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THE C .C. MACDUFFEE AWARD 
FOR DISTINGUISHED SERVICE 

The C.C. Machffee A w a r d  is  P i  Mu Eps i lon ' s  h ighest  
r ecogn i t ion  of d i s t ingu i shed  se rv ice .  I t  has  been presented 
f o u r  t imes  dur ing t h e  f i f t y - e i g h t  year  h i s t o r y  of our  f r a -  
t e r n i t y .  The p r i o r  r e c i p i e n t s  a r e :  

D r .  J .  Southerland Frame 
D r .  Richard V .  Andree 
Dr. John S. Gold 
D r .  Francis  Regan 

I n  1972 t h e  C.C. Machffee A w a r d  for Distinguished Sem- 
ice  was awarded t o  Dr. J . C .  Eaves. A l l  o f  you know D r .  Eaves 
a s  t h e  Pres ident  of P i  Mu Epsi lon (1966-1972). Adding Dr. 
Eaves t o  an  o rgan iza t ion  is  l i k e  adding yeas t  t o  a mixture.  
E i t h e r  in t roduces  l i f e ,  promotes growth, and produces a f i n a l  
product wi th  supe r io r  z e s t .  D r .  Eaves has  worked d i l i g e n t l y  
and imaginat ively  i n  "promoting scho la r sh ip  and mathematics" 
a s  our  motto says .  The number o f  lIME chap te r s  grew from 118 
i n  1966 t o  175 i n  1972 under h i s  ene rge t i c  guidance. Most of  
t hese  57 a d d i t i o n a l  chap te r s  were personal ly  i n s t a l l e d  by Dr. 
Eaves -- who can r e l a t e  some i n t e r e s t i n g  s t o r i e s  concerning 
t r a v e l  t o  and from va r ious  co l l eges  and u n i v e r s i t i e s .  

Dr. Eaves is  an exce l l en t  speaker ,  an  i n s p i r i n g  l e a d e r  
and a congenia l  companion i n  add i t ion  t o  being a devoted math- 
ematician. He promotes mathematics whenever t h e  oppor tuni ty  
a r i s e s ,  and se rves  t h e  needs of  mathematics a t  a l l  l e v e l s  -- 
he has  served a s  p res iden t  of  Mu Alpha Theta,  t h e  n a t i o n a l  
high school and junior  co l l ege  c lub ,  which was s t a r t e d  i n  
1957 wi th  t h e  he lp  of P i  Mu Epsilon. He has served a s  cha i r -  
man of  a l a r g e  a c t i v e  u n i v e r s i t y  graduate  program i n  mathemat- 
i c s .  He has served a s  Pres ident  of  t h e  most p r e s t i g i o u s  and 
a c t i v e  honor s o c i e t y  i n  America -- P i  Mu Epsilon. 

D r .  Eaves is always a welcome committee member on any 
p r o j e c t .  I f  D r .  J . C .  Eaves undertakes a job, you can be s u r e  
it w i l l  be done with a f l o u r i s h ,  and t h a t  t hose  who a r e  asso-  
c i a t e d  wi th  t h e  p r o j e c t  w i l l  enjoy and apprec ia t e  t h i s  s l y  
humor a s  wel l  a s  h i s  uncanny a b i l i t y  t o  come up wi th  f e a s i b l e  
s o l u t i o n s  r a t h e r  than a d d i t i o n a l  problems. P i  Mu Epsi lon is 
indeed f o r t u n a t e  t o  have been included among t h e  many p r o j e c t s  
t h a t  have been more success fu l  because t h e  Eaves yeas t  was in-  
cluded. I t  is  a l t o g e t h e r  f i t t i n g  and proper t h a t  D r .  Eaves' 
name be added t o  t h e  l i s t  of  i l l u s t r i o u s  r e c i p i e n t s  of P i  Mu 
Eps i lon ' s  h ighes t  award. 

Presented a t  
Dartmouth College 

August, 1972 



J .  C. Eaves 

MATHEMATICS 1 MODELS AND THE COMPUTER1 

by John. G. Kemwy 
P~tuidewt., Vawtmouth CoUege 

This  evening I would l i k e  t o  specu la t e  on t h e  l i k e l y  impact 

computers w i l l  have on modeling i n  t h e  coming decades.  I am 

convinced t h a t  we a r e  j u s t  beginning t o  explore  t h i s  f i e l d  and t h a t  

t h e r e  is  an enormous amount we still must l e a r n  about  t h e  f u l l  power 

of t h e  computer i n  t h i s  a rea .  

Let me s t a r t  by commenting b r i e f l y  on t h e  t r a d i t i o n a l  mathemati- 

c a l m o d e l s ,  those  i n  physics .  A s impl i f i ed  impression of t h e  r o l e  of  

mathematics i n  sc i ence  is t h a t  t h e  phys ica l  s c i e n t i s t  observes na tu re ,  

d i scove r s  a  number of  f a c t s ,  t hen  formulates  a  model of  phys ica l  

r e a l i t y  which is u s u a l l y  expressed a s  a  mathematical model. I t  is 

l e f t  t o  t h e  mathematician t o  so lve  t h e  equat ions  of  t h i s  model, draw 

conclusions from them, and d e r i v e  answers which t e l l  t h e  p h y s i c i s t  

something about t h e  f u t u r e  of  t h e  world o r  about how t o  apply h i s  

theory t o  p r a c t i c a l  s i t u a t i o n s .  

A s  mathematicians,  we a r e  spo i l ed  because some of  t h e  b e s t  known 

models of c l a s s i c a l  physics  l ead  t o  c losed a n a l y t i c  so lu t ions .  There- 

f o r e ,  we have a  tendency t o  overs impl i fy  t h e  r o l e  of mathematics i n  

analyzing mathematical models. 

Perhaps one extreme example is  E i n s t e i n ' s  Unified F ie ld  Theory. 

A s  f a r  a s  I know, t h e  equat ions  s t i l l  have not  been solved and, 

t h e r e f o r e ,  we do not  know what E i n s t e i n ' s  l a s t  t heo ry  says  about t h e  

phys ica l  world. There is  no way of evaluat ing whether t h e  theory has  

any value  o r  no t .  

A t  t h e  o t h e r  extreme, one says  t h a t  Newton's laws lead t o  

a n a l y t i c  s o l u t i o n s  which completely determine motion i n  p r a c t i c a l  

s i t u a t i o n s .  But t a k e  a s  simple a  problem a s  a  rocke t  t r i p  t o  t h e  

moon. Although t h e  equat ions  a r e  known and up t o  a  c e r t a i n  po in t  you 

have a n a l y t i c  s o l u t i o n s ,  you eventual ly  run i n t o  an e l l i p t i c  i n t e g r a l ,  

which c a n ' t  be in t eg ra t ed  i n  c losed form. Therefore,  even a t  t h e  

po in t  where t h e  mathematician says  he has reached a  s o l u t i o n ,  he has  

^h i s  a r t i c l e  is t h e  t e x t  of  an  inv i t ed  address  by D r .  Kemeny which 
was given a t  t h e  annual meeting of  P i  Mu Epsi lon a t  Dartmouth College,  
August 1972. 



no t  r e a l l y  found t h e  s o l u t i o n  i n  p r a c t i c a l  terms. A t  t h i s  po in t  he 

must t u r n  t o  t h e  computer t o  p l o t  t h e  r o c k e t  t r i p  t o  t h e  moon. 

I am going t o  suggest t h a t  s i t u a t i o n s  which a r e  except ional  i n  

t h e  phys ica l  s c i ences  may t u r n  ou t  t o  be t h e  norm i n  t h e  s o c i a l  

sc iences .  Let me i l l u s t r a t e  t h i s  wi th  a very  simple example: t h e  

popula t ion explosion. 

On a s impl i f i ed  s c a l e ,  we have no d i f f i c u l t y  i n  dea l ing  wi th  t h e  

problem of  a r a p i d l y  growing population. It is  a s tandard exe rc i se  i n  

c a l c u l u s  t o  assume t h a t  t h e  r a t e  of  growth is  p ropor t iona l  t o  t h e  

number o f  people p resen t ,  express  t h i s  a s  a d i f f e r e n t i a l  equat ion,  and 

f i n d  t h a t  t h e  so lu t ion  is t h e  i n i t i a l  popula t ion t imes  ekt, k being a 

measure of  how f a s t  t h i n g s  a r e  growing. I t ' s  very  b e a u t i f u l ;  i t ' s  

even use fu l  f o r  long-range g loba l  p red ic t ions ,  but  I submit t h a t  it 

has l i t t l e  t o  do wi th  t h e  problems we a r e  f ac ing  a t  t h e  p resen t  t ime. 

Suppose you wanted t o  know something about t h e  population o f  t h e  

world 20 yea r s  from now, and t h e  next  20 yea r s  a r e  c r i t i c a l  ones.  O r  

suppose you a r e  i n t e r e s t e d  i n  how many college-age s tuden t s  t h e r e  w i l l  

be 20 yea r s  from now. The n i c e  a n a l y t i c  so lu t ion  is t o t a l l y  i r r e l e -  

van t ,  because it is an equi l ibr ium s o l u t i o n ,  and we do not  have an 

equi l ibr ium.  

I f  you look a t  t h e  age d i s t r i b u t i o n  of  t h e  popula t ion o f  t h e  

United S t a t e s  -- which i n  equi l ibr ium should be nea r ly  a s t r a i g h t  l i n e ,  

which d i p s  t o  zero  beyond some age -- you f i n d  t h a t  t h e  d i s t r i b u t i o n  

is  no t  even approximately l i k e  t h a t .  I t  has  very  s i g n i f i c a n t  "wiggles" 

i n  it. I f  we use  t h e  1970 census and look a t  t h e  people i n  t h e  30 t o  

40 year  age group, we f i n d  a s u b s t a n t i a l  d i p  -- t h e  population is  

much smal ler  than it should be.  I f  you look back i n  American His tory ,  

t h i s  d i p  corresponds t o  t h e  per iod of t h e  Depression when people 

apparent ly  decided t o  have fewer ch i ld ren .  

A t  another  po in t  on t h e  l i n e  t h e r e  i s  a "bump" t h a t  corresponds 

t o  t h e  post-World War I1 baby boom. Thus t h e  n i ce  smooth so lu t ion  

simply does not  correspond t o  r e a l i t y .  I t  is  o f f  by a s  much a s  f i v e  

m i l l i o n  people i n  a 10  year  age group and t h e r e f o r e  t h e  s o l u t i o n  is 

n o t  even approximately c o r r e c t .  The t r o u b l e  wi th  these  "wiggles" is  

t h a t  they tend t o  propagate.  One speaks of  b i r t h  r a t e s  and death  

r a t e s  a s  though they were averages  over t h e  e n t i r e  popula t ion,  but  

t h i s  is  not  t r u e .  I t  is  mostly people wi thin  a narrow age range who 

have ch i ld ren ,  and it is  mostly people a t  t h e  high end of t h e  age 

s c a l e  who d i e .  Therefore ,  r a t e s  of  b i r t h  and dea th  averaged over t h e  

t o t a l  popula t ion a r e  misleading. 

You have heard considerable  p u b l i c i t y  t h a t  even i f  Zero 

Population Growth (ZPG) is completely e f f e c t i v e ,  a s  people decide  t o  

have only enough c h i l d r e n  s o  t h a t  i n  t h e  long run t h e  popula t ion 

becomes s t a b l e ,  it w i l l  t ake  something of  t h e  o rde r  of  magnitude of  

60 yea r s  t o  achieve s t a b i l i t y  i n  t h e  popula t ion.  The reason f o r  t h i s  

is  t h a t  t hose  i n  t h e  l a r g e  post-War baby boom group a r e  about t o  

become chi ld- bear ing pa ren t s .  Even i f  t h i s  group has  only t h e  " r igh t"  

number o f  ch i ld ren ,  t h i s  genera t ion is s t i l l  going t o  have many more 

ch i ld ren  than t h e i r  pa ren t s '  genera t ion and we must wai t  u n t i l  t h e  

t r a n s i e n t  e f f e c t s  d i e  down. 

Building a l l  t hese  elements i n t o  an  a n a l y t i c  so lu t ion  is  

d i f f i c u l t  and no t  worth t h e  e f f o r t .  Yet i t 's  an i d e a l  problem f o r  a 

computer model. We can feed i n t o  t h e  computer t h e  a c t u a l  r a t h e r  than 

a hypo the t i ca l  d i s t r i b u t i o n ,  use a c t u a l  d a t a  about what age people a r e  

most l i k e l y  t o  have ch i ld ren ,  and provide d a t a  on t h e  death  r a t e s  f o r  

va r ious  age groups.  We can make f u r t h e r  assumptions about t h e  

behavior of  t h e  next genera t ion of  chi ld- bear ing pa ren t s  and about t h e  

l i k e l y  e f f e c t  on t h e  death  r a t e  of improvements i n  modern medicine. 

And we can t r y  o u t ,  under va r ious  assumptions, what t h e  a c t u a l  

popula t ion w i l l  be 20, 30, o r  50 yea r s  from now. 

This is  an e x c e l l e n t  example of where a mathematical model t u r n s  

i n t o  a computer model, and i f  one looks  c l o s e l y  a t  t h e  behavior of  t h e  

model, one f i n d s  ou t  why overs impl i f ied  d i scuss ions  a r e  very  dangerous. 

For example, one sometimes hea r s  s ta tements  about t h e  inc rease  

and decrease  o f  t h e  b i r t h  r a t e .  Demographers t e l l  u s  it is  t h e  ch i ld-  

bear ing r a t e  t h a t  counts ,  and i f  you look only  a t  b i r t h  r a t e s  from one 

decade t o  t h e  nex t ,  t hey  a r e  t e r r i b l y  midleading, a s  a r e  death  r a t e s .  

A t  t h e  moment, t h e  chi ld- bear ing age group is  still ,  more o r  l e s s ,  

from t h e  Depression "dip" and, a s  such, is  r e l a t i v e l y  small .  I f  not  

a s  many ch i ld ren  a r e  being born, one t h e r e f o r e  must a sk  how much of 

t h i s  is due t o  t h e  smal ler  popula t ion i n  t h e  chi ld- bear ing age group? 

On t h e  o t h e r  hand, a l a r g e  bulge w i l l  soon be coming through t h e  

population wave. Therefore,  even i f  t h i s  group has fewer ch i ld ren  

than t h e i r  predecessors ,  it is  q u i t e  poss ib l e  t h a t  t h e  na t iona l  b i r t h  



r a t e  w i l l  shoot up. 

Similarly, the re  has been considerable publ ic i ty  given t o  t h e  

decl ine of t h e  death r a t e .  Here again, one must be ca re fu l  t o  

determine whether t h i s  decrease is  due t o  b e t t e r  medicines and other  

f a c t o r s  enabling people t o  l i v e  longer, o r  whether it is a r e s u l t  of 

t h e  very la rge  number of young people i n  t h e  United S ta tes  who a s  a 

group a r e  not l i k e l y  t o  d i e  f o r  some time t o  come. 

The analysis  of the  growth i n  population is t h e  simplest example 

I can think of i n  which a computer model is c ruc ia l .  Assuming you 

have properly constructed the  computer model you w i l l  observe a s  you 

run it t h a t  t h e  i n i t i a l  r e s u l t s  suggest new questions you might not 

have considered i f  you were immersed i n  a beaut iful ,  long-range 

ana ly t ic  solut ion.  One of t h e  spectacular things you not ice a s  you 

run the  population model through a hundred years is  t h e  change i n  the 

percentage of people over age 65. A by-product of ZPG i s  a 

s ign i f ican t  increase i n  the  percentage of  people over age 65. To 

some extent we would be noticing t h i s  now, but t h e  increased 

longevity of people has been balanced i n  t h e  l a s t  20 years by a l a rge  

b i r t h  r a t e ,  which is  a t t r i b u t a b l e  t o  t h e  post-War baby boom. Put 

simply, while t h e  numerator of older  people has increased, t h e  

denominator -- or  t o t a l  population -- has kept pace, more o r  l e s s ,  and 

thus  the  change is  not a s  noticeable. 

I f  we s t r i v e  f o r  ZPG by control l ing t h e  number of young people a t  

some reasonable l e v e l ,  t h e  bulge i n  t h e  system moves on t o  older  age. 

You w i l l  f ind  t h a t  while today the  percentage of people over age 65 

is  under 10 per cent  -- which is  unusually high -- you w i l l  eventually 

have a s  much a s  15 per cent of the  t o t a l  population 65 years o r  older .  

I f  t h a t  does indeed occur, it w i l l  make a qua l i t a t ive  difference i n  

the way our society l i v e s .  I f  you are-planning f o r  zero population 

growth -- a s  many people a r e  advocating -- you must come up with 

.entirely new plans a s  t o  what society w i l l  do when more than one out 
* 

of seven people a r e  i n  the  r e t i r e d  age group. 

Now l e t  me turn t o  a discussion of  spec i f ic  computer models. I 

w i l l  start by mentioning b r i e f l y  the  work of the  MIT Group under the  

leadership of Professor Jay Forrester ,  ably ass i s ted  by Professors 

Donclla and Dennis Meadows, both of whom a r e  now a t  Dartmouth College. 

Jay Forrester  pioneered i n  the  construction of sophisticated la rge  

sca le  computer models f o r  s o c i a l  problems. H i s  approach is  t h e  

opposite of t ry ing  t o  solve a l l  problems ana ly t ica l ly .  He by-passed 

t h e  s tage of the  ordinary mathematical model by building h i s  models 

d i r e c t l y  inside t h e  computer. 

H i s  models a r e  extremely ambitious, whether he is modeling a 

l a rge  company, a l a rge  c i t y ,  o r  a l l  the  problems of t h e  world. I ' m  

qu i te  sure t h a t ,  a s  with any i n i t i a l  model, t h e  model is  not perfect .  

I think he would cer ta in ly  admit some imperfections, but whether t h e  

model is qu i te  accurate is not so important. He is pioneering i n  an 

important new approach t o  modeling of complicated systems, an 

approach I think deserves an enormous amount of study. Even i f  h i s  

models a r e  not qu i te  r i g h t  -- and usually the  f i r s t  models i n  science 

turn out  t o  be wrong -- he has discovered some qua l i t a t ive  behavior 

t h a t  is  fascinat ing.  

I w i l l  concentrate on one aspect i n  par t i cu la r  which Forrester  

describes by saying t h a t  h i s  models i n  the  soc ia l  sciences a r e  

"counter- intuitive." I can see from h i s  examples what he means by 

t h e  models being "counter- intuitive," ye t  t h e  phrase bothered me a t  

f i r s t .  I couldn't  see how a model could be inherent ly "counter- 

in tu i t ive ,"  so  I t r i e d  t o  analyze what h i s  statement r e a l l y  meant. 

For b e t t e r  o r  worse, here is  my reconstruction of it: 

In tu i t ion  is not inborn; it is a matter of t ra in ing .  It  is  my 

be l ie f  t h a t  these models have "counter- intuitive" behavior because 

our i n t u i t i o n ,  par t i cu la r ly  our mathematical in tu i t ion ,  has been 

t rained on models t h a t  behave qu i te  d i f fe ren t ly  from h is .  And where 

has our in tu i t ion  been t rained? Certainly i n  applied mathematics it 

has been t rained primarily i n  the  physical sciences. Forrester ,  then, 

is saying t h a t  h i s  models have fea tures  i n  them t h a t  make t h e i r  

behavior qua l i t a t ive ly  d i f fe ren t  from those we have become accustomed 

t o  i n  analyzing physical problems; therefore our i n t u i t i o n ,  b u i l t  

upon physical mathematics, misleads us .  

Some of t h e  elements t h a t  bring t h i s  about a r e  the  following: 

In physics we have been spoiled by the  f a c t  t h a t ,  although there a r e  

many complicated systems, we can i s o l a t e  simple sub-systems which a r e  

r e l a t i v e l y  self-contained. By way of example, l e t  us take the  

composition of the  universe. I f  the  physicis t  had t o  s t a r t  out by 

building a model of a l l  the  s t a r s  i n  t h e  universe, physics would 



?neve r  have been born. For tuna te ly ,  t h e r e  a r e  simple sub-systems 

a v a i l a b l e  such a s  t h e  sun and t h e  p l a n e t s .  But even t h i s  system is 

s t i l l  too  d i f f i c u l t  f o r  physics  t o  have g o t t e n  s t a r t e d  on. 

We a r e  even more f o r t u n a t e  i n  t h a t  t h e  e f f e c t  on t h e  sun is s o  

s t rong  compared wi th  t h e  e f f e c t  of t h e  o t h e r  p l a n e t s  -- no t  t o  

mention t h e  o t h e r  stars -- t h a t  you can pre tend,  f o r  your f i r s t  s tudy,  

t h a t  t h e  sun and one p lane t  form a c losed system. I would argue 

t h a t  t h e r e  would have been l i t t l e  chance of  developing c l a s s i c a l  

mechanics i f  simple,  i s o l a t a b l e  models such a s  t h e  sun and one p lane t  

d id  no t  e x i s t .  Fo r re s t e r  a l s o  makes t h e  important observat ion -- and 

I th ink  he is  r i g h t  with regard  t o  t h e  s o c i a l  s c i ences  -- t h a t  you 

cannot t ake  complex systems a p a r t  because t h e  ind iv idua l  components 

a r e  t o o  heavi ly  i n t e r - r e l a t e d .  

Another t h i n g  t h a t  happens i n  t h e  phys ica l  s c i ences  -- and t h i s  

probably l e d  t o  t h e  d iscovery of  both  c a l c u l u s  and s t a t i s t i c s  -- i s  

t h a t  o f t e n  you have a h ighly  homogeneous system, e i t h e r  i n  t ime o r  

space,  so  you can pretend t h a t  you have i n f i n i t e l y  d i v i s i b l e  t ime, o r  

i n f i n i t e l y  many s i m i l a r  o b j e c t s ,  and t h e r e f o r e  you can use  ca l cu lus  o r  

s t a t i s t i c s  t o  f i n d  t h e  answers. F o r r e s t e r  would argue t h a t  one o f  

t h e  major problems with s o c i a l  systems is t h a t  while you may have a 

l a r g e  number of  p i eces  i n  t h e  puzzle ,  they a r e  no t  homogenous and t h e  

d i f f e rences  among them a r e  s u f f i c i e n t l y  s i g n i f i c a n t  so  t h a t  t h e  use  of  

s t a t i s t i c s  can give  you highly  misleading answers. 

The nex t  important observat ion is t h a t  with good luck ,  many o f  

t h e  systems i n  physics ,  b io logy and economics a r e  l i n e a r .  Whenever 

you have a l i n e a r  system, l i f e  is  much e a s i e r .  Any time s c i e n t i s t s  

can assume something is  l i n e a r ,  t hey  w i l l  i n t e n t i o n a l l y  c l o s e  t h e i r  

eyes  t o  n o n- l i n e a r i t i e s  t o  avoid t w n i n g  an easy problem i n t o  a 

hopeless one. While mathematics has made important con t r ibu t ions  t o  

t h e  s o l u t i o n s  o f  non- linear systems, t h e s e  have usua l ly  been i n  cases  

.where t h e  behavior of  t h e  system can be s tud ied  ( a t  l e a s t  l o c a l l y )  

Tl-g?6ugh l i n e a r  approximations. F o r r e s t e r  would argue t h a t  complex 

s o c i a l  systems a r e  h ighly  non- linear and t h a t  l i n e a r  approximations 

would produce q u a l i t a t i v e l y  d i f f e r e n t  r e s u l t s .  He a t t r i b u t e s  t h i s  t o  

t h e  presence of  feedback systems, though t h i s  may be an overs impl i f i-  

c a t i o n .  I f e e l  t h a t  t h i s  a spec t  o f  t h e  F o r r e s t e r  models deserves  

c a r e f u l  study by mathematicians. 

The f i n a l  element is  chance. Chance is  e s s e n t i a l l y  p resen t  i n  

a l l  s o c i a l  systems and t h i s  l e a d s  t o  t h e  d i f f i c u l t  ques t ion of  how 

you b u i l d  chance i n t o  your models. F ' robabi l i s ts  and s t a t i s t i c i a n s  

have been doing t h i s  f o r  a long time, b u t  it t u r n s  o u t  t h a t  whenever 

you f a c e  a problem s u f f i c i e n t l y  complicated t o  be of  r e a l  s ign i f i cance  

i n  t h e  s o c i a l  s c i ences ,  t h e  p r o b a b i l i s t  r u n s  i n t o  t h e  same problem a s  

t h e  ana lys t :  he can so lve  t h e  problem i n  p r i n c i p l e ,  b u t  he cannot 

solve  it i n  p r a c t i c e .  

A g r e a t  d e a l  has  been sa id  about t h e  importance of a s p e c i a l  kind 

of  computer model known as  ' lsimulation,t '  where you use t h e  computer t o  

a c t  ou t  what happens i n  nature .  Simulation has  one g r e a t  advantage; 

it quickly  g ives  you a good, rough f e e l i n g  of what goes on. Yet 

s imulat ion has  i t s  shortcomings and I w i l l  mention some of them 

s h o r t l y .  

L e t t s  t a k e  a concrete  example o f  s imulat ion.  Suppose you a r e  

i n t e r e s t e d  i n  t h e  flow of  t r a f f i c  i n  a f a i r l y  l a r g e  c i t y  and you 

would l i k e  t o  do something t o  improve it. It is e n t i r e l y  poss ib l e  t o  

m i t e  a l a r g e  computer program, bu i ld ing  i n t o  it t h e  l ayou t  o f  t h e  

s t r e e t s ,  t h e  l o c a t i o n s  of  t h e  t r a f f i c  l i g h t s  and one-way s t r e e t s ,  

Some information on t h e  flow of  t r a f f i c  and t h e  p e c u l i a r  h a b i t s  of  

d r i v e r s .  You would a l s o  want t o  include t h e  chance element s o  a s  t o  

produce t h e  r i g h t  number of  acc iden t s  a t  t h e  r i g h t  p l aces  and a t  

approximately t h e  r i g h t  t imes.  

Then you a s k  t h e  quest ion:  !!What can we do t o  improve t h e  flow 

of  t r a f f i c ? "  L e t l s  t a k e  Manhattan a s  an  example where t h e  t r a f f i c  

s i t u a t i o n  is  miserable .  Since I v i s i t  Manhattan f r equen t ly ,  I ' v e  

t r i e d  t o  analyze  what t h a t  c i t y  does  about its t r a f f i c  problem and 

have come t o  t h e  following conclusion: Every once i n  awhi le ,  somebody 

has a b r a i n  s t o m  and they change t h e  t iming on t h e  l i g h t s  on a few 

s t r e e t s  o r  make some s t r e e t s  one-way and then  they si t  back and 

watch t h e  system f o r  s i x  months t o  s e e  whether t r a f f i c  flows any 

b e t t e r .  Often it does n o t ,  o r  i f  it does  t h e  improvements a r e  

i n s u f f i c i e n t  t o  handle t h e  increased volume of t r a f f i c .  

There is  abso lu te ly  no reason why t h e  same approach t o  t r a f f i c  

c o n w o l  cannot be formulated i n t o  a l a rge- sca le  computer model 

s imulat ing i n  t h e  machine what a c t u a l l y  occurs  i n  t h e  s t r e e t s .  You 

would have t o  w r i t e  a program t h a t  s imula t e s  a t r a f f i c  f low j u s t  a s  



Liserable  a s  it is i n  Manhattan. Then you could t r y  out the  changes 

i n  t r a f f i c  l i g h t s  and tu rn  your one-way s t r e e t s  around, l e t t i n g  t h e  

computer grind away f o r  hours t o  play out' six months of experience t o  -. 
see i f  t r a f f i c  flow improves. If a s u c c e s s f u ~  pa t te rn  i s n ' t  found the  

f i r s t  dayy change the  t r a f f i c  l i g h t s  and one-way s t r e e t s  again and l e t  

the  computer run some more. I f  you a r e  lucky, you w i l l  eventually 

come up with a plan t h a t  looks s ign i f ican t ly  b e t t e r  and then implement 

it. While you w i l l  have used a good dea l  of computer power* you w i l l  

not have used a mil l ion human beings a s  guinea pigs. This is an 
excel lent  use of the  computer because it w i l l  g ive accurate enough 

answers t o  spot an order-of-magnitude of change. 

The computer can be bad, however* i n  other  kinds of simulation 

modeling. Let me give you an example of something I did once f o r  

amusement a s  an i l l u s t r a t i o n  f o r  a book. 

I was interested i n  determining whether the  ba t t ing  order i n  

basebal l  r e a l l y  made a s ign i f ican t  difference.  I am famiLiar with t h e  

Hawthorne Effect,  t h a t  everytime you change something* people perform 

b e t t e r ,  and i n  t h a t  sensey t he re  is  no doubt t h a t  shuff l ing t h e  

ba t t ing  orders may make a difference,  But I wanted t o  see whether 

there  was a r e a l  difference y i n  a p robabi l i s t i c  sense* i n  t h e  order 

players batted. I wrote a l i t t l e  model, based on an old Brooklyn 

Dodgers lineup. I had t h e  Dodgers play a f u l l  season and t r i e d  t o  

see how many runs t h e  team scored. I b u i l t  i n  s ing les*  doubles 

t r i p l e s *  home runs,  walks and other  f a c t o r s ,  and then t r i e d  d i f fe ren t  

bat t ing orders t o  see what changes occurred. There were some changes, 

but when I tes ted  them they turned out  not t o  be s t a t i s t i c a l l y  

s ign i f ican t .  

For t h e  fun of it* I decided t o  run 10 seasons f o r  several  

d i f fe ren t  bat t ing orders. Againy I tested the  r e s u l t s  ca re fu l ly  and 

found very small but s t a t i s t i c a l l y  s ign i f ican t  differences.  I 

*eventually ran 70 e n t i r e  seasons of bat t ing orders and again came up - -- 
w i f i  small differences.  I can now t e l l  you t h a t  i f  you do something 

t h a t ' s  obviously bad, l i k e  having t h e  team bat  i n  reverse order ,  t h e  

team w i l l  score s l i g h t l y  fewer runs i n  a season, But t h e  difference 

is r idiculously small* and only shows up i f  you use t h e  s tup ides t  

possible line-ups. 

The above example i l l u s t r a t e s  one of the  problems encountered 

3 B l  

when using simulation models, You do not ge t  a good fee l ing  a s  t o  

what the  variance is. The best  method is t o  run t h e  program 10 times 

t o  determine the  differences between the  l a r g e s t  and smallest outcome, 

then t r y  t o  estimate what t h e  variances a r e  most l i k e l y  t o  be. But 

it is  a very shaky experience when you a r e  working with a l a rge ,  

complicated simulation model. I f  you want t o  play it safe,  accurate 

r e s u l t s  w i l l  require  an enormous amount of computing time, because you 

a r e  subs t i tu t ing  mere computing power f o r  an idea* f o r  some evaluation* 

of what r e a l l y  goes on inside the  system. This is  a graphic example 

of brute  force subst i tuted f o r  in te l l igence ,  and a s  usua ly  it is  not 

a very good t rade- off .  

Nevertheless* I strongly believe t h a t  simulation models and 

other  computer models a r e  coming. Indeed* I would l i k e  t o  r e f e r  t o  a 

phrase we a r e  a l l  bored with -- t h a t  mathematics is the  language of 

science. I f m  beginning t o  wonder t h a t  i f  mathematics is t h e  language 

of physical science -- which it is  -- is  it not possible  t h a t  computer 

programs w i l l  become t h e  language of soc ia l  science? I say t h i s  

ser iously because of the  in te res t ing  experiences I f v e  had on the  

Dartmouth campus. 

You know how d i f f i c u l t  it is f o r  people from two d i f f e r e n t  

s c i e n t i f i c  s p e c i a l i t i e s  t o  communicate a t  a l l .  A s  a matter of f a c t *  

two mathematicians of ten have enough trouble communicating t h a t  the  

thought of a physicis t  and a sociologist  communicating gives one a 

hopeless fee l ing .  They would probably need three months j u s t  t o  

a r r i v e  a t  a common language. 

But I have found t h a t  people from highly diverse f i e l d s  a r e  now 

able t o  communicate i n  the  language of high-speed computers. Any one 

of the  general languages can be used. A t  Dartmouth, the language 

commonly used happens t o  be BASIC* but it could be FORTRAN or  ALGOL 

a t  other  ins t i tu t ions .  The use of computer languages a s  languages f o r  

modeling is  in te res t ing  and intr iguing;  t h e i r  use a s  such would 

cer ta in ly  break down a g r e a t  dea l  of the  language b a r r i e r  amongst the  

d i sc ip l ines .  

But you need more than a common language i n  order t o  build 

these models. You need reasonable access t o  a computersand one of t h e  

sad f a c t s  i n  t h e  United S ta tes  today is  t h a t  most i n s t i t u t i o n s  do not 

have reasonable access t o  a computer. This includes some of t h e  



- . largest  and b e s t  known i n s t i t u t i o n s  which may t h i n k  they have 

a c c e s s i b l e  computers, but  do not i n  any reasonable  sense .  Aside 

from those  i n s t i t u t i o n s  t h a t  don ' t  y e t  have physical  access  t o  

computers, t h e r e  a r e  many o t h e r s  who t h i n k  they  a r e  making a computer 

r e a d i l y  a v a i l a b l e  i f  a handful of  people i n  those  communities consume 

enormous amounts of  computer t ime,  u sua l ly  a t  f e d e r a l  expense. This  

is no t  an  acceptable  c r i t e r i o n .  

Computer modeling is an outs tanding example of  a s i t u a t i o n  i n  

which an occas ional  shot  a t  t h e  computer, o r  a 20-minute turn-around 

t ime,  is  t o t a l l y  u s e l e s s .  One of t h e  g r e a t  break- throughs i n  time- 

shar ing systems is  t h e  capac i ty  f o r  r e sea rch  s c i e n t i s t s  t o  converse 

with a computer. With a 20-minute turn-around t ime,  however, you 

might a s  w e l l  have somebody e l s e  do your computing f o r  you. You a r e  

never going t o  do t h e  work f o r  which computer models a r e  i d e a l  i f  

you don ' t  have t h e  oppor tuni ty  t o  s i t  a t  a t e rmina l ,  vary  t h e  parameters 

of  your d a t a ,  watch t h e  r e s u l t s  come o u t ,  and, if t h e  answers r a i s e  

still  more quest ions ,  t o  begin explor ing t h e i r  imp l i ca t ions  f u l l y .  

I n  t h e  t y p i c a l  batch processing system, you would never even g e t  

your program debugged because t h e  models I am desc r ib ing  a r e  

s u f f i c i e n t l y  complicated t h a t  you need a t  l e a s t  100 r u n s  before  they 

work proper ly .  I f  you have t o  wai t  ha l f  a day before  you g e t  another  

pass  a t  it, you a r e  going t o  be drawing r e t i r emen t  pay before  t h e  

program is debugged. But beyond t h e  obvious advantage of a time- 

shar ing system, t h e  f a c t  t h a t  you l i t e r a l l y  work with t h e  system i n  

t h e  same way you work with a mathematical model with paper and penc i l ,  

makes a t ime-shming system abso lu te ly  c r u c i a l  f o r  t h e  development of  

computer models. 

Let me t r y  t o  g ive  some eva lua t ion  o f  t h e  r o l e  of  computers i n  

t h i s  a rea .  I n  any modeling, an  obvious advantage of t h e  computer is 

t h a t  it is f a s t ,  accu ra t e  and cheap. ~ k a t  may sound s t r ange  coming 

.from a co l l ege  p res iden t  because most of u s  complain about how 

Fxpgnsive computers a r e .  But t h e  work computers do i n  a given amount 

of t ime makes them inc red ib ly  cheap and they a r e  g e t t i n g  cheaper 

every  day. Secondly, it is  much e a s i e r  t o  m i t e  a computer program 

than t o  des ign a good mathematical model i n  c losed form. This has 

both i t s  advantages and disadvantages .  It is  too  tempting f o r  many 

amateurs t o  g e t  i n t o  t h e  a c t  of wr i t ing  models. Nevertheless,  f o r  

t hose  who work i n  t h i s  f i e l d ,  it is  a l o t  e a s i e r  than forming 

mathematical models. S t i l l  another  advantage is t h a t  while i n  

ordinary  modeling you must work simultaneously i n  formulat ing t h e  

model and solving t h e  equat ions ,  once you have devised a computer 

model, you can t e l l  t h e  computer t o  do t h e  r e s t  of  t h e  work and t h e  

machine r e s u l t s  w i l l  g ive  you a good f e e l i n g  of how t h e  model behaves. 

These a r e  some of t h e  advantages,  and y e t  computer models have 

a number of  disadvantages.  F i r s t  of a l l ,  I be l i eve  a l l  mathematicians 

and s c i e n t i s t s  work with a t r i a l  and e r r o r  system, whether they admit 

it pub l i c ly  o r  no t .  On t h e  su r face ,  t h e  t r i a l  and e r r o r  system 

appears i d e a l l y  s u i t e d  f o r  t h e  computer. You can m i t e  t h e  model and 

provide a l a r g e  number of pmameters ,  then ask t h e  computer t o  run 

through a l l  o f  t h e  poss ib l e  v a r i a t i o n s  and t e l l  you which v a r i a t i o n  

is  b e s t .  There is ,  however, one major ca tch i n  t h i s  novel approach: 

how w i l l  t h e  computer know what ' b e s t '  means i n  t h i s  p a r t i c u l a r  case?  

While t h e  computer i s  capable o f  gene ra t ing  enormous amounts of  d a t a ,  

i f  you a r e  no t  c a r e f u l ,  e s p e c i a l l y  i n  a batch processing system, you 

a r e  l i k e l y  t o  g e t  s t a c k s  of information t h a t  s t i l l  need many hours of  

eva lua t ion  before  you can a r r i v e  a t  a f i n a l  answer. 

I t  would be a major breakthrough i n  t h e  a r t  of  computer 

programming i f  we could develop sound techniques  f o r  teaching computers 

how t o  eva lua te  t h e i r  r e s u l t s .  The reason we a r e  unable t o  develop 

such techniques  is  because we d o n ' t  exac t ly  know how t o  eva lua te  our 

own work. Therefore,  t h e  t r i a l  and e r r o r  methods can o f t e n  be  

f r u s t r a t i n g .  

I can b e s t  i l l u s t r a t e  t h i s  f a c t  by t e l l i n g  a s t o r y  on myself.  I n  

a course  I taught  l a s t  sp r ing  we focused on one of  Jay F o r r e s t e r ' s  

world models and discussed ways t o  eva lua te  how we l l  off t h e  world 

w i l l  be i n  2100 f o r  va r ious  va lues  of  t h e  parameters used by F o r r e s t e r .  

There were a g r e a t  number of s t r a t e g i e s  and ways t o  change parameters 

such a s  popula t ion growth, po l lu t ion  c o n t r o l ,  and r e source  dep le t ion .  

What we wanted t o  do was t r y  ou t  a wide range of  parameter va lues  t o  

see  which s e t  would produce t h e  b e s t  poss ib l e  l i f e  on e a r t h  by 2100. 

Obviously, ob ta in ing  t h e  answers would r e q u i r e  a tremendous 

number of  c a l c u l a t i o n s ,  but  t h e  c l a s s  i n s i s t e d  on t r y i n g  ou t  hundreds 

of  v a r i a t i o n s ,  each r equ i r ing  a computer run of t h e  model from 1970 t o  

2100, This  exe rc i se  was going t o  be t h e  grand f i n a l e  of t h e  course ,  



so we m o t e  t h e  propam and made t h e  runs* changing t h e  parameters 

each time and l e t t i n g  t h e  computer keep t rack  of t h e  payoff function 

i n  terms of  qua l i ty  of l i f e  i n  t h e  world. F ina l ly  t h e  computer 
produced the  bes t  solut ion.  There was a unique optimum i n  it* and I 

was happy, u n t i l  I s ta r ted  studying t h e  solut ion.  The solut ion 
provided by t h e  computer had one very in te res t ing  property: there  were 

prac t ica l ly  no people l e f t .  

So back we went t o  t h e  computer t o  work through t h a t  one s e t  of 

parameters t o  see s tep  by s tep  what ac tua l ly  happened i n  t h a t  

par t i cu la r  simulation. The most hor r ib le  things you can imagine began 

t o  occur during the  next 100 years -- population explosions, famines* 

and unparalleled s tarvat ion.  A s  a r e s u l t *  almost a l l  of t h e  people i n  

the  world were wiped ou t .  We wound up with a s i tua t ion  where a 

handful of survivors had a l l  t h e  resources on ear th  and no meams t o  

generate pol lut ion.  In  a sense* it was a second Garden of Eden, but 

i t t s  not qu i te  t h e  solut ion we had i n  mind when we began. 

This i l l u s t r a t i o n  is a per fec t  example of what a computer model 

can do if t h e  computer has no way of knowing which solut ion or  s e t  of 

conditions is bes t  t o  achieve t h e  goals  we a r e  seeking. But I did 
protect  against  t h i s  t o  some degree by re-running t h e  whole program 

and saying t o  the  computery "Incidentally, if along the  way the 

population g e t s  wiped ou t ,  fo rge t  i t . l f  

In  t h e  end, however, t h i s  question s t i l l  l ingers :  "What is  it 
t h a t  we missed i n  the  automatic recipe we gave the  computer f o r  

evaluating solut ions t h a t  would not have been overlooked i f  we had 

seen l!hese thousands of p r in tou ts  and had been a b l e  t o  follow the  

computations i n  detai1?l1 T r i a l  and e r r o r  is dangerous i f  we have 

only crude ways of  t e l l i n g  the  computep how t o  evaluate success. 

A second observation is t h a t  comp9ters seem t o  be very poor a t  

combinatorics. The machines a r e  no b e t t e r  a t  combinatorics today than 

they were before. Computers may be f a s t e r  so you can use them f o r  - - 
cGmbinatoria1 problems, but they s t i l l  do miserably. 

A t h i r d  observation is  t h a t  i n  s p i t e  of some spectacular success 

i n  a r t i f i c i a l  in te l l igence ,  computers a r e ,  i n  my opinion* s t i l l  poor 

a t  pat tern recognition. Here's my f a v o r i t e  example of t h i s  f a c t .  

Laymen a r e  always amazed if you t e l l  them the  computer can do 

d i f fe ren t ia t ion  f o r  you. (I d o n f t  mean numerical d i f fe ren t ia t ion ,  

but closed-form d i f f e r e n t i a t i o n ) *  because many people think computers 

c a n t t  work with formulas. Computers can and do work with formulas. 

To teach t h e  machine everything you would teach i n  freshman calculus 

about d i f fe ren t ia t ion  would r e s u l t  i n  a l a rge  but not t e r r i b l y  

d i f f i c u l t  program. Obviously you w i l l  want t h e  computer t o  do what 

t h e  student i n  freshman calculus must: f ind  t h e  der iva t ive  and 

simplify it. The chain r u l e ,  which is a b ig  stumbling block f o r  

s tudents* is  perfect  f o r  computers. Everything is f i n e  u n t i l  you ask 

t h e  computer t o  simplify the  answer, and here the  machine does 

miserably. While it may take the average freshman several  minutes t o  

f ind  the  derivat ive,  t h e  computer can do it i n  a negl igible  amount of 

time. On t h e  other  handy t h e  s implif icat ion t h a t  even the  average 

freshman can do by merely looking a t  t h e  answer may take t h e  computer 

many times longer than t h e  d i f fe ren t ia t ion  took. What is  missing is  

t h e  a b i l i t y  t o  t e l l  the  computer I'Now j u s t  look a t  the  answer and 

y o u ' l l  see what you have t o  do.## 

Final ly,  because computers a r e  so f a s t  and models so complicatedy 

I suspect it is much harder t o  f ind  e m o r s  i n  t h e  model. I f  Newton* 

i n  h i s  Law of Gravitation, had accidental ly  cubed r a t h e r  than 

squared the dis tance* it would have been immediately noticeable. I 

have a fee l ing  t h a t  e m o r s  of t h a t  order of magnitude can sneak by 

you i n  a computer model and it may take a long time t o  f ind  them. 

So what do I conclude from t h i s  discussion of mathematical models 

and t h e  computer? F i r s t ,  computer models a r e  a c ruc ia l  new t o o l  f o r  

the  soc ia l  sciences and f o r  a t tacking the  problems of  society.  Second* 

mathematicians and others  well t ra ined i n  mathematics a r e  par t i cu la r ly  

good a t  formulating s o c i a l  science models. I want t o  avoid the  a r m-  

ment of whethe  these models a r e  mathematics o r  no t*  f o r  I bel ieve 

t h a t  i n  S O  years they w i l l  be recognized a s  standard mathematics. The 

same might be sa id  of s t a t i s t i c s *  bu t ,  t o  avoid argumentation, l e t  me 

simply say t h a t  l i k e  s t a t i s t i c s ,  computer modeling is a f i e l d  i n  

which people with strong mathematical t ra in ing  do s ign i f ican t ly  

b e t t e r  than those without such t ra in ing .  

But unl ike s t a t i s t i c s y  we present ly face one major hurdle with 

regard t o  computer models* t h a t  we d o n l t  have a general theory. We 

need a theory of computer models* j u s t  a s  we have theor ies  f o r  the  

behavior of systems of d i f f e r e n t i a l  equations o r  f o r  s t a t i s t i c a l  
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*. systems. W i thout  such theor ies ,  formulating sound computer models is  

too much a h i t  or m i s s  method. 

Thereforey l e t  me close by recommending t o  those of you who a r e  

looking f o r  a f r u i t f u l  career  i n  t h e  coming decades t o  give ser ious 

study t o  the formulation of mathematical models, pa r t i cu la r ly  

computer models i n  the  soc ia l  sciences y f o r  they have an important 

fu ture  r o l e  t o  play. 
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CHARACTERIZATION OF AN ANALYTIC FUNCTION 
OF A QUATERNION VARIABLE 

In  t h i s  b r ie f  paper we consider an attempt t o  define an ana ly t ic  

quaternion valued function of a quaternion variable .  Fundamental t o  the  

theory of complex variables  is  the  idea of an ana ly t ic  function, a com- 

plex valued function of a complex variable  which i s  d i f fe ren t iab le  on 

some region. Can we, and i f  so how s h a l l  wey extend t h i s  idea t o  quat- 

ernions? 

A quaternion, of  course, is  a number of  t h e  form 

X l l  + X 2 i  + X 3 j  t X4k, (1)  

where X l ,  . .. a X4 a r e  r e a l  l 'coeff icients l l  and 1, i, jy and k a r e  quan- 

t i t i e s  multiplying according t o  the  t ab le  

and otherwise obeying the  laws of polynomial ar i thmetic .  Now, we may 

consider a quaternion variable  Q t o  be expressible i n  t h e  convenient 

form of and we may begin t o  study a quaternion valued, s ing le  val-  

ued function of Q which may be wri t ten i n  the  form 

A l l  + A 2 i  + A 3 j  t A4k (2) 

where again A l ,  ... , A,, a r e  r e a l  coef f ic ien t s ,  and i n  par t i cu la r ,  each 

is  i t s e l f  a r e a l  valued, s ingle  valued function of t h e  four r e a l  var i-  

Now, f o r  c l a r i t y ,  we mention t h a t  i n  the fu ture  a functiony m i t t e n  F(Q), 

w i l l  mean a function of t h i s  typea a quaternion valued function of a 

ables  X l ,  ... , X4. Hence, should we have a function of t h i s  type we 

may wri te  it i n  the  informative form 

F(Q) = Al(Xl ,..., X4)l + A2(Xl ,..., X4)i 

t A3(X1,. . . yX4)j t A4(Xl Â ¶ .  . yX4)k, 

exactly a s  is the  case i n  the  elementary theory of complex variables .  



quaternion variable .  

Before we consider l i m i t s  and derivat ives,  we need a topology on 

the  space of quaternions, so we s h a l l  take an open s e t  i n  quaternion 

space t o  mean simply an open s e t  ac.cording t o  ff4 (euclidean space of 

dimension 4). Thus Q-space, being i n  e f fec t  z4, is  now a metric space, 

and we have no problem understanding the  meaning of l i m i t .  In t h e  fu-  

t u r e  we s h a l l  take our funct ion F(Q) a s  being defined on some open, con- 

nected s e t ,  o r  region, of ff4.  

We may now ge t  down t o  business and t r y  t o  define an ana ly t ic  func- 

t ion .  A reasonable def in i t ion  of a der iva t ive  must involve t h e  famous 

difference quotient AF/AQ. Note, however, t h a t  i n  Q-space since multi-  

p l ica t ion  is not commutative, we must consider two d i s t i n c t  quant i t i es  

when speaking of difference quotients ,  these being 

1 
W e -  and 

1 - .  
AQ AQ AF7 

t h e  two general ly  not being equal. We s h a l l  then speak of two deriva- 

t ives :  A r i g h t  der iva t ive  s h a l l  mean 

1 
l i m  A F s -  

AQ+ 0 AQ 

and a l e f t  der ivat ive s h a l l  mean 

1 
lim - 

AQ+ 0 
AQ 

presuming t h e  limits e x i s t .  A function s h a l l  be ca l led  r i g h t  o r  l e f t  
I 

di f fe ren t iab le  t a point when t h e  appropriate derivat ive e x i s t s ,  and 

r i g h t  o r  l e f t  a I a l y t i c  i n  a region when it is r i g h t  o r  l e f t  d i f f e r e n t i -  

able  throughout t h a t  region. 

Now, we have encountered what seems t o  be a d i f f i c u l t y  i n  defining 

a derivat ive because t h e  two der iva t ives  might not be the same. However, 

we see a t  once t h a t  when t h e  two der iva t ives  e x i s t  i n  a region they must 

be equal. For, i f  F is r i g h t  d i f fe ren t iab le  we may l e t  AQ vanish along 

the  Xi a x i s  and f ind  

which l i m i t  ex i s t s .  I f  F is l e f t  d i f fe ren t iab le  we a l s o  have 

lim J- .  A? = l i m  - a  AF 
AQ+O 

which l i m i t  e x i s t s ,  but AX, being r e a l ,  t h e  two l i m i t s  a r e  equal. 

aA aA = -3 21 - k 2̂ + -3 + -i -4 
ax, ax, ax, ax3 

P e 6 i n i t i o n :  A ( s ing le  valued) quaternion valued function of a qua- 

ternion var iab le  is sa id  t o  be ana ly t ic  on a region i f  it is  both r i g h t  

and l e f t  d i f fe ren t iab le  on t h a t  region. 

The derivat ive of an ana ly t ic  function may a l s o  be defined. 

V e 6 i t u X o n :  The derivat<ue of a function t h a t  i s  ana ly t ic  on a 

region is  t h e  common value of its r i g h t  and l e f t  der ivat ive throughout 

t h a t  region. 

We s h a l l  now introduce a r e s t r i c t i o n  on t h e  funct ions we a r e  con- 

sidering.  

R&i-fri-cc.fcton 1 :  The functions A , ,  A,, A,, and A,, a r e  d i f fe ren t iab le  

with respect  t o  X,, X,, X,, and X,,. 

Now, suppose we have an ana ly t ic  function F(Q) defined on some r e-  

gion. What does F(Q) look l ike?  

Let us  define,  i n  a s t r i c t l y  formal sense, aF/aX t o  mean 

aA, aA2 aA, a A 4  
- + - i + - j + - k  , a = 1, 2 ,  3, 4. 
axa axa "a 

Now, i f  F is  ana ly t ic  it is  r i g h t  d i f fe ren t iab le ,  and so we have: 

1 

= Ax,, lim + 0 vsr,. 
That is ,  

3F aF 1 9F 1 aF 1 - = - . - = - . - = -  ax, ax, < ax, j ax4 ' k ' 

which gives: 

aA aA a A .̂I + <-2 + j -3 + k-4 
ax1 ax, ax, ax1 



I f  we now equate the  coef f ic ien t s  of 1, i, j ,  and k ,  respect ively,  we 

a r r i v e  a t  a  system of equations 

aA1 = 2 2  aA3 = - 2 4  = - - - 
axl ax, ax3 ax4 

aA aA 
-4 = -3 = - aA aA 

-2 = - -1 
axl ax, ax3 ax,, ' 

which a r e  necessary conditions i f  E' is  r i g h t  d i f fe ren t iab le .  

Now l e t  F be l e f t  d i f fe ren t iab le .  We similar ly must have: 

That i s ,  

and so: 

aA aA = -i -1 
aA aA 

+-2 - k - 3 +  3 - 4  
ax, ax2 ax, ax, 

aA aA 
= -j-1 + k +Y3 - i -4 

ax, ax3 ax3 ax3 

Again equating t h e  coef f ic ien t s  of 1- i, j ,  and k respect ively we 

have : 

aA aA aA 
3 = 4 = - 1 = - 3A. 
axl ax, ax, ax4 

which a r e  necessary conditions i f  F is l e f t  d i f fe ren t iab le .  Now, i f  E' 

i s  ana ly t ic  we combine ( 3 )  and (4) t o  ge t :  

aA aA aA aA 
-3 = -4 = -1 = -2 = 0 
axl ax, ax3 ax4 

aA = 0 ,  - 
axl ax, ax3 ax4 

which tu rn  out t o  be r a t h e r  strong conditions f o r  a  function t o  be ana- 

l y t i c .  

We may go one s tep  fur ther  i f  we introduce a  second r e s t r i c t i o n  on 

the  c l a s s  we a r e  considering- the  motivation of which w i l l  become obvious 

a t  once. 

Rut)U.C*(.on 2: There e x i s t  integers  a and b between 1 and 4. not 

equal,  such t h a t  

a 2~~ a 2~~ a - , and 
ax: axaaxb axaaxb 

e x i s t ,  and the  l a s t  two a r e  continuous on the  region on which F is ana- 

l y t i c  

Restr ic t ion 2 presupposes much stronger conditions than Restr ic t ion 

1, and these a r e  i t s  consequences: 



If F(Q) s a t i s f i e s  Restr ic t ion 2, then f o r  a # b we have by (5)  

aAa aAb 
- - --  ^a 

and - - 
axa axb - 0, 

so t h a t  

by (5) and basic  theorems of p a r t i a l  der ivat ives.  But t h i s  very simple 

system of p a r t i a l  d i f f e r e n t i a l  equations t e l l s  us  t h a t  f o r  each a  = 1, 

2, 3, 4, 

Aa = cxa t ka, 

where C and k a r e  r e a l  constants.  Thus, 
a  

F(Q) = C-Q + K ,  

where C is  a r e a l  constant and K is a quaternion constant.  We have then 

a  fu r ther  character izat ion of an ana ly t ic  function which is  s ta ted  i n  the  

following proposition ( j u s t  proved): 

P~OpOb^fctOn.' I f  F(Q) is a s ing le  valued, quaternion valued function 

of a  quaternion var iab le ,  ana ly t ic  on a  region and sa t i s fy ing  Restric-  

t i o n s  1 and 2 on t h a t  region, then 

F(Q) = C-Q t K 

f o r  some r e a l  constant C and some quaternion constant K. 

Final ly,  we observe t h a t  i f  F is  of the  form F(Q) = C - Q  + K ,  then 

F is cer ta in ly  ana ly t ic ,  f o r  

= c  l i m  AF.- 
AQ 

and l i m  L.  AF = C  
AQ-0 AQ-i-0 AQ 

so t h a t  F is  r i g h t  and l e f t  d i f fe ren t iab le  on the  region and thus analyt-  

ic-by def in i t ion ,  and a l s o  c lea r ly ,  F s a t i s f i e s  Restr ic t ions 1 and 2. 

In shor t ,  an ana ly t ic  function under Restr ic t ion 1 is characterized 

by system ( 5 1 ,  which places great  l imi ta t ions  on t h e  c l a s s  of such func- 

t ions.  I f  we consider functions sa t i s fy ing  Restr ic t ion 2 a s  well ,  our 

c i a s s  is  l imited indeed. It might be worthwhile t o  t r y  t o  character ize 

functions sa t i s fy ing  other  l e s s  s t r ingent  conditions than those invest i-  

gated here. 

LINEAR RECURRENCE RELATIONS AND 
SERIES OF MATRICES 

By Kennith ~ 0 e w e . n ~  
Noman, Oklahoma 

1 .  A L L n w i  R e e w e n e e  

Consider a  sequence generated by a  l i n e a r  recurrence of the  form 

Unt1 = + ( 1  

Assume the  i n i t i a l  conditions UQ = 0, 1.41 = 1. This is no r e a l  r e s t r i c -  

t i o n ,  f o r  i f  we l e t  V Q  = r and V I  = 8 and f o r  other values v is given 

by ( I ) ,  then Table 1 suggests,  and an induction proves, t h e  r e l a t i o n  

V Yl = 8 U  72 t = 57-4, + ~ v ~ u ~ - ~ -  

Thus, the  behavior of the specialized sequence [u n } completely determines 

t h a t  of the  more general sequence ( v ] .  (The Fibonacci Sequence { F I  

is  the  case a  = b = 1 ) .  

This recurrence can be wri t ten i n  terms of matrices a s  follows: 

is a general izat ion of the  Q-matrix 

4 

a3 t 2ab 

(a3 t 2ab 8 t b(a2 + b ) r  

J 

f o r  the  Fibonacci sequence. Similar t o  t h e  well known r e l a t i o n  

TABLE 1 

l ~ r o f e s s o r  Loewen is  the  previous ed i to r  of t h i s  journal.  

2  

a  

a s  t b r  a 

n 

u 
n 

v 
n 

3 

a 2  t b 

(a2  + b)s  + abr  

0 1  

0 1  

r 



f o r  Fibonacci sequences, we have t h e  r e l a t i o n s h i p  

which can a l s o  be proved r a t h e r  e a s i l y  by induct ion.  

2 .  S&&4 06 hI0-t'l-tc.e~ 

A s e r i e s  of rnxn matr ices  

is  sa id  t o  converge t o  a matr ix  A i f  and only i f  f o r  every i = 1, ..., m 
and every j = 1, . . . , n ,  t h e  s e r i e s  

converges t o  a .  . . i'a 
Let f i x )  be any func t ion  which has a power s e r i e s  expansion wi th  a 

p o s i t i v e  r a d i u s  of convergence, and l e t  R by any nxn square  matr ix .  

Then we can consider  t h e  express ion 

wi th  t any r e a l  number. Th i s  is t h e  func t ion  f evaluated a t  t h e  square 

matr ix  tR. I t  is  def ined f o r  every matr ix  tR f o r  which t h e  s e r i e s  con- 

verges .  By t h e  Cayley-Hamilton theorem a square matr ix  s a t i s f i e s  its 

own c h a r a c t e r i s t i c  equation det(R - X I )  = 0. o r  

c 0 1  t c1x + c2x2 t . . . t c n X" = 0 , 
- 

where X denotes an  nxn matr ix .  Th i s  means t h a t  a t  most n d i s t i n c t  pow- 

e r s  of R a r e  l i n e a r  independent,  and hence t h e  i n f i n i t e  s e r i e s  can be  
- - . .  
w r i t t e n  i n  terms of  t h e  matr ices  I. R, . . . . f - .  A theorem of  Syl- 

v e s t e r  (Reference 2, page 78) enables  u s  t o  compute t h e  c o e f f i c i e n t s  of  

t h e  polynomial sum of t h e  s e r i e s .  I f  t h e  r o o t s  of  t h e  c h a r a c t e r i s t i c  

equat ion a r e  d i s t i n c t ,  t h e  sum can be  w r i t t e n  

395 

where D is  t h e  Vandermonde determinant of  c h a r a c t e r i s t i c  r o o t s  of  tR 

(p i ,  ..., r a r e  t h e  c h a r a c t e r i s t i c  r o o t s  of R) 

DO is  t h e  determinant obtained by r ep lac ing  t h e  f i r s t  row of D by 

f ( r l t ) ,  ..., f ( r n t )  , ( 2 )  

t h e  determinant Dl is obta ined by r ep lac ing  t h e  second r o w  of  D by 

( 2 ) ,  and s o  on -- a process  reminiscent  of Cramer's r u l e .  (This  form of 

t h e  so lu t ion  is  given i n  Reference 1, page 243. Reference 2 g ives  a 

so lu t ion  i n  another  no ta t ion  and develops means t o  cover t h e  case  with 

repeated r o o t s . )  

3 .  An A p p t L c a . t X o n  
By combining t h e  r e s u l t s  of t h e  f i r s t  two s e c t i o n s  us ing R= 

a f t e r  no t ine  t h a t  t h e  c h a r a c t e r i s t i c  r o o t s  of tR a r e  

then 

I f  we consider  only  t h e  U p p e A  e.wtn.g i n  a l l  t h e  ma t r i ces ,  not ing 

t h a t  I had a zero  t h e r e ,  we g e t  a f t e r  s imol i fy ing 

For example, s i n c e  e
R 

converges f o r  a l l  square ma t r i ces  R (See Ref- 

erence 2, page 41),  we can use  

Then we have 



I f  a  = b = 1, we g e t  t h e  exponent ia l  genera t ing func t ion  f o r  t h e  Fibon- 

a c c i  sequence 

tn e t ( l  t 6 ) / 2  - e t ( l  - 6 ) / 2  

n=o 6 
Any func t ion  having a  s e r i e s  expansion could be used f o r  f ( x ) .  For 

example,using t h e  Bessel  func t ion  J o ( x )  g ives  a  generat ing func t ion  f o r  

even ind ices  ( s i n c e  t h e  s e r i e s  has on ly  even powers) 

4 .  Ge~eAoLiztttion 
The same proceedure may be used t o  ob ta in  generat ing func t ions  f o r  

sequences generated by higher  o rde r  r ecu r rences .  Thus t h e  sequence gen- 

e r a t e d  by 

has  a  r ecu r s ion  matr ix  

To f ind  a  simple expression f o r  R consider  t h r e e  s e t s  of  i n i t i a l  

cond i t ions  g iving sequences u  a s  i n ( 3 ) ,  un with Vy  = 0, v l  = 1, v2 = 0, 

and w wi th  UQ = 1, wl = 0, w2 = 0. I n  a d d i t i o n  l e t  x have i n i t i a l  con- 
n  

d i t i o n s  XQ = r, = 8 ,  x2 = t. Tabulation o f  t h e  f i r s t  few va lues  of 

each sequence is  shown i n  Table 2. 

x r s t a t  + bs + o r  (a2 + b ) t  t (ab t c ) s  t a c r  

TABLE 2 

This  suggests  t h e  r e l a t i o n s  

x n = u t t v s t w r ,  
n n n  

wn = cu n-1 

Vn = + wn-l = bun-l + 

Each of t h e s e  can be proved by mathematical induct ion.  Since by d e f i n i -  

t ion 

(xn'  V 1 3  v 2 ) R  = (xn+l, Xn,  Xn-J 

and not ing t h a t  

then we have 

I n  gene ra l  an  induct ion then proves 

n t 2  "nt1 "n 

w 
"nt2 "n+l n  

The c h a r a c t e r i s t i c  equation of  R may be found by d i r e c t  computation, 

o r  by not ing t h a t  by r e f l e c t i n g  on t h e  non- pr incipal  d iagonal  we g e t  t h e  

companion matr ix  f o r  t h e  polynomial ( t h e  r e f l e c t i o n  a t  most changes t h e  

s i g n  of t h e  determinant) which s e t  equal  t o  zero  g ives  

x3 - ax2 - bx - c  = 0. 

Let r ,  r ,  r be i t s  r o o t s  and s e t  
3 



I l l  

D 2 =  trl tr2 tr3 

t r 1  etp2 eti-3 

(we do not need e x p l i c i t  formulas f o r  Do and Dl . )  Then we can ob ta in  an 

exponent ia l  type  generat ing funct ion by consider ing t h e  first row, third 

column of  t h e  matr ix  s e r i e s  

Since I and R have a 0 i n  row 1, column 3 and R2 has  a 1 t h e r e  we g e t  

A s  an  example l e t  u s  look a t  t h e  case  a = b = c = 1. The sequence begins 

a s  shown i n  Table 3. 

TABLE 3 

The c h a r a c t e r i s t i c  equation has one r e a l  and two complex r o o t s .  

Let them be r l  = r, r2 = p + iq, r 3  = p - iq. Then we have t h e  exponen- 

t i a l  genera t ing func t ion  
I 1  

- ( p  - r)ept sin qt - qeP* cos qt + qert 
- - . .  

* q((p - rI2 + q 2 )  
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HAPPY NUMBERS 

By Pained P. titen^.t.ng 
John CmoU U n b m - i t y  

Consider t h e  sequence of  p o s i t i v e  i n t e g e r s  79,130,10,1,1,1, - - -  
This  sequence was const ructed from 79 where each subsequent term was 

t h e  sum of  t h e  squares  of  t h e  d i g i t s  of  t h e  preceding term. The se-  

quence of  p o s i t i v e  i n t e g e r s  def ined i n  t h i s  manner s h a l l  be c a l l e d  t h e  

happiness sequence. The happiness sequence of t h e  number 2 is: 2,4,16, 
37,58,89,145,42,20,4,16, . A s  one can see ,  un l ike  t h e  happiness 

sequence of 79 which i n  a sense  t e rmina te s  a t  1, t h i s  sequence g e t s  

caught i n  a r e p e t i t i v e  cycle .  Since t h e  happiness sequence of  79 very  

n i c e l y  comes t o  1, 79 is  c a l l e d  a happy number. On t h e  o the r  hand, 

s ince  t h e  happiness sequence of  2 e n t e r s  i n t o  a r e p e t i t i v e  cyc le  which 

never r e t u r n s  t o  1, 2 is  c a l l e d  an unhappy number. 

So f a r ,  cons ide ra t ion  of  a number's happiness has been r e s t r i c t e d  

t o  base t e n .  However, t h i s  concept can be expanded t o  any p o s i t i v e  

in t ege r  i n  any a r b i t r a r y  base b > 1. For example, 47g would be followed 

by 1019 i n  t h e  happiness sequence, s ince  b2 + 72 = 1019. The number 

1231231, is happy, because it s e t s  up t h e  happiness sequence of :  

1231231,, 130n 221,,20,,,101,, 11,. I n t e r e s t i n g l y ,  a f t e r  a number of  random 

picks  i n  base  f o u r ,  one g e t s  t h e  impression t h a t  a l l  numbers are 'happy 

in base four. Before t h i s  conjecture  can be proved it is  necessary t o  

understand some theory behind happiness sequences. 

Once again  r e s t r i c t i n g  a n a l y s i s  t o  base t e n ,  it can be e a s i l y  seen 

t h a t  any f i v e  d i g i t  number is followed by, a t  most, a t h r e e  d i g i t  number 

i n  t h e  happiness sequence. Th i s  is demonstrated by t h e  f a c t  t h a t  99999 

is  t h e  f i v e  d i g i t  number producing t h e  l a r g e s t  subsequent term of  405. 

Indeed, t h e  more d i g i t s  a number has t h e  smal ler  w i l l  be t h e  next term 

i n  t h e  happiness sequence. In  l i g h t  of  t h i s ,  l e t  u s  gene ra l i ze  f o r  an  

n d i g i t  ( p o s i t i v e )  i n t ege r  i n  an  a r b i t r a r y  base b > 1. The quest ion is  

sosed whether t h e r e  is some cons i s t en t  value  f o r  n where t h e  next  term 

in t h e  happiness sequence i s  always l e s s  than t h e  one preceding i t ?  

:he no ta t ion  e...wxyzb w i l l  be used f o r  t h e  n d i g i t  number i n  base  b, 



. 
where a l l  l e t t e r s  o t h e r  than t h e  base subsc r ip t  r e p r e s e n t  d i g i t s ,  and 

e * 0. 

Th i s  quest ion can be  s t a t e d  mathematically a s  fo l lows:  For a r b i -  

t r a r y  base b > 1, does t h e r e  e x i s t  an  in t ege r  n such t h a t  f o r  any n 

d i g i t  number e...wxyzb, 

ebn-l  t ... t wb3 + zb2  t ybl + zbO > e 2  + .. . t w2  t z2 + g 2  t z 2  ? 

I s o l a t i n g  a t t e n t i o n  on r e s p e c t i v e  terms from each s i d e  of  t h i s  main 

inequa l i ty ,  it can be  r e a d i l y  seen t h a t  ybl 2 y 2 ,  t h e  reason being t h a t  

y is a d i g i t  permiss ible  i n  base  b ,  and is consequently r e s t r i c t e d  by 

0 5 y 5 ( b  - 1 ) .  Since  yb 2 y2 it fol lows t h a t :  

xb 2 x2 and n e c e s s a r i l y  xb2 2 x 2 ,  

wb 2 w2 and wb3 2 w 2 ,  

and ebn-I > e2.  

This  fo l lows n e c e s s a r i l y  because t h e  l e f t ,  and a l r eady  g r e a t e r  s i d e ,  is 

simply mul t ip l i ed  by some p o s i t i v e  power of  b .  Consequently, wi th  t h e  

exception of  z ,  t h e  r e s p e c t i v e  terms on t h e  l e f t  s i d e  of  t h e  main ine-  

q u a l i t y  a r e  g r e a t e r  than t h e i r  counterpar t  on t h e  r i g h t .  Since eb a lone 

is  a l r eady  g r e a t e r  than t h e  corresponding e 2 ,  it s u f f i c e s  t o  show t h a t  

t h e  unused va lue  o f  (ebn-I - e b )  w i l l ,  f o r  some n ,  be g r e a t e r  than z 2 .  

A s  previously  mentioned, t o  e x i s t  a s  a leading d i g i t  e must be a per-  

miss ib l e  d i g i t  and non-zero. Therefore,  t o  put  t h e  t i g h t e s t  r e s t r i c t i o n  

on t h e  proposed i n e q u a l i t y  ebn-I - e b  > z2,  we make e a s  smal l  a s  

poss ib l e ,  t h a t  is, e = 1, and we make z a s  l a r g e  a s  poss ib l e ,  t h a t  is 

which is  equivalent  t o  

- - *  - 

Obviously, b
n + b2 > b 

z = ( b  - 1 ) .  Thus we ob ta in  t h e  proposed inequa l i ty :  

bn-I - b > ( b  - 112, 

bn-I - b > b2 - 2b + 1, 

bn-I > b2 - b + 1, 

b
n 

> b 3  - b2 t b, 

b
n 
t b2 > b 3 + b. 

+ b f o r  n 2 3 ,  so  t h e  above i n e q u a l i t i e s  a r e  

each v a l i d .  This  proves t h e  fo l lowing theorem: 

IfA is any number i n  a happiness sequence t h a t  is calcu-  

l a t e d  us ing base  b > 1 and A has  t h r e e  o r  more d i g i t s  i n  base 

b, then the  term following A i n  t h e  sequence is  sma l l e r  than A .  

Now t h e  s ign i f i cance  of  t h i s  can be  e a s i l y  r e a l i z e d .  It can be  

reasoned d i r e c t l y  from t h e  theorem t h a t  any p o s i t i v e  i n t e g e r  composed 

o f  more than two d i g i t s  must even tua l ly  produce a one o r  two d i g i t  

number i n  i t s  happiness sequence. This  l eads  t o  t h e  f a c t  t h a t  t h e r e  

can be no cyc le  which does  not  con ta in  a one o r  two d i g i t  number. 

Therefore ,  a l l  and only cyc le s  i n  base  b a r e  determined by t h e  happi- 

ness  sequence o f  t h e  one and two d i g i t  numbers. So, by examining only  

t h e  one and two d i g i t  numbers a22 cyc le s  w i l l  be uncovered. Upon 

inspec t ion  o f  base  f o u r ,  a l l  f i f t e e n  one and two d i g i t  p o s i t i v e  i n t e g e r s  

a r e  found t o  be happy numbers. Consequently, t h e r e  a r e  no cyc le s  i n  

base  f o u r  and a l l  p o s i t i v e  i n t e g e r s  must be happy i n  base f o u r .  

Through f u r t h e r  use  of  t h i s  a n a l y s i s  one can e a s i l y  determine a l l  

cyc le s  i n  a given base  and discover  much about t h e  happiness of a l l  

p o s i t i v e  i n t e g e r s  i n  any base .  For example, here  is  a list of a l l  

cyc le s  i n  t h e  number bases  2 through 10: 

B a t  2: None (a  "happy base") 

B a e  3: (121, (221, and (2,111 

B<ue 4: None ( a  "happy base") 

& M e  5: (23) ,  (331, (4,31,20) 

6: (5,41,25,45,105,42,32,21) 

Ba&e 7: (131, (34) ,  (441, (63 ) ,  (2,4,22,11),  (16,52,41,23) 

B<ue g: (24) ,  (64) ,  (4,201, (5,31,12),  (15,32) 

BUS. 9 :  (45) ,  (551, (58,108,72), (82,75) 

B a e  10: (4,16,37,58,89,145,42,20) 

The author  has  generated by computer a l l  t h e  happy numbers from 1 

t o  100 i n  bases  2 through 10. For base 10,  t h e  happy numbers a r e :  



f ined  , 

GOLDBACH ' S CONJECTURE For example, 14  = 1 + 1 3  = 3 + 11 = 7 + 7 ,  s o  Gm(14) = 3. The Euler  

t o t i e n t  func t ion ,  o r  $- function, is  t h e  number of  n a t u r a l  numbers l e s s  

than and r e l a t i v e l y  prime t o  a given n a t u r a l  number n .  Note t h a t  f o r  
k any n u  number n ,  i f  n = n i l  piai is  t h e  s tandard form f o r  n ,  where 

t h e  a .  a r e  n a t u r a l  numbers and t h e  pi a r e  d i s t i n c t  numbers from t h e  s e t  

( P U { 2 } ) - { I } ,  then t h e  $- function can be def ined a s  fo l lows:  

By Cfct-catophe~. S c w e l l  
H-LcJusan State. Uniwm-Lty 

Goldbach's con jec tu re ,  t h a t  every even number is  t h e  sum of two 

prime numbers, has  remained merely a con jec tu re  f o r  about two hundred 

years .  This  is i n  keeping wi th  t h e  u s u a l  d i f f i c u l t y  i n  r e l a t i n g  primes 

o r  sums of  primes t o  any a l g e b r a i c  q u a n t i t i e s ,  such a s  squares.  I n  

o rde r  t o  prove t h e  con jec tu re  t r u e ,  o f  course ,  one must prove f o r  each 

even number t h e  ex i s t ence  of  a p a i r  o f  primes which sum t o  t h a t  number, 

and it is toward t h i s  goa l  t h a t  most "proofs" a r e  o r i e n t e d ,  although 

s o  f a r  unsuccessful ly .  A t  t h i s  po in t ,  a p a i r  of primes has  been found 

f o r  every  even number so  t e s t e d ,  s o  empi r i ca l ly ,  a t  l e a s t ,  t h e  con- 

Having e s t ab l i shed  a l l  necessary d e f i n i t i o n s ,  a quick way t o  g e t  an  

idea  o f  t he  c h a r a c t e r i s t i c s  of  t h e  Gm func t ion  would be t o  cons t ruc t  a 

graph of it. Such a graph, generated by computer, is shown i n  Fig.  1. 

Although t h e  dm func t ion  v a r i e s  wi ldly ,  t h e r e  is  a gradual ,  bu t  d e f i -  

n i t e ,  upward t r end .  This  can be explained us ing a n a l y t i c  number theory l e c t u r e  i s  t r u e .  I n  l i g h t  of  t h i s ,  another  a t t a c k  p resen t s  i t s e l f :  

primes l e s s  than a given a s  fo l lows.  There a r e ,  approximately,  - 
l og  m 

n a t u r a l  number m. Fu r the r ,  t h e  p r o b a b i l i t y  t h a t  a n a t u r a l  number m is  

Since a l l  t h e  even numbers t e s t e d  have a corresponding prime number 

p a i r ,  why no t  i n v e s t i g a t e  j u s t  how many such p a i r s  e x i s t  f o r  any given 

even number? This is  t h e  t o p i c  o f  t h e  remainder o f  t h i s  paper.  
1 

prime is  approximately - l og  m ' Now, i n  o rde r  t o  roughly determine 

Gm(r), where n c Ne, consider  t h a t  t h e r e  a r e  about 

Some d e f i n i t i o n s  a r e  i n  o rde r .  F i r s t ,  t h e  s e t  of  primes,  denoted 

P, s h a l l  be def ined t o  c o n s i s t  of a l l  odd prime numbers, inc luding 1. 

Thus, 

P = (1 ,3 ,5 ,7 ,11,13,  ... 1 . 
The s e t  of  n a t u r a l  numbers N w i l l  be { 1 ,2 ,3 ,  . . . 1, while N s h a l l  

denote t h e  s e t  of even n a t u r a l  numbers, {2 ,4 ,6 ,8 ,  ... 1 . The number 
primes l e s s  than n/2 .  For any o f  these  primes,  say p ,  i f  n - p is a l s o  

prime, then two primes have been found t h a t  sum t o  n ,  and thus  a r e  

counted i n  c a l c u l a t i n g  Gm(n). Each of  these  numbers n - p l i e s  i n  t h e  

i n t e r v a l  [n/2,n], t hus  t h e  p r o b a b i l i t y  t h a t  any one of these  numbers is  

1 , s ince  (3/4)n  is t h e  midpoint of  t h e  prime is  approximated by 
og 3n/4) 

of  ways i n  which a given even number n can be represented a s  t h e  sum of  

two primes w i l l  be c a l l e d  t h e  Goldbach m u l t i p l i c i t y  of  n ,  denoted 

Gm(n). Thus On is  a func t ion  from t h e  even n a t u r a l  numbers t o  t h e  s e t  

U { 01 (no te  t h a t  Goldbach's con jec tu re  is  t r u e  i f  and only i f  t h e  

funet-ion Gm has no ze ros  on t h e  even n a t u r a l  numbers). P rec i se ly  de- .. n 
i n t e r v a l  [n/2,n]. So, t h e  primes l e s s  than n/2 generate  

2 log(n/2)  
n ' ) of numbers n - p ,  each of  which has  p r o b a b i l i t y  l ~ h e  author  wishes t o  thank t h e  Department of Mathematics, Michigan 

S t a t e  Univers i ty ,  f o r  its a s s i s t a n c e  i n  ob ta in ing  computer t ime f o r  
t h i s  s tudy.  The computer t ime was obta ined from t h e  Computer Labora- 
t o r y ,  Michigan S t a t e  Univers i ty ,  which is  supported by a g r a n t  from 
t h e  National Science Foundation. 

n 1 
being prime. Thus, t h e r e  should be about log 3n/4 co inc i-  

dences of  p and n - p both being prime. However, s i n c e  a l l  o f  t h e  



2 . -=  n 
3n n 3n 

2 log(^) log($ log(^) log(-5-) 

But t h e  number of such coincidences i s  j u s t  Cm(n), which leads t o  t h e  

estimating function, 

Several points  of t h i s  approximating function have been p lo t ted  (as  

squares) i n  Fig. 1, and it seems t o  agree qu i te  well with t h e  "trend" 

of t h e  ac tua l  dm function, although of course it cannot follow t h e  wild 

gyrations of t h e  dm function. 

This behavior having been explained, a t t en t ion  tu rns  t o  other 

fea tures  of t h e  graph. Note t h a t  the  graph seems t o  be divided i n t o  

upper and lower arms. The lower arm seems t o  be only about half a s  

high a s  the  higher a r m ,  but it is about twice a s  dense, i n  terms of 

number of points  plot ted.  Why should t h i s  be? The explanation t h i s  

time comes from congruences. Consider the  addi t ion of primes modulo 3. 

A l l  primes (with t h e  exception of 3) f a l l  i n t o  one of the  two congru- 

ence c lasses  1 or  2. So, a t a b l e  of the  addi t ion of primes modulo 3 

would look l i k e  t h i s :  

- .. 
0 0  0 0 - u-O-O--OOOO 0 0 00 

0 00 0 0  0 0 O Q - 0 0 0 0 0 0  oom 0 0  00 
0 0m000OOOw00 0000 m 
0 00 00000 0 "  

0000 - 0 0 00 000000 0000 
0 00 0 00 00000 om000 0 -CL> 

00  00 0 0 2 0000 -- 
om0 

0 0  0 0 0  0 00 00 0 

The 0 congruence c l a s s  occurs 'cwice a s  of ten a s  e i t h e r  of t h e  other  

classes .  Thus, assuming the  primes a r e  evenly d i s t r ibu ted  between con- 

gruence c lasses  1 and 2 (roughly the  case) ,  choosing two primes a t  

random and adding them w i l l  y ie ld  a sum congruent t o  0 modulo 3 with 

probabi l i ty  1/2. Since a l l  SUBS of two primes (below 1200) were of 

necessi ty  used i n  constructing Fig. 1, it would be expected t h a t  t h i s  

b ias  toward t h e  0 congruence c l a s s  would show up there.  Indeed, it does. 

Since a number i n  t h e  0 congruence c l a s s  is  twice a s  l i k e l y  t o  be the  

sum of  two primes than a number which is not i n  t h a t  c l a s s ,  it follows 

t h a t  if m and n a r e  even naturals  which d i f f e r  only s l i g h t l y  i n  magni- 

tude but m is  congruent t o  0 modulo 3 and n is no t ,  then Cm(m) Ã 2dm(n), 

very approximately. This nicely explains t h e  two arms of Fig. 1. The 

conclusion is fur ther  substantiated by invest igat ion of the  ac tua l  

values of t h e  dm function. The author has constructed by computer a 
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numbers p a r e  odd, and n is even, it follows t h a t  n - p must a l s o  be 

odd, and knowledge of t h i s  f a c t  doubles t h e  probabi l i ty  t h a t  each n - p 

is-prime, since it eliminates 2 a s  a possible  d iv i sor .  Taking t h i s  i n t o  

consideration, the  estimate of the  number of coincidences of p and 

n - p being prime changes t o  



t a b l e  f o r  Gm(n) where n ranges over the  even in tegers  from 0 t o  20,000. 

However, noting t h a t  a d i spar i ty  i n  t h e  addition tab le  of t h e  

primes modulo 3 was responsible f o r  a l a rge  portion of t h e  var ia t ion  

found i n  t h e  Gm function, it seems na tura l  t o  consider the  consequences 

of using moduli other than 3 .  In  general,  consider a modulus m N, 

m * 1. Taking P modulo m yie lds  exactly $(m) i n f i n i t e  congruence 

c lasses  of primes: Choose any m '  E N such t h a t  0 < m '  < m and m '  and m 

a r e  coprime. Then t h e  s e t  A = ( m  + m'\n N} contains i n f i n i t e l y  many 

primes (Dir ichlet) .  On t h e  other  hand, i f  m '  and m a r e  not coprime, 

then a l l  numbers i n  t h e  s e t  A have the  grea tes t  common d iv i sor  of m and 

m' a s  a d iv i sor .  Thus the  congruence c l a s s  m '  of the  primes modulo m 

can contain a t  most one number, namely m '  i t s e l f ,  and then only i f  m '  

is  prime, and thus a d iv i sor  of m. Since the  number of primes which 

divide t h e  modulus is  of necessi ty  qu i te  small with respect  t o  the  mod- 

ulus,  such "singular" c lasses  w i l l  not be considered f o r  the  remainder 

of t h i s  discussion. 

Having establ ished the  existence of (Km) c lasses  of  primes modulo 

m, constructing t h e  corresponding addition tab le  of primes modulo m 

reveals  a curious thing (we l e t  n l ,  n2 ,  n3,  . . . , n , )  denote the  $(m) 

na tura l  numbers coprime t o  m). Observe t h a t  n< is  coprime t o  m i f  and 

if m s tays  approximately constant. In genera 

407 

1, then, t h e  "advantage" 

m given t o  the  0 congruence c l a s s  amounts t o  a fac tor  of - 
4(m) 

Now we apply t h i s  t o  the  estimation of M n ) ,  where n e N^, Using 

n n i n  t h e  argument above y ie lds  a fac tor  of - ( )  . This fac tor  cannot 

only - - i f  m - n, is coprime t o m .  This symmetry r e s u l t s  i n  t h e  diagonal 

e n t r i e s  of the  t a b l e  being 0, and t h a t  zeros can be only on the  diago- 

n a l  follows eas i ly .  Thus there  a r e  $(m) e n t r i e s  of 0 and ^( .m) - t(m) 

e n t r i e s  which a r e  na tura l  numbers l e s s  than m .  So t h e  "advantage" of 

t h e  0 congruence c l a s s  becomes la rger  a s  m increases,  i f  4(m) remains 

approximately constant,  and the "advantage" decreases a s  4 (m) increases,  

n l n 2 n 3  ... + 

"1 

"2 

" 3 

n 
4(m) 

be simply concatenated with the approximation Gm(n) Ã logOi/2) 

n 4(m) 

0 

m - 2  

2 

0 

1 
l o g 3 n , 4  , f o r  t h e  following reason: A s  i l l u s t r a t e d  i n  Fig. 1, t h e  

present approximation of the  Gm function represents  an average value of 

Gm a t  any par t i cu la r  point ,  a s  it should, i n  order t o  be a t r u e  approx- 

imation. This means t h a t  although Gm and its approximation d i f f e r  con- 

siderably,  on the  whole they both account f o r  about t h e  same number of 

sums of primes. Thus, t o  multiply the  approximation by a fac tor  which 

is always greater  than lwould  s h i f t  it up, away from the  average value 

of the  Gm function. Now, i f  m N and m * 1, then $(m) is a t  most 

m m - 1, thus > 1 f o r  a l l  na tura l  numbers m except 1. Thus, t h i s  

fac tor  cannot simply be concatenated w.ith the  present approximation. 

This can be taken care of by dividing t h e  fac tor  by its own average 

value. It is  known t h a t  f o r  any na tura l  n, +(n) us 6 7 n . In  t h i s  case, 

however, n is always even (s ince Gm(n) is  not defined otherwise). Now, 

from the  formula given f o r  t h e  +-function i n  the  def in i t ions ,  o r  from 

j u s t  a moment of thought, +(n) f o r  n odd should be about twice as la rge  

a s  $(m) f o r  m an even number of about the  same magnitude. I f  m and n 

a r e  even and odd na tura l  numbers, respect ively,  then l e t  

where a and b a r e  constant f o r  a l l  m and n. Now, t h e  average of a and 

6 b should be 7 , and b should be twice a. So, 

4 
and thus a = - 4 

n2 . Hence, i f  n is an even natural ,  $(n)  ss -y n . The 

average, o r  "expected" value of ?I n2 ,̂ y f o r  n e % is  thus Ã‘Ã‘ = - 
(4/7r2)n 4 ' 



Now* again f o r  n c N n 1 
a m- would have an ltexpected" value of 1 a 

but  would still vary i n  accordance with t h e  previously mentioned b i a s  

toward t h e  0 congruence c lass .  This leads t o  t h e  f i n a l  approximation 

presented here: 

Table 1 compares a c t u a l  values o f  the  Gm function with t h i s  f i n a l  ap- 

proximating funct ion* and shows the  approximation t o  be a qu i te  good 

one* a t  l e a s t  i n  t h e  range shown. 

TABLE 1 

Although a l l  of t h i s  r e a l l y  cannot prove the  conjecture, it does 

provide an in te res t ing  insight  i n t o  t h e  problema and i n t o  addi t ive 

number theory, i n  general.  

One of the  e a r l i e s t  and most i n t r i c a t e  attempts t o  use higher geom- 

e t r y  t o  solve the  problem of duplicating t h e  cube ( t h a t  is, f inding 

- 2  construction f o r  the  edge of a cube having twice the  volume of a 

cube with a given edge) was given by Archytas (ca. 400 B.C.). The 

11 method involves finding a point of in te r sec t ion  of a right circuZar 

cgzinder3 a tom48 of zero diameter* and a right circuZaP cone! 

NARCISSISTIC NUMBERS 

An anonymow mathematician once discovered t h a t  153 is the  sum of 

t h e  cubes of i t s  d i g i t s :  153 = l3 + s3 t s3. Probably soon afterwards, 

th ree  s imilar  integers  were found: 370, 3719 and 407. G .  H. Hardy* i n  

9 h i s  famous book A Mathematician's ApoZogy, c i t e s  these examples with the 

comment: "There is  nothing i n  these odd f a c t s  which appeals t o  t h e  mathe- 

matician." I n  terms of general theory, he is  cor rec t ;  stil l ,  i n  a t  l e a s t  

two respects  there  is something of i n t e r e s t  here: first of a l l ,  a n y  

empirical observation serves a s  a s t a r t i n g  point f o r  various generaliza-  

t i o n s Â  and these i n  turn lead t o  special izat ions,  so  t h a t  many r e l a t e d  

r e s u l t s  and ideas may be developed ( t h i s  is  t h e  main t h e s i s  of George 

Polyat s work Mathematics and PZausibZe Reaeoning) ; and secondly, i n  con- 

sidering problems of t h i s  type we have the  chance t o  apply and prac t ice  

many bas ic  techniques of  number theory-- and f o r  t h a t  matter* of logic .  

This a r t i c l e  is  concerned somewhat with the  second aspect-- though 

most of t h e  d e t a i l s  a r e  l e f t  t o  t h e  reader. Primarily we s h a l l  consider 

various l eve l s  of increasing general i ty .  

0. The curious example of 153 having once been discovered, it becomes 

an almost t r i v i a l  general izat ion t o  look f o r  other  three- digi t  integers  

equal t o  t h e  sum of t h e  cubes of t h e i r  d i g i t s .  Symbolically: l e t  N be 

an integer  with n d i g i t s ,  alaz ... an. Then we a r e  looking f o r  solut ions 

f o r :  - 

1. A more s ign i f ican t  s tep  is  t o  vary the  number of d i g i t s  o r  t h e  

b power. Thus we have* f i r s t  of a l l *  the  problem 

k a posi t ive integer .  I t  can be shown t h a t  i f  k is  a non-positive 

integer ,  then N = 1 is the  unique and t r i v i a l  solut ion.  



' ~ e f o r e  we list some s o l u t i o n s  f o r  t h e s e  c a s e s y  l e t  u s  in t roduce 

some of  t h e  terminology found i n  t h e  l i t e r a t u r e :  An in t ege r  of  n 
d i g i t s  equal  t o  t h e  sum of  t h e  k

th 
power of i t s  d i g i t s  is c a l l e d  a 

perfect digital  invmiant (PDT), o f  o r d e ~  k, I f  f u r t h e r  n = k ( a s  i n  

t h e  examples c i t e d  above)y t h e  i n t e g e r  is c a l l e d  a pluperfect digital  

invariant (PPDI). Some gene ra l  f a c t s  a r e  known: The number of  PPDI1s 

is  f i n i t e :  i n  f a c t y  no such in t ege r  can have more than 59 d i g i t s  [51. 

On t h e  o t h e r  handy t h e  number o f  PDI1s may poss ibly  be i n f i n i t e  [6]. 

A l l P D I 1 s  s o  f a r  discovered a r e  composite. The i n t e g e r s  0 and 1 a r e  

t r i v i a l  PDI t s  f o r  a l l  o rde r s .  There a r e  no PDI1s (and thus  no PPDIrs) 

o f  order  2-- t h i s  w i l l  be  shown s h o r t l y .  A t  l e a s t  one PPDI e x i s t s  f o r  

every  o rde r  fiom 3 through l o y  e.g.: o rde r  6:  548y834; o rde r  10: 

&y679,307y774. The sea rch  f o r  s o l u t i o n s  f o r  o rde r s  6 and up has been 

done by computer. A r e p o r t  is  t o  be  published soon f o r  o rde r s  11 

through 1 5  171 ; apparen t ly  f u r t h e r  s o l u t i o n s  have been found. 

Now t o  show t h a t  t h e r e  e x i s t  no ( n o n- t r i v i a l )  s o l u t i o n s  f o r  o rde r  

2: i f  N is  a one- digi t  number, we have merely a 1  = al2* whence t h e  

t r i v i a l  so lu t ions .  I f  N has  f o u r  d i g i t s y  t hen  N 2 1000; b u t  each d i g i t  

is S g Y  s o  t h e  sum o f  t h e  squares  of  t h e  d i g i t s  is  &*g2 s 324. By in-  

duct ion it obviously fo l lows t h a t  t h e r e  is  no s o l u t i o n  if N has more 

than & d i g i t s .  This l eaves  only two- and t h r e e- d i g i t  numbers t o  con- 

s i d e r .  

I f  N is a two-digit  number, l e t  i ts  d i g i t  r ep resen ta t ion  be  denoted 

by ABy f o r  convenience. We want 10A + B = A~ t B~~ o r  A( l0  - A) = 

B(B - 1 ) .  Here A # 0, and t h e r e f o r e  B # 0, B # 1. Now one of  t h e  

f a c t o r s  on t h e  r i g h t  s i d e  is evena t h e  o the r  odd; t h e r e f o r e  a t  l e a s t  

one f a c t o r  on t h e  l e f t  s i d e  is a l s o  even, b u t  t hen  obviously both  of 

them a r e .  Thus 4 d iv ides  t h e  l e f t  s i d e ,  s o  4 is a d i v i s o r  of  e i t h e r  

B o r  B - 1 s i n c e  2 cannot d iv ide  both  B a n d B  - 1. Thus e i t h e r :  

B = 4  o r  8 o r :  B - 1 = 4  o r  8 

- -- B - 1 = 3  o r  7 B = 5  o r  9 
* 

B(B - 1 )  = 12 o r  56 B(B - 1 )  = 20 o r  72 

These f o u r  cases  a r e  e a s i l y  handled empir ica l ly :  no s o l u t i o n  e x i s t s .  

The t h r e e- d i g i t  ca se  w i l l  be presented only p a r t i a l l y .  The sum of  

t h e  t h r e e  squares  is  3.g2 S 243Â s o  100 S N S 243. Since t h e  maximum 

f o r  any d i g i t  is g Y  with  a square  o f  81y  t h e  sum o f  t h e  o t h e r  two 

squares  must t o t a l  a t  l e a s t  19. This  means t h a t  no s o l u t i o n  can conta in  

any of  t h e  fo l lowing p a i r s  o f  d i g i t s :  00, 01% 02y  03Â 04; 11, 12,  

14;  22, 23; 33. Immediately we have 155 S N S 199. One may now f i n i s h  

up empi r i ca l ly y o r  look f o r  f u r t h e r  devices :  i n  f a c t  t h e r e  is  an e l egan t  

approach t h a t  quickly  disposes  o f  t h e  e n t i r e  t h r e e- d i g i t  case .  

One comment: f o r  h igher  powers it would seem very  d i f f i c u l t  t o  

work ou t  s o l u t i o n s y  bu t  i n  f a c t  it has  been done by hand up through 

order  5 ,  s o  some reasonable  methods do e x i s t .  

2. Continuing t o  g e n e r a l i z e y  we may vary  t h e  exponent wi thin  t h e  ex- 

press ion.  We may f o r  in s t ance  t ake  exponents i n  a r i t h m e t i c  progress ion:  

where k ? Li is  a non-negative i n t e g e r  f o r  a l l  i. I f  1 = 0, t h i s  is  

again  (1 .2) .  When L = 1, many s o l u t i o n s  a r e  knowny e .g .  : 

2427 = 21 t b2 t t 74 ( a ~ c e n d i n g ) ~  and 332 = 35 + 34 t 23 (descending).  

No work seems t o  have been done f o r  > 1. 

A more s t r i k i n g  p o s s i b i l i t y  is t h e  l 'self-powerll: 

A n o n- t r i v i a l  s o l u t i o n  e x i s t s :  3435 = 33 t 44 t 33 + s5. I f  we de f ine  

o0 = O a  then 438,57gY088 is a l s o  a k+olution; b u t  i f  we d e f i n e  o0 = 1, 

then  t h e r e  is  no s o l u t i o n  ( a s  v e r i f i e d  by computer). 

A f u r t h e r  p o s s i b i l i t y :  l e t  t h e  exponents be t h e  d i g i t s  of  t h e  

number i n  some permutation. To reduce t h e  wearisomely l a r g e  number o f  

c a s e s y  we might consider  only  t h e  c y c l i c  permutations: 

where (i  + L) is reduced t o  modulo n. 

3. For t h e  next  l e v e l  of  g e n e r a l i z a t i o n y  l e t  u s  move away from powers 

of  t h e  d i g i t s  t o  more gene ra l  func t ions .  One obvious func t ion  t o  t r y  

is  t h e  f a c t o r i a l :  

Besides t h e  t r i v i a l  1 and only  two s o l u t i o n s  e x i s t :  40585y and a 

c e r t a i n  t h r e e- d i g i t  number t h a t  we l eave  t o  t h e  enjoyment of  t h e  r eade r .  

An upper l i m i t  f o r  N is r e a d i l y  e s t a b l i s h e d y  s o  t h a t  a computer search 

can b e y  and has  been y made. 



. Another function t o  t r y  is  summation i t s e l f :  

3 6 
That is t o  sayy  if N = 367Â f o r  instance* we consider liZ0 j t ljZ0 j t - 
liZ0 j = 6 t 21 t 28 (which is  not 367). In  f a c t y  no solut ion e x i s t s .  

But continuing i n  the  same veiny consider t h i s  idea f o r  higher powers: 

For k = two solut ions e x i s t :  290 and 291. The analysis  of t h i s  case 

has not been car r ied  any fur ther  ( fo r  k > 2). 

Another function: instead of the  sum of the  k
th 

powersy consider 

the  k
th 

power of the  sum of the  d i g i t s :  

This general izat ion is  formally obvious from (1.21, and a s  i n  t h a t  casey  

k must be a  posi t ive integer .  There e x i s t s  an impressive list of solu-  

t ions  131: from t h e  simple 81 = (8 t 1 I 2  512 = (5 t 1 t 213 and 

2401 = (2  t 4 t 0 t 1 I 4  through 205y962y976 = 46= and 52y523,350y14Q = 

34' a l l  t h e  way up t o  2 0 7 ~ ~ .  The number of solut ions may well  be 

i n f i n i t e *  s ince k may be s e t  a r b i t r a r i l y  l a rge .  

Another case occurs i n  t h e  l i t e r a t u r e ,  but seems l e s s  in te res t ing  

because too many solut ions e x i s t :  

(See [1Iy [2].) A well-known t e s t  of d i v i s i b i l i t y  s t a t e s  t h a t  N is 

d i v i s i b l e  by 3 (o r  9) if and only i f  the  sum of i t s  d i g i t s  is a  multiple 

of 3  ( o r  9 ) ;  thus any such integer  s a t i s f i e s  (3.5).  Another i n f i n i t e  

family of  solut ions cons i s t s  of integers  ending i n  O y  with the  sum of 

t h e  d i g i t s  being 10 (or  30). Other famil ies  can be developed. 

4.. Next, we may consider not a  summation a t  a l l y  but ra ther  a  pro- 

ducg d l f ined  on t h e  d i g i t s  of  t h e  number: 

or ,~analogous t o  e a r l i e r  expressions: 

But i n  f a c t  these two cases a r e  ident ical!  I t  wou ~ l d  seem tha 

413 

~t there  is  

no solut ion f o r  k = 1. No d i g i t  of N can be 0 (except i n  the  t r i v i a l  

case t h a t  N i t s e l f  is 0). I f  k  = and some d i g i t  of N is  s y  then 

every d i g i t  of N is odd. The analysis  f o r  t h i s  case has not been 

carr ied any fur ther  

Another case t o  consider is: 

b an integer .  Solutions do e x i s t :  f o r  b = 2 Â  35 = (3 t 2)(5 t 2 )  and 

56 = ( 5  t 2)(6 t 2); f o r  b = e Y  840 = (8 t 6)(4 t 6)(0 t 6) .  A question 

f o r  t h e  reader: can b be negative? 

5. The f i n a l  generalization we consider needs no detai led explanation: 

ra ther  it serves t o  place the  whole discussion i n  a  broader perspective. 

I f  we wr i te  N a s  ala  z . . .  an,  then we mean: 

In other  wordsy every integer  i n  posi t ional  notat ion is  ips0 fact0 a 

llfunction of i t s  digits1'-- though t h i s  does not s a t i s f y  t h e  def in i t ion  

of " n a r c i s s i s t i c  number1I. But we do have the  sweeping general izat ion:  

simply repeat  a l l  the  previous cases i n  d i f fe ren t  bases. 

The various functions we have mentioned here ce r ta in ly  do not 

exhaust the  l i s t  of p o s s i b i l i t i e s .  Where does one draw t h e  l i n e  i n  ad- 

mit t ing functions t o  cons ide~a t ion?  We suggest t h a t  herey a s  so of ten 

i n  more ser ious mathematical worky t he  c r i t e r i o n  is  the  indefinable one 

of elegance; i n  other  wordsy it is merely a matter of es the t ics .  We 

have a l so  mentioned here a  number of problems which have not been com- 

ple te ly  solved* which we s h a l l  leave f o r  the  enjoyment of our readers. 
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ANNOUNCEMENT OF NEW AWARDS BY LOCAL CHAPTERS 

PENNSYLVANIA BETA a t  Bucknell Univers i ty  announces t h e  P J L o ~ u ~ o ~  
J o h n  S. G o l d  hfd~mdch c o m p u o n ,  i n  honor of  a most e n t h u s i a s t i c  

and dedicated t eache r  a t  Bucknell Univers i ty  f o r  n e a r l y  50 yea r s ,  w i l l  

be administered by t h e  Department of Mathematics a t  Bucknell. The 

competit ion w i l l  c o n s i s t  of  a two and one-half hour examination on pre-  

ca lcu lus  m a t e r i a l ,  and w i l l  be open t o  a l l  high schools  i n  t h e  coun t i e s  

of Columbia, Lycoming, Montour, Northumberland, Snyder, and Union. Each 

high school may e n t e r  a team of t h r e e  s tuden t s  o r  i nd iv idua l  s tuden t s  

numbering two o r  l e s s ,  The mathematics l i b r a r y  of  t h e  school  en te r ing  

t h e  highest  scor ing team w i l l  r e c e i v e  a p r i z e  of  $100, and t h e  f i v e  

h ighest  scor ing ind iv idua l s  w i l l  each r e c e i v e  a copy o f  t h e  four-volume 

s e t  of The World of  Mathematics, and t h e  next  f i v e  ind iv idua l s  w i l l  be  

awarded honorable mention. The highest  scor ing ind iv idua l s  from each 

school w i l l  r ece ive  a c e r t i f i c a t e  of r ecogn i t ion .  

hEST VIRGIIiIA ALPhM a t  West V i rg in ia  Univers i ty  p l ans  t o  p resen t  a 

P i  hlu E p h d o n  h d  C u ~ z X 6 i u t e  t o  each s tudent  a t  West V i rg in ia  Univer- 

s i t y  who completes t h e  b a s i c  three-  o r  four- semester c a l c u l u s  sequence 

wi th  a s t r a i g h t  "Aff average. 

EDITORIAL NOTE 

chap te r s  a r e  urged t o  send u s  t h e  names of  t h e i r  awards win- 

n e i s  i n  o rde r  f o r  u s  t o  pub l i sh  them f o r  f u r t h e r  honor and r ecogn i t ion  

t o  those  s tuden t s  who a r e  achieving excel lence  i n  mathematics a t  some 

THE PARTITION FUNCTION 
AND CONGRUENCES 

A func t ion  which has  many i n t e r e s t i n g  p r o p e r t i e s  is  t h e  p a r t i t i o n  

func t ion  p ( n ) .  It is def ined a s  t h e  number o f  u n r e s t r i c t e d  p a r t i t i o n s  

of n ,  where two p a r t i t i o n s  a r e  equa l  i f  t hey  d i f f e r  only  i n  t h e  o rde r  of  

t h e i r  summands. For example, 

4 = 4 = 3 t 1 = 2 t 2 = 2 t l t l = l t l t l t l .  

Thus, p ( 4 )  = 5. (For convenience, we d e f i n e  p ( 0 )  = 1 . )  

It can be shown t h a t  p ( n )  is t h e  c o e f f i c i e n t  of  xn i n  t h e  i n f i n i t e  

product f (x ) - I  = ( 1  - x ) - l ( l  - x ~ ) - ~ * - - .  Th i s  can be seen us ing t h e  f a c t ,  

obtained from t h e  binomial expansion, t h a t  ( 1  - xn)-I may be w r i t t e n  i n  

t h e  form ljro xin. Thus 

Now if we expand t h i s  product formal ly ,  t o  a term each l / ( l  - xz)  must . . 
con t r ibu te  one and only one f a c t o r ;  and i f  dz  c o n t r i b u t e s  a s  a f a c t o r  

t o  some xn it is because j of  t h e  i t s  a r e  summands i n  a p a r t i t i o n  o f  n ,  

and conversely,  each p a r t i t i o n  o f  n corresponds t o  a unique s e t  of  fac-  
i 

t o r s ,  one from each l / ( l  - x ) whose product is  xn. That is, we have t h e  

following scheme: 

( 1  t x1 t x2 t ) ( l  t x2 t x4 t - - . ) ( l  t x3  t x6 t * . - I * * -  - - - 
number of 1's number o f  2 ' s  number o f  3 ' s  

con t r ibu ted  con t r ibu ted  contr ibuted 

Example:  Suppose we d e s i r e  t o  f i n d  p ( 5 ) .  I f  we analyze  t h e  con- 

t r i b u t i n g  terms and t h e  corresponding p a r t i t i o n s  we f i n d  (wi th  1's count- 

ing a s  zero  terms i n  each case ) :  

'writ ten while t h e  author  was an undergraduate a t  Rutgers Univers i ty .  

l e v e l .  



(1) 1 - 1 - 1 - 1 - ~ 5  or 5 (2)  ~ . l - l * ~ ~ - l  OF 1 + 4 

:3) 1 * x z ~ x 3 * ~ - i  or 2 + 3 (4)  xz-1*x3-l*l or 1 + 1 + 3 

(5)  x * x 4 * 1 * 1 ~ 1  or  1 + 2 + 2 ( 6 )  x 3 ~ x z * l ~ l * l  o r  1 + 1 + 1 + 2 

(7)  ~5.1.1.1.1 o r  1 + 1 + 1 + 1 

Thus p(5)  = 7. Thus we have shown i n  a formal sense t h a t  

Although the  above seems t o  be a perfect  means of obtaining p(n) ,  

one f inds  t h a t  f o r  l a rge  values of n the  process is an extremely lengthy 

one. Howevery t he re  i s  a theorem which is obtained using one of t h e  

following famous indent i t i es .  

(1) Euler t  s Ident i ty:  

(2) Jacobi t s  Ident i ty:  

The proofs of the  above may be found i n  131. We have: 

Theohem 1 :  I f  n 2 1 then 

p(n)  = p(n - 1 )  + p(n - 2) - p(n - 5) - p(n - 7)  + p(n - 12) 

+ p(n - 15) - 

where thd sum extends over a l l  pos i t ive  integers  f o r  which t h e  arguments 

of t h e  p a r t i t i o n  function a r e  non-negative. 

Proof: Using E u l e r l s  iden t i fy  we have f o r  1x1 c 1 

That ;is 

Thus 

p(n)  - p(n - 1 )  - p(n - 2) + p(n - 5) + p(n - 7)  - = 0, 
o r  

p(n)  = p(n - 1 )  + p(n - 2) - p(n - 5) - p(n - 7) + - a - .  

The above theorem serves a s  an algorithm, and using it we present a 

~omputer  program which generates p(n) f o r  1 s n 5 100: 

*NAME P(N) 
DIMENSION IP(lO0) 
I0 = 5 
DO 22 N = 1.100 
IP(N) = 0 * 

DO 3 J = ly50 
IJN = OS5*(3*(J**2) - J) 
IF (N - IJN) 2,15,10 

15 IP(N) = IP(N) + ((-I)**(J + I)) 
GO TO 2 

10 L = N - IJN 
IP(N) = IP(N) + ((-I)**(J+I))*IP(L) 
IJP = 0.5*(3*(~**2) + J) 
IF (N - IJP) 2y16,11 

16 IP(N) = IP(N) + ((-I)**(J + 1)) 
GO TO 18 

1 1  M = N - IJP 
IP(N) = IP(N) + ((-1)*(~+1))*1P(M) 

18 IF (J-50) 3y79y79 
3 CONTINUE 
2 WRITE (lOy5) NyIP(N) 
5 FORMAT (5X,15,10Xy122) 
22 CONTINUE 
79 CALL EXIT 

END 

Next we discuss congruences of t h e  p a r t i t i o n  function. The most up-to- 

date r e s u l t  concerning congruences of t h e  p a r t i t i o n  function is the  

following theorem (we remind t h e  reader  t h a t  [XI denotes t h e  g rea tes t  

integer  n such t h a t  n S x ) :  

Theohem 2 :  

(a )  I f  24m 5 1 (mod sn) ,  then p(m) E 0 (mod sn) 

(b) If 24m : 1 (mod 7n), then p(m) 5 0 (mod 7 [(n+2)/21 

n 
( c )  I f  24m E 1 (mod l l n ) ,  then p(m) Z 0 (mod 11 

(The proofs of ( a )  and (b)  a r e  found i n  [ E l ,  and a proof of ( c )  is  

found i n  [I]. ) 

It is important t o  note t h a t  i n  t h e  above theorem, m and n a r e  

pos i t ive  integers .  Also note t h a t  w i t h n  = 1 i n  each par t  of t h e  above 



theorem one ob ta ins  t h e  t h r e e  famous congruences of  Ramanujan, namely: 

( 1 )  p(5z  + 4)  = 0 (mod 5 )  

( 2 )  p(7z  + 5)  s 0 (mod 7 )  

( 3 )  p ( l l a  + 6)  2 0 (mod 11)  

For example, i f  n = 1 i n  Theorem 2(a)  we have 24m = 1 (mod 5 )  impl ies  

m = 4 (mod 51, which impl ies  m = 5s + 4, which impl ies  p(5z  + 4 )  = 0 

(mod 5 ) .  Of course  t h e s e  may be proved d i r e c t l y .  Using E u l e r ' s  

I d e n t i t y  and J a c o b i ' s  I d e n t i t y  ( 1 )  and ( 2 )  may be proved ( f o r  t h e  proofs  

s e e  [41). A s i m i l a r  proof of  (3 )  is  found i n  [91. 

There a r e  very  few congruences known f o r  p (n )  f o r  t h e  prime 13.  In  
161 one f i n d s  t h e  congruence: 

For n s 6 (mod 131, pCl^n - 7 )  = 6p(n) (mod 13) .  

The same au thor ,  Newman, a l s o  g ives  i n  [71 t h e  congruence: 

For (n ,6 )  = 1, p(84n2 - 
( " G  = 0 (mod 13) .  

I n  t h e  r e c e n t  paper [2], one f i n d s  t h e  congruences: 

For n = l  

( a )  p(594-13n + 111247) 2 0 (mod 13)  

( b )  p(168544110546799n - 6950975499605) S 0 (mod 13') 

No congruences involving only  t h e  p a r t i t i o n  funct ion a r e  known f o r  

primes 17,  19, o r  h igher .  

Likewise f o r  smal ler  primes, namely 2 and 3,  no congruences in-  

volving only  t h e  p a r t i t i o n  func t ion  a r e  known. I n  f a c t  a s  o f  t h i s  d a t e ,  

o t h e r  than checking a t a b l e  of p ( n ) ,  t h e r e  is no way of knowing whether 

p (n )  is  even o r  odd f o r  a given n.  However i n  [51 t h e r e  is t h e  

fo l lowing:  

The.o~.em 3: p(n)  is  even and odd i n f i n i t e l y  o f t e n .  

Proof: We have from Theorem 1, 

( 1 )  p ( n )  - p ( n  - 1 )  - p i n  - 2) t p(n - 5)  + . .- = 0, 

k 1 where t h e  gene ra l  term is given by (-1) p i n  - $(3k t 1)J. Now suppose 
- - *  

1 that-p(n)  5 0 (mod 2 )  f o r  a l l  n 2 a. With n = p ( 3 a  - 11, ( 1 )  becomes 

and s i n c e  p ( 0 )  = 1 we have a con t rad ic t ion  (modulo 2) .  Likewise, 

suppose p ( n )  s 1 (mod 2 )  f o r  a l l  n 2 b.  One o b t a i n s  a con t rad ic t ion  by 

t ak ing  n = b(3b + 1) /2  i n  (11, s i n c e  t h e  lef t- hand s i d e  con ta ins  an  odd 

number o f  odd terms. 

One can devote a l i f e t i m e  studying t h e  p r o p e r t i e s  of  p ( n ) ,  and t h e  

yea r s  w i l l  have been spent  i n  a f a s c i n a t i n g  a r e a ,  where an  i n f i n i t e  

number of ques t ions  remain t o  be answered. 
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WILL YOUR CHAPTER BE REPRESENTED I N  MISSOULA? ! A 

! 
It is  time t o  be making p lans  t o  send an u n d e m a d u a t e  de lega te  

[ o r  speaker from your chapter  t o  a t t e n d  t h e  annual  meeting of  P i  

Mu Epsi lon a t  t h e  Un ive r s i ty  o f  Montana, Hissoula ,  Montana 

dur ing August 20-22, 1973. Each speaker who p r e s e n t s  a paper i w i l l  r e c e i v e  t r a v e l  funds  o f  up t o  $300, and each de lega te ,  Up 
i 

[ t o  1 5 0 .  Chapters d e s i r i n g  t o  p a r t i c i p a t e  must apply f o r  t h e s e  

funds  a t  t h e  Nat ional  Off ice .  I 
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A GENERAL TEST FOR DIVISIBILITY 

Robb T. Ko&thu. 
UYU.vuui-ut-y 0 6  Richmond 

A top ic  of much i n t e r e s t  i n  number theory i s  t h a t  of d i v i s i b i l i t y .  

Under t h i s  top ic  there  has been much research done t o  f ind  methods t o  

t e s t  t h e  d i v i s i b i l i t y  of one number by another. Let us  r e c a l l  some of 

t h e  better-known methods of t e s t i n g  f o r  d i v i s i b i l i t y  by 3, 9, 7, 13, 11, 

and 17. 

To t e s t  a  number f o r  d i v i s i b i l i t y  by 3, f ind  t h e  sum of the  d i g i t s  

of the  number. I f  t h i s  sum is  d i v i s i b l e  by 3, then so is t h e  or ig ina l  

number, and conversely. 

A t e s t  f o r  d i v i s i b i l i t y  by 9 is  similar except t h a t  t h e  sum of t h e  

d i g i t s  is  tes ted  f o r  d i v i s i b i l i t y  by 9. The o r i g i n a l  number is  d iv i s-  

i b l e  by 9 if and only if t h i s  sum is d i v i s i b l e  by 9. 

To f ind  whether a  number is d i v i s i b l e  by 7, multiply the  u n i t s  

d i g i t  by 2 and subtract  t h i s  product from the  number tha t  r e s u l t s  from 

delet ing t h e  u n i t s  d i g i t  from t h e  given number. The or ig ina l  number is  

d i v i s i b l e  by 7 if and only i f  t h i s  difference is  d i v i s i b l e  by 7. 

To t e s t  f o r  d i v i s i b i l i t y  by 13, multiply t h e  u n i t s  d i g i t  by 4 and 

add t h i s  product t o  the  number obtained by delet ing the  u n i t s  d i g i t  

from t h e  given number. (This process may be repeated u n t i l  a  2-digit 

.lumber r e s u l t s . )  I f  the  r e s u l t  is d i v i s i b l e  by 13, then so is  t h e  

or ig ina l  number, and conversely. 

To t e s t  f o r  d i v i s i b i l i t y  by 11, a l t e r n a t e l y  add and subtract  the  

d i g i t s  of t h e  number. The number i s  d i v i s i b l e  by 11 i f  and only i f  the  

r e s u l t  is d i v i s i b l e  by 11. 

To t e s t  f o r  d i v i s i b i l i t y  by 17, multiply the  u n i t s  d i g i t  of t h e  

number by 51 and subtract  t h i s  product from t h e  number. The number is  

-d i v i s i b l e  by 17 i f  and only i f  t h i s  difference is d i v i s i b l e  by 17. 
-. - 

The general t e s t  f o r  d i v i s i b i l i t y  developed below includes each of 

the  above t e s t s  a s  spec ia l  cases. F i r s t ,  a  lemma from number theory 

w i l l  be s ta ted .  

e: Let a and b be posi t ive in tegers  such t h a t  (a ,b)  = 1. Then 

there e x i s t  in tegers  r and a  such t h a t  or + be = 1. 

The general t e s t  is contained i n  the following r e s u l t :  

Theatem: Let n  = 10a + b be a  posi t ive integer ,  with 0 2 b S 9; 

l e t  d  be a  posi t ive integer  such t h a t  (d,10) = 1; l e t  integers  r and a  

s a t i s f y  t h e  equation dr + 10s = 1. Then d divides n i f  and only i f  d  

divides (a  + be) .  

'Proof: Suppose d \ n .  Then dl (10a + b) ;  hence there  e x i s t s  an in te-  

ger t such t h a t  dt = 10a + b = l0a  + b(dp + 10s) = Ida + bdp + lobs. 

Then d ( t  - b r )  = 10a + lobs = 10(a + be); hence d\10(a + be) .  But it 

was assumed t h a t  (d,10) = 1, and it follows t h a t  dl (a  + be). 

Now suppose d I ( a  + be). Then there  e x i s t s  an integer  k such t h a t  

dk = a + be. I t  follows t h a t  d(10k) = Ida + lobs. Then d(10k + b r )  = 

10a + lobs + dbr = l0a + b ( 1 b  + dp) = lOa + b = n. Hence d \ n .  

The second p a r t  of t h e  proof t e l l s  us  t h a t  t o  t e s t  n  f o r  d i v i s i b i l -  

i t y  by d, we f ind  values f o r  r and 8 such t h a t  dp + 10s = 1, multiply b 

( the  l a s t  d i g i t  of n )  by 8 and add t h i s  t o  a (the number t h a t  r e s u l t s  

from delet ing t h e  u n i t s  d i g i t  from n). I f  a  + bs is  d i v i s i b l e  by d ,  

then we know t h a t  n  is  d i v i s i b l e  by d. The f i r s t  pa r t  of t h e  proof 

t e l l s  us  t h a t  i f  d does not divide a + bs,  then d does not divide n. 

For example, l e t  us t e s t  1219 f o r  d i v i s i b i l i t y  by 23. We f ind  t h a t  

(23)(-3) + (10)(7) = 1 therefore r = -3 and 8 = 7. (Also d = 23, a  = 121, 

and b = 9.) Now a + be = 121 + 9(7) = 184. To t e s t  184 f o r  d i v i s i b i l -  

i t y  by 23, we t e s t  18 + 4(7) = 46 f o r  d i v i s i b i l i t y  by 23. But 23146; 

therefore 23 1184, and hence 23 11219. 

In the  theorem it was s ta ted  t h a t  (d.10) = 1. This eliminates a l l  

multiples of 2  and 5. But t h i s  r e a l l y  makes the  method no l e s s  general 

because d i v i s i b i l i t y  by 2 and 5 is  eas i ly  checked and then any such 

fac tors  can be deleted from d, a f t e r  which t h e  method is appl icable .  

Because d is  r e l a t i v e l y  prime t o  10, t h e  l a s t  d i g i t  of d  must be 1, 

3, 7 ,  o r  9. Table I shows t h e  four  possible forms of d, t h e  correspond- 

ing forms of the  equation dp + 10s = 1, where r and s have t h e  smallest 

absolute value of a l l  possible r and 8 ,  and t h e  corresponding forms of 

8. 

Table 2 contains values of d  and corresponding values of s. One 

can see t h a t  t h e  values of s form an ar i thmetic  progression. 



d d p  + 10s  = 1 s 

l o t  + 1 ( l o t  + 1 )  ( 1 )  + (10)  ( - t )  = 1 -t 

l o t  + 3 ( l o t  + 3 )  (- 3) + (10) ( 3 t  + 1 )  = 1 3 t  + 1 

l o t  + 7 ( l o t  + 7 )  ( 3 )  + (10) ( -3 t  - 2)  = 1 - 3t  - 2 

l o t  + 9 ( l o t  + 9 )  (-1) + (10) ( t  + 1 )  = 1 t + 1  

TABLE 1 

d s  d s  d s  d a  

1 0  3 1  7 - 2  9 1  

11 -1 1 3  4 17 -5 1 9  2 

21  -2 23 7 27 -8 29 3 

3 1  -3 33 10  37 -11 39 4 

TABLE 2 

It is  e a s i l y  shown t h a t  t h i s  t e s t  proves each of  t h e  s p e c i f i c  

t e s t s  c i t e d  a t  t h e  beginning o f  t h i s  paper.  

F i r s t ,  i f  d = 3, t h e  u n i t s  d i g i t ,  b ,  of  n = I d a  + b i s  mul t ip l i ed  

by 1 and added t o  a .  Af te r  t h i s  is  repeated s e v e r a l  t imes ,  t h e  r e s u l t  

is  t h e  sum of  t h e  d i g i t s ,  which is then  t e s t e d  f o r  d i v i s i b i l i t y  by 3. 

I f  a "1" is c a r r i e d  i n  any of  these  a d d i t i o n s ,  a "10" is  being sub- 

t r a c t e d  and a "1" is  being added, which i s  equivalent  t o  sub t rac t ing  9 .  

Since 3 d i v i d e s  9 ,  t h e  r e s u l t  is no t  a f f e c t e d .  

When t e s t i n g  f o r  d i v i s i b i l i t y  by 9, t h e  va lue  of  s is a l s o  1, so 

again  t h e  sum of  t h e  d i g i t s  is  found. Also a s  be fo re ,  i f  1 is c a r r i e d  

i n  t h e  a d d i t i o n ,  it r e s u l t s  i n  9 being sub t rac t ed  from t h e  SUB, which 

w i l l  not  a f f e c t  t h e  r e s u l t .  

Using t h i s  t e s t  f o r  11, t h e  f i n a l  d i g i t ,  b ,  is mul t ip l i ed  by -1 

and-added t o  a. After  t h i s  process  is  repeated s e v e r a l  t imes  t h e  

r e s u l t  is  t h e  same a s  t h a t  o f  a l t e r n a t e l y  adding and sub t rac t ing  t h e  

d i g i t s  of  t h e  o r i g i n a l  number. I n  t h e  case  where one must "borrow" 

dur ing t h e  sub t rac t ion ,  1 0  is  added t o  t h e  f i n a l  d i g i t  of  t h e  d i f f e r -  

ence and 1 is sub t rac t ed  from t h e  next- to- las t  d i g i t .  But on t h e  next 

sub t r ac t ion ,  t h e  "10" which was added is now sub t rac t ed ,  r e s u l t i n g  i n  

11 being sub t rac t ed ,  which w i l l  no t  a f f e c t  t h e  r e s u l t .  

We can s e e  from t h e  va lues  of  s when d equa l s  7 o r  1 3  t h a t  t h e s e  

two methods a r e  i d e n t i c a l  t o  t h e  t e s t s  f o r  7 and 1 3  shown e a r l i e r .  

I n  t h e  t e s t  shown previously  f o r  17 ,  a f t e r  sub t r ac t ing ,  t h e  l a s t  

d i g i t  of  t h e  d i f f e r e n c e  w i l l  always be zero ,  which can then  be ignored. 

The on ly  p a r t  t o  be concerned with then was t h e  product o f  5 and t h e  

u n i t s  d i g i t ,  which was sub t rac t ed  from a l l  b u t  t h e  u n i t s  d i g i t .  With 

t h i s  new method, when d = 17,  then s = -5. So a f t e r  mul t ip lying t h e  

l a s t  d i g i t  by -5 and adding t h a t  t o  t h e  number r ep resen ted  by t h e  r e -  

maining d i g i t s ,  t h e  same r e s u l t  is obta ined a s  when mul t ip lying t h e  

u n i t s  d i g i t  by 51 and sub t rac t ing  from t h e  o r i g i n a l  number. 

To i l l u s t r a t e  t h e  compact form i n  which a complete t e s t  can be 

displayed,  l e t  u s  t e s t  22306426 f o r  d i v i s i b i l i t y  by 89. Note t h a t  

89 = 10(8)  + 9,  hence t = 8 and 8 = 8 + 1 = 9. The computation can 

be arranged a s  fo l lows:  

22306426 

Now 89 189, t h e r e f o r e  89 122306426. 

This  gene ra l  t e s t  f o r  d i v i s i b i l i t y  can be extended t o  numbers i n  

any base.  I n  base b ,  t h e  d i v i s o r  d w i l l  t ake  t h e  form b t  + n where 

0 s n s b - 1. The equat ion dp + 10s  = 1 becomes dp + b s  = 1. A 

gene ra l  so lu t ion  f o r  r and s i n  t h i s  equation is: 

where k is  chosen s o  t h a t  r and 8 a r e  in t ege r s .  It i s  now t h e  value  o f  

bk - t + k t h a t  is used t o  perform t h e  d i v i s i b i l i t y  t e s t .  (-4 
The proof of  t h e  theorem f o r  base  b is i d e n t i c a l  t o  t h a t  f o r  base  10,  

with t h e  r e s t r i c t i o n  t h a t  (d ,  b )  = 1. 

A s  an  i l l u s t r a t i o n ,  consider  t h e  t e s t  of  (461117 f o r  d i v i s i b i l i t y  



by (24),. I n  t h i s  case ,  b = 7 ,  t = 2, n = 4; t h u s  

A s u i t a b l e  va lue  f o r  k is  3, g iv ing  s a value  of  13,  which is rep re-  

sented a s  (1617. We now perform t h e  t e s t  i n  base 7 ,  wi th  a l l  ari thme-  

t i c  being done, of  course,  i n  base  7. 

And ( 2 4 ) 7 1 ( ~ 4 ) ~ ,  t h e r e f o r e  ( ~ 4 ) ~ 1 ( 4 6 1 1 ) ~ .  

NEW KEY-PINS AVAILABLE 

Because of increased c o s t s ,  t h e  Balfour Company has 

r e c e n t l y  produced a new key-pin f o r  P i  Mu Epsi lon 

which is i d e n t i c a l  i n  appearance t o  t h e  o ld  one, but  

con ta ins  l e s s  gold.  The Nat ional  Off ice  i s  now d i s-  

t r i b u t i n g  t h e s e  p i n s  a t  t h e  s p e c i a l  p r i c e  of  $5.00 

p e r  p i n ,  p o s t  paid  t o  anywhere i n  t h e  United S t a t e s .  

Be s u r e  t o  i n d i c a t e  the  Chapter i n t o  which you were 

i n i t i a t e d  and t h e  approximate d a t e  of your i n i t i a t i o n .  

Gold p ins  a r e  s t i l l  a v a i l a b l e  f r o m  our  author ized 

jeweler,  L.  G. Balfour Company, but  t h e  new gold f i n -  

- i s h  p ins  a r e  a v a i l a b l e  only from t h e  n a t i o n a l  o f f i c e :  
* 

P i  Mu Epsi lon,  Inc .  
601 Elm Avenue, Room 423 
Univers i ty  of  Oklahoma 
Norman, Oklahoma 73069 

THE PERMUTATION GAME 

By Thoma Fou~ne^fce. 
U~~,Lvm-i ty  of, 1Ww.o& 

The permutation game ( f o r  l ack  o f  a b e t t e r  name) gene ra l ly  con- 

s i s t s  of 1 5  numbered squares  confined i n  a l a r g e r  square  j u s t  l a r g e  

enough t o  hold 16 squares.  I n  t h e  diagram ( s e e  Fig.  11,  "X" denotes  

the  blank square.  The 1 5  squares  a r e  f r e e  t o  move up and down, r i g h t  

FIGURE 1 

o r  l e f t ,  bu t  t hey  can only  be moved when t h e  blank square  is ad jacen t  

and cannot be moved ou t s ide  of  t h e  conf ining square.  When playing t h i s  

ch i ld ren ' s  game t h e  quest ion n a t u r a l l y  a r i s e s  a s  t o  t h e  types  o f  permu- 

t a t i o n s  it is  poss ib l e  t o  ob ta in  wi th  t h e  simple moves which a r e  

allowed. 

We use  t h e  s tandard no ta t ion  f o r  permutations3, e .g . ,  P = ( a  , a ,  

, a )  is t h e  c y c l i c  permutation such t h a t  ( a  1 )P = a ,  ( a ) P  = a 3 ,  ... y 

( a ) P  = a .  A c y c l i c  permutation of t h e  form P = ( a  1' a 2 ) is  c a l l e d  a 

t r anspos i t ion .  Any permutation of a f i n i t e  number o f  elements can be 

decomposed i n t o  a product of t r a n s p o s i t i o n s ,  and t h e  number of t ranspo-  

s i t i o n s  i n  any such decomposition is  congruent modulo 2 t o  t h e  number of  

^ h i s  a r t i c l e  was w r i t t e n  while t h e  author  was an undergraduate a t  S t .  
Louis Univers i ty .  

2 ~ o r  another  explanat ion o f  t h e  permutation game see:  In t roduc t ion  t o  
Contemporary Algebra, Marvin L .  Tomber (Prent ice- Hal l ,  pp 350 f f ) .  

more on t h e  theory of  permutations see :  Her s t e in ' s  Topics i n  
Algebra, o r  any o t h e r  in t roductory  a lgebra  t e x t .  



t r a n s p o s i t i o n s  i n  any o t h e r  decomposition. Thus, we de f ine  a permuta- 

t i o n  t o  be even i f  t h e  number of  t r a n s p o s i t i o n s  i n  any decomposition is  

even. Otherwise, t h e  permutation is s a i d  t o  be odd. We s h a l l  s tudy 

only  those  permutations which l eave  t h e  blank square i n v a r i a n t .  

PtOpo&'uLLon 1 :  Any permutation ob ta inab le  i n  t h e  permutation game 

(which l eaves  t h e  blank square  i n v a r i a n t )  is  even. 

Proof: We f i r s t  no te  t h a t  t o  ob ta in  a permutation we move some 

square i n t o  t h e  p l ace  o f  t h e  blank square ,  thereby moving t h e  blank 

square.  Then we move another  square i n t o  t h e  new p o s i t i o n  of  t h e  blank 

square ,  moving t h e  blank square aga in ,  and s o  on. Thus t h e  blank square  

is t r a c i n g  a pa th  and we have only  t o  s tudy t h e s e  pa ths .  Also, t h e  

blank square  even tua l ly  comes t o  r e s t  a t  i t s  i n i t i a l  p o s i t i o n ,  s ince  we 

a r e  consider ing permutations which l eave  it i n v a r i a n t .  

We s tudy f i r s t  "simple c losed paths" of  t h e  blank square ,  t h a t  is, 

those  paths  which have no s e l f - i n t e r s e c t i o n s  u n t i l  t h e  blank square  

reaches  i t s  o r i g i n a l  pos i t i on .  For every move t o  t h e  l e f t ,  t h e r e  must 

be one t o  t h e  r i g h t .  For every move up, t h e r e  must be  a move down, and 

s o  on. Thus, t h e  blank square  moves an  even number of  t imes .  Let u s  

c a l l  t h e  f i r s t  square  i n  t h e  pa th  of t h e  blank square a ,  t h e  second a 
2 '  

and s o  on, up t o  t h e  l a s t  square  i n  t h e  pa th ,  which we c a l l  a ( s e e  Fig .  
n 

2 ) .  A s  t h e  blank square  moves around i t s  pa th ,  a moves t o  t h e  i n i t i a l  

FIGURE 2 
- - -  

p o s i t i o n  o f  t h e  blank square ,  a moves t o  t h e  i n i t i a l  pos i t i on  of a 
2 1' 

and s o  on, u n t i l  a moves t o  t h e  i n i t i a l  p o s i t i o n  of  an-l. Then t h e  n 
blank square  is  i n  t h e  i n i t i a l  pos i t i on  o f  a and has  one more move t o  

n 
make. It r e t u r n s  t o  i t s  i n i t i a l  pos i t i on  and moves a t o  t h e  i n i t i a l  

1 
p o s i t i o n  o f  a .  Thus, t h e  permutation obta ined i s  

( a l , m l ,  . ,a 3 ,a 2 ) = (a l ,an)(a l ,an- l  ) ... ( a  , a ) ( a  , a2 ) .  

The blank square  moves an even number of  t imes ,  bu t  it moves a twice .  

Since each move of t h e  blank square a f f e c t s  one square ,  t h e r e  must be an 

odd number of  such squares ,  s o  n is  odd. Therefore,  t h e  permutation ob- 

t a ined  must be even, a s  can be seen from t h e  above decomposition i n t o  

t r anspos i t ions .  

We now use induct ion on t h e  number of s e l f - i n t e r s e c t i o n s  made by 

t h e  pa th  of  t h e  blank square i t s e l f .  We have d e a l t  with t h e  case  n = 0. 

Let P be a permutation obtained from a pa th  o f  t h e  blank square with n 

s e l f - i n t e r s e c t i o n s .  Let a be t h e  square a t  which t h e  pa th  makes i t s  

f i r s t  s e l f - i n t e r s e c t i o n  ( see  Fig .  3 ) .  We decompose P i n t o  t h e  product 

of  permutations RST, where R i s  t h e  permutation obtained by moving t h e  

FIGURE 3 

blank square along t h e  pa th  o f  P u n t i l  it reaches  t h e  f i r s t  s e l f - i n t e r -  

s ec t ion  a ,  S is  t h e  permutation obta ined by cont inuing t h e  movement o f  

t h e  blank square along t h e  path  of  P u n t i l  it again  reaches  a ,  and T is  

t h e  permutation which completes t h e  path  of  t h e  blank square ,  a s  does P. 

R and S must permute d i s t i n c t  squares  on t h e  board. For i f  t hey  do n o t ,  

t h e  paths  of  R and S must i n t e r s e c t .  But they  i n t e r s e c t  only a t  a ,  s ince  

t h i s  is t h e  f i r s t  s e l f - i n t e r s e c t i o n  of t h e  e n t i r e  path ,  and t h e  pa th  o f  

S begins a t  a and ends a t  a with no s e l f - i n t e r s e c t i o n s .  Therefore,  t h e  

only  square  which both  R and S can move is a ,  bu t  a s  can be  seen from 

Fig.  3 ,  S does no t  move a a t  a l l .  Therefore,  RS = SR and hence 

P = RST = SRT = SCRT). 
S is  an even permutation by t h e  case  f o r  n = 0. RT is  even by t h e  in-  

duct ion hypothesis s ince  it has fewer than  n s e l f - i n t e r s e c t i o n s .  Since 

t h e  product of even permutations is  even, P is  even, ending t h e  proof.  



We s e e  a t  once t h a t  we cannot ob ta in  t h e  permutation of j u s t  two 

squares  on t h e  board, s ince  t h i s  is an odd permutation. Also, s t a r t i n g  

wi th  Fig .  1, we cannot ob ta in  t h e  permutation of  Fig .  4 ,  s i n c e  t h i s  per-  

mutation is  

P = (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9), 

which is odd. 

FIGURE 4 

Pfiopohition 1 :  Any even permutation ( l eav ing  t h e  blank square  in-  

v a r i a n t )  is  ob ta inab le .  

Proof: Any d i s t i n c t  squares  a ,  b ,  and c arranged i n  t h e  configura-  

t i o n  of  Fig .  5 can be  c y c l i c a l l y  permuted a s  ind ica t ed .  By r e t u r n i n g  t o  

FIGURE 5 

i t s  o r i g i n a l  p o s i t i o n  along t h e  same pa th  by which it reached a ,  b ,  and 

c, t h e  blank square  a f f e c t s  only  7, b ,  and c and it permutes t h e s e  c y c l i -  

c a l l y .  I f  a ,  b ,  and c a r e  not  i n  t h e  conf igu ra t ion  of  Fig .  5 ,  we can 

always pu t  them i n  such a config- '-ation by a permutation P (which a l s o  - - -  
may a f f e c t  many o t h e r  squares  on t h e  board) .  We may then apply a c y c l i c  

permutation C t o  a ,  b ,  and c i n  t h e i r  new p o s i t i o n s .  I t  fol lows t h a t  

c y c l i c a l l y  permutes a ,  b ,  and c and l eaves  t h e  r e s t  of  t h e  board 

inva r i an t .  Thus, f o r  any d i s t i n c t  a ,  b ,  and c we may ob ta in  t h e  c y c l i c  

permutation ( a ,b , c )  = ( a , b ) ( a , c ) .  But ( a , b ) ( c , d )  = ( a , b ) ( a , c ) ( a , c ) ( c , d )  = 

( a , b ) ( a , c ) ( c , a ) ( c , d )  = ( a ,b , c ) ( c , a ,d ) .  Thus, f o r  d i s t i n c t  a ,  b ,  c,  and 

d we may ob ta in  t h e  permutations ( a , b ) ( a , c )  and ( a , b ) ( c , d ) .  I f  P is  any 

even permutation we may decompose it i n t o  an  even number of  t r anspos i-  

t i o n s .  The f i r s t  two of  t h e s e  a r e  of t h e  form ( a , b ) ( a , c )  o r  ( .a,b)(c,d) 

and thus  a r e  ob ta inab le ,  and s i m i l a r l y  f o r  t h e  r e s t  of  t h e  p a i r s  i n  t h e  

decomposition. Therefore,  P is  t h e  product of  ob ta inab le  permutations 

and is  ob ta inab le ,  proving t h e  theorem. 

P ropos i t ions  1 and 2 g ive  u s  t h e  following 

Coho&?hy: A permutation l eav ing  t h e  blank square  i n v a r i a n t  is  ob- 

t a i n a b l e  i f f  it is  even. 

COUNTEREXAMPLE TO "THEOREM" PUBLISHED I N  LAST ISSUE 

Robert W .  Quackenbush o f  t h e  Univers i ty  of  Monitoba has  pointed 

out  t h a t  t h e  main r e s u l t  of  t h e  note  "Basis f o r  an  Algebraic System" by 

J. E .  Cain, Jr. ( t h i s  Jou rna l ,  Vol. 5 ,  No. 7 ,  1972, pp. 319-320) is i n  

e r r o r .  The following is a counter-example: 

Let A be t h e  p o s i t i v e  i n t e g e r s  and l e t  F = {f},  where 

f is  of  degree 2 and i s  def ined by 

f(rn,n) = rn + 1, i f  rn 2 n, 

= 1, otherwise .  

I t  i s  e a s i l y  seen t h a t  t h e  a lgebra  (A;F) is  no t  f i -  

n i t e l y  generated.  However, (A;F) is  generated by 

any i n f i n i t e  subset,  and a s  such, cannot have a 

minimal generat ing s e t  ( b a s i s ) .  

The f law i n  t h e  argument a s  o r i g i n a l l y  presented occurs  when it is  a 

assumed t h a t  a maximal independent subset  gene ra t e s  t h e  e n t i r e  a lgebra .  



Magic Squares Wi th in  Magic Squares 

by J o ~ e p h  M .  tto^w. 
Cati6on.WJO. State. Univm-Lty at Sara V i e g o  

I n  [l] Strum e x h i b i t s  two f i v e  by f i v e  magic squares  which conta in  

t h r e e  by t h r e e  magic squares .  In  Fig.  1 below we have exh ib i t ed  a seven 

by seven magic square t h a t  con ta ins  wi thin  it a f i v e  by f i v e  magic 

square and a t h r e e  by t h r e e  square a s  exh ib i t ed  by Strum i n  [l]. 

Since a l l  e n t r i e s  a r e  of  t h e  form n + (qc  + p ) b  and n and b a r e  

d i s t i n c t  i n t e g e r s  it is  s u f f i c i e n t  t o  have c 2 6 t o  in su re  t h a t  a l l  

e n t r i e s  be d i s t i n c t .  I f  one uses  l a r g e  enough i n t e g e r s  f o r  q and p, 

t h i s  author  i s  of  t h e  opinion t h a t  any (2m + 1 )  by (2m + 1 )  magic square 

can be  obta ined t h a t  w i l l  have t h e  proper ty  of  conta ining wi thin  it 

success ive  magic squares.  

FIGURE 1 

REFERENCES 

1. Strum, Robert C., Some Comments on "A Class  of Five  by Five  Magic 
Squayes, P i  Mu Epsilon Journa l ,  2, No. 6,  1972, pp. 279-280. 

BRIEF REVIEW OF TWO NEW JOURNALS OF GEOMETRY 

Geometriae Dedicata.  D .  Reidel Publ ishing Company, Holland. Vol. 

1, No. 1, November 1972 (published yea r ly ) .  $40.63 per  volume t o  i n s t i -  

t u t i o n s ,  $24.38 per  volume t o  ind iv idua l s .  ( E d i t o r i a l  office:  H .  

Freudenthal,  Mathematisch I n s t i t u u t  de r  R i jksumive r s i t e i t  Utrecht ,  

Utrecht ,  Budapestlaan - The Nether lands . )  A s  i t s  name impl ies ,  t h i s  

journal  is dedicated t o  geometry, a perhaps obso le t e  subdivis ion of  

mathematical r e sea rch  i n  t h e  c l a s s i c a l  sense of t h e  term. However, t h e  

following t o p i c s  appear t o  be among those  which t h e  e d i t o r s  a r e  pre-  

s e n t l y  iden t i fy ing  a s  belonging t o  t h i s  a r e a ,  judging from t h e  a r t i c l e s  

t o  be published i n  t h e  f i r s t  two i s sues :  C l a s s i c a l  Geometry (such a s  

P ro jec t ive  Geometry, and Euclidean and Noneuclidean Geometry), Convex- 

i t y ,  Algebraic Geometry, F i n i t e  Geometry, Transformation Groups, Lie  

Theory, Tesse l a t ion  Theory, and Axiomatic Geometry ( o r  Foundations).  

Apparently, t o p i c s  i n  topology w i l l  be avoided -- even Geometric 

Topology (gene ra l  curve theory,  manifold theory,  and problems pe r t a in ing  

t o  t h e  topology of  fi, n 2 21 ,  a s  a r e  t o p i c s  i n  Graph Theory, although 

t h i s  po in t  i s  not  made c l e a r  i n  the  e d i t o r i a l  po l i cy  s ta tement .  The 

only statement which a t tempts  t o  i d e n t i f y  those  a r e a s  acceptable  t o  

Dedicata r eads  "... most people and, i n  p a r t i c u l a r ,  geometers w i l l  

agree  t h a t  t h e r e  s t i l l  e x i s t s  something t h a t  r i g h t l y  may be termed ge- 

ometry, i f  no longer  a s  a we l l  def ined domain then c e r t a i n l y  a s  a spe- 

c i f i c  a t t i t u d e  of t h e  c r e a t i v e  mind, which d i s t ingu i shes  i t s e l f  from 

o the r  a t t i t u d e s  i n  mathematical research."  

Obviously, a s  f a r  a s  Dedicata is concerned, t h e  f i n a l  dec i s ion  a s  

t o  what c o n s t i t u t e s  a t o p i c  i n  geometry and what does not  r e s t s  wi th  t h e  

very d i s t ingu i shed  members of  t h e  e d i t o r i a l  board, which includes  such 

renowned geometers a s  Hans Freudenthal (chairman),  A .  B a r l o t t i ,  H.  S. M .  

Coxeter,  Branko ~runbaum,  G .  Hajos, D. G .  Higman, D .  R .  Hughes, A .  V. 

Pogorelov, G .  C .  Shephard, J .  T i t s ,  and K .  Yano. 

Journal o f  Geometry. Birkhauser Verlag, Base1 and S t u t t g a r t  . Vol. 

1, No. 1. DM 35 pervolume o r  DM 25 pe r  s i n g l e  copy. ( E d i t o r i a l  office:  

~ n i v e r s i t a t  Bochum, Mathematisches I n s t i t u t ,  463 Bochum, Germany.) 



similar t o  Geometriae Dedicata i n  purpose and coverage, t h i s  j ou rna l  is  

devoted t o  t h e  pub l i ca t ion  of c u r r e n t  developments i n  geometry, " pa r t i c-  

u l a r l y  o f  r e c e n t  r e s u l t s  i n  Foundations of  Geometry, Geometric Algebra, 

F i n i t e  Geometries, Combinatorial  Geometry, and s p e c i a l  geometr ies .  

Although Geometry is  a d i s c i p l i n e  dominating t h e  i n t e r e s t  and e f f o r t s  of 

a g r e a t  many mathematicians throughout t h e  world, t o  d a t e  t h e r e  has been 

no jou rna l  devoted s p e c i f i c a l l y  t o  t h e s e  t o p i c s .  I t  is  hoped t h a t  t h e  

' Jou rna l  of Geometry' w i l l  he lp  t o  f i l l  t h e  gap" (from t h e  e d i t o r i a l  

po l i cy  s ta tement) .  The e d i t o r i a l  board c o n s i s t s  o f  t h e  fo l lowing prom- 

i n e n t  geometers: R.  Artzy, M .  Barner,  A.  B a r l o t t i ,  W .  Benz, R .  C .  Bose, 

H.  Crapo, H.  Karzel,  R.  Lingenberg, R. Rado, and G .  T a l l i n i .  

MOVING?? 

BE SURE TO LET THE JOURNAL KNOW! 

Send your name, o l d  address  wi th  zip code 

and new address  with z ip  code t o :  

P i  Mu Epsilon Journal  
601 Elm Avenue, Room 423 
 he" Univers i ty  o f  Oklahoma 
Norman, Oklahoma 73069 

PROBLEM DEPARTMENT 

EcLUed by  Leon Bank066 
Lô i A n g d u ,  CaJU.6oIWAJO. 

This department welcomes problems believed t o  be new and, as a 

rule,  demanding no greater ab i l i t y  i n  problem solving than that  of 

the average member of the Fraternity. Occasionally we shall publish 

problems that  should challenge the a b i l i t y  of the advanced under- 

graduate or candidate for the Master's Degree. Old problems cha~ac- 

terized by novel and elegant methods of solution are also acceptable. 

Proposals should be accompanied by solutions, i f  available, and by 

any information that  w i l l  ass i s t  the edi tor.  Contributors of pro- 

posals and solutions are requested t o  enclose a self-addressed post- 

card t o  -expedite acknowledgement. 

Solutions should be submitted on separate sheets containing the 

name and address of the solver and should be mailed before the end 

of November 7973. 

Address a l l  communications concerning problems t o  D r .  Leon 

Bankoff, 6360 Wilshire Boulevard, Los Angeles, California 90048. 

Problems for Solution 

292. Plop0-ie.d by  Jack GoA-,-junket, F o l U t  WU  ̂ High Schoot ,  
F l u ~ k i n g ,  Nw Yolk .  

I f  perpendiculars  a r e  const ructed a t  t h e  p o i n t s  of  tangency of  t h e  

i n c i r c l e  of a t r i a n g l e  and extended outward t o  equal  l eng ths ,  t hen  t h e  

jo in  of  t h e i r  endpoints form a t r i a n g l e  perspect ive  wi th  t h e  given 

t r i a n g l e .  

293. Pkopohed by Lw Kowivuiln., Morgan S-ta-te CoUege., Ba t t imom,  

hk7JLyhd. 

Prove t h a t  N = 531Â° + 1 0 3 ~ ~  is  d i v i s i b l e  by 78. 

294. Paopo~e.d by  CMu U. T ~ g g ,  Sun V iego ,  CaJU.6oifu.a.. 

Show t h a t  ABCD is  a square  (Fig .  1 ) .  



L 

FIGURE 1 

295. Phop0be.d by h l m a y  S .  K h k t . n ,  Fold Sc^- in t i f , ic  l a b o h d o h y ,  

Vu f ibohn ,  hlic^u.gan. 

Determine an equation of  a  r e g u l a r  dodecagon ( t h e  extended s i d e s  

a r e  no t  t o  be included) .  

296. Phopobed by Solomon W .  Gotomb, UtM.ve~~.e ty  0 6  Sou, the~n 

CaJLHohIMd, Vqifi-fanawL of, ELe.vUu.caJL Engine.W-ng . 

1 )  Combine 2 ,  5, and 6 t o  make four  2 ' s .  

2) Combine 2 ,  5,  and 6 t o  make fou r  4 ' s .  

3 )  Combine 2, 5,  and 6 t o  make f o u r  5 ' s .  

4)  Combine 2 ,  5, and 6 t o  make f o u r  7 ' s .  

5 )  Combine 1, 5 ,  and 6 t o  make fou r  7 ' s  

297. Pkopo6e.d by R o g e ~  E .  Kue-ht, Kanba C d y ,  h1-IAboUA-C. 

A t r a f f i c  engineer is  confronted wi th  t h e  problem of  connecting 

two non- paral le l  s t r a i g h t  roads  by an S-shaped curve formed by a r c s  of 

two equal  tangent  c i r c l e s ,  one tangent  t o  t h e  f i r s t  road a t  a  s e l ec t ed  

FIGURE 2 

po in t  and t h e  o the r  touching t h e  second road a t  a  given po in t  (F ig .  2 ) .  

1 )  Determine t h e  r a d i u s  of  t h e  equal  c i r c l e s  s y n t h e t i c a l l y ,  tri- 

gonometrically o r  a n a l y t i c a l l y .  

2) I f  t h e  f i g u r e  lends  i t s e l f  t o  an  Euclidean cons t ruc t ion ,  how 

would one go about i t ?  

298. Phopobad by Paul &doh, Budapest, Hu-itgmy and Jan hlyc^-e.itsk^., 

U C v m @  of, Cotohado, BouLide~, Cotohado 

Prove t h a t  

1 )  l i m  1- (^n+ 3 ^ n +  ... +"&) = 1 
n+- 

299. Phopobed by  David L .  S-iive.hman, W u t  lob Ange-Ce-A, C(Lt( .( i~hil^i .  

On t h e  back of  an envelope you s e e  t h e  r e s u l t s  of  an  in t e r rup ted  

game by two p laye r s  whom you know t o  be t i c - t a c - t o e  expe r t s .  I t  is  

gene ra l ly  recognized t h a t  t h e  exper t  never pu t s  himself i n t o  a  poten- 

t i a l l y  lo s ing  p o s i t i o n  and always wins i f  h i s  opponent g ives  him t h e  

oppor tuni ty .  There a r e  2  X ' s  and 2 0 ' s  on t h e  diagram. I t  is impos- 

s i b l e  t o  deduce whose move it is. Neglecting symmetry, what i s  t h e  

pos i t ion?  

300. Piopobed by  the .  Phobtem Editoh.  

It  can be shown with  d i f f i c u l t y  t h a t  i f  t h e  opposi te  ang les  of a  

skew q u a d r i l a t e r a l  a r e  equal  i n  p a i r s ,  t h e  opposi te  s i d e s  a r e  a l s o  equal  

i n  p a i r s .  (The reward of  i n s t a n t  immortali ty i s  o f f e red  t h e  s o l v r  who 

can prove t h i s  without d i f f i c u l t y ) .  I f  two opposi te  s i d e s  of  a skew 

q u a d r i l a t e r a l  a r e  equal  and t h e  o the r  two unequal,  i s  it poss ib l e  t o  

have one p a i r  o f  opposi te  angles  equal? 

301. Phopobad by  N e d  Jacobb, Bhonx, New Y o t k .  

One- fi f teenth  can be expressed i n  "decimals" i n  many ways,  f o r  - - 
example, a s  .0421 i n  base e i g h t ,  o r  a s  .013 i n  base f i v e .  Show t h a t  i n  

any base  n, t h e  "decimal" f o r  one- f i f t een th  w i l l  have no more than fou r  

r ecu r r ing  d i g i t s .  

302. Phopoh eA b y  David L. S - i i v w n ,  We& lob  Anget&!>, Caf ihomwi  

and A t f ,md  E .  Neuman, Alu Atpha Ve.Ua. F h d e ~ i t U y ,  New Yohk. 

A t a p e s t r y  is  hung on a  w a l l  so  t h a t  i t s  upper edge i s  a u n i t s  and 

its lower edge b u n i t s  above the  obse rve r ' s  eye- level .  Show t h a t  i n  



o r d e r  t o  o b t a i n  t h e  most f avorab le  view t h e  observer should s tand a t  a 

d i s t a n c e  /Sb from t h e  wal l .  

Solutions 

266. [ F a l l  19711 Ptopoied by  Fiank P .  hlJUULm, Pe.nn&yiva.rh S t a t e  

uniueAA-t-ti/. 

Prove o r  d isprove t h a t  t h e  only  i n t e g r a l  s o l u t i o n  of  t h e  equation 

r2 t 3 s 2  t 4 t 2  is  t h e  t r i v i a l  one, r = s = t .  

S o U o n  b y  ChaAif~4 W .  T a g ,  San V iego ,  CaJLHoinLa. 

Only p o s i t i v e  i n t e g r a l  s o l u t i o n s  need be sought.  The given equa- 

t i o n  may be  w r i t t e n  i n  t h e  form 

( 2 t  t r ) ( 2 t  - r )  = 3 s 2  = mn, 

where m > n, Then matching f a c t o r s  we have 

I t  t r = m  and I t  - r = n ,  

whereupon t = (m t n ) / 4  and r = (m - n ) / 2 .  Thus, f o r  a s o l u t i o n  i n  

i n t e g e r s  t o  e x i s t ,  m  and n ( t h e  f a c t o r s  of  3 s 2 )  must have t h e  same 

p a r i t y .  

I f  m  = 3  and n = s2, then 8  = 1 = t = r . 
I f  m  = 3 s  and n = 8 ,  then s = t = r .  
Non- tr iv ia l  s o l u t i o n s  may be obta ined from t h e  o t h e r  p a i r i n g s ,  

( m , n )  = ( a 2 ,  3 )  and ( 3 s 2 ,  1 ) .  Consider t h e  fou r  forms t h a t  s may 

have: 4k t 1, 4k t 3 ,  4k t 2 ,  o r  4 k ,  where k  > 0 .  

C a s e l a .  s = 4 k t l , m =  ( 4 k t 1 ) ~ , n = 3 .  

Then t = 4k2 t 2k t 1, r = 8k2 t 4k - 1. 

Case Ib .  s = 4k t 1, m  = 3 ( 4 k  t I ) ~ ,  n  = 1. 

Then t = 12k2 t 6k t 1, r = 2 t k 2  t 12k t1. 

C a s e I I a .  s = ~ k t s , m =  ( b k t 3 ) ' , n = 3 .  

Then t = 4k2 t 6k t 3 ,  r = 8k2 t 12k t 3 .  

Case I I b .  s = 4k t 3 ,  m  = 3 ( 4 k  t 3 ) 2 ,  fi = 1. 

Then t = 12k2  t 18k t 7 ,  r = 24k2 t 36k = 13. 
- - -  Indeed, i f  k  = 0 ,  s = 3 ,  t = 7 ,  r = 13. 

* 

Case I l i a .  s = 4 k t  2 , m =  2 ( 2 k t l ) 2 , n =  6 .  

Then t = 2 ( k 2  t k  t l ) ,  P = 2 ( 2 k 2  t 2k - 1 ) .  

Case I I I b .  s = 4k t 2 ,  m  = 6 ( 2 k  t I ) ~ ,  n = 2 .  

Then t = 2 ( 3 k 2  t 3k t 1 ) .  r = 2(6k2' t 6k t 1 ) .  

Case IVa. s = 4 k ,  m  = 4 k 2 ,  n = 12. 

Then t = k 2  + 3 ,  r = 2 ( k 2  - 3 ) .  

CaseIVb.  s = 4 k , m = 1 2 k 2 ,  n = 4 .  

Then t = 3k2 t 1, r = 2 ( 3 k 2  - 1 ) .  

Indeed, i f  k  = 1, s = 4  = t = r ,  a t r i v i a l  so lu t ion .  

Thus t h e r e  is  a t  l e a s t  one n o n- t r i v i a l  i n t e g r a l  s o l u t i o n  of  r2 t 
3s2  = 4 t 2  f o r  every i n t e g e r  value  o f  s except 21, Â ± 2  and Â±4 [Any 

combination of t h e  p o s i t i v e  and negat ive  s i g n s  i n  t h e  s o l u t i o n s  

( Â ± a  Â ± a  Â±a is  considered t o  be a t r i v i a l  so lu t ion ] .  I f  s = 0 ,  r = Â ± 2  

These do not  comprise a l l  of  t h e  i n t e g r a l  s o l u t i o n s  o f  t h e  given 

equation. I f  8 is  composite, f a c t o r i z a t i o n  of  3 s 2  i n t o  m  and n i n  

o t h e r  ways is  poss ib l e .  The more f a c t o r s  a has ,  t h e  more s o l u t i o n s  

a r e  poss ib l e .  Examples from each o f  t h e  fou r  cases  fo l low:  

Case I.  s = 4k t 1 = 21 = 3 ( 7 ) ,  m  = 4 9 ,  n = 27,  t = 19 ,  r = 11. 

Case 11. s = 4k t 3  = 15 = 3 ( 5 ) .  m  = 2 7 ,  n = 2 5 ,  t = 13, r = 1. 

Case 111. s = 4k t 2  = 30 = 2 ( 3 ) ( 5 ) ,  m  = 5 4 ,  n  = 5 0 ,  t = 2 6 ,  r = 2 .  

C a s e I V .  8  = 4 k =  6 0 = 4 ( 3 ) ( 5 ) , m = 1 0 8 , n = l O O , t =  5 2 , r = 4 :  

m  = 300,  n = 3 6 ,  t = 84 r = 132.  

M&o i o i u e d  by  JEANETTE BICKLEY, S t .  Lo& HUAhouAt,; K. BURKE, 

Sa-ton HaJU U & m ^ X y ,  Sou th  Olange., N .  J.; CHARLIE CARTER, U n i v i U ^ y  

06  Richmond, V-tAg-inia.; THOMAS CATO, JR., Adelphi U n i u ~ i ^ X y ;  ROBERT 

C. GEBHARDT, Hopa,tcong, N .  J.; CHARLES H. LINCOLN, Faye-tte.uhYe., N. C.; 

C. B. A. PECK, S ta t e .  CoUe-ge., Pennhyiuarh;  BOB PRIELIPP, U n i v v ~ i - U y  o f ,  

W.bcon&in, h h k o i h ;  and the. Ptopo ie~ . .  

EcLU'o1'i Note.: 

Most of  t h e  s o l v e r s  submitted v a l i d  s o l u t i o n s  cons i s t ing  of a 

s i n g l e  counter-example t h a t  disproved t h e  s ta tement .  Ca r t e r  considered 

t h e  Fermat-Pel1 Equation r2 t ( s 6  )2  = ( ~ t ) ~  and obta ined s o l u t i o n s  

from t h e  penultimate convergents i n  t h e  continued f r a c t i o n  expansion of  

"5. 

270. (Spring 19721 Ptopoied by Le -omd  CantUz, 'Duke. U n i v i ~ ^ t y .  
1 

Let a ,  0 ,  y  denote t h e  ang les  of  a t r i a n g l e .  Show t h a t  c o t  7 a + 

1 1 1 1 1 
c o t  - B t c o t  - y  Â 3( t an  - a  t t a n  - B t t a n  - y )  Â 2 ( s i n  a t s i n  B t 

2  2  2  2  2  

s i n  y )  

Sotu^Uon by  AL6ie.d E .  Numan, Mu Mpha V n i t a  F i a t v i n t i : ~ ,  New Yo ik .  

Using the  r e l a t i o n s  (Z c o t  a / ~ ) ~  2 3T. co t  u / 2  c o t  0 / 2  and 

T. c o t  a / 2  = ll c o t  a / 2 .  we have 



Since Z t a n  ct/2 2 6 and Z s i n  ct 5 3612,  with e q u a l i t y  only when 

a  = 13 = y,  it fol lows t h a t  3Z t a n  a /2  2 2Z s i n  a  . 
A h 0  holued bq FRANK WEST, U ~ u v m a q  06  Nevada, Reno, and t h e  

Ptopo~ a. 

2 7 1 .  [ S p r i n g  1 9 7 2 1  Ptopobed bq Solomon W .  Golomb, C&doh&Z In- 

~ . t L t d e  0 6  Technologq and $he U n i u e a d q  06 S o d h a n  C&6ot&Z. 

Assume t h a t  b i r thdays  a r e  uniformly d i s t r i b u t e d  throughout t h e  

year .  In  a  group of n  people s e l e c t e d  a t  random, what is  t h e  proba- 

b i l i t y  t h a t  a l l  have t h e i r  b i r thdays  wi th in  a  hal f- year  i n t e r v a l ?  

(This  hal f- year  i n t e r v a l  is  allowed t o  start on any day of t h e  yea r ,  i n  

a t tempt ing t o  f i t  a l l  n  b i r thdays  i n t o  such an i n t e r v a l . )  

So&on bq t h e  Ptopobm 

The p r o b a b i l i t y  is  because any of  t h e  n  b i r thdays  can be  

used, mutually exc lus ive ly ,  t o  s t a r t  t h e  six-month i n t e r v a l ,  i n  which 

case  t h e  p r o b a b i l i t y  of a l l  t h e  o the r  b i r thdays  f a l l i n g  i n t o  t h e  i n t e r -  

v a l  t hus  begun is  112 n-'. 

More gene ra l ly ,  i f  a l l  t h e  b i r thdays  a r e  t o  f a l l  i n  some f r a c t i o n  

a  of  a  yea r ,  where 0  < a  2 112, t h e  p r o b a b i l i t y  is  nan- l .  For t h e  case  

a  > 112, t h e  so lu t ion  becomes much more complicated. 

A h o  bolved bq MASAO JOHNSON, O c & d e M  CoUege, Lob A i g a u ;  

N. J. KUENZI ,  Ohhkobh, WAconbin; S I D  S P I T A L ,  Haqmd, Cd&jo t&Z;  

and FRANK WEST, U n i v m d y  06  Nevada, Reno. Some of  t h e  submitted solu-  

t i o n s  d i f f e r e d  from t h e  k o p o s e r ' s  s o l u t i o n .  

2 7 2 .  [ S p r i n g  1 9 7 2 1  Ptopohed bq Cmu W .  T a g ,  Sun Diego, 

Ca.&j ot&Z. 

A t imely  c ry ta r i thm is  t h e  ca lendar  v e r i t y  

7(DAY) = UEEK. - - - 
The- le t t e r s  i n  some order  r e p r e s e n t  consecut ive  p o s i t i v e  d i g i t s .  What 

a r e  they? 

So.hLion bq Cathekine A. Yee, Ohio S m e  Un ivmLtq ,  C o h b u ~ .  

Since t h e  l e t t e r s  D ,  A ,  Y ,  W, E, K r ep resen t  consecutive p o s i t i v e  

d i g i t s ,  we know t h a t  t h e i r  range must equal  6 .  Because of  t h e  range r e-  

s t r i c t i o n ;  we have (Y # 1, K # 7 )  and (Y + 9 ,  K + 3) .  Also s ince  Y and 

K a r e  d i s t i n c t ,  Y + 5 and K + 5 .  

The l a r g e s t  number t h a t  DAY can r e p r e s e n t  i s  987, and s ince  t h e  

product of 7  and 987 is  equal  t o  6909, W cannot exceed 6. 

These f a c t s  can be used t o  shor ten  t h e  execut ion time of  any com- 

puter  program f o r  solving t h e  cyptarithm. 

Below i s  a  FORTRAN program and output  from a  WATFIV compiler on an 

IBM370/165. The l e t t e r s  Y, E, K, W, A ,  D correspond t o  t h e  d i g i t s  2, 3  

c D, A, y Y  w y  E, K ARE.ALL-POSITIVE INTEGERS 
C W I S  LESS THAN OR EOUAL TO 6 

DO 3 W =  ly 6 
D 0 2 E = l y 9  
I F  ( E  .EQ. W) GO TO 2 
D O 1  K = l ,  9 

C K I S  NOT EOUAL TO 3 OR 5 OR 7 

WEEK = w*iooo + E*IOO i E*IO + K 
I F  (WEEK/7*7 .NE. WEEK) GO TO 1 
DAY = WEEK17 
Y = MOD(DAYy lO)  

C Y I S  NOT EQUAL TO 1 OR 5 OR 9 

IF (MAX-MIN .GT. 5 )  GO TO 1 
WRITE(6 , lO l  )DAY, WEEK 

101 FORMAT( lOXy 'DAY = ' y13 /10X, 'WEEK = ' y 1 4 )  
1 CONTINUE 
2 CONTINUE 
3 CONTINUE 

STOP 
END 

DAY = 7 6 2  
WEEK = 5 3 3 4  

Abo  holued bq RICHARD L. ENISON, N u  Yotk C a y ;  M I K E  F IDDES,  

S o d h  Dakota School 06  hlinu and Technologq; R. C. GEBHARDT, HO@COW 
N.J.; MASAO JOHNSON, Oc&dmtd CoUege, Lob A n g d u ;  JAMES R. METZ, 



S p ~ ~ i n g 6 i & d ,  1 k Z n o h :  JAMES REBHORNy Lebanon VaUey CoUege, AnnvLUe, 

PennbyLvania; FRANK WESTy U n i v m L t y  06 Nevada, Reno; GREGORY WLCZYNy 

L w h b w q ,  Penu y t v a t ~ L ~ ;  and t h e  Ptopob UL. 

273. [Spr ing  19721 Phopobed by C h m W  W. T*g, Sun Uiego, 

C d i 6 0 W .  

Twelve toothpicks can be arranged t o  form four  congruent equ i la t-  

e r a l  t r i ang les .  Rearrange t h e  toothpicks t o  form ten  t r i a n g l e s  of the 

same s i z e .  

S o U o n  by R. C .  G e b W ,  Jwnu  R. Mctz, R i c h 2  U. S tmAton  and t h e  

Phopob a, 
Form a r e g u l m  tetrahedron with s i x  toothpicks and use the  other  

s i x  toothpicks (tlwee t o  a face)  t o  build te trahedra on two of the faces  

of t h e  f i r s t  tetrahedron. 

E ~ O h f b  Note 

A two-dimensional solut ion of a modified version of the  problem 

was offered by FRANK WEST of t h e  University of Nevada, Reno. Each tri- 

angle i n  the  plane configuration is one-fourth the  area of the  t e t r a -  

hedral face i n  the  thee-dimensional solut ion (Fig. 3 ) .  

* 

FIGURE 3 

274. [Spring 19721 Phopobed by P c t a  A. ~ i n ' h t k o m ,  Genuee 

ConvnunLty CoUege, WV~LI, N. Y. 

Find the  value of 

f o r  an a r b i t r a r y  integer  k 2 1. 

So.&dion by N. J. KuenzL, Obhkobh, W h c o u i n .  

F i r s t  note t h a t  f o r  any integer  k 2 1, 

Hence, 

- - 

P J U Z ~ ~ U ~  i d e n t i d  bo lu t i onh  u t a e  bubmi-tted by RICHARD L.  

ENISON, N w  Yohk C a y ;  M A S 0  JOHNSON, O c & i d d  CoUege, Lob Ange lu ;  

DONALD KNIGHT, Ctevetimd, Ohio; M. J .  KNIGHT, C d i 6 0 h n h  1 n ~ W e  06 

Technotogy; BOB PRIELIPP , U n i v m L t y  06 Whconhin ,  Obhkobh; KENNETH 

ROSEN, F a m h t g h n ,  Michigan; SID SPITAL* H a y w ~ d ,  CaLL60hnh; ANN 

STEFFENy U n i v m i t y  06 Okluhom, Nornun, O ~ h o m ;  T. PAUL TURIEL, 

W e  U n i v m L t y  06 N w  Yotk at Pohdam; FRANK WEST, U n i v m L t y  06 

Nevaa'a, Reno; GREGORY WULCZYN, L& b w ,  Pennhytvak%ia; ROBERT MILLER 

U n i v m L t y  06 C&6ohnh d Lob Angel&; und &e PhopoAUL. 

275. [Spring 19721 Phopo6ed by GJwgohy Wdczyn, &ckn& Un ivm-  

b@, L& buhg, Pennh y t v a n h .  

If t ( n )  = n(n t 1112, show t h a t  there  a r e  an i n f i n i t e  number of 

solut ions i n  posi t ive integers  of 

P-1 6-1 
t ( a t  i )  = t ( a  t r  t i ) .  

i = o  ;=o 
So lu t i on  by Bob Phh.Lipp, The U n i v m L t y  06 Whconhin, Obhkobh. 

Some par t i cu la r  solut ions of the given equation are:  

t ( 1 )  t t ( 2 )  + t ( 3 )  = t ( Q ) ,  

t ( 5 )  t t ( 6 )  + t ( 7 )  t t ( 8 )  = t ( 9 )  t t ( l O ) ,  



' t ( l 1 )  t t ( 1 2 )  t t ( 1 3 )  t t ( 1 4 )  t t ( 1 5 )  = t ( 1 6 )  t t ( 1 7 )  t t ( 1 8 ) ,  

and 

t ( 1 9 )  t t ( 2 0 )  t t ( 2 1 )  t t ( 2 2 )  t t ( 2 3 )  t t ( 2 4 )  = 

t ( 2 5 )  t t ( 2 6 )  t t ( 2 7 )  t t ( 2 8 ) .  

This  l e a d s  u s  t o  con jec tu re  t h a t  

where s is an a r b i t r a r y  p o s i t i v e  i n t e g e r .  We now proceed t o  prove our  

c o n j e c t m e .  Using mathematical induct ion,  it can e a s i l y  be e s t ab l i shed  

t h a t  : 

[It may be of i n t e r e s t  t o  no te  t h a t  T is t h e  n
th 

t e t r a h e d r a l  ( o r  pyra- 

midal)  number. 1 Thus, 

= ( s 6  t 9s5 t 30s' t 45s3 t 29s2 t 6s )  

- ( a6  t 66' t 15S4 t 2 0 8 ~  t 14S2 t 48) 

= 3s5 t 15s4 t 25s3 t 15s2 t 2s.  

Therefore t h e  g iven equation has an i n f i n i t e  number of  s o l u t i o n s  i n  

p o s i t i v e  in t ege r s .  

A h 0  hoLued by FRANK WEST, U n i u m i &  0 6  Neuada, Reno, and t h e  

Pfcopoh a. 

- - 276 [Spring 19721 pfcopohed by R. S.  L W ~ W L ,  U n i u m L t y  06 
* 

W h c o n ~ i n ,  Waukaha. 

Find a such t h a t  t h e  r o o t s  of  z 3  t ( 2  t a ) z 2  - a z  - 2a t 4 = 0 

l i e  along t h e  l i n e  y = x .  

SoZu t i on  by S d  S p L t d ,  Hayumd, C & 6 0 ~ ~ .  
in14 

I f  t h e  r o o t s  be along y = x ,  they a r e  of  t h e  form z  = r e  , r 

r e a l .  Subs t i tu t ion  i n  t h e  given equation then y i e l d s  a  cubic  i n  P ,  

in14 2  - i i ~ / 2  
(*) p3  t (2  + a le -  P - a e  P - (2a - 4)e  - i 3 ~ / 4  = o ,  

a l l  o f  whose r o o t s  must be real,and t h e r e f o r e  a l l  o f  whose c o e f f i c i e n t s  

must be r e a l .  This  can only  be s a t i s f i e d  i f  a = 2 i ,  making ( 5 )  become 

r 3  t 2 f i 9  - 2P - 4 f i  = ( 9  - 2)(P t 2 G  ) = 0 

which, a s  r equ i red ,  has only r e a l  r o o t s .  

A&o ho lued by BOB PRIELIPP, U n i v m L t y  0 6  Whconh in ,  Ohhhohh; 

FRANK WEST, U n i u m L t y  06 Nevada, Reno; and t h e  Pfcopoha. 

277. [Spring 19721 Pfcopohed by U6fced E. Neuman [ d t h o d  ho .L tLon )  

Mu U p h a  D m  F&anL ty ,  N~LU Yofck. 

According t o  Morley's Theorem, t h e  i n t e r s e c t i o n s  of  t h e  ad jacen t  

i n t e r n a l  angle  t r i s e c t o r s  of  a  t r i a n g l e  a r e  t h e  v e r t i c e s  of an  e q u i l a t -  

e r a l  t r i a n g l e .  I f  t h e  conf igu ra t ion  is modified s o  t h a t  t h e  t r i s e c t o r s  

o f  one of t h e  ang les  a r e  omit ted ,  a s  shown i n  Figure  4 ,  show t h a t  t h e  

connector DE of t h e  two i n t e r s e c t i o n s  b i s e c t s  t h e  angle  BDC. 

I .  Amatgum 06 S o l u ~ X o n h  by S i d  S p W ,  H a y m d ,  C&60mia; David C. 

Kay, U n i u m L t y  06 Ofdahoma, Noman, O&ahom; L e o m d  C U z ,  Duke 

U n i u m L t y ;  and t h e  P h o p o h ~ ~ .  

FIGURE 4 FIGURE 5 

Three a p p l i c a t i o n s  of t h e  Law of  Sines  g ive :  

DE sinLBDE = BE s i n  0 = CE s i n  y = DE S ~ L C D E .  

3enceLBDE = LCDE. C a r l i t z  remarked t h a t  t h e  s t a t e d  r e s u l t  (DE b i s e c t s  

t he  angle  BDC) is  proved by K.Venkatachaliengar, American MathematicaZ 



.Monthly, 62(1958) 612-613. (Fig. 4) 

11. SoLuLion by Vavid C .  Kay, U n i v m L Z y  06 O W o m a ,  Noman, Oklahoma. 
Let t r i a n g l e  FGE be t h e  Morley t r i a n g l e  of t r ang le  ABC (Fig. 5) .  

C m o n  proofs  of  Morley's theorem u l t ima te ly  show t h a t  

0 = L + ! =  ,$ 
3 3 

( see  Coxeter7 Introduction t o  Geometry, Wiley l 9 6 l y  p. 2SY f o r  example). 

Hencey s ince BFD and CGD a r e  s t r a i g h t  angles ,  

p + L + e = * = v + L + , $  3 3 

o r  u  = v,  and FD = DG. Hence, t h e  perpendicular b i s e c t o r  of FG passes 

through D and E and b i s e c t s  t h e  angle FDG. That i sy  DE b i s e c t s  t h e  

angle  BDC 

111. Amalgam 06 SoLuLionb by Mabao Johuon ,  O c ~ d e v u i d  C o U q e ,  Lob 
A n g d u ,  C a L i 6 0 k h ;  M. J.  Knight, C a L i 6 0 m . k  1nbLLiLte 06 TechnoLogy, 
Pabadem, CaLidoknia; C W u  W .  T&g, San V i q o ,  C a L 4 0 k h ;  Fmnk 
W u X l  U n i u m L t y  06 Neuada, Reno; and Zhe Pkopoba. 

Since t h e  b i s e c t o r s  of t h e  angles  of a t r i a n g l e  a r e  concurrent,  DE 

b i s e c t s  angle BDC of t r i a n g l e  BDC. 

278. ISpr ing 19721 Pkopobed by Pad! ~ k d i b ~  U n i u m m  06 

Watmtoo, O W o ,  Canada. 
Prove t h a t  every in teger  S n!  is t h e  sum of C n  d i s t i n c t  d iv i so rs  

of n!  Try t o  improve t h e  r e s u l t  f o r  l a r g e  n; f o r  example, l e t  f ( n )  be 

t h e  smal les t  in teger  so  t h a t  every in teger  5 n!  is t h e  sum of f ( n )  o r  

fewer d i s t i n c t  d i v i s o r s  of  n. We know f ( n )  c n. b o v e  n  - f f n )  -+ 

No so lu t ion  has been received. One would be  welcome. 

279. [Spring 19721 Pfiopobed by S h d e y  JZabLnouLtz, PoLyXechnic 
1n.4LiA.te 06 Rtooblyn. 

Let Fo F17 F 2 ,  ... be a sequence such t h a t  f o r  n  2 2, 

Fn = Fn-l + Fn-2. Prove t h a t  

An Amdgam 06 So.P.uCLonb bg .$id S p L i d ,  H a w d ,  C&60hnh and Gkqokg 
Wdczyn,  B u c k n a  UniuU~Aay ,  L& buh.g , Pennb y L u a h .  

- For s u i t a b l e  A and B, we may wri te :  

l + K  
F = ~ a ~ + i ? P ,  a =-  

1 - &  - , B = -  n - 2 

and 

Hence 

AkQo boLved by HYMAN CHANSKY, U n i u m &  06 Muhyhnd; RICHARD L.  

ENISON, Nw Yokk C a y ;  MASAO JOHNSON, O c c i d e d  C o U q e ,  Lob A n g d u ;  
N. J. KUENZI, Obhkohh, Whconbin; PETER A. LINDSTROM, Genuee Commu&y 
C o U q e ,  Batuvia, Nu Yo&; BOB PRIELIPP, U n i v m a y  06 W h c o u i n -  
Obhkobh; KENNETH ROSEN, F&gXon, h4kh.igan; FRANK WESTy U n i v m m  06 

Neuada, Reno; and t h e  Pfiopoba. 

280. [Spring 19721 Pkopohed by K e n n h  Rohen, Uniuc%bLZy 06 

Michigan. 
Find a l l  so lu t ions  i n  in tegers  of t h e  Diophantine equation 

x3 + 17x2g + 73xy2 + 15g3 + x3g3 = 10,000. 

SoLuLion by t h e  Phopoba, &Ah a hint& h o U o n  by Fmnk W u X ,  

U n i u m a y  06 Neuada, Reno. 
I f  t h e  above equation is s a t i s f i e d  we have: 

x3 + 3x2y + 3xy2 + y3 + x3y3 E 4(mod 7)  

( x  + y I 3  + x3y3 : &(mod 7) .  

This  congruence is of t h e  form k3 + j3 5 &(mod 7 ) .  However, t h e  cubic 

res idues  of 7 a r e  O 7  1 and 6; hence t h e  only p o s s i b i l i t i e s  f o r  t h e  

res idue  of t h e  sum of two cubes a r e  0 ,  l7 2, 3, 5 and 6. I t  i s  h p o s -  

s i b l e  f o r  4 t o  be t h e  res idue  of t h e  sum of two cubes modulo 7 .  Hence 

t h e  equation has no so lu t ions .  

Bob Pr ie l ipp  ca l l ed  a t t e n t i o n  t o  several  mispr ints  i n  h i s  published 

so lu t ion  t o  Problem 248, on page 298 of t h e  Spring 1972 i s sue .  I n  the  

published so lu t ion  a l l  of t h e  2 symbols which appear a f t e r  t h e  reference 

t o  Beckenbach and Bellman's book should be > symbols. 
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