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THE PAPPUS CONFIGURATION AND ITS GROUPS
by H.S.M. Coxetexr!
Univensity of, Toronto

Consider, in a projective plane, a hexagon 4B'CA'BC' with its <= —
alternate vertices on two lines: ABC on one, 4'B'C' on the other. The ~
theorem of Pappus states that the-drntersections of pairs of opposite
sides, namely

L =BC'-B'C, M= CA'-C'A, N = AB'-A'B,

lie on one line. Thus the complete figure consists of nine points and
nine lines: a self-dual configuration 93. A more symmetrical notation
i s obtained by writing

8,0, 1, 2, 3, 4, 5, 6, 7

instead of A, B, C, A", B!, ¢', L, M, N. Then the conditions for points
A, U, V to be on one line are simply

A+u+v =0 (mod 9), A2y (mod 3).

This Pappus configuration was rediscovered in 1839 by J.T. Graves,
who regarded it as a cycle of three triangles, each inscribed in the
next. From the three triangles (Figure 1)

012, 345, 678,

the complete set of six such Graves cycles is obtained by repeated
doubling (and reduction modulo 9); for instance, the next cycle after
the given one is

024, 681, 357.

IThe second lecturer in the J. Sutherland Frave Lecture Series of
Pi Mu Epsilon. This article is a summary of Professor Coxeter's lecture,
presented to the Fraternity at Toronto, Canada in August, 1976, reprinted
by permission of Koninkl. Nederl. Akademie Van Wetenschappen, Amsterdam-
The full text is to appear in the Proceedings of the American Mathematical
Society -- Editor




FIGURE 1

Such a configuration exists not only in the real plane but in any
"Pappian" plane except PG(2, 2) (which contains only seven points). For
instance, the nine points of the finite affine plane 86(2, 3) form a
Pappus configuration when we omit three of its twelve lines: those in
one direction. In this finite plane, each of the 18 Graves triangles
forms (or is inscribed in) a parabola whose diameters are in that special
direction. Products of pairs of polarities with respect to these
parabolas generate a group of 108 affinities. These affinities, which
are collineations of the projective plane PG(2, 3), are precisely the
108 automorphisms of the configuration. The general Pappus configuration
(in the real plane, for instance) has this same group of automorphisms.
The above use of the finite field GF[3] provides a convenient represent-
ation. Embedding the finite affine plane in a real Euclidean plane and
then reducing the real coordinates modulo 3, we represent the 18 Graves
triangles by the 18 faces of a regular mgp on a torus, and thus interpret
the automorphism group as the symmetry group G3s6s6 of that map. In terms
of two generators

B = (056832)(47), € = (027)(165438),

this group has the presentation

B = ¢6 = (BC)2 = (B3¢2)2 = (B2¢3)2 = 1.

-

Its commutator subgroup, generated by B2 and €2, is the Burnside group -
By, of order 27.

Similarly, the 18 polaritiesof the configuration in the finite
plane appear as dualities of the general Pappus configuration, and
generate a group of order 216 in which ¢3:8:8 occurs as a subgroup of
index 2. Observing that B leaves one point invariant while ¢ leaves
one line invariant, we can identify one such duality with an involutory
element D that transforms B into ¢ (and ¢ into B), so that the enlarged
group, of order 216, has the presentation

BS = p2 = (BD)* = (B3DB2D)2 = 1.

In the group of 108 automorphisms of the general Pappus configura-
tion, one subgroup of order 3, generated by the permutation (036)(147)
(258), always consists of collineations. |n general, however, at most
six of the involutory dualities (such as D) can be polarities. If two
Graves triangles belonging to the same cycle are a pair of perspective
triangles, then each is likewise perspective with the remaining triangle
in that cycle, and there are three conics such that each triangle is
inscribed in one conic, circumscribed to another, and self-polar for the
third. The corresponding polarities generate a dihedral group of order
6 whose cyclic subgroup is generated by the collineation (036)(147)(258).
For a suitable triangle of reference and unit point, this collineation
appears as a cyclic permutation of the three projective coordinates, and
the conics have the equations

m2+2yz=0, y2+2zx=0, 22 + 2xy = O.
The vertices of the three triangles can then be written in the form

(2r, 2, -r2) (28, 2, -a?) (2ti 2, -t2)
(-r2, 2r, 2) (-2, 28, 2) (-t*, 2¢t, 2)
(2, -r2, 2r) (2, -82, 28) (2, -t%, 2t) .

'where r, 8, t are the roots of the cubic equation

X3 - 3kx +2=0 (k#1).
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CYCLE OF
GRAVES TRI ANGLES:
012, 345, 678

FIGURE 2

If the coordinates are real, k may take any value greater than 1.

In the Euclidean plane with areal or trilinear coordinates based on
an equilateral triangle, the conics are rectangular hyperbolas and the
whole figure has a very pleasing appearance (see Figure 2).

Another way to draw the same projective configuration is shown in
Figure 3, where the conics consist of one rectangular hyperbola and two
parabolas. A third way, shown in Figure 4, involves a rectangular hyper-
bola, a parabolaand a circle (due to ®.%.L. Lemmens of Utrecht).
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NUMERICAL INTEGRATION BY POLYNOMIAL INTERPOLATION
by Jackie L. Lawnencel
Western Kentucky Univensity

1. Introduction
The interest in numerical integration by using the digital computer

has prompted the development of meny computational algorithms. Various
techniques have gained popularity not as universal integration algorithms,
but because of the varied, yet favorable characteristics that each pos-
sesses. To evaluate /:f(m)dm, the method presented here first produces
an nth degree Chebyshev-based interpolatory polynomial p,(x) of the inte-
grand over [a,b]l. Using the Fundamental Theorem of Integral Calculus,

the value of fspn(x)d'c is computed and used as an estimate of the original
integral. By computerizing the entire algorithm and storing the coeffi-
cients of the antiderivative of p,(x}, only two additional polynomial
evaluations are required to evaluate fa f(x)dx where [e,d] © [asb]. Exist-
ing algorithms would require a complete reformulation of the problem. A
theorem is derived which gives a maximum bound on the integration error.
This error bound is valid for integration over the original interval or
any subinterval of the original interval. The paper concludes with
numerical comparisons between the new algorithm and several existing

algorithms.

2. Development of the Method

Given f(x) in the metric space of all continuous functions on [a,b],
denoted by Cla,bl, it is desired to evaluate fgf(x)dx. To this end, f(x)
is approximated over [a,b] by an nth degree polynomial, pn(x), then the
resulting approximation is integrated, viz.:

b b
S f(:c)i'z;mg p,(®)dx = p  ,(B) - pn+l(a) (1)
a a

IThe author wishes to express his appreciation to D. C. St. Clair
for his help with this research project.
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where p;Hl(a:) = pn(x). 1t should be emphasized that although pn(:c) and
pn+l(x) are defined over [a,b], they are also valid approximations over
any subinterval [e,d] < [a,bl.

The following theorem not only verifies the existence of P, and

Piye but indicates a bound on the error produced by the approximation

and integration steps. To the author's knowledge, this theorem represents

a new contribution to the literature.

Theorem. Let f(x) e Cla,b]. Given ¢ > 0, there exists a poly-
: Binrs
nomial P,4+(%) € Cla,b] such that |[pn+l(b) - pn+l(a)] - faf(x)dx | =«
(b - a).

Proof. Let f(x) ¢ Cla,b] and let € > 0 be given. Then by the
Weierstrass Approximation Theorem [1], there exists pn(x) such that
lp, () - flz) [ = e whereasx =b, andb # a. Since f(z) ¢ Cla,b]
and since pn(.’c) is a polynomial, both are in R(a,b], the set of Riemann
integrable functions on [a,b]. Thus

b b b
lg p,(x)dx j flz)dz| = lj lp,, (=) - f(x)]dx|
a a a
b b
Si’ |pn(m) - flx)fz sj ede=¢e(b-a)
a a

Clearly, for p"ﬁ_l(:r) = pn(ac), we have by the Fundamental Theorem of

Integral Calculus

b
|lp,,,1(B) - P, (a)] -S flzydz| = € (b - a)
a

Several useful conclusions follow from the theorem: (1) one may
approximate f(x) by a polynomial and integrate that approximation, (2)

the degree of the antiderivative p__.(x) is one higher than the degree

n+l
of the interpolation polynomial pn(ac), (3) the error bound on integration
ise (b - a) where ¢ is an error bound on the polynomial that approximates
f(x), and (u4) if (b - a) = 1, the error is not increased by integration

while if (b - a) < 4, the error is decreased by integration. Hence, the

error is a function of interval width and the error of the interpolating
polynomial.

In his proof of the Weierstrass Approximation Theorem, Goldberg [1]
uses Bernstein Polynomials to construct pn(:c). However, to make the

method computationally feasible, it was decided to obtain -

n

Pn(m) = Z uixn_i

=0

by the interpolatory method of undetermined coefficients. This technique

is equivalent to solving the system of n + A linear equations

$a = 8 (2)
where

n

Ly X 1)
n

:z:1 B :Jt:1 1

$ =

n

L:L‘n . :cn 1

is the matrix of powers of the interpolation points «;, and a and 8 are

the column vectors
o = Ca;l, B = [flx)].

Having determined the coefficients a; of pn(x), the desired solu-

tion is obtained by polynomial integration, viz.:

b b
[ flx)dx a,j p,(x)de = p, ., (D) - Ppyr (D (1)
a a
7 N 5
TMOEDIE et (3)

1=0
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Remember that the approximation pml(z) is good for the interval
La,b] and for any subinterval of [a,b]. Thus, if [e,d] < [a,b]

d
j flz)de %P, (d) - B () (1)

(]

which is easily calculated using equation (3).
As indicated by the Theorem, the error in equations (1) and (4) is
bounded by & (b - a) where ¢ = |f(z) - pn(x)| is the error for the

general interpolating polynomial. pjzer [2] states this error as

e = (_’;% Kt (s)
n
for z€la.,b] and H(x) = T[] (z - x.).
i=0 v

For a given value of x, a given function f(x), and a given poly-
nomial p ( ~ ) the error in equation (5) is a function of the X., the
interpolation points. Thus, to minimize the maimum value of 2, itis
desirable to choose z; in such a way as to minimize the maimum value of
H(x). Pizer shows that the best choice of x; for this purpose are the
zeros of the (n t 1)st Chebyshev polynomial. Since Chebyshev polynomials
are defined on [-1, 1] and we are interested in the interval [a,b], the
z, are chosen by the translation

_b-a 27 + 1 b+ a
xi— 5 cos(2(n+l)1>+ 2

where Z = 0, 4, ++«, N and n is the degree of pn(:c) used in the inter-

polation.

Pizer verifies that choosing the x. as zeros of the (n * 1)st
degree Chebyshev polynomial yields the following bound on the interpo-
lation error

2 (b—a)ml | (n+l)
e < - \= max |[f (©)].
(mt1)! \ & [a,b]

Hence, the error produced by the integration in equations (1) and (4) is
bounded by
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_ I ) (n+1)
e(b-a)s W(T) [I;?;]lf (C)‘

This implies that the new method is of order n.

3.  Numerical Examples
In this section, performance of the new method is compared with

performances of the well-established Simpson, Romberg, and Gauss-Chebyshev?
methods of numerical quadrature. In order to allow for error comparisons
between algorithms, three problems having known analytic solutions were
selected for testing. The results presented were obtained to seven
significant digits using algorithms written in BASC-PLUS and executed
on a FDP 11/45.

The first problem considered was that of evaluating the integral

1r
‘[ [ue” + % - sin(sin z) cos xldz
1
whose solution is

[4¢” +1n(z) + cos(sin )] IT]t = 83,1680,

Table 1 contains computational results for this problem.

In addition to an estimate of the integral value, the new method
applied over n subintervals also produces the (n + 1)st degree polynomial
Pn+l of equation (3). This makes the new method particularly attractive
when it is desired to integrate over a subinterval such as [1, 7/2].
Using P”(m) produced by the original integration over sixteen subinter-
vals, the new integral can be computed by calculating P17(1r/2) - P(1).
The error is 0.30x10~%, Evaluation of the integral over [2.5, 3.11 with
the same polynomial gave an error of 0.38x1075., In both cases, no addi-
tional evaluations of the original function were required.

For each of the conventional algorithms, evaluation of the integral
over [1, =/2] and [2.5, 3.1] would require two complete reformulations
of the problem. In tests, the Gauss-Chebyshev method required 100 addi-

tional function evaluations for each additional integration to producé

2This method is of interest since it also uses the Chebyshev zeros
as interpolation points. An excellent development of this algorithm can
be found in Hildebrand [3].
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Number No. of Problem #1 Problem #2 - Problem #3
of Function (@33 (€33] -
Method Intervals Values| Time Error Time Error Time Error
New 10 1 21 0.43x107% 21 0.35x10"3 21 0.0
16 17 68 0.29x107% 63 0.12x10°2 62 0.30x1076
20 21| 110 o0.65x107%| 110 0.20%x1072| 110 0.36x107®
Simpson 10 15 2 50.34 1 0.10 1 0.80%x1076
16 24 3 49, 87 1 0.10 1 0.2ux1076
20 30 3 49.65 2 0.10 2 0.12x10”6
500 750 | 106 46.63 52 0.10%10"} 40 0.10x1076
1000 1500 208 45,73 113 0.10x10"! 81 0.36x1076
Romberg 6 126 19 49,11 10 0.10 8 0.0
10 2046 295 46,34 147  0.10 110 0.18x1076
16 131070 |18071 42.18 9278 0.10 6944  0.42%1076
Gauss- 10 10 4 0.46 2 0.50x10~2 2 0.28%1072
Chebyshev 16 16 5 0.18 4 0.,20x1072 4 0.11x1072
20 20 & 0.12 6 0.13x1072 5 0.,70%1073
500 500 166 0.16x1073| 129 o0.64x107%| 118 0.48x1076
1000 1000 336 0.76x1075| 264 0.75%10"%| 235 0.30x1076

Note: One unit of (RJ time is equivalent to about 0.1 second.
TABLE 1

errors of 0.37x1073 and 0.17x1072 respectively. This computation required
an additional 64 units of computer time.

The second example tested was that of integrating

6.859 )
j r(3) (a+ %{0-3 dt
0.267 /57 T(2.5)

where T(¢) is the Gamm function. The integrand is Student's t proba-
bility density function with five degrees of freedom. The value of the
integral, 0.3995, represents the probability that an observation falls
in the interval [0.267, 6.859]. As Table 1 indicates, numerical results
were competitive with the Gauss-Chebyshev method.

Since the nature of this type of problem often requires evaluation
of the integral over a subinterval, the value of the integral over [1.476,
2.5711 was determined by using P,,(x) from the method. The resulting
error was 0,16x10"3. Evaluation of this integral using the Gauss-Chebyshev

method over ten subintervals required ten additional function evaluations
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and two additional units of computer time to produce an error of 0.36x1073.

The third problem
g2
j e dx
0

whose solution is 0.746824, was suggested by Conte [4]. Table 1 indicates
the new method produced results similar to those obtained for Simpson's
method.

4. Conclusions

The numerical quadrature method presented here produces a poly-
nomial interpolation of the integrand in question. This polynomial is
computer integrated to obtain an antiderivative which not only allows
one to integrate over the original interval, but to perform additional
integrations over subintervals by simply evaluating polynomials. Hence
in problems where a number of integrals are to be computed within a
specified interval, the new method represents a considerable savings in
computer time. This savings is even more pronounced when function
values are expensive to evaluate. The author observed that applying
the new method repeatedly to subintervals of the original interval
required only a modest increase in the amount of programming but pro-
duced better answers.

The numerical results cited indicate the nev method is competitive
with, and in some cases better than the other methods tested. Due to
the ill-conditioning inherent in the linear system of equation (2),
several numerical methods were tried for solving this system. Gaussian
elimination [5] was found to be the most consistently successful. In
addition, the use of more significant digits in computation could be
used to further reduce round-off errors.

Further study in this area seems worthwhile. In addition, other
function approximations such as Fourier series might be used to replace

the original integrand.
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A GENERALIZATION TO ALMOST DIVISIBLE GROUPS

by Karen M. Lesko
Centrnal Missouni State Univensity

Divisible groups and discussions of their properties arise im SO,
abelian group theory. By altering the definition of a divisible group -
to form a group whose structure is less restrictive, one may see how
this might change the theorems regarding divisible groups. The purpose
of this paper is to offer a definition of what will be called an "almost
divisible" (which will be abbreviated "AD") group and to show how it
might affect two theorems which hold for divisible groups. ‘

Definition. An abelian group G is said to be almost divisible if,
given a decomposition of G of the form D ® K, where D is a maximal
divisible subgroup of G and X is reduced, a maximal independent set of

K contains at most a finite number of elements.

One of the equivalent definitions of a divisible group is that D
is divisible if for any non-zero integer n, nD = D. This result will
not hold for any AD group G. However, if one places certain restrictions
on G, then it will be possible to find an infinite number of integers

such that nG = G will hold, as the following theorem shows.

Theorem 1. Suppose G is an AD group. If every decomposition of
G of the form D ® K, where D is divisible and K is reduced, is such that
K has bounded order, then there existsan infinite number of primes p such

that pG = G.

Proof. Suppose K has bounded order n. Then by definition of
boundedness, every element ki in X has order nss where n, divides n.
Let p be any prime such that n is less than p. Then pK is a subgroup
of K.

Since X has bounded order, X is also expressible as a direct sum
of cyclic groups (see [3]). Hence pK is expressible as a direct sum of

p times each of the cyclic groups in the decompositon of X.



346

Let gp(a) be any cyclic group in the direct sum of X, with the

order of a being m. Then m is necessarily less than p. Also,
plgp(a)) = {pa, 2pa, +-+, (m-1)pa, 0}

are the elements in p(gp(a)). Suppose ipa = Jpa, where < and J are
integers between 0 and m, with £ > 4, Then ( - f)pa = 0, or pli - 4y =
km for some integer K. Since p and m are relatively prime, this implies
that m divides (£ - §). However, this is a contradiction, since (£ - J)
is an integer between 0 and m. Therefore, all of the elements above are
distinct. Since p(gp(a)) contains m distinct elements and a has finite
order which is relatively prime to p, p(gp(a)) = gp(a). Then pK will
equal K since gp(a) was chosen at random. Thus there existsan infinite
number of primes p such that pX = X, and also, pG = p(D ® K) = pD Q pK =
D& K = G.

By this theorem, one can see that divisible groups and AD groups

need not behave in a similar manner. This is not to say, however, that

they never act alike. It is already known [2] that the homomorphic image
of a divisible group is divisible, and this result will also hold for AD
groups.

Theorem 2. Any homomorphic image of an AD group is AD.

Proof, By definition, any decomposition of an AD group G as D ® K,
where D is divisible and X is reduced, is such that X contains at most a
finite number of independent elements. Therefore, under any homomorphism,
the image of the divisible portion of Gwill still be divisible and the
image of the reduced portion of Gwill contain at most a finite number
of independent elements, as the homomorphic image of any group must
contain fewer or the same number of independent elements as its pre-image.

Therefore, the homomorphic image of Gwill still be AD.

Thus divisible groups and AD groups mey act alike under certain
circumstances, but AD groups are a more general class in which some

properties for divisible groups are lost.
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d'ALEMBERT ENUMERATION AND PROBABILITY

by Louis G, Vargo
Univernsity of Missouni

1. Introduction
Jean d'Alembert (1717-1783) is known in the history of probability
as one of a group of "prominent mathematicians [who] sometimes committed

errors in solving elementary probabilistic problems” (see [1, p. 123-123%]).
His "errors" were not casudal; they arose in principle. Simply put,
d'Alembert believed that the enumeration of possible outcomes of an
experiment depends on the probabilistic event under consideration.
Classical probability.theory rests on the contrary. The author asserts
that d'Alembert was not wrong, and that his position is directly analogous
to the views of those who first questioned the inviolability of the fifth
postulate in Euclid's geometry. Parallel to what happened in geometry,
this note shows that a non-classical probability theory can be generated
when d'Alembert's ideas are applied to a class of finite outcome
experiments.

2. Are Example.

Consider two successive tosses of a coin. Call the possible out-
comes of a toss Hand T. Classical enumeration of the two-toss outcomes
gives HH, HT, TH and TT before any event is specified. Let 24, Iff and
OH represent the events that exactly two, one and no #'s respectively
occur in the two tosses. These events are mutually exclusive and
exhaustive in terms of the number of H's which appear. Thus, classical
probability has

P(2H) + P(1H) + P(OH) = =+ —+ == 1, (1)

Fl=
£
Flr

Again consider two tosses of a coin. For the event 2H, d'Alembert
would enumerate al |l the two-toss outcomes as HH, HT and 76, where b
indicates that the outcome of the second toss is ignored since 2H cannot
occur if the first toss resulted in T. Only one of the outcomes is 2H,
and there are three possibfe outcomes. Letting Q symbolize the d'Alembert
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probability, @(28) = 1/3. For the event IS, the d'Alembert outcomes
are the same as the classical. @(1H) = 2/4 = 1/2. For CH a d'Alembert
enumeration gives Hb, TH and TT, and hence @(0H) = 1/3.

The historical record does not show that d'Alembert inquired into
the probability of compound events. Ve shall see that this forces a
decision regarding the rejection of one or the other of the following
two axioms of classical probability:

I. Q(S) = A, where S is the sample space, the set consisting of
all elementary outcomes;, S = {OH, Iff, 24} in this two-toss example.

II. QA or B) = @(4) + Q(B), where A and B are any two mitually
exclusive events, that is, A and B cannot occur in a single experiment.
Again for the two-toss case, an example of the application of this axiom
is

(" Il ess than two heads") = Q(0H or Iff) = Q(OH) + Q(1H) = %+ %: '?T'
Both axioms cannot be retained since II implies
Q(S) = Q(oH or 14 or 2H) = Q(oH or Iff) + Q(2H)
= QUoR) + QUIE) + qam) = S+ S+ 5= ¢ (2)
contradicting 1. W choose to reject | because the values of @(5) serve

as convenient measures of the disparity between classical and d'Alembert
systems. In this approach, II is used to define the probability of any
non-elementary event. Enumeration is required only in the determination
of elementary outcome probabilities. Further, it might be argued that
II has more structural significance than I. Specification of a fixed
value for @(S) indicates a restrictive arbitrariness comparable to that
included in the fifth postulate.

3. The. Generat (ase.
Nw consider n tosses of a coin. In the event that exactly < H's

occur,
P(iH) = (’Z) g 120,14, ..., n.

Q(ZH) is not so easily obtained. A d'Alembert enumeration considers ~
successive toss outcomes until €8 cannot occur. |f on the Jth toss,
the (i+1)st H appears, then the remaining toss outcomes would be labeled
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b. This is the case of too many H's. For each of some j's, there are
(‘7;1) of these sequences; 7 must be at least £ + 1 and can be as large

as n. Thus

J=1, _ n!
Z(i)_(i+l)!(n—1—l)! (3.

J=i+1

gives the number of experiment outcomes in this case.

*
Consider now the case in which there are not enough #'s, 1f on -
the jth toss, the (» - ¢ t 1)st T appears, then again the remaining
outcomes are b's. There are (i:%) of these sequences for a given jJ,
J has arange fromn - 1 + Lton., Thissumis
n
_ n!
Z TE-DIn -y D (v
J=n-1+1
We can now write the d'Alembert probability of the event 7# as
9
Q(’ILH) = 71 R s
[ N + o L.
i (z+1) T (n-2-1)1 (Z-1)1(n-2+1)1!
_ i+ 1)+ in - 2) P
n+ 1) -4n-12) ° r=0; 1, > 7 (s)
From (5), note that Q(Z#) = Q[(n - Z)H] holds as in classical probability. a

To prove that

n
—

T(n) = L Q(iH) > 1,
=0

observe that @(ZH) = 1/(n * 1) for all £. This last inequality is
equivalent to (n + 2){n = 2)2 = 0, which is true. The equality holds if
ang only if =0 or n. Hence for n>1, the proof is complete.

An exact closed-form expression for T(n) has proved intractable.
By retaining only the first three terms in the division expansion of (&)
and then summing.

in - Lnn + 2) 2+ 1)
Tn) ~ 1+ cn t 12 EL . ?(An DI (6)

Exact and approximate (using (6)), values of T(n) for n = 2 through 7

are listed below.

n T(n)-exact ) T(n)-approximate
2 716 ~ 1.167 1.165
3 19/14 ~ 1.357 1.352
4 599/385 ~: 1.556 1.545
5 211/120 ~ 1.758 1.742
6 30984/15785 ~2 1.963 1.940
7 26417/13572 ~; 2.169 2.138

Note: T(n) increases almost linearly with n.

It is not the purpose of this note to discuss the philosophical
aspects of alternative probability systems. |t should be mentioned,
however, that the above d'Alembert system is a Carnap e¢*: a uniform
prior distribution on a structure description. Readers are referred
to Hacking's excellent book [2], and his chapters 14 and 15 in particular,
for this discussion.

REFERENCES

1. Maistrov, L. E., Probability Thecry, A Historieal Sketch, translates

and edited by S Kotz, Academic Press, Hav York and London, 1974.

2. Hacking, 1., The Emergence of Probability, Cambridge University
Press, 1975.

Pl MU EPSILON AWARD CERTIFICATES

Is your chapter making use of the excellent award certificates
to help recognize mathematical achievements? For further in-

formation write:

Dr. Richard A. Good

Secretary-Treasurer, Pi Mi Epsilon

Department of Mathematics '.
The University of Maryland

College Park, Maryland 20742




ANOTHER PROOF OF THE
ARITHMETIC-GEOMETRIC MEAN INEQUALITY

by Noaman Schaumberger and Bert Kabak
Bronx Community Coflege of CUNY

The classical inequality connecting the arithmetic and geometric

means of N quantities states that if a, > O, a >0, ***5a > 0then

)1}n

(a; + a, + "'+an)/n z (a,a where equality holds if and

CARE
a,. There are many proofs of this fundamental

u

only if a =a,:

theorem none of which is particularly simple. In this note we offer a
new proof which uses only basic algebra and the principle of mathematical
induction. Instead of proving the above inequality we shall prove that
if z, > 0, z, > 0, =--, xn > 0 then

n n n e
X"ty +-°°+xn 6 nex, &

with equality if and only if Ty Ly, sttt = Xn. The equivalence between
1/n _ 1/n ..

the two statements becomes apparent if weput ) = a s Ty = Ay ,

X = al/n

n

Let 2, >0, z, > 0and z; > 0. Since (-, )(x -, ) is nonnegative
it follows that X12 + z, 2 202 1% and the theorem is true forn = 2.

Furthermore each term in

(22 - 2,2) (2 - z,) + (x)? - 22z -x)t (xz,2 - ac32)(ac2 -x)

3
i s nonnegative and so the entire expression is nonnegative. Expanding,
we get

3 3 3
2(x, +x2 t z,3)

w

X1X22+:02x12+m:c +:nx2+xa:2+m3x22

2 2 2 2 2 2
@ (z)2 +2?) oz (22t 2,2) +xy(2)® +2,%)

"

w

ml(Q:cza:a) + x2(2:z:1x3) + xa(lewz)

Smlmzza

Consequently

3 3 3 .
x, + x, + x,° 2 3xlaza3
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which is the desired result for » = 3 Clearly equality holds if z,

z, = z,and it is easy to show that if )3 + 2,3 + 233 = 3zyzox3 then

(z.2 - 2.2)(z

. a2y - xy) b (@ - 2 () - zy) (2,2 - 22 (x, - %) = 0.

Hence xl =%, =X since each term must vanish.

Essentially the same procedure can be used to prove the general
case: Let :cl. 20 (£=1, 2, ...y n, ntl) and assume the arithmetic-
geometric mean inequality holds for any n of the Z. First observe that

since each term of the summation is nonnegative,

ntl nt+l
n n
E E (:ci - xj)(xi - xj) z 0.
i=1 g=1
Hence
n+l n+l n+l n+l
n+l n+l
LT+ 2 r.x. + XX
2. 2 e Gl + 350
i=1 gj=1 i=1 J=1
or
n+l n+tl n+l n+l n+l nt+l ntl
n+l no_ n 7
2(n + 1) E s =2 E E z L = 2 E E T + 2 E E 2T
J=1 =1 gJ=1 =1 J=1 i=1 g=1
(2#4) (=g)
1t follows that
n+l n+l n+l n+l n+l
n+l _ n
n xJ = mtac = E z; E a:J
J=1 i=1 g=1 i=1 J=1
(<49) ‘j;!i !
Using the inductive hypothesis, we have
n+l n+l ; n+l el ntl
E z, E AE E z, (n—ﬂ_mj)--n(errJ,)TT::L:7
i=1 J=1 i=1 32 J=1
J#i

Consequently,

ntl

n+l
Z 7’L+l = (n+ 1) 'ﬂ-
J=1

J=1
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Equality holds if and only if &, =, = ... = $n+1 since each term
nt+tl n+l
Z («f - )z, -2 is nonnegative.
7 by R 3
=1 g=1

FRATERNITY KEY-PINS
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to anywhere in the United States.
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(2) Purple and lavendar on goldenrod- - - $2.00/dozen.
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THE RELATIONSHIP BETWEEN SOME
DISCRETE AND CONTINUOUS PROBABILITY MODELS

by Genovevo Lopez and Joseph M. Moser
San Diege Sate. University

1. Summary

This paper presents simple, direct proofs of theorems which show
the respective relationships between various probability models:

(1) discrete uniform and continuous uniform;

(2) geometric and exponential; and

(3) negative binomial and ganma

2. Introduction

It is known that in the discrete case the discrete uniform, the
geometric, and the negative binomial probability models have a role very
similar to that in the continuous case for the continuous uniform, the
exponential and the gamma probability models. (See Freeman [1] and
Parzen [2], for instance). This fact, however, is not usually exploited
in introductory courses.

Feller [3] has shown the basic relationships among the geometric,
the exponential, the negative binomial and the gama probability models
by considering appropriate discrete densities and then performing a
limiting process to obtain the corresponding continuous densities. In
[4], Prochaska shows the relationship between the geometric and the
exponential probability models by considering their respective distribu-
tion functions cumulative distribution functions, However, a serious
preliminary effort will convince one that this method becomes very
difficult to use in consideration of the discrete uniform, the continuous
uniform, the negative binomial and the gamma probability models. There-
fore, three theorems which relate the respective densities already
mentioned are proved here. The method used in the present paper consists
of showing that the discrete moment generating function becomes, by a
suitable limiting process, that of the corresponding probability model.
Because the moment generating function of the geometric probability
model cannot be obtained directly from the negative binomial probability

-
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model, a separate theorem must be stated and proved. This is done in
Theorem 2.

3. Prnincipal Theorems

Theorem 1. Let Yn = ;ﬂ, where Xn is a random variable following
the negative binomial probability distribution with parameters pn = #
and r (u is a fixed positive real number), where P, is the probability
of success on independent trials and Xn is the number of failures which
occur before the »rth success [that is,

r+Xn—l r
f(XYl): X pnqn ,X = 0, b [ 2’...].
n

Then

t
lim M (t) ( —t>
t

Y
where M (£) = E[e ™]. Equivalently, y,, converges in distribution to
a garma?andom variable with parameters u and r.

Proof. = The moment generating function of a random variable following
a negative binomial probability distribution with parameters prz and r is
given by the formula

tX % r+X -1 X tX
na _ n r 7
Ble "1 = E : X Py 4, °©
Xn=0
Then,
t, 5 PN ¥
= - r p r
_.r n t r 1 n
Ele 1= p =0 ( X ) (qne ) r - pn _}_..q..e.E = [ v B
Y-n n l—qne }‘Zne

where of course pn + q, = 1. Next,

t t t
L-ge 2p %4, ~qd =g, =qle =1}

p, - (1-pe’ - 1).

Now if u = np,, then

©
n = u

1 - gpe _;—(l—%)(et - 1) u—(l-%)n(et-l)'
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Therefore, the moment generating function of the random variable Xn/n
is given by the expression

u

M, (t)
Yn u - (1 - ?—:—) n(e

Bl _ 4y

where Yn = Xn/n‘

Moreover,

r
. | u
1lim M_Y (t) —(a——_ 1,;) .
nHo Ty

Theorem 2. Let Wn = Xn/n, where Xn is a random variable following
a geometric probability distribution with parameter A = 7P, [that is,
- n -
f(Xn) =P, Xn =0, 1, 2,]. Then
1lim MW (t) E A—_—' t
e 0
where M (t) denotes the moment generating function of W and the right
W

side of the equality is the moment generating function of a random variable
following an exponential probability model with parameter A.

Proof. Theorem 2 is a special case of Theorem 1. with » = 1.

Theonem 3. Let Zn = Xn/n, where the random variable Xn follows a
discrete uniform probability distribution; [that is, f(Xn) = 1/n, X, = 0,
1, ..., nl. Then

t-l

[im MZ (t) =

ne n
where MZ (t) denotes the moment generating function of Z and the right
side of the equality is the moment generating function of a random
variable following a continuous uniform probability model defined on the
unit interval.

Proof. The momet generating function of a random variable follow-
ing a discrete uniform probability model is given by the formula

n .
tXn ) Z 1 ‘L‘Xn S
]= —e .
n
Xp=1
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The moment generating function of Zn is then given by the formula

n t

2 : 1 7n
Mzn(t) = e .
X =1
n
Now,
n t n n
__X 2
1l nn_ £ t 2
Z e lﬂ-m2 T+ 5T 7
X =1 i=1 1=1
n
n
+ + tk ik +
k1 K+1
: =1

Moreover, recall the fact that

n x k+1 k 3
Z’L = i +Zak.n, (k=1,2, «..)
i=1 =L @

Substituting this into the preceding relation, one obtains the following

N

expression.

_ t 1 t2 3
MZ (t)—1+—2—(1+-ﬁ)+—3—!-(1+-2—

1
Al R
n

It now follows readily that

. _ t 2
1im M, (£) = 1 + — 4+ —— 4 +o»
Z 2 at

N0 n
- et = 1
= 5
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PUZZLE SECTION
Mathacrostic No. 3

submitted by R. Robinson Rowe
Sachamento, California

Like the preceding two, this acrosticis a keyed anagram. The 204
letters to be entered in the diagram in the numbered spaces will be iden-
tical with those in the 32 key words at matching numbers and the key
letters have been entered in the diagram to assist in correlation during
your solution (see next two pages).

When completed, the initial letters of the 32 key words will spell
a famous mathematician and the title of a classic he wrote. The diagram
will then quote two sentences from the English translation of the book.
This year (1977) is his bicentennial.

Dissecting the Letter E

A block letter E has a uniform thickness of 3 in., stands 15 in.
tall, is 9 in. wide, and the horizontal middle stroke is half as long as
the top and bottom strokes. Show how this letter can be cut into 5

pieces so they will fit together to form a perfect square without turning
over any of the pieces. Can the number of pieces be reduced to 4 if the

freedom of turning pieces over is granted?

Puzzle: A Pair of Eights

The following long division problem, in which the known digits appear
nowhere else, has only one solution. Find it.
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1 2 3 D 4 T|5 T|6 7

8 fl9 T 10 11 12 T|13 T{i4 V|15 16 17
18 V]|19 D20 21 22 23 H24 T 25 26 27 28

29 K{30 31 32 33 a|34 H|35 f£|36 37 38 39

4o Vil 42 43 yy T|u5 Diue I|47 V|u8 4g 50
51 M|52 K|53 54 55 56 a|57 Y|58 M|58 O 60 61 62

63 Y|6k4 65 66 D{67 M|68 X[63 0|70 71 72 73
4 Ul75 H 786 77 78 DI79 U 80 0l8l 82 83
84 I|B5 W|86 87 88 f|89 If90 dfSl Lj92 93 9L 95
96 0]97 d 98 99 100 d4{101 Q102 e 103 104 W|105 106
107 G[108 c|109 110 111 Uf112 H{113 P|1i4 U|1l5 116 W|117 E|118

119 S{120 H|121 Q122 123 A]124 d|125 K|126 127 N|128 B|129

130 Q131 I|132 133 L|134 Y|135 L{136 b|137 I|1l38 139 X|[1u40
141 dj142 e|1u43 lyy R{145 R[146 N|1u7 M|1u8 C 148 150 Kj1l51 A|152
153 Y154 L{155 C|156 157 F|158 B 159 g|160 161 S|162 163
164 Q|165 R{166 167 168 a|l69 Z{170 U 171 G|172 S{173 C|174
175 e 176 E 177 178 e[179 P[180 g|181 Z]182 B|183 b|18L B|185 J|186

187 Q188 189 190 g|191 g 192 E[193 b{194 2Z}195 196

197 a|l198 199 M[200 F[201 Z|202 E|203 J|204

Definitions and Key

A.

T & m m o O 2

© W o = =Er = u

o

T @ N <X x = < c 4 ©»
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In math, reciprocally related — % W E T TS T T T

Mathematician, ¢, 200-270 AD —— — — — — — —— —— — ——

With connectivity number 1

74
Mathematician 287-212 BC i
What plenty did to twenty

104
Pruritic

163
Dense and compaat 5
What Beatrice was shown —

181
Mathematician 1588-1648 s
First name of a math author _—— _—

183
Members of math expressions
Pacific

90
Shout of joy

142
Math from Arabia .

Drav with acid

83 Ie0 W7

19

25 L
Mathematiciany 1601-1665
76 158
Watered rum I
173 155
Geometer 260-200 BC
3 17
An integration limit —— =
«202 103
Exhibit —_—
1% 174
Continuous part of a surface — _— . — _—
1%5 172
62 10
. Number like 39, 79 or 116
73 131
Slender — —
162 129
Number expressed with i, j —
and k 132 72
Speak —_
133 81
A reverse transformation
58 188
Trunk cover
138 99
Unlawful —_
69 28
Involuntary twitch —
189 179
Like the eye's rainbow
130 1
Proprietor
167 98
G to draw last _ —
ane 161 172

Mathematician, c. 276-194 BC = T - T 70 § T

88
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Solutions

Mathacrostic No. 1 [Spring’ 19761
A tate sofution was heceived by Greg Fd ey, Austin, Texas.

Missionarnies and Cannibals [Fall, 19761

The optimal number of crossings is 13, consisting of the following
moves (¥ for missionaries, C for cannibals): 3¢, 1¢, 2¢, 1, 3M, 1M and
1¢, 1M and 1C(rower), 1M and 1lC(non-rower), 3M, 1C, 3C, 1C, and 2C. (If
more than one cannibal could row the boat then 11 crossings would suffice.)

Sofved by Sidney Penner, Bronx Community College o4 CUNY.

Ore incorrect solution was hecelved.

Mathacrostic No. 2 [Fall, 19761
Definitions and Key:

A. Eighty-two F.  Ethyl K. Boole

B. René Descartes G.  Modulus L. Ellipse
C. Inversion H. Photon M. Lavoisier
D. calculus I. Leader N. Loathed

E. Todhunter J., Eddied 0. Mighty

P. Effete U. Asphodel Z. Arithmetic
Q. Napier V. Twelve a, Thistle
R. Oshkosh W. Haversine b. Integer

S.  Fifty-two X. Eggheads c. Cauchy

T. Moffat Y. Mayo d. shrubby
First letters: ERIC TEMPLE BELL MEN OF MATHEMATICS

Quotation: Though the idea behind it all is ekildishly simple, yet the
method of analytic geometry i s so powerful that very ordinary boys of
seventeen can use it to prove results whick would have baffled the great-
est of the Greek geometers: Euelid, Archimedes, and Apollonius.
Five Mathematicians: Descartes, Todhunter, Boole, Napier, and Cauchy.
Sofved by Jeanette Bickley, Webster Groves High School, Webster
Groves, Missourni; Ezra Brown, Vinginia Polytechnic Institute and Siate
University, Blacksburg, Vinginia; Bradford E. Carter, Middle Tennessee
State University, Murfreesboro, Tennessee; Edwin Comfort, Ripon College,
Ripon, Wisconsin; Eleanor S. Elder, New Onleans, Louisdiana; Joseph D. E.
Konhauser, Macalester College, St. Paul, Minnesoto; Barbara Lehmann,
St. Petens College, Jensey City, New Jersey; Sdney Penner, Bronx Commun-
1y Coflege of CUNY, Bronx, NIV Vork; Bdo Prielipp,University of Wisconsin
at Oshkosh, Oshkosh, Wisconsin; and Richard D. Stratton, Coforado Springs,
Colorado.

Ore solven did not give the source non the 5 mathematicians called fox.
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WELCOME TO NEW CHAPTERS

The Journal welcomes the following new chapters of Pi Mu Epsilon
which were recently installed:

TEXAS LAMBDA at the University of Texas, installed October 30, 1975
by E. Allan Davis, Council President.

VIRGINIA EPSILON at Longwood College, Farmville, Virginia, installed
January 28, 1976 by R. A. Good, Council Secretary- treasuren®.

ALABAMA ZETA at Alabama State Universityy installed March 25, 1976
by Milton D. Cox, Councilor.

ARKANSAS BETA at Hendrix College’ Conway, Arkansas, installed
April 12, 1976 by Robert M. Woodside, Councilor.
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@
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MATCHING PRIZE FUND

I f your chapter presents awards for outstanding mathematical papers
or student achievement in mathematics’ you may apply to the National
Office to match the amount spent by your chapter. For example, $30
of mwards can result in the chapter receiving $15 reimbursement from
the National Office. These funds may also be used for the rental of
mathematical films. To apply, or for more information’ write to:

Dr. Richard A. Good

Secretary-Treasurer, Pi Mu Epsiion

Department of Mathematics

The University of Maryland

College Park, Maryland 20742
Q-.Nx»s-»_‘yué.ma
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INITIATION CEREMONY

The editorial staff of the Journal has prepared a special publica—__
tion entitled Initiation Ritual for use by local chapters containing de-
tails for the recommended ceremony for initiation of new members. |f
you would like one, write to the National Office.



PROBLEM DEPARTMENT

Edited by Leon Bankod4
Los Angeles, California

This department welcomes problems believed to be new and, as a
rule demanding no greater ability i n problem solving than that of the
average mamber of the Fraternity. Oceasionally we shall publish pro-
blems that should chalilenge the ability of the advanced undergraduate
or candidate for the Master's Degree, Old problems displaying novel
and elegant methods of solution are also acceptable. Proposals should
be accompanied by solutions i f mailable and by any information that
will assist the editor.

Solutions should be submitted on separate sheets eontaining the
name and address of the solver and should be mailed before the end of
November, 1977.

Address all commnications concerning problems to Dr, Leon Bankoff,
6360 wWilshire Boulevard, Los Angeles, California 90048.

Problems for Solution

386. Proposed by Charles W. Trigg, San Diego, California.
Show that the volume of Kepler's Stella Octangula (a compound of

FIGURE 1
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two interpenetrating tetrahedrons) is three times that of the octahedron

that was stellated.

387. Phopobed by Jack Ganfunkel, Forest Hifls High Schoof,
Flushing, New Yohk.

On the sides 4B and AC of an equilateral triangle ABC mark the
points D and E respectively such-that AD = AE Erect equilateral
triangles on €D, AE and AB, as in the figure, with P, €, R as the
respective third vertices. Show that triangle PQR is equilateral. Also
show that the midpoints of PE, AQ and RD are vertices of an equilateral
triangle.

R A Q

P
FIGURE 2

388. Proposed by David L. Silverman, West Ldb Angeles, California.

In the game of "Larger, But Not That Large" two players each write
down a positive integer. The numbers are then disclosed and the winner
(who is paid a dollar by the loser) is the player who wrote the larger
number, unless the ratio of larger number to smaller is three or more,
in which case the player with the smaller number wins. If the same
number is picked by both players, no payment i s made.

a) Wha is the optimal strategy?

b) Suppose instead that the players are not restricted to integers
but to the set [1, ») and that larger number wins provided the larger-to-
smaller ratio is less than » (for some » > 1); otherwise |larger number

loses. Find an optimal strategy.
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389. Phopobed by Paul Eadia, Spaceship Earth.

Find a sequence of positive integers 1 < a; < a, < -** which omits
infinitely meny integers from every arithmetic progression (in fact it
has density 0) but which contains all but a finite number of terms of
every geometric progression. Prove also that there is a set Sof real
numbers which omits infinitely many terms of any arithmetic progression
but contains every geometric progression (disregarding a finite number

of terms).

390. Phopobed by Rob Koether and David C. Kay, University o4
OkLahoma.

Let the diagonals of a regular n-sided polygon of unit side be
drawn. Prove that the n - 2 consecutive triangles thus formed which

have their bases along one diagonal, their legs along two others or a side,

and one vertex in common with a vertex of the polygon each have the

property that the product of two sides equals the third.

391. Proposed by Clayton W. Dodge, University of Maine at Orono.
Solve this alphametic where, of course, NINE is divisible by 9:
TWELVE
NINE
NINE
THIRTY

392. Pnoposed by R Robinson Rowe, Sacramento, California.
Solve in distinct positive integers,

1 3
ary - ctl
b+l arl
a+l ol
br... Aty

= 1/2

393. Puoposed by Peten A, Lindstrom, Genesee Community College,
| |
Batavia, New Yonrk.
Cousider the sequence f{n) = n2 - n + 41. Find the GcD of f(n)

and f(n+1).

39, Proposed by Erwin Just and Bertram Kabak, Bronx Community
Cotllege.
Prove that if 4., 4, and Ag are the angles of a triangle, then
3 3

3 E sin24. - 2 ; cos34. < 6.
7 ol Z

=1 =1
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395. Proposed by Joe Van Austin, Emory University, Atlanta,
Georgia.

Assume that » independent Bernoulli experiments are made with
p = P [success], 1-p = P[failure], and 0 <p < 1. Intuitively it
seems that P [success on the first trial | exactly one success] is always
less than P [success on the first Trial | at least one success]. Verify
directly that this is indeed the case.

306, Proposed by David R Simonds, Rensselaer Polytechnic
Institute, Troy, New York.

Let [m]n denote the integral part of the quotient when m is divided
by n. Prove that

[mInk = [m]ﬁ, Y m,n, k €N,

where [m]:; means [[-“Emjn"']n]n (k sets of brackets).

397. Proposed by J. S. Frame, Michigan State University, EasZ
Lansing, Michigan.

If @z = 2 cos(jn/n), prove that

n
T+ 3c;) = (3" - Y242 cos(5mn/E)+ 1)2 (1)
J=1

and more generally that

n -t
TT (% + &%) = @ 2 -2 - 22 = F2(8)
g J §

where Fn(t)/Fl(t) is a polynomial in t2 with integral coefficients, and

- - -1 o
x=uu=1, z2=u/u, and u+u =tem/. (3)

308, Proposed by Richarnd S, Field, Santa Monica, Califoania.
Find solutions in integers A =B # ( # Rand A # B # C = R for the

quadrilateral inscribed in a semicircle of radius R, as shown in the

A#B#C=R

FIGURE 3
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figure. Also, find solutions in integers A # B# C # R or prove that

none exist.

Solutions

362. [Spring 19761 Proposed by Zefda Katz, Beverly H{LLs,
California.

As shown in Figure 1, a diameter AB of a circle (0) passes through
¢, the midpoint of a chord DE M is the midpoint of arc B and the
chord MP passes through C, The radius OP cuts the chord [E at Q. The
tangent circles (0,), (0,), (¥} and (w,) are as shown. Sow that
Dg = W1W2.

FI GURE 1

I. Sokution by R Robinson Rowe, Sacramento, California.
Let the radii bea, b and a * b and the unknown radii be r. In

triangles Olwllf and OW,F,,
(at r)2-(a-m2=(atb-r?2-(a-b-r?
Whence » = ab/(atb) and W.F = 2a/b/(a + b).
Similarly in triangles OZWZG and OWZG,
r = ab/(a+h) and W,G = 2bvaj(a + D).

2 2
W, = (2r)2 + (avb + b¥a)
va + b

= 2Vab - 2ab/(a+b).

Then
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FIGURE 2

In triangle OCD, @ = at b, @ =a-b, © = 2/ab. In triangle QVG
sinc = (at b)/V2a2 + 2b2. 1In triangle OPC, sin P = (a - b)/(a t b)-
sinC= (a-b)/V2a?2 + 22, and /0= / C=- /£ P. Hencesin 0 =

2ab/(a? t p2), tan 0 = 2ab/(a? - b2). 1In triangle OCQ, Q= (a - b)tan O =

2ab/(a + b); Dg - OC - Q= 2V/ab - 2ab/(a + b) = W\W,.
11. Solution by Leon Bankoff, Los Angeles, California.

The configuration is a Shoemaker's Knife (or arbelos) and its
reflection in the diameter 4B, W make use of properties described on
pages 116 and 117 of Roger A. Johnson's Advanced Euclidean Geometry
(Modern Geometry) , Dover Reprint, 1960. 1) The circles (Wl) and (Wz)
inscribed in the curvilinear triangles ACE and BCE are equal, the
diameter of each being equal to AC+BC/AB, or half the harmonic mean of
AC and CB. 2) The smallest circle that is tangent to and circumscribes
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the two circles (Wl) and (Wz) is equal to the circle on CD. By these
two properties it is seen that W, ¥, is equal to CD minus half the
harmonic mean of AC and ¢B. 1t now remains to show that QC is also equal
to half the harmonic mean of AC and CB.

Ve first show that QC = QP. In triangle QOC, Z0QC + £QOC =
90° = LQPC + LPCQ + LOAP + LAPO. Now LAPO + /QPC = 45°., Hence
LPCQ+ LOAP = u45° = /OAP + LQPC. Therefore LPCQ = ZQPC and QC = QP.

It follows that Q is the center of a circle tangent to AB at € and

n

to the circumference of the outer circle (0) at P. Then 0C% =
OP(OP - 2PQ), from which we obtain P (or PC) = (OP? - 0C2)/2(0P) =
(0P t 0CY(OP - 0C)/2(0P) = AC+CB/AB, thus proving that QC is also equal
to half the harmonic mean of AC and CB.
Excellent solutions were also offered by Clayton W. Dodge, University
of, Maine at Orono; Dr. John T. Hurt, Bayan, Texas; Barbara Seville,
Rossind Conservatony, Bologna, Italy; and the. proposer, Zelda Katz.

363. [Spring 19761 Pnroposed by Robert C. Gebhandt, Hopatcong,

New Jersey.
Does Sl;l + S';2 + sn; 34 e converge, and i f so, to what?

Sofution by Clayton W. Dodge, University of Maine at Orono.

A Fourier series expansion for the interval 0 < X < 11 in sine term
only yields the equation

I—Ié-_——)—( =sinx+%sin 2m+3§‘sin3x+%sin4x+”-
for 0 < X < 1. Whn x = 1 we get that
-1 B 1 . 1 _. 1 _. .
5 Slnl+-§Sln2t—3 S|n3t—45|n4+

whose decimal value is 1.070796327...

Similon solutions were submitted by Fred Ahrens, Pomona, California;
P. Bloemendaal, Technological Univensity, Eindhoven, The. Netherlands;
Michael W. Ecker, City University of, New Yohk; Jackie E. Fritts, Rocky
Mount, N. C; John T. Hurt, Bayan, Texas; Bob Prielipp, The. Univensity
o Wisconsin-Oshkosh; Henry J. Ricardo, Manhattan Cotlege, Bronx, N. Y.,
R. Robinson Rowe, Sacramento, California; 1. Philip Scalisi, Bridgewater
Stain. Colfege, Bridgewaten, Massachusetts; and the. proposer, Robert C.
Gebhardt.

Bob Prielipp suggested that readers who enjoyed this problem would
probably find "A Monotonic Trigonometric Sum" by Richard Askey and John
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Steinig found on pp. 357-365 of the Summer 1976 issue of American Journal
of Mathematics of interest. Ricardo and Scalisi cited Bromwich's An
Introduction to the Theory of Infinite Series, PP. 356, 383, 386, while
Rowe called attention to Smithsonian Publication 2672, Formula 6,81,
Dodge proposed the question: Wha is "Yea + yea + yea + yea'? the
answer to which is "A Fourier Series™.

364. [Spring 19761 Proposed by Charfes W. Trigg, Son Diego,
California.
Show that there is only one third-order magic square with positive
prime elements and a magic constant of 267.
I. Solution by CLayton W. Dodge, University of, Maine at Orono.
Since the constant is 267, the center element is 267/3 = 89. Nw
we need prime pairs adding to 267 - 89 = 178. We find that
178 = 51173 = 11 + 167 = 29 + 149
= 411137 = 47 + 131 = 71 *+ 107.
For any element k there must be at least one sum of two other primes
adding to 267 - k. This eliminates 5, 41, 137 and 173. Corner elements
must have two such sums. Fortunately we find that
267 - 29 + 238 = 71+ 167 = 107 * 131,
267 - 71 = 29 + 167 = 47 + 149,
267 - 107 = 11t 149 = 29 + 131,
267 - 149 = 11 + 107 = 47 + 71
The corner elements then are 29, 71, 107 and 149. We easily obtain the
unique magic square:

29 {131 {107
1167 { 89 11
71 | 47149

11. Solution by- the proposer.

The magic constant of a third-order magic square can be rearranged
into a square array in which the elements of the rows are in arithmetic
progression with the same common difference, and likewise for the
elements of the columns, and conversely.

In any arithmetic progression of primes with a first term > 3, the
common difference 4 is a multiple of 6.

Nw 9-4=5and9+6=15 soif 8 isthe arithmetic mean, d"
cannot terminate in 4 or 6. Furthermore, 89 - 12 = 77, 89 + 30 = 119,
and 89 + 72 = 161. Consequently there are only five arithmetic pro-
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gressions Of three positive primes with 89 as a middle term, namely:
A(11, 89, 167), B(29, 89, 149), C(u1, 89, 137), D(47, 89, 131), and
E(71, 89, 107). These can be paired in ten ways. However, the pairings
AB, AC, AD, 4E, BC, BD and @ produce square arrays with negative
elements, and CE and CE produce arrays with an element of the form 5k.

Therefore the only magic square with prime elements and a magic
constant of 267 derives from BE That is

11|29 |47 107111 |[149
which
311831 47
71| 89 {107 leads to 131
131|149 167 29 |167] 71

ALso solved by Victor G. Feser, Many College, Bismanck, Noith
Dakota; John T. Hurt, Swan, Texas; R. Robinson Rowe, Sacramento,
Caligornia; and Kenneth M. Wilke, Topeka, Kansas.

Charles W. Trigg called attention to the duplication of his
proposal which first appeared as problem 325 in the Spring 1974 issue
with a solution published a year later. Your problem editor has often

wondered how many times he must make the same mistake twice.

365. [Spring 19761 Proposed by Clayton W. Dodge, University o4
Maine, Ohono, Maine.

Find all fractions abe/ede such that cancelling the digit e yields
an equivalent fraction, such as 166/664 = 168 / $64 = 16/64. As in the
illustration, not all the digitsa, b, ¢, d, e need be distinct, but
they should not be all equal.

Sofution by Charfes W. Trigg, San Diege, Californid.

(10z + e)/(100e + y) = =/y, where X and y are two-digit integers,

can be manipulated into the form
X = ey/(100ec - 9).
For e =1, 2, 3, 4, 5, and 8, the only solutions in two-digit

integers are those which give fractions with six like digits. Otherwise:

e =6, (z,y) = (16,64) and (26,65);
e =7, (z,y) = (21,75);
e =9, (x,y) = (19,95), (24,96), and (49,98).

Thus there are six fractions with three-digit numerators and
denominators that can be reduced to equivalent fractions by illegal
"cancellation” in the manner specified. They are: 166/664, 266/665,
199/995, 249/996, 499/998, and 217/775. In none of these does the

specified "cancellation™ reduce it to lowest terms, although a second
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"cancellation" will do so in the first three cases.

There are seven more proper fractions with like digits in the ¢
positions that can be reduced to lowest terms by two illegal "cancel-
lations", namely: +° -
163/326, 316/632, 2uL/427, 455/546, 127/762, 139/973, and 187/748.

Also, there are eight fractions with like digits in the e position
that can be reduced to lowest terms by resisting the impulse and "cancel-
ling™ b and d instead. They are: 1u43/3ul, 253/352, 154/451, 374/473,
275/572, 176/671, 385/583 and 187/781. In each of these fractions the
denominator is the reverse of the numerator.

The 15 fractions given in the two paragraphs above are among the
116 oroper fractions with denominators | ess than 1000 that can be reduced
tolamest terms by illegal "cancellation™ as given in ny solution to
problem 434, Mathematics Magazine, 34 (September 1961), 367-368.

ALso solved by Jackie E. Fritts, Rocky Mount, North Carclina;
Robert C. Gebhardt, Hopatecong, NeW Jeasey; John T. Hurt, Bryan, Texas;
Edith E. Risen, Onegon City, Oregon; R. Robinson Rowe, Sacramento,
California; Kenneth M. Wilke, Topeka, Kansas; and the. proposexn, Clayton W.
Dodge.

Robert C. Gebhardt found the required solution through a quick
search by a programmed desktop electronic calculator and offered the
following comment:

| rather wonder about problems like No. 365. I'm not sure that
they "demand no greater ability in problem-solving than that of the
average member of the Fraternity™. What they do seem to require is the
ability to locate a programmable electronic calculator and to return to
it later to discover what answers it has found in its search. That is,
| wonder about the usefulness of problems in which it is sufficient to
I et a'high-speed machine do a search for answers instead of solving by
traditional means.

A reply to this contention can be found in the article " Reflections
of a Problem Editor™ published in the Fall 1975 issue of this Journal.
To quote:

It may be hard to believe, but your problem editor

occasionally receives an answer to a problem instead of

a solution. Participants in this arena are not really

concerned with answers; their primary interest isin the
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way the solution was found--the train of thought that led
A box of unit volume consists of a square prism topped by a pyramid.

to the solution, the transparency of the solver's heuristic
Find the side of the square base and heights of prism and pyramid to

approach to the problem, essentially, the solver's ability
to take the reader by the hand and literally lead him over minimize the surface area.

the various steps of the proof.

Charles W. Trigg remarks as follows: i
. 7 _J
The value of a problem should not be judged solely on the +w:,:/:«ﬁ’

basis of whether or not it can be solved by a machine.

Frequently problems which may appear to be suitable only v
for solution by machine can, with the proper insight, be 2u
solved by hand in the time that it would take to write a FIGURE 3

program. Admittedly, one is more likely to make errors
Solution by the. Proposen.

than would a properly progranmed machine. In that case
the machine can act as a check on the results. There is Let the dimensions of the prism be 2u x 2u x v and the height of
a modern danger that dependence on computer solutions is the pyramid be W.

likely to reduce the possibility of hitting upon an Then the surface area is

elegant approach. 4= 402+ suw + suwh? + w2 (1)
366. [Spring 19761 Phopobed by Richard Field, Santa Monica, and the volume
California. V= 2= uulu + ww/3. (2)
Let Q = [lon/p], where p is a prime > 5, and »n is the cycle length From (2)
of the repeating decimal 1/p; [x] denotes the greatest integer in x. v = 1 - w3, (3)
Cn Q be a prime? Then with (3) in (1)
ALL the sofutions received were practically identical s¢ credit should
be divided avorg the following solvers: Jefgrey Bengen, Brooklyn, A= a2t 2/u - sw/3 t sk + w2, ()
New Vork; Clayton W. 'Dodge, University of Maine at Onono; Michael (. Differentiating,
Ecken, City University of New York; Victon G. Fesen, Many Coflege, a i i
Bismanck, Nonth 'Dakota; Richard A Gibbs, Fort Lewis Coflege, Durango, -3t W = 1, (5)
Colonado; Kenneth M. Wilke, Topeka, Kansas and the proposer, Richard Times 3VAZ + 92 /4u:
Field, whose solution is as follows: -
Q is the repeating part of the decimal representation of 1/p, W = V2 + W, (6)
expressed as an integer. (Example: for p = 13, 1/p = .0769230769...; Whence
n=6 Q= [10°/13] = 76923.) Thus 1/p may be written as the geometric 502 = 4uZ2 and W = 2u/V5 7)
series /10" + Q/lan + Q/]_Oan + ++- ., Summing, we obtain p@ = 10" - 1. W2+ w2 = oul/s andm = 3u/s . 5
Since 10* - 1 is divisible by 9 and since p is prime, Q must be divisible With (7, 8) in (&) )
by 9, so cannot be prime.
A= (4 + wWE5/3)u2 + 2/u (9)
367. [Spring 19761 Proposed by R. Robinson Rowe, Sacramento,
dA/du = 8u(l + V5/3) - 2/u2 = 0 (10)

California.
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u3 = 3(3 -/5)/16 (11)

2u :%—‘3/ 12(3 - /5)= 1.046 442 3918... (12)

From (7)

w =%W5‘)= 0.467 983 2643... (13)
From (3)

v =25 (5 + 2/5) V1247 - 21/5) = 0.757 212 8273 (1)

Not asked for,
A = 5.733 712 667, which is less than A = 6 for a unit cube

and more than A = Y367 = 4.835 975 86... for a unit sphere.

ALso sofved by John T. Hurt, Bayan, Texoi.

368. [Spring 19761 Proposed by Jack Garfunkelf, Forest Hites High
School, Fushing, New York.

Given a triangle ABC with its inscribed circle (1). Lines AI, BI,
CI cut the circle in points D, E, F respectively. Prove that AD + BE +
CF = (Perimeter of triangle DEF)//3.
Solution by Clayton W. Dodge, University of Maine at Orono.

In 0. Bottema et al, Geometric Inequalities, we find that
Al+BItcCI=er Item 12.3
and

a+ b+ ¢ < 3R/3 Item 5.3

where r is the inradius, R the circumradius, and a, b, a the side lengths

of triangle ABC. From item 12.3 it immediately follows that
AD + BE + CF = 3r

since DI = ET = FI = ». Now apply item 5.3 to triangle DEF and its

circumcircle, the incircle of triangle ABC, whose radius is r. W get
CE + EF + D 5 3r/3.

Dividing this last inequality by v3 and combining it with the preceding

inequality, we get the desired result:
M +BE+ ®Rz=3r> DE+ EF + FD)//3.

Also sofved by John T. Hurt and the. Proposer, Jack Garfunkel.
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369. [Spring 19761 Proposed by Paul Erdus, Spaceship Earth.
Determine all solutions of (z) = -|_|- p.
p=n
Sofution by John T. Hunt, Bryan, Texas. -
Clearly there can be no solutions unless
max n
0=sk=n (k)zTTp.
p=n
Since (Z) are the binomial coefficients the maximum value is
nt/(n/2)t (n/2)! if n is even and n!/(n—-;—l-)!(zl-—g—i)! for n odd. From
the table
n max(Z) Ip
1 1 1
2 2
3 3 6
[ 6 6
5 a8 30
6 20 210
7 35 210
8 70 210
9 126 210
10 252 210
11 462 2310
12 924 2310
17 24310 510510
we see that » = 1, 2, 4, 10 will give the solutions
n=1 n=1 n=2 n=1u n = 10 = 10
k=0 k=1 k=1 k=2 k=u k=6
From the above, the only non-trivial solutions are
(3)=2x3=6 .
(1g)=2x3><5x7=210

No solutions exist for n > 10.
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Also solved by the proposen, Paul Erdos.

370. [Spring 19761 Proposed by David L. Silveaman, West Los Angeles,
Cali fornia.

Able, Baker and Charlie take turns cyclically, in that order,
tossing a coin until three successive heads or three successive tails
appear. With what probabilities will the game terminate on Able's turn?
Oh Baker's?

Solution by the. Proposen.

At Charlie's first turn he is confronted with one of two equally
likely situations: first two throws the same or different. |If the
same, he has half a chance of ending the game on the first toss and half
a chance of starting a new run, putting him in Able's position. |If

different, he is effectively the second player in a newrun, that is, in

_1{1  a b
0—5(54‘5)1'5.

O the 3 out of 4 cases (00X, 0X0, OXX) in which Able gets a second

Baker's position.
Thus

toss, the first two cases place him in Baker's position and the third

affords him equal chances of ending the game or of resuming his initial

_b 1 a
a—-é-'f-—‘I( +-2—>.

From the equation at+ b + ¢ = 1, the solution a = 9/31, b = 8/31,
e = 14/31 is obtained.

Alsc solved by R. Robinson Rowe. Two {ncorrect solutions were
recedved.

state. Thus

N+

R

371. [Spring 19761 Proposed by |. P. Scalisi, State. College at
Bridgewaten, Massachusetts.

A unit fraction is any rational number of the form 1/n, where n
is a positive integer. Write 2/n as the aum of 4 (or 6 or 10 or 14)
distinct unit fractions.
I. Solution by Clayton W. Dodge, University of Maine ad. Orono.

There are many ways to obtain a solution for this problem. Ore is

to utilize several times the well-known equation

1 + 1
+1 nln+1)°
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Thus, for example, we might write

Rt Tt RRT D At D A A DT D
or

23 L 1 ' 1 .

n n n+l nnrtl+1 [nxn+ Dinn+ 1)+ 1]
Extending the idea of the second example, for k terms we have

R RtEE D GFDGFD T (n+k-a)(1n+k-z) * T

11. Solution by R. Robinson Rowe, Sacramento, California.
2/3 = 1/2 + 1/12 + 1/20 + 1/30

2/5 = 1/6 + 1/8 + 1/15 + 1/24

2/7 = 1/5 T 1/15 + 1/60 + 1/420

2/3 =173t 1/4 t 1/30 *+ 1/40 + 1/60 + 1/120

2/3 = 1/4 + 176 + 1/10 + 1/15 + 1/30 + 1/40 + 1/60 * 1/120

2/3 =1/6 *+ 1/8 + 1/10 + 1/12 + 1/15 *+ 1/24 + 1/30 + 1/40 *+ 1/60

t 17120
which are 3 solutions with 4 terms adding differently and 3 more to the
same sum but 6, 8 and 10 terms'respectively. Enuf?

Also sofved by Fred Ahrens, Pomona, California; Gordon R Baker,
Houston, Texas; Alize Dubin, Far Rockaway, New York; Michael W. Ecker,
City Univensity of New York; Victor G. Feser, Bismarck, North Dakota,
Mike Khalil, Chenry HifZ, New Jexsey; Robert C. Gebhardt, Hopatcong,
New Jersey; John T. Hurt, Bayan, Texas; Edith E. Risen, Oregon City,
Onegon; Kenneth M. Wilke, Topeka, Kansas; and the proposer, |. P. Scalisi.

372. [Spring 19761 Proposed by Sidney Penner, Bronx Community
College of CUNY.
Prove the following theorem:

Let (Xl, %) and (Xz’ T,) be topological spaces and letfbe a
function from a subset of X; into X . The function f is continuous in
the relative topology on its domain if and only if for every a € 1,

there exists b ¢ T, such that

(@) onfnbecfia
(ii) if ecan R f then £1(e) c Don f N 6.
Solution by David Del Sesto, Nonth Providence, Rhode Tsfand.
Necessity: Let a € Ty Then as f is continuous on Dom f, there
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isab €7, such that f_l(a) =Danf N b; and so, at least Danf N b ¢
.

Also, if c € an Ra f, then f_l(c) c f_l(a N Ran f). But a N Ranf
c a; hence fian Rn fH ¢ £l(a) = Dm f N b. 1

Sufficiency: Let a€ t,; by (), it suffices to show f "(a) € Dan
fNnb, forb € T .

Let @ € f_l(a) ¢ pon f. Therefore, f(x) € a and f(x) € f(Dom f) =
Ran f; i.e., flz) ¢ anN Ranf or, fl{z}] can Ran f. By (i) we get
FUfe}IT c bn f 0 b, But {2} © F[fT{x}]1], and thus x € Don f N b.

Also so0lved by Fred Ahrens, Pomona, Califownia; Jackie E. Fritts,
Rocky Mount, North Carolina; and the. proposer, Sidney Penner.

23

373. [Spring 19761 Proposed by Joe. Van Austin, Emory University,
Atlanta, Geongla.

Assume that the number of shots at the goal in a hockey game is
a random variable Y that has a Poisson distribution with parameter A.
Each shot is either blocked or is a goal. Assume each shot is independent
of the other shots and p = P[a shot is blocked] for each shot. Find the
probability there are exactly k goals in a gane for k = 0, 1, 2, -+
Solution by the. Proposer.

The possible ways to have exactly k goals are as follows: exactly
k shots and none blocked, exactly k + 1 shots and 1 blocked, --+, exactly
k + j shots and 4 blocked, -+ . These are all disjoint and the prob-
ability is

Plexactly k T § shots N § blocked]
= Plexactly k T j shots],P(J blocked|k+j]

k+g A " J 3
Y S k+d) kK _ -a k.k (Ap) . (k)
e Tapt (g> Pr-p) = e TP eyt C Tk

Summing the probabilities for j = 0, 1, 2, ... gives

Plexactly k goals] = e-Abr—teHt—— Z (}Q)J
J:

k k
-2 A1 - Ap . -A(1-p) [A(L - p)]
s [(k!g)],ep_e D), -
for k=10, 1, 2, *+- . Thus the number of goals scored is also Poisson

with parameter A(1 - p).
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Comments by the. Probfem Editor:

a) Only one misprint was detected in the problem Department of

the Fall 1976 issue: Gusses on page 315 should read guesses.
b) The solution to part (c) of problem 360, tentatively scheduled
for this issue, is not yet ready for presentation. A
c¢) Readers with an insatiable addiction and an uncontrollable

proclivity to the highly civilized activity of problem solving are
encouraged to liquidate their frustrating compulsions and obsessions by
participating in the problem departments of the following mathematical
journals:

The American Mathematical Monthly

The Mathematics Magazine

The Two-Year College Mathematics Journal

Eureka (Algonquin College, Ottawa, Ontario, Canada)

The Mathematics Association of Two-Year Colleges Journal

School Science and Mathematics

The Ontario Secondary School Mathematics Bulletin

The Mathematics Student Journal

The Journal of Recreational Mathematics

The Problem Department of the Technology Review.
Readers are urged to communicate with ne regarding suggestions for
extending this list. Subscription information is available on request.

LOCAL AWARDS

I'f your chapter has presented or will present awards this year

to either undergraduates or graduates (whether members of Pi Mi
Epsilon or not), please send the names of the recipients to the
Editor for publication in the Journal.
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