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GONTINUCUS NON-DIFFERENTIABLE  FUNCTIONS

by Brent Hailpern
University of Denven

Historically, there have been two types of mathematical discovery,
intuitive reasoning and rigorous proof. These two methods of thinking
complement each other perfectly. Intuitive thought can help one make
great leaps of understanding. However, one simple error can lead intui-
tive thought on a wild goose chase. Rogorous proof, on the other hand,
can harbor few, if any, mistakes because of the contradictions that' in-
evitably arise. Unfortunately, rigorous proof implies something to prove.
The object of the proof must, in"some sense, be intuitively reasonable.
The most profitable approach to understanding mathematics in general, and
continuous non-differentiable functions in particular, is an alternating
progression of intuition and rigor.

Before the nineteenth century, the terms continuity and differentia-
bility were only intuitive ideas. Euler and Leibniz used "continuous"
to describe "a function specified by an amnalytic formula™ ([1], p. 405).
In 1817, Bernhard Bolzano gave a workable definition of continuity, in
the modern sense ([1], p. 951). Cauchy, in 1821, also defined continuity,
in a usable form,in Cours d'analyse algébrique. Finally, K. W T. Weier-
strass gave what we call the modern ¢, § definition of continuity: A
function f(x) is continuous at X = z, if given any positive number €,
there exists a & such that for every x in the interval |z - x0| < 6,
|fz) - f(x0)| < e ([1], p. 952). Intuitively this is often described
as a function whose graph one can "draw' without lifting one's pencil off
the paper.

Even after continuity had been rigorously defined, the connection
between continuity and differentiability was not well understood. Most
mathematicians of Cauchy's time believed that continuity implied differ-
entiability except at isolated points ([1], p. 955). On July 18, 1872,
Weierstrass presented his classic example of a continuous non-differen-

tiable function:

flx) = Z " cos(dMnz) ,
n=0
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is an odd integer and b is a positive constant less than 1 such
1+ (3r/2) ({11, p. 956, where the following comment occurs:

The historical significance of the discovery that continuity
ices not imply differentiability...was great. |t made mathe-
maticians all the more fearful of trusting intuition....)

Since that time, many mathematicians have devised rigorous proofs
showing that various functions are continuous but not differentiable.
The proofs are elegant in themselves. Howevery they are not easily under-
stood without a knowledge of advanced calculus. The beginning calculus
student is usually limited to understanding the f(z) = |z| is not dif-
ferentiable at X = 0 because of the sudden change in slope. A rigorous
understanding may be beyond a beginner's grasp, but intuitive insight
need not be. For exampler in 1927, Fred W. Perkins of Harvard University
published a proof for an elementary example of a continuous non-differen-
tiable function [2]. His proof consisted of four parts. He first de-
fined his function by an interpolation method over a dense domain. Sec-
ondly, the definition was extended to the entire real domain. Perkins
then proved that the function was continuous. Finally, he demonstrated
that his function was not differentiable. Though the proof involves the
limit- point concept and related theorems, an intuitive understanding
can be gained from the original definition with the aid of a few graphs.

The function is defined as follows. Given two points (xa, ya),

(a:b, yb) with x_ # Ty define two new interpolated points (.1:1, yl) and
(xys y,) by:
= x tE(x -zx) sy +2(y, -y)
it a 37 a’ ’ Y1 T Yy T F Y T Yy
2, sz +2(z, -x) = + 2y, -y )
2 "Xyt T Yp ¥ 7§ U T Yy
Y "y
Let M(a,b) = —2 be the slope of the line from (x_, y ) to (z,, ¥,).
> Ty = Xg a’ Ya b* Jp

Algebraic calculation gives:

5
y, -y, =y -y)
Ma,1) = 2—2=8 "2 a5 ygup,
) -%, Ly _xy 2
3D a
and
M(1,2) = -2M(a,b), M(2,b) = %M(a,b) .
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Notice that each interpolation causes the slopes to at least double in
absolute value. Also, by the def ining equations:

5
lyy - u3] = 5 1y -9, >

5
lyb "y2| gglyb"yal' (1

To define the function on 0 < £ < 1 choose f(0) = 0 and f(1} = 1
The interpolation process defines the function on the domain:

{z : X = -%; p IS a non-negative integer and p = 1.

The variable n is the number of interpolations required to evaluate the
function at that point. The integer n is called the order of the inter-
polation. For example, the Oth order is (0,0) and (1,1) because no in-

terpolations are required to obtain the arbitrarily chosen points. In-

terpolating once returns %—, —2— and %, %‘- as the first order points.
The second order points are: L 25 2 5 etc. From (1) it can
© 9”3 |9 36)° :

be seen that

A 3n

lf[u—l—] - frﬂ] < (%]n (2)

As a result of (2) the definition of the function can be extended to the

real domain by a limiting process [3].

Ore can reason that the function is continuous from the fact that in
(2) as two points are closer together (as n = =) the function values
grow closer and closer together. The fact that in each order of inter-
polation the slopes at |least double shows that as n + " the slopes become
infinitely large.

However, by following the four defining interpolation equations that
Perkins gives, one can plot the firstseveralorders of interpolation of
the function, as shown on the following pages. It has often been said
that a picture is worth a thousand words.

The successive orders of interpolation show the constantly increasing
slopes and the tendency toward an infinite number of "absolute-value-
like"™ bends in the graph. Ore can therefore sense intuitively that the
infinite orders of interpolation would form a non-differentiable function.
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Also as the order increases, neighboring points become closer together.
hinting that one could "draw" the graph of the function without lifting
one's pencil from the paper. In other words, it can be intuitively seen
as a continuous function that is not differentiable. .

A second and different example was devised by B. A. Van der Waerden
[4] in 1930. Rather than using an interpolating process? this function

is devined by summation. Let

£lz) = Z g(lo::x:)
n=0 10
where g(x) = distance from x to the nearest integer. The proof of con-
tinuity follows from the fact that the infinite aum of a sequence of con-
tinuous functions which converges uniformly is itself continuous. Van
der Waerden proved that the series was not differentiable by finding a
sequence of values x + hn (which approach x as n goes to infinity) such

f(:x:+hn) - flx)
that — does not approach a limit as n + = (see Appendix).
n

The proof is not easy to understand. An intuitive grasp of the qualities
of the function, however, may be obtained from the graph of the function.
Upon plotting, a series of pyramid-like shapes appears. The interesting
fact is that upon magnification, the same pattern reappears. The small
"bumps" on the horizontal steps of the pyramid turn out to be a repetition
of the original pyramid. These smaller pyramids have "bumps" which are
again a repetition of the original pattern. This indicates intuitively
that the function is not differentiable, because taking a derivative in-
volves taking smaller and smaller intervals on the domain in an attempt
to have the slope of the function approach a constant value. This fune-
tion approaches no constant value as smaller intervals are taken. It
merely repeats itself ad infinitum. (For graphs, see following pages. )}
The use of such plots yields a different type of beauty that can
be lost in a proof. Beginning students can get a glimpse of what is in-
volved in further studies. The experienced mathematician is sometimes
surprised in realizing that this is what the graph of a continuous non-
differentiable function looks like. Thus, the cycle is complete. The
initial concepts of continuity and differentiability were impotent witholt
rigorous definitions. Once the rigor is established, one can concentrate

on the intuitive beauty that these ideas represent.
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APPENDIX

Proof That Van der \Werden's Function
I's Non-differentiable

o
Let f(x) = Z Mﬂ where g(x) = distance from X to the nearest

n=0 10"
integer. We shdll consider only the case 0 £ X < 1. W write X in the
form x = o.alaz---an--- with the agreement that x will be written as a
finite decimal completed with zeros, should the option arise. Then we

can write

0'an+lan+2' () if 0.a

1-0.a a. - if 0

g(lonm) =

a ees < £
n+l n+2 2
a .a &
Tn+l n+2 2

To show that f(x) is not differentiable at a point X we need only

exhibit a sequence hm + 0 such that the limit of
flz+h ) - flx)
m
does not exist. Consider the sequence {hm} where
-107", if m=4or09,
{10 s otherwise

Note that asm + =, hm+0andx +hm->x. Let

f(ac+hm) - f(x)
r (x) = 3
m —
m
then
r (x) = 10" z ; gl10™(z + 1071 - g(10"x)
K n=0 10"

“

where * depends on whether a, = 4 or 9.

For n 2 m the terms of the aum rm(x) are equal to zero. This follows

n
since the factor LLm withn = m 2 0 simply translates the domain of g by
10 n
an integral amount and therefore ¢ [10":;: + l_C'm_] = g(lonac). Hence we
10
need only consider n < m.
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<
IfOSam<l+or5_am<9then,

7
m-1 g[lOn:c + —-—lom] - g(lOnx)
10

r {(x) = 10" =
n n=0 10 i

7
But adding J.O_m to(10™) adds a one-to the digit a . Therefore,
10
1<a t1<50r6sa t1<10. But in these two intervals
m m

10 m

lOn i n + if 0 £ a_ < 4
gl10"e + = = g(10%z) ¢
m -if5%a <9

[
(=]
s

10

which implies that
m=1 m-
n, m
* .
T‘=10m§:10/i0=2iﬂ
n n=0 10 n=0

The case where am = 4 or 9 is more involved. If we had tried

7n
"
m-1 g[lon:c + ————lom] - g(10 x)
10
r (x) = 10" =
m n= 10

then we could not have guaranteed that each term of ro= il (as the reader
can verify by trying X = 0.444-<+). By using

n
m-1 —\g[lonx = -1-07] - g(lonx)i
r (x) = 10™ lg
m n=0 10

and an argument similar to the above, it can be shown that

m-1
r (x) = Z 1 .
n=0

Hence, for both cases, rm(x) = zz;é 1. If m - 1is even, then the
aum consists of an odd number of termsandrm{(x) is an odd integer. Simi-
larly, if m - 1is odd, then rm(z) is an even integer. Therefore, the

sequence {rm(x)} is a sequence of integers, alternating even and odd,
and does not converge. This implies that the derivative does not exist.
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WILL YOUR CHAPTER BE REPRESENTED I[N SEATTLE?

It is time to be making plans to send an undergraduate delegate
or speaker from your chapter to attend the annual meeting of Pi
M1 Epsilon in Seattle, Washington during August 14-18, 1977.
Each speaker who presents a paper will receive travel funds of
up to $300, and each delegate, up to $150. At jts |ast business
meeting the Council voted to increase these funds significantly
to help cover additional travel costs due to the greater distances
likely to be involved. cContact the National Office for more
information.
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TWO APPLICATIONS OF PSEUDOINVERSES =l

by Philip D. OLivien
Texas Tech University

The concept of matrices dates back to the 1850's. Ever since, math-
ematicians have been concerned with the question "Since | can multiply
two (conformable) matrices to get a third, how do | undo this multiplica-
tion?" It was soon discovered that every square non-singular matrix has
associated with it another matrix, called its inverse. This inverse is
the most natural extension of the idea of an inverse from ordinary multi-
plication. |t was also found (E. H. Moore, 1920) that a rectangular or
singular matrix also has associated with it another matrix, called its
pseudoinverse. This pseudoinverse is the most natural extension of the
matrix inverse.

This paper has two purposes: The first is to introduce to under-
graduates who have taken Linear Algebra the pseudoinverse and second, to
outline two simple, though non-trivial, applications of them. The first
application should be accessible to anyone in an advanced calculus course
(see Buck [31) the second to anyone who has taken a course on ordinary

differential equations (see Kreider et. al. [4]).

Inthoduction tO Pseudoinverses

First we give the definitions of the inverse and pseudoinverse and

some properties of each.

Ueﬁi,w/u}(.an 1. The inverse of a square, non-singular matrix A is
that matrix X that satisfies the following two equations:
I1) XA =1 12) AX =1 -1

where | is the identity matrix of progkr dimensions, usually written A .
These two equations imply that A 1S square and non-singular.

Definition 2. The pseudoinverse of an arbitrary real matrix A is
that matrix X that satisfies the following four ?’quations:
PI1) AXA = A PI3) (4X)" = AX
PI2) XAX = X prs)  (xa)T = XA
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T
where (4X) signifies the transpose of the matrix AX. The usual notation

for the matrix X iSA .
Before going on it might be advisable for the reader to take a

column and row matrix (vectors) and yerify that if A is that chosen
vector then

+ 4
4]
where [412 is the squared Euclidean norm of A.

A

In the theorems that follow we state some facts about pseudoinverses;

the proofs are omitted because they gre easy exercises and can be found
in the references [1, pp. 2-3L

Theorem 1. |f A is a square non-singular matrix then A = 4L,

Theonem 2. | the matrix equation AX = B represents any set of
consistent linear equations then

+
AA B = B.

Theorem 3. |f AX = B is as in Theorem 2 then
X =484+ - a0z
where | is the proper identity matrix and Z is any conformable matrix.
(Z must be conformable with respect to both multiplication and addition.)

Theorem 1 says that if you know how to calculate the pseudoinverse
you know how to calculate the inverse. Theorem 2 lets you check for
consistency, which is very important in overdetermined systems, and
Theorem 3 shows howv to use the pseudoinverse in problem solving.

Theorems 2 and 3 are very useful. For example, when analyzing a
complicated electric circuit using Kirchoff's Lawvs one always end up
with more equations than unknowns, that is, an overdetermined system.
To solve for the circuit parameters one merely checks for consistency
(they should be consistent, otherwise a goof was made in setting up the

equations).  Then one uses Theorem 3. There is no need to eliminate the
superfluous equations.

AppLications

Exampfe 1. |n the theory of functions of several real variables
the total (as opposed tO0 partial) derivative is defined as follows.
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Deginction 3. If f . H 5+ F" then f isthat linear transformation,
if it exists, that satisfies the following equation

If(x + k) - flz) - f'h] 0

lim
0 A .

4

where =z, h 6 #*. Since h 6 7 (considered as a column vector) and
flath) - fx) 61f, f must be an # by m matrix. The limit exists if
it isthe same for all vectors h as they go to zero.

Using pseudoinverses it is possible to state an equivalent definition
that has the advantage of having the same appearance as the definition
of the derivative for real functions of a real variable.

Definition ¢. If f: R~ Eln, then
flz + ) - flx)
h

' = 1lim
>0

where division by h means multiplication by the pseudoinverse of h. The

order of multiplication i s taken so as to obtain the object with the
largest matrix dimensions.

For clarity take f(xz), x and h to be column vectors; then f' is
formed by post multiplying [f(x + &) - f(x)] by x" and taking the limit.
So far it has only been claimed that the two definitions agree.
Rudin [5, pg. 215] shows that the Zjth component of f' (according to

Definition 3) is

af;

' _ T
557 T

where f, is the ith component of the m-vector f and XJd is the jth
coordinate variable. In the following theorem we prove the equivalence

of the two definitions by showing that (f')ij is the partial derivative
of f+ with respect to xd according to Definition 4 also.

Theonem 4. Definitions 3 and 4 are equivalent.

Proof. Let f(x) € Rm, x ¢ &' be column vectors. Then A



g 3\
File+ m) - F @)

P NI € W PN R S o) I G L Y
= (g

ot o IE
Fal® + ) - (=)
N /
V¢ focus our attention on the £jth component:
[fi(x + h) - fi(&')]
(F").. = 1im h (1)

2 n 2 J’
h0 zk=l|hk|

For the limit to exist it must be the same regardless of the manner in
which it is approached. So let h = h?;Eé where E3. is the unit vector
whose components are all zeroes except for the jth component, which is a

one. Then (1) becomes

h. af.
1),. = 1 ; E.) - f. — =t
(f )ij hlign Lf; (e + hJEJ) fp )] ” axj
J d

The idea of the total derivative of a function of several variables
is nov seen to be the obvious extension of the derivative. Whenever a

concept makes rigor intuitive it is well worth the time to teach it.

Exampfe_2. Schields [6, pp. 180-1811 states that any linear
differential operator can be expressed as a matrix with respect to a
gzven set of vectors (functions). He then shows what the first and
second derivative matrices look like with respect to the basis vectors
1, x, 2, ' . But he gives up at last because the matrices he obtained
are singular. W show how pseudoinverses can be used to fill in that
gap. To illustrate, we solve the ordinary second order linear differential

equation

or
Ly = (D - D?)y = 2x

In terms of the basis polynomials the matrix for L is
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Using Greville's method in [2] the pseudoinverse of L is given by

N 0 ¢} ¢}
L =¢1 1 0}.
0 1/2 0
Using Theorem 3 we have
0 0 0 0 T 0 0 0 0 0 a a
y=f1 1 0 2 4+ 0 1 Of-0 1 0© b =12
0 1/2 0 0 0 0 1 0 0 1 c 1
or, in polynomial form,
2

y = a+ 2x+ xc.

There are numerous other applications of pseudoinverses. They are

useful virtually wherever matrices are.
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THE GEOMETRIC INVARIANCE OF TANGENTS TO CURVES y = ax"
by Louis 1. Alpent
Bronx Community Coflege of the. City University of New York

We present a simple geometric definition and construction of the tan-
gent, at a given point P, to a curve ¢ in the oy plane given by the equa-

tion y = axr, areal and r a positive rational. Our definition will not !

require calculus or analytic geometry (although we use the latter to
simplify our notation), and it is entirely based upon a very interesting
property of geometric invariance which the tangent A to ¢ at P possesses.
W begin with a parabola C (see Figure 1), with a vertical axis
chosen for convenience. Starting at point P, we first move d units
towards the axis of €, and then drop a perpendicular. Qs its inter-
section with €. Similarly, we locate R on ¢, this time moving d units

away from the axis. If d is "small", we see that the acute angle a

YA\

FIGURE 1

between the chords PQand PR is also " small" . Historical approaches to
solving the Problem of Tangents were often concerned with the meaning
of the "limiting position" of the chords PQ and PR as either d or a

approached 0. (It took more than two thousand years in the development
of mathematics and the invention of analytic geometry and calculus in
the seventeenth century before a precise interpretation of "limiting
position" was given).

VW do not concern ourselves here with any concept of "limiting
position”. Instead, the basic concept presented in this article is
purely geometric, and although if will apply to the family of curves
Yy = axr, areal and r a positive rational, we initially restrict a = 1
and r to positive integral values, n. Therefore, our initial concept
is a property of geometric invariance for a well-defined class of,
straight lines which pass through points of y = xn, nz1l,

Returning to Figure 1, we first consider the case n = 2. He
construct A by simply joining P to M, the midpoint of the vertical
line-segment which joins R to @', where ' is the symmetric image of
QinP. It isnow possible to establish that A is invariant with

respect to the choice of d (see the proof of theorem 1 given below).

Remark. While Theorem 1 could have been proven by the ancient
Greeks using synthetic geometry, we more conveniently obtain a proof
using analytic geometry.

Theorem 1, Let M be any point of the vertical line-segment RQ',
as shown in Figure 1. Line B is invariant with respect to 4 if and only
if Mis the midpoint of Rg'.

Proof. For brevity, we take the parabola ¢ of Figure 1 as the
curvey = z2, Then

P=(p, p2)s Q= (p-d, p?-2pd+d?), Q' = (p+d, p>+2pd-d?),
R = (p+d, p?+2pd+d?), M' = (p+d, p>+2pd).

V¢ mey represent M = (p + d, p2 + 2pd + wd®), where -1 s < 1
Our computation directly shows that M is invariant with respect to
dif andonly if W= 0, that is, if and only if M = M'. This i s seen
by computing the slope of M as (2pd + wd2)/d = 2p + wd, noting that
it will be invariant with respect tod, if and only if w = 0.

If we nov bring calculus into our presentation, we may note that -
the value of the derivative at p is 2p, so that the usual definition
of the tangent to C at P is precisely A = PM. This establishes the
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Corollary 3. |ine M is invariant with respect tod if and only if
P! is the tangent to C at P.

In view of Theorem 1, we now define the tangent to the parabola
C at the point P as the (unique) straight line through P which possesses
our property of geometric invariance. Corollary 1 merely states that
our "new" definition of tangent is equivalent to the "old" definition
based upon analytic geometry and the calculus.

W nowv proceed to show that our "new" definition generalizes in
a very natural way to the entire family of curves, C : y = x*, n 2 1.

To this end, we first introduce

n = n~—l" n o,

which may be interpreted as the (n-1)st geometric mean of »n and n-2 wnits.
Now, our proposed construction of the tangent to C at 7 may be detailed

as follows:

1. Mowe d units from P towards the left (say) and construct
a perpendicular from this new position until it inter-
sects C at some point Q

2. Move nd units from Q to the right and construct a perpen-
dicular from this new position until it intersects C at
some point R.

3. Define the (n-1)gt geometric image of Q in P, called @',
and located to the right of P on the extension of line
PQ, at a distance from Q equal to n times the distance
from P to Q

4. Locate the point ¥ on the vertical line RQ', whose dis-
tance from @' is 1/n times the distance from R to g'.
Join the points P and M and let A = PM,

Note that our proposed construction above implies that both the
horizontal position of P and the vertical position of M will be 1/%
times the distance from Q toR and R to @', respectively. e note that
the role of M as the midpoint of k@' when n = 2 (the special case of
the parabola) may now be viewed more generally as that point on RQ' whose

distance from @' is 1/n times the distance from R to ¢'. Thus, the re-
ciprocal of < represents a ""geometric average position" along the vertical
line RJ' to which the point P (located at the same "geometric average
position” between Q and R) is joined to produce the tangent to C at £ -

With the above motivation, we now introduce the following notation. -
Let

P=(p, 7", Q= (p-d, -, @ = > A" -(7-1) (p-d)™)

R=(p , p1”>, M= (p, pPhn(n-1)dp’
where p =pt (n-1)d.

Theorem 2. Let N be any point in the vertical line-segment RQ',
with notation as defined above. Then PN is invariant with respect to

dif andonly if N=# in RQ.

With analytic geometry, this can be proved in a manner similiar to
the proof of Theorem 1.

He now extend our "new" definition of tangent to the family of
curves C @y = xn, n z 1, by stating that A is the tangent to ¢ at P
if it is the (unique) straight line through P which possesses the prop-
erty of geometric invariance described in Theorem 2.

It is a consequence of the exercise in analytic geometry used to
prove Theorem 2 that A may be recognized as the "old" tangent to C at P,
so that we obtain a generalization of Corollary 1 which establishes the
equivalence of the "old" and "new" definitions of tangents to curves
C:y-= acn, n 2 1.

It mey be of interest to note that all of the foregoing mey be
established using only synthetic geometry, resulting in a purely
geometric characterization of the concept of tangent to a curve ¥y = = ,
n =2 1. (Because of this, the ancient Greek geometers quite probably
could have understood and appreciated our concept of tangent.) A
important advantage here is that, using this definition, a ruler and
compass construction of the tangent exists for all curves of the form
y=xn,n=2k+l,k20.

As an example, this definition may be used for a ruler and compass
construction of the tangent to the cubic at any point (a curve whose
existence was known to the ancient Greeks, but who were unable to con-
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struct its tangent-lines). Let P= (p, p3), p > 0, be a given point on
the cubic C as shown in Figure 2. Following the details of our construc-

tion in the special case n = 3, we first move d units from P to the left

FIGURE 2
(on account of our invariance with respect to d, we conveniently choose

d = p) and construct a perpendicular from this new position until it
intersects ¢ at 0 = (0, 0). W then move %[_T = /3 times P units
from ¢ to the right and construct a perpendicular from this new position
until it intersects ¢ at R as shown. Next, we locate0' to the right of
P on the extension of line OP, at a distance from O equal to V3 0P,
where 0P is the distance from 0 to P. Finally, we locate ¥ on the
vertical line-segment RO by moving domn from R a distance equal to
v3/3-R0', where RO' is the distance from R to 0'. Our tangent A is

now obtained by joining P to M as shown.

A definition and construction of the tangent, at a given point P,
to a curve y = Xr, r a positive rational, may be suitably generalized
from that given in the case r» = n, a positive integer. The definitions
of the notation », P, ¢, ', R, and ¥ given prior to Theorem 2 apply
directly when » 2 1, and Theorem 2 may be verified for such vy For
positive values of r < 1, we may identify the graphs of y = x and x = yl/r
(in the first quadrant) so that our definition and construction shall
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apply in the case of all positive rational values of =».

We emphasize that while our development does not require calculus
or analytic geometry, it does require the construction of the reciprocal
of the (r-1)8% root of r; a procedure which is not so simple (excepttf
possibly, when » = 2 + 1, k a positive integer or 0). Since ia[l/r
may be considered a " scale factor”, we note that our definition and
construction applies to all curves of the formy = axr, where a is any
real number, and », any positive rational number. V& remark, finally,
that by restricting » to (positive) rationals, we avoid all limiting
processes implied, say, in the definition of an irrational root of a
real number.
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A NONSTANDARD MODEL OF THE REAL NUMBERS
WITH APPLICATIONS TO LIMITS AND CONTINUITY

by Paut Reymond Patten
Univernsity of Oklahoma

|, Filterns, ULtrnafiliens, and. Sequences

The purpose of this paper is to give a description of a nonstandard

model of the real numbers using a set theoretic construction, and to give
applications of this model to limits and continuous functions.

The main purpose in developing this model is to resurrect the idea
of an infinitesimal element in an ordered field which satisfies the same
statements in a lower predicate calculus language as does the real num-
bers. The lower predicate calculus or first order language includes those
sentences where the quantifiers there exists and for all are applied to
variables ranging over the set of reals, R, but not to variables ranging
over proper subsets of R, such as the natural numbers, ¥. For example,
consider the sentence

for all x and for ally exactly one of the following is true:
x islessthany, x =y, ory IS less than z,

and the sentence

for all x there exists a natural number z» such that x Zs less

than n.
In the first sentence the variables x and y are allowed to range over
all possible values in R (the trichotomy property for R), while in the
second sentence one of the variables (#) isrestricted to a proper sub-
set (N) of E (the Archimedean property). Thus while any model of the
real numbers will be required to satisfy properties like the trichotomy
property it is not necessary for the model to satisfy properties like the
Archimedean property. For a more careful treatment of the model theoretic
aspects of nonstandarc analysis, see Robinson [31.

This paper will avoid the explicit use of model theory by giving a
particular model to be constructed using set theory (Zermelo-Fraenkel)
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with the axiom of choice in the form of Zorn's lemma included. This
construction is based on the methods found in Luxemburg [2].
The model to be constructed will consist of the set

*R = {f | f is areal valued sequence}

under certain equivalence and order relations to be defined in the follow-
ing discussion. As a first step toward the definition of an appropriate
equivalence relation consider equivalence with respect to the family of
subsets

F={N-F| Fisafinite subset of N}
defined by
frg if and only if {2 | f(i) = g(£)} € F.

To show that *r is an equivalence relation first notice that F satisfies
the following three properties of a filter on N:

(F1) @ isnot in F and N belongs to F.

(F2) If Aisin F and A ¢ B c N then B belongs to F.

(F3) |f A belongs to F and B belongs to F then 4 N B belongs to F.
These properties can be used to show that =r is reflexive, symmetric, and
transitive. For example, we prove the

Transitive Property. If f =F g and g =r h then f =r h.

Proof. Since {Z | f£(£) = g(£)} belongs to F and {Z | g(2) = h(i)}
belongs to F, by property F3A = {2 | (i) = g(£)} N {1 | g(£) = h(D)} is
in F. Since f{2) = A(4) for all Z in A, A c {Z | f{£) = A(£)} so that by
property F2 f =F h.

In a similar manner one mey define an order “F with respect to F
by stating f r g if and only if {£ | f(4) < g(Z)} belongs to F. It is
clear by a proof similar to the one given above that <r is transitive
and is therefore an order relation.

Some examples of these relations will now be considered.

Example 1. Let f(1) = 100, £(2) = 2, and for n > 2, f(n) = (1/2)n-2
Also let g(1) = 500, g{2) = 2, g(3) = 5, and for n > 3, g(n) = (1/2)n_2..
Then f F 9 since f and g agree except on a finite set. Define the seque‘nce
r by r(n) =r for 0 < rin R, Then, with the above f, and for any positive

real number r, f <p .
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Exanple 2, Let ftn) = 1/2 if nis odd and f(n) = 2 if n is even. handled similarly.
Let g{n) = 2 for all n. Since {2 | f(4) = g(<)} = {2n | n is in ¥} has

Proof of U3 ifg# f. Thus, A= {Z | f(£) 2 g()} does not belong
an infinite complement f 7 O Also, since {2 | f(2) > g(i)} = 9, ¢ g F»

to U. By property UF the complement of A, {2 | f(£) < g(£)}, belongs to
and since {Z | f() < g(£)} = {2n - 1 | » ¢ ¥} has an infinite complement, U. Thusf <g. 0 the other hand i f f < g then by property F2 it gan
f i g be seen that g £ f and g # f.
= (For the proof of W use thefilter properties of U to show that
{2 ]| gd) <k} isin U.)

Example 2 shows one shortcoming of using the filter F: *R under

the order <t does not satisfy the trichotomy property. Hence *R under

r is not a model of R satisfying the first order language. i 2. Extension of Functions to *R

In order to construct an ordering of *#R which satisfies the trichotomy The next property verifies that real valued functions of a finite
property a filter U 2 F which contains as an element either the odd natural number of real variables can be extended to *R  First it is necessary
numbers or the even natural numbers is needed. In fact since examples to define the extension of subsets of R to subsets of *R.

using infinite sets other than the even or odd natural numbers can be
Definition. Let A = R Then define*A = {ge %R | { | g(2) is

in A} € U},

constructed it is necessary to have a filter U 2 F such that given a
subset A of N then either A or N - A isin U. This property (UF) is

teed if U istaken tob imal filt d t inclusi
guaranteed i is taken t o be a maxim ilter (under set inclusion) Propenty EXT. LetAkngork:l, 2, wur, . Letf:Alx A x

ini F Ui ) . Such an ultra- . ,
containing F as a subset (U is called an ultrafilter) ultr. ... x A > Rbe a function. Then f can be extended to a function *f

filter is guaranteed by Zorn's lemma It should be noted at this point Where ""f:"‘Alx B, X wiux Ao R is defined by *f(gl’ ey g (D) =
that the ultrafilter U is not unique and that it may be possible, if . . . oy n
f(gl('L), . gn('b)) if gk('z,) isin4, for k=1, «a., 7 and *f(gl,...,

A chforAtobeinUorN-Atobein U without knowing explicitly . A . . .
gn)(z) = 1. for any other i . Notice that if (al, «x:, A1) is a constant

which is the case. That is, there may be an ultrafilter which contains

sequence in Al % e x A then *f(a., ..., a )(Z) = f(al, vy a) for

the even numbers and another ultrafilter which contains the odd numbers; alliin N n 1 n n
thus given an arbitrary ultrafilter it may not be possible in Example 2 .
to decide whether f <, g or f = g. All that is known is that exactly Proof. It is clear that #f(g;, ..+, g,) iSin *R. To show that *f
one of these possibilities must hold. is well defined suppose g, = hk for k=1, .., n (ie(gys vuny g)) =

Let an ultrafilter U containing F be fixed. Then =/, and <, are - (hys veey B D). Then for each k, {% | gk(‘l:) = hk(i)} isin U. Hence,
defined in the same way as before; however, f =l g will be denoted as B={i | (gl(i), cees g, (2)) = (h(2)s «..s B (£))} contains
f=gandf q9asf<g He note that if » = s in Rthen » = s as ”2—1 | gk(i) = hk(i)} which can be shown to be in U inductively. Since
constant sequences in F* (we say that =u extends =). Similarly, if ] {7 | f(gl(i), ey gn('zi)) = f(hl(i), ey hn(i)} 2 ﬂz=l {7 | gk(i) € Ak}
r <& in Rthen r < & as constant sequences (<, extends <). The following N B %£(g,, vuey g,) = #f(h, v, b)) by property F2.

properties are thus observed to hold for = and < on *R:

(U1) = is an equivalence relation on *R extending = on R The property EXT applied to the cases where # = 1. and n = 2 shows

(U2) < is an order relation on #R extending < on R that functions f : A ~ R can be extended to *Rr, and operations such as

(u3) If f and g are in R then exactly one of the following +, *, -, + can also be extended to *R (here as in Rdivision by Ois

istrue: g<f,g=Ff, orf <g. still undefined). Using examples 1 and 2 on pages 2 and 3 (100, 2, 1/2,‘
(i) 1f g=f, h=k, and f < k then g <h(< is compatible with =). /4, «aa) t (2, 2, 2, 2, vua) = (102, 4, 241/2, 2+41/4%, ...). Notice that
The only properties that have not been handled previously are U3 and (500, 2, 5, 1/4;s vau,y 2—(n-2)’ wea) + (2,2, 2,2, ,..) = (502, 4, 7,

U4 U3 will be proved for the case g 2 f since the other cases can be
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2-1/%, ...) = (102, 4, 2+1/2, 2+1/4, ...) so that in this example addi-
tion is well defined. In fact it can be shown that #R is an ordered (<)
field in which R is embedded by the order preserving field monomorphism
sending ¥ in R to the constant sequence r in *R,

At this point one should notice that there are certain properties of
R which do not hold in *R. It is well known that R satisfies the complete-
ness property: If g # A S Rand there is an & in R such that for all r
in AL = r, then there is a greatest such £ in R called the greatest

lower bound of A. The following example shows that %R is not complete:

Define a sequence of elements, fn’ of %R as follows. fl(qi) =i,

9 e

f2(i) = {;’.—Jc;t;i:r:;ize{ e fn(i) : {i_gz}_li-;wi‘ie’b =7
The first few terms appear as f‘l -4, 2, 3, 4, , f2 A, A, 2, 3, cuns
f3 :1,4,1, 2, ...; etc. Notice that the constant sequence 1< fn for
all n. Nw if £ is a lower bound for A = £, | nisin®¥)then £ + 1is
a larger lower bound for A. This fact may be verified by observing that
forn=1,£+ 1= fn+l + 1= fn' Thus, there can be no greatest lower
bound of A in ®#R. Considering flit can be seen that if nisin ¥ then
n < f}; hence, *R is not- Archimedean. These are examples of sentences
which do not belong to the lower predicate calculus language for R.

3. Inginitesimals and Standard Value
At the beginning of this paper the goal of finding an extension of

the real numbers such that non-zero infinitesimals would exist in this
extension was set. To see that this goal has been achieved consider the
sequence fi(n) = 1/n. It is clear that given any real number » > 0 then
fn) < » except on a finite set; hence, f < » for all 0 < » belonging

to R Sincef # 0, f is a non-zero infinitesimal. The set of infinitesimals,

1, is defined by I ={f ¢ R | |f{ < » for all real numbers » > 0}. Another
useful set in this connection is B = {f € #*R | for some real number » > 0,
|f| < »}. In both of these sets absolute value is the extension of absolute
value of real numbers to *R guaranteed by EXT'. |t can be shown that

_(fiffzo
7= {5130

AV

just asin R. Thus, |fl < » is equivalent to -r < f < », For this reason
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the elements of B are called the bounded elements of *R. Notice that
I cB.
The following is a list of some properties of I and B:

"

(r1) If f, g belong to I then f *+ g belongs to |I.
(r2) |f f belongs to I and g belongs to B then fg belongs to I.
(r3) f does not belong to 1 if and only i f 1/f belongs to B.

Proof. If f isnot in I then for some real number » > 0 |f| = 2/r
>1/r > 0. Hence, f # 0and r > |1/fl. Thus, 1/f belongsto 8. O the
other hand if 1/f isin B then f # 0 (since O does not have a reciprocal
in %), Nw there is a real number » > 0 such that 0 < |1/f] < 1/».

Hence, » < |f|, which implies that f is not in I.

(rw) 1ff isin I then ~fisin I.
(Is) If fgisin I then fis in I or g is in 1.

Proof. Let fybelong to | with f not in I. Thenf # 0 and there is
a real number » > 0 such that [fl = ». Let ¢ be areal number > 0. Then
since fg isin 1 Ifgl < re < Ifl s. Since |fl > 0, lgl < &; hence, g
belongs to 1.

(16) B is an integral domain.

Properties Il, 12, and I4 guarantee that 1 is an ideal of B. Property
75 means that I is a prime ideal. Thus the ring B/1 is also an integral
domain. Property 13 implies that B/I is actually a field. In factit
turns out that 8/1 is isomorphic to R as an ordered field. To prove this
fact, a new function, the standard value function st, will be defined
from B onto R which will be a homomorphism of rings preserving £ with T
as the kernel (that isf ¢ T if and only if st(f) = 0).

The definition of st is as follows: If f belongs to 8 then st(f) = r
in Rwhere f - risin I if such a real number exists. (It is clear from
this definition that et(r) = » for all real numbers » so that st is onto
R.) There are two properties which must be established:

(s71) |If there is such an » then r is unique, and
(572) the domain of st is B (i.e. given any f in B there is
an r in Rsuch that f - » isin 1),
Proof of ST1. Notice that if » # ¢ and », s belong to R with f - r
¢Tandf-seclthenby Il and 14f -8 - (f - ») ¢ I. Hence s - r €1,



278

which is impossible since ls - rl > |8 - r|/2, which belongs to R with
s - rl/2 > 0.

Proof of 8T2. Aswume first that f 2 0. Then there is a real
number » > O such that f=». Let A={r¢R| 0=<fsr}) ThenACR
and certainly A is bounded below by 0. Thus, by completeness in R, A
has a greatest lower bound £ inR The claim is that f - r, €7I. Let
8 be a real number > 0. Then either 8 5 |f - r0| or If - rol < 8 by
property U3. The case 8 = |f - r0| is now shown to be impossible. There
are two subcases to consider: (a) |f - »yl = f - »r) (if f22)) or (b)
If - rol =p.- f (if fsro).

(a) Ve haves = f - rjors + ry = fforall rinA. Sinces >0,
et 7, is a lower bound contradicting the fact that ry is the greatest
lower bound.

(b) W have s sry - forosfs=s r, "8, which belongs to A
contradicting the fact that 7, is a lower bound for A. Thus, f - r €1,
If f < 0 then the above argument guarantees an r, such that -f - z, e 1.
By 14 f - (~r;) belongs to I. Hence st(f) = -ry = -(8t(-f)). A corollary
of this part of the argument is gt(-f) = -st(f).

Other properties which establish that st is the needed homomorphism
are:

(573a) 8t(f t g) = st(f) t+ st(g).
(5T3b) et(f) = 0if and only if f belongs to I.
(sT4) |If f, g belong to B then et(fg) = st(fetlg).

Proof of ST4. f - et(f) isinland g - et(g) isin I. Since g is
in B and st(f) isin B, (f - st(f))g belongs to I and st(f)(g - stlg))
belongs to I by I2. Nw by Il fg - st(fletlg) = (f - st(f))g + st(f)(g -
8t(g)) isin |.

(sT5) If f £ I, then st(1/f) = 1L/et(f).
(sTe) If f = g then st(f) = st(g).!
(577) A function f : A+ R(AC R) isbounded if and only if *f(x)
isin B for all x in *A.
Proof. First suppose f is bounded. Then thereisan » > 0inR
such that |f(z)| < » for al1 X € A. If X € *A then {2 | z(£) isin 4}
¢ U and for such 2, |f(x(Z))| < » which implies by the definition of <

INotice that in this context f < ? does not necessarily imply st(f)
< gt(g). For example let fin) = 1+ 1/{n + 1) and g(n) = 1+ 1/n." Then
st(f) = 1= et(g), but f < g.

that |*f(x)| < ». Hence #f(x) belongs to B. On the other hand

f is not bounded on A. Then for every n in N there is an z, in A su
that lf(mn)l >n., Letx(n) = X, define a member of ®*4 (for some choice
of the xn)_ Then *f(x) is not in B since given any real number » >

there is an ny such that r» < ny and clearly Pafled)| > ny > »

4. The Nonstandard Definition of Limit and Its Equivafence tO the

Standard Deginition
At this point a nonstandard definition of limit can be given.

Deginition. The limit of f(x) as x approaches a exists with
lim flx) = st(*f(a t h))

xrq

for 0O# h € 1if and only i f st(*f(a + h)) exists and is constant for
all O# h € 1.

The following theorem shows that this definition is equivalent to
the standard e.8 definition of limit.

Theorem L. The value st(®*f(a + A)) exists and is a constant I € R
for all nonzero h ¢ | (where a isin R} if and only if for every real
number ¢ > O there is a real number 6 > 0 such that for any real number
t satisfying 0 < |l <6, Ifla+ ¢) - LI < ¢,

Proof. Suppose st(*f(a t+ h)) = L for all 0 #h € |, Lete > 0be
a given real number. Suppose contrary to the conclusion of this theorem
that for each 0 < 6 in Rthereisat in Rsuch that 0 < 't5| < 8§ and
|fla + ts) - L| = g. For eachn € N choose an k(n) such that 0 < |h{n)|
< 1/n (=8) and |fla + h(n)) - LI = . Then clearly h isin I and |¥*f(a
t h) - L| 2 € so that st(*f(a + h)) # L or st(*f(a + h)) does not exist.
In either case the hypothesis is contradicted; hence, there is some Ga >
0 such that if 0 < |t| <¢&_then Iftat #) - Ll <e. O the other hand
suppose that for every real € > 0 thereis areal 6 > 0 such that if
0< lt] <6 then |flat t) - L| <e. Let h be a nonzero infinitesimal.
Then 0 < k| < s_foralle>o. Hence |%f(a + h) - Ll < ¢ for all real
e > 0. Thus, *f(a+ h)-L ¢ I, By the definition of st, st(*f(a + h))
= L.

5. Applications

With this equivalence of the definitions of Iimit there are may
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elementary Iimit theorems which can be proved without epsilons and deltas.
For example, by using ST3 and ST4 one can prove that if iﬁE f(z) = Ll
and Lim g(x) = L, then uim (f+ g)=) = L + L, and lim (f5)(z) = L, L,.
Continuity can also be defined using nonstandard techniques.

Definition. The function f : A >~ R is continuous at a in A if and
only if st(*f(x)) = fla) for all X in #4 with st(z) = a.

Other definitions associated with continuity are:

Open set: Aisopenif andonly if for all x 6 8, € *A if st(x) 6 A
Closed set: A is closed if and only if for all X 6 *A N B, st(z) 6 A.

Suppose A € Ris closed. Then R - A is open. For a proof, suppose
2z isin B and st(x) isin R - A Suppose X isin*A. Then since A is
closed st(x) is also in A which is a contradiction. The following theorem

is an application of these results.

Theorem. 1f f : A+~ R is continuous and § # A ¢ R is closed and
bounded then f(4) is also closed and bounded.

Proof. First f(4) is bounded: Let x be in *A. Since there is a
real number » such that lal s« for all ain A {2 | lz(2)| s u} 2 {2 |
x(Z) 6 A} belongs to U; hence, lx] = uU. Thus x isin B, and st(x) exists.

Since A is closed st(x) isinA. Since f is continuous at st(x), st(¥f(x))

= flst{x)) which isin R, Thus *f(x) isin B. By ST7 f is bounded on A.

To show that f(4) is closed lety 6 B (1 ®#f(4). Thus, for some X 6
*A, y = %f(z). On the set {£ | y(£) 6 f(4)} let z(Z) be a preimage in A
of y(Z); otherwise let =(Z) = 0. Since A is bounded, x € B, Thus, since
A is closed st(z) 6 A. Since f is continuous st(y) = st(*f(x)) = f(st(x))
which isin f(4). Thus f(4) is closed.
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COMMENT BY EDITOR

The two articles immediately following were submitted at approximateiy
the same time, both of them dealing with the problem of finding a closed
formula for the series

n
E ik=lk+2k+3k+...+nk,
=1

but using completely different lines of attack. The result in the second
paper actually provides a simple induction proof of the fact that there
is a unique polynomial Pk(:z:) for each integer k = 0 of degree k + A such
that when X is a positive integer

P (=) =K+ Ky Ky s 2K

This fact was used by L. S, Levy, "Summation of the Series "+,

+ o Using Elementary Calculus" [ dmerican Mathematical Monthly, Vol. 77,

No. 8 (1970), 8u0-847] to prove the interesting integral formula

X
Pn(m) = nj; Pn_l(t)dt + ¢z (Cn constant)

USNG L'HOSPITAL'S RULE TO $M A SERIES

bg Noaman Schaumberger
Bronx Community Coflége of, CUNY

The formulas

l+2+3+...+n=n-€n§+—1—)- (1)
+ n+ 1
12402432+, +p2- 0T ) 25

are used in algebra and probability. They are particularly important in
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the history of the calculus where they stimulated interest in limits of The following provides a very simple method for evaluating the
sums. Archimedes used (2) as the basis of one of his quadratures of the SeriES'ZZ:l ik-
parabola [1, pp. 50-511. These along with the formula for the sm of Let us write
cubes and higher powers are usually proved by mathematical induction or Sk =1+ 2k ¥ 3k Foree 4 nk
by somewhat obscure algebraic tricks. In this note we offer a technique and
for deriving these formulas which should be of interest to calculus k k A
" S =1+2 + oo+ (m-1) +m

students because it rests on differentiation of the exponential function

] 3 1
and L'Hospital's Rule. in the manner suggested above. Subtraction yields

Let » be a positive integer. Since the left side of the following - K kK Kk ' K K 2
is a geometric series we see that 0=+ (2-1) +(3-2) * -+ ¥ (n-(n-1)7) - n,

z o ne &% - e(n+1)x from which we obtain
@ 4T b BT B % K K Kk K K
1-e no= 1+ (2-1) T (@-20) 1ttt -(n-1)).
Differentiating, with respect to X, we obtain, after some simplification, Thus, we can write
x (n+l)z (n+2)x - k k k_k
(3) & + 262 4 3. - (n+lde 2+ ne Sy A+ (1(27-1)) t (12 -1)+(3-2)) *
£l - &%

Taking the limit of (3) as X =+ 0 and using L'Hospital's Rule twice in t (l+(2k-l)+(3k—2k) e 4+ (nk—(n—l)k))

order to evaluate the right side, we get {(1). Nw differentiating (3),
o+ (1250 ¢ (2R (-

we have

X

o:-:'l'e2

z - (n-t-l)ze(m'l)"c + (2n2+2n~1)e(n+2)x M2£(n+3)x_
(1- 653
Letting x = 0 and using L'Hospital's Rule three times on the right side

n
Z (n=(2-1)) (%= (2-1)%)
=1

n n
gives (2). D DRI RO I PR NN Rl
Theoretically we could continue to differentiate and use L'Hospital's 2=1 i1
Rule to obtain the formulas for the sum of cubes and higher powers; un- M
fortunately, however, the algebra becomes quite messy. n n-1
. D DRGSR PRI
REFERENCES i=1 iz0
1. Toeplitz, 0., The Calculus: AGenetic Approach, The University of n-1
Chicago Press, Chicago, 1963. - n(nk) _ Z i[ik . (li)ik'l . (g)ik—2 b 1 - 7:k]
=0
K
A SIMPLE WAY OF EVALUATINGZ il kil & k. .k ko k-1 i
Py =n —Z [(l)z + () +ore + 2]
1=0

by R. S. Luthan
Univernsity of Wesconsin Centenr, Janesville
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n
R A S 10 Ut G CLan N PP I o WL S
=1
ko ko k - -
AR (S A s VA ARPRIPURE I (’i)Z & - (’Q‘)Z gl
i=1 =1

7
..-E 'l:;

=1
= k k k k LR
S = )" = (DS - ISy ) - (PG, - 0 -5y
_ k k k
(1+k)sk = n(n+tl)" - (2)3k_l - (S)Sk-Q - -85

Hence,

_ 1 k k k
S 2T nme )T - (XS ) - (DS, - e - 51

which is valid for k2 1 (if k = 1 the terms (’;)Sk are omitted). Thus

-1+l
we have a formula connecting Sk with Sk—l’ Sk—2’ Vees Sl. For example,
1 1
Sl =35 [n(n+1l)” - 0]
_ n(n+l)
=T

o 2 2
S, = 5T [n(n+1)* - (2)Sl]

H

% nm1)? - (1) 2Ly

. 2n(+1)? - n(nel)
6

- nnt1)[2(n+1) - 1]
6

. n(n+1)(2n+l)
6 -1

and so on, ad infinitum.

NUMERICAL SOLUTION OF A NON-LINEAR ELECTRON -
CONDUCTION EQUATION WITH BOUNDARY VALUES

by James Delucia
St. Joseph's College

Introduction

The equations which arise when discussing electron injection currents
through a thin insulating film are in general non-linear. The equations
are analytically intractable so that they were solved by numerical
techniques on a digital computer. This paper is a presentation of the
method used to solve the equations. These more exact solutions give
results that have been experimentally verified but have not been explained
by previous analyses[1]. Some of the previous solutions obtained under
certain simplifying assumptions are also presented.

Conduction Equations

The structure that is analyzed is a thin insulating film sandwiched

between two metal electrodes. The geometry is planar so that the analysis
is one dimensional. The metal contacts are assumed to be made of the
same material so that the structure is symmetric, and the boundary con-
ditions at both metal-insulator faces are similar. Only steady state
conditions are considered.

In the interior of the insulator, the current flow and charge
distribution are governed by the current equation and Poisson's equation,

as follows:
J = en(nk + VO%) L
%EE = ——i—(n - ng) (2)
where
E = _% (3)
and -
v, = kI/e (u)

In the above relations J is the current density, E is the electric field
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intensity, V is the voltage, and n is the total free carrier density.
(The quantities E, V and n vary over the displacement z.) Also, e is
the electron charge, u is the electron mobility, 7 is the initial electron
density, and ¢ is the insulator permittivity.

The current levels are assumed to be small enough so that the carrier
concentrations at the metal-insulator surfaces are constant. Therefore,
the boundary conditions are

n(0) = n(L) = on, (5)

where L is the thickness of the insulator and a is a constant. Also,
we can arbitrarily set

v(o) = o. (6)

Exact Results of Simpligfied Models
This structure was first analysed by Mott and Gurney [2] who assumed

that the insulator was thick enough so that surface effects can be
ignored. That is, the contribution to the current due to diffusion (%)
was ignored and the electric field at the cathode vanishes. Also they
considered an insulator whose insulating properties are good enough so
that n always dominates nye The resulting equations are

J = eunk (&2

dE _ _en

dr = e &

£=-3 (9)
with the boundary conditions

E(0) = 0 (10)

v(0) = 0 (8)

These equations have an exact solution of the form

J = queV2/L? (11)
where Va = ¥(Z) is the applied voltage.
Lampert [3] extends the above analysis to the case where 7, cannot
be ignored. Exact solutions can be obtained only in the limits of low
applied voltage where n is dominated by n, and high applied voltage where

n dominates nye The results are as follows.
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For low voltages (n << no) we obtain ohmic conduction, or

= L. 12
J epnoVa/T (12)

For high voltages (n >> no) this model reduces to the Mott-Gurney medel,

or
i EueVz/L3- (13)
8 a

Since the ohmic term is always present the current-voltage relationship

for the Lampert model i s essentially a quadratic, therefore
- 9 2 /7,3 14
J = ewn V /L + quel2/L°. (1)

However, for an insulator which is thin enough so that the surface
effects cannot be ignored, equations (1), (2), (3) along with boundary
conditions (5) and (6) must be solved in those forms. The remainder of

this paper is a discussion of the methods used to solve these equations.

Nonmalization of, the. Equations
Equations (1), (2), (3), (5) and (6) can be made dimensionless and
simpler by the proper choice of measurement units. Carrier concentration

will be measured in units of the initial concentration of the insulator,
and length, voltage, electric field and current will be measured in the
following units:

Ly = (ckT/e?n ) (15)
VO = kT/e (u)
Ey = Vo/Ip (18)
JO = eunOE’O 17

The resulting normalized quantities are as follows:

g = n/n, (18)
Y= x/LD (19)
w = L/L, (30)
U= V/V, (21)

A
U
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F = B/E (22)
Z=4dJ/d, (23)

With these substitutions equations (1), (2), (3), (5), and (6) become

Z = gF + dg/dy (2w)
dF g
i -(g - 1 (25)
_dau
F = "% (26)
g(0) = gw) = o (27)
U(o) = 0 (28)

The resulting equations are non-linear and are solved by numerical tech-
niques on a digital computer.

Numesical Solution
a) Difference Equations

The film, of width W, is divided into 101 points, or 100 cells.
The points are labled ¢ where ¢ goes from 1 to 101. The width of each

cell is H where

H = w/100 (29)
V¢ want to find values of g, F and U at each point Z. Relable gly)
F(y) and U(y) as gz F; and Ui’

Equations (24), (25) and (26) are approximated to the first order
by difference equations. They become

9ivy = 95 + B - g;Fp) (309
Fopp = Fy + (1 -g) (31)
Upyp = Uy - BF, (32)

where the boundary conditions become

U =0 (3u)
b) Starting Values
In order to obtain starting values for F and g, so that equations (30)
and (31) can be iterated, we recognize the fact that the charge gradient(g%)

must go to zero somewhere inside the film. This is a consequence of the

-t

boundary condition (33). Consider a point j and set dg/dy at j

zero. From (24) we obtain

F. = e &
3 z/gJ

Wecan guess a value for Z and guess the starting value g¢° Equation 138)
then gives us the starting value Fj'
c) General Procedure

The general procedure for obtaining a solution goes like this:

1) Consider a point J.

2) Guess Z and gj.

3) Obtain Fg from (35).

4) Obtain F, and 9; for 2 = 1 to 101 by iterating (30) and (31) and
using the appropriate starting values. This gives us computed
values for 9, and 9101

5) Compare the computed values of g and 9101 with the required
boundary conditions(33).

6) If both computed values of gl and 9101 match the required boundary
conditions then the solution has been found. |f not then go
back to step 2 and guess again.

Once the solution has been found equations (32) and (34) are used to
obtain the U;, the voltage along the film. U gp 1s the applied voltage
for the resulting current Z. The above procedure is repeated for points
J = 10 through 51, thus giving us 42 values of Z versus U102' The
resulting Z versus U102 curve is the current-voltage characteristic of
the device.
d) Block Diagram

The above section was just to give an idea of how equations (30)
through (34) are used to obtain values for Fi’ g. and le' A larger
problem is trying to obtain the correct values of Z and g3 that give a
solution. What was done was to guess two values for Z (Z1 and Z2) and
two values for gj (gjl and gjz)‘ These values were then systematically
augmented in an attemptto obtain a straddle around the true values. Once
a straddle is obtained it i s a simple matter to interpolate to the real
value.

A block diagram of the computer program used to solve the equation,

is presented in Figures 1 and 2. The program consists of a main program
and a subroutine named ZINTR. Following is an explanation of the vari-



280

l”“RéaH*'
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ables used.
Man Program (Finds the true value of ga. given the true value of Z from
the subroutine)

J = point in consideration

EPZ = tolerance at the boundaries

DBL = w(width of the film)

AL = (boundary value)

G(I) = charge density along the film I =1to101
F(I) = electric field along the film I =1to101
U(T) = voltage along the film I = 1to 102

@J1 and G = two guesses for G(J) (GJ1 < GJ2)
GB = interpolated value of G(J)
GIN = augmenting value for GJ1 and GJ2
ZJ1 = value of 2 that, along with G(J) = &J1, fits the right boundary
ZX2 = value of Z that, along with G(J) = GJ2, fits the right boundary
233 = value of Z that, along with G(J) = GJ3, fits the right boundary
GA = computed value of &¢(1) for Z = ZJ1 and G(J) = GJ1
GJB = computed value of G(1) for 2 = ZJ2 and G(J) = GR
GXIC = computed value of G(1) for 2 = ZJ3 and G(J) = GBI

The main program assumes that GJ1 < &/2 = GJA < GJB.

*(Note from main program): This value is obtained by iterating equations
(30) and (31) to the left hand boundary.

Subroutine ZINTR (Finds a value of Z{(called ZJ) which along with some
value of G(J) (called &J) fits the right hand boundary condition)

ZJ = the computed value of Z that is returned to the main program.
It will be either ZJ1, ZJ2 or ZJ3 corresponding to &/1, GR
or GI3 respectively.

Z1 and 22 = two guesses for ZJ (21 < Z2)

23 = interpolated value of ZJ

Al = computed value of G(101) for Z = 21 and G(J) = GJ

A2 = computed value of &(101) for 2 = 22 and G{(J) = GJ

A3 = computed value of G(101) for Z = 23 and G(J) =GJ

ZIN = augmenting value for Z1 and 22
ZINTR assumes that Z| < 22 = A1 < A2
*%(Note from ZINTR): This value is obtained by iterating (30) and (31)
to the right hand boundary.
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Results

Current-voltage curves (Z vs. Uy,,) were found for a = 108 and a =
108 for various values of w. The curves were each fit to a quadratic
and to a cubic using the least squares criteria. Each curve followed a. _
quadratic of the form

72 = ala, WU + bla, w)U2 (36)

The values of a and b are presented in Tables 1 and 2. Figure 3 is the
current-voltage curve for w = 0.2.

W a b 5
0.02 | 5.60 x 108 | 1.71 x 105 AZ*10
0.05 | 3.92 x 105 | 1.16 x 10% 8T
0.08 | 9.94 x 10* | 2.90 x 103
0.10 | 5.07 x 10% | 1.50 x 103 1
0.20 | 6.79 x 103 | 1.92 x 102 .
0.50 | 4.59 % 102 | 1.26 x 10!
0.80 | 1.16 x 102 | 3.10 1
1.00 { 5.78 x 101 | 1.60
ad
TABLE 1
w | a | b
0.20 | 5.90 x 103 | 163.5 T
0.50 | 3.90 x 102 11.7 1
0.80 | 9.85 x 10! 2.9
1.00 | 5.13 x 10! 1.5 DN YOUNY T 2
20 40 U
TABLE 2 FIGURE 3
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1974-1975 MANUSCRIPT CONTEST WINNERS

The judging for the best expository papers submitted for
the 1974-75 school year has now been completed. The winners
are:

FIRST PRIZE ($200): Daniel Minoli and Robert Bear,
Polytechnic Institute of Nav York, for their paper "Hyper-~
perfect Numbers® (this Journal, Vol. 6, No. 3, pp. 153-157).

FCOND PRIZE ($100): May Zimmerman, Western Michigan
State University, for her paper "Matrix Multiplication as
an Application of the Principle of Combinatorial Analysis"
(this Journal, Vol. 6, No. 3, pp. 166-175).

THIRD PRIZE ($50): Lonnie J. Kuss, Texas Tech Univer-
sity, for his paper "A Conformal Group on an n-Dimensional
Euclidean Space™ (this Journal, Vol. 6, No. 3, pp. 144-152).

1976-1977 CONTEST

Papers for the 1975-76 contest are now being judged, and we are
receiving papers for this year's contest, so be sure to send us your
paper, or your chapter's papers (at least 5 entries must be received
from the same chapter in order to qualify, with a $20 prize for the
best paper in each chapter). For all manuscript contests; in order
for authors to be eligible, they must not have received a Master's
degree at the time they submit their pecper.

VWE NEED YOUR HELP

Two of last year's contest winners were never reached by our office
because of a change of address. W have the prize money, but we do not
know where to send it. |f anyone knows the whereabouts of Charles D.
Keys and S. Brent Morris, please let us know. Our plea to all authors

is to always keep us posted on any change of address.

GLEANINGS FROM CHAPTER REPORTS =

A

ARKANSAS BETA at Hendrix College participated in the Oklahoma-Arkan-
sas regional meeting of the Mathematical Association in March, 1976.
Student members of the chapter who presented talks in the undergraduate
session were David Bonnen, Janet Dillahunty, William Onton, Alma Posdey,
and Michael Tiefenback. '

CALIFORNIA ALPHA at the University of California at Los Angeles
sponsored several colloquia during the year given by members of the
faculty. Amoyg others, a talk was presented by John Gawmett on the
topic "How to Tell One Cantor Set From Another.”

CALIFORNIA ETA at the University of Santa Clara heard Nichofas
Knueppel from the University of California at Davis speak on the topic
'‘Branching Processes"” and George Polya from Stanford University on
'Intuitive Outline of the Solution of a Basic Combinatorial Problem."
The initiation banquet guest was Johr Wetzel from the University of
Illinois, who lectured on the topic " Spheres Tangent to a Tetrahedron."

COLORADO BETA at the University of Denver heard presentations by
its members on the topics "Infinity of Rationals and Irrationals",
" Structural Programming”, and " Pascal's Triangles", and members of the
faculty on such topics as "The World is Linear”" and " Outlines for a

Solar Energy Course."

FLORIDA EPSILON at the University of South Florida had both student
members and faculty present talks during the year. The student talks
were given by David Kenr, Bruno Castellano, Robert Tubbs, Joseph Shephend,
and Robert Jernigan (whose topic was "Howv to Win at Monopoly Using Math").
The chapter celebrated its tenth anniversary and prepared a special
report on the history of the organization, on outstanding contributions
of its members, and including a partial directory giving the present
status of the more than 350 mathematics students granted membership

during the 10 years.

GEORGIA GAMMA at Armstrong State College heard Swatna Krishnamurti,
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senior mathematics major, speak on the topic "Fourth Dimensional
Fantasies", and Ben Zipperer, a sophomore, on "Fibonacci Facts.”

ILLINOIS ZETA at Southern Illinois University and the Mathematics
Department conducted the Mathematics Field Day in which 500 high school
students competed for scholarships and awards in a mathematics examin-
ation. The chapter also maintained and serviced a problem board during
the year.

KENTUCKY GAVMA at Murray State University heard talks by Niles E.
Woods on "Inventory Control™, Kathy Zettfer on "The Ring of Continuous
Functions on the Unit Interval™, and Steve Beatfy on "Mathematical
Modeling of Economics."

LOUISIANA EPILON at McNeese State College heard one of its student
members, Sandra Airhart, speak on the topics "Reason Behind Russian
Peasant Multiplication”™ and "Mathematical Reasons for the Three Shapes
of Regular Tiles."

MASSACHUSETTS GAMWA at Bridgewater State College held an installation
ceremony for new members at which Progessor Ignatius P. Scalisi lectured
on the topic "Pell's Equation--Or Is It?" concerning the solution of the
equation and its ambiguous origin.

MICHIGAN ALPHA at Michigan State University held its Annual Initi-
ation Banquet at the University Club and heard Professon Fritz Herzog
speak on the topic "Some Examples of Unsound Deduction."

MICHIGAN DELTA at Hope College sponsored numerous student present-
ations during the year on a wide variety of topics. Student speakers
included Roger Maitland, Lawra Camp, Shewood Quining, Nancy Ponstein,
Mahmood Masghati, James VanderMeer, Ray Lokers, Tan Westervelt, and
Gary Niewwsma.

MINNESOTA ALPHA at Carleton College conducted an active colloquium
program and heard several distinguished mathematicians. Amoyg the
lectures presented were "Some Surprises in Combinatorics” by Progessor
David P. Rosellfe from Virginia Polytechnic Institute, "Equivalence Rel-
ations and Their Relationship to Groups" by Gloria Hewett from the
University of Montana (a former Councillor of Pi M1 Epsilon), and "Pro-
bability Theory, or You Can't Win' by Professor Paul Halmos from the
University of Indiana.
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MISSISSIPPI BETA at Mississippi College heard Professor Josiah Macy
from the University of Alabama at Birmingham and talks by student members,
Russell Blooms on "Fibonacci Numbers®, and Katen Lovelf on "Applications
of Mathematics in Psychology."

MISSOURI DELTA at Westminster College held its Fall Initiation
ceremony during which a lecture on "Why Yau Can't Tell Whether a Turing
Machine Ever Stops" was presented by Professon Paul Blackwell from the
University of Missouri.

NEBRAKA BETA at Creighton University sponsored the Mathematics
Field Day on February 7 in which 650 high school students participated,
the competition including Marathon speed tests, a Leapfrog test for
two-member teams, and the Chalk Talk which included a test on the topic
of "Continuity of Functions of Ore Variable."

NBV JERSEY GWIVA at Rutgers University heard Profesdon Daniel
Solomon speak on the topic "Some Elementary Results in the Theory of
Topological Groups" preceding the initiation ceremony in May.

NV JERSEY DELTA at Seton Hall University participated in the 30th
annual Eastern Colleges Science Conference held at Rhode Island University.
Student members presenting papers were Wa{ Man Lee, "On the Diophantine
Equation %2 + y2 + 22 + Cc = xyz", and Dandiel Gross, Bard Roself, and
David Sabella(jointly), "Generating Functions and Partition Identities"
and "kth Power Free Multiplicative Functions."

NBV JERSEY EPSLON at St. Peter's College heard Dr. David Jagerman
of Bell Laboratories speak on "Wha Business Expects of Mathematics
Majors."

NV YORK Pl at State University of Nav York, Fredonia, held a
Career Day at which 3 alumni discussed their jobs and job-placement.
The chapter helped to obtain a mathematics library and study area for
students, to which donations of books were made by faculty members and
book publishers.

N8V YORK PHI at State University of Nev York, Potsdam, heard members
Ken PLantz and Pauf Hafer speak on the results of their mathematics
seminar.

NORTH CAROLINA GAMMA at North Carolina State University heard
Professon J. W. Bishin speak on the topic "Gamblers, Duels, ITT, and
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Mendel--Modern Applications of Probability Theory."

OHIO EPSILON at Kent State University heard Progesson Kenneth
Cummins speak on "'Calculus' before the Calculus--Some Moments of
Ingenuity."

OKLAHOMA BETA at Oklahoma State University toured the Conoco com-
puter center in Ponca City and met and talked to several mathematicians
in industry.

PENNSYLVANIA THETA at Drexel University heard Professon Francine F.
Abeles from Kean College of Nav Jersey present a lecture on "Lewis Carroll,

Mathematician" following the initiation ceremony.

PENNSYLVANIA NJ at Edinboro State College listened to lectures on
" Statistical Fallacies" and "Choosing the Best" given by Professon
Mosris H. DeGroot from Carnegie-Mellon University.

PENNSYLVANIA XI at St. Joseph's College sponsored a series of
student lectures, each a result of the student's independent study in
an area of mathematics. Those lectures included "The Prisoner's
Dilemma" by Terence James, "The Lattice of Finite Topologies" by Steven
Kitroy, and "A Proof of Ulam's Conjecture for Unicyclic Graphs" by
Edward Sweeney.

TENNESSEE BETA at the University of Tennessee at Chattanooga heard
Tom MeIntosh, a systems engineer at IBM, speak on the topic * Cocoanuts
and Coins, or Mathematics and Computers” at the spring initiation meeting.

TEXAS ALPHA at Texas Christian University listened to both student
and faculty lectures during the year, some of the meetings held in con-
junction with the Parabola Club, under the leadership of Denise Heap,
President, and Professon Ray Combrink, Faculty Advisor.

TEXAS DELTA at Stephen F. Austin State University heard Progesson
J. Datton Tarwater from Texas Tech University lecture on the topic
"American Mathematics: A Bicentennial View" at the initiation banquet.

TEXAS EPSILON at Sam Houston State University heard Matk Spearman
as he demonstrated the Tektronic calculator.

TEXAS ETA at Texas A.& M. University helped conduct a mathematics
contest for undergraduates in April and heard Professon B. Frank Jones
lecture on "The Heat Equation™ at the initiation meeting.
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TEXAS IOTA at the University of Texas at Arlington heard lectures
by A. Richard Mitchell on "Infinity and Beyond" and Haf WilZ{s on “An

Elementary Proof that Pi is Irrational.”

TEXAS LAMBDA at the University of Texas heard student presentationms,
>y Bob Toeflner on “An Algorithm for Producing Nth Powers of Integers
From Partial Sums' and Kenn Askins on "A Proof of the Uniqueness of the
'lon-trivial Magic Hexagon."

VIRGINIA BETA at the University of Maryland listened to Baenda Cox,

Vice-president of the chapter, speak on the topic "A Statistical Study
of Ozone in the Stratosphere.”

VIRGINIA GAVMA at Madison College heard Professon Janet Milion
from Radford College (Virginia) lecture on "A Random Mode for Communic-
able Diseases", Professorn Lawnence Kurtz from Hollins College on a topic
in applied mathematics, Professor Thomas Kriete from the University of
Virginia on "Animal Populations and Differential Equations"”, and
Professorn Jane Sawyer from May Baldwin College on "Math Art."

VIRGINIA DELTA at Roanoke College heard Prodesson Mary Eflen Rudin
from the University of Wisconsin speak on the topic "lIs Set Theory
Necessary ?"

WEST VIRGINIA ALPHA at West Virginia University acted as the co-host
for student activities at the Allegheny Moutain Section of the Mathematical
Association meeting in April. The following students presented papers
at this meeting: John Svedman (West Virginia University), Greg Stump
(Indiana University of Pennsylvania), G. E. M. Pope (West Virginia
University), Suzy Stewart (Allegheny College), Chartes Witls, 111
(Duquesne University), Algred Kabana (Duquesne University), Kate Boaz
(Allegheny College), George Bradley (Allegheny College), and Dorothy
Divers (Allegheny College).



COMMENT QN "SUMMATION OF
SPECIAL CLASSES OF SERIES"

Professor Joseph M. Moser of San Diego State University has pointed
out a generalization of the most general series considered by Gerard
Protomastro in the article "Summation of Special Classes of Series",
this Journal, Vol. 6, No. 4 (1976), 207-210.

Consider the series

_ e +d " e + kd $ 355
" alatb)(a+t2b)...(atkb) = (atb)(at+2b)...(a+[k+11D)

+ c+[(n-1)k-(n-21d o
(a+[n-11p)...(a+Lk+n-11b)

This series can be evaluated by writing

be + ad + bd _ _berad+(k+1) bd
a(a+h)...(a+t[k-11b)  (a+b)...(a+kb)
N be+ad+(k+1)bd _ beradt+[2k+1]bd
(a+b)+...t(atkb) = (at2b)...(a+[k+1]b)
b o betad+ (n-1)k+1] bd berad+ (nk+1)bd P
(a+[n-17P)...(a+t[kn-20b ~ (atnb)...(atLk+n-11b)
with aum
be + ad + bd
ala+b)...(a+[k-11b) °
Therefore

kb2(ct+d) & ma kb2 {a+[(n-1)k-(n-2)1d}
a(a+b)...(a+tkb) (a+[n-11b)...(a+[k+n-11b)

_ be + ad + bd
" alatb).. . (a+[k-17p)

and

. be + ad + bd
T kbZ{ala+b). .. (arlk-110) 1

PUZZLE SECTION
Mathacrostic No. 2

submitted by R.- Robinson Rowe
Sacramento, California

Identify the 30 key words, matching their letters in order with the
opposite sequence of numbers; insert each letter of the key words in the
square of the Mathacrostic with the same number (next two pages). Words
end at the blank squares, and some words extend on to the next line.

When completed, the Mathacrostie will be a 217-word quotation, and
the 30 initial letters of the key words will spell out the name of an
author and title of his book, which is the source of the quotation. It
is a commentary on a work of one of the five mathematicians named in
the key words. The 30 letters 4-Z, a-d correlate the squares with the
key words. Thus, the Mathacrostic is also an anagram.

Puzzle: Missionaries and Cannibals

There is a strange story of five missionaries and five cannibals,
who had to cross a river in a 3-man boat. Being acquainted with the
peculiar appetites of the cannibals, the missionaries could never allow
their companions to be in a majority on either side of the river. Only
one of the missionaries and one of the cannibals could row the boat.
Hw did they manage to get across, and what is the least number of
crossings the boat has to make?

Solutions

The Bfue Men and Green Men [Fall, 1974, p. 121

The captain deduced that all the natives were Green men, because
the presence of a single Blue men means the claim about what the first
native said is true and hence ‘We are all green men" has to be true.
which is impossible with Blue men present.

Solved by JAMES R. AMLING, Nonthenn 1LLinois Univensity, DeKatb, =
I2Lino4s; PATRICK J. BROM\, Indiana University, Bloomingfon, Indiana;
VICTOR G. FESER, St. Lowis Univensity, St. Louis, Missowri; ANDREW 1.
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Deginitions and Key

2 3(D 4 5 6 7 8(v 9 10(X 11
lz 12{c 13 d 14 1.5 16 17 18 19 Z 20 21
B 22|D 23 24 25 26 27 28|b 29|D 30 31|M 32
R 33|W 34 35|c 36 37 38 39 LO|I 41|J u2 0 43
B LuL|E 45 F u6 u7 L8 L9 50|P 51(R 52 53|B 54
E 55 56 57 58 59 B0 BLIT ©2|Z ©3 oL
A 65|B 686 67|T 68 69 70 71 72 c 73{D 74 B 75
H 76 77\M 78 79 80 81 82 83|K 8u 85[0 86
U 87(Z 88 c 89 0 91 92 93|B 94|G 95 96(B 97
D 98|{B 99 100 101 (N 102 103 104 H 105|P 106 R 107
V 108(W 109 110|b 111 112 113 114 115 c 116|I 117 118
D 119]G 120 121 122 123 12y 125 Q 126 127|R 128
V 129|W 130 d 131 132 133 134|L 135 136(U 137 138X 139
a 140({D 141 142 143 441G 145 146 147 Z 148 149|M 150
[N 151 152|N 153 154 155 156 157 158 a 159 160(J 161
i X 162 163|K 164 (T 165 166 167 168|A 1869 R 170 171
2 172|F 173 174 175 176 1717 178 179 b 180 181|T 182
'y 183[a 184 185|b 186 187|C 188 189 190|D 191(L 192 193{J 194
W 195 196|B 197 198 199 200 201 202|b 203X 204 Y 205
C 206 (J 207 7 208 208 210 211V 212 213|E 214(S 215 216la 217

T & m m o 06 B

M < x ®¥ < & 4 0@ O T O F

p ot

o

Factor of 10004 and
1000000004

Mathematician, 1596-1650

Sign-change transformation

Mathematics of fluxions
Mathematician, 1820-1884
CH30H2

Base of a congruence
Mass-less particle
Whirled in a stream
Mathematician, 1815-1864
Az? + By? = C
Math-chemist

Detested

Powerful

Exhausted

Mathematician, 1550-1617
City on Lake Winnebago
Bridge deck

Railroad tunnel

One of the lilies

X, if X8 has 20 digits

F in F(2x) = uF(x)[1-F(x)] __

Burlesque for PhD's.
Rochester genius
Mathematics of numbers
Artichoke's wild cousin
3, 7, Al or 21
Mathematician, 1789-1857

Like chapparal

363 188

Y
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PASQUALE, Marshatl University, Huntington, West Vinginia; and HELEN
SAVEENEY, St. Llouis, Missound.

The Prisoner and the. Uwns [Fall, 1975, p. 1651

This puzzle was solved by R Robinson Rowe, Sacramento, California,
who determined that the best 10 options for the prisoner (yielding the
lowest probability that he would be executed) occur when he places = 3
white balls in each of 2 urns and the remainder in the 3rd. Placing
all 24 balls in one urn yields a probability of 1/8 = 0.125, while 1
white ball in each of 2 urns and the remaining 22 balls in the 3rd yields
35/594 = 0.058922559, 3 white balls in each of 2 urns and 18 in the 3rd
yields 1/18 = 0.055555556, and 2 white balls in each of 2 urns and 20
in the 3rd yields 7/135 = 0.051851852 -- the best strategy.

Mathacnostic No 1 [Spring, 19761
Definitions and Key:

A. Geodesic F. Ditto K. Twentieth P. Two-twins U. Newton Z. Lune

B. Heron G. Yield L. Hedonist Q. Infinity V. Stint a. Oftenest
C. Hundredths H. Abscissa 4. Euclid R. Cubed W. Airy b. Gauss
D. Algebra I. Method N. Moth S. Instant X. Phony c. Yellow
E. Rurb J. Agnesi 0. Abel T. Addend Y. Off-set

First letters: G H HARDY A MATHAMATIQANS APOLOGY

Quotation: In these days of conflict between ancient and modem studies,
there must surely be something to be said for a study which did not
begin with Pythagoras and will. not end with Einstein but i s the oldest
and youngest of all. (From G. H. Hardy, A Mathematician's Apology.)

Ten Mathematicians Mentioned: Pythagoras, Einstein, Hardy, Heron, Agnesi,

Euclid, Abel, Newton, Airy, and Gauss.

Solved by LINDA BALLOU, Akron, Ohio; JEANETTE BICKLEY, Webster Groves
High Schooi, Missowri; EZRA BROWN, Virginia Polytechnic Insiitute,
Blackaburg, Virginia; LOUIS H. CAIROLI, Kansas State University, Man-
hattan, Kansas; BRADFORD E. CARTER, Middle Tennessee State University,
Mungreesboro, Tenessee; ALIZA DUBIN, Fat. Rockaway, New Yoik; ELEANOR sS.
ELDER, New Orleans, Lowisiana; IOHN T. HURT, Bayan, Texas; MICHAEL
IACUZIO, St. Joseph's Cottage., Philadelphia, Pennsylvania; JOSEPH
KONHAUSR  Macalesten Coflege, St. Paul, Minnesoto; BARBARA LEHMANN,
Saint Petens College, Jernsey City, New Jersey; SDNEY PENNER, Bronx
Community Coflege of CUNY, Bronx, New Yonk; BOB PRIELIPP, University of,
Wisconsin, Oshkosh, Wisconsin; RITA PRINCI, Bronx, New York; RCHARD D.
STRATTON, Coforado Springs, Colorado; LEO SAUVE, Algonquin College,
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Ottawa, Canada; THOMAS F. SAVEENEY, St. Lowdis Undversdity, Missourdi; and
CHARES I, TRIGG, San Diego, California. o

Editor's Note.

Some puzzle solvers did not list the names of the ten mathematicians
mentioned as part of the puzzle. Three solutions were received wifhout
the name and address of the solvers.

Several favorable comments Were received regarding the new Puzzle
Section and a fair amount of participation was evident, so this section
will be continued for the time being.

Ei=D)

mx
s
1

FRATERNITY KEY-PNS

Gold key-pins are available at the National Office (the Univer-
sity of Maryland) at the special price of $5.00 each, post paid
to anywhere in the United States.

Be swre to indicate the chapter into which you were initiated
Land the approximate date of, initiation.

MOVING??

BE SURE TO LET THE JOURNAL KNOW!
Send your name, old address with zip code

WL
P

and new address with z{p code to:

Pi Mu Epsilon Journal

601 EIm Avenue, Room 423
The University of Oklahoma
Norman, Oklahoma 73019



PROBLEM DEPARTMENT

Edited by Leon Bankog4
Los Angeles, Califonnia

This department welcomes problems believed to be new and, as a pule,
demanding no greater ability i n problem solving than that of the average
marba of the Fraternity. Oceasionally we shall publish problems that
should challenge the abiiZty of the advanced undergraduate or candidate
for the Master's Degree. Old problems displaying novel and elegant
methods of solution are also acceptable. Proposals should be accompanied
by solutions i f available and by any information that wilt assist the
editor.

Solutions should be submitted on separate sheets containing the name
ad address of the solver and should be mailed before the end of My 1977.

Address all communications concerning problems to Dr. Leon Bankoff,
6360 Wilshire Boulevard, Los Angeles, California 90048.

Probl ems for Solution

374. Proposed by Jack Garfunkel, Forest HiLLs High School, FRushing,
New York,
In a triangle 4BC inscribed in a circle (0}, angle bisectors A,

BT, , CT; are drawn and extended to the circle (see Fig. 1). Perpendicu-
lars TlHl, T2H2 , T3FZ3 are drawn to sides AC, BA, CB respectively. Prove

that TlHl + Tzﬂz + T3H3 does not exceed 3R, where Ris the radius of the

circumcircle.

375. Pnoposed by Richard S. Field, Santa Monica, Califomnia.
Approximate the value of 2105000 without using pencil and paper (or
chalk and blackboard or similar equipment).

376. Proposed by Solomon W. Golfomb, Uuiversity of Southean California,
Lob Angela, California.

Let the sequence {an} be defined inductively by a, = 1 and a iy =
sin (arc tan an) forn = 1. Let the sequence {bn} be defined inductively

by bl = 1 and bn+l = cos (arc tan bn> for n 2 1. Give explicit expressions

FIGURE 1

for an and bn’ and find 1im a and 1lim bn as n approaches =,

377. Proposed by Charles W. Taigg, San Diego, California.

From the following square array of the first 25 positive integers,
choose five, no two from the same row or column, so that the maimum of
the five elements is as small as possible. Justify your choice.

2 13 16 11 23
15 1 9 7 10
14 12 21 24 8

3 25 22 18 4
20 19 6 5 17

378. Proposed by M. L. Glassen and M. S. Klamkin, lhiversity of
Waterloo, Waterloo, Ontario, Canada.

Sow that
x 1+x

x
1
A I > (1 - x) + z > ———
{(l + x)J_‘+x} 1+ (1 + 2t

for 1> x> 0.
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379, Proposed by David L. Silvewman, West Los Angeles, Califormnia.

You play in a non-symmetric two-man subtractive game in which the
players alternately remove counters from a single pile, the winner being
the player who removes the |last counter(s). At a stage when the pile
contains k counters, if it is your opponent's move, he may remove 1, 2,...,
up to [vk] counters, where [x] is the largest integer <. |If it isyour
move, you mey remove 1, 2,..., up to ¢(k) counters, where ¢ is the Euler
totient function. If yéu play first on a pile of 1776 counters, can you
assure yourself of a win against best play by your opponent?

380. Proposed by V. F. Ivanoff§, San Carnlos, California.
Form a square from a quadrangle (ABCD) by bisecting segments and
the angles.

381. Proposed by Clayton W. 'Dodge., Wiiversity of Maine, Onono,
Maine .
Solve the following wintery, slippery alphametrics (also known as
cryptarithms and alphametics):
(ICE)3 = ICYWHEEE.
(ICE)3 = ICYOHOH.

382. Proposed by R. Robinson Rome, Naubimway, Michigan and Sacramento,
Califonnia.

Two cows, Lulu and Mumu, are tethered at opposite ends of a 120-foot
rope threaded thru a knothole in a post of a straight fence separating
two uniform pastures. Hw much area can they graze, presuming they eat,
nap and ruminate on identical schedules and the rope length is also the
extreme reach from muzzle to muzzle of Lulu and Mumu? As a sequel, if
Mumu is replaced by the heifer Nunu with half the appetite, what is the
area accessible to Lulu and Nunu?

383. Pnoposed by Nomman Schaumbergenr, Bronx Community College,
New Yoxrk.
Find a pentagon such that the sum of the squares of itssides is

equal to four times its area.
384. Proposed by R. S. Luthar, University of Wisconsin, Janesuville.
Discuss the convergence or divergence of the series

n
2

P
n=l

309

where p,, means the nth prime.
385. Proposed by John T. Hurt, Bryan, Texas.

Solve: sin a = tan(a - B8) + cos o tan B.

Comment by Editor
Problem 364 published in the Spring 1976 issue was an inadvertent

duplication of Problem 325 proposed in the Spring 1974 and solved in the
Spring 1975 issue.

Sol utions

341. [Spring 1975; Spring 1976] Proposed by Jack Garfunkel,
forest HiELs High School, New Yoik.

Prove that the following construction trisects an angle of 60 .
Triangle 4BC is a 30°-60°-90° right triangle inscribed in a circle.
Median (¥ is drawn to side A and extended to M' on the circle. Using
a marked straightedge, point N on AB is located such that @ extended
to N' on the circle makes NN' equal to M4'. Then CN trisects the 60°
angle ACM.

Comment by Chartes U. Trigg, Son Diego, California.

If angle MA = 6, with 45° < 8 < 90° then angle MXC = 6, and angle

M4 = 180° - 20 (Fig. 2). Nov MN' = N'N = MC, so triangle N'MC is

FIGURE 2

isosceles with base angles = x. Also, triangle MV'N is isosceles with
base angles = (180° - z)/2. Then angle QNA, which is exterior to tri-
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angle MCN, is equal to 180° - 26 + x. Equating the vertical angles:

180° - 28 + x = (180" - xz)/2

so
3x = 46 - 180

X = 48/3 - 60°.
There are three cases where 8 is an integral multiple of x, namely:
(x, 8) = (¢, u8°), (20°, 60°), and (36, 72).

350. [Fall 1975] Proposed by R Robinson Rowe, Sacramento,
California,

In the game of EEDOS an acronym for Each Loser Doubles Opponents'
Stacks, each of »n players starts with his bank (B) and at any point in
the play holds his stack (S), which he bets on the next round. For each
round there is just one loser; in paying the # - 1 winners, he doubles
their stacks. Consider here a unique game when, after »n rounds, each
player has lost once and all players end with equal stacks.

(a) For » = 5, what was the minimum bank, B, for each player?

(b) Hw many players, n, were there if the least initial B was
11 cents?

(e) Find a general formula for B, the initial B of the mth player
to lose, as a function of m and =.

(d) Using the formula or any other appropriate method, what was the
initial bank B of the 9th of 13 players to lose?

Solution by Steve Leeland, Wrivensity of, South Florida, Tampa, Florida.

The Solutions to (a), (b) and (d) can best be found after finding a

general formula for BZ, (c), the mth player to lose out of n. If an extra

player was included who started with a bank of 1 and never |lost, he would
have 2* after the nth round. Hence, every player ends with 2n, and the
total amount in the game is always n-2", Furthermore, every player who
has already lost has 2 at the end of the mth round at which time the
mth loser must pay the (m - 1) previous losers the amount they had at the
end of round (m - 1) and 2m—l. He also must pay the winners one half of
the amount they have at the end of the mth round, which is the total
amount in the game, n-2n, minus the amount of the losers at the end of
the mth round, namely m2". The total of M at the end of (m - 1) rounds
is the amount he paid at the end of the mth, plus the amount he had at

the end of the mth, 2 . Since his stack doubled in each of the previous
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m = L rounds, his initial bank was:

n_ m-12"t s e - m2My2 + " (n-m)
B = = n-2 + 1
m 2(m—l)

From the foregoing general solution we obtain

(a) Bl=81, B3 =41 B = 21, B3 = 11, By

6.
3
(pr) |If theleast initial B was 11 cents, m = n and we have
11 = n‘z(n-m) + 1, whereupon n = 10.
(@) B3 = 13(2"*7%) + 1 = 200

Also solved, by the Proposer, who offered algebraic, arithmetic and

13

diophantine methods of solution for part (a). For example:

Arithmetic Method

Working backwards, anticipating repetitive division by 2, start

with the assumption that end stacks were powers of 2, say 32, 32, 32,
32, 32, then the last loser had to pay 4-16 = 64 from his stack of

3R + 64 = 96. Then the 4th loser had to pay 72, so held 838 and so on,
down to the initial banks as shown below.

32 32 32 32 32
16 16 16 16 96
8 88 u8

L4 g4 44 2n
82 42 22 12

81 41 21 11 6

If we had started with 64, all figures would have been doubled and 2

could have been factored out of the last line for a primitive.

351. [Fall 19751 Proposed by Jack Garfunkel, Forest HiLs High
School, Feushing, Nwv York.

Angle A and angle B are acute angles of a triangle ABC If angle
A = 30° and ha’ the altitude issuing from A, is equal to My s the median
issuing from B, find angles B and C.

Solution by Zelda Katz, Beverly Hills, California.

Since the perpendicular from M upon HB = ha/2 = mb/2, it follows
that angle MBC = 30° (Fig. 3). Consequently triangles MBC and ABC are
similar. Let X = angle ABC = angle CUB. Then sin x = h /e = mb/c =
sin 30°/sin X. Hence sin2x = sin 30° = 1/2 and £ = 45°. Since angle B =

45° it follows that angle C = 105°.
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a,

30

H C B
FIGURE 3

Also solved by CLAYTON W. DODGE, Uiiversity of, Maine at Orono; JOHN
TOM HURT, Bayan, Texas; CHARLES H. LINCOLN, Raleigh, N. C.. KYUNG WON
PARK, Flushing, New Yonk; R. ROBINSON ROWE, Sacramento, California;
CHARLES W. TRIGG, San Diego, California; and the Proposenr.

352. [Fall 1975] Propesed by Charles W. Trigg, San Diege, Califcania.

The edges of a semi-regular polyhedron are equal. The faces consist
of eight equilateral triangles and six regular octagons. In terms of the
edge e, find the diameters of the following spheres: (a) the sphere
touching the octagonal faces, (b) the circumsphere, and (c) the sphere
touching the triangular faces. (See solution to Problem 198, on page 390
of this Journal, Vol. 4, No. 9)

Solution by the Proposen.

The polyhedron is a truncated hexahedron -- a cube that has had a
trirectangular tetrahedron cut from each vertex. Hence, the edges of the
tetrahedron issuing from the cube's vertex are ¢/v2,

a) The edge of the cube is e(1t 2//2°) ore{1+ /2 ). Thisis the
diameter of the sphere touching the octagonal faces.

b) The square of the distance from the cernter of the polyhedron to
a vertex is 2[e(1 t v2/212 + (e/2)2 or (‘Hw/2)e2/s.  Hence the diameter
of the circumsphere isVi+i2e * 3.5576a,

c¢) The volume of one of the tetrahedrons cut from the corners of
the cube can be computed in two ways, so

(e/v2)3/6 = (e/3/2)(e/2)(h/3)
where h is the altitude upon the triangular face of the semiregular
polyhedron. Hence, h = e/¥6, Consequently the diameter of the sphere
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ouching the triangular faces is the space diagonal of the cube less 24
ore(l+ VZ) /3 - 2¢//6 or e(V3 + 2/6/3) 2 3.3650 e.
Also sofved by R. ROBINSON ROWNE Sacramento, California.

353. [Fall 1975] Proposed by CLayton W. Dodge, University of, Maine
at Onono. o

It is easy to show that if a and b are complex numbers such that
a+b=0and |a| = |b|, then a®2 = b2, Prove that if a, b and ¢ are complex
numbers such that a + b+ ¢ = 0 and |a| = |B] = |e|, then a3 = b3 = ¢3.
Can this result be extended t o more than three numbers?

Sofution by the. Proposen.

Let |a] = |b] = le] = k. 1f k= 0, the result is obvious. So suppose

k # 0. Sinceat b= -¢, then |a* b] = |e| and
a th|2=aatabtabthbb=ce=k?
ab + ab + k2 = 0,
a?E2 + k2gb + k4 = 0 (by multiplying by ab),
(a?B? + K%aE + k*)(ab - k2) = 0,

a33 - kb = o,

a3b33 = k6p3,

a%k® = b3kS,
and finally

a3 = b3

By symmetry, a3 = b3 = @3,

The result does not extend. Let a =1, b = -1, and ¢ and d be any
two opposite points on the unit circle (except 1, -1, 2, and -2}. Then
a+b+te+d=0 and |a|l = |b] = |e] = |d], buta% = b% # &* = d*

Also solved by VICTOR G. FESER, Mary College, Bismarck, Noath Dakota;
JOHN TOM HUNT, Bryan, Texas; STEVE LEELAND, UWivensity of South Ronida,
Tampa, FLornida; CHARLES H. LINCOLN, Rafeigh, Noath Carolina; and AL WHITE,
St. Bonaventure lhivernsity, New Yolk.

354. [Fall 1975] Propesed by Anthun Beanhart and David C. Kay,
Wivernsity of OkLahoma, Norman, Oklahoma.

In a triangle ABC with angles | ess than 27/3, the Fermat Point,
defined as that point which minimizes the function f(X) = AX + BX + CX,
mey be determined as the point P of concurrence of lines AD, BE and CF,
where BCD, ACE and ABF are equilateral triangles constructed externally
on the sides of triangle ABC If R, § and T are the points where PD,
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PE, and PF meet the sides of triangle ABC prove that PD, FE and PF are
twice the arithmetic means, and that PR, PS and PT are half the harmonic

means of the pairs of distances (PB, PC), (PC, PA) and (PA, PB) respectively.

Solution by Charles W. Trigg, San Diego, California.

FA = B4, AC = AE, and angle PAC = 50° + angle BAC = angle BAE so
triangles FAC and BAE are congruent. Thus angle PCS = angle SAE, and
since angle PSC and angle AE are equal vertical angles, triangles PSC
and AE are similar. So angle SPC = angle @E = 60°. HencePlies on the
circumcircle of triangle BAC and quadrilateral EARC is concyclic. There-
fore angle AFE = angle ACE = 60° and triangles AFE and SPC are similar.

By Ptolemy's Theorem:

PE-AC = PA+CE = PCEA,
and since AC = (E = EA,

PE = A + PC = twice the arithmetic mean of A and PC.

In like manner, it can be shown that P = 2[(PC + PB)/2] and PF = 2[(PS +
PA)/2].
From the similar triangles AFE and SPC,
PS/PA = PC/PE
so

BS = PA-PC/PE = PA-PC/(PA t PC) = half the harmonic mean of
A and PC. In like manner, it can be shown that PR and PT are half the
harmonic means of (PC, PB) and (PA, PB) respectively.

F

E

FIGURE 4
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AlLso solved by CLAYTON W. DODGE, University o4 Maine., Orona, Maine;.
R. ROBINSON ROWE, Sachamento, Califomnia; and. the Proposens.

355. [Fall 19751 Proposed by John M. Howell, Littlerock, California.

On the TV game show called "Who's Who?', four panelists try to match
the occupations of four contestants with signs marking their occupations..
If the first panelist matches correctly, the contestants get nothing and
the game is over. |If the second panelist succeeds in matching correctly,
the contestants get $25. If the second panelist fails but the third
succeeds, the contestants get $50. If the fourth panelist matches after
the third fails, the contestants get $75. |If there is no match, the
contestants win $100. Wha is the expected value of the contestants'
winnings?
Sofution by Clayton W. Dodge., University of Maine, Onono, Maine and.
similarly by Steve Leeland, University of Sooth Florida, Tampa, Floalda.

Since there are 24 permutations of the four signs, the probability
of the first panelist matching the occupations correctly is 1/24. For
the second panelist the probability is (23/24)(1/23), etc. The contes-

tants' expectations, then, is

1 23. 1 23 22 1 23 22 21 1
P E AT Ly A I T s
28 22 21 20 .00

24°23 22 21
= 0+ 1.0417 + 2.0833 *+ 3.1250 + 83.3333 = $89.58.

Also s0fved by LOUIS H. CAIROLI, Kansas State. University, the.
Proposer and by R. ROBINSON ROWE, Sactramento, California, who offers
the. §oLlowing comment:

It should be noted that the first panelist has 1/24 chance of
having al |l four of his gusses right, no chance of having just three
right, 6/24 chance of having none right. Suppose the second panelist
deduced from these probabilities that the best strategy would be to assume
none right and change all four. Then his chance would be 23/24 - (9/23 -
1/9 + 14/23 . 0/14) = 1/24. And, after all, strategy is ruled out by
the specified 'pure guess',

356. [Fall 19751 Proposed by Enwin Just, Bronx Community College, .
Bronx, New York.
From the set of integers contained in [1, 2n] a subset X consisting
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of Nt 2 integers is chosen. Prove that at least one element of X is
the aum of two other distinct elements of X.
|. Solution by Clayton W. Dodge, University of Maine, Orono, Maine.

If the largest element of X is 2g, then X can contain only one
element from each of the pairs (1, 2¢ - 1), (2, 29 - 2}, ..., (g - 1,
g + 1), and possibly also g, for a maimum total of q + 1 elements. If
2q - 1is the largest element of X, then X can contain only one member
from each of the pairs (1, 29 - 2). (2, 29 - 3), ..., (g - 1), q), for
a total of g elements. The theorem now follows. Furthermore, if X =
{n,n+1,nt 2 ..., 22}, then X contains n + 1 elements with no two
members having a sum equal to a third member.

11. Solution by Richard A. Gibbs, Fort Lewis College, Durango, Colorado.

V¢ shall prove the stronger result:

Theorem. The complement X of any set of n - 2 integers in
s2n ={1, 2, ..., 2n}
contains at least two elements which are the sums of two distinct elements
of K.

Proof. Noting that we must have » > 1, we proceed by induction
and observe that the result is evident for n = 2. Assuume it is true
for » = k and consider S

2k+2°
s If either 2k + 1 or 2k + 2 is removed then at most k - 2 members

Form X' by removing k - 1 members from

a?lgrze:moved from 52k < 52k+2 and we obtain the two desired sums by the
induction hypothesis. Therefore we may assume that both 2k + 1 and

2k + 2 are in X' and hence remove k - 1 members from SQk' Consider the
sets A = {(1, 2k)(,(2, 2k - 1), ..., (k, k+1)} and B = {(1, 2k *+ 1),
(2, 2k), ..., (k, kK + 2)}. Since each set involves 2k distinct integers

from S in k pairs, the removal of k - 1 members from 527( will leave

2k+1
at least one complete pair of elements of K! in each of A and B. Hence
both 2k + 1 and 2k + 2 will be sums of distinct elements of K! and the

induction is complete.

ALso solved by LOUIS H. CAIROLI, Kansas State. University; VICTOR
G. FESER, Mary College, Bismarck NO; JOHN TOM HURT, Bayan, Texas;
R. ROBINSON ROME, Sacramento, California; BRUCE A. YANOSHEK, University
of, Cincinnati, Ohio; and the Proposer.

357. [Fall 19751 Proposed by David L. Silverman, West Lob Angeles,
California.

Able, Baker and Charlie, with respective speeds a > b > ¢, start at
point P with Able designated 2t in a game of Tag which terminates whep=".
Able has tagged both Baker and Charlie. At time -T, Baker heads north
and Charlie south. After a count taking time T, Able starts chasing one
of the two quarries. Assuming that Baker and Charlie will maintain their
speeds and directions, whom should Able chase first in order to minimize
the time required to make the second and final tag?

Solution by Charles K. Lincofn, Raleigh, North Carolina.

Let X and y be the times required for Able to catch the first and
the second person respectively. |f Able chases Baker first, direct
calculation shows that X = bT/(a - b) andy = aT(b + e)/(a - e)la - b).
If Able chases Charlie first, X = eT/{(a - ¢) and y = aT(b + ¢)/(a - )+
(a- b). Since both y's are equal, the x's show that the least time
will elapse when Able chases Charlie first.

Also s0fved by LOUIS H. CAIROLI, Kansas State. University; CLAYTON
W. DODGE, University of, Maine at Oxono; TOM HURT, Biyan, Texas;

R. ROBINSON ROME Sacramento, California; CHARLES W. TRIGG, Sun Diego,
California; and. the. Proposen. Three incorrect solutions were hecedved.

358. [Fall 19751 Proposed by Sidney Pemner and H. Ian Whitlock,
Bronx Community Colfege, Baonx, New York.

Fom a 2n + 1 by 2n + 1 checkerboard, in which the corner squares
are black, two black squares and one white square are deleted. |f the
deleted white squares and at least one of the deleted black squares are
not edge squares, then the reduced board can be tiled with 2 x 1 dominoes.
Solution by CLayton W. Dodge., Univerns.ity of, Maine at Orono.

Let the corner squares be black in any 2» + 1 by 2n + 1 checkerboard.
Then there are 2n2 + 2n + A black and 2n% + 2n white squares in the
checkerboard.

In an n by n checkerboard with # > 2,1let us use the term contiguous
square for any square that is not a boarder square but that touches a
border square. Thus, for n = 3, only the center square i s a contiguous
square. For n > 3, the contiguous squares form a hollow square of size .
n-2byn -2,

Lemma 1. If a square of each color is removed from the border of
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any n by n checkerboard, the remaining border squares can be tiled with
2 by 1 dominoes.

Proof. There are an even number of squares along the border (in
either direction) between two oppositely colored squares. These can be
tiled in the obvious way.

Llamma 2. |f a border square of color A is removed from an # by »n
checkerboard where n > 3, then an oppositely colored (color B} border
square may be chosen arbitrarily and all remaining border squares tiled
with 2 by 1 dominoes. Furthermore, the B square can be chosen so that

a dominowill tile it and a contiguous A-colored square.

Proof. Choose the color-B border square to be a non-corner square,
always possible when n > 3, and apply Lammma 1 to the remaining border
squares. Since it is not a corner square, the B square has a contiguous

A square adjacent to it.

Lenma 3. |f the deleted square is a corner square, then Lemma 2 also
holds for n = 3.

Lemma 4. 1f, ina2n+t1by 2n*t 1 checkerboard with n > 1, two
black squares and one white square are removed from the border, then the
remaining border squares along with one contiguous black square can be
tiled with 2 bv 1 dominoes (as in Lemma 2).

Proof. As one travels the border between the two deleted black
squares, in one direction the deleted white square intervenes. [N the
other direction pick a (non-corner) white square between the two deleted
black squares, As in Lemma A, now all other border squares can be tiled
with dominoes. Then tile the picked white square and its contiguous black
neighbor with one more domino.

Lema 5, If, ina2n + 1 by 2n + 1 checkerboard with n > 1, two
black border squares are removed, the remaining border squares and two
contiguous black squares can be tiled with 2 by 1 dominoes.

Proof. 1t is always possible to select two white border squares so

they separate the removed black squares and so they do not abut the same
black corner square (sincen > 1). Tile the remaining border squares as
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in Lemma 1. Now, with two dominoes, tile the two selected white squares
and their two (distinct) abutting contiguous black squares.

VW nowv prove the theorem itself, deleting the restriction that any

removed squares must not be edge squares. That is, we prove:

Theorem. From a 2n + 1 by 2n_+ 1 checkerboard in which the corner
squares are black and » > 0, two black squares and one white square are
deleted. The reduced board can be tiled with 2 by 1 dominoes.

Proof. It istrivially true that if either A black square or 2
black and 1 white squares are deleted from a 1 by 1 checkerboard, then
the remaining squares can be tiled with dominoes. This disposes of the
case n = 0.

Suppose it is always possible to til e the remaining squares of a
2n - 1 by 2n - 1 checkerboard, for some given n > 0, when either 1 black
square or 2 black and 1 white squares are deleted. Consider a 2n + 1 by
2n *+ 1 checkerboard from which 2 black and 1 white squares have been
removed. There will be 0, A, 2, or 3 deleted squares in the border, so
tile the border and 0, 1, or 2 contiguous squares by means of the preceding
lemmas. Nw the interior 2n - 1 by 2n - 1 checkerboard will have either
1 black square or 2 black and 1 white squares either removed or already
tiled. The remaining squares can be tiled according to the inductive
supposition.

The theorem follows by mathematical induction.

Also sofved by LOUIS H. CAIROLI, Kansas State Univensity; and tile.
Proposens, who commented that Problem £2508 in the Decarber 1974 issue
of the American Mathematical Monthly Zg a related problem.

Commett by the. Problem Editor
Louis H. Cairoli called attention to an article by David Singmaster

in the March 1975 issue of Mathematics Magazine, (pp. 59-66), which contains
a relevant theorem and proof:

Theorem 4.  For any odd integers » and &, both greater than A, an
r x S chessboard, with any three squares deleted, two of the major color
and one of the minor color, can be covered with dominoes.

359. [Fall 19751 Proposed by Gregony Wulezyn, Bucknell University, ’
Lewisburg, Pennsylvania. (Corrected).
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Show that thereare an infinitude of pairs of consecutive integers,
each pair consisting of a pentagonal number PA = n/2(3n - 1) and a hex-
agonal number PS; = m/2(4n - 2).

Sofution by R. Robinson Rome, Sacramento, Califomnia.

Correcting an obvious typo, we are given:

= pS = Pyny - 1y: H = P6 = -9 H - 1)
p-Pn—E(Sn 1); B =P (4m - 2)3 H - P

1
i+
=

whence,
wm2 - om - M2 +nt2=0 (2)
with roots
m = %(1 + Y1on2-un+1+8) = %’(1 + x), where 22 = 12n2 - 4n + 1 £ 8(3)

Then
1m2 -mtil1s8-a2=0 (4)
with roots
n = -16(1 + V/3xZ-2+24) = %(1 + /3x%+¢), where ¢ = -26 or +22 (5)
Let 3x2 + ¢ = y2, deriving the Fermat-Pellian equation (6)
yz w? = ¢
0x2 - 2wu - u2 = e, fromy =x*tuin (7) (8)
u? - 2up - w? = e, fromx = u * v in (8) (9)
w2 - w? = e, fromu=v +win (9), (10)

which is in the form of (7). Soletw =y, and ¥ = Z45 then
- - - (11)
u=s Xot yp o Xg= 2mg+ Yo ¥y = 8t 2.

That is, from any solution (x,, y¥,;) equation (11) derives a larger one
1 21
(@, y,). Fom (3) and (5), my = &, + 1) and ny = Zy; + 1), so

= - = 6n_ - L. (12)
mo Mmo 1 and yo no
Then
1 _1 =1 -1 (13)
my = ey + 1) = (235 + Yy * 1) = Flumy + 3n, )
and

ny = (g, t1)/6 = (3 + 2yt 1)/6 = 23m + 3y - 1)/3 (14)

Noting that (14) would give a fractional value for nys (13) and (1%) can

be used recursively to find:

m, = %(wmo +1lomy - 5) n, = amg + my -3 (15)

my = %(52,,,0 + 45n; - 20) ng = (90m, + 78n, - 35)/3 (16)

m, = 97m, + 8un, - 38 n, = 112m; + 97n; - 44 (17)
So m, and n, would always be fractional, but m, and n, will always be

integers if derived from an integral set (my, ng). Thus beginning with
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any such primitive set, (17) can be used recursively to generate an
infinitude of sets (m, n), whence an infinitude of figurate sets derived
from (1) satisfying # - P = %1,

There are 4 such primitive sets (mo, no), viz: (o, 1), (1, 0), _ _
(2, 2), (7, 8), designated A, B, Cand D in the following tabulation to )
the limit of ny computer.

Set m 7 n-m Hexagonal Pentagonal H-P
A o] 1 1 0 1 -1
B 1 0 -1 1 0 1
C 2 2 0 6 5 1
D 7 8 1 91 92 -1
A 46 53 7 4 186 4 187 -1
B L 68 9 6 903 6 902 1
C 324 374 50 209 628 209 627 &
D 1 313 1 516 203 3 446 625 3 446 626 -1
A 8 876 10 249 1 373 157 557 876 157 557 877 -1
B 11 397 13 160 1763 259 771 821 259 771 820 1
c 62 806 72 522 9 716 7 889 124 466 7 889 124 465 1
D 254 667 294 o64 39 397 129 710 307 111 129 710 307 112 -1
Comment
Equation (17) will recursively generate an infinitude for any primi-

tive value of # - P, e.g. for H = P, M =n = 1 generates 1; 40755 and
1; 533 776 805. Also negative values of m and/or »n derive positive values
for Hand P in similar sequences, but they are not figurate numbers.

Also solved by JEFFREY BERGEN, Brooklyn College, Nw Yoik; LOUIS H.
CAIROLI, Kansas State Univensity; CLAYTON DODGE, Uriversity of Maine at
Onono; and the Proposen.

360. [Fall 19751 Proposed by Paul Erdes and Eanst Straus, University
o4 California at Los Angeles.

Denote by A the least common multiple of the integers < n and denote
by d(n) the number of divisors of n.

(a) Prove that £=__ -L isirrational.
n=1 An
d(n)

(b) Prove that £~ isirrational.
L=l AN

(c) Prove that L,.1 4 isirrational, where f(z) is a polynomial
with integer coefficients. =

Solution by the, Proposers.

(a) Put gz Z;:l A; .1 Let 7 = p; ., where Py is the kth prime and
n
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Py > b, and multiply both sides by a -

. _a
integer = Zﬂn—l

= integer + A _, E

Since b|4
_

@

1
n-1 An

n=1

1

we get

@

=0
o 1 . S .
Hence An~l LoZ S isa positive integer and therefore
n+i
o 1
(1) 4 I,  ———= 1.
n-1 "1=0 Anﬂl
Oh the other hand we have
® Prsr”t Pript
1. 1 R
(2 4, Z T Z 7" E it
=0 m:pk m:pk+l
- Pr+17Px N Pri2Pre1  Pre3Pre2
Py PiPrs1 PPr1Pre2

V¢ now use the fact that for all large pi(in fact for p; 2 11) we
have Piy1 = Py < 1/2 p;. Substituting this inequality in (2) we get

(for py, 2 11)

@

1 1 1
An—lz 2%

. n+t
1=0

in contradiction to (1). Hence the sum cannot be rational.

1
t3

(b) Start as in part (a) to get

Pre1t

d(n+i) _ d(m) :E:
43) An-lz A A Z 4"t
1=0

m=pk

= integer for n = Py > b.

Now set D{(m) = d(1) + d(2) + -**

Prigt

. m=py

P47t
d(m) _ PPiyp) - Do)
y i

mep, ”‘ Py

so (3) becomes

am ...

A

m

+ d(m) and write

N+
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y DPrer) TP D) - PMgyy)
Py PrPrs1 '

It therefore suffices to show that (4) is false for infinitely may

-

values of k. LT
W use d(n) < 2/n so that

() Dlpy, ) - Dlpy) < 2/p; ) (pypy - Py

Using Bertrand's Postulate, P;,1 < 2P;. We get
(6) Dpyyy) - Dlpyp) < 2/2; (2p; - p;) < 2/%p b, < P -

By the prime number theorem we have w(m) > ngﬁ for all large m.
Thus the difference Pit1 ™ P; between consecutive primes is on the average
less than a multiple of log P There are therefore arbitrarily large

n
Prer < Px + V Px
and

u 3/4
(1) D(pg,y) - Dlpg) < 2/ P < gy
V¢ now substitute the estimates (6) and (7) in (u4) to get

values of k with

a/u
4Py mn s, u

+ + +
P Pr PiPry1  PrPrsiPus2

which is clearly false for sufficiently large values of k.
(e) The solution for the problem involving polynomials with integer
coefficientswill appear in the Spring 1977 issue of this Journal.

361. [Fall 19751 Proposed by Canl A. Angila, De La Salle Colflege,
Manila, Philippines.

Consider any triangle ABC such that the midpoint P of side BC is
joined to the midpoint Q of side AC by the line segment PQ  Suppose R
and S are the projections of P and Q respectively on AB, extended if
necessary. Wha relationship must hold between the sides of the triangle
if the figure PQRS is a square? (The projections R, §, should have been
transposed so that S is the projection of P and R the projection of Q --
Problem Editor. )

Sokution by John Tom Hunt, Bayan, Texas.

The construction gives PQ = 4B/2 and @R = hc/2. So if PRSis a

square the altitude on the base 4B is equal to AB.



From the Cosine Lav we obtain
cos B = (e + a2 - b2)/2ae = (a2 - b2)1/2/q,
which yields the quartic
a* + b4 + 5c* - 242p2 - 24202 - 2b202 = 0.
Solving for c2, we get

5 _ (@® + b2) x 2V3a%p? - o* - Bt
- 5

[s3
Since e is real we must have 3a2b2 - a2 - b2 2 0, and this gives
V5 - 1 /541
2 2

Also sofved by CLAYTON W. DODGE, University of Maine at Orono;
VICTOR G. FESER, Mary Coflfege, Bismarck, North Dakota; R. ROBINSON ROWE,
Sacramento, California; CHARLES W. TRIGG, San DLego, Califonnia; and the
Proposern.

<a/b <

Comment by Problem Editfor

The solution ¢ = h is necessary for the construction of the square

but is not sufficient. If the ratio a/b (or b/a) lies outside the bounds
of the Golden Ratio and its reciprocal, P and Q together with their pro-
jections 8 and R form a rectangle instead of a square. In an acute
triangle, the bounds are further restricted so that we have

v2/2 < a/b < V2.

Problem Editon's Note. Credit for a solution to Problem 338 should have
been given to C. B. A. Peck, State College, Pennsylvania.

LOCAL CHAPTER AWARDS WINNERS

CALIFORNIA ETA (University of Santa Clara). The George W Evans, II,
Memorial Prizes awarded annually to the male and female Santa Clara
students who score highest in the William Lowell Putnam Mathematics
Competition was won by

Brian Conney,
Rita Robbins.

Q.CRADO DETA (University of Northern Colorado). The Outstanding
Freshman Award was presented to
Van Endres
and the Outstanding Senior Award went to

Chris Tvey.

ALORDA EPSLON (University of South Florida). The Outstanding
Scholar award for work in mathematics of the highest quality went to
Edward V. Baker, 117,
in 1975 and to
Bruno Michael Castellano,
Robert Eanl Tubbb
in 1976.

GEORGA BETA (Georgia Institute of Technology). Recipients of a
book award for attaining a grade point average of at least 3.8 (4.0,
perfect) in all mathematics courses taken were

John W. Endstey, Michael 3. Schaamm,
Michael E. Hoffman, Marntin K. Smith,
Richard S. John, Lee S. Tadefman.
witliam V. Luedtke,

GEORGA GAMMA (Armstrong State college). Named the Outstanding
Senior for 1976 was
Michael Brennan.
College sponsored memberships in the American Mathematical Society were °
awarded to
Marshall Hinds,
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Charles Leska,
Lavy Panken,
Frank Yellin,
and memberships in the Mathematical Association of America were awarded
to
Terwy Andenson,
Michael Brennan,
Swarna Knishnamunti,
Mary Ann Redisen,
Ben Zipperen.

IONA ALFHA (lowa State University). Scholarship awards of $50 each
were awarded to
David C. Challenen,
Gregorny D. Dougal
who scored highest on a competitive examination which was written and
scored by members of the mathematics faculty.

MISSSIIPPI BETA (Mississippi College). The Strange Memorial
Scholarship Award for 1975-76 was presented to
Edward C. Nichols
and the Outstanding Senior Mathematics Major was
John A Levex,

NEW JEREY EPSLON (St. Peter's College). The James B. Collins
Anard was established in honor of Professor Emeritus Collins, to be
presented annually to the sophomore who has achieved the highest
academic average in the 2-year calculus sequence, one year physics course,
2 algebra courses, and a data processing course. The first recipient of
the award was

Maria Rodriguez.

NEW YCRK BETA (Hunter College). The Pi Mu Epsilon Scholarship
Award in the amount of $100 went to
Joseph M. Criscione.

NEW YORK PHI (State University of Msv York, Potsdam). The winner
of the Senior Award was
Paul Hafer.

CHO DHETA (Miami University). Students who placed highest on a
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mathematics examination were
Jeffrey Millard
who won First Prize and $30, and
Wayne. Heym -
who won Second Prize and $20.

CHO BPSLON (Kent State University). The winner of the 1976
Pi Mu Epsilon Mathematics Award was
Susan Zaborowski.

Q4AHOVA BETA (Oklahoma State University). The Mathematical,
Sciences Faculty Award for seniors was presented to
Kathy Stewart,
Kay Schwendimann,
and the Mathematical Sciences Alummi Award for sophomores went to
Karen Sonder,
Manry Stone..
The William R Pogue Award for juniors was given to
Christy Gelmenrs,
Kathy Sublivan,
and the AMOCO Foundation Scholarship was received by
Brian Bickernstadq,
Martha Shahp.
William R Pogue Certificates of Merit were awarded t o

Marsha Cwuiie, Mary Launenr,
Robent G. Hayes, Clayton Morgan,
Deborah fludgman, Emily Wonderly,
and a Mathematical Sciences Faculty Achievement award went to
Michael Coats, Gahy Reedex,
Kim Cowhend, Michael Thornberny,
Richard Embree, Gloria Wilson.

PENNSYLVANIA BETA (Bucknell University). The John Steiner G6id
Mathematical Competition involved 106 individuals from 36 high schools
and resulted in the winners |listed below.

INDIVIDUAL WINNERS

Tom Blackador (First Place), STATE GOLEGE AREA HIGH SOHOOL,

Any Kaugman (Second Place), LOIK HAEN FENIOR HGH SCHOAL

Neil Bechdef (Third Place), LGK HAVEN SENIOR HGH SCHOO,
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John C. Hampton (Fourth Place), MILTON AREA HGH SCHOOL,
David Bennett (Fifth Place), STATE OOLLEGE AREA HGH SCHOOL.

TEAM WINNERS:
(Division A)

STATE QOUEGE AREA HIGH STHOOL (First Place)
(David Bennett, Tam Blackador, Dag King)

LOK HAEN SENIOR HIGH STHOOL (Second Place)
(Neil Bechdelf, Amg Kaugman, Mark R Schaithin)

(Division B)

LINE MOUNTAN HGH STHOCOL (First Place)
{Thomas Aaner, Ruth Dreibefbis, Randy Snydenr)

LEWSBURG BIGS STHOOL (Second Place)
(JonathanChencweth, Kurt Weist, Theresa Yuschok)
RHCDE IS AND BETA (Rhode Island College). The Mitchell Award,
named in honor of a former faculty member, was presented to
Sharon Remington
for being the best senior mathematics major according to gradepoint
average.

TEXAS DELTA (Stephen F. Austin State University). The Outstanding

Senior Mathematics Student was
Ama Jones.

TEXAS ETA (Texas A. 6 M. University). Winners of a mathematics
contest for undergraduates were as follows:
STAHOMICRE  GONTEST
Robbie W. W. Lou (First Place),
Jon Juneauw (Second Place),
Yuk-Lin Chu (Third Place),
FRESHVIAN GONTEST
David C. Taylor (First Place),
John. D. Bremsteller (Second Place),
Curntis F., Feany (Third Place).

TEXAS LAVEDA (University of Texas). The Ezxon Award, presented to

outstanding mathematics students, was won by
Kenn Askins,

VIRGINIA GAVWWA (Madison College). The winner of the Outstanding
Senior Mathematics Student award of $50 was
Hope Harbeck.

SUMMER MEETING | N TORONTO

Pi Mi Epsilon Fraternity held its annual summer meeting in conjunc-
tion with the American Mathematical Association in Toronto, Canada August
24-28, 1976. (nh Wednesday, the Governing Council held its annual luncheon
and business meeting at Wilson Hall Cafeteria anddiscussed initiation pro-
cedures for Councilors who are asked to induct new Chapters, considered
methods of improving the activities of the Fraternity, were advised of
the continuing high cost of publishing the Journal and possible ways to
finance it, were informed of the excellent financial status of the Frater-
nity, and voted to increase the amount of travel money available for dele-
gates and speakers attending next year's meeting in Seattle due to the
greater distances involved.

Wednesday evening the Fraternity heard the second J. Sutherland Frame
Lecture at Sidney Smith Hall. The lecture was a most interesting and
vigorous slide presentation on the topic The Pappus Configuration and Its
Groups by H. S. M. Coxeter, from the University of Toronto. Thursday
morning, the annual Dutch Treat Breakfast was held at Wilson Hall Cafe-
teria.

The very excellent student papers presented during the Wednesday and
Thursday afternoon sessions were as follows:

1. A Chainabte Continuum Not Homeomorphic t0 an Inverse Limit on
[0, 71 with onty Ore Bonding Map Dorothy Marsh, Texas Theta.

2. An Informal Math Lab, Kevin Bucol, Nebraska Beta.

3. [0, 1] 14 Not Compact: A Discussion of the Hyper-reals, Thomas
Sweeney, Missouri Gama

4. On the. ProbLem of the. Lion and the Man, Mak Showers, Illinois
Zeta.

5. Ridge Regression, Dale Borowiak, Ohio Nu

6. Fugue in 2! Mafor, Willian Stone, Utah Alpha.

7. Fixed Point Theorems in Metric Spaces, Carol Collins, North Caro-
lina Delta.

8. Additions and Conrections to "Elementary Number Theory in Certain
Subsets of the. Integers I and I1", William Lenhart (speaker) and Karen
McConloque, Pennsylvania Xi.
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9. TopolLogy on Geometries with Betweenness, Anees Rozzouk, Michigan

Gamma

10. High Schoof Mathematical Modefs, Ellen Hearn, Nav Jersey Epsilon.

11 The Whitney Theohy gor Maps Between 2-Manifolds, Jane Hawkins,
Massachusetts Beta.

12. On Difunctional and Circular Relations, Alma E. Posey, Arkansas
Beta.

13. Operations Research--An Approach to the Solution of Problems in
the Unban System, Elaine Flowers, Alabama Zeta.

POSTERS AVAILABLE FOR LOCAL ANNOUNCEMENTS

At the suggestion of the Pi MiI Epsilon Council we have had a
supply of 10 x 14-inch Fraternity crests printed. Ore in each
color will be sent free to each local chapter on request.
Additional posters may be ordered at the following rates:

(1) Purple on goldenrod stock - - = - - - $1.50/dozen,

(2) Purple and lavendar on goldenrod- - - $2.00/dozen.

REGIONAL MEETINGS OF MAA

May regional meetings of the Mathematical Association regularly
have sessions for undergraduate papers. If two or more colleges and
at least one local chapter help sponsor or participate in such under-
graduate sessions, financial help is available up to $50 for one local
chapter to defray postage and other expenses. Send request to:

Dr. Richard A. Good
Secretary-Treasurer, Pi M1 Epsilon
Department of Mathematics

The University of Maryland
College Park, Maryland 20742
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YOUR BADGE — a triumph of skilled and highly trained Balfour
craftsmen is a steadfast and dynamic symbol in a changing world.

Official Badge
Official one piece key
Official one piece key-pin
Official three-piece key
Official three-piece key-pin

WRITE FOR INSIGNIA PRICE LIST,

An Authorized Jeweler to Pi Mu Epsilow

ATTLEBORO MASSACHUSETTS

IN CANADA L. G BALFOUR COMPANY, LTD.® *ONTREAL AND TORONTO

Pl MU EPSILON JOURNAL PRICES

PAID IN ADVANCE ORDERS:

4.00 for 2 years

Memiiers:
10.00 for 5 years

6.00 for 2 years
5.00

$
$
Non-Me'mi:uers: $
$ for 5 years

Libraries: $15.00 for 5 years (some as

If billed or through agency odd $2.00 to above prices™ = ° .,

Back Issues $ 2.00 per issue (paid in odvoncg) -“:". ,;_a_r'

Complete volume $15.00 (5 years, 10 issues) S o

All issues $90.00 5 complete back volumes plus current volume
subscription (6 volumes — 30 yeors)

If billed or ordered through agency, odd 10% to cbove prices.



