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MATHEMATICAL CURIOSITIES 

The s tudy of  mathematics o f ten  l e a d s  i n t o  some unusual t e r r i t o r y .  - -- -- 
The mathematician i s  a t  times confronted with s t range  geometric figures., 

odd equat ions,  misbehaved curves,  and seemingly inso lub le  paradoxes. 

Here an attempt w i l l  be  made t o  examine some of  t h e  c u r i o s i t i e s  t h a t  

i n t e r e s t  and challenge mathematicians. 

A. Moeb.hb S t n i p .  Several  i n t e r e s t i n g  mathematical c u r i o s i t i e s  

have come from t h e  a r e a  o f  topology. One very familiar example is  t h e  

Moebi-us strip, named f o r  August Moebius, a German mathematician. Most 

o f  t h e  sur faces  met i n  everyday l i f e  a r e  b i l a t e r a l ,  o r  two-sided. A 

f l y  placed on one s i d e  o f  a s h e e t  of paper, f o r  example, could not  reach 

t h e  o ther  s i d e  unless  he  c u t  through t h e  paper o r  crawled over an edge. 

However, t h e  Moebius s t r i p  is a u n i l a t e r a l  closed surface;  it has only 

one s ide .  A f l y  could crawl from any po in t  on t h i s  sur face  t o  any o t h e r  

po in t  on t h e  sur face  without c u t t i n g  through t h e  s t r i p  o r  going over an 

edge. 

Some proper t ies  of t h i s  surface can be explained by comparing it t o  

a c y l i n d r i c a l  sur face  made by tak ing  a long rec tangula r  piece of paper 

and pas t ing  t h e  ends together .  This sur face  has two s i d e s  and two edges. 

A Moebius s t r i p  can be made i n  a s i m i l a r  manner, except t h a t  one end of 

t h e  paper is given a h a l f  t w i s t  before t h e  ends a r e  joined. The 

r e s u l t i n g  surface has one aide and one edge. 

To become convinced of  these  p r o p e r t i e s ,  one has only t o  start at a 

po in t  and draw a l i n e  down t h e  c e n t e r  of t h e  s t r i p  without  removing one 's  

p e n c i l  from t h e  paper u n t i l  r e t u r n i n g  t o  t h e  s t a r t i n g  point .  I t  w i l l  be 

found t h a t  a s i n g l e  l i n e  has been drawn on what had been both aides of 

t h e  paper before t h e  ends were glued together .  S imi la r ly ,  one can run a 

p e n c i l  around t h e  edge of t h e  s t r i p  and f i n d  t h a t  both edges of t h e  

o r i g i n a l  s t r i p  have been colored. 
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If t h e  o r i g i n a l  c y l i n d r i c a l  s t r i p  is cu t  along its cen te r ,  it f a l l s  

apar t  i n t o  two new c y l i n d r i c a l  s t r i p s  each h a l f  as wide as  t h e  first. 

However, i f  t h e  Moebius s t r i p  is cu t  along i t s  cen te r ,  a s i n g l e  s t r i p  

twice a s  long and h a l f  a s  wide a s  t h e  o r i g i n a l  is obtained which has a 

whole t w i s t  i n  it. I f  t h i s  s t r i p  is again cu t  along i ts middle, two 

s t r i p s  a r e  formed which a r e  inter locked.  If a half- twisted Moebius 

s t r i p  is cu t  along a l i n e  one- third of  t h e  way from its edge, two i n t e r-  

locked s t r i p s  a r e  formed, one of which has a one-half t w i s t  and t h e  o t h e r ,  

a whole twis t .  

These proper t i es  of t h e  Moebius s t r i p  can be explained i n  terms o f  

t h e  theory of  knots. A closed curve i s  knotted i f  it cannot be t rans-  

formed i n t o  a s i n g l e  simple closed curve without c u t t i n g  and retying.  

Figure 1-a shows a s t r i n g  t h a t  is  a c t u a l l y  unknotted, while Figure 1-b 

shows a s t r i n g  t h a t  i s  knotted i n  t h e  s implest  way possible .  The above 

discussion of  t h e  Moebius s t r i p  can be put  i n  terms of knots as  follows. 

The two edges of  t h e  c y l i n d r i c a l  s t r i p  a r e  n e i t h e r  knotted nor inter locked 

FIGURE 1 

This s t r i p ,  cu t  down t h e  middle, f a l l s  apar t .  The s i n g l e  edge of t h e  

one-half- twisted Moebius s t r i p  i s  no t  knotted. This s t r i p ,  when cu t  

down t h e  middle, becomes one unknotted s t r i p .  The two edges of  a s t r i p  

with a whole t w i s t  a r e  inter locked bu t  no t  knotted. When t h i s  s t r i p  is 

cu t  down t h e  cen te r ,  it forms two inter locked s t r i p s .  I f  one end of a 

s t r i p  is turned through one and one-half t w i s t s  before pas t ing ,  t h e  

r e s u l t i n g  s t r i p  has one s i d e  and one knotted edge. When t h i s  surface 

i s  cu t  down t h e  cen te r ,  a s i n g l e  s t r i p  of  t h e  half- twisted type i s  formed 

which is i t s e l f  knot ted,  

B. K L t b ' b  BOA%& Another r e l a t e d  c u r i o s i t y  i s  t h e  Kle-in b o t t l e ,  

named f o r  t h e  German mathematician Fe l ix  Klein. We a r e  all  fami l ia r 'wi th  

t h e  sphere, which i s  a simple closed sur face  dividing space i n t o  two 

p a r t s ,  one i n s i d e  t h e  sphere and t h e  o ther  outs ide it. The Klein b o t t l e  

i s  a l s o  a closed surface l i k e  t h e  sphere,  b u t  it has no insi-de whatever. - .- -- 
If we start a t  a po in t  outs ide a sphere and c u t  through i ts surface t o .  

t h e  i n s i d e ,  we would have t o  cu t  through t h e  sur face  again t o  g e t  back 

outside.  If we s t a r t  anywhere and c u t  through t h e  sur face  of a Klein 

b o t t l e ,  we can follow a path which r e t u r n s  t o  t h e  place we s t a r t e d  without 

ever  c u t t i n g  t h e  sur face  again. 

A model of  a Klein b o t t l e  is  d i f f i c u l t  t o  make with paper and is  

usua l ly  blown i n  g lass .  I t  is  made by taking one end of  a hollow g l a s s  

tube,  bending it around, i n s e r t i n g  it through a hole  i n  i t s  own s i d e ,  

and joining t h e  two open ends together .  The r e s u l t i n g  sur face  is closed,  

being unbroken i n  t h e  usua l  sense a t  any po in t .  A diagram of  t h e  b o t t l e  

and i t s  cross- sect ion is  shown i n  Figure 2. The Klein b o t t l e ,  which was 

FIGURE 2 

not  invented o r i g i n a l l y  only f o r  fun, a r i s e s  n a t u r a l l y  from t h e  consider- 

a t ion  of  a one-sided sur face  which is closed and has no boundary, b u t  it 

does e x e r t  a c e r t a i n  undefined a t t r a c t i o n  for t h e  mathematician t h a t  

o ther  ordinary b o t t l e s  j u s t  do n o t  have. 

A. The. Hgpe~eube. The Moebius s t r i p  and Klein 's  b o t t l e  a r e  two- 

dimensional sur faces  e x i s t i n g  i n  t h r e e  dimensions; some o ther  i n t e r e s t i n g  

c u r i o s i t i e s  come from the  world of four  dimensions. Imagine a l i n e  

segment moving i n  a d i rec t ion  perpendicular t o  i t s e l f ;  it generates  a L 

square. If t h i s  square moves perpendicular t o  all of i ts  s i d e s ,  it 



generates a cube. Now imagine t h e  cube moving i n  a new d i rec t ion  perpen- 

d i c u l a r  t o  a l l  of i t s  faces ;  it generates a hypercube, o r  t e s s e r a c t .  

J u s t  a s  a cube can be represented by a two-dimensional perspect ive 

drawing, a hypercube can be represented by a three-dimensional perspect ive 

sculpture.  The hypercube has 16 corners ,  32 edges generated by t h e  8 

corners of t h e  o r i g i n a l  cube, 24 faces from t h e  12 edges of t h e  cube, and 

8 cubes from t h e  6 faces  of t h e  o r i g i n a l  cube. Each corner i s  common t o  

4 mutually perpendicular edges, t o  6 f a c e s ,  and t o  4 cubes; each edge is  

common t o  3 faces  and 3 cubes, and each face  is  common t o  2 cubes. Every 

cube has one face  i n  common with 6 of t h e  7 others .  A hypercube can be  

unfolded i n t o  i t s  component cubes j u s t  as  a cube can be unfolded i n t o  i t s  

component squares ,  a s  shown i n  Figure 3. Actually t h e  hypercube i s  one 

F I G U R E  3 

of a family of regu la r  four-dimensional polyhedrons. While i n  th ree  

dimensions t h e r e  a r e  f i v e  r e g u l a r  polyhedrons bounded by regula r  polygons 

( t h e  te trahedron,  cube, octahedron, dodecahedron, and icosahedron), i n  

hyperspace there  a r e  six regu la r  hypersol ids  bounded by regula r  polyhedrons: 

C5, bounded by 5 te trahedrons;  C8, bounded by 8 cubes; Ci6, by 16 t e t r a -  

hedrons; C ,  by 24 octahedrons; C12.., by 120 dodecahedrons; and C o o ,  

by 600 tetrahedrons.  Models of  t h e i r  project ions i n t o  th ree  space have 

a l l  been constructed. Our hypercube, C8, has r i g h t  angles throughout 

and is,  there fore ,  t h e  s tandard f o r  measuring hy^erspace. 

8.  0 t h ~  Fourth. V-imw&'ionaf. Su/tpHiL&~. The idea of hyperspace 

gives r i s e  t o  severa l  curiosit add i t ion  t o  hypersolids. J u s t  a s  

own on t h i s  square i n  i ts  plane 

nside it without d i s tu rb ing  t h e  

iona l  c rea ture  could remove one ' s  
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appendix without d i s tu rb ing  t h e  skin. Such a c rea ture  could a l s o  e n t e r  

any closed v a u l t  and become a p e r f e c t  t h i e f  a s  wel l  a s  a per fec t  surgeon. 

A four-dimensional c rea ture  could a l s o  u n t i e  knots i n  a s t r i n g  even 

though both of  i t s  ends were anchored (Figure 5 ) .  For example, i n  a 
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two-dimensional plane a knot could look l i k e  t h e  diagram i n  Figure 6-a. 

F I G U R E  6 

In  order  t o  u n t i e  it, end B must be r o t a t e d  around C. However, a three-  

dimensional c rea ture  could u n t i e  t h e  knot by moving t h e  loop through a 

t h i r d  dimension. P a r t  ED would be turned one-half way over through t h i s  

t h i r d  dimension i n t o  t h e  pos i t ion  shown i n  Figure 6-b. 

A four-dimensional c rea ture  could u n t i e  three-dimensional knots  

s i m i l a r l y  by moving some e s s e n t i a l  p a r t  of  t h e  knot through a four th  



dimension. Such a 

t h r e e  dimensions. 

c rea ture  could a l s o  c r e a t e  mirror  image r e v e r s a l s  i n  s tudy o f  various curves. One i n t e r e s t i n g  problem goes a s  follows. The 
If t r i a n g l e  A is i n  a plane,  a s  i n  Figure 7 ,  it cannot l a r g e  c i r c l e  i n  Figure 9 has made one revolut ion i n  r o l l i n g  without 

be r o t a t e d  s o  a s  t o  coincide with t r i a n g l e  B ,  However, a three-dimensional 

FIGURE 7 + 

s l i p p i n g  along a s t r a i g h t  l i n e  from P t o  Q,  and s o  t h e  d i s tance  PQ is 
crea ture  could pick up A out  of  i ts plane,  t u r n  it over through a t h i r d  equa l  t o  thecircumferenceof  t h e  l a r g e  c i r c l e .  However, t h e  small  c i r c l e ,  
dimension, and p u t  it back i n t o  i ts plane s o  t h a t  

B. 

S imi la r ly ,  a four-dimensional c rea ture  could 

it coincide with prism B (Figure 8) by turning it 

dimension. If it could a c t u a l l y  be accomplished, 

it would coincide with 4 f i x e d  t o  t h e  l a r g e  one, has a l s o  made one revolu t ion ,  and s o  t h e  d i s tance  

RS is equa l  t o  t h e  circumference of  t h e  small  c i r c l e .  Since RS is equal  
take prism A and make t o  PQ, t h e  circumference of  t h e  two c i r c l e s  must be equal. 
through a four th  This s t range  cont rad ic t ion  can be  explained by t h e  f a c t  t h a t  while 

t h i s  type of r e v e r s a l  t h e  l a r g e  c i r c l e  r o l l s  without s l i p p i n g ,  t h e  small  one does s l ip  i n  a 

c e r t a i n  sense. Further  explanat ion involves t h e  concept of  a r a t h e r  

curious curve known as t h e  cycloid.  This curve, shown i n  Figure 10 ,  is 

FIGURE 8 

could have p a r t i c u l a r l y  i n t e r e s t i n g  e f f e c t s  on a l i v i n g  animal s ince  t h e  

a c t i v i t y  o f  many b io log ica l ly  u s e f u l  molecules depends on t h e i r  three-  

dimensional o r i e n t a t i o n ,  and it would have i n t e r e s t i n g  psychological 

e f f e c t s  on a human s i n c e  h i s  r i g h t - l e f t  o r i e n t a t i o n  would be completely 

reversed.  Of course one need n o t  s t o p  a t  such four-dimensional c u r i o s i t i e s .  

F i f t h ,  s i x t h ,  and n-dimensional c u r i o s i t i e s  a r e  open t o  explorat ion a s  

well .  

3. CHACOUb CuAueA 

A. Cl/c^O-cdi. Some o ther  mathematical c u r i o s i t i e s  a r i s e  from t h e  

FIGURE 10 

the  path t raced  by a f i x e d  p o i n t ,  M, on t h e  circumference of  a c i r c l e  as 

t h e  c i r c l e  r o l l s  without s l i p p i n g  along a s t r a i g h t  l i n e .  A f i x e d  p o i n t ,  

N ,  inaide the &cLe describes what i s  c a l l e d  a curtate cycloid,  shown 

FIGURE 11 



i n  Figure 11, and a p o i n t y  O y  out8<& the &role b u t  at tached t o  it 

describes a prolate. cyc lo idy  shown i n  Figure 12. 

FIGURE 12 

Returning t o  t h e  two-circle problem, l e t  us consider t h e  motion of 

po in t  M on t h e  circumference of  t h e  l a r g e  c i r c l e  and t h a t  of  point  iV on 

t h e  circumference of t h e  small  c i r c l e .  A s  t h e  l a r g e  c i r c l e  r o l l s  from 

P t o  Q y  M descr ibes a cycloidy and iV describes a c u r t a t e  cycloid. Although 

each wheel makes only one revo lu t ion ,  point  M t r a v e l s  f m t h e r  than po in t  

N (as  can be seen from Figure 131, and only t h e  common cen te r  of  t h e  

c i r c l e s  t r a v e l s  a d i s tance  equal  t o  t h e  s t r a i g h t  l i n e  PQ. 

FIGURE 13 

The cycloid has s e v e r a l  o ther  curious proper t i es .  The length of  

one arch of  a cycloid is  equal t o  the  perimeter of  a square circumscribed 

about t h e  generat ing c i r c l e .  (See Figure 14-a.) 

( a )  (b)  

FIGURE 14 

The a r e a  under one arch of a cycloid is  equal  t o  t h r e e  times t h e  a r e a  of  

t h e  generat ing c i r c l e .  Therefore? when t h e  c i r c l e  is i n  t h e  pos i t ion  

shown i n  Figure 14-b, t h e  shaded areas  on e i t h e r  s i d e  of it a r e  each 

exac t ly  equal  t o  t h e  a r e a  of  t h e  c i r c l e .  

The a r c  of a cycloid i s  a l s o  t h e  path of qu<ckest descent betwe&- 

two po in t s .  For example suppose t h a t  A and 23 a r e  two po in t s  not  i n  the  

same hor izon ta l  plane and t h a t  t w ~  b a l l s  a r e  re leased  simultaneously a t  

A and a r e  allowed t o  r o l l  from A t o  B (Figure 151, and suppose the  f i r s t  

FIGURE 15 

r o l l s  along a plane, and t h e  second r o l l s  along a sur face  i n  t h e  shape cf 

an inverted cycloid. The second w i l l  reach B first i n  s p i t e  of  t h e  f a c t  

t h a t  t h i s  path is  longer and t h a t  t h e  second b a l l  has t o  r o l l  uphill  

before it g e t s  t o  B. In  f a c t  i f  the  plane from A t o  B is replaced by a 

sur face  of  any o ther  shape, the  b a l l  t h a t  r o l l s  along t h a t  sur face  w i l l  

always g e t  t o  B l a t e r  than t h e  one t h a t  r o l l s  along t h e  cycloid. This 

problemy c a l l e d  t h e  braehistochrme problem, was proposed t o  Jacob 

Bernoull i  by h i s  brother  Johannes i n  1696 and was solved by methods 

which developed i n t o  t h e  f i e l d  now c a l l e d  the  eaZeulus of variations. 

4 .  P ~ o ~ o g i c ~  CWLveA 

Most curves d e a l t  with by mathematicians a r e  f a i r l y  innocent and, 

while they may exhib i t  a few idiosyncrasies  l i k e  t h e  cyc lo idy  can be 

handled by using one technique o r  another. There a r e  some curves, 

howevery who simply w i l l  not  behave themselves desp i te  a l l  e f f o r t s  t o  

b r ing  them under con t ro l ;  these  a r e  the  pathological  curves of mathematics. 

Before we s t a r t  t o  discuss  them, the  idea  of  a curve being the  l i m i t  of 

a sequence of polygons must be introduced. 

Let an e q u i l a t e r a l  t r i a n g l e  be inscr ibed  i n  a c i r c l e  (Figure 16-a);; 

t h i s  t r i a n g l e  is  curve GI. A s  i n  Figures 16-b,c l e t  C2 be the  regu la r  

hexagon obtained by b i sec t ing  t h e  t h r e e  r e s u l t i n g  a r c s  of t h e  c i r c l e  and 



(b 1 

FIGURE 16 

by joining,  i n  o rder ,  t h e  s i x  v e r t i c e s ,  Let C3 be t h e  regu la r  dodecagon 

formed by b i sec t ing  t h e  s i x  a r c s  obtained and joining t h e  twelve i n  

order. I f  t h i s  process i s  repeated,  t h e  number of s i d e s  of t h e  inscr ibed 

curve doubles each time. The curve approached as  a l i m i t  i n  t h i s  process 

is t h e  o r i g i n a l  c i r c l e ,  and so  t h e  c i r c l e  i s  described as  t h e  l i m i t  curve 

of a sequence of  curves o r  polygons. The pathological  curves we s h a l l  

discuss  a r e  l i m i t  curves l i k e  t h i s  one. 

The first pathological  example i s  t h e  snowflake curve. S t a r t  with 

a t r i a n g l e  with s i d e s  each one u n i t  i n  length (Figure 17) .  A s  i n  

Figure 17-b, t r i s e c t  each s i d e  of t h e  t r i a n g l e  and e r e c t  on each of  t h e  

FIGURE 17 

middle t h i r d s  an e q u i l a t e r a l  t r i a n g l e  point ing outward. Erase t h e  p m t s  

common t o  the  new and old t r i ang les .  This simple polygonal curve is  

obtained. T r i s e c t  each s i d e  of t h i s  curve and upon each middle t h i r d  

e r e c t  an e q u i l a t e r a l  t r i a n g l e  point ing outward. Erase t h e  p a r t s  of t h e  

curve common t o  t h e  new and o ld  f igures .  The curve shown i n  Figure 17-c 

is obtained, Now continue t h i s  process. The l i m i t  curve of  t h e  process 

is t h e  snowflake curve, ( I t  obviously g e t s  i t s  name from t h e  shape it 

assumes a t  successive s tages  of i ts development.) This curve i s  considered 

pathological  because although t h e  curve has a perimeter of i n f i n i t e  l eng th ,  

i t s  a r e a  is f i n i t e .  A t  each s tage  of the  construct ion,  t h e  perimeter 

increases ,  and the  sequence of numbers represent ing t h e  length of  the  - -  -- 
perimeter a t  each s tage  does not  converge. 

This f a c t  can be explained a s  follows. The perimeter of t h e  t r i a n g l e  

was 3 .  I n  construct ing t h e  second s t a g e ,  we added s i x  l i n e s  of length 

one- third u n i t  each and subtracted t h r e e  l i n e s  of length one- third u n i t  

each. The n e t  r e s u l t  was t h a t  we added one u n i t  t o  t h e  perimeter.  

Therefore, t h e  length of t h e  second curve is 3 + 1. Likewise, thle 

perimeter of t h e  t h i r d  s tage  is 

of t h e  four th ,  

The perimeter a t  t h e  n t h  s tage  is 

and s o  a s  n grows, t h e  r e s u l t  grows, s ince  t h i s  s e r i e s  does not  converge, 

and t h e  perimeter becomes i n f i n i t e .  

To show t h a t  t h e  a rea  is  f i n i t e ,  th ink  of a c i r c l e  circumscribed 

around t h e  o r i g i n a l  t r i a n g l e .  Then note t h a t  a t  no subsequent s tage  of 

t h e  development w i l l  t h e  curve ever  extend beyond t h i s  c i r c l e .  Therefore 

we a r e  confronted by the  s t range  f a c t  t h a t  t h i s  curve of  i n f i n i t e  length 

can be drawn on a small  sheet  of paper -- on a postage stamp, f o r  instance.  

I t  is  a l s o  no t  poss ib le  t o  t e l l  a t  any point  on t h e  l i m i t  curve t h e  

d i rec t ion  i n  which it i s  going, and s o  t h e  tangent  l i n e  does not  e x i s t  a t  

any point .  

There i s  a l s o  another pathological  curve c a l l e d  t h e  anti-snowfhke 

curve, which is  obtained by drawing t r i a n g l e s  inward, no t  outward, i n  

the  above construct ion.  I t  has t h e  same proper t ies  as  t h e  snowflake. 

Its perimeter i s  i n f i n i t e ,  but i t s  a rea  is  f i n i t e ,  and no tangent l i n e  

can be drawn t o  it. The f i r s t  four  s tages  a r e  shown i n  Figure 18. 

The in-and-out curve is  another pathological  example. Draw a c i r c l e  

with rad ius  one and choose s i x  po in t s  on it which divide t h e  circumference 

i n t o  s i x  equal  p a r t s .  Take th ree  a l t e r n a t e  a rcs  and t u r n  them inward. 

The o r i g i n a l  c i r c l e ,  GI, is now t h e  new f i g u r e  c2 (Figure 19). The 



FIGURE 18 

perimeter of  C2 is  t h e  same a s  t h e  perimeter of C I S  since i t s  length is 

no t  a l t e r e d  by turning t h r e e  a r c s  inward, Next t r i s e c t  each a r c  and 

FIGURE 19 

tu rn  t h e  middle t h i r d  outward i f  it is now inward and t u r n  it inward i f  

it i s  now outward ( F i g w e  20). This new curve is C3, and i t s  perimeter 

is a l so  equal t o  t h a t  of the  o r i g i n a l  c i r c l e .  The a rea  0fC3 i s  t h e  same 

a s  t h a t  of  C2, s ince  we a l t e r n a t e l y  added and sub t rac ted  t h e  same s ized  

segments. Keep repea t ing  t h i s  process. The l i m i t  curve has a perimeter 

equal  t o  t h e  perimeter of t h e  c i r c l e 7  and i t s  a r e a  i s  equal t o  t h a t  of 

C2. While t h e  curvature of  t h e  o r i g i n a l  c i r c l e  can be computed w-fthout 

d i f f i c u l t y ,  t h e  in-and-out curve presents  a pathological  problem i n  t h i s  

respec t .  Consider an a r b i t r a r y  point  on it. Should we measure curvature 

a t  t h i s  point  toward t h e  cen te r  of  the  c i r c l e  o r  away from i t ?  There is  

no d e f i n i t e  curvature,  and t h e  second der iva t ive  does not  e x i s t .  

Our next  pathological  specimen is  a space-fiZZ<ng curve, which seems 

t o  r e f u t e  t h e  idea t h a t  a point  has zero dimensions and t h a t  a ' curve  

which i s  one-dimensional cannot f i l l  a given space. The f i r s t  member of  

t h e  curve generat ing sequence is  polygon PI inse r ted  i n  a square as  

shown below i n  Figure 21-a. The square is  then divided i n t o  four  equal 

(3) 

FIGURE 21 

squares ,  and four  polygons s i m i l a r  t o  PI a r e  formed and a r e  joined 

together  t o  form polygon P2 (Figure 21-b). To g e t  polygon P3, each of 

t h e  four  squares i s  divided i n t o  four  more, and s ix teen  polygons s i m i l a r  

t o  PI a r e  joined toge ther  (Figure 21-c). I f  t h i s  process is continued7 . . . t h e  r e s u l t  is a sequence of polygon P I S  P2, P3Â . This sequence 

approaches a l i m i t  curve. I t  can be r igorously shown t h a t  t h i s  curve 

passes through any spec i f ied  po in t  of  the  square i n  which it is  inscr ibed ,  

and so  it must pass  through every po in t  of  the  square and must completely 

f i l l  it. I t  can a l s o  be shown t h a t  such a one-dimensional curve could 

a l s o  f i l l  an e n t i r e  cube, hypercube, o r  f igure  corresponding t o  a cub.e 

i n  a space of any number of  dimensions. 

We have discussed some of t h e  oddi t i es  of mathematics -- t h e  Moebius 

FIGURE 20 



s t r i p ,  Klein's b o t t l e y  t he  weird world o f  the  four th  dimensiony and some 

very unusual curves. These a r e  bu t  a few of the  s t range  and wonderful 

th ings  with which mathematicians d e a l ,  and they represent  j u s t  a few of  

t h e  a reas  s tud ied  i n  mathematics. There a r e  many more mathematical 

c u r i o s i t i e s  t o  be examined and explored o r  t o  be newly dkscovered. The 

mathematical c u r i o s i t i e s  a r e  there  j u s t  wai t ing f o r  a s u f f i c i e n t l y  

curious mathematician. 
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THE PERFECT NUMBERS AND PASCAL'S TRIANGLE 

The fundamental theorem of a r i thmet ic  s t a t e s  t h a t  every p o s i t i v e  

i n t e g e r  can be represented uniquely a s  t h e  product of prime f a c t o r s .  An 

i n t e g e r  n > 1 s h a l l  accordingly be wr i t t en  

where t h e  p i t s  a r e  t h e  d i s t i n c t  prime f a c t o r s  and a i  is  the  m u l t i p l i c i t y  

o f  p . ( the  number of  times p i  occurs i n  t h e  prime f a c t o r i z a t i o n ) .  
% 

A p o s i t i v e  i n t e g e r  is  c a l l e d  a per fec t  number i f  it is equal  t o  the  

sum of a l l  i ts p o s i t i v e  d i v i s o r s  other  than i t s e l f .  The sum of  d iv i sors  

o f  a number n with the  prime f a c t o r i z a t i o n  (1)  is 

The condition f o r  a per fec t  number may then be given by n = u(n) - n o r  

equivalent ly,  d n )  = 2n. 

Euclid argued t h a t  i f  2p - 1 is prime f o r  p > 1, then 

is  a per fec t  number. Euler showed l a t e r  t h a t  a l l  even per fec t  numbers 

must be of  t h i s  type ( see  C41). The number 2 p  - 1 is known a s  a 

Mer8enm prime and is denoted by Mp, a s  i n  [3]. A l l  p e r f e c t  numbers 

known a r e  even and the  question of whether there  is an odd per fec t  

number is  s t i l l  unanswered. There is  no evidence t o  prove o r  disprove 

t h e  exis tence of an odd per fec t  number bu t  i f  one does e x i s t ,  it must be 

g r e a t e r  than l o l o o  [ll. 
For any p o s i t i v e  in teger  m and any in teger  k s a t i s f y i n g  0 5 k 5 n!, 



m 
t h e  binomial c o e f f i c i e n t  ( k )  is defined by 

Use w i l l  now be made of  t h e  configurat ion !am a s  PUEC~Z'S  t d m g z ~  i n  
m 

which t h e  binomial coef f ic ien t  ( k )  appears as t h e  (k + 1 ) s t  number i n  

t h e  (m + 1 )  st  row, a s  i n  C51. 

FIGURE 1 

The borders of t h e  t r i a n g l e  a r e  composed of  ones; a number n o t  on t h e  

border is  t h e  sum o f  t h e  two numbers neares t  it i n  t h e  row above. 

A l l  even p e r f e c t  numbers can be shorn t o  l i e  on t h e  t h i r d  diagonal 

of Pasca l1s  t r i a n g l e  ( see  Figure 1). The r e s t r i c t i o n  f o r  m is t h a t  

it must be equal t o  a Mersenne prime p lus  one; t h a t  is, m = M + 1. P 
S e t t i n g  k equal  t o  2 ( s ince  t h e  t h i r d  diagonal of Pasca l1s  t r i a n g l e  is  

k = 21, 

which is  an even p e r f e c t  number by ( 3 )  above. 

A s  i n  [51, we now note t h a t  each number i n  Pasca l1s  t r i a n g l e  is  t h e  

sm of t h e  numbers i n  t h e  preceeding diagonal  ( see  Figure 2) :  

FIGURE 2 

We have seen t h a t  a l l  even p e r f e c t  numbers a r e  on t h e  t h i r d  diagonal 

of  Pasca l1s  t r i a n g l e .  Hence, t h e  second diagonal would generate  t h e  

p e r f e c t  numbers. That i s ,  every even p e r f e c t  number is  t h e  sum of  t h e  

first 2p - 1 = MP numbers: 

We now observe t h a t  t h e  elements of  t h e  t h i r d  diagonal a r e  t h e  

t r i a n g u l a r  numbers and every even p e r f e c t  number is t r i a n g u l a r  i n  

shape [21. (See Figure 3.) 

1 

1 1  

1 1  1 

The p e h i e d  nmbeh 6 cui-th babe Up = 3 

FIGURE 3 

According t o  Burton [ll t h e r e  a r e  24 even p e r f e c t  numbers known t o  

date  (1976). The first 5 and t h e i r  associated Mersenne primes a r e  given 

i n  Table 1 on t h e  nex t  page. 

We now have s e v e r a l  d i f f e r e n t  ways of computing p e r f e c t  numbers. * 

We must first compute Mersenne primes %. Knowing t h e  Mersenne primes, 



TABLE 1 

we can: 

( a )  compute P = ~ ~ ( 2 ~ - ) ,  using Eucl id 's  formula, 

m 
(c )  with m = M + 1 and k = 2, compute P = (,I. 

P * 
It is  from ( c )  t h a t  we note a l l  even numbers a r e  on t h e  t h i r d  diagonal 

o f  Pasca l ' s  t r i ang le .  
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SOME INEQUALIT IES  FOR NON-NEGATI VE RANDOM VARIABLES 
INVOLVING THE MOMENT GENERATING FUNCTION 

by 3.  Chang, C. Chen, B. CIIUM, 
U. S-tockwvia., M. Thu~komihL, and 8. WychviJLey 

Uiu.um.t-fa/ o i  Oklahoma 

Various i n e q u a l i t i e s  on moments and p r o b a b i l i t i e s  can be derived 

using t h e  moment generat ing function. In  t h i s  a r t i c l e  we give some 

r e s u l t s  which may be new. 

Let X be a non-negative random var iab le  ( r . v . )  with cumulative 

d i s t r i b u t i o n  funct ion (c .d . f .  ) F(X) I f  g(X) is a funct ion of  X, t h e  

expected value E(g(X) o f  g(X) (when it e x i s t s ) ,  i s  given by 

The expected value of  g(X) = xk is  c a l l e d  t h e  kth moment of X. The 

moment generat ing function (m.g.f.1 M(t) i s  t h e  expected value of  

exp(tX), o r  

Throughout t h i s  a r t i c l e ,  we assume t h a t  Pr(X 2 0) = 1. We a l s o  assume 

t h e r e  e x i s t s  a p o s i t i v e  number h such t h a t  M(t) e x i s t s  ( f i n i t e )  on 

-h < t < h ,  o r  equivalent ly t h a t  M(t) e x i s t s  on a neighborhood of  zero. 

(For a non-negative r . v .  X, t h e  m.g.f. M(t) w i l l  automatical ly  e x i s t  f o r  

a l l  t 2 0 . )  

The following r e s u l t s  a r e  not  new, bu t  a r e  s t a t e d  f o r  reference 

purposes ( they assume t h e  exis tence of t h e  moment generat ing funct ion 

on a neighborhood of  zero)  : 

1 )  E ( x ~ )  < +- f o r  k = 1, 2 ,  3, 

2) M(t) is  a C-(-h, h )  funct ion (continuous der iva t ives  of a l l  o rders ) .  

3) # ( t )  = 1- s^e*a(a) f o r  -h < t < h ,  k = 0, 1, 2,  * . * .  
0 

.. 



5) M(Z) = fÂ eZeS'(x) is  a n a l y t i c  on -h < ~ e ( z )  < h. 
0 

The proofs of these  r e s u l t s  do no t  appear o f ten  i n  s t a t i s t i c a l  

t e x t s  s ince they involve complex var iab les  and r e a l  ana lys i s ,  i n  

p a r t i c u l a r ,  t h e  Lebesgue Dominated Convergence Theorem. The reader  

may wish t o  consul t  t h e  references given a t  t h e  end ( i n  p a r t i c u l a r ,  

[I], pp. 52-53 and [2], Chapter 7). 

Now f o r  every k ,  and a r b i t r a r y  p o s i t i v e  A ,  we have 

I. F i r s t  consider t h e  inequa l i ty  ~ ( ~ ' ( t )  2 4 /Aa^aeS'(x). If 

0 5 t < h we have 

Dividing through by F(A) = Pr(0  5 X S A), we have 

where F(x)/F(A) i s  t h e  c .d.f .  of  the  X- distr ibut ion,  t runcated t o  [ O ,  A]. 

Taking t h e  infimum over t ,  we have 

where t h e  right-hand s i d e  is  the  kth moment of t h e  t runcated version of 

X. 

Next consider -h < t 5 0. We have 

Dividing through by e A t ~ ( ~ ) ,  we have * 
a - -- 

Taking t h e  infimum over t, t h i s  becomes 

Taking t h e  l i m i t  a s  A + -, we have 

- k t x  
1 1  S e c o n d ,  consider. M^(t) ? x e dF(x). I f  0 5 t < h ,  

we have 

After  d iv i s ion ,  we obtain 

- A t  ( k ) ( t )  e M  2 Pr(.X > A). 

By tak ing  infimums, we then have 

- A t  m ( t )  
i n f  i n f  , ? Pr(X > A) = 1 - ?(A) 

ost<h k o  A 

and 



-AtM(k) ( t )  
i n f  i n f  2 Pr(X > A) = 1 - F(A). 
k20 O5t<h A 

I f  -h < t Â 0 ,  t h e  b a s i c  i n e q u a l i t i e s  a r e  

k After  d iv i s ion  by A ( 1  - F(A)), we then get  

where F( .x) /( l  - F(A)) i s  t h e  c.d.f.  o f  X t runcated t o  ( A ,  -1, and t h e  

right-hand s i d e  of  (2.6)  is t h e  m.g.f. of such a d i s t r i b u t i o n ,  which w i l l  

e x i s t  a t  l e a s t  on (-h, h ) .  Again tak ing  t h e  infimum on k ,  one sees  t h a t  

i n f  ~ ( ^ ( t )  
k>O ~ ~ ( 1  - ?(A)) 

and 

provided X does not  have an atom a t  zero,  t h a t  is ,  provided PP(X = 0) = 0. 

A mult i tude of i n e q u a l i t i e s  become evident i f  one s e l e c t s  0 < A < 

B < - and then wr i tes  

f o r  k = 0, 1, 2, ..- and -h < t < h. Since t h e r e  a r e  so  many cases,  we 

leave t h e  d e t a i l s  t o  t h e  reader .  Various o ther  g e n e r a l i t i e s  can be seen 

t o  e x i s t ,  such a s  d e l e t i n g  t h e  requirement t h a t  X be non-negative. In  

add i t ion ,  f o r  a non-negative r .v .  X, t h e  moment generat ing funct ion M(t) 

e x i s t s  f o r  a l l  t 5 0 ,  and hence some of  t h e  i n e q u a l i t i e s  such a s  (1 .6 ) ,  

(1.7) may be t ightened.  
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n+ 1 - 
no. n > (n + 1 ) a  - 1. 

ANOTHER APPROACH TO A P A I R  OF FAMIL IAR SEQUENCES 

by N. S n h m b ~ i g V i  
B-lorex CommmviiLty CoUege, CUNY 

Put t ing  a = 1 + -& gives  

and 

n- 1 
f"(x) = -n(n + l ) x  

1 - 
n 

it follows t h a t  f (x )  a t t a i n s  an absolute  maximum a t  x = a . Thus i f  

a # 1, we have 

A simple proof t h a t  t h e  sequence Sn = ( 1  + ]-)" approaches a l i m i t  

can be based on: 
1 n 

(1 )  Sn = ( 1  + ;) i s  an increasing sequence, and 1 n 
( 1  + ?z+l > ( 1  + --) . 

(2 )  Tn = ( 1  + +)n+l is a decreasing sequence. - 
1 

The usua l  proofs of  these  statements employ e i t h e r  the  binomial This proves (1 ) .  TO prove (2), we put  a = 1 - ~h~~ 

theorem o r  t h e  inequa l i ty  between t h e  a r i thmet ic  and geometric means * n+l  

( see  [ l ] ) .  The first method i s  somewhat messy and t h e  second uses an d l -  - I T >  n+1 n - 1 

inequa l i ty  t h a t  i s  r a r e l y  derived i n  elementary calculus.  In  t h i s  no te  

we o f f e r  simple proofs of  (1 )  and (2)  t h a t  f i t  n a t u r a l l y  i n t o  t h e  

sequence of calculus t o p i c s  i n  a s tandard course. 

Let 

where n i s  a p o s i t i v e  i n t e g e r  and a > 0 ,  x > 0. Since 

Inver t ing  f i n a l l y  gives 
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* t o p i c  r e l a t e d  t o  mathematics, s t a t i s t i c s  o r  computing. Do you have a * 
* * * f a v o r i t e  t o p i c  which you could share with us? We welcome items ranging * 
* from exposi tory t o  research ,  i n t e r e s t i n g  appl ica t ions ,  problems, e t c .  ft * * * Presentat ion time should be f i f t e e n ,  t h i r t y ,  o r  f o r t y- f i v e  minutes. We * 
* need your t i t l e ,  p resen ta t ion  time, and a 50 (approx.) word a b s t r a c t  by * 
* * 
ft September 18,  1978. Please send your m a t e r i a l  t o  Professor Cox (address * 
* below). & * * 
* We a l s o  urge you t o  a t t e n d  t h e  Conference on Applications of ft 

S t a t i s t i c s  and Mathematics, which begins Friday af ternoon,  September 29. ft * * Free overnight f a c i l i t i e s  f o r  a l l  s tudents  w i l l  be arranged with Miami 9c 

* students .  * 
Ss For more d e t a i l s  w r i t e  t o :  

ft Professor  Milton D. Cox 
ft Department of  Mathematics and S t a t i s t i c s  
ft Miami University 

PUZZLE SECTION 

This department i s  for the enjoyment of those readers who are 

addicted t o  working crossword puzzles and find an occasional mathe- 

matical puzzle attractive.  We consider mathematical pussies t o  be 

problems involving numbers, geometric figures, patterns, or logic 

whose solution consists of an answer immediately recognizable as 

correct by simple observation, and not necessitating a formal mathe- 

matical proof. Although logical reasoning of a sort must be used t o  

solve a puzzle i n  t h i s  section, l i t t l e  or no use o f  algebra, geometry, 
or calculus w i l l  be necessary. Admittedly, th i s  statement does not 

serve t o  precisely d i s t i n ~ u i s h  materia2 which might well be the domain 

of the Problem Department, but the Editor reserves the r ight  t o  make 

an occasional arbitrary decision and w i l l  publish puzzles submitted by 

readers when deemed suitable for t h i s  department and believed t o  be 

new or not accessible i n  books. Material not used here w i l l  be sent 

t o  the Problem Editor for consideration i n  the Problem Department, i f  

appropriate, or returned t o  the author. 

Address a l l  proposed puzzles, puzzle solutions or other correspond- 

ence t o  the Editor, Pi  Mu Epsilon Journal, 601 E l m  Avenue, Room 423, 

The University o f  Oklahoma, Norman, Oklahoma 73019. Please do not send 

such material t o  the Problem Editor as th i s  w i l l  delay your recognition 

as a contributor to  th i s  department. Deadlines for solutions of  puzzles 

appearing i n  each Fall issue i s  the following March 31, and that for 

each Spring issue, the following September 30. 

Mathacrostic No. 5 

~ubnu32e.d b y  R. R o b h o n  Rowe 
SacAome.nto, C w o i w w .  

Iden t i fy  t h e  32 key words, matching t h e i r  l e t t e r s  i n  o rder  with 

t h e  opposite sequence of  numbers, and i n s e r t  each l e t t e r  of  t h e  key ; 
words i n  t h e  square of t h e  Mathacrostic with t h e  same number. Words 

end a t  t h e  blank squares ,  and some words extend on t o  t h e  next l i n e .  



A. Weigh anchor 

B. Same i n  s t a t i c  energy 

C. Towards Nome 

D. Umpire 

E.  S t ress- s t ra in  r a t i o  

F. Calculus t a s k  

G. Absolute, i n  math 

H.  Relat ing in tegers  

I. Geologic period 

J. Mathematician 1642-1727 

K. Crazy bone 

L .  Michigan campus 

M. Greek l e t t e r  

N. King of Judah ca 750 BC 

0. Moon's age on Jan. 1 

P. Melampyrum spp 

0. Mathematical snake 

R. Most recen t  

S. Language i n  S. Ind ia  

T. Kitchen t o o l  

U. Dream 

V. Famous cycloid 

W .  Maximum e f f o r t  

X. The rabble 

Y. Achil lea spp 
'i 

Z. Asimina t r i l o b a  

a .  Ci ty of  t h e  Mohawk 

4 b.  Achil les  s t o r y  

c. Persian creed 

d. Scanned ( a  book) 

e .  Mathematical inventor  

f .  H i s  invent ion 



When completed, the Mathacrostic will be a 260-letter quotation, 

and the 32 initial letters of the key words will spell out the name of 

an author and title of his book from which the quotation was derived. 

It will tell you something human about yourself. There is a one-to-one 

correspondence between the 260 letters in the Mathacrostic and the 260 

letters of the key words, so it is also an anagram. 

Geometry From A Dozen Pennies 

A mathematics teacher wants to illustrate some geometric patterns 

by arranging 12 pennies in various ways without having to use compass, 

straight-edge, measuring instruments or marking devices of any kind. 

To make it more of a challenge, the teacher has decided only to slide 

the pennies in arranging them and disallow the freedom of lifting the 

coins. Under these restrictions, show how each of the following 

figures may be created precisely. 

Two C - U c ^ u  0 6  ~qua f .  RadLL: 

A Line and a Po-imh Not on It: 
0 

0 0 
n 

A R e g W  Hexagon: 
0 
n 
\^ 

An Angle 06 1 50Â and Two 
I nteAio/i Po-Lwt& : 

O 0 

Mathematical Word Chains: One L e t t e r  Changes 

Find a sequence of legitimate words (disallowing proper nouns and 

abbreviations) starting with the first word given and ending with the 

one below it if you are allowed to change only one letter at a time in 

proceeding from one word to the next. 

MATH 
(a) NOTE 

LINE ZERO 
(') SURD ROOT 

Example. A solution to MATH -+ NOTE is: 

MATH 
MATE 
RATE 
ROTE 
NOTE 

SEVEN 
(d) PRIME 

Mathematical Word Chains: Two L e t t e r  Changes 

Follow the same instructions as in the preceding puzzle, except 

you are allowed (and required) to change exactly two letters at a time. 

LINES 
(a) CURVE 

CIRCLE 
(b) BEAUTY 

(by way of RINGS) 
FIELD 

SLOPE LINEAR 
EQUAL ORDERS 

Countdown 

Find all possible solutions to the following long division problem: 



Greek Crosses and Squares  End with: S - t m  with; End with: 

Since no s o l u t i o n s  were r e c e i v e d  f o r  t h i s  puzz le  which appeared i n  n 
t h e  F a l l ,  1976 i s s u e  o f  t h i s  JournaZ, we p r e s e n t  it aga in .  So lve r  n 
must use  one o r  more o f  t h e  f i g u r e s  shown i n  t h e  c e n t e r  column t o  

p i e c e  t o g e t h e r  and form t h e  f i g u r e  on t h e  l e f t ,  t h e n  r e a r r a n g e  t o  form 

t h e  f i g u r e  on t h e  r i g h t ,  i n  each case .  

End with: StaAt with: End iuUk: 

Solu t ions  

WÂ¥CAbJLond and Canre-tba-fcA [Fa1 1 ,  19761 

A l a t e  Ao.tiitton WOA kecciued by ROGER E .  K U E H L ,  KanAm C - c A / ,  
A ~ ~ A o L L ^ ~ . ,  who o b ~ ~ w e d  t h e  op-fcunum numbe~ 0 6  13 C A O A A - ~ M ~ A  and >uw,ed 

t h e  quu.fcc.on 0 6  (itfia-Cke~ oÂ£ o-i AOme "iu-uei-c-ivb~JLng" pioblemb have 

gene~oJL boHwtA.on~ and wke-the-i Â¥u -Us inde.ed po~bJLbLe -to piow -that a 
[t^UJoJL and m o i l  ~ o t a t i o n  t o  a ptWUcutaA one .i~ minimum. [See 

Spiu-ng, 1977 A ~ u e  ((ox AO.&&.~O~. 1 

MtLthacho~~c No. 3 [Spr ing,  19771 

L a t e .  botutiom w e ~ e  i e c W e d  by MITCH ENTRICAN, UvU.veA^Â¥ut 0 6  
M-Usb-Li~ippi and SISTER STEPHANIE SLOYAN, Geoighn CvuM CoUegt (Lakwovd, 

Mw Jeuey l .  

A P(UA o f i  Eighth [Spr ing,  19771 

Late botii.fct.on6 w m  ~ecc ived  by MARK EVANS, LaMmque, Texm and 

B. FRANK WILLIAMS, Campbe.U, T w .  

Ma.thacmdc No. 4 [Fall  , 19771 

D e f i n i t i o n s  and Key: 

A .  Looking g l a s s  F. Conjugated K. 
B. Es the te  G. Awash L. 
C .  Wonderland H .  Rebaked 1.1 . 
D. I sohyet  I.  Rhythm N.  
E. Symbolic J.  Ottawa 0. 

U. Nth Z .  Hashish c .  
V. Gushed a .  E f f e t e  f .  
W .  Oddity b. Shorthanded 
X.  Fahrenhei t  c .  Nutty 
Y.  Theory d .  A s  t ronorn~ 

Lethe P.  Halfway 
Luffed Q .  Uther 
Twenty thousandths  R .  Norman 
Habitude S. Tetrahedron 
Eureka T .  Ivy 

Rhomboid 
Kowtows 
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F i r s t  Le t te r s :  LEWIS CARROL THE HUNTING OF THE SNARK 

Quotat ion:  They found not  a button or feather by whic nh they cou Id t e l  

tha t  they stood on the ground where the baker had met with the snark. 

I n  the midst o f  the word he was trying t o  say, i n  the midst of h i s  

laughter and glee, he had s o f t l y  and suddenly vanished may ,  for the 

snark uas a b o j m  you see. 

Solved by JEANETTE BICKLEY, WebbteA Gnouu High School (h4hb~u fu . ) ;  

MITCHELL W .  ENTRICAN, U b e . U f i q  of, A4Â¥Libbbippi BARBARA LEHMANN. 

S t .  P e X m  CoUqe . ;  J O D I  L .  LEVESQUE, U n i v n u f i y  of, Fluhtda; SIDNEY PENNER, 

B u n x  Commu&q CoUege. o{\ CUNY; BOB P R I E L I P P ,  U ~ u U U i ^ t q  of, W h c o m i n  

at O/ihkoih; LEO S A U V ~ ,  Algonqiu-n CoUe.ge. (Ottaiua, Canada); ahd ALLAN 

TUCHMAN and P A T R I C I A  GROSS, U n i v e a ^ t y  of, l ~ n o Â ¥ L i  

C'~oh.6-nmbei. Puzzle. [ F a l l ,  19771 

Sotved by JEANETTE BICKLEY, Web~te i t  Gnouu High School ~ t l Â ¥ L i b o d )  

MITCHELL W. ENTRICAN, UWLue.k&Xq of, M - c A ~ b b i p p i ;  MICHAEL HANEY, ALLAN 

TUCHMAN, and P A T R I C I A  GROSS, U d w L t y  of, 1 U n o h ;  CLARK HEISER, 

YonfeeAA, New Yo&; BECKY HENNING, UvuMm-Uty ol, CaJU,f,oi.nia at Lob A n g e l u ;  

SIDNEY PENNER, Bkonx Comun-Ltq CoUe.ge of, CUNY; BOB P R I E L I P P ,  UWLU~U,^~I/ 

of, W ~ C O H & . U I  at Oihkmh.: and R. ROBINSON ROWE, SacAame.yvto, CcL&ihoft.nia. 

UNDERGRADUATE RESEARCH PROPOSAL 

by Jame~ J o n u  and Jamu 7 ~ ~ o - t - t  
Utu.uem-iA/ of, Oklahoma 

A number of elementary f a c t s  may be e a s i l y  observed i n  t h e  s q u e n c e  
. . - .  

of diagrams below. For example, i f  it is assumed t h a t  t h e  o r i g i n a l  tri- 

E q u i t a t e ~ o J L  VtiangLlLh ahe. 
j o ined  -to the. midd le  t h i n d  
of, each .6-t.de. A.VI each 
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ang le  has  s i d e s  of  l e n g t h  one, t h e  t o t a l  pe r ime te r  o f  each f i g u r e  and 

a r e a  enclosed may be  computed. 

Carry  t h i s  o u t ,  and determine what happens when t h e s e  computa- 

t i o n s  a r e  performed f o r  each o f  t h e  f i g u r e s  a s  t h e  sequence o f  

c o n s t r u c t i o n s  is c a r r i e d  on ad i n f i n i t u m .  

What would happen i f  t h e  new t r i a n g l e s  po in ted  inward i n s t e a d  

o f  ou t?  What would t h e  new f i g u r e s  look l i k e ?  What would be  

t h e  answer t o  t h e  above ques t ion  i n  t h i s  case?  

What would happen i f  we s t a r t e d  wi th  some r e g u l a r  polygon o t h e r  

t h a n  t h e  t r i a n g l e  ( say  a squa re ,  pentagon o r  hexagon) and 

e r e c t e d  s i m i l a r  ( b u t  s m a l l e r )  n-gons on t h e  middle one- thi rd  

o f  each s i d e  i n  each s t e p ?  What would t h e  s i x  f i g u r e s  look 

l i k e  f o r  n = 4 ,  5 ,  o r  6? What would t h e  answer be  f o r  each o f  

t h e  above ques t ions?  

What i f  t h e  t r i a n g l e s  ( o r  n-gons) were po in ted  inward on one 

s t e p ,  outward on t h e  n e x t ,  a l t e r n a t i n g  a t  each s t e p ?  General ize .  

Comment by EdJutoh 

See i n  t h i s  connect ion t h e  a r t i c l e  i n  t h i s  i s s u e ,  "Mathematical 

C u r i o s i t i e s"  by Debra Gutr idge (54 ) .  

MATCHING P R I Z E  FUND 

I f  your chap te r  p r e s e n t s  awards f o r  ou t s t and ing  mathematical pape r s  

o r  s t u d e n t  achievement i n  mathematics,  you may apply  t o  t h e  Na t iona l  

Of f i ce  t o  match t h e  amount spen t  hy your chap te r .  For example, $30 

of  awards can r e s u l t  i n  t h e  chap te r  r e c e i v i n g  $15 reimbursement from 

t h e  Nat ional  Of f i ce .  These funds  may a l s o  be used f o r  t h e  r e n t a l  of 

mathematical f i l m s .  To app ly ,  o r  f o r  more in fo rma t ion ,  w r i t e  t o :  

D r .  Richard A .  Good 
Sec re t a ry- Treasu re r ,  P i  Iiu Epsi lon 
Department of  Mathematics 
The Unive r s i ty  o f  Maryland 
Col lege  Park, liaryland 20742 

PROBLEM DEPARTMENT 

Edited by Leon Bank066 
Lob Angela, C w o t f u x t  

Tfcci de.poA-tmwt me^com&i pho b l m  b&e.ue.d -to be. n w  and a-t a 

le.ulit apphophiate. (Soh the. head& 06 tSiuJ!s jouhnd. Oid. phoblems 
ctiAp-Cfl.y-ing noud and elegant m&th.od& 06 solution me. atio acce.p-ta.b.ie.. 

The. choice. 06 ptopohaC4 hot pubLication wWL be. bat ud on the. e.ditotls 
ivafnation 06 t h e h  anticA.pate.d made4 hapoitie and a t i o  on the,& 
iwtiu.n&ic Lwfu~nAt. Pfioposal& should be. accompanied by soluAc.on& i d  
auo^Cab.C.e. and by any in6ovncvti.on that vs-UUi ats.(-A.t the. &oh. 

ChaUing-ing conje.cituAa and ptoblm phopoAa&i not accompanied by 

4o&Ltion& MM-U. be. duignated by an (U-teA^k ( * I  . 
To 6a&cLte. con&ide.wt^on 06 soluAt.oiti (Soh pubfication, boÂ£ue.-^ 

4houLd submit u c h  sotution on a ~e.po/i .& 4he.e.t piopi/iiy identi f ied 

tttUh name. and a d d k u  and mailed bedom Nouimbeh 1 ,  1978. 

Addhiu>s aU, commw-ication.li conceft.ning X U 6  depaAtmrnt to V t .  Lion 

Banko66, 6360  Wititkin.e BouJi.e.uo/i.d, Lob Ange.te6, CcLti6omLa 90042. 

Problems for Solution 

412. P h o p ~ d  by Solomon U. Gotomb, UtU.ueuÂ¥i-ti 06 Soathrnn 
CaLL6ohVU.a, Lob A n g e h  , CaLLhohn^a.. 

Are t h e r e  examples of  ang les  which a r e  t r i s e c t i b l e  b u t  n o t  

c o n s t r u c t i b l e ?  That is ,  can you f i n d  an ang le  a which is n o t  cons t ruc t -  

a b l e  wi th  s t r a i g h t  edge and compass, b u t  such t h a t  when a is  g iven ,  

a / 3  can be  cons t ruc ted  from it wi th  s t r a i g h t  edge and compass? 

413. Phopvsed by R. Rob-i~on Rome., Naub-iMUJay, A4ichigan and 
Sacmento ,  caJLi(!ohn^a.. 

I n  a  v a r i a t i o n  of  t h e  crossed- ladders- in- an- al ley  c l a s s i c ,  t h e  

new t a l l  b u i l d i n g  on one s i d e  o f  t h e  a l l e y  was v e r t i c a l ,  b u t  on t h e  

o t h e r  s i d e  t h e  o l d  low b u i l d i n g ,  having s e t t l e d ,  leaned toward t h e  

a l l e y .  P ro jec t ed ,  i t s  f a c e  would have met t h e  t o p  of  t h e  t a l l  b u i l d i n g  

and would have been one f o o t  l onge r  than  t h e  he igh t  of  t h e  t a l l  bu i ld ing .  



The ladders ,  unequal i n  l eng th ,  r e s t e d  against  t h e  bui ldings 21 f e e t  

above t h e  ground and crossed 12 f e e t  above t h e  ground. How high was t h e  

t a l l  bu i ld ing  and how wide was t h e  a l l e y ?  

414. Pmpohed b y  S t e v e n  S .  C o w d ,  B e n j d n  N. C a ~ d o z o  High 

Schook!, Buyhi.de, Men) yo&. 

I n  discussing t h e  discr iminant  of  a  quadra t ic  equation, a  c e r t a i n  

textbook says,  ".. .if a ,  b and a a r e  in tegers  with a # 0 and i f  b2 - 4ae = 

79, t h e  r o o t s  of ax2 + bx + c = 0 w i l l  be r e a l ,  i r r a t i o n a l  and unequal." 

Explain why t h i s  is  incor rec t .  

415. Piopohed by  ChanJi.1~4 W .  Ti^gg, Sun  D-iigo, CaLL60tWJO.. 

A hexagonal number has t h e  form 2n2 - n. I n  base 9, show t h a t  t h e  

hexagonal number corresponding t o  an n t h a t  ends i n  7 terminates i n  11. 

FIGURE 1 

416. Pfcopobed b y  Sco-tt Kim, RotLing Hwa> E h t a t u ,  CaLLfiomLa. 

Each of  t h e  t h r e e  f igures  shown above is composed of two i soce les  

r i g h t  t r i a n g l e s ,  AABC and W E ,  where / ABC and L DBE a r e  r i g h t  angles ,  

and B is  between po in t s  A and D. Points  C and E coincide i n  Figure l a ,  

so  t h a t  CB/EB = 1. In  Figure lb, we a r e  given t h a t  CB/EB = 2,  and i n  

Figure l c ,  we a r e  given t h a t  CB/EB = 3. Consider each p a i r  of  t r i a n g l e s  

a s  a  s i n g l e  shape and suppose t h a t  t h e  areas  of t h e  t h r e e  shapes a r e  

equal.  (The f igures  a r e  not drawn t o  s c a l e , )  Problem: For each p a i r  

of  f i g u r e s ,  f i n d  t h e  minimum number of  pieces i n t o  which t h e  f i r s t  f igure  

must be cu t  s o  t h a t  t h e  pieces may be reassembled t o  form t h e  second 

f igure .  Pieces may not  overlap,  and all pieces must be used i n  each 

assembly. 

417. P~~opohed b y  Clayton W .  Dodge., U W L u m W  06 Maine., Oiono,",: -.. 
Ma-Lne. 

1 )  Prove t h a t  t h e  l i n e  jo in ing  t h e  midpoints of  t h e  diagonals of 

a  q u a d r i l a t e r a l  circumscribed about a  c i r c l e  passes through t h e  cen te r  

of  t h e  c i r c l e .  

2) Let t h e  i n c i r c l e  of t r i a n g l e  ABC touch s i d e  BC a t  X. Prove 

t h a t  t h e  l i n e  joining t h e  midpoints of AX and BC passes through t h e  

incenter  I of t h e  t r i a n g l e .  

418. Phopo4e.d by Rob& C .  Gcbhcauik, Hopaicong, New Jw>e^f. 
Find a l l  angles 9 o ther  than zero such t h a t  t a n  116 = t a n  1119 = 

t a n  11119 = t a n  111116 = --- . 

419. P~opohed  by  M-cchaeL W .  E c k a ,  C a y  Unk&V~4^.ty 06 Nw Yo&. 

Seventy-five b a l l s  a r e  numbered 1 t o  75 and a r e  p a r t i t i o n e d  i n t o  

s e t s  of 15 elements each, a s  follows: B = { l ,  * - - ,  151, I = {16, . * . ,  301, 

N = {31, * - - ,  45}, G = {46, , 601, and 0 = {61, .*. ,  75}, a s  i n B i n g o .  

Bal ls  a r e  chosen a t  random, one a t  a  t ime,  u n t i l  one of t h e  following 

occurs: A t  l e a s t  one from each of  t h e  s e t s  B ,  I, G, 0 has been chosen, 

o r  four  of t h e  chosen numbers a r e  from t h e  s e t  N ,  o r  f i v e  of t h e  numbers 

a r e  from one of  t h e  s e t s  B ,  I, G, 0.  

Problem: Find t h e  probabi l i ty  t h a t ,  of these  possible  r e s u l t s ,  

four  N ' s  a r e  chosen f i r s t .  (Comment: The r e s u l t  w i l l  be approximated 

by t h e  s i t u a t i o n  of a  very crowded bingo h a l l  and w i l l  give the  l ike l ihood  

of what bingo players  c a l l  "an N game", t h a t  i s ,  bingo won with t h e  

winning l i n e  being t h e  middle column S . )  

420. P~opohnd. b y  Hwbwt TayLoh, S o u t h  Paadena ,  C w o f w ^ a .  
* 

Given four  l i n e s  through a point  i n  3-space, no t h r e e  of t h e  l i n e s  

i n  a  plane, f i n d  four  po in t s ,  one on each l i n e ,  forming t h e  v e r t i c e s  of 

apara l le logram.  (This i s  a  var ia t ion  of problem B-2 on t h e  December 

1977 William Lowell Putnam Mathematical competition.) 

421. P~~opohed  b y  M u ~ ~ a y  S .  Ktonfcuz, Un-Lvw>i.ty 06  MbeAto., 
Edmonton, MbeAto., Canada. 

I f  F ( x ,  zj,  a )  is a symmetric increasing funct ion of  x ,  y ,  a, prove 



t h a t  f o r  any t r i a n g l e ,  i n  which Wa, w b ,  we a r e  t h e  i n t e r n a l  angle 

b i s e c t o r s  and ma, mb , mC, t h e  medians, we have 

with equa l i ty  i f  and only i f  t h e  t r i a n g l e  is  e q u i l a t e r a l .  

422. Pkopohed by Jack Gerfunke^, Foke~- t  H-tZSi H i g h  Schoo i ,  F i u h i n g ,  

Men? Yo&. 

I f  perpendiculars a r e  e rec ted  outwardly a t  A ,  B  of a  r i g h t  t r i a n g l e  

ABC ( C  = 90Â°) and a t  A?, t h e  midpoint of  A B ,  and extended t o  po in t s  P, 

Q ,  R such t h a t  AP = BQ = AS = A B / 2 ,  show t h a t  t r i a n g l e  PQR is perspect ive 

with t r i a n g l e  ABC. 

FIGURE 2 

423. Pkopo~ed  by U c h e r d  S. F i d d ,  Scwta Monica, CaLi(soIwAJ0.. 

Find all so lu t ions  i n  p o s i t i v e  in tegers  of  t h e  equation ad - bd = 

a', where d i s  an odd in teger .  
* 

424. Pmpoh id  by R. S. Lu the r ,  U n i u m - L t y  of WAconb-Ln, Jan~u-iU-e,. 

Prove t h a t  

where n is an odd in teger  Â 3 and 0 < y < X .  

S o l u t i o n s  

386. [Sp r i ng  19771 Pkopohed by C h a A i ~  W .  T a g ,  San f i e g o ,  

2 q o i m - a .  

Show t h a t  t h e  volume of Kepler ls  S t e l l a  Octangula ( a  compound d... 

two in te rpene t ra t ing  te trahedrons)  is t h r e e  times t h a t  of t h e  octahedrori 

t h a t  was s t e l l a t e d .  

FIGURE 1 

S o l u t i o n  by Ke,nn.zth. M. W-t^ke, Topeka, Kamas,  utt-th p'w.citicnU.y ide,nticaX. 

~ o A l t t . o n &  by CLayton W .  Dodge, UniLvm-Lty of  Maine,, Ukono; R. Rob-treAon 

Rouse, and t h e  pkopobm, Chcut iu  W .  TiiLgg . 
Since a  plane through t h e  midpoints of t h e  t h r e e  edges of a  

te t rahedron i s su ing  from one ver tex  c u t s  o f f  a  smaller  te t rahedron 

whose volume is one-eighth t h a t  of  t h e  l a r g e r  ( s i m i l a r )  te t rahedron,  

repeat ing t h i s  process t h r e e  more times decomposes t h e  given tetrahedron 

i n t o  four  smaller  i d e n t i c a l  te t rahedrons and a  regu la r  octahedron whose 

volume is  one-half t h e  volume of t h e  i n i t i a l  te t rahedron.  I n  t h e  

formation of t h e  S t e l l a  Octangula by in te rpene t ra t ing  two i d e n t i c a l  

te t rahedrons,  t h e  octahedrons contained t h e r e i n  occupy t h e  same space, 

leaving a  s o l i d  composed of  e igh t  smaller  te t rahedrons and one octahedron. 

Hence t h e  volume of  t h e  S t e l l a  Octangula is one and one-half times t h e  

volume of t h e  i n i t i a l  te t rahedron and t h r e e  times t h e  volume of t h e  

s t e l l a t e d  octahedron contained t h e r e i n .  

A b o  h0SLue.d by LOUIS H .  CAIROLI, Gmduate, Stu.de,&, Kanlias S t a t e  i 

Ufu -vm- i t y ,  ManhcLttan, Kanbas; MARK JAEGER, Chicago, IWLno-U, and 

SISTER STEPHANIE SLOYAN, Geokgiafl CouA-t CoLLege, Lakwiood, Neut J m e y .  



Cornmenti by t h e .  P h o b l w  Edit-toh: 

1 )  R. Robinson Rowe noted t h a t  i f  each of t h e  e q u i l a t e r a l  

t r i a n g u l a r  faces has an a rea  A ,  t h e  S t e l l a  has a  sur face  a r e a  of 24.4 

and t h e  octahedrom an a rea  of  8A, so  again t h e  r a t i o  o f  S t e l l a  t o  

octahedron, by a rea ,  is t h r e e .  

2) The two in te rpene t ra t ing  te trahedrons a r e ,  of course, regu la r  

and the  e i g h t  v e r t i c e s  a r e  t h e  v e r t i c e s  of a  cube. Furthermore, t h e  

twelve edges of t h e  two tetrahedrons a r e  t h e  diagonals of t h e  s i x  faces 

of t h e  cube. The i n t e r e s t e d  reader  can f i n d  addi t iona l  mate r ia l  on 

Kepler 's S t e l l a  Octangula i n  Regular Figures ,  by L. Fejes Toth, 

Mathematical Essays and Recreations, by W. W .  Rouse B a l l  and H. S. M. 

Coxeter, Mathematical Snapshots, by H.  Steinhaus, Introduct ion t o  

Geometry, by H. S. M .  Coxeter, and i n  Cundy and Rol le t t  I s  Mathematical 

Mode 2s. 

387. [Spring 19771 Phopobe.d by Jack Gm(iunk&i, Foft-e^t H^ii& H^oh 
S c h o o l ,  F l u b U n g ,  New Yo&. 

On t h e  s i d e s  AB and AC of an e q u i l a t e r a l  t r i a n g l e  ABC mark t h e  po in t s  

D and E respec t ive ly  such t h a t  AD = AE. Erect e q u i l a t e r a l  t r i a n g l e s  on 

CD, AE and AB, as  i n  t h e  f i g u r e ,  with P ,  Q ,  R a s  t h e  respec t ive  t h i r d  

v e r t i c e s .  Show t h a t  t r i a n g l e  PQR is e q u i l a t e r a l .  Also show t h a t  t h e  

midpoints of PE, AQ and RD a r e  v e r t i c e s  of  an e q u i l a t e r a l  t r i a n g l e .  

FIGURE 2 

S o i u t i o n  by C h d u  U .  T h i g g ,  S u n  V i e g o ,  C a t L 6 o m i a .  

AC = BC, DC = PC and LACD = 60Â - /. DCB = /. BCP. Hence, t r i a n g l e s  

ACD and BCP a r e  congruent with BP = AD = AE = AQ and /. PBC = /. DAC = 60Â° 

Therefore LRBP = 180Â° which makes RP a s t r a i g h t  l i n e  segment = RQ. 

Thus t r i a n g l e  PQR is an i soce les  t r i a n g l e  with a  ver tex  angle of 60Â° s o  

it is e q u i l a t e r a l  and QE f a l l s  along QP. 
rn ". -- 

Let t h e  midpoints of PE, AQ, RD, RA and QE be X, Y,  Z ,  M and N . 
respec t ive ly .  MZ is  p a r a l l e l  t o  AD, and YW is p a r a l l e l  t o  AE, s o  

MZ = AD/2 = AE/2 = YN, and /. ZAM = 120Â - /. YNE. Also, MY = RQ/2 = 

PQ/2 = ZN, so  t r i a n g l e s  ZMY and YNX a r e  congruent with ZY = YX and 

Z. MYZ = / YXN. Now / AYW = 120Â = / YNX, s o  / ZYX = / AYN - /. MYZ - 
f XYN = I A Y M  - Z. YXW - / XYN = 120Â - 60Â = 60Â° Therefore t r i a n g l e  

ZYX is e q u i l a t e r a l .  

FIGURE 3 

ALbo b o l v e d  by KENNETH M.  WILKE, Top&, Karm.6; CLAYTON W .  DODGE, 

u Ã ˆ u . v e ~ ~ - L (  06 Maine ,  O-tono; FLORA N .  FONA, KWI Ga/id.en&, Long l b l a n d ;  
ZAZOU and ZELDA KATZ I j o J L n t t y ) ,  BeuOAty HUU, C d d o ~ n - L O . ;  and -the 

Prnpoii #. 
388. [Spring 19771 P ~ o p o b e d  by D a v i d  L.  W v ~ a n ,  U u t  Lob 

AngeLu,, Ca.t%o'uu.a. 

In  t h e  game of  "Larger, But Not That Large" two players  each wr i te  

down a p o s i t i v e  in teger .  The numbers a r e  then disclosed and t h e  winner 

(who is  paid a  d o l l a r  by t h e  l o s e r )  is t h e  player  who wrote t h e  l a r g e r  

number, unless  t h e  r a t i o  of l a r g e r  t o  smaller  is t h r e e  o r  more, i n  which 



case t h e  player  with t h e  smaller  number wins. I f  t h e  same number is  

picked by both p layers ,  no payment is  made. 

a )  What is t h e  optimal s t ra tegy?  

b)  Suppose ins tead  t h a t  t h e  players  a r e  not r e s t r i c t e d  t o  in tegers  

but  t o  t h e  s e t  [I., "1 and t h a t  t h e  l a r g e r  number wins provided t h e  la rger -  

to- smaller  r a t i o  is  l e s s  than r ( f o r  some r > 1 ) ;  otherwise t h e  l a r g e r  

number loses .  Find an optimal s t r a t e g y .  

Solut ion by the. p m p o b e ~ .  

a )  The unique optimal s t r a t e g y  i s  t o  choose 1, 2 and 5 randomly 

and with equal frequency, shunning a l l  o ther  numbers. Optimality follows 

by observing t h a t  t h i s  s t r a t e g y  t i e s  each of the  pure s t r a t e g i e s  1, 2 and 

5 and beats  every o ther  pure s t ra tegy .  Since a l l  pure s t r a t e g i e s  o ther  

than 1, 2 and 5 a r e  thus ru led  ou t ,  t h e  above s t r a t e g y ,  s ince  it is t h e  

so lu t ion  of t h e  reduced 3 by 3 matrix,  is t h e  unique optimal s t ra tegy .  

General izat ions t o  t h e  case i n  which v i o l a t i o n  of t h e  c r i t i c a l  r a t i o  r 

involves a penal ty of p is  not d i f f i c u l t .  

b) Consider t h e  i n t e r v a l s  [l, r] and [r, r2] and t h e  following 

s t ra tegy :  choose e i t h e r  of t h e  two i n t e r v a l s  with p robabi l i ty  1 /2  and 

then from t h e  i n t e r v a l  chosen s e l e c t  a number x from t h e  uniform random 

d i s t r i b u t i o n .  That t h i s  is  an optimal s t r a t e g y  is e a s i l y  confirmed by 

checking t h a t  it t i e s  with any pure s t r a t e g y  y i n  [l, r2] and bea t s  any 

y > r2. 

Soiu.ti.ovn, wUh dc<!i!eAiing c o n d i i l i o n ~  wete  M e t e d  by MARK EVANS, 

LcMo~que, T ~ X O A ;  KENNETH M. WILKE, Topeka, Kun.40~; R. ROBINSON ROME, 
S a v i a n M o ,  Catif.o&a; and DONALD CANARD, AnaheAm, CaLi.60tru.a. 

388. [Spring 19771 Piopond by P d  Etdoi,  Spacuh^.p E d .  
Find a sequence of p o s i t i v e  in tegers  1 5 a, < ay < - . -  which omits 

i n f i n i t e l y  many in tegers  from every a r i thmet ic  progression ( i n  f a c t  it 

?.as densi ty 0 )  but which contains a l l  but a f i n i t e  number of terms of 

e v e r y  g e o r e t r i c  progression. Prove a l s o  t h a t  t h e r e  i s  a s e t  S of r e a l  

:.:zÃ‘"ir which omits i n f i n i t e l y  many terms of any a r i thmet ic  progression 
- . . +  .-,--rz: . - - J I S  every geometric progression (disregarding a f i n i t e  number 

cf 7erz.s). 

Vc ~cÂ£u-&con<s &ih t f i e  excepLLon 0 6  <fie p h o p o i e h ' ~ ,  have been bubtnLt2e.d. 
P u p c i e ~ ' i  i o t d o n  wWL be pub-tcA/ie.d -in -the. next -c^~ue. o<! tf~e. Jouhnal 
unLe-ii c.the.1 quaU.<!ying ictiiAcovu. m e  k e c b e d .  

390. [Spring 19771 P m p o h d  by Robb K o e t f t e ~  and David C. Kay, - 

Ure-tve~~icty o< OUahoma, Noman, Oklahoma. 
Let t h e  diagonals o f  a regu la r  n-sided polygon o f  u n i t  s i d e  be 

drawn. Prove t h a t  t h e  n - 2 consecutive t r i a n g l e s  thus  formed which 

have t h e i r  bases  along one diagonal,  t h e i r  l e g s  along two o thers  o r  a - -  

s i d e ,  and one ver tex  i n  common with a ver tex  of  t h e  polygon each have 

t h e  property t h a t  t h e  product of  two s i d e s  equals t h e  t h i r d .  

Solut ion by the. PAopobeAA. 

Let A be t h e  common vertex of  t h e  t r i a n g l e s  and BC t h e  diagonal 

containing t h e  bases ( see  Figure 4) .  From elementary proper t i es  of  

regu la r  polygons and t h e i r  circumscribed c i r c l e s ,  t h e  angles a t  A a r e  

equal  and t h e  first and l a s t  t r i a n g l e s  have equal  base angles. In  

p a r t i c u l a r ,  t r i a n g l e  ABD is  i s o s c e l e s ,  with AD = BD. Let  t r i a n g l e s  

AX!, AYZ be any two consecutive t r i a n g l e s ,  and l e t  t h e  s ide- lengths be 

a s  indicated.  Since AY b i s e c t s  angle XAZ, x/u = z / ~  o r  ay/u = ~ z / v .  

Hence, by induct ion,  t h e  r a t i o  o f  t h e  product of two s i d e s  of  a t r i a n g l e  

t o  t h e  t h i r d  i s  constant.  Therefore, s b l a  = x y / ~ ,  and s ince  a = b ,  

s = xy/u o r  ay = su.  Thus, t h e  product of two s i d e s  o f  each of  t h e  

t r i a n g l e s  equals s times t h e  t h i r d ,  where 8 is t h e  s i d e  of t h e  r e g u l a r  

polygon. ( I f  s = 1 t h e  s t a t e d  r e s u l t  then obviously fol lows.)  

FIGURE 4 



391. [ S p r i n g  19771 Pk0poie.d b y  d a i / t o n  W. Dodge, U & e ~ i ^ x y  0 6  
Maine, at Ouino.  

Solve t h i s  alphametic where, o f  course, N I N E i s  d i v i s i b l e  by 9: 

T W E L V E  

N I N E  

N I N E  

T H I R T Y  

SoivJtJLon by C W u  W. T G g ,  Sun D i e g o ,  C W 0 ' u u . a .  

Clearly,  T # 0 ,  N # 0 ,  and E # 0 o r  5. Proceeding from t h e  r i g h t ,  

t h e  columns e s t a b l i s h  t h e  following equations: 

3E = Y + 10k 

V + 2 N + k = T + l O m  

~ + 2 1 + m = ~ + l 0 n  

E + 2 N + n = I + 1 0 p  

W + p = H  

where k ,  m, n ,  p a r e  non-negative in tegers  < 3 and p # 0. 

Since 9 divides N I N E, then 

E +  2 N +  I = 0 (mod91 

whereupon, from ( 4) : 

21 + l o p - n =  0 (mod 9) 

Thus, t ak ing  i n t o  considerat ion (1) .  (41, and (31, t h e  following 

p o s s i b i l i t i e s  with d i s t i n c t  in tegers  e x i s t :  

I P n N E Y k 

0 1 1 4 1 3 0 

4 2 1 8 7 1 2 

5 1 2 2 9 7 2 

5 1 2 3 7 1 2 

5 1 2 6 1 3 0 

9 1 1 5 8 4 2 

9 1 1 7 4 2 1 

9 1 1 8 2 6 0 

Further  considerat ion of (2 ) .  (5)  and (4)  reduces t h e  p o s s i b i l i t i e s  t o  

1 = 5 , ~ = 6 , E = 1 , y = 3 , V = 2 , T = 4 , W = 7 , H = 8 , L = 9 a n d R = 0 .  

Consequently, t h e  unique so lu t ion  is 471921 + 2(6561) = 485043. 

AA60 ~ 0 i v e . d  by LOUIS H.  CAIROLI, ( g m d U . d e  ~ - t u d e w t )  Kan4u.d S A r t e  

U n i u w J L t i f ,  Man lwt tan ,  K a n b a ~ ;  VICTOR G .  FESER, Ma'u/ C o U e g e ,  B^Ammck, 

No/ith Dakota;  HOWARD FORMAN, Buckn&U. U n h w ' i t y ,  L& bwig , PEW giuiwia.; 

JOHN M .  HOWELL, L i t t i L e ~ o c k ,  C m o i f w i ;  R. ROBINSON ROME, S a c w ~ w e n t o ,  

CaJLHoWULa; KENNETH M .  WILKE, Topeka ,  Kwt4u.d; and f i e ,  phopobeA, CLAYTON 
* - 

W .  DODGE. 

392. [ S p r i n g  19771 p h o p o ~ e d  by R. R o b i n ~ o n  R o ~ e , ,  SacA.ame.nto, 

caJU.f.owuA. 

Solve i n  d i s t i n c t  p o s i t i v e  i n t e g e r s ,  

S o l u t i o n  by Kennu% M. WJULke, Topeka., Kan4u.d. 

Let x = b + L  
a + L  

b + L  
a+. . .  . 

Then by considering the  convergents of t h i s  continued f r a c t i o n  i n  

t h e  usual  manner, we f i n d  x defined by t h e  equation ax2 - a h  - b = 0 

so  t h a t  

r e j e c t i n g  t h e  negative roo t .  

Hence t h e  f i r s t  term on t h e  l e f t  s i d e  of t h e  given equation can be 

replaced with 

- ab + y a w  + 4ab 
2a 

By symmetry t h e  given equation becomes 

which is  equivalent t o  t h e  system of equations 

3d = b + 1 and c2(a2b2 + 4ab) = 9a2 (c2d2 + 4cd) 

= a w b  + I ) ~  + 12c(b + 1)l:. 

(Since a2b2 + 4ab = (ab + 2)2 - 4, it is  e a s i l y  shown t h a t  t h i s  expression 



cannot be a per fec t  square unless  ab = 0. Hence t h e  r a d i c a l s  must be 

equal.) The second equation of t h e  system reduces t o  2bc(2 - a )  = 

a[c + 12(b + 111. 

Since a l l  va r iab les  a r e  p o s i t i v e  in tegers  we must have a = 1 and 

c = 12(b + 1) / (2b  - 1 )  = 6 + 18/(2b - 1 ) .  Since 2b - 1 divides 1 8  we 

obtain ( a ,  b ,  a ,  d)  = (1 ,  2, 12 ,  1 )  and ( 1 ,  5 ,  8, 21, because d = (b + 1) /3 .  

Hence t h e  unique so lu t ion  is ( a ,  b ,  c ,  d)  = ( 1 ,  5 ,  8 ,  21, corresponding t o  

Afcso bo t ved  by JEFFREY BERGEN, Chicago, 1 W i . n o d ;  JOHN N. HOWELL, 

L U M a o c k ,  C m o r m x i ;  FLORA N .  FONA, Kew G o ~ d e r e ~ ,  Long l b k u ~ d ;  DONALD 

CANARD, Anah&, CM0'wu.a ;  and. the .  p m p o b a ,  R. ROBINSON ROWE. Some 

06 the. b o L w e ~ 4  neg lec ted  t o  no t i ce ,  that. the. t o i d o n  [ 1,  2 ,  12, 1} wa& 

JLwaJLLdated by the. hufu.wt. ion mqu^u.ng CLLitinCJt AJ/lte.gw>. 

393. [ S p r i n g  19771 Phopobid by P i t a  A. Un&tn.om, Genuee. 

Commuviity CoUcge., BataViia, New Yohk. 

Consider t h e  sequence f ( n )  = n2 - n + 41. Find t h e  GCD of f i n )  

and f ( n + l ) .  

I. S o l u t i o n  by Kenneth M. WJULke., Topeka, K m a ,  nu-tfe pmietCOaJuiy 

uaba^ t im bo!LLttto?4 o(sf,e~e.d by  RONNY ABOUDI, FLaIU.da M a n t i c  U n i u W n U y ;  

JEFFREY BERGEN, Chicago, l L L L n o d ;  CLAYTON W .  DODGE, ULLum-Lty  0 6  Maine. 

at 0vin.o; RICHARD A. GIBBS, Fo^t L& CoUege,  VICTOR G. FESER, MoAy 

CoU-e-ge., B d m d ,  No& Dakota;  MARK JAEGER, U L L u e ~ ~ Â ¥ c t  of ,  W d c o n i h ,  

MaAcAon, W d c o n i i n ;  BOB PRIELIPP, The U n i v e A m y  of, Wdcon&in-Oiihkobh; 

R. ROBINSON ROWE, Sawimevvko, CaUf,oIWJLO.; LEO S A U V ~ ,  AigonqwJi  CoUege,  

O-fctoiua (Canada);  CHARLES W .  TRIGG, San V-tego, CaJLL<So'wu.a and the.  pmpobeA, 

PETER A. LINDSTROM. 

Note t h a t  f (n )  is always an odd in teger .  f (n t1)  = n2 + n + 41. Let 

d = ( f ( n ) ,  f ( n t 1 ) ) .  Then d \ ( f ( n )  + f(n+l))  = 2(n2 + 41) and d \ ( f ( n + l )  - 
f ( n ) )  = 2n. Then s ince  (n,  n2+41) = 1 unless  n = 41k f o r  some i n t e g e r  

k ,  we have d = 41 whenever n = 41k and d = 1 otherwise. 

11. S o l u t i o n  by M.ichael W .  E c k a ,  M e w  Yofik, New Yotk .  

Using an argument s i m i l a r  t o  t h a t  of Solut ion I ,  Ecker shows t h a t  

it is  j u s t  a s  easy t o  solve t h e  more general  s i t u a t i o n  with f ( n )  = 

n2  - n + p ,  where p i s  any prime # 2. He a r r i v e s  a t  t h e  conclusion tha-c 

if n i s  a mult iple  of  p ,  it is immediate t h a t  p is a d i v i s o r  of  both f (n )  

and f (n+l )  and i s  equal t o  t h e i r  GCD. If n is not  a mult iple  of  p ,  t h e  

assumption t h a t  GCD = p leads t o  t h e  contradict ion t h a t  p divides both 

n - 1 and n + 1, leading t o  t h e  conclusion t h a t  t h e  GCD = 1. 

Comment by  the. P t o b t m  E d i t o r  

Louis H. C a i r o l i ,  Kansas S t a t e  Universi ty ,  c a l l s  a t t e n t i o n  to ' the 

a r t i c l e  on "The Generation of Prime Numbers" i n  Mathematical Gems I I b y  

Ross Honsberger, published by th'e Mathematical Association of America. 

Other mate r ia l  r e l a t i n g  t o  t h i s  problem may be found i n  t h e  October 1976 

i s s u e  of EUREKA, published by Algonquin College, Ottawa, Canada, Problem 

142, page 175 e t .  seq. ,  and i n  t h e  accompanying references.  

Clayton W. Dodge a l s o  c i t e d  t h e  references l i s t e d  by C a i r o l i  and 

added h i s  own a r t i c l e ,  "A Prime-Generating Tr in i ty" ,  published i n  t h e  

October 1977 i s s u e  of  EUREKA. 

Albert H. Be i le r  discusses  formulas f o r  primes i n  h i s  Recreations 

i n  t h e  Theory of  Numbers, Dover Publ ica t ions ,  pp. 219-221. 

394. [ S p r i n g  19771 Pfiowbe.d by â ‚ ¬ w  J u ~ t  and t3eAAiam Kabak, 
Bronx  Coamwii ty C o w e . .  

Prove t h a t  i f  A,, A2 and A ,  a r e  t h e  angles of a t r i a n g l e ,  then 

I .  Sobi.hion by  Lob ti. C(UAoLi,  GmdU0-t~ St i i dun t ,  K w a  State 

U v U . u m L t y ,  Manhattan., K w a .  

The r e s u l t  follows immediately from t h e  known r e l a t i o n s  

3 

s i n 2 ~ ;  = 2 + 2cos A cos B cos C 

and 

11. S o U o n  by M q  S. VJLcmhin, UnLvm-L ty  o< MbeAta, Edmonton, 

MbeAta.. * 

We w i l l  e s t a b l i s h  t h e  more general  and s t ronger  inequa l i ty  



where n is an in teger  s 2 and {E} denotes with equa l i ty  iff t h e  t r i a n g l e  

is  e q u i l a t e r a l .  

The given inequa l i ty  can be rewr i t t en  a s  

2 ], C O S ~ A ,  + 3 ], cos2Ai 2 3 

and thus  can be got ten immediately from l i n e a r  combinations of  ( 1 )  f o r  

n  = 2 and 3. 

To prove (11, we use t h e  known s p e c i a l  case of it f o r  n = 2 [I]. 

This l a t t e r  case i s  a l s o  a  s p e c i a l  case (n = 2, x  = y = z = 1 )  of  t h e  

inequa l i ty  [2] 

and which is  e a s i l y  es tab l i shed  from a sum of squares (here x ,  y ,  a a r e  

a r b i t r a r y  r e a l  numbers). One can a l s o  obtain o ther  n t h  order  t r igonometr ic  

t r i a n g l e  i n e q u a l i t i e s  from (21, [2]. 

Proof. Case ( 1 ) .  The t r i a n g l e  i s  non-obtuse: By t h e  power mean 

inequa l i ty  [31, 

n  I n  [ C O S ~ A ~  + cos2A2 + cos2A3 C O S A ,  + cos A + cos A 3  

3  3 

f o r  all r e a l  n  Â 2. Also, (2)  is  then v a l i d  immediately f o r  a l l  t r i a n g l e s  

i f  n  is an even in teger  Ã 2. 

Case ( 2 ) .  The t r i a n g l e  is obtuse ( l e t  A 3  > 91/21: We now have t o  

show t h a t  

cosnA1 + cosnA2 2 3(1/2ln + cosn(A1 + A )  (3)  

where 0 < A, + A 2  < ir/2 and n is an odd in teger  S 3. If e i t h e r  cosnA1 

o r  C O S A *  Â 3(1/2ln,  t h e  inequa l i ty  is then obviously v a l i d  ( s ince  

cos(A + A ) < cos A, and cos An). Since a t  l e a s t  one of A l ,  A 2  is  1 2  
ir/4 and cosnir/4 3 3(1/2ln f o r  n Ã ( l o g  9 ) h o g  3 % 3.1699, (3)  is v a l i d  

f o r  a l l  r e a l n  > 3.17. For n = 3 ,  we have cos'l 31/378-> 43.85O. Thus, 

f o r  (3)  t o  be v a l i d  f o r  a l l  r e a l  n  Â 3 (and a l l  non-acute t r i a n g l e s ) ,  

it suf f ices  t o  show t h a t  

Using ca lcu lus ,  one can show t h a t  

C O S ~ A ~  + cos2^ - C O S ~ ( A ~  + A )  2 1 

and t h a t  (3 )  is v a l i d  f o r  a l l  r e a l  n  > 2. An open problem here i s  t o  

determine t h e  minimum n such t h a t  (3 )  is  va l id .  Clearly,  (3)  is i n v a l i d  
- 

f o r  n = 1. Also, n  must be 2 2[(log 3) / ( log  2 )  - 11 Ã 1.1699 ( j u s t  l e t  

A,  = A, = ll/4). 

REFERENCES 
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ACAO boivcd by BOB PRIELIPP, UnivmJLky ofj ti'i.6coni.i.n aA O b h b h ;  

and the. P m p o i i ~ i .  

395. [Spring 19771 Pmpobed by Joe. Van Au.b-tcn, Emoq U n i v e ~ 4 - t . t ~ .  

^ULawta, G W J L & X .  
Assume t h a t  n  independent Bernoull i  experiments a r e  made with p = 

P [success], 1 - p = P [ fa i lu re ] ,  and 0 < p < 1. I n t u i t i v e l y  it seems 

t h a t  P [success on t h e  first trial 1 exac t ly  one success] is always 

l e s s  than P [success on t h e  f i r s t  t r i a l  1 a t  l e a s t  one success]. Verify 

d i r e c t l y  t h a t  t h i s  is indeed t h e  case. 

S o l u t i o n  by LOOLA H. C(UAo.tc, Gmduate. S-tudewt, Kanbuh S t a t e .  U d v ~ i ' i t y ,  
Manhattan., KCUIALU. 

Let A = success on f i r s t  t r i a l ;  B = exac t ly  one success;  C = a t  

l e a s t  one success = 1 - probabi l i ty  a l l  f a i l u r e s .  By Bayes' Formula, 

we see  t h a t  

and 

Hence we must show t h a t  f o r  n  > 1, 1/n < p/ [ l  - ( 1  - p)].  
n  

But t h i s  is equivalent  t o  ( 1  - p )  2 1 - np, a  r e s u l t  e a s i l y  showh 

by induction. 



Afcio ~ o t v e d  by MAX J .  CLEVELAND, Nation& Mine He.&% and Saf,e,ty 

Academy, Beckkky, We4.t VdqJLVUJO.; JOHN HOWELL, L m i e t o c k ,  CaLi~oftrU.0.; 

HOWARD FORMAN, Buckne^Â Univ&u-U:u, LeulUibmg, PennAyLvania; MARK JAEGER, 

Vepcwtmewt 0 6  S t a - t i s i t i u ,  Uni.v&u.ity o(S W-tAconhJLn at Madhon; N .  J .  KUENZI, 

Univuui-Lty 0 6  W-i&conh.in at O ~ h k o ~ h ;  BOB PRIELIPP, UnivWnUty of, W-i&con&'Ln. 

at b h k o ~ h ;  MICHAEL STEPHEN SCHWARTZ, BAonx, Nw Yoik; and the. phopobU~, 

JOE DAN AUSTIN. 

396. [Spring 19771 PJ~~pobed  by V d  R. Shondc,, Ren-i.6ela.e~ 

P o t y t t c h n i c  i~sÂ¥fcetu-te. Taoy, N w  Yohk. 

Let [ m ]  denote t h e  i n t e g r a l  p a r t  of  the  quot ient  when m i s  divided n 
by n. Prove t h a t  

k 
Cml Cmln, V m ,  n ,  k C iV, 

n 

k 
where [ m ]  means [ [ - - - [ m l - - - I  I (k s e t s  of b racke ts ) .  n n 

S o l u t i o n  by Bob P>u.atipp, The Un^v&u-ety o< W-tAconAin at Obhkobh. 

Our so lu t ion  w i l l  be by induction on k and w i l l  employ t h e  f a c t  

t h a t  i f  x i s  a r e a l  number and n is  a p o s i t i v e  in teger  then [ x / n ]  = 

[ [ x ] / n ] .  (For a proof of t h i s  r e s u l t  see  Theorem 4 . 1 ( f )  on pp. 78-79 

of  Niven and Zuckerman, An Introduction t o  the Theory of Numbers, Third 

Edit ion,  John Wiley & Sons, Inc . ,  1972.) Clearly t h e  des i red  r e s u l t  

holds when k = 1. Assume t h a t  [ m ]  - [m]:. Then ni - 

and by t h e  r e s u l t  c i t e d  above, 

and our so lu t ion  is c o m ~ l e t e .  

A^Ao t o i v n d  by JEFFREY BERGEN, Clucago, l f i n o - U , ,  LOUIS H .  CAIROLI, 

Kant,a-4 S t a t e  UnLveuJULy, Manha.bta.n, Kan~u-5; CLAYTON W .  DODGE, UniveJ~&,Q 

! . f ~ n e .  out Uhono; RICHARD A. GIBBS, FovL 1euK-A C o t t i g e ,  Vu~ango ,  C o h h ~ d o ;  

RAY HAERTEL, C i W  Ot igon CotntnuvuJLy CoUege, Bind, Ougon; KENNETH M .  

WILKE, Topeka, Kan~a-4; and t h e  phopobei, DAVID R .  SIMONDS, T i o y ,  N e w  Yofik. 

397. [Spring 19771 Pfiopoied by J .  S .  F m e . ,  hliclugan S t a t e  UniveU^tq,  

Eat L a i u i t ~ g ,  l.tichi.gan. 

n IT ( 1  + 3 o?) = (3" - 3"12 2 cos(Snn/6) + 112 
(1) 

j=1 3 

and more general ly  t h a t  
LC -- 

where F(t)/E'(t) i s  a polynomial i n  t2 with i n t e g r a l  c o e f f i c i e n t s  and 

SofJu^AJon by the. Ptopobe~ .  

S e t t i n g  a = eni" and f a c t o r i n g  (2) we have 

Now t h e  determinant of order  n - 1 

s a t i s f i e s  t h e  second order  recurrence r e l a t i o n  

so i f  s = u + u - ,  we see  by induct ion t h a t  

dn-l(s) = (un - u-~)/(u - u-'). 

Since d vanishes f o r  u n  = 1, its zeros a r e  s = c j = 1, 2, . , 
n- 1 J'  

n - 1. Thus 

i f  u + u-l = ta. Now (3) implies 



( u  - u"lI2(a - M - ~ ) ~  = ( a 2 t 2  - 4)(Z2t2 - 4)  = t4 + 16 = ~ p t )  (9 )  

Hence, by (41, (81, and (91, with a;, a ,  u given by (31, 

F ( t )  = (un - u-")(a" - if") = xn + a:-" - 2" - z-". 
n  

(10) 

We check d i r e c t l y  from (4)  t h a t  

Fl/Fl = 1, F2/Fl = t2, F3/Fl = t4 + 1, F,,/Fl = t6 + 4t2.  (11) 

Using (3)  and (10) we v e r i f y  t h a t  x and z  s a t i s f y  t h e  r e l a t i o n s  

a; + x 1  = ( t 2  + F1)/2, s + zF1 = ( t 2  - F ) / 2  (12) 

x2 - 2 + = t2(a; + a - I ) ,  z2 - 2 + z - ~  = t 2 ( z  + 2- l )  (13) 

Hence, by (10) and (13) t h e  functions F ( t )  s a t i s f y  t h e  four th  order  

recurrence r e l a t i o n  

Fn+2 - 2 Fn + Fn-2 = t 2 ( ~ n + l  + Fn-l) (14) 

We conclude induct ively from (11) and (14) t h a t  F n ( t ) / F l ( t )  i s  a  poly- 

nomial i n  t2 with i n t e g r a l  coef f ic ien t s .  

To prove (11, we now s e t  t4 = 1 / 3  i n  (2 )  and mult iply by 3". By 

(9)  we ob ta in  Fl = 7 / 3 l l 2 ,  and from (12) and (13) we ob ta in  x + X-I = 
4/3 l l2 ,  x - xdl = 2/31j2, z  + z = - 3 l l 2 ,  z  - z -  = i o r  -i. Hence, 

a;" = 3"j2 9 2  " + z-" = 2 cos (5nn/6), when t4 = 173, (15) 

and (1)  is  proved. 

Another i n t e r e s t i n g  case is  t = 1, when F ( 1 )  = 171" and 

x = 2.081019..., an + z-" = 2 cos n(141.3317---)0. (16) 

Then, i f  [ I denotes t h e  g r e a t e s t  i n t e g e r  funct ion,  we have 

where a; = 2.08101899662*.-. These in tegers  a r e  t h e  sums of t h e  c o e f f i c i e n t s  

i n  t h e  polynomials F (  t ) / ~ ~  ( t )  . 
Ed^to.'il.i Note. 

The proposer remarked t h a t  t h e  problem arose i n  t r y i n g  t o  evaluate  

and f a c t o r  some of  t h e  symmetric funct ions of r o o t s  of  un i ty  t h a t  he 

discussed on pp. 132-135 of t h e  F a l l  1975 i s s u e  of t h i s  JowmaZ i n  h i s  

a r t i c l e  on Matrix Functions. 

398. [Spring 19771 P t o p o ~ e d  by Vichsmd S .  F i e l d ,  Sawta Monica, 

C~JLHOAWLO.. 

Find so lu t ions  i n  in tegers  A = B = C # R and A # B # C = R f o r  t h e  

q u a d r i l a t e r a l  inscr ibed i n  a  semicircle  of rad ius  R, a s  shown i n  t h e  

f igure .  Also f ind  so lu t ions  i n  in tegers  A # B # C # R o r  prove t h a t  * 

A'. "- 
none e x i s t .  

FIGURE 5 

7 .  S o l u t i o n  by Kenneth M. Wi tke ,  Topeka, K a n ~ a ~ .  

Since one s i d e  of  t h e  q u a d r i l a t e r a l  is  a  diameter of t h e  c i r c l e ,  it 

is  well  known t h a t  A ,  B ,  C and 2R a r e  r e l a t e d  by t h e  equation: 

( 2 ~ ) ~  - ~ R ( A '  + B' + c 2 )  - 2ABC = 0 

o r  

4~~ - R ( A ~  + B~ + c 2 )  - ABC = 0 (1)  

a )  A = B # C # R .  

Equation (1)  becomes 4 - (2a2 + c 2 )  - u2e = 0 o r  e = 2 - a2, where 

c  = C/R and a = A/R. By l e t t i n g  a  = p/q f o r  some a r b i t r a r y  in tegers  p 

and q ,  we obtain t h e  parametric so lu t ion  of ( 1 ) :  A = B = pq, C = 2q2 - p2 

and R = q2 ,  where p and q a r e  p o s i t i v e  and p < q f i  and p # q.  

b) A # B # C = R .  

Equation ( 1 )  becomes 4 ~ 3  - C ( A ~  + B~ + c 2 )  - ABC = 0 o r  3c2 = 

+ AB + 5'. Then s ince  3 = 12 + 1.1 + l2 and s ince  k2 = m2 + mn + n2 

has t h e  parametric so lu t ion  k = p2 + pq + q 2 ,  rn = p2 - q2 and 

n = 2pq + q 2 ,  equation (1)  has t h e  parametric solut ion C + R = p2 + pq + q 2 ,  

A = p2 - 2pq - 2q2 and B = p2 + 4pq + q 2 ,  where p ,  q a r e  a r b i t r a r y  

in tegers  such t h a t  A ,  B ,  C and R a r e  pos i t ive .  

c )  A # B # C # R .  

Let a = A/R, b = B/R and e  = C/R.  Then equation (1)  becomes 
A 



Let t ing  a = 4p/(p2 + 1 )  and b = 4q/Q2 + 1 )  implies c = [2(p2 - 1 ) .  

(q2 - 1 )  - 8pq]/(p2 + 1 ) i q 2  + 11, where p and q a r e  in tegers  chosen s o  

and t h i s  is obvious f o r  t h e  f i r s t ,  with t h e  sequence A ,  B, C,  R = n, n ,  

2n2 - 1, n2.  So f a r ,  a t  l e a s t ,  R is  a square i n  t h e  f i r s t  and congruent 

t o  1 (mod 6) i n  t h e  second, but r a t h e r  random i n  t h e  t h i r d  category. 

A VQJLY Â¥Cho~oug anaJLq~'iSi 06 the. phobivm uicu> &o 066ehe.d by  CLAYTON 

W .  DODGE,  Univm'L ty  06 M h c  at Ohono. 
t h a t  c is pos i t ive .  Then we have t h e  parametric so lu t ion  of ( I ) :  

Commen-fcs by  .the. Phoblem EcUtoh 
A = 4p(q2 + l ) ,  B = 4q(p2 t 11, C = 2(p2 - 1 ) ( q 2  - 1 )  - 8pq and R = 

Charles W .  Trigg, t h e  world's champion indefa t igab le  proofreader, 
(p2 + l ) ( q 2  + 1 ) .  

never f a i l s  t o  supply a l i s t  of e r r o r s  and omissions t h a t  somehow manage 
Equation (1)  can be found i n  Dickson's History of t h e  Theory of 

t o  creep i n t o  t h e  Problem Department. The f i r s t  two paragraphs of  
iiwnbers, Vol. 11, p. 220, i n  t h e  s e c t i o n  devoted t o  r a t i o n a l  q u a d r i l a t e r a l s ,  

Solution I1 on page 371 of t h e  Spring 1977 i s s u e  should have read:  
and is a t t r i b u t e d  t o  I saac  Newton. 

I I .  Sobi tLon by R. RotM.n~on Rowc, SacAflmcii.to, C W o W a .  
Apparently t h i s  so lver  an t ic ipa ted  t h e  problem with h i s  paper "Primitive 

Semi-Inscribed Quadri la teral1 ' ,  published i n  t h e  Journa l  of Recreat ional  

Mathematics, 3 ,  No. 3, Ju ly  1970, pp. 151-157. The so lu t ions  l i s t e d  a r e  

derived from Table 1, with A ,  B, C = a, b y  o and R = d/2. 

A = B # C # R  A # B # C = R  A # B # C # R  

2 2 7 4  2 1 1  7 7 2 9 1 2  8 
3 3 1 7  9 1 22 13  13  3 14 25 15 
6 6 1 4  9 11 26 19 19 8 17 22 16 

12 12 2 9 1 3  46 31 31  12 22 28 21 
4 4 31 16 26 47 37 37 12 19 33 22 

12 12 2 9 22 61  43 43 10 21 45 27 
20 20 7 16 23 71 49 49 11 39 46 33 

5 5 49 25 22 34 42 33 
10 10 46 25 17 28 53 34 
15 1 5  41 25 6 25 63 35 
20 20 34 25 14 38 50 35 
30 30 14 25 3 26 66 36 
35 35 1 25 19 44 49 38 
6 6 7 1  36 1 3  43 57 39 

30 30 14 25 28 41 50 40 
42 42 23 36 10 55 62 44 
7 7 97 49 11 24 81 44 
14 1 4  94 49 11 38 74 44 
21 21  89 49 9 35 79 45 
2s 28 82 49 35 42 57 45 
35 35 73 49 23 43 68 46 
42 42 62 49 29 36 69 46 
56 56 34 49 14 23 91 49 
63 63 17  49 

These lists have been l imi ted  t o  p r imi t ive  s e t s  with R up t o  50. Since 

a l l  Timrtlples a r e  e l i g i b l e ,  t h e r e  is an i n f i n i t u d e  f o r  each of  t h e  t h r e e  

categories .  Probably t h e r e  a r e  an i n f i n i t u d e  of  p r imi t ives  i n  each category, 

The magic constant of a t h i r d  order  magic square is t h r e e  times t h e  

c e n t r a l  element, which there fore  is 89. 

The nine elements of  a t h i r d  order  magic square can be rearranged 

i n t o  a square a r r a y  i n  which t h e  elements of  t h e  rows a r e  i n  a r i thmet ic  

progression with t h e  same common d i f fe rence ,  and l ikewise f o r  t h e  elements 

of t h e  columns, and conversely. 

Trigg a l s o  supplied addi t ions  t o  t h e  l i s t  of per iod ica l s  t h a t  

contain problem departments, given on page 381 of  t h e  Spring 1977 i s sue :  

1 )  EUREKA, published by Algonquin College, Mathematics Department, 

200 Lees Avenue, Ottawa, Ontario, K1S OC5. Managing Editor :  F. G .  B.  

Maskell. Ten i s sues  per  year f o r  $8.00. 

2) The Pentagon. Subscript ion r a t e :  $3.00 f o r  two years. Business 

Manager: Wilbur J. Waggoner, Central  Michigan Universi ty ,  Mount Pleasant ,  

Michigan. 

3) The Fibonacci Quarterly. Published by t h e  Fibonacci Association. 

Subscription r a t e :  $15.00 per  year .  Address Professor Leonard Klosinski,  

Mathematics Department, University of  Santa Clara,  Santa Clara, Ca l i fo rn ia  

95053. 

4 )  DELTA. Published by t h e  Waukesha Mathematical Society,  1550 

University Drive, Waukesha, Wisconsin 53186. 

5)  NABLA. The Bul le t in  of t h e  Malayan Mathematical Society,  Dept. 

of  Mathematics, University of  Singapore, Singapore, 10. 
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INITIATION CEREMONY 

The editorial staff of the JoumaZ has prepared a special publica- 

tion entitled In i t i a t ion  Ritual for use b y  local chapters containing de- 

tails for the recommended ceremony for initiation of new members. If 

you would like one, write to the National Office. 

OMISSION IN LAST ISSUE 

We regret to report that in our account of the annual meeting in 

Seattle we omitted the following student presentations: 

16. Acc&Â£eAaXJLo of, Root Fad ing  Atgoiwbkm~ Through Chebythw 

I w k t p o ~ o n ,  Richard Daugherty, Kentucky Beta. 

17. S&p& C o f i u e d  F ~ ^ c ^ ~ c i i ,  David Miyashiro, Ohio Alpha. 

18. On ViUita.nci kttsu.ning S&, Robert Goggins, Mississippi Alpha. 

19. An 1wtft.odu.vti.on to Coding The.ohy, Bill Heidler, Ohio Delta. 
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