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THE IMPOSSIBILITY OF TRISECTING ANGLES

by Maxk D. Meyenrson
Univensity of, TLLinois

1. Introduction

Ore of the most intriguing geometrical problems of antiquity isto
trisect an angle using a compass and straightedge. Although E Galois
proved (around 1830) that it is impossible, in general, to trisect an

angle, much effort has since been wasted in futile constructions. Our

goal is to give a brief and elementary proof of this nonconstructability.

A few related theorems, such as the impossibility of duplicating the
cube, are also included.

You might be surprised by all the algebra used in proving these
geometric facts. The necessity of approaching these problems algebrai-
cally is the reason they were unsolved for so long. In fact, the most
striking discoveries in mathematics often result from interplay between
apparently unrelated fields, that is, the application of one branch of
mathematics t o another branch.

Here is a precise statement of the problem. Given an arbitrary
angle, <ABC, one would like to construct a point D with the measure of
<DBC one-third the measure of <ABC. Al construction must be done only
with compass and straightedge. Given two points E and F, a compass mey
only be used to draw the circle through E with center F and straightedge
mey only be used to draw the line through E and F. Points are con-
structed by intersecting a line or circle with another line or circle.
Although certain angles, such as a 90° angle, can be trisected in this
manner, we will see that other angles, such as 60°, cannot be so tri-
sected.

The sources for most of this paper are the two books, Elementary
Geometry from an Advanced Standpoint, by Edwin E. Moise, and Topics in

Modern Mathematics for Teachers, by Anthony L. Peressini and Donald R.

Sherbert. These books are recommended if you desire to continue with
the subject.
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FI GURE 1
Angle CBC has one third the measure of, angle ABC

2. Subgields

All our calculations will be done with real numbers. The set of
real numbers is denoted by 63.

Definition 1. A subset, F, of &, is called a subfield (of R) if
it contains Oand 1, and if it is closed under division by non-zero
elements of F and subtraction. For example, closed under subtraction
means that if a and b are elements of F, soisa - b. Note that a sub-
field is closed under multiplication and addition, since ab = a/(1/b)
anda t b =a- (0-5). Thereis a technical definition of field
which we will not need.

Examples. 1. & is a subfield.
2. A number is called rational if it can be written as
p/q for p and g (#0) integers. The set of rational numbers i s denoted
Q Ve show in the aside below that Q # . But Q is a subfield, since
0=0/1, 1= 1/1, (p/q)/(»/s) = (ps)/rq) for »/s # O (hence r # 0),
and p/q - r/s = (ps - gqr)/qs).
3. The set of integers is not a subfield, since 1/2%is

not an integer.
Aside. V7 is not rational.

Proof. Suppose v2 is rational. Then we could write it as p/q in
reduced form. So v¥2q = p, and squaring, 2q? = pZ2.

Since p? is even, p must be even. So p = 2m for some integer M.
Substituting, we get 2g2 = (2m)2 = um?, or g2 = 2nf.

Since g2 is even, q must be even. So p/q is not in reduced form,
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because p and q each have a factor of 2.
Hence ¥2 cannot be a rational number. Q.E.D.

V% close this section with a theorem about the roots of an equation.

Theorem 1 (The Rational Root Test). |If anxn t ... taqTt+a; =0

is a polynomial equation with integer coefficients and p/q is a rational
root, in reduced form, then p divides a; and q divides a,.

n
©

Proof. W& have an(p/q)" +an_1(p/q)”“1 o talp/g) +a
Multiplying by ¢ we get anp" + an—lpn—lq ot alpqn-l + aoqn - o.
Since p and ( each divide the right hand side of this equation, they
each divide the left hand side. Amd since p divides each term on the
left, except perhaps aoqn, p must divide aoqn also. But p and g have no
factors in common, so p divides a . Similarly, gdivides anpn, and so

divides a,. Q.ED.

3. Sunds

Degfinition 2. A number is called a surd if it can be calculated
from 0 and 1 by a finite number of additions, subtractions, multipli-
cations, divisions, and extractions of square roots.

Ary rational number is a surd. W2 +1-3/2 isasurd. There are
may numbers which are not surds. Ve will see later that ¥2 and cos(20°)
are not surds; also, w is not a surd.

The set of all surds forms a subfield. For 0 and 1 are surds,
and if a,b and ¢+#0 are surds, so are a - b and a/e.

VW nowv consider the Euclidean plane with a coordinate system.

Definition 3. A surd-curve is a circle or line with equation
A(xz?2 + y2) + Dx + By + P = 0, such that all the coefficients are surds.
V¢ mey assume that A = 1. for a circle and A = 0 for aline. A surd-

point is a point {x,y) such that a and y are surds.

Theorem 2. |f P = (x,y) lies on two distinct surd-curves, then P

is a surd-point. «

Proof. This can be proven by solving for P, and showing that g and
y are surds. We prove only the hardest case, when both surd-curves are

circles.
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FIGURE 2
An example of two surd-curves.
P = ((-2 + 4 V13)/17, (8 + Y13)/17) is a surd-point.

The two surd-curves have equations x2+ yz +Dx +B +F=0and
x2 4 y2 t Gz +Hy+ 1 = 0, with surd coefficients. Subtracting, we get
Jx + Ky +L =0, where J, K, and L are surds. J and K are not both
zero. since if they were we would have distinct concentric circles meet-
ing at P.

V¢ now suppose XK # 0. The proof is entirely analogous for the sub-
case J # 0. So we can solve for y, y = Mk + N, where M and N are surds.
Substituting into the very first equation, we get ax2 + px 4+ ¢ = 0,
where a, b aid ¢ are surds. Sincea =1+ M2, a # 0. So

x = (b +/F - 4ac )/(2a ) andy = Mk t N , both surds. Q.E.D.

Thevrem 3. Given a.collection of only surd-points, any point we
can construct using compass and straightedge must be a surd-point.

Proof. Let P = (a,b) and Q = (e,d) be surd points.

It's easy to check directly that the line through P and Q has
equation: (d - b)x * (a- e)y + (be - ad) = 0, and that the circle with
center P through Q has equation x2 + y2 - 2ax - 2by + (2ac + 2 bd-c2-d?)
= 0. All coefficients are surds:

So only surd-curves can be constructed from surd-points. The only
way to construct a new point is to consider the intersection of two of
these surd-curves, which must be a surd-point by Theorem 2. \¢ can
continue constructing curves and points, but only surd-curves and surd-
points. Q.E.D.
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4. Cubic Equations

Definition 4. Let F be a subfield (of &) and let k be a positive
number in F such that vk is not in E. Then F(k) denotes the set of all
numbers of the form x + Yy irk, where x and y arein F.

For example, if F = Q, k = 2, we get Q2) which includes
3+ 2/2, (1/2) - V2, and 3= 3+ 0-V2. Orif F=Q(2), k = 3, we get
F(3) = (U2))(3). (It is easy to see that V3 ¢ Q(2). Suppose
V3 = r+ s V2 whererand s are rational. Squaring implies that

3-r%- 252 =/2, a contradiction.)

2rs

Each element of F(k) can be written as X T yvYk in only one way.
Forif a+b/k=c*dk | then (a- ) = (d - b)Wk. If b#d, then
vk = (a -e)/(d -b) an element of F, contradicting the choice of k. So
b = d, and hence a = c.

Also F(k) is a-subfield; let's check the definition of subfield.
0=0+0-vKand 1= 1+ 0-v% are in F(k), and (a + b¥&) - (¢ +bVR =
(a- e) + (b - d)/k— an element of F(k). So we.only need check closure

underdivision by non-zero elements. But

a+bVk . _ (atb/R) ( e-dvk) _ ac-bdk be-ad

ctd'k  (e+dvk) ( e-dvk) % a2k c2-d%k
Note that QOQ(2) C the set of surds C&®,

Theokem 4. For F(k) as above, suppose the coefficients of
x3 +ax2 tbxte=0areall in Fand that » t+ sk, an element of F(k),

isaroot. Then some element of F is a root.

Proof. We may assume that S # 0, since otherwise we're done.

Ve have 0 = (pr + svK)3 + a(r + 8Vk)2 + b(r +a/) te=
(r3 + 3rs2k + ar? + as?k + br + ) + (3r2s + sk + 2ars + bs)vk.:
Write thisas A +8/& =0. SoA=B=0 Puttingr - g/k into the =
polynomial gives us A - BYk = 0, since only even powers of s occur in
A and odd powers occur in every term of B. SO r - s/k is another root.

Now x3 + ax2 + bx + ¢ = (& - &)(x - ) - x5) =
x3 - (acl' +x, + xdx? T o(zgz, Toogmy torwg)r - X XXgwhere  #;.%),
and x5 are the roots. So let's takex; = r + 5/7?, z, =r- s’k. Then
a=-(x, + x,t z)=-(r+sktr - svk + z,) = -(2r tx;), so
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X, = -a- 2r, an element of F. Q.E.D.

Theorem 5 (Main Theorem). Given cubic equation x3 + ax2 + bx + ¢ =

0, where the coefficients are rational. |f the equation has a surd as

-

a root, then it has a rational root. P

Proof.  Suppose x, isa surd and a root. As a surd, z, is in some

subfield ("‘(Q(kl))(kz)“')(kn)' To see this, start to calculate x,
from 0 and 1. (Recall that by definition, a surd can be calculated from
0 and 1 by additions, subtractions, multiplications, divisions, and ex-
tractions of square roots.) Let Yk, be the first non-rational'square

1

root we extract. Continue, until we must extract a square root, /k_2,

not in Q(k,). Continuing in this fashion, we get the above subfield.

By Theorem 4, the given cubic equation has a root in
('"(Q(kl))(kz)"‘)(kn-1)' Applying Theorem 4 a total of n» times, we
see that the cubic equation has a root in Q. Q.E.D.

5. Nonconstructability Proofs

Theorem 6. The cube cannot be duplicated. In other words, given
the edge of a unit cube (a unit segment), we cannot construct (with
compass and straightedge) the edge of a cube of twice the volume. (The

edge of such a cube would be :3/2_,)

Proof. W can think of this as being given surd-points (0,0) and
(1,0) and being asked to construct ( ¥2,0). So it suffices to show that
¥2 is not a surd.

Suppose it were. Then the cubic equation x3 - 2 = 0 has a surd as
a root. By the Main Theorem it has a rational root. But by the Rational
Root Test, the only possible rational roots are *1 and *#2 which are not
roots. So Y2 isnot a surd. QE.D.

Theorem 7. There are angles that cannot be trisected with compass

and straightedge.

Proof. W actually show that no 60° angle can be trisected. Gijven
a 60° angle, we can choose a coordinate system so that A = (1, V3), B. =
(0,0), ¢ = (2,0) and the given angle is <4BC. (Note that A,B, and C are
surd-points which form the vertices of an equilateral triangle.) s
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want to show that there is no surd-point D such that the measure of
angle DBC = 20°.

Suppose there were such a D. Let IF be the perpendicular to the
x-axis. F is a surd-point since it lies on the two surfd-curves y = 0
and & = (x-coordinate of D). Since the distance between two surd-points
is a surd, cos 20° = BF/BD is a surd. Next we shall use the standard
trigonometric identities:

cos (A+B) = cosA cos B - sinA sin B

sin (24) = 2sinA cos A

cos (24) = cos?4 - sin2A

1 = sin?4 t cos?4

Nw cos 38 = cos (28 t+ 6) = cos 26 cos® - sin 28 sin6
= (2 cos?8 - 1) cos8 - (2 sind cos8)siné = (2 cos26 - 1 - 2(1 - cos26))
cos® = (4 cos20 - 3)cosB. Since cos 60° = 1/2, we let 6 = 20° to see
that cos 20° is a solution of 1/2 = uya - 3y. Letting y = /2, the surd
2 cos 20° is a root of x3 - 3x - 1= 0. By the Man Theorem,
x3 - 3z - 1=0has a rational root. But the only possibilities are
+ 1, which are not roots. This contradiction implies the Theorem. QED.

Theorem 8 It is impossible to construct a regular seven sided

polygon (heptagon) with compass and straightedge.

Proof. Suppose we could. Then we can construct the central angle,
8= 360°/7. A so, as before, x; = cos6 is a surd.

Nw 36 t+ 46 = 360°, so cos 39 = cos(360° - 48) = cos 46. SO
40830 - B3cos 6=2cos2 26 - 1= 2(2cos20 - 1)2 -1 Hencex; is
asolutionof 4y3 - 3y = 2(2y% -1)2 -1, wy® - 3y =s8y* - 8y? +1,
and 16y* - 8y3 - 16y2 + 6y + 2= 0.
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So 2z, is aroot of z% - x3-4x2+3x t2=0 Since2isa
root of this, we see that the left hand side equals (x-2)(x3 + 22 - 22 -1).
But x, = cos 6 #1, so 2::(:0 %+ 2, and 2z, is a surd and a root of
23+ x2 - 2¢ - 1=0. By the Man Theorem, there must be a rational
root. But neither + 1 are roots, so we have a contradiction. Q.E.D:
® This paper is adapted with permission from WA Unit 267, (EDC/UMAP,

55 Chapel St., Newton, Mass. 02160).
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VIEI GHTI NG | NCONSI STENT JUDGMVENTS

by Peter C. Morwrnis
Shephend College

In a "chautauqua-type short course" at the University of Maryland
we studied an intriguing way to assign "weights" to items in a list,
where "judgments” are made on pairs of them. The course director,

T. L. Saaty who developed this method using "dominance matrices", has
tested it on several projects with his family, such as choice of schools;
he has used it when the judgments involved are about such things as
psychological problem areas, power and world influence of nations,

future energy needs, and transport planning (a major study to determine
kinds of transportation needed in the Sudan [5]. (Several applications
are discussed in [2], one of meny publications on this method and its
application.) As a group project in our short course, we used the method
to digest our pooled opinions about the future of higher education.

Consider first the following (" consistent”) judgment problem, taken

from a civil war vintage arithmetic book.

A person dying, worth $5,460, left a wife and too
children, a son and daughter, absent in a foreign
country. He directed that i f his son returned, the
mother should have one-third of the estate, and the
son the remainder; but i f the daughter returned, she
should have one-third and the mother the remainder.
Saw, it so happened that they both 'returned; #ow
must the estate be divided to fulfiill the father's
intentions? [1]

That is, if the daughter (only) returns, divide the estate as 1:2
for the daughter's to the mother's portion; if the son (only) returns
divide it as 1:2; but mother's portion to son's this time. Writing that
last 1:2 ratio as 2:4, the combined ratios are 1:2:4 of daughter's to
mother's to son's portion of the estate. This yields the desired divi-
sion of $780, $1,560, and $3,120, respectively.

Consider this problem as a judgment of the mother (M) over the
daughter (D) by a factor of 2, but of the son (S) over M by a factor of
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2. Suppose also that the father would have preferred, had the mother
died first and both the son and daughter returned, that the daughter
should have had only one-fourth of the estate (say), the son the other
three-quarters. That is, suppose that also he judged S over D by a
factor of 3. The way to now settle the estate (with all three l:'n;ing
and in the states) is not so simple.

Saaty's method would consider the following "dominance matrix"
A to deal with such problems; always require a, b, and ¢ to be positive
numbers:

D M S

D | i 1/a 1/b
M| a 1 /e | = 4.
S| b e 1

The labeling of the rows and columns indicates that the ratio of the
portions of M to D is a:1, whence (to explain the reciprocal entry) that
of DtoM is 1/a:1 (that is, 1:a). (ais 2 in both examples.) Likewise
that of 5§ to¥M is ¢:1 (¢ is 2 in both examples). Finally that of S to
D is b:1. The judgments are called "consistent” in caseb = a -e.

(Thus in the first example b = 4; in the second, b was defined to be 3.)
Multiply the dominance matrix 4 for the first example by its solution
vector X = (1/7) [1, 2, u ]Jt:

1 A2 /4 1/7 1+1+1 1/7

A1X= 2 T 1/2 2/7|1=(1/7) 2 + 2+ 2 |= 3[2/7]|= 3-Xl

4 2 1 u/7 4 + 4+ U4 u/7
[

That is, the solution vector X, is an "eigenvector" corresponding to
‘eigenvalue"” 3 for the (consistent dominance)matrix A1'

That relationship (for the consistent judgment problem) motivates
the following definition. Define the solution vector X (even for incon-
sistent judgments) by forming A as above; then X is the (normalized)
eigenvector corresponding to (the real) eigenvalue A of A. The entries
of the solution vector X are called the relative weights. This paper
derives a formula for that eigenvalue A.

(Saaty's method in general considers pairwise comparisons of "?;"
items at a time, using hierarchies to avoid large n, and introduces a
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special scale. This paper considers only the special case of n = 3. In
[3], saaty has solved the corresponding eigenvalue problem for n = 4.
His forthcoming book [4] contains further discussion of this method.)

Theorem. Let d = gg-. (Require a, b, and ¢ to be positive.) If

d = 1 then A has exactly one real eigenvalue. A formula for it is
A=YT 1 YT

Proof. Writing E=d + 1/d , compute det(xl - 4) = x3 - 3x2 +
(2 - E); call this polynomial f(x). If d =1then E = 2yields flz) =
X2 (x -3), whence the real eigenvalues are 0 and 3.

Consider the graph of f. From f'(x) = 3x2 - 6z = 3x(x- 2), it
follows that f has only one X - axis intercept in case its local maximum
value at X = 0 is negative. But since f(0) = 2 - E, that is equivalent
to 2 <d + 1/d. After multiplying by d > 0, this can be written as
0 < (d-1)2. Thatis, if d =1 then f has exactly one real root.

To find that root, substitute x =y + 1y * 1into flz) = 0.
After expanding and multiplying through by y3, this yields
6 - Ey3 +1=0. By the quadratic formula y3 = 1/2 (E + V&), where
A=E2-4=(d -1/d)2. 1fd> dthenvd =d - 1/d, whence
y3 =12 [td +wd) £(d -1/d)] isd or 1/d. On the other hand
ifO0o <d<dthen s = 1/d - d yields again the pair of formulas d and
1/d for y3. Since (in either case) the real solutions for y are
reciprocals, there is only the single, desired, real solution A for x.

The theorem was discovered by using "Cardan's formula"; the
substitution used in the paragraph above is a special case of that used

[6; pp. 84-85] to derive the cubic formula.

Corollary 1. 1f A, and x, are the other eigenvalues, then
2 _ -
A A - ’)‘klz R

Proof. Since A, A,, and A, are roots of f, their product i s the

>
negative of its constantlterm. '?’hat is ArA, =E- 2. But A and 1,
are necessarily complex conjugates; thus i, =_~A—2_A2 = Alﬂ = “klz-
Next substitute into the equation f(x) = 0 the product Al)\klz forE-2to
obtain A3 - 32 _ A[Ak|2 =0. This equation yields the desired one after
dividing by A.
Incidentally, letting F = v - 1/ V& the formulas for those

complex roots can be written as Ak = %(3 - A % % Y3 F i. Notice
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the eigenvalues are all continuous functions of d (whence of the matrix
entries a, b, and e¢); in particular, the formulas for A give zero when
d=1

Canollany 2. The eigenvector with entries the relative weights is

Xx=Q/w |Vvd/a 1, c/?/j] t , where (to normalize)
w=Vdla +1+ /¥

Proof. Consider the matrix equation (A - I} X = 0. Using
A-1=V3+ 1/ 3/—d, write it as the system of equations

it

(1) Q/adz, + (U/bdey = (VA + 1/ Vda,

(2) ax; + (1/e)xy = ( Yo+ 1/ 3/3):02
(3) bz, + cx, =(v3/d—+l/?/5—)x3

Selecting x, = 1 in equation (2) suggests trying X1 = ¥d/a and
xg = e/¥d. This trial solution reduces both equations (1) and (3) to
the identity ac = bd.

Conollary 3. |f A has eigenvector [xl, %, ,

xa]t (for A) then
[l/:cl , l/ac2 , 1/x3]t is an eigenvector (for A) of At .

Proof. Replacing each element of A by its reciprocal changes A
into At. Notice that the formula for A is unchanged, as d is changed
into 2/d . The form for an eigenvector for A then follows from
corollary 2.

Coroflary 4. For fixed b and ¢, A is an increasing function of &
in case a>b/e .

1,3 _1,3
Proof. Mrite A = A(x) =X ¥ va . Wt compute
-2/3 4 43

Al{x) = (J./3)3:14 ; s Ye/b - (1/3)x - ¥b/e + 0

=z L @23 Y76 - ¥B/e). Thus A'(x) is positive
(whence A is increasing) precisely when x >b/e.

This corollary was suggested by one of Saaty's comments during
our short course. (That comment is discussed, following the statement
of the Perron-Frobenius theorem, in [2; p. 2ul].)

Conollany 5. 3 < x < 2+ max {d, 1/d}.
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Proof. 1f d > 1, since ?/ch_ dand Y174 < 1, we have
A=Vd+¥17d t1<dtltl. Similarly, if d<lthen <1t 1/d +1.
Notice 3_<_ A directly, for that assertation isequivalentto 2 <et 1/e,
writing & = ¥d. But that inequality can be restated as 0 < ( e-1)2 ,
after multiplying by e > 0.

In [2; theorem 1] it is shown that A = n (for the general nxn
case) if and only if the matrix A is consistent (in the sense that all
a9 :aik)‘

Incidentally, 2 + max (va, Y1743 is clearly (when d=1) a
smaller upper bound for A.

The bounds of corollary 5 for the "inconsistent” example above
(witha =2, b =3 and ¢ = 2)yield 3< A < 2+ 4/3. (The better
estimate, that is 2 t '?/3', givesA < 3.101. ) The formula (of the theorem)
gives A = 3.009. Relative weights (from corollary 2) are given by
X = (1/u) [1/ V6, 1, ?/E]t z [.16, .30, .su]t. Thus finally for this
inconsistent example the estate division should be $892.30, $1,621.41,
and $2,946.29. (The consistent example (with a =e¢ = 2 butb = 4) gave
weights of 1/7: 2/7: 4/7, or approximately .14: .29: .57.)

As a final example suppose that the judgment of ¥ to D were still
2, but that of Sto D isnow 4 (as in the original consistent example),
while that of Sto M is 3. That is, suppose thata = 2, b = 4, and
¢ = 3 to cbtain matrix A, below. The eigenvalue A = 3.018; and the
formula for the relative weights gives approximately .1l4: .24: .63.
Using corollary 3, their reciprocals give an eigenvector for A , which
normalizes to [.56, .32, .l2]t.

Notice that Saaty's method certainly is invariant of the ordering
of the items to be compared; in particular, At is not the matrix to use
to compare the items (which were judged to give the entries in4) in
the reversed order (as transposition does not preserve all the pairwise

comparisons). For this final example

D M S S M D

DL 1/2 1/4 102y SFL 3 ¥
A=M|2 1 1/3|yielas a%=|1/2 1 3| puty(1/3 1 2| =8

sS4 3 1 1/4 1/3 oL/ 1/2 1
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would be the matrix to use to consider weights for S toM to D.
(That is, an eigenvector for & can be obtained from an eigenvector for
A by listing the entries in reversed order.)

I'n summary, consider the following restatement in words of
corollary 2, about the weight vector X =I:w1 » Wys wér'. The ratios of
pairs of weights can be computed by dividing the corresponding compari-

sons by the "measure of consistency” R = 3’ac/b =Vd. In the consistent

case a =b) consider the eigenvectors [l/cz, 1, e ¢ and [l, a, b]t
for )\0 = 3 to see that the entries in the weight vector must satisfy
these equations: 1‘)2/11;1 =a, w3/m2 = b/a =e¢ and w3/w1= aec = b.
In fact also in the general case clearly (from the formula for X in
corollary 2) wz/w1 = a/R, and wa/w2 = ¢/ R Finally, multiplying
these last equations yields 1..J3/w1 = qe/R? = bd/R%?= bR, That is, even
the non-adjacent weights satisfy this "dividing by B" property: the
original comparison 1/b when divided by R yields w, /g,

Stimulating conversations with James L. Kelso, Alice G. Meissner,
and Steven G. Schlosser helped to formulate this paper; the referee's

detailed comments are appreciated.
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THE APOLLONIUS TANGENCY PROBLEM

John Wwinteanink
Albuquenque Technical Vocational Institute

To construct a circle tangent to three given circles is a problem
proposed by the great geometer Apollonius of Perga [ca. 260-170 B.C.].
The Tactionibus, a text regarding tangencies, which contained the
solution, is lost.

Francois Viete [1540-1603] reconstructs the Tactionibus under the
title Apollonius Gallus. In his forword, Viete [12] refers to Pappus
of Alexandria:

"Pappus Alexandrinus drew up to ten problems of Apollonius
Perga, each of which | shall work out in the order that seems
more convenient. ”

"Apollonii Pergai Problemata wéi &madwv ad decem coniraxit
Pappus Alexandrinus, qua ideo singula persequar €0, qui con-
venientior videbitur, ordine.-

The following is a listing of the given information as used by
Viete. The given information is in each of the ten cases followed by:
construct a circle tangent to the given elements.

Three non-collinear points

Two points and one straight line
Three lines (not all three parallel)
Two lines and one point

One circle and two lines

Ore point, one line and one circle
Two circles and one line

Two points and one line

Two circles and one point

Three circles

OWOJIOUFWwNKH

[

Jean Etienne Montucla [1725-1799] , in his text [7] Histoire des
Mathematiques, refers to the tenth problem as the only difficult one.

The Belgianmathematician, Adrian van Roomen [1561-1615],who had
challenged the French mathematicians with a 45th degree equation, was
amazed that Viete had solved the problem. Viete in turn challenged van
Roomen with the tenth problem: Given three circles, construct a circle
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tangent to them. Van Roocmen, according to Montucla [7], solved this
problem by treating the "intersection of two hyperbolas as a center" of
a desired tangent circle. Viete [12] rejects this proposition. Viete
compares van Roomen's technique with Menechmus method for duplicating
the cube with parabolas, as well as with Nicomedes' efforts to dliplicate
the cube by means of conchoids. Viete is also convinced that van Roomen
will work in vain, whenever the asymptotes of the associated hyperbolas

are parallel.

"Therefore, ny brilliant Adrian, and, i f you please,
Apollonius of Belga, because the problem that | 'have
proposed i s plane, you, however, explained it as solid;

nor therefore have you mede firm the meeting of hyperbolas,
uhich you claim as your own doing; nor even now can you
meke it stick, because, as a matter of fact, i f the
asymptotes are parallel, you are working in vain.”

"Ergo clarissime Adriane, acsi placet Apolloni Belga,
quoniam Problema quod proposui planum est, tu vero ceu
solidum explicasti, neque ideo occursum hyperbolarum,
quem ad factionem tuam adswnis, firmasti, neque etiamnum
potes firmare, quoniam revera si asymptoti parallelae
erit irritus labor.”

The following theorem is fundamental in generalizing van Roomen's

proposition and involves addition or subtraction of radii of two circles.

Theorem. The loci of centers of circles tangent to two given

circles are two distinct conic sections.

Figure 1 reflects three given circles as well as the common tech-
nigue used to construct circles tangent to two circles. The explanatory

notes which accompany the drawing lead to the important conclusion:
A LINE OF CENTERS OGN BE= DETERMVINED.

Each line of centers which can be determined as indicated contains cen-
ters of two circles tangent to the three given circles. It is the in-
troduction of this line of centers which is believed to simplify the
analytic solution of the problem. L. J. Ulman [11] seems to be the
first mathematician to explicitly mention lines of centers as well as
conic sections in connection with the solution of the Apollonius =
tangency problem. Ulman's discovery seems to have been ignored. The

more difficult notions of radical center and axes of similitude seem
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to prevail.
R. F. Muirhead [8] states:

"It is well knom that the contact circles occur in pairs such
that each pair has for its radical axis one of the four axes of
similitude of the given circles.”

Julius Plucker, (1801-1868), [9] based on the general theorem
quoted below, states that his sequence of development in obtaining an
analytical solution of the Apollonius tangency problem is quite analo-
gous to that of Viete, and is "very elegant and compact.”

"The centers of the eight circles which simultaneously touch
the same three given circles are distributed pairwise, on the
perpendiculars dropped from the radical center of the three
given circles onto their four axes of similitude.”

'Les centres des huit cercles qui touchent a la fois les trois
memes cercles donnes sont distribues, deux a deux, sur les
perpendiculaires abaissees du centre radical de ces trois
cercles sur leur quatre axes de similitude.”

Deginition. A hyperbola is the locus of a point that moves in a
plane so that the difference between its undirected distances from two
fixed points is a non-zero constant.

Observations. See Figure 1.
I. Given three non-intersecting, non-congruent circles with
5, » ad O , and radii Rl » B, , and R, respectively,
II. Two auxiliary circles are constructed with centers O, and O ,
and radii B, tR and R, - R
I1I. Two arbitrary secants are drawn through 01, and these scants

centers 0 , 0

intersect with the auxiliary circles at the points Cand ¢’ , and D
and D'.
IV. Four isosceles trianges are constructed;
A 0,4C, AOIA’C', A 0,BD, and AOlB'D' .

V. The difference between the specified line segments;
0F-0F <R -R, 0P -0p = R R,
O4-04 =R *&R,, 047 -0A" = Ry R

VI. Points A and A' satisfy the definition of a hyperbola, and

likewise points B and B'.
VII. Now, when points A and B' coincide, then that point is the

FI GURE 1

center of one of the circles tangent to the three given circles; and
likewise, when A' and B coincide, then that point also will be the
center of a desired tangent circle.

VIIl. Since points A and A are points on one hyperbola, and since
points B and B’ are points on another hyperbola, the conclusion is
that when points A and B’ coincide, as well as when points A' and
B are coincident -- then ONE LINE IS DETERMINED.
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Since two circles determine two conic sections, it is clear that
three circles determine six conic sections. If the common intersections
of these conic sections were to be determined by algebraic techniques,
then indeed Montucla's comment [7] seems to take on credibility:
"analytic geometry i s not suited for the dpoZlonius problem.” There is
another similar comment by Benjamin Alvord [2], who in his article "A
geometrical solution of the ten problemsin the tangencies of circles;
and, also, of the fifteen problemsin the tangencies of spheres, "
observes: "if these problems had been solved algebraically -- the re-
sulting equation would be one of the eighth degree” However, Alvord
does conjecture that quadratic equations should be associated with the
tangency problem's solution; "but 1 do not think it 'has ever- been ob-
tained by mathematicians. ”

Clearly the analytic geometry solution suggested by L. N. M. Carnot
(1753-1823) [3] was not known to Alvord. Carmot states that a second
degree equation in one variable is obtainable, but:

"1 am not going to carry out the required calculations since the
synthetic solutions by Viete, Newton, and Euler are nmuch nore
elegant. ”

"Je n'effectue pas ce caleul parce que ce probleme a ete resolu
d'une maniere plus simple par des geometres de premier ordre,
tels que Viete, Newton, Euler, et que la seule synthese en
fournit plusieurs solution treselegantes.”

The comment by Montucla was made in connection with the two quad-
ratic equations found by Descartes, and the one found by Princess
Elisabeth. However, Montucla's comment may be contrasted with
Descartes' [4] regarding the first solution.

"aqn equation i s found where there i s only x and xx unknown, so
that the problemisin the plane, and there i s no longer a need
to go beyond. Because the rest i s of no use i n cultivating or
entertaining the mind, but only in exercising the patience of
e hard working mathematician.”

"on trouve une equation ou il n'y a que x et xx; de facon que
le Probleme est plan, et il n'est plus besoin de passer outre.
Car le reste ne sert point pow cultiver ou recreer l'esprit,
mais Settlement pour exercer |a patience de quelque calculateur
laborieuzx. "

Dr. A. Aeppli [1] has generalized Descartes' second proof to
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n-dimensions.,

J. M. Fitz-Gerald [5], while commenting on the solution by 0. von
Stoll, states: "Sore of his difficulties may no doubt be attributed to
his extremely complex algebraic formulation of the problem.”

C. N. Mills [6] completed a "general® formula for the calculations
of the lengthof the radii of the Apollonius contact circles. The com-
plete calculations and proofrequired "18 inch wall-paper 24 feet long."

Von Stoll [10]in his article, "Zum Problem des Apollonius,”
utilized analytic geometry effectively to determine solutions of de-
sired tangent circles in pairs. According to R F. Muirhead [8], von
Stoll was the first author who considered the relative positions of the
given circles in order to determine the number of possible solutions.
Von Stoll correctly refers to some pitfalls when the centers of the

given circles are collinear:

"1n conclusion special consideration needs to be given to the
case. ..where the centers of the given circles are collinear;
thisis the sare situation where the Gergonne solution becomes
Zllusory 100."

"Zum Schlusse verdient noch der Fall eine besondere Betrachtung,
...wo die Mittelpunkte der gegebenen Kreise auf einer geraden
Linie liegen; es ist dies derselbe Fail, in welchem auch die
Gergonne 'ache Construction Zlilusorisch wird."

It should be mentioned that Viete [12] excludes from his first
problem collinearity of the three given points. Vo Stollrefers to
another pitfall in the last paragraph when again no quadratic equation
i s obtainable:

"if the three circles are so located, that the external similarity
point of the first and second i s also the one of the second and
third. ... Indeed one can then place two common external tangent
lines on the three circles, which here are to be looked upon as
circles with infinite long radii."”

"wenn die drei Kreise so liegen, dass der aussere Aehnlichkeit-
spunkt des ersten and zweiten auch der des zweiten and dritten
ist. ... In der That kann men dam an die drei Kreise zwet
gemeinschaftliche geradlinige Tangenten legen, die hier als
Kreise mit unendlich grossem Radius anzusehen sind. "

Von Stoll considers three additional cases with respect to inter-
nal and external similarity points and states in his last sentence:
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"In all these cases two commmon tangent lines can be placed in
contact with the three circles, and there exist besides these

in general six solutions."

"In alien diesen Fillen Kénnen an die drei Kreise zwei gemein-
schaftliche Tangenten gelegt werden and existiren ausserdem
im Allgemeinen sechs Losungen.'

The possibility of obtaining seven solution circles with finite
radii and one solution with a center at infinity is overlooked by von
Stoll. The attached numerical example reflects seven solution circles
with finite radii and one common tangent line. This same numerical
example can be used to show the limitation of the "general” solution

by Mills.
Neither von Stoll nor Mills apparently heeded the objection by

Viete [12] "quoniam revera si asymptoti fuerint parallelae, erit
irritus labor." This objection to the van Roomen solution can now also
be addressed. Whenever the asymptotes of the hyperbolas associated
with the solution of the Apollonius tangency problem are parallel, then
will the desired tangent circles be common tangent lines.

The task at hand then is to present a method for determining the
centers of desired tangent circles in pairs, as well as provide an
opportunity to analyze the problem and determine the number of possible
solutions.

The proposed solution to determine pairs of centers:

SOMVE SMULTANEOUSY ONE LINEAR EQUATION IN MO VARIABLES AND
ONE EOOND DEHRE EQUATION IN WD VARABLES

ax thbyt c =o0 and
Az2 +t2Bey t cy?2 t+ 2xt 2Byt F=0.

This approach involves the use of a quadratic equation in ope
variable, and hence is constructable with straight-edge and compass.

The theorem which will be proven is:

Theorem. The centers of the eight desired tangent circles lie on
two distinct conic sections, and these eight centers are distributed

pair-wise on four lines of centers.

The development of the proof is intended to facilitate obtaining
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numerical resultsthrough the use of electronic calculators as well as
pictorial results by means of mechanical plotters.
Two theorems which can be proven by the reader:

Theorem. The four lines of centers are concurrent.

Theonem. The intersection of these lines of centers is the

radical center.
PROBLEM

Determine the coordinates of centers of circles tangent to three

given circles.

Analysis. The number of centers that can be obtained depends on

the relative positions of the given circles.
2

Given. (x - nr)?2 + (y - 91)2 =R
2

@-h)% + (- g,)° =R, ,
(z - hy)2 + (y- g% =R%.
Asked. Sow that the intersections of lines and conic sections

yield centers of desired tangent circles.

Solution. Let dl, dz,
one of the desired centers to the centers of the given circles.

and d3 be the respective distances from

I d = V@-hr)"+ (y-g)7%,
- 7

II. dz =V (z - h)2+ (Y - g,)% ,

II. dy = V(z-h)2+ (y- gq)° =

Algebraic sums of pairs of equations shown yield possibilities:

dy £ dy = R, t R,
d2 t dl = i'RZ t R1 ’
d, + d = R, t Ry .

3 2 .
Suggested sums or differences of known radii as shown below are useful

in determining linear equations and second degree equations each in two

variables.

First Second Third Fourth
combination Combination Combination Combination “
A:g3:§1 Ay = Ry YR A43=R - Ry A3= R 1 Ry
A, = 2 1 ,42=,;t?2+1?1 A:}}:1+}?2 4, = R - R,
A, = Ry - A= R-R 4 =%t R A= R * R
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Subtract equation | from equation III, then subtract | from II:

W, V@-r)lx (y-gp2=V@ -n)7+y- g% +4,,

V. V@-1)%7+ (y-g)r=/@ -hr)°+ (- g2 4, .
Square both sides of |1V and V, then collect like terms:

equations VI, and VII follow:

2 -
VI. 2(hy - h, )z + 2(g; - gdy + hy" t gy . 9,

=24,V (@R)Z+ (g-g9)° ,

VII. 2(h) - by )z +2(g) - g)y + k2 + g2 -7 =g - 472

- pJ Z
=24,V (@-h))* 4 (y-g,)° .

Multiply both sides of VI by A , and multiply both sides of VII by A |

then subtract. The result is a linear equation:

VI, Azt By u ¢, =0.
The values of A , Bl’ and C'l are indicated below:
Ay = 204,(h -hy) - Ag(h -hy))

o
[l

1 2(,42(91—93) - A3(91‘92)) s

Q
"

2 2 2 2
A2 (h? v g? - - g2 - A - 4y (hy? +.g,% = h % - g,% - 4,

By letting A and A3 take on alternately the suggested values of the sum
or difference of the radii, it is clear that four linear equations can
be determined. Now note that a line may intersect with a conic in at
most two points. So, if two second-degree equations each in two vari-
ables were determined, then each of these conic sections would contain
at most four desired centers.

The derivation of a second degree equation is according to standard
analytic geometry techniques:

Subtract equation II from equation III,

IX. v (:x:-Z'Z)z t it -g)?=vV e -kt y - g2 tA
square both sides of equation IX, then collect like terms,

2 2
X 2(hy - hydw +2(g, - gy + B g7 - B - gyt -4,

s oq ¥ @R)T+ (y-g,)7
square both sides of X, then collect like terms in order to obtain an

equation of the form
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X1. Ax? + 2Bxy t cy? t 2Dx t 26y tF =0.

The values of A, B, C, D, E, and F are indicated below:
_ _ 2 . 2

A = u(hz hs) AL‘ ),

B = uh, - kg, - g5 ,

¢ = ug, - 93)2 - qu) i

= - 2 2 -
D= 2(h, - B)(h%2 + g% - 1

2 _ o242 2
2 g, A) t o shAZ,

2

= - 2 2 _ 2 _ 2 _ 2
E= 209, - g2 tg® -2 - g2 - 4D t uga?,

- 24 ,2_p2_,42._ 2y 2 2 2 2
F (hy 95 h, g, A9 2 - uas (B g,%)
Observing that A, appears as a squared quantity only among the co-
efficients of equation XI, and using the two suggested values for

“=R3—R2,orAl+=R2tR3,
in general two conic sections can be determined. The equation

A, 5 1.e., A the conclusion is that
Ax? ¢ Bxy t Cy?2 + 2Dx t 2y t F = 0 represents one of nine curves;
namely, an ellipse, an imaginary ellipse, a point, a hyperbola, a pair
of intersecting lines, a parabola, a pair of parallel lines, a pair of
imaginary parallel lines, or a pair of coincident lines. Since equation
X1 includes the hyperbola to which van Roomen refers, it is evident
that analytic geometry provides a workable solution in a most general
sense. The solution set of equations VIII and XI will reflect the

coordinates of centers of circles tangent to the three given circles.
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AN INEQUALITY FOR A MARKOV CHAIN WITH TRANSITION
FUNCTION p(Z,4) AND STATE SPACE J = {1, 2, ...,n}.. ~

by Michael Stephen Schwartz
Belfern Graduate Schoof of Science

This paper originated from Problem Number 395 of the Spring, 1977
issue of this journal. The problem, as it appeared was:

'Assume that »n independent Bernoulli experiments are made with
p = Plsuccess ], 1 - p = P[failure], and 0<p<l. Intuitively it seems
that P[success on the first triallexactly one success] is always less
than P[success on the first triallat |east one success . Verify

directly that this is indeed the case."

Theorem. |f 0<pi< 1, fori =1, 2, ...,n, then
n
(1) - p. .
12 I;l (1 pﬁ) . P, (n >1)

tpiﬁ(l-pj 1-1"‘[(1-p§)
=1 j=i

Proof. W shall proceed by induction. For »n = 2, we want to

prove the following:

pl(l - pz) pl
(e)

P1ll o pp) + 0,1 L p)) - (1-p) - py).

After clearing the fractions and transposing, we have

2

(1 -p,) -p(Q-py) <py(1-pp) + A-pPQA-p)-. (b)
Dividing both sides by 1 = P gives

(L-p,) <p, +1-pp- (@)

Since ( ¢) reduces to p, > 0, reversing the steps from here establishes
the truth for n = 2.
Next, suppose (1) holds for » = k. Forn = k + A, the left side

of (1) can be written as
K K

P, L p) Qb)) 3wy n (- p,)
I=2 =1 *q

. 73 T
ﬁ: P; l—,i 1 - Pj) & p; L= PJ-) s
r=1

7=1 J*1 i= j

"

(
J=i



w
©
=

which is less than

k k
(1- ) . ~ Bis
(1) Pl pk+l L”E p'L D Q PJ)
+1
1- Ik—!(l-PJ) ]2 (1-po)
J= YET

by the induction hypothesis. Tphe task which remains is to show that
(1') is less than

Aﬁ;]_
1 - - 2).
(1 p3)

Clearing J=1
k+1 *
<2'>Zp ﬁ(l—p-)— p; []@-ppa-pp -
R S5 % 14 J k+l
Prs1 l_I a- Ps )
we readily obtain J=t
k+1
(3") 1- = .
H( P>Z n(l Byl pk+l)<Pk+1n‘l‘P)
=1 J=1
k Kyl Kyl
n (l‘Pj) y Py .(l—pj).
j=1 1=1 J#T
k
Transposing to .isolate Pr+1 n (1 - pJ.) on the right-hand side and
dividing J=1
Ei k+tl k k
4! N s
'y Ly n(l p) szn(l—p)(l—piﬂl)
L:"I =1 J=7,

k 13
- Phen Zpi 1—[ (1 - P = pryn) <Ppys
. 2=l =y
which becomes

Kk k

5! - . . -
(5" I_[ (1-p;) + ;1 P '];17’(1 P = Ppyp) <l
after %2’) has been reapplied and pk 1 divided out. But

(l“Pk+1 i n(l~pa)<z rkl(l—pa)and

Jjei

IS k k k
n (l_pj) + Zpln (l—p3)<l_[ (pi‘f‘(l—pi)):
g=1 =1  j=i z=1
k

where the last inequality follows because l l (p; + A -pz77
contains all of the terms on the left 1=1  (plus others).

This establishes (1) for » = k + 1, so that inequality (1) holds
for all integers n >1. Q.ED.

Comment. By the same argument we can obtain the following:

If there exists jl’ ,7'2, Cees ji’ S 4 jne J such that
0<p(i,j1) <1+ 1e J, then

n
p(1,4,) I—! (1 - plkody) ) p(l, 4))

K:

n .

ip(i, PP []@-ete s 1 (1 - plks d) )
7=l k=i k=1

I would like to thank the editor for helping me to write ny paper

in a better form.
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OBTAI NI NG THE PROBABI LI TY DENSI TY
FUNCTI ON OF THE k- TH ORDER STATISTIC

by A. Banah, B. Crain, T. Mehle, B. Rahali,
B. Showalter and P Smith

Suppose that X,,X,,...,X; are independent, identically dis-
tributed random variables (of absolutely continuous type), each with

the same marginal probability density function f(x) and cumulative
distribution function F(x). The joint pdf of Xy,X, 505Xy is then
Flz))f(x,). .. flx,).

The order statistics Yl, Y2,...,Yn are defined as usual (see
Hogg and Craig [1965]) by

<
"

smallest of X, XysonhX
Y, = next smallest of Xy XyseooX

Y, = largest of X;» X,s5...04y |
Since we assume that the X's are of continuous type, the probability
of any ties among the X's is zero; that is,

Pr(’(:;{j[xi = XJ ]) = 0.

Thus we may assume that the Y's are well defined. By their definition
the order statistics satisfy the chain of inequalities

-® <Y <Y, 2...2 Y <= Order statistics are encountered in such
places as the theory of reliability.

Let g(y; ¥y s-+-s yn) be the joint pdf of ¥,,¥, seees¥, 5 and
let gk(yk) represent the marginal pdf of the k-th order statistic Yk‘

It is well-known (again, see Hogg and Craig) that g(yl,y2 se++s¥, ) and
gk(yk } may be written in terms of f(x) and F(x); and, in fact, the
formulas are

n!f(yl)f(yz)...f(yn),—w Y1S YpSeen Sy, <t
(1) gy50p000y, ) =

0 , otherwise
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and

n! k—_L n-Kk
(2) g,(n,) = — = Fy I[Py T - Fly )], =iy < =
KT g yekyr K TR k

Formula (2) follows from formula (1) by repeated and laborious integra-
tion. In this article we give a short and direct way to obtain gk(yk).
Let Gk(yk) be the edf for Yk, so that

d -
a, G (y) = gy )

For k¥ = n the situation is easy:

A

Y oKX, & Yyo-eesXy < y,)

G, (y,) = Pr(¥, <y,) = Pr (X <y,.X, <

: [F(yn)]n (by independence of the X's), so that
6,5, = (@dy Fw T = n [P ).
For k = 1 the situation is almost as easy:
Gy (y,) =Pr (Y, £ y1) = 1 - Pr(Y¥y > y1)
=1 - Pr(X; >y, Xy > Ypseees X, > y,) =1- [1—F(yl)]n
(by independence of the X's ), so that

-1
g,(y) = (d/dyp1 - [1 - F(y1>]”} =nl1 - F(y1>]" fly).

For 1 < k < n the situation is more delicate:

Gk(yk) = Pr(¥, < yk) = Pr (k or more X's < yk)-

Thus "
. n ary - r-J
(3) Gy ) = z; (J-)[F(yk) Yl - Fyy)l
J:

If we compute gk(yk) = ( d/dyk)Gk(yk) using (3) we obtain a

horrible mess. Instead, write
k-1

1- Z (;)[F(yk)]j[l - F(yk)]"'j

J=0
=1-Hk - 1),

(W) Gty )

where H(:) is the edf of a binomial random variable with parameters
nandp = F(y;< ).



In Wilks [1962], p. 152, we find the following handy relation,

whereg = 1 -p:

k
3 . q
n n k-
> (J-)pJq = - k)(Z)I T CR L
J=0 °
This relation is proved using integration by parts, and applying it to

our situation in (4) yields

1-F(y,)
(5) Gly) =1-(n-k+ l)C(’fl)fo ke -t la, .

Using the Fundamental Theorem of Integral Calculus we differentiate

(5) and obtain

! ot -
- kD) ey [0 - PTG

9. (¥)

) el S

_ n!
= i T [Py [1 - Fly,
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THE NATURAL DENSITY OF THE FIBONACCI NUMBERS

by 1. P. Scalisi and G. Sethares
Bridgewaten State College

In this paper, we compute the natural density of the Fibonacci

Numbers by elementary techniques. Let N be the set of positive

integers and A € N . We will think of the elements of A as being
For example,

arranged according to size in the form of a sequence {ak} .

if A denotes the set of positive even integers, then ak =2k . Inthis
paper, we consider the set 4 = {Fk}’ where Fk is the kth Fibonacci
Number defined recursively by F1 = F2 =1, and Fk+2 = Fk+1+ Fk’ k €N

There are three types of density that one usually considers:

asymptotic, natural, and Schnirelmann. They are defined in the follow-

ing way:
Deginition. Let A(x) denote the number of positive integers in

A that are less than or equal to X, where X ¢ N

The asymptotic density of Ais

SI(A) = lim inf ACk)
koo k

The natural density of Ais
5(4) = 1im ALLY , if the limit exists.
ko K

The Schnirelmann density of 4 is

w - {5

Clearly, 0 < d(4) = GI(A) £ 1, and if A has a natural density?

then, §&(4) = GI(A).

Following are a few examples illustrating these three densities:
a.) A= N . Then d(4) = 6(4) =¢,{(4) = 1.
A ={2,4,6....} . Then, A(k) = [k/2] and §(4) = §,(4) = 1/2,
but d(4) = o.

c.) A = the set of all positive primes. Let n(z) = the number ©f
The well-known Prime Number Theorem states

b.)

positive primes £ X.
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that im w(x) . In X = 1.

X X
Thus, using the notation, A{k) = =(k), it follows that §(4) = 0.
Hence, d(4) = 6(4) = dl(A) = 0.

d.) A= U A, , where 4 = {z[(2)! 2z < (2n+1)!)
ne N

Then 8(4) does not exist. (For a hint, see [3], p. 2u8.)

Note 1: The Schnirelmann density is sensitive to the first terms of

the sequence A = {ak} . For example, if 1 € A, then d(4) = 0,

and if 2 € A, then d(4) £ 1/2, whereas 8, remains the same

whether or not 1L or 2 are in A.

Nete 2: The asymptotic density and the natural density, if it exists,

are measures of the sparcity of the elements of A. For ex-

ample, if A consists of the terms of an arithmetic sequence

with difference D, then §,(4) = §(4) = %‘

Note 3: The first major result concerning the distribution of a set of

positive integers was the Prime Number Theorem (see Example c.),

proved independently by Hadamard and De La Vallée Poussin in

1896. The first serious study of the density of an arbitrary
set of positive integers was made in 1930 by L. G. Schnirelmann

(4). Schnirelmann conjectured the celebrated @B theorem which

was first proved by H. B. Man in 1942 [2].

Now, let A = {F.}, the Fibonacci sequence. It is known that

d(4) = 0. (Fibonacci Quarterly, vol. 4, #3, p. 284.) W will show that

8(4) = 0, so that 0 = d(4) = GI(A) = 8(4). Note that

- <
A(Fk) = A{n), for Fk Sn< Fk+l
Hence,
> <
A(Fk) Z A(n) ,for Fp=n<Fpoo
o n
k
so that,

1im sup A(k) £ lim sup A(Fk) = lim sup _k
koo Fk—m —— ko F
Fk k
We will show that
lirn k =0.
koo g

This will then imply that §{(4) = 0.

gy s

(i) The sequence {k } i s monotonic decreasing and i s bounded..
F
k

<
For k £ 3, we have Fk'Q/Fk_l <1, so

F.
1+ _k:.2_ L 2 < k;
Fr1
oY
Frer " Pren <k
L
Thus
F
k=1 1
- k
k

Upon adding 1 to this last inequality we get

Fk+1 S ilg
k+1 k ?
or
Fk+1 < F’K
k+1 k

Thus, { k} i s monotone decreasing. Also, 22 _k > 0,

for k > 2. " Fk
Therefore, by the monotone convergence theorem, L exists,
where L = lim A(F,) =lirn k .
oo g ke Ry
k

(ii) Computation of the Limit (L = 0).

It iswell known that lirn Fk+l
>0

= /5 +1 ;
- 2
Py

call this value g (the "golden section"). Then,

L=21im %k =lirnk/F
Ty ﬁ k_,m?k;l

k/Fk+l

601



= 1im [F k+1 1
k+1 — =
kw( Fk ) [Fk+l Fk+l]

or

L(1 - g) = 0.

But, g# 1, thus, L = 0.

The authors wish to thank the referee for several helpful

suggestions.
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15 your chapten making use of the excellent qwand centifi-
ca;tg,é fo he,’z;o you hecognize mathematical achievements?
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Dr. Richard A. Good
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LOCAL CHAPTER AWARDS WINNERS

CALIFORNIA EPILON (Claremont College). The Best Chapter P/ua—.
sentation ($20) was awarded to:
Bruce Levy.

NEW YORK PHI at Suny (Potsdam). The 1977-7§ Chapter Senion Award
which consists of mathematics books was given to

Nancy L. Burger.

OHO ZETA CHAPTER (University of Dayton). A joint award as Out-
Standing Sophomones in the Field of Mathematics, which consisted of
mathematics books of the winner's choice was awarded to

Joan watsh
and Mark Turella.

1978-79 CONTEST

Papers fon the 1977-78 contest have row been judged, and we
are receiving papers for this year's contest, so be sure to
send us your paper, or your chapter's papers (at least 5
entries must be received from the same chapter in order to
qualify, with a $20 prize for the best paper in each chapter).

For al |l manuscript contests’ in order for authors to be
eligible, they must not have received a Master's degree gat
the time they submit their paper.
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GLEANINGS FROM CHAPTER REPORTS

The GHEZON GMVA CHAPTER made over $150 selling used mathematics
books in 1978.

The CHO DELTA CHAPTER at Miami University hosted the Fifth Annual
Pi M1 Epsilon Student Conference on September 30, 1978 (and will host
the Sixth Annual Conference on September 28, 1979 this year -- see call
for papers elsewhere in this issue). The contributed papers were:
Jim Snodgrass, Western Kentucky University, "Toads, Frogs and Dominoes"”;
Stan Mahaffey, Appalachian State, "Scheduling Intramural Sports";
Douglas W. Boeme, Miami Universityy "Is It Possible to Lose the OL'
Magic?'; Margaret Shaw, Appalachian State, "Best Seat"; Carofe Cook,
presented by Todd 0'Connell, both of Miami University, "Exam Scheduling:
An Example of Mah Modeling"; Patty Pagter, Appalachian State, "Tomato
Processing"; Wayne Delia, Clarkson College of Technology, "Meauring the
Area of a Smowflake"; Richard Grifgin, Lowell University, "Arithmetic
a |la Computer”; Steve Ruberg, Miami Universityy "Non-Consecutive Numbers
in a Magic Square"; Sheila Reaver, Miami University’, "Patterns and
Happiness from Cubes"; Batiy Stoftz, Miami University, "Mathematics in

the Works of Lewis Carroll"; Kathy Saunders, Miami University, "Flatland".

(Editornial Note - May sections of the Mathematical Association of
America nov have student paper sessions. Pi M1 Epsilon Chapter can and

have been involved. Please send reports on these to the Editoxr).

The TEXAS IOTA CHAPTER at the University of Texas in Arlington
heard the following papers by: Dr. U. L. Tennison, "Curves of Constant
Width"; Dn, Steve Bermfield, "Mathematics"™; and Richard Bennett, 'Ground
Resonance Instability of Helicopters".
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PUZZLE SECTION

This department i s for the enjoyment of those readers who are
addicted to working crossword puzzles or who find an occasional mathe-
matical puzzle attractive. W consider mathematical puzzles to be
problems involving numbers, geometric figures, patterns, or logic whose
solution consists of an answer immediately recognizable as correct by
simple observation, and not necessitating a formal mathematical proof.
Although logical reasoning of a sort must be used to solve a puzzle in
this section, little or no use of algebra, geometry, or calculus will
be necessary. Admittedly, this statement does not serve to precisely
distinguish material which might well be the comain of the Problem
Department, but the Editor reserves the right to make an occasional
arbitrary decision and wiZZ publish puzzles submitted by readers when
deemed suitable for this department and believed to be new or not
accessible i n books. Material not used here will be sent ta the Problem
Editor for consideration in the Problem Department, i f appropriate, or
returned to the author.

Address all proposed puzzles, puzzle solutions or other corres-
pondence to David Ballew, Editor of the Pi Mi Epsilon Journal, Depart-

ment of Mathematical Sciences, South Dakota School of Mines and Technology,

Rapid City, South Dakota 57707Z. Please do not send such material to the
Problem Editor as this will delay your recognition as a contributor to
this department. Deadlines for solutions of puzzles appearing i n each
Fall issue i s the following March 1, and that for each Sping issue, the
following September 15.



Mathacrostic No. 7

[¢] 1|v 2 H 31s 4 5]G 6| s 710 8|I 9B 10 E 11
U 12§ 13w 14 A 15 16 17|M 18 s 19|x 20/M 21|R 22|E 23
%z 24|V 25|{B 26 s 27 28 29{B 30|y 31 U 32{Cc 33]J 34|0 35
F 36{L 37|/K 38|s 39|D 40 41 Ww 42|c 43|B 44|An 45]R 46|Y 47|z 48

H 49|D 50 F 51 52 53 Y 54|T S55{E 56|V 57|U 58}X 59
K 60|G 61l|J 62 S 63 64 65 N 66|G 67|1 68jL 69]0 70{X 71
P 72|Q 73}|R 74|K 75|T 76 77 p 78/t 79|p 80|k 8ljo 82|J 83N 84

P 85|B 86|Q 87 88 89 s 90 G 91]1 92|c 93|E 94
B 95|F 96f{R 97|N 98 99 100|1 101{u 102}{A 103{G 104}V 105|T 106|P 107
Y 108X 109 z 110jL 111 112|H 113|Q 114 U 115f{s 11l6|C 117jp 118
H 119(V 120|w 121 X 122 123 124 V 12512 126 F 127 Z 12q
E 129|J 130{I 131|L 132|D 133 134 135|A 136|W 137|N 138 G 139{M 140|D 141
H 142 F 14310 144|Q 145 146 147|v 148(|K 149 D 150|M 151f{J 152{A 153

Z 154|R 155|A 156|F 157 158 159N 160 T 161|F 162|G 163{J 164|U 165
N 166|K 167]Y 168 |H 169 170 171|r 172]8 173]A 174|E 175|Y 176|Q 177} T 178
B 17912 180 E 181|K 182 183|E 184|P 185 B 186{F 187 X 188
Y 189|T 190|E 191 |L 192|C 193

Deginitions and Key
A. fornulated the four-color conjecture
around 1852

B conposed of el enents drawn from
various sources

C. early nane for curve of constant width
D. in 1837 he gave the first rigorous

proof of the inpossibility of tri-
secting the general angle

E. aratchet device which allows notion
inone directiononly in equal steps

F. wink

G. some call it the lazy dog curve

H punched-card pioneer (1860-1929)

I. Paul Erdass' word for "child"

J. conpl ex anal og of Euclidean space

K, libratory notion of earth's axis

L. author of WHOM THE GODS LOVE

M. ganme described by J. L. Synge in
SCI ENCE - SENSE AND NONSENSE; short
for "vicious circle"

N. precise, neat and sinple

0. engaging i n wanton behavi our

P. bridge player's delight (2 wds.)
Q. a group of nine

R an el enent of a topology (2 wds.)
S. 1959 lithograph by M. C Escher

featuring tetrahedra and octahedra

T. body of water which originally
separated the supercontinents
Gondwanal and and Laurasia (2 wds.)

U child s gane PI ayed out doors on an
arrangenent of rectangl es

V. between-the-acts music

. repeated designin a pattern

X game invented by WIIiam Rowan
Ham | ton; marketed in 1859

Y. femalering | eader (1882-1935)

Zz. rage of the early 1950's; brainchild
of Roger Price

156 45 15 153 103 136 174

147 175 56 181 94 191 23 129 184

132 37 111 69 192 124

80 85 134 72 118 107 185

178 183 106 52 41 161 190 55 76

28 64 115 58 165 32 102 158 12

180 128 126 110 48 154 24
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Mathacrostic No. 7

submitted by Joseph V. E. Konhausenr
Macalestern College, St. Paul, Minnesota

Like al |l other acrostics, this one is a keyed anagram. Identify
the key words, matching their letters in order with the opposite sequence
of numbers, and insert each letter of the key words in the square of the
mathacrostic with the same number. Words end at blank squares, and some
words may extend on to the next line.

When completed, the mathacrostic will be a 193-letter quotation
and the 26 initial letters of the key words will spell the name of an

author and the title of his book from which the quotation was derived.

Mathacrostic No. 8

The directions for this mathacrostic are similar to the one above.
It has 29 key words, 202 letters, and the initial letters of the key

words are an author and work.

Solutions

Mathacrostic No. 6 [rail, 1978]

Definitions and key:

A. Hosel H. Temporize 0. Near-beer V. Raffles

B. Uncinate 1. Hadamard P. Empty W. Tete-beche
C. Nonplusses J. Enprise Q. Patterns X. Iffy

D. Team up K.  Darboux R.  Redowa Y. oddment

E. Lyceum L. Ipse dixit S. Offspeed Z.  Newcornen
F. Evolute M. Versor T. Poset

G.  Yo-yo N.  Ischemia U. Oxymoron

First letters: HUNTLEY THE DIVINE PROPORTION

609

Quotation: In mathematics the expedience of beauty rmey be compounded of
surprise, wonder, awe, or of realized expectation, resolved perpiexity,
a sense of wnplumbed depthsand mystery; or of econonmy of the means to an
impressive result.

Sofved by ROBERT PRIELIPP, Univensity of, Wisconsin, Oshkosh;
VICTOR FESER, Mary Coflege, Bismarck; GERALD PERHAM, St. Joseph's Univer-
sity; LOUIS CAIROLI, Kansas State University; JFANETTE BICKLEY, Webstex
Groves H.S., Missowri; and the. Proposenr.

The Bridge Game. [Fall , 1978] submitted by Pien Square.

Four men named Banker, Waiter, Baker and Farmer are playing bridge.
Each man's name i s another man's job. |If the baker is Hr. Baker's part-
ner, if Mr Banker's partner is the farmer and i f at Hr. Farmer's right

is the waiter, who is sitting on the banker's left?

Solution:
MR FARVIER
baker
MR BANKER MR WAITER
waiter f armer
MR BAKER
banker

Sofved by RANDOLPH ISTUANEK, Univensity of Wisconsin, Parkside;
VICTOR FESER, Mary Colfege, Bismanrck; JANDA COOK, Lamar Univernsity;
MICHAEL YOUNG, Portland State.; AVI LOSIZE, Torah Vedaath H.S., Brocklyn;
S\MURL GUT, Bnrookfyn; RALPH KING, St. Bonaventure; MICHAEL GAIN, Lament
Univensity; RANDALL SCHEER, Suny at Potsdam; SUSAN HOFFMAN, Tona College;
GEORGE RAINEY, UCLA; GERALD PERHAM, St. Joseph's University; SUSAN
IWANSKI, Greens Lawn, N.Y.; CLAUDA EVANS LaMarque, Texas; MARK EVANS
LaMarque, Texas; KENNETH LEMP, Nassau Community Coflege; LOUIS CAIROLI,
Kansas State. Univensity.

A Single Cat [Fall, 1978] submitted by Pier Square -

Is it possible to make a single cut in a 9 X 16 rectangle, rearrange
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the two parts and get a 12 x 12 rectangl e?
P 9 9 Solved by VICTOR FESER, Mary College, Bismaxck; MICHAEL GAIN,
Sofution: Lamarn Univensity; GERALD PERHAM, St. Joseph's Univernsity; KENNETH LEMP,
Nassau Community College.
3 y M Mathacnostic No. 5 [Spring, 1978] ol
3 " 3 6 Also solfved by ALLAN TUCKMAN and PATRICIA GROSS o¢f the. Univesnsity
5 vf 1Leinois, See Fall, 1978 issue for sol ution.
Sy
mn 3 .
i

Solved by VICTOR FESER, Mary College, Bismarck; RALPH KING, St.
Bonaventwre; MICHAEL GAIN, Lamar Univensity; RANDALL SCHEER, Suny at
Potsdam; GERALD PERHAM, St. Joseph's University; MARK EVANS, LaMarque,
Texas; LOUIS CAIROLI, Kansas State. Univensity; JEANETTE BICKLEY, Webstex
Groves H.S., Missound.

S
UPERPRO
F

Associ ate Assi st ant QG aduat e
Greek Crosses and Squanes [Fall, 1977] Pr of essor Pr of essor Pr of essor I nstructor Assi stant
The last part of this five part problemwas left openinthe Fall, Leaps tall build- Mst take Can leap over Qashes into Cannot
1978 issue. It's solutionis as follows: ings with a single running start short build- bui | di ngs recogni ze
bound. to | eap over ings only. when at - bui | di ngs at
tall buildings. tenpting to al.
j unp over
them
:s faster than a Is as fast as Not quite as S ower than Wunds sel f
speedi ng bul | et. a speedi ng fast as a a slow with bull et
bul | et. speedi ng bul I et. when at -
(e of these bul | et . tenpting to
shoot .
I's stronger than I's stronger I's stronger Shoot s the Snel s like
gi ves a | oconot i ve. than a bul | than a bul I . bul I . a bull.
el ephant .
Vel ks on wat er Vél ks on Washes with Drinks water. Recogni zes
consi stently. water in wat er . wat er .
Four of these ener genci es.
Tal ks with God. Tal ks with Tal ks to Argues with Loses ar gu-
the angel s. hi nsel f. hi nsel f. nments with
hi nsel ..
Oreates consistent Proves orig- Accept s Proves D sproves
set of axions. i nal theorens. axi ons. axi ons axi ons.



Definitions and Key

A. Abingo-like gane of Germanic origin e = T T

Mathacrostic No. 8 B. Being —
) 183 3 129 201 101 155
. e c. Single-valued section of a multival ued -
ifp 2B 3g ua s Ho oeje 7l s8la 9 c 105 11 12 function 193 10 70 103 24 100
T3 m p. Fanous criterionfor irreducible s pe s, e o
X 1% [a 15 G 16 R 17L 18 F 19 p 20 b 215 22|V 2% pol ynoni al s over the rational s 133 7 108 86 199 51 202 126 168 20
o E. American sea captai n who devel oped
25825 K28 K 27w 28 d 29 [0 30z 31% 32 [T 33 |Y 34 R 3% a nethod of determning | ongitude [,
and | atitude by observing heavenly 1196 112 157 91 u8
bodi es
F 36/ A 37 P 38 M 39U 40 W 41 (s 42 Q w3 [K 44N us]r ue

F. Achief city of the Philistines e e

. US Mrnon land -
47 {E u8 T u9b 50D 51 M 52 R 53N 54X 55|k 56 57 134 140 16 7

H. Those function analytic in all e
of the conplex plane

b 58|R 59U 60 a 61 s 62 d 63|T B4f0 65 L 664 67|x 68 . )
I. Publicationthat shoul d be read
by all readers of this journal I 5= se 1
b - . u
g 69 fc 7001 74P 72b 73 g 74s 75|a e @ 77w 780 79la solR a1 (two words; abbr.) 71 89 131 96 12 8
J. Adirect inference S—
184 143 93 4 74
0 82T 83 I 84Y 85 D 86 |H 87z 88 T 890 90| 91 X 92 k. Profusely flowering dwarf _ PO
chrysant henum 172 166 27 125 47 161 56 44 26
J 93 |s oy F 95 I 9g W 97R 98|b 99 C 100 {B 101 a 102 [c 103 L. Provided wth personnel .
- 122 150 141 174 66 18 185
M. Arounded elevation often
F 104 | N 105/ Y 106/ T 107 D 108s 109 U 110 M 111 |E 112 acconpani ed by a correspondi ng [
Z 1131z 114 b 115 depressi on on the opposite surface 7 111 52 3
R 116 | A 117] Y 118] T 119 U 12qv 121 L 122 W 123 d 124 [K 125 [D 126 N, Mctorious general in Shakespeare's o e
Rchard 111 35 156 54 25 §5 192 185 105
0. The study of animal behavior o _ s gy e
P 127 | X 128 B 129 5 130 T 131 p 132 [0 133 C 134 |3 135(d 136 [R 137 | 65 82 148 58 188 13 90 189
| p. Author of The Euneni des e e o S s
127 72 179 38 132 165 164 180 177
7 138 | X 139 ¢ 140 L 144 ¥ 1429 J 148R 144 [N 145 |T 146 Q 147 [0 148 |T 189 |L 150 Q. Sequence of disjoint cells covering e
Eucl i dean n- space 3 79 147
P ane of projective 2-space over a ey e e T
Z 151 Y 152 d 153 H 154B 155 [N 156 |E 157 |F 158 a 159 [s 160 R: field proj P 35 1537 81 163 176 17 98 53 194 144 116 59
K 161 | T 16 | s. |n 1883, E. Lucas and DeParville [
2l R 163 P 164 P 169 K 166H 167 D 168 [Y 169 S 170 [H 171 ] presented this fanous probl em (3 wor ds) 47 160 170 11 94 130 62 22 75 135 109 198

T. Theoremextending functional s of

K 172 | F 179 L 174 x 179 R 17¢fp 177 [z 178 P 179 [P 180 |a 181|T 1828 1831 I'inear subspaces to norned |inear S O S ——
spaces (hypenated)

CIETTE ST FETT T AT R — u. Aning at the inprovenent of race N
H 190 b 191 N 192 |C 193 |R 194} or breed 60 40 200 30 120 110 195

| y. Freud s pain/pleasure | evel of the psyche
U 195 | E 196/ a 197 s 199 p 199 U 204 B 201 [p 202 P i i 23121

4. State of cal rmess or serenity

28 123 41 8 78 97 “
X. Qoup having every elenent of finite —_—— e — — — —
or der 14 92 128 139 175 55 68
Y. A international understanding | ess — e
bi ndi ng than an al l i ance 106 152 85 118 142 169 34

Z. Vector having direction and nagnitude
of the greatest rate of change 88 138 31 114 151 113 187 178
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a. ABritish soldier in the Arerican

Revol utionary Vér 197 15 69 IST 6T 107 159
b. A_rgoflike cover over a door or
wi ndow 50 71
021 191 115 73 99 PROBLEM DEPARTMENT
d. Structured a set so that each pair .
of elenents has a supremumand Edited by Leon Bankof§
i nfimum 29 80 T53 63 77 T2 5 136 Los Angeles, California
This department welcomes problems believed to be new and at a level
appropriate for the readers of this Journal. ©Old problems displaying
novel and elegant methods of solution are also acceptable. The choice
of proposals for publication will be based on the editor's evaluation of
their anticipated reader response and also on their intrinsic interest.
0 Proposals should be accompanied by solutions i f available and by any
WILL YOLR CHAPTER BE REPRESENTED | N DULUTH? information that will assist the editor. Challenging conjectures and
It istime to be making plans to send an undergraduate del egat e problem proposals not accompanied by solutions will be designated by an

or speaker fromyour chapter to attend the annual neeting of Pi

M1 Epsilon in Duluth, Mnnesota during August, 1979. Egch . . . . .
speaker who presents a paper will receive travel funds of up to To facilitate consideration of solutions for publication, solvers

$400, and each del egate, up to $200.

b

POSTERS AVAILABLE FOR LOCAL ANNOUNCEVENTS

asterisk (*).

should submit each solution on separate sheets (one side only) properly
identified with name and address and mailed before November 15, 1979.

Address ail communications econcerning this department to Dr. Leon
Bankoff, 6360 Wilshire Boulevard, Los 4dngeles, California 90048. A
self-addressed postcard will expedite acknowledgements.

At the suggestionof the Pi Mi Epsilon Council we have had a

supﬂly of 10 x 14-inch Fraternity crests printed. e in Problems for Solution

each color will be sent free to each I ocal chapter on request.
Addi tional posters may be ordered at the foll ow ng rates: 423. [Spring 19781. Proposed by Richard S. Fiefd, Santa Monica,
(1) Purple on goldenrod stock - - - - - $1,50/dozen, Califonnia.

(2) Purple and |l avendar on gol denrod - $2.00/dozen. .
Connected vension.

D ¢
Find all solutions in positive integers of the equation A - B =C ,
where Dis a prine nunber.
LOCAL AWARDS
I f your chapter has presented or will present awards this 438. Proposed by Ennst Stnaus, University of, Califonnia at
year to either undergraduates or graduates(whether nenbers '
of Pi Mi Epsilon or not), please send the nanes of the Los Angeles.

recipientsto the Editor for publicationin the Journal. Prove that the sumof the lengths of alternate sides of a hexagon

with concurrent najor diagonals inscribed inthe unit circle is less.
than 4.
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439. Proposed by Richard 7. Hess, Palos Vendes, California.

A bug starts at Monday noon at the upper left corner (X) of ap by
g rectangle and crawls within the rectangle to the diagonally opposite
corner (Y), arriving at 6 P.¥. Exhausted, he sleeps till noon Tuesday.
At that time he embarks for X, crawling along another path in the
rectangle and arriving at X 6 P.i4. Tuesday. Prove that at some time
Tuesday the bug was at a point no farther than p from where he was at
the same time Honday.

X

1 Y

440. Proposed by Chartles W. Trigg, San Diege, California.

Are there any prime values of p <;L05 for which the equation
5 5

X" -z =p

has a solution in positive integers?

How about xs t ys = p?

441. Proposed by Richard A. Gibbs, Fort Lewis College, Durango,
Colorado.

Prove that a self-complementary graph with an even number of
vertices has no more than’ 2¢ vertices of degree z, and that the number
of them is even.

442.  Proposed by Jack Garfunkef, Forest Hitls High School,
Feushing, NNV York.

Show that the sum of the perpendiculars from the circumcenter of
a triangle to its sides is not less than the sum of the perpendiculars
drawn from the incenter to the sides of the triangle.
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443, Proposed by R. S Luthar, University of Wisconsin, Janesville.
If X and y are any real numbers’ prove that

x2 ¢t Sy2 2 uxy.
444, Proposed by Peten A. Lindsinom, Genesee Community College,

Batavia, NW Yoxk.
In terms of n, which is the first non-~zero digit of

n/2

l—[ (Z)(n - 7 + 1) for even n 2 6?

=1

445,  Proposed by Richard S. Field, Santa Monica, California.
A "Tribonacci-like" integer sequence {An} is defined in which

mA, T mAL L tmA A (4, = AL = A2 = 13 my, My, My are

o4l P M40 T A4 Mo
arbitrary integers).
A particular sequence of this kind is found (ml = -1, my = 5,
m, = 5) which appears to yield only perfect squares, viz.:

3
1,1, 1, 9, 49, 289, 1681, ...
a) Prove that for this particular sequencey the successive terms
continue to be perfect squares.

b) Can other values of m,, m,_, and my be found which result in the

1* "2
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same property, namely, a sequence of perfect squares?

446. Proposed by Clayton W.Dedge, Univensity of Maine, Orono.
A teacher showing the factorization of x3 - 33 = (x - J)(&‘2 + xy +y2)
emphasized that the second factor is not a square (not (x t+ y) squared),

and then chose X = 5 and y = 3 at random, obtaining

x2+xy +y2= 49,
which is a square.

a) Explain this apparent contradiction.

b) Show that the equation X2 t xy *+ y2 = 49 illustrates that a
3:5:7 triangle has a 120° angle.

447,  Proposed by Zelda Katz, Beverly HilLs, California.

A variable circle touches the circumferences of two internally
tangent circles, as shown in the figure.

a) Show that the center of the variable circle lies on an ellipse
whose foci are the centers of the fixed circles.

b) Show that the radius of the variable circle bears a constant
ratio to the distance from its center to the common tangent of the
fixed circles.

c¢) Show that this constant ratio is equal to the eccentricity of

the ellipse.
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448. Proposed by the Late R Robinson Rowe.

Analogous to the median, call a line from a vertex of a triangle
to a third point of the opposite side a "tredian". Then if both tredians
are drawn from each vertex, the 6 lines will intersect at 12 interior
points and divide the area into 19 subareas, each a rational pam:'o-f
the area of the triangle. Find two triangles for which each subarea-
is an integer, one being a Pythagorean right triangle and the other with

consecutive integers for its three sides.

Sol uti ons

401, [Fall 1977, Fall 1978]. The editor's comments following the
solution of the Tan and the Pig pursuit problem mentioned a reference to
Klamkin and Newman's article published in two parts in the American
Mathematical Monthly, entitled Flying in a Wind Field. |In addition to
the treatment of related problems in the January and November 1969
issues, the article generalizes problem 401 to consider initial paths

other than those at right angles

P

Ty
T

&1

B\ B
- Q

o

A

In the annexed figure, the Man starts at P with a speed of v, and

the Pig starts at Q with a speed of w. If the Pig runs along QB, he is
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captured in time T,. |f, instead, he runs along QA, he is captured in
time T2. It is then shown that T1 + T2 i s independent of 00. Conse-

quently if we take 0 = n/2, as in San Loyd's Puzzle of Tom, the Piper's
Son, then by symmetry,

o _ (o]
Tl(90 ) = Tz(go ).

I1f, on the other hand, eo = 0, then

e © =
‘l(O ) v+ w

T2(180°) =_Lk
v

-w
. o] o - (o} - o [ —
Finally, 7,(907) + T,(907) = 27,(90") = r,(07) + 1,(1807) =

L + _ﬂ_ °

V+W V-W
This result justifies San Loyd's method of averaging the distances
travelled by the pig if both ran forward on a straight line and if

both ran directly toward each other.

412. [Spring 1978]. Proposed by Solomon w. GofLomb, University of
Southern California, LoD Angeles, California.

Are there examples of angles which are trisectibe but not con-
structible? That is, can you find an angle a which is not constructible
with straightedge and compass, but such that when a is given, «/3 can

be constructed from it with straightedge and compass?

Sofution by the Proposes.
o
1

Amog an infinite number of such angles is a = 3n/7 = 7T— . 7o
trisect this angle, it suffices to double it, a trivial operation with
straightedge and compass, to obtain 2o = 67/7. The supplement of this
angle is then 7 - 20 =7- 61/7 = 7/7 = «/3, the required trisection!

On the other hand, if a were constructible, then as we have seen,
so too would be a/3, from which 2a/3 = 27/7 would be obtained by doubling.
But 2m/7 is the central angle corresponding to a side of the regular

heptagon, whose constructibility is well known to be impossible.

Also so0fved by L. Carlitz, Duke Univernsity; Steven lzen, Pofytechnic
Institute of New York, Brookfyn, N. Y.; M. S. Klamkin and A. H. Rhemtulla,
(fointly), University of Alberta, Edmonton, Canada; Stanley Rabinowitz,
Maynand, Mass.; Léo Sauvé, Algonquin College, Ottawa; Dan Sokolowsky,
Antioch College, Yellow Springs, Ohio.

Comment. The submitted solutions contained a wealth of related*
material which could be assembled into a most interesting expository
article on Fermat primes, the cyclotomic equation and constructibility
by straightedge and compass. For example, it was pointed out by Sauvé
and by Sokolowsky that the angles

m

= e
are all trisectible but not all constructible. Klamkin, Rhemtulla and
Carlitz derived their solutions from the equation cos 3x = 4 Cossx—3 coX X.
Klamkin and Rhemtulla offered a generalization showing that there exist
non-constructible angles which when specified geometrically and arithmet-
ically are m-sectible (for arbitrary integers n) by straightedge and
compass. Solutions by Rabinowitz and lzen bore a strong resemblance to

the Proposer's solution.

413. [Spring 1978). Proposed by the Late R Robinson Rowe.

In a variation of the crossed-ladders-in-an-alley classic, the new
tall building on one side of the alley was vertical, but on the other
side the old low building, having settled, leaned toward the alley. Pro-
jected, its face would have met the top of the tall building and would
have been one foot longer than the height of the tall building. The
ladders, unequal in length, rested against the buildings 21 feet above
the ground and crossed 12 feet above the ground. Hw high was the tall
building and how wide was the alley?

Solution by David E. Penney, University of Georgia, Athens, Georgda.

Label the figure as shown: The height of the tall building is T;
the width of the alley is A; the distance from the foot of the tall
building to the point directly below the intersection of the ladders is
y. Finally, = A - V.

By similar triangles, X = (4/7)4, and thus y = (3/7)4. Also by
similar triangles, X = (4/7)¥. So 3 = uW, and thus W = (3/4)¥. Since
the dotted line marked W is therefore 1/4 of the way to the top of the
tall building, T = 84 feet.

By the Pythagorean theorem, A2 = (7 + D272 =51 +1:= 160
So a = 13 feet.
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T+1

Also sofved, in a aimilan
gashion by Rolan Christofferson,
Charles R Diminnie, St. Benaventunre
Univensity, New Yohk; Mark A. Flood,
Univensity of Tofedo, Ohio; Steve
Leeland, Phoenix, Arizona; Charles
H. Lincoln, Gofdsboro, N. C.: Kenneth
M. W lke, Topeka, Kansas; and R.
Robinson Rowe, the Proposer, who
mentioned the simple but not well-
known relation:

1 1 _1
*F a*t

B}

® [

where H is the height of the tall
buildingy 4 is the ordinate of the
top of the ladder against the tall
building, e the ordinate of the other
ladder at its top, and f the ordinate
of the intersection of the ladders.

Editon's Comment. Note the

peculiar similarity between Rowe's

formula for this problem and the
classic crossed-ladder problem form-
ula, 1/ t 1/k = 1/e, where h and k
are the heights of the tops of the
ladders and e is the height of their
intersection. An interesting treat-
ment of the crossed-ladder problem
mey be found in William R. Ransom's
One Hundred Mathematieal Curiosities,
still in print (fortunately) and
available from J. Weston Walch,

Portland, Maine.
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414, [Spring 1978]. Proposed by Stever S. Conrad, Benjamin N,
Candozo High School, Bayside, New Yonrk.

In discussing the discriminant of a quadratic equation, a certain
textbook says, "...if a, b and ¢ are integers with a # 0 and if bz:uac =
79, the roots of ax2t bx +t e = Owill be real, irrational and unequaI."

Explain why this is incorrect.

Sofution by Léo Sauve, Algonquin Coflege, Ottawa, Canada.

Apologies are due to the author of that textbook, for the statement
quoted is perfectly correct. The statement is an implication in which
the hypothesis is

H: a, b and ¢ are integers with a # 0 and b2 - uge = 79, and the
conclusion is

C: the roots of ax2 thx te =0will bereal, irrational and
unequal .

If His true, then ¢ is true by the theory of quadratics; while
if His false the implication is true by the laws of implication. So
in either case the statement is true.

Whether H i s true or false is entirely beside the point, but in
fact it happens to be false. For if it is true, then b must be odd,
say 2n t 1, and then

b2 - 79 = (2n t 1) - 79 = 2(2n% t 2 - 39) # Hac,
since 2n2 t 2n - 39 is odd and cannot equal 2a¢, so we have a contra-

diction.

Editon's Comment. Those who submitted solutions to this problem

were divided into two camps. Sixteen solvers considered the problem
incorrect because of the false hypothesis; seven solvers recognized the
impossibility of the hypothesis, yet conceded the logical accuracy of the
statement. It all boils down to the question: "What is the problem?"
Is it: "Wy is the statement incorrect?” or "Wty is the hypothesis con-
tradictory?" The difficulty, it seems, lies in the ambiguity in the
enunciation of the proposal. Consider the analogous statement: If the
moon is made of green cheese and if green cheese is delicious, then we
may conclude that the moon is delicious. This is a true statement des-
pite recent researches which suggest that the moon is not made of gréen

cheese.
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Solutions to this proposal were received grom Ronnie Adoubi, Steven
R Covrad (the Proposer), Charles R Diminnie, Michad W. Ecker, Victor G
Feser, Mak A. Flood, Robert A. Fuller’ Andrev A Galardi, Taghi Rezay
Garacani, David Hammer, M. S. Klamkin, Peter A. Lindstrom, Charles A.
Lincoln, Thomas E. Moore, James McKim [TheUniversity of Hartfornd Problem
Group), Sidney Penner, Bd Prielipp, George W. Rainey, Stanley Rebinowitz,
and Kenneh M. Wilke. ALso neceived were one unsigned solution and one
with an {fLegible signature.

415. [Spring 1978]. Proposed by Chartes W. Trigg, San Diego,
California.
A hexagonal number has the form 2n2 - n. In base 9, show that the

hexagonal number corresponding to an » that ends in 7 terminates in 11.

Practically all solutions submitted were almost identical, with
slight variations in expression. The Editor's criteria for elegancey
namely, accuracy, brevity and clarity, seem to have been best met by
Stanley Rabinowitz, Maynard, Mass., and by Kenneh M. Wilke, Topeka,
Kansas, who say:

Ifn=0k +7 then2n? - m = 2(sk + 7)2 - (9k + 7) =

81(2k% + 3k + 1) + 10. Thus 2n° - n = 10 (mod 11). But 10, = 11,

so this number must end in 11.

ALso s0lved by Ronnie Aboudi, Rolan Christofferson, Victor G Feser,
Mak A. Flood, Taghi Rezay Garacani, Richard A. Gibbs, Samud Gut, Honed
Forman, John M. Howdl, Charles H. Lincoln’ Paul McGuire, Bd Prielipp,
and the Proposen, Charles W Trigg.

416. [Spring 1978]. Proposed by Scott Kim, Rolling HilLs Estates,
California.

Each of the three figures shown below is composed of two idosceles
right trianglesy AABC and ADBE, where £ ABC andZ.DBE are right amgles,
and B iS between points A and D. Points € and E coincide in Figure (a),
so that ¢B/EB = 1. In Figure (b), we are given that CB/EB = 2, and in
Figure (¢), we are given that CB/EB = 3. Consider each pair of triangles
as a single shape and suppose that the areas of the three shapes are
equal. (The figures are not drawn to scale.) Problem: For each pair
of figures, find the minimum number of pieces into which the first figure
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must be cut so that the pieces may be reassembled to form the second
figure. Pieces may not overlap, and all pieces must be used in each

assembly.
C C
C.E
E
E\
A B D A B DA B D

(a) (b) (c)

Solution by the Proposen.
Figures (&) and (e) are actually the same shape in two different
orientations, so the dissection from Figure (b) to Figure (e) requires

no cuts at all.

¥z

Jz

)

H— +

The minimal dissection from Figure (@) to Figure (b) or Figure (¢)

requires 4 pieces, as shown in the figure.
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417. [Spring 1978]. Proposed by Clayton W. Dodge, University of
Maine, Orono.

1) Prove that the line joining the midpoints of the diagonals of
a quadrilateral circumscribed about a circle passes through the center
of the circle.

2) Let the incircle of triangle ABC touch side BCat X. Prove
that the line joining the midpoints of AX and BC passes through the

incenter I of the triangle.

Sokution by the Proposen.

Part 1. Let the circle be the unit circle centered at the origin
of the complex plane, [z| = 1. Let the points of tangency on sides 4B,
BC , €D, DAbe P, @, R, 5. Nw lines AB and BC have the parametric
equations, with real parameters ¢ and u,

z =ptipt and z = q %t iqu.

Since pp = 1, we multiply the first equation by p to get

ap = 1 + it, and zp =1 - it
by taking conjugates. Adding these two equations, we get

ag tzp =2
as an equation for side AB. Similarly, for side BC, we have

z2q t z2q = 2.

Nov solve these two equations simultaneously to get their point B of
intersection:
b=2/(p tq).
Since similar expressions hold for C, D, and A, we find the midpoints
M and N of the diagonals are given by
1 1 1 1

Bl oo and n = +
p+q r+s qg+r s+p

m =

To prove that ¥, &, and O are collinear, it suffices to show that

mh - m = 0. To that end, we have

i = Lo, 1 1,1
+q r+s g+r s+p

_ ptgtr+
B+ +

i

ptgq+r+s . 1 . 1 , since pp =1,etc.

5
s8) (q+r)s+p) ©pqrs pgrs
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ptgtr+s p
(g +p)s+r) (

.
+ +

1 " 1 + _l_ +—l
p+q r+s g+r s+

= m.

The proof of Part 1 is complete.
Part 2. Call ABDD a quadrilateral and apply Part 1.

Also solved by Sister Stephanie Sloyan, Geoxrgian Court College,
Lakewood, N J.

Klamkin called attention to a related problem involving the quad-
rilateral inscribed in a circle. The version proposed by Dodge concerns
the quadrilateral circumscribed about the circle and is offered here as

an example of the application of complex numbers 1n the solution ot a
geometrical problem. The problem was first proposed and solved by Isaac

Newton (Book 1, Lemma XXV, CoP. 3) and applies to a quadrilateral circum-

scribing a conic.

418. [Spring 1978]. Proposed by Robent C. Gebhardt, Hopatcong,

New Jersey.
Find all angles @ other than zero such that tan 110 = tan 1110 =

tan 11116 = tan 111110 = ....

Sofution by Leo Sauve, Algonquin Coflege, Oitawa, Canada.

Let a be one of the angles 110, 1110, 11110, --» S&
n
a = _10_9'_1 , n =2

then a has the desired property if and only if
tan a = tan (106 t 0). (1
Suppose (1) holds, then
sin(10a T ©)cos a - cos (10 a +0)sin a = O,
that is, sin (9a+ @) = 0. Thus
9a+ 0 = kr, keZ and 1070 = km,

from which
6o Kkm_, k, ne Z2, n >2. (2)

10 &
107 -1 Ce L
Conversely, i f a =\ =——g——J@> where © S given by (2), it is
easy to verify that 10a+ @ =k1r+’a, and so (1) holds. We conclude that

all the answers are given by (2).
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Also solved by Rolan Christofferson, Michael W. Ecker, Victor G.
Feser, Mak A. Flood, Howad Forman, Taghi Rezay Garacani, Charles H.
Lincoln, Bob Prielipp, Kenneth M. Wilke and the Proposer, who indicated
some special interest in the case 8 = 90, which yields the result

tan 9¢° = tan 999° = tan 9999° = tan 99999° = .us,.

419 [Spring 1978). Proposed by Michael W, Ecker, City University
of New Yonrk,

Seventy-five balls are numbered 1 to 75 and are partitioned into
sets of 15 elements each, as follows: B = {1, ..., 15} , I = {16,...,30},
N={31,...,45} , G = {46,...,60} , and0 = {61,...,751 , as in Bingo.

Balls are chosen at random, one at a time, until one of the follow-
ing occurs: At least one from each of the sets B, |, G, & has been
chosen, or four of the chosen numbers are from the set N, or five of the
numbers are from one of the sets B, I, G, 0.

Problem: Find the probability that, of these possible results,
four N's are chosen first.

(Comment: The result will be approximated by the situation of a
very crowded bingo hall and will give the likelihood of what bingo players
call "an N game", that is, bingo won with the winning line being the

middle column ¥.)

No solution has been neceived.

420. [Spring 1978]. Proposed by Henbert Taylor, South Pasadena,
California.

Given four lines through a point in 3-space, no three of the lines
in a plane, find four points, one on each line, forming the vertices of
a parallelogram. (This is a variation of problem B-2 on the December

1977 William Lowell Putham Mathematical competition.)

1. Sctution by David C. Kay, University of Oklahoma.
A vector solution is obtained by letting the given lines pass
through the origin 0 and allowing the lines to be represented by nonzero
L. > > > . . . :
position vectors a, b, ¢, and d (the points on those lines being given
by AZ, Ag, Ag, and Ad for real A). If A B, C, Dare the desired ver-
tices of the parallelogram, we see from the figure that the condition
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demanded isAZ’)=A§+A3 or
2 -B+3%-4d=0. (1)

Hence we must find vectors representing the four lines which satisfy
<> -> >
condition (1). But if €1 e, €4 are taken as a basis on lines 0B, 0C,

D and A is any point on the first line, then
> > > 6—»
a = Sel + e, + Seg

> > -
for unique real B, v , 6 To choose b, ¢, and d on the other three

lines satisfying (1), merely set

- > -> - e
b = Bel, c = - e, d = 623.
> > -> > .

If b= Ael, e = ve,, and c? = ve, were any other choice of vectors
satisfying (1) then

- -+ 6-» s )\-» > & vZ

Bel+~(62+ eq = a=te, - ve, 3

i i - -> > _

and by linear independence of e;, €,> €4, We have A = B, ¥ = -Y, v = 6.

Thus there is a unique parallelogram solution ABCD corresponding+t o each
point A#0 on the first line, and since the terminal points of Aa, )ﬁ,
> > X X - Z > 2
Ae, A forreal A #0 lie in a plane paraHel to that of a, b, ¢, 4,
the totality of solutions as A varies with Aa occur in a uniquely @

determined family of parallel planes.

11. Sofution by Henb Taylon and Dennis Johnson, JPL, Pasadena.
According to the Putnam Examination problem, if ABCD is a convex

quadrilateral and 0 is a point not in the same plane, then there exist
points 4" on 04, B' on 0B, ¢' on OC, and D' on @ forming a parallelo-

gram. First find the point X where AC meets BD. In the plane 0AC we
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can find A' on OA, €' on 0C, having X the midpoint of the segment 4'C'.
Likewise we can find B' on OB, D' on OD, having X the midpoint of the
segment B'D'. Thus A', B', ¢', D' are found to be the vertices of a
quadrilateral whose diagonals bisect each other, that is, a parallelogram.

To return to the present problem, let a, b, ¢, d be the given four
lines through a point O in 3-space. Let A be the line formed by the in-
tersection of the plane (ab) with the plane (ed). A cannot be equal to
a because a, ¢, d are not all in a plane. Similarly A cannot be equal
to b, nor ¢, nor 4.

Nw in the plane (ab) choose a ray at of a and a ray bt of b so
that @ and b' are on the same side of A Likewise in the plane (ed)
put ¢ and d* on the same side of A.

Nw choose any point A on at, and any point D on dr. The plane P
which is parallel to A and contains A and D will intersect " ina point
B and will intersect e’ ina point C. 5

Since the line 4B .is parallel to the line €D, the four points A,
B, ¢, D must be the vertices of a convex quadrilateral.

The solution to our problem follows by reduction to the Putnam
problem. (All solutions are faces of parallelopipeds with 0 at the

center. )

ALso solved by M. S. Klamkin, University of Alberta, Edmonton,
Atbenta, Canada.
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421. [Spring 19781. Paopesed by Mwuiay S. Klamkin, University
of Albenta, Edmonton, Afbenta, Canada.

If F(x, y, 2) isS a symmetric increasing function of x, y, 2,
prove that for any triangle, in which wa’ Wy, W, are the internaliangie
bisectors and ma, mb, mc, the medians, we have

Flw,, Wy w,) < FGm , my, m,)
with equality if and only if the triangle is equilateral.

Solution by the Proposen.

There are a number of special cases of this inequality in the
literature. However, (1) follows simply from

w <m

ar Wp STy, W osm, which apparently has been overlooked.

No doubt it is buried somewhere in the literature.

2 _ 16 bes(s-a)

(b+e)?

& Qb2 t 202 - a2 = lmlmaz, etc.

2
Proof: Uwa < us(s-a) = (bte)” - az.

(b+e)? - a°

The following are four known inequalities for the medians and the angle
bisectors of a triangle [1], [2]:
2 2 2 2

(1) wtw“tw smZ+m +m2,
a b e " a b c

+ < m+m +m
(2) W, Ty FUL S Mt c’

<
(3) wawbmc = mam m.
6 6 ”

(u) v, + Wy +

6+m6+m6
m 5 e

with equality iff the triangle is equilateral.
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422. [Spring 1978]. Proposed by Jack Garfunkel, Fornest HilLls
High School, Flushing, New Yoak.

If perpendiculars are erected outwardly at A, B, of a right tri-

angle ABC (C = 90°), and at ¥, the midpoint of AB, and extended to points

P, Q, R such that AP = BQ = MR = AB/2, show that triangle PQR is per-

spective with triangle ABC.

MR = BM = BQ = PA

Sofution by Stanley Rabinowitz, Digital Equipment Comporation, Maynard
Massachusetts.
Draw AQ, BP, CR meeting the sides of the triangle, BC, CA, AB

’

respectively at @', P', and R'. Let Bg=q , CA=h, AP=B@=m.
since AACQ'VAQBY', we have

cQ' b

= - Z (1)

Q'B m
Similarly,

CP' = a

P4 m (2)
Consider the circle with center M and radius M. |t passes through

points 4, B, €, and R. Since MR js the perpendicular bisector of AB,

R is the midpoint of minor arc 4B. Thus CR bisects angle ¢. Consequent-

|y:
AR = b (3)
R'B a

633

Combining equations (1), (2), and (3), we get

AR'-BQ'-CP' = bma = 1

R'B-Q'C-P'A abm
Thus, by Ceva's Theorem 4@, BP, CR concur. -
Consequently, APQR is perspective with MBC.

Also solved by Charles tl. Lincoln, Gofdsboro, N. C. and the
Proposen.

424. [Spring]. Proposed by R S. Luthar, University of Wisconsin,
Janesville, Wisconsin.

Prove that

7
im 1/ Ty (2n + 2)
(a: 4 ) >(lnx -1lny )

where 7 is an odd integer 23 and 0O<y<x

Consider the function

n
f(t)y = " int __t -1

2n 4+ 2 ( t+1)
n+l+g(t)

n < (t-1)
b n+l

omn + 2 t(t+ 1)

1) =

where g(£) is non-negative for £ 2 0.
Thus F'(t) >0, t>1.
Since f(1) = 0, f(¢)>0, t>1.

1/n
Apply this fact to ¢t = —;l/n—, We get the required inequality.

ALso sofved by Robert A. Fuller, Aumstrong State University,
Savannah, Georgda.
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