N MU EPSILO/\;
JOURNAL

VOLUME 6 FALL 1974 NUMBER |
CONTENTS

Elementary Humber Theory in Certain Subsets of the Integers, II
Carmen Q. Artino and Julian R. Kolod........ccauuvunn 1

Byithagoras and Einstein.. .. % JWEE B .o o . W o™ V8, i 7

On Analytic Functions of a Quaternion Variable
A M. BUONCHISTIANA. .. o oo eieeaeenen. .. i L, 8

Essay on a Fibonacci-Like Sequence

Jeffrey Cohen..... 8. % SSS., . ,,.......8 %= 5 W 13
The Binomiéll and Poisson Distribution Limit Theorem Via Moment
Generating Functions.. .. J. ... 0. .. M. .. ..., 0. 0. B 18
Even Order Magic Squares Within Magic Squares
Steven J. Eberhand. ... B ... L0 8 R TN L S 19
1972-1973 Manuscript Contest Winners. .. .. s s o o s - sl . olamites, . 23
Gleanings From Chapter RepORLS, .o o vs - o ai et s 7 5 o Holsicioisters . LUEEE: . . 24
ProblemiDepartment. ..o sl o R R o R L 28

Local ChaptergAwarnds Winnegsee s oug, oy, U6, il % | . ., 48



ELEMENTARY NUMBER THEORY
IN' CERTAIN SUBSETS OF THE INTEGERS, I1I

by Carmen 9. Antine and Julian R. Kofod
The. College of Saint Robe

1. Introduction

In [2], the authors relativized the notion of divisibility to non-
empty subsets A of the integers Z of the following type: (1) A # {0}
and (2) if x ¢« A, then -2 ¢ A. For A = nZ, the multiples of an integer
n > A, the Fundamental Theorem of Arithmetic and unique factorization
were discussed. Some interesting results and formulas for the arith-
metic functions = , and o, were also obtained. The development is

A’ A A
continued in this paper, and the notions of greatest common divisor,

s T

relative primality, and the relative version of Euler's function, here-
in denoted by $, are discussed. The notations and results established
in [2] will be used throughout.

2. Commn Divisons, G.CV., and Refative Primenecss

We begin with a definition.

Definition 2.1. If a,b ¢ A, then X € A is a common divisor of a
and b (in 4) if x(d)a and x(4)b.

In the case A = Z, common divisors always exist for any two ele-
ments of Z. However, if A # Z, common divisors may not exist. For
example, the set A of the primes in Z has no divisors in A and hence
can have no common divisors in A. For A = nZ, common divisors do not
always exist since divisors do not always exist. (This problem is easily
remedied by adjoining the elements 1 to A, however.)

At least two approaches are used to investigate "the notion of
greatest common divisor (g.c.d.) of two integers x,y, both not zero.

In [5], the greatest common divisor of x and y is defined as that common
divisor which is greater than all other common divisors, while in [1] -
the g.c.d. is that (positive) common divisor 4 which has the property

that any other common divisor f also divides d, that is, f | d. This

second definition is not adequate for the types of sets we are considering




since we can take

A = {£2, #3, #4, 16, 8, 12, +2u4} .
Here 12 and 24 have the following positive common divisors inA: 2 3,
4, and 6. 6 is the greatest of the common divisors by H(;()G. For this

reason we adopt the following definition.

Definition 2.2. Let x,y o A, not both zero, then d is the greatest
common divisor of x,y in A, denoted A(x,y), if
(1) d is a common divisor of X andy inA and

(2) d is greater than any other common divisor of x and y in A.

In the case of finite sets containing zero, even x =y = 0 have a
g.c.d. in A, namely the largest integer in A. The definition produces
the following equalities:

Alz,y) = Aly,x) = Alz,-y) = A(-x,y) = A(-x,-y) .
Thus we assume X 2 0 and y 2 0. Also, if x,4 ¢ A have no common divi-
sors (hence no g.c.d.) we shall write 4{(z,y) = 0.

Since 1 may not be in A and since common divisors may not always

exist in A, a natural way to define the notion of two integers being

relatively prime inA is:

Definition 2.3. Letx,y ¢ A. x and y are said to be relatively
prime in A
(1) if 1Le A, then A(z,y) = 1;
(2) if 1L ¢ A, then
0 (if z and y have no common divisors)
Alx,y) =

the least positive prime in A otherwise.

If x and y are prime in A, then they are relatively prime in A.
The converse is false as can be seen by taking A = Z. Also, if z,p ¢ 4
where p is prime inA and 0 < X < p, then x and p are relatively prime
inA. However, it should be noted that x € A may have a factor y with
x and y being relatively prime. For example, in 22, 4 is a factor of
24, neither are prime, yet 4 and 24 are relatively prime in 22. This
is not true in Z

Since the integer A plays an important role in the definition =F

relatively prime, we now investigate when two composite integers will

be relatively prime in the two sets nZ and nZ u {#1}. For abbreviation,
nZ v {#1} will be denoted nZ*. we first state a proposition showing
that the primes and composites in nz* are precisely those in nZ (the

reader can easily supply a proof).

Proposition 2.1. -
(1) x e nZ is prime if and only if it is prime in nZ#.

(2) x o nZ is composite if and only if it is composite in nz#.

Theorem 2.2. Any two composites in nZ# are not relatively prime

in nZ*,

Proof. He need consider only when x and y are composite in #Zi
If x and y are composite in nZ, then n(nZ%)x and n(nZ*)y and so

nz'(x,y) 2 n. Since 1 ¢ nZ*, x and y are not relatively prime in nZ#.

Theorem 2.3. Two (positive) composites x = k;n2 and y = ksn® are
relatively prime in nZ if and only if ky and k, are relatively prime
in Z

Proof. We prove that x and y are not relatively prime in nZ if
and only if k; and k, are not relatively prime in Z. Since x and y are
positive, ky, ko > 0. Since x and y are composite, they have divisors
innZ. Now, x and y are not relatively prime in »nZ if and only if
nZ(x,y) = d whered e nZ and d > n. Butd € nZ and d > n if and only
if thereis an s o Z such that 4 = sn and s > 1.

Since d(n2)x and d(nZ)y, 3 my,my ¢ nZ such that dn; = x = k;n? and
dmy =y = k2n2. Since my ,my ¢ nZ, ir,,r, o Z such that m; = ryn and
my 7 ron. Thus (sn)(rin) = kjn? and (sn)(r,n) = kon? or s = ky/r; and
s = kop/rp. Now s > Aif and only if ¥k; > »;y 2 L and kp > r, 2 1 if and
only if ky,k, 2 2. Since 8 = k/r, = kyo/r,, then

kiry, + (<ky)ry = 0 . (@)

That x and y are not relatively prime in nZ is equivalent to saying
the linear Diophantine equation (1) above has solutions z;, 35 such that
1< 2y <kyand 1= 2, < k. Geometrically, this is equivalent to say-
ing the line segment joining the lattice point (k;,k;) in the first
guadrant to (0,0) contains at least one other lattice point, as shown
in Fig. 1.
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It is known (see [6, page 1101, or the reader can supply his own proof)
that the line segment joining (ky.k2) to (0,0} does not contain any

lattice points if and only if k, and k, are relatively prime in Z5 that
is, Z(ky,ks) = 1. Hence, « and y¥ are not relatively prime in nZ if and

only if k; and k, are not relatively prime in Z.

3. Eulen's Function
Let ¢A(x) denote the nwnber of positive integers in A which are

less than or equal to x and relatively prime to x in A.
For easy comparison, we state two theorems in connection with this
function for the sets nZ and »nZ* and give the proofs later.

Theoren 3.1,
(1) If x = kn is prime in nZ, then ¢nz(kn) = ka
(2) If x = kn? is composite in nZ, then ¢nz(kn2) = wnZ(kn?) + ¢,(k).

Theonem 3.2.
(1) If X = kn is prime in »n2%, then ¢nzz._,(x) =k + 1= ¢nZ(x) + 1.
(2) If x = " is composite in nZ*, then
(a) if x is uniquely factorable,
"nZ*(x) if k

"
[

q)nzz':(x) ] . - . .
"an:(x) -1 if kisprimeinZ.

(b) if X is not uniquely factorable,

¢nz§_,(x) = gﬁnz(x) - rz(k) + 1.

Proof of 3.1:

(1) If X is prime in nZ, then X has no divisors in nZ and so every
integer in nZ which is less than or equal to X is relatively prime to
X in nZ. Thus ¢nz(kn) = k.

(2) Naw dnnz(x) = P + C where

P = the number of primes in nZ which are less than X and are
are relatively prime to X and
C = the number of composites in nZ which are less than or equal
to X and are relatively prime to X.
Since the primes in nZ have no divisors in nZ, every prime in #Z is
relatively prime to X and the number of primes in nZ which are less than
X is simply wnz(knz). Thus, P = wnz(knz).

If y < X is also composite, then y = k;n2. Since, by Theorem 2.3,
nZ{x,y) = n if and only if Z(k,k;) = 4, C equals the number of k; in Z
which are less than or equal to k and are relatively prime to k in Z.
Thus, C = ¢Z(k).

Proof of 3.2:

(1) If X = kn is prime in »nZ%, then the only divisor (in addition
to x) of X in »nZ% is 1 which is also relatively prime to X in nz#,
Again, all other positive integers in nZ% which are less than or equal
to X are relatively prime to X in nZ%. Hence, ¢nz*(x) = ¢nz(kn) + 1
=k + 1.

(2) Now ‘bnz*(x) = P + C * 1 where

P = the number of primes in nZ* which are less than X and
relatively prime to X in »nZ%, and
C = the number of composites in »nZ* which are |less than or
equal to X and relatively prime to x in »nZ#.
(The presence of 1 in the formula is due to the fact that 1 is also
relatively prime to X in nZ#.) But C = 0 since, by Theorem 2.2, no two
composites in nZ*% are relatively prime in nz%,

Now P = the number of primes in »nZ* which are less than X minus the

number 5f primes in nZ* less than X which divide X in n2*.
(a) If X is uniquely factorable, then by [2, Theorem 2.31, X = kn™ where;
Xk =1oraprimeinZ. If k=1, then the only prime in »nZ* which divides
x is #. Hence, ¢nZ=’=(nm) = "nz(nm) -1+ 1= nnz(nm). If kisa prime
in Z, the only primes in nZ# which divide x are n and kn. Hence,
(kn) = = (k) - 24 1= (k) - 1L

Tl



quely factorable the only prime divisors in
red by splitting up k¥ into its various divisors.
of k%, there are rz(k) prime divisors of

An ), - + 1.

which results from elementary number
iz nZ%. For example, the following important
strictly generalize To these two sets: If pis
: aor p b. Theproof of this theorem and
any others in Z ultimately rest on Euclid's Division Algorithm, which
does not appear to relativize either.

This line of inquiry has already turned out to be fruitful since
we have been able to prove, based on the results in [2], that there are
no odd perfect numbers, a result which will be presented elsewhere. It
may be possible to approach other problems of number theory using the

techniques presented here and in [2].
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CORRECTION TO ELEMENTARY NUMBER THEORY IN SUBSETS OF Z, |

The authors of the preceding article wish to thank Professor Pau.
Schaefer for pointing out an error in the formulas of Lemma 2 and Theo-
rem 6 on p. 495 of their previous article, Reference [2], above. The
proofs of [2] apply as well to the following corrected versions:
Lemma 2 should read: Let x = nm. If nisprimeinZorifms 2, then

m-1 _r

v 0 =m-Lando (") = [T w7 = (" - n)/(n - 1). Theorem 6

should read: Let x = kn‘m, wherem 2 2andn f k. If n isprimein g

orif m< 2 then rnz(knm) = (m - l)rz(k) = Tnz(”m)Tz(k) and cnz(kn'") =

-

oz(k)(nm -n)/(n-1) = cnz(nm)oz(k).

PYTHAGORAS AND EINSTEIN

A reader, Bruce Bushman, Laguna Beach, California, has sent the fol-
lowing interesting observations and derivation of a formula in relativity.

The clock or time effect in special relativity is a simple applica-
tion of the ancient theorem of Pythagoras. Consider a scientist riding
a train at the given speed v. If he shines a flashlight down to a mir-
ror laid at his feet, he can shine a pulse down and back up in a measured
time t'. While he considers the path of the pulse to be two straight
vertical lines of length e¢t', where ¢ is the speed of light, an observer
outside the train looking through a large window will consider the path
of the pulse to be the shape of a "V", or along the hypotenuse of each
of two right triangles with total horizontal length vt, where t is the
time of the experiment as measured by the outside observer. The total
length of the V-shaped path of light according to the outside observer
is ct.

Nw it is time to use the Pythagorean Theorem. Let us simplify by

using only half the figure (one right triangle) as shown below. Doubling

v t/z

-

ct\ |ut

Zz 2

and using the Pythagorean Theorem,
(et)2 = ()24 (et")2,
Our goal isto isolate t' to learn the relation between the moving clock
and ‘the stationary clock. Simple algebra and the fact that t' must be
positive yields
t' = t/1 - (w/e)? ,
which is Einstein's famous formula.
Ore immediately deduces from this the classical result that since

t' < t the moving clock is slower than the stationary clock.



ON ANALYTI C FUNCTI ONS OF A QUATERNION VARI ABLE

By A M. Buoncristiana
Ohio State Univensity

In a recent issue of this journal Joseph J. Buff [1] discussed a
characterization of an analytic quaternion valued function of a quater-
nion variable. His development was based on a generalization of con-
ventional complex variable theory and he deduced that a quaternion
valued function, analytic according to his definition, had the general
form of a "linear" function

f@@) =cQ + B
where ¢ is a real constant and B a quaternion constant. In this note
we introduce a different definition of analytic function and examine
it using the algebraic properties of quaternions. Our result, while
similar in form to Buff's, allows a wider class of analytic functions.
In fact, any complex analytic function can be ex ended directly to a
quaternion analytic function.

A quaternion can be expressed as a linear combination of one real
unit, ey, and three imaginary units, e,, e,, e;:

X =x% +Xle, +X2%, + X 3e, (1)

whereX %, X1, X2, X3 are real numbers. Upon multiplication of the units

among themselves, e, acts like an identity, while the imaginary units

0
satisfy

= -e (2)
e 7 S T %%k
with k,£,m any cyclic permutation of 1,2,3. W& can readily see that the
complex field is isomorphic to the subsystem of quaternions obtained by
setting X2 =X 3 = 0 and identifying
X% +x lel
with

9 +x g,

For convenience we shall denote

X =x%;q +¥, (3)
X% and? being called the real and imaginary parts of X , respectively.
The eonjugate of the quaternion X, denoted by X, is obtained by re-
placing the imaginary part by its negative:

X=x% -%; (4)
this operation (¥ =+ X) is an involution, that is, T = X and XY = X7.
Furthermore, it is easy to verify that

X+ X= TX)e,,
- - (5)
XT = XX = N(X)e,,

with 7¢x) and ¥(X) real valued functions of X%, x1, X2, X3 given by

7(Xx) = 2x°,
3 2 (6)
N = Y.
u=0

From the equations (5) it is seen that every quaternion X satisfies the
characteristic equation

A2 - TGO + e, = 0; (7)

if we regard (7) as an equation over the complex field (with €, omitted)

3
= x0z 7,[2 (Xk):z]l/2
k=1

X0+ 7]%|.

the roots of (7) are

>
1

i+

(8)

If f(z) is an entire function of the complex variable =z, so that
for all finite 2,

fz) = 2 cnzn
n=0

we define an entire function of the quaternion variable X to be the
corresponding representation by infinite series

fx) = 2 enx”, (9)
n=0

where infinite series of quaternions are formulated in terms of limits
exactly as in complex variables. There is a straightforward extension
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of this definition in case f(z) is analytic in some restricted domain,
but for simplicity we consider only entire functions here. To exploit
this definition we need to examine the powers of X. Since X satisfies
the quadratic equation (7) each power of X can be reduced to a linear

function of X. Specifically, we have

n
X = +
AnX Bne0 (10)
where An and Bn are real numbers satisfying the recursion formulas

An+l

X A, + B,
-N(X )An

Bn+l
with initial conditions A = O, BO = 1. The solution to this system is
found by noting that over the complex field the equation corresponding
to (10) also holds:

A= ax+ B,
n n

or
n _ n _
N=an, B, =4 +B. (10")
Thus,
NN AT -]
4, = —, B = et (11)
N, =& A, - A
+ - + -

provided that Ay - A_ is non-zero. This latter case is easily handled

-+
separately, for we have A, = A ifand only if |¥] = 0, or X real. Using
equations (10) and (11) to eliminate X" in equation (9) we obtain

FX) = A(F 00X + B(J",X)e0 (12)
where
f(>\+) - FQ )
A(f X) = ——m—————
A - A
+ —_
and
ALY -2 FOA)
BUF &) = wlos -
A=A
+ -

Thus while f(X) has a linear form. the coefficients A and B are complex
functions of the characteristic roots of X.
A's an example consider a purely imaginary quaternion X (thus

BB

-
X+ X = 0). The characteristic roots of X are given by A, = #i|x|. Ve
obtain directly, with f(X) = eX,

Xl Xl 3
AGF.X) = e -4? - 51EIX|
2| x| B
z[}]e_‘bl}l - i|}[ei |}I e
B(f,X) = — = cos| x|,
22 | x|

or
eX = cos |}| + -%- sin|7Y| 5

an obvious generalization of Euler's formula for complex numbers. Fom
here it is easy to obtain a polar decomposition for quaternions.

Remark 1, Since all derivatives of a complex analytic function are

analytic, we can define all derivatives of f(X).

Remark 2. The definition given here can be extended to analytic
functions of any power associative algebra. In particular it applies
also to octonion valued functions of octonions. Furthermore, since the
octonions also satisfy the quadratic identity (7) with T and ¥ as given
by equations (5), the general form of an analytic octonion function is

given by (12) also.
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A NEW PUZZLE

Victor Feser, St Louis, Missouri, has pointed out that the puzzle

which appeared in the Fall 1973 issue cannot be solved without additional

information, such as, for example, a comment by the native as to the
identity of the other native. V¢ therefore state below a corrected and

slightly more involved version, and invite readers to find a solution.

M an island in the Pacific lived two tribes, the Blue men and

the Green men. The Blue men always told the truth, and the Green
men always lied, unless a Blue man was present, in which case they
also told the truth. Once some men were shipwrecked on the island,
and the natives agreed to release them if their captain could solve
a puzzle. He was blindfolded, placed in a room with 10 natives,
and was to guess their tribes within 5 minutes, using any clues he
could get from the conversation. One of the natives spoke inaud-
ibly, so the captain asked another native what he had said. The
native answered "He said we are all Green men." The captain im-
mediately identified all the natives and his men were released.

What reasoning led the captain to his conclusion?

ESSAY ON A i
FI BONACCI - LI KE SEQUENCE

by Jefgrey Cohen
University of Pennsylvania

Consider the sequence: 1, 1, 2, 3, 5, 8, 13, 21,-... This is the
well-known non-repeating Fibonacci sequence. In the sequence below we
consider a variation of the Fibonacci sequence: Whenever a two-digit
number is reached, we add the sum of the individual digits to form an-
other term which replaces the two-digit number, and continue the sequence
in this manner. Thus:
,1,2,3,5,8,4,3,7,1,8,09, 8,8,7,6, 4,1, 5,6, 2, 8,
1,9,1,1, 2, 3,5, 8,°°° (1)
Notice, that after the 24th term, the series begins to repeat itself.
This series when added has a total of 117.

Nw take a similar series, beginning with 1, 3:
1,3, 4,7,2,9,2,2,4,6,1, 7,8,6,5,2,7,9,7,7,5,3, 8, 2,
1, 3,-... Here again, after the 24th term, the series begins to repeat.
Also the sum of the series is 117. Hereafter, a series like thiswill
be termed a q series.

Now, in a more general fashion, consider the following series:

fi=a f,=b, fy=a+b, f,=at+ 2b,

fg = 2a+3b, fg =3a+ Sb, f, = 5a + 8b, fg = 8a + 13b,

and, in general
fo = F, ,atF, b, (2)

where Fn is the nth Fibonacci number.

Theonem 1. Fn =F + F

Proof.  Substitute f; =a = 1, and f2 = b = 1 for equation two.

Thus f, = a+F,_,b, becomes Fn = F t F_, and throughout.

Fn-2 n-2

Definition 1. 1f a and b are both integers such that:
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0 <a<10 and 0 < b < 10,
then [a + b1* means to add (a+ b), and if their sum exceeds 9, add the

two separate digits of the sum to form one, one digit number.]

For example,

r121%
[171*

[s + 71"
[s + 91%

Note: For Definition 4, if aand b are positive integers not of
the form 0 < a < 10 or 0 < b < 10, they may be made of that form by
taking al” or [b]*; and adding up the individual digits, so that a one-
digit number is obtained (e.g. 521" = 7, [21877% = 5).

Theonem 2. [a + 91" = a

Proof. Nine is the additive identity for this operation. This is
because [a + 91" may be written as [[a] + 91%. Here, 0 < [al” < 10,
and if [al* = 1, 2, 3,---, 9, then:

[1+9)=r100" =1 [2 + 91" = (110" = 2
3+ 91" = [121% = 3 [+ 91" =[137" = 4
[5+ 91" = [14]" =5 [6 + 91" =[151" = 6
[7 + 91" = (163" = 7 (8 + 91" = [171" = 8
[o + 91" = [181" = 9

Thus, all possible values for a have been verified.

Theorem 3. [9+al” = 9.

Proof. That nine acts like a zero in multiplication for this op-
eration can be proved by again testing all possible values of a; thus:
[1-97" = [91" = 9 (2:01" = (181" = 9
[3-91" = [271" = [4-91" = (367"
[5.91% = [u5]" = [6-91 = [5u17
[(7+91% = (631" = [g-91" = [727"
[9-91% = [81]"

9
9
9

© © ©O© ©

By applying Definition 1, to equation (2), any general term of the

q series may be represented by the expression:
— * -
q, * [Fn_Qa + Fn_lb] where n > 1 and Fy = 0.

11t may be easily shown that [a + b1* is the sum of a + b reduced
modulo 9 -- Editor

Propenties of the. q Series

1. The q sequence repeats after every 24 digits,

2. The sum of the first 24 terms of the g sequence is [1171% = o.
3. The sum of two digits a and b, that are 12 tern's apart is - -
la+ 51" =9

4. The series contains two pairs of repeated numbers.

Property 1. The q sequence repeats after every 24 digits.

Proof. Let the first two terms be a, b. If the sequence repeats
after every 24 digits, then the 1st and 2nd term should equal the 25th

and 26th term, and so forth. Using [Fn— a + Fn—lb]* for a general term

2
of the sequence, then:

*

dps = [Fya + pz;b] and  g,¢ = [Fya + Fzsb]*
If the sequence repeats after 24 digits, then we should have:

a=[Fya+F,b)" and b=I[Fya+F,bl .

By equation (1) [F23]* = 1 [le‘]* = 9; [Fzs]* = 1,504, =lat 9p7*
and q,, = [9a + b1™. By Theorem 3, (921" = 9 and [9p]" = 9, so
955 - [a + 91% and 9y = [9 ¢ b1". By Theorem 2, [a t 91* = a and
b+ 91" = b, so G,5 = @and q,¢ = b.

Note: This only means the series repeats at |least once after 24

terms. However, it may repeat in multiples of 24 (e.g., 1, 8,-:-).

Property 2. The sum of the first 24 terms of the g sequence is
(1171 = 9

Proof. The first few terms of the q sequence are:
a, b, a+b,a+ 2b, 2a +3b,---, Fn—?“ + Fn_lb,
so the sum of the first 24 terms is:

24 " 24 2y .
a+ 3 IR, ja+F, p) =la+ 2 F, At ZFn_lb]
n=2 n=2 n=2

But from equation (1),
24 . %
F = [117 - (1 + 9)] = [107) = &,
n-2
n=2
and

21

SF . =r[117 - 91 = [108]" = 9,
n-1

n=2

so
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[a+8a+ 9b1* = [9a + 91" = [9(a + )] = 9
by Theorem 3.

Property 3. In the g sequence the sum of two digits which are
twelve terms apart is 9.

Proof. Let the first term equal [Fn_za + Fn_lb]* and the twelfth

F b]*, so we must prove that

term, [F 102 ¥ Frpan

*
(F,_,a+F, b+ Foig?t FooPl =9
or

*
[(suz-"n+l + 36Fn)a + (9o}n+1 + san)b] =9

by Theorem 1, as the following shows:

Z:'n+lo = F;1+9 ¥ Fn+8

B 2Fn+8 * Fn+7

= 3Fn+7 # 2Frz+6

= e t s

= 8Fn+5 * 5Fn+l4

- 13Fn+4 * BFn+3

= 21Fn+; + 13F%+t

- 34Fn+2 * :an+l '

Then,

n+10 * Fn—.' = 55Fn+l

i
w
=

<3
+

A

3

= H44F + SLF + i
Bt T By 1 By ¥ HHg * i

= CuF + 36F .
n+l n

Similarly,

Fn+ll * Fn-l = 90F72+l * Squz .

But [541% = (361" = r9o1” = 9, so we obtain

* *
[(9Fn+ + 9F;2)a + (4F;z+_ + 9F”)b1 = l(9F.1+ + 9F Ya + b)]

1 L

= [eG,  + B+ D)

+1
=9

i}

by Theorem 3.

The q series totals 117, and repeats exactly 24 terms for most

(1Y

T L L L LT L LT LR LT T LT
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cases. Out of 81 possible cases for (a,b), the q serieswill total 117
and repeat after 24 terms, while for nine pairs the q series will not.
These nine q series either repeat in multiples of 24 terms (when
(a,b) = (9,9)), or repeat every 8 terms (when {a,b) = (3,3),(3,6)35(3,9),
(6,3),(6,6),(6,9),(9,3) or (9,6)). Thus, after. every 24 terms, the -
series will repeat. These nine pairs of digitswill add to 5(9,9) or
(45,45): (3,3) + (3,6) t (3,9) + (6,3) + (6,6) + (6,9) + (9,3) + (9,6) =
(45,u45),

The g series actually consists of only 5 different series. There
are 24 pairs (a,b) (e.g. (1,1)) which will generate the first series,
24 pairs (e.g. (1,3)) for the second series, 24 pairs (e.g. (1,4)) for
the third series, eight pairs for the fourth series ((3,3),(3,6),(3,9),
(6,3),(6,6),(6,9),(9,3) and (9,6)), and one pair (9,9) for the fifth
series.

vy
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FRATERNITY KEY-PINS AVAILABLE

Gold key-pins are available at the National Office at the
special price of $5.00 each, post paid to anywhere in the
United States.

Be sure to indicate the chapter into which you were initiated
and the approximate date of the initiation.

Orders should be sent to:

Pi tu Epsilon, Inc.

601 ElIm Avenue, Room 423
University of Oklahoma
Norman, Oklahoma 73069
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THE BINOMIAL AND POISSON DISTRIBUTION
LIMIT THEOREM VIA MOMENT GENERATING FUNCTIONS

Professor Joseph ii. “oser has indicated a very short and direct
proof for Journal readers of +he following well known <heorem in ?rob-
ability and s atistics, which avoids the cus*omary use of density func-

tions.

Theorem. The Binomial Distribution approaches the Poisson Distri-

bution as n approaches infinity.

Proof. The M.G.F. (moment generating function) of the Binomial
Distribution is (1 + p(et - 1" 1f one lets A = np, one obtains

(1 + a/met - 1Y". Wow 1im (1 + 1/n(ef - 1))t = 8D
Nroo

the M.GFF. of the Poisson Distribution.

, Which is

POSTERS AVAILABLE FOR LOCAL ANNOUNCEMENTS

At the suggestion of the Pi Mu Epsilon Council we have had a
supply of 10 x 14-inch Fraternity crests printed. One in each
color will be sent free to each local chapter on request.
Additional posters may be ordered at the following rates:

(1) Purple on goldenrod stock - - - - - - § 1.50/dozen,

(2) Purple and lavendar on goldenrod- - - & 2.00/dozen.

EVEN ORDER MAGIC SQUARES WITHIN MAGIC SQUARES

by Steven J. Eberhard
Texas AGM University

In previous articles in this journal, magic squares containing
magic squares within them have been considered. So far, all of these
have been of odd order. Here we explore two such magic squares of even
order. In Fig. 1 below, we exhibit a six by six magic square which con-

tains a four by four magic square.

n+(3e+1)b | n+(7e)b n+(5¢+1)b | n-(7e-2)b | n-(5¢+2)b | n-(3e+2)h

n-(3e¢+3)b | n+(3e)b n-(3e-1)b | n-(3e-2)b | n+(3¢-3)b | n+(3c+3)b

n-(5¢-1)b | n-(e+tl)b n+(e)b nt+(e-1)b n-(e-2)b n+(5¢-1)b

n-(5e)b n+(c-2)b n-(e-1)b n-(e)b n+(e+1)b n+(5¢)b

n+(7e-1)b | n-(3e¢-3)b | n+(3e-2)b |n+(3e-1)b | n-(3e¢)b n-(7¢-1)b

n+(3c+2)b | n-(7e)b n-(5¢+1)b | n+(7e-2)b | n+(5c+2)b | n-(3e+1)d
FIGURE 1

Each element of this magic square is of the form (n + kb), where » and
b are arbitrary whole numbers and k takes on thirty-six distinct values.
In the notation of Strum in [2], these values of k are given by:

k=qge+p
where, with four exceptions,

q=-7, -5, -3, -1, 1, 3, 5, 7
and for each value of gq except g = -7, g = +7,
p=-2, -1, 0, 1, 2.

For q = -7, q = +7,

p=-2,-1, 0.
The four exceptions to this pattern are the following: k = -(c + 2}, -
k = +(ec +2), k=-(5¢ -2), k=+(5¢ - 2) are replaced respectively,
by k = =(3¢ - 3), K=+(3 -3), k=-(3¢+3), and k = +(3¢ + 3).
To insure that all thirty-six elements are distinct, it is sufficient

that we have ¢ > 3.



It is interesting to note, that while n and b may be chosen as ar-
bitrary whole numbers, it is impossible to produce the " standard” nu-
merical magic square of order six using whole numbers for n and b. (The
"standard” numerical magic square of order six is the square which con-
tains the consecutive whole numbers from 1 to 36. |t has the magic sum
of 111, and the four by four magic square contained in it has the magic
am of 74.) For obviously, in this case,

n =111 + 6 = 18%.

Furthermore, we may generalize from this set of values as follows: = .

may be chosen as an arbitrary mixed number of the form (j + %), 4 an
integer, provided that a is also of the form (j *+ %), e 2 2% ( to insure
thirty-six distinct values of k), and b is again an arbitrary whole num-
ber. It is this use of numbers of the form (j * %) that explains the
absence of even numbers as values of g in the notation
k=ge+p

For clearly, if g were even, a of the form (j§ *+ %), and #n of the form
(7 t %), we would have a fraction as an element of the magic square.

Fig. 2 exhibits an eight by eight magic square which contains a
six by six magic square and a four by four magic square. The six by sia
magic square in the middle of this eight by eight magic square is ex-
actly the same as the one which appears in Fig. 1. Therefore the same
analysis applies, with the following exceptions:
The values of q are now

q = -13, -11, -9, -7, -5, -3, -1, 1, 3, 5, 7, 9, 11, 13

and for each value of g except q = -13, q = +13, -
p=-2 -1,0, 1, 2.

For g = -13, g = +13,

p=-2, -1. ®
There are two more exceptions to this pattern, in addition to those in
the six by six magic square, as follows: k = -(9 - 2), and k = +(9% - 2)
are replaced respectively, by k = =(7¢ + 3), k = +(7¢ * 3). The argument
with respect to n of the form (j + %) still holds, so to insure that the

sixty-four elements are distinct, it is sufficient that we have ¢ 2 2%,
In [11}, Moser proposes that if one uses large enough values for

g and p, any odd order magic square may be constructed which contains
within it successive magic squares. Extending this proposition to even
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order magic squares through the present paper, this author is of the
opinion that a magic square of any order may be constructed which will

contain within it successive magic squares.
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1. Hoser, Joseph Ii., "Magic Squares Within Magic Squares,” this Journal,
5, No. 8 (1973), p. 430.
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1975 NATIONAL MEETING IN KALAMAZOO

I't isnot too early for local chapters to be making plans for the
national meeting at Western Michigan University in Kalamazoo, Michigan
in conjunction with the Mathematical Association of America. Plan now
to send your best undergraduate speaker or delegate (or both) to that
meeting. Travel money for approved speakers and delegates is available
from National. Send requests and proposed papers to:

R. V. Andree

Secretary-Treasurer, Pi Miu Epsilon
601 ElIm Avenue, Room 423

The University of Oklahoma

Norman, Oklahoma 73069

REGIONAL MEETINGS OF NM

Mawy regional meetings of the Mathematical Association regularly
have sessions for undergraduate papers. |If two or more colleges and
at least one local chapter help sponsor or participate in such under-
graduate sessions, financial help is available up to $50 for one local
chapter to defray postage and other expenses. Send requests to:

R. V. Andree

Secretary-Treasurer, Pi #u Epsilon
601 Elm Avenue, Room 423

The University of Oklahoma

Norman, Oklahoma 73069
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1972-1973 MANUSCRIPT CONTEST WINNERS

The judging for the best expository papers submitted for
the 1972-73 school year has now been completed. The winners" :
are:

FIRST PRI ZE ($200): Sam W. Talley, Western Kentucky
University, for his paper "Niceness of the Socle and a
Characterization of Groups of Bounded Order" (this Journal,

Vol. 5, No. 10, pp. 497-502).

SECOND PRI ZE ($100): Daniel Minoli, Polytechnic Insti-
tute of Nav York, for his paper "Use of Matrices in the Four
Color Problem” (this Journal, Vol. 5, No. 10, pp. 503-511).

TH RD PRI ZE ($50): Roseann Moriello, Seton Hall Univer-
sity, for her paper " Partial Differentiation on a Metric
Space” (this Journal, Vol. 5, No. 10, pp. 514-518).

1971-72 LOCAL CHAPTER CONTESTS

During 1971-72 two local chapters entered the manuscript contest for

the first time, and the decision on winners has finally been reached.

M SSOURI GAMMA (St. Louis University). The winner of the
$20 award is Dennis C. Swolarski for his paper " Generalizing
Binary Operations.” Honorable mention is awarded to Kawin
Stahana, Vasilios Alexiades, and Robert T. Griffin.

SOUTH DAKOTA BETA (South Dakota School of HMines). The
winner of the $20 award is CLint R. Cole for his paper "A Poly-
alphabetical Substitution Cipher with a Pseudo-Random One-Time
Key." Honorable mention is awarded to Barbara J. Baskerville,
Dale Koepp, and Jane. Vande Bossche.

1974-75 CONTEST
Papers for the 1973-74 contest are now being judged, and we are

receiving papers for this year's contest so be sure to send us your
paper, or your chapter's papers. |n order to be eligible, authors must

not have received a Master's degree at the time they submit their paper.



GLEANINGS FROM CHAPTER REPORTS

CALIFORNIA ALPHA at the University of California at Los Angeles
helped sponsor a new program of mathematics instruction for high school
students called the Innovative Mathematics Seminar. The program, con-
ducted through the summer of 1974, was directed by Jef4 Alpert and
Patrnicia Yamamoio. Its purpose isto (1) provide a course in the real
mathematics of the mathematician to high school students, and (2) pro-
vide the experience of actual classroom teaching of mathematics to

prospective mathematics teachers.

CALIFORNIA ETA at the University of Santa Clara heard Professon
Rafael Robinson from the University of California at Berkeley speak on
"Kronecker's Two Theorems About Equations with Integer Coefficients."

COLORADO DELTA at the University of Northern Colorado heard
Lawnence E. Gatterer from the National Bureau of Standards, Boulder,
Colorado, speak about the professional society in Thailand and his ex-

periences with the Thailand Standards Team.

DELEWARE ALPHA at the University of Deleware heard John Nerton of
the Du Pont Company speak on "Three Levels of Mathematics Found in

Today's Modern Businesses. "

FLORIDA EPSILON at the University of Southern Florida sponsored a
lecture by Professon Garwrett Binkhofg from Harvard University on "A Role
for Computing in Undergraduate Mathematics." Outstanding Senior for

1973, Joseph Weintraub, spoke on the topic "Continued Frctions."

FLORIDA ZETA at Florida Atlantic University heard Peter DiPaola,
formerly Deputy Superintendent of Schools, Nev Rochelle, Nav York, speak
on the topic "The Meaning of Standard Deviation: A Practical Approach."

GEORGIA GAM1A at Armstrong State College sponsored lectures by
Professon Anne L. Hudson entitled "Lattice Points and the Greatest Coarmm

Divisor,"” and Donald Braffit, a senior, on Fibonacci Numbers.

ILLINOIS ZETA at Southern Illinois University at Edwardsville spon-
sored a lecture by Progesson Inving Kessfer on the topic " Partitions of

Integers,” in addition to administering the Mathematies Field Day involving

competition among approximately 400 high school students.

LOUISIANA EPSILON at McNeese State University sponsored a series of
6 film strips at two meetings on "Uses of Computers and History" by"

Sundown Swetharanyam, director of the computer center.

MICHIGAN ALPHA at Michigan State University heard 2 students give
talks on mathematics: Dave Bowen, on "Bells, Braids and Groups" and
‘Conic Sections in a Finite Projective Geometry," and Russel Caglisch

on Inversion of Power Series."

MICHIGAN DELTA at Hope College held 12 meetings during the year and
heard several visiting lecturers, students and faculty members speak on
a variety of topics, including Progessorn Richard Schmidt from SNy at
Buffalo on "A Career in Statistical Science" and Professon Dean Sommesrs
on “Geometric Constructions." Student lecturers were Sam Quiring, Sandra
Brown, Barbara Watt, Kunt Aveny, WilLiam Scrafford, Chaumaine Mnazek,
Richand Meyens, ELLenone Thompson, and Marvin Dietz.

MINNESOTA ALPHA at Carleton College heard Progesson Thomas Hawkins
from Boston University speak on "Development of Linear Algebra from the
Turn of this Century,” and sponsored a lecture by Franz E. Hofm from the
University of Illinois on "Wha |Is an Automaton” and "The Role of Mathe-
matics in Modern Society.” In addition, student talks were presented by
Richard Sprecher and William Lang.

NEBRAKA BETA at Creighton University heard Professon Henry Gale
(physiology and pharmacology) speak on mathematics from a biologist's
point of view, and sponsored a Mathematics Field Day where approximately
700 high school students participated in three contests: Chalk talk derby
(talks were given on Pascal's triangle and transfinite cardinal numbers),

leap frog (a speed test) and marathon (a two member team speed test).

NBW JERSEY GArii4A at Rutgers University at Camden heard lectures by
Professon Franco.ise Shremmen from Bryn Mawr College on "Is Calculus of
Ary Use in Mathematics?" and Professor Taopper on “The Perfect Group.”

NBW JERSEY DELTA at Seton Hall University heard Professon John
Saccoman speak on "Non-Standard Models." Members of the chapter, Mawreen
Albens , Marilyn Koby, and Roseann Moriello, and students, Victor Delorenzo,
Sheila Paterson, and Richard Mosrgan, presented papers at the Eastern
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Colleges Science Conference held at Worcester Polytechnic Institute,
April 18-20, 1974.

tion on a Metric Space"” won First Prize at the conference.

The paper by Ro-ieann Moriello, " Partial Differentia-

NEW JERSEY EPSILON at St. Peter's College sponsored a lecture by
H. 0. Pollack, Director of Mathematical Research at Bell Labs, entitled
"Honv to Embed an Arbitrary Graph in a Cube."
faculty participated in a " Dissertation Memoirs' and presented a series

Members of the mathematics

of talks.

NEW YORK ETA at SNY at Buffalo heard a lecture on " Probabilistic
Potential Theory" by Progessor Am M. Piech of SNy at Buffalo.

NEW YORK P| at State University College at Fredonia sponsored a bus
trip to the Science Center in Toronto.

NBW YORK PSI at lona College participated in the Fight Against Mus-
cular Dystrophy Carnival by manning a NIM booth with the American Mathe-
matics Society.

NORTH CAROLINA GAM:A at North Carolina State University heard Pro-
fesson Henbert E. Speece talk on the subject "The Mathematics and Science
Education Program at North Carolina State University,"” and also heard
the following student speakers: Robeat Bryant, Davis Blackwelder, ELiza-
beth Smith, and Maryo van der Vaart.

OHIO LAMBDA at John Carroll University heard a lecture by Progesson
John Baker from Kent State University on " Cardinal and Ordinal Numbers'"
and sponsored a High School Math Day.

OHIO NJ at the University of Akron heard Professdor Neal C. Raber
speak on "The Marriage Problem", and participated in the Ohio Section of
the American Mathematical Association at Muskingham College, May 3, 1974.

OHIO ZETA at the University of Dayton sponsored talks by students,
Steve Stoner on "Computer Art™ and Brad PLohz on "The Delta Function and
Other Such Nonsense.”

PENNSYLVANIA NJ at Edinboro State College was installed as a new
chapter with 33 charter members on May 4, 1974 by Councifor Eileen
Poiani, who talked on "New Directions in Mathematics." Following the
installation banquet, B{£f Means gave an entertaining demonstration on
the Tower of Hanoi.

5

PENNSYLVANIA THETA at Drexel University sponsored
Mathematical Aspects of Long Distance Running" by Professon
Osfer from Glassboro State College.

RHODE ISLAND BETA at Rhode Island College sponsored a regional con-
ference in cooperation with Providence College in April, 1974. Talks
were presented by Kirk House, Chailie Huot, John Andreozzi, Joseph A.
Capalbo, David J. Del Sesto, Eddy Jutras, Cathy A. Green, and Stephen M.
Raymond.

TENNESSEE BETA at the University of Tennessee at Chattanooga heard
Professon Clinton Smullen speak on the topic "The Friendship Theorem"
and also sponsored the Freshman Mathematics Award.

TEXAS EPSLON at Sam Houston State University heard a lecture on
"The Electrifying Matrix" by Professorn Joe Obrien.

VIRGINIA GAi##4 at Madison College heard two speakers from the Uni-
versity of Virginia: Professon Stephen Hedetniem{ on "Theory and Applica-
tion of Trees" arid Lucille Whybwwn on "The Calculating Scotchman: John
Napier." Students who presented their om work in mathematics i ncluded

Audrey Stoat and Nancy Ballaxrd.

VRGINIA DELTA at Roanoke College heard Professon R. E. Cape from
the University of Virginia speak on the topic "Wha is an Operating
System?”

WEST WIRGINIA BETA at Marshall University, in addition t o scheduling
several lectures by professional mathematicians, sponsored a College Bowl
Format which pitted two teams of four mathematics students and f our facul-
ty members against each other, and a second interdepartmental college
bowl in which two students and two faculty members from each of the Physics
and Mathematics Departments opposed each other (Physics team won).

WISCONSIN ALPHA at Marquette University heard James Grotelueschen
on " Circuital Approach to Tic-Tac-Toe," Professon Douglass Harnis on
" Reluctant Functions,” and viewed films entitled "Inversion” and "Maurits
Escher, Painter of Fantasies. '



PROBLEM DEPARTMENT

Edited by Leon Banko§§
Los Angeles, California

This department welcomes problems believed to be new and, as a rule,
demanding no greater ability in problem solving than that of the average
member of the Fraternity. Occasionally we skall publish problems that
should challenge the ability of the advanced undergraduate or candidate
for the Master's Degree. Old problems displaying novel and elegant
methods of solution are also acceptable. Proposals should be accompanied
by solutions, if available, and by any information that will assist the
editor.

Solutions should be submitted on separate sheets containing the
name and address of the solver and should be mailed before the end of
May 1975.

Address all communications concerning problems to Dr. Leon Bankoff,
6360 Wilshire Boulevard, Los Angeles, California 90048.

Problems for Solution

326. Puoposed by Zazou Katz, Beverly HLLs, California.

Find solutions &f the equation x2 + 42 + 22 = a2 + b2 + ¢2 + d?,
where each sf the sets gz, y, z and a, b, ¢, d consists of consecutive
integers.

327. Paopesed by Charles W. Tnigg, San Diego, California.

On a remnant counter there are six rolls of ribbons containing 31,
19, 17, 15, 13 and 8 yards. There are two widths of ribbons, some rolls
being twice as wide as the others. There are no price marks, but all
the ribbons sell for the same price per square inch. If you wish to buy
$14.00 worth of each width, buying every roll but one, which roll would

you leave on the counter?

328.  Proposed by Joe Van Austin, Emony University, Atlanta, Geongia.

A group of 366 people are sequentially asked their date of birth.
Assuming birthdates are independent and all days are equally likely,

29

find Pk’ the probability that the first match is obtained when the kth

person is asked. As 366 people must have at |east one match,

Y P, =1
=k
Show this directly.

329. Proposed by Bernand C. Anderson, Hemry Fohd Community Coflege,
Deanbonn, Michigan.
Show that f(z) = 2r * sin X is a strictly increasing function on

(-, +=) by using only pre-calculus methods.

330. Proposed by R Robinson Rowe, Sacramento, California.
Starting at zero-zero latitude and longitude at 12:00 noon on
Monday, Rumline Crowe flew his plane at a constant 180 knots loxodromi-

cally North 45° West. Where was he on Tuesday at 12:00 noon, local

standard time?

331. Proposed by Jack Garfunkel, Forest HiLEs High Schoof, New
York.

In a right triangle ABC, A = 60° and B = 30°, with D, E, F the
points of trisection nearest A, B, C on the sides AB, BC and CA respec-
tively. Extend CD, A and B~ to intersect the circumcircle (0) at
points P, Q, R. Show that triangle PQR is equilateral.

332. Proposed by Richand Field, Santa Monica, Caligoania.

Several years ago | was spending the evening at the home of a
friend who is a musicologist. While there, | received a call from the
president of my company, who apologetically told nme that he had traced
me to ask a question he had to answer at the next morning's board meet-
ing. Specifically, was our monthly average rate of sales growth (6%)
compatible with his forecast that our business would double in the next
year? | promised to call him back as quickly as possible with an answer.
At first I thought | would have to dash home to consult ny slide rule,
log tables, etc. -- but then in a flash it occurred to nme that ny musi-
cologist's library should provide the answer. And indeed it did! |
called back in 5 minutes with the answer and proceeded without further
disturbance to ny social evening. Wha do you suppose gave ne the

answer?
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333.  Proposed by Chanles W. Trnigg, San Diego, Califoania.
Find integers in the scale of 8 whose 6-digit squares are permuta-

tions of sets of consecutive digits.

334. Proposed by Richard Field, Santa Monica, Califoania.
What is the 37th digit in the decimal fraction

z“’: et = 109600 ss ?
10" - 1
n=1

After how many digits does the first zero occur?

335. Proposed by Victor G. Feser, . Louis University, St. Louis,
M ssouri .

Problem 65 in this Journal (first presented in April 1954; re-pre-
sented in Fall 1968; solved in Fall 1969) showed that every simple non-
triangular polygon has at least one interior diagonal, i.e., a diagonal
lying entirely inside the polygon.

a) Show that every simple polygon of n sides, n 2 3, has at least
(n - 3) interior diagonals.

b) Show that for every n 2 3, there exists a simple polygon having

exactly (n - 3) interior diagonals.

336. Proposed by Zazou Katz, Beverly HilLs, California.

On the diameter AB of a semicircle (0) perpendiculars are erected
at arbitrary points C and D cutting the semi-circumference at points
E and F respectively. A circle (P) touches the arc of the semicircle

and each of the two half-chords. Show that PQ, the distance from P to

the diameter 4B, is equal to the geometric mean of AC and DB. (See Fig.l).

F
E
P
A C QOD B
FI GURE 1

337. Proposed by the Problfem Editon.

If R, » and p denote the circumradius, the inradius and the orthic
triangle inradius respectively of an acute triangle ABC, show that
r? 2 pR. (The orthic triangle is determined by the feet of the alti-
tudes of the parent triangle).

Solutions

284. [Fall 19721 Proposed by Gregony Wulczyn, Bucknell Univewsity,
Lawisburg, Pennsylvania. -
A polygonal number can be defines:
i
P(r) =2 [0n -2 - (m - uw)l.

An r-digit autsmsorph integer base b can be defined:

(nl, Pttt tr)g I Tpgyr My Most s nr)b'
If b = 2m = 2(2r + 1), show that the last twc digits of P(b + l)b is a
two-digit automorph.
Solution by N. J. Kuenzi and Bob Prielipp, The University of Wisconsin-
Oshkosh.

We shall assume that b = 2m where m is odd, m 2 3. Then

g(b + 1) = (b + l)g2 L:l 2):. = (b + 1)(m - 1)2
= (b + 1) '”;“-2m+(m+1>}=(b+1>[’"'3-b+(m+1>]
s & - SR [m . 3 ¢ (m+ 1)}b + (m+ 1)
=03t B bt 1)

Thus the last two digits of B(b + l)b are & ; Iand m + 1 respectively.

Also

m

P(b + 1) = 4b° + (3m - 1)(m + 1)b + (m + 1)2
= Abc + (3m - L)(m + )b + (%- om + m+ 1)

:Ab2+(3m-1>(m+1)b+(’&zl-b+m+1)

oAb+ [(3m C 1)+ 1) + ’”—;—l]o Fom+ 1)
2 3m + 4
+ (—o—

- 4b L2 fﬁlg%_l)b fmt 1)

Mt 2y 3L p e 1)
2 2
m

Thus the last two digits of P(b + 1)22} are

= (A4 +

3m -
2

1 and m + 1 respectively.

m
Therefore P(b + l)b is a two-digit automorph.

Also solved by the Pacposen.
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297. [Spring 1973] Puoposed by Roger E. Kuehf, Kansas City, Miss-
ourl.

A traffic engineer is confronted with the problem of connecting
two non-parallel straight roads by an S-shaped curve formed by arcs of
two equal tangent circles, one tangent to the first road at a selected

point and the other touching the second road at a given point. (Fig. 2)

FI GURE 2

1) Determine the radius of the equal circles synthetically, trig-
onometrically or analytically.

2) If the figure lends itself to an Euclidean construction, how
would one go about it?
Solution by R. Rob{s0N Rowe, Sacramento, California.

1) Analytically, take the origin (0,0) at point B, the coordinates
of point A at (j,k), and the angle between tangents at C. (Fig. 3).
Then 2R? vers C+ 2R(j sin C+ k cos C+ k) - g7 - k2 = 0, a quadratic

easily solved for R.

1
|
|
I
L
B(0,0) } W C

FI GURE 3

)
a3

The derivation of this equation stems from the following procedure.
Draw Ah' perpendicular to BC. Then AW = k and angle @4¥ = angle C. Draw
UV through @ parallel to BC intersecting BP at U and AW at V. Then
UV = j. Let angle PQU = ¢. Then PU = R sin 0 and UQ = 2R cos 4. In
triangle AQV, Qv = Rsin  and AV = r cos C. By algebraic addition of
lines parallel to the axes:
U@ = yv - QV, whence 28 cos ¢ = j - RsinC, (1)
PU = BP + AV - AW, whence 2k sin ¢ = R+ Rcos(C - k. (2)
Squaring (1) and (2) and adding:
uR? cos? ¢ + uR2 sin? ¢ = j2 - 2jR sin C+ R? sin2 C+ R2 *+ R2 cos? C
+k2 + 2r2 cos ¢ - 2kR - 2kR cos C. (3)
Collecting terms and noting that sin? x + cos?2 x = 1, with x = & or C,
uR2 = 282 + 2R2 cos C = 2R(J sin C + k cos C + k) - g2 - k2. (w)
Then putting (%) in quadratic form and noting that 1 - cos C = vers C,
2rR2 vers C+ 2R(j sinC+ k cos C+ k) - j2 - k2 = g, (5)

As an example of the application of this equation, suppose (j,k) = (5,3)
and C = sin-'0.6. Substitution in (5) reduces to 72 + 42R - 85 = 0,
whence ® = -21* /526, with the two solutions approximately +1.9 and
-43.9, only one of which is meaningful.

Equation (5) can be solved to express F explicitly in terms of j,
k and €, but the expression is unwieldy -- with 8 terms under the
radical.

2) Construction. (See Fig. 4). Erect AD 1+ AC and BE L BC. On
AD lay off any distance AF, and from F lay off FG = AF and parallel to
BE. From A as a center and radius AG strike an arc, and from B as a
center and 24F as a radius strike another arc intersecting the first at
Hand 1. Do likewise with another distance AJ, making JX = AJ and par-
allel to BE, then striking the arc 4(AK) and arc B(24J) intersecting at
L and M. Construct a circular arc through L, ¥, 1 and 14 (Any 3 of the
points will suffice, and the center is on the extension of B4). Draw
line AGK intersecting arc LHIM at ¥. Draw line BN and bisect it at 0.
Then BO is the required radius 3.

Proof: Complete the construction of the reversed curve with cen-
ters at P and Q and reversed tangency at T. Instead of solving for a
3-line linkage BP - RQ - @4, we substitute the 2-line linkage BN - #4,
in which NA is the vectorial sum of NQ and @4. The locus of all points



with a ratio of distances from B and A equal to B¥/NA is a circular arc,
defined by location of 3 or more points on the arc. This was done with
vectorial addition through Fand / to G and X.
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Solution of part (2) by Clayton W. Dodge, University of Maine at Onono.
V¢ shall show how to construct the desired circles at given points P

and Q on roads m and » respectively. Let the perpendiculars tom at P
and to n at Q meet at point R (see Fig. 5. The problem is then equiv-
alent to locating points A on line PR and B on line QR so that 2PA = AB
= 2BQ Then A and B are the centers of the desired circles. The Euclid-
ean construction is by the "rule of false position™. Choose any conven-
ient length s and mark A on PR and B' on (R so that s = PA + (B .

Swing an arc of radius 2s with A as center to cut at B, the parallel to
PQ through B'. Hw PB, cuts RQ at B, one of the desired centers. n

PR mark PA = (B.

To prove this construction, draw through Bl the parallel to QR to,

R i = =
cut PR at 2, and PQ at €. In triangle PRlQlwe have QPAl AlBl = QBlQl

by construction. Nowv a homothety with P as center maps Ql to €, Rl to
2, and 13‘l to B. (See Dodge, Euclidean Geometry and Transformations,

Problem 28.10 for the similar problem requiring PA = AB = Bg.)

FIGURE 5

The §inst part of this probLem was also solved by JOHN TOM HURT,
Texas A & M University and by C. STANLEY OGILVY, Hamilton College, CLin-
ton. New Yonk. Dr. Ogilvy provided a general analytic solution for the
radius of any desired number of equal circles connecting the two roads.
The proposer, Mr. Roger Kuehl, derived a quadratic equation for the
solution of this problem using algebraic methods. It is interesting to
note that this problem happened to be a practical one confronted by
Traffic Engineer Kuehl.

303. [Fall 1973] Proposed by Peter A. Lindstrom, Genesee Commun,(,tg‘
College, Batavia, New York.

By means of an ¢,5 proof only, show that a polynomial function is



continuous at any real number.
Solution by Clayton U. Dodge., Univernsity of Maine at Ohono.
Let flx) = Zzzo ay; k. Ve show that lim f(z) = f(b). If flx) is

x+b
constant, choose 6§ = 1 and the proof is easy. Thus assume that f(x) is

not a constant. Now choose ¢ > 0 and | et
. n k
6 = min (1, /2 zk:l k|ak (p| + 1N,

Whenever |b - x| < 6, we have

7®) - £@)| = |TEo ap b’ - ThLo el

k-2 k-3 2 k-l)I

A, b - W e B N

k
Tpeq lagl = 1B ==l < [kC|B] + )%

iA

| k
b - z| ZZ=1 kla, | (|p] + 1)

< E.
Aso sofved by VICTOR G. FESER, St. Louis, Missouri, and by the
Proposenr.

304. [Fall 1973] Proposed by Charles U. Trnigg, San Diego, Cali-
fornia.

(A) Ore of the four digits 1, 2, 3, 4 is placed at the midpoint of
each edge of a cube in such a manner that four different digits are on
the perimeter of each square face.

(B) The digits are placed on the vertices of the cube so that again
there are four different digits on the perimeter of each face.

Show that in each case the clockwise cyclic order of the digitsis
different on each face.

Solution by CLayton W. Dodge. University of Maine at Orono.

(A) W may choose 1, 2, 3, 4 for the four consecutive edges of
one face. Then edge a (see Fig. 6) is common to both the right and
lower faces, soa # 1L and a # 2. By symmetry it is immaterial whether
a=3o0ora=4 soleta=3. Then we must have b = 2, ¢ = 1, and
d=4 Alsoe=4,f =3, g=2, and h =1 are forced. It is easily
seen that all six possible cyclic arrangements are represented on the
six faces. W& also observe that each given number labels three mutually

skew edges.
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(B) V& may choose 1, 2, 3, 4 for the four consecutive vertices of
one face without loss of generality. Then vertex a (see Fig. 7) is
common to both the upper and right faces. Hence we must have a = 3.
Nw b = 4, ¢ =1, and 4 = 2 follow. Again all six arrangements are re-
presented on the faces. Notice here that each number must label two
opposite vertices.

ALso solved by VICTOR G. FESER, St. Louwis, Missouni; CHARLES H.
LINCOLN, Rateigh, N. C.; BRUCE LOVETT, Rutgers College, New Buunswick,
N. J.; JIM METZ, Springgield, 1£Linois; PAOLO RANALDI, Akron, Ohio;
TERRY SMETANKA, University of Toledo, Toledo, Ohic; and the Proposer.

305. [Fall 1973] Proposed by Jack Garfunkel, Fornest H{€Ls High
Scliooi, New Yenk.

In ar acute triangle 4BC, AF is an altitude and F is a point on AF
such that AP = 2r; where » is the inradius of triangle ABC. If D and E
are the projections of F upon A8 and AC respectively, show that the
perimeter of triangle ADE is equal to that of the triangle «f least
perimeter that can be inscribed in triangle ABC
Solution by Zazou Katz, Beverly HilLs, California.

It is known that the triangle of minimum perimeter inscribed in
an acute triangle ABC is its orthic triangle, determined by the feet
of the altitudes from A, B and C. Furthermore, the perimeter p of
the orthic triangle is equal to twice the area of triangle ABC di-
vided by its circumradius R. (See N. A. Court, College Geometry,
Barnes and Noble, 1952, p. 100). Hence:

+
_rla b o) 2r(sin A * sin B * sin C).

The points A, D, P, E are concyclic, lying on the circumference
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of a circle whose diameter AP is equal to 2r. So

AD = 2r sin APD = 2r sin B,
AE = 2r sin APE = 2r sin C,
and
DE = 2r sin EAD = 2r sin A.
It follows that the perimeter of triangle ADE is equal to
2r(sin A * sin B+ sin ()
and is therefore equal to the perimeter of the orthic triangle.

AlLso scfved by CLAYTON W DODGE, Univernsity cf Maine at Orono;
DAVE LOGOTHETTI, Univensity of Santa CLara, California; R. ROBINSON
ROWE, Sacramento, California; and the Proposer.

306. [Fall 1973] Proposed by David L. Sifvenman, Lob Angeles,
California.

(n alternate days A and B play games that are similar except with
respect to the question of which player does the paying. In both ver-
sions A selects one number from the set (1, 2, 3) and B selects two
numbers from the same set. |f the two selections are disjoint, no pay-
ment is made. |f the two selections have a number in common, the "payer"
pays that number of dollars to the "receiver”. They alternate daily in
assuming the roles of payer and receiver. Does the arrangement favor
either player?

Sofution bq the Santa Clara University Gamestens: M. Chambertain, T.
Pennello, M. Fay, J. Moore, D. Wong, J. Dechene, and K. Daly.
This problem may be analyzed with elementary game theory. On the

day when B pays A, we set up the following payoff matrix for the game:

B
* | (1,2) (1,3) (2,3)
1 1 1 0
A 2 2 0 2
3 0 3 3

Solving this game by the simplex algorithm, we find that A's optimal
stratgy is (0, .6, .4), that is, he should avoid choosing 1, pick 2 60%
of the time, and 3 40%of the time; B's optimal strategy is (.6, .4, 0),
that is, he should select the pair (1,2) 60%of the time and (1,3) 400}0"
of the time. With these optimal strategies, the value of the game is
1.2, so that B expects to pay $1.20 on the average when playing this
version of the game.

On the day when A pays B, we set up a similar payoff matrix:

B
| (1,2) (1,3) (2,3)
1 -1 -1 0
A 2 -2 o} -2
3 0 -3 -3

The entries in the matrix are now negative, since A is paying B.
The optimal strategies in this case are (1, 0, 0) for A and any convex
combination of (2/3, 1/3, 0) and (1/2, 1/2, 0) for B. With these opti-
mal strategies, the value of the game is -1, so that A expects to pay
B $1.00 on the average.

In the long run, then, A will reap an average gain of 20¢ every
two days. Thus the game favors A.

ALso sclved by R. ROBINSON ROMWE, Sacramento, California; ZAZOU
KATZ, Beverly Hills, California; and the Proposer, Three inconrect
solutions wene necedlved.

307. [Fall 1973] Proposed by R. Sivaramakrishnan, Government
Engineerning College, Trnichur, India.

Let t(n) denote the number of divisors of n. For square-free n
greater than 1, prove that t(n?) = » if and only if n = 3.
Sofution by Bob Prielipp, The University cf Wisconsdin, Oshkosh, Wiscon-
sdn.

Since »n is square-free and greater than 1, n = PyPy Py, where Py»
Pys Pk are distinct prime numbers. 1¥ n = t(n?), then n = (p12p22-.-pk2)
= 3 .« 3...3[k factors of 3] = . Thus n = 3 because » is square-free.

The fact that if » = 3 then t(n?) = »n is immediate.

Similan solutions wene cffered by CLAYTON W. DODGE, University of
Maine at Onono; VICTOR G. FESER, St. Louls, Missouni; RICHARD A. GIBBS,
Fornt Lewis College, Durango, Colorado; CHARLES H. LINCOLN, Raleigh, N C.;
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PETER A. LINDSTROM, Genesee Community College, Batavia; BRUCE LOVETT,
Rutgens Coflege, Nw Baunswick, N. J.; T. E. MOORE, Bridgewater State
College, Bridgewater, Mass.; DAVID A. ROSEN, Cornell University, Ithaca,
Nw York; the Univernsity of Santa CLara ProblLem Solving Seminaxr; and the
Proposen.

308. [Fall 1973] Proposed by C. S. Venkataraman, Shee Kerala Varma
College, Trnichun 4, South India.

Defining a proper number as one which is equal to the product of
all its proper divisors, show that an integer is a proper number if and
only if it is the cube of a prime or the product of two differert primes.
Solution by Clayton W. Dodge, University of Maine at Onono.

A proper number n has exactly three distinct proper factors, namely
1, a, and b, with ab = n. If aand b are distinct primes or if a=p
and b = p? for any prime p, then the definition is satisfied for n to be
proper. Any other factorization for a number n leads to less than or
more than three proper divisors, so such n cannot be proper.

Also sofLved by VICTOR G. FESER, St. Louis, Missouni; RICHARD A.
GIBBS, Foat Lewis College, Durango, Colonado; CHARLES H. LINCOLN, Raleigh,
N. C.; BRUCE LOVETT, Rutgens College, New Brunswick, N. J.; T. E. MOORE,
Bridgewatern State College, Bridgewaten, Mass.; BOB PRIELIPP, The Univer-
84ty of Wisconsin-Oshkosh; PAOLO RANALDI, Akron, Ohio; WILLIAM J. RICKERT,
Toms Rivet, N. 3.; DAVID A. ROSEN, Coanelf University, Ithaca, N. Y.
and the Proposenr.

309. [Fall 1973] Proposed by Gregony Wulczyn, Bucknell University,
Lewisburg, Pennsylvania.

Find the volume of the solid formed by the elliptic paraboloids
2h - z = ax? + by? and z = ex? *+ dy2, where a, b, ¢, d and h are al |
positive.
Solution by the Proposenr.

The region E in the XY plane is the ellipse (a + e)x? + (b + d)y?=2k

2h-azx?-by?
V=[f fdsz
E ca’ydy?
=ff[2h - (a +e)x? - (b + d)y?ldA

E

41

of |- - e

a+c b+d

2h - 2h . . o
u‘fm , y = v‘/b T and ¢ be the unit circle. Then

2
V- £ ”[l-uz—vZJM'
V(a + e)(b + d)

G
5 27 .1
. alc f/ (1 - »2)r dr de
Yla + e)d + d)
0 Yo
21h2
" Vla+e)D + d)

Atso solved by GUS MAVRIGIAN, Youngsdtown State University, Youngs-
fown, Ohio and by R. ROBINSON ROMWE, Sacramento, California.

Let x

310. [Fal1l 1973] Proposed by Sidney Penner, Bronx Community Col-
Lege, Bronx, New Yonrk.

If x anay are integers and x < y then let [x,y] = {2: x s 2z <y,
and z is an integer). Also, for any set S, let #(S) be the cardinal
number of S.

Let n and k be positive integers with k > 1 and let G = [2,(2n)k—ll.
If V is a subset of G such that N(V) = (2n)k - 2nand VvV # [2n, (2n)k—l]
then there are at least two distinct members of V each of which is the
product of k members (not necessarily distinct) of V.

Solution by the Proposer.

The key to our proof (as we shall show) is that a desired product
will exist in which (at least) k - 1 of the multiplicands will be the
smallest element of V. The case n = 1 is vacuously true; assume n > 1.
Let V' be the complement of V (relative to G); clearly AV' = 2n - 2.

Let m be the smallest element of V; clearly 2 <m < 2n - 1.

Case |. 2<m=<n.
Let ¢ = 2kn - 4.
k-1
2m =49,
k-1 _
3m =9,
(1) .
k~1

3
«
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Since g, - (2kn - l)mk_:L < (2kn - J.)nk_l < (2n)k - 1, we see that 9y
Gyt tvsg, A€ inG. Since NV' = 2n - 2 there are at least 2kn -2

- (um - ) = (2K 4)n + 2 equations of (1) all of whose elements are
inV.

Case 11.

Llemma |f n and j are positive integers then

(2n - 1YY < (2m)? - 1.
Proof. Easily done by induction on j; we omit the details.
k-1 _
(n + Lm = hn+l

Bl
(nt 2)m = hn+2

(2)

h2n

(2n)mk_l
k-1 _

(2nt 1)m = h2n+l

If k = 2, then h2n+l = (omt 1ms (2nt 1)(2n - 1) = un2 - 1.

11 k> 2, thenhy < (20t D2 - DX = (20 £ D20 - D2n - DI

s n? - DIEMM2 2172 (2% - (%2 - m2 1< nf - 1

Hence we see that the hi of (2) areinG, Since NV = 2n - 2 and [2,n]

i s a subset of V', there are n - 1 unknown elements of V'.
Sncemtl<nitoamtl:mtD2s (mt D+ DL

(nt l)mk_l = hn+1’ we see that theset (n+ 1, nt 2,---, 2n+ 1, A

h s h } has 2(n t 1) elements. Hence there are at least two

nt2? 7 Ponga
equations of (2) all of whose elements are in V.

Remark. The case ¢ = [2,99] (withn = 5, k = 2) and V = {9}u[11,99]

shows that our result i s best possible i fit does not include n or k.

311. [Fal1 1973] Proposed by Charles W. Tnigg, San Diege, California.

On opposite sides of a diameter of a circle with radius a t b two
semicircles with radii a and b form a continuous curve that divides the
circle into two tadpole-shaped parts.

(i) Find the angle that the join of the centroids of the two com
ponent parts makes with the given diameter of the circle.

43,

(ii) For what ratios a:b does the continuous curve pass through
one of the centroids?

(iii) When a = b, find the moment of inertia of one of the component
areas about an axis through its centroid and perpendicular to its-plane.

FIGURE 8

Solution by the Proposenr.

In the conventional manner designate the semicircle with center r
by (F) (see Fig. 8). Theradii and areas of (), (7), and (F) are b,

a, a+ b and "b2/2, ma2/2, wla + b)2/2, respectively. For the tadpole
areas, 4 = (J)t (A - (D)yand 8= (D) t (B - (J).

Pappus' second theorem states that the volume of a solid of revolu-
tion, formed by revolving a plane area about a line in its plane not
cutting the area, is equal to the product of the generating area and the
circumference of the circle described by the centroid of the area.

The center of gravity of a semicircle falls on the radius r perpendi-
cular to the diameter at a distance d fromthe diameter. Rotating the-
area about the diameter generates a spherical volume. Thus

urr3/3 = (7r2/2)(27d), so d = ur/3m.
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(i) IfM, Q, N, P, W, and Vare the centroids of (D), (), (J),
(F) - (D), A, and B respectively, then DM = u4b/3n, EG = u4(a t+ b)/37,
and NJ = 4a/3n. Furthermore, DF=HJ= JX = a, and ® = DG =FJ = b.
Using horizontal moment arms--

Taking moments about Q:

dc-—z—- = FG {_n(a2+ b)z_ﬂgz] .

Taking moments about W:

n(a + b)2 _ mb2.

(b-FI)-%2—=(FI FO = .

Eliminating FG and solving,

b
FI= 5 -
Using vertical moment arms--
Taking moments about Q:
2 2
[4(a+b) ub( ) =GP - l+(a+Q][1r__(a+b)___1_@_].

37 37 2 2
Taking moments about W:

2 2
(p - et B mbPy gy, ey el
Eliminating GP and solving,
m=2
v
IW, _ 4 _ ° .
Hence, 6; = arctan CF,—I) = arctan = = 51.85 (approximately).

Similarly, or by symmetry, VE = 2a/n, EF = a/2, and 6, = arctan (E-,E
= arctan +..
Consequently, VW is the straight line join of Vand W and makes

the angle arctan 4/m with the diameter. Furthermore,

‘(a+b);16,

27
so is constant in length and inclination as a and b vary within the
constant a t+ b.
(ii) With X the X-axis and Fthe origin, the equation of the
circle () is (@ + a)2 + y2 = b2. If this circle passes through
Ww(b/2, 2b/m), then

SO

and
a/b = -1/2 + /L - &/%2 = 0271178 .

Clearly, the other centroid will fall on the dividing curve
when b/a has the same value, so the corresponding value of a/b is the.
reciprocal of its other value or approximately 3.68761.

(iii) If a = b, the figure becomes the familiar Yin and Yag [see,
e.g., C. w. Trigg, "Bisection of Yin and of Yang," Mathematics Magazine,
34 (November 1960), pp. 107-1081 and the component parts are congruent.

The moment of inertia of the circle about an axis perpendicular
to its plane at Fis n(2a)%/2, so I of Yin is n(2a)*/4. Then
_ 1(2a)" [ana)Zj[a»m s o+ a* (772 - 16)

W Y 2 2" | 2

Also solved by CLAYTON W. DODGE, Univernsity of Maine at Onono;
ZAZOU KATZ, Beventy Hills, California; and by R. ROBINSON ROWE, Sacra-
mento, California.

I

312. [Fall 1973] Proposed by R. S. Luthar, Univernsity of Wisconsin,
Janesville, Wisconsin.
Let {an} be a sequence such that a1 = 1land forn > 1

n, 3 n+l
an=an_l+l+(—l) [l+(l) 1.

Sow that the sequence !an'r has infinitely many primes.
Sofution by Bob Prielipp, The University of Wisconsin, 0shkosh,
Wisconsin.

From the formula given for a_, it follows that
+ 3,

Dol © %on
and

+ 2 n =1, 2, 3y

a = a

2n 2n-1
Thus a; = 1, a, = 3, agy = &, a, = 8, as = 11, ag = 13, ay = 16,

ag = 18,--- . Hence

ap b = M +t1, n=0,1, 2, -

and

= &5y + =5 LRCH]
a2n+2 n 3, n ) 19 2’

It is known that if s is a positive integer then there are infinitely
mawy primes p such that p is congruent to 1 modulo s. [For a proof of
this result, see Theorem 2 on pp. 250-251 of Goldstein, Abstract Algebra:
A Hrst Course, Prentice-Hall, Inc. 1973. The proof given uses the
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theory of cyclotomic polynomials and does not invoke Dirichlet's theorem.]
Hence the subsequence generated by a2n+1 =55 +1,»n=0, 1, 2,--- con-
tains infinitely many prime numbers, and thus automatically the given
sequence {aq } contains infinitely many prime numbers.

Alternately, we may apply Dirichlet's theorem to guarantee +hat

both the subsequence generated by & =5 +1,n =0, 1, 2,°°* and

2n+l

the subsequence generated by a =51+ 3,n=0,1,2, - contain

infinitely many prime numbers. 271E§irichle‘t's theorem: Let & and j be
relatively prime positive integers. Then there exist infinitely many
primes in the arithmetic progression k, j + k, 25 + k,.-- .]

It follows immediately that the given sequence {an} contains in-
finitely many prime numbers.

Also sofved by CLAYTON W. DODGE, University of Maine at Orono;
VICTOR G. FESER, St. Louls, ifissouni; RICHARD A. GIBBS, Ft. Lawis
College, Durango, Coforado; CHARLES H. LINCOLN, Raleigh, N. C., PETER
A. LINDSTROM, Genesee Community ColLlege, Batavia, New York; BRUCE LOVETT,
Rutgens College, New Brunswick, N J.; SIDNEY PENNER, Bronx Community
College, Bronx, New Yotk; DAVID A. ROSEN, Cownell Univensity, Ithaca,
New Yonk; and the Proposen.

313 [Fall 1973] Proposed by Muriay S. Klamkin, Foid Motorn Company,
Deanborn, Michigan.
Comment by the Problem Editonr.

Victor G. Feser of St. Louis, HMissouri and R. Robinson Rowe of
Sacramento, California called attention to a misprint in the published
proposal. The corrected version follows and we invite solutions from
readers who were frustrated by the published version.

Give an elementary proof that

(1 t 8cos?4)(1 t 8cos?B)(1 t 8cos2C) > 64 sin?/! sin2B sin?C ,

where A, B, C are the angles of an acute triangle ABC.

Remark

J. Gillis gave a proof using calculus techniques in Problem £ 2119,
American Mathematical iHonthly, 1869, p. 831.

47

Cornnections

Spring 1973, p. 436, line 7: »2 * 282 + 4t2 should read r? + 282 = 4t2,
Fall 1973, p. 477, 7th line from bottom: ‘papaboloids' should

read 'paraboloids’'.
Spring 1974, p. 533, line 1: 'Kuel' should read 'Kuehl'.

The Journal Editor apologizes to R. Robinson Rowe for incorrectly
attributing his comment which followed the solution to Problem 302 in
the Spring 1974 issue, p. 538, to the Problem Editor. The comment was

due to R. Robinson Rowe and not the Problem Editor.

LOCAL AWARDS

If your chapter has presented awards to either undergraduates or
graduates (whether members of Pi Mu Epsilon or not), please send
the names of the recipients to the Editor for publication in the
Journal. The listing of new initiates had been discontinued.

MOVING??
BE SURE TO LET THE JOURNAL KNOW!
Send your name, old address with zip code
and new address with zip code to:

Pi Mu Epsilon Journal

601 Elm AVvenue, Room 423

The University of Oklahoma )
Norman, Oklahoma 73069 =




LOCAL CHAPTER AWARDS WINNERS

CALIFORNIA ETA (University of Santa Clara). Recognition for out-
standing achievement in upper division mathematics classes went to
Kathy Daty,
Michaet Fay,
Jefgrey Moon.

COLORADO DELTA (University of Northern Colorado). The winner of the
Outstanding Freshman award based on the performance on an examination was
Brian Peterson,
who received a $20 bookstore gift certificate. The Outstanding Senion
award based on achievement, ability, potential, interest, and enthusiasm

went to
Bruce Lewis
who received a $40 bookstore gift certificate.

GEORGIA GAMMA (Armstrong State College). Four mathematics majors,
chosen on the basis of scholarship, were presented awards at the Presi-
dent's Awards Banquet on May 15, 1974.

Donald Brafgitt
received a one-year membership in the Mathematical Association of America,
and

Marshatl Hinds,

Patricia Spence,

Many Statnaken
each received a one-year membership in the American Mathematical Society.

IOWA ALPHA (lowa State University). An award of $50 each was pre-
sented to the two second year mathematics majors who have completed the
calculus sequence and have attained the highest scholarship in all their
course work:

Marcia Mason,
Evan G. Penson.

SEW JERSEY BETA (Douglass College). The recipients of the New
Jensey Beta Book Award were

Helen Amunds,
Mary Campanale,
Kathleen Gossand,
Deborah SilLiman.

NBV YORK PHI (State University College at Potsdam). The outstanding
graduating senior mathematics major for 1973-74 was
Harnis Schlesingen.

NBV YORK PSI (Iona College). Awards winners this year were as
follows:
Van Bonacorsi (winner of the Sullivan Award),
Gregony Hubertus (winner of the Joseph E. Power Award),
Brother Jonathan Paoficefli (winner of the Julia Faiedman Awand).

OHIO EPSILON (Kent State University). The award for Excellence in

Mathematics consisting of a plaque and $25 for books went to
Richard James Nelson.

OHIO LAMBDA (John Carroll University). The winner of the annual

essay contest for 1974 was

Beverly Bruss
for her paper "A Discriminitive Study of Conic Sections." Although not
awarded by the local chapter,

Mitehell Specton
was judged the best participant from John Carroll in the annual North-
eastern Ohio Intercollegiate Mathematical Competition.

OHIO NJ (University of Akron). The annual Selby Scholarship award

went to

Paolo Ranalddi,
and a one-year student membership in the American Mathematical Associa-
tion for scholastic achievement in mathematics went to (in addition to
the student named above)

Mike Margreta,

Judy Park,

Mary Anne Schuerger,

Linda. Tatkington,

Allan Wikecox.

In addition to these awards the following Junior High School Science



Fair winners were recognized:
Robert Braun;
Joel Godand.

OHIO ZETA (University of Dayton). The Sophomore Award for Excellence
in Mathematics was presented to
Richard Groie,
who received $25 for the purchase of mathematics books.

OKLAHOMA ALPHA (University of Oklahoma). The Nathan ALtshilfen
Court Award of $50 each for the best freshman men and women i n mathemat-
ics was given to

Margaret R. Barett,

WiLliam C. Wnight.
The Samuef Watson Reaves Scholanship given each year to a senior for
graduate work in mathematics was awarded t o

Rex Allen MeCaskilL.

RHODE ISLAND BETA (Rhode Island College). A undergraduate senior
award for excellence in mathematics based on the highest cumulative grade
point average in mathematics was presented to

Christina Marcocedo.

VIRGINIA GAaMMA (Madison College). A certificate and award for
mathematical materials were presented on Honors Day, April 11, 1974, to
the outstanding senior mathematics major,

Nancy L. Batlanrd.

MATCHI NG PRIZE FUND

I f your chapter presents awards for outstanding mathematical papers
or student achievement in mathematics, you mey apply to the National
Office to match the amount spent by your chapter. For example, $30
of awards can result in the chapter receiving $15 reimbursement from
the National Office. These funds may also be used for the rental of
mathematiral films. Write to the National Office for more details.
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YOUR BADGE — a triumph of skilled and highly trained Balfour
craftsmen 1s a steadfast and dynamic symbol tn a changing world.

Official Badge

Official one piece key
Official one piece key-pin
Official three-piece key
Official three-piece key-pin

WRITE FOR INSIGNIA PRICE LIST.
An Authorized Jeweler to Pi Mu Epsilon

ATTLEBORO MASSACHUSETTS
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