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MORE ABOUT INTEGRAL TRIANGLES

by Jack Garfunkel
Forest HiLRs High School, Forest HilEs, N. Y.

One of the many interesting properties of the arch-prime Pythagorean
triangle (3, 4, 5) is that its sides are measured by consecutive integers.
Furthermore it is the only right triangle having this property. On the
other hand, an infinitude of acute triangles can be constructed whose
sides area - 1, aand at 4, for any integer a exceeding 2.

Either leg of the 3-4-5 right triangle could be looked upon as an
altitude, with the result that the area of the triangle is a whole number.
A similar situation exists among the Heronian triangles, which are defined
as those whose sides and whose areas are whole numbers. A familiar ex-
ample is the triangle whose sides are 13, 14, 15 and whose altitude to
the side of length 14 is 12. This is the only example of a triangle whose
altitude h and sides a, b, ¢ are consecutive integers.

The question now arises as to whether there are other Heronian tri-
angles whose sides are consecutive integers. Such triangles would have
at least one integral altitude. Furthermore, are there any triangles,
not necessarily Heronian, with sides measuring consecutive integers and
with an integral median or with an integral internal angle bisector? |t
is the purpose of this article to answer these questions.

Consider a triangle ABC whose sides are measured by three consecutive
integers, a and ati , while a certain other line segment drawn from vertex
A to the opposite side a is also an integer. Suppose that this segment
(or Ceviagn) is either the altitude h perpendicular to the side a, the
angle-bisector t bisecting the angle A, or the median m bisecting the
side a.

It is possible to express each of these Cevians in terms of the sides
a, b, ¢ of the triangle. W know that

h2=%2—(a+b+a)(—a+b+c)(a-b+c)(a+b-c)



a?be
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m2 =~i~(2b2 + 202 - g2) .

Writing @ + 1. for band a - L for ¢, we find that

K2 = %—az -3
t2=%(a2_1)
m2=%a2+1

The problem is thus reduced to solving in integers each of the equa-

tions

b

All three are variants of the Pell equation 22 - 3y2

A

=1, the solution of

which is given by X = p, y = q, where p and ( are of different parity,

with p greater than q and where p/q is one of the convergents of the simple

continued fraction expansion

of V3. Thus

the successive convergents of which are

2 5
T3 w110 15

i

)

Selecting convergents having
we have as solutions of X2 -
Zo
%y

L)

71 97 265 362 983 1351

41> 56> 153° 209° 571 780°

numerator and denominator of different parity,
E!y2 =1

=5 i yo s ()
=t 2 yl = 1
= 7 y2 = 4

x3 = 26 yy = 15
x, = 97 Yy, = 56
x5 = 362 Yg = 209 ;
2g = 1351 Yg = 780 o

Further solutions can be computed by means of the recurrence formulas

x =2:z:n+3yn 5

+ =
n+l L, 2,

yn+l - n

By appropriate substitutions for k&, ¢ and m, we obtain triangles'of the
first kind with
a 4, 14, 52, 194, 724, 2702, °*-**,
h = 3, 12, 45, 168, 627, 2340, ***,
triangles of the second kind (since y = 2¢/3 must be even) with
a=7, 97, 1351, ***,
t = 6, 84, 1170, +-*,
and those of the third kind with
a =8, 30, 112, 418, 1560, ***,
m= 7, 26, 97, 362, 1351, ---.

This is a nice example of solving three problems for the price of
one. As a bonus, each triangle of the first kind has an integral area

ah/2 = Say and integral inradius y.

TRIANGLES WHOSE SIPES ARE CONSECUHVE
INTEGERS WITH INTEGER ALTITUDE,

ANGLE BISECTOR AND MEDIAN

30
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b to this poirit, the only Cevians considered were those drawn to
the side of middle length. The question arises: Are there any consecu-
tive integral triangles with integral altitudes, medians or angle bisectors
drawn to the shortest or to the longest side? This is a problem that is

certainly worthy of further investigation.
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UNUSUAL MAGIC SQUARES!

A Magic Square, of Canrds
Each row, column, and the two main diagonals contain each of the

four values (Ace, King, Queen, Jack) in all four suits. Numerous other
subsquares and symmetrical subsets of squares have the same property,
such as the middle 2 x 2 square, and the four corner squares.

#K|4A @I/ ¥Q
VI 4Q| 4K SA
$Q[#J| PA| €K
QA PK| #Q| &I

rrom the Recreational Mathematics Magazine, No. 5 (1961), pp. 24-29.
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Twin Magic Squares of Twin Primes .-
Corresponding entries in the two magic squares (with magic constants
1496 and 1504) are twin primes.

29 |1061| 179 | 227 31 {1063} 181 | 229 =
269 | 137 (1019} 7 271 [ 139 {1021 73
1049|101 | 239 | 107 1051| 103 | 241 | 109
149 {197 [ 59 {1091 1511199 | 61 |1093

A Pythagorean Magic Square.

This arrangement i s composed of three magic squares, a 3 X 3, 4 X 4,
and a 5 x 5, with magic constants 216, 48, and 168, respectively. The
total summations of the numbers in the squares shown on the three sides
of the triangle have the property

648 + 192 = 840 .
The sums of the individual digits of the numbers in each of the squares
are 99, 84, and 183, respectively, and

99 + 84 = 183 .
(One further relation is 216 - 48 = 168.)

V4
e}ﬁe
) 2
A / &,
‘3, ,\v ?0 9 > 7 > <
'{() ,\‘\, @ e 6
DK e > X%

56 (24 {41(1136
13]33|58(2638




A NOTE ON THE SERIES FOR LOG 2

by N. Schaumberger
Bronx Community Coflege, CUNY

R. Courant calls the series

1.1
tg gt (69

N+

log 2 =1 -

a "remarkable formula ... whose discovery made a deep impression on the
minds of the first pioneers of the differential and integral calculus"
f11. In a standard course the introduction of this series i s postponed
until Taylor's Theorem is reached. It is possible, however, to present
it much earlier; namely, it mey be presented right after integration and
the introduction to the log function.

As our starting point we take the relation

t
dax
log(_’]_-{-t):f——.—_
h 1 t=x

1
log2=flfxx. (2)

0

In particular,

Using the definition of the definite integral to evaluate the right
hand side of (2) we divide the interval [0,1] into » equal subintervals

is

1
of length 1/n. The lower sum for fo Itz

.l_[l R S
n

B = Il 1

n n n
= l l e ———
nrltara2’ T

and consequently,

57

1
s 1 1
[l+z"%ﬂ[n+l+n+2+ t o _(3)
Nw letting )
= L1 ! a0 T 1 1
Sm=t-2%"3"%7" m -1~ G
we get
= 1,.1,.1,.. 1 L Lod i ese p.5
Sm=ltgtgztyt fm oIt 2[2 gt * Qn)
_ 1,11 1 1 1.1 ..., .1
—[l+2+3+u+ +2n-l+2n]_[l+2+3+ +n]
R S SR
n+l n+?2 P
Hence

A 1L
;]i-l»ESQn—%.}E[n+l+n+2+ +27’1]

1
) B dx
%i252n',/l+x *

Whence, by use of (2) lz'a»rn 52n = log 2. Furthermore S
and so Zim Snt+l = lim 52
N> oo n

= log 2. Finally, using (4), we obtain (1).
More generally, this approach can be used to show that for any posi-

and by (3) we see that

- 1
o+l " Son T I A T
. Thus, for n even or odd, we have %}m Sn

tive integer r, log r can be expressed as the series

l+r

de it eh ih el +

1 1 1 ool 1
2 3 r -1 r r +

1
s T oI

¥ o~ 3
kr

This series is obtained by replacing the term 1/rk  (k = 1,2,3,*+*) in
the harmonic series by the term -(» - 1)/rk  (k = 1,2,3,***). 1In parti-
cular,

(LI
[
1IN}
+

_ 1 2 1
log3-l+§—3+“+



UNDERGRADUATE RESEARCH PROJECT

A mgp leading to a treasure chest of gold coins buried on an island
which has only two trees and the remains of a sunken ship to serve as
landmarks, bore these instructions: Proceed from the ship (X) to the
smaller of the two trees (4), turn clockwise 30 degrees, pace off a
distance equal to one-half XA, and drive a stake (1). Return to X, pro-
ceed to tree B, turn counterclockwise 150°, pace off a distance equal to
one-fourth X8, and drive a second stake (2). The treasure is located on
the line joining the two stakes at two-thirds the distance from stake 1
to stake 2. If a storm carried the ship to sea, thus destroying the
reference point X in the map, the mg would seemingly be worthless. Show,
however, that the instructions in the mgp are still valid. Generalize.

AN ALL-RULE AXIOMATIZATION OF A5
THE PROPOSITIONAL CALCULUS AND THE
EQUIVALENCE OF SOME WELL-KNOWN AXIOMATIZATIONS

by David Hoak
Oceidental College

The propositional calculus is the branch of logic which deals with
sentences or propositions built up from atomic sentences by connections
such as 71 (not) and + (implies). Thus, if A, B are atomic, we can form
1B+ A, A+ B, 14 +~ B), and so forth.

The propositional calculus becomesinteresting i f we consider as primi-
tive propositions ones in whose truth we believe (based on some agreeable
interpretation of the connectives), and use rules for building nev propo-
sitions which preserve truth. For we-can then generate new and sometimes
surprising true propositions. The propositions so generated are valid
propositions or tautologies. A tautology is a proposition true as a whole
regardless of the truth or falsity of its components. Such propositions
as A+ 4 and A v 1A are tautologies under the standard interpretation of
"implies" and "or" in two-valued propositional logic (the statement A is
true or false).

An axiomatization of the propositional calculus is a set of funda-
mental propositions we mey call axioms, and a set of rules by which we
can, starting with the axioms alone, derive the tautologies of the calculus.
A well-known result of the theory is that any axiomatization of the cal-
culus by propositions must have at least one rule of inference. Apparently,
this theorem was known to.the nineteenth-century author and mathematician,
Lewis Carroll, which places a large lower bound on its age. The result
leads to the interesting question of axiomatizing the calculus by rules
alone. The German, G. Gentzen, answered this question in 1934-35 with a
list of fourteen rules from which he could derive the tautologies of the
calculus (Gentzen [1]). The objective here is, from a more concise list
of nine rules, to derive a standard axiomatization found in Kleene [3],
which is also due essentially to Gentzen. Following this, will be a dis-
cussion of the equivalence of the axiomatizations found by Kleene, Rosser
[6], Mendelson [4], and Hilbert, Ackerman [2].
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The Kleene axiomatization i S as follows, with "=, "7 1 vy w gnd vg"
S o . . S _ _

taken as primitives. Kleene also uses (equivalence, i ff)as a primi Proof. By R4, letting T be the set {4 ~ B}, we know that i f A + B
tive, but we need not complicate matters with it here since A ~ B can Be

simply defined as (4 ~ B) & (B ~ A).

~A4 + B, then A, A~ B +~ B, But we always have A + B+~ A4 ~ B by RL. ,So

modus ponens i s justified. O
Axiom la: +~4 + (B+A)

Axiomb: ~ (A+B) > (A~ (B+C)) ~(4~0)) I't isimportant to note here,-since the proceeding argument may seem
Azxiom 3: +~A > (B> (4 & B) circular, that it i s an argument in the metalanguage, that i s, the language
Axiom ua: +— (A € B) + A we use to talk about the logical systemand its symbols, based on what we
Awiom Ub: — (A4 € B) > B all mean by "if" ... "then." We now derive Kleene's axioms:
Axiom Sa: —~A + (A v B) 3 Axiom la. ~ A+ (B = A).
Axiom 5b: +—B + (A v B) -
Axiom 6: = (A+C) +~ ((B>C) > ((Av B) ~0C)) Proof. 1. A=A Rl
Axiom 7: (A + B) = ((4 +71B) +74) 2. A B-A R2
Axiom 8: F 114+ A 3. A~ (B+A) Ry
4, A+ (B=4).0 R4
Rufe. A, A > B+~ B (modus ponens)
Axiom 1b. (A +B) - (A= (B =C)) ~ (A~ C)).
The lettering i s Kleene's. The statement | — B means the statement Proof. 1. A, A+B+ B P
B can be deduced fromthe set of statements |, where | is a finite, pos- . 2 A A+B,A+(B+C) B R2
sibly empty set of propositions. Thus, the axioms are statements that 3. A, A+ (B+C)—B+C MP
can be deduced, so to speak, fromthe empty set of propositons. 4. A, A+B,A+(B+C), BB +C B2
We propose the following rule system: 5. B,B>CwC P
RI: A+ 4 6. 4, A+~B,A>~(B~+C),B,B+(C+C R2
R2: If 1 ~C, thenl, A-C 7. A, A~+B, A+ (B~+C),B+C R3(4,6)
R3: Ifr~4dand |, A~C, thenT 8. A, A+B, A+ (B~+C)+C R3(2,7)
R4: I'—~A +Biff ', A+ B 9. A+B, A~ (B+C)r~(4~+20C) Ry
R5: T+-A6Biffr~4andT +B 10, A>B @~ (B=>C)) ~(4~+20C) Ry
R6: Ifr,A~Cand T, B+-C, then!|, AVB+C 11. ~(A=B) + A+ B-+C))~A~-C). 0 R4
R7: | ~7l4 iff, for any proposition B, (T',4) - B
R8: U - A Axiom 3. —~A + (B~ (4 & B).
R9: If I, AL A—A, thenl, A, A4 (RS will not be cited in Proof. 1. A +~A R1
proofs.) 2. A, B+4A R2
Before proceeding with the deduction, et us justify the rule modus ponens 3. BvrE i
(MP). 4. A, B+B R2 !
5. A, B~A ¢&B RS
A, A+BWwB, 6. A+~B~+> (A ¢&B) Ru4
7. wA+B~+(A4&B)). 0 R4
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Axiom 4a, 4b,

~A4 &B~>A4, A& B~ B.

2. -T1TA > 4.0 Ry

Proof: 1. A& B+~4¢B Rl
2. A& B+rAand A& B+~B R5
3. w4t B>Aand—4 & B~ B. [l R4
Axiom 5a, 5b. ~A + (AVvB),-B~ (4 V B)
Proof: Let T = 0.
1. AVB+AVE R1
2. A~~AvBand B-A VB R6
3. ~mA~>(AVvB)and B~ (4 v B).0O Ry
Axiom 6. ~ (A > C) > ((B+C)~ ({4 V B) > C)).
Proof: 1. 4, A~>C+C( MP
2. A, A~ C, B~ Cw(C R2
3. By, B>(C+"C MP
4. B,B>C,A~C+—C R2
5. A+~C,B~+C,AVvVB+_( E6(2,4)
6. A+-C, B>Cw+(4V B)~C RU
7. A>C+~(B~>C)~>((AVv B)~>0) R4
8. ~U-C)>(B>C)>AvB)Y-C)».0O Ru
Axiom 7. ~ A > B) = (A »71B) »~714).
Proof: 1. A, A+ 7B +"1B UP
2. A, A~>7B,4~>B+"B R2
3. A, A+7B,A +B, B~C, for any proposition ¢ R7 (from 2}
4. A, A~ B+B MP
5. A, A-B,A~+"B+~B R2
6. A, A~ B, A ="BI ¢, for any proposition ¢ R3(5,3)
7. A+-B A+"1B+T14 R7
8 A~-B~((A4~->71B) >4 R4
9. ~(@A~>B)~ ((A~71B) ~74). U R4
Axiom §. +~ T4 - 4.
Proof: 1. 71714 +~A R8

63

Thus, we have shown that our system of rules is at least as strict an
axiomatization as Kleene's. W could show the systems equivalent by de-
riving our rules from Kleene's axiomatization. Ve will not go into this
in depth except to say that the proofs are not difficult and mey be found
in Kleene [3]. It should be pointed out that the system of rules proved
in Kleene is Gentzen's; our list is a brief condensation of those rules
iniff form with F1-R3 added.

To show the systems of Mendelson, Rosser, Kleene and Hilbert, Ackerman
equivalent is a complicated by not impossible task employing the following

plan of attack:

Hilbert-Ackerman
S
Kl eene/ Rosser
S ——lMendelson <

What complicates the proofs primarily is that each system is based on dif-
ferent primitive connectives. Consequently, to go from one to another we
require definitions like A v B~ (74 ¢ 71B) and A &€ B~ T1(TIA v 71B), the

familiar DeMorgan relations. The equivalences WU v B ~ (4 + B) and

~(4 & B) T (A - B) must also be used. The axicmatizations are as follows:

le (Hilbert-Ackerman [1950])

v and AL are the primitives.

Def.. 1. ~A~B)~ (AvB
2~ @ & B)~TI(A v B
Axioms. 1. ~4 VA ~> A

2. ~A+AVE
3. =(B~+C)~> ((AVEB)> AV
4. ~(AVvB)+ (BVA

Rule: modus ponens

L.: (Rosser [1953])
g€ and 1 are the primitives.
Def. 1. ~@ ~+~B)~"U4d ¢ B)
2. ~@ v B)~"1(4 & 71B)
Axioms. 1. +A +A & A
2. ~AE&EB~+A4A
3. ~@A +B)~(CB&C)~>TUC & A))

Rule: modus ponens
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L.: (Mendelson [1964])

T and + are the primitives.

Def.: 1. -~ (Av By~ (4 -~ B)
2. ~ (A6 B)~ T4+ IB)

Axioms: 1. 1I- A+ (B ~ A)
2. m(A+>(B+C)) > (4+B)~ (A>0))
3. = (B ~+"14) »~ (OB ~ 4) ~ B)

Rule: modus ponens

(We shall refer to Kleene's system, which we have already seen, as Lu’)
Because each system contains few elementary propositions and employs
different primitives, we cannot prove the sentences of any one from one
of the others directly. Rather, the strategy i s to discover and prove as
many theorems in each system as possible, and then attempt the needed
proofs using these stronger tools. Since the problems involved in each
Li - Lj proof are of similar difficulty, we will consider only one in de-
tail here, L2 + L3. W include, with two proofs, the following results

of L2 which appear in Mendelson [4] lettered as below:

(a) A= B, B>C ~1(IC & A)

(b)Y =714 & 4)

(a) »T14+A

(d) -4 & B)Y + (B ~74)

(g) ~A-=+T"U4

(f) -~ (A4 ~+B)~ (B~>"4)

(g) U ~>TB+~B~4A

(h) A>B~(C&A)~(Bs&C)

() A+B,B+C,C+D+—A>D
Gy 1-A+A

(k) ~AegB+BsgAd

(1) A+B,B+C+A~+C

(m) A+B,C~+Dr~ (AgC)~ (B&D)
(n) B+Cwr~(46&B)~ (A& C)

(o) 1- (A> B ~+0)) ~ ((A& B) ()
(p) ~((A&B)>C)> (A~ (B~>C))
(q) A+B, A+ (B>C)r~A>C
(r) 1I-A~ (B~ (A& B))

(8) —~4A > (B~4)
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(¢) 1f1, A1 B, thenT |-A~ B (Deduction Theorem)
(v) ~ClA=-A)~A
(v) A+B, A~>B+—B

V¢ include the proofs of (¢) and (m) since they involve manipulations
typical in a system based on "g" and "1;" "e'" is an especially important
result since it assures us that the axioms we have laid down imply a two-
valued logical system, ad "m" i s an extremely useful rule for involving

"g'" from two implications.

Proposition (c). = 7174 > 4.

Proof: 1. (WA -+ (U4 & 74))
> (WA € T74) €1714) » I(T4 € 14)) Ax.3

2. T4~ (4 &74) AX. 1

3. (4 &74) -4 Ax. 2

b, (4 & 74) =74) = (4 & T14) ¢ 1A)  Def. 1

5. T1(C4 & 714) € 1714) MP(3,4)

6. (T4 & 714) MP(2 ,1)MP(5,MP(2,1))
7. 174 -~ A. O Def. 1, from 6

Proposition {m), A~ B, C+-B+-A4A8&C—>BED.

Proof: 1. A+ B premise
2. B & C)+THCEA) Ax. 3 and MP
3. ¢CeA~+BeEC (g)
4. AEC+C¢&A (k)
5. A§C+Bs&C (2)
6. C+D premise
7. (D & B)~"UB &) Ax. 3 and MP
8. B&C~DEB (g)
9. D&EB~+BE&D (k)
10. B&C~+BED ()
11. Ag¢c+B¢&D.[1 (2)(5,10)

Incidentally, the proof of the important result () is the standard
proof by induction on the length of the proposition using (j), (¢) and (g).
W\ now examine the proof L, > L. V¢ shall derive the axioms ad

definitions of Mendelson's system using the derived theorems, axioms and

definitions of Rosser's system.
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Axiom 1.

A~ (B~ A).

Proof. Immediate from (s).

Axlom 2.

Proof: 4.

2.

Axiom 3.

Proof: 1.
2.
ar
L,
5.
6.
8
8.
9.

10.

-4+ (@B~0)+ (4~-B8)~ 4L~>0)N.

A>B, A (B~>({)1r A>C

(q)

-4~ B+0))~ (4B~ U~+0)). O (&) twice

~ (B »74) » ((1B » 4) > B)).

B+~ 4

A~+B

(B » 4)

B~ 4) ~ (4 +7171B)

14 =7171B)

171B + B

1A ~ B

B

B ~74), B+ A) ~B

= (B ~+74) » (B~ 4) ~B). 0

Definition 1. |- A v B~ (4> B).

Proof: 4.
2.
3.

The converse follows by the reverse implications of the two definitions. U

(4 €7B) ~ 4~ B
Av B~ "4 ¢ 1B)
A4V B~ (4~ B).

Deginition 2. — A & B~ 14 +7B).

Proof:

1
2
3
L.
5
6
7
8

— (4 +7IB) » (4 £717B)
174 €7171B) - T1(4 -~ 7IB)
(4 €7171B) ~ T4 & T1B)
(4 §7171B) ~ (4 & IB)
A+ A

B -~ 1B
(4&B)~(48&771B)

(4 & B) > (4 »B).

premise
(g)
premise
6]
MP(3,4)
(e)
(1)(5,86)
(v)(2,7)
from 1-8
(t) twice

Def. 1
Def. 2
(1)

Def. 1
(f) and MP
(e)
(1)(3,2)
(5

(e)

(m) (5,6)
(2)(7,u)

The converse is similar, reversing the implication in line 1. O

This completes our examination of the provability of L3 from L2.
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With similar effort we could complete the other proofs in our scheme above.

It follows that from the rule system we examined at the start, we can de-
velop any of the several axiomatizations. -
As an interesting aside let us briefly consider the novel axiomati-
zation due to J. Nicod [5]. He showed that it is possible to axiomatize
the propositional calculus using one primitive connective, one axiom and
one rule of inference. The connective, called the Sheffer stroke, and
written "|" is defined as follows: A | B is true unless both A and B are
true; | is thus alternate denial, with A | B equivalent to 4 v 1B, From
this stroke alone, it is possible to define the other connectives: 14

for instance, being equivalent to A | A. Niced's axiom is the following:
@l @Elenlww] @]« ||l len
and his rule of inference:
IfA] (P| @ and A, then Q.

Using this rule and (1), Nicod derived the axioms of Russell and Whitehead
found in Principia Mathematica [7]. Later, Ackerman reduced the Prineipia
five axioms to four by showing one of them redundant. These four form the
Hilbert, Ackerman system. Nw taking (1) above and rewriting it as a
sentence involving more familiar connectives we have:

(46 (BvIAC)) v ((DvD)e ({(8&B)yv (C4AVTE)))

which is easily shown to be true regardless of the truth or falsity of

's

A, B, ¢, D, or E and thus a tautology. By the tautology theorem, a standard

proof of which may be found in Mendelson [4], we can establish (1) as a
theorem. Nw knowing that from (1) we can establish the Hilbert, Ackerman
system and that from the same system we can prove (1) yields the equi-
valence of Nicod's system and the other axiomatizations. Therefore, we
know that by some finite number of manipulations we could derive Nicod's
system from our eight rules.

The author wishes to express his gratitude to Professor Ben Freedman
of Occidental College whose advice and encouragement made this paper
possible. A
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A RELATI ONSHI P_BETWEEN APPROXI MAT| ON
THEORY AND STATI STI CAL MEASUREMENTS

by Henbert L. Dershem
Hope Cotlege

1. Introduction.

There are many statistics which are used to measure central tendency
and dispersion of a random variable. Each of several measures of central
tendency is shown to be a best approximation to the variable over the set
of all constant functions in a specified norm. The error of this best
approximation serves as a corresponding measure of dispersion.

Hamming ([1], pp. 224-226) has noted this relationship between best
approximation and measurements of central tendency. His work is extended
here to include additional norms, measurements of dispersion, continuous
distributions, and measurements which result from transformations of best

approximations.

2. Discrete Random Variables.
Given a discrete random variable x which can take on any of a set of
data values [xi}f,'l:l’ each value X occurring with respective probability

fi’ and a given function norm || ll, we define a measurenent of central ten-

dency to be the constant value ¢* which, when substituted for ¢, minimizes
lxz - dI.

This is the best approximation to X over the set of constant functions
where X is the function defined on the discrete domain {1,2,--+,M} by
x(Z) = X. and e is the constant function defined on the same domain by
e(Z) = C. V¢ examine a number of choices of norm and show that these
choices al | correspond to commonly used measurements of central tendency.
The error in the best approximation, lz - ¢*l, is defined as the corre-
spondi ng measur enent of di spersion.

The discrete L2 norm with weight function f is defined by -

M
Ilullz,f = {El fiu'%:lm .



The measurement of central tendency associated with this norm is found by

minimizing the function defined by

M
#e) = llz - ell, o= {Z £yl - c)2}1/2
’ i=1

The minimizing value of ¢, which we call E{x) (the expected value of z),
is found by setting the first derivative of 4 with respect to e equal to

zero and solving the resulting equation for % to obtain

M
gfimz M
ek = Elx) = —p = X
f =1

V¢ have used the fact that Z fi = 1, that is, the am of the probabilities
is 1. This measurement is well known as the arithmetic mean or expected
value of the random variable. The corresponding measurement of dispersion

is the error of this expected value, given by
! 2{1/2
Iz - E@I, = {Zjl £y, - E@) }

which i s the standard deviation of the random variable.
The discrete Ll norm with weight function f is defined by

M
hully o= —§1 Filugl

V¢ show that the median is the measurement of central tendency associated
with this norm. For ease of notation we define S{a,b) = {7 lxi € (a,b)}
with similar definitions for semi-open intervals. |If m is the median of

the random variable defined by X and f, and € is any positive number, then

¢(m + €e) - ¢(m) = llx - (m + E)nl,f -llx - mlll,f

Yo Tulmre—md S S fmre-z)
S(-w,m] 7’ Smym+¢e] * t

+ E folx. -m+¢g) - Z f.(m-=x.)
Sm+ e, =) © 0 * 5(-=m] * ‘

- E fiple, —m) - E fila, - m)

S(my, m + €] S(im + g, @)
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=EZ f. + Z folom -2z, +e) - ez f‘i'.

Stcmyml ¢ S(m,m + €] S(m + g, »)
But for X inthe interval (m, m + €],

M — 2L, +E 2 -E & e
7

Therefore,

d(m + €) - ¢(m) 2 ¢ Z f. -« Z £. >0
S(c=ml ¥ Sm,e) *

where the last inequality follows from the definition of the median. A
similar argument can be used to show that ¢(m - €) - ¢(m) > 0. Hence, m
is a minimum of ¢ and a measurement of central tendency with respect to
the discrete weighted Ll norm. In the case where the median is not one
of the data values, this best approximation is not unique. The corre-

sponding measurement of dispersion is

M
e -l o= 2 Flzy -ml,
e =1
the mean deviation.
Another common measurement of central tendency is derived from the

discrete Z_ norm which is defined by

el , = max Tl
l<isM

In this case we wish to find the value of e which minimizes

le - el = mx lx. - el .
e N 3
1=7<M

It is easy to determine that the minimizing value must be located midway
between the maximum and minimum values which x can take on, a value known
as the midrange. |1f we denote the midrange by m.s the corresponding mea-

surement of dispersion is

le -mll = max lxz, -m I,
1<isM

which is half of the range.

\/¢ define one final discrete norm by
M
lull, o= E:l £;01 - 8T,

where



12
0ifx #0
§(x) =
l1ifx=0.
The value of f§x - ell is the probability that the random variable is not

m,f

equal to e, and any value of ¢ which minimizes this is called a mode. The
corresponding measurement of dispersion is the probability that the random

variable is not equal to the mode.

3. Statistics which are Thansfommations of Best Approximations

A number of measurements of central tendency do not arise directly

as best approximations in some norm, _ut can be found as the transformation
of a best approximation. Such measures are defined as follows.
Choose a norm {| | and a transformation function 0. Find e* such that

e* is the best approximation to 8(x) in the given norm, that is,
fe(x) - e*ll < te(x) - cll for all ¢ € (-»,»).

Then a measurement of central tendency is given by 87 1(e*).
If the discrete L2 norm is chosen, then the measurement of central

tendency is

M

e"l(z fie(xi))

=1
The geometric mean, harmonic mean, and root-mean-square are examples of
this type of measurement when 8(z)equalslog x, l/x, and 22, respectively,
and the data values z, are such that the appropriate function 6 is defined.
4. Continuous Radm Variables.

The above results can be extended to continuous random variables by

replacing the discrete norms by the corresponding continuous norms. Ve
nowv assume that we have a continuous random variable with probability
density function f(x). Therefore, f is such that },e:m flz)dx = 1 and
f(z) > 0 for allx.

The best approximation in the continuous L2 norm with weight function

f is the constant ¢ which minimizes

= 1/2
¢pe) = lx - cIIQ,f = { | flx)(z - c)de} .

By differentiation, the minimum of i) is found to be
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e = f xf(x)dx .

This value of ¢* is the expectation of a continuous random variable<with
probability density function f. The corresponding measurement of disper-
sion is

© 1/2
s = - )2
ha - c-~||2,f = {[w flx)(x - e*) dx} ,

the square root of the variance of the random variable.
If we consider the continuous LA norm with weight function f, then,

since f is always nonnegative, we have

e - c"l,f = L f@)lx - cldx

¢(e) =
c o0
= / flx)(e - x)dx + f flz)(x - e)dx ,
and
c o
¢'(e) = f flx)dx - f f(x)dx
- ¢

e ® e
/ flx)dx - / flx)dx + / f(x)dx

—o

c
2/ flx)de - 1 .

Setting ¢'(¢) to zero, we find that ¢ is minimized when ffw flx)dx = 1/2,
that is, at that value of ¢ for which the probability is exactly one-half
that X < ¢. This is the natural extension of the median to a continuous
distribution.

Unless f(x) is zero everywhere outside of some bounded interval, there
is no continuous extension of the midrange. |f f is zero outside the |-
terval (a,b) and positive somewhere in every neighborhood of a and ?,

then the continuous L norm defined by



¢(e) =llz - el = sup lx - €
o«
a<x<b
has as its minimizing value and measurement of central tendency

et = (a + b)/2

which is the middle value of the interval in which f is non-zero. The
corresponding measurement of dispersion is

¢ple*) = (b - a)/2 .
The continuous extension of the mode is found by minimizing

@

¢oe) = llz - c“m,f =1 - Fflx)s(x)dx = 1 - fle)

—ca

where 6 is the Diraec delta function ([2], p. 6). The function-¢ is mini-
mized at those values where f attains its maimum value. |If my is such a
value, then the corresponding measurement of dispersion is 1 - f("’o)'
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GENERALI ZI NG BI NARY OPERATI ONS

by Dennis C Smolarski
S, Lowis Undiversity

Most day to day calculations take place within the field of real
numbers with the two binary operations of addition and multiplication.
In this field, these two operations are definitionally independent of
one another. However, if we approach binary operations from a d,ifferent
point of view, e.g. that of recursive formulae, we can develop multipli-
cation from addition by use of the concept of repeated addition. Along
similar lines, we can develop exponentiation from multiplication by re-
peated multiplication. The next logical step would be to try to develop
another binary operation based on repeated exponentiation.

Professor D. F. Borrow of the University of Georgia in the American
Mathematical Monthly, 43 (1936), p. 150, developed some theorems and a
notation for repeated exponentiation. As I is used for summation and T
is used for products, he used E for repeated exponentiation. The develop-
ment of a "fourth operation” would depend on all the indexed Terms of &
being equal, similar to what is necessary in developing multiplication
and exponentiation itself.

In order to clarify relations and notations, |l et us look at addition,
multiplication, exponentiation, and a projected new fourth operation in
terms of functions and recursive formulae. Let

Fiam) = n+m

fy(n,m) = nem
and

fa(n,m) =n

V¢ know the following:

m
wemz=n+ [nelm- 1)7 = Zl:ni (where all n, = n)

and
m

n' = n'[n(m_l)] = rr'l,-
i

(where al | noE n)
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Using our functional notation, we can write the above equations as re-

cursive formulae:
fz(n,m) = fl[n, fz("’ m - 1)]
fs(n,m) = fz[n, f3(n, m-1)] .

By comparing these two formulae, we can easily proceed to the definition
of a fourth operation in terms of previous operations. Thus, |let

£, (nom) = f'a[n, fu("’ m-17,
and, in general, for a kth operation, let

fk(n,m) = fk_l[n, fk(n, m - 1)] .

The question now arises, how does one define the first term in this
recursive formula? In other words, what is f‘q(n,l)? To answer this
question, let us first look at fz(n,l), and fs(n,l), which are based on
a similar process of recursive formulae and repeated operations. W
know that f,(n,1) = Z]l“n = n and we also know that fy(n,1) = "[T:an = n.
Ve can thus similarly define f, (n,1) = Ein to be equal to n by the same
line of reasoning, that is, "one n'" combined together by the process of
[addition/multiplication/exponentiation] is still only "one n."

What about f\ (n,2) = E:zl_n? This would be equal to

Filns £u(ny 2 - D1 = foln, £,00,1)] = Fo(nn) = 4" .

Thus we see that our formulation of the recursive formula is consistent
with what our initial intuitive feel was for what this new fourth func-
tion should be. Similarly, we obtain fu(n,s) = n(”n). At this point
we might notice that, unlike our definitions of exponentiation and mul-
tiplication in terms of multiplication and addition respectively, our
definition of fu does not allow associativity. In other words, f'u(n,s)

n
= a7y ™", and, in general,

(n.--))

(n

(n nn(m—l) .

fotnym) = n ) & (LGN PP =

At this point, two questions may arise: Wha can one do with f and
what about other operations? |In particular, does there exist an fo?

In answer to the first question, it is obvious that tables of fu
are not readily available, and are not particularly useful, either. The
numbers balloon quite rapidly. For example, fu(2,1+) = 65,536, and
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E2h2ed , While f4(3,3) exceeds ten digits.

fq(z,s) = f3(2, 65,536) = 2
The only easily computable numbers are of the form fu(n,Q) = 7. Even
then, the numbers get fairly large, rather rapidly. For example,

fu(8,2) = 16,777,216. -~ -

There are other paths which can be taken with fu from here. As with
an initial development of multiplication or exponentiation, we can develop
definitions for 'f‘4(x,y) when ¥ is zero, rational, real, or complex, and
then develop definitions when X is zero, rational, real, or complex. For
example, in developing exponentiation, one method of developing rational

exponents is as follows:

Define x = y(l/n) to be equivalent to
_nr
y = X

If one raises x to the power of m, then one has

e y(m/n)

B}

and thus one has defined exponentiation for
rational exponents.
Let us do something similar for fu‘

Define X = fu(y, 1/n) to be equivalent to

y = fu(a:,n) .
I f we then operate on xby m, then we have

z = fu(x,m) = f”_(y, m/n)

Ve can likewise work with negatives. In multiplication, y = z*(-n)
= f2(:x:,—n). But this is equivalent to sayingy *+ zn = 0 = | ] (the
identity for fl), or, using our functional notation, fl[y, fQ(;r,n)J = 1q

. . L - 1 . - 3
= 0. Likewise for exponentiation, y = x " - = whichis equivalent to

X
saying f2[y, fa(x,n)] = IQ = 1. Similarly, for our fu.’ we can define

y = fu(x,-n) as being equivalent to f3[y, f'u(:c,n)] =I,=1

Now, | et us look at our other question--the possibility of fo, that
is, a binary operation more "basic" than addition. If it did exist, it
would have to complywithour recursive formulae developed above ..nd also
to the general intuitive scheme of the functional notation. Nou for any
k, we saw that fk(n,m) = fk_l[n, fk(n, m - 1)]. Let us take a closer
look at what happens if k = 1. Ve would then have

fl(n,m) = fo[n, fl(n, m- 1)] .
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But fl is addition. Thus, we have
n+m=f0[n,n+m-l] ;
If we now let m = A, then we have

n+ 1= fo[n,n]

“rom the functional approach we know that f3(n,2) = n? = nen = fz(n,n).

Similacly, fz(n,2) =n2=ntn-= fl(n,n). If we are to be consistent,
fl and fo should be similarly related (assuming f0 exists). Thus,
fl(n,z,' =n+2=non-= fo(n,n) [where fO(n,n) =n o n]. But above

we showed that fo(n,n) was n * 1. From this contradiction resulting from
the initial assumption that fo exists, we have shown that addition is

the "most basic" operation we can have.
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GRAPHS CRITICAL FOR MAXIMAL BOOKTHICKNESS

by Chantes V. Keys
Louisdiana State Univerasity

To "draw a graph G in a book" arrange the vertices of G in a fixed
position along a line segment & (the spine) which is the intersection of
a finite number of bounded half-planes (pages). Drawv the edges of G on
these pages such that each-edge lies entirely on one page and no two edges
cross (that is, intersect; except possibly at their endpoints). Then the
minimum number of pages required to represent G in this way, considering
al |l arrangements of V(&) along she spine, is defined to be the bookthick-

ness of G

By coloring edges on separate pages different colors, one mey see
that we have the following equivalent characterization of bookthickness.

Arrange the vertices of a graph G along a circle and draw the edges
of G as chords in the interior of the circle. Let m be the minimum num-
ber of colors required to color the edges of G such that no two edges of
the same color cross. The bookthickness of G is then the minimum value
of m over all arrangements of the vertices of G on the circle.

Note that since an edge joining vertices which are adjacent in a
circular arrangement does not cross any other edge, it can always be
given any color. W therefore do not have to worry about such edges,
and they will not be shown in the colorings drawn in this paper.

Arrange the p vertices of G on a circle, numbered in order from ®
top - 1. Define the length of an edge {u,v} to be the length of the
shortest path from u to v along the circle; that is,

length {u,w} = min {Ju - »|, p - |u - v|} .
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Note that in any coloring on p vertices we can have at most p - 3
edges of the same color. This is clearly true for p = 3, 4. Asume
true for n < p. Chooseanedge e of one color, with say p - n and n - 2
vertices above and below e, respectively. By induction, the maximum
number of edges of this color above and below e, respectively, are
(p-n*t2) -3andn- 3. Thisgivesa mximumof 1+ (p -nt2) -3

+n- 3=p - 3 edges which may be colored the same.

on{2n - 1)
—
= 2n? - 3n edges (the total number of edges minus the number of edges

The bookthickness of K2n isn. W must color 2n

joining vertices adjacent in the ordering of V(G)). Sincewe can fit in

2
at most 2n - 3 edges of each color, we need at |east H = n colors.

Given a K?n’ we ask how many edges, and what configurations of
edges, must be deleted so that the remaining edges may be colored with
n - 1 colors. The above calculation shows that deleting less than 2n - 3
edges from a K2n does not reduce the bookthickness. |f we delete exactly
2n - 3 edges, the bookthickness mey or may not drop to # - 1. The case
of removing 5 edges from a Ks will be discussed at the end of the paper.

The bookthickness of X, .. isn 1 W must color (2n ; 1)2n

- (ont1) = (n-1)(2n t 1) edges. Since we can color at most 2n - 2

edges a single color, we need at |east (n - L)(2nt 1) ont1

n - 2 2
= n *+ 1 colors.
To reduce the bookthickness of K2n+l to n, we must delete at |east
(n - 1)(2nt1) - n(2n - 2) = n - 1 edges.
Theorem. 1If we delete n - 1 edges from a X one edge of each

2n+l?
length 2,3,-**,n, then there is a coloring for the remaining edges using

n colors.

Proof. Arrange the vertices of X on a circle, numbered in

order from 0 to 2n. W may assume tha2tnﬁ)~,n} is the deleted edge of
length n. Assign {j - 1, j t n} and {j + »n, j} the color j(mod n),

J =1,2,3,°+-,m. Note: All arithmetic related to vertex numbering is
modulo 2n + 1.

This colors all the remaining edges of length n.

n+2

n+1 n-1

n

/¢ shall now successively color all edges of length n - 1, n - 2,

, 2 such that, after coloring the edges of length n, n - 1, «--, I + 1,
the following properties hold:

1) The edges of length I + 1 are colored in order 1,2,+¢,n,1,2,¢+,n
as we proceed around the circle: that is, if {£, 7+ 1 * 1} is the
deleted edge of length I + 4, and k is the color assigned to the edge
{£ - 1,1 + 2}, then successively the edge {2 + 4,7 +4 + 1 + 1} is
colored k + § (mod n), § = 1,2,°¢+,2n.

2) Every edge of length | + 1 < »n is adjacent to an edge of length
8.+ 2 of the same color: that is, if {Z, i *+ 1 + 1} is colored k, then
so iseither {¢, ¢t 1 + 2} or {£ -1, £+t 1 * 1} (but not both).

3) Nb edge of length I + 1 is colored the same as any crossing edge
of length = 1 * 1; that is, no edge of length 2 1 + 1 and incident to a

vertex i +p for p = 1,2,+++,2 has the same color as the edge {Z, i + 1 + 1}.

Thus, inductively, no two crossing edges of length 2 8 * 1 have the
same color.
Suppose we have colored the edges of length n, n - A, «++, | + 1

such that properties 1), 2), and 3) hold. Let {£, ¢ t 1 + 1} be the
deleted edge of length I + 4, {7 * igs 1t i, T &} the deleted edge of

length %, and the edge {£ *+ 4, ¢ + 4§ + 1 + 11, of length I + 1 colored
k +4 (mod n), § = 1,2,-++,2n, (k as above).

V¢ now color the edges of length I as follows: For § = 4, 2, *+*,
1, - 1. assign edge {2 tg,1t4t+ 2} thecolor k+ j (mod »), and for
E= 7:0 + 1, 1',0 + 2, ser, 2nt+ A, assign {€ + J, 2 +J T 1] the color
K+ J -1 (mod n).
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Property 1) holds trivially in this coloring.

Forl<gd<i,-1,{i+4,2tj+a+1}and{i +4,72+ ]+ 2}

0
are both colored k + § (mod n), while for io t+1<j52n+ 1 both

HL+d-2,2+4teYand{Z +J,72tJ + 2} are coloredk + j - A (mod n).

Thus property 2) holds.

Consider an edge e of length A colored a (mod »). By property 2)
we have that any edge of length > A + 1 crossing ¢ must also cross an
edge of length A + 1 colored a (mod n), and must therefore be a different

1& =~ )

i+d

color.

Yy

Additionally, an edge {Z, 2 * ¢} of length | colored a crosses precisely
the edges {2 - A+ 1, 2 + 1}, {2 - A+ 2, 0 + 2}, ¢++, {2 - 1,7+ 2 -1},
{£+1,2+ 2+ 1}, ««o, {2 2 -1,7 + 2¢ - 1} anong al | edges of length
I. These edges are colored a = p (mod n) forp =1, 2, -, A - 1. But
p £%-1<nimpliesthat a# a+ p (mod n), so we have that property
3) holds in this coloring.

Continue this process to color the edges of lengths A - 1, 1 - 2,
sse 2. Then by property 3) no two crossing edges will have the same

color, which proves the theorem. [

As an illustration of the theorem, suppose we delete the edges{{0,4},
(4,7}, and {3,5} from a k¥;. The theorem gives the following coloring
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for the remaining edges:

8

Te 02

3

5

8 S
7\ |
6O~

1
1
— 3

0
4
0
.
4

5.

Thus asking whether deleting a graph with » - 1 edges from K2n+1
reduces bookthickness is reduced to the problem of fitting the graph on
2n + 1 vertices arranged on a circle such that it contains one edge of
length 2,3,+°*,n.

This can be done for all graphs on n - 1 edges for n = 2,3,4,5,6,
There are no known cases in which this cannot be done.

In addition we raise the question whether deleting the complete graph

K from X m reduces bookthickness. This is the case for m = 2,3,4,5.
2(2)+3

Exampfe. Deleting a X, and X; from a K 5 and X,,, respectively, does
reduce bookthickness, as shown below. (The numbers assigned to edges are

their respective lengths.)

K43 3 Ks 25/ \e\
] 7
10 i
7 4
4 6 3
9
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In the case of a K_, we have shown that deleting the following graphs

8,
(and their subgraphs) does not reduce bookthickness to 3:

I '}ﬁ (8,8) graph with a vertex of degree 7

b ,/L. I I K1,3’ K &y
III m Kh

v X /\ Kl,u’ Py @P
i

L A. A Ky Ky
LRt /I\. )\ K 50 K

Deleting al | other configurations of 5 or more edges reduces bookthickness.
As an example, we give the argument for I: Deleting an (8,8) graph
with a vertex of degree 7 from a Kg does not reduce bookthickness.

Suppose there is a coloring of X, with G deleted using only 3 colors.

Let the vertex of G with degree 7 be glaced at a and {b,c} the edge of
G not incident to a. Then by deleting the vertex a and edges incident to
a in the coloring, we obtain a coloring for K7 with only one edge ({b,e})
deleted which uses only 3 colors. But this is impossible.

In general, since deleting less than n - 2 edges from a K2n—1 does
not reduce the bookthickness to » - 1, deleting a (2n, (2n - 1) + (n - 3))
graph with a vertex of degree 2n - 1 from a K2n does not reduce the book-

thickness ton - 1.

‘t
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LOCAL AWARDS

| f your chapter has presented awards to either undergraduates or
graduates (whether members of Pi Mu Epsilon or not), please send
the names of the recipients to the Editor for publication in the
Journal so they mey receive recognition in this publication. Also,
the national office can supply you with attractive award certifi-
cates for use in presentations.

THE BASIC MATHEMATICS OF THE FARO SHUFFLE

by S. Brent Monris
Duke University

Among magicians the operation of cutting a deck by shuffling into
two equal portions, and these portions perfectly interlaced by shuffling
is called a faro shuffle, referring to the card game faro. For further
classification, a shuffle where the top card isleft out or on top is
called an Out shuffle, while shuffling the top card in or to the second
position is called an I n shuffle.

In studying these shuffles, certain mathematical properties present
themselves. This paper will concern itself with the following questions:

1) In a deck of size 2k, where will a card in position p be taken

following one In or one Out shuffle?
2) In a deck of size 2k, wherewill a card in position p be taken
following an In and then an Out shuffle or an Out following an
I'n shuffle?

3) Can the Out and In faro shuffles be generalized to decks of size
2k - 1, and how will this affect the answers to 1) and 2)?

All three questions will be answered. Surprisingly, decks of size
2k - A yield much more elegant answers to 1) and 2), although it is per-
haps unnatural to perform a faro shuffle with an odd sized deck.

Throughout this paper, certain notational conventions will be used.
The letters p and q will always be used to indicate the position of a
card. Deck and card will be used rather than linear away and element.
Qi deck and even deck will refer to decks with 2k - 1 and 2k cards re-
spectively. A card in position p will be in position 0(p) or I(p) fol-
lowing an Out or an In shuffle respectively. Finally, a series of Out
and In shuffles will be indicated by concatenation and read from left to
right (rather than the usual right to left). Thus 0I{(p) = I(0{(p)), and
indicates an Out shuffle followed by an In shuffle. -

Proposition | In a deck of size 2k, the effect of one Out faro
shuffle on a card in position p isto move it to position
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O(p) = 2p ~ 1 (mod 2k - 1)! . (1)

Proof. Ve first consider the effect of an Out shuffle on a card in
the upper half of a deck, and thus temporarily avoid the problem of a
card being taken to a position with a lower value than it began with;
that is, 0(p) < p.

A card in position p has p - 1 cards above it, and following an Out
shuffle its new position O(p) will be p - A greater since an Out shuffle
places a card between 1 and 2, 2 and 3,
for L <p = Kk,

s+, p - d1and p. V& thus have

op) =p+p-1=2p -1,

and clearly (1) holds.
For a card in the lower half of the deck, we observe that O0(k + 1)
=2, 0(k+2)=4 -+, 002k - 1) = 2k - 2, and 0(2k) = 2k; or more

clearly:
Otk t1)=2=2k-1+2:z2k+1)-1 (mod 2k - 1)
Okt 2)y=usz2k-1+%+u=2(k+2)-1(mod2k - 1)

02k - 1) =2k -2=2k-1%2c-222(2k -1) -1 (mod 2k - 1)
O(2k) = 2k = 2k - 2+ 2k = 2(2k) - 1 (mod 2k - 1) .

{I]

W have just demonstrated that for k + 1. < p < 2k, and hence all p, for-
mula 1 holds. O

Proposition 2. In a deck of size 2k, the effect of one In faro
shuffle on a card in positionp isto move it to position

I(p) = 2p (mod 2k + 1) . (2)

Proof. W again first consider a card in the upper half of the deck.
For a card at position p, an In shuffle will increase its position by p,
since an In shuffle places a card between 1 and 2, 2 and 3, **-, p - 1L and

p, plus a card on top of 1. Thus we have for 1 = p = K,
Ip)=p+p=2 ,

and clearly (2) holds.

las zero is not assigned as a position number, the card in position
k will be taken to position 2k - 1. Further, the card in position 2k may
be effectively ignored as an Out shuffle does not affect it, though for-
mula (1) does apply if we agree that 0(2k) is 2k and not 1, for,
O(2k) O 2(2k) - 1 = 4k - 1 = 2k (mod 2k - 1) .
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For a card in the lower half of the deck, we observe that I(k + 1)
=1, I(k+2) =3, «--, I(2k - 1) = 2k - 3, I(2k) = 2k - 1. As before,
we can see that formula (2) holds for k + 1. < p < 2k, and hence all p. O

In considering decks for mathematical purposes, the terms téf?’ a-nﬁ
bottom are purely arbitrary. It makes as much sense for our purposes to
number a deck from bottom to top as to number it from top to bottom.

We now wish to define a transformation that reverses the ordering
of an even deck. Simple calculation shows that the desired transformation
is

Tp =2k +1-p.

Further, T is idempotent, since

T2(p) =2k + 1 - (2k+ 1 -p) =p .

Proposition 3. In a deck of size 2k, the following relations hold:

0(Tp) = TLO(p)] (3)
I(Tp) = TlI(p)] (1)
Proof.
o(Tp) = 2Tp - 1 (mod 2k - 1)

=2(2kt1-p)-21(mad 2k - 1)
=ukt2-20-1 (mod2k - 1) .

Hence

O(fp) - 2k -1 =2k +1-2 -1 (mod 2k - 1)

= -2+ 1 (mod 2k - 1)
= -0(p) .

Thus

O(Tp) = 2k + 1 - 0(p) = TlO(p)] .
The proof of (4) follows with similar ease. [

The significance of Proposition 3 is that we need only determine the
action of a shuffle on the first k cards on an even deck to be able to
determine the action on the final k cards.

Proposition 4. In a deck of size 2k, the effect of one Out followed

by one In faro shuffle on a card in position p isto move it to position
up - 2 (mod 2k +1) , 1L=p =Kk

01(p
up +2 (mod 2k + 1, k+1sp<2k .,
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Proof. We shall first show that we need only consider the action
upon the first k cards, and then apply the transformation T to determine
the action on the last k:

0I(Tp) = TLOI(p)] .
Using (3) and (4) we have
0I(Tp)

I(0(1p))

I(TLo(p) N
T(Ito(p)1)
= TLOI(p)] .

Thus we need only consider the action upon the first k cards. By Propo-
sition 1 we know that
0(p) = 2p - 1 (mod 2k - 1) .
However, since we are dealing with the first k cards, we may write
op) =2p -1, 1l<pc<k.
Applying an In shuffle, we have
0I(p) = I(0(p)) = up - 2 (mod 2k + 1) , L=p=k.
Now, if k + 1 <p < 2k, we can writep = 2k + 1 - g, where 1 < q = k.
By our first conclusions, we have
OI(p) = OI(2k + 1 - q) = 2k + 1 - 0I(q) ,
or equivalently
OI(p) - 2k - 1 = 0I(q)
-4gq + 2 (mod 2k + 1)
Thus
OI(p) = 2k T 1 - 4g + 2 (mod 2k + 1)
8k T 4 - ug + 2 (mod 2k + 1)
=upt 2 (mod 2k +1) , k+1s<ps<2k.

Thus our proposition is proven for all p. O

Proposition 5. In a deck of size 2k, the effect of one In followed
by one Out faro shuffle on a card in position p isto move it to position
Up -1 (mod 2k - 1) , L5p =<Kk
Io(p
4p - 5 (mod 2% - 1) , k+1<ps2k.

Proof. As in Proposition 4, we can show that I0(Tp) = TLIO(p)], and

then proceed with parallel arguments. O

Thus far we have answered questions 1) and 2). There remains the
problem of defining a faro shuffle for an odd deck, which we shall now
proceed to do. =

The distinguishing property of a faro shuffle is that after the deck
i s separated into two portions, each portion is perfectly interlaced into
the other, and any two cards adjacent before the shuffle are now separated
by one card (cards k and k * 1 excepted). Hence any definitions for faro
shuffling an odd deck must incorporate these features.

Definition. For a deck of size 2k - A, an Out faro shuffle is per-
formed by adding a conventional 2kth card, performing a standard Out faro
shuffle on the pack of 2k, and then removing the conventional card. For
a deck of size 2k - 1, an In faro shuffle is performed by removing the
(2k - 1)st card, performing a standard In faro shuffle on the remaining
2k - 2, and then returning the (2k - 1)st card.

Brief consideration will show that the odd decks are separated into
portions and each interlaced into the other. Further, any two cards ad-
jacent prior to the shuffle are now separated by one card (cards k and
k + 1 excepted for Out shuffles, and cards k - 1 and k excepted for In
shuffles).

Proposition 6. In a deck of size 2k - 1, the effect of one Out faro
shuffle on a card in position p isto move it to position
0(p) = 2p - 1 (mod 2k - 1) .

Proof. By the definition of an odd Out faro shuffle, we are Out
shuffling a deck of size 2k, with a conventional 2kth card. As this card
is never affected by an Out shuffle, we need not consider it in our cal-
culations. The movement of the other 2k - 1 cards with which we are con-
cerned is according to the formula in Proposition 1. Thus for our deck
of size 2k - 1:

0p) =2p -1 (mod 2k - 1) . 0
Proposition 7. In a deck of size 2k - 4, the effect of one In faro

-

shuffle on a card in position p isto move it to position
I(p) = 2p (mod 2k - 1) .

Proof. By the definition of an odd In faro shuffle, the (2k - 1l)st



card remains in position 2k - 1 and the position of the remaining cards could have been developed parallel to the proofs of Proposition 4 and'

is determined by the formula in Proposition 2 using a deck of size 2k - 2 Proposition 5 by the introduction of a transformation I*(p) = 2k - p.

Hence for our deck of size 2k - 1- The significant identities for decks of size 2k - 1 are

I(p) = 2p (mod 2k - 1) . O O(T*p) = T*[I(p)] and I(T*p) = T*[0(p)] . A
Similarly Proposition 4 and Proposition 5 could have been proven by the
Proposition &. In a deck of size 2k - 1, the effect of one Out fol- elementary method. However by so doing, the important symmetry of the
lowed by one In faro shuffle on a card in position p isto move it to faro shuffle with respect to the top and bottom of a deck would have been
position overlooked.
0I(p) O 2p (mod 2k - 1) . ' As one final problem of interest, we consider the action of a series
Proof. First, if 1 <p <k, we have by Proposition 6: of Out and In faro shuffles upon the top card. Ve shall place one restric-
op) = 2p - 1. ‘ tion upon the series of shuffles, namely that prior to any shuffle the
Applying an In shuffle, we have by Proposition 7 top card will not be in the bottom portion of the deck. This restriction
OI(p) =4p - 2 (mod 2k - 1) , 1lsp<=Kk. allows us to ignore the various moduli and use equalities rather than
Nw if K+ 1<ps<2k-1, w can writep = k + g, wherel < q <%k - 1. congruences.
Thus by Proposition 6: For a deck sufficiently large, we can easily see from our various
O(p) = 2(k + q) - 1 (mod 2k - 1) equations that
-2k 4 2k - 1 (mod 2k - 1) ey =Tp- (2" -1 ad I'(p)=p.
=29 (mod 2k - 1) . Further, as the top card is in position p = 1, our equations are even
Sincel < q £ k - 1, we thus have: simpler.
ok + q) = I(2q) , 1<qsk-1. Since any number of Out shuffles does not affect the top card, we
Now applying an In shuffle yields by Proposition 7: shall assume that our series of shuffles begins with a series of In shuf-
OI(k + q) = I(2q) fles. A few direct calculations show that
Lg (mod 2k - 1) *y = 2%,
Uk + 49 - 2 (mod 2k - 1) Iaob(1)=2a+b~2b+1,
o Wk + q) - 2 (mod 2k - 1) IaObIE(l) B 2a+b+c ) 2b+c . 3 ’
0I(p) =up - 2 (mod 2k - 1) , k+1lsps2k-1, CALRES A
proving the proposition for all p. 0 " With this information in hand, we consider the problem from a slight-
ly different point of view. Rather than being concerned with the position
With almost identical arguments, we can also prove the following of the top card, we wish to know how many cards are on top of it. Thus,
proposition. » following a series of a In shuffles, thereare 2% - 1 cards above the top

card. Using a prime to indicate the number of cards above the top one,

P/Logau',ti.on 9. In a deck of size 2k - 1, the effect of one In fol- )
we get the following table:

lowed by one Out faro shuffle on a card in position p istomove it to

(1

n
N
]
[

Y

position
IO(p)Elip-l(mOko—l). =9 + 2 4 oeee + 279+ 2+ 1,

rAPy1r = 2P _ P

It should be noted that proofs of Proposition 8 and Proposition 9
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Expressing the number of cards above the top card in terms of sums
of powers of 2 brings to mind the thought of using base 2 notation. Thus
we have:

[f1y = (zz---1(1)1y = 11---1
Nttt
a terms a terms

[laob(l)]é = [II+:+100+++0(1)]] = FTPPR oo™ = ...
a b a b
terms terms terms terms

These equations can be formulated in a general rule which we state
without proof: To determine the position of the top card following a
series of In and Out faro shuffles, first transform the I's to 1's and
the O's to 0's. This number (given in base 2) tells how meny cards are
above the top card. Similarly, to place m cards above the top card,
convert m into base 2 notation and then transform the 1's to I's and 0's
to O0's. By applying the resultant series of shuffles to the deck, the
top card will be in the required position, m + 1.
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APPLI CATI ONS OF FINI'TE DI FFERENCES :
TO THE SUMMATI ON OF SERIES

by H. Jééeph Straight
Western Michigan University

Basically, Finite Differences deals with the changes which take place
in the value of a function when the variable is increased by a certain
amount. This classical branch of mathematics has many interesting appli-
cations; in this case to the problem of finding a nice, compact formula

for the aum of »n terms of a particular series.
Definition 1. Let f(x) denote a function of x. Define the first
difference of f(x), written Af(x), to be:
Af(z) = flx + 1) - flz).
Similarly, we can define the second difference of f(x):
A2f(x) = A(Af(x)).
Ard we can define inductively the kth difference, k 2 2:

o) = 2% re)).

Theorem 1. Let f(x) and g(x) be functions of X. Then:

1. A[f(x) + glx)] = Af(x) + Aglx).
2. Alf(x)eg(x)] = flx)aglx) + gl + 1)Af(x).
3. If Ccis a constant,
(a) Ac = O,
(b) Aef(x) = edflx).
'Proof. The proofs of 1 and 3 are straightforward and follow directly
from the definition. The proof of 2 involves the trick of adding a con-

venient zero, and is given here.
ALf(x)g(x)] = flx + Lglz + 1) - Fflzlg(z) + [Flxdglz + 1) - flx)glz + 13]
= flx)glx + 1) - flxdglx) + gl + 1)f(x + 1) - glx + L)f(x)

= flx)aglx) + glx + 1)Af(x).
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Example 1. Find A= where a i s some constant.

Aa:c - a.‘L‘+l _ a:x:
= d(a - 1).

Definition 2. Let a and b be constants and n a non-negative integer.

(at b52)™ = [a + bxlla + b(x - 1)1-+[a + blz - n + 1)]

(@ + b)® = 1.

(Note when a = 0, b = 1 we have 2™ = 2z - ootz - n + 1))
Theorem 2. Ala + bx)(n) = bula + bx)(”'l)_

The proof of this theorem again follows from the definitions.

) . 1)

Conolhary. hx

Next we come to a very important theorem, due to Newton, which gives
a formula for expanding any polynomial in terms of its difference func-

tions evaluated at 0.

Theonem 3 (Newton). Let p(xz) be a polynomial of degree n. Then

(&N (2), " (n)
5 Azp(g?x G e i 2(23x

pla) = p(o) + 21O
The right side of the above is called the factorial form of p(x). (Note
the similarity between Newton's theorem and Maclaurin's expansion for
p(x).)

Proof. Assumep(x) = a + alac(l) t azx(z) T oeee t ana:(”).

Differencing p(x) n times, we obtain the following identities:

Ap(z) = a, + 2a2x(l) + Saax(z) + oere nanx(n'l)
2 - ... _ (n-2)
Ap(z) = 2a, + 6agx + + n(n l)anx
ap3(x) = Bay + +c- + nn - L)(n - 2)anx(n_3)
n, \
Ap(x) = nla, .

Setting x = 0 in the above equations we have

A2p(0 " (0)
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Substituting these values back into the expression for p(x), we obtain the
result of the theorem as stated.

Example 2. Use Newton's theorem to express p(x) = x3 - 22 + E ]
in factorial form. Also find ap(x).

Method 1. Construct a Difference Table.

& p(z) Ap(x) A%p(z) A3p(x)
0 -1 2 2 6

1 1 y 8 6

2 5 12 1

3 17 26

y 43

(2) (3)
Loplx) = -1+ Qx(l) + 212—,-— + —6—‘”3—!

(3) (2)

= + @ + 2 - 1.

Nw that we have p{(x) expressed in factorial form, we can use Theorem
2 to find aAp(x).

Ap(x) = 3.70(2) + 2x(l) + 2.

Method 2. Synthetic Division.

11 -2 3 -1=f(0)

0 1 -1
2 1 -1 2 = Af(0)
0 2 )
_ A%f(0)
1 1= —
o
Y ()
3l
Soplx) = x(s) + x(2) + 2x(l) - L

At this point, given F(x), we can compute AF(x) = f(x). Consider
the reverse problem; that is, given f(x), can we find F(x) such that “
AF(x) = f(x)?
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Example. Find =7 . (i2 + ui + 3).

Definition 3. Let f(xz) be given. |If there existsafunction F(x)
n

such that F(x) = fix), then F(x) is called the finite i<ntegral of fix) E (22 + 4 + 3) = A" (x? + ux + 3)|7]1.+1
and we write z=1 P
= A'l[:x:(Q) + sat) 4 3]!2+l
F(x) = A7 1f(x) .
_ x(a) Sx(2) 3 (1) ntl
Theonem 4. Let f(x) and g(x) be functions and ¢ a constant. Then: ==t *3% |
-1 + | + a-1
1 BRERGE) T gle)] S ARG 4 ) - 2n3 + 1512 + 31n
2. 8lef(@) = ealf (@) ®
3. ATF(x)ag(x)] = flx)glx) - a7 Hg(x + Vaf@)] . Thus, given any sum where the general term is a polynomial, use

Newton's theorem to express the polynomial in factorial form, and then
From our previous theorems and examples on differencing, we know the ) o :
use the formulas to find the finite integral.

following:
. I Exampfe. Find z;_, 2.
1. 813" = s @ # L.
a-1 i’ 7 1 o tl
) o # bx)(n+1) El 127 = A7 [x27] 1
-1 = NI O 1=
2. A '[(a + bx) '] = o D .
) x(m'l) In order to evaluate this finite integral we need to use integration by
3, A'l[x ] = T parts:
V¢ are now ready to tackle the problem of finding a compact formula AT Fle)ag(x)] = flx)glx) - a7 l[glx + 1)af(x)].

for the m of = terms of a given series. Let f(x) be a function and +1
9 Let f(x) = = and Ag(x) = Qx; then Af(x) = 1 and g{x + 1) = o , glx) = o

suppose we wish to find EZ_O F(£). Suppose we can find a function g(x)

Hence
such that Ag(x) = f(x). Then g(x + 1) - g(x) = f(x). Hence
2 .4 iy 1, 4Xtl o ntl
g(1) - g(o) = £(0) Zl 12" = [x2" - a71(2 )]|l
=
- 1) = il
g(2) - g(1) : F(1) - (2 - ETLy il
: ST 1
gn + 1) - gn) = f(n) . = 2n+l(n - 1) + 2.
Adding these n equations we obtain: 2i-1
o Examplt. =, 1

n

2 FG) = grn+ 1) - glo) = g@|y s
=0 From our knowledge of differencing we assume that

or in general 2w - 1 _ flx) 2

A_l
e -1 z-1
3 s = g@|)t 2 2

I =a

1he summation problem thus becomes a problem in finite integration!
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or

( fle+ 1) fle) _2x -1
X

o 2x—l 2x-1

This implies tha

flx + 1) - 2f(x) = 4x - 2.

"(z) must be linear, so assume f(x) = ax * b. Substituting in above we

obtain -ax + a - b = 4x - 2, and soa = -4and b = -2. Thus

N - n+1
21':11 = 9.8 A_l 2.'l?x-ll:|
iz1 2t Gl 2 il
RECEEN s
TRE[ T2
n-omL o 1
= lim|- -2—nn—i—l—3— + 6]
wﬂn\. o
= 6.

In this paper we have attempted to give the reader a brief intro-
duction to the calculus of finite differences and to one of the appli-
cations in the area. For further study, the interested reader is referred
to the references given. The books by Miller and Richardson make excel -
lent texts for independent study, while the book by Boole is of a more

advanced nature.
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the literature on the lives of some of its creative geniuses. Few, if
any, have had more impact, or have been more creative, than Abel. The
excellent writing and scholarship of Oystein Ore makes this book one that

every Pi Mu Epsilon Journal reader should enjoy.

Stochastic Analysis. By 0. G. Kendaff and E. F. Harding (Editors). John
Wiley and Sons, Inc., Nav York. 1973. xiii * 465 pages. $29.95.

Stochastic Geometry. By E. F. Harding ad V. G. Kendalf (Editors). John
Wiley and Sons, Inc., Nav York. 1974. xiii * 400 pages. $29.95.

These two volumes were assembled as a tribute to the memory of the bril -
liant young mathematical statistician Rolle Davidson who died prematurely
in a mountain climbing accident. The editors have gone to great lengths
to provide all the material necessary for an up-to-date account of these
subjects. They provide an excellent introduction in reference work for

one prepared to do serious research in these areas.

Stochastic Differential Equations, Theory and Applications. By Ludwig

Annold. John Wiley and Sons, Inc., Nav York. 1974. xvi + 228 pages. $17.95.

"This book is geared for mathematicians, physicists, engineers, economists,
and al |l those interested in noise problems in dynamical systems." For
those with the graduate level mathematics background in these applied
areas, including some probability theory, this book provides a textbook,
introduction and reference work to this currently popular subject, in-

cluding the use and exposition of 1t6 integrals.
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Uniform Distribution of Sequences. By L. Kuipers and H. Niederreiter.
John Wiley and Sons, Inc., Nav York. 1974. xiv * 390 pages. $24.50.

The basic theory on this subject first appeared in a famous paper by
Hermann Weyl in 1916 and dealt mainly with the fractional parts of real
numbers in the unit interval (0,1). This scholarly work surveys the
development from then to now, listing over 900 references, and shows some
of the fascinating ramifications into such topics as probability theory,
ergodic theory and topological algebra. The extensive list of exercises
serves to complement the text, along with the historical notes, in sur-
veying the literature. It should provide a graduate student or mathema-
tician from a related field with an excellent preparation for doing
research in this area.

Characterization Problems in Mathematical Statistics. By A M. Kagan,
Yu. V. Linnik and. C. Radhakrnishna Rao. John Wiley and Sons, Inc., Nav
York. 1973. xii t 499 pages. $22.50.

'This extensive work on mathematical statistics deals with problems in
estimation, testing hypotheses, linear models, factor analysis, sequential
estimation, among others, by systematically studying the important prop-
erties of the families of parent distributions and their relations to

the distributions of the statistics used in the statistical inferences."
Mawy characterizations of classes of distributions are given along with
some analysis techniques of interest in their om right. The approaches

should lead to some more interesting research.

Fundamentals of Queueing Theory. BY Donald Gross and Cark M. Hawnis.
John Wiley and Sons, Inc., Nav York. 1974. xvi * 556 pages. $22.50.

'This book provides a comprehensive and current treatment of queueing
theory--from the development of standard queueing models and general
queueing methodology, to applications and implementation in industry and
government. The undergraduate background of most engineering, physical
science, and mathematics majors, as well as some economics, business
administration, and social science majors, would be adequate.” Besides

the large variety of models and bibliography, there are discussions of
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statistical inference and design and control of queues and discussion of
various aspects of simulation models including Monte-Carlo generation,
bookkeeping aspects, simulation programming languages and statistical

-

consideration. PO

Traffic Science. Edited by Denos *C. Gazis. John Wiley and Sons, Inc.,
Nawv York. 1974. wviii + 293 pages. $19.95.

For those with similar backgrounds and interests required for the pre-
vious book, this is "everything you wanted to know about traffic and were
afraid to ask.” With interesting details and extensive references, five
experts have covered the subject very well in the following four chapters:
Flow Theories, Delay Problems for Isolated Intersections, Traffic Control--
Theory and Application, and Traffic Generation, Distribution, and Assign-

ment.

Handbook of Applied Mathemtics, Selected Results and Methods. Edited
by Carl E. Pearson. Ven Nostrand Reinhold Company, Nsv York. 1974.
xiii + 1265 pages. $37.50.

Twenty authors have combined to provide basic mathematical tools for the
engineering and science type applications of mathematics from high school
algebra to spectral theory. Although any reader will have some of the
material at his command, he may find it handy to have it available in a
reference work that is almost certain to have details on some subjects
that he has never seen and may well need. In this way he is likely to
find any background for the more advanced subjects in this same book.
Some of the advanced subjects are quite thoroughly covered but there are
always good references if additional material is needed. Muh of the
material is classical from a mathematical point of view but still useful,
and thus current, in mawy applications. This may cause a modern student
to have some difficulty with the tensor analysis since the references
are also mainly classical. He mey find it a useful reference, however.
Coverage is indicated by the following list of chapters and their authors:
Formulas from Algebra, Trigonometry and Analytic Geometry by H. Lennart
Pearson, Elements of Analysis by H. Lennart Pearson, Vector Analysis by
Gordon C. Dates, Tensors by Bernard Budiansky, Functions of a Complex
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Variaole by A. Richard Seebass, Ordinary Differential and-Difference
equations by Edward R. Benton, Special Functions by Victor Barcilon,
First Order Partial Differential Equations by Jirair Kevorkian, Partial
nifferential Equations of Second and Higher Order by Carl E. Pearson,
Integration, Linear Operators, Spectral Analysis by Frank H. Brownell,
Transform Methods by Gordon E. Latta, Asymptotic Methods by Frank W. J.
Clver, Oscillations by Richard E. Kronauer, Perturbation Methods by G. F.
Carrier, Wave Propagation by Wilbert Lick, Matrices and Linear Algebra
by Tse-Sun Chow, Functional Approximation by Robin Esch, Numerical Analy-
sis by A. C. R. Newbery, Numerical Solution of Partial Differential
Equations by Burton Wendroff, Optimization Techniques by Juris Vagners,

Probability and Statistics by L. Fisher.

Linear and Nonlinear Waves. By G. B. Whitham. John Wiley and Sons, Inc.,
Nev York. 1974. =xvi + 636 pages. $22.50.

For students in applied mathematics, engineering, physics, or geophysics
with a mathematical background including such subjects as transform
techniques, asymptotic expansion of integrals, solutions of standard
boundary value problems, and related topics, this is a beautiful, modern,
thorough and well written discussion of the subject. |t covers a wide
variety of applications and emphasizes throughout the relationships and
results of the non-linear theories. 1t should be fascinating to a wide

variety of readers with applied mathematical interests.

Computational Methods for Matrix Eigenproblems. By A. R Gowtlay and
G. A, Watson. John Wiley and Sons, Inc., New York. 1973. xi + 132

pages. $9.95.

For mathematics, physics, engineering or other students having a need
for the computational aspects of matrix eigenproblems, and who have had
an elementary course in matrix theory, this is a excellen+ in*roduction
“o +he subject-. For those who do not have a separate course availalle
in such problems, this book should make a good complemen* to a course in

numerical analysis or applied mathematics or a basis for a reading course.
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WHCOME TO NEW CHAPTERS

The Journal welcomes the following new chapters of Pi Mu Epsilon

which were recently installed:

-

FLORIDA ETA at the University of North Florida at Jacksonville, in-
stalled May 22, 1974 by Houston Karnes, Council President.

GEORGIA GAVWA at Armstrong State College, installed April 2, 1974,

by Houston Karnes, Council President (also reported in the |ast issue).

MISSISSIPPI BETA at Mississippi College, installed May 7, 1974,

by Houston Karnes, Council President.

NORTH CAROLINA ZETA at the University of North Carolina at Wilmington,
installed May 16, 1974 by Houston Karnes, Council President.

PENNSYLVANIA NU at Edinboro State College, installed May 4, 1974,

by Eileen Poiani, councilor (also reported in the last issue).

TEXAS THETA at the University of Houston, installed October 3, 1974,

by Houston Karnes, Council President.

ok
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FRATERNITY KEY-PINS AVAILABLE

Gold key-pins are available at the National Office at the
special price of $5.00 each, post paid to anywhere in the
United States.

Be swre to indicate the chapter into which you were initiated
and the. approximate date of, initiation.

Orders should be sent to:

Pi Mu Epsilon, Inc.

601 EIm Avenue, Room 423
University of Oklahoma
Norman, Oklahoma 73069
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PROBLEM DEPARTMENT

Edited by Lwn Bankof§
Los Angeles, California

This department welcomes problems believed to be new and, as a rule,
demanding no greater ability i n problem solving than that of the average
member of the Fraternity. Occasionally we shall, publish problems that
should challenge the ability of the advanced undergraduate or candidate
for the Master's Degree. Old problems displaying novel and elegant methods
of solution are also acceptable. Proposals should be accompanied by solu-
tions, if available, and by any information that will assist the editor.

Solutions should be submitted on separate sheets containing the name
and address of the solver and should be mailed before the end of November
1975.

Address all communications concerning problems to Dr. Leon Bankoff,
6360 Wilshire Boulevard, Los Angeles, California 90048.

PROBLEMS FOR SOLUTION

338. Paoposed by Hung C. L&, Southern Colorado State College.

Let (O)a be a circle centered at O with radius a. Let P, any point
on the circumference of (0), be the center of circle (P). What is the
radius of (P) such that it divides the area of (O) into two regions whose

areas are in theratio s:¢?

339. Propesed by Paul Endds, Budapest, Hungary.

Ad. < d. < sss i N = . . -a,
Let a; 9 be ajs_equence of integers (al, aJ) 1; az+2 241
Prove that j == < =,
2 Qo — A, a.
7+1 1 7

340. Proposed by Charles W. Trigg, San Diego, California.
The arithmetic mean of the twin primes 17 and 19 is the heptagonal
number 18. Heptagonal numbers have the form n(5n - 3)/2. Are there any

other twin primes with a heptagonal mean?
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341. Proposed by Jack Garfunkel, Forest Hil£s High School, N York.
Prove that the following construction trisects an angle of 60°.
Triangle ABC is a 30°-60°-90° right triangle inscribed in a circle.
Yedian OM is drawn to side AB and extended to M' on the circle. Using
a marked straightedge, point ¥ on AB is located such that CN extended"-e:l,ﬁ
N' on the circle makes ¥N' = At?. Then CN trisects the 60° angle ACM

342. Proposed by David L. Silvewman, West Los Angeles, Califonnia.

In The Gare of the Century two players alternately select dates of
the Twentieth Century (1 January 1901 - 31 December 2000) subject to the
following restrictions;

d1. The first date chosen must be in 1901.

2. Following the first play, each player, on his turn, must advance

his opponent's | ast date by changing exactly one of the three "components
(day, month, year).

3. Impossible dates such as 31 April or 29 February of a non-leap
year are prohibited.

The player able to announce 31 December 2000 is the winner.

a. Wha are the optimal responses by the second player to first
player openings of 4 July 1901? 25 December 1901?

b. Wo has the advantage and what is the optimal strategy?

c. Wha is the maximum number of moves that can occur if both players

play optimally?

343. Proposed by R. Robinson Rowe, Sacramento, California.

Current serious promotion of a tunnel under the English Channel,
combined with the energy crunch, has renewed interest in a fall-through
tunnel under Bering Strait. From Cape Prince of Wales on Alaska's Seward
Peninsula to Mys Dezhneva (East Cape) on Siberia's Chukuski Peninsula is
51 miles. A straight tunnel 58 miles long could be driven in earth below
the bed of the Strait, which is 20 fathoms deep near each shore and 24
fathoms near mid-Strait. A frictionless vehicle could ‘fall® through such
a tunnel without motive power. Hw long would it take? (At latitude 66°
North, the earth's radius is 3954 miles and the acceleration of gravity,
g = 32.23 ft/sec2.)

344. Proposed by J. A H. Hunter, Toronto, Canada.
Three circles whose radii are a, b and ¢ are tangent externally in
pairs and are enclosed by a triangle each side of which is an extended

tangent of two of the circles. Find the sides of the triangle.



345.  Proposed by VLadimin F. Tvanoff, San Carlos, California.

Resolve the paradox:
LW+ /) = /T + V=T = /T + D=+ /T

346. Proposed by R. S. Luthar, University of Wisconsdin, Janesville.

The internal angle bisectors of a convex quadrilateral ABD enclose
another quandrilateral EFGH. Let FE and G1 meet in ¥ and |l et GF and HE
meet in N. If the internal bisectors of angles BvYH and ENF meet in L,
show that angle #LM is aright angle.

347. Pnoposed by Joe Van Austin, Emory Univernsity, Atlanta, Georgia.

It is easy to show that f(x) =S—'n—)i'9—3r—+lforw> 0,

X
9 : 99x
(i) has a linear asymptotey = - -t 1, and
(ii) f(x) crosses this asymptote for all X = nx for n = 1,2,++.

Show that the derivative f'(x) is never zero for X > 1.

348. Proposed by Bdb Priefipp and N. J. Kuenzi, The University of
Wisconsdin-0shkosh.

When the digits of the positive integer N are written in reverse order,
the positive N' is obtained. Let N+ ¥' = S. Then Sis called the sum
after one reversal addition. A palindromic number is a positive integer
that reads the same from right to left as it does from left to right.

The nth triangular number T = n(n + 1)/2, n = 1,2,3,+=-.

Prove that there are infinitely many triangular numbers which have

a palindromic sum after one reversal addition in the base b, where b is

an arbitrary positive integer > 2.

349. Proposed by R. Sivaramaknishnan, Govermment Engineering College,
Trnichun, India.
If 2 (n>1) is the highest power of 2 dividing an even perfect

n+l

number m, prove that a(m?) + 1= O0(mod 2 ), where o(m) denotes the sum

of the divisors of m.

SOLUTIONS

292. [Spring 1973; Spring 1974] Proposed by Jack Garfunkel, Forest
HilLs High School, FRushing, New York.
If perpendiculars are constructed at the points of tangency of the

incircle of a triangle and ex*ended outward to equal lengths, then the
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joins of their endpoints form a triangle perspective with the given tri-
angle.
I. Revised solution and eomments by Clayton ¥. Dodge, Orono, Maine.

The solution published in the Spring 1974 issue is invalid since; _ -
in general, perspective is not transitive. The following solution avoids
that error.

Let AP cut BC at S and let T and U be the corresponding points for
BQ and R (Figure 1). Let D be the foot of the altitude from A to BC, F
the area of triangle ABC, a, b, ¢ the lengths of its sides, and s its semi-
perimeter. Let m be the common length of PX, @/ and RZ. Then AD = 2F/a.
From similar triangles AD and PSX, D§/SX = AD/FX = 2F/am, whence SX/DX
= §X/(DS + SX) = am/(2F + am). From right triangle ABD, D = (e¢2 - AD?)
= (1/a)(a2e? - ur2)Y? Since X = s - b, then X = BY - BD (in this
figure), so

1/2

= 9" e _ L 2.2 _ yp2yl/2
SX'2F+am(S b) a(ac uf2) 5

2F(s - b) + m(a2e? - up2)t/2

BS = BX - SX = 5F T am

with similar expressions for CS, ¢7, AT, AU and BU.

Since S, T, U all divide sides BC, @ and 4B internally, it is easy
to see that BS«CT-AU/CS+AT«BU = +1, whence the three Cevians AP, Bg, R
concur by Ceva's theorem. Their point of concurrence is the center of
perspective for triangles ABC and PQR.

Q

P
FIGURE 1



108

If the perpendiculars are erected inward instead of outward, the
proof holds with m replaced by -m. In this case one must also consider
whether any of the points S, T, U are external and adjust the signs of

the affected segments accordingly.

11. Comment by Howard Eves, Univernsity of, Maine at Orono.

Although homothety is transitive, perspective in general is not. In
the figure, lines BP and BR are isogonal conjugates with respect to vertex
B of triangle ABC, since triangles BX and BRZ are congruent by SAS.
Similarly for the lines CP and QQ and for lines AQ and AR Nw it is known
that if at each vertex of a given triangle ABC a pair of isogonal lines
be drawn, then the triangle A'B'C', whose vertices are the points of in-
tersection of pairs of these lines belonging to the same side of the given
triangle, is perspective with the given triangle. (See Howad Eves, Con-
cerning some perspective triangles, Ame. Math. Monthly, 51 (1944), 324-

331.) This theorem establishes the desired result.

111, Solution by the Proposen.

Let D, E, F, denote the intersections of AP, Bg, and QR with the sides
BC, @ and AB respectively. Through P, Q and R draw lines parallel to
BC, @ and AB terminated by JK, Z¥ and ¥0 as in Figure 2.

FIGURE 2

By the congruence of quadrilaterals BIPX and ZROB, we establish the equality
of FO and JP. Similarly K = LQ and @ = NR Hence JP+LQ+NR/RO-PK-GM = 1.
Then (NR/RQ)(JP/PK)(LQ/@M) = 1. 1t follows by similar triangles that
(AF/FB)(BD/DC)(CE/EA) = 1. Hence triangles ABC and FQR are in perspective.
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313. [Fall 1973; Fall 1974 (corrected)] Proposed by Mwwray S. Keamkin,
“¢id Moton Company, Dearborn, Michigan.

Give an elementary proof that

(1 + 8 cos24)(1 + 8 cos?B)(1 + 8 cos2C) = 64 sin24 sin® sin2C , ~
where A, B, ¢ are the angles of an acute triangle ABC.

Remark. J. Gillis gave a proof using calculus techniques in Problem
£ 2119, American Mathematical Monthly, (1969), p. 831.

Solution by the. Proposenr.

Expand the given inequality into the form
64 cos24 cos2B cos?C + 8(cos24 + cos?B + cos?C) 2 7
Nw using the known identity
cos24 + cos?B + cos?C = 1 - 2(cos A cos B cos ()
for the angles of an arbitrary triangle, we obtain
(8 cosA cosBcos C-1)2 20
with equality only if A = B = C.

Comment by the. Problem Editor..
As mentioned in the Fall 1974 issue, Victor G. Feser of St. Louis,

Missouri and R. Robinson Rowne of Sacramento, California found the erroneous

version unsolvable. Rowne subsequently offered an algebraic proof.

314. [Spring 1974] Proposed by J. A H. Hunter, Toronto, Canada.
Sow that

sin?45° - sin215°  sin 80°

sin230° - sin210° sin 30"

Solution by Zazou Katz, Beverly HilLs, California.

sin?u45° - sin215°  (sin 459 + sin 15°)(sin 45° - sin 15°)
sin?30° - sin210°  (sin 30° t+ sin 10°)(sin 30° - sin 10°)

_ sin 30° cos 15° sin 15° cos 30°
sin 20° cos 10° sin 10° cos 20°

sin 60° sin 30°
sin 20° sin uo°

Letting 8 = 20° in the formula
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sin 36 = 4 sin 6 sin(60° - 6) sin(60° *+ 6) ,
we find that sin 60° = 4 sin 20° sin 40° sin 80°. Hence,

sin?459 - £in?15° 4 sin 20° sin 40Asin 80° sin 30° _ sin 80° .
£in?30° - sin210° sin 20° sin &0° sin 30°

ALso solved by JEFFREY BERGEN, Undergnraduate, Brookfyn College, N. Y.
ROBERT CALCATERRA, Brooklya, N. Y., TOMMY R. CHRISTIAN, Louisiana Tech
University, Ruston, Louisiana; CLAYTON W. DODGE, University of Maine at
Onono; R. C. GEBHARDT, Hopatcogn, N. J.; N. J. KUENZI, The University of
Wisconsin-0shkosh; CHARLES H. LINCOLN, Rafeigh, N. C.; BOB PRIELIPP, The
University of Wisconsin-0shkosh; PAOLO RANALOI, Akron, Ohio; R. ROBINSON
ROWE, Sacramento, California; GREGORY WULCZYN, Bucknell University, Lewdis-
burg, Pa.; and the Proposen.

315. [Spring 1974] Proposed by Charles W. Trigg, San Diego, Cali-
fornnia.

Ore type of perpetual calendar consists of two white plastic cubes
resting on a tilt-back base. n each face of each cube is a single digit.
The digits are so distributed that the cubes can exhibit any date from
01l to 31 on their front faces.

Could this type of calendar be constructed if a base of numeration
smaller than ten were employed?

1. Solution by R. Robinson Rome, Sacramento, California.

The answer is "Yes'. Bases 2, 3, 4 and 5 can be eliminated as re-
quiring 3 or more digits, but for Base 6, each cube can be faced with the
digits 0, 4, 2, 3, 4, 5, to exhibit the 31 days with the sequence 01, 02,
03, 04, 05, 10, A4, --+, 41, 42, 43, 44, 45, 50, 51.

I1. Solution by Truin Jungreis, Age 171, Brookfyn, N. V.
No arrangement is possible for a radix less than 6 since the number

25 requires at least 3 digits for those, and only 2 6-face cubes are

present.
Radix 6: 0, 1, 2, 3, 4, 5, and 0, 1, 2, 3, L, 5.
Radix 7: 0, 1, 2, 3, 4, 5, and 1, 2,.3, 4, 5, 6.
Radix 8: 0, 1, 2, 3, 4, 5, and 0, 1, 2, 3, 6, 7.

Radix 9 and Radix 10 are i npossi bl e, even though the problem presumes a
solution for Radix 10, unless numbers | ess than 10 do not have a leading

Zero.

Proof for Radix 9: The numbers A1, 22 and 33 are required, using 6
of the available 12 faces. The 6 digits O, 4, 5, 6, 7, 8 remaining pre-
clude repeating any other digit. The O can be paired with only 6 of the
8 digits 1 through 8 so not all of the 014 to 085 can occur. - e

Proof for Radix 10: Ten separate digits and the need for 11 and 22
uses twelve faces so 01 through 08 cannot all occur.

ALso soLved by LOUIS H. CAIROLI, John Cannoll Univensity, ClLeveland,
Ohio; CLAYTON W. DODGE, University of Maine at Orono; VICTOR G. FESER,
St. Louds, Missourni; R. C. GEBHARDT, Hopatcong, N. J.; ARTHUR M. KELLER,
Nw York Gamma, Brookfyn, N. Y., CHARLES H. LINCOLN, Rafeigh, N. C.; BOB
PRIELIPP, The. University of Wisconsin-Oshkosh; THERESA PRATT, N. Easton,
Maine; and the. Proposen.

Feser, Keller, Beghardt and Dodge suggested solutions for Base 10

in which numbers less than 10 have a leading zero but with 9 being ob-

tained by turning 6 upside down.

316. [Spring 1974] Proposed by Zazou Katz, Beverly Hills, California.
If you were marooned on a desert island without a calculator or tables
of trigonometric functions, how would you go about determining which is

greater:

2 tan_l(/Q— - 1) or 3 tan T(1/1) * tan (5/99) 2

Comment by the Problem Editon.

Because of the remarkable similarity displayed by the nine correct

solutions that were received, it would be appropriate to consider the
published version an amalgam of those offered by the listed solvers.
SoLution.
- -1 _ -1 _ -
Let A = tan (v - 1), B = tan ~(1/4), C = tan Ys/99).

Then tan o4 = 2tan A _ 2(/2 - 1) =1

1-tan24 1- (3 - 2/2)

tan23=—2—t—aﬁ—B_—1—[ﬁ—=—°—
1 - tan?B 1 -"1716 15
:—t—a-H—B e
tan B 1—t621n B anB=%§-
_ tan 3B t+ tan C _
Hence 'tan(SB+C)-l_tan B tan O -
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Therefore, 3B t ¢ = ‘l:an_l(l) = 24 and the expressions are equal.

Sofved by JEFFREY BERGEN, Brooklyn College, Brookfyn, N. Y. LOUIS
H. CAIROLI, Syracuse University, S. Euckid, Ohio; ROBERT CALCATERRA,
Brooklfyn, N. Y., CLAYTON W. DODGE, Univensity of, Maine at Orono; VICTOR
G. FESER, S-t. Louis, Missowri; ROSALIE JUNGREIS, Brookfyn, N. Y.; CHARLES
H. LINCOLN, Rafeigh, N. C.; R. ROBINSON ROWE Sacramento, California;
GREGORY WULCZYN, Bucknellf Univensity, Lewisburg, Pa.; and the. Proposer.

317. [Spring 1974] Proposed by the. Editon of the. Problem Department.
A rectangle ADBB is constructed externally on the hypotenuse AB of
aright triangle ABC (Fig. 3). The lines @O and CE intersect the line AB
in the points F and G respectively. a) If [E = ADYZ, show that
AGZ + FB2 = AB2. b) If AD = DE show that FG? = AFRGB.

C C

FIGURE 3

Solution by Leonard Bann, Beverly HilLs, California.
At F and G erect perpendiculars to AB, cutting AC and B in J and K.

By triangle similarity

4p _cp _pE 4 @ DEZ_un2
JF CF TG FG2 ~ JF?

Also, JF/AF = GB/KG = GB/JF. Hence JF?2 = ARGB, and FG2/DE? = AF+GB/AD?.
a) If DEZ = 24D?, FG? = 24F+GB = 24F(FB - FG) or FG? + 24F<FG = 24F+FB.
Then FGZ + 24F+FG + (AF? + FB2) = 24F-FB t (AF2 *+ FB2) or (FG + AF)?2 + FB2
= (AF t FB)2, and AF2 + FB2 = AB2?,

b) If CE = AD, FG? = ARGB.
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Also soLved by CLAYTON W. DODGE, University of Maine at Orono; ZAZOU
KATZ, Beverly Hiles, California; ALIZA DUBIN, Far Rockaway, Nw York;
CHARLES H. LINCOLN, Rafeigh, N. C.; R. ROBNSON ROWE Sacramento, Calif.;
and GREGORY WULCZYN, Bucknell University, Lewisburg, Pa. -< -

318. [Spring 1974] Proposed by R. Robinson Rowe, Sacramento, Cali-
fornia.

Two equal cylindrical tanks, Tank A above Tank B, have equal orifices
in their floors, capable of discharging water at the rate of 13v% gallons
per minute, where h is the depth of water in feet. At 10:20 a.m.r Tank B
is empty and water is 10 feet deep in Tank A, as discharge begins. At
noon Tank A is just emptied. Wha was the maximum depth in Tank B, and
when? Hw deep is the water in Tank B at noon, and when will it be empty?
Sclution by the. Proposen.

Let the varying depth of water be a in Tanhk A and b in Tank B. [et
m be the unit volume of each tank in gallons per foot of depth. Let g be
the discharge of either tank in feet of depth per minute. Let ¢ be the
elapse of time in minutes.

Then for Tank A:

g= - %% 7 (1)
Ard for Tank B, from inflow minus outflow:
¢=%-2va-/m (2

Then, dividing (2) by (1):

-2L-1- (3)
Nw let b = au? so that (3) becomes db=-(1 - u)da (u)

Differentiating, db=u?da + 2audu = -(1 - u)da
2audu = (1 - u + u?)da .

Whence, to integrate:

2udu da
= (5)

1-u+ u?

log(l-u+u2)+—2tan2u'l=-1oga+c

/3 V3

When @ = 10, b = u = 0, € = log 10 - n/3/3 ., Then:
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log e 0.2 ‘tan_l £ (6)
a(l - u +u?) /3 2-u
10 2 -1 V3
a = ————— exXp|~- — tan (7)
1-u+u? o 2 - u)

Thus, lacking an explicit relation between a and b, we can use (7) and (4)

with any value of u and obtain a contemporaneous set (a,b). For what

follows it will now be convenient to |l et the constant
exp(-m/3¥3) = k = 0.546293016 , (8)
To find the maximum value of b, it should be obvious that b will increase

with time as shown in (2) until b = @, when outflow equals inflow, then

decrease. Hence at this maximum, » = 1 and from (7)
b = a = 10k? = 2.9843 6059 feet . (3)

To find the depth in Tank B at noon, we have a = 0 and # = =, which cannot
be substituted in (7), but in (6) a(l - u + u2) = b and u/3/(2 - u) = -V3

whence
b = 10k* = 0.8906 4081 feet . (10)

For determination of time of two events, it will be convenient to set

t = 0 at noon. Then from (1)

dt = - A (11)
13v/a
t=-3%'—3‘{—‘7+c.

Whena =0, t=0, s0C=0. Whena-=10, £ = -100, m = 65/10. Thus,
t = -10/10q . (12)

So when b is a maximum and a = b = 10k?2,

t, = -100k = -54.6293016 minutes (13)

and the clock time is

Tl = 11:05:22.2419 am . (14)

For the run-out of Tank B after noon, we note that (12) is equivalent to
saying that for any depth h the run-out time is 10¥10A. At noon, there
is no longer any inflow into Tank B and the depth is 10k . Hence the run-
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aQuT time is

t2 = 100k2 = 29.8436 0592 minutes (15)

and the clock time is

T2 = 12:29:50.6164 pm. ’(;.6)
Comment.

Note that the 4 required quantities, given in (9), (10), (13) and
(15) are respectively 10k2, 10k*, -100k and 100k2 and that (8) defines
k in a closed form. | believe these are the only items of the tandem
tank problem which can be so simply expressed.

I purposely put 13 in the text of the problem as a red herring. It
cannot be used without some other data like m, but this can be computed
from the runcut time as in deriving (12).

Also solved by R. C. GEBHARDT, Hopatcong, N. J.

319. [Spring 1974] Proposed by Professon M. S. Longuet-Higgins,
Cambridge, England.

Let A", B', €' be the images of an arbitrary point in the sides BC,
CA, AB of a triangle ABC. Prove that the four circles AB'C' , BC'A', CA'B' ,
ABC are all concurrent.
I. Scfution by R. Robinson Rowe, Sacramento, California.

The general triangle can be oriented with any one of its vertices,
A, at a Cartesian origin, another, €, on the positive x-axis, and the
+hird, B, with a positive ordinate. Then if it can be shown that the
circumcircle ABC and two image circles AB'C' and CA'B' are concurrent at
some point &, it would follow that the triangle could be reoriented with
B at the origin and A on the x-axis to find circumcircle ABC and image
circles BC'A' and AB'C' also concurrent and necessarily at the same point €.

Hence with full generality, let the coordinates be A = (0,0), ¢= (r,0),
B = (s,t) and the arbitrary point 2 = (p,q). Then the equation of the
circumcircle ABC is:

rs - g2 - ¢2

2 +y2 - rx + ( 7 Jy = 0. 1)

The image points of Preflected in AC and BC are: B' = (p,-q) (2)
and using the equations for -

AB: sy - tx =0 (3)
PC': sz tty -sp-1tq=20, (u)
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o e [ps2 - pt? + 2stq qt? - gs? + 2stp) ) (5)
8?2 + 2 i 82 + t2

The general form for a circle through the origin is
22 +y2 tax + by = 0 . (6)

Substituting the coordinates of B' and €' for X and y and solving for the
coefficients a and b derives the equation of circle AB'C’,

2

x+y2-—(s‘p;tq)x+(3q;tp)y=0. (7)

Solving (1) and (7) simultaneously for the two intersections of circles
ABC and AB'C' checks that one is at (0,0). The other at point Q has the

coordinates:

z, = (83 + st? + gst - pt? - rs2)F

¢ (8)
Yg = t(qt + ps - »rs)F

in which F is the fraction

_ gt + ps - pr
T (rs - 82 - qt)% + (st - pt)?

Next, by steps analogous to (2) to (7), the equation of image circle

CA'B' is derived as

x2+y2_(r+p)(r-s)—th+q(r—s)—t(r—p)y
r - 8 r -8
+u(r;f)8' rt = o (10)

Finally, substitution of the coordinates of Q in (8) confirms that
Q is indeed a point on image circle CA'B' with its equation (1). Using
the argument of the opening paragraph, this completes the proof.
11. Solution by CLayton W. 'Dodge., University of Maine. at Orono.
Inscribe the triangle in the unit circle centered at the origin of
the Gauss plane. From the opposite similarity of triangles 4'BC and PBC,

we obtain
a'=b + e - pbe
with similar expressions for points B' and ¢'. Letting Z denote the second

point of intersection of circles ABC and AB'C', we have

lal = [p| = le] = |2] = 1

o

Q
Q
Q
Qt
[
"
o

b'p b' B 1
c'e' c! é! 1

Under the assumption that A, B, C, Z, and P are distinct points and with
the aid of considerable algebra, we solve this determinant for a, obtaining

z = abcaig g:g
Since this expression is symmetric in A. B, and €, it follows that Z lies
on the other two stated circles also.
Observe that there is no need for the point P to lie inside the tri-
angle; it is necessary only that P not coincide with a vertex. O course,
for some positions of P, one or more of the given circles become straight

lines, but the proof holds for these cases too.

111. Comment by Howard Eves and Clayton 'Dodge., University of Maine. at
Orono.

Call the point of concurrence the Longuet-Higgine point L for the
arbitrary point P with respect to triangle ABC, and inscribe triangle ABC
in the unit circle centered at the origin rotated so that the orthocenter

Hlies on thereal axis. Thenh =a + b + ¢ isreal and

In H Eves, A Survey of Geometry, Vol. 2 (Allyn and Bacon, 1965), Theorems
12.4.15 to0 12.4.17 show that if f = abc, then F is the in-Feuerbach point
for the tangential triangle; that is, F is the point of tangency of circle
ABC and the ninepoint circle of the triangle whose sides are tangent to
circle ABC at A, B, and C respectively. Since we have taken h=a +*+ b t+ ¢
real, then the real axis is the Euler line for triangle ABC. If point P
lies on the real axis, then its Longuet-Higgins point L is given by & = abc
sinceat bt e -pisreal. That is, the Longuet-Higgins point for any-
point on the Euler line is the in-Feuerbach point for the tangential tri-
angle. Furthermore, the complex representation for L shows that the locus

of all points P whose Longuet-Higgins point is a given point L on circle
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ABC is a line through H (and not just that portion of the line inside
circle ABC); if HP makes an angle 8 with the Euler line, then L is rotated
through angle -26 from F. Hence, any point on circle ABC is the Longuet-
Higgins point for some line of points through H. Observe that, if P = H,
then all four stated circles coincide, so every point on circle 4BC is a

Longuet-Higgins point for H.

Comment bq the Probfem Editon.

The interested reader would do well to refer to the following articles

pertaining to this fascinating problem:

1. M. S. Longuet-Higgins, Reflections on a Triangle, Mathematical
Gazette, Vol. 57, No. 402 (1973), 293-296.

2. M. S. Longuet-Higgins, Reflections on Reflections, Mathematical
Gazette, Vol. 58, No. 406 (1974), 257-263.

3. S. N. Collings and H. Martyn Cundy, Reflections on Reflections,
Mathematical Gazette, Vol. 58, No. 406 (1974), 264-272.

320. [Spring 1974] Proposed by H S. M. Coxeter, Toronto, Canada.
Prove that the projectivity ABC * BD (for four collinear points)
is of the period 4 if and only if H(AC, BD).
I. Solution by Clayton W. Dodge., University of Maine at Onono.
Since ABC ® BCD, the projectivity maps A to B, Bto €, and € to D.

If the period is 4, then we must have that D maps to A, so ABDD = BCDA.

Since a projectivity preserves cross ratio, then
(AB, CD) = (BC, DA) .

AC DB _ BD AC
CB AD ~ DC B4 °

DCBA = - (CB-AD ,
¢DBA _
DA CB ~ 8

which is equivalent to H(AC, BD). This argument reverses to establish

the converse.

11. Sofution bq Gregory Wulezyn, Bucknell Univernsity, Lewisburg, Pa
H(ABCD) w™ H(BCDX) w H(CDXY) =~ H(DXYZ) m H(XYZU)

The following analysis then applies:

From H(ABCD) w H(BCDX), it follows that X = A
From H(BCDA) ® H(CDAY), it follows that Y

From H(CDAB) ® H(DABZ), it follows that Z = C,
ence ABC ~ BCD is a projectivity of period 4.

321. [Spring 1974] Proposed bq Nosmo King, Raleigh, Nornth Carodina.
Dedicated t o0 the. memony of Leo Meser.)
According to Merten's Theorem

| (_’]_ = }_) ~ L-.Y_
p<n r log n
where y denotes Euler's constant (0.57721...) and where the product on
the left is taken over all primes not exceeding n. (See Hardy and Wright,
The Theory of Numbers, p. 351, or Trygve Nagell's Introduction to Number
Theory, p. 298). Can you estimate

| (1 - 3) ?
p<n F
Solution by R. Robinson Rome, Sacramento, Califoania.

This i s a nicely concealed hoax: ﬂ-(l = %) = 0-%- ser = 0.

onjN

Also solved by VICTOR G. FESER, St. Lowis, to.; CHARES H. LINCOLN,
Rateigh, N. C.; and the. Proposen.

322. [spring 1974] Proposed by Jack Garfunkel, Forest HiLLs High
Schoot, New Yolk.

It is known that the ratio of the perimeter of a triangle to the sum
of its altitudes is greater than or equal to 2//3. (See American Mathe-
matical Monmthly, Problem E 1427, 1961, pp. 296-297.) Prove the stronger

inequality for the internal angle bisectors ta, t, and ta:

b
2(ta+tb+tc)§/3—(a+b+c)

equality holding if and only if the triangle is equilateral.

Solution by Lowis H. Cainoli, Synacuse Univens.ity, South Euclid, Ohio.
The value of the internal angle bisector ¢ in *erms of the sides of

a triangle ABC is given by

2

= Vgbe(s - a)

ta*brc

where s is the semiperimeter of *he triangle. [See D. Kay, College
Gecmetry, Holt, Rinehart and ¥ins-on, 1969, p. 195.] Combining this
expression with the inequali+y 2/2¢ < b + @, we obtain ¢ < vs(s - Q) ,
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with the result that £ + ¢, + £, < Vs(Vs —at Vs —btis -e). Itis
known that the sum of the radicals in parenthesis does not exceed ¥3s.
[See 0. Bottema et al., Geometries Inequalities, p. 16.] The stated result
follows, with equality if and only if a = b = a.

Also solved by ZAZOU KATZ, Beverly HiLLs, California and the Proposeir.
Katz pointed out that this problem was considened by Luis A Santald in
his paper Some Inequalities Between the Elements of a Triangle, pubfished
i n Math. NoZae 3 (19u3), 65-73.

323. [Spring 19747 Proposed by David L. Sifverman, Los Angeles,
California.

Call plane curves such as the circle of radius 2, the square of side
4, or the 6 x 3 rectangle in Fig. 4 Zsometric if their perimeter is numer-
ically equal to the area they enclose. Wha is the maimum area that can

be enclosed by an isometric curve?

3 ISOMETRIC
4 CURVES
6 6 4 4
4
3
FIGURE 4

I. Sofution by N. J. Kuenz{i and Bob Prielipp, The. University of Wisconsin-
Oshkosh.

Given a positive real number N, there is an isometric curve which
encloses an area greater than N. For example, consider the isometric
rectangle whose adjacent sides have measures a and b where 2 < a < b.

Since ab = 2a + 2b, @ = 2b/(b - 2). Hence ab = 2b2/(pb - 2), so the area
enclosed increases without bound as b increases without bound. (A similar

example can be obtained using an isometric right triangle.)

11. Sofution by Clayton W. Dodge, University of Maine at Orono.

There is no upper limit to the enclosed area as seen in the rectangle
of length 2 + x and width (4 + 2z)/x with x > 0. The common value of its
area and perimeter is (8 t+ 8x + 2x2)/x, which increases without limit as
X approaches zero.

Also sofved by LOUIS H. CAIROLI, Syracuse University, S. Euckid,
Ohio; VICTOR G. FESER, St. Lam,, Missouni; R. C. GEBHARDT, Hopatcong,

y N
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J.; JOHN TOM HURT, Texas A & M University; THEODORE JUNGREIS, Brooklyn,

¥.; ARTHUR M. KELLER, New Yohk Gamma, CHARLES H. LINCOLN, Raleigh, N. G
SIDNEY PENNER, Bronx Community Coflege of CUNY; PAOLO RANALDI, Akion, Ohio;
and R. ROBINSON ROME, Sacramento, California.

324. [Spring 1974] Proposed by R. S. Luthar, University of Wisconsin,
Janesville, Wisconsdin,
Evaluate
o
o HT

. § X

lim
Ny

|. Solution by Henry J. Ricando, Manhattan Coflege, Bronx, N. Y.

It is a well-known theorem due to Cauchy (see, for example, Knopp's
Infinite Sequences and Series, p. 33) that if a sequence {ak} converges
to L, then so does the sequence {EE:I ak/n} of arithmetic means. Since
j/(G t1) -1 asj > =, the desired limit is also equal to A

11. Solution by Clayton W. Dodge., University of Maine at Oxono.
¢ have

=1
since £J=1 1/(j + 1) < In n and ;Llim (In n)/m = o.
> 0

ALso solved bg KEN BLACKSTEIN, Mamaroneck, N. Y., R. C. GEBHARDT,
Hopatcong, N. J.; ARTHUR M. KELLER, Now Yoik Gamma; CHARLES H. LINCOLN,
Raleigh, N. C.; PETER A. LINDSTROM, Genesee Community College, Batavia,
New York; BOB PRIELIPP, The. University of Wisconsin-0shkosh; and the
Proposen.

325. [Spring 1974] Proposedby Charles W. Trigg, San Diego, California.

Sow that there is only one third-order magic square with positive

prime elements and a magic constant of 267.
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Sofution by Gregory Wulezyn, Bucknell Univensity, Lewisburg, Pa.

Since 267 is the magic constant, the middle prime must be 267/3 = 89.
There are six prime triples with 89 as one element and with sum equal to
267. They are

5, 89, 173
11, 89, 167
29, 89, 1u9
41, 89, 137
47, 89, 131
71, 89, 107

From these triples can be formed the magic square

29 (167 71
131 89 L7
107 | 11 [149

It is not possible to use the two other triples (5, 89, 173) and
(41, 89, 137) either with elements at the end or in the middle to form
a magic square with sum 267. Hence this magic square iS unique.

ALso solved by LOUIS H. CAIROLI, John Carnroll University, CLeveland,
Ohic; CLAYTON W. DODGE, University of Maine at Orono; VICTOR G. FESER,
St. loudis, Missouni; CHARLES H. LINCOLN, Rafeigh, N. C.; BOB PRIELIPP,
The University of Wisconsin, Oshkosh; R. ROBINSON ROWE, Sacramento, Cali-
fornia; and the. Proposen.

Comments by the. ProblLem Editon.

Apologies are due to Jean J. Pedersen of The University of Santa

Clara, California for the inadvertent omission of credit for her solution
to Problem 304 [Fall 19731. Accompanying a thorough analysis of the prob-
lem were colored, construction paper models illustrating extensions of

the problem theme t o truncated forms of the five Platonic Solids.

ERRATA FOR LAST ISSUE

In the diagram on page 7 of Volume 6, No. 1, vt'/2 should be changed
to et'/2. The Journal regrets the typographical error in one of the names
in the list of manuscript award winners, page 23. The name Dennis C.

Swolarski should have been Dennis C. Smolarski.
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