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CONTINUOUS NON-DIFFERENTIABLE FUNCTIONS 

H i s t o r i c a l l y a  t h e r e  have been two types of  mathematical discoverya 
- 

i n t u i t i v e  reasoning and r igorous prpof. These two methods of  thinking 

complement each o ther  per fec t ly .  I n t u i t i v e  thought can he lp  one make 

grea t  l eaps  of  understanding. However, one simple e r r o r  can lead  i n t u i -  

t i v e  thought on a wild goose chase. Rogorous proofa  on t h e  o ther  hand, 

can harbor fewa i f  anya mistakes because of  t h e  contradict ions t h a t '  in- 

ev i tab ly  a r i s e .  Unfortunatelya r igorous proof implies something t o  prove. 

The object  o f  t h e  proof musta innsome sense,  be i n t u i t i v e l y  reasonable. 

The most p r o f i t a b l e  approach t o  understanding mathematics i n  general ,  and 

continuous non-different iable  funct ions i n  p a r t i c u l a r ,  i s  an a l t e r n a t i n g  

progression of  i n t u i t i o n  and r i g o r .  

Before t h e  nineteenth century, t h e  terms cont inui ty and d i f f e r e n t i a -  

b i l i t y  were only i n t u i t i v e  ideas.  Euler and Leibniz used ltcontinuous" 

t o  describe 'la funct ion spec i f ied  by an a n a l y t i c  formula" (El] a p. 405). 

In  1817, Bernhard Bolzano gave a workable d e f i n i t i o n  of  con t inu i tya  i n  

t h e  modem sense ([ l ] ,  p. 951). Cauchya i n  1821, a l s o  defined cont inu i ty ,  

i n  a usable forma i n  Cows dranaZyse aZg6brique. Fina l ly ,  K. W. T. Weier- 

s t r a s s  gave what we c a l l  t h e  modern E ,  6 d e f i n i t i o n  of  c o n t i n G t y :  A 

funct ion f ( x )  is  continuous a t  x = xo i f  given any p o s i t i v e  number 

t h e r e  e x i s t s  a 6 such t h a t  f o r  every x i n  t h e  i n t e r v a l  I X  - x 1 c 6, - 0 
lf(x) - f(xo)  1 < E ( [ 1 l a  p. 952). I n t u i t i v e l y  t h i s  is  of ten  described 

a s  a funct ion whose graph one can "draw" without l i f t i n g  one 's  penc i l  off 

t h e  paper. - 
Even a f i e r  con t inu i ty  had been r igorously defineda t h e  connection 

between cont inui ty and d i f f e r e n t i a b i l i t y  was not wel l  understood. Most 

mathematicians of Cauchyls time bel ieved t h a t  con t inu i ty  implied d i f f e r -  

e n t i a b i l i t y  except a t  i s o l a t e d  po in t s  ( [ l l a  p. 955). h Ju ly  l a a  1872, 

Weierstrass presented h i s  c l a s s i c  example of  a continuous non-differen- 

t i a b l e  funct ion:  - 



Notice t h a t  each in te rpo la t ion  causes t h e  s lopes t o  a t  l e a s t  double i n  . 

is an odd i n t e g e r  and b is  a p o s i t i v e  constant l e s s  than 1 such 

> 1 + ( 3 ~ 1 2 )  ([ l ] ,  p. 956Â where t h e  following comment occurs: 

h i s t o r i c a l  s ign i f icance  o f  t h e  discovery t h a t  con t inu i ty  
s not imply d i f fe ren t iah i1 i ty . - .was  p e a t .  It made mathe- 

t i c i a n s  a l l  t h e  more f e a r f u l  of  t r u s t i n g  i n t u i t i o n . . . . )  

e t h a t  t imey  many mathematicians have devised r igorous proofs 

t h a t  various funct ions a r e  continuous but  not  d i f f e r e n t i a b l e .  

e proofs a r e  elegant  i n  themselves. Howevery they a r e  not e a s i l y  under- 

ood without a knowledge of  advanced calculus.  The beginning calculus 

e n t  is  usual ly l imi ted  t o  understanding t h e  f (x )  = 1x1 is not dif-  

f e r e n t i a b l e  a t  x = 0 because of  t h e  sudden change i n  slope. A r igorous 

understanding may be beyond a beginner's g raspy  but  i n t u i t i v e  ins igh t  

need not be. For exampley i n  1927, Fred W. Perkins of  Harvard University 

published a proof f o r  an elementary example of  a continuous non-differen- 

t i a b l e  funct ion [2]. H i s  proof consis ted of  four  p a r t s .  He first de- 

f ined  h i s  funct ion by an in te rpo la t ion  method over a dense domain. Sec- 

ondlyÂ t h e  d e f i n i t i o n  was extended t o  t h e  e n t i r e  r e a l  domain. Perkins 

then proved t h a t  t h e  funct ion was continuous. F i n a l l y y  he demonstrated 

t h a t  h i s  funct ion was not  d i f f e r e n t i a b l e .  Though t h e  proof involves t h e  

l imit- point  concept and r e l a t e d  theoremsy an i n t u i t i v e  understanding 

can be gained from t h e  o r i g i n a l  d e f i n i t i o n  with t h e  a i d  of a few p a p h s .  

The funct ion is  defined as follows. Given two po in t s  (xu, ya) 

(xby yb) with x # xb, def ine two new in te rpo la ted  p o i n t s  (xly yl) and 
a 

(x2Â y2)  by: 

1 
x1 = x + - (xb - xu) , 5 

a 3 y1 = ya + g (yb - ya) 3 

yb - be t h e  s lope o f  t h e  l i n e  from (x  , ya) t o  (xby yb Let M(a Â¶b = - xb - x a a 
Algebraic ca lcu la t ion  gives: 

and 

absolute  value. Alsoy by t h e  def 

5 
Iyl - gal ' 1yb - gal Y 

1yb - ~ 2 1  

To define t h e  funct ion on 0 

in ing  equations: 

s x-s 1 choose f (0 )  = 0 and f ( 1 )  = 1. 

The in te rpo la t ion  process defines t h e  funct ion on t h e  domain: 

{x : x = L; p is  a non-negative i n t e g e r  and p 5 3n1. 
3n 

The var iab le  n is  t h e  number of in te rpo la t ions  required t o  evaluate  t h e  

funct ion a t  t h a t  point .  The i n t e g e r  n is c a l l e d  t h e  order  of  t h e  i n t e r-  

polat ion.  For exampley t h e  0th order  is (0 and ( l y l )  because no in-  

te rpo la t ions  a r e  required t o  ob ta in  t h e  a r b i t r a r i l y  chosen points .  In- 

t e r p o l a t i n g  once r e t u r n s  A 2 and 2 A a s  t h e  first order  po in t s .  
(3' 6) [3' 6) 

The second order  points  a r e :  [$ g] [$ &] e t c .  From (1)  it can 

be seen t h a t  

A s  a r e s u l t  o f  (2 )  t h e  d e f i n i t i o n  o f  t h e  funct ion can be extended t o  t h e  

r e a l  domain by a l i m i t i n g  process 131. 

One can reason t h a t  t h e  funct ion is continuous from t h e  f a c t  t h a t  i n  

(2) a s  two po in t s  a r e  c l o s e r  together  (as  n + -1 t h e  funct ion values 

grow c loser  and c loser  together .  The f a c t  t h a t  i n  each order  of  i n t e r-  

polat ion t h e  s lopes a t  l e a s t  double shows t h a t  a s  n + - t h e  s lopes become 

i n f i n i t e l y  large.  

However, by following t h e  four  defining in te rpo la t ion  equations t h a t  

Perkins g ivesy  one can p l o t  t h e  f i r s t s e v e r a l o r d e r s  of  in te rpo la t ion  of  

t h e  func t iony  a s  shown on t h e  following pages. It has o f ten  been s a i d  

t h a t  a p i c t u r e  is  worth a thousand words. 

The successive orders  of  i n t e r p o l a t i o n  show t h e  constant ly increasing 

s lopes and t h e  tendency toward an i n f i n i t e  number of  ttabsolute-value- 
4 

l i k e t t  bends i n  t h e  graph. One can therefore sense i n t u i t i v e l y  t h a t  t h e  

i n f i n i t e  orders  of in te rpo la t ion  would form a non- different iable  funct ion.  
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Also a s  t h e  order  increases,  neighboring po in t s  become c l o s e r  t o g e t h e r .  

h i n t i n g  t h a t  one could lldraw'l t h e  graph of  t h e  funct ion without l i f t i n g  

one's penc i l  from t h e  paper. In  o ther  wordsy it can be i n t u i t i v e l y  seen 

a s  a continuous funct ion t h a t  is no t  d i f f e r e n t i a b l e .  - 
A second and d i f f e r e n t  example was devised by B. A.  Van der  Wae%a@in 

[41 i n  1930. Rather than using an in te rpo la t ing  process? t h i s  funct ion 

is devined by summation. Let - 

where g ( x )  = dis tance  from x t o  t h e  neares t  in teger .  The proof of  con- 

t i n u i t y  follows from t h e  f a c t  t h a t  t h e  i n f i n i t e  sum of  a sequence o f  con- 

t inuous funct ions which converges uniformly is i t s e l f  continuous. Van 

der  Waerden p ~ o v e d  t h a t  t h e  s e r i e s  w a s  no t  d i f f e r e n t i a b l e  by f ind ing  a 

sequence of  values x + hn (which approach x a s  n goes t o  i n f i n i t y )  such 

f ( x + h n )  - f ( x )  
t h a t  does not  approach a l i m i t  a s  n -+ - ( see  Appendix). 

hn 

The proof is not  easy t o  understand. An i n t u i t i v e  p a s p  of  t h e  q u a l i t i e s  

of  t h e  funct ion,  however, may be obtained from t h e  graph o f  t h e  function. 

Upon p l o t t i n g Â  a s e r i e s  o f  pyramid-like shapes appears. The i n t e r e s t i n g  

f a c t  i s  t h a t  upon magnificationÂ t h e  same p a t t e r n  reappears. The small  

l'bumpsll on t h e  hor izon ta l  s t e p s  of  t h e  pyramid t u r n  out t o  be a r e p e t i t i o n  

of  t h e  o r i g i n a l  pyramid. These smaller  pyramids have "bmpsl' which a r e  

again a r e p e t i t i o n  o f  t h e  o r i g i n a l  pa t te rn .  This ind ica tes  i n t u i t i v e l y  

t h a t  t h e  funct ion is not  d i f fe ren t iab le ,  because tak ing  a der iva t ive  in-  

volves taking smaller  and smaller  i n t e ~ v a l s  on t h e  domain i n  an attempt 

t o  have t h e  s lope of  t h e  funct ion approach a constant value. This func- 

t i o n  approaches no constant  value a s  smaller  i n t e r v a l s  a r e  taken. It 

merely repea t s  i t s e l f  ad infinitwn. (For graphs s e e  following pages. ) 

The use of  such p l o t s  y i e l d s  a d i f f e r e n t  type o f  beauty t h a t  can 

be l o s t  i n  a proof. Beginning s tudents  can g e t  a glimpse o f  what is in-  

volved i n  f u r t h e r  s tud ies .  The experienced mathematician is  sometimes 

surpr i sed  i n  r e a l i z i n g  t h a t  t h i s  is  what t h e  p a p h  o f  a continuous non- 

d i f f e r e n t i a b l e  funct ion looks l i k e .  ThusÂ t h e  cycle  is complete. The 

i n i t i a l  concepts of  con t inu i ty  and d i f f e r e n t i a b i l i t y  were impotent w i t h o k  

r igorous def in i t ions .  Once t h e  r i g o r  is es tab l i shed ,  one can concentrate 

on t h e  i n t u i t i v e  beauty t h a t  these  ideas  represent .  
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APPENDIX 

Proof That Van der Waerden's Function 
Is Non-differentiable 

Let f(x) = 2 &dk where g(x) = dis tance  from x t o  t h e  neares t  
n=o 10" 

in teger .  Weshall consider only t h e  case 0 5 x 5 1. We wr i te  x i n  t h e  

form x = 0.a a - - . a  --â with the  agreement t h a t  x w i l l  be wr i t t en  as a 
1 2  n 

f i n i t e  decimal completed with zeros,  should t h e  opt ion a r i s e .  Then we 

can w r i t e  

To show t h a t  f(x) is not  d i f f e r e n t i a b l e  at a point  x we need only 

e x h i b i t  a sequence h -Ãˆ 0 such t h a t  t h e  l i m i t  of  rn 

does not e x i s t .  Consider t h e  sequence {h 1 where 
rn 

i f  m = 4 o r  9 ,  

otherwise 

Note t h a t  a s  rn -+ Â¥ 0 and x + h -+ x. Let 
hm m 

then 

where 2 depends on whether am = 4 o r  9.  

For n 2 rn t h e  terms o f  t h e  sum r (x) a r e  equal  t o  zero. This follows rn 
10" s ince  t h e  f a c t o r  - with n - rn > 0 simply t r a n s l a t e s  t h e  domain o f  g by 
10'" n an i n t e g r a l  amount and there fore  g = g(l0 x). Hence we 

need only consider  n < rn. 

10" n But adding - t o  (10 x) adds a one- to t h e  d i g i t  am. Therefore, 
10" 

1 < a + 1 < 5 o r  6 < a  + 1 < 10. But i n  these  two i n t e r v a l s  
m m 

which implies t h a t  

The case where a  m = 4 o r  9 is more involved. If we had t r i e d  

then we could not have guaranteed t h a t  each term of  P,,, = Â± (as  t h e  reader  

can v e r i f y  by t r y i n g  x = 0 .444-*- ) .  By using 

and an argument s i m i l a r  t o  t h e  above, it can be shown t h a t  

Hence, f o r  both cases ,  r m (x) = czi Â±I If m - 1 is even, then t h e  

sum cons i s t s  of  an odd number o f  t e r m s a n d r  m (x) is  an odd in teger .  Simi- 

l a r l y ,  i f  m - 1 is odd, then r m (x) is an even in teger .  Therefore, t h e  

sequence { r  m (x)} is  a sequence of  i n t e g e r s ,  a l t e r n a t i n g  even and odd, 

and does not converge. This implies t h a t  t h e  der iva t ive  does not  e x i s t .  
.. 
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W I L L  YOUR CHAPTER BE REPRESENTED I N  SEATTLE? 

I It is time t o  be making plans t o  send an undergraduate delegate  

o r  speaker from your chapter t o  a t t end  t h e  annual meeting of P i  

Mu Epsilon i n  S e a t t l e ,  Washington during August 14-18, 1977. 

Each speaker who presents  a paper w i l l  receive t r a v e l  funds of  

up t o  $300,  and each delegate ,  up t o  $150. A t  i t s  l a s t  business 

meeting t h e  Council voted t o  increase these funds s i g n i f i c a n t l y  

t o  help cover add i t iona l  t r a v e l  cos t s  due t o  t h e  g r e a t e r  dis tances 

l i k e l y  t o  be involved. Contact the  National Off ice f o r  more 

information. 
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TWO APPLICATIONS OF PSEUDOINVERSES 
- - , --  - 

The concept of  matrices da tes  back t o  t h e  1850's. Ever since, math- 

ematicians have been concerned with the  question "Since I can multiply 

two (conformable) matr ices  t o  g e t  a t h i r d ,  how do I undo t h i s  mulf ipl ica-  

t ion?" It was soon discovered t h a t  every square non-singular matrix has 

associated with it another matr ix,  ca l led  its inverse.  This inverse is  

the  most n a t u r a l  extension of  the  idea  of an inverse from ordinary multi-  

p l ica t ion .  I t  was a l s o  found (E. H. Moore, 1920) t h a t  a rectangular  o r  

s ingula r  matrix a l s o  has associated with it another matr ix,  ca l led  i t s  

pseudoinverse. This pseudoinverse is t h e  most n a t u r a l  extension of the  

matrix inverse.  

This paper has two purposes: The f i r s t  is  t o  introduce t o  under- 

graduates who have taken Linear Algebra t h e  pseudoinverse and second, t o  

o u t l i n e  two simple, though non- t r iv ia l  , appl ica t ions  of  them. The f i r s t  

appl icat ion should be access ib le  t o  anyone i n  an advanced calculus course 

(see Buck [31), the  second t o  anyone who has taken a course on ordinary 

d i f f e r e n t i a l  equations ( see  Kreider e t .  a l .  [41). 

1wkwduLction to P~e.udo-trtve~li&i 

F i r s t  we give t h e  d e f i n i t i o n s  of t h e  inverse and pseudoinverse and 

some proper t ies  o f  each. 

k&UWJkion 1 .  The inverse o f  a square, non-singular matrix A is 

t h a t  matrix X t h a t  s a t i s f i e s  t h e  following two equations: 

11) X A  = I 12) AX = I -1 

where I is t h e  i d e n t i t y  matrix of  proper -1 dimensions, usual ly wr i t t en  A . 
These two equations imply t h a t  A is square and non-singular.  

0e&ivuJLion 2 .  The pseudoinvme of an a r b i t r a r y  r e a l  matrix A i s  

t h a t  matrix X t h a t  s a t i s f i e s  t h e  following four  equations: 

PI1)  AXA = A PIS)  AX)^ = AX 

~12) XAX = x PI&) (xA)* = XA 
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T 
where (AX) s i g n i f i e s  t h e  transpose of  t h e  matrix AX. The usua l  no ta t ion  ~ ~ { , ~ u u ^ ~ i ~ ~  3. ~f f : g -> ff1 then f is t h a t  l i n e a r  transformation, 

f o r  t h e  matrix X is  A .  if it e x i s t s ,  t h a t  s a t i s f i e s  the  following equation 

Before going on it might be advisable f o r  t h e  reader  t o  take a 
l i m  

\ f ( x  + h )  - f ( x )  - f'h\ = 
\h\ ". v e r i f y  t h a t  i f  A is t h a t  chosen h+O -- - column and r o w  matr ix (vec tors )  and 

vec tor  then 

+ A =  

where I A l 2  is t h e  squared Euclidean 

In  t h e  theorems t h a t  follow we 

t h e  proofs  are omitted because they 

i n  the  references E l ,  pp. 2-31. 

m where X ,  h 6 F?. Since h 6 I? (considered as  a column vec tor )  and 

norm of  A .  

Ã 

f(.x + h )  - f ( x )  6 i f ,  f must be an n by m matrix. The l i m i t  e x i s t s  if 

it i s  t h e  same f o r  a l l  vectors  h a s  they go t o  zero. . 
Using pseudoinverses it i s  poss ib le  t o  s t a t e  an equivalent d e f i n i t i o n  

s t a t e  some f a c t s  about pseudoinverses; 
t h a t  has t h e  advantage of  having t h e  same appearance a s  the  def in i t ion  

a r e  easy exerc i ses  and can be found 
of  t h e  der iva t ive  f o r  r e a l  funct ions of a r e a l  var iable .  

T h e , o ~ m  1 .  I f  A is a square non- singular matrix then A = A-'. 

Thiornrn 2. I f  t h e  matr ix equation AX = B represents  any s e t  of  

cons i s ten t  l i n e a r  equations then 
+ AA B = B. 

ThSi~iwm 3. If AX = B is as i n  Theorem 2 then 

x = A+B + (I - A+A)Z 

where I is  t h e  proper i d e n t i t y  matrix and Z i s  any conformable matrix. 

( Z  must be conformable with respec t  t o  both mul t ip l ica t ion  and addi t ion . )  

Theorem 1 says t h a t  i f  you know how t o  ca lcu la te  t h e  pseudoinverse 

you know how t o  ca lcu la te  t h e  inverse.  Theorem 2 l e t s  you check f o r  

consistency, which i s  very important i n  overdetermined systems, and 

Theorem 3 shows how t o  use the  pseudoinverse i n  problem solving. 

Theorems 2 and 3 a r e  very useful .  For example, when analyzing a 
complicated e l e c t r i c  c i r c u i t  using Kirchoff 's  Laws one always end up 

with more equations than unknowns, t h a t  is, an overdetermined system. 

To solve f o r  the  c i r c u i t  parameters one merely checks f o r  consistency 

(they should be cons i s ten t ,  otherwise a goof was made i n  s e t t i n g  up t h e  

equations). Then one uses Theorem 3 .  There is  no need t o  el iminate  t h e  
superfluous equations. 

AppAccatcon~ 

Excwipk 1 .  In  t h e  theory of funct ions of severa l  r e a l  var iab les  

the  t o t a l  (as  opposed t o  der iva t ive  is defined as follows. 

Ve.6i.n,Ltion 4 .  I f  f : f l  -Ã  ̂8, then 

where d iv i s ion  by h means mul t ip l ica t ion  by the  pseudoinverse of  h.  The 

order  of  mul t ip l ica t ion  i s  taken s o  a s  t o  obtain t h e  ob jec t  with t h e  

l a r g e s t  matrix dimensions. 

For c l a r i t y  take f ( x ) ,  x and h t o  be column vectors;  then f '  is 

formed by pos t  mult iplying [f(x + h)  - ^(a)] by h+ and taking the  l i m i t .  

So f a r  it has only been claimed t h a t  the  two d e f i n i t i o n s  agree. 

Rudin [5, pg. 2151 shows t h a t  t h e  i j t h  component of  f (according t o  

Defini t ion 3 )  i s  

w e e  fi is  the  i t h  component of  the  m-vector f and x 3 is  t h e  j t h  

coordinate var iab le .  In the  following theorem we prove t h e  equivalence 

of the  two d e f i n i t i o n s  by showing t h a t  ( f ) i j  i s  the  p a r t i a l  der iva t ive  

of f .  I. with respec t  t o  x 3 according t o  Defini t ion 4 a l so .  

The.ohe.m 4 .  Defini t ions 3 and 4 a r e  equivalent.  

Proof. Let f (x )  â if", x f 1̂  be column vectors .  Then 



We focus our a t t e n t i o n  on the i j t h  component: 

For t h e  l i m i t  t o  e x i s t  it must be the  same regard less  of t h e  manner i n  

which it i s  approached. So l e t  h = h .E. where E .  i s  t h e  u n i t  vector  
3 3 3 

whose components a r e  a l l  zeroes except f o r  t h e  j t h  component, which i s  a 

one. Then ( 1 )  becomes 

The idea  of t h e  t o t a l  der iva t ive  of a funct ion of  s e v e r a l  var iab les  

i s  now seen t o  be the  obvious extension of  t h e  der iva t ive .  Whenever a 

concept makes r i g o r  i n t u i t i v e  it i s  wel l  worth t h e  time t o  teach it. 

~xamp& 2 .  Schields [6, pp. 180-1811 s t a t e s  t h a t  any l i n e a r  

d i f f e r e n t i a l  operator  can be expressed as a matrix with respect  t o  a 

y v e n  s e t  of vectors (funct ions) .  He then shows what t h e  f i r s t  and 

second der iva t ive  matrices look l i k e  with respec t  t o  the  b a s i s  vectors  

1, X ,  x 2 ,  . But he gives up a t  l a s t  because t h e  matr ices  he obtained 

are  s ingula r .  We show how pseudoinverses can be used t o  f i l l  i n  t h a t  

gap. To i l l u s t r a t e ,  we solve t h e  ordinary second order  l i n e a r  d i f f e r e n t i a l  

equation 

y -  - y" = 2x 

o r  

Ly s (D - ~ 2 ) ~  = 2x 

In terms of  the  b a s i s  polynomials the  matr ix f o r  L i s  

255 

Using Grev i l l e ' s  method i n  [2] the  pseudoinverse of L i s  given by . 

(- ; i). L+ = 1 
0 1/2 0 

Using Theorem 3 we have 

o r ,  in  polynomial form, 

There a re  numerous o ther  app l ica t ions  of pseudoinverses. They a r e  

usefu l  v i r t u a l l y  wherever matr ices  a re .  
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We present  a  simple geometric d e f i n i t i o n  and construct ion of t h e  tan-  

gent ,  a t  a  given point  P, t o  a  curve C i n  t h e  xy plane given by t h e  equa- 
r t i o n  y = ax , a r e a l  and P a p o s i t i v e  r a t i o n a l .  Our d e f i n i t i o n  w i l l  not  

requ i re  calculus o r  a n a l y t i c  geometry (although we use t h e  l a t t e r  t o  

simplify our no ta t ion) ,  and it is e n t i r e l y  based upon a  very i n t e r e s t i n g  

property of g e o m e t r i c  i - n v d a n c e  which t h e  tangent A t o  C a t  P possesses. 

We begin with a  parabola C ( see  Figure 11, with a  v e r t i c a l  ax i s  

chosen f o r  convenience. S t a r t i n g  a t  po in t  P ,  we first move d u n i t s  

towards t h e  a x i s  of  C, and then drop a  perpendicular.  Q i s  i t s  i n t e r-  

sec t ion  with C. S imi la r ly ,  we loca te  R on C, t h i s  time moving d u n i t s  

away from t h e  axis .  If d i s  "small", we see  t h a t  t h e  acute angle a 

FIGURE 1 

between t h e  chords PQ and PR is a l s o  " s m a l l " .  H i s t o r i c a l  approaches t o  

solving the  Problem o f  Tongents were of ten concerned with t h e  meaning 

of  t h e  " l imi t ing  posi t ion" of the  chords PQ and PR a s  e i t h e r  d o r  a 

approached 0. ( I t  took more than two thousand years  i n  t h e  development 

of mathematics and the  invention of  a n a l y t i c  geometry and calculus i n  

the  seventeenth century before a  p rec i se  i n t e r p r e t a t i o n  of  " l imi t ing  

posi t ion"  was given) .  

We do not  concern ourselves here with any concept of " l imi t ing  

posi t ion" .  Instead,  t h e  b a s i c  concept presented i n  t h i s  a r t i c l e  i s  

purely geometric, and although if w i l l  apply t o  t h e  family of  curves 
r y = ax , a r e a l  and r a pos i t ive  r a t i o n a l ,  we i n i t i a l l y  r e s t r i c t  a = 1 

and r t o  p o s i t i v e  i n t e g r a l  values,  n. Therefore, our i n i t i a l  concept 

is  a property of g e o m e t r i c  i n v d a n c e  f o r  a  well-defined c l a s s  of, 

s t r a i g h t  l i n e s  which pass  through points  of  4, n 2 1. 

Returning t o  Figure 1, we f i r s t  consider t h e  case n = 2 .  He 

construct  A by simply joining P t o  M,  the  midpoint of  the  v e r t i c a l  

line-segment which joins  R t o  Q ' ,  where Q 1  is t h e  symmetric image of 

Q i n  P. I t  is now possible  t o  e s t a b l i s h  t h a t  A i s  invar ian t  with 

respect  t o  the  choice of d (see the  proof of theorem 1 given below). 

Remmk. While Theorem 1 could have been proven by the  ancient  

Greeks using syn the t ic  geometry, we more conveniently obtain a  proof 

using a n a l y t i c  geometry. 

Thi.on.em 1. Let M be any point  of t h e  v e r t i c a l  line-segment RQ', 

as shown i n  Figure 1. Line PM i s  invar ian t  with respec t  t o  d i f  and only 

i f  M i s  t h e  midpoint of  RQ'. 

=. For brev i ty ,  we take  t h e  parabola C of Figure 1 as t h e  

curve y = as2.  Then 

We may represent  M = (p t d ,  p2 t 2pd t wd2) ,  where -1 S w 5 1. 

Our computation d i r e c t l y  shows t h a t  PM is  invar ian t  with respect  t o  

d i f  and only i f  w = 0 ,  t h a t  i s ,  i f  and only i f  M = M ' .  This i s  seen 

by computing t h e  s lope of  PM a s  (2pd t wd2)/d = 2p t Wd, not ing t h a t  

it w i l l  be invar ian t  with respect  t o  d, i f  and only i f  W = 0. 

I f  we now br ing  calculus i n t o  our p resen ta t ion ,  we may note t h a t  i 

t h e  value of  the  der iva t ive  a t  p  is 2p, so t h a t  the  usual  d e f i n i t i o n  

of t h e  tangent t o  C a t  P is  prec i se ly  1 = PM. This e s t a b l i s h e s  t h e  



following: 

C o l o u a / i y  1. Line PM i s  invar ian t  with respec t  t o  d i f  and only i f  

PM is  the  tangent t o  C a t  P. 

In  vjew of  Theorem 1, we now define t h e  tangent t o  t h e  parabola 

C a t  t h e  point  P as t h e  (unique) s t r a i g h t  l i n e  through P which possesses 

our property o f  geometric invariance.  Corollary 1 merely s t a t e s  t h a t  

our "new" d e f i n i t i o n  of  tangent i s  equivalent  t o  the "old" d e f i n i t i o n  

based upon a n a l y t i c  geometry and t h e  calculus.  

We now proceed t o  show t h a t  our "new" d e f i n i t i o n  general izes  i n  

n a very n a t u r a l  way t o  the  e n t i r e  family of  curves, C : y = x , n 2 1. 

To t h i s  end, we f i r s t  introduce 

which may be i n t e r p r e t e d  a s  t h e  ( n - l ) s t  geometric mean of n and n-2 wits. 

Now, our proposed construct ion o f  t h e  tangent t o  C a t  P may be d e t a i l e d  

as  follows : 

Move d u n i t s  from P towards t h e  l e f t  (say)  and construct  

a perpendicular from t h i s  new pos i t ion  u n t i l  it i n t e r -  

s e c t s  C a t  some point  Q. 

Move nd u n i t s  from Q t o  the  r i g h t  and construct  a perpen- 

d i c u l a r  from t h i s  new pos i t ion  u n t i l  it i n t e r s e c t s  C a t  

some po in t  R. 

Define t h e  ( n - l ) s t  geometric image of Q i n  P ,  c a l l e d  Q T  , 
and located t o  t h e  r i g h t  of  P on t h e  extension of l i n e  

PQ, a t  a d i s tance  from Q equal t o  n t imes t h e  dis tance 

from P t o  Q. 

Locate t h e  po in t  M on t h e  v e r t i c a l  l i n e  RQ', whose d i s-  

tance from Q' is 1/; times t h e  d i s tance  from R t o  Q', 

Jo in  t h e  po in t s  P and M and l e t  A = PM. 

Note t h a t  our proposed construct ion above implies t h a t  both the  

hor izon ta l  pos i t ion  of P and t h e  v e r t i c a l  posi t ion of M w i l l  be 1/; 

times t h e  d i s tance  from Q t o  R and R t o  Q '  respec t ive ly .  We note t h a t  
t h e  r o l e  of M a s  t h e  midpoint of RQ' when n = 2 ( t h e  s p e c i a l  case of 

the  parabola)  may now be viewed more genera l ly  a s  t h a t  point  on RQ' whose 

dis tance from Q' 
. . 

I/< times t h e  dis tance from R to  Q'. Thus, t h e  r e-  

c iproca l  of < represen ts  a "geometric average posi t ion"  along t h e  v e r t i c a l  

l i n e  RQ' t o  which t h e  po in t  P ( loca ted  a t  the  same "geometric average 

posi t ion"  between Q and R )  i s  joined t o  produce the  tangent t o  C a t  P: - 
With the  above motivation, we now introduce the  following notat ion.  

Let 

where p = p t (n - l )d .  
1 

T h c ~ f t i m  2. Let N be any point  i n  the  v e r t i c a l  line-segment RQ', 

with notat ion as  defined above. Then PN i s  invar ian t  with respec t  t o  

d i f  and only i f  N = M in  RQ'. 

With a n a l y t i c  geometry, t h i s  can be proved i n  a manner s i m i l i a r  t o  

t h e  proof of Theorem 1. 

He now extend our "new" d e f i n i t i o n  of tangent t o  t h e  family of  

curves C : y = x n ,  n 2 1, by s t a t i n g  t h a t  A is the  tangent t o  C a t  P 

i f  it i s  t h e  (unique) s t r a i g h t  l i n e  through P which possesses t h e  prop- 

e r t y  of geometric invariance described i n  Theorem 2 .  

I t  is a consequence of the  exerc i se  i n  a n a l y t i c  geometry used t o  

prove Theorem 2 t h a t  A may be recognized as  t h e  "old" tangent t o  C a t  P, 

so t h a t  we obtain a general izat ion of Corollary 1 which es tab l i shes  t h e  

equivalence of t h e  "old" and "new" def in i t ions  of tangents  t o  curves 
n 

C :  y = x , n S l .  

I t  may be of i n t e r e s t  t o  note  t h a t  a l l  of t h e  foregoing may be 

es tab l i shed  using only s y n t h e t i c  geometry, r e s u l t i n g  i n  a purely 
n 

geometric charac te r iza t ion  o f  t h e  concept of  tangent t o  a curve y = x , 
n 2 1. (Because of t h i s ,  t h e  ancient  Greek geometers q u i t e  probably 

could have understood and appreciated our concept of tangent.) An 

important advantage here is t h a t ,  using t h i s  d e f i n i t i o n ,  a r u l e r  and 

compass construction o f  the  tangent e x i s t s  f o r  a l l  curves of the form 
n k 

y = x , n = 2  + l , k > O .  

A s  an example, t h i s  d e f i n i t i o n  may be used f o r  a r u l e r  and compass 

construct ion of the  tangent t o  t h e  cubic a t  any point  ( a  curve whose 

exis tence was known t o  t h e  ancient  Greeks, but  who were unable t o  con- 



bt ruc t  i t s  tangent- l ines) .  Let P = ( p ,  p 3 ) ,  p > 0,  be a  given po in t  on 

the cubic C as  shown i n  Figure 2. Following the  d e t a i l s  of  our construc- 

t i o n  i n  t h e  s p e c i a l  case n = 3, we f i r s t  move d u n i t s  from P t o  the  l e f t  

FIGURE 2 
(on account of  our invariance with respec t  t o  d, we conveniently choose 

d = p )  and construct  a  perpendicular from t h i s  new pos i t ion  u n t i l  it 

i n t e r s e c t s  C a t  0 = ( 0 ,  0).  We then move 2~ 5 1/3' times p u n i t s  

from 0 t o  the  r i g h t  and construct  a  perpendicular from t h i s  new pos i t ion  

u n t i l  i t  i n t e r s e c t s  C a t  R a s  shown. Next, we l o c a t e  0' t o  t h e  r i g h t  of 

P on the  extension of l i n e  OF, a t  a  d i s tance  from 0 equal  t o  6 p, 
where 07 i s  the  dis tance from 0 t o  P. F ina l ly ,  we loca te  M on t h e  

v e r t i c a l  line-segment RO' by moving down from R a d i s tance  equal  t o  

t^ /3 -m,  where RO' i s  t h e  dis tance from R t o  0 ' .  Our tangent X i s  

now obtained by joining P t o  M a s  shown. 

A d e f i n i t i o n  and construct ion of t h e  tangent ,  a t  a  given point  P,  
r t o  a  curve 3 = x , r a p o s i t i v e  r a t i o n a l ,  may be s u i t a b l y  generalized 

from t h a t  given i n  t h e  case r = n, a pos i t ive  in teger .  The d e f i n i t i o n s  

of the  no ta t ion  P, P, Q, Q', R y  and M given p r i o r  t o  Theorem 2 apply 

d i r e c t l y  when r 2 1, and Theorem 2 may be v e r i f i e d  f o r  such r. For 

pos i t ive  values of P < 1, we may i d e n t i f y  the  graphs of y = x
p 

and x = y u p  
( i n  t h e  f i r s t  quadrant) so  t h a t  our d e f i n i t i o n  and construct ion s h a l l  

apply i n  t h e  case of all p o s i t i v e  r a t i o n a l  values o f  p .  

We emphasize t h a t  while our development does not  requ i re  calculus 

o r  a n a l y t i c  geometry, it does requ i re  t h e  construct ion of  t h e  reciprocal  
* 

of the  ( r - l ) e t  r o o t  of  r; a procedure which is  not  s o  simple (exceptT 

possibly,  when p = 2 + 1, k a p o s i t i v e  in teger  o r  0).  Since 

may be considered a  "scale factor" ,  we note t h a t  our  d e f i n i t i o n  and 
r 

construct ion appl ies  t o  a l l  curves of  t h e  form y = ax , where a is any 

r e a l  number, and r, any p o s i t i v e  r a t i o n a l  number. We remark, f i n a l l y ,  

t h a t  by r e s t r i c t i n g  P t o  ( p o s i t i v e )  r a t i o n a l s ,  we avoid a l l  l imi t ing  

processes implied, say,  i n  t h e  d e f i n i t i o n  o f  an i r r a t i o n a l  r o o t  of  a  

r e a l  number. 
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A NONSTANDARD MODEL OF THE REAL NUMBERS 
WITH APPLICATIONS TO L I M I T S  AND CONTINUITY 
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I .  F-L&tm, U U U L W m ,  and. Sequence  ̂

The purpose o f  t h i s  paper i s  t o  give a descr ip t ion  of a nonstandard 

model of t h e  r e a l  numbers using a s e t  t h e o r e t i c  construct ion,  and t o  give 

appl icat ions of t h i s  model t o  l i m i t s  and continuous funct ions.  

The main purpose i n  developing t h i s  model is t o  r e s u r r e c t  t h e  idea  

of an i n f i n i t e s i m a l  element i n  an ordered f i e l d  which s a t i s f i e s  t h e  same 

statements i n  a lower p red ica te  calculus language a s  does t h e  r e a l  num- 

bers .  The lower p red ica te  calculus o r  f i r s t  order  language includes those 

sentences where the  q u a n t i f i e r s  there  e x i s t s  and f o r  a l l  a r e  appl ied t o  

var iab les  ranging over t h e  s e t  of r e a l s ,  R, but  not  t o  var iab les  ranging 

over proper subsets  of R, such a s  t h e  n a t u r a l  numbers, N. For example, 

consider the  sentence 

for  a l l  x and fo r  a l l  y exact ly one of the  following is true:  
x i s  l e s s  than y, x = y, o r  y is l e s s  than a;, 

and t h e  sentence 

f o r  a l l  x there  e x i s t s  a n a t u r a l  number n such t h a t  x is  l e s s  
than n. 

In t h e  f i r s t  sentence t h e  var iab les  x and y a r e  allowed t o  range over 

a l l  possible  values in  R ( t h e  trichotomy property f o r  R),  while i n  t h e  

second sentence one of t h e  var iab les  (n) is  r e s t r i c t e d  t o  a proper sub- 

s e t  (1 )  of R ( t h e  Archimedean property) .  Thus while any model of t h e  

r e a l  numbers w i l l  be required t o  s a t i s f y  p roper t i es  l i k e  t h e  trichotomy 

property it is  not  necessary f o r  t h e  model t o  s a t i s f y  p roper t i es  l i k e  t h e  

Archimedean property. For a more c a r e f u l  treatment of t h e  model t h e o r e t i c  

aspects  of nonstandarc ana lys i s ,  see  Robinson C31. 

This paper w i l l  avoid t h e  e x p l i c i t  use of model theory by giving a 

par t i cu lap  model t o  be constructed using s e t  theory (Zermelo-Fraenkel) 

with t h e  axiom of choice i n  t h e  form of Zorn's lemma included. This 

construct ion is  based on the  methods found i n  Luxemburg [21. 

The model t o  be constructed w i l l  cons i s t  of t h e  s e t  

:':A = {f 1 f is  a r e a l  valued sequence} -f-? - 

under c e r t a i n  equivalence and order  r e l a t i o n s  t o  be defined i n  the  follow- 

ing discussion.  A s  a f i r s t  s t e p  toward t h e  d e f i n i t i o n  of an appropriate  

equivalence r e l a t i o n  consider equivalence with respec t  t o  t h e  family of 

subsets  

F = {N - F 1 F i s  a f i n i t e  subset  of N} 

defined by 

f =F g i f  and only i f  { i  1 f ( i )  = g ( i ) }  â F. 

To show t h a t  = F  is an equivalence r e l a t i o n  f i r s t  n o t i c e  t h a t  F s a t i s f i e s  

t h e  following t h r e e  proper t i es  of  a filter on N: 

( F l )  0 is not i n  F and N belongs t o  F. 

(F2) I f  A is i n  F and A B c N then B belongs t o  F. 

(F3) I f  A belongs t o  F and B belongs t o  F then A 0 B belongs t o  F. 

These proper t i es  can be used t o  show t h a t  =F is r e f l e x i v e ,  symmetric, and 

t r a n s i t i v e .  For example, we prove t h e  

Trans i t ive  Property. If f = F g and g = F  h then f = F  h. 

Proof. Since { i  \ f ( i )  = g ( i ) }  belongs t o  F and K 1 g ( i )  = h ( i ) }  

belongs t o  F, by property F3 A = { i  \ f ( i )  = g ( i ) }  0 { i  \ g ( i )  = h ( i ) }  is 

i n  F. Since f ( i )  = h ( i )  f o r  a l l  i i n  A ,  A E { i  1 f ( i )  = h ( i ) }  so  t h a t  by 

property F2 f =F h. 

In  a s i m i l a r  manner one may def ine  an order  c F  with respec t  t o  F 

by s t a t i n g  f cF g i f  and only i f  { i  \ f ( i )  < g ( i ) }  belongs t o  F. I t  is 

c l e a r  by a proof s i m i l a r  t o  t h e  one given above t h a t  <F is  t r a n s i t i v e  

and is there fore  an order  r e l a t i o n .  

Some examples of these  r e l a t i o n s  w i l l  now be considered. 

Exsmpte. 1. Let f ( 1 )  = 100, f ( 2 )  = 2, and f o r  n > 2,  f ( n )  = (1/2)n-2 

Also l e t  g (1)  = 500, g (2)  = 2, g(3)  = 5,  and f o r  n > 3 ,  g(n)  = (1/2)n-2. . 
* 

Then f = F  g s i n c e  f and g agree except on a f i n i t e  s e t .  Define t h e  sequence 

r by r ( n )  = r f o r  0 < r i n  R .  Then, with t h e  above f ,  and f o r  any p o s i t i v e  

r e a l  number r, f < F  r. 



Example 2 ,  Let f ( n )  = 1/2 i f  n i s  odd and f (n)  = 2 i f  n i s  even. 

Let g (n)  = 2 f o r  a l l  n .  Since { i  \ f ( i )  = g ( i ) }  = {2n 1 n is i n  N} has 

an i n f i n i t e  complement f # F  g. Also, s ince  { i  1 f(i) > g ( i ) }  = 9, g / p  f, 

and s ince  { i  \ f ( i )  < g ( i )  } = {2n - 1 \ n ? N} has an i n f i n i t e  complement, 

f ^ !7- 
Example 2 shows one shortcoming of  using t h e  f i l t e r  F: *R under . 

the  order  cF does not  s a t i s f y  the  trichotomy property. Hence *R under 

cF is  not  a model of R s a t i s f y i n g  t h e  f i r s t  order  language. 

In o rder  t o  construct  an ordering of  *R which s a t i s f i e s  t h e  trichotomy 

property a f i l t e r  U 2 F which contains as an element e i t h e r  t h e  odd n a t u r a l  

numbers o r  t h e  even n a t u r a l  numbers i s  needed. In  f a c t  s ince  examples 

using i n f i n i t e  s e t s  o ther  than t h e  even o r  odd n a t u r a l  numbers can be 

constructed it is  necessary t o  have a f i l t e r  u 2 F such t h a t  given a 

subset  A of  N then e i t h e r  A o r  N - A i s  i n  U. This property (UF) is  

guaranteed i f  U is taken t o  be a maximal f i l t e r  (under s e t  inclusion)  

containing F as a subse t  (U is  c a l l e d  an u i t r a f i Z t e r ) .  Such an u l t r a -  

f i l t e r  is guaranteed by Zorn's lemma. I t  should be noted a t  t h i s  po in t  

t h a t  t h e  u l t r a f i l t e r  U i s  n o t  unique and t h a t  it may be possible, i f  

A N, f o r  A t o  be i n  U o r  N - A t o  be i n  U without knowing e x p l i c i t l y  

which i s  the  case. That is, t h e r e  may be an u l t r a f i l t e r  which contains 

the  even numbers and another u l t r a f i l t e r  which contains t h e  odd numbers; 

thus  given an a r b i t r a r y  u l t r a f i l t e r  it may not be poss ib le  i n  Example 2 

t o  decide whether f <u g o r  f =u g. A l l  t h a t  i s  known is  t h a t  exact ly 

one of these  p o s s i b i l i t i e s  must hold. 

Let an u l t r a f i l t e r  U containing F be f ixed.  Then =Ã and <u a r e  - 
defined i n  t h e  same way as  before; however, f = u g w i l l  be denoted as  

f = g and f <u g a s  f < g. He note t h a t  i f  r = s i n  R then r = s a s  

constant sequences i n  R* (we say t h a t  =,, extends =).  Simi la r ly ,  if ? 

r c s i n  R then r c s as constant sequences (cu extends <). The following 

proper t i es  a r e  thus observed t o  hold f o r  = and < on '?R: 

(Ul) = is an equivalence r e l a t i o n  on :?R extending = on R. 

(U2) < i s  an order  r e l a t i o n  on *R extending < on R. 

(113) I f  f and g a r e  i n  '^R then exac t ly  one of t h e  following 
i s  t r u e :  g c f ,  g =  f ,  o r f  < g .  

(U4) I f  g = f ,  h = k ,  and f < k  then g < h ( <  i s  compatible with =). 

The only proper t i es  t h a t  have not been handled previously a r e  U3 and 

U4. U 3  w i l l  be proved f o r  t h e  case g f. f s ince  t h e  o ther  cases can be 

handled s imi la r ly .  

Proof of US if g f f. Thus, A = { i  1 f ( i )  2 g ( i ) }  does n o t  belong 

t o  U. By property UF t h e  complement of A, { i  1 f ( i )  < g ( i j } ,  belongs t o  

U. Thus f < g. On t h e  o ther  hand i f  f c g then by property F2 it Q S ~ _  

be seen t h a t  g % f and g # f. 

(For t h e  proof of U4 use t h e f i l t e r  p roper t i es  of U t o  show t h a t  

{ i  1 g ( i )  < k ( i ) l  i s  i n  U.) 

2. EvLe~ihn  06 Funeti.oni -to * R  

The next  property v e r i f i e s  t h a t  r e a l  valued funct ions of  a f i n i t e  

number of r e a l  var iab les  can be extended t o  *R. F i r s t  it is necessary 

t o  define t h e  extension of subsets  of R t o  subsets  of  B̂. 

Ve@.rition. Let A c. R. Then define *A = {g e *R \ { i  \ g ( i )  i s  

i n  A} â U}. 

PAOpe-ltg EXT. Let A, 5 R f o r  k = 1, 2, . . . , n.  Let f : A  x A x 

. . . x An + R be a function. Then f can be extended t o  a funct ion *f 

where *f:*A x *A2 x . . . x *A n + s?R is  defined by * f ( g ,  . . . , g )  ( i )  = 

f (g l ( i ) ,  . . . , g n ( i ) )  i f  g k ( i )  is i n  Ak f o r  k = 1, . . . , n and * f ( g , .  . . , 
g ) ( i )  = 1 f o r  any o t h e r  i. Notice t h a t  i f  (al,  .. . , a n ) is  a constant  

sequence i n  A x ... x An then :tf(al, ... , % ) ( i )  = f(al,  ..., an) f o r  

a l l  i i n  N. 

Proof. I t  i s  c l e a r  t h a t  *f(gl, . . . , gn) is i n  *R. To show t h a t  

i s  wel l  defined suppose gk = hk f o r  k = 1, . . . , n ( i .e . (gl ,  . . . , g )  = 

( h a  ... , h ) ) .  Then f o r  each k,  { i  \ g p  = h,(.i)} is i n  U. Hence, 

B = { i  1 ( g l ( i ) ,  ..., g n ( i ) )  = ( h l ( i ) ,  ..., h n ( i ) ) l  contains 

flTzI { i  1 g k ( i )  = h k ( i ) }  which can be shown t o  be i n  U induct ively.  Since 
n 

{ i  I f ( g l ( i ) ,  . . . , g n ( i ) )  = f( .hl( i ) ,  . . . , h n ( i ) l  2 flkZ1 { i  I g k ( i )  â Ak} 

fl B, *f(gl, . . . , gn) = *f( hl, . . . , hn) by property F2. 

The property EXT applied t o  t h e  cases where n = 1 and n = 2 shows 

t h a t  funct ions f : A + R can be extended t o  ^R, and operat ions such as 

+, - , -, T can a l s o  be extended t o  *R (here a s  i n  R d iv i s ion  by 0 i s  

s t i l l  undefined). Using examples 1 and 2 on pages 2 and 3 (100, 2 ,  1/2,.a 

1 /4 ,  ... ) + (2,  2 ,  2 ,  2, ... ) = (102, 4, 2+1/2, 2+1/4, ... 1. Notice t h a t  

(500, 2 ,  5 ,  1/4,  . . . , - ( n - 2 )  , ... ) + ( 2 , 2 , 2 , 2 ,  ... ) =  ( 5 0 2 , 4 ,  7, 



2-1/4, . . .) = (102, 4, 2+1/2, 2+1/4, . . .) s o  t h a t  i n  t h i s  example addi- 

t i o n  is wel l  defined. I n  f a c t  it can be shown t h a t  *R is an ordered (<) 

f i e l d  i n  which R is embedded by t h e  order  preserving f i e l d  monomorphism 

sending r i n  R t o  t h e  constant sequence r i n  ^R. 

A t  t h i s  point  one should no t ice  t h a t  t h e r e  a r e  c e r t a i n  p roper t i es  of  

R which do no t  hold i n  *R. I t  is wel l  known t h a t  R s a t i s f i e s  t h e  complete- 

ness  property: If 0 # A R and there  i s  an & i n  R such t h a t  f o r  a l l  r 

i n  A i S r, then t h e r e  i s  a g r e a t e s t  such t. i n  R ca l led  t h e  g r e a t e s t  

lower bound of  A .  The following example shows t h a t  *R is  no t  complete: 

Define a sequence o f  elements, f of  *R as follows. f l ( i )  = i, n '  

The f i r s t  few terms appear a s  fl : 1, 2, 3, 4 ,  . ..; f : 1, 1, 2, 3, ... ; 
f3  : 1, 1, 1, 2,  ...; e t c .  Notice t h a t  t h e  constant sequence 1 < f f o r  

n 
a l l  n. Now i f  1 is  a lower bound f o r  A = { f  \ n is  i n  N} then 1 t 1 is 

a l a r g e r  lower bound f o r  A .  This f a c t  may be v e r i f i e d  by observing t h a t  

f o r  n 2 1,t + 1 5 f + 1 = f .  Thus, t h e r e  can be no g r e a t e s t  lower n+1 
bound of  A i n  *R. Considering f it can be seen t h a t  i f  n is  i n  iV then 1 
n < fl; hence, *R i s  not- Archimedean. These a r e  examples of sentences 

which do n o t  belong t o  t h e  lower predicate  calculus language f o r  R. 

3 .  In~-uW-tuimaLti and S-tondo~d Lldue 

A t  t h e  beginning of t h i s  paper t h e  goal  of  f ind ing  an extension of  

t h e  r e a l  numbers such t h a t  non-zero in f in i tes imals  would e x i s t  i n  t h i s  

extension was s e t .  To see t h a t  t h i s  goa l  has  been achieved consider t h e  

sequence f(n)  = 1/n. I t  is  c l e a r  t h a t  given any r e a l  number r > 0 then 

f ( n )  c r except on a f i n i t e  s e t ;  hence, f c r f o r  all 0 < r belonging 

t o  R. Since f # 0, f i s  a non-zero i n f i n i t e s i m a l .  The s e t  of i n f i n i t e s i m a l s  , , 
1, is  defined by 1 = {f â *R \ \ f \ < r f o r  a l l  r e a l  numbers r > 0). Another 

usefu l  s e t  i n  t h i s  connection i s  B = {f â *R 1 f o r  some r e a l  number r > 0 ,  

1 f 1 < r } .  In  both of  these  s e t s  absolute  value i s  t h e  extension of  absolute 

value o f  r e a l  numbers t o  '^R guaranteed by EXT. I t  can be shown t h a t  

j u s t  as i n  R. Thus, I f 1  < v is equivalent  t o  -r < f < r. For t h i s  reason 

t h e  elements of  B are  c a l l e d  t h e  bounded elements o f  *B. Notice t h a t  

1 ~ 8 .  

The following is a l ist  of  some proper t ies  o f  I and 8: - - - -  
(11) I f  f ,  g belong t o  1 then f + g belongs t o  I. 

( 1 2 )  I f  f belongs t o  1 and g belongs t o  8 then fg belongs t o  1. 

(13) f does not  belong t o  1 i f  and only i f  l/f belongs t o  B .  

Proof. I f  f is not  i n  1 then f o r  some r e a l  number r > 0 \f\ 2 2/ r  

> 1/r > 0. Hence, f # 0 and r > ll/fl. Thus, 1/f belongs t o  8. On t h e  

o ther  hand i f  1/f i s  i n  B then f # 0 ( s ince  0 does not have a rec iproca l  

i n  AT?) .  Now t h e r e  i s  a r e a l  number r > 0 such t h a t  0 < l l / f l  < 1/r. 

Hence, r < \f\, which implies t h a t  f is not i n  I .  

(14) I f f  is  i n  1 then - / i s  i n  I. 

(15) I f f g i s i n l  then f i s i n l o r q i s i n l .  

Proof. Let fgbelong t o  I with f no t  i n  I. Then f # 0 and t h e r e  is  

a r e a l  number r > 0 such t h a t  I f  \ s r. Let a be a r e a l  number > 0. Then 

s ince  fg is i n  1 \ f g \  < rs 5 I f 1  s. Since I f 1  > 0 ,  lq1 < S ;  hence, g 

belongs t o  I. 

(16 )  8 i s  an i n t e g r a l  domain. 

Proper t i es  11, 1 2 ,  and I& guarantee t h a t  1 is  an i d e a l  of B. Property 

1 5  means t h a t  1 is  a prime i d e a l .  Thus t h e  r i n g  8/1 is  a l s o  an i n t e g r a l  

domain. Property 1 3  implies t h a t  B / I  is  ac tua l ly  a f i e l d .  In f a c t  it 

turns  out t h a t  8/1 is isomorphic t o  R as an ordered f i e l d .  To prove t h i s  

f a c t ,  a new funct ion,  t h e  s tandard value function s t ,  w i l l  be defined 

from B onto R which w i l l  be a homomof~hism of r ings  preserving 5 with 1 

a s  t h e  kerne l  ( t h a t  is  f â 1 i f  and only i f  s t ( f )  = 0).  

The d e f i n i t i o n  of st is a s  fol lows:  If f belongs t o  8 then s t ( f )  = r 

i n  R where f - r is i n  I i f  such a r e a l  number e x i s t s .  ( I t  i s  c l e a r  from 

t h i s  d e f i n i t i o n  t h a t  s t ( r )  = r f o r  a l l  r e a l  numbers P s o  t h a t  s t  is  onto 

If.) There a r e  two proper t ies  which must be es tab l i shed :  

(ST11 I f  t h e r e  i s  such an r then r i s  unique, and 

(ST21 t h e  domain of st is  B ( i .  e .  given any f i n  8 the re  is  
an p i n  R such t h a t  f - r i s  i n  1 ) .  

Proof of ST1. Notice t h a t  i f  r # s and r ,  e belong t o  R with f - P 

â 1 and f - s 6 1 then by I1 and I 4  f - s - (f - r )  â 1. Hence, s - P 6 I ,  



which is impossible s ince  Is - P I  > 1s - r l / 2 ,  which belongs t o  R with 

Is - r l / 2  > 0. 

Proof  o f  ST2. Assume f i r s t  t h a t  f  Â 0. Then t h e r e  is  a r e a l  

number r > 0 such t h a t  f 5  r. Let A  = { r  â R \0 5 f  5 r} .  Then A 2 R 

and c e r t a i n l y  A is  bounded below by 0. Thus, by completeness i n  R, A 

has a g r e a t e s t  lower bound r i n  R. The claim is t h a t  f  - r ? I. Let 
0 

s be a r e a l  number > 0. Then e i t h e r  8 5 I f  - r \ o r  I f  - r I  < s by 
0 

property U3. The case s 5 If - r 1 is  now shown t o  be impossible. There 
0 

a r e  two subcases t o  consider: ( a )  I f  - r0 I = f  - ro ( i f  f  Â r O )  o r  (b )  

I f  - p o l  = p .  - f  ( i f  f ~ r ) .  

( a )  We h a v e s  5 f  - r ors + r 5 f  f o r  a l l  p i n  A .  Since s > 0, 
0  0  

8 + r,, is a lower bound contradict ing t h e  f a c t  t h a t  r is  t h e  g r e a t e s t  

lower bound. 

(b )  We have 8 5 r - f  o r  0 5 f  5 r - s ,  which belongs t o  A  

contradict ing t h e  f a c t  t h a t  ro i s  a lower bound f o r  A. Thus, f  - Po ? I. 

I f  f  < 0 then t h e  above argument guarantees an r such t h a t  - f  - r ? 1. 
0 0 

By I 4  f  - ( - p o l  belongs t o  1. Hence s t ( f )  = -ro = - ( s t ( - f )  1. A coro l la ry  

of  t h i s  p a r t  of  t h e  argument i s  s t ( . - f )  = - s t ( f ) .  

Other p roper t i es  which e s t a b l i s h  t h a t  s t  is  t h e  needed homomorphism 

a r e  : 

(ST3a)  s t ( f  + g )  = s t ( f )  + s t t g ) .  

( ST3b)  s t ( f )  = 0 i f  and only if f  belongs t o  I. 

(ST41 I f  f ,  g  belong t o  B then s t ( f g )  = s t ( f ) s t ( g ) .  

Proof o f  ST4. f  - s t ( f )  i s  i n  1 and g  - s t ( g )  is  i n  1. Since g  is  

i n  B and e t ( f )  i s  i n  B ,  ( f  - e t ( f ) ) g  belongs t o  1 and s * ( f ) ( . g  - s t ( . g ) )  

belongs t o  I by I2 .  Now by I1 f g  - e t ( f ) s t ( g )  = ( f  - s t ( f ) ) g  + s k ( . f ) ( g  - 
s t ( g ) )  is i n  I .  

(52-5) If f  f 1, then s t t l / f )  = l / s t ( f ) .  

( ST6)  If f  5 g  then s t ( f )  5 s t ( g ) .  

(ST71 A funct ion f  : A -+ R  ( A  & R )  is  bounded i f  and only i f  * f ( x )  
is  i n  B f o r  a l l  x i n  * A .  

Proof .  F i r s t  suppose f  is bounded. Then there  is an r > 0 i n  R 

such t h a t  l f ( x )  1 < r f o r  all x â A .  If x ? *A then { i  ] x ( i )  is  i n  A }  

? U and f o r  such Â¥L l f ( x ( i ) ) l  < r which implies by t h e  d e f i n i t i o n  of < 

~ o t i c e  t h a t  i n  t h i s  context f  < g  does n o t  necessar i ly  imply s t ( f )  
< e t ( g ) .  For example l e t  f ( n )  = 1 + l / ( n  + 1 )  and g ( n )  = 1 + 1 / n .  Then 
s t ( f )  = 1 = s t ( g ) ,  b u t  f  < g.  

t h a t  lgcf(x)  1 < r. Hence * f ( x )  belongs t o  B. On t h e  o ther  hand 

f  i s  no t  bounded on A. Then f o r  every n i n  N t h e r e  is  an x  i n  A s u  

t h a t  \ f ( x ) I  > n. Let x ( n )  = x def ine  a member of *A ( f o r  some c.ioice n 
of the  x ) .  Then * f i x )  is n o t  i n  B s ince  given any r e a l  number P > 0-& - ."- 
t h e r e  i s  an no such t h a t  r < no and c l e a r l y  I f i f ( x )  1 > U n  > r. 

4.  he. 'De.f.^Jiition 06 Utni t  and 1.t~ Equiv&nce to the. 

Standard Ue.~Lyi^tion 
A t  t h i s  po in t  a nonstandard d e f i n i t i o n  of  l i m i t  can be given. 

fle.&in&ion. The l i m i t  of f ( x )  a s  x  approaches a  e x i s t s  with 

l i m  f ( x )  = s t ( v ( a  + h ) )  
*a 

f o r  0 # h  â 1 i f  and only i f  s t ( * f ( a  + h ) )  e x i s t s  and i s  constant f o r  

a l l  0 # h  â 1. 

The following theorem shows t h a t  t h i s  d e f i n i t i o n  i s  equivalent  t o  

t h e  s tandard e,6 def in i t ion  of l i m i t .  

Th&OUiT 1. The value s t m a  + h ) )  e x i s t s  and i s  a constant L i R 

f o r  a l l  nonzero h  ? I (where a  i s  i n  R )  i f  and only i f  f o r  every r e a l  

number e > 0 t h e r e  is a r e a l  number 6  > 0 such t h a t  f o r  any r e a l  number 

t s a t i s f y i n g  0  < It1 < 6 ,  M a +  t )  - L\ < e .  

Proof .  Suppose &(.*fa + h ) )  = L  f o r  a l l  0 # h  â I .  Let e > 0 be 

a given r e a l  number. Suppose contrary t o  t h e  conclusion of  t h i s  theorem 

t h a t  f o r  each 0 < 6 i n  R  the re  is a t i n  R such t h a t  0 < It.\ < 6 and 

\ f ( a  + t 6 )  - L \  2 E. For each n â N choose an h ( n )  such t h a t  0 < \ h ( n ) l  

< 1 / n  (=6)  and \ f ( a  + h ( n ) )  - L\ 2 E .  Then c l e a r l y  h  is  i n  I and \ ^ ( a  

+ h )  - L \  2 e s o  t h a t  s t ( * f ( a  t h ) )  # L o r  s t ( f i f ( a  + h ) )  does not e x i s t .  

In  e i t h e r  case t h e  hypothesis is contradicted;  hence, there  is some 6 > 

0 such t h a t  i f  0 < \t\ < 6 then \ f ( a  + t )  - Â£ < e .  On t h e  o ther  hand 

suppose t h a t  f o r  every r e a l  e > 0 there  i s  a r e a l  6 > 0 such t h a t  i f  

0 < It 1 < 6  then \ f ( a  + t )  - L\ < E .  Let h  be a nonzero in f in i tes imal .  

Then 0 < \h\ < 6 f o r  a l l  e > 0. Hence \ * f ( a  + h )  - L }  < E f o r  a l l  r e a l  

e > 0. Thus, * / ( a  + h )  - L  ? 1. By the  d e f i n i t i o n  of  st, s t ( * f ( a  + h ) )  

= L .  

5 .  App.U.ca.tion~ 

With t h i s  equivalence of the  d e f i n i t i o n s  of  l i m i t  t he re  a re  many 



elementary l i m i t  theorems which can be proved without eps i lons  and d e l t a s .  

For example, by using ST3 and ST4 one can prove t h a t  i f  l i m  f (x )  = L 
m a  1 

and l i m  g (x)  = L then I ' m  (f + g) (x)  = L + L and (.fg)(x) = L L .  x-kl 2 Ai 
Continuity can a l s o  be defined using nonstandard techniques. 

Qe.fCcw-t-tt.on. The funct ion f : A + R is  continuous a t  a i n  A i f  and 

only i f  s t (* f (x) )  = f ( a )  f o r  a l l  x i n  *A with st(.x) = a. 

Other d e f i n i t i o n s  associated with cont inui ty a re :  

Open s e t :  A i s  open i f  and only i f  f o r  a l l  x 6 8, x ? *A i f  s ~ ( x )  6 A. 
Closed s e t :  A is  closed i f  and only i f  f o r  a l l  x 6 *A Fl B ,  s t ( x )  6 A. 

Suppose A Â£ R is closed. Then R - A is open. For a proof ,  suppose 

x i s  i n  B and s t ( x )  i s  i n  R - A. Suppose x is i n  * A .  Then since A i s  

closed s t ( x )  i s  a l s o  i n  A which i s  a contradict ion.  The following theorem 

i s  an appl icat ion o f  these  r e s u l t s .  

The- OW^. I f  f : A + R is continuous and 0 # A 5 R is closed and 

bounded then f(A) is  a l so  closed and bounded. 

Proof. F i r s t  f(A) i s  bounded: Let x be i n  *A. Since t h e r e  is a 

r e a l  number u such t h a t  la1 5 u f o r  a l l  a i n  A {i \ lx(i)\ 5 u} 2 {i 1 
x ( i )  6 A} belongs t o  U; hence, 1x1 5 u. Thus x is i n  B ,  and s t ( x )  e x i s t s .  

Since A i s  closed s t ( x )  is i n  A .  Since f is  continuous a t  s t ( x ) ,  s t (* f (x) )  

= f ( s t ( x ) )  which is i n  R. Thus g;f(x) is  i n  B. By ST7 f i s  bounded on A.  

To show t h a t  f(A) is  closed l e t  y 6 B 0 '?f(A). Thus, f o r  some x 6 

*A, y = *f(x). On t h e  s e t  { i  1 y ( i )  6 f(A)} l e t  x ( i )  be a preimage i n  A 

of y ( i )  ; otherwise l e t  x ( i )  = 0. Since A is bounded, a; â B.  Thus, s ince 

A i s  closed s t ( x )  6 A. Since f is  continuous s t ( y )  = s t (* f (x) )  = f ( s t ( x ) )  

which is  i n  f(A). Thus f(A) is closed. 
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COMMENT BY EDITOR 

The two a r t i c l e s  immediately following were submitted a t  approximateiy 
"Ã 

t h e  same time, both of them dea l ing  with t h e  problem of f ind ing  a closed 

formula f o r  t h e  s e r i e s  

k k k  k 5y.l + z !  + 3  + , . . + n ,  

but using completely d i f f e r e n t  l i n e s  of a t tack.  The r e s u l t  i n  t h e  second 

paper a c t u a l l y  provides a simple induction proof of t h e  f a c t  t h a t  there  

is a unique polynomial Pk(x) f o r  each i n t e g e r  k 2 0 of degree k + 1 such 

t h a t  when x is  a p o s i t i v e  i n t e g e r  

k k k  k 
Pk(a:) = 1 + 2 + 3 + ... + x .  

This f a c t  was used by L. S. Levy, ltSunnnation of the  Ser ies  1" + 2" + . . . 
n + x Using Elementary Calculus" [ 4mevLcan Mathematical Monthly, vo-!- 77% 

No. 8 (1970), 640-8471 t o  prove t h e  i n t e r e s t i n g  i n t e g r a l  formula 

x 
P ( X )  = n l  p n 1 ( t ) d t  + cnx. (cn constant)  

USING L'HOSPITAL'S RULE TO SUM A SERIES 

bg N o m  Schawnbe~ige~i 

B m n x  CommwGQi ColULegc of,  CUNY 

The formulas 

1 + 2 + 3 + . . . + n =  n(n  t 1 )  2 (1) 

12 + 22 + 32 + ... + n2  = 
n ( n  + l ) ( 2 n  + 1 )  

6 (2)  

a r e  used i n  algebra and probabi l i ty .  They a r e  p a r t i c u l a r l y  important i n  



provides a  very simple method f o r  evaluat ing the  - The following 
.k s e r i e s - I n  I, . i=l 

Let us wr i te  

t h e  h i s t o r y  of t h e  calculus where they s t imulated i n t e r e s t  i n  l i m i t s  of  

sums. Archimedes used (2)  a s  t h e  b a s i s  of  one of  h i s  quadratures of t h e  

parabola [l, pp. 50-511. These along with t h e  formula f o r  t h e  sum of 

cubes and higher  powers a r e  usual ly proved by mathematical induction o r  

by somewhat obscure a lgebra ic  t r i c k s .  In  t h i s  note  we o f f e r  a  technique and 
f o r  der iving these  formulas which should be  of  i n t e r e s t  t o  calculus 

s tudents  because it r e s t s  on d i f f e r e n t i a t i o n  o f  t h e  exponential funct ion 

and L'Hospi tal ' s  Rule. 
i n  t h e  manner suggested above. Subtract ion y i e l d s  

Â k k k  k k k 
0 = 1 + (2  -1) + ( 3  -2 ) + + (n -(n-1) ) - n , 

from which we obtain 

k k k  k k 
nk = 1 + (2 -1) + ( 3  -2 + ... + (n -(n- l)  1. 

Thus, we can w r i t e  

k k  k k  sk = 1 + (1+(2 -1)) t (1+(2 -1)+(3 -2 ) )  + * * .  

k k k  k k 
t ( l t ( 2  -1)+(3 -2 ) + - - q  + (n -(n-1) ) )  

Let n be a p o s i t i v e  in teger .  Since the  l e f t  s i d e  o f  the  following 

is  a geometric s e r i e s  we see t h a t  

Di f fe ren t ia t ing ,  with respec t  t o  x , we obta in ,  a f t e r  some s impl i f ica t ion ,  

Taking t h e  l i m i t  of  (3)  a s  x + 0 and using LIHospi tal ' s  Rule twice i n  

o rder  t o  evaluate  the  r i g h t  s i d e ,  we g e t  ( I ) .  Now d i f f e r e n t i a t i n g  (31, 

we have 

2 e
x + e^ - (n+l)2e(nt1)x + (2n +2n-l)e (n+2)x - 2 ( n t 3 ) x  

( 1  - eXl3 

Le t t ing  x ->Â 0 and using LIHospi ta l ' s  Rule t h r e e  times on t h e  r i g h t  s ide  

gives ( 2 ) .  

Theoret ical ly  we could continue t o  d i f f e r e n t i a t e  and use L 'Hospi tal ls  
Â¥ Rule t o  obtain the  formulas f o r  t h e  sum of cubes and higher  powers; un- 

for tuna te ly ,  however, t h e  algebra becomes q u i t e  messy. 
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A S I M P L E  WAY O F  EVALUATING in 



Hence, 

k which is v a l i d  f o r  k 2 1 ( i f  k = 1 t h e  terms (i)Sk-i+l a r e  omitted). Thus 

we have a formula connecting Sk with Sk-l, Sk-2' ..., Sl. For example, 

and so  on, ad infinitum. 

NUMERICAL SOLUTION OF A NON-LINEAR ELECTRON + 

CONDUCTION EQUATION WITH BOUNDARY VALUES 

by Jamu V e L u c i a  
S t .  Joheph'h Co&ge 

The equations which a r i s e  when discussing e lec t ron  i n j e c t i o n  cur ren ts  

through a t h i n  i n s u l a t i n g  f i lm a r e  i n  general  non- linear. The equat ions 

a re  a n a l y t i c a l l y  i n t r a c t a b l e  so t h a t  they were solved by numerical 

techniques on a d i g i t a l  computer. This paper is  a presentat ion of  t h e  

method used t o  solve t h e  equations. These more exact  so lu t ions  give 

r e s u l t s  t h a t  have been experimentally v e r i f i e d  but  have no t  been explained 

by previous ana lyses [ l l .  Some of t h e  previous so lu t ions  obtained under 

c e r t a i n  s implifying assumptions a r e  a l s o  presented. 

The s t r u c t u r e  t h a t  i s  analyzed i s  a t h i n  i n s u l a t i n g  f i lm sandwiched 

between two metal e lectrodes.  The geometry is p lanar  so t h a t  t h e  ana lys i s  

is  one dimensional. The metal contacts  a r e  assumed t o  be made of  t h e  

same mater ia l  so  t h a t  t h e  s t r u c t u r e  is symmetric, and t h e  boundary con- 

d i t i o n s  a t  both metal- insulator  faces a r e  s imi la r .  Only steady s t a t e  

condit ions a r e  considered. 

In  t h e  i n t e r i o r  of the  i n s u l a t o r ,  t h e  cur ren t  flow and charge * 
d i s t r i b u t i o n  a r e  governed by t h e  cur ren t  equation and Poisson 's  equation, 

as  follows: 

where 

and 

In t h e  above r e l a t i o n s  J i s  t h e  current  dens i ty ,  E i s  the  e l e c t r i c  f i e l d  



i n t e n s i t y ,  V i s  the  vol tage,  and n is t h e  t o t a l  f r e e  c a r r i e r  densi ty.  

(The q u a n t i t i e s  E, V and n vary over t h e  displacement a;.) Also, e is 

t h e  e lec t ron  charge, p is the  e lec t ron  mobil i ty ,  no is  t h e  i n i t i a l  e lectron 

dens i ty ,  and e is  the  i n s u l a t o r  permi t t iv i ty .  

The current  l e v e l s  a r e  assumed t o  be small enough s o  t h a t  the  c a r r i e r  

concentrations a t  the  metal- insulator  sur faces  a r e  constant.  Therefore, 

t h e  boundary conditions a r e  

For low voltages (n << no)  we obtain ohmic conduction, o r  

For high vol tages (n > > no) t h i s  model reduces t o  the  Mott-Gurney madel, - -  - 

Since t h e  ohmic term is always present  the  current-voltage re la t ionsh ip  

f o r  the  Lampert model i s  e s s e n t i a l l y  a quadrat ic ,  therefore 

where L is  t h e  thickness  o f  t h e  i n s u l a t o r  and a is a constant.  Also, 

we can a r b i t r a r i l y  s e t  

However, f o r  an i n s u l a t o r  which is t h i n  enough so  t h a t  t h e  sur face  

e f f e c t s  cannot be ignored, equations ( l ) ,  ( 2 ) ,  (3 )  along with boundary 

conditions ( 5 )  and ( 6 )  must be solved i n  those forms. The remainder of 

t h i s  paper is  a discussion of t h e  methods used t o  solve these  equations. 
Exad Rt?biLfcCA o< ShpLLU.ed Mode& 

This s t r u c t u r e  was f i r s t  analysed by Mott and Gurney [ 2 ]  who assumed 

t h a t  t h e  i n s u l a t o r  was th ick  enough so  t h a t  sur face  e f f e c t s  can be 

ignored. That is, the  contr ibut ion t o  t h e  cur ren t  due t o  d i f fus ion  ( 2) 
was ignored and t h e  e l e c t r i c  f i e l d  a t  t h e  cathode vanishes. Also they 

considered an i n s u l a t o r  whose i n s u l a t i n g  proper t i es  a r e  good enough s o  

t h a t  n always dominates no. The r e s u l t i n g  equations a r e  

Nofwa&Lza.tion of,  the.  EquA<Xonh 
Equations ( l ) ,  ( 2 ) ,  ( 3 ) ,  ( 5 )  and ( 6 )  can be made dimensionless and 

simpler by t h e  proper choice of measurement u n i t s .  Car r ie r  concentration 

w i l l  be measured i n  u n i t s  of  t h e  i n i t i a l  concentration of t h e  i n s u l a t o r ,  

and leng th ,  vol tage,  e l e c t r i c  f i e l d  and current  w i l l  be measured i n  t h e  

following u n i t s :  

with t h e  boundary condit ions 

E(0) = 0 

V(0) = 0 

These equations have an exact  so lu t ion  of  t h e  form 
The r e s u l t i n g  normalized q u a n t i t i e s  a r e  as  follows: 

J = ^ e v 2 / ~ 3  
8 a (11) 

where V = V ( L )  is  t h e  appl ied voltage. a 
Lampert [31  extends t h e  above ana lys i s  t o  t h e  case where n o  cannot 

be ignored. Exact so lu t ions  can be obtained only i n  t h e  l i m i t s  of low 

applied vol tage where n is dominated by no and high appl ied vol tage where 

n dominates no. The r e s u l t s  a re  a s  follows. 



With these s u b s t i t u t i o n s  equations (11, ( 2 ) ,  ( 3 ) ,  ( 5 ) ,  and ( 6 )  become 

The r e s u l t i n g  equations a r e  non- linear and a r e  solved by numerical tech- 

niques on a d i g i t a l  computer. 

Nume.fu.caJi. SoSLUtion 

a )  Difference Equations 

The f i lm,  of width w ,  is divided i n t o  101 po in t s ,  o r  100 c e l l s .  

The p o i n t s  a r e  l ab led  i where i goes from 1 t o  101. The width of each 

c e l l  is H where 

We want t o  f i n d  values of g ,  F and U a t  each po in t  i. Relable g (y)  

F(y)  and U(y) a s  gi, Fi and Ui. 

Equations (24) ,  (25) and (26) a r e  approximated t o  the  first order  

by difference equations. They become 

where the  boundary condit ions become 

b )  S t a r t i n g  Values 

In  order  t o  obtain s t a r t i n g  values f o r  F and g ,  so  t h a t  equations (30)  

and (31) can be i t e r a t e d ,  we recognize the  f a c t  t h a t  t h e  charge grad ien t (  

must go t o  zero somewhere i n s i d e  t h e  f i lm.  This is a consequence of t h e  

boundary condition (33). Consider a point  j and s e t  dg/dy ar j ecuai 

zero. From (24)  we obtain 

F, = z/gj.  

W e  can guess a value f o r  Z and guess t h e  s t a r t i n g  value g 3. Equation 135) 

then gives us  t h e  s t a r t i n g  value F 3. 
8 c )  General Procedure 

The general  procedure f o r  obtaining a so lu t ion  goes l i k e  th i s :  

1 1 )  Consider a point  3. 
2) Guess Z and g 3. 1 

3) Obtain F .  from (35) .  
3 

4)  Obtain Fi and gi f o r  i = 1 t o  101 by i t e r a t i n g  (30) and (31) and 1 
using t h e  appropriate  s t a r t i n g  values. This gives us computed 

values f o r  g and glol. 

5 )  Compare t h e  computed values of  gl and glol with the  required 

boundary conditions(33). 

6)  If both computed values of  g 1 and glol match t h e  required boundary 

condit ions then the  so lu t ion  has been found. I f  not  then go 

back t o  s t e p  2 and guess again. 

Once the  so lu t ion  has been found equat ions (32) and (34) a r e  used t o  

obtain t h e  Ui, t he  vol tage along the  f i lm.  Ulo2 i s  t h e  appl ied voltage 

f o r  t h e  r e s u l t i n g  cur ren t  Z.  The above procedure is repeated f o r  points  

3 = 10 through 51, thus giving us 42 values of Z versus Ulo2. The 

r e s u l t i n g  Z versus U 1 2  curve is  the  current-voltage c h a r a c t e r i s t i c  of 

t h e  device. 

d)  Block Diagram 
5 

The above sec t ion  was j u s t  t o  give an idea  of how equations (30) 

through (34) a re  used t o  obtain values f o r  Fiy g. and Vi. A l a r g e r  

I problem is t r y i n g  t o  obtain the  cor rec t  values of Z and g t h a t  give a 3 
solut ion.  What was done was t o  guess two values f o r  Z ( Z l  and Z2) and 

two values f o r  g j  (gjl and gj2). These values were then s ~ s t e m a t i c a l l y  

augmented i n  an a t t empt to  obtain a s t r a d d l e  around t h e  t r u e  values. Once 

a s t r a d d l e  is obtained it i s  a simple matter t o  i n t e r p o l a t e  t o  t h e  r e a l  

value. 

A block diagram of t h e  computer program used t o  solve t h e  equation 
.* 

is presented i n  Figures 1 and 2. The program cons i s t s  of a main program 

and a subroutine named ZINTR. Following i s  an explanation of  the  var i -  



Obtain J and 
GJ=GJl, GJ2 o r  GJ3 

J GJ1 
EPZ GJ2 
AL GIN 
DBL 

t 
H=DBL/ 100 

Y 
Cal l  ZINTR - 
Compute ZJ1 

+ 
v 

1 Compute GJA 1 * 

MAIN PROGRAM 

ZINTR 

Check f o r  S t r a d d l e  

I T , zA2>!L"Al<AL) 1 
1 Yes 1 Check f o r '  s t r a d d l e  1 

S t r a d d l e  Obta ined;  

11 

Return: 
ZJ=ZJl, ZJ2 o r  ZJ3 

S t r a d d l e  o b t a i n e d ;  

S o l u t i o n  Obtained: 
Given Z and G(J )  corn 

L 
7 

FIGURE I 
FIGURE 2 



ab les  used. 

Main Program (Finds the  t r u e  value o f  g .  given the  t r u e  value of  2 from a 
the subrout ine)  

J = point  i n  considerat ion 

EPZ = tolerance a t  the  boundaries 

DBL =  width of t h e  f i lm) 

AL = (boundary value)  

G(I) = charge densi ty along t h e  f i lm I = 1 t o  101 

F ( I )  = e l e c t r i c  f i e l d  along the  f i lm I = 1 t o  101 

U(I) = voltage along the  f i lm I = 1 t o  102 

GJ1 and GJ2 = two guesses f o r  G(J) (GJ1 < GJ2) 

GJ3 = in te rpo la ted  value o f  G(J) 

G I 1  = augmenting value f o r  GJl and 

Z J 1  = value of 2 t h a t ,  along with GU) = GJ1, f i t s  the  r i g h t  boundary 

ZJ2 = value of Z t h a t ,  along with G(J) = G J 2 ,  f i t s  t h e  r i g h t  boundary 

ZJ3 = value of Z t h a t ,  along with G(J) = W3, f i t s  t h e  r i g h t  boundary 

GJA = computed value of C(1) f o r  Z = 2<71 and G(J) = GJl 

GJB = computed value of G(l) f o r  Z = ZJ2 and G(J) = GJ2 

GJC = computed value of  G(1) f o r  Z = ZJ3 and G(J) = GJ3 
* 

The main program assumes t h a t  G J 1  < GJ2 = GJA < GJB. 

*(Note from main program): This value i s  obtained by i t e r a t i n g  equations 

(30) and (31) t o  t h e  l e f t  hand boundary. 

Subroutine ZINTR (Finds a value of Z(cal1ed Z.7) which along with some 

value of G(J) ( c a l l e d  GJ) f i t s  t h e  r i g h t  hand boundary condition) 

Z J  = t h e  computed value of  Z t h a t  is  returned t o  t h e  main program. 

I t  w i l l  be e i t h e r  Z J l ,  ZJ2 o r  ZJ3 corresponding t o  GJ1, GJ2 

o r  GJ3 respec t ive ly .  

Z l  and Z2 = two guesses f o r  ZJ (21  < 22) 

Z3 = in te rpo la ted  value of  ZJ 

A 1  = computed value of G(lO1) f o r  Z = 21 and G(J) = G J  

A2 = computed value of G(101) f o r  Z = 22 and G(J) = G J  

A3 = computed value of G(101) f o r  Z = Z3 and G(J) = G J  

Z I N  = augmenting value f o r  Z l  and 22 

ZINTR assumes t h a t  Z l  < Z2 A 1  < A2 

^(Note from ZINTR): This value is obtained by i t e r a t i n g  (30)  and (31) 

t o  the  r i g h t  hand boundary. 

Rfc6u^tA 
Current-voltage curves ( 2  vs. uIo2) were found f o r  a = 10' and a = 

l o 6  f o r  various values of  a. The curves were each f i t  t o  a quadrat ic  

and t o  a cubic using t h e  l e a s t  squares c r i t e r i a .  Each curve followed a, - - -- 
quadrat ic  of t h e  form 

The values of  a and b a r e  presented i n  Tables 1 and 2. Figure 3 is  t h e  

current-voltage curve f o r  w = 0.2. 

TABLE 1 

TABLE 2 FIGURE 3 
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1974-1975 MANUSCRIPT CONTEST WINNERS 

The judging f o r  t h e  b e s t  exposi tory papers submitted f o r  

t h e  1974-75 school year has now been completed. The winners 

a r e  : 

FIRST PRIZE ($200): Daniel Minoli and Robert Bear, 

Polytechnic I n s t i t u t e  of New York, f o r  t h e i r  paper "Hyper- 

per fec t  Numbers" ( t h i s  JoumaZ, Vol. 6 ,  No. 3, pp. 153-157). 

SECOND PRIZE ($100): Mary Zimmerman, Western Michigan 

S t a t e  University, f o r  her  paper "Matrix Mult ipl icat ion a s  

an Application of  t h e  Pr inc ip le  of  Combinatorial Analysis" 

( t h i s  JownaZ, Vol. 6 ,  No. 3 ,  pp. 166-175). 

THIRD PRIZE ($50): Lonnie J .  Kuss, Texas Tech Univer- 

s i t y ,  f o r  h i s  paper "A Conformal Group on an n-Dimensional 

Euclidean Space" ( t h i s  JownaÂ¥L Vol. 6 ,  No. 3, pp. 144-152). 

1976-1977 CONTEST 

Papers f o r  the  1975-76 contest  a r e  now being judged, and we a r e  

receiving papers f o r  t h i s  y e a r ' s  con tes t ,  s o  be sure  t o  send us your 

paper, o r  your chap te r ' s  papers ( a t  l e a s t  5 e n t r i e s  must be received 

from the  same chapter i n  order  t o  q u a l i f y ,  with a $20 p r i z e  f o r  t h e  

bes t  paper i n  each chapter) .  For a l l  manuscript contests ;  i n  order  

f o r  authors  t o  be e l i g i b l e ,  they must not have received a Master's 

degree at the time they submit t he i r  peeper. 

WE NEED YOUR HELP 

Two of  l a s t  y e a r ' s  contest  winners were never reached by our o f f i c e  

because o f  a change o f  address. We have t h e  pr ize  money, bu t  we do not  

know where t o  send it. I f  anyone knows t h e  whereabouts of Charles D. 

Keys and S. Brent Morris, please l e t  us know. Our plea t o  a l l  authors 

is t o  always keep us posted on any change of address. 

GLEANINGS FROM CHAPTER REPORTS .. - .- - -- 

ARKANSAS BETA a t  Hendrix College p a r t i c i p a t e d  i n  t h e  Oklahoma-Arkan- 

s a s  reg iona l  meeting of  t h e  Mathematical Association i n  March, 1976. 

Student members of t h e  chapter who presented t a l k s  i n  t h e  undergraduate 

session were David BonneA, Jane-t VWLa.huwty, WWLiam O/uton, ALma Pohey, 

and Kcha& TiLe.f,w.back. 
, 

CALIFORNIA ALPHA a t  t h e  Universi ty  of  Ca l i fo rn ia  a t  Los Angeles 

sponsored s e v e r a l  co l loquia  during t h e  year given by members of  t h e  

facu l ty .  Among o t h e r s ,  a t a l k  was presented by John Go~ne- t t  on t h e  

t o p i c  "How t o  T e l l  One Cantor Set  From Another." 

CALIFORNIA ETA a t  t h e  University of  Santa Clara heard Nich0.h 

Kflueppd from t h e  University of  Cal ifornia  a t  Davis speak on t h e  t o p i c  

'Branching Processes" and Geowi. P0Lya from Stanford University on 

' I n t u i t i v e  Outl ine of  t h e  Solut ion of a Basic Combinatorial Problem." 

The i n i t i a t i o n  banquet guest was 30hvi W&z& from t h e  University of 

I l l i n o i s ,  who lec tured  on t h e  t o p i c  "Spheres Tangent t o  a Tetrahedron." 

COLORADO BETA a t  t h e  University of Denver heard presentat ions by 

i ts members on the  top ics  " I n f i n i t y  of  Rat ionals  and I r r a t i o n a l s" ,  

" St ruc tura l  Programming", and "Pascal 's  Triangles" , and members o f  t h e  

f a c u l t y  on such t o p i c s  a s  "The World is  Linear" and "Outlines f o r  a 

Solar  Energy Course .'I 

FLORIDA EPSILON a t  t h e  Universi ty  of  South Florida had both s tudent  

members and f a c u l t y  present  t a l k s  during t h e  year .  The s tudent  t a l k s  

were given by David K w i ,  Stuno Ca^teJUS.an~, Rob& Tubbh, Jo.~e.ph Shephe~d, 
and Rob& J(U.n&?n (whose t o p i c  was "How t o  Win a t  Monopoly Using Math"). 

The chapter  celebrated its t e n t h  anniversary and prepared a s p e c i a l  

r e p o r t  on t h e  h i s t o r y  of t h e  organizat ion,  on outstanding contr ibut ions 

of its members, and including a p a r t i a l  d i rec tory  giving t h e  present  

s t a t u s  of t h e  more than 350 mathematics s tudents  granted membership 

during t h e  10 years .  

GEORGIA GAMMA a t  Armstrong S t a t e  College heard Swotna Kmhhnamifiti, 



sen ior  mathematics major, speak on t h e  t o p i c  "Fourth Dimensional 

Fantasies" ,  and B e n  ZippeA.~ ,  a sophomore, on "Fibonacci Facts." 

ILLINOIS ZETA a t  Southern I l l i n o i s  University and t h e  Mathematics 

Department conducted t h e  Mathematics F i e l d  Day i n  which 500 high school 

s tudents  competed f o r  scholarships and awards i n  a mathematics examin- 

a t ion .  The chapter a l s o  maintained and serviced a problem board during 

t h e  year. 

KENTUCK2 GAMMA a t  Murray S t a t e  University heard t a l k s  by N a U S  E. 

WOO& on "Inventory Control", Ka.tky ze^tÂ£eA on "The Ring of  Continuous 

Functions on t h e  Unit In te rva l" ,  and S&ue Beofcty on "Mathematical 

Modeling of  Economics." 

LOUISIANA EPSILON a t  McNeese S t a t e  College heard one of  i ts student  

members, Sand/ia Ainhcwt., speak on t h e  t o p i c s  "Reason Behind Russian 

Peasant Mult ipl icat ion"  and "Mathematical Reasons f o r  t h e  Three Shapes 

of Regular Ti les ."  

MASSACHUSETTS GAMMA a t  Bridgewater S t a t e  College held an i n s t a l l a t i o n  

ceremony f o r  new members a t  which Ph06eAboh Ig- P. S&i  lec tured  

on the  t o p i c  " P e l l ' s  Equation--Or Is I t ? "  concerning t h e  so lu t ion  of t h e  

equation and its ambiguous or ig in .  

MICHIGAN ALPHA a t  Michigan S t a t e  University held i t s  Annual Ini t i -  

ation Banquet  a t  t h e  University Club and heard P~x>&bboh Fh&z ffeAZ0g 

speak on t h e  t o p i c  "Some Examples of Unsound Deduction." 

MICHIGAN DELTA a t  Hope College sponsored numerous s tudent  present-  

a t ions  during t h e  year on a wide v a r i e t y  of top ics .  Student speakers 

included RogUi MebitlLavid, Lauta. Ccwp, S h ~ o d  Q u h h g ,  Nancy PoniZe^Ji, 

Mahmood Maghat i ,  J m e ~  UandMAtee~., Ray L o k m ,  Tom We~tUiueAt, and 

G a ~ y  Miewma. 

MINNESOTA ALPHA a t  Carleton College conducted an a c t i v e  colloquium 

program and heard s e v e r a l  dis t inguished mathematicians. Among t h e  

l e c t u r e s  presented were "Some Surprises  i n  Combinatorics" by PJW&Uhoh 

V a v a  P. from Virginia  Polytechnic I n s t i t u t e ,  "Equivalence Rel- 

a t ions  and Their Relationship t o  Groups" by GSL0A-m ffwê bt from t h e  

University of Montana ( a  former Councillor of P i  Mu Epsi lon) ,  and "Pro- 

b a b i l i t y  Theory, o r  You Can't Win" by P h o J J ~ b o h  P a d  H&ob from t h e  

University of  Indiana. 

MISSISSIPPI BETA a t  Mississ ippi  College heard PAo(SUn&oh Job& Mac9 

from t h e  University of Alabama a t  Birmingham and t a l k s  by s tudent  members, 

Rll~b& Blooms on "Fibonacci Numbers", and Kmsn L 0 v U  on "Applications 

of Mathematics i n  Psychology." 

MISSOURI DELTA a t  Westminster College held i t s  F a l l  I n i t i a t i o n  

ceremony during which a l e c t u r e  on "Why You Can't T e l l  Whether a Turing 

Machine Ever Stops" was presented'by PM~cSAOA P a d  BSLack~teU from t h e  

University of Missouri. 

NEBRASKA BETA a t  Creighton University sponsored t h e  Mathematics 

F i e l d  Day on February 7 i n  which 650 high school s tudents  p a r t i c i p a t e d ,  

t h e  competition including Marathon speed t e s t s ,  a Leapfrog t e s t  f o r  

two-member teams, and t h e  Chalk Talk which included a t e s t  on t h e  t o p i c  

of  "Continuity of Functions of  One Variable." 

NEW JERSEY GAMMA a t  Rutgers University heard P A O ~ ~ ~ A O A  lkk-d 

Solomon speak on t h e  t o p i c  "Some Elementary Results i n  t h e  Theory of 

Topological Groups" preceding t h e  i n i t i a t i o n  ceremony i n  May. 

NEW JERSEY DELTA a t  Seton Hall  University par t i c ipa ted  i n  t h e  30th 

annual E a s t e r n  C o l l e g e s  Sc i ence  Conference  held a t  Rhode Is land University. 

Student members present ing papers were W& Man Lee., "On t h e  Diophantine 

Equation x2 + y2  t z 2  + c = x y z " ,  and v a n i d  Gfl.0~4, B o ~ d  Rob&Â£Â and 

David Sab&Ua( j o i n t l y ) ,  "Generating Functions and P a r t i t i o n  I d e n t i t i e s"  

and "kth Power Free Mul t ip l ica t ive  Functions." 

NEW JERSEY EPSILON a t  S t .  P e t e r ' s  College heard Vh. Qauid J a g m a n  

of Be l l  Laboratories speak on "What Business Expects of Mathematics 

Majors." 

NEW YORK P I  a t  S t a t e  University of New York, Fredonia, held a 

Career Day a t  which 3 alumni discussed t h e i r  jobs and job-placement. 

The chapter helped t o  obtain a mathematics l i b r a r y  and study area f o r  

s tudents ,  t o  which donations of books were made by f a c u l t y  members and 

book publishers .  

NEW YORK PHI a t  S t a t e  University of  New York, Potsdam, heard members 

Ken P m z  and P a d  Ha6e~. speak on t h e  r e s u l t s  of t h e i r  mathematics 

seminar. 

NORTH CAROLINA GAMMA a t  North Carolina S t a t e  University heard 

Phof^U&oh 3. U. &IAh^A speak on the  t o p i c  "Gamblers, Duels, ITT, and 



Mendel~Modern Applications of Probabi l i ty  Theory." 

OHIO EPSILON a t  Kent S t a t e  Universi ty  heard P&o,$&bho& Kenndh 

C u d  speak on " 'Calculus'  before t h e  Calculus--Some Moments of 

Ingenuity ." 
OKLAHOMA BETA a t  Oklahoma S t a t e  University toured t h e  Conoco com- 

puter  cen te r  i n  Ponca City and met and ta lked  t o  s e v e r a l  mathematicians 

i n  industry.  

PENNSYLVANIA THETA a t  Drexel University heard Ph0ftaAh0h Fmn& F. 

Ab&Â£& from Kean College of  New Jersey present  a l e c t u r e  on "Lewis Car ro l l ,  

Mathematician" following t h e  i n i t i a t i o n  ceremony. 

PENNSYLVANIA NU a t  Edinboro S t a t e  College l i s t e n e d  t o  l e c t u r e s  on 

" S t a t i s t i c a l  Fal lacies"  and "Choosing t h e  Best" given by Pko{.e^^o& 

U O N  H.  VeGhoot from Carnegie-Mellon University. 

PENNSYLVANIA X I  a t  S t .  Joseph's College sponsored a s e r i e s  of 

s tudent  l e c t u r e s ,  each a r e s u l t  of  t h e  s t u d e n t ' s  independent study i n  

an area of mathematics. Those l e c t u r e s  included "The Pr i soner ' s  

Dilemma" by T&w~cC ~ ~ i 2 A ,  "The L a t t i c e  of F i n i t e  Topologies" by &tc?VGN 

fCcÂ£AOl/ and "A Proof of  Ulam's Conjecture f o r  Unicyclic Graphs" by 

E&&d Sweeneg. 

TENNESSEE BETA a t  t h e  University of Tennessee a t  Chattanooga heard 

Tom McIntohh, a systems engineer a t  IBM, speak on t h e  t o p i c  "Cocoanuts 

and Coins, o r  Mathematics and Computers" a t  t h e  spr ing  i n i t i a t i o n  meeting. 

TEXAS ALPHA a t  Texas Chris t ian Universi ty  l i s t e n e d  t o  both s tudent  

and f a c u l t y  l e c t u r e s  during t h e  year ,  some of  t h e  meetings held i n  con- 

junction with t h e  Parabola Club, under t h e  leadership of De^c i t  Heap, 

P r e s i d e n t ,  and PAO<z&b0k k g  Comblwk, Faculty Advisor. 

TEXAS DELTA a t  Stephen F. Austin S t a t e  University heard P ~ o / U & O &  

J. & .&on  TaWdeA. from Texas Tech University l e c t u r e  on t h e  t o p i c  

"American Mathematics: A Bicentennial View" a t  t h e  i n i t i a t i o n  banquet. 

TEXAS EPSILON a t  Sam Houston S t a t e  University heard Mo~k SpWUYI 

a s  he demonstrated t h e  Tektronic ca lcu la tor .  

TEXAS ETA a t  Texas A . &  M.University helped conduct a mathematics 

contest  f o r  undergraduates i n  Apri l  and heard P&o(!u&o& B. F d  Joneh 

l e c t u r e  on "The Heat Equation" a t  t h e  i n i t i a t i o n  meeting. 

TEXAS IOTA a t  t h e  University of Texas a t  Arlington heard l e c t u r e s  

by A. Richad U c h e ^ .  on " I n f i n i t y  and Beyond" and ffd on "An 

Elementary Proof t h a t  P i  is I r r a t i o n a l ."  

TEXAS LAMBDA a t  t h e  University of  Texas heard s tudent  presentat i .ps-  

->y Bob To&&?.JWL on "An Algorithm f o r  Producing Nth Powers of In tegers  

From P a r t i a l  Sums" and Kenn h f e ^ l A  o n  "A Proof of t h e  Uniqueness of t h e  

' Ion- tr ivial  Magic Hexagon." 

VIRGINIA BETA a t  t h e  University of Maryland l i s t e n e d  t o  B ~ l d a  C O X ,  

Vice-president o f  t h e  chapter ,  speak on t h e  t o p i c  "A S t a t i s t i c a l  Study 

of Ozone i n  t h e  Stratosphere." 

VIRGINIA GAMMA a t  Madison College heard P&0/&440k Janet w o n  

from Radford College (Virginia)  l e c t u r e  on "A Random Model f o r  Communic- 

able Diseases", P&O/USO& LaW .̂mce KllVtz from Holl ins  College on a t o p i c  

i n  appl ied mathematics, P^ l f l /&4~0& T h o m ~ ~  K^c&te from t h e  University of 

Virginia  on "Animal Populations and D i f f e r e n t i a l  Equations", and 

P&V/UAOH. J0.W SUNl/eA from Mary Baldwin College on "Math A r t . "  

VIRGINIA DELTA a t  Roanoke College heard P & o / ~ ~ - A o &  M a t & /  Ru&n 

from t h e  University of Wisconsin speak on t h e  t o p i c  "Is Se t  Theory 

Necessary?" 

WEST VIRGINIA ALPHA a t  West Virginia  University acted a s  t h e  co-host 

f o r  s tudent  a c t i v i t i e s  a t  t h e  Allegheny Moutain Section of  t h e  Mathematical 

Association meeting i n  Apri l .  The following s tudents  presented papers 

a t  t h i s  meeting: John Sved rn~~~  (West Virginia  Universi ty) ,  GhCg Stump 

(Indiana University of Pennsylvania),  G. E. hi. Pope (West Virginia  

Universi ty) ,  S U Z ~  S&2uia.Jd (Allegheny College), ChcWie.4 W m ,  I'll 
(Duquesne Universi ty) ,  &&ed Kabana ( ~ u q u e s n e  ~ n i v e r s i t y ) ,  K c U k  B O ~ Z  

(Allegheny College), Ge-okge B m d t ~ l j  (Allegheny College), and DolO-thi/ 

0 i h U  (Allegheny College). 



COMMENT ON "SUMMATION OF 
SPECIAL CLASSES OF SERIES" 

Professor Joseph M. Moser of San Diego S t a t e  University has pointed 

out a general izat ion of t h e  most general  s e r i e s  considered by Gerard 

Protomastro i n  t h e  a r t i c l e  "Summation of  Special  Classes of Ser ies" ,  

t h i s  Journal, Vol. 6 ,  No. 4 (1976), 207-210. 

Consider t h e  s e r i e s  

This s e r i e s  can be evaluated by wr i t ing  

with sum 

Therefore 

and 

PUZZLE SECTION 
Mathacrostic No. 2 

Iden t i fy  t h e  30 key words, matching t h e i r  l e t t e r s  i n  order  with t h e  

opposite sequence of  numbers; i n s e r t  each l e t t e r  of t h e  key words i n  t h e  

square of  t h e  Mathacrostic with t h e  same number (next two pages). Words 

end a t  t h e  blank squares ,  and some words extend on t o  t h e  next l i n e .  

When completed, t h e  Mathacrostic w i l l  be a 217-word quotat ion,  and 

t h e  30 i n i t i a l  l e t t e r s  of t h e  key words w i l l  s p e l l  out  t h e  name of an 

author  and t i t l e  of h i s  book, which is t h e  source of t h e  quotation. It 

is a commentary on a work of one of t h e  f i v e  mathematicians named i n  

t h e  key words. The 30 l e t t e r s  A - 2 ,  a-d c o r r e l a t e  t h e  squares with t h e  

key words. Thus, t h e  Mathacrostic is a l s o  an anagram. 

Puzzle: Missionar ies  and Cannibals 

There i s  a s t range  s t o r y  of f i v e  missionaries  and f i v e  cannibals ,  

who had t o  cross  a r i v e r  i n  a 3-man boat.  Being acquainted with t h e  

pecu l ia r  appe t i t es  of  t h e  cannibals ,  the  missionaries  could never allow 

t h e i r  companions t o  be i n  a majori ty  on e i t h e r  s i d e  of  t h e  r i v e r .  Only 

one of  t h e  missionaries  and one of  t h e  cannibals could row t h e  boat .  

How d id  they manage t o  g e t  ac ross ,  and what i s  t h e  l e a s t  number of 

crossings t h e  boat has t o  make? 

Sol u t i  ons 

The B h e  Men and Gkeen Men [Fa1 1 , 1974, p .  121 

The captain deduced t h a t  a l l  t h e  na t ives  were Green men, because 

t h e  presence of a s i n g l e  Blue man means t h e  claim about what t h e  f i r s t  

na t ive  s a i d  is  t r u e  and hence "We a r e  a l l  green men" has t o  be t r u e .  

which is impossible with Blue men present .  

Solved by JAMES R. AMLING, NoAtfee~n 1SOJuft.oJuts UttLvvu,^Â£y VeKaib, 

1VLLnoi.h; PATRICK J .  BROWN, Ind iana  Uiw.uvu,vf.y, WoomLngton, Indiana; 

VICTOR G .  FESER, S t .  Lo& Unive&5^Â£y S t .  Lo&, M^ouAt.; ANDREW . I .  



A .  Factor of 10004 and - - - - -  
1000000004 15 38 65 2 112 

B. Mathematician, 1596-1650 - 
9 4 4 4 9 7 6 6 5 4 5  

C. Sign-change transformation - 
73 206 89 1.13 363 

D. Mathematics of f luxions 

E .  Mathematician, 1820-1884 

F. CH3CH2 

G. Base of a congruence 

H. Mass-less p a r t i c l e  

I. ........................ 
J. Whirled i n  a stream 

K .  Mathematician, 1815-1864 

L. AX' t B$ = C 

M. Math-chemist 

N. Detested 

0. Powerful 

P. Exhausted 

Q. Mathematician, 1550-1617 

R. City on Lake Winnebago 

S. Bridge deck 

T. Railroad tunnel  

U.  One of  t h e  l i l i e s  

V. X, i f  x18 has 20 d i g i t s  

X. Burlesque f o r  PhD's. 

Y. Rochester genius 

Z. Mathematics of numbers 

a .  Artichoke's wild cousin 

b. 3, 7, 11 o r  21 

c. Mathematician, 1789-1857 

d. Like chapparal 



PASQUALE, M m  h& Uniunu>Ltq, Htm-tington, Wut V-DtgiVU-OL; and HELEN 

SWEENEY, S t .  Louh ,  hLi~bouAc. 

The. PA-LAonVt and the. U h a  [ F a l l ,  1975, p. 1651 

This puzzle was solved by R. Robinson Rowe, Sacramento, C a l i f o r n i a ,  

who determined t h a t  the  b e s t  10 opt ions  f o r  t h e  p r i soner  (y ie ld ing  t h e  

lowest p r o b a b i l i t y  t h a t  he would be executed) occur when he p laces  ? 3 

white b a l l s  i n  each of  2 urns and t h e  remainder i n  t h e  3rd. Placing 

a l l  24 b a l l s  i n  one urn y i e l d s  a p r o b a b i l i t y  o f  1 / 8  = 0.125, whi le  1 

white b a l l  i n  each o f  2 urns  and t h e  remaining 22 b a l l s  i n  t h e  3rd y i e l d s  

35/594 = 0.058922559, 3 white b a l l s  i n  each o f  2 urns  and 1 8  i n  t h e  3rd 

y i e l d s  1/18 = 0.055555556, and 2 whi te  b a l l s  i n  each of 2 urns and 20 

i n  t h e  3rd y i e l d s  7/135 = 0.051851852 -- t h e  b e s t  s t r a t e g y .  

Mathac~~obLLc No. 1 [Spring, 19761 

Def in i t ions  and Key: 

A. Geodesic F. D i t t o  K. Twentieth P. Two-twins U.  Newton Z. Lune 
B. Heron G. Yield L .  Hedonist Q. I n f i n i t y  V.  S t i n t  a .  Oftenest  
C. Hundredths H. Abscissa M. Eucl id  R. Cubed H. A i r y  b.  Gauss 
D. Algebra I. Method N. Moth S. I n s t a n t  X. Phony c .  Yellow 
E. Rhumb J .  Agnesi 0 .  Abel T. Addend Y .  Off- set 

F i r s t  l e t t e r s :  G H HARDY A MATHAMATICIANS APOLOGY 

Quota t ion :  In these days of confl ict  between ancient and modem studies, 

there must surely be something to be said for a study which did not 

begin with Pythagoras and w i l l .  not end with Einstein but i s  the oldest 

and youngest o f  a l l .  (From G. H.  Hardy, A Mathematician's Apology.) 

Ten Mathematicians Mentioned: Pythagoras,  E i n s t e i n ,  Hardy, Heron, Agnesi, 

Eucl id ,  Abel, Newton, Airy, and Gauss. 

Soivad by LINDA BALLOU, Akfion, Ohio; JEANETTE BICKLEY, Uebbte~.  G h w e ~  

High Schooi, hlubouA^.; EZRA BROWN, VhgLni.a PoLqte.chnic ImtUtlit~, 

BiacfcAbiyig, V-Dtg-bb; LOUIS H .  CAIROLI , Kant.tU, S t a t e  Uvu-uwUq,  Man- 

hat&n, Kanbub; BRADFORD E.  CARTER, l i iddie  T w n a b e e .  State. UniuU~4di j ;  

Mu~f,he.e~bofio, T e n u r n ;  ALIZA DUBIN, Fat. Rockawaq, New Yo-ik; ELEANOR S. 

ELDER, New Onte.m, Lou^iiana; JOHN T. HURT, B/u/an, Te.xa4; MICHAEL 
IACUZIO, St. Jobe.ph '~ Cottage., PkLLadetpltia., Pe.nwiqLuwUa.; JOSEPH 

KONHAUSER, MacaJLebteA CoUege, S t .  P a d ,  h c n n ~ i o t o ;  BARBARA LEHMANN, 

S a i n t  Vtte4.b CoUege., J w e q  C^uty, N e w  Jmzq;  SIDNEY PENNER, Bionx 

Commu^Uy CoUege. 0 4  CUNY, Rtonx, Netu Yofik; BOB PRIELIPP, Ueunu>^.tq of,  

Wi~coni-u'i, Obhfzobh, U.LAcoain; RITA PRINCI, Bfionx, New Yohk; RICHARD D. 

STRATTON, C o t m d o  Sp^Lngi, Coiomdo; LEO S A U V ~ ,  ALgonquAn C o a g e . ,  

Ottawa, Canada; THOMAS F. SWEENEY, St. LOLL& UvU.unu>-Lty, AtcAbouAt; and 
. - 

CHARLES W .  TRIGG, Sun Viego, Cw%jok~&~. 

Editofi'b Note. 

Some puzzle  s o l v e r s  d id  not  l i s t  t h e  names of  t h e  t e n  mathematicians 

mentioned a s  p a r t  of  t h e  puzzle.  Three s o l u t i o n s  were received without 

t h e  name and address  o f  t h e  s o l v e r s .  

Severa l  favorable  comments were rece ived  regarding t h e  new Puzzle 

Sect ion and a f a i r  amount of  p a r t i c i p a t i o n  was ev iden t ,  s o  t h i s  s e c t i o n  

w i l l  be continued f o r  t h e  t ime being.  

FRATERNITY KEY-PINS 

Gold key-pins a r e  a v a i l a b l e  a t  t h e  Nat ional  Off ice  ( t h e  Univer- 

s i t y  of Maryland) a t  t h e  s p e c i a l  p r i c e  of  $5.00 each, pos t  pa id  

t o  anywhere i n  t h e  United S t a t e s .  

Be h u e .  t o  hc^cate. t h e  c h u p t e ~ .  -into which you wwt W a t e d  
and the appnox>unate d a t e  of, .iYiikia-tt.on. 

MOVING?? 

BE SURE TO LET THE JOURNAL KNOW! 

Send your name, o ld  address with  z i p  code 
and new address with zip code. t o :  

P i  Mu Epsi lon Journa l  
601 Elm Avenue, Room 423 
The Univers i ty  of  Oklahoma 
Norman, Oklahoma 73019 



PROBLEM DEPARTMENT 

Ed i ted  by Leon Bcwkofl 
Lob A n g d a  , C(Ltc<o~nia  

This department we lcomes problems believed t o  be new and, as a pule, 

demanding no greater abi l i ty  i n  problem solving than that of the average 

member of the Fraternity. Occaaionall'y we shall publish problems that 

should challenge the &ity of the advanced undergraduate or candidate 

for the Master's Degree. Old problems displaying novel and elegant 

methods of solution are also acceptable. Proposals should be accompanied 

by solutions i f  available and by any information that wilt assist  the 

editor. 

Solutions should be submitted on separate sheets containing the name 

and address of the solver and should be mailed before the end o f  May 1977. 

Address a l l  conununications concerning problems t o  Dr. Leon Bankoff, 

6360 Wilshipe Boulevard, Los Angeles, California 90048. 

Problems for Solution 

374. P~opobed  by Jack Gcui./unkd, To/t.ut W-iU ?0gh Schoo l ,  VLubhing, 

dew Yofik., 

In  a  t r i a n g l e  ABC insc r ibed  i n  a  c i r c l e  ( O ) ,  angle b i s e c t o r s  AT 
1 

B T ,  CT a r e  drawn and extended t o  t h e  c i r c l e  ( see  Fig. 1 ) .  Perpendicu- 
3 

l a r s  T1H, T H ,  T H a r e  drawn t o  s i d e s  AC, BAY CB respect ively.  Prove 
3 3 

t h a t  TIHl + T2H2 + T3E3 does n o t  exceed 3R, where R i s  t h e  rad ius  of  t h e  

circumcircle . 
375. Pmpo&e.d by WLchoJul S. F i e l d ,  San-ta. Monica, CaLLd0MU.a. 

Approximate t h e  value o f  2 1 0 * 0 0 0  without using p e n c i l  and paper ( o r  

chalk and blackboard o r  s i m i l a r  equipment). 

376. Ptopobed by Solomon W. Gotomb, U M . u ~ u L t y  o /  S o u t h . m  CaUdoAm.a, 

Lob A n g e l a ,  CoJU.6oIWA.a. 

Let t h e  sequence {a  be defined induct ively by a, = 1 and an+- = n 
s i n  ( a r c  t an  a ) f o r  n > 1. Let t h e  sequence {b be defined induct ively 

n n 
by bl = 1 and bn+l = cos ( a r c  t an  b ) fo r  n 2 1. Give e x p l i c i t  expressions n 

TI 

FIGURE 1 

f o r  a n and b ,  and f i n d  l i m  a and l i m  b a s  n approaches -. 
377. Pmpohed by C h d a  W .  T/u.gg, San V-Le-go, C w o d a .  

From the  following square a r ray  of the  f i r s t  25 p o s i t i v e  i n t e g e r s ,  

choose f i v e ,  no two from the  same row o r  column, s o  t h a t  t h e  maximum of 

t h e  f i v e  elements i s  a s  small  as  possible .  J u s t i f y  your choice. 

2  1 3  1 6  11 23 

15 1 9 7 10 

14 12 21  24 8 

3 25 22 18  4 

20 19 6 5 17 

378. Ptopohed by M. L. G t a ~ i ~ ~ t  and M. S. KLamLn, i b i v ~ ^ L t y  0 6  
Wo-teA^oo, WatVLioo, On-taAto, Canada. 

Show t h a t  

f o r  1 > x > 0. 
d 



379. Pmpo6e.d by David L. Si .Lvman ,  W u t  Lo6 Ange^u,  C 4 o h w i . a .  

You p lay  i n  a non-symmetric two-man sub t rac t ive  game i n  which t h e  

p layers  a l t e r n a t e l y  remove counters from a s i n g l e  p i l e ,  t h e  winner being 

the  player  who removes t h e  l a s t  counter(s) .  A t  a s tage  when t h e  p i l e  

contains k counters ,  i f  it is  your opponent's move, he may remove 1, 2, ..., 
up t o  [a] counters ,  where [XI is t h e  l a r g e s t  i n t e g e r  5 a:. If it is  your 

move, you may remove 1, 2, ..., up t o  $(k)  counters ,  where 4 is  t h e  Euler 

t o t i e n t  funct ion.  If y6u play first on a p i l e  of  1776 counters ,  can you 

assure yourself  of  a win aga ins t  b e s t  play by your opponent? 

380. P'iopo6e.d by V. F. I v a n o f i ,  Son CoJiHo6, CaLLiofwia. 

Form a square from a quadrangle (ABCD) by b i sec t ing  segments and 

the  angles. 

381. P m p o ~ e d  by CLai/ton W .  'Dodge., Lm.vwi ' i ty  0 6  Maine., Ovino, 

\\cline.. 

Solve t h e  following wintery, s l ippery  alphametrics ( a l s o  known as  

cryptarithms and alphametics): 

(ICE) 3 = ICYWHEEE. 

(ICE) = ICYOHOH. 

382. P'iopo~ed by R .  Robin ion Rome., Naubinway, Michigan and Sac~ume.nto, 

CaLq0Mu.a. 

Two cows, Lulu and Mumu, a r e  t e thered  a t  opposite ends o f  a 120-foot 

rope threaded t h r u  a knothole i n  a post  of a s t r a i g h t  fence separat ing 

two uniform pastures .  How much a r e a  can they graze,  presuming they e a t ,  

nap and ruminate on i d e n t i c a l  schedules and t h e  rope length is a l s o  t h e  

extreme reach from muzzle t o  muzzle of  Lulu and Mumu? A s  a sequel ,  i f  

Mumu is replaced by t h e  h e i f e r  Nunu with h a l f  the  a p p e t i t e ,  what i s  t h e  

a rea  access ib le  t o  Lulu and Nunu? 

383. Paopohed by N o m  Schaumbe~gvi., Bmnx Community CoWe.ge., 

New Yo&. 

Find a pentagon such t h a t  t h e  sum of  t h e  squares o f  i ts s i d e s  is 

equal  t o  four  t imes i ts  area. 

384. Pwpo6e.d by R. S. Lo-tfioA, U n i u m - t A /  o d  W-tAconb-tn, J a n 2 ~ v L U e .  

Discuss t h e  convergence o r  divergence of t h e  s e r i e s  

where p means the  n t h  prime. n 

385. Pmpo~e.d by John T.  Hnvt, B/man, Texa6. 

Solve: s i n a = t a n ( a - B ) + c o s  a t a n B .  .,.. -- 
-- - 

Comment by EdLtoa 

Problem 364 published i n  t h e  Spring 1976 i s sue  was an inadvertent  

dupl icat ion of  Problem 325 proposed i n  t h e  Spring 1974 and solved i n  t h e  

Spring 1975 issue.  

Sol utions , 

341. [Spring 1975; Spring 19761 Pwpo6e.d by Jack G&unke^, 

Jon-& H U U  High Schooi ,  New Yo&. 
Prove t h a t  the  following construct ion t r i s e c t s  an angle of  60 . 

Triangle ABC is a 3 0 ~ - 6 0 ~ - 9 0 ~  r i g h t  t r i a n g l e  inscr ibed  i n  a c i r c l e .  

Median CM i s  drawn t o  s i d e  AB and extended t o  MI on t h e  c i r c l e .  Using 

a marked s traightedge,  point  N on AB i s  located such t h a t  CN extended 

t o  N' on t h e  c i r c l e  makes NN' equal  t o  WS'. Then CN t r i s e c t s  t h e  60" 

angle ACM. 

Comme.nt by ChcwLu U. T d g g ,  Son Diego, CaLLf.oIWA.a. 

I f  angle MCA = 6, with 45" < 9 < 90" then angle MAC = 6, and angle 

CMA = 180" - 28 (Fig. 2).  Now AW1 = N I N  = MC, so  t r i a n g l e  S'MC is 

FIGURE 2 

i sosce les  with base angles = x. Also, t r i a n g l e  MN'N is i sosce les  with 

base angles = ( 1 8 0  - x) /2 .  Then angle CNA, which is  e x t e r i o r  t o  tri- 



0 

angle M C S ,  i s  equal  t o  180 - 26 t x. Equating t h e  v e r t i c a l  angles:  

so  
33: = 46 - 180 

0 

x = 48/3 - 60 . 
There a r e  t h r e e  cases where 0 i s  an i n t e g r a l  mult iple  of  x ,  namely: 

(x ,  8 )  = ( 4 "  48"), ( 2 0 ,  6 0 ) ,  and ( 3 6 ,  7 2 ) .  

350. [Fall 19751 Pit.opo.ied by R. Robiuon  Roiue, Samamexto, 
C W o h k l .  

In the  game of  ELDOS, an acronym f o r  Each Loser Doubles Opponents' 

Stacks,  each of  n players  starts with h i s  bank (5)  and a t  any po in t  i n  

the  play holds h i s  s t a c k  (S), which he b e t s  on t h e  next  round. For each 

round t h e r e  is  j u s t  one l o s e r ;  i n  paying t h e  n - 1 winners, he doubles 

t h e i r  s tacks.  Consider here a  unique game when, a f t e r  n  rounds, each 

player  has l o s t  once and a l l  players  end with equal  s tacks .  

(a )  For n = 5 ,  what was t h e  minimum bank, B, f o r  each player? 

(b )  How many p layers ,  n ,  were t h e r e  i f  t h e  l e a s t  i n i t i a l  B was 

11 cents? 

(c )  Find a  general  formula f o r  Em, t h e  i n i t i a l  B of t h e  mth player  

t o  l o s e ,  a s  a  funct ion o f  m and n.  

(d)  Using t h e  formula o r  any o ther  appropriate  method, what was t h e  

i n i t i a l  bank B of t h e  9th o f  13 players  t o  lose? 

SoLWtion by S-teue h a n d ,  ItU.um-uty of, South FlohLda, Tampa, FiohLda. 

The Solut ions t o  ( a ) ,  (b) and (d)  can b e s t  be found a f t e r  f inding a  
n general  formula f o r  B ( c ) ,  t h e  mth player  t o  lose  out  of n. I f  an e x t r a  m' 

p layer  was included who s t a r t e d  with a  bank of 1 and never l o s t ,  he would 
n n 

have 2 a f t e r  t h e  n t h  round. Hence, every player  ends with 2 , and t h e  
n t o t a l  amount i n  t h e  game is always n-2  . Furthermore, every p layer  who 

has already l o s t  has 2 a t  t h e  end of  t h e  mth round a t  which time the  

mth l o s e r  must pay t h e  (m - 1 )  previous l o s e r s  t h e  amount they had a t  t h e  

end of round (m - 1 )  and 2m-1. He a l s o  must pay t h e  winners one ha l f  of  

t h e  amount they have a t  the  end of  t h e  mth round, which i s  t h e  t o t a l  

amount i n  t h e  game, 77.2, minus the  amount of t h e  l o s e r s  a t  t h e  end of 

t h e  mth round, namely m.2 .  The t o t a l  of  m a t  t h e  end of (m - 1 )  rounds 

is t h e  amount he paid a t  the  end of  t h e  mth, plus  t h e  amount he had a t  

the  end of t h e  wth, 2 .  Since h i s  s tack  doubled i n  each of  t h e  previous 

m - 1 rounds, h i s  i n i t i a l  bank was: 

From t h e  foregoing general  s o l u t i o n  we obtain 
5 5 5 5  5 

( a )  B 1 = 81, B 2 = 41, B = 2-1, B 4 = 11, B5 = 6. 

(b)  I f  t h e  l e a s t  i n i t i a l  B was 11 cents ,  m = n and we have 

11 = n-2(n-m) t 1, whereupon n = 10. 

( d )  fli3 = 13(213-') t 1 = 209 

Also solved, by t h e  Proposer, who of fe red  a lgebra ic ,  a r i thmet ic  and 

diophantine methods of so lu t ion  f o r  p a r t  ( a ) .  For example: 

A~~L2hmiti.c Mdhod 

Working backwards, a n t i c i p a t i n g  r e p e t i t i v e  d iv i s ion  by 2,  s t a r t  

with t h e  assumption t h a t  end s tacks  were powers of  2, say 32, 32, 32, 

32, 32, then t h e  l a s t  l o s e r  had t o  pay 4-16 = 64 from h i s  s tack of  

32 t 64 = 96. Then t h e  4th l o s e r  had t o  pay 72 ,  s o  held 88 and so  on, 

down t o  t h e  i n i t i a l  banks a s  shown below. 

I f  we had s t a r t e d  with 64, a l l  f igures  would have been doubled and 2 

could have been factored out of  t h e  l a s t  l i n e  f o r  a  p r imi t ive .  

351. [Fall 19751 Pkopo~ed by Jack Gmfitmkel, F o w t  H^U& High 

School,  FilUsLng, Nw Yo&. 
Angle A and angle B a r e  acute  angles of a  t r i a n g l e  ABC. I f  angle 

A = 30Â and h a '  t h e  a l t i t u d e  i s su ing  from A ,  is equal t o  m,, t h e  median 

issuing from B, f i n d  angles B and C. 

Solu t ion  by Z d d a  K d z ,  EeveAiy HU&s,, CaLiiofw^a. 
Since t h e  perpendicular from M upon HB = h n  = mb/2, it follows ; 

t h a t  angle MBC = 30Â (Fig. 3).  Consequently t r i a n g l e s  MBC and ABC a r e  

s imi la r .  Let x = angle ABC = angle CUB. Then s i n  x = h /a = m la = 
2 

b 
s i n  30Â°/si x. Hence s i n  x = s i n  30Â = 1/2  and a; = 45O. Since angle B = 

45O it follows t h a t  angle C = 105O. 



FIGURE 3 

AÂ£i botved by CLAYTON W .  DODGE, W L V r n L t t j  of, J K d n e  at Omno; JOHN 

TOM HURT, Btyan, Texcu>; CHARLES H .  LINCOLN, Ra^Lgh, N. C . ;  KYUNG WON 

PARK, FÂ£ub(u.ng Men) Yofife; R .  ROBINSON ROWE, Sacham&o, Catif,ohnLa; 

CHARLES W .  TRIGG, San Diego, C a t i i o t n i a ;  and ,the Ptopobnt.  

352. [ F a l l  19751 Ptopobed by ChOASLch hi. T k i g g ,  San V^e.go, Catif,o/uu.a. 

The edges of a semi-regular polyhedron a r e  equal.  The faces cons i s t  

of  e igh t  e q u i l a t e r a l  t r i a n g l e s  and s i x  regu la r  octagons. In  terms of  the  

edge e ,  f i n d  t h e  diameters o f  t h e  following spheres: ( a )  t h e  sphere 

touching t h e  octagonal faces ,  (b )  t h e  circumsphere, and (c )  t h e  sphere 

touching the  t r i a n g u l a r  faces.  ( see  so lu t ion  t o  Problem 198, on page 390 

of t h i s  Journal,  Vol. 4 ,  No. 9) 

S o t u t i o n  by tSie P t o p o b ~ ~ .  

The polyhedron is  a t runcated hexahedron -- a cube t h a t  has had a 

t r i r e c t a n g u l a r  tetrahedron cut  from each vertex.  Hence, the  edges of the  

tetrahedron i s su ing  from the  cube's ver tex a re  e/v^. 

a )  The edge of the  cube i s  e ( l  + 2 / f i  ) o r  e ( l  + /2" ). This i s  t h e  

diameter of t h e  sphere touching t h e  octagonal faces.  

b )  The square of  t h e  d i s tance  from t h e  ceriter of  the  polyhedron t o  

a vertex is 2[e ( l  + /2/212 + (e /2 I2  or  (7+&/sTfe2/4. Hence t h e  diameter 

of t h e  circumsphere i s  /7+4/2e A 3.5576e. 

c )  The volume of one of  the  te trahedrons cut from the  corners of 

t h e  cube can be computed i n  two ways, so  

(e/i^") 3/6 = (e/3/2)(e/2)(h/3)  

where h is  t h e  a l t i t u d e  upon t h e  t r i a n g u l a r  face of  the  semiregular 

polyhedron. Hence, h = e/&. Consequently t h e  diameter of  t h e  sphere 

caching the  t r i a n g u l a r  faces  i s  t h e  space diagonal of  t h e  cube l e s s  2h . 

or e ( l  + fi) 6 - 2e/& o r  e ( / 3  t 2/6"/3) A 3.3650 e .  

At&o b o t v i d  by R. ROBINSON ROWE, Sac~amento,  CuLi6ohnLa. 

353. [ F a l l  19751 Ptopobed by Ctcujton W. Dodge, (AM.uemtiy of, Mdw -- - 
at Otono. 

I t  is easy t o  show t h a t  i f  a and t> a r e  complex numbers such t h a t  

a + b = 0 and la  1 = 1 b  1 , then a2 = b2. Prove t h a t  i f  a ,  b and c a r e  complex 

numbers such t h a t  a + b + c = 0 and la1 = lbl = l c l ,  then a 3  = b3  = c3.  

Can t h i s  r e s u l t  be extended t o  more than t h r e e  numbers? 

SothLtLon by the. Pmpo&eh. 

Let la1 = lb 1 = lcl = k. I f  k = 0 ,  the  r e s u l t  is  obvious. So suppose 

k # 0. Since a + b = -a, then la + bl = \ c \  and 

a + b I 2  = a: + ab + a6 + Eb = cZ = k2, 

a b + a b + k 2 = 0 ,  

a2E2 + k2& + k4 = 0 (by mult iplying by d l ,  

(a2E2 + k2aE + k4)(aE - k2) = 0, 
a 3 p  - k6 = 0, 

a3g3b3 = k6b3, 

a3k6 = b3k6,  

and f i n a l l y  

a3  = b3. 

By symmetry, a 3  = b 3  = c3. 

The r e s u l t  does not extend. Let a = 1, b = -1, and c and d be any 

two opposite po in t s  on t h e  u n i t  c i r c l e  (except 1, -1, i, and -i). Then 

a +  b +  c +  d =  0. and la1 = \ b \  = lo1 = ldl, b u t a 4  = b4 # c 4  = d4. 

AÂ£4 bo lued by VICTOR G. FESER, M o ~ q  CoUege, B-cAino~ck, No& Dakota; 

JOHN TOM HUNT, Btyun, T e x o ~ ;  STEVE LEELAND, i ^ i v M  0 6  So& K o k i d a ,  

Tampa, FbILLda; CHARLES H .  LINCOLN, R a t L g h ,  No& C m t i n a ;  and AL WHITE, 

S t .  Bonauentwu U m - v m i t y ,  New Yo lk .  

354. [ F a l l  19751 Ptopc ied by A&WL Bvwhcwt  and V d d  C. Kay, 

Uu-vemJut.q 0 6  <Oklahoma, Noman, Oklahoma. 

In  a t r i a n g l e  ABC with angles l e s s  than 2ir/3, t h e  Fermat Point ,  

defined a s  t h a t  po in t  which minimizes t h e  funct ion f(X) = AX + BX + CX, 

may be determined a s  t h e  po in t  P o f  concurrence of  l i n e s  AD, BE and CP, . 

where BCD, ACE and ABF a r e  e q u i l a t e r a l  t r i a n g l e s  constructed ex te rna l ly  

on t h e  s i d e s  of t r i a n g l e  ABC. I f  R,  S and T a r e  t h e  po in t s  where PD, 



PE, and PF meet t h e  s i d e s  o f  t r i a n g l e  ABC, prove t h a t  PD, PE and PF a r e  

twice t h e  a r i thmet ic  means, and t h a t  PR, PS and PF a r e  h a l f  t h e  harmonic 

means of  t h e  p a i r s  o f  dis tances (PB, PC), (PC, PA) and (PA, PB) respec t ive ly .  

S o t i i t i o n  by Chafd.e^ W .  T/u.gg, Sun V-ie-go, C a L i ~ o m i a ,  

FA = BA, AC = AE, and angle PAC = 60" t angle BAC = angle BAE, s o  

t r i a n g l e s  FAC and BAE a r e  congruent. Thus angle PCS = angle SAE, and 

s ince  angle PSC and angle ASE a r e  equal v e r t i c a l  angles ,  t r i a n g l e s  PSC 

and ASE a r e  s i m i l a r .  So angle SPC = angle SAE = 60". Hence P l i e s  on t h e  

circumcircle  of t r i a n g l e  EAC and q u a d r i l a t e r a l  EAPC is  concyclic. There- 

f o r e  angle APE = angle ACE = 60" and t r i a n g l e s  APE and SPC a r e  s imi la r .  

By Ptolemy's Theorem: 

PE-AC = PA'CE = PC-EA, 

and s i n c e  AC = CE = EA, 

PE = PA + PC = twice the  a r i thmet ic  mean of PA and PC. 

In l i k e  manner, it can be shown t h a t  PD = 2 [ ( P C t  PB)/21 and PF = 2[(PS t 

PA)/21. 

From the  s i m i l a r  t r i a n g l e s  APE and SPC, 

PS/PA = PC/PE 

so  

Pi? = PA-PC/PE = PA-PC/(PA + PC) = h a l f  t h e  harmonic mean of 

PA and PC. In  l i k e  manner, it can be shown t h a t  PR and PT a r e  h a l f  t h e  

harmonic means o f  (PC, PB) and (PA, PB) respect ively.  

A U o  ilioive.d fay CLAYTON W .  DODGE, U n L v m h k j  od Maine., Ohono, M&ne.;- 

R. ROBINSON ROWE, SacAamewto, C a J L L 6 o M ;  and. -tfie P & o p o & m .  

355. [Fall  19751 Pmpobed by John M. H o U ,  LLW-emck, CaJLLfioWu.a.. 

On t h e  TV game show c a l l e d  "Who's Who?", four  p a n e l i s t s  t r y  t o  m e ?  

t h e  occupations of four  contestants  with s igns  marking t h e i r  occupations..  

I f  t h e  first p a n e l i s t  matches c o r r e c t l y ,  t h e  con tes tan t s  g e t  nothing and 

the  game is over. I f  t h e  second p a n e l i s t  succeeds i n  matching c o r r e c t l y ,  

t h e  contestants  ge t  $25. If t h e  second p a n e l i s t  f a i l s  but  the  t h i r d  

succeeds, t h e  contestants  ge t  $50. If t h e  four th  p a n e l i s t  matches a f t e r  

the  t h i r d  f a i l s ,  the  contestants  g e t  $75. I f  t h e r e  is  no match, the  

con tes tan t s  win $100. What is t h e  expected value of t h e  contestants '  

winnings? 

S o i u t i o n  by C h j X o n  W .  Dodge., UnLvem-cty 0 6  Mahe.,  Omno, Maine and. 

b-uinAyi^y by  S-teue. Le.e^and, (JnLvm-tA/ 0 6  S o o t h  FtoM.da., Tampa, Ft0M.d~. 

Since t h e r e  a r e  24 permutations of t h e  four  s i g n s ,  t h e  p robabi l i ty  

of t h e  first p a n e l i s t  matching t h e  occupations c o r r e c t l y  i s  1/24. For 

t h e  second p a n e l i s t  t h e  p robabi l i ty  is  (23/24)(1/23), e t c .  The contes- 

t a n t s  ' expectat ions,  then,  i s  

= 0 + 1.0417 t 2.0833 + 3.1250 t 83.3333 = $89.58. 

AUO b o k d  by LOUIS H .  CAIROLI, KaViisaS, S ta te .  U n L v e ~ i - t A j ,  the. 
PAO~OAM, and by R. ROBINSON ROWE, SaCAM!ttvba, Ca&@iWA.cn, who o 6 6 e ~ i  

the. ~oU.o% wmme.nt: 

It should be noted t h a t  the  f i r s t  p a n e l i s t  has 1/24 chance of  

having a l l  four  of h i s  gusses r i g h t ,  no chance of  having j u s t  t h r e e  

r i g h t ,  6/24 chance of having none r i g h t .  Suppose the  second p a n e l i s t  

deduced from these p r o b a b i l i t i e s  t h a t  t h e  b e s t  s t r a t e g y  would be t o  assume 

none r i g h t  and change a l l  four .  Then h i s  chance would be 23/24 (9/23 

1/9 + 14/23 0/14) = 1/24. And, a f t e r  a l l ,  s t r a t e g y  is  ruled ou t  by 

the  spec i f ied  'pure guess ' ,  

356. [ F a l l  19751 Phopohtd by EÂ¥tuio Ju-t, Btonx Commun^fa/ CoSULege., . . 
BAonx, New Yo ik .  

From t h e  s e t  of  in tegers  contained i n  [l, 2nl a subset  K consis t ing 

FIGURE 4 



of n + 2 in tegers  is chosen. 

t h e  sum of  two o ther  d i s t i n c  

Prove t h a t  a t  l e a s t  one element of  K  is  

:t elements of K. 

I .  S o i d o n  by Clayton W.  Dodge, U n i u w L t g  ofi Maine, O-lono, Maine. 

I f  t h e  l a r g e s t  element of  K i s  2q, then K can contain only one 

element from each of  t h e  p a i r s  ( 1 ,  2q - 11, (2, 2q - 21, ..., (q - 1, 

q t 11, and possibly a l s o  q ,  f o r  a maximum t o t a l  o f  q + 1 elements. If 

2q - 1 is  the  l a r g e s t  element of  K, then K can contain only one member 

from each of  t h e  p a i r s  (1,  2q - 2) .  (2 ,  2q - 31, ..., (q - 11, q ) ,  f o r  

a t o t a l  of q elements. The theorem now follows. Furthermore, i f  K = 

{n,  n + 1, n + 2,  . . . , In},  then K  contains n + 1 elements with no two 

members having a sum equal  t o  a t h i r d  member. 

11. S o t u t i o n  by R<.chakd A. Gibbb, FoA-t L& College., Vu~ango ,  Cotomdo. 

We s h a l l  prove t h e  s t ronger  r e s u l t :  

Theohm. The complement K o f  any s e t  of  n - 2 in tegers  i n  

'2n 
= { l ,  2 ,  ..., 2nI 

contains a t  l e a s t  two elements which a r e  t h e  sums of two d i s t i n c t  elements 

of  K .  

Proof. Noting t h a t  we must have n > 1, we proceed by induction 

and observe t h a t  the  r e s u l t  i s  evident  f o r  n = 2. Assume it is  t r u e  

f o r  n = k and consider S - , + .  Form K' by removing k - 1 members from 

S k .  I f  e i t h e r  2k t 1 o r  2k + 2 is removed then a t  most k - 2 members 

a re  removed from S k  c S2, and we obtain t h e  two desired sums by t h e  

induction hypothesis.  Therefore we may assume t h a t  both 2k t 1 and 

2k + 2 a r e  i n  X' and hence remove k - 1 members from S2,. Consider t h e  

s e t s  A = { ( l ,  2k)( , (2,  2k - I ) ,  ..., (k, k + 1 ) 1  and B = { ( I ,  2k + 11,  
( 2 ,  2k) ,  . . . , (k ,  k + 2)) .  Since each s e t  involves 2k d i s t i n c t  in tegers  

from S2ktl i n  k p a i r s ,  t h e  removal of k - lmembers from S2,, w i l l  leave 

a t  l e a s t  one complete p a i r  of elements of K t  i n  each of  A and 5. Hence 

both 2k t 1 and 2k t 2 w i l l  be sums of  d i s t i n c t  elements of  K t  and t h e  

induction is complete. 

Aha botve.d by LOUIS H .  CAIROLI, K o n i o ~  Sta te .  U n i u m ^ - & / ;  VICTOR 

G .  FESER, M a y  Coite.ge, B d m m c k  NO; JOHN TOM HURT, Bwan ,  TexoA; 

R .  ROBINSON ROME, Sacmmen-to, C q o & a ;  BRUCE A. YANOSHEK, U h W i ^ k y  

of, C i n c i n n a t i ,  Ohio; and t h e  Pmpobeh. 

357. [ F a l l  19751 P-lopobed by Vau-t-d L, & U . u m u n ,  Wut Lob h g f t u , ,  

C ~ o & a .  

Able, Baker and Charl ie ,  with respect ive speeds a > b > c ,  s t m t  a t  

saint P with Able designated it i n  a game of  Tag which terminates whep-*- 

Able has tagged both Baker and Charlie. A t  time - T,  Baker heads north - 
and Charlie south.  After a count taking time T, Able s t a r t s  chasing one 

of t h e  two quar r ies .  Assuming t h a t  Baker and Charlie w i l l  maintain t h e i r  

speeds and d i r e c t i o n s ,  whom should Able chase f i r s t  i n  o rder  t o  minimize 

the  time required t o  make t h e  second and f i n a l  tag? 

S o l u t i o n  by Chafitvn K .  Lmco in ,  Wi.OA.gh, N o h  CmoLLna. 

Let x and y be t h e  times required f o r  Able t o  catch the  f i r s t  and 

the  second person respect ively.  I f  Able chases Baker f i r s t ,  d i r e c t  

calculat ion shows t h a t  x = bT/(a - b) and y = aT(b t c ) / ( a  - c ) ( a  - b ) .  

I f  Able chases Charlie f irst ,  x = oT/(a - c )  and y = aT(b t c ) / ( a  - C ) *  

( a  - b ) .  Since both y ' s  a re  equal,  t h e  x ' s  show t h a t  t h e  l e a s t  time 

w i l l  e lapse when Able chases Charlie f i r s t .  

AÂ£i h0Lue.d by LOUIS H .  CAIROLI, K u n ~ i u  State.  U n i u m - C t y ;  CLAYTON 

W .  DODGE, UnL\ iWiÂ£t o f ,  Maine at Ohono; TOM HURT, Bhqun, TexoA; 

R. ROBINSON ROME, Sa.~~cmon-ts, Catif,otw^a; CHARLES W .  TRIGG, Sun Vicgo,  

C m o & a ;  and. the. P-lopobe~. TheÂ£ isicovte.ct boLuAcon~ uim /le.&ue.d. 

358. [Fal l  19751 Pmpobed by Sidney Pe.nne-l and H .  I a n  W(u-t toda, 

Bhonx Community CoUege, Bmnx,  New YO&. 

From a 2n + 1 by 2n t 1 checkerboard, i n  which the  corner squares 

a re  black,  two black squares and one white square a r e  deleted. I f  the  

deleted white squares and a t  l e a s t  one of  t h e  de le ted  black squares a r e  

not  edge squares, then t h e  reduced board can be t i l e d  with 2 x 1 dominoes. 

S o i d o n  by C h y t o n  W .  Dodge., UVU,uemVty of,  Maine. at Ohono. 

Let t h e  corner squares be black i n  any 2n + 1 by 2n t 1 checkerboard. 

Then there  a r e  2n2 t In  + 1 black and 2n2 + 2n white squares i n  t h e  

checkerboard. 

In  an n by n checkerboard with n > 2 , l e t  us use t h e  term contiguous 

square f o r  any square t h a t  i s  no t  a boarder square but  t h a t  touches a 

border square. Thus, f o r  n = 3, only t h e  center  square i s  a contiguous 

square. For n > 3 ,  t h e  contiguous squares form a hollow square of  s i z e  ; 

n - 2 b y n - 2 .  

Lemma 1. If a square of  each co lor  is  removed from t h e  border of 



any n by n checkerboard, the  remaining border squares can be t i l e d  with 

2 by 1 dominoes. 

Proof. There a re  an even number of  squares along t h e  border ( i n  

e i t h e r  d i r e c t i o n )  between two oppositely colored squares. These can be 

t i l e d  i n  t h e  obvious way. 

Lemma 2. I f  a border square of co lor  A is removed from an n by n 

checkerboard where n > 3 ,  then an oppositely colored (co lor  B )  border 

square may be chosen a r b i t r a r i l y  and a l l  remaining border squares t i l e d  

with 2 by 1 dominoes. Furthermore, t h e  B square can be  chosen s o  t h a t  

a domino w i l l  t i l e  it and a contiguous A-colored square. 

Proof. Choose t h e  color-B border square t o  be a non-corner square,  

always possible  when n > 3 ,  and apply Lemma 1 t o  t h e  remaining border 

squares. Since it i s  no t  a corner square,  t h e  B square has a contiguous 

A square adjacent  t o  it. 

Lemma 3. I f  t h e  deleted square is a corner square, then Lemma 2 a l s o  

holds f o r  n = 3. 

L e m  4. I f ,  i n  a 2n + 1 by 27% + l checkerboard with n > 1, two 

black squares and one white square a r e  removed from the  border, then t h e  

remaining border squares along with one contiguous black square can be  

t i l e d  with 2 bv 1 dominoes (as  i n  Lemma 2 ) .  

Proof. A s  one t r a v e l s  the  border between t h e  two deleted black 

squares ,  i n  one d i rec t ion  t h e  de le ted  white square intervenes.  In  t h e  

o ther  d i rec t ion  pick a (non-corner) white square between t h e  two deleted 

black squares ,  A s  i n  Lemma 1, now a l l  o ther  border squares can be  t i l e d  

with dominoes. Then t i l e  t h e  picked white square and i t s  contiguous black 

neighbor with one more domino. 

Lemma 5. If,  i n  a 2 n  + 1 by 2 n  + 1 checkerboard with n > 1, two 

black border squares a r e  removed, t h e  remaining border squares and two 

contiguous black squares can be t i l e d  with 2 by 1 dominoes. 

Proof. I t  i s  always poss ib le  t o  s e l e c t  two white border squares  s o  

they separa te  t h e  removed black squares and s o  they do not abut the  same 

black corner square ( s ince  n > 1 ) .  T i l e  t h e  remaining border squares a s  

i n  Lemma 1. Now, with two dominoes, t i l e  t h e  two se lec ted  white squares 

and t h e i r  two ( d i s t i n c t )  abu t t ing  contiguous black squares. 

We now prove t h e  theorem i t s e l f ,  de le t ing  the  r e s t r i c t i o n  t h a t  any 
-4 - 

removed squares must n o t  be edge squares. That i s ,  we prove: 

Theorem. From a 2 n  + 1 b y  2 n +  1 checkerboard i n  which the  corner 

squares a r e  black and n > 0, two black squares and one white square a r e  

deleted.  The reduced board can be  t i l e d  with 2 by 1 dominoes. 

Proof. I t  is  t r i v i a l l y  t r u e  t h a t  i f  e i t h e r  1 black square o r  2 

black and 1 white squares a re  de le ted  from a 1 by 1 checkerboard, then 

t h e  remaining squares can be t i l e d  with dominoes. This disposes of t h e  

case n = 0. 

Suppose it is always possible  t o  t i l e  t h e  remaining squares of  a 

2 n  - 1 by 2n - 1 checkerboard, f o r  some given n > 0 ,  when e i t h e r  1 black 

square o r  2 black and 1 white squares a r e  deleted.  Consider a 2n  t 1 by 

2 n  + 1 checkerboard from which 2 black and 1 white squares have been 

removed. There w i l l  be 0 ,  1, 2,  o r  3 deleted squares i n  t h e  border ,  s o  

t i l e  t h e  border and 0, 1, o r  2 contiguous squares by means of  t h e  preceding 

lemmas. Now t h e  i n t e r i o r  2n - 1 by 2 n  - 1 checkerboard w i l l  have e i t h e r  

1 black square o r  2 black and 1 white squares e i t h e r  removed o r  already 

t i l e d .  The remaining squares can be t i l e d  according t o  t h e  induct ive 

supposition. 

The theorem follows by mathematical induction. 

AAso h0Lve.d by LOUIS H .  CAIROLI, K ~ U A  StCLte. U w - M m U y ;  and tile. 
PAopoheAi, who commented that  Problem E2508 i n  the December 1974 issue 

of the American Mathematical Monthly i s  a related problem. 

Comment by the. PvibLcm Editor 

Louis H.  Ca i ro l i  ca l led  a t t e n t i o n  t o  an a r t i c l e  by David Singmaster 

i n  t h e  March 1975 i s s u e  of  Mathematics Magazine, (pp. 5 9- 6 6 ) ,  which contains 

a re levan t  theorem and proof: 

Theorem 4. For any odd in tegers  r and s ,  both g r e a t e r  than 1, an 

P x s chessboard, with any t h r e e  squares deleted,  two o f  t h e  major co lor  

and one of  t h e  minor co lor ,  can be covered with dominoes. 
A 

359. [Fa1 1 19751 Pmpo&td bg Gmgovf WuJLczgn, ViU.cfenvJUL U h m - U y ,  
L w i i i  b w g ,  Pu~.A gLvOWLa. (Corrected). 



Show t h a t  t h e r e  a r e  an i n f i n i t u d e  o f  p a i r s  of consecutive i n t e g e r s ,  

each p a i r  c o n s i s t i n g  o f  a  pentagonal number p5 n = n/2(3n - 1 )  and a  hex- 

agonal number p6 = m/2( 4m - 2 ) .  n  
S o t d o n  by R. Rob in ion Rome, Sa.auumento, CaJU6oWea. 

Correct ing an obvious typo,  we a r e  given: 
m 

p = p5 = 1(3n - 1 ) ;  H = P; = -(4m 2 - 2 ) ;  H - P = Â 1 (1) 
n 2 

with  r o o t s  
1 m = ^<i Â d12Ã§2-4n+lt8 = 41 Â x ) ,  where .c2 = 12n2 - 4n + 1 2 8(3)  
4  

Then 

12~7- - 4n + 1 ? 8 - x2 = 0 ( 4 )  

wi th  r o o t s  
n  = A(l t -) = 31 ? -1, where e = -26 o r  +22 

6 
( 5 )  

Let 3x2 + e = y 2 ,  de r iv ing  t h e  Fermat-Pellian equation ( 6 )  

/2 - 3$ = 

Is3- - 2xu - u2 = -c, from y = x + u i n  (7 )  (8 )  

u2 - 2uv - 2v2 = c, f r o m x  = u + V i n  (8 )  (9 )  

w2 - 3v2 = 0 ,  from u = v + W i n  (91,  (10)  

which is i n  t h e  form of  (7 ) .  So l e t  W = yo  and V = X ;  then 

u =  x + y x = 2 x  + y o ,  y1 = 3x0 + 2%. (11) 
0 0' 1  0  

That i s ,  from any s o l u t i o n  ( x o ,  y o )  equat ion (11) de r ives  a  l a r g e r  one 

x y, ) .  From (3)  and (51,  mo = ^<xo + 1 )  and no  = +yo + l ) ,  S O  

and 

n = (î  + 1 ) / 6  = (3x0 + 2yo + 1 ) / 6  = 2(3m0 + 3n0 - 1 ) / 3  (14)  

Noting t h a t  (14) would give a  f r a c t i o n a l  value f o r  n l ,  (13)  and (14) can 

be used r e c u r s i v e l y  t o  f i n d :  

1  m2 = 7(14m0 + 12n0 - 5 )  n = 8mo + 7n0 - 3 (15)  

m = $ 5 2 ~ 1  + 45n0 - 20) n g  = (90m0 + 78n0 - 35)/3  (16)  

m = 97m0 + 84n0 - 38 n = 112m0 + 97n0 - 44 (17) 

So m2 and n 3  would always be f r a c t i o n a l ,  bu t  m and n w i l l  always be 

in tegers  i f  der ived from an i n t e g r a l  s e t  (mo, n o ) .  Thus beginning with  

any such p r imi t ive  s e t ,  (17) can be used r e c u r s i v e l y  t o  generate  an - 

i n f i n i t u d e  o f  s e t s  (ma n ) ,  whence an i n f i n i t u d e  of f i g u r a t e  s e t s  der ived 

from ( 1 )  s a t i s f y i n g  H - P = k1. 

There a r e  4  such p r imi t ive  s e t s  ( m ,  n o ) ,  v i z :  ( 0 ,  11 ,  ( 1 ,  01, -. .- 

( 2 ,  2 ) ,  ( 7 ,  8), designated A ,  B, C and D i n  t h e  fol lowing t a b u l a t i o n t o  

t h e  l i m i t  o f  my computer. 

Se t  - 
A 
B 
c 
D 

A 
B 
c 
D 

A 
B 
c 
D 

n - m  

1 
-1 

0 
1 

7 
9 

50 
203 

1 373 
1 763 
9 716 

39 397 

Hexagonal 

0  
1 
6 

91 

4 186 
6 903 

209 628 
3 446 625 

157 557 876 
259 771 821 

7 889 124 466 
129 710 307 111 

Pentagonal 

1 
0 
5 

9  2  

4  187 
6 902 

209 627 
3 446 626 

157 557 877 
259 771 820 

7 889 124 465 
129 710 307 112 

Comment 

Equation (17)  w i l l  r ecurs ive ly  generate  an i n f i n i t u d e  f o r  any primi-  

t i v e  value of  H - P ,  e.g. f o r  H = P, m = n = 1 generates  1; 40755 and 

1; 533 776 805. Also negat ive values  of  m and/or n der ive  p o s i t i v e  values  

f o r  H and P i n  s i m i l a r  sequences, but  they  a r e  n o t  f i g u r a t e  numbers. 

Aha bo lved  by JEFFREY BERGEN. Bftooktyn Co&ge. Nw Yoik ;  LOUIS H .  

CAIROLI, KWCU S t a t e  U&w-ULy; CLAYTON DODGE, U v u u v u i U y  0 6  Mfune. at 

O i w w ,  and t h e  P i o p o m ,  

360. [ F a l l  19751 Piopo^e-d by P a d  Eidoh and E m t  SÂ¥tA.ou~ UiM.ue~&.cA/ 
0 6  CaL t .6o~~n ia  at Lob A n g d e ~ .  

Denote by A t h e  l e a s t  common mul t ip le  of  t h e  i n t e g e r s  5 n and denote n  
by d ( n )  t h e  number o f  d i v i s o r s  of  n .  

" 1 ( a )  Prove t h a t  In=l q is  i r r a t i o n a l .  

(b) Prove t h a t  2:- d(n) is  i r r a t i o n a l .  
n = 1  A 

n 
rn 

( c )  Prove t h a t  En=l A is  i r r a t i o n a l ,  where f ( x )  i s  a  polynomial i 

with i n t e g e r  c o e f f i c i e n t s .  n  

S o t d o n  by the, P m p o b m .  
a - 1  ( a )  Put = E . , - ~ Ã ‘  Let n  = p k ,  where pk i s  t h e  k th  prime and 

n 
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pk > b ,  and multiply both s i d e s  by An- . Since b \ A -  we get  

= i n t e g e r  + A n-1 
i= 0 

00 

is  a pos i t ive  in teger  and there fore  Hence An-l Eizo 
n t i  

On t h e  o ther  hand we have 

We now use t h e  f a c t  t h a t  f o r  a l l  l a r g e  pi(in f a c t  f o r  pi > 11) we 

have p - pi < 1/2  pi. Subs t i tu t ing  t h i s  inequa l i ty  i n  (2) we g e t  i+ 1 
( f o r  pk 2 11) 

i n  contradict ion t o  (1 ) .  Hence t h e  sum cannot be r a t i o n a l .  

( b )  S t a r t  a s  i n  p a r t  ( a )  t o  ge t  

= in teger  f o r  n = pk > b. 

s o  ( 3 )  becomes 

I t  the re fore  s u f f i c e s  t o  show t h a t  (4)  i s  f a l s e  f o r  i n f i n i t e l y  many 

values of k. * - "- 

We use d(n)  < 2 6  s o  t h a t  

Using Bertrand 's  Pos tu la te ,  < 2pi, we g e t  

(6) - D(pi) < 2% (2pi - pi) < 2 c p i  < 4pipi-1. 

rn By t h e  prime number theorem we have d m )  > f o r  a l l  l a r g e  m. 
Thus t h e  d i f fe rence  p - p .  between consecutive primes is on t h e  average 

it1 2 

l e s s  than a mul t ip le  o f  l o g  p,:. There a r e  there fore  a r b i t r a r i l y  l a r g e  

values of  k  with 

and 

(7)  D(pk+l) - D(pk) < 2 /p  ̂'-< 4pk3'4. 

We now s u b s t i t u t e  t h e  est imates  (6) and (7)  i n  (4)  t o  get  

which is c l e a r l y  f a l s e  f o r  s u f f i c i e n t l y  l a r g e  values of  k. 

( c )  The s o l u t i o n  f o r  t h e  problem involving polynomials with i n t e g e r  

c o e f f i c i e n t s  w i l l  appear i n  t h e  Spring 1977 i s s u e  o f  t h i s  Journal. 

361. [Fall 19751 Pmpo&e.d by Ccwi A. 4&, Ve. La SaJULe CoUege., 
MoÃˆM-to phitippinu. 

Consider any t r i a n g l e  ABC such t h a t  t h e  midpoint P of  s i d e  BC is 

joined t o  t h e  midpoint Q of s i d e  AC by t h e  l i n e  segment PQ. Suppose R 

and S a r e  t h e  pro jec t ions  of P and Q respec t ive ly  on AB, extended if 

necessary. What r e l a t i o n s h i p  must hold between the  s i d e s  of the  t r i a n g l e  

if t h e  f igure  PQRS is a square? (The pro jec t ions  R,  S ,  should have been 

transposed s o  t h a t  S is t h e  pro jec t ion  of  P and R t h e  pro jec t ion  of  Q -- 
Problem Editor .  ) 

Soiation by John Tom Hunt, BAt/an, Texas. 

The construct ion gives PQ = AB/2 and QR = h J 2 .  So i f  PQRS is a 

square t h e  a l t i t u d e  on t h e  base AB i s  equal  t o  AB. 



From t h e  Cosine Law we obtain 

cos fl = (e2 + a 2  - b2)/2ae = (a2  - b2)1/2/a, 

which y ie lds  t h e  q u a r t i c  

a4 t b4 + 5c4 - 2a2b2 - 2a^c2 - 2b2c2 = 0. 

Solving f o r  c2 ,  we g e t  

Since e is  r e a l  we must have 3a2b2 - a2 - b2 2 0 ,  and t h i s  gives 

A&io boLu id  by CLAYTON W .  DODGE, Un-t.ue~i-c.ti/ a<{ M<u,ne at Ohono; 

VICTOR G .  FESER, M w ~ q  C ~ U s - g e . ~  B-LAmmck, No& Vakotcn, R. ROBINSON ROME, 

Sachame.nto, Cd&@wLa; CHARLES M. TRIGG, San V h g o ,  CoJUi.{omLLa; and f i e .  
Pmpobnx.. 

Comment by P h o b h  EdUoh 

The so lu t ion  c = h is necessary f o r  t h e  construct ion of  t h e  square 

bu t  i s  n o t  s u f f i c i e n t .  If t h e  r a t i o  a/b ( o r  b/a) l i e s  outs ide t h e  bounds 

of t h e  Golden Ratio and its rec iproca l ,  P and Q together  with t h e i r  pro- 

ject ions S and R form a rectangle ins tead  o f  a square. In an acute 

t r i a n g l e ,  t h e  bounds a r e  f u r t h e r  r e s t r i c t e d  s o  t h a t  we have 

^2/2 2 a/b 2 /2". 

P ~ o b & t n  E d i t o h ' b  N o t e . .  Credit  f o r  a so lu t ion  t o  Problem 338 should have 

been given t o  C.  B. A. Peck, S t a t e  College, Pennsylvania. 

LOCAL CHAPTER AWARDS WINNERS - - - - 

CALIFORNIA ETA (Universi ty  of Santa Clara).  The George W. Evens, fI, 

Memo& P r i z e s  awarded annually t o  t h e  male and female Santa Clara 

s tudents  who score highest  i n  t h e  William Lowell Putnam Mathematics 

Competition was won by 

B h h n  ConJay, 

Rcte Ro bb-tm. 

COLORADO DELTA (University of  Northern Colorado). The Outstanding 

Freshman Award was presented t o  

Van E n h ~  

and t h e  Outstanding Senior  Award went t o  

C M  l v e y .  

FLORIDA EPSILON (Universi ty  of South ~ l o r i d a ) .  The Outstanding 

Sehozar award f o r  work i n  mathematics of  t h e  highest  q u a l i t y  went t o  

E d w d  V.  Bakm,  111, 

i n  1975 and t o  

Bhuno M.ichatJL C~~itoJULano, 

Rober t  E d  Tubbb 

i n  1976. 

GEORGIA BETA (Georgia I n s t i t u t e  of  Technology). Recipients of  a 

book award f o r  a t t a i n i n g  a grade point  average of  a t  l e a s t  3.8 ( 4 . 0 ,  

p e r f e c t )  i n  a l l  mathematics courses taken were 

John W. EndiLey, AVLcl~ael 3. Schtcmm, 

hVLchael E. Ho6<{manl Mo-t-frm K. SitK-tk, 

R-ccAoAd s. John, Lee. S. TadvJimam. 

WWU.m V. Lue.dtke, 

GEORGIA GAMMA (Armstrong S t a t e  co l lege) .  Named t h e  Outstanding 

Senior f o r  1976 was 

Hichae^. Bhe.nnan. 

College sponsored memberships i n  t h e  American Mathematical Society were A 

awarded t o  

M a u  h& ti-cnd.4, 



C W u  L u k a ,  

L m y  P a h k a ,  

F~onk Y U ,  

and memberships i n  t h e  Mathematical Association of  America were awarded 

t o  

T w i g  Andvuion, 

WLChaÃ‡J ah-, 

s m  K^i&hnamulti., 

hkvy Ann R e . i h a ,  

Be.n Z i p p a a .  

IOWA ALPHA (Iowa S t a t e  Universi ty) .  Scholarship awards of $50 each 

were awarded t o  

David  C. C W m ,  

Ghegoty V.  Vouga i  

who scored highest  on a competitive examination which was wr i t t en  and 

scored by members of t h e  mathematics facu l ty .  

MISSISSIPPI BETA (Mississ ippi  College ) . The Strange Memorial 

Scholarship Award f o r  1975-76 was presented t o  

EdiooAd C. Ni&o.CA 

and t h e  Outstanding Senior Mathematics Major was 

John A. Le.ua. 

NEW JERSEY EPSILON (St.  P e t e r ' s  College). The James B. Coltins 

Award was es tab l i shed  i n  honor of  Professor Emeritus Coll ins ,  t o  be 

presented annually t o  t h e  sophomore who has achieved t h e  highest  

academic average i n  t h e  2-year calculus sequence, one year  physics course, 

2 algebra courses, and a d a t a  processing course. The f i r s t  r e c i p i e n t  of 

t h e  award was 

M& Rod^u.gue.z. 

NEW YORK BETA (Hunter College). The Pi Mu Epsilon Scholarship 

Award i n  t h e  amount of  $100 went t o  

J o ~ e p d  M. Ĉ i.&U.one.. 

NEW YORK PHI (S ta te  University of  Mew York, Potsdam). The winner 

of t h e  Senior Award was 

P a d  Ha6e.t. 

OHIO DELTA (Miami Universi ty) .  Students who placed highest  on a 

mathematics examination were 

Je.^he.i/ WUtlaJui 
who won F i r s t  Prize and $30, and 

Wayne. Heym - - -  - 
who won Second Prize and $20. 

OHIO EPSILON (Kent S t a t e  Universi ty) .  The winner of t h e  1976 

Pi Mu Epsilon Mathematics Award was 

S u ~ a n  Zabohow~h i .  

OKLAHOMA BETA (Oklahoma S t a t e  University 1. The Mathematics? 
Sciences Faculty A~axd f o r  sen iors  was presented t o  

Kathy  St&, 

Kay ScJIwse.ndimami, 

and t h e  Mathematical Sciences Alumni Award f o r  sophomores went t o  

KahW Sondu i ,  

Mahy Stone.. 

The W i l l i a m  R. Pogue Award f o r  juniors  was given t o  

ch im, tq  G e A n m ,  

Ko-thq Si.LtLi.van, 

and t h e  AMOCO Foundation Scholarship was received by 

Wan Bick.e~i- ted<(,  

M d a  Shahp. 
W i Z Z i w n  R. Pogue Certi f icates o f  Merit were awarded t o  

M a u h a  C d e . ,  Mafuj Lawivi, 
Rob& G. Hay iu ,  d a y t o n  Mohgan, 

Ve.bona.h flufiman, EÃˆn^ W o n d w ,  
and a Mathematical Sciences Faculty Achievement award went t o  

nUaha.iL Coat&, Gahy R u d u i ,  
K-un Cowhad,  M.ichaiL T h o / m b & ~ u i ,  
R ichard  Embhee., GLoIULa W-1^6on. 

PENNSYLVANIA BETA (Bucknell University 1. The John Steiner  old 
Mathematical Competition involved 106 individuals  from 36 high schools 

and r e s u l t e d  i n  t h e  winners l i s t e d  below. 

INDIVIDUAL WINNERS: 

Tom BLackadoh ( F i r s t  Place ) , STATE COLLEGE AREA HIGH SCHOOL, 
d 

Amy Kaudman (Second Place) ,  LOCK HAVEN SENIOR HIGH SCHOOL, 

Me^Â B t c h d i d  (Third Place) ,  LOCK HAVEN SENIOR HIGH SCHOOL, 



John C.  Humpton (Fourth P lace) ,  MILTON AREA HIGH SCHOOL, 

David BennuX ( F i f t h  Place) ,  STATE COLLEGE AREA HIGH SCHOOL. 

TEAM WINNERS : 
(Division A) 

STATE COLLEGE AREA HIGH SCHOOL ( F i r s t  Place)  
[David Benne/fct, Tom B^acfzadoh, Doug ICuig) 
LOCK HAVEN SENIOR HIGH SCHOOL (Second Place)  
( N u 2  Ee.chdaÂ£ Amg K d r n a n ,  Mmfz R. Scfca-ctknl 

(Division B) 

LINE MOUNTAIN HIGH SCHOOL ( F i r s t  Place)  
(Thoma  he^, Ro-tfi Dhcibdb-tA, Randy SnydeA.1 

LEWISBURG BIGS SCHOOL (Second Place) 
(Jonathan Chenowe^k, K u A t  W&, The~&ia Yu~chok] 

RHODE ISLAND BETA (Rhode Is land College). The Mitche l l  Auard, 

named i n  honor o f  a former f a c u l t y  member, was presented t o  

Shmon Remington 

f o r  being t h e  bes t  sen ior  mathematics major according t o  gradepoint 

average. 

TEXAS DELTA (Stephen F. Austin S t a t e  Universi ty) .  The Outstanding 

Senior  Mathematics Student  was 

Anna Jonu. 

TEXAS ETA (Texas A. 6 M. Universi ty) .  Winners of  a mathematics 

contest  f o r  undergraduates were a s  follows: 

SOPHOMORE CONTEST 

Robbie W .  W .  Lou ( F i r s t  P lace) ,  

Jon Juneau (Second P lace) ,  

Y u k - h  Chu (Third Place)  , 
FRESHMAN CONTEST 

Uauid C. T(whft  ( F i r s t  P lace) ,  

John. D. EhembteJULe~ (Second Place 1, 

C& F .  Feeny (Third Place) .  

TEXAS LAMBDA (University of Texas). The Exxon Award,   resented t o  

outstanding mathematics s tudents ,  was won by 

Kenn AifcuiA, 

VIRGINIA GAMMA (Madison College). The winner of t h e  Outstanding 

Senior  Mathematics Student  award of  $50 was 

Hope. Hmbeck. 

SUMMER MEETING IN TORONTO 

. =.. 

P i  Mu Epsilon F r a t e r n i t y  held i ts annual summer meeting i n  c o n j ~ ~ c y  

t i o n  with t h e  American Mathematical Association i n  Toronto, Canada August 

24-28, 1976. On Wednesday, t h e  Governing Council held its annual luncheon 

and business meeting a t  Wilson Hall  Cafe te r ia  anddiscussed i n i t i a t i o n  pro- 

cedures f o r  Councilors who a r e  asked t o  induct  new Chapters, considered 

methods of  improving t h e  a c t i v i t i e s  of t h e  F r a t e r n i t y ,  were'adviseo of  

t h e  continuing high cos t  of publishing t h e  Journal and possible  ways t o  

finance it, were informed of  t h e  exce l len t  f i n a n c i a l  s t a t u s  of t h e  Frater-  

n i t y ,  and voted t o  increase t h e  amount of  t r a v e l  money ava i lab le  f o r  dele-  

ga tes  and speakers at tending next  y e a r ' s  meeting i n  S e a t t l e  due t o  t h e  

g r e a t e r  d i s tances  involved. 

Wednesday evening t h e  Fra te rn i ty  heard t h e  second J. Sutherland Frame 

Lecture a t  Sidney Smith Hall.  The l e c t u r e  was a most i n t e r e s t i n g  and 

vigorous s l i d e  presentat ion on t h e  t o p i c  The. PappuA Con&igu/wti.on and Its, 

GAOup.4 by H .  S. M .  Coxeter, from t h e  University of  Toronto. Thursday 

morning, t h e  annual Dutch Treat Breakfast was held a t  Wilson Hall Cafe- 

t e r i a .  

The very exce l len t  s tudent  papers presented during t h e  Wednesday and 

Thursday afternoon sessions were a s  follows: 

1. A Chuinabte. Continuum Not Home.omohplu.c t o  an InueAie Lwit on 

[ O ,  11 with hkj One. Bonduig Map, Dorothy Marsh, Texas Theta. 

2 .  An In<o-Utia-t Math Lab, Kevin Bucol, Nebraska Beta. 

3 .  [ a ,  71 14 Not Compact: A D.dC.Uh6.ion 06 Ae. HgpeA-he&, Thomas 

Sweeney, Missouri Gamma. 

4 .  On the. Ph0bie-m 0 6  the. Lion and the  Man, Mark Showers, I l l i n o i s  

Zeta. 

5 .  Rtdge Re.gh&ihion, Dale Borowiak, Ohio Nu. 

6. Fugue i n  z Mmh, Willian Stone, Utah Alpha. 

7. Fixed P0-fcrt-t Thaohemb .& M a c  Spac&A, Carol Coll ins ,  North Caro- 

l i n a  Delta. 

8.  AddiitioK.4 and C O W & O ~ ~  20 " E i e t l ~ d o ~ g  NUt?lbeA. Thiohg c&&ifir 

Sub<s(L*A 06 the. IntegeAi I and IT", William Lenhart (speaker) and Karen 

McConloque, Pennsylvania X i .  



9 .  Topology on Geomitm.e^ vtuth BaAoeennaAA, Anees Rozzouk, Michigan 

Gamma. 

10. High School ~o-tfCWlU.. l%d Mod&, Ellen Hearn, New Jersey Epsilon. 

11. The WkLt-ney Theohy {.oft Map-i 8eAuee.n Z-MaNoid!>, Jane Hawkins, 

Massachusetts Beta. 

12. h ' V m d o r e o J L  and C-iAcdaA RduCLon~,  Alma E. Posey, Arkansas 

Beta. 

13. OpeAa.fcion~ Rueakch--An A p p a c h  -to the. Solut ion 0 6  Phoblem~ i n  
t h e  &ban Sy-i.&m, Elaine Flowers, Alabama Zeta. 

POSTERS AVAILABLE FOR LOCAL ANNOUNCEMENTS 

A t  t h e  suggestion of  t h e  P i  Mu Epsilon Council we have had a 

supply of  10 x 14-inch F r a t e r n i t y  c r e s t s  p r in ted .  One i n  each 

co lor  w i l l  be sen t  f r e e  t o  each l o c a l  chapter  on request .  

Additional pos te rs  may be ordered a t  t h e  following r a t e s :  

(1)  Purple on goldenrod s tock - - - - - - $1.50/dozen, 

(2) Purple and lavendar on goldenrod- - - $2.00/dozen. 

REGIONAL MEETINGS OF MAA 

Many reg iona l  meetings of  t h e  Mathematical Association regu la r ly  

have sessions f o r  undergraduate papers. If two o r  more col leges and 

a t  l e a s t  one l o c a l  chapter  help sponsor o r  p a r t i c i p a t e  i n  such under- 

graduate sess ions ,  f i n a n c i a l  help is  ava i lab le  up t o  $50 f o r  one l o c a l  

chapter t o  defray postage and o ther  expenses. Send reques t  t o :  

Dr. Richard A. Good 
Secretary-Treasurer,  P i  Mu Epsilon 
Department of  Mathematics 
The University of Maryland 
College Park, Maryland 20742 
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