pl MU EPSILON
 JOURNAL

VOLUME 6 FALL 1977 NUMBER 7A "Geometric" Definition of the Tangent to a CurveLouis I. Alpert383
Interpolation Using the Cubic Spline FunctionRandolph J. Taylor387
On Difunctional and Circular Relations Alma E. Posey 394
How to Design and Implement a Pi Mu Epsilon Student Conference Milton Cox. 400
1975-1976 Manuscript Contest Winners 403
New Chapters of Pi Mu Epsilon 404
Puzzle Section 405
Gleanings from Chapter Reports 414
Problem Department 417
Local Chapter Awards Winners 438
Summer Meeting in Seattle. 442

PI MU EPSILON JOURNAL
the official publication OF THE HONORARY MATHEMATICAL FRATERNITY

David C. Kay, Editor

ASSOCIATE EDITORS

Roy 1. Deal Leon Bankoff

OFFICERS OF THE FRATERNITY

President: E. Allan Davis, University of Utah Vice-president: R. V. Andree, University of Oklahoma Secretary-Treasurer: R. A. Good, University of Maryland Past-President: H. T. Karnes, Louisiana State University

COUNCILORS:

E. Maurice Beesley, University of Nevada

Milton D. Cox, Miami University, Ohio
Eileen L. Poiani, St. Peter's College
Robert M. Woodside, East Carolina University

[^0] bock cover.

A "GEOMETRIC" DEFINITION OF THE TANGENT TO A CURVE

by Louis I. Alpert ${ }^{1}$

Bronx Community College of the city University of New York

In most calculus courses, students are introduced to the notions of the tangent to a curve and the derivative of a function of one real variable, through definitions which are, essentially, based upon the concept of the limit of a sequence of real numbers. Furthermore, such definitions are generally expressed in terms of the particular function which, analytically, represents the curve, i.e., in terms of a particular parametrization of the given curve.

On the other hand, in the same calculus course, the related notions of the area enclosed by a curve, and the length of a curve, are often conveniently defined by means of upper and lower bounds. In this setting, these definitions are not dependent upon a particular parametrization. Surely, this suggests the question of whether there is a precise definition of the tangent to a curve (and the derivative of a function of one real variable) expressed in terms of upper and lower bounds.

In this note we answer the above in the affirmative by constructing such definitions. For this purpose we employ a very simple analogue of a concept of deviation, introduced in the study of surface area in (2), and generalized in (1).

1. Plane Curves

Let C be a curve and P a point of C. Let $N(P, 6)$ be a neighborhood of P (a disc). By $D(C ; N(P, \delta)$), the deviation of C on $N(P, \delta)$, we mean the L.U.B. of the acute angles between two chords $\overline{P Q}_{1}$ and $\overline{P Q}_{2}$ of C which are in $N(P, 6)$. We define $D(C ;$ P), the deviation of C at P to be the G.L.B. of the set $\{$ all $D(C ; N(P, \delta))$ for all $\delta>0\}$.

Theorem 1. Let C be the graph of a function $f(x)$ and let p be in the domain of $f(x)$. Let $\mathrm{P}=(p, f(p))$. If $D(C ; p)=0$, then f is

[^1]differentiable at p (in the general sense which permits $f^{\prime}(p)$ to be infinite).

Proof, Let $\left(Q_{1}, Q_{2}, Q_{3}, \ldots\right)$ be an infinite sequence of points of C distinct from P, converging to P. Let $\left(V_{Q_{1}}, V_{Q_{2}}, V_{Q_{3}}, \ldots\right)$ be the corresponding sequence of unit vectors from P through Q_{1}, Q_{2}, Q, \ldots respectively.

If the set $V_{Q_{1}}, V_{Q_{2}}, V_{Q_{3}}$, is finite, then there exists a convergent subsequence of $\left(V_{Q 1}, V_{Q_{2}}, V_{Q_{3}}, \ldots\right)$. If the set is infinite, then there exists a vector limit point of the set. Then there exists a subsequence of $\left(V_{Q_{1}}, V_{Q_{2}}, V_{Q_{3}}, \ldots\right)$ which converges to this vector limit point. Thus, in either case, there exists a convergent subsequence.

Suppose now that there exist two subsequences ($V_{1}^{\prime}, V_{2}^{\prime}, V_{3}^{\prime}, \ldots$) and ($V^{\prime \prime}, V^{\prime \prime}, V_{3}^{\prime \prime}, \ldots$) which converge, respectively, to two distinct limit unit vectors $V *$ and $V * *$. Let $4 a=$ the acute angle between V^{*} and $V^{* *}$ There exists a positive integer N such that if $n>N$, then the angle (V_{n}^{\prime}, V^{*}) between V_{n} and V^{*} is less than a and the angle ($V_{n}^{\prime \prime}, V_{*}^{*}$) between $V_{n}^{\prime \prime}$ and $V^{* *}$ is also less than a. It follows that ($V_{n}^{\prime}, V_{n}^{\prime \prime}$) $>$ a. This contradicts the hypothesis that $D(C ; P)=0$. Hence V, the limit unit vector, is unique. It follows that every subsequence of ($V_{Q_{1}} \quad V_{Q_{2}}, \ldots$) has a subsequence converging to V and hence, $\left(V_{Q_{1}}, V, Q_{2}, \ldots\right)$ converges to V. Consequently, f is differentiable at P in the above indicated general sense of differentiability.

Theorem 2. Let C be the graph of a function f. If f is differentiable at p (whether $f^{\prime}(p)$ is finite or infinite), then $D(C ; P)=0$, where $\mathrm{P}=(p, f(p))$.

Proof. Let $\mathrm{X}=(x, f(x))$ and let $f^{\prime}(p)=\tan \mathrm{a}, 0 \leq \mathrm{a}<\pi$. Let $\theta(X)$ denote the least positive angle from the x-axis and the chord through P and X

Let $\varepsilon>0$ be given.
Since f is differentiable at p, there exists $6>0$ such that if $\mathrm{X} \in C \cap N(P, \delta)$, then $|\theta(X)-a|<\varepsilon / 2$. If X_{1} and X_{2} are in $C \cap N(P, \delta)$ then $\left|\theta\left(X_{1}\right)-\boldsymbol{a}\right|<\varepsilon / 2$ and $\left|\theta\left(X_{2}\right)-a\right|<\varepsilon / 2$. Hence $\left|\theta\left(X_{1}\right)-\theta\left(X_{2}\right)\right|<\varepsilon$. Since this is true for every $\varepsilon>0, D(C ; P)=0$.

We now propose the following definition of the concept of tangent to a curve at a given point of the curve.

FIGURE 1
If through the point P of C there exists a straight line A such that, for every $\varepsilon>0$, there exists a neighborhood $N(P, \delta)$ such that for every chord through P and a point of C in $N(P, \delta)$, the acute angle between this chord and the line λ is less than ε, then this line A is said to be tangent to C at P (See Figure 1).

As an example of the use of the foregoing definition, let us construct the tangent to C at P .

FIGURE 2
Referring to Figure 2, we wish the angle a to be small. It is seen that $\mathrm{a}=\beta$. Hence $\mathrm{a}=0$ when $B=0$. This implies that $\overline{P R}$ and $\overline{Q P}$
be both perpendicular to $\overline{O P}$. It follows that the line through P and perpendicular to $\overline{O P}$ is tangent to C at P.

Theorem 3. A curve cannot have two distinct tangents at P.

Proof. Immediate.
Theorem 4. Let C be the graph of a function f . If f is differentiable at P (whether $f^{\prime}(p)$ is finite or infinite), then there exists a tangent to C at $P:(p, f(p))$.

Proof. Suppose \mathbf{f} is differentiabie at P . Then $D(C ; P)=0$, so by the proof of Theorem 1 , there is a unit vector V such that if $\left(Q_{1}, Q\right.$, Q_{3}, \ldots) is a sequence of points of C distinct from P converging to P and for each $\boldsymbol{i} \mathrm{V}_{\mathbf{Q i}}$ is a unit vector from P through \mathbb{Q}_{i}, then $\left(V_{Q_{1}}, V_{Q_{2}}, \ldots\right)$ converges to V .

Wh now propose the following definition of the derivative
Let \mathcal{C} be the graph of the given function f. If at $P \in \mathrm{C}$, the curve C has a tangent line λ then $f^{\prime}(p)$ is the trigonometric tangent of the acute angle between the x-axis and A. Thus defined, $f^{\prime}(p)$ may be finite or infinite.

One easily shows that $f^{\prime}(p)$ as defined above is precisely equal to $f^{\prime \prime}(p)$ as defined by sequences in the standard manner. Thus. we have here a definition of the derivative which is, in a sense, expressed in terms of upper and lower bounds which occur in our newly introduced concept of the deviation of C at $P, D(C ; P)$.

REFERENCES

1. Albert, Louis I. and Toralballa, L. V., An Elementary Definition of Surface Area in E^{n+1} for Smooth Surfaces, Pacific Journal of Mathematics, 40 (1972), 261-268.
2. Toralballa, L. V., Directional Deviation Norms and Surface Area, L'Enseignement Math., Π^{θ} Series 13 (1967), 111-118.

by Randolph J. Taylor

California Polytechnic State. University

Introduction

Consider the problem of finding an interpolating curve to a given set of $n+\mathbf{1}$ data points. One standard method of interpolation is to construct a polynomial of degree n which passes through the $n+\mathbf{1}$ points. To improve the accuracy of the interpolation, we increase the number of data points, which in turn, increases the degree of the polynomial.
Generally, the higher the degree of a polynomial the more the function oscillates. Mathematically, we have interpolated the data points, but intuitively, an oscillating function is often unrealistic. The problem now becomes to find a smooth curve to interpolate the given data.

Draftsmen use splines to draw smooth curves through data points. A spline is a flexible strip of plastic or wood which can be bent to pass through the required points, yet constructed so that the spline straightens out as much as possible while still interpolating the data. The result is that the spline avoids sharp corners when shifting between intervals of data points. The mathematical cubic spline function is introduced as a model of the physical spline used by draftsmen.

Definition. The cubic spline is a function $y(x)$ defined on an interval $[a, b]$ which is a piecewise cubic polynomial on every subinterval $\left[x_{i}, x_{i+1}\right]$ of $[a, b]$, is twice continuously differentiable, and passes through the data points.

Theorem 1. The cubic interpolating spline function $y(x)$ given by the above definition exists and is unique.

Proof. Let the irtervà $[a, b]$ have ricles $a=x_{0}<x_{1}<\cdots<x_{\text {., }}=$ b with corresponding data points $f\left(x_{0}\right), f\left(x_{1}\right), \cdots, f\left(x_{n}\right)$ and let $y(x)$ be the spline function which interpoiates these data points. For notational convenience, let

$$
f_{i}=f\left(x_{i}\right) \quad \text { for } i=u, 1, \cdots, n,
$$

$$
\begin{array}{cl}
\mathrm{h}_{i}=\mathrm{x}_{i+1}-x_{i} & \text { for } i=0,1, \cdots, n-1, \\
y_{i}(x)=y(x) & \text { for } \mathrm{x} \in\left[x_{i}, x_{i+1}\right] \\
\varepsilon_{i}=y^{\prime \prime}\left(x_{i}\right) & \text { for } i=0,1, \cdots, n .
\end{array}
$$

Since $y(x)$ is a cubic polynomial on every subinterval $\left[x_{i}, x_{i+1}\right]$ of $[a, b]$, then $y^{\prime \prime}(x)$ is a linear polynomial on each $\left[x_{i}, x_{i+1}\right]$ and can be expressed a

$$
y^{\prime \prime}(x)=s_{i} \frac{x_{i+1}-x}{h_{i}}+s_{i+1} \frac{x-x_{i}}{h_{i}} \quad \text { for } i=0,1, \cdots, n-1 \text { (1) }
$$

where $x \in\left[x_{i}, x_{i+1}\right]$. Since $y(x)$ is twice continuously differentiable, we obtain $y(x)$ by integrating (1) twice.

$$
\begin{gather*}
y^{\prime}(x)=\int y^{\prime \prime}(x) d x=-\frac{s_{i}}{2 h_{i}}\left(x_{i+1}-x\right)^{2}+\frac{s_{i+1}}{2 h_{i}}\left(x-x_{i}\right)^{2}+C_{1} \\
y(x)=\int y^{\prime}(x) d x=\frac{s_{i}}{6 h_{i}}\left(x_{i+1}-x\right)^{3}+\frac{s_{i+1}}{6 h_{i}}\left(x-x_{i}\right)^{3}+C_{1} x+C_{2} \tag{2}
\end{gather*}
$$

From (2) we obtain

$$
\begin{gather*}
y\left(x_{i}\right)=\frac{s_{i} h_{i}{ }^{2}}{6}+C_{1} x_{i}+C_{2} \tag{3}\\
y\left(x_{i+1}\right)=\frac{s_{i+1} h_{i}{ }^{2}}{6}+C_{1} x_{i+1}+C_{2} \tag{4}
\end{gather*}
$$

Since the interpolating spline function must pass through the data points, $y\left(x_{i}\right)=f_{i}$ and $y\left(x_{i+1}\right)=f_{i+1}$. Using this, we now determine the constants of integration, C_{1} and C_{2}, from (3) and (4).

$$
\begin{gather*}
\mathbf{f} .=\frac{s_{\mathbf{i}} h_{i}^{2}}{6}+C_{1} x_{i}+C_{2} \tag{5}\\
f_{i+1}=\frac{s_{i+1} h_{i}^{2}}{6} C_{1} x_{i+1}+C_{2} \tag{6}
\end{gather*}
$$

Subtracting (5) from (6) and solving for C_{1} yields

$$
\begin{align*}
f_{i+1}-f_{i} & =\frac{s_{i+1} h_{i}^{2}}{6}-\frac{s_{i} h_{i}^{2}}{6}+C_{1}\left(x_{i+1}-x_{i}\right) \\
c_{1} & =f_{i+1}-f_{i-1}-s_{i+1} h_{i}+\frac{s_{i 6 i}}{} \tag{7}
\end{align*}
$$

Substituting (7) into (5) and solving for C_{2} yields

$$
\begin{equation*}
c_{2}=f_{i}-\frac{s_{i} h_{i}^{2}}{6}-\left(\frac{f_{i+1}}{h_{i}}-\frac{f_{i}}{h_{i}}-\frac{s_{i+1} h_{i}}{6}+\frac{s_{i} h_{i}}{6}\right) x_{i} \tag{8}
\end{equation*}
$$

Substituting (7) and (8) for C_{1} and C_{2} into (2), the spline becomes

$$
\begin{gathered}
y(x)=\frac{s_{i}}{6 h_{i}}\left(x_{i+1}-x\right)^{3}+\frac{s_{i+1}}{6 h_{i}}\left(x-x_{i}\right)^{3}+\left(\frac{f_{i+1}}{h_{i}}-\frac{s_{i+1} h_{i}}{6}\right)\left(x-x_{i}\right) \\
-\left(\frac{f_{i}}{h_{i}}-\frac{s_{i} h_{i}}{6}\right)\left(x-x_{i}\right)+f_{i}-\frac{s_{i} h_{i}^{2}}{6}
\end{gathered}
$$

Substituting $x_{i}=x i+1-h_{i}$ in the fourth term and simplifying we obtain

$$
\begin{align*}
y(x)= & \frac{s_{i}}{6 h_{i}}\left(x_{i+1}-x\right)^{3}+\frac{s_{i} h_{i}}{6 h_{i}}\left(x-x_{i}\right)^{3}+\left(\frac{f_{i+1}}{h_{i}}-\frac{s_{i+1} h_{i}}{6}\right)\left(x-x_{i}\right) \\
& +\left(\frac{f_{i}}{h_{i}}-\frac{s_{i} h_{i}}{6}\right)\left(x_{i+1}-x\right) \quad \text { for } i=0, \cdots, n-1 \tag{9}
\end{align*}
$$

To obtain the interpolating spline $y(x)$ in (9) we need to determine si for $i=0,1, \cdots, n$. Differentiating (g) produces

$$
\begin{align*}
y^{\prime}(x)=-\frac{s_{i}}{2 h_{i}}\left(x_{i+1}-x\right)^{2} & +\frac{s_{i+1}}{2 h_{i}}\left(x-x_{i}\right)^{2}+\frac{f_{i+1}}{h_{i}}-\frac{s_{i+1} h_{i}}{6} \\
& -\frac{f_{i}}{h_{i}}+\frac{s_{i} h_{i}}{6} \tag{10}
\end{align*}
$$

On $\left[x_{i-1}, x.\right]$ from (10) we obtain

$$
\begin{equation*}
y_{i-1}^{\prime}\left(x_{i}\right)=\frac{s_{i} h_{i-1}}{2}+\frac{f_{i}}{h_{i-1}}-\frac{s_{i}^{h_{i-1}}}{6}-\frac{f_{i-1}}{h_{i-1}}+\frac{s_{i-1} h_{i-1}}{6} \tag{11}
\end{equation*}
$$

And, on [$x i$ ' $x i+1]$ from (10) we obtain

$$
\begin{equation*}
y_{i}^{\prime}\left(x_{i}\right)=-\frac{s_{i} h_{i}}{2}+\frac{f_{i+1}}{h_{i}}-\frac{s_{i+1} h_{i}}{6}-\frac{f_{i}}{h_{i}}+\frac{s_{i} h_{i}}{6} \tag{12}
\end{equation*}
$$

Since $y^{\prime}(x)$ is continuous, the slope at the end of one subinterval must be the same as the slope at the beginning of the next subinterval. So, for subintervals $\left[x_{i-1}, x_{1}\right]$ and $\left[x_{i}, x_{i+1}\right]$ we have $y i-1\left(x_{i}\right)=y i\left(x_{i}\right)$ for $i=1,2, \cdots, n-1$. Substituting (11) and (12) into this yields

$$
\begin{gathered}
\frac{s_{i} h_{i-1}}{2}+\frac{f_{i}}{h_{i-1}}-\frac{s_{i} h_{i-1}}{6}-\frac{f_{i-1}}{h_{i-1}}+\frac{s_{i-1} h_{i-1}}{6}=-\frac{s_{i} h_{i}}{2}+\frac{f_{i+1}}{h_{i}} \\
-\frac{s_{i+1} h_{i}}{6}-\frac{f_{i}}{h_{i}}+\frac{s_{i} h_{i}}{6}
\end{gathered}
$$

Grouping like terms and simplifying yields

$$
\begin{equation*}
s_{i+1}+2\left(\frac{h_{i-1}+h_{i}}{\hbar_{i}}\right) s_{i}+\frac{h_{i-1}}{h_{i}} s_{i-1}=\frac{6}{h_{i}}\left(\frac{f_{i+1}-f_{i}}{h_{i}}-\frac{f_{i}-f_{i-1}}{h_{i-1}}\right) \tag{13}
\end{equation*}
$$

$$
\text { for } i=1,2, \cdots, n-1
$$

This is a linear system of $n-1$ equations in $n+1$ unknowns, s_{0}, s_{1}, \cdots, 8 . Allowing the spline to stick out past the end points $x_{0}=a$ and $x_{n}=b$, causes the spline to straighten out and have a zero curvature. But, the second derivative is zero at all points on a curve having zero curvature. Thus, $\boldsymbol{s}_{0}=0$ and $\boldsymbol{s}_{n}=0$. We now have $\boldsymbol{n}-\mathbf{1}$ equations and n-1 unknowns. Rewriting (13) we obtain

$$
\begin{gathered}
c_{i} s_{i-1}+2\left(1+c_{i}\right) s_{i}+s_{i+1}=d_{i} \quad \text { for } \mathbf{i}=1,2, \cdots, n-1 \\
\text { where } c_{i}=\frac{h_{i-1}}{h_{i}} \text { and } d_{i}=\frac{6}{h_{i}}\left(\frac{f_{i+1}-f_{i}}{h_{i}}-\frac{f_{i}-f_{i-1}}{h_{i}}\right) .
\end{gathered}
$$

We need only show that s_{i} exists and is unique for $i=1,2, \cdots, n-1$; then by (9), the spline exists and is unique. Writing (14) in matrix form we obtain a tridiagonal system $\mathrm{As}=\boldsymbol{d}$ given by
$\left(\begin{array}{ccccccc}2\left(1+c_{1}\right) & 1 & 0 & 0 & \ldots & 0 & 0 \\ c_{2} & 2\left(1+c_{2}\right) & 1 & 0 & 0 & 0 & 0 \\ 0 & c_{3} & 2\left(1+c_{3}\right) & 1 & 0 & 0 & 0 \\ \vdots & & & & & 0 \\ 0 & 0 & 0 & 0 & c_{n-2} & 2\left(1+c_{n-2}\right) & 1 \\ 0 & 0 & 0 & 0 & 0 & c_{n-1} & 2\left(1+c_{n-1}\right)\end{array}\right)\left(\begin{array}{c}s_{1} \\ s_{2} \\ s_{3} \\ \vdots \\ s_{n-2} \\ s_{n-1}\end{array}\right)=\left(\begin{array}{c}d_{1} \\ d_{2} \\ d_{3} \\ \vdots \\ d_{n-2} \\ d_{n-1}\end{array}\right)(15)$
where $A=\left(a_{i, j}\right), s=\left(s_{i}\right)^{T}$, and $d=\left(d_{i}\right)^{T}$ for $\mathbf{i}, j=1.2, \cdots, n-1$.
Clearly,

$$
\left|a_{i i}\right|>\sum_{\substack{j=1 \\ j \neq i}}^{n-1}\left|a_{i . j}\right| \text { for } i=1,2, \cdots, n-1 \text {. }
$$

Thus, A is diagonally dominant and hence A is nensingular. Thus, $A s=d$
has a unique solution. Therefore, s_{i} exists, is unique, and the spline can be calculated from (9) once each s_{i} is determined. a

Computation of s_{i}

To determine the solution of the tridiagonal system $A s=d$ given. by (15) we use a recursion algorithm. Let

$$
\begin{equation*}
s_{i-1}=p_{i} s_{i}+q_{i} \quad \text { for } i=1,2, \cdots, n \tag{16}
\end{equation*}
$$

Substituting this into (14) yields

$$
c_{i}\left(p_{i} s_{i}+q \underline{q}\right)+2\left(1+c_{l}\right) s_{i}+s_{i+1}=d_{i}
$$

Thus,

$$
s_{i}=\frac{-1}{c_{i} p_{i}+2\left(1+c_{i}\right)} s_{i+1}+\frac{d_{i}-c_{i} q_{i}}{c_{i} p_{i}+2\left(1+c_{i}\right)}
$$

This has the same form as (16) with

$$
\begin{equation*}
p_{i+1}=\frac{-1}{c_{i} p_{i}+2\left(1+c_{i}\right)} \text { and } q_{i+1}=\frac{d_{i}-\mathrm{O}_{\mathrm{z}} \mathrm{q}}{c_{i} p_{i}+2\left(1+\mathrm{a}_{i}\right)} \tag{17}
\end{equation*}
$$

Letting $p_{1}=0$ and $q_{1}=0$ in (16) produces $\boldsymbol{s}_{0}=0$ which is desired. Now using p_{1}, q_{1}, and (17) recursively we obtain p_{i} and $q i$ for $i=1, \cdots$, n - 1 providing that no demoninator is zero. Then, using $\boldsymbol{s} \boldsymbol{n}=0$ and (16) recursively we compute si in the reverse order. We now prove that

$$
\begin{equation*}
c_{i} p_{i}+2\left(1+c_{i}\right) \neq 0 \quad \text { for } i=1,2, \cdots, n \tag{18}
\end{equation*}
$$

Proof. Since $p_{0}=0,\left|p_{1}\right|<1$, which in turn results in $\left|p_{2}\right|<1$. Continuing this we get $\left|p_{i}\right|<1$. Then $\left|c_{i} p_{i}+2\left(1+c_{i}\right)\right|=\left|c_{i}\left(p_{i}+2\right)+2\right|$ $\geq \mid c_{i}$ t $2 \mid>1$ so (18) holds for case i. Thus,

$$
\left|p_{i+1}\right|=\frac{1}{\left|\sigma_{i} p_{i}+2\left(1+c_{i}\right)\right|}<1
$$

and $\left|c_{i+1} p_{i+1}+2\left(1+c_{i+1}\right)\right|>1$. Hence, by induction, (18) holds for the case $i+1$. a

Theorem 2. The cubic spline function is the smoothest interpolating curve in terms of the mean square curvature of all twice continuously" differentiable interpolating functions.

Proof. Let $f(x)$ and $g(x)$ be twice continuously differentiable on
$[\mathrm{a}, \quad b]$. Let $y(x)$ be the interpolating cubic spline to $f(x)$ at $\mathrm{a}=\mathrm{x}_{0}<$ $x_{1}<\cdots<\mathrm{x}_{\mathrm{n}}=\mathrm{b}$ with $y^{\prime \prime}\left(x_{0}\right)=0$ and $y^{\prime \prime}\left(x_{\mathrm{n}}\right)=0$. Let $g(x)$ also interpolate $f(x)$ at $\mathrm{a}=x_{0}<\mathrm{x}_{1}<\cdots<x_{n}=\mathrm{b}$

$$
\begin{align*}
\int_{a}^{b}\left[g^{\prime \prime}(x)\right]^{2} d x=\int_{a}^{b}\left[g^{\prime \prime}(x)\right. & \left.-y^{\prime \prime}(x)\right]^{2} d x+2 \int_{a}^{b}\left[g^{\prime \prime}(x)-y^{\prime \prime}(x)\right] y^{\prime \prime}(x) d x \\
& +\int_{a}^{b}\left[y^{\prime \prime}(x)\right]^{2} d x \tag{19}
\end{align*}
$$

Consider,

$$
\int_{a}^{b}\left[g^{\prime \prime}(x)-y^{\prime \prime}(x)\right] y^{\prime \prime}(x) d x=\sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}}\left[g^{\prime \prime}(x)-y^{\prime \prime}(x)\right] y^{\prime \prime}(x) d x .
$$

Integrating by parts with $u=y^{\prime \prime}(x)$ and $d v=\left[g^{\prime \prime}(x)-y^{\prime \prime}(x)\right] d x$ yields

$$
\begin{gather*}
\int_{a}^{b}\left[g^{\prime \prime}(x)-y^{\prime \prime}(x)\right] y^{\prime \prime}(x) d x=\left.\sum_{i=0}^{n-1}\left[g^{\prime}(x)-y^{\prime}(x)\right] y^{\prime \prime}(x)\right|_{x_{i}} ^{x_{i+1}} \\
- \tag{20}\\
-\sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}}\left[g^{\prime}(x)-y^{\prime}(x)\right] y^{\prime \prime}(x) d x .
\end{gather*}
$$

First,

$$
\begin{gathered}
\left.\sum_{i=0}^{n-1}\left[g^{\prime}(x)-y^{\prime}(x)\right] y^{\prime \prime}(x)\right|_{x_{i}} ^{x_{i+1}}=\left[g^{\prime}\left(x_{n}\right)-y^{\prime}\left(x_{n}\right)\right] y^{\prime \prime}\left(x_{n}\right) \\
-\left[g^{\prime}\left(x_{0}\right)-y^{\prime}\left(x_{0}\right)\right] y^{\prime \prime}\left(x_{0}\right)=0
\end{gathered}
$$

since $y^{\prime \prime}\left(x_{n}\right)=y^{\prime \prime}\left(x_{0}\right)=0$. Next, since $y^{\prime \prime \prime}(x)$ is a constant
$\int_{x_{i}}^{x}{ }^{x}\left[g^{\prime}(x)-y^{\prime}(x)\right] y^{\prime \prime \prime}(x) d x=y^{\prime \prime}(x) \int_{x_{i}}^{x}{ }^{x+1}\left[g^{\prime}(x)-y^{\prime}(x)\right] d x$

$$
\begin{aligned}
& =y^{\prime \prime \prime}(x)\left[\left.(g(x)-y(x))\right|_{x_{i}} ^{x_{i+1}}\right] \\
& =y^{\prime \prime \prime}(x)\left[\left(g\left(x_{i+1}\right)-y\left(x_{i+1}\right)\right)-\left(g\left(x_{i}\right)-y\left(x_{i}\right)\right)\right] \\
& =0
\end{aligned}
$$

since $y(x)$ and $g(x)$ both interpolate $f(x)$ at the points x_{i} and x_{i+1}, so that $y\left(x_{i}\right)=g\left(x_{i}\right)$ and $y\left(x_{i+1}\right)=g\left(x_{i+1}\right)$. Thus (20) becomes

$$
\int_{a}^{b}\left[g^{\prime \prime}(x)-y^{\prime \prime}(x)\right] y^{\prime \prime}(x) d x=0
$$

Substituting this into (19) we obtain

$$
\int_{a}^{b}\left[g^{\prime \prime}(x)\right]^{2} d x=\int_{a}^{b}\left[g^{\prime \prime}(x)-y^{\prime \prime}(x)\right]^{2} d x+\int_{a}^{b}\left[y^{\prime \prime}(x)\right]^{2} d x \geq \int_{a}^{b}\left[y^{\prime \prime}(x)\right]^{2} d x
$$

since $\int_{a}^{b}\left[g^{\prime \prime}(x)-y^{\prime \prime}(x)\right]^{2} d x \geq 0$. Thus, the mean square curvature of $y(x)$ is less than or equal to the mean square curvature of $g(x)$. व

REFERENCES

1. Handscomb, D. C., Methods of Numerical Approximation, Pergamon Press Ltd., Oxford, England, 1966.
2. Shampine, L. F., and Allen, R. ${ }^{\text {C }}$, Numerical Computing: An Introduction. W. B. Sanders Company, Philadelphia, Pennsylvania, 1973'.
3. Walsh, J. L., Ahlberg, J. H., and Nilson, E. N., Best Approximation Properties of the Spline Fit, Journal of Math. Mech., 11 (1962), 225-234
4. Wendroff, B., Theoretical Numerical Analysis, Academic Press, Inc., New York, 1966.

LOCAL AWARDS

If your chapter has presented or will present awards this year to either undergraduates or graduates (whether members of Pi Mu Epsilon or not), please send the names of the recipients to the Editor for publication in the Journal.

REFEREES FOR THIS ISSUE

The Journal recognizes with appreciation the following persons who graciously devoted their time to evaluate papers submitted for publication prior to this issue, and to serve as judges in the Undergraduate Manuscript Contest: J. Harold Ahlberg, Brown University; David W, Ballew, South Dakota School of Mines and Technology; John Green, University of Oklahoma; and Patrick Lang, Old Dominion University.

The Journal also acknowledges with gratitude the expert typing performed by Theresa McKelvey.

ON DIFUNCTIONAL AND CIRCULAR RELATIONS

by Alma E. Posey ${ }^{1}$
Hendrix College

The purpose of this paper is to investigate relationships between the notions of difunctional relations and circular relations. Among such relationships we will prove that a reflexive relation is difunctional (circular) if and only if it is an equivalence relation. The graph G of a function is difunctional but is circular if and only if G^{3} is the
diagonal relation. Transitive closure, difunctional closure, and circular closure for relations are also examined. Finally, we show that subgroups of the product of two groups are difunctional relations, but subsemigroups of the product of two semigroups need not be difunctional.

We begin with some introductory remarks and definitions concerning relations. Let X and Y be sets. A relation R from X to Y means R is a subset of $X \times Y$. The inverse of such a relation is defined by $R^{-1}=$ $\{(y, x) \mid(x, y) 6 R\}$ and is a relation from Y to X. If S is a relation from Y to a set Z, then the composition of R with S, denoted R o S, is defined by R o $\boldsymbol{S}=\{(x, z) \mid$ there is a y 6 Y such that $(x, y) 6 \mathrm{R}$ and $(y, z) \in S\}$. It should be noted that R o S is a relation from X to Z. It is routine to show the composition of relations is associtive, (if T is a relation from 2 to W, then (R o S) $\cdot 0 \mathrm{~T}=\mathrm{R}$ o $(S \circ T)$). The inverse operation and composition respect each other via: $\quad(R \text { o } S)^{-1}=S^{-1}$ o R^{-1}. The verification is routine and is omitted.

If R is a relation from X to X, we say R is a relation on X. We denote the diagonal relation on X by $\Delta_{X}=\{(x, x) \mid x 6 X\}$. A relation R on X is called reflexive if $\Delta_{X} \subset R$, symmetric if $R^{-1}=R$, and transitive if R o $R \subset R$. R is called an equivalence relation if R is reflexive, symmetric, and transitive.

We next consider the two types of relations we wish to examine in this paper. Let S be a relation an \mathbb{Z}. S is calied ciroular if and only if S OSC 5^{-1}. If \mathbb{Z} is a relation fron \bar{Z} to Y, then R is called

[^2]difunctional if and only if R o R^{-1} o $R \subset R$.
Theorem 1. For any relation R from X to $Y, R \subset \mathrm{R}$ o R^{-1} o R. Thus R is difunctional if and only if $\mathrm{R}=\mathrm{R}$ o R^{-1} o R .

Proof. Let $(a ; y) \in R$; then $(y, x) 6 R^{-1}$ and hence $(a ; y) \in \mathrm{R}^{0}$, R^{-1} o R . Thus for any relation $\mathrm{R}, \mathrm{R} \subset \mathrm{R}$ o R^{-1} o R . Thus, R is difunctional if and only if $R=R$ o R^{-1} o R.

Theorem 2. If R is a relation from X to Y, then R is difunctional if and only if R^{-1} is difunctional.

Proof. If R is difunctional, then R o R^{-1} o $\mathrm{R}=\mathrm{R}$, so $\left(R \text { o } R^{-1} \text { o } R\right)^{-1}$ $=(R)^{-1}=R^{-1}$. Thus R^{-1} o R o $R^{-1}=R^{-1}$ and R^{-1} is difunctional. It follows that if R^{-1} is difunctional, then $\left(R^{-1}\right)^{-1}=\mathrm{R}$ is also.
he have an analogous theorem for circular relations.
Theorem 3. If S is a relation on X, then S is circular if and only if S^{-1} is circular.

Proof. If S is circular, then S o $S \subset S^{-1}$, so S^{-1} o $S^{-1}=(S \text { o } S)^{-1}$ $\subset\left(S^{-1}\right)^{-1}=S$. Thus S^{-1} o $S^{-1} \subset S$ and S^{-1} is circular. It follows that if S^{-1} is circular, then $\left(S^{-1}\right)^{-1}=S$ is also.

Theorem 4. If R is a reflexive relation on X, then the following are equivalent.

1. R is an equivalence relation.
2. R is a difunctional relation.
3. R is a circular relation.

Proof. Assume R is anequivalence relation. Then R is symmetric; hence $R=R^{-1}$. Consequently, since R is transitive, R o R^{-1} o $R=$ R o R o $\mathrm{R} \subset \mathrm{R}$ o $\mathrm{R} \subset \mathrm{R}$. Hence R is difunctional.

To that see R being difunctional implies R is circular, recall that R^{-1} must also be difunctional and reflexive. Therefore R o $R=\Delta_{X}$ o $\mathrm{R} \circ$ Δ_{X} o R o Δ_{X} с R^{-1} o R o R^{-1} o R o $R^{-1} \subset R^{-1} \circ R$ o $R^{-1} \subset R^{-1}$; thus R is circular.

Next assume R is circular and reflexive. Then $R^{-1}=\Delta_{X}$ o $R^{-1} C$ R^{-1} o $R^{-1} \subset \mathrm{R}$, since R^{-1} is also circular. Hence R is symmetric. To see R is transitive, note R o $R \subset R^{-1} \subset R$.

Theorem 4 illustrates a connection between difunctional and circular
relations an a set X. Using this theorem for motivation, we investigate further properties in order to clarify connections between the notions.

Theorem 5. If R is a symmetric circular relation on X then R is difunctional.

Proof. Since R is symmetric, $R=R^{-1}$, so R o R^{-1} o $R=R$ o R o R. Applying circularity, R o R o $R \subset R^{-1} o R=R o R \subset R^{-1}$. Thus R is difunctional.

The converse of Theorem 5 can be shown not to hold through the following example. Let $X=\{x, y, z, w\}$ and $R=\{(x, y)(y, x)(z, y)(y, z)$ $(w, z)(z, w)(x, w)(w, x)\} . R$ is symmetric and difunctional, but ifR is circular, (x, y) and $(y, x) 6 R$ would imply $(x, x) 6 R^{-1}$ which is false.

Theorem 6. If R is a difunctional relation from X to Y with the property that for every $x \in X$ there exist a $y \in Y$ such that $(x, y) 6 R$, then R o R^{-1} is an equivalence relation on X.

Proof. Let $x 6$. Then there exist $y 6 Y$ such that $(x, y) \in R$. Then $(y, x) 6 R^{-1}$, so (a:, x) $6 R o R^{-1}$. Thus $R o R^{-1}$ is reflexive. Since $\left(R \circ R^{-1}\right)^{-1}=\left(R^{-1}\right)^{-1} o R^{-1}=R o R^{-1}$, then $R o R^{-1}$ is symmetric. Now, $\left(R \circ R^{-1}\right) \circ\left(R \circ R^{-1}\right)=\left(R \circ R^{-1} \circ R\right) \circ R^{-1}=R \circ R^{-1}$ using Theorem 1 , hence R o R^{-1} is transitive. Thus $R o R^{-1}$ is an equivalence relation.

For the next theorem it is useful to define the set $R Y=\{x \mid$ there exists y $6 Y$ such that $(x, y) 6 R\}$ and $X R=\{y \mid$ there exists $\mathbf{x} 6 \times$ such that $(x, y) \in R\}$. It should be noted that ifR is a relation from X to Y, then R is also a relation from K to $X R$, so there is no loss in generality in assuming $X=K$ and $Y=X R$. Also note that iff:X $\rightarrow Y$ is a function, then its graph is denoted by $G_{f}=\{(x, y) \mid y=f(x)\}$.

Theorem 7 (Riguet). If R is a difunctional relation from X to Y, then there exist a unique bijection $h: R Y / R o R^{-1} \rightarrow X R / R^{-1} \circ R$ making the following diagram cummutative where f and g are canonical surjections (See also [3, 41).

Moreover, it follows $R=G_{h f} o G_{g}{ }^{-1}$, hence the term difunctional.
Proof. Choose a $\boldsymbol{z} 6 R Y / R$ o R^{-1}; then $\boldsymbol{z}=f(x)$ for some $\boldsymbol{x} 6 \mathrm{RY}$, and there exists y such that $(x, y) 6 R$. Define $h(z)=g(y) . \quad$ Let (x, y) and $\left(x^{\prime}, y^{\prime}\right) 6 R$, so $\left(x, x^{\prime}\right) \in R o R^{-1}$, and $(y, x) \in R^{-1}$. Using Theorem 1 , $R^{-1} \circ R=R^{-1} \circ\left(R \circ R^{-1} \circ R\right)$. Now take $(y, x) 6 R^{-1}$, (a:, $\left.x^{\prime}\right) 6 R \circ R^{-1}$ and $\left(x^{\prime}, y^{\prime}\right) 6 R$; then $\left(y, y^{\prime}\right) \in R^{-1} \circ R$. Thus h is well defined.

Now choose $w 6 X R / R^{-1}$ o R; then $w=g(y)$ for some $y 6 X R$, and there exists x such that $(a ; y) 6 R$. Consider $f(x) \in R Y$; then $h(f(x))=g(y)=$ w. Hence h is surjective. Now suppose $h(z)=h\left(z^{\prime}\right)$. Then there exist (a; y) and (a:', y^{\prime}) in R such that $z=f(x)$ and $z=f(x$ '). Thus' $g(y)=$ $h(z)=h\left(z^{\prime}\right)=g\left(y^{\prime}\right)$. From (a:, $\left.y\right) 6 R,\left(y, y^{\prime}\right) 6 R^{-1} o R$, and $\left(y^{\prime}, x^{\prime}\right) 6$ R^{-1}, taken with $R \circ R^{-1}=\left(R \circ R^{-1} o R\right) o R^{-1}$, we see (a:, a;) $6 R o R^{-1}$. Hence h is injective.

Now let $(x, y) 6 G_{h f} o G^{-1}$; then there exists w such that $(x, w) 6$ Ghf and $(w, y) \in G^{-1}$. Therefore, $h(f(x))=w$ and $g(y)=w$. There exists a y^{\prime} such that $\left(x, y^{\prime}\right), 6 R$ and $h(f(x))=g\left(y^{\prime}\right)=w$ since $g\left(y^{\prime}\right)=$ $g(y)$, which also implies $\left(y, y^{\prime}\right) 6 R^{-1} \circ R$ and $\left(y^{\prime}, y\right) 6 R^{-1} \circ R$. Since $\left(x, y^{\prime}\right) 6 R$ and $\left(y^{\prime}, y\right) \in R^{-1} \circ R$, then $(x, y) 6 R o R^{-1} \circ R=R$. Thus $G_{h f} \circ G_{g}^{-1} \subset R$. Now let $(x, y) 6 R$; then since $h(f(x))=g(y)$, (a:, $\left.h(f(x))\right)$ $\in G_{h f}$ and $(y, g(y)) \in G_{g}$ with $(g(y), y) 6 G_{g}^{-1}$. Therefore $(x, y) \in G_{h f} \circ$ G^{g-1}. Thus $R=G_{h f} o G_{g}{ }^{1}$.

The graphs of functions are interesting relations to consider.
Thearem 8. The graph G of a function g is difunctional.
Proof. Let $(x, w) \in G \circ G^{-1} o G ;$ then there exist y and \boldsymbol{z} such that $(x, y) 6 G,(y, z) 6 G^{-1}$, and $(z, w) 6 G$. Since $(\mathbf{a} ; \boldsymbol{y})(z, y)$ and (3,w) $6 G$, by definition of a function, $y=w$ so $w=f(x)$ and $(x, w) 6 G$. Thus Gis difunctional.

Dre to the similarities between difunctional and circular relations noted throughout this paper, it is a natural question to ask if the graphs of functions from X to X are circular. This question is answered by the next theorem.

Theorem 9. If G is the graph of a function, $f: X \rightarrow Y, G$ is circular if and only if $f^{3}=1_{X}$; that is, f^{3} is the identity function on X.

Proof. Assume G is circular and let $x \in X$; then $(x, f(x)) \in G$ so
$f(x) \in \mathrm{X}$ and $\left(f(x), f^{2}(x)\right) \in \mathrm{G}$. Since G is circular, $\left(x, f^{2}(x)\right) \in G^{-1}$ which implies $\left(f^{2}(x), x\right) \in \mathrm{G}$ thus stating $f^{3}(x)=x$. Therefore $f^{3}=1_{X}$.

Let $(x, y) \in \mathrm{G} \circ \mathrm{G}$; then since G is the graph of a function,
$(x, f(x)) \in \mathrm{G}$ and $(f(x), y) \in \mathrm{G}$ which implies $f^{2}(x)=\mathrm{y} . \quad \operatorname{Now} f(y)=$ $f^{3}(x)=\mathbf{a}$; therefore $(y, f(y)) \in \mathrm{G}$ which is the same as $(y, x) \in \mathrm{G}$. Hence G is circular.

Difunctional relations arise frequently in algebra, in particular, as subgroups of products of groups. More percisely:

Theorem 70. Let G and B be groups and R a subgroup of $\mathrm{G} \times H$ with coordinate-wise operations. Then R is difunctional.

Proof. Let e denote the identity of H . Let $(\mathrm{x}, y) \in \mathrm{R} \circ \mathrm{R}^{-1} \circ R$; then there exist 2 and w such that $(x, z) \in R,(z, w) \in R^{-1}$, and $(w, y) \in R$. Since R is a subgroup, for every a $\in R$, then $a^{-1} \in R$, so consequently $\left(x^{-1}, z^{-1}\right),\left(w^{-1}, z^{-1}\right)$, and $\left(w^{-1}, y^{-1}\right) \in \mathrm{R}$. Also since R is a subgroup, for every c and $d \in R, c d^{-1} \in \mathrm{R}$. Take $(x, z) \in \mathrm{R}$ and $\left(w^{-1}, z^{-1}\right) \in \mathrm{R}$. It follows that $\left(x w^{-1}, z z^{-1}\right)=\left(x w^{-1}, e\right) \in \mathrm{R}$. Since $(w, y) \in \mathrm{R}$, it follows that $\left(x w \omega^{-1}, e y\right)=(x, y) \in R$, hence R is difunctional.

Unfortunatly, relations which are subsemigroups of the product of two semigroups need not be difunctional. If S and T are semigroups having left trivial multiplication, then $S \times T$ with coordinate-wise operations has left trivial multiplication and any subset is a subsemigroup. Simply choose a subset R of $S \times \mathrm{T}$ which is not a difunctional relation to find an example.

It will be interesting to look at the intersection of families of certain classes of relations. It will be shown that these classes are closed under the formation of intersections.

Theorem 11. If $\left\{R_{i}: i \in I\right\}$ is a set of difunctional relations from X to Y , then $\cap R_{i}$ is a difunctional relation.

Proof. Let $\left(x, w_{3}(z, w)\right.$ and $(\mathrm{a}, \boldsymbol{y}) \in \cap R_{i}$; then by definition of intersection, $(x, w),(z, w)$ and $(\mathrm{a}, y) \in R_{i}$ for every $i 6 \mathbf{I}$. Since R_{i} is difunctional, then $(x, y) \in R_{i}$, so $(x, y) \in \cap R_{i}$ and hence $\cap R_{i}$ is difunctional.

Similar proofs will establish the following two results.

Theorem 72. If $\left\{R_{i}=i \in I\right\}$ is a set of circular relations on X, then $\mathrm{I}!R_{i}$ is a circular relation.

Theorem 13. If $\left\{R_{i}: \mathbf{i} \in I\right\}$ is a set of transitive relations on X. then $\cap R_{i}$ is a transitive relation,

Since the indicated classes of relations are closed under the formation of intersections, we may obtain closure operations in the following way. If $R \subset X \times Y$, define difunctional closure, $d R$, to be the intersection of all difunctional relations from X to Y containing R. Analogously define circular closure, $C R$, and transitive closure, $t R$, of a relation R .

Corollary 1. Let R and S be relations from X to Y . Then

1. $\mathrm{d}(\mathrm{R} \cup S)=d(R) \cup d(S)$.
2. $\mathrm{R} \in \mathrm{S}$ implies $d R \subset d S$.
3. $d R=\mathrm{R}$ if and only if R is difunctional.
4. $d R^{-1}=(d R)^{-1}$.

Simılar statements hold for circular and transitive closures.
It is known that there exist relationships between difunctional closure and transitive closure. More precisely, a result due to Riguet [6] states that $d R$ o $d R^{-1}=t\left(R \circ R^{-1}\right)$. It would be interesting to know if such relationships exist for circular closure.

REFERENCES

1. Maclane, S. and Birkhoff, G., Algebra, The MacMillan Company, New York, 1967.
2. Foulis, D., Fundamental Concepts of Mathematics, Prindle, Weber, and Schmidt, Inc., Boston, 1969.
3. Martin, M., On The Induced Function Theorem, Journal of Undergraduate Mathematics, 5 (1973), 5-8.
4. , The Induced Function Theorem and Four Equivalent Theorems, Journal of' Undergraduate Mathematics, 7 (1975), 87-92.
5. Riguet, J., Relations Binaires, Fermetures, Correspondance de Galois, Bulletin de la Société Mathematique de France, 76 (1948), 114-155.
6.

, QueZques Proprietes dee ReZations Difonctionelles, Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, Paris, 230 (1950), 1999-2000.

HON TO DESIGN AND IMPLEMENT A PI MU EPSILON STUDENT CONFERENCE

by Milton Cox ${ }^{1}$
Miami University

The present policy of the Council of Pi Mi Epsilon is to subsidize the organizing or host chapter of at least a two-college student conference to the extent of $\$ 50$. In the few years since this offer was made, few chapters have participated. Yet, a student conference can be a unique and fulfilling experience for participants, and an excellent way to carry out the fraternity motto: To promote scholarship and mathematics,

It is a good idea to schedule a student conference in conjunction with a mathematics meeting or conference of interest to faculty, and certainly there are a prolific number of these. Examples are: National annual conferences on special topics (e.g., the topology conferences), regularly- or irregularly-scheduled regional conferences (see the Notices of the American Mathematical Society for announcements of such meetings), the sectional meetings of the American Mathematical Society, the regional meetings of the Mathematical Association of America (see the American Mathematical Monthly for dates and locations), or when a speaker of national prominence visits your school. Thus, it is possible to sponsor a student conference either as a one-time event or as an ongoing annual event. The regional conferences hold the advantage of involving less travel expense.

After your chapter decides to organize a conference the first task is to prepare an attractive one-page announcement of the event and a tentative schedule, and possibly, what accomodations and travel arrangements are being made available, and then mail these to all schools in the appropriate region. Naturally, the up to $\$ 50$ available to defray expenses is not enough to support travel or lodging, but occasionally either a local chapter or the corresponding mathematics department can find such funds if it is decided to sponsor speakers, or, as a more common arrangement, faculty members can bring their top students along with them. In addition (or in lieu of), a chapter could sponsor a

[^3]special Pi Mi Epsilon Travel Award for promising student(s) to present papers; under this arrangement matching funds are available from the national coffers. Such awards, however, should be made formal and presented at a special meeting.
..
It has been the author's experience, however, that if announcements" are mailed out calling for student papers and this is all that is done, then there will be little response. The chapter advisor must make telephone contact with faculty friends at nearby schools in order to create interest. Or, at your next regional MAA meeting, why not make contacts and plan for such a conference at a future regional meeting? Follow-up calls are sometimes necessary regardless of the mutual agreements or the excellent plans which may have been formulated.

It is recommended that the student session not conflict with the faculty session so that the student can experience the faculty-level sessions and present a paper, and faculty members can be present at the student sessions to guide and support their students.

Student participation by one's own chapter members has been no problem at Miami University (where the fourth annual student conference was just recently held). Usually one or two are willing to present papers and all are eager to help at the conference. The student conference is held on Saturday afternoon following an annual faculty level conference sponsored by the department on Friday and Saturday morning. The chapter members of Ohio Delta share their dorm rooms or apartments with overnight student visitors so that no lodging expense is incurred. This arrangement is advertised and some students are encouraged to come because

- they feel that they will not only be learning mathematics at the sessions but also making new friends and exploring a new school.

It has been found in running the conferences at Miami University that the $\$ 50$ from the national treasury adequately covers the advertising and printing costs. When possible, a free lunch has been provided for student speakers.

Our first conference attracted five speakers, the second eight, the third nine, and this year, eleven. The experience and confidence gained in presenting a talk has encouraged many students to present talks at the National Pi Mi Epsilon meetings; others in the audience are encouraged to try the next year. It is hoped that you will soon try a student Pi Mi

1975－1976 MANUSCRIPT CONTEST WINNERS

氖回回回回回回回回回回回回回回回回回回回 REGIONAL MEETINGS OF MAA

Many regional meetings of the Mathematical Association regularly have sessions for undergraduate papers．If two or more colleges and at least one local chapter help sponsor or participate in such under－ graduate sessions，financial help is available up to $\$ 50$ for one local chapter to defray postage and other expenses．Send request to：

Dr．Richard A．Good
Secretary－Treasurer，Pi Mi Epsilon
Department of Mathematics
The University of Maryland
College Park，Maryland 20742

The judging for the best expository papers submitted for the 1975－76 school year has now been completed．The winners are：

FIRST PRIZE（\＄200）：Brent Hailpern，University of Denver，for his paper＂Continuous Non－differentiable Functions＂ （this Journal，Vol．6，No．5，pp．249－260）．

SECOND PRIZE（ $\$ 100$ ）：Philip D．Olivier，Texas Tech University，for his paper＂Two Applications of Pseudoinverses＂ （this Journal，Vol．6，No．5，pp．261－265）．

THIRD PRIZE（\＄50）：Karen M．Lesko，Central Missouri State University，for her paper＂A Generalization to Almost Divisible Groups＂（this Journal，Vol．6，No．6，pp．345－347）．

1977－78 CONTEST

Papers for the 1976－77 contest are now being judged，and we are receiving papers for this year＇s contest，so be sure to send us your paper，or your chapter＇s papers（at least 5 entries must be received
＊from the same chapter in order to qualify，with a $\$ 20$ prize for the best paper in each chapter）．For all manuscript contests，in order for authors to be eligible，they must not have received a Master＇s degree at the time they submit their paper．

INITIATION CEREMONY

The editorial staff of the Journal has prepared a special publica－ tion entitled Initiation Ritual for use by local chapters containing de－ tails for the recommended ceremony for initiation of new members．If you would like one，write to the National Office．

WELCOME TO NEN CHAPTERS

The Journal welcomes the following new chapters of Pi Mi Epsilon, recently installed:

NORTA CAROLINA ETA at Appalachian State University, installed in November of 1976 by Robert M. Woodside, Councillor.

SOUIH CAROLINA GAMMA at The College of Charleston, installed March 31, 1977 by Robert M. Woodside, Councillor.

TEXAS MU at East Texas State University, installed April 12, 1977 by R. V. Andree, Council Vice-president.

CONNECTICUT BETA at The University of Hartford, installed April 26, 1977 by R. A. Good, Council Secretary-Treasurer.

TEACHING OPPORTUNITIES OVERSEAS

More than 1000 English-language oriented schools and colleges in over 150 foreign countries offer teaching and administrative opportunities to American and Canadian educators. Positions exist in most allfields, on all levels, from kindergarten to the university. Salaries vary from school to school, but in most cases they are comparable to those in the U.S. Vacancies occur and are filled throughout the year. Some schools overseas do not require previous teaching experience or certification. If you are interested in a position with an overseas school or college, contact:

> FRIENDS OF wORLD TEACHING 3643 Kite Street
> San Diego, CA 92103

Friends of World Teaching is an independent teachers' information agency, dedicated entirely to assisting American educators in securing teaching or administrative positions overseas and serving American educators since 1969. FWV is an active member of the San Diego Better Business Bureau.

This department is for the enjoyment of those readers who are ". addicted to working crossword pussies or who find an occasional mathematical puzzle attractive, he consider mathematical puzzles to be problems involving numbers, geometric figures, patterns, or logic whose solution consists of an answer immediately recognizable as correct by simple observation, and not necessitating a formal mathematical proof. Although logical reasoning of a sort must be used to solve a puzzle in this section, little or no use of algebra, geometry, or calculus will be necessary. Admittedly, this statement does not serve to precisely distinquish material which might well be the domain of the Problem Department, but the Editor reserves the right to make an occasional arbitrary decision and will publish puzzles submitted by readers when deemed suitable for this department and believed to be new or not accessible in books. Material not used here will be sent to the Problem Editor for consideration in the Problem Department, if appropriate, or returned to the author.

Address all proposed puzzles, puzzle solutions or other correspondence to the Editor, Pi Mil Epsilon Journal, 601 Elm Avenue, Room 423, The University of Oklahoma, Norman, Oklahoma, 73019. Please do not send such material to the Problem Editor as this will detoy your recognition as a contributor to this department. Deadlines for solutions of puzzles appearing in each Fatl issue is the following March, and that for each Spring issue, the following September.

Mathacrostic No. 4

submitted by R. Robinson Rome sacramento, California

Like the preceding three, this acrostic is a keyed anagram. The 235 letters to be entered in the diagram in the numbered spaces will be identical with those in the 32 key words at matching numbers and the key letters have been entered in the diagram to assist in correlation during your solution (see next two pages). When completed, the initial letters

Definitions and Key

		1 M	2 M	3 M	4 M		$5 \times$	6 M	7 M	8 A	9 C		10 F	11 S
12 M		13 A		14 N	15 c	16 M	17 M	18 b	19 M		20 d	21 S		22 L
23 S	24 C	25 N	26 S	27 b	28 X		29 e	30 b		31 e	32 M	33 s	34 f	
35 e	36 d		37 C	38 N	39 X	40 F	41 X		42 S	43 X	44 S	45 c		46 E
47 f	48 N	49 A	50 M		51 S	52 X	53 A	54 C		55 X	56 b	57 N	58 b	
59 f	60 e	61 X	62 Y		63 A	64 d	65 A	66 C	67 S		68 F	69 C		70 c
71 Z	72 a		73 A	74 e	75 A	76 V	77 C	78 F		79 M	80 M	81 N	82 d	83 a
	84 a	85 Z	86 Y		87 H	88 R	89 A	90 a	91 Y		92 Z	93 S	94 C	
95 d	96 F	97 c		98 f	99 A	100Y	1016		102W	103Y	104B		105A	106M
107 F	108 H	1090		110N	IllS		112 U	113 V	114 C		115E	116e	117N	118M
119K		120e	$121 a$		122J	123U	124H		125f	126d	127C	128b		129D
130 V		131P	132X	133B		134 F	135R	136W	1372	138X	139 F		140Q	141E
	142F	143 P	144T		145W	146b		147J	148G	149Q		1501	151E	152e
153d	154B		155D	156a		157Q	158T	159G		160P	1616	162Q	163A	164B
165D	166L	1670		168 J	169c	170b		171 V	172E	173K	1740		1751	1760
	177 P	178d	279W		180D	181Y	182L	183I	184 L	185P		186P	187d	188W
	189b	190F	191H	192V	193B	294R	195K	196I		197T	198G	2.990	200D	$201 Z$
202K	203H	204 L		205 Z	2066	2070	208 E		209 P	210 F	2110		212B	2131
214D		215 V	216R	217 J	2181	219H		220 J	$221 G$	2227		223H		224E
225 J	226 l	227 F	2280	229 R		230 D	231 R	232L		233E	234 K	235B		

A. Imaginary domain boundary
B. Nature and beauty lover
C. Author's imaginary domain
D. Locus of equal rainfall
E. Author's logic
F. Related interchangeably in mathematics
G. Without freeboard
H. Real meaning of "biscuit'
I. Metrical form
J. Headquarters of new mathematics journal
K. River Hades
L. Sailed to Windward
M. Two hundredths
N. Customary way of life
0. New mathematics journal
P. Midway
Q. King Arthur's dad
R. Headquarters of this Journal
S. Platonic solid
T. Sports league
U. General power or term
V. Flowed copiously
W. Singularity
X. Thermal scale

- Y. General explanation
Z. Hemp derivative
a. Worn out
b. Understaffed
c. Crazy
d. Heavenly mathematics
e. Parallelogram
f. Act obsequiously
$49 \quad 65 \quad 75 \quad 89 \quad 99 \quad 8 \quad 73 / 1635313 \quad 63105$
$104133154164193 \quad 212235$
$\begin{array}{llllllll}37 & 66 \quad 77 & 94 & 114 & 12754 & 24 \quad 69 & 9\end{array}$
$200 \quad 180 \quad 155129230 \quad 214365$
$\overline{233} \overline{208} \overline{115} \overline{224} \overline{141} \overline{172} \overline{\mathrm{E} 1} \overline{46}$
$\overline{40} \overline{68} \overline{10} \overline{227} \overline{190139} \overline{107} \overline{134} \overline{96} \overline{78}$
$\overline{22} \overline{206} \overline{198} \overline{159} \overline{148}$
$10632487 \quad 223215203391$
218 $213 \overline{396} \overline{183175} \overline{150}$
$\overline{225} \overline{147} \overline{122} \overline{217} \overline{220} \overline{168}$
$\overline{195} \overline{234} \overline{119} \overline{202} \overline{173}$
$\overline{184} \overline{232} \overline{182} \overline{22} \overline{166} \overline{204}$
$\overline{\mathbf{1}} \overline{79} \overline{3} \overline{19} \overline{12} \overline{4} / \overline{16} \overline{2} \overline{6} \overline{7} 11832 \overline{106} \overline{50} \overline{17} \overline{80} \overline{142}$
$\overline{38} \overline{57} \overline{14} \overline{110} \overline{25} \overline{48} \overline{117} \overline{81}$
174228 211176 309 즈
$\overline{177186} 160209131143 \overline{185}$
$\overline{162} \overline{140} \overline{157} \overline{149} \overline{167}$
$21623113522988 \quad 394$
$\overline{42} \overline{23} \overline{51} \overline{21} \overline{93} \overline{26} \overline{44} \overline{67} \overline{33} \overline{\mathbf{1 1}} \overline{\mathbf{1 1 1}}$
158 $\overline{197} \overline{144}$
199112123
$17176 \underline{215} \underline{113} \underline{130} \underline{192}$
226179188145102136
$\overline{5} \overline{132} \overline{41} \overline{28} \overline{52} \overline{138} \overline{43} \overline{61} \overline{39} \overline{55}$
$\overline{100} \overline{103} \overline{86} \overline{181} \overline{91} \overline{62}$
$\frac{92}{83} \frac{205}{22} \frac{25}{13} \frac{137}{20171}$
$8312115690 \quad 8472$
$\overline{189} \overline{101} \overline{18} \overline{30} \overline{58} \overline{56} \overline{161} \overline{146} \overline{128} \overline{27} \overline{170}$
16915 $\overline{97} \overline{70} \overline{45}$
$\overline{178} \overline{153} \overline{64} \overline{82} \overline{20} \overline{187} \overline{126} \overline{95} \overline{36}$
$\overline{74} \overline{60} \overline{10} \overline{31} \overline{35} \overline{29} \overline{116} \overline{152}$
$\overline{34} \overline{47} \overline{98} \overline{59} \overline{210} \overline{125} \overline{142}$

Note. The 2 words of A and M are separated by /. A, C and E are key words in titles of 3 other books by the same author.
of the 32 key words will spell a famous mathematician and the title of his book that was featured in its centennial in 1976. The diagram will then quote the surprising conclusion of the book.

Greek Crosses and Squares

In the diagrams below are illustrated a number of figures of various shapes and dimensions. Discover in each case the arrangement which will produce either the Greek crosses or squares indicated. Solver must determine the correct number of figures which must be used.

(b)

> A Cross-number Puzzle

The blanks in the $\mathbf{1 1} \times \mathbf{1 1}$ square on the following page are to be filled in with single digits as in a crossword puzzle so that the resulting numbers satisfy the conditions given.

Across

1. A square number
2. Square root of 14 across
3. A square number
4. Sum of digits is 36
5. Cube root of 39 across
6. A square number which reads same both ways
7. A square number
8. A multiple of 35 down
9. The three-halves power of 14 across
10. All digits the same
11. Product of 24 down and 33 across
12. A square number
13. A multiple of both 19 and 41
14. All digits alike except central one
15. Perfect square ending in 6
16. See 20 down
17. A fourth power
18. Product of 2 down and 4 across
19. A triangular number
20. Two-thirds of 36 across
21. Digits sum to 26 , and middle three numbers are 7
22. An odd number
23. All digits even, except one and their sum is 25
24. An odd cube
25. A perfect number
26. Twice the square of 37 down
27. Reads same $\frac{\text { Down }}{\text { both }}$ ways
28. Square root of 28 across
29. Sum of 17 across and 21 down
30. Sum of digits is 37 down
31. Digits sum to 24
32. Difference of 14 across and 37 down
33. A fourth power
34. A cube number
35. Product of 4 across and 14 across
36. Digits sum to 35
37. All digits the same except the first
38. Last 3 digits in arithmetic progression
All digits the same except the first
39. A multiple of 41 which evenly divides 22 across
40. A multiple of 19
41. Square number
42. An even number
43. Sum of digits is 37 down
44. Fourth power of 4 across
45. Sum of 14 across and 35 down
46. A triangular number
47. Digits sum to 27 and end in 8
48. A square number
49. A square number
50. The ninth prime
51. A cube times 10

Mathacrostic No. 1 [Spring, 19761
Also solved by VICTOR G. FESER, Mary College, Bismark, North Dakota. linadvertently omitted from original list of solvers; see Fall, 1976 issue

* for solutionl.

Mathacrostic No. 2 [Fa11, 19771
Late solutions were submitted by EZRA BROWN, Virginia Polytechnic Institute and State University; LOUIS H. CAIROLI, Kansas State University; DONALD G. CASCI, Provídence, Rhode Island; VICTOR G. FESER, Mary College, Bismark, North Dakota; ROBERT C. GEBHARDT, Hopatcong, New Jersey; SHARON E. GORDON, University of North Carolina at Chapel Hill; PATRICIA GROSS and ALLAN TUCHMAN; University of Illinais; and DAVID DEL SESTO, North Providence, Rhode Island. (See Spring, 1977 issue for solution.)

Missionaries and Cannibals [Fall, 19761
Late solutions were submitted by LOUIS H. CAIROLI, Kansas State University; ROGER E. KUEHL, Kansas City, Missouri; and STEVE LEELAND, University of South Florida, Tampa, Florida. (See Spring, 1977 issue for solution. 1

Mathacrostic No. 3 [Spring, 19771
Definitions and key:

A.	Conjugate	E.	Upper	I.	Integer	M.
B. Fermat	F.	Show	J.	Slim	N.	Shirt
C. Grog	G.	Sheet	K.	Quaternion	O.	Illicit
D. Apollonius	H.	Diophantus	L.	Utter	P.	Tic
Q. Iridic	V. Archimedes	Z.	Hell	d. Irenic		
R. Owner	W.	Rhymed	a. Mersenne	e.	Cheer	
S. Nim	X. Itchy	V. Eric	f. Algebra			
T. Eratosthenes	Y. Tight	c. Terms	g.	Etch		
U. Simply						

First letters: C F GAUSS DISQUISITIONES ARITHMETICAE

Quotation: As a result, it seems proper to call this subject Elementary Arithmetic and to distinguish from it Higher Arithmetic which properly includes more general inquiries concerning integers. We consider only Higher Arithmetic in the present volume.

Solved by GORDON R. BAKER, Houston, Texas; JEANETTE BICKLEY, Webster Groves High School, St. Louis, Missouri; CHRISTOPHER CACAS, East Texas

State University, Commerce, Texas; LOUIS CAIROLI, Kansas State University DAREN CLINE, Harvey Mudd Collage, Claremont, California; EDWIN COMFORT, Ripon College, Ripon, Wisconsin; EEANOR S. ELDER, University of New Orleans; VICTOR G. FESER, Mary College, Bismark, North Dakota; PATRICIA GROSS and ALLAN TUCHMAN, University of Illinois; MAFK JAEGER, University of Wisconsin; JOSEPH D. E. KONHAUSER, Macalester College, St. Paul, Minnesota; LISA J. LASHER, St. Lawrence University, Canton, New Yohk; BARBARA LEMMANN, Brigantine, New Jersey; MARIANNE MANCUSI, Adelphi University, Garden City, New York; BETTY MCEROY, Southern Illinois University at Edwardsville; SIDNEY PENNER, Bronx Community College of QNY; BOB PRIELIPP, University of Wisconsin at Oshkosh; RITA PRINCI, Holly Hill, Florida; EDITH E. RISEN, Oregon City, Oregon; FORREST K. RUSSEL, University of North Carolina; RICHARD D. STRATTON, Colorado Springs, Colorado; and CHARLES W. TRIGG, Son Diego, California.

Dissecting the Letter E [Spring, 19771
The desired dissections are as shown below:

Solved by VICTOR G FESER, Mary College, Bismarck, North Dakota and CHARLES W. TRIGG, San Diego, California.

Editor's Note.

Charles W. Trigg comments that this puzzle is precisely Problem 184, p. 55 of H. E. Dudeney's Puzzles and Curious Problems, Thomas Nelson and Sons, 1931, appears as Problem 330, p. 114 in H. E. Dudeney's 536 Pussies and Curious Probiems, edited by Martin Gardner, Scribner, 1967, and is found in Harry Lindgren's Geometric Dissections, Dover, 1972, p. 78.

A Pair of Eights

There are a pair of solutions in spite of the erroneous claim of unicue.:ess made in the original statement:

WILL YOUR CHAPTER BE REPRESENTED IN PROVIDENCE?
It is time to be making plans to send an undergraduate delegate or speaker from your chapter to attend the annual meeting of Pi Mi Epsilon in Providence, Rhode Island during August 8-12, 1978. Each speaker who presents a paper will receive travel funds of up to $\$ 400$, and each delegate, up to $\$ 200$.

MOVING??

be SURE to Let the Journal KNOW!

Send your name, old address with zip code and new address with zip code to:

IN THE
MAll
Pi Mi Epsilon Journal
601 Elm Avenue, Room 423
The University of Oklahoma
Norman, Oklahoma 73019

gLEANINGS FROM CHAPTER REPORTS

ARKANSAS BETA at Hendrix College heard several student members speak during the year, Tom Connor, Janet Dillahunty, Lisa Orton, Don Haqman, Bill Orton, and Mike Tiefenback, and Professor William O. Murray also presented a lecture. In addition, Professor David Peterson of the University of Central Arkansas discussed an interesting problem in probability, and Professor Kiyoshi Iseki, from Kobe University in Japan visiting at the University of Arkansas, presented some of his research findings on fixed point theorems. Several members participated in the regional MAA meeting at Oral Roberts University in April.

IOWA ALPHA at Iowa State University heard Professor A. M. Fink talk on "How to Probate a Peanut Butter and Jelly Coffeecake" at the 54th Annual Initiation Banquet.

KENTUCKY GAMMA at Murray State University heard talks by Ross L. Snider on "Divergence and Curl of a Vector Field" and Jeffrey Cates on "The Mento Wheel"

LOUISIANA EPSILOS at McNeese State University heard a paper on the correlation of college dropouts with background information by Albert Palachek and Leigh Erin Joneb.

MICHIGAN ALPHA at Michigan State University heard several student papers: Michael Arnold on "Number Wheels", Carl Page on "Representation of Informal Knowledge in Computers", and Steven Fuller on "Dyadic Vector Products" and "Surreal Numbers". The chapter also heard Professor Davis speak on "The First Theorem" at the annual initiation banquet.

MISSOURI DELTA at Westminster College witnessed a talk and slide presentation given by Professor S. R. Filippone from the University of Wisconsin at Parkside on "A Linear Algebra Approach to Fibonacci Numbers", and as part of the spring initiation activities, heard student papers on "A Random Survey of Missouri Voters in the 1976 Election" by Mark R. Rudofo and "A Statistical Evaluation of the Peer Counselling Program at Westminster College for 1976-77" by Theodore S. Wilson.

NEW JERSEY DELTA at Seton Hall University heard lectures by Professor J. W. Andrushkiw on "Some Problems Related to the Triangles Inscribed in a Given Triangle and Their Generalizations", and Probessor Ronald Infante, on "Generalized Sine and Elliptic Functions".

NEW JERSEY EPSILON at Saint Peter's College sponsored lectures by. Larry Bernstein of Bell Laboratories who presented the Second Annual Collins Lecture, and Professor William G. Lister of SUNY at Stony Brook. The chapter also heard Professor Thomas, Marlow speak on the topic "Infinite Sums and Finite Differences" and Probessor Larry E. Thomas, on "Atonal Music and Bizarre Set Theory".

NORTH CAROLINA GAMMA at North Carolina State University heard talks by Scott Ross, a student, on "Looking at Mosaics" and Professor R. E. Chandler on "A Rolling Circle Gathers No Moss".

OKLAHOMA BETA at Oklahoma State University participated in a problem-solving event in November where 20 members tackled Putnam Examination problems, and 6 members competed in the 1976 Putnam Examination in December with the following 4 scoring on the test: Rolan Christobferson, Kathy Sullivan, Emily Wonderly, and Kathy Stewart. The February meeting consisted of a quiz game in which the undergraduate members quizzed their professors on mathematicians and the history of mathematics.

PENNSYLVANIA $N U$ at Edinboro State College heard Professor Freitag lecture on "Tiling" and Professor Lane., on "Pascal's Triangle--Another Look". Student members who presented talks were Michael Lynn on "Impossible Scores", Daniel Platt on "Fibonacci Sequences and the Golden Ratio", and Mr. Watson presented a lecture on "Optimal Controls".

SOUTH CAROLINA GAMMA at the College of Charleston heard 3 student speakers at the initiation banquet: Lonita Spivey on 'How to Model for Politicians", Jo Ella Rentz on "A History of Numerals", and Durward Rogers on "The Game of Life".

TEXAS BETA at Lamar University heard Professor Richard Alo discuss tayloring of degree plans for mathematics related job opportunities and Lieutenant Colonel Thomas J. Hardy on "Job Opportunities in the Air " Force for Mathematics Majors".

TEXAS DELTA at Stephen F. Austin State University heard lectures given by Professor Pat Boston on "What I Know About Recursions in

Combinatorial Analysis", Professor Wayne Proctor on "Order by Choice", Melanie Damron on "Women in Mathematics", Mr. Bunch on "Latin Squares". The guest speaker at the spring banquet in February was Professor
Kenneth Reid of Louisiana State University who spoke on "After-Dinner Combinatorics".

TEXAS IOTA at the University of Texas at Arlington heard lectures by Shakuntala Devi on "Amazing Feats with Numbers", Carl Franklin from Southwestern Bell on "What Do Employers Look For?", and Tom Shelby and Ken Haynes on "Opportunities and Problems in Actuarial Science".

TEXAS MU at East Texas State University held its formal installation ceremony in April, 1977. Guest speaker was Professor Richard U. Andree of the University of Oklahoma who spoke on "Secret Writing: Codes, Ciphers and Cryptarithms". The chapter also heard Bill Copeland, honors studenty present his paper on "Numerical Quadrature: The Trapezoidal Rule and Modifications",

WEST VIRGINIA ALPHA at West Virginia University co-hosted the student sessions of the Allegheny Mountain Section of the Mathematical Association of America meeting at St. Francis Collegey Loretto, Pennsylvania. The following students presented papers at this meeting: James Bretti, Michael Monnett, Edward Weismann, and Robert Goldrick (Allegheny College), Michael Kuchinski, Suzanne Rex, and Clayton Tenney (West Virginia university), James Snyder and Douglas Bartley (Butler County community College), Brother Joe Robinson (St. Francis Seminary), and David Loth (St. Francis College).

POSTERS AVAILABLE FOR LOCAL ANOONCEVENTS

At the suggestion of the Pi Mu Epsilon Council we have had a supply of 10×14-inch Fraternity crests printed. One in each color will be sent free to each local chapter on request. Additional posters may be ordered at the following rates:
(1) Purple on goldenrod stock - - - - \$1.50/dozen,
(2) Purple and lavendar on goldenrod- - $\$ 2.00 /$ dozen.

PROBLEM DEPARTMENT

Edited by Leon Bankob6

Los Angeles, California

This department welcomes problems believed to be new and at a 'Level appropriate for the readers of thïs journal. Old problems displaying novel and elegant methods of solution are also acceptable. The choice of proposals for publication will be based on the editor's evaluation of their anticipated reader response and also on their intrinsic interest. Proposals should be accompanied by solutions if available and by any information that will assist the editor. Challenging conjectures and problem proposals not accompanied by solutions will be distinguished by an asterisk (*).

To facilitate consideration of solutions for publication, solvers should submit each solution on a separate sheet properly identified with nome and address and mailed before the end of June, 1978.

Address all communications concerning this department to Dr. Leon Bankoff, 6360 Witshire Boulevard, Los Angeles, California 90048.

Problems for Solution

399. Proposed by Jack Garfunkel, Forest Hills High School, Flushing, New York.

Show that arcsin $\left(\frac{x-3}{3}-3\right)+2 \operatorname{arc} \cos \sqrt{x / 6}=\pi / 2,(3 \leq \mathrm{x} \leq 6)$.
400. Proposed by Richard A. Gibbs, Fort Lewis College, Durango, Colorado.

Evaluate $\sum_{k=1}^{m}[k n / m]+\{k n / m\}$,
where m and n are positive integers, $[x]$ is the greatest integer not exceeding x and $\{x\}=-[-x]$ is the smallest integer not less than x .

401. Proposed bg Zelda Katz, Beverly Hills, California.

From a point 250 yards due north of Tom, a pig runs due east. Starting at the same time, Tom pursues the pig at a speed $4 / 3$ that of the pig and. changes his direction so as to run toward the pig at each instant. With
each running at uniform speed, how far does the pig run before being caught?

This is problem 28 of The Mathematical Puzzles of Sam Loyd, Volume Two, Dover Publications, 1960. (Selected and Edited by Martin Gardner). Loyd's solution is based on the average of the distance traveled by the pig if both ran forward on a straight line and the distance traveled if both ran directly toward each other. How did Loyd arrive at what he calls this "simple rule for problems of this kind" and how can we justify it?

402. Proposed by Charles W. Trigg, San Diego, California.

The first eight non-zero digits are distributed on the vertices of a cube, Addition of the digits at the extremities of each edge forms twelve edge-sums. Find distributions such that every edge-sum is the same as the sum on the opposite (non-cofacial) edge. [The solution to the related problem 304 appears on pages $36-37$ of the Fall 1974 Pi Mu Epsilon Journat.]
403. Phopobed by David L. Silverman, West Las Angeles, California.

Two players play a game of "Take It or Leave It" on the unit interval (0,1). Each player privately generates a random number from the uniform distribution and either keeps it as his score or rejects it and generates a second number which becomes his score. Neither player knows, prior to his own play, what his opponent's score is or whether it is the result of an acceptance or a rejection. (Howevery variants based on modifying this condition, either unilaterally or bilaterally are interesting).

The scores are compared and the player with the higher score wins $\$ 1$ from the other,
a. What strategy will give a player the highest expected score?
b. What strategy will give a player the best chance of winning?
c. If one player knows that his opponent is playing so as to maximize his score, how much of an advantage will he have if he employs the best counter-strategy?
404. Proposed by Bob Prielipp, The University of Wisconsin-Oshkosh.

Let \boldsymbol{x} be a positive integer of the form $24 n-1$. Prove that if a and b are positive integers such that $x=a b$, then $\mathrm{a}+\mathrm{b}$ is a multiple of 24 .
405. Proposed by Norman Schaumberger, Bronx Community College, Bronx, NW York.

Locate a point P in the interior of a triangle such that the product of the three distances from P to the sides of the triangle is a minimum.

406. Proposed by Paul Erdös, Spaceship Earth.

Let there be given 5 distinct points in the plane. Suppose they determine only two distances. Is it true that they are the vertices of a regular pentagon?
407. Proposed by Ben Gold, John H. Howell and Vance Stine, Las Angeles City College.

Two sets of n dice are rolled. $\quad(n=1,2,3,4,5,6)$. What is the probability of k matches? $(k=0,1, \ldots, n)$.
408. Proposed by Clayton W. Dodge, University of Maine at Orono.

Squares are erected on the sides of a triangle, either all externally or all internally. A circle is centered at the center of each square with each radius a fixed multiple $k>0$ of the side of that square. Find k so that the radical center of the three circles falls on the Euler line of the triangle and find where on the Euler line it falls. (See Fig. 2.)

409. Phopobed by Zazou Katz, Beverly Hills, California.

A point E is chosen on side \mathbb{D} of a trapezoid $A B C D,(A D \| B C)$, and is joined to A and B. A line through D parallel to $B E$ intersects $A B$ in F. Show that $F C$ is parallel to $A E$. (See Fig. 3.)

FGGURE 2

FGGURE 3
410. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada.

If x, y, z are the distances of an interior point of a triangle $A B C$ to the sides $B C, C A, A B$, show that

$$
1 / x+1 / y+1 / z \geq 2 / r
$$

where r is the inradius of the triangle.
411. Proposed by R. S. Luthar, University of Wisconsin, Janesville. Find all polynomials $P(x)$ such that

$$
P\left(x^{2}+1\right)-[P(x)]^{2}-2 x[P(x)]=0 \text { and } P(0)=\mathbf{1} .
$$

Solutions

374. [Fall 1976] Phopobed bg Jack Garfunkel, Forest Hills High School, Flushing, New York.

In a triangle $A B C$ inscribed in a circle (0), angle bisectors $A T_{1}$, $B T_{2}, C T_{3}$ are drawn and extended to the circle (see Fig. 1). Perpendiculars $T_{1} H_{1}, T_{2} H_{2}, T_{3} H_{3}$ are drawn to sides AC, $B A, C B$ respectively. Prove that $T_{1} H_{1}$ t $T_{2} H_{2}+T_{3} H_{3}$ does not exceed $3 R$, where R is the radius of the circumcircle.

FIGURE 1
Amalgam of solutions by Clayton W. Dodge, University of Maine at Orono and Léo Sauvé, Algonquin College, Ottawa, Canada.

From $T_{1} H_{1}=A T_{1} \sin (A / 2) \leq 2 R \sin (A / 2)$ and two similar results, we, get

$$
\left.T_{1} H_{1}+T_{2} H_{2}+T_{3} H_{3} \leq 2 R[\sin (A / 2) \text { y } \sin (B / 2)+\sin C / 2)\right],
$$

and the required result follows from $\sin (A / 2)+\sin (B / 2)+\sin (C / 2) \leqq 3 / 2$, which can be found on page 20 (formula 2.9) of 0 . Bottema et al, Geometric Inequalities, Wolters-Noordhoff, Groningen, 1969.

Also solved by STEVE FROM, Creighton University, Omaha, Nebraska; DAVID C. KAY, University of oklahoma; GERRIANNE VOGT, St. Louis University, St. Louis, Missouri; and the proposer.
375. [Fall 1976] Proposed by Richard S. Field, Santa Monica, california.

Approximate the value of $2^{10,000}$ without using pencil and paper (or chalk and blackboard or similar equipment).
Solutions resulting in the best approximations were submitted by clayton W. Dodge, University of Maine at Orono; Mark Jaeger, Madison, Wisconsin; Theodore Jungreis, Brooklyn, New York; R. Robinson Rowe, Sacramento, California; Kenneth M. Wilke, Topeka, Kansas, and Richard Field, the proposer.

The most succinct version a_{a} submitted by Kenneth M. Wilke, goes as follows:

Since $\log _{10} 2 \approx .30103, \log _{10} 2^{10,000} \approx 3010.3$, so that $2^{10,000} \approx$ 2 - 10^{3010}.

Also solved by VICTOR G. FESER, Mary College, Bismarck, North Dakota; STEVEN FROM, Creighton University, Omaha, Nebraska; OHN HOWELL, Littlerock, California; DAVID C. KAY, university of Oklahoma; MPRAY S. KLAMKIN, University of Alberta, Edmonton, canada; STEVEN B. LEELAND, Lauderdale Lakes, Florida; EDITH E. RISEN, Oregon City, Oregon; and GERRIANNE VOGT, St. Louis University, St. Louis, Missouri.

The proposer remarks that almost everybody tries to solve this problem by using the approximation $2^{10} \cong 1000$. This lead to $2^{10,000} \cong 10^{3000}$ which is off by more than 10 orders of magnitude!

Clayton Dodge marvels at the accuracy available to us by using the result 2 • 10^{3010} considering that a 12 -digit calculator yields the result

$$
2^{10,000}=\left(2^{392}\right)^{25} \cdot 2^{196} \cdot 2^{4} \cong 1.99506311505 \cdot 10^{3010}
$$

376. [Fall 19761 Proposed by Solomon W. Golomb, University of Southern California, Lob Angeles, California.

Let the sequence $\left\{a_{n}\right\}$ be defined inductively by $a_{1}=1$ and $a_{n+1}=$ $\sin \left(\operatorname{arc} \tan a_{n}\right)$ for $n \geq 1$. Let the sequence $\left\{b_{n}\right\}$ be defined inductively by $b_{1}=1$ and $b_{n+1}=\cos \left(\arctan b_{n}\right)$ for $n \geq 1$. Give explicit expressions
for a_{n} and b_{n}, and find $\lim a_{n}$ and $\lim b_{n}$ as n approaches ∞.

1. Solution bg David C. Kay, University of Oklahoma.

The values of the two sequences may be deduced from the right triangles in the two familiar spiral-like figures below:
\qquad
-

FIGURE 2
The inductive relations $a_{1}=1$ and $a_{n+1}=\sin \left(\arctan a_{n}\right.$) are implicit in a right triangle in (a) with acute angle θ_{n} and sides $1, \sqrt{n}$, and $\sqrt{n+1}$; For, suppose it has been proved that $\tan \theta_{n}=a_{n}=1 / \sqrt{n}$; then $a_{n+1}=$ $\sin \theta_{n}=1 / \sqrt{n+1}$ and $\tan \theta_{n+1}=a_{n+1}=1 / \sqrt{n+1}$, so induction carries, Similarly, $b_{1}=I$ and $b_{n+1}=\cos \left(\operatorname{arc} \tan b_{n}\right)$ are implicit in a right triangle with acute angle ϕ_{n} and whose sides are the square roots of 3 consecutive members of the Fibonacci sequence: For, suppose $\tan \phi_{n}=$ $b_{n}=\sqrt{f_{n}} / \sqrt{f_{n+1}} ;$ then $b_{n+1}=\cos \phi_{n}=\sqrt{f_{n+1}} / \sqrt{f_{n+2}}$ and $\tan \phi_{n+1}=b_{n+1}=$ $\sqrt{f_{n+1}} / \sqrt{f_{n+2}}$. Hence we have

$$
\operatorname{Iim} a_{n}=\lim \sqrt{n}=0
$$

and

$$
\lim b_{n}=\lim \frac{\sqrt{f_{n}}}{\sqrt{f_{n+1}}}=\frac{1}{\sqrt{\mu}}=\sqrt{\mu-1}
$$

where $\mu=\frac{1+\sqrt{5}}{2}$ is the Golden section. Geometrically this means that in the sequences of right triangles in figures (a) and (b), $\theta_{n} \rightarrow 0$ while ${ }^{\wedge}$ $\phi_{n} \rightarrow \arctan \sqrt{\mu-1}=38.17271 \cdots{ }^{\circ}$.
II. Solution by R. Robinson Rowe, Sacramento, California.

If ϕ is the angle in $a_{n+1}=\sin \left(\arctan a_{n}\right)$, then $a_{n}=\tan \phi$ and $a_{n+1}=\sin \phi$, whence

$$
\begin{equation*}
a_{n+1}=a_{n} / \sqrt{1+a_{n}^{2}} \tag{1}
\end{equation*}
$$

Using (1) recursively from $a_{1}=1$, we have generallyy

$$
\begin{equation*}
a_{n}=n^{-\frac{1}{2}} \tag{2}
\end{equation*}
$$

and the limit at infinity is

$$
\begin{equation*}
\lim a_{n}=0 \tag{3}
\end{equation*}
$$

Similarly, with $b_{n}=\tan \phi$ and $b_{n+1}=\cos \phi$,

$$
\begin{equation*}
b_{n+1}=1 / \sqrt{1+b_{n}^{2}} \tag{4}
\end{equation*}
$$

and using (4) recursively from $b_{1}=1$

$$
\begin{equation*}
b_{n}=\sqrt{F_{n} / F_{n+1}} \tag{5}
\end{equation*}
$$

where F^{\prime} s are the Fibonacci numbers ${ }^{y}$

$$
1,1,2,3,5,8 \ldots \ldots
$$

For the limit, let $b_{n+1}=b_{n}$ in (4),

$$
\begin{equation*}
\text { and } b^{4} t \mathrm{~b}^{2}-1=0 \tag{6}
\end{equation*}
$$

from which

$$
\begin{equation*}
\mathrm{b}=\sqrt{\frac{\sqrt{5}-1}{2}}=\sqrt{G}=0,786151378 \tag{7}
\end{equation*}
$$

where G is the Golden Ratio and at this limit

$$
\cos \phi=\tan \phi \text { and } \phi=38.17270762^{\circ}
$$

Also solved by CLAYTON W. DODGE, University of Maine at Orono; VICTOR G. FESER, Mary College, Bismarck, North Dakota; STEVE FROM, Creighton University, Omaha, Nebraska; JOHN HOWELL, Littlerock, California; MAF JAEGER, Madison, Wisconsin; THEODORE JUNGREIS, Brooklyn, NW Yohk; MRRAY S. KLAMKIN, University of Alberta, Edmonton, Canada; LEO SAUVÉ, Algonquin College, ottawa, Canada; GERRIANNE VOGT, St. Louis University, St. Louis, Missouri; and the proposer, SOLOMDN W. GOLOMB.
377. [Fall 19761 Proposed by Charles W. Trigg, San Diego, California. From the following square array of the first 25 positive integers, choose five, no two from the same row or column, so that the maximum of
the five elements is as small as possible. Justify your choice.

2	13	16	11	23
15	1	9	7	10
14	12	21	24	8
3	25	22	18	4
20	19	6	5	17

1. Solution by Sidney Penner, Bronx Community College of CUNY, Bronx, New Yohk.

The five we choose are $1,3,6,8,11$. Crossing out the numbers $12,13, \ldots, 25$, we see that all the numbers in the third row are crossed out except 8 . Choosing 8 forces us to cross out the other entries in the 5 th column, Whence the only entry left in the 4 th row is 3 . Choosing 3 forces us to cross out the other entry in the 1 st column. Whence the only entry left in the 1 st row is 11 .

II. Computer solution by Jeanette Bickley, Webster Groves Senior High

 School, Webster Groves, Missouri. (Submitted at the request of the problem editor).I used a Digital Equipment Corporation PDP 11/70 computer with the program written in BASIC. This program searches the given matrix for five elements (no two from the same row or column) and prints both the maximum and the five chosen elements. It examines each possible remaining choice of five elements and prints only those choices that give a lower maximum element. The last row of the output shows the best choice---11, 1, 8, 3, 6. (See following page for display of program.)

Also solved by CLAYTON W. DODGE, University of Maine at Orono; VICTOR FESER, Mary College, Bismarch, North Dakota; ROBERT C. GEBHARDT, Hopatcong, NW Jersey; JHN HOWELL, Littlerock, California; THEODORE JUNGREIS, Brooklyn, NW York; DAVID C. KAY, University of Oklahoma, Norman, Oklahoma; HARRY NELSON, Livermore, California; BOB PRIELIPP, University of wisconsinOshkosh; EDITH E. RISEN, Oregon City, Okegon; GERRIANNE VOGT, St. Louis University, St. Louis, Missouri; DALE WATTS, Denver, Colorado; and the proposer, CHARLES W. TRIGG.
378. [Fall 19761 Proposed by M. L. Glasser and M. S. Klamkin, University of Waterloo, Waterloo, Ontario, Canada.

Show that

$$
\left\{\frac{x^{x}}{(1+x)^{1+x}}\right\}^{x}>(1-x)+\left\{\frac{x}{1+x}\right\}^{1+x}>\frac{1}{(1+x)^{1+x}}
$$

for $\mathbf{1}>\boldsymbol{x}>0$.

COMPUTER PROGRAM FOR PROBIFM 377

5 T	=0
10	MAT READ M $(5,5)$
20	DATA 2, 13, 16, 11, 23
30	DATA 15, 1, 9, 7, 10
40	DATA 14, 12, 21, 24, 8
50	DATA 3, 25, 22, 18, 4
60	DATA 20, 19, 6, 5, 17
70	FOR $\mathrm{H}=1$ TO 5
80	$A(1)=M(1, H)$
90	FOR I=1 TO 5
100	IF $1=H$ THEN 260
110	$A(2)=M(2, I)$
120	FOR $J=1$ TO 5
130	IF J=H OR J=I THEN 250
140	$A(3)=M(3, J)$
150	FOR $K=1$ TO 5
160	IF K=H OR K=I OR K=J THEN 240
170	$A(4)=M(4, K)$
180	FOR $L=1$ TO 5
190	$\text { IF } L=H \quad O R \quad L=I \quad O R \quad L=J \quad O R \quad L=K$ $\text { THEN } 230$
200	$A(5)=M(5, L)$
210	IF T=O © TO 500
220	\bigcirc SUB 600
230	NEXT L
240	NEXT K
250	NEXT J
260	NEXT I
270	NEXT H

280	PRINT "THE REQUIRED ELEMENTS
	ARE N THE LINE ABOVE."
290	END
500	$B=A(1)$
510	FOR $\mathrm{C}=2$ to 5
520	IF B>A(C) THEN 540
530	$B=A(C)$
540	NEXT C
560	$\mathrm{T}=1$
570	© TO 230
600	$D=A(1)$
610	FOR E=2 TO 5
620	IF B>A(E) THEN 640
630	$\mathrm{D}=\mathrm{A}(\mathrm{E})$
640	NEXT E
650	IF D>=B GO TO 680
660	$\begin{aligned} & \text { PRINT } D, M(1, H) ; M(2, I) ; M(3, J) \text {; } \\ & M(4, K) ; M(5, L) \end{aligned}$
670	$B=D$
680	REIURN
READY	
RN	
18	$2 \begin{array}{llllll}2 & 1 & 8 & 1 & 8 & 6\end{array}$
12	$\begin{array}{llllll}2 & 9 & 1 & 2 & 4 & 5\end{array}$
11	11183
THE REQUIRED ELEMENTS ARE IN THE	
LINE	ABOVE

Solution by Gerrianne Vogt, St. Louis University, St. Louis, Missouri. When $\mathbf{x}=.5$ is substituted in the stated inequalities we obtain: Left term $=.6204032394$; Middle term $=.6924500897$; Right term $=.544331054$. In fact, within the entire range of x given, the second term is the largest of the three. Therefore the first inequality does not hold.

Solutions were offered also by ZELDA KATZ, Beverly Hills, California; C. B. A. PECK, State. College, Pennsulvania; and the proposers, M. L. GLASSER and MURAY S. KLAMKIN. Zelda Katz substituted. 25 and .75 to obtain the. sequences . $855237768, .883748061$, .756593287 and . 386641537, .477007720, .375563532 respectively. The proposers rewrote the second inequality as $G(x)=(1-x) F(1+x)+x F(x)>1$
where $F(x)=x^{x}$. Since $F(x)$ is convex for $x \geq 0$,
$G(x)>F\left(1-x^{2}+x^{2}\right)=1$.
379. [Fall 19761 Proposed by David L. Silverman, West Lo6 Angeles, Calibornia.

You play in a non-symmetric two-man subtractive game in which theplayers alternately remove counters from a single pile, the winner being the player who removes the last counter(s). At a stage when the pile contains k counters, if it is your-opponent's move, he may remove 1 , 2 , \cdots, up to $[\sqrt{k}]$ counters, where $[x]$ is the largest integer $\leq x$. If it is your move, you may remove $1,2, \cdots$, up to $\phi(k)$ counters, where ϕ is the Euler totient function. If you play first on a pile of 1776 counters, can you assure yourself of a win against best play by your opponent?
Solution by the. proposer.
Yes, and the strategy is simple. Remove, at each stage, enough counters so as to leave your opponent any number of counters other than 1, 3 or 4 . It is readily verified that these are unsafe leaves by you and that 2 is a safe leave by your opponent. By induction it can then be shown that every leave by you >4 is safe for you, while every leave >2 by your opponent is unsafe for him. The first follows directly from the fact that if n is a safe leave for you, then $n+1$ is an unsafe leave for him

The end-play alone is crucial and the game is heavily stacked in favor of the ϕ-player, namely "you" Comment, by the proposer.

Perhaps some reader can design a non-symmetric two-man subtractive game that is not so trivial.

Also solved by HARRY NELSON, Livermore, California and by R. ROBINSON ROWE, Sacramento, california.
380. [Fall 19761 Proposed by V. F. Ivanof6, San Carlos, California.

Form a'square from a quadrangle ($A B C D$) by bisecting segments and the angles.
Combination of, solutions by Clayton W. Dodge., University of, Maine at Orono, and the proposer, V. F. Ivanotb, San Carlos, California.

Let the midpoints of the sides of quadrangle $A B C D$ be E, F, G, H as shown in Figure 3. Then EFGH is a parallelogram since, for example, EH and FG are each parallelto and half the length of $B D$ (when E is the midpoint of $A B, F$ is the midpoint of $B C$, etc.). Let the internal bisectors
of angles E, F, G, H meet one another at J, K, L, M. (If we draw the external angle bisectors, we get another rectangle, not shown on the figure.) If the internal bisectors of angles E and H meet at J, then

$$
\angle J H E+\angle J E H=(\angle G H E+\angle F E H) / 2=180^{\circ} / 2=90^{\circ},
$$

from which it follows that $\angle J=90^{\circ}$. Thus $J K L M$ is a rectangle. Finally, let the internal bisectors of angles \mathbf{J}, K, L, M meet one another at P, Q, R, S. By symmetry, PQRS is a square.

Another square is formed by the intersections of the external angle bisectors of angles J, K, L, M.

FIGURE 3
381 [Fall 19761 Proposed by Clayton W. Dodge., University of Maine, Orono, Maine.

Solve the following wintery, slippery alphametrics (also known as cryparithms and alphametics):

$$
\begin{aligned}
& (\text { ICE })^{3}=\text { ICYWHEEE } \\
& (\text { ICE })^{3}=\text { ICYOHOH. } .
\end{aligned}
$$

Solution by Charles W. Trigg, San Diego, California.
Since the first cube has eight digits, $215<I C<465$. The common beginning, $I C$, of the number and its cube reduces the span for consideration to $315-320$. The unique reconstruction is $(320)^{3}=32768000$.

Since the second cube has seven digits, $99<$ ICE < 216. The common beginning, $I C$, of the number and its cube restricts the span to 100-103. The unique reconstruction is $(103)^{3}=1092727$.

Solutions were offered also by JEANETTE BICKLEY, St. Louis, Missouri; JOHN FERRO, South Ozone Park, Nw York and the. NEN YOPK AD PROBLEM SOLVING TEAM, St. John's university, New York; VICTOR C. FESER, Bismarch, North Dakota; ROBBRT C. GEBHARDT, Hopatcong, Nw Jersey; JON HOWEL, Littlerock, California; THEODORE JUNGREIS. Brooklyn, New Yohk; DAVII C. KAY, University of, Oklahoma, Norman, Oklahoma; JAMES METZ, Springfield, Illinois; HARRY NELSON, Livermore, California; R. ROBINSON ROWE Sacramento, California; KENNETH M. WILKE, Topeka, Kansas; GERRIANNE VOGT, St. Louis,

Missouri; and the proposer, CLAYTON W. DODGE

Some of these solutions were derived by the limitation of the number of trials while others were obtained by direct table-searching. In questions of this sort, answers are of hardly any interest; our quest is for the most satisfying logical analysis. Unquestionably, solutions supersede answers.
382. [Fall 19761 Proposed by R Robinson Rowe, Sacramento,

California.

Two cows, Lulu and Mumu, are tethered at opposite ends of a 120 -foot rope threaded thru a knothole in a post of a straight fence separating 2 uniform pastures. How much area can they graze, presuming they eat, nap and ruminate on identical schedules and the rope length is also the extreme reach from muzzle to muzzle of Lulu and Mumu? As a sequel, if Mumu is replaced by the heifer Nunu with half the appetite, what is the area accessible to Lulu and Nunu?

Solution by the. proposer.

In the first diagram, K is the knothole in fence FG. When Lulu grazes an arc $A B$ of infinitesimal width and radius u, Mumu grazes arc $C D$ of the same length and radius 120 - u (Fig. 4-a), and hence of central angle in reciprocal. For u less than 60, Mumu's grazing limit is defined by $2 \boldsymbol{r} \phi=(120-r) \pi$ and for u greater than 60 Lulu is limited by a similar curve. These curves are the arcs of 4 spirals EF, EG, H and GH. In the first quadrant we have $\mathbf{r}=120 \pi /(2 \phi+\pi)$ in polar coordinates and since in general the area is $\frac{1}{2} \int r^{2} d \phi$, the area EFGH grazed is $A=4 \cdot \frac{1}{2}$. $14400 \pi^{2} \int_{0}^{\pi / 2} d \phi /(2 \phi+\pi)^{2}=7200 \pi$.

In the second diagram (Fig. 4-b), Nunu's arc CD is only half as long as Lulu's $A B$, and the relation continues until Lulu has 80 feet of tether and Nunu only 40 feet. Their spiral bounds differ, equations are shown on the diagram, and areas derived as before are 4800π for Lulu and

FIGURE 4
2400π for Nunu, adding again to 7200π.
Comment: With less elegance, one can note that when Lulu has less than half the rope, she can graze a semicircle with an area of 1800π and Mumu has a wider range to graze an equal area. Vice versa, Mumu with less than half the rope grazes 1800π while Lulu has a wide range to match it. Allthis adds to 7200π. Similarly for Lulu and Nunu, dividing the rope $2 / 3$ to $1 / 3$. However, these short cuts do not develop the curves I call 'bovine spirals'.
383. [Fall 1976] Proposed by Norman Schaumberger, Bronx Community College, Nw york.

Find a pentagon such that the sum of the squares of its sides is equal to four times its area.

I. Solution by Clayton W. Dodge,, University of Maine, Orono, Maine.

There are many families of solutions to this problem, and we shall consider just three of them. We let $\boldsymbol{\Sigma \boldsymbol { \varepsilon } ^ { 2 }}$ and K denote the sum of the squares of the sides and the area of the pentagon respectively. We first consider a square of side $a+b$ with an isosceles right triangle of leg b cut off from one corner, as shown in Figure 5-a. he have

$$
\Sigma s^{2}=2(a+b)^{2}+2 a^{2}+(\sqrt{2 b})^{2}=4 a^{2}+4 a b+4 b^{2}
$$

and

$$
4 K=4\left((a+b)^{2}-b^{2} / 2\right)=4 a^{2}+8 a b+2 b^{2}
$$

$\operatorname{Now} \Sigma s^{2}=4 K$ reduces to $2 b^{2}=4 a b$, so $b=0$ or $b=2 a$. That is, a square satisfies the equation $\Sigma s^{2}=4 K$; the figure for $b=2 a$ is shown in Figure 5-a.

Figure 5-b shows an equilateral triangle of side $a+b+c$ with an equilateral triangle of side a cut from one corner and one of side cut from another. Since the area of an equilateral triangle of side a is $s^{2} \sqrt{3} / 4$, we have

$$
\begin{aligned}
\Sigma s^{2} & =a^{2}+b^{2}+c^{2}+(a+b)^{2}+(b+c)^{2} \\
& =2 a^{2}+3 b^{2}+2 c^{2}+2 a b+2 b c
\end{aligned}
$$

and

$$
4 K=\sqrt{3}\left((a+b+c)^{2}-a^{2}-c^{2}\right)=\sqrt{3}\left(b^{2}+2 a b+2 b c+2 c a\right)
$$

The equation $\Sigma \boldsymbol{s}^{\mathbf{2}}=\mathbf{4 K}$ can now be written in the form

$$
(3-\sqrt{3}) b^{2}+(2-2 \sqrt{3})(a+c) b+2\left(a^{2}+c^{2}-\sqrt{3} a c\right)
$$

which we solve for b to obtain

$$
\mathrm{b}=\frac{2 \sqrt{3}(a+c) \pm \sqrt{2}(3+\sqrt{3})\left[(1+\sqrt{3}) a c-a^{2}-c^{2}\right]^{1 / 2}}{6}
$$

This solution does not seem especially exciting, but we set $a=c$ to obtain the solution for that symmetric figure, obtaining

$$
\begin{aligned}
\frac{b}{a} & =\frac{4 \sqrt{3} \pm \sqrt{2}(3+\sqrt{3})(\sqrt{3}-1)^{1 / 2}}{6}=1.1547 \pm .9543 \\
& =2.1090 \text { or } .2004 .
\end{aligned}
$$

The third case we consider is a rectangle of base a and altitude b surmounted by an isosceles triangle of altitude c, as shown in Figure 5-c.

By the Pythagorean theorem we have

$$
d^{2}=(a / 2)^{2}+c^{2}=a^{2} / 4+c^{2}
$$

so that

$$
\Sigma s^{2}=\mathrm{a}^{2}+2 b^{2}+2\left(\mathrm{a}^{2} / 4+c^{2}\right)=\frac{3}{2} \mathrm{a}^{2}+2 b^{2}+2 c^{2}
$$

and

$$
4 K=4(a b+a c / 2)=4 a b+2 a c
$$

Then $\Sigma \varepsilon^{2}=\boldsymbol{K}$ can be written in the form

$$
4 c^{2}-4 a c+\left(3 a^{2}-8 a b+4 b^{2}\right)=0
$$

Assuming a and b are given, we solve this quadratic equation for c :

$$
c=\frac{a \pm \sqrt{2 a^{2}-4(a-b)^{2}}}{2}
$$

It seems of interest to note that, when $a=2 b$, we get $c=0$ or $a=2 b$. The first case is degenerate while the second one gives the isosceles triangle sides of length $b \sqrt{5}$.

II. Solution by R. Robinson Rome, Sacramento, California.

We are to find a pentagon such that S, the sum of the squares of its 5 sides, equals $4 A$, where A is its area. It cannot be a regular pentagon, for which $S \approx 2.9 A$. Lacking other specifications, it need not be convex, nor inscript, nor integral, so there are infinitely many solutions. Here are a few of each kind, illustrated in Figure 6, a-f. (a) A right triangle a, b, c atop a $c \times d$ rectangle satisfies with $d=c \pm$ $\sqrt{a b}$. However $a b$ is never a square. With $\mathrm{a}=3, \mathrm{~b}=4, c=5, d=1.5359$ or 8.4641 and $\mathrm{A}=13.68$ or 48.32 .
(b) Add to (a) a right triangle d, e, f on one side, and $d^{2}-d(2 c+e)-$ $a b+c^{2}+c e+\mathrm{e}^{2}=0$. This is satisfied with $a=3, \mathrm{~b}=4, c=5, c=2$,

and $\boldsymbol{d}=3$ or 9 . Then $A=24$ or 60 . All are integers except f. (c) Two right triangles back-to-back atop a rectangle finds $d=2 b \pm$ $\sqrt{b^{2}}+2 \mathrm{ab}-a^{2}$. This is satisfied with $\mathrm{a}=12, \mathrm{~b}=5, c=13$ and $d=9$ or 11. $A=150$ or 170. Hence these two solution are entirely in integers, which may have been the author's intent.
(d) Like (c) with the triangles re-entrant, finding $d=2 b \pm \sqrt{b^{2}-2 a b-a^{2}}$. The radicand is negative unless $\mathrm{b}>\alpha(1+\sqrt{2})$. Using $\mathrm{a}=7, \mathrm{~b}=24$, $c=25, d=48 \pm \sqrt{191}, A=2136 \pm 48 \sqrt{191}$. Using $a=2, b=5, c=\sqrt{29}$, $\mathrm{d}=9$ or $\mathbf{1 1}$ and $\boldsymbol{A}=80$ or 100 , which is nearly integral -- all except c. (e) Investigating an inscript solution, I started with the symmetrical figure with chords $\mathrm{a}, \mathrm{b}, \mathrm{b}, c, c$, with corresponding central angles $2 A$, $2 B$ and $2 C$, leading to $\sin ^{2} A+2 \sin ^{2} B+2 \sin ^{2} C=\frac{1}{2} \sin 2 A+\sin 2 B+\sin 2 C$. If A is chosen arbitrarily between limits, this can be solved for B and C. Choosing $\mathrm{A}=45^{\circ}, 2 \sin ^{2} ; ?+2 \sin ^{2} C=\sin 2 \mathrm{~B}+\sin 2 C=\sqrt{2} \sin \mathrm{~B}$, $C=\frac{3}{2} \sqrt{\sqrt{2} \pm \sqrt{\sqrt{2}}}$; that is, B and C are interchangeable, using one sign of \pm for B and the other for C . For $\mathrm{a}=1, \mathrm{~b}=1.14092521, c=0.335415004$, $\boldsymbol{S}=\mathbf{1}+2 \sqrt{2}$. The lower 1 im it for A is 0° when the pentagon becomes a
square with a null side $a=0$. At the upper limit, $B=C$, when $v=$ sin $25=0.760776413$, being the only real root of $8 v^{5}+8 v^{4}-8 v^{3}+5 V-$ $5=0$ and $A=80.9346148^{\circ}, \mathrm{B}=\mathrm{C}=24.7663463$.
(f) With 4 equal sides, which can be made integers, this is an interesting solution. It happens that if we make $b=c=14$, then $a=33.00192808$ and nearly an integer. $A=468.2818143$. The circumradius is 16.70968173 .

Comment: I was surprised by the variety of shapes and enjoyed the extended recreation. The all-integer solution (c) is probably what was wanted, but I like (f) the most.

In addition to the foregoing solution, an amazing variety of, configurations were contributed by JEANETTE BICKLEY, Webster Grove High School, Missouri; STEVE FROM, Council Blub6s, Iowa; JOHN M. HOWELL, Littlerock, California; MARK JAEGER, Madison, Wisconsin; THEODORE JUNGREIS, Brooklyn, Nw York; MRRAY S. KLAMKIN, University of, Alberta, Edmonton, Alberta, Canada; C. B. A. PECK, State College, Pennsylvania; CHARLES W. TRIGG, San Diego, California; GERRIANNE VOGT, St. Louis University, St. Louis, Missouri; and the proposer, NOPMN SCHAUMBERGER.
384. [Fall 1976] Proposed by R. S. Luthar, University of, Wisconsin, Janesville.

Discuss the convergence or divergence of the series

$$
\sum_{n=1}^{\infty} \frac{n}{p_{n}^{2}}
$$

where P_{n} means the nth prime.
Solution by Bob Prielipp, The University of, Wisconsin-oshkosh.
It is known that $p_{n}>\frac{n \ln n}{4}$ fom >1. [For a derivation of this result, see pp. 148-150 of Sierpinski, Elementary Theory of Numbers, Hafner Publishing Company, New York, 1964.1 Thus

$$
\frac{n}{p_{n}^{2}}<\frac{16}{n(\ln n)^{2}}
$$

for $n>1$. But it is well-known that

$$
\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{\alpha}}
$$

is convergent if and only if $a>1$. Hence

$$
\sum_{n=1}^{\infty} \frac{n}{p_{n}^{2}}
$$

converges by the Comparison Test.
Also solved by CLAYTON W. DODGE, University of, Maine at Orono; RICHARD A. GIBBS, Fort Lewis College, Durango, Colorado; MAFK JAEGER, Madison, Wisconsin; C. B. A. PECK, State College, Pennsyluania; EDITH E. RISEN, Oregon City, Oregon; R. ROBINSON ROME Sacramento, California; GERRIANNE VOGT, St. Louis University, St. Louis, Missouri; and the proposer, R. S. LUTHAR, University of, Wisconsin-Janesville.
385. [Fall 19761 Proposed by John T. Hurt, Bryan, Texas. Solve: $\sin a=\tan (\alpha-\beta)+\cos a \tan \beta$.
Solution by the proposer.
Rewrite as:

$$
\sin a-\cos a \frac{\sin \beta}{\cos 6}=\frac{\sin (\alpha-\beta)}{\cos (\alpha-\beta)}
$$

from which

$$
\frac{\sin (\alpha-\beta)}{\cos B}=\frac{\sin (\alpha-\beta)}{\cos (\alpha-\beta)} .
$$

From the numerator, $(a-\beta)=n \pi$; from the denominator, $\pm \beta=a-\beta+2 n \pi$, and from these we have all the solutions:

$$
\begin{aligned}
& \mathrm{a}=0 \bmod 2 \pi \\
& \mathrm{a}=\beta \bmod \pi \\
& \mathrm{a}=2 \beta \bmod 2 \pi .
\end{aligned}
$$

Also solved by JACKIE E. FRITTS, Texas A \& M University; STEVE FROM, Council Blubfs, lowa; CLAYTON DODGE University of, Maine at Orono; JACK GARFUNKEL, Forest Hills High School, Flushing, Nw York; ROBERT C. GEBHARDT, Hopatcong, Nv Jersey; C. B. A. PECK, State College, Pennsylvania; R. ROBINSON ROME Sacramento, California; GERRIANNE VOGT, St. Louis university, sit. Louis, Missouri; and ZELDA and ZAZOU KATZ (jointly), Beverly Hills, california.
366. [Spring 19761 Proposed by Richard Field, Santa Monica, California. Let $Q=\left[10^{n} / p\right]$, where p is a prime >5, and n is the cycle length of the repeating decimal $1 / p ;[x]$ denotes the greatest integer in $a . \quad$ Can Q be a prime?

1. Solution by Kenneth S. Williams, Carleton University, Ottawa, Canada. Since $\mathrm{p} \# 2,5, p^{-1}$ has a periodic decimal expansion of the form

$$
p^{-1}=0 . \dot{a}_{1} a_{2} \cdots \dot{a}_{n} .
$$

Hence, with $\mathrm{Q}=a_{1} a_{2} \cdots a_{n}$ (in decimal notation), we have

$$
P^{-1}=Q\left(\frac{1}{10^{n}}+\frac{1}{10^{2 n}}+\cdots\right)=\frac{Q}{10^{n}-1},
$$

that is,

$$
10^{n}-\mathbf{1}=\mathrm{Qp} .
$$

$\operatorname{Now} 3^{2}=9=10-1 \mid 10^{n}-1$, so $3^{2} \mid Q p$. But $p \neq 3$; hence $3^{2} \mid Q$. That is, $\mathrm{g} \mid Q$, and so Q is never a prime.
II. Comment by Léo Sauvé, Algonquin College, Ottawa, Canada.

If the cycle length n of $1 / p$ is even--that is, if in decimal notation

$$
Q=a_{1} a_{2} \cdots a_{r r} a_{r+1} \cdots a_{2 r}
$$

(this occurs, in particular, if 10 is a primitive root of p, when $n=$ $p-1)--$ then we have the stronger result

$$
a_{1}+a_{r+1}=a_{2}+a_{r+2}=\cdots=a_{r}+a_{2 r}=9
$$

For a discussion and proof of this statement, see, for example, Higher Algebra, by S. Barnard and J. M. Child, Macmillan, London, 1969, pp. 439-443.
363. [Spring, 1976] Proposed by Robert C. Gebhart, Hopatcong, New

Jersey.

Does $\frac{\sin 1}{1}+\frac{\text { sin } 2}{2}+\frac{\sin 3}{3}+\cdots$. converge, and if so, to what?

Solution by Léo Sauvé, Algonquin College, ottawa, Canada.

A routine expansion of the function $\frac{1}{2}(\pi-x)$ in a Fourier series gives

$$
\begin{equation*}
\frac{1}{2}(\pi-x)=\sum_{n=1}^{\infty} \frac{\sin n x}{n}, \quad 0<x<2 \pi, \tag{1}
\end{equation*}
$$

and setting $\mathrm{x}=\mathbf{1}$ gives the required sum

$$
\frac{\sin 1}{1}+\frac{\sin 2}{2}+\frac{\sin 3}{3}+\cdots=\frac{1}{2}(\pi-1) .
$$

It may be of interest to find at the same time the sum of the corresponding cosine series by setting $\mathrm{x}=\mathbf{1}$ in the following Fourier expansion:

$$
\begin{equation*}
-\log \left(2 \sin \frac{1}{2} x\right)=\sum_{n=1}^{\infty} \frac{\cos n x}{n} \tag{2}
\end{equation*}
$$

this gives
$\cos ^{1} 1+\frac{\cos _{2} 2}{2}+\frac{\cos 3}{2}+\cdots=-\log \left(2 \sin \frac{1}{2}\right)$.
All that this shows is that if one knows the answer it is very eas ${ }_{y}$ to justify it. It is not so easy to find the left side of (1) and (2) when only the right side is given. This can be done in several ways, as can be seen in An Introduction to the Operations with Series, by I. J. Schwatt, Second Edition, Chelsea, New York, 1961, pp. 211-214.

a new publication devoted OO UNDERGRADUATE MATHEMATICS

An informal bimonthly publication printed in the form of a newsletter has recently come to the attention of this Journal, and we recommend it highly to our readers. It is the Eureka, sponsored by the Carleton-Ottowa Mathematics Association (a Chapter of the Ontario Association for Mathematics Education). The editor is Professor Leo Sauve, Agonquin College, Ottawa. Send inquiries regarding subscriptions to:

```
F. G. B. Maskell
Algonquin College
200 Lees Avenue
Ottowa, Ontario KlS OCS
```


LOCAL CHAPTER AWARDS WINNERS

ARKANSAS BETA (Hendrix College). The McHenry-Lane Freshman
Mathematics Award was presented to
\section*{Mary Sudman,}
the Hogan Senior Mathematics Award went to
Donald Hayman,
Wit orton,

and special recognition was given to
Michael Tiefenback
for ranking highest in the Oklahoma-Arkansas Section on the 1976 Putnam Examination.

GEORGA BETA (Georgia Institute of Technology). Book awards were presented to the following outstanding graduates in mathematics (grade point of at least 3.8 , with 4.0 perfect, in all mathematics courses taken):

Roger L. Gray,
 Margaret Anne Reimer.

INDIANA DHTA (Indiana State University). An award of $\$ 100$ was presented to

Ross McKenna,

a junior, who had the highest index (GPA of 4.0) in mathematics.
OWA AHHA (Iowa State University). Pi Mu EpsiZon SchoZarship
Awards of $\$ 50$ each were presented to

Robert Gebhardt,
 John Spohnheimer,

who were the top two scorers of a competitive examination conducted by members of the mathematics department. For outstanding achievement in mathematics, an additional $\$ 50$ award was given to

Kent Probst.
The Dia Lewis Hall Award of $\$ 50$ for an outstanding graduating senior mathematics major went to

Bill Rockenbach.

The Gertrude Herr Adamson Awards of $\$ 50$ each for demonstrated ingenuity in mathematics were presented to

Galen Aswegan,	F. George Janvrin,
John Briggs,	Patrick Ryan,
David Challener,	Van Scott,
Marjorie faddy,	Susan Scott.

MARMAND AIHA (University of Maryland). The Milton Abramowitz
Memorial Prize for a senior mathematics major who has demonstrated superior competence and promise for the future in the field of mathematics, was won by

Chewier Collins.

The Higginbothom Award for the outstanding junior student majoring in mathematics was presented to

Glenn Joseph Galfond.

NEW JESSES BETA (Douglass College). Two juniors qualified for gift certificates for mathematics books because of excellence and achievement in mathematics. They were

Kathy Chapman, Lesley Chapman.

NEW JERSEY EPSIION (Saint Peter's College). The Janes B. Cozlin Award was won by

Thomas Murphy.

NEW YORK EPSILON (St. Lawrence University). The Dr. O. Kenneth Bates Mathematics Award has been instituted in honor of Professor Bates who served as mathematics chairman at St. Lawrence 1933-1967 and was a charter member of the Epsilon chapter. The award is presented annually to a senior for superior performance in mathematics courses, departmental activities and general interest in and enthusiasm for the discipline. The first annual award was presented to

Constance R. Nelson.

OHIO EPSILON (Kent State University). Cash certificates of \$25 each for books went to

Patricia Weinmann,

 Howard FraserOHO THETA (Xavier University). The Kromer-MiZZer Mathematics Award for outstanding seniors was presented to

Thomas Fagedes,

Richard W. Hack.

The Richard J. Wehrmeyer Memorial Pi Mu Epsilon Award for excellence in problem solving went to

Barry T. Neyer,

and the Comer Memorial Fund Award for the outstanding student in statistics was won by

James R. Schott.

The Robert F. Cissell Memorial Award for exceptional undergraduates went to

```
Robert F. Niemoeller,
Danial J. Roessner,
Lisa M. Schoettinger,
Mary Jo Stentz.
```

OKAHIMA BETA (Oklahoma State University). The O. H. Hamilton Award of $\$ 100$, in honor of the late Professor Olan H. Hamilton and presented to the outstanding graduate student in mathematics, went to

Max Hibbs.

The Mathematical Sciences Alumni Award for outstanding sophmores was presented to

> Suzanne. McCoy,
> Celeste White,
and an Atumni Certificate of Merit was given to
Queta Am Barnes.
The winners of the W. R. Pogue Award for outstanding juniors were

Janette Moyer,

Karen Sonder,

and a Pogue Certificate of Merit was awarded to
Lisa Love..
The Mathematical Sciences Faculty Achievement Award for outstanding seniors went to

Marcia Currie,	
Christy Geimers,	Deborah Hufoman Willis,
Kathy Sullivan,	Emily Wonderly,

with the two outstanding seniorswho received this award recognized as

> Robert Hayes,
> Mary Stone..

HHOE ISLAND BETA (Rhode Island College). The Mitchel Award in" Mathematics was presented to

Jeanne Duguay.

SOUIH CAROUNA GAMMA (College of Charleston). The Harrison Randolph Calculus Award was won by

Eric Seth Webb,
and the Outstanding Mathematics Major Awards were presented to

Clarence Michael Phillips,
 Lonita Spivey.

TEXAS BETA (Lamar University). High school students who exhibited outstanding ability in mathematics competition and who were each awarded R. S. Burlington's Handbook of Mathematical Tables and Formulas were

Mark Rippetoe,
 Chris Erickson,
 Pout Skinner.

In the annual Homer A. Dennis Freshman Contest, a competition consisting of 6 problems ranging from algebra to calculus, the winners were

> Joseph Bouchard, First Place,
> John Matson, Second Place.

TEXAS DELTA (Stephen F. Austin State University). The Outstanding Senior Mathematics Student for 1976-77 was

Sherry Sweat.

PI MU EPSILON AWARD CERTIFICATES

Is your chapter making use of the excellent award certificates to help you recognize mathematical achievements? For further information write:

$$
\begin{aligned}
& \text { Dr. Richard A. Good } \\
& \text { Secretary-Treasurer, Pi Mu Epsilon } \\
& \text { Department of Mathematics } \\
& \text { The University of Maryland } \\
& \text { College Park, Maryland } 20742
\end{aligned}
$$

SUMMER MEETING IN SEATTLE

Pi Mi Epsilon held its annual summer meeting in conjunction with the American Mathematical Association in Seattle, Washington August 12-16, 1977 on the University of Washington campus. On Monday, the Governing Council held its annual luncheon and business meeting at Husky Den. After approving the minutes the Council was advised of the continuing adequate financial status of the Fraternity by the Secretary-Treasurer, Richard A. Good, and of a substantial increase in Journal subscriptions by the Journal Editor, David C. Kay. Allan Davis, President, reported on new chapters of the Fraternity. Eileen Poianni suggested holding a pre-meeting with student speakers and delegates, and Milton Cox discussed student sessions at regional meetings and conferences. It was moved by Maurice Beeseley, seconded and passed that the Fraternity (1) have an actual banquet each year rather than cafeteria type meals and (2) subsidize any banquet costs beyond $\$ 4.00$ per member. It was decided to give travel support to past presidents and staunch supporters of the Fraternity equal to present delegate support, that the $\$ 400$ limit for travel support of delegates and speakers to the Seattle meeting be continued indefinitely, and that travel expenses include ground transportation to and from the airport, depot or terminal. It was moved by Richard Good, seconded and passed that as of July 1, 1979 the price of the gold Fraternity pins be raised to $\$ 8.00$ and that this be announced well in advance of that date.

Monday evening the annual banquet was held at the Sherwood Inn, and at 8:00 the third J. Sutherland Frame Lecture was delivered by Professor Ivan Niven, University of Oregon, on the topic "Techniques of Solving Extremal Problems".

The Dutcin Treat Breakfast was held 8:00 a.m. Tuesday morning at Husky Inn.

The following student papers were presented in Guggenheim Hall on Monday and Tuesday afternoons:

1. Paradox in the Development of, Mathematics, Wayne Heym, Ohio Delta.
2. The. Value of Mathematics in Pre-legal Education, Bruce Fox, Illinois Alpha.
3. Commutative Rings wid Fields, Kathyrn Dowdell, Pennsylvania Xi.
4. Continuous Convergence of Functions, Robert Childs, North Carolina Delta.
5. Continuous Convergence in $\mathcal{C}(X)$, James Lewis, North Carolina Delta.
6. A Characterization of G_{δ} Sets in Metric Spaces, Jeff Thompson, New York Theta.
7. How to Model for Politicians, Lonita B. Spivey, South Carolina Gamma.
8. Mathematical Modeling of, a Sewage Plant, John Gimbel, Michigan Gamma.
9. The. Structure of, the Solution Space of, 5th Order Linear Differential Equations, Ernest Lowery, Texas Gamma.
10. Sink Like Structures in Compartmental Analysis, James Bellinger, Illinois Delta.
11. A Computer Application of Linguistics, Alfredo Garcia, Missouri Gamma
12. Set Simplification Simplified, Dale Watts, Colorado Beta.
13. The Effect of Finite Infinities on Rational Numbers, Victor Meyer, Michigan Beta.
14. Mathematics Field Day, Kenneth Pitz, Nebraska Beta.
15. An Introduction to, and an Application of Elliptical Integrals, Mark Goldsmith, Ohio Delta.

ERRATA FOR VOLUME 6, NUMBER 5

Page 268, line -7: Replace " Q ' is $1 / \bar{n}$ " by " R is $1 / \bar{n}$ ". Page 269 , line 1: Replace " Q ' is $1 / \bar{n}$ " by " R is I / \bar{n} ".

Jruimph of the deuders
 Ant
 OUR BADGE - a triumph of skilled and highly trained Balfour

 YOUR BADGE - a triumph of skilled and highly trained Baifourcraftsmen is a steadfast and dynamic symbol in a changing world.

Official Badge

Official ane piece key
Official ane piece key-pin
Official threepiece key
Official three-piece key-pin
WRITE FOR INSIGNIA PRICE LIST-

An Authorized Jeveler to Pi Mu Epsilon

. *'
PI MU EPSILON JOURNAL PRICES
PAID IN ADVANCE ORDERS:

Members:	$\$ 4.00$ for 2 years
	$\$ 10.00$ for 5 years
Non-Members:	$\$ 6.00$ for 2 years
	$\$ 15.00$ for 5 years
,	Libraries:
	$\$ 15.00$ for 5 years (same as non-members)

If billed or through agency odd $\$ 2.00$ to above prices.
Back Issues \$ 2.00 per issue (paid in advance)
Complete volume $\$ 15.00$ (5 years, 10 issues)
All issues
$\$ 90.005$ complete back volumes plus current volume subscription (6 volumes - 30 years)
If bilied or ordered through agency, add 10% to above prices.

[^0]: Chapter reports, books for review, problems for solution and solutions to problems, should be mailed directly to the special editors found in this issue under the various sections. Editorial correspondence, including manuscripts and news items should be mailed to THE EDITOR OF THE P MU EPSILON JOURNAL, 601 Elm, Room 423, The University of Oklahoma, Norman, Oklahoma 73019. For manuscripts, authors are requested to identify themselves as to their class or For manuscripts, authors are requested to identify themselves andergraduates or graduates, and the college or university they year if they are undergraduates or graduates, and the college or university they ore attending

 PI MU EPSILON JOURNAL is published at the University of Oklahoma twice a year - Fall and Spring. One volume consists of five years (10 issues) beginning with the Fall 19x4 or Fall 19×9 issue, starting in 1949. For rates, see inside

[^1]: ${ }^{1}$ The author is grateful to the referee for his excellent suggestions, which have simplified some of the proofs of the theorems in this paper.

[^2]: The atho actecwledzes the selp and inspiration of Professor Temple \bar{E}. Eay in uctei-g this paper.

[^3]: ${ }^{1}$ Professor Cox is presently a national Councillor, and is also the advisor of the Ohio Delta Chapter.

