


AN ANNOUNCEMENT FROM THE EDITOR

Ve think you will agree that the subscription rates for the Journal
have been truly modest for many years. The present rate has been in
effect ever since the publication was founded, in 1949. As a result of
these low rates the Journal has required assistance from the Fraternity
to meet its costs, as fully intended. It has always been the am of the
Councilors of Pi Mi Epsilon in establishing its rates to meke the privi-
leges of membership and the subscription to the Journal within reach of
any college or university student.

The amount of assistance from the Fraternity has now reached in ex-
cess of $1000 per year, due primarily to the ever-increasing cost of
paper. With great reluctance, the Council voted at its |last meeting to
increase the rates of theJournal in order to reduce the amount of drain
on the general treasury. Thus the rates which are posted in the inside
cover of this issue are effective on all new subscriptions and renewals,
pending approval from the Internal Revenue Service. V¢ anticipate that
these new rates will be adequate for many years to come.




FORBIDDEN AREA

By John Vow. Iwaarden
Hope College, Holland, Michigan

In 1947, Norman Anning [1] proposed the following problem:
Consider the points on the median of a triangle. Through
the centroid no lines can be dream which will out off 1/3
of the area. Through a point, 4/5 of the distance from the
vertex to the base, f €W such lines mey be drawn. Find
points on the median at which the number of possible lines
change.

The problem remained unsolved for some time. In 1950 V. E. Hoggatt
[2] published a solution which compounded his ideas with those of C. S.
Ogilvy and F, Jamison, In this, Jamison pointed out that an interesting
allied problem would be to determine through what part of the area of a
triangle it is impossible to draw a line which will cut off one-third
of the area of the triangle. This raised the issue of a "forbidden
region" explained below.

In a circle C, every diameter D cuts the circle into two regions of
equal area. A chord L of thecircle C, not a diameter, cuts the circle
into two regions of unequal areas whose areal ratio is k < 1. For each
k, it 'is obvious that there is a chord L and a well-defined interior
circle Ck such that:

(1) Through every point in the plane outside or on the boundary of
Ck, there may be drawn at least one line dividing the area of circle C
into two regions with areal ratio k < 1.
~-£2) No such lines mey be drawn through any interior point of €3
this is called the forbidden region of circle C, relative to areal ratio
k.

(The reader should be able to determine the circle Ck for himself.)

Hoggatt raised the issue of forbidden area in [3] and listed some
results for triangles,

This paper will list some additional findings for forbidden regions
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of triangles. The proofs will use only elementary ideas from geometry
and calculus.

For a given triangle of area 1 with a point P in its interior, draw

any line £ passing through P. With an orientation given to £, let 6

/ | \de

FIGURE 1

be the angle of inclination of £ with the horizontal, 0< 6 < 2w, For
each 6 there is a unique ray %(e) on £ whose positive angle with the
orienting ray is 6. Theline £ then divides the triangle into two parts
D and E as shown in Fig. 1, where E is the part which contains the ray
Rp(8 + w/2). Let Ap(8) =AreaD, and 0 < k < 1/2. Define

5, = set of satisfactory points = {P | 4,(8) = k for some 6}

and

Fp = forbidden region = complementary set = {P | AP(e) # k for a11 e},

Theorem: The forbidden region is convex for 0 < k< 1/2.

Some simple lemmas will be stated whose proofs should be obvious,

which will then prove the theorem.

Lemma 1: AP(e tw)y=1- AP(e)

Lemma 2: AP(e) is continuous as a function of 6 and P. That is,

if 6 and P are changed only slightly, then the corresponding value of
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Pp(e) i s changed only slightly.

Lem®B 3: 1f k = O then only the boundary bd T of the triangle T lie;

in Sk' Thus Sk = kbd 7 ad Fk i sthe interior of T. Since the interior

of T is convex, the theorem i s true for k = 0.

lemm 4: If k = 1/2, Sk =7, Fk = empty set. Hence Fl/2 i s convex

Proof: Let Pe T. |f AP(e) < 1/2, look at

AP(e tw)=1- AP(e) > 1/2.

Thus there exists a value 8 < ¢ < 8 + 7 such that AP(¢) = 1/2.

Proof of Theorem: Let O < k < 1/2. Let P; and P, ¢ Fk ad | et
point Q be on the segment joining P; ad P,. Suppose € ¢ Fk. Then
there exists a line £ through Q intersecting segment P1P, not passing
through Py or P, such that A8) = k. Then P, or P ¢ D, say Py. Drav
line £' through P, parallel to £. With the same orientation for D',
Apl(e') = Apl(e) < k. ThereforeAPl(e tn)y=1- APl(e) > k. But by con-

k. This contradicts Py being

tinuity there exists ek such that Apl(ek)
a forbidden point.

Theorem: |f the point Pis the centroid of T and line £ i s paral-
lel to one of the sides, then AP(e) = u4/9.

C

‘Proof: Let G be the centroid of T (see Fig. 2). According to a form-
ula 61.1 in (4], i fx = CB/CA, y = CD/CE and the area of the triangle

F E
FI GURE 2
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is1, then Area BD = ay. Since CG/CF = 2/3 = x = y, we have 4,(8) = 4/9.
We note in general that since
Area BIG + Area GCD = Area BD = ay,

we have 2/3 t y/3 = zy. Thus the function AG(G) inx ad ¥y i s subject
to the restriction

x ty = 3zy.
It is easy to show by calculus that under these conditions the function

AG(e) = zy
assumes its minimum precisely when x = y, or when £ i s parallel to AE
Thus the value 4/9 i s a minimum value for AG(e), and actually, 4/9 s
AG(e) s 1/2.

Conollary: |f k < 4/9, thenF # 4 and F i s convex.
In [ 3] Hoggatt noted that for 0 < k < 1/2, the area of F is

AF=%(3/1-2k-1-3kloo 1-k+vl-2 '1"27‘1)
2k

It should be noted that for k = 4/9, AF = 0 ad that as k + 0,
A > 1.

Thegrem: The forbidden region Fk i s open.
'Proof: For point Pin Fk’ Ap(e) # k for all 8. But for sore 8,

Ap(e) = 1/2. Since AP(e) i s continuous, there exists a neighborhood of

P containing only points of the forbidden region, since a minimum must

be met somewhere near P.

In the proofs of the lemmas and theorems, it should be noted that
no use was mede of the shape of the body except its convexity. (For a
non-convex set, the convex hull satisfies the properties.) Thus, all
the non-numerical results above hold more generally for arbitrary convex
sets with non-empty interiors.
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II O an island in the Pacific lived two tribes, the Blue men

and the Green men. The Blue me always told the truth and

the Green men always lied. Once some men were shipwrecked on
the island, and the natives agreed to release them if their
captain could solve a puzzle. He was blindfolded, placed in
a room with two natives, and was to guess their tribes with-
‘_i_n_S minutes, using any clues he could get from the conver-
sation. The first native spoke inaudibly, so the captain

asked the second native what he had said. The native answered
‘He said he was a Green man." The captain immediately iden-
“tified the natives and his men were released. Wha reasoning

led the captain to his conclusion?

A STEEP ASCENT OF THE FUNDAMENTAL THEOREM OF CALCULUS

by J. Michael Steele
Stanfond Univernsity
In Wat Ze Mathemati cs? Courant and Robbins give a proof of Euclid's
theorem on the infinity of primes in which they use the fact that the
zeta function diverges at z = 1. Speaking of their proof they say, "Of
course, this is much more involved and sophisticated than the proof given
by Euclid. But it has the fascination of a difficult ascent of a moun-
tain peak which could be reached from the other side by a comfortable
road.” |If one borrows this attitude and the fact (which is also indi-
cated in Wat is Mathematice?) that the integral of £ can be calculated
without using differentiation, it is possible to give a proof of the
fundamental theorem of calculus which analysis classes may find amusing.
By giving C'[a, b] the norm
el = suplftz)| + sup|f'(z)]

we can easily see that the linear functional defined by

b
F(f) = / FirR)dt - f(b) + fla)
a

is continuous. Now, as mentioned above, we may assume the usual formulas
for the integral and derivative of «*. This allows us to check that

F(p) = 0if p is a polynomial. However, in view of Weierstrass's Theorem
(applied to f' for a given function f in C'[a, b]) and the Mean Value
Theorem the polynomials are dense in ¢'[a, b]. Hence we have that F

must vanish identically, which is just what the fundamental theorem says.




THE POLE AND POLAR WITH RESPECT TO A QUADRIC

By ALL R Amin-Moez
Texas Tech Univensity

May geometric problems can be simplified and generalized by the use
of matrices. In this article we study pole and polar with respect to a
quadric in an n-dimensional Euclidean space with techniques of matrices
[1]. Thus whatever is done for an n-dimensional Euclidean space is not
more difficult than similar ideas for the plane.

1. Quadrnics
Let us consider the equation of a conic section with respect to an
orthogonal Cartesian coordinate system (x,y). That is,
ax2 t 2bxy t cy? t 2pz t 209 t & = O. (1)
W\ observe that (1) has the following matrix equation

a b p x
[x y 1] b ¢ ¢q y = [o]. (2)
P qr 1

W observe that [Z 1;] is the matrix of the quadratic form of (1),

namely,

[ax? + 2baxy + ey?]) = [z y] [a b] [x]
b e y
The equation (2) can be written as )

XAx' = 0, (2")
where X = [ y 1] and A is the symmetric 3 x 3 matrix of (2). In
general a quadric in Euclidean space of dimension n can be defined as
thefet of all points (xl, Zyy vy xn) such that XAX- = 0, where X =
[zy =, **+ x, 1landA isany (nt1) x (n* 1) symmetric matrix.
If we omit the last row and last column of A, we obtain the matrix of
the quadratie form of the quadratic. This matrix will be denoted by Q.
2. Straight Lines

It is clear that

x =a) +pt

(3)

y =y +qt
is a set of parametric equations of a straight line in the plane. A
matrix equation for (3) is then

[z y 13=[a; y1 1J+¢tlp q 0.
V¢ observe that to each point (x, y) corresponds a matrix [x y 1] and to
each direction (p, g} corresponds a matrix [p q 0.
Indeed in general the matrix equation of a straight line in a Euclid-

ean space of dimension n can be taken as

X =Y+ ¢, (3"
where X = [z «+» & 1], Y=1[y; -+ y 1], and D = [p1 =*- p, 0]. Here
Y represents some fixed point and D represents a direction.

3. Intersection of, a Line and a Quadiic
Let X4X' = O be a quadric and X = Y + tD a line in a Euclidean n-

dimensional space. Then points of intersection of the line and the

quadric are solutions of the system of matrix equations

XAX- = 0
X=Y+ tDh.
By substitution this set of equations gives us
(DAD')t?2 + (¥AD' + DAYt t YAY- = 0O (w)

which is a second degree equation in t. One may easily show that YAD' =
DAY' and DAD' = DQD-:, where Q is the matrix of the quadratic form of the
quadric and in DQD' we have taken D = [p1 pn]' Thus (4) will become

(Dp")t2 + 2(¥gp")t t YAY' = 0. (5)
(Note that, for example, DQD' is a matrix of one element which is con-
sidered as a scalar.)

A discussion of (5) about the existence and nature of roots should
be given. Let it suffice for our purposes to mention only that i f DQD'
# 0, then the line intersects the quadric in two points which may be
real and distinct, or real and double, or complex conjugates of one an-
other. Indeed, this case (when DQD' # 0) is the one in which we are in-

terested for studying pole and polar theory.

4. Pole and Polar

Let P be a point and XAX' = 0 be a quadric in an n-dimensional Euclid-
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gan space. Let any line through P intersect the quadric in two distinct
points B and ¢, where we are considering only the case mentioned in the
end of section 3. Let ® be the harmonic conjugate of P with respect to
B and €. Then the locus of R, as the line through P changes, is a hyper-
plane and is called the polar of P with respect to the quadric.
Proof: Let (PRBC) be a harmonic set. Then

2.z, (8)

In order to make the idea clear we include a diagram in Euclidean three-

P

FIGURE 1

dimensional space (see Fig. 1). Let P denote the matrix [y; «-- Y, 1]
which corresponds to the point P. Let a line through P have the equation
X=P+tDh,

where D is a variable direction. Then points of intersection of the
line and the quadric are obtained from

(DgD")t2 + 2(PAD')t + PAP = 0, DQD" # 0.
Here ¢ = O corresponds to X = P. Let £; and ¢, correspond respectively
toX=Band X = ¢, and t to X = R, Then (6) becomes

-

0 -#% _ t-t
0 - £, t - &,
which implies that
_ 2t1tp - PAP!

TR PAD'
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if PAD" # 0. Substituting this value for t in the equation of the line
we obtain
(PAD')X = (PAD')P - (PAP')D.
Multiplying on the right by AP we get
(PAD')(XAP') = (PAD')(PAP') - (PAP')(DAP') = 0.
Since PAD' = DAP # 0 we obtain
XAP = PAX' = 0,
which is a linear equation in 3 ERRREL and thus the equation of a hy-
perplane.
If we look at the case PAD" = 0, we note that P is at a center of
the quadric and the polar is said to be at infinity. W& shall leave this
detail to the reader.

5.  SOome properties

There are many propositions concerning pole and polar in the plane.
The reader may study them and give some generalizations to an n-dimen-
sional Euclidean space. In fact, some of the ideas may be generalized
to unitary spaces over the field of complex numbers. Here we would like
to give some examples which the reader can try on his own.

(1) Let 6, y be two lines through P intersecting the quadric at B
and-C and at D and E, respectively. Then the lines BD and EC intersect
in a point which is on the polar of P with respect to the quadric. Also
lines BE and @ intersect on the polar. (Special cases should be con-
sidered separately.)

(2) |f a point A moves on the polar of P with respect to a quadric,
then the polar of A with respect to the quadric passes through P.

(3) In Euclidean 3-space we magy change the point P to a line and
obtain a linear element in the space as the polar of the line. This

idea may also be generalized.

REFERENCES

1. Amir-Moéz, A. R., Matrix Techniques, Trigonometry, and Analytic Geome-
try, Edwards Brothers, Inc., Am Arbor, Michigan, 1964, pp. 122-132.




A NOE ON THE EXISTENCE OF FERFETUAL MOTION MACHINES

by Edward J. Wegman

Historically, the role of a mathematician has been to determine the
truth or falsity of propositions concerning "mathematical” objects (num-
bers, functions, sets, and so forth). In the 1930's the attention of a
group of mathematicians shifted to the problem of the existence of algo-
rithms or effective computational procedures for solving various problems.
An algorithm is a set of instructions, requiring no creative thought,
that provides procedures by which any one of a class of questions can be
answered. In principle, it is always possible (though perhaps not prac-
tical) to construct a physical machine for carrying out such a set of
instructions. Modern digital computers are examples of such machines
and computer programs are examples of algorithms. The existence of
simple algorithms can be proven simply by writing down the steps of the
algorithm, but complex questions require more complex algorithms, the
proof of whose existence requires much more sophisticated mathematical
ideas. This body of ideas is known as computability theory or recursive
function theory, and is frequently regarded as a branch of mathematical
logic.

Ore tool in computability theory is a particularly simple mathemati-
cal model of machines known as a Turing machine, so named because of its
inventor, A. M. Turing (see Turing £271). A Turing machine may be
thought of as a black box with a finite number of internal configurations
which are called states. |1t also reads an infinite tape and based on
what it reads on the tape and its present state it may move, or erase
the tape and write something else,and also it may change states. This
is amr extremely simple model of a modern computer and its power lies in
the fact that moving, erasing, writing and changing states are all actions
which may be accomplished with no " creative" thought. W shall moment-
arily formalize these ideas with mathematical definitions. W note here
that Turing machines exist in the same sense that many mathematical

objects exist that is, it is a set whose existence is guaranteed by the
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axioms of set theory. By appropriate construction of a Turing machine,
we can demonstrate the existence of an amusing and interesting perpetual
motion machine. (This is, of course, a real existence although not a
physical existence.) To do this, we shall need the following sequence
of formal definitions taken from Davis [1].

Definition 1: An expression is a finite sequence (possibly empty)
of symbols taken from the list qg, 915> g2s++-3 Sgs S15 S2s...3 Ry L.

Definition 2: A quadruple is an expression having one of the follow-
ing forms:
(1) a, 53 Sk qZ ,

(2)
a; 5; R a7 ,

(3)
q; Sj L q; -

Definition 3: A Turing machine, Z, is a finite (nonempty) set of
quadruples that contains no two quadruples whose first two symbols are
the same. The qi's and S.'s are called respectively its internal con-

figurations (states) and its alphabet.

As we have already indicated, the Turing nachine may be thought of
as a black box seanning an infinite tape. The tape contains a series
of contiguous squares or positions. |f the position scanned on the tape
contains the symbol 83 and the machine is in state q;, quadruple (1) in
Definition 2 causes the machine to write symbol Sk and change to state
Quadruple (2) causes the machine to scan one square or position to

fhe right and change to state q;. Similarly for quadruple (3).

Definition 4: An instantaneous description is an expression that
contains exactly one 9;s neither L nor Ryand is such that 9; is not the
right-most symbol. An expression that consists entirely of the letters
SB. is called a tape expression. The tape expression is obtained by re-

moving the q; from the instantaneous description.

p i : If PandQ are two expressions involving only letters of
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tl-ne alphabet, then the expression
Pqg. 5,85
q; 53 Q

i s an instantaneous description meaning the machine Z is in state q;

scanning the square containing S, If q; 33 Sk 97 is a quadruple, then
the next instantaneous description is
P q; 5, 5, Q.

If az Sj R q had been a quadruple, the next instantaneous description
would have been

P Sj q; Sm Q.
Similarly for the third type of quadruple qi 83. L q,.

Consider a machine, Z, given in Table 1 with alphabet {0, 1, B(blank)}

q0 B 0 qo 04 0 R qq q7 0 R q¢
q0 0 L o2 v 1 R q 07 1 R q¢
Q1 Blq 45 B R qs q8 B L 09
Q1 1Lo2 q5 0 R qq 98 0 R qs
02 0 B o3 95 LR q 98 1 R q¢
02 1 Bo3 96 B R q7 09 B L qq
q3 B L qy 96 O R qg qe 0 R qu
qy B L g5 96 1 R q5 09 1Eaq

q7 B R qg

Table 1

and set of states {gp, 91,.++, gg}. This machine is designed to operate
with tapes containing finite strings of 0's, 1's, and B's with the re-
striction that within a string, 2 or more contiguous B's may not appear.
of course, on either side of the finite string, the tape will be filled
withB's, For example, ...BBO1B1BB... is allowed but ...BBO1BB1BB... iS
not.

Let us consider the tape ...BBO1B1BB... with initial instantaneous
description 01Bg,1BB. The computation is as shown in Table 2, where the
1ist of instantaneous descriptions are obtained from Table 1.

In the above description, it isrecognized that the tape contains
blanks on either side of the expression, 01B1. W have only included

Instantaneous Description

BBO1B1q BB
BBO1B1q, 1B
BBO1Bg,11B
BBO1Bq ,B1B
BBO1q, BB1B
BBOg, 1BB1B
BBOlq, BB1B
BBOq 1B1B
BBOq,,11B1B
BBOq,B1B1B
BBq, 0B1B1B
BB0q B1B1B
BBOg  01B1B
BBq,,001B18
BBq ,BO1B1B
Bq,BBO1B1B
q;BBBO1B1E
Bq;BBO1B1B
BBq.B01B1B
BBBq  01B1B
BBBOq 1518
BBBO1qB1B
BBB01Bq.,1B
BBBO1Blq B
BBBO1B1Bq.,B
BBBO1B1BBq B
BBB01B1Bq 4B
BBBO1B1q B
BBBO1Bq 418
BBBO1B1q B

TABLE 1

Tape Expression

BB01B1BB

BBO1B1BB
BBO1B11B
BB01B11B
BB01BB1B
BBO1BB1B
BB01BB1B
BB01BB1B
BBO11B1B
BB011B1B
BBOB1B1B
BBOB1B1B
BBOB1B1B
BB001B1B
BBOO1B1B
BBB01B1B
BBBO1B1B
BBB01B1B
BBB01B1B
BBBO1B1B
BBB01B1B
BBBO1B1B
BBBO1B1B
BBB01B1B
BBBO1B1B
BBB01B1BB
BBB01B1BBB
BBB0O1B1BB
BBB01B1B
BBBO1B1B
BBBO1B1B
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these blanks as needed. Note that the |last instantaneous description
is the same as the second, except that the whole expression 01B1 has been
shifted one position to theright on the tape. Hence the machine will
repeat this procedure of shifting, then recycling forever.l W have only
to invent an interesting tape expression to complete our perpetual motion
machine.
Let our tape expression be:
11B31118001B10B1801B00B10B000.
This is the international Morse code for the word mountains. Hence, we
have demonstrated not only the existence of a perpetual motion machine,
but one that moves mountains!
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Ythat this will happen in general is a consequence of the following obser-
vations: The instantaneous description abg,eBd will eventually become
either aq,bBed (if e # B) or q,aBbed (if ¢ = B); Bq,BBab eventually be-
cories BBBaq.b, and ag.bed becomes either abqeed (if b # B) or abeqgd (if
b = B). Finally, abeq BBB becomes abq,eBBB which in turn becomes
aq,bBeBB, and the process repeats. One "turns the machine on" by insert-
ing q, between the last two zeros of "mountains". --Editor.

SOME WORK ON AN UNSOLVED PALINDROMIC ALGORITHM

Lee Ratzan
College of Medicine and Dentistry of New Jersey

Consider the following unsolved research problem posed by the editor
in the Fall 1972 issue of the Pi Mu Epsilon Journal (Volume 5, Numbe 7,
page 338): Let

k(n) = % if nis even,

3n+1if nis odd,

and define

) = k(T )
Is it true that k(n) is a palindromic algorithm which acts to reduce the
size of an integer and the sequence {kl(n), k%(n),...} resolves to 1 for
any n? Analytically speaking, does there exist a positive integer s (s
is a function of »n) such that k8(n) = 1 for any n?

The editor states that the problem has been partially investigated as
to the activity of the function k(n) and the truth of this conjecture
(Conjecture 1) has been verified by computer for all n less than 10,000.
The present note expands the range for which the conjecture is true and
introduces a newvw conjecture.

Through the use of the program below the author has increased the
verification limit of Conjecture I. It can be shown that k(n) -~ 1 for

PROGRAM TO VERIFY PROPERTIES OF K(N)

SEED. .INWKL PONT (K =1 B TRIVIA)
K=2
LIMIT POINT.. END OF INVESTIGATION
L = 100000
7 CONTINUE
N = K
1 TEST = N/2
PARITY CHECK...ODD/EVEN
IF (N-2* TEST) 4, 2, 4
2 N = N/2
11 CONTINUE
CHECKPOINT...N 1T 1 = OVERFLOW
N EQ 1 = TERMINATION; N GT 1 = RECYCLE
IF(N-1)12, 6 1
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4N =3*N+1
GO TO 11
6 K=K+1

I[F (K=-L1)7,7,8
12 WRITE (6, *) N, K
GO TO 6
8 WRITE (6, *) L
END
all n less than 31,910,a tripling of the former range. It is interesting
to note that for 30 values between 31,911 and 100,000 the conjecture i s
indeterminate due to the magnitude of the integers involved. At specific
points in this open range the values assumed by k{(n) exceed (232 - 1) and
the overflow of machine registers of the BV 360/67 (Rutgers University)
and the BV 360/91 (Princeton University) indicated that the number being
dealt with i s out of range. Are these numbers exceptions to the algorithm
or just large numbers? |f these isolated points could be verified, Con-
jecture | would hold true for all n Iess than 100,000.

A study was made of the number of cycles necessary for the integers
between 1 and 31,910 to resolve to 1. There i s apparently no set pat-
tern; however the mean value of S for the first 5000 »n was 78 cycles -~
a surprisingly high value since "most" values fell in the range 12 < s <
25. Analysis of histogram data reveals a wild distribution (verified by
calculation of the variance and standard deviation); graphs of s versus
n reveal no distinct functional or periodic relationship.

Let us consider a flow chart (Fig. 1) of the action of the k(n) for
each cycle for a given initial n. If at any point along the cycles k(n) is
odd, it undergoes the transformationk(n) = 3n + 1, making it even. At
this point it is halved and i f odd, recycled as before. |f it is even,

n
'

——> k(n

no yes
successive successive

halving until halving until
odd resolution to 1

FIGURE 1

it will be halved, recycled, halved, and so forth, until it is odd and
we have a perpetual circle. However, suppose k(n) is a power of 2.
Each successive halving diminishes the size of k(n) and the cycle will
terminate. The value of k(n) will be (2L, 2L l,...u, 2, 1). We thus
have the following analysis:

(1) Clearly ifn = 2 for some integer L, k!(n), k2(n),...k%(n)
equals n, n/2, n/22,...n/2% = 1. Hence & = L.

(2) If n is odd, then a necessary condition for termination i s that

there exists an ¢ such that 3k°(n) + 1 = 2L for some L, which in turn

L

implies k%(n) = (2° - 1)/3 for sore L. From this we have a test for

termination of the sequence k!(n), k2(n), - -+ If Sisthe set of values
representable in the form ( 2 - 1)/3 (note that L must be even for this
expression to be an integer) and i f there exists an integer r such that
K'(n) i s an element of 5 for some r, then there i s an & such that k°(n) =
1.

(3) From this we can derive the general rule that i f»n is of the form
ZM(ZL - 1)/3 for any nonnegative integer ¥ and any even integer L, then
Meny = (2L -0y ad KE T L P Ln) = 1. Hence s = M+ L+ 1.

We can thus conclude that the conjecture is true for all n which are
powers of 2 or representable in the form 2M(2L - 1)/3 for appropriate
choices of L, M. We can also monitor the values of k(n) as it cycles
and i f at any point k(n) assumes a value of the form 2a(2b - 1) for a,

b integers, a nonnegative and b even, then a termination and resolution
toliscertainin a finite number of steps.

I f for values of n less than 31,910, the cycle length ¢ is tabulated
versus N, an interesting pattern can immediately be observed. |t can
be seen that, for example,

8(28) = 8(29), 8(36) = 8(37), s(u4) = s(u5),
At specific intervals there are integers with the property that they
have twin cycle lengths. This observation is more striking i fthe tabu-
lar form has 40 elements per row, for then every other |line demonstrates
this pairing. In analytic form we have:

Conjecture 11
Let 4k <n < 4k * 1) fork=10,1, 2, ---
f(n) = 8n t 8k + 20.

and define

Then
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s(f(n)) = s(f(n) + 1).

The question remains whether this conjecture be true for n outside the

range of the present consideration.

POSTERS AVAILABLE FOR LOCAL ANNOUNCEMENTS

At the suggestion of the Pi M1 Epsilon Council we have had a
supply of 10 x 14-inch Fraternity crests printed. Ore in each
color will be sent free to each local chapter on request.
Additional posters may be ordered at the following rates:

(1) Purple on goldenrod stock - - - - - - $ 1.50/dozen,

(2) Purple and lavendar on goldenrod- - - $§ 2.00/dozen.

MATCHING PRIZE FUND

If your chapter presents awards for outstanding mathematical papers
or student achievement in mathematics, you may apply to the National
0ffice to match the amount spent by your chapter. For example, $30.00
of awards can result in the chapter receiving $15.00 reimbursement from
the National Office. These funds may also be used for the rental of
mathematical films. Write to the National Office for more details.

UNDERGRADUATE RESEARCH PROJECTS

1. Proposed by John Van Iwaanden, Hope College, Holland, Mich.

Let S be a closed bounded subset of E2 with nonempty interior having
unit area. The forbidden region of S relative to the real number k,
0 < k < 1/2, is by definition the set Fk of points P through which no
line may be passed cutting § in regions whose areas are in the ratio
k ¢ (1- k). (For more information, see the paper "Forbidden Area" by
the same author in this issue of the Journal.)

Quesitions:

(1) |f S has a nonempty forbidden region, does it contain the cen-
troid of S?

(2) Can the theory of forbidden regions be extended in any wey to
three-dimensional space or to unbounded regions?

2. Proposed by David L. Drennan and. Kirby C. Smith
Univensity of Oklahoma

A city engineer was asked to completely describe che traffic flow
over a given time period through a T-type intersection where one two-
lane road ended at another two-lane road. The description had to con-
tain answers to the following questions.  those cars which entered
the intersection from a given direction, how many turned right? Hw
meny turned left? Hw many went straight?

The devices available to the engineer were traffic counters, each
capable of counting the cars in one lane which passed it. He could also
use people standing on the corners of the intersection but, unfortunate-
ly, each person could count only one thing (i.e. of the cars which en-
tered the intersection nearest his corner he could count only one of the
following: the right turners, the left turners, or the straight goers).

Since the use of people cost more than the machines, the engineer
wanted to minimize the number of people used. Having accomplished this,
for aesthetical reasons, he wished to minimize the number of counters he
used, although plenty were available. Wha was the engineer's solution?

If possible, generalize to more complicated intersections.
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1971-72 MANUSCRIPT CONTEST WINNERS

The judging for the best expository papers submitted for
the 1971-72 school year has now been completed. The evaluation
by the judges resulted in a tie for third place, so the amount
of that award will be shared equally among the two winners. We
congratulate the following winners (all affiliations are those

at the time the papers were written):

FIRST PRZE ($200): Christopher Scussel, Michigan State
University, for his paper "Goldbach's Conjecture” (this Journal,
Vol. 5, No. 8, pp. 402-408.

FCOD PRIZE ($100): Joseph J. Buff, New York University,
for his paper " Characterization of an Analytic Function of a
Quaternion Variable" (this Journal, Vol. 5, No. 8, pp. 387-392.

THIRD PRIZE ($50): Frank L. Capobianco, College of the
Holy Cross, for his paper "Spec(R) for a Particular R" (this
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Journal, Vol. 5, No. 6, pp. 285-2881, and
Lee Ratzan, Courant Institute of Mathematical Sciences,

00
122

3838838833288

for his paper "Comments on the Properties of Odd Perfect
Numbers® (this Journal, Vol. 5, No. 6, pp. 265-271.
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1972-73 CONTEST

We are now receiving papers for this year's contest, so be
sure to send us your paper, or your chapter's papers, if you

223328223233!
08888888888

want to participate. Papers submitted to the Journal for
publication will automatically be'entered if the author is
an undergraduate, but we must receive a total of at least ten
§;- =-papers during the year in order to conduct the contest. In
.. order to be eligible, authors must not have received a Master's
degree at the time they submit their paper. In addition to
the prizes listed above, there is a $20.00 prize for the best
paper from any one chapter, providing that chapter submits

at least five papers.
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BOOK REVIEWS
Edited by Roy B. Deal
University of Okahoma Health Sciences Center

The Letters on Probability. By Alfred Renyi. Wayne State University
Press, Detroit, Michigan, 48202. 1972. v t+ 86 pages.

The most fascinating book ever reviewed by this author for the Pi Mi
Epsilon Journal. Any scholar who has heard of Fermat's | ast theorem
and who has a modicum of interest in history will find the intrigue
surrounding these letters from Pascal to Fermat and their discovery

to be exciting. The story began with a discussion at the Pascal
Memorial Symposium in Clermont-Ferrand, on June 9, 1962, between Renyi
and Henri Trouversien, a professor of the history of mathematics at the
University of Contebleu. Pascal wrote a letter to the Parisian Acad-
emy in 1654 in which he mentions a treatise on an entirely new theme,
the mathematics of chance, never systematically dealt with by anybody
thus far. It was listed with some of his nearly completed works shortly
to be presented to the Academy and there had been a great deal of work
searching for the missing documents. Renyi had suggested that perhaps
the information was contained in letters to Fermat instead of in a
manuscript. The interesting way that Trouversien came across these
letters, his discovery of another document of Fermat, and his intriguing
reason for asking Renyi to publish them, along with an essay, give this
little book the enticement of a thrilling novel. The Appendix contains
five interesting little notes of Renyi: A Short Biography of Pascal,
Dating the Letters, History of the Probability Theory, On the
Mathematical Concept of Probability, and A Further Letter to the
Reader. |In addition, there appears a brief note by the translator,

Laszlo Vekerdi, about Renyi.

What is Mathematical Logic. By J. N. Crossley, C. J. Ash, J. C. Still-
well and N. H. Williams. Uxford University Press, N. y., N. y., 10016
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December, 1972. 82 pages. $1.95.

This book is based on a series of lectures given by the authors at
Monash University and the University of Melbourne in the autumn and
winter of 1971. They make an enthusiastic attempt t o make mathematical
logic a "living and lively subject” to a wide audience. They discuss
important ideas behind Godel's theorems, computability and recursive
functions, and consistency and independence in axiomatic set theory.

Explorations in Number Theory. By Jeanne Agnew. Brooks-Cole Publishing
Company, Monterey, California. 1972. xi t 308 pages. $10.95.

This book reflects the author's sincere effort to write for the student,
The first three units leisurely cover the basic concepts and the last
five offer a wide variety of fascinating diversions, some of which have
not been given lucid elementary expositions. The units on number-
theoretic functions and the p-adic integers provide some excellent
motivation examples for understanding more general algebraic systems.

Inference and Decision. By D. A. S Fraser. Halsted Press, Division of
John Wiley and Sons, Inc., Nav York. 1973. vii *+ 82 pages. $13.75.

A set of invited papers presented at several seminars held at a number
of Canadian universities during 1970-71. They cover a variety of
interesting observations on statistical inference and decision theory
by some outstanding people.

A Geometric Introduction to Topology. By C. T. ¢. Wll. Addison-
Wesley Publishing Co., 1972. iv * 168 -pages.

An introduction which does not presume general topology and does quite
well at the advanced undergraduate level those parts of homotopy theory
which have a strong geometric intuition for mawy students.

Introduction to Semigroups. B/ Mario Petrich. Charles E, Merrill Pub-
lishing Co., 1973. wviii *+ 198 pages.

The first introductory book devoted explicitly to the basic results in
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semigroups. It also serves as a reference,

Theories of Probability. By Terrance L. Fine. Academic Press, Nav York.
1973. xi t+ 263 pages.

In these days when axiomatic probability theory, and even bayesian in-
ference seems thoroughly entrenched, it is refreshing to find a rather
thorough discussion of a wide variety of aspects of probability and
meny of its ramifications in concrete applications. The author dis-
cusses such subjects as axiomatic comparative probability, relative
frequency in probability, logical probability, and subjective or
personal probability.

An_Introduction to Confirmation Theory. By Richard Swimburne. Methuen
and Co., Ltd., London. 1973. wvi t+ 218 pages.

Like the previous book reviewed, this one will be of interest to those
who like to see relationships between mathematics and our culture.
This book relates to the field of philosophy. The author states in
the preface that " Confirmation theory is the theory of when and how
much different evidence renders different hypotheses probable. The
am of this book is to expound and criticize the views of philosophers
on confirmation theory, and in the process to contribute towards the

construction of a correct confirmation theory."

Computational Methods in Ordinary Differential Equations. By J. D. Lam-

bert. John Wiley and Sons, Inc., Nav York, N.Y., 10016. 1973. xv *
278 pages. $15.50.

It is impressive to see how far the author is able to take advanced
undergraduate students in the basic classical foundations of the numer-

ical analysis and stability theory of ordinary differential equations,

Functional Analysis. By Walter Rudin. McGraw-Hill Book Company, Nav
York. 1973. xi *+ 397 pages.

Another fine book by an established author in a field which seems to
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attract excellence in exposition. Perhaps this is because the subject
is basic to so much mathematics and iS amenable to good pedagogy. The
subject has broadened in scope over the years, and while there is no
attempt to be encyclopedic, the second part of the book covers fairly
thoroughly distributions and Fourier transforms, with some applications
to differential equations and Tauberian theory, and Part Three dis-
cusses Banach algebras and spectral theory, with chapters on bounded

and unbounded operators in a Hilbert space.

LOCAL AWARDS

If your chapter has presented awards to either undergraduates or
graduates (whether members of Pi Mu Epsilon or not), please send
the names of the recipients to the Editor for publication in the
Journal. The listing of new initiates had been discontinued.

MOVING??
i BE SURE TO LET THE JOURNAL KNOW
5 Send your name, old address with zip code

and new address with zip code to:

Pi Mu Epsilon Journal

601 Em Avenue, Room 423
The University of Oklahoma
Norman, Oklahoma 73069

GLEANINGS FROM CHAPTER REPORTS

FLORIDA ZETA CHAPTER at Florida Atlantic University sponsored a
lecture by Professon John Scheidelf, chairman of the Economics Department,

on the topic "The Fecundity of Mathematics in Economics"”.

LOUISIANA EPSLON CHAPTER at McNeese State University presented a
film series on space flight and held a lecture by Professorn Harlin Brewenr

on "Mathematics -- Definition by Recursion”.

MARYLAND ALPHA CHAPTER at the University of Maryland sponsored a
series of highly diversified lectures, which included "Equations of Motion
of the Planets" by Professorn Larrny Goldstein, and "Derivatives, Derivates,
and Arbitrary Functions" by Professon James A Hummef. Another speaker was
Professon Oved Shisha, Naval Research Laboratory.

MICHIGAN DELTA CHAPTER at Hope College held its first meeting on
November 9, 1972. Professorn J. S. Frame, Michigan State University, spoke
on the topic "Continued Fractions"™, after which he installed the new chap-

ter. Professor Frame is a former national president of Pi Mu Epsilon.

NEW JERSEY DELTA CHAPTER at Seton Hall University had several of its
members present papers at the annual Eastern Colleges Science Conference
held at Pennsylvania State University. Those presenting papers were
Michael Mantin, Roseann Moniello (whose paper " Partial Differentiation
on a Metric Space” won first prize), and Karen Pukatch.

NEW JERSEY EPSILON CHAPTER at St. Peter's College sponsored a lecture
presented by Professon B. Melvin Kiernan entitled "Wha Would Yau Say to
a Hypercube if You Mé& Ore on the Street?" and hosted a regional meeting

of the Mathematical Association of America.

NEW YORK ETA CHAPTER at S. U. N. Y., Buffalo, recently honored its
faculty correspondent, Professor Harniet Montague, for her great efforts
and outstanding success in leading the chapter through many difficult

years.

NEW YORK PHI CHAPTER at the State University College at Potsdam
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participated in a joint meeting of the Pi Mi Epsilon chapters of St. Law-
rence University, Clarkson College and Potsdam State University, at which

a representative from each chapter gave a short talk.
Jeggfney Posluszny, a graduate student, and "Alphametrics, a Mathematical

NORTH CAROLINA GAVMA CHAPTER at North Carolina State University spon- Diversion™ by Professon Raymond Honerlah.

sored a series during the year, one of which was "Non-Standard Analysis"
by Professon Robert T. Ramsay.

OHIO NU CHAPTER at the University of Akron sponsored a tour of the

Goodyear Computer Center.

OHIO ZETA CHAPTER at the University of Dayton participated in an
ALumni Seminar where graduates i n mathematics described to undergraduates

what they were doing and answered questions from the audience.

OKLAHOMA ALPHA CHAPTER at the University of Oklahoma heard Progessdon e e L
W, T. Reld speak at its annual awards banquet on noted mathematicians of h |
this century who owed their education either directly or indirectly to the I “
faculty at the University of Chicago during the early 1900's. In partic- 1
ular, members of the mathematics department heard their individual "R. L. % |
Moore numbers” (the number of mathematical " generations” from advisor to |
advisor beginning with Professor Moore) traced. N FRATERNITY KEY-PINS AVAILABLE N
TENNESSEE BETA CHAPTER at the University of Tennessee recently hon- u _ _ _ ) ¥
ored Winston Massey, Guerry Professor of Mathematics, for forty years of I Gold key-pins are available at the National Office at |
service to the university. A Winston Massey Mathematics Award has been | Fhe speciél price of 35.00 each, post paid to anywhere !
established to be given to an outstanding junior in mathematics, in addi- n in the United States. |
tion to the award presently given to an outstanding freshman each year. | Be. sure t 0 indicate. the. ehapter'into which you were I
VIRGINIA GAMMA CHAPTER at Madison College heard several stimulating f‘ initiated and the. approximate date. of the. initiation.
lectures during the year, including "The Supposed Glut of Educated Minds" ! Orders should be sent to:
by Professon William L. Duren, Jn. (Applied Mathematics and Computer Sci- | Pi Mu Epsilon, Inc.
ence Department), and "A Unified Theory of Integration™ by Professon E. J. ¥ ?szivE;:nsiﬁyvegfuebkmmgB
McShane, both from the University of Virginia. At the initiation banquet V‘ Norman, Oklahoma 73069
Prafesson Gondon Fisher spoke on "Some Interesting Personalities in Math- i
ematics'. |
WISCONSIN ALPHA CHAPTER at Marquette University sponsored a trip to %
the-Chicago Musaum of Science and Industry, and heard several lectures
including "Pythagorean Proofs" by Witfiam Wepfer, " Chemistry of Lines and — ¢ e ¢ —m— —m—

Planes" by Gary Schaefer (both undergraduates), "Non-Standard Reals" by



PROBLEM DEPARTMENT

Edited by Leon Bankof{
Los Angeles, California

This department welcomes problems believed to be new and, as a
rule, demanding no greater ability in problem solving than that of the
average marba of the Fraternity. Occasionally we shall publish
problems that should challenge the ability of the advanced under-
graduate or candidate for the Master's Degree. Old problems charac-
terized by novel and elegant methods of solution are also acceptable.
'Proposals should be accompanied by solutions, if available, and by any
information that will assist the editor. Contributors of proposals
and solutions are requested to enclose a self-addressed postcard to
expedite acknowledgement.

Solutions should be submitted on separate sheets containing the
rnene and address of the solver and should be mailed before Mgy 31, 1974.

Address all eommnications concerning problems to Dr. Lean Bankoff,
6360 wilshire Boulevard, Los Angeles, California 90048.

Problems for Solution

303. Proposed by Peter A Lindstrom, Genessee Community College,
Batavia, New York.
By means of an e, 6 proof only, show that a polynomial function

is continuous at any real number.

304. Proposed by Charles W. Trigg, Sun Diego, California.

(A) Ore of the four digits 1, 2, 3, 4 is placed at the midpoint
of ~each edge of a cube in such a manner that four different digits are
on the perimeter of each square face.

(B) The digits are placed on the vertices of the cube so that
again there are four different digits on the perimeter of each face.

Show that in each case the clockwise cyclic order of the digits

is different on each face.

uy7

305. Proposed by Jack Gargunkel, Forest HilLs High Schoof, New
York.

In an acute triangle ABC, AF is an altitude and P is a point on
AF such that AP = 2r, where I is the inradius of triangle ABC. |f D
and E are the projections of P upon AB and AC respectively, show that
the perimeter of triangle ADE is equal to that of the triangle of least

perimeter that can be inscribed in triangle ABC.

306. Proposed by David L. Silvemwman, Los Angeles, California.

(n alternate days A and B play games that are similar except
with respect to the question of which player does the paying. In
both versions A selects one number from the set (1, 2, 3) and B
selects two numbers from the same set. If the two selections are
disjoint, no payment is made. If the two selections have a number in
common, the "payer” pays that number of dollars to the "receiver".
They alternate daily in assuming the roles of payer and receiver.

Does the arrangement favor either player?

307. Proposed by R. Sivaramakrnishnan, Government Engineering
College, Trnichun, India.
Let t(n) denote the number of divisors of n. For square-free n

greater than 1, prove that ¢(n2) = n if and only if n = 3.

308. Proposed by C. S. Venkataraman, Snee Kerala Varma College,
Tnichur 4, South India.

Defining a proper number as one which is equal to the product
of all its proper divisors, show that an integer is a proper number
if and only if it is the cube of a prime or the product of two
different primes.

309. Proposed by Gregory Wulczyn, Bucknell University, Lewisbung,
Pennsylvania.

Find the volume of the solid formed by the elliptic papaboloids
2h - 2 = ax2 + by2 and z = ox2 + dy2, where a, b, C, d and h are al |

positive.

310. Proposed by Sidney Penner, Bronx Community College, Bronx,
New Yonk.

If X and y are integers and X < y then let [z, yl = {2:2 <2 <Y,
and z is an integer}. Also, for any set S, let #(S) be the cardinal



- number of S

Let » and k be positive integers with k > 1 and let G = [2, (2n)k- 1].
If Visa subset of G such that ¥(V) = (2n)k -o2nand Vv # [2n, (21)"- 1
then there are at least two distinct members of V each of which is the

product of k members (not necessarily distinct) of V.

311. Proposed by Chanfes W. Tnigg, San Diego, California.

h opposite sides of a diameter of a circle with radiusa * b
two semicircles with radii ¢ and » form a continuous curve that divides
the circle into two tadpole-shaped parts.

(1) Find the angle that the join of the centroids of the two
component parts makes with the given diameter of the circle.

(II) For what ratios a : b does the continuous curve pass through
one of the centroids?

(III) W a = b, find the moment of inertia of one of the com-
ponent areas about an axis through its centroid and perpendicular to
its plane.

312. Proposed by R S. Luthar, University of Wisconsdin,
Janesville, Wisconsin.

Let {an} be a sequence such that a; ; 1and forn > 1
+ 1+ (-7 + —2-[1 + (-1,

a =a,,

Sow that the sequence {an} has infinitely many primes.

313. Proposed by Muwray S. Klamkin, Fohd Motor Company,
Deanborn, Michigan.

Give an elementary proof that

(1+ cos? 4)(1 + cos? B)(L + cos? ¢) = 64sin2 A sin2B sin2 C,
where 4,B,C are the angles of an acute triangle ABC.
Remank

J. Gillis gave a proof using calculus techniques in Problem E 2119,
Amenican Mathematical Monthly, 1969, p. 831.

-

Sol utions

281. [Fall 1972] Proposed by Solomon (. Golomb, University of
Southern California.
V¢ define an "average" number to be a real number for which the
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average of the digits in its decimal expansion is (0t 1+2+3+ 4+
5+6+7+8+9)/10 =45 prove that the number 1/p, for p prime,

is an "average" number if and only if the period of its decimal expansion
has an even number of digits.

Sofution by Bob Prielipp, The. University of Wisconsin, Oshkosh,
Wisconsin.

V¢ shall show that the proper fraction a/p, for p prime, is an
‘average" number if and only if the period of its decimal expansion has
an even number of digits.

Let the fraction a/p, for p prime, be such that the period of its
decimal expansion has an even number of digits. (Since it is clear that
p must be different from 2 and also different from 5, the period will
begin immediately after the decimal point.) W begin by considering
some examples. The period of 5/7 consists of the six digits 714285.

Ve split them in half and add the numbers so formed: 714 *+ 285 = 999.
The period of 1/17 is 0588235294117647 which when split and added gives
05882352 1 94117647 = 99999999. For the period of 1/11, which is 09,
we have 0t 9 = 9.

It can be established that the am of the two halves of the period
will always turn out this way when the period belongs to the fraction
a/p whose denominator p is a prime, provided the period has an even
number of digits. For a proof of this fact, see Rademacher and Toeplitz,
The Enjoyment of Mathematics, Princeton University Press, 1957, pp. 158-
160. Another proof may be found in W. G. Leavitt, "A Theorem on Repeat-
ing Decimals,"” American Mathematical Monthly, June-July, 1967, pp. 669-
673.

Let the period of a/p be b.b, «++ byby . +++ by. Thenb +b,*+
cee t by + i1 LR by, =9 + 9+ ... + 9 [k addends of 91 = 9%, so
that a/p is an "average” number.

Suppose the fraction a/p for p prime is an "average” number. Then
clearly p must be different from 2 and also different from 5, so the
period will begin immediately after the decimal point. Let the period

of a/p be e *+v ;. Because a/p is an "average” number, ¢; e, *

e
172
_ 1 eq = (9/2)7. But cl'l' e, + ... 1 c3 is a positive integer. Hence,
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(9-'/2)j is a positive integer, which implies that § is an even positive
integer. Thus the period of the decimal expansion of a/p has an even
number of digits.

Comment by Sid Spital, Hayward, California. This problem appears on
page 24 of the USSR Olympiad Problem Book, W. H. Freeman and Company,
1962.

ALso solved by STUART MARGOLIS Rutgens Coflege; GREGORY WULCZYN,
Bucknell Univensity, Lewisburg, Pennsylvania, and the Proposer.

282. [Fall 1972] Proposed by Charles W. Trigg, San Diego, Cali-
fornia.

Four differently colored isosceles right triangles can be assembled
to form a square in six essentially different ways (not counting rota-
tions). By joining these tetrachrome squares domino-like with like-
colored sides meeting, a variety of configurations can be formed. Show
that (a) they can be so assembled into a 2 x 3 rectangle with solid
colors along each side and that (b) they can not be so assembled into
a 2 x 3 rectangle with its four sides differently colored.

Solution by the Proposen.
The color-numbers along the edges of the six squares are shown below:

1 1 1 1 1 1

4 A 2 3 B 2 4 C 3 2 D 3 3 E b 2 F 4

3 4 2 4 2 3

a) A typical assemblage, as shown in the 2 x 3 figure, leads to three
more arrangements by adding 1 to each color-number (5 becomes 1), and
continuing the process, reducing each am modulo 4, as shown in Fig. 1.

1 1 1 2 2 2
4_ A 2 D 3 E 4 1 A 3 c 4 D 1
— i : ;
4 F 2 B 3 C 4 1 F 3 E 4 B 1
1 1 1 2 2 2
FIGURE 1
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Note that this merely rotates A and F and cyclically permutes the others
along a crossed loop. The columns in each arrangement may also be cy-
clically permuted to give a total of 12 such rectangles.

b) Internal color segments occur in matched pairs, so if three
like colors appear on one side of the rectangle, the sixth segment of
that color must appear on another side thus spoiling the four-colored
arrangement.

Also solved by MERYL J. ALTABEL, Henbert H. Lehman Colfege, New
York; ERIC HARTSE Missoula, Montana; CGHARES H. LINCOLN, Terry Sanford
Senion High School, Fayetteville, Noath Carolina; and NB/O KING,
Raleigh, Nonth Carolina.

283. [Fall 1973] Proposed by David L. Silvewman, Lo, Angela,
California.
Let a; = sin L and for every positive integer n, let an+l = sin a,
Does Zan (n =1, 2, 2, ..., ») converge?
Solution by the Proposen.
By examining the first two terms of the Taylor expansion of the
sine function, it is evident that 1/(n * 1) < sin (1/2) for n = 1,2,3,
Then, since 1/2 < sin 4, it follows that 1/3 < sin (1/2) <
sin sin 1; also, 1/4 < sin (1/3) < sin sin sin 1, etc. Consequently,
since it dominates the truncated harmonic series, the series Zan diverges.
ALso sofved by BENAMIN L. STHWARTZ Melean, Virginia. Four in-

cornect sofutions wene received, One of them asserting convergence.

285. [Fall 1972] Proposed by Muwrray S. Keamkin, Fohd Motor Company
Seientific Laboratorny, Dearborn, Michigan.
Solve the equations:
alz? - y2) - 2bzy tex - dy t €
b(x? - y2) + 2amy t de t oy *+ f
Solution by the Proposer.
Both equations can be written as the complex equation
(at ib)ztiy)2t (et idztiy) tetif=0
which can be solved by the quadratic formula. The square root can be

1 1]
o ©

extracted by converting to polar form.

286. [Fall 1972] Proposed by A. M. Gustagson, Salt Lake City, Utah.
Given decimals x = .xjxox3-**, ¥ = .y1y2y3 ** in [0,1], define
{x? y: y ¢ [0,1]1}. (The only

X %ty = X1Y1X2Y2X3Y3" ", and |l et P.’l.‘
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decimal ending in 9's is 1.)

1) Usethe sets P, 0= x 51, to write [0,1] as the union of ¢
pairwise disjoint perfect sets.

2) There are many ways to write [0,1] as the union of ¢ pairwise
disjoint perfect sets P,,, 0 < x < 1. Let T be any family of such decom-
positions {PX : 0 £ x 51} such that no two decompositions in T have a
set in common. Prove that the cardinal number of T cannot exceed ¢.

3) Modify (1) to obtain a family T of the kind considered in (2)
with the cardinal number c.

For references see E. Hewett, Real and Abstract Analysis, Springer,
Nav York, 1965, and |I. P. Natanson, Theory of Functions of a Real
Variable, Frederick Ungar Publishing Co., Nev York, 1961. (In particu-
lar, see Ex. 5, p. 54.)

Solution by the. Proposenr.

1) P is closed: Consider a Cauchy sequence (fn} <P, fn

For fixed k, it is possible to show that the first k digits of fn are
the same for all large n. Let Iy be the eventual value of the kth

digit of fn’ and put g = 919503° " - A short computation shows g =
X %®y withy = g 986" and fn - g. Therefore, Px is closed.

Px is perfect: Given x %y ¢ Pm, select a sequence {yn} of dis-
tinct points with [imity. Then x =# ¥, T X %Y, SO Px is perfect.

2) Let R be the family of all perfect sets from the decompositions
in T, Then R has cardinal number c, because there are ¢ closed sets
in [0,1]. Therefore, T has cardinality at most c.

3) Let k = {kn} € IV‘N be a sequence of natural numbers. Define
Tk = {P (k) : 0<x <1} as follows: each Px(k) is the set of all

x

decimals in [0,1] with @ in position k) + -- Tk, tn. Each T, is
a collection of pairwise disjoint perfect sets with union [0,1]. Since
NN has-¢ardinal number e, the family T = {Tk ke IVN} has the desired
property.

287. [Fall 1972] Proposed by Eawin Just, Bronx Community Coflege.

For each real number x, prove that

=X % .
yn
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2n
=7 Z (—1)kxk 20.
k=0

sstation by Sid Spital, Hayward, California
Evaluation of the geometric am and a little algebra converts the

sroblem to a proof of

(" - 1)(:1::”+l - 1) ; 0 for x Z -1,
This is true since both factors are of like sign for x > -1 and of
opposite sign for x < -1 (x = -Listrivial).

Abso sofved by K. BURKE, Seton Hatl University, South Orange, N. J.;
ERIC HARTE, Missoula, Montana;, CHARLES H. LINCOLN, Terry Sanford Senion
High School, Fayettevillfe, N. C; PETER A. LINDSTROM, Genesee Community
College, Batavia, N. Y., SDNEY PENNER, Bronx Community Coflege; BOB !
PRIELIPP, University of Wisconsin, Oshkosh; GREGORY WULCZYN, Bucknell
Univensity, Lewisburg, Pa.; and the. Proposer.

288. [Fall 1972] Proposed by Leon Bankoff and Alfred E. Neuman,
Mu Alpha Delta Fraternity.
If a+ 81y =n show that
(1) sin 20 + sin 26 + sin 2y € sina * sin B * sin v
(2) sin 2a* sin 28 + sin 2y <
sinat sin gt siny t sin 3 + sin 38 + sin 3y
equality holding if and only if a =8 = y.
| Sofution by L. Cantitz, Duke Univernsity, Durham, North Carolina.
The inequality
sin 2a * sin 28 + sin 2ya sina * sin 8 + sin v
is well known (see for example 0. Bottema, R. Z. Djordjevid, R. R. Janid,
D. S. Mitrinovic and P. M. Vasic, Geometric Inequalities, Groningen,
1969, p. 18, No 2.4).
As for the second inequality, we have

Zsin a :% Esin 20 = g%g.
> sin 3a 3 (s sina- 4 sin3 a)

3 s
FLO Tl
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¢ =3 _1 3
"R 2R3 La
- if %(233 - 12rsR - 6r2s).
Thus
i . . bg 1 2rs
sin a + sin 3q - sin 2a = — - — (283 - 12rsR - 6r? -
P > p 5 o ( s r?s) - 3
s

(uR3 + urR + 3r2 - 82).

R3
Nw it is known (Geometric Inequalities, p. 51, No. 5.9) that
82 < ur? + upp + 3p2
with equality if and only if a = b = ¢. Thus the stated result follows
at once.
11. Sofution by the Proposers.
(1) If A denotes the area of a triangle ABC with inradius r and
circumradius R, we have

A = RZa cos A = rZa

from which we obtain
A in 24
. Za cos 4 _ 251n <
R Sa 2y sin A
orl sind4 > | sin 24.
(2) Since £ sin 3 =3 sinA - u | sin3 A, it follows that

ZsinA +Zsin A =)y sinA - quinA sin? A

5 (%)

43 sin A(1 - sin? A) = 4 3 sin A cos? A

= 2Zsin 24 cos A 2}% = %ZSiHA
Then, by (*), we have | sin 4 *t | sin 34 2 I sin 24,

289. [Fall 1973] Proposed by R. S. Luthar, University of Wisconsin,

Waukesha.

WI_f Pys Py Py are the first n primes, prove that for n > 2,

: p"<p1+p2+“'+pn—1
and hence show that between p, and p, + p, * .- +p,, there aways lies
a prime number.
Sokution by Chartes H. Lincoln, Terry Sanfornd Seniorn High Schooi,
Fayetteville, Nonth Carolina.

The problem as stated is incorrect. It should read “for n > 3",

L35

since p, + p, =P, The proof is by induction. For n = 4, P, + P, +
Py > P, OF 2+ 3+ 55> 7. Asumethat for some k > 3
Py+Py+Py+ """ 4 Ppy > Py
Then
P, P, t 0 ¥ P, TP 2Dy > Py
Since by Bertrand's Postulate for every positive integer m there is a
prime p such that m < p < 2m, we now have:
Pyt Pyttt Py Y P W7 Py > opy,
or
Py ¥ Py + ° v P ? Prire

thus completing the proof. Since p, + p, t oot P, > %, > D, by what
has been said above, there exists a prime with the desired property.

Simikar solutions were offered by ERIC HARTSE, Missoula, Montana;
MATTHEW 1. KOCH, Buffafe, N. Y.; THOMAS MOORE and DONALD SIMPSON,
Buidgewater State College, Bridgewater, Mass.; BOB PRIELIPP, University
of Wisconsin, Waukesha; PETER A. LINDSTROM, Genesee Community College,
Batavia, N. Y.; SID SPITAL, Hayward, California; and the. Proposen. i
Most solverns noted the inaccuracy in the. statement of the probLem and
some sought to make. the. correction by adding the. equality sign to the
stndiet inequality.

290. [Fall 1972] Phopotied by SofLomon W. Goiomb, University of
Southern Califonnia.

Let M be an a x b matrix of ab distinct real numbers, with ab > 1.
Sow that there exists a real number u such that either every row of M
or every column of M (or possibly both) has an entry less than u and
an element greater than p.
1. Sofution by Sid Spital, Hayward, California.

Let [8i’ti] be the smallest closed interval containing the elements
of the ith row of M. The intersection of these intervals is either a
closed interval or empty. If it is a closed interval, by choosing u
anywhere in the corresponding open interval, the requested result becomes
clear for rows. |f the intersection is empty, then there are two dis-
joint row intervals--that is for some jJ and k, the open interval (tj_,sk)
is non-empty. By choosing M anywhere in this interval the requested
result becomes shown for columns by an inspection of the jth and kth

entry in any column:
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Jth entry < tj <M <8y S kth entry.

11. Sofution by the. Proposer.

If either a =1 or b =21theresult istrivial. For the general
case, find the minimum element in each column, and let a (in column C)
be the largest of these. Either there is an entire column €' of elements
smaller than a or there is not. |f such a column €' exists, then each
row has an element in ¢ which is 2 a and an element in €' which is < a.
¢ then pick u less than a but larger than any element of C'. If no
such column ¢' exists, then each column has an element > a, as well as
its minimum element < a. For this case, we may pick u greater than a

but smaller than any element of M which exceeds a.
The matrix (% 3) with p = 2% shows it is possible (in some matrices)
for each Tow and each column to have an element > u and an element < u.

The matrix (é 5) shows that this does not happen in all matrices.

Also sofved by MERYL J. ALTABET, Bronx, N. Y.; ERIC HARTSE, Missoula,
Montana; N. J. KUENZI and BOB PRIELIPP, The. University of Wisconsin,
Oshkosh; and CHARLES H. LINCOLN, Terry Sanford Senion High Schook,
Fayettevitle, N. C.

291. [Fall 1972] Proposed by Charles W. Trigg, San Diego, California

Hw may a square card be folded into a tetrahedron? Wha is the
volume of the tetrahedron in terms of the side of the square?

ALL of the. solvens Listed here submitted practically identical solu-
tions: ROBERT C. GEBHARDT, Hopateong, N. J.; ERIC HARTSE, Missoula,
Montana; JOHN M. HOWELL, Littlerock, Calif,; CHARLES H. LINCOLN, Fay-
etteville, N. C.; and the. Proposenr.

Solution:

Join the midpoints of two adjacent "sides of the square and then join
these points to the opposite vertex. Crease along the joins and fold up
intoa tetrahedron. In the trirectangular tetrahedron so formed, the

volume is (1/3)(1/2)(8/2)%s, or 83/24, where 8 is the side of the square.

LOCAL CHAPTER AWARDS WINNERS

AABAVA BETA (Auburn University). Recognition for outstanding work
in mathematics was given to
Diane Jondan,
Keith Lane..

ALORDA ZETA (Florida Atlantic University). An award of $33.33 to
be used for the purchase of books was presented to
Zachany Cabany,
Scott Demsky,
John Leach.

GEORGA BETA (Georgia Institute of Technology). For achieving at
least a 3.7 average (4.0 perfect) in all mathematics courses a book on
mathematics of the recipient's choice was awarded to

Equine. Hubbahd,
John H. Nading,
Mark V. Peavy,

Keith R. Propst.

N®V YOXK PHI (State University College at Potsdam). Undergraduate
senior awards for excellence in mathematics based on cumulative grade
point average in mathematics were presented to

Richand Gustafson,
CofLeen Guhin.

QWAHMVA ALRHA (University of Oklahoma). The Nathan Altshiller Court
Award of $50 for the best freshman men and women in mathematics was given
to

Loy F. Knight

Karen L. Boyd
The Samuel Watson Reaves Scholarship given each year to a senior for grad-
uate work in mathematics was presented to

David Young
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OHIO NU (University of Akron). A Samuel Selby Scholarship was pre-
sented to
Michael Margnreta,
Mary Ann Schuenrgen,
Allan Wilcox.

PENNSYLVANIA BETA (Bucknell University). The first annual John
Steiner Gold Mathematical Competition involved 72 individuals from 24
high schools and resulted in the winners listed below. The individual
winners each received the four-volume set of The World of Mathematics,
and the first, second and third place team winners received respective
prizes of $100, $50, and $25 for their school mathematics library.

INDIVIDUAL WINNERS
Andrew Boyer (First Place), LBMBURG AREA SR. HIGH SCHOOL
Lee. K&inger (Second Place Tie), SELINSGROVE AREA JR./SR. HIGH SCHOOL
Ly Smith (Second Place Tie), CENTRAL COLUMBIA HIGH SCHOOL
William Bachman (Fourth Place Tie), WARRIOR RIN SF. HIGH SCHOOL
Thomas Smith (Fourth Place Tie), MILTON AREA SR. HIGH SCHOOL
Philip G. Staubs (Fourth Place Tie), BENTON AREA JR./SR. HIGH SCHOOL
TEAM WINNERS
LEWISBURG AREA SENIOR HIGH SCHOOL (First Place)
(Andrew Boyer, Walter T. Bromfield, Cynthia Walter)

CENTRAL COLUMBIA HIGH SCHOOL (Second Place)
(Diana Schefl, Loy Smith, Michael Winseck)

WILLIAMSPORT AREA HIGH SCHOOL (Third Place)
(William Canpenter, Nona Landale, David L. Plankenhoin)

WEST VIRGINIA ALPHA (West Virginia University). For presenting out-
standing papers in mathematics, membership in the Mathematical Associa-
tion of America was awarded to
’ Stephen Summenrs,

Bonnie White.,
Bauy Dooley,
Michael Mays.









