AX; >0 Iy
1
= lim o= - AF,
AX, +0 kax,
That is,
oF . oF oF F
——m = -1 = = =g = K
o, X, X, x,’
and so:
ko QPRERC NN Y .
BXI 8X1 3}(1 3X1
4 A Y\ LA
SR ik S i R A Sy
ax, ax, ax, X,
34 34 34
bR = ..j %—1 + k —2 + —3 _ 1 4
ax, My BX, 83X,
3A LY 34 34
2ok —1 - j 2 443 4N,
x, ox, x,  ax,

(3)

Again equating the coefficients of 1, 2, 4, and K respectively we

have:
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3, _ 84, B4, _ M4,
aX, X, Xy 3X,
By By My, M,
X, 3x, Xy X,
%)
24_3 = %"’ = - %1 = - _3_'12
3,  aX 3Xy 3x,
E“ = - a_A_S = ﬁz = - il t]
ax, X, 8xy x,

which are necessary conditions if F is left differentiable. Now, if F
i s analytic we combine (3) and (4) to get:

My My Wy,
X, X, X3 ¥,

My M, _ 4, My
X, ax, aXy o
i 2 3 4
(5}
My _ M, M, _ 84,

38X, aX, 3Xy X,
34, 3A5; 84,
3xX, ax, ax 4 X,

o

which turn out to be rather strong conditions for a function to be ana-
lytic.

V¢ mey go one step further if we introduce a second restriction on
the class we are considering, the motivation of which will become obvious
at once.

Restrniction 2: There exist integers a and b between 1 and %, not
equal, such that

a24 a24 324
a

b , and b
2
axa SXaBXb axaaxb

exist, and the last two are continuous on the region on which F is ana-
lytic

Restriction 2 presupposes much stronger conditions than Restriction
1, and these are its consequences:
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If F(Q) satisfies Restriction 2, then for a # b we have by (5)
a4, Ay g
7 -- and — =z 0,
9. - 3Xb 'c)Xb
so that

2

224, 3 g\ 3 g4y

ax2  ax_\ox, ) ax.\ox ) .
a a b b a

by (5) and basic theorems of partial derivatives. But this very simple
system of partial differential equations tells us that for each a = 1,
2, 3, 4,

Aa = CXa t ka,

where C and ka are real constants. Thus,
F(Q) = C+Q + Ka

where C is areal constant and K is a quaternion constant. V¢ have then
a further characterization of an analytic function which is stated in the
following proposition (just proved):

Proposition: |If F(Q) is a single valued, quaternion valued function
of a quaternion variable, analytic on a region and satisfying Restric-

tions 1 and 2 on that region, then
F(@) =C@+K

for some real constant C and some quaternion constant X.

Finally, we observe that if F is of the form F(Q) = C-@ + K, then

F is certainly analytic, for

[im AF-%:C and lim %-AF:C

4@ +0 40 +0
so that F isright and left differentiable on the region and thus analyt-
ie- by definition, and also clearly, F satisfies Restrictions 1 and 2.

In short, an analytic function under Restriction 1 is characterized
by system (5), which places great limitations on the class of such func-
tions. If we consider functions satisfying Restriction 2 as well, our
class is limited indeed. It might be worthwhile to try to characterize
functions satisfying other less stringent conditions than those investi-

gated here.

LI NEAR _RECURRENCE RELATI ONS AND
SERI ES OF MATRI CES

B% Kenneth Loewen!
orman, Oklahoma

1. A Linean Recwurence

Consider a sequence generated by a linear recurrence of the form

Uy = T+ bun_l. )

Asume the initial conditionsug = 0, 3 = 1. Thisisno real restric-
tion, for if welet vg = r and v; = & and for other values v, is given
by (1), then Table 1 suggests, and an induction proves, the relation

n 0 1 2 3 4

u 0 1 a a2+ b ad + 2ab

v r | a |as + br (a2 + b)g t abr (a3 + 2ab 8 + b(a? + b)r

TABLE 1

un = sun + rbu = .
n-1 = V%, ¥ bv(.)un_l

Thus, the behavior of the specialized sequence {un} completely determines
that of the more general sequence {v }. (The Fibonacci Sequence (F}

isthecasea = b = 1).

This recurrence can be written in terms of matrices as follows:

a 1
(un+l’ un) - (un’ un—l)(b 0) :

The matrix

_f{a 1)
R '(b 0
is a generalization of the Q-matrix
{1 1)
Q= (1 0

for the Fibonacci sequence. Similar to the well known relation

Iprofessor Loewen is the previous editor of this journal.
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n Fn-l

for Fibonacci sequences, we have the relationship

bun bun_ 1

which can also be proved rather easily by induction.
2. Senies of Matnices

A series of mxn matrices

Z 4K)

k=0
is said to converge to a matrix A if and only if for every i =1, ..., m
and every J =1, ..., n, the series

S (k)

converges to aij .

Let fix) be any function which has a power series expansion with a
positive radius of convergence, and | et R by any nxn square matrix.
Then we can consider the expression

o

FtRY = 3 akthk (RO = I)
k=0

with t any real number. This is the function f evaluated at the square
matrix ¢tR. |t is defined for every matrix tR for which the series con-
verges. By the Cayley-Hamilton theorem a square matrix satisfies its
own characteristic equation det(R - =I) = 0, or

col +e1X T egk? + Lou v onX’ =0,
where X denotes an nxn matrix. This means that at most n distinct pow-
ers of R are linear independent, and hence the infinite series can be
“written in terms of the matrices I, B, +u.u AL, A theorem of Syl-
vester (Reference 2, page 78) enables us to compute the coefficients of
the polynomial sum of the series. |If the roots of the characteristic
equation are distinct, the sum can be written
n-l,n-1

_ Dol + DytR + ... + Dy 1t" R
D

. k_k
FUR) ~k=20 a 'R
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where D is the Vandermonde determinant of characteristic roots of %R

(ry, ..., r are the characteristic roots of R)
1 1 1
Y'lt Pzt P Pnt
D = (ryt)? (ryt)2 ... (1r=nt)2 ,

.
. .
. .

R N ¢ T ) LR I
Dy is the determinant obtained by replacing the first row of D by
flritdsonn, flr t) , (2)
the determinant D, is obtained by replacing the second row of D by

(2), and so on -- a process reminiscent of Cramer's rule. (This form of
the solution is given in Reference 1, page 243. Reference 2 gives a
solution in another notation and develops means to cover the case with
repeated roots.)

3. An Application

By combining the results of the first two sections using R= (Z 3),

after noting that the characteristic roots of ¢tR are

_ 3 7
try =t & /g+ub’tr2=ta+»2/a +l+b’
then

= 1 1 = p)
D tr t:p2| = t/a? + ub,
b = | FlER1) £lEr)]
0 tr try

- 1 1 |
D, = |f(tr1) P LFLC N C )

If we consider only the upper rnight entry in all the matrices, noting

that | had a zero there, we get after simplifying

i gy = flat) - fnt)
— nn Ya? + ub

. R .
For example, since e converges for all square matrices R (See Ref-

erence 2, page 41), we can use

|R

® n
fly =8 = 3, = .

n=0

Then we have
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® Sty gtra tlat /a2 +ub )/2 _ tla - Ya® + ub )/2
F — = - F = .
ngo B Va? + ub Ya? + ub

If a=Db=1, we get the exponential generating function for the Fibon-

acci sequence
© n P TE/2 81 - /5)/2
MRS i
n=0 ) /s

Ary function having a series expansion could be used for f(z). For

example, using the Bessel function Jg(x) gives a generating function for
even indices (since the series has only even powers)
n,2n  Jg(try) - Joltry)

i D i
n=0 " 22n(n!):2 Ya? + ub

4. Genenalization
The same proceedure may be used to obtain generating functions for

sequences generated by higher order recurrences. Thus the sequence gen-

erated by
Upep = Wy, t bun_l tou, o, Uy = 0, up = 0 u, = 1 (3)
has a recursion matrix
a 1 4]
R = b 0 1
<] 0 0
n

To find a simple expression for R™ consider three sets of initial
conditions giving sequences ¥ as in(3}, v, withwvg = 0, v3 =1, vz =0,
and W withwg =1, wy = 0, wy = 0. In addition |l et Xn have initial con-
ditions xy = r, &) = 8, zo = t. Tabulation of the first few values of

each sequence is shown in Table 2.

n 011 y
u lojo]1 a a? +b
n
e v |0]110 b ab + ¢
n
w l1jol|o <4 ae
n
X, |z ]s|t]at t+bs ter| (a2 + b)t + (ab + e)s + acr

TABLE 2
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is SuggeStS the relations
xr =ut+vs+uwr
n n n >

n
w,=ou, .o,
Yp T bun-l Yy T bun-l tou, o

Each of these can be proved by mathematical induction. Since by defini-

tion
» -
(xn’ n-1° mn—2)R = (‘Tn+1’ Tye mn-l)
and noting that
Uus Ug ul
R = vy vy vy s
w3 Wy W)
then we have
Uus us uy Uy us uz
R? = V3 v 2] ‘R = vy V3 Vo .
w3 Wy wy wy w3 Wy

In general an induction then proves

Ynt2 ¥pel M
Rn = vn+2 vn+l vn =
z')n+2 wn+l Wn
“ye2 un+l “n
bun+l toeu, bun toeu o bun-l toeu, o
cun+l cun cun-—l

The characteristic equation of R may be found by direct computation,
or by noting that by reflecting on the non-principal diagonal we get the
companion matrix for the polynomial (the reflection at most changes the
sign of the determinant) which set equal to zero gives

x3 - ax? = bx - e = 0.
Let r;, ), Py be its roots and set
1 1 1

D = trl tr2 tra s

2 2 2
(#2))2 (41,)2 (tr,)
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1 1 1

Dy, = | try  try, try

etrl et!'z etl"3
(we do not need explicit formulas for Dy and D;.) Then we can obtain an
exponential type generating function by considering thefirst row, third
colum of the matrix series
t = "
e= 3 R L= (Dol + DytR + Dat?RP)/D .

n=1

Since I and R have a 0 in row 1, column 3 and R? has a 1 there we get
o n
Y ou = ¢, .
nn!
n=1

As an example let us look at the casea = b = ¢ = 1. The sequence begins

as shown in Table 3.

TABLE 3

The characteristic equation has one real and two complex roots.

[ = i h th -
Let them be r; = r, rp =p t iqg, r3 = P - 10Q. Then we have the exponen

tial generating function
1 1 1

t? tr  tlp + iq) tlp - iq)

© o etr et(p + 1q) et(p - 1q)
n=1 RN . .
tr tlp + i1q) tlp - iq)

202 t2(p + iq)?  t2(p - iq)?
- (- r)eth sin gt - qept cos qt + qert_
T qllp - #)% + q%)

REFERENCES
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HAPPY NUMBERS

By Daniel P. Wensing
John Canroll Univernsity

Consider the sequence of positive integers 79,130,10,1,1,1, """
This sequence was constructed from 79 where each subsequent term was
the aum of the squares of the digits of the preceding term. The se-
quence of positive integers defined in this manner shall be called the
happi ness sequence. The happiness sequence of the number 2 is: 2, 4,18,
37,58,89,145,42,20,4,16, As one can see, unlike the happiness
sequence of 79 which in a sense terminates at 1, this sequence gets
caught in a repetitive cycle. Since the happiness sequence of 79 very
nicely comes to 1, 79 is called a happy nunber. n the other hand,
since the happiness sequence of 2 enters into a repetitive cycle which
never returns to 1, 2 is called an unhappy nunber.

So far, consideration of a number's happiness has been restricted
to base ten. However, this concept can be expanded to any positive
integer in any arbitrary base b > 1. For example, 47g would be followed
by 101g in the happiness sequence, since u2 + 72 = 101g. The number
1231231, is happy, because it sets up the happiness sequence of:

1231234, 130y, 224, 20,104, 1ly. Interestingly, after a number of random
picks in base four, one gets the impression that alZ nunbers are 'happy
in base four. Before this conjecture can be proved it iS necessary to
understand some theory behind happiness sequences.

Once again restricting analysis to base ten, it can be easily seen
that any five digit number is followed by, at most, a three digit number
in the happiness sequence. This is demonstrated by the fact that 99999
is the five digit number producing the largest subsequent term of 405.
Indeed, the more digits a number has the smaller will be the next term
in the happiness sequence. In light of this, let us generalize for an
n digit (positive) integer in an arbitrary base b > 1. The question is
oosed whether there is some consistent value for n where the next term
in the happiness sequence i s always |l ess than the one preceding it?

The notation €...uxYz, will be used for the n digit number in base b,
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where al | letters other than the base subscript represent digits, and
e = 0.

This question can be stated mathematically as follows: For arbi-
trary base b > 1, does there exist an integer n such that for any =
digit number e...wxya,,

"ttt twhStab? bl + 20 > e2 4 L. t W2t a2 ty2 a2 2
Isolating attention on respective terms from each side of this main
inequality, it can be readily seen that ybl 2 yz, the reason being that
y isa digit permissible in base b, and is consequently restricted by

0<y=<(b-1). Sinceyb z y2 it follows that:

xb 2 X2 and necessarily xb2 z x2,
wh 2 w? and wh3 z w?,
eb > g2 and Ll > e,

This follows necessarily because the left, and already greater side, is
simply multiplied by some positive power of b. Consequently, with the
exception of 2, the respective terms on the left side of the main ine-
quality are greater than their counterpart on the right. Since eb alone
is already greater than the corresponding e?, it suffices to show that

the unused value of (ebn—l - eb) will, for some n, be greater than z2.

As previously mentioned, to exist as a leading digit e must be a per-
missible digit and non-zero. Therefore, to put the tightest restriction

on the proposed inequality ebn_l - eb > 22, we make e as small as
possible, that is, € = 1, and we make 2 as large as possible, that is
z = (b -1). Thus we obtain the proposed inequality:
" -bs b - 12,
which is equivalent to
"l -b>b2- 2+,
s b2 - b+, .
b" > b3 - b2 + b,
b + b2 > b3+ b.
obviously, b + b2 > b3 * b for n = 3, so the above inequalities are

each valid. This proves the following theorem:
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If A is any number in a happiness sequence that is calcu-
lated using base b > 1 and A has three or more digits i n base

b, then the term following A in the sequence i S smaller than A.

Nov the significance of this can be easily realized. 1t can be
reasoned directly from the theorem that any positive integer composed
of more than two digits must eventually produce a one or two digit
number in its happiness sequence. This leads to the fact that there
can be no cycle which does not contain a one or two digit number.
Therefore, all and only cycles in base b are determined by the happi-
ness sequence of the one and two digit numbers. So, by examining only
the one and two digit numbers all cycles will be uncovered. Upon
inspection of base four, all fifteen one and two digit positive integers
are found to be happy numbers. Consequently, there are no cycles in
base four and all positive integers must be happy in base four.

Through further use of this analysis one can easily determine al |
cycles in a given base and discover much about the happiness of all
positive integers in any base. For example, here is a list of all

cycles in the number bases 2 through 10:

2: None (a "happy base")
Base 3 (12), (22), and (2,11)
Base 4: None (a "happy base")
Base 5: (23), (33), (u,31,20)
Base 6. (5,41,25,45,105,42,32,21)
Base 7: (13), (3u), (uu), (83), (2,4,22,11), (16,52,41,23)
Base §: (24), (B4), (4,20), (5,31,12), (15,32)
Base 9: (u5), (55), (58,108,72), (82,75)
Base 10: (u,16,37,58,89,145,42,20)

e
e

The author has generated by computer all the happy numbers from 1

to 100 in bases 2 through 10. For base 10, the happy numbers are:

1,7,10,13,19,23,28,31,32,44,49,68,70,79,82,86,91,94,97,100.




GOLDBACH'S CONJECTURE

By Christopher Scussel!
Michigan State. Univensity

Goldbach's conjecture, that every even number is the sum of two
prime numbers, has remained merely a conjecture for about two hundred
years. This is in keeping with the usual difficulty in relating primes
or sums of primes to any algebraic quantities, such as squares. In
order to prove the conjecture true, of course, one must prove for each
even number the existence of a pair of primes which aum to that number,
and it is toward this goal that most "proofs" are oriented, although
so far unsuccessfully. At this point, a pair of primes has been found
for every even number so tested, so empirically, at least, the con-
jecture is true. In light of this, another attack presents itself:
Since all the even numbers tested have a corresponding prime number
pair, why not investigate just how many such pairs exist for any given
even number? This is the topic of the remainder of this paper.

Some definitions are in order. First, the set of primes, denoted
p, shall be defined to consist of all odd prime numbers, including 1.
Thus,

P =1{1,3,5,7,11,13, ... } .
The set of natural numbers N will be{1,2,3, ... }, while Ne shall
denote the set of even natural numbers, { 2,4,6,8, ... } . The number

of ways in which a given even number n can be represented as the aum of
two primes will be called the Goldbach multiplicity of n, denoted
Gm(n). Thus On is a function from the even natural numbers to the set
¥ U {0} (note that Goldbach's conjecture is true if and only if the
funetion Gm has no zeros on the even natural numbers). Precisely de-

IThe author wishes to thank the Department of Mathematics, Michigan
State University, for its assistance in obtaining computer time for
this study. The computer time was obtained from the Computer Labora-
tory, Michigan State University, which is supported by a grant from
the National Science Foundation.
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fined,

Gm(n)

l{(a,b)'a+b=n;a,beP;asb}, neNe.

For example, 14 = 1.+ 13 =3+ 11 = 7 + 7, so Gm(14) = 3. The Euler
totient function, or $-function, is the number of natural numbers | ess
than and relatively prime to a given natural number n. Note that for
any natural number n, if n = ni
the a. are natural numbers and the p; are distinct numbers from the set

(PU{2})-{1}, then the $-function can be defined as follows:
k
=0 (p, - )T
¢(n) = P; p;
i=1

a; .
p, © is the standard form for n, where
=1 %1

1

Having established all necessary definitions, a quick way to get an
idea of the characteristics of the @& function would be to construct a
graph of it. Such a graph, generated by computer, is shown in Fig. 1.
Although the dn function varies wildly, there is a gradual, but defi-
nite, upward trend. This can be explained using analytic number theory

m
log m

as follows. There are, approximately, primes less than a given

natural number m.  Further, the probability that a natural number m is
prime is approximately I-e:é‘—m * Now, in order to roughly determine

Gm(r), where n € Ne’ consider that there are about
n

2 = n
1og(%) 2 log (g-)

primes |l ess than n/2. For any of these primes, say p, if n -p isalso
prime, then two primes have been found that sum to n, and thus are

counted in calculating Gm(n). Each of these numbers n = p lies in the

interval [n/2,n], thus the probability that any one of these numbers is

prime is approximated by Ttm%m , since (3/4)n is the midpoint of the
og "an/i)

. n .

interval [n/2,n]. So, the 2 Tog(ny2) Primes less than n/2 generate

m numbers n - p, each of which has probability m of

coinci-

. . 7 1
being prime. Thus, there should be about 2 Tog(n/2  log an/%

dences of p and n = p both being prime. However, since all of the




Loy

om(n)
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numbers p are odd, and n is even, it follows that n - p must also be
odd, and knowledge of this fact doubles the probability that eachn - p
is.prime, since it eliminates 2 as a possible divisor. Taking this into
consideration, the estimate of the number of coincidences of p and

n - p being prime changes to
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n . 2
n n
2 1og(5) log(-—u—)

n
log ('2—1) log (%n_)
But the number of such coincidences is just Gm{n), which leads to the
estimating function,
~ N . 1l

otm = log® 1053
Several points of this approximating function have been plotted (as
squares) in Fig. 1, and it seems to agree quite well with the "trend"
of the actual dn function, although of course it cannot follow the wild
gyrations of the dn function.

This behavior having been explained, attention turns to other
features of the graph. Note that the graph seems to be divided into
upper and lower arms. The lower arm seems to be only about half as
high as the higher arm, but it is about twice as dense, in terms of
number of points plotted. Wy should this be? The explanation this
time comes from congruences. Consider the addition of primes modulo 3.
All primes (with the exception of 3) fall into one of the two congru-
ence classes 1 or 2. So, a table of the addition of primes modulo 3
would look like this:

+{1]2
1
2101

The O congruence class occurs cwice as often as either of the other
classes. Thus, assuming the primes are evenly distributed between con-
gruence classes 1 and 2 (roughly the case), choosing two primes at
random and adding them will yield a am congruent to 0 modulo 3 with
probability 1/2. Since all sums of two primes (below 1200) were of
necessity used in constructing Fig. A, it would be expected that this
bias toward the O congruence class would show up there. Indeed, it does.
Since a number in the 0 congruence class is twice as likely to be the
am of two primes than a number which is not in that class, it follows
that if m and n are even naturals which differ only slightly in magni-
tude but m is congruent to O modulo 3 and n is not, then Gu(m) = 2Gm(n),
very approximately. This nicely explains the two arms of Fig. 1. The
conclusion is further substantiated by investigation of the actual
values of the dn function. The author has constructed by computer a
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table for Gm(n) where n ranges over the even integers from 0 to 20,000.

However, noting that a disparity in the addition table of the
primes modulo 3 was responsible for a large portion of the variation
found in the Gm function, it seems natural to consider the consequences
of using moduli other than 3. In general, consider a modulus m e ¥,
m= 1. Taking P modulo m yields exactly ¢(m) infinite congruence
classes of primes: Choose any m' « ¥ such that 0 <m' <mand m' and m
are coprime. Then the set A ={mm * m'|n o ¥} contains infinitely may
primes (Dirichlet). n the other hand, if m' and m are not coprime,
then al |l numbers in the set A have the greatest common divisor of m and
m' as a divisor. Thus the congruence class m' of the primes modulo m
can contain at most one number, namely m' itself, and then only if m'
is prime, and thus a divisor of m. Since the number of primes which
divide the modulus is of necessity quite small with respect to the mod-
ulus, such "singular" classes will not be considered for the remainder
of this discussion.

Having established the existence of ¢(m) classes of primes modulo
m, constructing the corresponding addition table of primes modulo m
reveals a curious thing (we let ny, 7,5 735 «uu , "y (m) denote the ¢(m)
natural numbers coprime to m). Observe that n; is coprime tom if and

t ny{ n2 { n3| """ | ne(m)
ny 2 0
n2
n3
Nomy| © m-2

only if m - n; is coprime tom. This symmetry results in the diagonal
entries of the table being 0, and that zeros can be only on the diago-
nal follows easily. Thus there are ¢(m) entries of 0 and ¢2(m) - ¢(m)
entries which are natural numbers less than m, S0 the "advantage" of

the O congruence class becomes larger asm increases, if ¢(m) remains

approximately constant, and the "advantage" decreases as ¢(m) increases,
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if m stays approximately constant. |n general, then, the "advantage"

given to the 0 congruence class amounts to a factor of ;(t-’ﬂ—) .
m

Nw we apply this to the estimation of Gm(n), where n ¢ Ne' Using
n in the argument above yields a factor of ¢—(nn—) +  This factor cannot

n

be simply concatenated with the approximation &m(») =
log(n/2

1 for the following reason: i i i
Tog(an/s) * ollowing * Asillustrated in Fig. 1, the

present approximation of the Gm function represents an average value of
Gm at any particular point, as it should, in order to be a true approx-
imation. This means that although Gm and its approximation differ con-
siderably, on the whole they both account for about the same number of

ans of primes. Thus, to multiply the approximation by a factor which

is always greater than 1 would shift it up, away from the average value
of the Gm function. Now, if me ¥ and m = 1, then ¢(m) is at most

m-1, thusﬂmﬁ)— > 1 for all natural numbers m except 1. Thus, this

factor cannot simply be concatenated with the present approximation.
This can be taken care of by dividing the factor by its om average
6

'1?2' n o
however, n is aways even (since Gm(n) is not defined otherwise). Now,
from the formula given for the +-functionin the definitions, or from
just a moment of thought, ¢(n) for n odd should be about twice as large
as ¢{m) for m an even number of about the same magnitude. |f m and n

are even and odd natural numbers, respectively, then | et

value. It is known that for any natural n, ¢{(n) US In this case,

am x~ ¢(m) and bn = ¢(n) ,
where a and b are constant for all m and n. Now, the average of a and

b should be?ﬁz , and b should be twice a. gy

2a = b
at+b_ 6
2 T @z
4 : ; 4
and thus a = . Hence, if n isan even natural, ¢(n)= e The

72
" " n . 1
average, or "expected" value of ) forne N isthus —2— = =2 .
¢(n) € (4/v%)n 4
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i n . l 7" "
Now, again for n € Ive, eyl ICID) would have an "expected" value of 1,

but would still vary in accordance with the previously mentioned bias
toward the O congruence class. This leads to the final approximation

presented here:

n 1l ..n__ .
$(n) w2

Gn(n) = .
log(%) log(%?—)

Table 1 compares actual values of the &= function with this final ap-
proximating function, and shows the approximation to be a quite good
one, at least in the range shown.

n 1 n 4
" . log(%) log(%—) ¢(n) m2
10 2 2,43
100 6 5.29
1000 28 22.6
10000 128 125.
100000 810 793.
1000000 5402 5472.

TABLE 1

Although all of this really cannot prove the conjecture, it does
provide an interesting insight into the problem, and into additive
number theory, in general.

Ore of the earliest and most intricate attempts to use higher geom-
etry to solve the problem of duplicating the cube (that is, finding
-a construction for the edge of a cube having twice the volume of a
cube with a given edge) was given by Archytas (ea. 400 B.C.). The
method involves finding a point of intersection of a right eireular
eylinder, a torus of zero diameter, and a right eircular conel

NARCI SSI STI'C NUMBERS

By Victor G. Feser
St. Lowis University

An anonymous mathematician once discovered that 153 is the sm of
the cubes of its digits: 153 = 13 + 53 t 33, Probably soon afterwards,
three similar integers were found: 370, 371, and 407. G. H. Hardy, in
his famous book A Mathematician's Apology, cites these examples with the
comment: "There is nothing in these odd facts which appeals to the mathe-
matician." |In terms of general theory, he is correct; still, in at least
two respects there is something of interest here: first of all, any’
empirical observation serves as a starting point for various generaliza-
tions, and these in turn lead to specializations, so that mawy related
results and ideas may be developed (this is the main thesis of George
Polya's work Mathematics and Plausible Reasoning); and secondly, in con-
sidering problems of this type we have the chance to apply and practice
mary basic techniques of number theory-- and for that matter, of logic.

This article is concerned somewhat with the second aspect-- though
most of the details are left to the reader. Primarily we shall consider
various levels of increasing generality.

0. The curious example of 153 having once been discovered, it becomes
an almost trivial generalization to look for other three-digit integers
equal to the am of the cubes of their digits. Symbolically: let N be
an integer with »n digits, aiaze s a,. Then we are looking for solutions
for:

3
¥=3 (a3 (0.1)
i=1 (e%)
1. A more significant step is to vary the number of digits or the
power. Thus we have* first of all, the problem
7
= 3
N = Z (ai ), (l.l)
=1
and more generally: n
N = Z (aik) 5 (1.2)
1=1

k a positive integer. It can be shown that if k is a non-positive
integer, then N = 1 is the unique and trivial solution.
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"Before we list some solutions for these cases, | et us introduce
some of the terminology found in the literature: An integer of n
digits equal to the sm of the kﬂ”l power of its digits iscalled a
perfect digital invariant (PDI), of order k. |f further n = k (as in
the examples cited above), the integer is called a pluperfect digital
invariant (PPDI). Some general facts are known: The number of PPDI's
isfinite: in faet, no such integer can have more than 59 digits [5].
On the other hand, the number of PDI's may possibly be infinite [6].
All PDI's so far discovered are composite. The integers 0 and 1 are
trivial PDI's for all orders. There are no PDI's (and thus no PPDI's)
of order 2-- thiswill be shown shortly. At least one PPDI exists for
every order from 3 through 10, e.g.: order 6: 548,834; order 10:
4,679,307,774. The search for solutions for orders 6 and up has been
done by computer. A report is to be published soon for orders 11
through 15 [7]; apparently further solutions have been found.

Nw to show that there exist no (non-trivial) solutions for order
2. if N is a one-digit number, we have merely a; = a;2, whence the
trivial solutions. [If N has four digitsy then N 2 1000; but each digit
is < 9, so the sum of the squares of the digits is 4+92 < 324, By in-
duction it obviously follows that there is no solution if N has more
than 4 digits. This leaves only two- and three-digit numbers to con-
sider.

If Nisa two-digit number, let its digit representation be denoted
by 48, for convenience. W want 104 t B = A2 t B2, or A(10 - 4) =
B(B - 1). HereA # 0, and therefore B # 0, B # 1. Nw one of the
factors on the right side is even, the other odd; therefore at least
one factor on the left side is also even, but then obviously both of
them are. Thus 4 divides the left side, so 4 is a divisor of either
B or B - 1 since 2 cannot divide both B and.B - 1. Thus either:

B=4 or 8 or: B-1=4 or 8
B-1=3 or 7 B=5 or 9
B(B - 1) = 12 or 56 B(B -1) = 20 or 72

These four cases are easily handled empirically: no solution exists.

The three-digit case will be presented only partially. The sum of
the three squares is 3-92 < 243, so 100 < N < 243. Since the maimum
for any digit is 9, with a square of 81, the am of the other two

squares must total at least 19. This means that no solution can contain
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any of the following pairs of digits: 00, 01, 02, 03, 04; 11, 12, 13,
14; 22, 23; 33. Immediately we have 155 < N < 199. One may now finish
up empiricallyy or look for further devices: in fact there is an elegant
approach that quickly disposes of the entire three-digit case.

One comment: for higher powers it would seem very difficult to
work out solutionsy but in fact it has been done by hand up through
order 5, so some reasonable methods do exist.

2. Continuing to generalizer we may vary the exponent within the ex-
pression. W may for instance take exponents in arithmetic progression:
7 3
_ ki
N = 1.21 (e, ), (2.1)

where k ¢ £ is a non-negative integer for all Z. If £ = 0, thisis
again (1.2). When £ = 1, many solutions are known, e.g.:

2427 = 21 t 42 ¢ 23 t 7* (ascending), and 332 = 35 + 3% t 23 (descending).
No work seems to have been done for £ > 1.

A more striking possibility is the "self-power":

n a,
N = Z (ai ) (2-2)
i=1
A non-trivial solution exists: 3435 = 33 t 4* ¢t 33 + 55, If we define

0% = 0, then #38,579,088 is also a solution; but if we define 00 = 1,
then there is no solution (as verified by computer).

A further possibility: let the exponents be the digits of the
number in some permutation. To reduce the wearisomely large number of
casesy we might consider only the cyclic permutations:

n{a,.

N = 1:Z=:1(ai(“£))’ (2.3)
where (£ + £) is reduced to modulo #.
3. For the next level of generalization, |et us move away from powers
of the digits to more general functions. One obvious function to try
is the factorial: "

- 1). 3.1

V= le (ai. (3.1)
Besides the trivial 1 and 2, only two solutions exist: 40585, and a
certain three-digit number that we leave to the enjoyment of the reader.
An upper limit for N is readily established, so that a computer search
can be, and has beeny made.
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= Another function to try is summation itself:
a,
n 1
v=2( X j) (3.2)
£=1\ =0

. . o) e
That is to say, if N = 367, for instance, we consider Zj:o Jt ZJ.=0 Jt

7

ZJ.=0 Jd = 6t 21t 28 (which is not 367). In faet, no solution exists.

But continuing in the same vein, consider this idea for higher powers:

N= El(ag(,;k)) (3.3)

For k = 2, two solutions exist: 290 and 291. The analysis of this case
has not been carried any further (for k > 2).
Another function: instead of the am of the kth powers, consider

the kth power of the am of the digits:
n

N =(E “«;) k. @)

=1
This generalization is formally obvious from (1.2), and as in that case,
k must be a positive integer. There exists an impressive list of solu-
tions [3]): from the simple 81 = (8 t 1)2 , 512 = (5t 1t 2)3 , and
2401 = (2t 4t Ot 1)* , through 205,962,976 = 465 and 52,523,350,144 =
347 | all the way up to 20729, The number of solutions mey well be
infinite, since k mey be set arbitrarily large.
Another case occurs in the literature, but seems less interesting

because too may solutions exist:

n
N:b a. . (3.5)
(& =)

(See [1], [2].) A well-known test of divisibility states that N is
divisible by 3 (or 9) if and only if the am of its digits is a multiple
of 3 (or 9); thus any such integer satisfies (3.5). Another infinite
family of solutions consists of integers ending in 0, with the am of
the digits being 10 (or 30). Other families can be developed.
4, Next, we may consider not a summation at all, but rather a pro-
duct defined on the digits of the number:

Bk

N=1 (a. ), (4.1)
L\t

1=
or, "analogous to earlier expressions:

n
IV=(‘H a.)k (4.2)

izl *
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But in fact these two cases are identical! |t would seem that there is
no solution for k = 1. N digit of N can be O (except in the trivial
case that N itself is0). If k = 2, and some digit of N is 5, then
every digit of N is odd. The analysis for this case has not been
carried any further.

Another case to consider is:

N= ;r'll(ai + b) , (4.3)

b an integer. Solutions do exist: for b =2, 35 = (3 t 2)(5 t 2) and

5 = (5t 2)6t2); forb =6, 840 = (8 t 6)(&% t 6)(0 t 6). A question
for the reader: can b be negative?

5. The final generalization we consider needs no detailed explanation:
rather it serves to place the whole discussion in a broader perspective.
If we write N as aydy...a,, then we mean:

n ;
_ n-1
¥ = Z ailO s
1=1

In other words, every integer in positional notation is ipso facto a
"function of its digits"-- though this does not satisfy the definition
of " narcissistic number". But we do have the sweeping generalization:
simply repeat all the previous cases in different bases.

The various functions we have mentioned here certainly do not
exhaust the list of possibilities. Where does one draw the line in ad-

mitting functions to consideration? W suggest that here, as so often
in more serious mathematical worky the criterion is the indefinable one
of elegance; in other words it is merely a matter of esthetics. V¢
have also mentioned here a number of problems which have not been com-
pletely solved, which we shall leave for the enjoyment of our readers.
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ANNOUNCEMENT OF NEW AWARDS BY LOCAL CHAPTERS

PENNSYLVANIA BETA at Bucknell University announces the Professon
John S. Gotd Mathematics Competition, in honor of a most enthusiastic
and dedicated teacher at Bucknell University for nearly 50 years, will
be administered by the Department of Mathematics at Bucknell. The
competition will consist of a two and one-half hour examination on pre-
calculus material, and will be open to all high schools in the counties
of Columbia, Lycoming, Montour, Northumberland, Snyder, and Union. Each
high school may enter a team of three students or individual students
numbering two or less, The mathematics library of the school entering
the highest scoring team will receive a prize of $100, and the five
highest scoring individuals will each receive a copy of the four-volume
set of The World of Mathematics, and the next five individuals will be
awarded honorable mention. The highest scoring individuals from each
school will receive a certificate of recognition.

WEST VIRGINIA ALPHA at West Virginia University plans to present a
P4 Mu Epsilon Awarnd Certificate to each student at West Virginia Univer-
sity who completes the basic three- or four-semester calculus sequence
with a straight "A- average.

EDITORIAL NOTE

Local chapters are urged to send us the names of their awards win-
ners in order for usto publish them for further honor and recognition
to those students who are achieving excellence in mathematics at some

level.

THE PARTITION FUNCTION
AND CONGRUENCES

By Nicholfas U. Migliozzil
Univernsity of Connecticut

A function which has many interesting properties is the partition
function p(n). It is defined as the number of unrestricted partitions
of n, where two partitions are equal if they differ only in the order of
their summands. For example,

b =4 =3+1=2+2=2+1+1=1+1+1+1.

Thus, p(#) = 5. (For convenience, we define p(0) = 1.)

1t can be shown that p(n) is the coefficient of % in the infinite
product f(z)"1=(1 - x)"1(1 - x2)~1..-, This can be seen using the fact,
obtained from th(? binomial expansion, that (1 - .1::")'1 may be written in
the form ijo 27", Thus

Fflz)™t = m -z

n=1l

= 0l (l+:zn+:c2n+x3n+---)

n=1

= (L+al v+ )1t ratt o)L a3 rab o),
Nov if we expand this product formally, to a term 2" each 1/(1 - z*) must
contribute one and only one factor; and if /% contributes as a factor
to some z* it is because J of the 4's are summands in a partition of n,
and conversely, each partitiqn of » corresponds to a unique set of fac-
tors, one from each 1/(1 - X*) whose product isa®. That is, we have the
following scheme:

Qtal tx?t - )Nlta?taxtt ---)(ltz!tz!t*.-|**-

number of 1's number of 2's number of 3's
contributed contributed contributed

M: Suppose we desire to find p(5). |f we analyze the con-
tributing terms and the corresponding partitions we find (with 1's count-
ing as zero terms in each case):

Iwritten while the author was an undergraduate at Rutgers University.
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(1) 1elel+1ex5 or 5 (2) xelelez**lor 1+ 4
‘3) Leg2ez3+1+lor2t3 (4) 22-1ex3:llor1+1+3
(5) xextelelelor1t+2t2 (6) @3sxg2+lelelorl+1+1+2

(7) &5+1elelelor1t1+1+1
Thus p(5) = 7. Thus we have shown in a formal sense that

i pn)a” = I (1 -2l
n=0 n=1l
Although the above seems to be a perfect means of obtaining p(n),
one finds that for large values of n the process is an extremely lengthy
one. Howevery there is a theorem which is obtained using one of the
following famous indentities.
(1) Euler's ldentity:
f@ s M- = 5 kD2, |z <1
k=1 k=0

(2) Jacobi's Identity:

F@)d= 0 (-9 = kz 1) (2k + 1)kEF/2, lz] <1
k=1 =0

The proofs of the above may be found in [3]. V& have:

Theorem 1. 1f n 2 1 then
p(n) =p(n = 1) t p(n - 2) =~ p(n - 5) -pn-7)+pn-12)
+p(n -15) - ...

= X (-1 p(n - Haj? £ ), 3
3=0

where thé am extends over all positive integers for which the arguments
of the partition function are non-negative.

Proof: Using Euler's identify we have for |z| <1
-]

(-1)927 BIFY/2 3 g = playfa)-? = 1.
_ 420 k=0
That -is,

(1-z-x2+a5+a” -212 -215+ )kz p(k)xk=l,
=0

or

Z(p(n) -pn-1) -pn-2)+pln-5)+ ceygt =1,

n=0
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Thus
p(n) —pn-1) -p(n-2)*+pn-5)+tpn-17)--.--:0,
or
piny = pn - 1) tpn-2)-pn-5 -prn-7)+ -
The above theorem serves as an algorithm, and using it we present a

computer program which generates p(n) for 1 < n < 100:

*NAVE P(N)
D MENSI ON IP(100)
10=5
D22 N= 1100
IP(N) =
pD3J=1,50
[IN = 0.5%(3%(g**2) - )
1PN} = P00 (e +
15 IP(N) = IP(N) + ((-1)**(J + 1
® 102 N
10L=N-1JN
IP(N) = IP(N) + ((=1)%*(d+1))*IP(L)
[P = 0.5%(3%(J**2) + J)
1;((:)« - |J|(3))2,16,n
16 IP(N) = IP(N) + ((-1)**{(3 + 1
AL S ({-1)%*( )
"M M=N=1JP
IP(N) = IP(N) + ((-1)**(J+1))*IP(M)
18 IF (J-50) 3,79,79
3 1 NUE
2 VR TE (10,5) N,IP(N)
5 FCRVAT (5X,15,10%,122)
22 QONTI NE
79 CAL BAT
BD

Next we discuss congruences of the partition function. The most up-to-
date result concerning congruences of the partition function is the
following theorem (we remind the reader that [x] denotes the greatest

integer n such that n < x):

Theonem 2:

(a) If 2m : 1 (mod 5™), then p(m) = O (mod 5™)

(b) If 24m = 1 (mod 77), then p(m) = 0 (mod 7[(n+2)/2])

(¢) If 24m = 1 (mod 117), then p(m) = 0O (mod 11%)
(The proofs of (a) and (b) are found in [8], and a proof of (e} is
found in [1].)
It is important to note that in the above theorem, m and n are
positive integers. Also note that withn = 1 in each part of the above
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theorem one obtains the three famous congruences of Ramanujan, namely:

(1) p(sz + 4) = 0 (mod 5)

(2) p(7z2 *+ 5) = 0 (mod 7)

(3) p(llz +6) = 0 (mod 11)
For example, if n = A in Theorem 2(a) we have 24m = 1 (mod 5) implies
m = 4 (mod 5), which impliesm = 53 + 4, which implies p(5z t 4) = 0

{mod 5). O course these may be proved directly. Using Euler's
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taking n = b(3b + 1)/2 in (1), since the left-hand side contains an odd

number of odd terms.

Ore can devote a lifetime studying the properties of p(n), and the

years will have been spent in a fascinating area, where an infinite

number of questions remain to be answered.
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(b) p(168544110546799n - 6950975499605) = O (mod 13%)
No congruences involving only the partition function are known for
primes 17, 19, or higher.

Likewise for smaller primes, namely 2 and 3, no congruences in-

volving only the partition function are known. |n fact as of this date, - < 0
other than checking a table of p(n), there is no way of knowing whether

p(n) is even or odd for a given n. However in [5] there is the ! WILL YOUR CHAPTER BE REPRESENTED |N MISSOULA?

following: ! '

Theonem 3: p(n) is even and odd infinitely often.
Proof: W have from Theorem 14,
(1) p(n) - pn - 1) —pin-2) tpn~-5)*+ ... =0,

It istime to be making plans to send an undergraduate delegate
l or speaker from your chapter to attend the annual meeting of Pi

Mu Epsilon at the University of Montana, Missoula, Montana

. = during August 20-22, 1973. Each speaker who presents a paper -

where the general term is given by (-1)p[n - %R(Sk * 1], Now suppose I ) g -g !:

R 1 will receive travel funds of up to $300, and each delegate, up ‘

that“p(n) 5 0 (mod 2) for all # 2 &  With n = 7a(3a - 1), (1) becomes to 150. Chapters desiring to participate must apply for these %

1 1 funds at the National Office. i
pla(a - 1)1 - p[5a(3a -1)-11-~ -+- tp(2a - 1) ¥ p(0) = 0,

and since p(0) = 1 we have a contradiction (modulo 2). [ jkewise,

suppose p(n) £ 1 (mod 2) for all n 2 b. One obtains a contradiction by




A GENERAL TEST FOR DIVISIBILITY

Robb T. Koether
University of Richmond

A topic of much interest in number theory is that of divisibility.
Under this topic there has been much research done to find methods to
test the divisibility of one number by another. | et usrecall some of
the better-known methods of testing for divisibility by 3, 9, 7, 13, 11,
and 17.

To test a number for divisibility by 3, find the sm of the digits
of the number. If this sum is divisible by 3, then so is the original
number, and conversely.

A test for divisibility by 9 is similar except that the sum of the
digits is tested for divisibility by 9. The original number is divis-
ible by 9 if and only if this sm is divisible by 9.

To find whether a number is divisible by 7, multiply the units
digit by 2 and subtract this product from the number that results from
deleting the units digit from the given number. The original number is
divisible by 7 if and only if this difference is divisible by 7.

To test for divisibility by 13, multiply the units digit by 4 and
add this product to the number obtained by deleting the units digit
from the given number. (This process may be repeated until a 2-digit
aumber results.) |If theresult isdivisible by 13, then so isthe
original number, and conversely.

To test for divisibility by 11, alternately add and subtract the
digits of the number. The number is divisible by 11 if and only if the
result isdivisible by 11.

To test for divisibility by 17, multiply the units digit of the
number by 51 and subtract this product from the number. The number is

-divisible by 17 if and only if this difference is divisible by 17.
" The general test for divisibility developed below includes each of
the above tests as special cases. First, a lemma from number theory

will be stated.
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Lemma: Let a and b be positive integers such that (a,b} = 1. Then

there exist integers » and & such that ar + bs = 1.

The general test is contained in the following result:

Theonem: Let n = 10a t b be a positive integer, with 0s b £ 9;
let d be a positive integer such that (d,10) = 1; let integers r and &
satisfy the equation dr + 10s = 1. Then d divides n if and only if d
divides (a t bs).

'Proof: Suppose d|n. Then d|(10a t b); hence there exists an inte-
ger t such that dt = 10a * b = 10a * b(dr *+ 108) = Ida *+ bdp + 10bs.
Then d(t - br) = 10a *+ 10bs = 10(a * bs); hence d|10(a + bg). But it
was assumed that (d,10) = A, and it follows that d|(a t be).

Nw suppose d|(a + bg). Then there exists an integer k such that

dk = a + bs. It follows that d(10k) = 10a + 10ba. Then d(10k t+ br) =
10a + 10be + dbr = 10a + b(10s + dr) = 10a + b = n. Hence d|n.

The second part of the proof tells us that to test n for divisibil-

ity by d, we find values for » and 8 such that dr + 108 = 1, multiply b
(the last digit of n) by ¢ and add this to a (the number that results
from deleting the units digit from #n). 1f a t bs is divisible by d,
then we know that »n is divisible by d. The first part of the proof
tells us that if d does not divide a * bs, then d does not divide n.

For example, | et us test 1219 for divisibility by 23. Ve find that
(23)(-3) *+ (10)(7) = L thereforer = -3 and 8 = 7. (Alsod = 23, a = 121,
and» = 9.) Nwatps =121t 9(7) = 184. To test 184 for divisibil-
ity by 23, we test 18 * u(7) = 46 for divisibility by 23. But 23 |u6;
therefore 23|184, and hence 23|1219.

In the theorem it was stated that (d,10) = 1. This eliminates all
multiples of 2 and 5. But thisreally makes the method no |ess general
because divisibility by 2 and 5 is easily checked and then any such
factors can be deleted from d, after which the method is applicable.

Because d iS relatively prime to 10, the last digit of d must be 4,
3, 7, or 9. Table I shows the four possible forms of d, the correspond-
ing forms of the equation dr *+ 10s = 1, where r and S have the smallest
absolute value of all possible » and &, and the corresponding forms of
8.

Table 2 contains values of d and corresponding values of s. One

can see that the values of & form an arithmetic progression.
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d dr * 108 = 1 8
106+ (106 t 1) (1) + (10) (-¢) = -t
10t +3 (ot +3) (-3) t (10) (3t +1) =12 3t+a
10t + 7 (Lot + 7) (3) t (10) (-3¢ - 2) =1 -3t -2
lot + 9 (1ot +9) (-1) + (10) (¢t +1) =1 t+ 1
TABLE 1
dl s | d| s d| s
10 " 7 2 911
1{-2 |13} 4 |17{-5 |19 | 2
21|-2 | 231 7 271 -8 | 29 | 3
31|-3 | 33]10 | 37]-11 |39 | 4

TABLE 2

It is easily shown that this test proves each of the specific
tests cited at the beginning of this paper.

First, if d = 3, the units digit, b, of n = 10a T b is multiplied
by 1 and added to a. After this is repeated several times, the result
isthe aam of the digits, which is then tested for divisibility by 3.

If a"1' iscarried in any of these additions, a "10" is being sub-

tracted and a "1" is being added, which is equivalent to subtracting 9.

Since 3 divides 9, the result is not affected.

When testing for divisibility by 9, the value of 8 isalso 1, so
again the sum of the digits is found. Also as before, if 1 is carried
in the addition, it results in 9 being subtracted from the sum, which
will not affect the result.

Using this test for A1, the final digit, b, ismultiplied by -1
and:added toa. After this process isrepeated several times the
result is the same as that of alternately adding and subtracting the
digits of the original number. In the case where one must "borrow"
during the subtraction, 10 is added to the final digit of the differ-
ence and 1 is subtracted from the next-to-last digit. But on the next

subtraction, the "10" which was added is now subtracted, resulting in
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11 being subtracted, which will not affect the result.

W can see from the values of & when d equals 7 or 13 that these
two methods are identical to the tests for 7 and 13 shown earlier.

In the test shown previously for 17, after subtracting, the last
digit of the difference will always be zero, which can then be ignored.
The only part to be concerned with then was the product of 5 and the
units digit, which was subtracted from all but the units digit. With
this new method, when d = 17, then 8 = -5. So after multiplying the
last digit by -5 and adding that to the number represented by the re-
maining digits, the same result is obtained as when multiplying the
units digit by 51 and subtracting from the original number.

To illustrate the compact form in which a complete test can be
displayed, let us test 22306426 for divisibility by 89. Note that
89 = 10(8) 1 9, hencet = 8 and 8 = 8+ 1= 9. The computation can
be arranged as follows:

22306426
54
2230696
54
223123

Now 89|83, therefore 89]22306426.

This general test for divisibility can be extended to numbers in
any base. In base b, the divisor d will take the form b¢ + n where
Osnsb-1L Theequationdr+103=1becomesdr+bs=:l_ A

general solution for » and 8 in this equation is:

polobk =(bk- 1)t e
n n

where k is chosen so that » and 8 are integers. It iS now the value of
(ﬁé;_l) t + k that is used to perform the divisibility test.

The proof of the theorem for base b is identical to that for base 10,
with the restriction that (d, b) = 1.
As an illustration, consider the test of (4611); for divisibility
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by (24)7. In thiscase, b =7, t = 2, n = u; thus
THE PERMUTATION GAME

Tk - 1
={——=}2 + k.
( = ) By Thomas Fournelle
A suitable value for kK is 3, giving g a value of 13, which is repre- University of, TLLinoist
sented as (16)7. W now perform the test in base 7, with all arithme-
tic being done, of course, in base 7. The permutation game (for lack of a better name) generally con-
4611 sists of 15 numbered squares confined in a larger square just large
.5_% enough to hold 16 squares. In the diagram (see Fig. 1), "X" denotes
0 the blank square. The 15 squares are free to move up and down, right
51
16
24

Ard (24)7](24)7, therefore (24)4](4611)4.

9 | 10| 11¢ 12

13| 14] 15| X

FIGURE 1

or left, but they can only be moved when the blank square is adjacent
NEW KEY-PINS AVAILABLE and cannot be moved outside of the confining square. When playing this
children's game the question naturally arises as to the types of permu-

Because of increased costs, the Balfour Compay has tations it is possible to obtain with the simple moves which are

recently produced a new key-pin for Pi M1 Epsilon allowed. 2

which is identical in appearance to the old one, but W use the standard notation for permutations-"’, e.g., P = (al,az,

contains less gold. The National Office is now dis- s eee s

,an) is the cyclic permutation such that (a1)P = a , (az)P = a3

tributing these pins at the special price of $5.00 (an)P = a. A cyclic permutation of the form P = (ai’a2) is called a

per pin, post paid to anywhere in the United States. transposition. Any permutation of a finite number of elements can be

Be sure to indicate the Chapter into which you were decomposed into a product of transpositions, and the number of transpo-

initiated and the approximate date of your initiation. sitions in any such decomposition is congruent modulo 2 to the number of

Gold pins are still available from our authorized

jeweler, L. G. Balfour Company, but the new gold fin- IThis article was written while the author was an undergraduate at St.

- ish pins are available only from the national office: Louis University.

ZFor another explanation of the permutation game see: Introduction to

Pi Mu Epsilon, Inc.
Contemporary Algebra, Marvin L. Tomber (Prentice-Hall, pp 350 ff).

601 ElIm Avenue, Room 423
University of Oklahoma
Norman, Oklahoma 73069

nr.——_—lm%‘—lmElmEEEmEaEaEaEm
o=l it il e——la ==}

3For more on the theory of permutations see: Herstein's Topics in
Algebra, or any other introductory algebra text.




426

transpositions in any other decomposition. Thus, we define a permuta-
tion to be even if the number of transpositions in any decomposition is
even. Otherwise, the permutation is said to be odd. W shall study
only those permutations which leave the blank square invariant.

Proposition 1: Any permutation obtainable in the permutation game
(which leaves the blank square invariant) is even.

Proof: W first note that to obtain a permutation we move some
square into the place of the blank square, thereby moving the blank
square. Then we move another square into the new position of the blank
square, moving the blank square again, and so on. Thus the blank square
is tracing a path and we have only to study these paths. Also, the
blank square eventually comes to rest at its initial position, since we
are considering permutations which leave it invariant.

W study first "simple closed paths" of the blank square, that is,
those paths which have no self-intersections until the blank square
reaches its original position. For every move to the left, there must
be one to the right. For every move up, there must be a move down, and
so on. Thus, the blank square moves an even number of times. Let us
call the first square in the path of the blank square a , the second az‘
and so on, up to the last square in the path, which we call an (see Fig.
2). As the blank square moves around its path, a moves to the initial

FI GURE 2

position of the blank square, a2 moves to the initial position of a;,
and so on, until a, moves to the initial position of L Then the
blank square is in the initial position of an and has one more move to
make. It returnsto its initial position and moves a:L to the initial

position of a . Thus, the permutation obtained is
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(al,anaan_l, ,as,az) = (al,an)(al,an_l) (al,aa)(al,az).
The blank square moves an even number of times, but it moves a twice.
Since each move of the blank square affects one square, there must be an
odd number of such squares, so n is odd. Therefore, the permutation ob-
tained must be even, as can be seen from the above decomposition into
transpositions.

V¢ now use induction on the number of self-intersections made by
the path of the blank square itself. W have dealt with the casen = 0.
Let P be a permutation obtained from a path of the blank square with n
self-intersections. Let a be the square at which the path makes its
first self-intersection (see Fig. 3). W decompose P into the product

of permutations RST, where R is the permutation obtained by moving the

S
T
- (et | e
\
R
L x

FI GURE 3

blank square along the path of P until it reaches the first self-inter-
section a, § is the permutation obtained by continuing the movement of
the blank square along the path of P until it again reaches a, and T is
the permutation which completes the path of the blank square, as does P.
R and § must permute distinct squares on the board. For if they do not,
the paths of R and § must intersect. But they intersect only at a, since
this isthe first self-intersection of the entire path, and the path of
S begins at a and ends at a with no self-intersections. Therefore, the
only square which both R and $ can move is a, but as can be seen from
Fig. 3, S does not move a at all. Therefore, RS = SR and hence

P = RST = SRT = S(RT).
S is an even permutation by the case for n = 0. RI iseven by the in-
duction hypothesis since it has fewer than n self-intersections. Since

the product of even permutations is even, P is even, ending the proof.




We see at once that we cannot obtain the permutation of just two
squares on the board, since this is an odd permutation. Also, starting
with Fig. 1, we cannot obtain the permutation of Fig. 4, since this per-
mutation is

P = (1,15)(2,14)(8,13)(%,12)(5,11)(6,10)(7,9),
which is odd.

15 |14+ 113 | 12

11|10 9 8

FIGURE 4

Proposition 2: Ary even permutation (leaving the blank square in-
variant) is obtainable.

Proof: Any distinct squares a, b, and c arranged in the configura-
tion of Fig. 5 can be cyclically permuted as indicated. By returning to

bJﬁc
Y | —

a

o

its original position along the same path by which it reached a, b, and

FIGURE 5

C, the blank square affects only 1, b, and ¢ and it permutes these cycli-
cally. If a, b, and ¢ are not in the configuration of Fig. 5, we can
always put them in such a config-'-ation by a permutation P (which also
may—.affect many other squares on the board). We may then apply a cyclic
permutation ¢ to a, b, and C in their new positions. It follows that
PCP™1 cyclically permutes &, b, and ¢ and leaves the rest of the board
invariant. Thus, for any distinct a, b, and ¢ we may obtain the cyclic
permutation (a,b,e) = (a,b)(a,e). But (a,b)(e,d) = (a,b)(a,e)la,e)(e,d) =
(a,b)(a,e)e,a)le.,d) = (a,b,e)(e,a,d). Thus, for distinct a, b, c, and
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d we may obtain the permutations (a,b)(a,e) and (a,b)(e,d). If Pisany
even permutation we may decompose it into an even number of transposi-
tions. The first two of these are of the form (a,b){(a,e) or (a,b)(e,d)
and thus are obtainable, and similarly for the rest of the pairs in the
decomposition. Therefore, P is the product of obtainable permutations
and is obtainable, proving the theorem.

Propositions 1 and 2 give us the following

Corollany: A permutation leaving the blank square invariant is ob-

tainable iff it is even.

COUNTEREXAMPLE TO "THEOREM" PUBLISHED IN LAST ISSUE

Robert W. Quackenbush of the University of Monitoba has pointed
out that the main result of the note "Basis for an Algebraic System" by
J. E. Cain, Jr. (this Journal, Vol. 5, No. 7, 1972, pp. 319-320) is in
error. The following is a counter-example:

Let A be the positive integers and let F = { f}, where
f is of degree 2 and is defined by
flmyn) =m + 1, ifmzn,
=1, otherwise.
It is easily seen that the algebra (4;F) is not fi-
nitely generated. However, (4;F) is generated by
any infinite subset, and as such, cannot have a
minimal generating set (basis).
The flaw in the argument as originally presented occurs when it is a
assumed that a maximal independent subset generates the entire algebra.




Magic Squares Within Magic Squares

by Joseph M. Hoser
California State. Univensity alb San Diego

In [1] Strum exhibits two five by five magic squares which contain
three by three magic squares. In Fig. 1 below we have exhibited a seven
by seven magic square that contains within it a five by five magic
square and a three by three square as exhibited by Strum in [1].

Since all entries are of the formn + (ge * p)b and n and b are
distinct integers it is sufficient to have e 2 6 to insure that all
entries be distinct. |f one uses large enough integers for g and p,
this author i s of the opinion that any (2m + 1) by (2m + 1) magic square
can be obtained that will have the property of containing within it

successive magic squares.

n-{4e-2)b|n-(4c+l)b| n-(3c-1)b| n-(3c+2)b| n+(5¢-3)b| n+(5¢+1)b| n+(4e+2)b
n-5eb n-(2e-1)b| n-2¢b n-(2c¢+2)b| ntich n+(2e+1)b| n+Scb

n+(5e+2)b|n-3cb n-b n-(e-1)b (n+eh n+3ch n-(5c+2)b
n+(4e-3)b| n+(3e+1)b| nt(e+l)d n n-(e+l)b | n-(3e+1)b| n-(4e-3)b
n-(e-2)b |n+{4e-1)b| n-ch n+(e-1)b | n+b n-(4e-1)b| n+(e-2)b
n+(5e-1)b| n-(2e+1)b| nt2ch n+(2c+2)b| n-4eb n+(2¢-1)b| n-(5e-1)b
n-(4e+2)b| n+{U4e+l )b n+(3e-1)b| n+(3c+2)b| n-(5c-3)b| n-(5¢+1)b| n+(4e-2)b

FIGURE 1

REFERENCES

1. Strum, Robert C., Some Comments on "A Class of Five by Five Magic
Squares, Pi Mu Epsilon Journal, 5, No. 6, 1972, pp. 279-280,

431

BRIEF REVIEW OF TWO N&W JOURNALS OF GEOMETRY

Geometriae Dedicata. D. Reidel Publishing Company, Holland. Vol.
1, No. 1, November 1972 (published yearly). $40.63 per volume to insti-

tutions, $24.38 per volume to individuals. (Editorial office: H.

Freudenthal, Mathematisch Instituut der Rijksumiversiteit Utrecht,
Utrecht, Budapestlaan - The Netherlands.) As its name implies, this
journal is dedicated to geometry, a perhaps obsolete subdivision of
mathematical research in the classical sense of the term. However, the
following topics appear to be among those which the editors are pre-
sently identifying as belonging to this area, judging from the articles
to be published in the first two issues: Classical Geometry (such as
Projective Geometry, and Euclidean and Noneuclidean Geometry), Convex-
ity, Algebraic Geometry, Finite Geometry, Transformation Groups, Lie
Theory, Tesselation Theory, and Axiomatic Geometry (or Foundations).
Apparently, topics in topology will be avoided -- even Geometric
Topology (general curve theory, manifold theory, and problems pertaining
to the topology of E‘n, n 2 2), as are topics in Graph Theory, although
this point i s not made clear in the editorial policy statement. The
only statement which attempts to identify those areas acceptable to
Dedicata reads "... most people and, in particular, geometers will
agree that there still exists something that rightly may be termed ge-
ometry, if no longer as a well defined domain then certainly as a spe-
cific attitude of the creative mind, which distinguishes itself from
other attitudes in mathematical research."

Obviously, as far as Dedicata is concerned, the final decision as
to what constitutes a topic in geometry and what does not rests with the
very distinguished members of the editorial board, which includes such
renowned geometers as Hans Freudenthal (chairman), A. Barlotti, H. S. M.
Coxeter, Branko Grunbaum, G. Hajos, D. G. Higman, D. R. Hughes, A. V.
Pogorelov, G. C. Shephard, J. Tits, and K. Yano.

Journal of Geometry. Birkhauser Verlag, Basel and Stuttgart. Vol.

1, No. 1. DM 35 pervolume or DM 25 per single copy. (Editorial office:
Universitat Bochum, Mathematisches Institut, 463 Bochum, Germany.)




Similar tO Geometriae Dedicata in purpose and coverage, this journal is
devoted to the publication of current developments in geometry, " partic-
ularly of recent results in Foundations of Geometry, Geometric Algebra,
Finite Geometries, Combinatorial Geometry, and special geometries.
Although Geometry is a discipline dominating the interest and efforts of
a great many mathematicians throughout the world, to date there has been
no journal devoted specifically to these topics. It is hoped that the
'Journal of Geometry' will help to fill the gap” (from the editorial
policy statement). The editorial board consists of the following prom-
inent geometers: R. Artzy, M. Barner, A. Barlotti, W. Benz, R. C. Bose,
H. Crapo, H. Karzel, R. Lingenberg, R. Rado, and G. Tallini.

MOVI NG??
BE SRE TO LET THE JOURNAL KNOW
Send your name, old address with zip code
and new address with zip code to:

Pi Mu Epsilon Journal

601 Elm Avenue, Room 423
The University of Oklahoma
Norman, Oklahoma 73069

PROBLEM DEPARTMENT

Edited by Leon Bankof§
Los Angeles, California

This department welcomes problems believed to be new and, as a
rule, demanding no greater ability in problem solving than that of
the average member of the Fraternity. Occasionally we shall publigh
problems that should challenge the ability of the advanced under-
graduate or candidate for the Master's Degree. Old problems charac-
terized by novel and elegant methods of solution are also acceptable.
Proposals should be accompanied by solutions, if available, and by
any information that wilZ assist the editor. Contributors of pro-
posals and solutions are requested to enclose a self-addressed post-
card to -expedite acknowledgement.

Solutions should be submitted on separate sheets containing the
nare and address of the solver and should be mailed before the end
of November 7973.

Address all ecommunications concerning problems to Dr. Leon
Bankoff, 6360 Wilshire Boulevard, Los Angeles, California 90048.

Probl ems for Solution

292.  Proposed by Jack Ganfunkel, Forest Hiffs High School,
Feushing, NV York.

| f perpendiculars are constructed at the points of tangency of the
incirele of a triangle and extended outward to equal lengths, then the
join of their endpoints form a triangle perspective with the given
triangle.

293. Proposed by LW Kowarski, Morgan State College, Baltimone,
Maryland.
Prove that N = 53303 + 14353 js divisible by 78.

294. Proposed by Charnles W. Tnigg, San Diego, California.
Show that ABCD is a square (Fig. 1).




point and the other touching the second road at a given point (Fig., 2),

1) Determine the radius of the equal circles synthetically, tri-

P # S gonometrically or analytically.
D 2) |If the figure lends itself to an Euclidean construction, how
would one go about it?
E 3 ==
208. Proposed by Paul Erdos, Budapest, Hungary and Jan Mycielski,
Univensity of, Colonado, Boulden, Colorado
B ) Prove that
%) tt R 1):;5:1:-;”%.(/”_.,.3/;4‘ +"/;1'):1
2) 1im 1 (nl/log 3 + nl/log " 4 nl/lOg n)= é
C naw T
FI GURE 1 . . . .
299. Proposed by David L. Silveaman, West lob Angeles, California.
205.  Proposed by Muwray S. Klamkin, Fond Scientific Labonatony Oh the back of an envelope you see the results of an interrupted

Dearborn, Michigan game by two players whom you know to be tic-tac-toe experts. It is
y .

Determine an equation of a regular dodecagon (the extended sides generally recognized that the expert never puts himself into a poten-

are not to be included). tially losing position and always wins if his opponent gives him the

opportunity. There are 2 X's and 2 ¢0's on the diagram. It is impos-
296. Proposed by Solomon W. Gofomb, Univenrsity of Southern

sible to deduce whose move it is. Neglecting symmetry, what is the
California, Department of, ELectrical Engineering.

position?
1) Combine 2, 5, and 6 to make four 2's.
2) Combine 2, 5, and 6 to make four 4's. 300. Proposed by the. Problem Editor.
3) Combine 2, 5, and 6 to make four 5's. It can be shown with difficulty that if the opposite angles of a
4) Combine 2, 5, and 6 to make four 7's skew quadrilateral are equal in pairs, the opposite sides are also equal
5) Combine 1, 5, and 6 to make four 7's in pairs. (The reward of instant immortality i s offered the solvir who

can prove this without difficulty). |If two opposite sides of a skew

297.  Proposed by Roger E. Kuehf, Kansas City, Missourdi. quadrilateral are equal and the other two unequal, is it possible to

A traffic engineer is confronted with the problem of connecting have one pair of opposite angles equal?

two non-parallel straight roads by an S-shaped curve formed by arcs of
301. Proposed by Neal Jacobs, Bronx, New Yoal.

two equal tangent circles, one tangent to the first road at a selected
One-fifteenth can be expressed in "decimals" in many ways, for

example, as .0421 in base eight, or as .013 in base five. Show that in

any base n, the "decimal" for one-fifteenth will have no more than four

recurring digits.

302. Proposed by David L. Silvewman, West Los Angeles, California
and Affned E. Neuman, Mu Alpha Delta Fratennity, New York.

A tapestry is hung on a wall so that its upper edge is a units and

FI GURE 2 its lower edge b units above the observer's eye-level. Show that in
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order to obtain the most favorable view the observer should stand at a
distance Yab from the wall.

Solutions

266. [Fall 1971] Proposed by Frank P. Miller, Pennsylvania State
Univernsity.
Prove or disprove that the only integral solution of the equation
r2 + 382 + 4t2 isthetrivial one, » = 8 = t.
Solution by Charles W. Trnigg, San Diego, California.
Only positive integral solutions need be sought. The given equa-
tion may be written in the form
(2t + r)(2t - r) = 382 = mn,
where m > n, Then matching factors we have
2t+r=m and 2t -r:=n,
whereupon t = (m + n)/4% and » = (m - n)/2. Thus, for a solution in
integers to exist, m and n (the factors of 382) must have the same
parity.
Ifm=3and n = s2, then &

1=t=0r.

If m=3sandn = 8, then s t:=nr.

Non-trivial solutions may be obtained from the other pairings,
(m, n) = (82, 3) and (3g2, 1). Consider the four forms that s may
have: u4k + 1, 4wk + 3, vk + 2, or uk, where k > 0.

Case Ia. & =4k + 1, m= (4 +1)2, n = 3.
Then t = uk2 + 2k + 1, » = 8kZ + 4k - 1.
Case Ib. & = 4k + 1, m = 3(sk + 1)2, n = 1.
Then t = 12k2 + 6k + 1, r = 2uk? + 12k +1,
Case IIa. @ = 4k + 3, m = (uk + 3)2, n = 3.
Then t = 4k2 + 6k + 3, r = 8k? + 12k + 3.
Case IIb. & = bk + 3, m = 3(uk + 3)2, n = 1.
Then t = 12k2 + 18k + 7, r = 24k% + 36k = 13.
- Indeed, if k=0,8 =3, ¢t=7,r=13.
Case ITTa. & = Uk + 2, m=2(2k + 1)2, n = 6.
Thent = 2(k2 + k + 1), r = 2(2k2 + 2k - 1).
Case IIIb. & = 4k + 2, m= 6(2k + 1)2, n = 2,
Then t = 2(3k? + 3k + 1), r = 2(6k? + 6k + 1).
Case IVa. & = 4k, m = 4k2, n = 12.
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Then ¢ = k2 + 3, r = 2(k% - 3).
Case IVb. & = 4k, m = 12k?, n = 4.
Then t = 3k2 + 1, r = 2(3k2 - 1).
Indeed, if k=1, &8 = 4=1=2r, atrivial solution.
Thus there is at least one non-trivial integral solution of r? +
3g2 = ut2 for every integer value of s except *1, 2, and 4. [Any
combination of the positive and negative signs in the solutions
(ta, *a, *a) is considered to be a trivial solution]. |If & = 0, r=1%2¢.
These do not comprise all of the integral solutions of the given
equation. |f 8 is composite, factorization of 382 intomand n in
other ways is possible. The more factors s has, the more solutions

are possible. Examples from each of the four cases follow:

Case |. 8=k +1=21=37),m=49, n=27 t=19, r =11
Case II. s =4k + 3 =15 = 3(5), m= 27, n = 25, t =13, r = 1
Case III. 8 = 4k + 2 = 30 = 2(3)(5), m = 54, n = 50, t = 26, r = 2.
Case IV. & = 4k = 60 = 4(3)(5), m = 108, n = 100, ¢t = 52, r = 4:

m=: 300, n=236,1=84 r =132,
Also solved by JEANETTE BICKLEY, St. Louis Missouri; K. BURKE,
Seton Hall Univensity, South Orange, N. J.; CHARLIE CARTER, University
of Richmond, Virginia; THOMAS CATO, JR., Adelphi University; ROBERT
C. GEBHARDT, Hopatcong, N. J.; CHARLES H. LINCOLN, Fayettev.iflfe, N. C,;
C. B. A. PECK, State. Coffege, Pennsyluvania; BOB PRIELIPP, Univernsity of,
Wisconsin, Oshkosh; and the Proposer.

Editorn's Note.:

Most of the solvers submitted valid solutions consisting of a
single counter-example that disproved the statement. Carter considered
the Fermat-Pell Equation r2 + (8¥3 )2 = (2¢)2 and obtained solutions

from the penultimate convergents in the continued fraction expansion of
V3.

270. (Spring 1972] Proposed by Leonand Carlitz, 'Duke. Un,éveg_m',ty.
Let a, B, v denote the angles of a triangle. Show that cot Fa+

cot%‘8+cot%'y23(tan%' a+tan%‘8+tan%‘y) > 2(sin a + sin B +

sin y)

Solution by ALgred E. Neuman, Mu Alpha Delia Fraternity, New Youk.
Using the relations (I cot a/2)? 2 3T cot u/2 cot B/2 and

L cot /2 = 1 cot &/2, we have
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1. 1 1 1
3Zcot5acot58 3 32cot§a coth

Ecot%az E3Ztan%a

Since £ tan «/2 2 ¥3 and £ sin o < 3/3/2, with equality only when

1. - 1
Zcot 5@ Mcot T

a=Rg8-=y, it follows that 3z tan a/2 = 2L sin a .

ALso sofved bg FRANK WEST, University of Nevada, Reno, and the
Proposen.

271. [Spring 1972] Proposed bg Solomon W. Golomb, California In-
stitute of Technologq and the University of Southern Califonnia.

Assume that birthdays are uniformly distributed throughout the
year. In a group of n people selected at random, what is the proba-
bility that all have their birthdays within a half-year interval?
(This half-year interval is allowed to start on any day of the year, in
attempting to fit all n birthdays into such an interval.)

Solution bq the Proposer

The probability is n/2n_l because any of the n birthdays can be
used, mutually exclusively, to start the six-month interval, in which
case the probability of all the other birthdays falling into the inter-
val thus begun is 1/2 n.

More generally, if all the birthdays are to fall in some fraction
a of a year, where 0 < a £ 1/2, the probability is na"_l. For the case
a > 1/2, the solution becomes much more complicated.

ALso sofved bg MASAO JOHNSON, Occidental College, Los Adgeles;

N. J. KUENZI, Oshkosh, Wisconsin; SID SPITAL, Hayward, California;
and FRANK WEST, Univers.ity of Nevada, Reno. Some of the submitted solu-

tions differed from the Proposer's solution.

272. [Spring 1972] Proposed bq Chartes W. Trigg, San Diego,
California.

A timely crytarithm is the calendar verity

_ 7(DAY) = WEEK.

The-letters in some order represent consecutive positive digits. Wha
are they?
Solution bq Catherine A. Yee, Ohio State Univernsity, Columbus.

Since the letters D, A, Y, W, E, X represent consecutive positive
digits, we know that their range must equal 6. Because of the range re-
striction; we have (Y # 1, X # 7) and (Y + 9, xt 3). Also since Y and
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K are distinct, Y # 5and K # 5.

The largest number that DAY can represent is 987, and since the
product of 7 and 987 is equal to 6909, W cannot exceed 6.

These facts can be used to shorten the execution time of any com-
puter program for solving the cyptarithm.

Below is a FCRTRAN program and output from a WATHV compiler on an
IBM370/165. The letters ¥, E, X, W, A, D correspond to the digits 2, 3
4, 5, 6, 7.

IMPLICIT INTEGER(A-Z)

CD, A Y, W, E K ARE ALL POSITIVE INTEGERS
C WIS LESS THAN OR EOUAL TO 6

DO3W=1,6

DO2E=1,09

IF (E .EQ. W) GO TO 2

DOTK=1,09
C K I'S NOT EQUAL TO 3 OR 5 OR 7

IF (K.EQ.3 .OR. K.EQ.5 .OR. K.EQ.7) GO TO 1
IF {K.EQ.W .OR. K.EQ.E) GO TO 1
WEEK = W*1000 + E*100 + E*10 + K

| F (WEEK/7*7 .NE. WEEK) GO TO 1
DAY = WEEK/7

Y = MOD(DAY,10)

C Y IS NOT EQUAL TO1 OR 5 OR 9
IF(Y.EQ.0 .OR. Y.EQ.1 .OR. Y.EQ.5
IF(Y.EQ.W .OR. Y.EQ.E .OR. Y.EQ.K)
DA = DAY/10
A = MOD(DA,10)

IF(A.EQ.0) GO TO 1

IF(A.EQ.W .OR. A.EQ.E .OR. A.EQ.K .OR. A.EQ.Y) GO TO 1

D = DA/10

IF(D.EQ.0) GO TO 1

IF(D.EQ.W .OR. D.EQ.E .OR. D.EQ.K .OR. D.EQ.Y .OR. D.EQ.A)GO TO 1
MAX MAXO£D,A,Y,N,E,K)

.OR. Y.EQ.9) GO TO 1
GO T0 1

MIN = MINO(D,A,Y,W,E,K)
IF(MAX-MIN .GT. 5) GO T0 1
WRITE(6,101)DAY, WEEK
101 FORMAT(T0X,'DAY = ',I13/10X,'WEEK = ',14)
1 CONTINUE
2 CONTINUE
3 CONTINUE
STOP
END

DAY = 762
WEEK = 5334

Also sofved bq RICHARD L. ENISON, New Yok Cay; MIKE FIDDES,

South Dakota School of Mines and Technologg; R. C. GEBHARDT, Hopatcong
N.J.; MASAO JOHNSON, Occidental College, Ld Angefes; JAMES R. METZ,
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Springfield, I&Linois: JAMES REBHORN, Lebanon Valfey Coflege, Annville,
Pernsylvania; FRANK WEST, Univernsity of Nevada, Reno; GREGORY WULCZYN,
Lewdisburg, Pennsylvania; and the Proposenr.

273. [Spring 1972] Phopobed by Chartes W. Trigg, Sun Diego,
California.

Twelve toothpicks can be arranged to form four congruent equilat-
eral triangles. Rearrange the toothpicks to form ten triangles of the
same size.

Sofution by R C. Gebhardt, James R Metz, Richard D. Stratton and the
Proposen.

Fom a regular tetrahedron with six toothpicks and use the other
six toothpicks (three to a face) to build tetrahedra on two of the faces
of the first tetrahedron.

Editon's Note

A two-dimensional solution of a modified version of the problem
was offered by FRANK WEST, of the University of Nevada, Reno. Each tri-
angle in the plane configuration is one-fourth the area of the tetra-
hedral face in the thee-dimensional solution (Fig. 3).

5 6
9
10
7 8
FIGURE 3

274. [Spring 1972] Proposed by Peter A. Lindstrom, Genesee
Community College, Batavia, N.Y.
Find the value of

uu1

for an arbitrary integer k 2 1.
Solution by N. J. Kuenzi, Oshkosh, Wisconsin.
First note that for any integer k 2 1,

% )
Z(".)«;"'J s 41 +E - 2
g1V

Hence,

s\ £ i i( <1+¢)"-«;’<)
. oz . 7’€ - » -E .
izl \7 (< + 1) i= (1 + z)k

™M

1 1
1(7‘- (1+£)E)

- e
. 1

Practically identical solutions were submitted by RICHARD L.
ENISON, Nw Yohk City; MASAQ JOHNSON, Oceidental College, Lob Angeles;
DONALD KNIGHT, Cleveland, Ohio; M. J. KNIGHT, California Institute of
Technology; BOB PRIELIPP, University of Wisconsin, Oshkosh; KENNETH
ROSEN, Fatmington, Michigan; SID SPITAL, Hayward, California; ANN
STEFFEN, University of OkLahoma, Nowman, Oklahoma; T. PAUL TURIEL,
State Univensity of Nw York at Potsdam; FRANK WEST, University of
Nevada, Reno; GREGORY WULCZYN, Lewi{sburg, Pennsylvania; ROBERT MILLERSs
Univernsdity of California at Lob Angeles; and the Proposenr.

275. [Spring 1972] Proposed by Gregory Wulezyn, Bucknell Univen-
sity, Lewisburg, Pennsylvania.

If t(n) = n(n t 1)/2, show that there are an infinite number of
solutions in positive integers of

r-1 g-1
Y tla+i)= 2, tl@a+trti).
=0 i=0

Solution by Bob Prielipp, The University of Wisconsin, Oshkosh.
Some particular solutions of the given equation are:
t(1) t t(2) + ¢(3) = t(u),
t(5) t t(6) + t(7) t t(8) = ¢(9) ¢ t(10),
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£(11) t #(12) t £(13) t t(14) t £(15) = t(16) t ¢t(17) t t(18),
and
t(19) t £(20) t t(21) t t(22) t £(23) t t(24) =
t(25) t t(26) t t(27) t t(28).
This leads us to conjecture that

e+l -1
Dote2+e-1+4)= 3 t(s? + 28 +1+1i),
2=0 =0

where & is an arbitrary positive integer. W now proceed to prove our
conjecture. Using mathematical induction, it can easily be established
that:

n
T,o= 3 tk)=
k=1

[It may be of interest to note that T is the nth tetrahedral (or pyra-

nn + 1)(n + 2)
6

midal) number.] Thus,

s+l
P t(e2 +8-1+1) = T Syon ™ B pe
= (8% + 68 + 15g* + 2083 + 1us? + ug)
- (8% + 385 - 5g3 - 82 + 2g)
= 3g5 + 1584 + 2583 + 1582 + 2s.

Also

g-1
2 0y = -
—go te2+28 + L +4) =T 5 0 - Ty o0

(85 t 98° t 30s* t 4553 t 2952 t 6s)
- (% t 685 t 156" t 2083 t 1482 t us)
= 385 t 158% t 2583 t 1582 t 2s.
Therefore the given equation has an infinite number of solutions in
positive integers.
Also solved by FRANK WEST, Univernsity of Nevada, Reno, and the
Proposen.

276 [Spring 1972] Proposed by R. S. Lluthar, University of
wugomin, Waukesha.
Find a such that theroots of 23 t (2 t @)z22 -~az - 2a t 4 = 0
lie along the liney = x.
Sotation by Sid Spital, Hayward, California. -
in

If the roots be along y = x, they are of the form 2z = re , T
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real. Substitution in the given equation then yields a cubic in r,
() 3t (2 + a)e M2 L g T2 L (g - u)e-ian/u = 0,
all of whose roots must be real, and therefore all of whose coefficients
must be real. This can only be satisfied if a = 2¢, making (*) become
Pt 2/ - 2p - w2 = (P2 - 2)(r £ 2/2) =0
which, as required, has only real roots.
Also solved by BOB PRIELIPP, Univernsity of Wisconsin, Oshkosh;
FRANK WEST, University of Nevada, Reno; and the Proposer.

277. [Spring 1972] Proposed by Alfred E Neuman (without sofution)
Mi Alpha Delta Fraternity, New York.

According to Morley's Theorem, the intersections of the adjacent
internal angle trisectors of a triangle are the vertices of an equilat-
eral triangle. If the configuration is modified so that the trisectors
of one of the angles are omitted, as shown in Figure 4, show that the
connector DE of the two intersections bisects the angle BDC
1. Amalgam of Sofutions by Sid Spital, Hayward, California; David C.
Kay, Univensity of OkLahoma, Nomwman, OkLahoma; Leonand Carlitz, Duke
Univensity; and the Proposen.

A

B8 Y

FIGURE 4 FIGURE 5

Three applications of the Lav of Sines give:
DE sin £BDE = BE sin B = CF sin y = DE sin £CDE.
Hence £BDE = LCDE. Carlitz remarked that the stated result (DE bisects

the angle BDC) is proved by K.Venkatachaliengar, American Mathematical




by

“Monthly, 65(1958), 612-613. (Fig. 4)

11. Sofution by David C. Kay, University of OkLahoma, Nomman, Okfahoma.

Let triangle FGE be the Morley triangle of trangle ABC (Fig. 5).

Common proofs of Morley's theorem ultimately show that

wi>

=& =
0=z )
(see Coxeter, Introduction to Geometry, Wiley 1961, p. 25, for example).
Hence, since BFD and CGD are straight angles,

u+é+6=ﬂ=v+%+¢

ory =v, and FD = DG. Hence, the perpendicular bisector of FG passes
through D and E and bisects the angle FDG. That is, DE bisects the
angle BDC
111. Amaklgam of Solutions by Masao Johnson, Occidental College, Lab
Angeles, California; M. J. Knight, Califonnia Institute of Technology,
Pasadena, California; Charles W. Trnigg, San Diego, California; Frank
West, University of Nevada, Reno; and the Proposen.

Since the bisectors of the angles of a triangle are concurrent, DE
bisects angle BDC of triangle BDC.

278. [Spring 1972] Proposed by Paul Endos, University of
Waternkoo, Ontario, Canada.

Prove that every integer € n! is the aum of < n distinct divisors
of n! Try to improve the result for large n; for example, | et f(n) be
the smallest integer so that every integer £ n! is the sm of fn) or
fewer distinct divisors of #n. W know f(n) < n. Prove n - f(n) +~ =,

Nbo solution has been received. One would be welcome.

279. [Spring 1972] Proposed by Stantey Rabinowitz, Polytechnic
Institute of Brookfyn.

Let Fp Fy, Fp, ... be a sequence such that for n 2 2,
F =F +F , Prove that
n n-1 n-2
>
3 F, = F
()i = T

An Amalgam of Sofutions by Sid Spital, Hayward, Califoania and Gregony
Wulezyn, Bucknell University, Lewisburg, Pennsylvania.
For suitable A and B, we may write:
F=Aan+BBn, a:lt/s—, B=1_2&‘
n

Luys

and
l+a=02, 1+8=2pg2

Hence

AL+ )"+ B(L+ )"

™=
~~
=3
—
k.”:
"

=™+ B = F, .
Also sofved by HYMAN CHANSKY, University of Maryland; RICHARD L.
ENISON, NV York Cay; MASAO JOHNSON, Occidental College, Lob Angeles;
N. J. KUENZI, 0shkosh, Wisconsin; PETER A. LINDSTROM, Genesee Community
College, Batavia, New York; BCB PRIELIPP, University of Wisconsin-
0shkosh; KENNETH ROSEN, Faumingfon, Michigan; FRANK WEST, University of

Nevada, Reno;, and the Proposer.

280. [Spring 1972] Proposed by Kenneth Rosen, University of
Michigan.
Find all solutions in integers of the Diophantine equation
x3 + 1722y + 73zy? + 1593 + x3y3 = 10,000.
Solution by the Proposern, with a similar sofution by Frank West,
Univensity of Nevada, Reno.
If the above equation is satisfied we have:
x3 + 322y + 3zy2 + y3 + £3y3 = u(mod 7)
(x t )3 + 233 = u(mod 7).

This congruence is of the form k3 + j3 = u(mod 7). However, the cubic

residues of 7 are 0, 1 and 6; hence the only possibilities for the
residue of the sm of two cubes are 0, 1, 2, 3, 5and 6. It is impos-
sible for 4 to be the residue of the am of two cubes modulo 7. Hence

the equation has no solutions.

Bob Prielipp called attention to several misprints in his published
solution to Problem 248, on page 298 of the Spring 1972 issue. !N the
published solution all of the 2 symbols which appear after the reference

to Beckenbach and Bellman's book should be > symbols.








