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MATHEMATICAL CURIOSITIES

by Debra Lea Gutridge
Muskingum College

The study of mathematics often leads into some unusual territory.
The mathematician is at times confronted with strange geometric fig—u;es,
odd equations, misbehaved curves, and seemingly insoluble paradoxes.
Here an attempt will be made to examine some of the curiosities that

.interest and challenge mathematicians.

1. Topofogical Curiosities

A, Moebius Strips. Several interesting mathematical curiosities
have come from the area of topology. One very familiar example is the
Moebius Strip, named for August Moebius, a German mathematician. Mosgt
of the surfaces met in everyday life are bilateral, or two-sided. A
fly placed on one side of a sheet of paper, for example, could not reach
the other side unless he cut through the paper or crawled over an edge.
However, the Moebius strip is a unilateral closed surface; it has only
one side, A fly could crawl from any point on this surface to any other
point on the surface without cutting through the strip or going over an
edge.

Some properties of this surface can be explained by comparing it to
a cylindrical surface made by taking a long rectangular piece of paper
and pasting the ends together. This surface has two sides and two edges.
A Moebius strip can be made in a similar manner, except that one end of
the paper is given a half twist before the ends are joined. The
resulting surface has one side and one edge.

To become convinced of these properties, one has only to start at a
point and draw a line down the center of the strip without removing one's
pencil from the paper until returning to the starting point. |t will be
found that a single line has been drawn on what had been both aides of
the paper before the ends were glued together. Similarly, one can run a
pencil around the edge of the strip and find that both edges of the
original strip have been colored.
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If the original cylindrical strip is cut along its center, it falls
apart into two new cylindrical strips each half as wide as the first.
However, if the Moebius strip is cut along its center, a single strip
twice as long and half as wide as the original is obtained which has a
whole twist init. |f thisstrip is again cut along its middle, two
strips are formed which are interlocked. If a half-twisted Moebius
strip is cut along a line one-third of the way from its edge, two inter-
locked strips are formed, one of which has a one-half twist and the other,
a whole twist.

These properties of the Moebius strip can be explained in terms of
the theory of knots. A closed curve is knotted if it cannot be trans-
formed into a single simple closed curve without cutting and retying.
Figure 1-a shows a string that is actually unknotted, while Figure 1-b
shows a string that is knotted in the simplest way possible. The above
discussion of the Moebius strip can be put in terms of knots as follows.

The two edges of the cylindrical strip are neither knotted nor interlocked.

ESHD

(a) (b)
FIGURE 1

This strip, cut down the middle, falls apart. The single edge of the
one-half-twisted Moebius strip is not knotted. This strip, when cut

dowmn the middle, becomes one unknotted strip. The two edges of a strip
with a whole twist are interlocked but not knotted. When this strip is
cut dom the center, it forms two interlocked strips. |f one end of a
strip is turned through one and one-half twists before pasting, the
resulting strip has one side and one knotted edge. W this surface

is cut down the center, a single strip of the half-twisted type is formed
which is itself knotted,

7

B. Klein's Bottle. Another related curiosity is the Xlein bottle,

named for the German mathematician Felix Klein. W are all familiar-with
the sphere, which is a simple closed surface dividing space into two
parts, one inside the sphere and the other outside it. The Klein bottle
is also a closed surface like the sphere, but it has no Znside zahate_v_e_r,
If we start at a point outside a sphere and cut through its surface to.
the inside, we would have to cut through the surface again to get back
outside. If we start anywhere and cut through the surface of a Klein
bottle, we can follow a path which returns to the place we started without
ever cutting the surface again.

A model of a Klein bottle is difficult to make with paper and is
usually blown in glass. 1t is made by taking one end of a hollow glass
tube, bending it around, inserting it through a hole in its own side,
and joining the two open ends together. The resulting surface is closed,
being unbroken in the usual sense at any point. A diagram of the bottle
and its cross-section is shown in Figure 2. The Klein bottle, which was

FIGURE 2

not invented originally only for fun, arises naturally from the consider-
ation of a one-sided surface which is closed and has no boundary, but it
does exert a certain undefined attraction for the mathematician that
other ordinary bottles just do not have.

2, Fowrth Dimensional Curniosities

A. The. Hypercube. The Moehius strip and Klein's bottle are two-
dimensional surfaces existing in three dimensions; some other interesting

curiosities come from the world of four dimensions. Imagine a line
segment moving in a direction perpendicular to itself; it generates a
square. If this square moves perpendicular to all of its sides, it
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generates a cube. Nw imagine the cube moving in a new direction perpen-
dicular to all of its faces; it generates a hypercube, or tesseract.

Just as a cube can be represented by a two-dimensional perspective
drawing, a hypercube can be represented by a three-dimensional perspective
sculpture. The hypercube has 16 corners, 32 edges generated by the 8
corners of the original cube, 24 faces from the 12 edges of the cube, and
8 cubes from the 6 faces of the original cube. Each corner is como to
4 mutually perpendicular edges, to 6 faces, and to 4 cubes; each edge is
aommon to 3 faces and 3 cubes, and each face is common to 2 cubes. Every
cube has one face in common with 6 of the 7 others. A hypercube can be
unfolded into its component cubes just as a cube can be unfolded into its
component squares, as shown in Figure 3. Actually the hypercube is one
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FIGURE 3

of a family of regular four-dimensional polyhedrons. While in three
dimensions there are five regular polyhedrons bounded by regular polygons
(the tetrahedron, cube, octahedron, dodecahedron, and icosahedron), in

hyperspace there are stz regular hypersolids bounded by regular polyhedrons:

Css bounded by 5 tetrahedrons; Cys bounded by 8 cubes; Cigs by 16 tetra-
hedrons; C , by 24 octahedrons; 0120, by 120 dodecahedrons; and Ceoo’
by 600 tetrahedrons. Models of their projections into three space have
all been constructed. Our hypercube, Cg, has right angles throughout
and is, therefore, the standard for measuring hyperspace.

8. (Other Fourth. Dimensional Sunpaises. The idea of hyperspace
gives rise to several curiosities in addition to hypersolids. Just as

a three-dimensional creature coulé look down on this square in its plane
: inside 1t without disturbing the
sides of the sguare, 2 four-dimensional Creature could remove one's

(Figure 4) and remove the
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FIGURE 4

appendix without disturbing the skin. Such a creature could also enter
any closed vault and become a perfect thief as well as a perfect surgeon.
A four-dimensional creature could also untie knots in a string even
though both of its ends were anchored (Figure 5). For example, in a

FIGURE 5

two-dimensional plane a knot could look like the diagram in Figure 6-a

(a) (b)
AT C_—" B A
D
FIGURE 6

In order to untie it, end B must be rotated around ¢. However, a three-
dimensional creature could untie the knot by moving the loop through a
third dimension. Part BD would be turned one-half way over through this
third dimension into the position shown in Figure 6-b.

A four-dimensional creature could untie three-dimensional knots
similarly by moving séme essential part of the knot through a fourth ™
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dimension. Such a creature could also create mirror image reversals in
three dimensions. If triangle A isin aplane, as in Figure 7, it cannot
be rotated so as to coincide with triangle B, However, a three-dimensional

FIGURE 7

creature could pick up A out of its plane, turn it over through a third
dimension, and put it back into its plane so that it would coincide with
B.

Similarly, a four-dimensional creature could take prism A and make
it coincide with prism B8 (Figure 8) by turning it through a fourth
dimension. If it could actually be accomplished, this type of reversal

FIGURE 8

could have particularly interesting effects on a living animal since the
activity of many biologically useful molecules depends on their three-
dimensional orientation, and it would have interesting psychological
effects on a human since his right-left orientation would be completely

reversed. Of course one need not stop at such four-dimensional curiosities.

Fifth, sixth, and n-dimensional curiosities are open to exploration as
well.

3. Curious Curves

A, ngo&.dé. Some other mathematical curiosities arise from the
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study of various curves. Ornre interesting problem goes as follows. The
large circle in Figure 9 has made one revolution in rolling without

/ \

P Q
FIGURE 9

slipping along a straight line from P to Q, and so the distance RQ is
equal to thecircumferenceof the large circle. However, the small circle,
fixed to the large one, has also made one revolution, and so the distance
RS is equal to the circumference of the small circle. Since &S is equal
to PQ, the circumference of the two circles nust be equal.

This strange contradiction can be explained by the fact that while
the large circle rolls without slipping, the small one does sZip in a
certain sense. Further explanation involves the concept of a rather
curious curve known as the eyeloid. This curve, shown in Figure 10, is

FIGURE 10

the path traced by a fixed point, ¥, on the circumference of a circle as
the circle rolls without slipping along a straight line. A fixed point,
N, inside the eircle describes what is called a curtate cycloid, shown

FIGURE 11



452

in Figure 11, and a point, 0, outside the eirele but attached to it
describes a prolate cycloid, shown in Figure 12.

FIGURE 12

Returning to the two-circle problem, | et us consider the motion of
point M on the circumference of the large circle and that of point ¥ on
the circumference of the small circle. As the large circle rolls from
Pto @, M describes a cyeloid, and ¥ describes a curtate cycloid. Although
each wheel makes only one revolution, point M travels farther than point
N (as can be seen from Figure 13), and only the common center of the

circles travels a distance equal to the straight line PQ.

FIGURE 13

The cycloid has several other curious properties. The length of
one arch of a cycloid is equal to the perimeter of a square circumscribed

about the generating circle. (See Figure 1%-a.)

(a) (b)
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FIGURE 14
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The area under one arch of a cycloid is equal to three times the area of
the generating circle. Therefore, when the circle is in the position
shown in Figure li-b, the shaded areas on either side of it are each
exactly equal to the area of the circle.

The arc of a cycloid is also the path of quickest descent betweens
two points. For example, suppose that 4 and B are two points not in the
same horizontal plane and that twp balls are released simultaneously at
A and are allowed to roll from A to B (Figure 15), and suppose the first

FIGURE 15

rolls along a plane, and the second rolls along a surface in the shape o
an inverted cycloid. The second will reach B first in spite of the fact
that this path is longer and that the second ball has to roll uphill
before it gets to B. In fact if the plane from A to B is replaced by a
surface of any other shape, the ball that rolls along that surface will
always get to B later than the one that rolls along the cycloid. This
problem, called the brachistochrone problem, was proposed to Jacob
Bernoulli by his brother Johannes in 1696 and was solved by methods
which developed into the field now called the ealeulus Of variations.

4. Pathological Curves
Most curves dealt with by mathematicians are fairly innocent and,

while they may exhibit a few idiosyncrasies like the cycloid, can be
handled by using one technique or another. There are some curves,
however, who simply will not behave themselves despite all efforts to
bring them under control; these are the pathological curves of mathematics.
Before we start to discuss them, the idea of a curve being the limit of
a sequence of polygons must be introduced.

Let an equilateral triangle be inscribed in a circle (Figure 16-a) ;.
this triangle is curve ¢;. As in Figures 16-b,c let c, be the regular
hexagon obtained by bisecting the three resulting arcs of the circle and
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by joining, in order, the six vertices, Let 6'3 be the regular dodecagon
formed by bisecting the six arcs obtained and joining the twelve in
order. |f this process is repeated, the number of sides of the inscribed
curve doubles each time. The curve approached as a limit in this process
is the original circle, and so the circle is described as the limit curve
of a sequence of curves or polygons. The pathological curves we shall
discuss are limit curves like this one.

The first pathological example is the snowflake curve. Start with
a triangle with sides each one unit in length (Figure 17). Asin
Figure 17-b, trisect each side of the triangle and erect on each of the

AR S

middle thirds an equilateral triangle pointing outward. Erase the parts
commmn to the new and old triangles. This simple polygonal curve is
obtained. Trisect each side of this curve and upon each middle third
erect an equilateral triangle pointing outward. Erase the parts of the
curve common to the new and old figures. The curve shown in Figure 17-c
is obtained, Nw continue this process. The limit curve of the process

is the snowflake curve, (It obviously gets its name from the shape it
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assumes at successive stages of its development.) This curve is considered
pathological because although the curve has a perimeter of infinite length,
its areaisfinite. At each stage of the construction, the perimeter
increases, and the sequence of numbers representing the length of the _
perimeter at each stage does not converge. o

This fact can be explained as follows. The perimeter of the triangle
was 3. |In constructing the second stage, we added six lines of length
one-third unit each and subtracted three lines of length one-third unit
each. The net result was that we added one unit to the perimeter.
Therefore, the length of the second curve is 3t 1. Likewise, the

perimeter of the third stage is
3+ 1+ 4/3;
of the fourth,
3+ 1+ 4/3 + (4/3)2,
The perimeter at the nth stage is
3+ 1+ 4/3 4 (4/3)2 + «oe 4 (u/3)"72,

and so as n grows, the result grows, since this series does not converge,
and the perimeter becomes infinite.

To show that the area is finite, think of a circle circumscribed
around the original triangle. Then note that at no subsequent stage of
the development will the curve ever extend beyond this circle. Therefore
we are confronted by the strange fact that this curve of infinite length
can be drawn on a small sheet of paper -- on a postage stamp, for instance.
It is also not possible to tell at any point on the limit curve the
direction in which it is going, and so the tangent line does not exist at
any point.

There is also another pathological curve called the anti-snowflake
curve, which is obtained by drawing triangles inward, not outward, in
the above construction. It has the same properties as the snowflake.

Its perimeter is infinite, but its area is finite, and no tangent line
can be drawn to it. The first four stages are shown in Figure 18.

The in-and-out curve is another pathological example. Drawv a circle
with radius one and choose six points on it which divide the circumference
into six equal parts. Take three alternate arcs and turn them inward.

The original circle, ¢,, is now the new figure C, (Figure 19). The
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perimeter of C, is the same as the perimeter of C;, since its length is

not altered by turning three arcs inward,
CQ @
turn the middle third outward if

it is now outward (Figure 20).

5T

Next trisect each arc and

it isnow inward and turn it inward if
This new curve is €4, and its perimeter
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is also equal to that of the original circle. The area ofC; is the same
as that of Cz’ since we alternately added and subtracted the same sized
segments. Keep repeating this process. The limit curve has a perimeter
equal to the perimeter of the circle, and its area is equal to that of

¢ . While the curvature of the original circle can be computed without
difficulty, the in-and-out curve presents a pathological problem in this
respect. Consider an arbitrary point on it. Should we measure curvature
at this point toward the center of the circle or away from it? There is
no definite curvature, and the second derivative does not exist.

Our next pathological specimen is a space-filling curve, which seems
to refute the idea that a point has zero dimensions and that a’curve
which is one-dimensional cannot fill a given space. The first member of
the curve generating sequence is polygon P, inserted in a square as
shown below in Figure 21-a. The square is then divided into four equal
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FIGURE 21

squares, and four polygons similar to P, are formed and are joined
together to form polygon P, (Figure 21-b). To get polygon P,, each of
the four squares is divided into four more, and sixteen polygons similar
to P, are joined together (Figure 21-c). |If this process is continued,
51 Py "'". This sequence
approaches a |limit curve. It can be rigorously shown that this curve

the result is a sequence of polygon Pl, P

passes through any specified point of the square in which it is inscribed,
and so it must pass through every point of the square and must completely
fill it. 1t can also be shown that such a one-dimensional curve could
also fill an entire cube, hypercube, or figure corresponding to a cube
in a space of any number of dimensions.

W have discussed some of the oddities of mathematics -- the Moebius



strip, Klein's bottler the weird world of the fourth dimensions and some
very unusual curves. These are but a few of the strange and wonderful
things with which mathematicians deal, and they represent just a few of
the areas studied in mathematics. There are many more mathematical
curiosities to be examined and explored or to be newly discovered. The
mathematical curiosities are there just waiting for a sufficiently
curious mathematician.
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THE PERFECT NUMBERS AND PASCAL'S TRIANGLE

by Robert Antol
Towa State University

The fundamental theorem of arithmetic states that every positive
integer can be represented uniquely as the product of prime factors. pmn
integer n > 1 shall accordingly be written

n = p‘flp;z p‘;p (1)
where the p;'s are the distinct prime factors and o, is the multiplicity
of pi(the number of times p; occurs in the prime factorization).

A positive integer is called a perfect number if it is equal to the
am of all its positive divisors other than itself. The aum of divisors
of a number n with the prime factorization (1) is

a.+1 a, +1 aptl o+l

p,1 -1 p,2 -1 1 r p.t -1
o(n) = - .2 R & = T =B (2)
py-1 Porl Pyl i=1 Pi7t

The condition for a perfect number may then be given by n = o(n) - n or
equivalently, o(n) = 2n.
Euclid argued that if P -1is prime for p > 1, then

P =P (P ) (3)

is a perfect number. Euler showed later that all even perfect numbers
must be of this type (see [4]). The number 2P _ 1 is known as a
Mersenne prime and is denoted by My, as in [3]. All perfect numbers
known are even and the question of whether there is an odd perfect
number is still unanswered. There is no evidence to prove or disprove
the existence of an odd perfect number but if one does exist, it must be
greater than 10190 [1],

For any positive integer m and any integer k satisfying 0 = k = m,
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the binomial coefficient (2) is defined by

m m}
@ = xrmroT )

Use will now be made of the configuration known as Pasecal's triangle in
which the binomial coefficient (r;j) appears as the (k + 1)st number in
the (m + 1)st row, as in [5]1.

v 0O (o)

mew 2L, AG)

daast 0006
— G Q6 6

Binomial Coefficient (y)

FIGURE 1

The borders of the triangle are composed of ones; a number not on the
border is the sum of the two numbers nearest it in the row above.

All even perfect numbers can be shown to lie on the third diagonal
of Pascal's triangle (see Figure 1), The restriction for m is that
it must be equal to a Mersenne prime plus one; that is, m = NI:, + 1.

Setting k equal to 2 (since the third diagonal of Pascal's triangleis
k = 2),

(My+1) 1 2Py P(Po1y(2P-2)1  2P(2P-1)

m
)
21(My+1-2)! 21(2P-2)1  21(2P-2)n 2

i

which is an even perfect number by (3) above.
As in [5], we now note that each number in Pascal's triangle is the
sum of the numbers in the preceeding diagonal (see Figure 2):

= P71(2P-1) = P,
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1 ‘ajfia 1
14 (& & 1

FIGURE 2

W have seen that all even perfect numbers are on the third diagonal
of Pascal's triangle. Hence, the second diagonal would generate the
perfect numbers. That is, every even perfect number is the sum of the

first 2P - 1= Mp numbers:
M,
P= :Efi i. (5)

W& now observe that the elements of the third diagonal are the
triangular numbers and every even perfect number is triangular in
shape [2]. (See Figure 3.)

1
1 1
1 1 1

The perfect number 6 with base Mp =3

FIGURE 3

According to Burton [1] there are 24 even perfect numbers known to
date (1976). The first 5 and their associated Mersenne primes are given
in Table 1 on the next page.

We now have several different ways of computing perfect numbers.

VW must first compute Mersenne primes Mp Knowing the Mersenne primes,
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TABLE 1
M P = My(2P™hH
L P P SOME INEQUALITIES FOR NON-NEGATIVE RANDOM VARIABLES
g f; 258 INVOLVING THE MOMENT GENERATING FUNCTION
5 31 496 by J. Chang, C. Chen, B. Crain,
7 127 8,128 W. Stochwell, M. Truskowski, and B. Wycherley
13 8,191 33,550,336 Univernsity of Oklahoma
we can: . Various inequalities on moments and probabilities can be derived
(a) compute P = Mp(2p— ), using Euglid's formula, using the moment generating function. In this article we give some
results which may be new.
(b) compute P = 1, summing up the first M, positive integers, or ® Let X be a non-negative random variable (r.v.) with cumulative
i=1 . distribution function (c.d.f.) F(z). |f g(x) is a function of X, the
(¢) withm= Mp t+ 1 and k = 2, compute P = G- o expected value E(g(x)) of g(X) (when it exists), is given by
It is from (c) that we note all even numbers are on the third diagonal
of Pascal's triangle. E(g(x)) = r g(z)dF(z).
0
REFERENCES
1. Burton, David M. , Elementary Number Theory, Allyn and Bacon, Inc., The expected value of g(X¥) = xX is called the kth momet of X. The
Boston-London-Sydney, 1976. . . .
. moment generating function (m.g.f.) M(¢) is the expected value of
2. Dickson, Leonard Eugene, History of the Theory of Numbers, 3 vols.,
Chelsea Publishing Co., Nev York, 1952. exp(tX), or
3. Dodge, Clayton W. , Numbers and Mathematics, Prindle, Weber, and -
Schmidt, Inc., Boston, 1969. M(E) = J et*dr(x), t € domain(M).
0

4. Shanks, Daniel, Solved and Unsolved Problems <z Number Theory,
Spartan Books, Washington, D.C., 1962.

5 Uspenskii, V. A., Pascal's Triangle, The University of Chicago Press,

) Throughout this article, we assume that Pr(X 2 0) = 1. W also assume
Chicago and London, 1974.

there exists a positive number h such that M(¢) exists (finite) on
-h < t < h, or equivalently that M(¢) exists on a neighborhood of zero.
(For a non-negative r.v. X, the m.g.f, M(£) will automatically exist for
all ©20.)

The following results are not new, but are stated for reference

MOVING??
purposes (they assume the existence of the moment generating function
BE QURE TO LET THE JOURNAL KNOW!

on a neighborhood of zero):
Send your name, old address with zip code.

1) E(Xk) <+ for k= 1, 2, 3, ***.
and new address with z{p code to:

Pi Mi Epsilon Journal 2) M(t) is a ¢”(-n, n) function (continuous derivatives of all orders).
i i u

601 EIm Avenue, Room 423
The University of Oklahoma
Norman, Oklahoma 73019

3y MR(8) = 7 KeBoar(a) for -h < t<h, k=0, 1,2 )
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5y MK (o) = B(xX%) for k = 0, 1, 2, *--.
5) M(z) = fg e®dr(x) is analytic on -k < Re(z) < h.

6) M(z)

5o M* )/t on |a] < B

7) M(t) MK (oYK /kt on -k < ¢ < .

k=0
The proofs of these results do not appear often in statistical
texts since they involve complex variables and real analysis, in
particular, the Lebesgue Dominated Convergence Theorem. The reader
may wish to consult the references given at the end (in particular,
[11, pp. 52-53 and [2], Chapter 7).
Nowv for every k, and arbitrary positive A, we have

o A o
MR (2 = [ KetTar(z) = j KetCar(z) + J Kethdr(z), b < t < h.
4] 0 A+0

I. First consider the inequality MK (g = ,r’é KetTdp(z). If
0 =t < h we have

A A
MR (¢) zj HetEdr(x) zJ 2KdF(z). (1.1)
0 0

Dividing through by F(A) = Pr(0 = X = A), we have

M) (1) r‘ xkd[F(x) (1.2)

TEA ‘F‘@T] o=tk

where F(xz)/F(4) is the c.d.f. of the X-distribution, truncated to [0, A].

Taking the infimum over t, we have

(k) A
e MO | F(z) (1.3)
o, FA T L xkd[im]’

where the right-hand side is the kth moment of the truncated version of
X.

Next consider -4 < t = 0. W have
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{--] A
MR (2) = J KetZdr(z) = At j Kar(z). (1.4)
0 0

Dividing through by ¢4%F(4), we have

“At, (k) A
Aty _ (4 ) .
7_...)_. > JO x d[mj‘], -h ¢« £t = 0. (1.5)

Taking the infimum over ¢, this becomes

inf

-At, (k) A
e M (t) P I xkd[F(ac)} (l.G)
-h<t=0

F(A) “ F(A)|"
Taking the limit as A -~ «», we have

un  inf AW = 55, (1.7)
A+ -h<t=0

11 Second, consider. M(k)(t) 2 IZ+0 xkethF(ac). If 0=t <h,
we have

B ey = f

KePap(z) = aKAT [ dF(z) (2.1)
A+0

A+0

= AkeAtPP(X > A).

After division, we obtain

— AL (R)
e}”—k(t)z Pr(X > A). (2.2)
A
By taking infimums, we then have
= At (k)
inf inf 9——2—,—122-2 Pr(X > A) = 1 - F(4) (2:3)

0=<t<h k=0 A

and



-At, (k)
inf inf &M (&)
k=0 0st<h A

> Pr(X > A) = 1 - F(4). (2.4)

If -h < t 20, the basic inequalities are

F ey > [ et ar(a) = 4* J eTFdr(z). (2.5)
A+0 A+0
k

After division by A"(1 - F(4)), we then get

O et:cd[ F(x)], (2.6)

a4 - rayy '[A+0 1 - FA

where F(x)/(1 - F(4)) is the c.d.f. of X truncated to (A, =), and the
right-hand side of (2.6) isthe m.g.f. of such a distribution, which will
exist at least on (-h, h). Again taking the infimum on k, one sees that

. (k) J‘” tm[ F(x) }
inf Mtk = e d (2.7)
k=0 451 - F()) ‘a0 1 - FA)

and

(k) w
v dng M08 J PRz = M(2), (2.8)
Av0 k=0 A 0

provided X does not have an atom at zero, that is, provided Pr(X = 0) = 0.

A multitude of inequalities become evident if one selects 0 < A <
B < = and then writes

A B 1--]
u* () = J e aF(z) + J e ar ) + J )
B+0

0 A+0

for k=0, 4, 2, +++ and -h < t < h. Since there are so many cases, we
leave the details to the reader. Various other generalities can be seen
to exist, such as deleting the requirement that X be non-negative. In

addition, for a non-negative r.v. X, the moment generating function M(t)
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exists for all £ = 0, and hence some of the inequalities such as (1.6),
(1.7) may be tightened.
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ANOTHER APPROACH TO A PAIR OF FAMILIAR SEQUENCES

by N. Schaumbergen
Bronx Community College, CUNY

A simple proof that the sequence 5, = (1 + %__)n approaches a limit
can be based on:
(1) 5,=(1t %’)n is an increasing sequence, and

_ 1l.n+l
(2) Z,= (14"

is a decreasing sequence.

The usual proofs of these statements employ either the binomial
theorem or the inequality between the arithmetic and geometric means
(see [11). The first method i's somewhat messy and the second uses an
inequality that is rarely derived in elementary calculus. In this note
we offer simple proofs of (1) and (2) that fit naturally into the
sequence of calculus topics in a standard course.

Let

flx) = (v + Llax - an

where 7 is a positive integer and a > 0, x > 0. Since
fi(x) = (n + La - (n+ 1

and

Fi(z) = -nln + D"

I~

n .
it follows that f(z) attains an absolute madimum at x = a . Thusif

a# 1, we have

1
fam > (1)

or

ntl
na® > (nt1l)a- 1.

i = + ...L i
Putting a= 1 T gives

1 n+l
—y
n(l + n+1) >n+ 1

or
1l \n+1 n
aemp >t

This proves (1). To prove (2), we put @ = 1 -

n+l
n(l—z@*})”’ >n -1

or

n \n+l n-1\n
(m—) > (T) .

Inverting finally gives

1
}_)m-

1.z
(l'l'n <(l+-£:1-).

REFERENCES
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PI MU EPSILON STUDENT CONFERENCE

MIAMI UNIVERSITY
OXFORD, OHIO

CALL FOR STUDENT PAPERS
Saturday, September 30, 1978

Held in conjunction with the
Sixth Annual Conference in Mathematics and Statistics

This is a call for undergraduate student papers; we invite you to
join us. The student conference will be Saturday afternoon. Student
speakers will receive their picnic lunch free. Talks may be on any
topic related to mathematics, statistics or computing. Do you have a
favorite topic which you could share with us? V¥ welcome items ranging
from expository to research, interesting applications, problems, etc.
Presentation time should be fifteen, thirty, or forty-five minutes. V&
need your title, presentation time, and a 50 (approx.) word abstract by
September 18, 1978. Please send your material to Professor Cox (address
below).

W also urge you to attend the Conference on Applications of
Statistics and Mathematics, which begins Friday afternoon, September 29.
Free overnight facilities for all students will be arranged with Miami
students.

For more details write to:

Professor Milton D. Cox

Department of Mathematics and Statistics
Miami University

Oxford, OH 45056
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PUZZLE SECTION

This department i s for the enjoyment of those readers who are
addicted to working crossword puzzles and find an occasional mathe-
matical puzzle attractive. W consider mathematical puzzles to be
problems involving numbers, geometric figures, patterns, or logic
whose solution consists of an answer immediately recognizable as
correct by simple observation, and not necessitating a formal mathe-
matical proof. Although logical reasoning of a sort must be used to
solve a puzzle in this section, little or no use of algebra, geometry,
or calculus will be necessary. Admittedly, this statement does not
serve to precisely distinquish material which might well be the domain
of the Problem Department, but the Editor reserves the right to meke
an occasional arbitrary decision and will publish puzzles submitted by
readers when deemed suitable for this department and believed to be
nev or not accessible in books. Material not used here will be sent
to the Problem Editor for consideration i n the Problem Department, i f
appropriate, or returned to the author.

Address all proposed puzzles, puzzle solutions or other correspond-
ence to the Editor, Pi Mi Epsilon Journal, 601 EIm Avenue, Room 423,
The University of Okahoma, Norman, Oklahoma 73019. Please do not send
such material to the Problem Editor as this will delay your recognition
as a contributor to this department. Deadlines for solutions of puzzles
appearing i n each Fall issue is the following March 31, and that for
each Spring issue, the following September 30.

Mathacrostic No. 5
submitted by R. Robinson Rowe

Sacramento, California

Identify the 32 key words, matching their letters in order with

the opposite sequence of numbers, and insert each letter of the key
words in the square of the Mathacrostic with the same number. Words

end at the blank squares, and some words extend on to the next line.
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vV 10

c

11

E 12

v 15

v 21

B 23

24

VvV 25

c 26

F 28

B 30

B 32

G 33

c 36

F

37

b U5

F 47

B 48

Cc

49

F 55

H 57

E 58

60

F 61

E 62

B 64

F 65

F 67

E 70

72

G 75

T 79

e 80

e B3

e 86

F 88

G 90

L 81

G 92

G 93

c 94

L 95

b 96

e 97

H 98

G100

V1ol

el02

Y103

eloy

L105

C106

H107

T108

T109

T1l0

H11l1

E112

Z113

T114

L115

dlie

T117

G118

T119

bl120

s121

N122

E123

clau

N125

Cl26

H127

cl28

P129

b130

bl3l

Y132

c133

Cl1l34

el35

J136

P137

N138

X139

Alko

D14l

E142

E143

Gluy

P145

D1u6

ulu7

H1u8

D149

4150

P151

N152

D153

X154

U155

L156

bl57

Y158

Z15%

K160

U161

72162

el63

El64

X165

N166

2167

H168

Q169

d170

el71l

J172

H173

L174

R175

el76

a177

C178

Q179

J180

L181

R182

X183

Al8hL

0185

R186

N187

H188

L18S

W10

P191

M192

W193

olsu4

D195

R196

5197

B198

E199

X200

M201

d202

w203

G204

X205

D206

U207

a208

5209

d210

V211

M212

D213

A21Y4

R215

a2l6

U217

Q218

X219

C220

U221

P222

w223

Y224

0225

12286

J227

a228

T229

5230

A231

K232

£233

M234

€235

7236

A237

0238

J23¢%

s2u40

M241

Q242

Q243

fauy

a245

f2u6

Jau7

w2u8

0248

Y250

£251

b252

£253

a254

K255

K256

1257

K258

Y259

R260

Deginitions and Key

T o mmyo o w >

WO T O==r XU

P a0 T P N<x =< c oo

Weigh anchor

Same in static energy
Towards Nome

Umpire

Stress-strain ratio
Calculus task
Absolute, in math
Relating integers

Geologic period

Mathematician 1642-1727

Crazy bone
Michigan campus
Greek letter

King of Judah ca 750 BC

Moon's age on Jan. 1

Melampyrum Spp
Mathematical snake
Most recent

Language in S. India
Kitchen tool

Dream

Famous cycloid
Madmum effort

The rabble

Achillea spp

Asimina triloba

City of the Mdank
Achilles story
Persian creed
Scanned (a book)
Mathematical inventor

His invention

473

246 251 244 233 253
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Wen conpl eted, the Mathacrostic will be a 260-1etter quotation,
and the 32 initial letters of the key words will spell out the name of
an author and title of his book fromwhich the quotation was deri ved.

It will tell you sonething human about yourself. There is a one-to-one
correspondence between the 260 letters in the Mathacrostic and the 260
letters of the key words, so it is al so an anagram

Geometry From A Dozen Pennies

A mat henat i cs teacher wants to illustrate sone geonetric patterns
by arranging 12 pennies in various ways w thout having to use conpass,
strai ght-edge, neasuring instrunents or narking devi ces of any kind.
To nake it nore of a challenge, the teacher has decided only to slide
the pennies in arrangi ng themand disall owthe freedomof lifting the
coi ns. Under these restrictions, show how each of the follow ng
figures may be created precisely.

An Equilateral Triangle: TWo Circles of Equal Radii:

ﬁ Penpendicular Lines:

O

A Line and a Point Not on It: O

O
OO0O0COCOCO0 O O © O
O

A Regular Hexagon: N
-/

M Angle of 150° and Two
O Intenion Points:

O
OO O

00000

475

Mathematical Word Chains: One Letter Changes

Find a sequence of |egitinate words (disallow ng proper nouns and
abbrevi ations) starting with the first word given and ending wth the
one belowit if you are allowed to change only one letter at atinein
proceedi ng fromone word to the next.

MATH LINE ZERO SEVEN
NOTE ®) grp () Roor @ privE

Exampfe. A solution to MATH -+ NOTE is:

MATH
MATE
RATE
ROTE
NOTE

(a)

Mathematical Word Chains: Two Letter Changes

Fol I owthe same instructions as in the preceding puzzl e, except
you are al lowed (and required) to change exactly two letters at a tine.

LINES CIRCLE GROUP
(a) CURVE (b) BEAUTY (c) FIELD (by way of RINGS)
SLOPE LINEAR
(@) EquaL (e oRoERs
Countdown

Find al | possible solutions to the follow ng | ong division probl em
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Gresk Crosses and Squares Bd with: Stant with; Bd with:
Since no solutions were received for this puzzle which appeared in
the Fall, 1976 issue of this Journal, we present it again. Solver
must use one or more of the figures shown in the center column to
piece together and form the figure on the left, then rearrange to form
the figure on the right, in each case.
) ) i — >
End with: Szant with: BEd with: = +
[Obtain
- two crosses)
@ ﬁ 3 Solutions
(06 ‘ Missionarnies and Cannibals [Fall, 19761
tain ,
wo crosses) Alate sofution was received by ROGER E. KUEHL, Kansas City,

Missouri, WD observed the optimum number of 13 crossings and raised

the question of whethern all or some "niver-crossing” probfems have

genernal sclutions and whether it .4 indeed possible to prove that a
-7 -

(tnial and erron) solution to a particular one {4 minimum. [See
Spring, 1977 issue fon sofution.)

(b)

Mathacrostic No. 3 [Spring, 19771
Late. sofutions were received by MITGH ENTRICAN, University o

Mississippd and SISTER STEPHANIE S.OYAN, Georgian Count College (Lakewood,
New Jensey).
el ; = A Pain of Eights [Spring, 19771
— Late sofutions were nreceived by MARK EVANS LaMarque, Texas and
{Obtain B. FRANK WILLIAMS, Campbellf, Texas.
wo ecrosses)

Mathacrostic No 4 [Fall , 1977]
Definitions and Key:

A Looking glass F. Conjugated K. Lethe P. Halfway
B. Esthete G. Awash L. Luffed Q. Uther
+A C.  Wonderland H. Rebaked M. Twenty thousandths R. Norman

D. Isohyet 1 Rhythm N. Habitude S, Tetrahedron
(@ — + - E. Symbolic J. Ottawa 0. Eureka T. vy

U. Nth Z. Hashish e. Rhomboid

V. Gushed a. Effete f. Kowtows N

W.  Oddity b. Shorthanded

X.  Fahrenheit c. Nutty

Y. Theory d. Astronomy
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First Letters: LEWIS CARROL THE HUNTING OF THE SNARK UNDERGRADUATE RESEARCH PROPOSAL

by James Jones and James Troit

ion: ; Id tel
Quotation: They found not a button or feather by which they cou A Univensity of, Oklahoma

that they stood on the ground where the baker had met with the snark.
In the midst of the word he was trying to say, in the midst of his A number of elementary facts may be easily observed in the seguence
laughter and glee, he had softly and suddenly vanished may, for the
snark was a bojum you see.

Scfved by JEANETTE BICKLEY, Webster Groves High School (Missrurd);

., L Eqwclwtma,e Duiangles are
MITCHELL W. ENTRICAN, University of, Mississippi; BARBARA LEHMANN. ]Olned o the. middle thind
St. Petens Coflege; JODI L. LEVESQUE, University of, FRonida; SIDNEY PENNER, OLIZ;Ch 6tde.<n each
Bronx Community Cauege of CUNY; BOB PRIELIPP, Undiversity of, Wisconsin
at 0shkosh; LEO SAUVE, Algonquin College (0ttawa, Canada); and ALLAN
TUCHMAN and PATRICIA GROSS, University of T1LELnois.
Cross-numben Puzzle. [Fall, 19773
2
Sclved by JEANETTE BICKLEY, Webater Groves High School (Missourd);

MITCHELL W. ENTRICAN, Univernsity of, Mississippi; MICHAEL HANEY, ALLAN : g/\‘\;‘mg
TUCHMAN, and PATRICIA GROSS, University of, 128inodis; CLARK HEISER,
Yonkens, New Yonrk; BECKY HENNING, University of California at Lob Angeles;
SIDNEY PENNER, Bronx Community Coflege of, CUNY: BOB PRIELIPP, University iu\)

of, Wisconsin at Oshkosh; and R. ROBINSON ROWE, Sacramento, Californid. ‘é
S\thp |

of diagrams below. For example, if it is assumed that the original tri-
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angle has sides of length one, the total perimeter of each figure and
area enclosed may be computed.

1. Carry this out, and determine what happens when these computa-
tions are performed for each of the figures as the sequence of
constructions is carried on ad infinitum.

2. Wha would happen if the new triangles pointed inward instead
of out? What would the new figures look like? What would be
the answer to the above question in this case?

3. Wha would happen if we started with some regular polygon other
than the triangle (say a square, pentagon or hexagon) and
erected similar (but smaller) n-gons on the middle one-third
of each side in each step? Wha would the six figures look
like for n = 4, 5, or 6?2 Wha would the answer be for each of
the above questions?

4. Wha if the triangles (or n-gons) were pointed inward on one

step, outward on the next, alternating at each step? Generalize.

Commet by Editor

See in this connection the article in this issue, "Mathematical

Curiosities" by Debra Gutridge (§4).

sessesvseses ses eossesssssase
tHisi st e aat e tatetedaitits 3 3388538882383

b+
23
o3

sessssssssssssessese
riderirritietisatitty

MATCHING PRIZE FUND

sse
$1e4

I f your chapter presents awards for outstanding mathematical papers

or student achievement in mathematics, you may apply to the National
For example, $30

sses0008000e
2132222244444

Office to match the amount spent hy your chapter.
of awards can result in the chapter receiving $15 reimbursement from
the National Office. These funds may also be used for the rental of
mathematical films. To apply, or for more information, write to:

Dr. Richard A. Good
Secretary-Treasurer, Pi Mu Epsilon
Department of Mathematics

The University of Maryland
College Park, Haryland 20742

2000
seee

000,
2o

29000,
122244

PROBLEM DEPARTMENT

Edited by Leon Bankof§
Ldb Angeles, California

This departtment welcomes problems believed -to be nw and at a
Level appropriate for the readens of this jowwmal. 0gd problems
displaying novel and efegant methods of solution are also acceptabfe.
The. choice. of proposals gor publication wilf be bated on the editor's
evaluation of their anticipated neader response and also ON thein
intinsic interest. Proposals should be accompanied by solutions £
avaikable and by any information that will assist the. editon.
Challenging confectwres ad problem proposals not accompanied by
solutions will be designated by an asterist (*).

To facilitate consideration of solutions fon publication, Aolvers
should submit each solution ON A separate sheet properly Ldentified
with name. and address and mailed before November 1, 1978.

Addness all communications concerning this depantment tO Dn. Lion
Bankodf, 6360 Wilshire Boulevarnd, Los Angeles, California 90042.

Problens for Solution

412.  Proposed by Solomon W. Golomb, University of Southern
Califonnia, Los Angeles, California.

Are there examples of angles which are trisectible but not
constructible? That is, can you find an angle a which is not construct-
able with straight edge and compass, but such that when a is given,

a/3 can be constructed from it with straight edge and compass?

413. Proposed by R. Robinson Rome, Naubimway, Michigan and
Sacramento, California.

In a variation of the crossed-ladders-in-an-alley classic, the
new tall building on one side of the alley was vertical, but on the
other side the old low building, having settled, leaned toward the
alley. Projected, its face would have met the top of the tall building
and would have been one foot longer than the height of the tall building.
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The ladders, unequal in length, rested against the buildings 21 feet
above the ground and crossed 12 feet above the ground. Hw high was the
tall building and honv wide was the alley?

414, Proposed by Steven S. Connrad, Benfamin N Candozo High
Schook, Bayside, New Yonrk.

In discussing the discriminant of a quadratic equation, a certain
textbook says, "...if a, b and e are integers with a# 0 and if b2 - uae =
79, the roots of ax2 + bx + ¢ = Owill be real, irrational and unequal."
Explain why this is incorrect.

415, Proposed by Charfes W. Tnigg, San Diego, California.
A hexagonal number has the form 2n2 - n. In base 9, show that the

hexagonal number corresponding to an n that ends in 7 terminates in 11

C C
CE
E
E\
A B D A B D A B D
(a) (b) (c)

FIGURE 1

416. Proposed by Scott Kim, RolLing HilLs Estates, Califormnia.

Each of the three figures shown above is composed of two isoceles
right triangles, AMBC and W E, where / ABC and / DBE are right angles,
and B is between points A and D. Points € and E coincide in Figure |a,
so that CB/EB = 1. In Figure 1b, we are given that CB/EB = 2, and in
Figure 1c, we are given that ¢B/EB = 3. Consider each pair of triangles
as a single shape and suppose that the areas of the three shapes are
equal. (The figures are not drawn to scale,) Problem: For each pair

of figures, find the minimum number of pieces into which the first figure
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must be cut so that the pieces may be reassembled to form the second
figure. Pieces may not overlap, and all pieces must be used in each
assembly.

417. Phoposed by Clayton W. Dodge, University of Maine., Onano,‘/: -
Maine.

1) Prove that the line joining the midpoints of the diagonals of
a quadrilateral circumscribed about a circle passes through the center
of the circle.

2) Let the ineirele of triangle ABC touch side BC at X. Prove
that the line joining the midpoints of AX and BC passes through the
incenter | of the triangle.

418. Proposed by Robent C. Gebhardt, Hopatcong, New Jersey.
Find all angles 9 other than zero such that tan 116 = tan 1119 =
tan 11119 = tan 111116 = ---

419. Proposed by Michaef W. Echer, City University of New York.
Seventy-five balls are numbered 1 to 75 and are partitioned into
sets of 15 elements each, as follows: B = {1, **-, 15}, 1 = {16, --+, 30},
N = {31, -++, u5}, G = {u6, , 60}, and O = {61, **+, 75}, as in Bingo.

Balls are chosen at random, one at a time, until one of the following
occurs: At least one from each of the sets B, 1, G, O has been chosen,
or four of the chosen numbers are from the set ¥, or five of the numbers
are from one of the sets B, I, G, O.

Problem: Find the probability that, of these possible results,
four N's are chosen first. (Comment: The result will be approximated
by the situation of a very crowded bingo hall and will give the likelihood
of what bingo players call "an ¥ game”", that is, bingo won with the
winning line being the middle column ¥.)

420. Proposed by Herbert Taylon, South Pasadena, California.

Given four lines through a point in 3-space, no three of the lines
in a plane, find four points, one on each line, forming the vertices of
aparallelogram. (This is a variation of problem B-2 on the December

1977 William Lowell Putnam Mathematical Competition.)

421. Proposed by Mwray S. Klamkin, University of Alberta,
Edmonton, Afberta, Canada.

If F(e, y, 8) is a symmetric increasing function of x, y, a prove
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that for any triangle, in which w,, w,, v, are the internal angle
bisectors and My My, Mg, the medians, we have

Flug, wy, we) < Flmg, my, mgz)

with equality if and only if the triangle is equilateral.

422, Proposed by Jack Garfunkel, Fonrest Hills High Schoof, FRushing,
New York.

I f perpendiculars are erected outwardly at A, B of a right triangle
ABC (C = 80°), and at A? the midpoint of AB, and extended to points P,
Q, R such that AP = BQ = MR = AB/2, show that triangle P@R is perspective
with triangle ABC.

R

FIGURE 2

423. Pnroposed by Richard S. Field, Santa Monica, California.

Find all solutions in positive integers of the equation ad - bd =

¢, where d is an odd integer.

424. Proposed by R S. Luther, University of Wisconsin, Janesville.
Prove that

(277 1 )" s (ﬁ%) (on + 2)

where n is an odd integer =2 3 and 0 < y < x.
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Solutions
386. [Spring 19771 Proposed by Charles W. Trigg, San Diege,
Jalifornia.
Show that the volume of Kepler's Stella Octangula (a compound of ..

two interpenetrating tetrahedrons) is three times that of the octahedron
that was stellated.

FIGURE 1

Solution by Kenneth M. W.ikke, Topeka, Kansas, with practically Ldentical
sofutions by Clayton W. Dodge, University of Maine, Orono; R. Robdinson
Rouse, and the proposer, Charles W. Trigg.

Since a plane through the midpoints of the three edges of a
tetrahedron issuing from one vertex cuts off a smaller tetrahedron
whose volume is one-eighth that of the larger (similar) tetrahedron,
repeating this process three more times decomposes the given tetrahedron
into four smaller identical tetrahedrons and a regular octahedron whose
volume is one-half the volume of the initial tetrahedron. In the
formation of the Stella Octangula by interpenetrating two identical
tetrahedrons, the octahedrons contained therein occupy the same space,
leaving a solid composed of eight smaller tetrahedrons and one octahedron.
Hence the volume of the Stella Octangula is one and one-half times the
volume of the initial tetrahedron and three times the volume of the
stellated octahedron contained therein.

Also solved by LOUIS H. CAIROLI, Graduate Situdent, Kansas State B
University, Manhattan, Kansas; MARK JAEGER, Chicago, I£&inois; and
SISTER STEPHANIE SLOYAN, Georgian Court College, Lakewood, New Jmey.
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Comments by the. ProbLem Editor:
1) R Robinson Rome noted that if each of the equilateral
triangular faces has an area A, the Stella has a surface area of 244

and the octahedrom an area of 84, so again the ratio of Stellato
octahedron, by area, is three.

2) The two interpenetrating tetrahedrons are, of course, regular
and the eight vertices are the vertices of a cube. Furthermore, the
twelve edges of the two tetrahedrons are the diagonals of the six faces
of the cube. The interested reader can find additional material on
Kepler's Stella Octangula in Regular Figures, by L. Fejes Toth,
Mathematical Essays and Recreations, by W. W. Rouse Ball and H. 8. M.
Coxeter, Mathematical Snapshots, by H. Steinhaus, Introduction %o
Geometry, by H. S. M. Coxeter, and in Cundy and Rollett's Mathematical
Models.

387. [Spring 19771 Proposed by Jack Garfunkel, Forest HiLes High
School, FRushing, New York.

n the sides B and AC of an equilateral triangle ABC mark the points

D and E respectively such that AD = AE, Erect equilateral triangles on
CD, 4F and AB, as in the figure, with P, Q, R as the respective third
vertices. Show that triangle PQRis equilateral. Also show that the
midpoints of PE, AQ and D are vertices of an equilateral triangle.

FIGURE 2

Solution by Chanfes U. Trigg, San Diego, California.

Lg7

AC = BC DC= R and / ACD = 60° - / DB = £ BCP. Hence, triangles
AD and BCP are congruent with BP = AD = AE = AQ and / FBC = / DAC = 60°.
Therefore ¢ RBP = 180°, which makes RP a straight line segment = RQ.
Thus triangle PER is an isoceles triangle with a vertex angle of 60°, so
it is equilateral and QEfalls along QP.

Let the midpoints of PE, AQ RD, A and QEbe X, Y, Z, M and N
respectively. MZ is parallel to AD, and YN is parallel to AE so
MZ = AD/2 = AE/2 = YN, and / ZMA = 120° - / YNE Also, MY = Rg/2
P@/2 = IN, so triangles ZMY and Y¥X are congruent with ZY = YX and
LMYZ = / YXN. Nw /£ AYW = 120° = / YNX, so / ZYX = / AYN - / MYZ -
L XN = L AYN - [/ YXW - [/ XYN = 120° - B0° = 60°. Therefore triangle
ZYX is equilateral.

FIGURE 3

ALso sofved by KENNETH M. WILKE, Topeka, Kandas; CLAYTON W. DODGE,
University of Maine, Onono; FLORA N. FONA, Kew Gardens, Long lsfand;
ZAZOU and ZELDA KATZ [fointly), Beverly HilLes, California; and the
Proposei.

388 [Spring 19771 Proposed by David L. Silverman, Wesi Lob
Angeles, California.

In the gane of "Larger, But Not That Large" two players each write
down a positive integer. The numbers are then disclosed and the winner
(who is paid a dollar by the loser) is the player who wrote the largsr

number, unless the ratio of larger to smaller is three or more, in which



case the player with the smaller number wins. |f the same number is
picked by both players, no payment is made.

a) Wha is the optimal strategy?

b) Suppose instead that the players are not restricted to integers
but to the set [1, «»] and that the larger number wins provided the larger-
to-smaller ratio is less than » (for some » > 1); otherwise the larger
number loses. Find an optimal strategy.

Solution by the. proposenr.

a) The unique optimal strategy is to choose 1, 2 and 5 randomly
and with equal frequency, shunning all other numbers. Optimality follows
by observing that this strategy ties each of the pure strategies 1, 2 and
5 and beats every other pure strategy. Since all pure strategies other
than 1, 2 and 5 are thus ruled out, the above strategy, since it is the
solution of the reduced 3 by 3 matrix, is the unique optimal strategy.
Generalizations to the case in which violation of the critical ratio r
involves a penalty of p is not difficult.

b) Consider the intervals [1, r] and [7, r2} and the following
strategy: choose either of the two intervals with probability 1/2 and
then from the interval chosen select a number X from the uniform random
distribution. That this is an optimal strategy is easily confirmed by
checking that it ties with any pure strategy y in [1, »2] and beats any
y > r?.

Solutions with differing conclusions were offered by MARK EVANS,
LaMarque, Texas; KENNETH M WLKE Topeka, Kansas; R RCBINSON ROMWE,
Sacramento, Caligoania; and DONALD CANARD, Anaheim, Californid.

388. [Spring 19771 Proposed Dy Paul Endvs, Spaceship Earth.

Find a sequence of positive integers 1. = a, < a, < which omits
infinitely many integers from every arithmetic progression (in fact it
ras density 0) but which contains all but a finite number of terms of
every geometric progression. Prove also that there is a set 5§ of real

~ers which omits infinitely manwy terms of any arithmetic progression
zcnTains every geometric progression (disregarding a finite number

% =erms).

Ne Ackutions, with the exception of the phoposen's, have been submitted.
Prepesen's sofution will be published in the next issue of the Journal
unkess cthen qualifying sclutions are hecelved.
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390. [Spring 19771 Proposed by Robb Koether and David C. Kay, -
University of OktLahoma, Noaman, Oklahoma.

Let the diagonals of a regular n-sided polygon of unit side be
drawn. Prove that the n - 2 consecutive triangles thus formed which
have their bases along one diagonal, their legs along two others or a
side, and one vertex in common with a vertex of the polygon each have
the property that the product of two sides equals the third.

Solution by the. Proposers.

Let A be the common vertex of the triangles and BC the diagonal
containing the bases (see Figure 4). From elementary properties of
regular polygons and their circumscribed circles, the angles at A are
equal and the first and last triangles have equal base angles. In
particular, triangle ABD is isosceles, with AD = BD. Let triangles
AXY, AYZ be any two consecutive triangles, and |l et the side-lengths be
as indicated. Since AY bisects angle XAZ, x/u = z/v or ay/u = yz/v.
Hence, by induction, the ratio of the product of two sides of a triangle
to the third is constant. Therefore, eb/a = xy/u, and since a = b,

S = xy/u or &y = su. Thus, the product of two sides of each of the
triangles equals & times the third, where 8 is the side of the regular
polygon. (If S = 1 the stated result then obviously follows.)

FI GURE 4
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391. [Spring 19771 Proposed by Clayton W. Dodge, University of
Maine, at Orono.

Solve this alphametic where, of course, N1 N Eis divisible by 9:

TWELVE
NINE
NI NE
THIRTY
Solution by Charles W. Tnigg, San Diego, California.
Clearly, T# 0, N# 0, and E # 0 or 5. Proceeding from the right,
the columns establish the following equations:

FE =Y + 10k (L

V+ N +k=T4+ 10m (2)
L+ 2l +m=R+ 10n (3)
E+2N +7n =1+ 10p )
W+p=H (5)

where k, m, n, p are non-negative integers < 3 and p ¥ O.
Since 9 divides N I N E, then

E+ 2N+ 1 =0 (mod 9)
whereupon, from (4):

21+ 10p -7 =0 (mod 9)
Thus, taking into consideration (1), (&), and (3), the following
possibilities with distinct integers exist:

| P n N E Y k
0 a1 a1 4 1 3 0
4 2 1 8 7 i 2
5 i 2 2 9 7 2
5 1 2 3 7 a1 2
5 i 2 6 1 3 0
9 a1 B 5 8 4 2
9 a1 B 7 4 2 1
9 1 i 8 2 6 0

Further consideration of (2), (5) and (4) reduces the possibilities t©
I=5,N=6,E=1,Y=3,V=2,T=U4,W=7,H=8,L=9andR=0,
Consequently, the unique solution is 471921 + 2(6561) = 485043.
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Also sofved by LOUIS H. CAIROLI, (graduate student) Kansas State
University, Manhattan, Kansas; VICTOR G. FESER, Mary Coflege, Bismarck,
North Dakota; HOWARD FORMAN, Bucknell University, Lew.(/sbw"g, Pennsylvania;
JOHN M. HOWELL, Littlenock, California; R. ROBINSON ROWE, Sacramento,
Califonnia; KENNETH M. WILKE, Topeka, Kandas; and the proposer, CLAYTON
W. DODGE.

392. [Spring 19771 Proposed by R. Robinson Rowe, Sacramento,
California.
Solve in distinct positive integers,

1 3

PO T = 1/2
a+l e+l
b+l &1
atl e+l
bt... dr. ..

Solution by Kenneth M. Wilke, Topeka., Kansas.
Let x = b+l
atl _
b+l
at... .
Then by considering the convergents of this continued fraction in
the usual manner, we find X defined by the equation ax? - abx - b = 0

so that

ab + Ya?b?% + 4ab

2a 2

x =

rejecting the negative root.

Hence the first term on the left side of the given equation can be
replaced with

- ab t Ya?b? + uab
2a

By symmetry the given equation becomes

- ab + Ya?b? + uab 3(—ad + Yo2d? + ucd> !
2a - 2¢

N

which is equivalent to the system of equations

3d = b+ 1 and c2(a?b? t uab) = 9a2 (e2d? t ued)
= a2[e2(h + 1)2 + 12¢(b + 1)1

(Since a?b2 + 4ab = (ab t 2)2 - 4, it is easily shown that this expression
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cannot be a perfect square unless ab = 0. Hence the radicals must be
equal.) The second equation of the system reduces to 2be(2 - a) =
ale + 12(b + 1)1.

Since all variables are positive integers we must have a = 1 and
c=12(b t 1)/(2b - 1) = 6 * 18/(2b - 1). Since 2b - 1 divides 18 we
obtain (a, b, a, d) = (1, 2, 12, 1) and (1, 5, 8, 2), because d = (b + 1)/3.
Hence the unique solution is (a, b, ¢, d) = (1, 5, 8, 2), corresponding to

-5 + V45 3<%15 + /320) _-5+3/5 3<}2 + /3) -

1
2 16 2 2 2"

Also solved by JEFFREY BERGEN, Chicago, I£Einois; JOHN N. HOWELL,
Littlenock, California; FLORA N. FONA Kew Gardens, Long IsfLand; DONALD
CANARD, Anaheim, California; and.the. proposer, R. ROBINSON ROME  Some
of the. sclverns neglected to notice, that.the. sofution (1, 2, 12, 1) was
Anvalidated by the. nestriction requirning distincet integens.

393. [Spring 19771 Proposed by Pita A Lindstrhom, Genesee
Community Coflege, Batavia, New Yohk.

Consider the sequence f{n) = n2 - n + 41. Find the GCD of f(n)
and f(n+l).
I. Solution by Kenneth M. Wilke, Topeka, Kansas, with practically
verbatim sofutions offered by RONNY ABOUDI, Florida Atlantic University;
JEFFREY BERGEN, Chicago, 1£&inois; CLAYTON W. DODGE, University of Maine.
at Orono; RICHARD A. GIBBS, Fort Lewis Colfege, VICTOR G. FESER, Mary
College, Bismarck, Nosth Dakota, MARK JAEGER, University of, Wisconsin,
Madison, Wisconsin; BOB PRIELIPP, The University of, Wisconsin-Oshkosh;
R. ROBINSON ROWE, Sacramento, California; LEO SAUVE, Algonquin College,
Ottawa (Canada); CHARLES W. TRIGG, San Diego, Califoania and the. proposen,
PETER A. LINDSTROM.

Note that f(n) is always an odd integer. f(ntl) = n2 + n + 41 Let
d = (fn), fnt1)). Then d|(f(n) + F(nr1) = 2(n? + 41) and d|(f(n+l) -
f(n)) = 2n. Then since (n, #2+41) = 1 unless » = 41k for some integer
k, we have d = 41 whenever n = 41k and d = 1 otherwise.
11. Solution by Michael W. Ecker, Mew York, New York.

Using an argument similar to that of Solution |, Ecker shows that
it is just as easy to solve the more general situation with fln) =
n2 - n+p, where p is any prime # 2. He arrives at the conclusion thav

if nisamultiple of p, it is immediate that p is a divisor of both f(n)
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and f(n+l) and is equal to their GCD. If 7 is not a multiple of p, the
assumption that GID = p leads to the contradiction that p divides both
n - d1and n + 1, leading to the conclusion that the GCD = 1.

Comment by the. Problem Editor
Louis H. Cairoli, Kansas State University, calls attention to” thé
article on "The Generation of Prime Numbers' i n Mathematical Gars IT by

Ross Honsberger, published by the Mathematical Association of America

Other material relating to this problem may be found in the October 1976
issue of BJREKA, published by Algonquin College, Ottawa, Canada, Problem
142, page 175 et. seq., and in the accompanying references.

Clayton W. Dodge also cited the references listed by Cairoli and
added his owmn article, "A Prime-Generating Trinity", published in the
October 1977 issue of BJREKA

Albert H. Beiler discusses formulas for primes in his Recreations

in the Theory of Numbers, Dover Publications, pp. 219-221.
394. [Spring 19771 Proposed by Eawin Just and Bertrnam Kabak,
Bronx Community College.

Prove that if A, A2 and A3 are the angles of a triangle, then

3 3

3 ZsinzAi -2 Z cosaA,l: = B
=1 i=1
|. Solution by Louis H. Cairoli, Graduate Student, Kansas State
University, Manhattan, Kansas.

The result follows immediately from the known relations

3
E sinzAi = 2 + 2cos 4 cos B cos €
=1

and

3
E cos3.4_; > 3cos A cos B cos C

=1

11.  Scfution by Mwwray S. Klamkin, University of ALberta, Edmonton,
Atbenta. .

W will establish the more general and stronger inequality

cos”4, + cos™4, + cos™4, = 3(1/2)"*, {E}, (&D)
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where n is an integer = 2 and {£} denotes with equality iff the triangle
is equilateral.
The given inequality can be rewritten as

27 cos3Ai + 3] cos?24; 23
and thus can be gotten immediately from linear combinations of (1) for
n =2 and 3.
To prove (1), we use the known special case of it for n = 2 [1],

This latter case is also a special case {n = 2, x =y = 3 = 1) of the

inequality [2]
x? + y2 + 32 2 (-1)"™{2yz cos nd, + 22z cos nd, + 2xy cos nd,} (2)

and which is easily established from a sum of squares (here x, y, a are
arbitrary real numbers). One can also obtain other nth order trigonometric
triangle inequalities from (2), [2].

Proof. Case (1). The triangle is non-obtuse: By the power mean
inequality [3],

/2
:>l
=5 {E},

cosnAl + cos’™A + cos A, cos?4, + coszA2 + cosz.43 !
>
3 1/n 3

for all real n = 2. Also} (2) is then valid immediately for all triangles
if nis an even integer 2"2.

Case (2). The triangle is obtuse (let A, > w/2): " rnow have to
show that

cos™a, + cos™a, = 3(1/2)" + cos™(4, + A ) (3)

where 0 < A, *+ 4, < n/2 and »n is an odd integer 2 3. If either cosnAl
or cos.n/l2 = 3(1/2)”, the inequality is then obviously valid (since
cos(Al + A2) < €OoSs 4, and cos Az). Since at least one of 4,, 4y is

m/4 and cos™n/4 = 3(1/2)" for n = (log 9)Alog 2~ 3.1699, (3) is valid
for all real n = 3.17. For n = 3, we have cos™! 3/3/8 > 43,85°, Thus,
for (3) to be valid for all real » 2 3 (and all non-acute triangles),
it suffices to show that

cos3u5° + cos3u5° > 3/8 + cos360°

or
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Using calculus, one can show that

c:oszll1 + cc>szlf42 - cosz(Al t4,) =21
and that (3) isvalid for all real n = 2. An open problem here is to
determine the minimum n such that (3) is valid. Clearly, (3) is invalid

form =1 Also, n must be 2 2[(log 3)/(log 2) - 1] = 1.1699 (jusf let
4, = A =n/u).

REFERENCES
Kooistra, R., Niew Tijdschr. Wisk., 45 (1957/58), 108-115.

2. Klamkin, M. S., Publ. Electrotech. Faec. Ser. Mat. Fiz. Univ. Beograd,
No. 357-380 (1971), 33-44.

3. Beckenbach, E. F., Bellman, R. , Inequalities, Springer-Verlag,
Heidelberg, 1965, 15-16.

ALso sobved by BOB PRIELIPP, University of Wisconsin at Oshkosh;
and the. Proposens.

395. [Spring 19771 Propesed by Joe. Van Austin, Emony University,
Atlanta, Geongia.

Assume that n independent Bernoulli experiments are made with p =
P [success], 1. - p = P [failure], and 0 < p < 1. Intuitively it seems
that P [success on the first trial | exactly one success] is always
less than P [success on the first trial | at least one success]. Verify
directly that this is indeed the case.

Solution by Louis H. Cairoli, Graduate Student, Kansas State. University,
Manhattan., Kansas.

Let A = success on first trial; B = exactly one success; ¢ = at
least one success = 1 - probability all failures. By Bayes' Formula,
we see that
PLBlA1 PIA] _ (1-p)"' p

PLB] np(1 - p)*t

1
“n

Pr4|B] =

and

1-Q-p)
Hence we must show that for n > 1, 1/n < p/I1 - (1 - p)].
But this is equivalent to (1 - p)n 21 - np, aresult easily shown

by induction.
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ALso solved by MAX J. CLEVELAND, National Mine Health and Sagety
Academy, Beckfey, West Vinginia; JOHN HOWELL, Littlerock, Caligornia;
HOMARD FORMAN, Bucknell University, Lewisburg, Pennsylvania; MMRK JAEGER,
Department of Statistics, University of Wisconsin at Madison; N. J. KUENZI,
Univensity of Wisconsin at Oshkosh; BCB PRIELIPP, University of Wisconsin
at Oshkosh; MICHAEL STEPHEN SCHWARTZ, Bronx, NW Yoik; and the. proposen,
JOE DAN AUSTIN.

396. [Spring 19771 Proposed by David R. Simonds, Rensselaer
Polytechnic Institute, Troy, Nw York.

Let [m]n denote the integral part of the quotient when m is divided
by n. Prove that

[m) o = Dnle, ¥ om, n, k € 1,
n

where [m]I; means [[---[m]n---]n]n (k sets of brackets).

Solution by Bob Prielipp, The University of Wisconsin at Oshkosh.

Our solution will be by induction on k and will employ the fact
that if X is areal number and » is a positive integer then [x/n] =
[f{x1/n]. (For a proof of this result see Theorem 4.1(f) on pp. 78-79
of Niven and Zuckerman, An Introduction to the Theory of Numbers, Third
Edition, John Wiley & Sons, Inc., 1972.) Clearly the desired result

holds when k = 1. Assume that [m] g : [m]i. Then
n

j+l_ n| _ n _
n n| n - n| -

J ml . 3 -
[m] ] w| J ] EJ—
n

[m]

and by the result cited above,

m -
’:jﬂJ - [m]nj+l’

n

and our solution is complete.

Also solved by JEFFREY BERGEN, Chicago, ILLino4s; LOUIS H. CAIROLI,
Kansas State University, Manhattan, Kansas; CLAYTON W. DODGE, University
04 Maine out Orono; RICHARD A. GIBBS, Fort Lewis Coflege, Durango, Colorado;
RAY HAERTEL, Central Oregon Community College, Bind, Oregon; KENNETH M.
WILKE, Topeka, Kansas; and the propeoser, DAVID R. SIMONDS, Trcoy, New Yoik.

397. [Spring 19771 Proposed by J. S. Frame, Michigan State University,

East Lansing, Michigan.

If ej = 2 cos(jn/n), prove that
I (1+3o% = (3" - 3% 2 cos(5mm/6) + 1)2
J=1 3
and more generally that

n -
M( + %) = +a”-2"-2a™2= F2(¢)
J=1

4gy

(L

(2)

where Fn(f:)/Fl(t) is a polynomial in t2 with integral coefficients and

- — -1 /4
z=uu>=1l, 2=ulu, and u + u =te$/.

SoLution by the. Proposex.

Setting a = em’/l+ and factoring (2) we have
n-1 n-1
I (82 - 22t e, +02) = T (£2 + 2Y/2¢e%) = F (£)/F (%)
=1 a7 4 J
n-1
= I (ta-ec;)(ta-c;).
=1 J J

Nw the determinant of order n - 1L

s 1 O 0
l 8 1
dn—l(s) = 01 s 1

0 0 0 01 s

satisfies the second order recurrence relation

d,=ed,_ -d_, d,=1,d=s

soif 8 =ut u'l, we see by induction that

d ()= ' -/ -uh.

n-1
Since dn . vanishes for uzn =1, its zeros are S = cj, J=1, 2 .
n -1 Thus
n-1
I (ta-ec.)= W -u™/u- u—l),
g=1 I

ifw+ul=ta Nw(3) implies

(3}

(4)

(5)

(6)

(7
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1 1 398. [Spring 19771 Proposed by Richard S. Field, Santa Monica,
(u-u)2@ -7 )2 = (P2 - 8)(@%2 - 4) = t4 116 = F2(¢) (9)

California.
Hence, by (4), (8), and (9), with =, 2, u given by (3), Find solutions in integers A = B=C# Rand A#B # C= Rfor the
Pt = - G - if") R (10) quadrilateral inscribed in a semicircle of radius B, as shown in the
n figure. Also find solutions in integers A # B# C # Ror prove that
V¢ check directly from (#) that none exist. -
- - t2 o b = 46 2
F\/Fy =1, F,/F| = t2, F /P = t* + 1, F /F = t° + ut?, (11)
Using (3) and (10) we verify that X and z satisfy the relations
a tal=(t2+ F)/2, 2 + 27t = (2 - F)/2 (12)
2 -ota 2@ tal), 2 -2+z2=¢2ztz ) (13)
Hence, by (10) and (13) the functions Fn(t) satisfy the fourth order
recurrence relation
- = 42 (14)
B, -~ 2F, + F, _,=t (Fn+1 + Fn_l) FI GURE 5
Vi conclude inductively from (11) and (14) that F (£)/F () is a poly- 1. Solution by Kenneth M. Witke, Topeka, Kansas.
nomial in t2 with integral coefficients. Since one side of the quadrilateral is a diameter of the circle, it
To prove (1), we now set t4 = 1/3 in (2) and multiply by 3" By is well known that A, B, Cand R are related by the equation:
. . -1 _
(9) we obtain F| = 7/31/2, and frlom (12) and (1321WE obtain x + & ~ = (2R)3 - 2R(A2 + B2 + C2) - 2ABC = O
4/31/2, X - x‘l = 2/31/2, 2+ 3" = _31/2, g2 -2 =1 o0r -1, Hence, or
= AV, 2+ g 2 2 cos (5mn/6), when t% = 173,  (15) uR3 - R(A2 + B2 + ¢2) - ABC= 0 (1)
and (1) is proved. a) A=B#C#R.
Another interesting case is t = 1, when F (1) = 1712 and Equation (1) becomes 4 - (2a2 + ¢?) - a?e¢ = 0 or ¢ = 2 - a2, where
- = = A/R. i = i H
X = 2.081019+++, ' + z ™ - 2 cos n(141.3317---)°, (16) e¢=CR and a / By letting a = p/q for some arbitrary integers p

and g, we obtain the parametric solution of (1): A = B = pg, C= 22 - p2
Then, if [ ] denotes the greatest integer function, we have and R = g2, where p and q are positiveand p <q/2 and p # q.
[n1/12] (1+¢e% = [an~V2 2" + 1721, (17) D AFEACER
e, J Equation (1) becomes 4¢3 - ¢(42 + B2 + ¢2) - ABC = 0 or 3C2 =

) o 42 + BB + B2, Then since 3 = 12 + 1.1 + 12 and since k2 = m? + mn + n?
where & = 2.08101899662+++. These integers are the sums of the coefficients

] has the parametric solution k = p2 + pq + g2, m = p? - g% and
in the polynomials F, (£)/F, (¢). p P pa t g p q

n = 2pq + g2, equation (1) has the parametric solution C+ R = p? + pq + q2,

Editon's Note. A =p?-2pq - 22 and B=p2 t upg t+ g2, where p, q are arbitrary
The proposer remarked that the problem arose in trying to evaluate integers such that A, B, C and R are positive.

and factor some of the symmetric functions of roots of unity that he c) A#B#C#R.

discussed on pp. 132-135 of the Fall 1975 issue of this Journal in his Let a = 4/R, b = BR and ¢ = C/R. Then equation (1) becomes

article on Matrix Functions.



4 - (a2 +b%2 + e2) - agbe = 0
or equivalently,
(4 - a?)(% - b2) = (2¢ + ab)? (2)

Letting a = 4p/(p?2 + 1) and b = 4g/(p? * 1) implies e = [2(p? - 1).
(g2 - 1) - 8pql/(p? t 1)(g? + 1), where p and q are integers chosen so
that e is positive. Then we have the parametric solution of (1):
A= up(g?2 + 1), B =uq(p? + 1), ¢ = 2(p? - 1)(g?® - 1) - Bpg and R =
(p? + 1)(qg% + 1).

Equation (1) can be found in Dickson's History of the Theory of

Numbere, Vol. II, p. 220, in the section devoted to rational quadrilaterals,

and is attributed to Isaac Newton.
Il. Solution by R Robinson Rowc, Sacramento, California.

Apparently this solver anticipated the problem with his paper "Primitive

Semi-Inscribed Quadrilateral”, published in the Journal of Recreational
Mathematics, 3, No. 3, July 1970, pp. 151-157. The solutions listed are
derived from Table A1, with A, B, ¢ =&, b, e and R = d/2.

A=B#C#R A#B#C=R A#B#C#+#R
2 2 7 4 211 7 7 2 912 8
3 317 9 1 22 13 13 3 14 25 15
6 614 9 11 26 19 19 8 17 22 16
12 12 2 9 13 46 31 31 12 2 28 21
4 4 31 16 26 47 37 37 12 19 33 22
12 12 2 9 2 61 43 43 10 21 45 27
20 20 7 16 23 71 49 49 11 39 46 33
5 5 49 25 2 34 42 33
10 10 46 25 17 28 53 34
15 15 41 25 6 25 63 35
20 20 34 25 14 38 50 35
30 30 14 25 3 26 66 36
35 3 1 25 19 44 49 38
6 6 71 36 13 43 57 39
30 30 14 25 28 41 50 40
42 42 23 3b 10 55 62 44
7 7 97 49 11 24 81 44
14 14 94 49 11 38 74 44
21 21 89 49 9 35 79 45
28 28 82 49 35 42 57 45
35 35 73 49 23 43 68 46
42 42 62 49 29 36 69 46
56 56 34 49 14 23 91 49

These lists have been limited to primitive sets with R up to 50. Since

al | miXtiples are eligible, there is an infinitude for each of the three

categories. Probably there are an infinitude of primitives in each category,
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and this is obvious for the first, with the sequence A, B, C, R = n, n,
2n2 - 1, n2. So far, at least, R is a square in the first and congruent
tod (mod 6) in the second, but rather random in the third category.

A very thorough analysis of the. probLem was also offered by CLAYTON
W. DODGE, Univensity of Maine at Orono.

Comments by the Phoblem Editor

Charles W. Trigg, the world's champion indefatigable proofreader,

never fails to supply a list of errors and omissions that somehow manage
to creep into the Problem Department. The first two paragraphs of

Solution II on page 371 of the Spring 1977 issue should have read:

The magic constant of a third order magic square is three times the
central element, which therefore is 89.

The nine elements of a third order magic square can be rearranged
into a square array in which the elements of the rows are in arithmetic
progression with the same common difference, and likewise for the elements
of the columns, and conversely.

Trigg also supplied additions to the list of periodicals that
contain problem departments, given on page 381 of the Spring 1977 issue:

1) EUREKA, published by Algonquin College, Mathematics Department,
200 Lees Avenue, Ottawa, Ontario, K1S OC5. Managing Editor: F. G. B.
Maskell. Ten issues per year for $8.00.

2) The Pentagon. Subscription rate: $3.00 for two years. Business
Manager: Wilbur J. Waggoner, Central Michigan University, Mount Pleasant,
Michigan.

3) The Fibonacci Quarterly. Published by the Fibonacci Association.
Subscription rate: $15.00 per year. Address Professor Leonard Klosinski,
Mathematics Department, University of Santa Clara, Santa Clara, California
95053.

4) DELTA. Published by the Waukesha Mathematical Society, 1550
University Drive, Waukesha, Wisconsin 53186.

5) NABLA. The Bulletin of the Maayan Mathematical Society, Dept.
of Mathematics, University of Singapore, Singapore, 10.
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FRATERNITY KEY- PINS

@l d key-pins are available at the National Cffice(the Univer-
sity of Maryland) at the special price of $5.00 each, post paid
to anywhere in the United States.

Be. sure to indicate the. chapter into which you were initiated
and the approximate date. of initiation.

T RO Rt

['NITIATI ON CEREMONY

The editorial staff of the Journal has prepared a special publica-
tionentitled Initiation Ritual for use by |l ocal chapters containing de-
tails for the reconmended ceremony for initiation of new nenbers. |If
you woul d |ike one, wite to the National Cfice.

OM SSI'ON I'N LAST | SSUE

\ regret toreport that in our account of the annual neeting in
Seattle we omtted the foll owing student presentations:

16. Acceleration of, Root Fading ALgorithms Through Chebyshev
Interpolation, R chard Daugherty, Kentucky Beta.

17. Sdimple Continued Fractions, David Miyashiro, Chio A pha.

18. On Distance Attaining Sets, Robert CGoggins, M ssissippi A pha.

19. An Introduction to Coding Theory, Bill Heidler, Chio Delta.
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YOUR BADGE —  triumph of skillad ard highty trained Belfaur
craftsmen is a steadfast and dynamic symbol in a charging warkd.

Official Badge
Official one piece key
Official one piace key-pin
Official three-piece key
Offécial three-piece key-pin
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Members: $ 4.00 for 2 years
$10.00 for 5 years

Non-Members: $ 6.00 for 2 years
$15.00 for 5 years

Libraries: $15.00 for 5 years (same as non-members)

If billed or through agency add $2.00 to above prices.
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Complete volume $15.00 (5 years, 10 issues)
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