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CAUSES OF MATH 
ANXIETY AT THE UNIVERSITY 

A s  s tudents  and teachers  of mathematics, I ' m  su re  a l l  of  you ha've - 

been i n  t h e  uncomfortable s i t u a t i o n  of  being introduced t o  someone a t  

your un ivers i ty ;  and a f t e r  a short- conversation, they ask you what your 

major o r  occupation is. When you respond by t e l l i n g  of  your c l o s e  re-  

la t ionsh ip  with mathematics, they s top ,  and then say,  " I 've always hated 

math" and your conversation p r a c t i c a l l y  ends. 

Why do these  negat ive a t t i t u d e s  aga ins t  an a r e a  of such importance 

e x i s t  a t  a school of  higher  education? What causes these  f e e l i n g  of  

d i s t r e s s  and uneasiness from t h e  s l i g h t e s t  contact  with anything math 

or iented? 

J e r r o l d  Zacharias, a noted phys ic i s t  and educator, c a l l s  t h e  problem 

mathophobia: the  f e a r  of mathematics. Through its high l e v e l  of  s o c i a l  

accep tab i l i ty ,  mathophobia causes more mathophobia. Persons who a r e  

usual ly very proud of t h e i r  education w i l l  tend t o  speak f r e e l y  of t h e i r  

mathematical ignorance. They can say, " I ' m  t e r r i b l e  a t  math," almost 

with a sense of p r ide ,  a s  if being poor i n  mathematics shows good t a s t e  

i n  f a i l u r e .  

This a t t i t u d e  is  t rans fe r red  i n  many ways. F i r s t ,  it i s  t rans fe r red  

t o  chi ldren i n  schools. Parents many times a r e  not concerned when t h e i r  

c h i l d  s t a r t s  t o  do poorly i n  mathematics, a s  i f  t o  say, "I was never any 

good i n  math, so  why should B i l l  o r  Sa l ly  be any be t te r ."  The c h i l d  

has now l o s t  a l l  motivation from t h e  home f o r  success i n  mathematics. 

Most ch i ld ren  i n  t h i s  s i t u a t i o n  w i l l  choose a game of  baseba l l  a f t e r  

school ins tead  of  s tay ing  home and f i n i s h i n g  t h e i r  math homework. The 

parents  have paved t h e  road t o  math f a i l u r e .  The lack of  mathematical 

s k i l l s  w i l l  c e r t a i n l y  cause anxious and f e a r f u l  moments f o r  t h i s  c h i l d  

when he is faced with using t h e  math he o r  she should have learned i n  

school. 

Secondly, teachers ,  espec ia l ly  i n  the  elementary schools, a r e  



a f f l i c t e d  with mathophobia. Many have not taken a mathematics course 

s ince high school and c a r r y  i n t o  the  classroom vague notions of  what 

mathematics i s  o r  what it can do. They see  math a s  merely a way of  com- 

puting and a r e  t ense  and ill a t  ease with it. It  cannot be hard f o r  

ch i ld ren  i n  these  c lasses  t o  be infected with t h e  idea t h a t  math is  

hard and unpleasant.  

Moreover, people who have some mathematical in te l l igence  a r e  many 

times viewed by soc ie ty  a s  being s t range  and d i f f i c u l t  t o  communicate 

with. (This, of course, is not  necessar i ly  t rue! )  

O u r  schools cause math anxiety,  a l s o .  Shei la  Tobias of  Wesleyan 

University i n  Middletwon, Connecticut, explains  p a r t  of  t h e  problem t h e  

following way. 

rlHou confusing it i s  to learn arithmetic i n  elementary 
school when as a child i n  kindergarten one i s  told unequivo- 
cally zero i s  'nothingr; i n  f i r s t  grade that it i s  a 'place- 
holderr and i n  f i f t h  grade that you can't divide by zero." 

Many students  a r e  bothered by what seem t o  be inconsis tancies .  

In  a study done by D r .  Mitchell Lazarus of  t h e  Education Development 

Center i n  Newton, Massachusetts, many a d u l t s  s a i d  t h a t  they enjoyed math 

' u n t i l  they d id  so-and-so i n  school" o r ,  i n  o ther  words, u n t i l  they were 

exposed t o  some t o p i c  t h a t  seemed p a r t i c u l a r l y  d i f f i c u l t .  Did t h e  enjoy- 

ment of  mathematics r e t u r n  a f t e r  t h e  hard t o p i c  passes? Almost never. 

The d i s l i k e  i s  usual ly i r r e v e r s i b l e .  

This is not  surpr i s ing  i f  one looks a t  t h e  cur r icu la  i n  use a t  most 

schools. The mathematics taught  a t  each l e v e l  depends s t rongly  on most 

of t h e  work done i n  proceeding years .  Therefore, t rouble  i n  any year ,  

f o r  any reason, is near ly  c e r t a i n  t o  s p e l l  t rouble  i n  the  fu ture .  This 

concept causes many problems f o r  t h e  classroom teacher  who must make 

sure  t h a t  a l l  of t h e  c l a s s  has a sound understanding of  a l l  previously 

taught mathematics before moving on t o  new mater ial .  This is  usual ly 

not t h e  case i n  o ther  sub jec t s .  A week out  of school with t h e  f l u  w i l l  

not produce a case of  h i s t o r y  anxiety a s  e a s i l y  a s  it w i l l  a case of 

math anxiety. 

One of  t h e  most important problems i n  t h e  school curriculum is  t h e  

lack of  connection between mathematics and everyday l i f e .  Many educators 

f e e l  t h a t  "new math's" context  i s  t h a t  of t h e  professional  mathematician; 

it is a b s t r a c t ,  d e f i n i t i o n a l ,  axiomatic, and supposedly r igorous.  The 

r e s u l t  is t o  p u l l  mathematics even f a r t h e r  from i t ' s  a c t u a l  uses. 

Also, symbols and abs t rac t ions  f o r  t h e i r  own sakes,  now very common 

i n  mathematics cur r icu la ,  o f ten  s t r i k e  s tudents  a s  po in t less  and confusing. 

D r .  Lazarus has a l s o  done s t u d i e s  on t h e  "memorize what t o  do approach" 

method. 
* - 

This c a l l s  f o r  much time and e f f o r t  and eventual ly leads t o  t h e  -- --  
student  having no understanding of what he is doing. When t h e  s tudent  

f i n a l l y  is approached with a demanding mathematics c l a s s  i n  h i s  l a t e  high 

school o r  e a r l y  col lege years ,  he is t o t a l l y  l o s t  a s  t o  what is happening 

because it has been some time since he l a s t  understood what he was doing. 

He lacks  t h e  necessary background and knowledge and w i l l  usual ly decide 

t o  t o t a l l y  give up i n  mathematics ins tead  of  re tu rn ing  t o  remedial c lasses  

f o r  a thorough re-education. 

The causes t h a t  have been discussed t h i s  f a r  can a f f e c t  anyone. But 

women have t h e i r  own s e t  of causes, i n  add i t ion  t o  those already mentioned. 

M s .  Tobias describes it a s  "a f a r  more se r ious  phenominon growing out  of 

a c u l t u r e  t h a t  makes math a b i l i t y  a masculine a t t r i b u t e ,  t h a t  punishes 

women f o r  doing well  i n  math, and t h a t  soothes t h e  slower l e a r n e r  by 

t e l l i n g  her  t h a t  she does not have a 'mathematical mind'." 

The problem of math anxiety i n  women of f a r  above average i n t e l l i -  

gence can begin a s  e a r l y  a s  t h e  s i x t h  grade. Professor Jerome Kagan of 

Harvard University found t h a t  ch i ld ren  a r e  i n h i b i t e d  i n  learning sub jec t s  

they f e e l  a r e  inappropriate  f o r  t h e i r  sex.  G i r l s  a r e  indoctr inated by 

junior  high school with messages such a s  math is masculine, women do not  

need math, and boys a r e  b e t t e r  i n  math. The not ion t h a t  mathematics is  

f o r  boys and is  no t  a feminine sub jec t  plays an important p a r t  i n  a young 

g i r l ' s  conception of  h e r s e l f  a s  not  i n t e r e s t e d  o r  competent i n  math. 

When asked why they do poorly on a math exam, high school g i r l s  tend 

t o  a t t r i b u t e  t h e i r  f a i l u r e  t o  lack of  a b i l i t y ,  while high school boys 

usual ly say they did not  work hard enough. Boys i n  junior  and sen ior  

nigh do no t  l i k e  math any b e t t e r  than g i r l s  do. However, D r .  John Ernst  

of t h e  University of Ca l i fo rn ia  a t  Santa Barbara conjectures  t h a t  boys 

a r e  made aware t h a t  it w i l l  be necessary t o  t h e  kinds of ca reers  t h a t  

envision f o r  themselves. 

There a r e  o ther  reasons f o r  t h e  "female s t r a i n w  of  math anxiety.  

Lenore Weitman i n  a 1975 study of school t e x t  books found t h a t  males were 

represented i n  more than two-thirds of t h e  p ic tures  showing science and/or 

math a c t i v i t i e s .  Also, t e x t s  o f ten  used women and g i r l s  i n  math problems 



i n  ways t h a t  emphasixed t h e i r  " s tup id i ty ."  

The person who "hates"  math could  have many o f  t h e s e  causes  a f f e c t i n g  

t h e i r  pe rcep t ion  o f  what we do. Perhaps it would be  i n t e r e s t i n g  and 

h e l p f u l  t o  s t o p  and a sk  t h e  nex t  person who t e l l s  you t h a t  t hey  "hate" 

math what causes  t h e s e  f e e l i n g s  and p ick  up your  conver sa t ion  from t h e r e .  
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TWO APPLICATIONS OF CONTROLLABILITY AND OBSERVABILITY 

by C .  Gordon Hu&&man 
Soivthe~n IUA.no,LA UyU.v&uitq, cmbondate.' 

In  many phys ica l  problems, we a r e  i n t e r e s t e d  i n  c o n t r o l l i n g  some 

system, such a s  t h e  motion o f  a s p a c e c r a f t  o r  m i s s i l e ,  t h e  neutron d e n s i t y  

i n  a n u c l e a r  r e a c t o r ,  o r  t h e  c u r r e n t  i n  a complicated c i r c u i t .  That pro- 
c e s s  which we t r y  t o  c o n t r o l  is  c a l l e d  t h e  s t a t e ,  and t h e  means by which 

i:e t r y  t o  c o n t r o l  t h e  s t a t e  is  c a l l e d  t h e  c o n t r o l .  S ince  t h e  s t a t e  may 
be very  hard  t o  d i r e c t l y  measure, i . e .  t o  observe ,  we may a l s o  want t o  

f i n d  some i n d i r e c t  means o f  observing t h e  s t a t e .  In  p r a c t i c e ,  t h e  s t a t e ,  
c o n t r o l ,  and observing q u a n t i t i e s  have s e v e r a l  components, and t h e  s t a t e  i 

governed by a d i f f e r e n t i a l  equa t ion .  

Let x:R ->- R be  t h e  s t a t e  v a r i a b l e ,  l e t  u:R Â¥ R be  t h e  c o n t r o l  v a r i -  
P a b l e ,  and l e t  y :R -Ã  ̂ R be  t h e  o u t p u t  v a r i a b l e  (which is used t o  observe  

t h e  s t a t e  va r i ab le s : ) .  I n  t h i s  paper ,  we cons ide r  t h e  case  where t h e  d i f -  

f e r e n t i a l  equa t ion  governing t h e  s t a t e  i s  t h e  l i n e a r ,  t ime- inva r i an t  s y s t e n ~  

( 1 )  & t )  - A x ( t )  + B u ( t ) ,  

and t h e  method o f  observing x is  given by 

( 2 )  y ( t )  = C x ( t ) ,  

where A ,  B, and C a r e  r e a l  cons tan t  m a t r i c e s  o f  a p p r o p r i a t e  dimensions.  

We s h a l l  g i v e  t h e  d e f i n i t i o n s  o f  c o n t r o l l a b i l i t y  and o b s e r v a b i l i t y ,  p re sen t  

some u s e f u l  t heo ry ,  and then  g ive  two a p p l i c a t i o n s  o f  t h e s e  concepts .2  

oedin^tton 1. The system ( 1 )  is c o n t r o l l a b l e  provided t h a t  f o r  a l l  

xo, x l â  f l ,  to 2 0 t h e r e  is a tl > to and a bounded measurable f u n c t i o n  

u: [to,tl]+ fl such t h a t  t h e  s o l u t i o n  x ( t )  s a t i s f y i n g  (a lmost  every-  

where) t h e  i n i t i a l  va lue  problem ( 1 )  wi th  t h e  i n i t i a l  cond i t ion  x ( t 0 )  = 

x o ,  a l s o  s a t i s f i e s  x ( t l )  = xl. 

Oe&iHiLfct.on 2.  Let  tl > to Â£0 l e t  u: [to,tll + /K be  bounded and 

measurable,  and l e t  x ,  x â B". Let  x ( t ) ,  3;(t) be  t h e  s o l u t i o n s  o f  t h e  0 
i n i t i a l  value  problems ( 1 )  t o g e t h e r  wi th  x ( t o )  = x0,  x ( t o )  = %, r e s p e c t i v e l y .  

The system ( 1 )  - ( 2 )  i s  obse rvab le  provided t h a t  f o r  a l l  u ,  to, t l ,  if 
I 
I 



ThiOtem 1 .  [1 , pp. 81-84] The system (1)  is  cont ro l lab le  i f  and 

only i f  t h e  n x mi c o n t r o l l a b i l i t y  matr ix T = [B ,AB @B , . . . , A n - B  ] 
has f u l l  rank n .  

Example: Consider t h e  n
th order l i n e a r  d i f f e r e n t i a l  equation with 

constant coef f ic ien t s  

( 3 )  {("'(t) + a lc (" - I ) ( t )  + ... + a n c ( t )  = u ( t )  . 
(<- I )  

This can be represented as a l inear  system as i n  ( I ) ,  with Xi = 3 - 
T 

B = [0 ,0 ,  ..., 0 , l ]  , and 

The c o n t r o l l a b i l i t y  matrix F i s  a square mat r ix ,  and has t h e  same rank 

as t h e  square matr ix [ A B , .  . . JIB ,B] , which is a lower t r i angula r  matrix 

with I t s  on t h e  d iagona l ,  and hence has determinant 1. T thus has f u l l  

rank n ,  and t h e  system is  control lable .  Hence there  i s  a funct ion u 
(n-1) 

t h a t  w i l l  f a rce  any given s t a t e  (c(to),{,'(to) ,... ,E,(to)) t o  any 

given terminal  s t a t e  ( S ( t l )  , c t ( t l )  ,. . . ,$"-"(ti)), f m  some tl > t3. 

'O~6Jiwikion 3 .  The dual of t h e  system (1)  - (2 )  is t h e  system 

(4) ?kt) = -ATZ(t) + Ĉ uw 

where Z ? R", 6 I?', $ 6 if". (Note t h a t  t h e  d u a l  of (4 )  - (5)  i s  (1)  - ( 

Theoaem 2. [I, p . l l l ]  The system (1)  - (2 )  is observable i f  and 

only i f  i t s  d u a l  is cont ro l lab le .  

C o t o ~ y .  The system (1)  -(2)  is observable i f  and only i f  t h e  

n X np observab i l i ty  matrix [z AT$, . . . has f u l l  r ank  n. 

VEfiLwikion 4 .  The system (1)  - ( 2 )  with matr ices  A ,  B, and C i s  

Zinaar'Uf equivalent  t o  a system ( 1 )  - ( 2 )  with matr ices  D, E ,  and F 

provided t h e r e  is a r e a l  n x n i n v e r t i b l e  matrix T with D = TAT" ,  E = TB, 

and F = C T .  (Linear equivalence is an equivalence r e l a t i o n . )  - 

I f  we s e t  2 = Tx, where x is a s  i n  (1 )  - ( 2 1 ,  c.nd T is a r e a l ,  in-  

v e r t i o l e  n x n matrix, then ; = ( . T A T 1 ) ~  + (TBIu, and y = ( c T ~ ) % .  On 

the  o ther  hand, i f  we have two l i n e a r l y  equivalent systems a s  i n  Defin- 

i t i o n  4, it is c l e a r  t h a t  2 = Tx s a t i s f i e s  t h e  D-E-F system (1)  - (2 ) .  

Thus two systems a r e  l i n e a r l y  equivalent i f  and only i f  t h e  s t a t e ' v a r i a b l e s  

a r e  r e l a t e d  by 2 = Tx, f o r  some nonsingular r e a l  matrix T. 

Furthermore, t h e  c o n t r o l l a b i l i t y  matrix ? = [TB,(TAT1 )B, . . . ,(.TAT1 ln-'B\ 

has t h e  same rank a s  t h e  c o n t r o l l a b i l i t y  matrix r = [B,AB, . . . , A n l a ,  s o  

t h a t  any system l i n e a r l y  equivalent t o  a con t ro l lab le  (observable) system 

is  cont ro l lab le  (observable).  

We now give two appl ica t ions  of c o n t r o l l a b i l i t y  and observab i l i ty .  

AppLi.c.cuUon 1: I d e n t i t y  O b ~ e ~ u e ~  2 , 4. i f  ( I )  - ( 2 )  i s  

observable, then Defini t ion 2 t e l l s  us t h a t  t h e  output which r e s u l t s  from 

any input  uniquely determines t h e  i n i t i a l  s t a t e .  However, t h i s  does not  

t e l l  us t h e  i n i t i a l  s t a t e  and subsequent behavior of  t h e  system. To ge t  

t h i s  information, we use another  system c a l l e d  an observer which s imulates  

t h e  o r i g i n a l  system. 

For example, l e t  z :  B + K ,  and consider t h e  system 

where F ,  G, and H a r e  respec t ive ly  n x n, n x p ,  and n X m r e a l  matr ices .  

Notice t h a t  t h e  s t a t e  z of t h i s  system has a s  con t ro l s  both t h e  output 

and t h e  con t ro l  of t h e  o r i g i n a l  system ( 1 )  - (2 ) .  We wish t o  choose F, 

G,  and H s o  t h a t  z behaves l i k e  x .  Se t t ing  8 = x i n  (6)  and using (21, 

we ge t  

leading us t o  choose 

Hence ( 6 )  becomes 



( 1 6 )  c { g }  = c [SI- ( A  + B D ) ^ ' B  L{U} . 
The matrix function of s , G ( s  ) = C [ s I  - ( A  + B D ) T ~  B ,  i s  c a l l e d  t h e  

t r a n s f e r  f u n c t i o n  m a t r i x  of t h e  system ( 1 3 )  - ( 2 ) ,  and gives a  r e l a t i o n-  

sh ip  between the  Laplace transforms of t h e  con t ro l  and of t h e  output of 

t h e  system. This representat ion is  well  known and widely used i n  engineer- 

ing appl ica t ions .  
1 

The matrix f f ( s )  = [sl - ( A  + B D ~  i n  the  t r a n s f e r  funct ion matrix 

is  a  matrix of r a t i o n a l  funct ions with e n t r i e s  Hij(s) = R .  . ( ~ ) / d e t [ s I  - 23 
( A  + B D ] ,  where If. .( s )  a r e  polynomials i n  s of degree l e s s  than n .  One 

23 
question t h a t  is  asked of t h e  transformed system ( 1 6 )  concerns the  

loca t ion  of t h e  poles of t h e  system, i . e . ,  t h e  zeros of det[sI  - ( A  + BD)] .  

How much cont ro l  do we have over t h e  placement o r  assignment of these 

poles? Since t h e  poles a r e  j u s t  the  eigenvalues of A  + BD, t h e  following 

theorem shows t h a t  we have t h e  most con t ro l  when ( 1 )  is cont ro l lab le .  

T h e o ~ m  4 .  [ 3 1  Given t h e  system ( I ) ,  and given an a r b i t r a r y  s e t  

S of n o r  fewer complex numbers closed under complex conjugation, t h e r e  

e x i s t s  a  r e a l  m x n matrix D such t h a t  A  + BD has the  spectrum S, i f  and 

only i f  ( 1 )  is  cont ro l lab le .  

Note t h a t  Theorems 3 and 4  c l e a r l y  i l l u s t r a t e  t h e  dua l i ty  of t h e  

concepts of c o n t r o l l a b i l i t y  and observabi l i ty .  

Example: Let x = and consider t h e  r e a l  matrices 

i n  (1) and ( 2 ) .  With u ( t )  5 0 t h e  s t a t e  var iab les  E ( t ) ,  r \ ( t )  execute 

simple harmonic motion. 

Here the  c o n t r o l l a b i l i t y  matrix is  

and t h e  observab i l i ty  matrix is  

We e a s i l y  see t h a t  the  system ( 1 )  - ( 2 )  is cont ro l lab le  i f  and only i f  

( 1 0 )  ; = ( A - ~ Z + G ~ + B U .  

The system ( 1 0 )  is  c a l l e d  an i d e n t i t g  observer, because i f  z ( 0 )  = x ( O ) ,  

then z ( t )  = x ( t ) ,  f o r  a l l  t ? 0.  

Now even i f  z ( 0 )  # x ( O ) ,  we would l i k e  the  z-system ( 1 0 )  t o  behaxe . - 
l i k e  the  x-system ( 1 )  a s  t increases.  With t h i s  i n  mind, we use ( 6 ) ,  ( 2 1 ,  

( a ) ,  and ( 9 )  t o  obtain:  

( 1 1 )  ;(t) - xW = [ ~ z ( t )  + G C x W  + B u ( t ) ]  - [ ~ x ( t )  + B u ( t ) ]  

= F z ( t )  + (GC - A ) x ( t )  = ~ [ z ( t )  - x ( t ) ]  . 
Solving t h i s  system of d i f f e r e n t i a l  equations f o r  z ( t )  - x ( t )  gives 

H e n c e t o h a v e l i m  [ z ( t ) - x ( t ) ]  = O f o r z ( O ) # x ( O ) , w e n e e d a l l t h e  
t- 

eigenvalues of F  t o  have negative r e a l  p a r t s .  Also, t o  have z ( t )  -+ x ( t )  

a s  f a s t  a s  possible  a s  t + -, we would l i k e  the  r e a l  p a r t s  of the  eigen- 

values of t t o  be a s  l a rge  i n  modulus a s  possible .  Thus we ask the  

following question: can we choose G  s o  t h a t  F  = A - GC has any s e t  of 

eigenvalues we wish? The following theorem answers t h e  question favorably 

under the  hypotheses of t h e  observab i l i ty  of ( 1 )  - ( 2 ) .  

Theoi tem 3 .  [ 4 J  Given t h e  system ( 1 )  - (2) ,  and given an a r b i t r a r y  

s e t  S of n o r  fewer complex numbers closed under complex conjugation, 

there  e x i s t s  a  r e a l  n x p matrix G  such t h a t  A  - GC has t h e  spectrum 3, 

i f  and only i f  ( 1 )  - ( 2 )  i s  observable. 

Appti.c.ation 77 :  P o t e  Abb-ujiwien/t. [3] ,  1141 Suppose we wish t o  

modify t h e  behavior of t h e  s t a t e  x i n  t h e  system ( 1 )  by " l inear ly  feeding 

back" t h e  s t a t e  i n t o  the  system. We do t h i s  by replacing u with u + Dx,  

where D is some m x n r e a l  matrix. Then ( 1 )  becomes 

( 1 3 )  & = ( A  + BD)x  + Bu . 
Taking t h e  Laplace transform of both s i d e s  of 

and rearranging terms y i e l d s  

( 1 4 )  [ S I  - ( A  + B D ) ]  ^ { X I  = B - c  { u }  

Taking t h e  Laplace transform of ( 2 )  yie lds  

( 1 5 )  c f y l  = C  c { x }  . 

( 1 3 1 ,  assuming t h a t  ~ ( 0 )  = 0 ,  

The "transformed" system derived from ( 1 4 )  and ( 1 5 )  is 



5 # 0 and it is  observable i f  and only i f  C # 0 .  

I f  we l e t  G = [^, gz , then 

The c h a r a c t e r i s t i c  polynomial of F i s  

t (g1C t g2c2)A t 1 - glC2 + g2C1 - 
So, i f  s denotes t h e  sum of t h e  eigenvalues of  F and p denotes the  pro- 

duct,  then we have 

(17) C l g  + C2g2 = -S 

- c 2 g  + c1g2 = p - 1 . 
The eigenvalues of F (zeros of t h e  c h a r a c t e r i s t i c  polynomial) a r e  

uniquely detemined by t h e i r  sum and product. We see t h a t  i f  C # 0 

( t h e  system (1)  - (2)  i s  observable) then f o r  any s and p t h e  system (17) 

has a so lu t ion  f o r  gl ,g2.  This i l l u s t r a t e s  Theorem 3. Similar  computa- 

t i o n s  f o r  t h i s  example i l l u s t r a t e  Theorem 4. 

^h i s  i s  p a r t  of a paper wr i t t en  a t  t h e  end of  a research p r o j e c t  
sponsored by a g ran t  from t h e  National Science Foundation under i ts 
Undergraduate Research Program a t  Southern I l l i n o i s  University, Carbon- 
dale. The research was d i rec ted  by Professor Carl  E. Langenhop. 

  he theory and appl ica t ions  presented i n  t h i s  paper a r e  a r e s u l t  
of a l i t e r a t u r e  survey of these  top ics .  
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ANOTHER APPLICATION 
OF THE MEAN VALUE THEOREMS 

by Noman Sc.haumbucguc 
BAoftx. CommuMJt.y CoUcgc  o< CUMY 

e 
The problem of determining whether e

n 
o r  has t h e  g r e a t e r  value 

never f a i l s  t o  s t imula te  t h e  i n t e r e s t s  of s tudents  i n  a course i n  calculus.  

This problem, which was apparently f i r s t  posed by t h e  Swiss geometer, 

Jacob S te iner ,  i n  the  l a s t  century, can be solved i n  a v a r i e t y  of ways, 

most of which involve some c lever  t r i c k .  In  t h i s  note  we o f f e r  two 

r e l a t e d  approaches t h a t  use t h e  mean value theorems of calculus:  Thus, 

they f i t  n ice ly  i n t o  a f i r s t  course. 

Using f ( x )  = log  x ,  it follows from t h e  mean value theorem of 

d i f f e r e n t i a l  calculus t h a t  

Hence 

log n - log e < 
n - e  e 

o r  l o g  n - 1 < v i e  - 1. Thus e log  -a < IT < II log  e and, we have log  ne < 
e IT 

log e
n

.  Therefore, v < e . 
Now l e t t i n g  f ( x )  = l / x  and using t h e  mean value theorem of i n t e g r a l  

calculus,  we ge t  

1 
Thus l o g  v - l o g  e S (n - e )  - and a s  above t h i s  produces t h e  desired 

e 
r e s u l t .  

It is  i n t e r e s t i n g  t o  note  t h a t  these  a r e  not t h e  only funct ions t h a t  

w i l l  accomplish our purpose. Thus, using f ( x )  = x log  x - x i n  t h e  mean 

value theorem of d i f f e r e n t i a l  calculus o r  f i x )  = log  x i n  t h e  mean value 
n e 

theorem of i n t e g r a l  calculus w i l l  i n  each case give e > n . The d e t a i l s '  

a r e  s i m i l a r  t o  those above. 

Ã‡&&,^sS 



ON DETERMINING FUNCTIONS OF MATRICES 

by ChCtflle-i V .  U o n  
Efiigham Young U n i v ~ i - l / t q  

Since the time of Cayley and Sylvester, there has been great interest 

in the computation of matrix functions. For example, to compute the 

matrix exponential eAt , which satisfies the matrix differential equation 
with constant coefficients 

at) = AX(t), 

methods have been developed which rely upon properties of differential 

equations, the Jordan canonical form, or results from linear algebra 

such as normality, diagonalizability, etc. ([Coddington 6 Levinson, 19551, 

[~ulmer, 1975],[Marcus 6 Ming, 19641). Most techniques for calculating 

a function f of a matrix A express f(A) as a polynomial in A. 

Of all such methods, the simplest in concept are those based on an 

interpolation formula introduced by [Sylvester, 18831, 

Proof. Denote the roots of p(z) by 9, i = 1, ..., n, with A =A. 
- z =  i-- 2- 

3.  Let r(z) be the unique polynomial of degree n - 1 that agrees 

with f(z) at each Ai (this is the LaGrange interpolating polynomial, 

which is given by the formula 

which holds when A has distinct eigenvalues ( A , \ ,  ..., A 1, lying within 

the circle of convergence of f(z). 

The notion of a matrix function is usually seen for the first time 

in a matrix analysis course or in a course on the theory of ordinary 

differential equations, which are graduate courses at most schools. The 

purpose of this note is to give a development of Sylvester's formula 

accessible to the sophomore or junior in mathematics. 

A proof of (1) follows from the following generalization of the 

division algorithm, which is a modification of a theorem of [Friedman, 

19561. 

The.o~.em 1 .  Let p(z) be a polynomial with distinct roots, and let 

f(z) be a function analytic in a domain D, which contains the roots of 

p(z). Then there exists a unique polynomial r(z), where deg(v) = deg(p) - 1, 
and a function h(z), analytic in D, such that 

and defines 

,(,) ; f(z) - r(z) 
p(z) . (3) 

Since each zero of the denominator in (3) is also a zero of the 

numerator, the singularities of h(z) are removable. i.e. 

limz+A (z -^ h(z) = 0, 
i 

hence, h(z) is analytic and the result follows. 

In order to compute f(.A), we shall let p(z) in the above theorem 

be the characteristic polynomial of A and consider equation ( 2 ) .  By the 

Cayley - Hamilton theorem, f(A) = r(A) and 

f(Ai) = r(Ai), f = 1, ..., n. (4) 

The equations ( 4 )  represent a linear system which can be solved for 

the n-coefficients of r(z), and the calculation of f(A) = r(A) is 

straightforward. 

Notice that the LaGrange interpolating formula for r(z) satisfying 

( 4 )  shows that r(A) coincides with (I), by which f(A) may be computed 

directly. We illustrate the two processes. 

Example 1 

i) Compute f(A) = 8 where A = ( 1. A has characteristic poly- 
nomial p(~) = (1 -z)(2 -z), hence A,= 1, \= 2. Since r(z) is of the 

form alz + a ,  we obtain the system 



with so lu t ions  a = e2 - e ,  a n  = 2e - e2. Thus, 
1 

Note t h a t  i i )  is  more e f f i c i e n t  f o r  machine computation. 

The procedure f o r  t h e  general  case follows from Theorem 2, which is 

based on an extension of ( I ) ,  f i r s t  given by [~uche im,  18861 ( c f .  [Marcus 

6 Ming, 19641, [ ~ i n e h a r t ,  19551). 

Theohem 1 .  Let p ( z )  be a polynomial of degree n with k d i s t i n c t  

r o o t s ,  k 5 n ,  and l e t  f ( z )  be a funct ion a n a l y t i c  i n  a domain D contain-  

ing t h e  r o o t s  of p (z ) .  Then r ( z )  and h(z )  e x i s t  a s  i n  Theorem 1 and (2)  

holds. 

Proof. Let mi denote t h e  m u l t i p l i c i t y  of each r o o t  A. of p ( ~ ) ,  so  
k 

t h a t  mi = n.  Let r ( z )  be t h e  polynomial of degree n - 1 t h a t  agrees 

with f ( z )  a t  each Ii ,  and whose der iva t ives  of a l l  orders  up t o  mi - 1 

agree with those of f ( z )  a t  each \., i . e . ,  

( J )  
f ( Ã ˆ ~  = dJ)(~.}, j = 0, I, ..., m I -  I; i = I, ..., k. 

(5 )  

The polynomial p (z )  e x i s t s  and is  unique, being merely a form of t h e  

general Hermite osculat ing polynomial [Coddington 6 Levinson, 19551, 

[Rinehart , 19551. 

We again form t h e  quot ient  (3)  and no t ice  t h a t  i f  X. has m u l t i p l i c i t y  

m then \, i s  a zero of order  a t  l e a s t  mi - 1 of t h e  numerator of h ( z ) ,  
i ' 

and we apple LrHospi ta l r s  r u l e  mi - 1 times t o  obtain a f i n i t e  l i m i t ,  

hence h ( z )  is  a n a l y t i c  i n  D and (2)  follows. - - - -- 
Again we no t ice  t h a t  (5 )  is  a system of  equations y ie ld ing  t h e  

c o e f f i c i e n t s  of r ( z ) ,  and we compute f(A) = r ( A )  a s  before.  

Example 2 

Compute s in(A),  where A = ( 1; ). A has c h a r a c t e r i s t i c  polynomial 

p (z )  = ( 1  - z)', hence X = 1, m = 2. Since r ( z )  and r'(s) have respect ively 

t h e  forms a ?  t a. and a 1 7  we obtain t h e  system 

s i n ( 1 )  = a + a. 

cos(1) = a l  

with so lu t ions  a, = c o s ( l ) ,  a n  = s i n ( 1 )  - cos(1) .  

Then, 

For l a r g e  matr ices ,  it would be computationally more e f f i c i e n t  t o  evaluate 

f(A) d i r e c t l y  from t h e  Hermite formula. 

Remarks 

Notice t h a t  t h e  foregoing development is v a l i d  i f  t h e  minimum poly- 

nomial of A is used i n  place of t h e  c h a r a c t e r i s t i c  polynomial. The r e s u l t s  

likewise hold f o r  any s c a l a r  funct ion f ( z )  provided t h a t  t h e  r i g h t  s i d e  

of (2)  is  well  defined f o r  each c h a r a c t e r i s t i c  r o o t .  The purpose f o r  t h e  

requirement of a n a l y t i c i t y  here was t o  maintain an elementary exposi t ion 

by avoiding t h e  s u b t l e t i e s  involved i n  s h i f t i n g  from a s c a l a r  t o  a matrix 

argument i n  f ( z )  ( see  [Rinehart,  19551 ). It is c l e a r  t h a t  any a n a l y t i c  

funct ion can support a matrix argument by v i r t u e  of i ts power s e r i e s .  
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HOW NOT TO SOLVE THE QUADRATIC FORMULA 

(Dedicated t o  William L. Robinson) 

The q u a d r a t i c  equa t ion  can be  w r i t t e n  i n  t h e  form a x  + bx + c = 0 

where a ,  b ,  c a r e  assumed t o  be r e a l  and a # 0. We can d i v i d e  by a ,  o r  
i n s t e a d ,  wi thout  l o s s  o f  g e n e r a l i t y ,  assume a = 1, s o  t h a t  we have 

Â ¥ u 2 + b x + c =  

t o  s o l v e  f o r  x .  The s o l u t i o n  c o n s i s t s  of  t h e  va lues  o f  x s o  t h a t  (x ,b ,c)  

l i e s  on t h e  s u r f a c e  given by 

A r o t a t i o n  of ir/8 i n  t h e  any-plane: 

t ransforms x2+ xy + z = 0 i n t o  

xi2 I 2 
t = z 

x 2 + q + z = 0  

FIGURE 1 



The graph of t h i s  is a hyperbolic paraboloid, a s  shown i n  Figure 1; a 

v e r t i c a l  l i n e  through ( b y e )  i n  t h e  hor izon ta l  yz-plane i n t e r s e c t s  t h e  

surface i n  t h e  (two o r  one) r e a l  so lu t ions .  So t h e  surface represen ts  

a l l  so lu t ions  of a l l  quadrat ics  with r e a l  so lu t ions ,  t h a t  i s ,  f o r  

y2  - 4z S 0. For a constant ,  a s  b v a r i e s ,  t h e  r o o t s  move along a hyper- 

bola;  f o r  & constant ,  a s  a v a r i e s ,  t h e  r o o t s  move along a parabola. 

When y2  - 4z < 0 t h e  r o o t s  a r e  imaginary, t h e  r e a l  p a r t  of t h e  roo t  

is R(x) = - ig b and t h e  imaginary p a r t  is I ( x )  = Â Ãˆ4o Now ttwo 

surfaces a r e  given, t h e  p a r t  of t h e  plane x = - \ y f o r  which z > g2/4 

and t h e  e l l i p t i c  paraboloid x = Â \ As f o r  t h e  r e a l  and t h e  imag- 

inary p a r t s  separa te ly ;  

FIGURE 2 

Lines p a r a l l e l  t o  t h e  x a x i s  through po in t s  ( b , ~ )  i n  t h e  2s-plane 

give t h e  r e a l  and imaginary p a r t s  of t h e  so lu t ion ,  respec t ive ly .  The 

manner i n  which t h e  r o o t s  vary a s  b o r  a var ies  is evident  from t h e  

f igures  . 
Thus i n  these  surfaces you see a l l  so lu t ions  of  a l l  quadrat ics  with 

r e a l  c o e f f i c i e n t s ;  any such quadrat ic  can be solved graphical ly using t h e  

f igures  i n  Figure 2. But s ince  a s  every schoolboy knows, i n  t h e  genera l  

case (not  necessar i ly  a = 1) 

x = -b  Â DTGZ 
2 0. 

it i s  c l e a r  t h a t  t h e  method of  t h i s  paper shows how not  t o  solve t h e  

quadrat ic  equation. 

A GENERALIZATION OF APPOLONIUS ' THEOREM 

In a paper of P. Jordan and J.  Van Neumann (3 ) .  a theorem of 

Appollonius was s tudied very care fu l ly .  In f a c t  t h i s  theorem i s  a 

necessary and s u f f i c i e n t  condition f o r  a normed vector  space t o  be an --- 
inner  product space. In t h i s  paper we study a general izat ion of --- 
Appolonius Theorem t o  Euclidean space of  dimension n, f o r  n 2 3. 

1 .  NoiaHon and Ve6iM^Acon 

A Euclidean space of dimension n w i l l  be denoted by En. Vectors 

a r e  indicated by Capital  Le t te r s .  The inner  product of two vector  A,B 

w i l l  be denoted by (A,B). We s h a l l  a l s o  use t h e  s tandard notat ion of 

the  elementary l i n e a r  algebra.  

2 .  Theo5m (ApoU.ovuU,i) 

Let {A,B} be l i n e a r l y  independent; then I I A ~ B I I ~  + I I A - B I I ~  = 21b1l2 t 

211~11~. 

Proof. The Theorem means t h a t :  For the  parallelogram OA BC, where 

C = A  + B, the  sum of squares of  t h e  diagonals is equal t o  t h e  sum of 

squares of t h e  four  s i d e s  ( t h i s  is a general izat ion of t h e  Pythagorem 

Theorem due t o  Apollonious). We observe t h a t  

3. A GeneAaLi.za^U.on t o  E? I 

Let { A ,  A2, A }  be l i n e a r l y  independent. The paral le lepiped gen- : 
erated by t h i s  s e t  of  vectors  has four  diagonals which can be denoted by 

vectors  



and 

4. T h e  Number, od P h g o n o Â £  0 6  a Hyper,WJiaJULeJLe.piped 

Let { Al, ..., A 1 be a s e t  of l i n e a r l y  independent vectors  i n  En. 
n 

Then t h e  number of  diagonals of t h e  hyperparal le lepiped generated by t h i s  

s e t  is  P-l.  

Proof. One observes t h a t  t h e  diagonals can be expressed by vectors .  

n 

D. = - r A.. 
3 j = l  J 

But we have considered each vector  and i t s  negative. In r e a l i t y  t h e  

number of D . ' s  expressed above i s  twice a s  many a s  t h e  number of diagon- 
3 

a l s .  Now it is c l e a r  t h a t  t h e  number of  elements of t h e  form D pk, . . . kp 
s (a. Therefore t h e  number of a l l  D 1 s  is  In (") = 2". Consequently 

P=O P 
t h e  number of t h e  diagonals i s  

\ (2") = P1. 

5.  Lemma 
Let [A., ..., A } be a s e t  of l i n e a r l y  independent vectors  i n  E 

n n* 
Then t h e  number of terms of t h e  form (Ai,A.), i # 3 of 11 I>l A j  / I 2  

3 
is n2 - n. 

Proof. It is  c l e a r  t h a t  

Since t h e  number of a l l  t h e  terms is  n2 and t h e  number of  elements of t h e  

form ~~A~~~~ is n, it follows t h a t  t h e  number of terms of t h e  form (A.,A .), 
Â¥z 3 i # j , i s  n2 - n. 

6 .  Lemma 

Let {A,, ..., A 1 be a s e t  of l i n e a r l y  independent vectors  i n  E n n. 
Then t h e  number of negative terms, i n  

The proof is  q u i t e  c l e a r  and w i l l  be omitted. 

7 .  Lemma 

Let us  consider  t h e  vector  D I s  of 54,  which a r e  t h e  diagonals of a 
t h e  hyperparallelpiped generated by { A , ,  . . . ,A 1. In considering n 

n- 1 I D  - 1  t h e  number of  a l l  t h e  terms of  the  form (Ai ,A .) , i # j i s  3 ,  
2n-1 

3 
(n2-n). We s h a l l  prove t h a t  h a l f  of them a r e  negat ive.  In  o rder  t o  

n prove t h i s  we observe t h a t  f o r  Dl we have (1) (n-1) (,) negative terms 

and i n  general  we have h(n-h) ( i n  D which have h negative vectors .  3 h 
Thus t h e  number of negative terms is 

N = $; k(n-k) (a. 
One can obtain 

n- 1 n k(:) = n(2n)(3 - n2, 
and 

Therefore 
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Let Dl, - - - ,  "(zn-.i) be t h e  diagonals  of  t h e  pa ra l l e l ep iped  generated 

{ A ,  ..., A }, a s e t  of l i n e a r l y  independent vec to r s  i n  E n' Then 

Proof. In  o rder  t o  ob ta in  12 f l~ l l '  by Lemma 7 ,  we observe t h e  terms 

of t h e  form ( A . , A . ) ,  i $ J' cancel  each o t h e r  which proves t h e  theorem. ^ 3 
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A RESEARCH PROBLEM 
FOR COMPUTER ASSISTED INVESTIGATION 

The fol lowing problem i s  suggested f o r  your inves t iga t ion .  A com- 

p u t e r  may be h e l p f u l  i n  t h e  i n v e s t i g a t i o n ,  bu t  t h e  use of  (un)common 

sense ( i . e . ,  mathematical s k i l l )  is a l s o  des i rab le .  Of course  t h e  problem 

can be inves t iga ted  without computer a s s i s t a n c e  i f  des i red .  - 
4 by 4 Prime Squares 

There a r e  many arrangements o f  d i g i t s  i n t o  t h e  16 c e l l s  of a 4 by 4 

a r r a y  such t h a t  each row and each column con ta ins  a f o u r- d i g i t  prime. 

Two such arrangements might be: 

9 1 3  

Your problem i s  t o  i n v e s t i g a t e  t h e  p o s s i b i l i t y  of f i n d i n  ig one o r  

more such squares  which no t  only con ta in  f o u r- d i g i t  primes i n  each row 

and each column, b u t  t h e  diagonals  (upper l e f t  t o  lower r i g h t  and lower 

l e f t  t o  upper r i g h t )  a r e  a l s o  f o u r- d i g i t  primes. I n  t h e  cases  here ,  t h e  

diagonals  a r e  d i v i s i b l e  by 1 7  and 11 respec t ive ly .  

You may a l s o  wish t o  i n v e s t i g a t e  similar p o s s i b i l i t i e s  f o r  5- d ig i t  

and 6- d i g i t  primes i n  appropr ia te  s i z e  a r r a y s .  



WHAT HE REALLY MEANT WAS . 

Any s t u d e n t  who has  eve r  s a t  o r  s l e p t  through a  mathematics cour se  

knows t h a t  c e r t a i n  words and phrases  occur  very  f r e q u e n t l y .  Th i s  g los sa ry  

might e l i m i n a t e  some confus ion .  

When t h e  i n s t r u c t o r  s a y s :  

(1 ) t r i v i a l  

( 2 )  simple 

( 3 )  easy 

( 4 )  c l e a r  

( 5 )  obvious 

( 6  ) c e r t a i n l y  

( 7 )  l e f t  a s  an  e x e r c i s e  

f o r  t h e  s t u d e n t  

( 8 )  is  w e l l  known 

( 9 )  can be shown 

( 1 0 )  t h e  d i l i g e n t  s t u d e n t  

can show 

He r e a l l y  means: 

The s t u d e n t  might be  a b l e  t o  do it 

i n  t h r e e  hours  o r  so .  

An "A" s tuden t  can do it i n  a  week 

o r  s o .  

This  t o p i c  would make a  good Master ' s  

Thes i s .  

The i n s t r u c t o r  can do it (he  t h i n k s ) .  

The i n s t r u c t o r  is s u r e  it is  i n  h i s  

n o t e s  somewhere. 

The i n s t r u c t o r  saw one o f  his  i n s t r u c t o r s  

do it b u t  has  complete ly  f o r g o t t e n  how 

it was done. 

The i n s t r u c t o r  l o s t  h i s  n o t e s .  

The i n s t r u c t o r  hea rd  t h a t  someone once 

d i d  it. 

The i n s t r u c t o r  t h i n k s  it might b e  t r u e ,  

b u t  has  no i d e a  how t o  prove it. 

It 's an  unsolved problem--probably 

h a r d e r  than  Format ' s  Last  Theorem. 

PUZZLE SECTION 

This department i s  for the enjoyment of those readers who are 

addicted t o  working crossword puzzles or who find an occasional mathe- - 
matical puzzle attractive.  We consider mathematical puzzles to  be 

problems involving numbers, geometric figures, patterns, or logic whose 

solution consists of an answer immediately recognizable as correct by 

simple observation, and not necessitating a formal mathematical proof. 

Although logical reasoning of a sort must be used t o  solve a puzzle i n  

th i s  section, l i t t l e  or no use of algebra, geometry, or calculus w i l l  be 

necessary. Admittedly, th i s  statement does not serve t o  precisely dis- 

tinguish material which might well be the domain of the Problem Depart- 

ment, but the Editor reserves the r ight  t o  make an occasional arbitrary 

decision and w i l l  publish puzzles submitted by readers when deemed 

suitable for t h i s  department and. believed t o  be new or not accessible 

i n  books. Material not used here w i l t  be sent t o  the Problem Editor for 

consideration i n  the Problem Department, i f  appropriate, or returned t o  

the author. 

Address a l l  proposed puzzles, puzzle solutions or other correspond- 

ence t o  David Ballew, Editor of the Pi. Mu Epsilon Jowmal, Department o f  

Mathematical Sciences, South Dakota School of Mines and Technology, 

Rapid City, South Dakota, 57701. Please do not send such material t o  

the Problem Editor as t h i s  w i l l  delay your recognition as a contributor 

to th i s  department. Deadlines for solutions of puzzles appearing i n  

each Fall issue i s  the following March 1, and that for each Spring issue, 

the following September 7 5 .  

THE JOURNAL WISHES TO NOTE THE PASSING OF R. ROBINSON ROWE 

THIS PAST SPRING. HE WAS A FREQUENT CONTRIBUTOR TO THE 

JOURNAL AND A GREAT MATHACROSTIC PUZZLE MAKER. 

t h e  E d i t o r  



A. socket in head of golf club for shaft 

B. bent at the tip like a hook 

C. perplexes; puzzles 

- -- 
D. join forces (2 wds.) 

5 172 31 159 118 83 

E. garden in which Aristotle taught 
96 37 25 101 32 136 

F. envelope of the normals to a curve 
T T T S 1 1 6 7 6 5 3 1 5 6 4 8  

G. double-disked toy with string to --- 
connecting shaft (comp.) 109 71 34 154' 

H. act to suit the time or occasion ------- L 

10 68 152 129 50 171 57 78 1ST 

I. in 1896 he and de la ~ a d e  Poussin - 
independently published the first 1 5 T 4 9 " S ? 1 6 9 m 1 0 2 m  
proofs of the Prime Number Theorem 

J. exposed to capture 
23 91 170 54 77 138 39 

K. to whom the intermediate value ------- 
theorem for derivatives is due 63 161 92 124 143 45 106 

L. unproved assertion; dogmatic state- - 
ment (2 wds.) 107 55 180 115 127 11 18 168 86 

M. in quaternion algebra, an operator 
which alters the direction of a 97 7 144 52 44 141 
vector but not its length 

N. local and temporary anemia due to -- 
obstruction of circulation 89 173 1751313042115?' 

0. de-alcoholized Prohibition drink 
(camp. TS'105757029177112178 

P. characteristic of the null set 
T123107164rn 

Q. clues to conjectures 

R. Bohemian dance in two forms 

S. 'must' pitch for effective hurler 

T. system with elements related by a 
reflexive, transitive and anti- 
symmetric relation 

U. conjoining of contradictory terms 

V. E. W. Hornung's roguish cracksman 

W. upside down or sideways relative to 
one another (comp.) 

X. abounding in contingencies 

Y. article from a broken set 

Z. developer of atmospheric steam 
engine 



Mathacrostic No. 6 

&u.brwtted by  J o ~ e p h  P. E. KonhauAeh 
M a c a L w L e ~  C o - a g e ,  S t .  Pau l ,  Minneio-ta 

Like t h e  preceeding f i v e ,  t h i s  a c r o s t i c  is a keyed anagram. The 

183 l e t t e r s  t o  be entered i n  t h e  diagram i n  t h e  numbered spaces w i l l  be 

i d e n t i c a l  with those i n  t h e  26 key words a t  matching numbers and t h e  key 

l e t t e r s  have been entered i n  t h e  diagram t o  a s s i s t  i n  c o r r e l a t i o n  during 

your so lu t ion .  When completed, t h e  i n i t i a l  l e t t e r s  w i l l  g ive a famous 

author  and t h e  t i t l e  of h i s  equal ly famous book. The diagram w i l l  be a 

quotation from t h a t  book. (See preceeding two pages.) 

A Single  C u t  

Is it poss ib le  t o  make a s i n g l e  c u t  i n  a 9 x 1 6  rec tangle ,  rearrange 

t h e  two p a r t s  and get  a 1 2  x 12 rectangle? 

The Bridge Game 

Four men named Banker, Waiter, Baker and Farmer a r e  playing bridge.  

Each man's name i s  another  man's job. I f  t h e  baker is M r .  Baker's 

par tner ,  if Mr. Banker's par tner  i s  the  farmer and i f  a t  M r .  Farmer's 

r i g h t  i s  t h e  wai te r ,  who is s i t t i n g  on t h e  banker's l e f t ?  

Solut ions 

Mo.tfcaao~-fccc NO. 4  all, 19771 

At&o &oi\>ed by  JOSEPH KONHAUSER, M a c d U t a  C o U . e g ~  VICTOR FESER, 

M m q  Col lege;  RICHARD STRATTON, C o i o W o  Spt-t.ngb; CHARLES W .  TRIGG, San 

P iego.  (See Spring i s sue  f o r  so lu t ion . )  

Mcuthac~obAcc NO. 5 [spring, 19781 

Defini t ions and key: 

A .  Heave E. 
B.  Equipotent ial  F. 
C .  Northwest G.  
D. Referee H. 

Q. Adder V .  
R.  Newest w. 
S. Tamil X. 
T. Eggbeater Y. 

Youngs + modulus 
Di f fe ren t ia te  
Unconditional 
Diophantine 

Brachistochrone 
Utmost 
R i f f r a f f  
Yarrow 

I. Era 
J. Newton 
K. Elbow 
L .  Ypsi lant i  

Z .  Pawpaw 
a .  Utica 
b.  Zenos + 

paradox 

Theta 
Hezekiah 
Epact 
Cowwheat 

Zoroastrianism 
Leafed 
Eratosthenes 
Sieve 

F i r s t  l e t t e r s :  H E N R Y  DUDENEY THE CANTERBURY PUZZLES 

Quotation: I t  i s  extraordinary what fascination a good puzzle has for 

a great many people. We know the thing t o  be of  t r i v i a l  importance ye t  

we are impelled t o  master it and when we have succeeded there is a 

pleasure and a sense of  sa t i s fac t i on  that  are a quite  suf f ic ient  reward 

for our trouble even when there i s  no prize t o  be won. 

Solved by  RICHARD D .  STRATTON, Co lomdo  Spfu.VI~i ,  Co&oiado; VICTOR 

FESER, Mmy CoUege; ROBERT PRIELIPP, Umm.ity 06  W c o m i n - O ~ h k o h h ;  

JOSEPH KONHAUSER, M a c d e i t e h  CoÂ£Â£eg SIDNEY PENNER,  B-tonx CommunLty 

Co.Ue.ge; ELENA SABA, Loqo ia  U n i v w . U y ,  New O tU iea~ i ;  LOUIS CAIROLI, KanboA 

S M e  UyuMWiUy ;  SISTER STEPHANIE SLOYAN, G e o t g U n  C o d  CoUege.; 

JEANETTE BICKLEY, W e . b ~ - t e ~  G a o v u  H igh  Schoot ,  M i ~ ~ 0 u A - t . ;  DEBRA MULLER, 

APf tph i ;  ROLAN CHRISTOFFERSON; -the. P - t o p o ~ e ~ ,  R. ROBINSON ROWE; and .the 

G-teek CAOAAU 

( a )  Use 4 of 

and SquaA.e-4  a all, 1977) 

these  : t o  ge t :  
n 

o r  t o  get :  

t o  ge t :  (b)  Use 4 of these:  

H o r  t o  g e t :  



t o  g e t :  

and 4 of these :  

( d l  Use 1 each of t o  ge t :  

( e )  Use 1 of t h i s :  t o  g e t :  

and 4 of these :  

o r  t o  g e t :  

o r  t o  g e t :  

m 
No one has y e t  
found t h e  so lu t ion  
t o  t h e  g i a n t  c ross .  
We leave it open. 

P W  b o ~ ~ n ~  by: VICTOR FESER, Mmy CoUege; RANDALL SCHEER, 

SUNY LIZ Po-tbdam; RANDY ISTRANEK, U n i w m L t y  0 6  W h c o n ~ i n - P m b i d e ;  
KATHLEEN HENRY, T o m  CoMege; LOUIS CAIROLI,  K m a  S M e  U n h m L t y ;  and 
ROLAN CHRISTOFFERSON. 

Ckobb-nmba Puzzle  a all 19771 

Late b o l u t i o n ~  w a e  kec&ed &tom P H I L I P  A. LIPPERT, CmLeXon 
CoUege and VICTOR FESER, Mmq CoMege. (See Spring, 1978 i s s u e  f o r  

s o l u t i o n . )  

Coun,tdown [spring, 1978J 

A l l  poss ib le  s o l u t i o n s  t o  t h e  following long d iv i s ion  problem 

a r e  : 

1001 

917654321 
927654321 
937654321 
947654321 
957654321 
967654321 
977654321 
987654321 
997654321 

The top  number is  t h e  d i v i s o r  and t h e  l i s t  represen t s  t h e  dividends. 

Solved by ROLAN CHRISTOFFERSON. 

Solut ions -- One L e t t e r  Changes 

( a )  MATH ( b )  L I N E  ( c )  ZERO 
MATE S INE HERO 
MOTE S I R E  HERD 
NOTE SURE HELD 

(Bob P r i e l i p p )  
SURD HOLD 

HOOD (Louis C a i r o l i )  

ROOT 

(Kathleen Henry 

( d l  SEVEN 
SEVER 
SAVER 
SAYER 
PAYER 
PRY ER 
PRIER 
PRIES > 
PR I MS 
PRIME 

(Louis C a i r o l i )  



Solu t ions  -- Two L e t t e r  Changes 

( a )  L I N E S  ( b )  C I R C L E  ( c )  
LURES C H I C L E  
CURDS CHICKS 
CURVE SHACKS 

SHARDS 
BEARDS 
BEASTS 
BEAUTY 

( a l l  by V i c t o r  F e s e r )  

GROUP ( d )  SLOPE ( e l  L I N E A R  
GROWS STORE L I N E R S  
FROGS STOAT CIDERS 
FANGS STEAD ORDERS 
RINGS SQUAD 
F I N E S  EQUAL 
F I L L S  
F I E L D  

Solved by VICTOR FESER, Mmy CoUege; L O U I S  C A I R O L I ,  Kanba  S m e  

Urt-ivmaq; KATHLEEN HENRY, Tom CoUege; ROBERT P R I E L I P P ,  U n i v m L t q  06 

Wdconbin-Obhkobh; RANDY ISTVANEK, Unive,t&ty 06 W d c o a i n - P m h i d e ;  

V I R G I N I A  DWYER, Clemon  U n i v m L t y ,  

W I L L  YOUR CHAPTER BE REPRESENTED I N  DULUTH? 

It  is time t o  be  making p l a n s  t o  send an  undergraduate  d e l e g a t e  
o r  speaker  from your  c h a p t e r  t o  a t t e n d  t h e  annual  meeting of  P i  
Mu Epsi lon i n  Duluth,  Minnesota du r ing  August,  1979. Each 
speaker  who p r e s e n t s  a paper  w i l l  r e c e i v e  t r a v e l  funds  of  up t o  
$400, and each d e l e g a t e ,  up t o  $200. 

by POSTERS A V A I L A B L E  FOR LOCAL ANNOUNCEMENTS Td 
A t  t h e  sugges t ion  o f  t h e  P i  Mu Eps i lon  Council  we have had a 
supply  o f  I 0  x IQ-inch F r a t e r n i t y  c r e s t s  p r i n t e d .  One i n  
each c o l o r  w i l l  be  s e n t  f r e e  t o  each l o c a l  c h a p t e r  on reques.c. 
Add i t iona l  p o s t e r s  may be  o rde red  a t  t h e  fo l lowing  r a t e s :  

( I )  Pu rp le  on goldenrod s tock  - - - - - $1.50/dozen, 
( 2 )  Purp le  and l avendar  on goldenrod - $2.00/dozen. 

LOCAL AWARDS 

I f  your c h a p t e r  has  p resen ted  o r  w i l l  p r e s e n t  awards t h i s  
y e a r  t o  e i t h e r  undergraduates  o r  g radua te s  (whether members 
o f  P i  Mu Eps i lon  o r  n o t ) ,  p l e a s e  send t h e  names o f  t h e  
r e c i p i e n t s  t o  t h e  E d i t o r  f o r  p u b l i c a t i o n  i n  t h e  Journal. 
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GLEANINGS FROM CHAPTER REPORTS 

ARkXNSAS BETA a t  Hendrix Col lege  heard a v a r i e t y  o f  papers  duping 

t h e  yea r .  B&h Pobty r e p o r t e d  on h e r  t r i p  t o  t h e  n a t i o n a l  P i  t.1~ Epsi lon 

meeting. Mmk B M o n ,  B&h Pobeq, Jon  VanDen Heuu&, Jan& DiLLahuntq, 

Lo& Beck, J d e  A n d m o n l  John M W l  and Sandy Sc&ht~bhhe p resen ted  

papers  t o  t h e  c h a p t e r ,  a t  t h e  Oklahoma-Arkansas IdAA meet ing,  and i n  c o l l -  

oquia  a t  t h e  Un ive r s i ty  of  Arkansas, t h e  Un ive r s i ty  o f  t h e  South,  and 

Southwestern a t  Memphis. S tuden t s  from t h e  Un ive r s i ty  of Arkansas a t  

Pine Bluff  and t h e  Un ive r s i ty  o f  M i s s i s s i p p i  p re sen ted  c o l l o q u i a  a t  

H e n d ~ i x .  A s  a r e s u l t  of  t h i s  a c t i v i t y ,  a j o i n t  colloquium has  been 

scheduled i n  t h e  s p r i n g  o f  1979 hosted by Southwestern a t  Memphis. 

Guest speake r s  and t h e i r  t i t l e s  were: E f i ~ ~ b & h  Tayto , "Least 

Squares Orthogonal Gram Polynomial Approximations o f  Commodity Market 

P r i c e s f

f;  Dk. Stephen Puck&e(univers i ty  o f  t h e  South) ,  T'Continuous 

Square Roots of  Funct ionst f ;  Pa. Goadon J o h m o n ( u n i v e r s i t y  o f  Houston), 

"Convex S e t s f f ;  Dk. S d q a  Dto (Un ive r s i ty  of  Arkansas),  'TSome Aspects o f  

Cantor S e t s f f;  Dk. .%eve StnLth (Harding Co l l ege ) ,  I1The L igh te r  Side  of  

Mathematics". 

FLORIDA GAMMA a t  Eckerd Col lege  heard  twelve papers :  R 0 b d  Meachm, 

'fSome Problems i n  P l a s t i c i t y f' ;  a q a n  W&act, Ifsearch f o r  a Viable  F i r s t  

P r i n c i p l e  of Physics f1;  Rob& Meachm, Ifwhat Does an  App1:ed Mathemati- 

c i a n  Do?!'; I h v h g  FobZeA, l fVar i a t ions  on a Theme--Living wi th  a 17 th  

Century Mindf1; D o u g h  8oynton and Lc~4.b o h o n ,  fyLimits  t o  Growthq'; 

Ge~Kge  L06yi.&t,~Wow Long Should an Amber Light  S tay  Y e l l ~ w ? ~ ~ ;  J a d  

&0l&elj, ffGamblerls Ruin ff;  S i d  S d h ,  IfTime and Thought Pa t t e rns f' ;  Ph0d. 

J. S u t h a n d  FMe,  f fMatr ix  Funct ions  and App1icationslf;  E c ~  P d h ,  

'fHarmonic S e r i e s q f ;  W g  Maddox, t fT rans i t ion  Matrices"; and Jan& C o m e g ,  

' 'Linear Programming Approach t o  t h e  School Bussing Problemf1. 



FLORIDA EPSILON a t  t h e  University of South Florida heard a v a r i e t y  

of papers and t a l k s  including: Qh. UAcah GLUL&, "Mini Computers, Micro- 

processors and Their Simulation1'; J o L  fft?4.4ch, l l In f in i tes imal  C a l c ~ l u s ~ ~ ;  

vh. Qon ffa, I1Teaching Mathematics i n  Africa:  A Peace Corps Experiencef1; 

Qh. Rob& Shannon, "Some Observations on t h e  Relationship of  Mathematics 

t o  Economicsrt; Qh. chuALcL4 Z M O ~ ~ Z ,  llComputability o r  U n c ~ m p u t a b i l i t y ~ ~ ;  

Qh. Sylvan Block, I1The USF Comstar S a t e l l i t e  E~per iment '~ ;  Qh. Kent Nagle, 

llProblems of Pursui t :  The Submarine-Destroyer E x ~ e r i m e n t ~ ~ ;  Qh. JUknu 
f fGgh,  l 'Subjective Probabi l i ty:  An Introduct ion t o  Bayesian S ta t i s t i cs1 ' ;  

M d 0  PA%, llAnalytic Functions and Elementary Part ic les1 ' ;  Pho6u~oh A. u. 
Goodman, "Chromatic G ~ a p h s ~ ~ ;  Pho6u~oh Sepou t  SchuAhY~, llTopics i n  Graph 

Theoryf1; Vh. John T u t n a ,  I1An Introduct ion t o  Robust Estimators of Location1I; 

DR. sot& F0h6&ht !!An A r t i s t  Looks a t  Mathematicsf1; Ph06uAoh ffanA 
zUhhk?nhUuA, !!The Work of Gauss i n  Number Theory and Applied Mathematicsr1; 

Qh. f f d d c k  Eichohn, I1Least Squares Adjustments of P r o b a b i l i s t i c  Constraints  

and Other Odditiesf1; Vh. Jo~eph Liang, !!The Four Color Problem and Its 

Recent Computer S01ution'~; Qauid U i U h m 4 ,  l lFract ional  D i f f e r e n t i a t i ~ n ' ~ .  

In  addi t ion.  t h r e e  s tudents  presented twenty-five minute t a l k s  a t  t h e  

Florida Section of t h e  MAA meeting. 

IOWA ALPHA a t  Iowa S t a t e  University heard P h 0 6 u A 0 h  R.khcZ4.d S p g u e ' ~  
l e c t u r e  on "Mathematical Wordsf1 a t  t h e  Annual I n i t i a t i o n  banquet. 

KENTUCKY GAMA a t  Murray S t a t e  College heard two t a l k s  during t h e  

year: "Bwornian Movementf1 by Qh. ffcg00d and I1The Relat ionship Between 

Mathematics and Computer Sciencer1 by RoAA Snyda. The chapter  helped with 

t h e  Annual Western Kentucky Regional High School Mathematics and Science 

Fa i r .  

MSSACHUSETTS G M  a t  Bridgewater S t a t e  College held monthly problem 

solving sessions and worked a s  high school and co l lege  t u t o r s  f o r  t h e  

PROGRESS/OUTREACH F'rogram. The chapter heard a l e c t u r e  by vh. ~~y 
A b m o n  and S u a n  M w ~ u U  on I1Mathematics and Education i n  England." 

MISSOURI G W  a t  S t .  Louis University heard t a l k s  by BCLWUVL~ S&, 

?#Magic Squares, Cubes and Hypercubest1; Thomu Sweeney, 110,1 i s  Not Compact: 

A Discussion of Hyperrea1sr1; and Becky U k w c k ,  l lVariations on Closure 

of a Sett1. The chapter  par t i c ipa ted  i n  t h e  Fourth Annual P i  Mu Epsilon 

Bi-State Student Conference sponsored by I l l i n o i s  Delta a t  SIU-Carbondale. 

Missouri Gamma speakem were: Ka2Meen Gain, !'Atonal Music - Organized 

Chaos1'; Mdhedo Gah&, I1The D i g i t a l  Curve - Techniques i n  P r i n t e r  Plot-  

ting!'; W w  K O ~ % E Y C ~ ,  '!A Method f o r  t h e  Solution of  S t i f f  Ordinary 

D i f f e r e n t i a l  Equationso1; 8~1h6ah.a Reynold, I1The Rise and F a l l  of ~omag- 

Numera1sl1; and M d e  Mohamco, !!Map  projection^'^ . 

MISSOURI DELTA a t  Westminster College heard Ph06cL4A0h M .  z. ud?k%mA 

speak on llMathematical Games and Puzz1esl1; Vh. K& P&Qh speak on 'IThe 

Clouds of Venust1; and a t  t h e  i n i t i a t i o n ,  P R O ~ ~ A O R  ChdcL4 S M h  spoke on 

"Perfect Numbers - Two Thousand Years of MathematicsI1. 

NEW JERSEY DELTA a t  Seton Hall held four  meetings during t h e  year .  

The chapter  heard R o d d  Indantc? speak on llContinued Harmonies and Con- 

t inued Fract ionso1 and saw two f i lms on mathematics. 

NORTH CAROLINA G W  a t  North Carolina S t a t e  University heard papers 

by Pho6u~oh h b t h o n g  M&bic?, l'Mathematical P ~ t p o u r r i ~ ~ ;  JU!Tlu BagLn, 

T h e  Actuarial  Profession - Performance, Training and Opportunities1'; 

Qh. J .  M .  CJ&X??.ga, llMathematics and t h e  Real World1'. The chapter  a l s o  

viewed two mathematical f i lms .  

OHIO NU a t  the  University of Akron presented an or ien ta t ion  f o r  

newly enro l led  mathematics majors and heard DR. Jetj6hey McLean speak on 

'The A r t i s t  a s  a Geometer." 

PENNSYLVANIA NU a t  Edinboro S t a t e  College heard programs given by: 

Qh. Ukhahd Reue,  l lSolution t o  t h e  Four Color P r ~ b l e m ~ ~ ;  V h .  John Lane, 

!'Mathematical N o n ~ e n s e ~ ~ ;  Qh. G y a p p n  NU.&, llFunctions of  Regular Varia- 

tion!?; u w  E&ng, llGeneralized  inverse^^^; V a n d  P m ,  llMaxwell 

D i ~ t r i b u t i o n ~ ~ .  Six chapter  members attended t h e  Alleghany Mountain 

meeting of t h e  MAA. 

PENNSYLVANIA THETA a t  Drexel heard John Saki6 speak on olSolved: 

The Four Color Prob1eml1 and heard h c e  W&Z& speak on I1Queuing Theory." 

SOUTH CAROLINA G W  a t  t h e  College of Charleston heard Nancy R d @ 4  

speak on topology, W U  C&& speak on computers, and Kahen 8& * 

speak on s t o c h a s t i c  processes. In  add i t ion ,  t h e  chapter  saw t h e  f i lm,  

"Let U s  Teach Guessingf1 by Polya. 



SOUTH DAKOTA BETA a t  t h e  South Dakota School o f  Mines and Technology 

heard a t a l k  by Pk06e.hbok 2)aUid 8 u . U ~  on '!Finding t h e  Volume o f  a Hyper- 

cube." The c h a p t e r  helped sponsor  t h e  Western South Dakota Mathematics 

Contes t .  

TEXAS EPSILON a t  Sam Houston S t a t e  (1976-77) heard  vh. I%L~IAUC~UL 

speak on "Recreat ional  Mathematicsf' and v4. L o c ~ & &  on t h e  t o p i c ,  

"Future Jobs." The c h a p t e r  a l s o  viewed demonstra t ions  by t h e  Chemistry 

and Physics  Departments. 

TEXAS EPSILON a t  Sam Houston S t a t e  (1977-78) heard Vk. Rich speak on 

four- dimensional geometry and v4. Luning speak on G a l i l e o T s  and Newtonls 

s t u d i e s  of g r a v i t y -  The c h a p t e ~  a l s o  viewed f i l m s  and had a job seminar  

where s i x  people  from d i f f e r e n t  f i e l d s  d i scussed  how educat ion r e l a t e d  t o  

t h e i r  work. 

VIRGINIA GAMY4 a t  James Madison U n i v e ~ s i t y  heard  Wi.U&m S a n d m  

speak a t  t h e  annual  banquet.  I n  a d d i t i o n ,  t h e  c h a p t e r  sponsored a book 

s a l e  a s  a fund r a i s i n g  a c t i v i t y .  

AX 4 ill11 & ~- 
ANECDOTES WANTED 

We wish t o  p u b l i s h  a c o l l e c t i o n  o f  anecdotes  about  wclZ- 
k n m  mathematicians. I f  you a r e  i n t e r e s t e d  i n  c o n t r i b u t i n g ,  
p l e a s e  w ~ i t e  t o :  

P e t e r  Borwein 
Department o f  Mathematics 
Un ive r s i ty  o f  B r i t i s h  Columbia 
Vancouver, B . C . , Canada 
V6T lW5 

o r  
Maria Klawe 
Department o f   compute^ Science  
U n i v e ~ s i t y  o f  Toronto 
Torontoy Onta r io ,  Canada 
M5S lA7 

For each anecdote  p l e a s e  inc lude  your  source  and your  a s s e s s-  
ment o f  i t s  t r u t h  ( a s  a p r o b a b i l i t y  between 0 and 1 ) .  

PROBLEM DEPARTMENT 

Emed  by Leon l3anfzo66 
Lo!, Ang&e.h, C & ~ C l k ~  - .  ".. 

This departnent welcomes problems believed t o  be new and a t  a ZeueE 

appropriate for the readers of t h i s  journal. Old problems displaging 

novel and elegant methods of solut ion are also acceptable. The choice 

of proposals for publication w i l l  be based on the edi tor ' s  evaluation 

o f  t he i r  anticipated reader response and also on the i r  i n t r i n s i c  i n t e re s t .  

Proposals should be accompanied by solutions i f  available and bg any 

information that  w i l l  a s s i s t  the editor.  Challenging conjectures and 

problem proposals not accompanied by solutions w i l l  be designated by an 

as ter isk  (*). 

To fac i l i t a t e  cons ider~ t idn  of soZutions for publication, solvers 

should submit each solution on a separate sheet properly i den t t f i ed  with 

m e  and address and mailed before the end of  June 2979. 
Address a l l  c o m ~ n i c a t i o n s  concerning t h i s  department t o  D r .  Leon 

Bankoff, 6360 Wilshire Boulevard, Los Angeles, California 90048. 

Problems f o r  S o l u t i o n  

425. Pkopobed by C h d a  W. T J L L ~ ~ ,  Sun Viego, C&6oanh. 

Without us ing  i t s  a l t i t u d e ,  compute t h e  volume of a r e g u l a r  t e t r a -  

hedron by t h e  p r i smoida l  formula.  

426. P~~opobed by %he kktc R. Robinbon Rowe, S a m e d o ,  CaLL~o4nh. 

With some o v e r s i m p l i f i c a t i o n  o f  an  a c t u a l  even t ,  a f t e r  a co ld  d r y  

snow had been f a l l i n g  s t e a d i l y  f o r  72 hours ,  a niphometer showed a depth  

o f  340 cm., compared t o  a r e a d i n g  of  175 cm. a f t e r  t h e  f i r s t  24 hours .  

Assuming t h a t  under ly ing snow had been compacted on ly  by t h e  weight o f  i t s  

i ts snow overburden, s o  t h a t  t h e  depth  v a r i e d  a s  a power o f  t ime ,  what 

would have been t h e  dep ths  a f t e r  1 2  and 48 hours?  

S.ta.i%on, Texah. 
I f  a ,  b ,  c ,  d a r e  i n t e g e ~ s  and u = v = h a  - e l 2  + ( b  -%)' 

and w = fiy then A u  + v + w ) ( u  + v - w)(u  - V + w)( -u  + V + W )  is 

an even i n t e g e r .  



428, Pkopvhed by Solomon W. Golomb, U n i v e ~ ~ i i t q  06 Southekn C&60knia. 
One c i r c l e  of rad ius  a  may be t8exact ly surroundedTt by 6 c i r c l e s  of 

I- rzdius a .  I t  may a l s o  be exact ly sur~ounded  by n c i r c l e s  of rad ius  t ,  
f o r  any n 2 3 ,  where 

- 1 t = a ( c s c  ?! - 1 )  . n 

Suppose ins tead  we surround it with n + 1 c i r l c e s ,  one of rad ius  a and n 

of rad ius  b (again n 2 3 ) .  Find an expression f o r  b / a  a s  a  funct ion of  

n. (Note: For n = 3 ,  b / a  = ( 3  t m ) / 2 ,  and of course f o ~  n = 5 ,  b / a  = 1. 

What about n = 4 and n = 6 a s  individual  spec ia l  cases?)  

429. Pkopvbed by Rickmd S .  Fieldl Sam21 Monica, Cali~ohnia.  
Let P denote t h e  product of n random numbers se lec ted  from t h e  

i n t e r v a l  0 t o  1. Question: Is t h e  expected value of P g r e a t e r  o r  l e s s  

than t h e  expected value of the  n-th power of a  s ing le  numbe~ randomly 

se lec ted  from t h e  i n t e r v a l  0 t o  l ?  

430. Phopobed by John M. HVLU&~ l ~ e . ~ ~ o c k ,  CaLL6vhnia. 

Given any rec tangle ,  form a new ~ e c t a n g l e  by adding a  square t o  t h e  

long s ide .  Repeat. What is t h e  l i m i t  of t h e  long s i d e  t o  t h e  s h o r t  

s ide?  

431. Pkvpohed by Jack Gmdunkd, FohuX H ~ U A  High School, F l ~ h i n g ,  
Nw Yohk. 

In  a  r i g h t  t r i a n g l e  ABC, with s i d e s  a ,  b ,  and hypotenuse C ,  show 

t h a t  4 ( a c  + b 2 )  5 5 c 2 .  

432. Pkopvbed by W i n  JUAX~ Rtonx ComunLty College 06 C U N Y ,  Rtonx, 

NeLu Yotk. 

Does t h e r e  e x i s t  an in teger  m f o r  which t h e  equation 

has so lu t ions  i n  p o s i t i v e  in tegers?  

433. Pmpobed by ClayXvn W. Dodge, Univmii ty  06 Maine at Okono. 
Pay t h i s  b i l l  f o r  four .  That i s ,  solve f o r  BILL,  which is d i v i s i b l e  

by 4 .  

PAY 
MY 

BE 

434. P~~opohed by Sidney Pennml Rtonx CommunLty College 0 6  Xke City 

Univmii ty  0 6  Nw Yokk. 
Consider ( 2 n  + 112 hexagons arranged i n  a  t8diamondt1 pa t te rn ,  t h e  

kth column from t h e  l e f t  and a l s o  from t h e  r i g h t  cons i s t ing  of k hex-agons, 

1 5  k 5 2 n  + 1. Show t h a t  i f  exact ly one of t h e  s i x  hexagons ad jacen t . to  

t h e  cen te r  hexagon is deleted t h ~ n - i t  is impossible t o  t i l e  t h e  remaining 

hexagons by trominoes a s  i n  Figure 2 .  (Figure 1 i l l u s t r a t e d  t h e  52 case 

Ln which each of t h e  hexagons adjacent t o  t h e  center  one is labeled A . )  

u 

Figure 1 

Figure 2  

435. Paopvbed bg ~ a v h i  R. . S h ~ n & ~  R e n ~ e , 5 z a  Polyfechnic ln&tLtu,te. 

Two non-congruent t r i a n g l e s  a r e  ttalmost congruentft i f  two s i d e s  afid 

t h r e e  angles of one t r i a n g l e  a r e  congruent t o  two s i d e s  and t h r e e  angles  

of t h e  o ther  t r i a n g l e .  Clearly two such t r i a n g l e s  a r e  s imi la r .  Show 



1  
t h a t  t h e  r a t i o  of s i m i l a r i t y  k is  such t h a t  4 >  < k c a, where d> = 

( 1  t /5^)/2, t h e  fami l ia r  golden r a t i o .  

Edi to r ' s  Note: This old problem is  being reopened with t h e  hope of 

e l i c i t i n g  f resh  ins igh ts .  

436. Propoad  by  CUM S p a n g L e ~  and R-ichcu~d A. Gibbs ,  Fo/nt Lw-Ui 
CoUege ,  Uu~a.ngo, Co tomdo .  

Pl and P2 a r e  d i s t i n c t  po in t s  on l i n e s  Ll  and L2 respec t ive ly .  Let 

Ll and L2 r o t a t e  about P and P  respec t ive ly  with equal angular v e l o c i t i e s  

Describe t h e  locus of t h e i r  in te r sec t ion .  

437. Pkvpoiind b y  Zelda  Kc&, B a w d y  H U U ,  C&f.oknia. 

In times gone by, it was f a i r l y  well-known t h a t  N ,  t h e  Nagel point  

of a  t r i a n g l e ,  is  t h e  in te rsec t ion  of  t h e  l i n e s  from t h e  v e r t i c e s  t o  t h e  

points  of contact  of t h e  opposite escr ibed c i r c l e s .  In t h e  t r i a n g l e  

whose s i d e s  a r e  AB = 5 ,  BC = 3, and CA = 4,  show t h a t  t h e  a reas  of tri- 

angles ABN, CAN and BCN a r e  1, 2  and 3  respec t ive ly .  

405. [Fall 1976, Corrected] Ptoposcd b y  ~o&an S c h a u m b e ~ g e ~ ,  Bhonx 

CommumXq CoUege ,  Btonx,  New Yo&. 

Locate a  point P  i n  t h e  i n t e r i o r  of a  t r i a n g l e  such t h a t  t h e  product 

of t h e  th ree  dis tances from P t o  the  s i d e s  of t h e  t r i a n g l e  i s  a  maximum. 

Solut ions 

399. [ Fa1 1  1977 I Proposed by  Jack Gcu~<iunkel, Fore& HUJU High 

Schoot ,  F t u ~ h i n g ,  New Yokk.  

Show t h a t  a r c  s i n  c-) + 2  a r c  cos /a;/6 = n/2, ( 3  2 x  5 6) .  

1. S o t u t i o n  b y  Leo Sanu6, A.S.gonq& CoUege ,  Ottawa, Canada. 
x - 3  Let a = a r c  s i n  (Ã‘,Ã and 6  = a r c  cos m; then 

X - 3  0  S a 5 n/2, s i n  a = (- 
3  ) '  

and X - 3  0  5 B 2 ~ / 4 ,  cos 6  = /a;/6, cos 23 = 2  cos26 - 1 = (- 
3 ) -  

Since 0  S a 2 n/2, 0  S 28 5 n/2, and s i n  a = cos 2B, we must have 

a + 23 = n/2, which is  the  required i d e n t i t y .  

11. S o l u t i o n  b y  P n t a  A. Luldi-twm, G e n w e  Commu.i^Lty CoUege ,  B a A i u k ,  

New Y o l k .  

Consider t h e  f u n c t i o n f  defined on [3,61, where 

X - 3  f ( x )  = a r c  s i n  + 2  a r c  cos /a;/6. 

Dif fe ren t ia t ing  and s implifying,  

f 'w = 0,  

so  t h a t  /(x) = e, a  constant .  I f  x  = 3, then e = v/1. Hence 

X - 3  a r c  s i n  (-) 3 + 2  a r c  cos /a;/6 = n/2, when 3  2 a 5 6. 

111. SoLUL-tA.on b y  SoLomon U. Gotomb, UVU,uw,iÂ± 06 S o u t h e h ~ ~  CaJLL<iorWJO., 
Lo'. / q f t e A ,  caU<iorfu.a.. 

We prove t h a t  f o r  a l l  a  6 [0,11, 

a r c  s i n  a t 2  a r c  s / ~  = 2 '  

x  
A s  a  coro l la ry ,  i f  a = - - 1 = x2, then /ari = ,& where now a 6 [0,1] 3  3  

is equivalent t o  x 6 [3,61. Hence 

x-3 a  s i n  - t 2  a r c  cos /i- =&, 
3  

f o r  a l l  6 [3,61. 

The proof is q u i t e  simple. From t h e  d e f i n i t i o n  of  the  cosine funct ion,  

i f  0  5 9 5 n/2 then s i n  9  = a = cos(n/2 - 9)  with 0 2 a 2 1. Thus: a r c  

s i n  a  = 9,  a r c  cos a  = n/2 - 6, and: 

a r c  s i n  a t a r c  cos a = 5 2  , (3 )  

f o r  a l l  a 6 [0,11. 

To obtain (11, we simply solve f o r  p i n  t h e  r e l a t i o n  

a r c  cos a  = 2  a r c  cos p .  (4)  

We have: a r c  cos 3 = 1/2  a r c  cos a ,  and tak ing  t h e  cosine of both s i d e s ,  

cosip + 1 
and i n  t h i s  quadrant t h e  "half angle formula" cos 'f- 2  = ,/ 
per ta ins .  Thus 

a r c  cos a  
c o s (  ) =  

/ cos<arc  cos a )  +I .  = y+, is) 
2  

a s  asse r ted .  Using t h i s  i n  (3 )  and (4). we obta in  (1 ) .  

Next, we observe t h a t  we need not  r e s t r i c t  a  t o  [0,1] i n  (11, nor 

x t o  [3,6] i n  ( 2 ) .  The same i d e n t i t i e s  hold f o r  -IS a  5 1. and f o r  ; 

0  2 x  5 6. What happens is t h a t  f o r  -1 5 a  S 0, a r c  s i n  a  is i n  ( - ~ / 2  $ 0 )  

and a r c  cos a is i n  [n/2,n]. bu t  s t i l l  i n  such a way t h a t  t h e  sum is  

n/2. To take  t h e  extreme case,  



a r c  s i n  ( -1 )  + a r c  cos (-1) = - LL + n = . 2 2 

Thus with a = -1 i n  ( l ) ,  we have 

a r c  s i n  (-1) t 2 a r c  cos (0)  = - t 2(5) = 5 , 
2 

and t h e  same occurs with x =  0 i n  ( 2 ) .  

A&o iiotved by JEFFREY BERGEN, Chicago, l f i J ^ ;  L O U I S  H. C A I R O L I ,  

Ka~40-6 S t a t e  Univem-ULy, Manhatta.n, Kan40-6; CLAYTON W. DODGE, Univea i , i y  

06 M d n e  h; MICHAEL W. ECKER, C-tA/ U n u i n u ^ y  of, New Y o t k  MARK 
EVANS, La Manque, Texm; VICTOR G. FESER, M a ~ y  Cottage, Umcv ick ,  NoMh 

Vako-ta; SAMUEL GUT, Btooklyn, New Yotk; BRUCE KING, SchenecAidy C o u d y  

Commu.vu.ky CoUege, ScknecAidy,  New Yotk; CHARLES H. LINCOLN, Goid^boto, 

Non-th CahoUna.; LANNIE L I P K E ,  M-t-ton,WJ^co1~4JLn; C.  B.  0. PECK, S t a t e  

CoUege, Penm&vamA; BOB P R I E L I P P ,  The Univem-ULy 06 WLkc.o~~~in-hhko&h;  

KENNETH M .  WILKE, Topeka, Kan.40~; CHARLES ZIEGENFUS, J a m  Alar^on UnI'I.wc- 

&^ty, HowUAbu~g, VhgJLmA; and fhe  Ptopobuc, JACK GARFUCKEL. 

Garfunkel explained how t h i s  problem came about. In  a recen t  exam- 
ina t ion  he asked h i s  s tudents  t o  i n t e g r a t e  dx J -- 

c 2  - 
Most of t h e  s tudents  completed t h e  square and obtained t h e  cor rec t  r e s u l t :  

dx X - 3  = a r c  s i n  t C. s__ 
One s tudent ,  however, l e t  x = 6 cos2 8 and, proceeding c o r r e c t l y ,  obtained 

-2 a r c  cos ^o tC a s  h i s  answer. Hence, within t h e  permissible  values 
f o r  x, these  two expressions could d i f f e r  only by a constant ,  and t h e  

r e s u l t  follows a s  i n  Solution I1 above. 

4 0 0 .  [Fall 19771 Pkopobed by fU.choA.d A. GJLbbb, Fovt Lwm> CoU-ege, 

V m n g o ,  Coiohado . 
m Evaluate ([kn/ml t {kn/m}), where m and n a r e  p o s i t i v e  in tegers ,  

[XI i s  t h e  g r e a t e s t  in teger  not  exceeding x and {a;} = -[-XI i s  t h e  smallest  

in teger  not l e s s  than x .  

I .  SofJUitusn by Bob P>u.eAt:pp, The. UniucmJity ofi W^c.on^^.n-O&hko&h.. 

[s ince [j+a;] = j + [a;] where j is an in teger  and x is  a r e a l  number] = 

2n t~~~ ikn/ml t 0 - 1 )  n - Â£1 [kn/m] = m t n. 

11. Sot iut ion by fU.chaAd A. Gitbbb, t h e  R t o p o ~ e ~ .  w i t h  a pha.O-tt.c&y .̂dew-fctca  ̂

hot iut ion by Kennvth M .  Wske ,  Topeka, KaM40-6. 

Consider t h e  mxn rec tangle  i n  t h e  f i r s t  quadrant with diagonal join-  

ing (0,O) t o  (m,n). This rec tangle  contains  (mtl)  by ( n t l )  l a t t i c e  po in t s .  

For j = 1, ..., m, [jn/m] enumerates t h e  l a t t i c e  po in t s  i n  column j above 

t h e  X-axis which a r e  on o r  below t h e  diagonal.  Also, { jn/m] enumerates 

t h e  l a t t i c e  po in t s  i n  column j on o r  above t h e  X-axis which a r e  below t h e  

diagonal.  By symmetry then,  {jn/m} enumerates t h e  l a t t i c e  po in t s  i n  column 

m - j  on o r  below t h e  l i n e  y = n which a r e  above t h e  diagonal.  Hence t h e  

desired sum enumerates a l l  of t h e  l a t t i c e  po in t s  contained i n  t h e  rec tangle  

with t h e  exception of t h e  m t l  on t h e  X-axis. Therefore 

^feZl [kn/ml t {kn/m} = n(mt1). 

A&o ^otved by JEFFREY BERGEN, Ch^.cago, 1SUmno-U; L O U I S  H. C A I R O L I ,  

Ka~40-6 S-tate Unive~i^-t 'y,  Manhattan, Kan~0-6; MARK EVANS, LaMaA,q~c, TexoA; 

C .B .A. PECK, State. CofLege, P<uw6ytvavuS.; and TERRY J . WOODFIELD, Beaumont, 

T e x a  . 
4 0 1 .  [Fall 19771 Pkopoied \ by Z & d a  Ktvtz, BeveAZy H U ,  C a ^ t 6 0 k h .  

From a point  250 yards due north of Tom, a p i g  runs due e a s t .  S t a r t-  

ing a t  t h e  same time, Tom pursues t h e  p ig  a t  a speed 4/3 t h a t  of  t h e  p ig  

and changes h i s  d i r e c t i o n  so  a s  t o  run  toward t h e  p ig  a t  each i n s t a n t .  

With each running a t  uniform speed, how f a r  does t h e  p ig  run before being 

caught? 

This is Problem 28 of The Mathematical Puzzles of Sam Loyd, Volume 

Two, Dover Publicat ions,  1960. (Selected and edi ted by Martin Gardner): 

Loyd's so lu t ion  is based on t h e  average of the distance 
the 

pig i f  both ran forward on a s t r a i g h t  l i n e  and t h e  d i s tance  t rave led  i f  

both ran  d i r e c t l y  toward each other .  How d id  Loyd a r r i v e  a t  what he c a l l s  

t h i s  "simple r u l e  f o r  problems of t h i s  kind" and how can we j u s t i f y  i t ?  



FIGURE 1 

Sot.ttti.on by Tom A p ~ f o D .  C r . J L i l < o ~ ~  7ii4-fcc.ttite of, Technoiogy, Paadena, 
C ~ o ~ r U a .  

A point  Q s t a r t s  a t  t h e  o r i g i n  and moves along t h e  pos i t ive  y-axis 

with constant  speed q. Another point  P s t a r t s  a t  (1,O) and pursues Q 
with constant speed p .  The problem is t o  f i n d  t h e  curve of pursu i t  

t raversed by P. 

from which we ge t  xy' = y - q t ,  where y' = dy/dx. Di f fe ren t ia t ing  with 
respect  t o  x we f i n d  

Denote t h e  coordinates of P a t  time t by (X ,y ) , where x = X ( t )  and 

y = Y(t )  a r e  unknown functions of t t o  be determined. These can be con- 

sidered a s  parametric equations of t h e  curve of pursu i t .  We w i l l  obtain 
a ca r tes ian  equation expressing y a s  a funct ion of x .  

A t  time t ,  Q i s  loca ted  a t  t h e  point  (0 ,q t ) .  The tangent l i n e  of 

t h e  pursu i t  curve a t  P is always d i rec ted  towards 

Q so  its s lope ,  dy/dx, i s  t h e  same a s  t h e  slope 

d t  ay" + y '  = y' - q a and hence dx 

Q = ( O , q t l , ,  
of t h e  l i n e  segment PQ. (See t h e  accompanying 

f igure .  ) Hence 

Now q and x a r e  p o s i t i v e  and dx/dt  is  negative s o  yl' i s  p o s i t i v e  and we 

have 

\ 

\ pa (%Y) 

On t h e  o ther  hand, P moves a t  constant  speed p. which means t h a t  

Using (1)  i n  (2)  we obtain 

This is  a second-order d i f f e r e n t i a l  equation s a t i s f i e d  by y .  We can 

solve t h i s  by pu t t ing  

Then ( 3 )  can by wr i t t en  a s  

where r = q/p i s  t h e  r a t i o  of t h e  two speeds. The equation is  now seperable 

and we can in tegra te  it t o  obtain 

r l o g x  = log(v +d l  + v 2 )  + C .  

But V = 0 when x = 1 so C = 0.  Hence log x3" = log(V + SO 

Now 
1 

x +  = v + m .  
v +d-TF 

Subtracting t h e  l a s t  two equations we f i n d  2V = xr - X-r, so  

v = Y '  = ^Xr 2 - x-r ). 

In tegra t ing  again we get  

Now y = 0 when x = 1 and t h i s  determines C. We f i n d  C = r / ( l  - P2) i f  

r # 1 and C = -% i f  r = 1. Hence t h e  curve of pursu i t  is given by t h e  

formula : . 
1 -r 

(4)  i f  r # 1 ( t h a t  is, i f  p # q )  



and 

1 x2 
( 5 )  y = - - -  l o g x  - \ 2 2 i f r  = 1 ( i f p  = q ) ,  

Note. I f  P < 1, both xr" and x l F  tend t o  0 a s  x -*Â 0 and - 
Y -*Â r / (  1 - r2 ) . In t h i s  case,  P overtakes Q . 

I f  r 2 1, then y ->Â + - a s  x + 0 and P never overtakes Q. Therefore 

the  pursu i t  curves look l i k e  t h i s :  

In  t h e  foregoing discussion,  t h e  point  P was i n i t i a l l y  a t  (1,O). I f  
it was i n i t i a l l y  a t  (a.01, t h e  problem can be reduced t o  t h e  previous 

case by changing t h e  s c a l e  on both t h e  x and y axes by a f a c t o r  l / a .  
In  

o ther  words, i f  P s t a r t s  a t  (a,O), simply replace x by x/a  and y by y/a  

i n  formulas ( 4 )  and ( 5 )  t o  obtain t h e  curve of pursu i t .  

New we ob ta in  the  arc- length L of t h e  pursu i t  curve. I f  r ?  1 t h i s  
length is i n f i n i t e ,  s o  we consider t h e  case P < 1. Again, it s u f f i c e s  
t o  consider t h e  case where P is i n i t i a l l y  a t  (1,O). The arc- length L i s  
given by t h e  i n t e g r a l  

Instead of  using Equation (4) t o  ca lcu la te  t h e  integrand we use t h e  

d i f f e r e n t i a l  equation ( 3 )  which gives us 

6- = xytt / r  . 
Hence 

This i n t e g r a l ,  i n  t u r n ,  is e a s i l y  ca lcu la ted  by using in tegra t ion  by 

p a r t s .  We f i n d  

Now both y and y t  a r e  0 when x = 1 s o  

P 2 .  1 - r  

This can a l s o  be w r i t t e n  a s  

Now p / ( p  + q )  is  t h e  dis tance P would t r a v e l  i f  Q moved along t h e  x- axis  

d i r e c t l y  toward t h e  i n t i a l  point  (1,O) and p / ( p  - q )  is  t h e  dis tance P 

would t r a v e l  i f  Q moved d i r e c t l y  away from t h e  i n i t i a l  point  (1.0). Thus, 

we see t h a t  t h e  dis tance t rave led  by P is  t h e  average o f  these  two 

dis tances,  a s  asse r ted  by Sam Loyd. 

AÂ£i bo lved by LOUIS H .  CAIROLI, K a n ~ a i  Sitote. UVU.umÂ¥ULy Manhattan, 

Ktu i ia i ;  MURRAY S .  KLAMKIN, Un-<-vuuiÂ¥UL of,  UbeA-to, Edmonton; CONRAD 

MEMBRINO, Wate~buhq, Conncvbicut; LEON MACDUFF, EcLLnbuhgh, ScoUa.d;  

and the. P-topob e ~ .  

Comment bq the. Pkoblem EdUok 

The charm of t h i s  problem l i e s  i n  t h e  ins id ious  way t h e  s t a t e d  

r e s u l t  d e f i e s  our i n t u i t i v e  not ions.  A t  f i r s t  we suspect  t h a t  t h e  

r e s u l t ,  i f  t r u e ,  might acc iden ta l ly  apply only t o  t h e  s p e c i a l  case 

involving t h e  given dis tances and t h e  r e l a t i v e  speeds but  then t h e  

denouement aff i rms t h e  genera l i ty  of Loydts method of so lu t ion .  

Klamkin c a l l e d  a t t e n t i o n  t o  h i s  a r t i c l e ,  co-authored with D . J .  

Newman, e n t i t l e d  Flying i n  a Wind Field, published i n  two p a r t s  i n  

t h e  American Mathematical Monthly, January 1969, 16-23 and November 

1969, 1013-1019. This paper t r e a t s  r e l a t e d  problems and contains  a 

short  l ist  of usefu l  references.  

A 



Membrino used t h e  t r i p l e - b a r r e l e d  weapons o f  d i f f e r e n t i a l  equa t ions ,  

a Texas Instuments SR-56 c a l c u l a t o r  program and a g r a p h i c a l  s o l u t i o n  t o  

v e r i f y  t h e  v a l i d i t y  of  Loyd's method of s o l u t i o n .  

The i n t e r e s t e d  pusuit- problem buf f  may enjoy looking up t h e  fo l low-  

i n g  problems publ ished i n  t h e  American Mathematical Monthly: 3573 [1932, 

549; 1933,4361; E 387 [1939,513; 1940,3201; 3942 [1940,114; 1941,4841. 

See a l s o  a s h o r t  paper  e n t i t l e d  A Pursu i t  Problem by Gerald Crough, 

Mathematics Magazine, March-April 1971, pp. 94-97. 

402. [ F a l l  19771 Phopo-ied by C h d a  W .  T/u.gg, San Diego, CaJU.6ohvwi. 

The f i r s t  e i g h t  non-zero d i g i t s  a r e  f1 is t r ibuted on t h e  v e r t i c e s  of  

a cube. Addi t ion of  t h e  d i g i t s  a t  t h e  e x t r e m i t i e s  of  each edge forms 

twelve edge-sums. Find d i s t r i b u t i o n s  such t h a t  every  edge-sum i s  t h e  

same a s  t h e  sum on t h e  oppos i t e  (non-co fac ia l )  edge. [The s o l u t i o n  t o  

t h e  r e l a t e d  problem 304 appears  on pages 36-37 o f  t h e  F a l l  1974 PI MU 

EPSILON JOURNAL. I 
SoiuAt.on by C iay ton  W .  Dodge, U&&u^Cy 0 6  Maine at Otono. 

Label t h e  v e r t i c e s  a s  shown i n  t h e  accompanying f i g u r e .  Then we must 

have 

a + b = g + h ,  a + d = f + g ,  a + e = c + g ,  

e + d = e + f ,  b + c = e + h ,  b + f = d + h .  
I f  we s o l v e  t h e  f i r s t  t h r e e  equa t ions  f o r  h ,  f ,  and c  r e s p e c t i v e l y  and 

s u b s t i t u t e  t h e s e  va lues  i n t o  t h e  l a s t  t h r e e  equa t ions ,  we o b t a i n  i d e n t i t i e s ,  

showing t h a t  t h e  l a s t  t h r e e  equa t ions  a r e  redundant .  Thus we so lve  each of  

t h e  f i r s t  t h r e e  equa t ions  f o r  a  - g, o b t a i n i n g  S=a - g  = h - b  = f - d  = e  - 
To have fou r  equa l  d i f f e r e n c e s  us ing  t h e  d i g i t s  1 t o  8 ,  we can t a k e  only  

161 = 1, 2, o r  4. To show, f o r  example, t h a t  we cannot have 6 = 3 ,  n o t e  

t h a t  8 must be  p a i r e d  wi th  5 and 7 wi th  4.  But a l s o  1 must be p a i r e d  

wi th  4 ,  s o  6 = 3 cannot  b e  pe rmi t t ed .  Now, once 6 has  been chosen and a 

pe rmiss ib l e  va lue  a s s igned  t o  a ,  then  t h e r e  a r e  j u s t  t h r e e  va lues  from 

which t o  choose b ,  d ,  and e .  Then t h e  o t h e r  f o u r  va lues  a r e  determined. 

These s o l u t i o n s  a r e  a l l  equ iva len t  s i n c e  Euclidean t r ans fo rma t ions  o f  

t h e  cube map t h e  s o l u t i o n s  one t o  t h e  o t h e r .  It is seen ,  t hen ,  t h a t  t h e r e  

a r e  j u s t  t h r e e  d i s t i n c t  s o l u t i o n s :  

a b c d e f g h  
8 5 2 3 1 4 7 6  
8 5 3 2 1 4 6 7  
8 1 7 2 3 6 4 5  

A&6o bo ived by LOUIS H .  CAIROLI , Kanba  SÂ¥tat U n i u e ~ ~ . t A / ,  M a n W n ,  

Kanba ;  MARK EVANS, LaMmque, T e x a ;  VICTOR G. FESER, MffA.y CoUege, 

B h m m c k ,  Novth Dakota; CLAUDIA WILCOX, LaMaAyue, T e x a ;  CHARLES H .  

LINCOLN, Gofdiiboho. Notvth CcuioUna: KENNETH M. WILKE, Topeka, Kwa; 

and th<t PAO~OACA,  CHARLES W .  TRIGG. 

404. [Fal 1 19771 Phopo~ed by Bob P/u.&Upp, The U n i v m i J L y  06 

W- ihconh-Obhko~h .  

Let x be  a p o s i t i v e  i n t e g e r  o f  t h e  form 24n - 1. Prove t h a t  i f  a 

and b a r e  p o s i t i v e  i n t e g e r s  such t h a t  x = ab, t hen  a + b is a m u l t i p l e  

o f  24. 

So-fu-fcLon by C&ayton W .  Dodge, U h & y  06 M d n e  at Ohono. 

I f  ab = 24n - 1, then  ab E -1 (mod 24) .  Pe rmiss ib l e  s o l u t i o n s  {q,b], 

modulo 24, a r e  { l , -11 ,  {5,19}, {7,171, and {11,13}. I n  each case  we 

s e e  t h a t  a + b Â 0 (mod 24) .  The theorem fo l lows .  

AÂ£A roLved by RONNY ABOUDI, btud.e& at FioA-cda W w U c  Unbw>iJLy, 

CoIWJL S p h g b ,  Fio/u.da; JEFFREY BERGEN, Chicago, I f i n o h ;  M.J. OELEON, 

FLo/u.da W n t i . c  U & W i ^ y ,  B o a  Raton, Fio/u.da; LOUIS H .  CAIROLI, Kanba.4 

SutOJfe U n i u m i J L y ,  Manhattan, K w a i i ;  VICTOR G. FESER, MffA.y CoUege, 

B-ihmo~cfe, No& Dakota.; F .  DAVID HAMMER, U n i v m J i t y  0 6  C ~ L ~ ~ O A V W J . ,  Pav-ih; 

CHARLES H .  LINCOLN, GoLd^bou,  Notvth CmoLLm; BLACKWELL SAWYER, bÂ¥titde 

a FLohida W w U c  U n i v m L t y ;  DALE WATTS, VenueA UniveAAiJLy, Coio'w.do 

S p h i n g ~ ,  Coiotado; CHARLES ZUEGENFUS, Jamu Madihon UniueAAJity, H d  b ~ g ,  

v i ~ g ' i w a ;  KE NNET H M .  WI LKE,  Topeka, ~ a n a a ;  and .the ~ m p o ~ e f l . ,  BOB P R I E L ~ P P .  

405. [ F a l l  19771 Comected v m i o n  appeah.6 ' i n  the. PhopobaJL S e c t i o n  

0 4  -t(LC& - c i ~ u e .  SoLu^on W a p p e o ~  ' i n  t h e  Spt^ng 1979 h b u e .  



406. [Fa1 1 19771 Phopobed by P d  Ehdob, Space~hip E W h .  

Let there  be given 5 d i s t i n c t  po in t s  i n  t h e  plane. Suppose they 
determine only two dis tances.  Is it t r u e  t h a t  they a r e  t h e  v e r t i c e s  of 

a  regu la r  pentagon? 

SoluLion by Kenne.Xh M.  Wake, Topeka, Kama.  

The answer is 'lyesll. 

Proof: Let t h e  smaller  dis tance be taken a s  a  u n i t  d i s tance  and l e t  

2 denote t h e  longer dis tance.  Then i f  one point  i s  removed from the  con- 

f igura t ion ,  t h e  remaining four  points  a l s o  determine only two dis tances.  

For otherwise if t h e  four  po in t s  determine only one dis tance,  then t h r e e  

of these  po in t s  l ikewise determine only one dis tance;  hence these  th ree  

points  a r e  the  v e r t i c e s  of an e q u i l a t e r a l  t r i a n g l e .  Then i f  t h e  four th  
point  l i e s  i n s i d e  o r  outs ide t h i s  t r i a n g l e ,  a  second d i s tance  ( a t  l e a s t )  

is determined. If t h e  four th  point  l i e s  on t h e  perimeter of the  t r i a n g l e ,  

e i t h e r  a  second d i s tance  is  determined o r  t h e  four th  point  coincides with 

one of t h e  o ther  th ree ,  which is impossible s ince t h e  points  a r e  d i s t i n c t .  

Hence t h e  four  po in t s  determine exact ly two dis tances.  

Next l e t  A and B be two of t h e  four  points  which a r e  separated by 

the  u n i t  dis tance on t h e  coordinate a x i s .  Let C and D be t h e  o ther  two 
points  which l i e  on t h e  u n i t  r a d i i  AD and BC. Let DABC begin a s  a  s t r a i g h t  
l i n e  with rad ius  DA r o t a t i n g  clockwise a t  t h e  same r a t e  CB r o t a t e s  counter- 

clockwise a s  shown i n  t h e  f i g u r e .  From t h e  f i g u r e ,  BD = AC. It remains 
t o  determine t h e  pos i t ions  i n  which BD = AC = CD o r  CD = AB. 

This ana lys i s  produpes t h r e e  cases:  I )  Points  C and D coincideÂ i n  

which case point  D can be taken a s  t h e  r e f l e c t i o n  of  C i n  l i n e  AB, which 

produces a  f igure  formed by two e q u i l a t e r a l  t r i a n g l e s  having common 

edge AB; 11) CD = AB, i n  which case we have ABCD a s  a  square with diagonals 

AC and BD; and 111) an i sosce les  t rapezoid ABCD, i n  which AC = BD = BC. 

I n  these  t h r e e  casesÂ we have Z = A, fi and ( 1  + 6 ) / 2  respec t ive ly .  

Case I. (2 = 6).  Since ABC and ABD a r e  e q u i l a t e r a l  t r i a n g l e s  with 

common edge AB and BD = 2 = A, symmetry requ i res  considerat ion of possible  

placement of t h e  f i f t h  point  i n  only t h r e e  cases .  F i r s t  consider possible  

placements equ id i s tan t  from B and D. Then t h e  f i f t h  point  l i e s  on t h e  

perpendicular b i sec tor  of BD. Regardless of  whether t h e  dis tance from 

t h e  f i f t h  point  t o  B o r  D is 1 o r  2, a  t h i r d  d i s tance  is  introduced. 

Similar ana lys i s  revea l s  s i m i l a r  r e s u l t s  when A and B o r  A and D replace 

B and D. 

Case 11. (2 = fi). Here ABCD forms a  square. I f  E is a f i f t h  point  

on t h e  perimeter o r  ins ide  t h e  square, only i f  E i s  t h e  i n t e r s e c t i o n  of 

t h e  diagonals BD and AC does it deserve considerat ion.  But then AE = 

BE = CE = DE = f i / 2 ,  a  t h i r d  d i s tance .  I f  E l i e s  outs ide t h e  squareÂ 

ana lys i s  s imi la r  t o  t h a t  used i n  Case I e s t a b l i s h e s  t h a t  a  t h i r d  d i s tance  

is  introduced regard less  of t h e  loca t ion  of E. 

Case 111. (2 = ( 1  + &)/2). Here ABCD forms an i sosce les  t rapezoid 

i n  which AB = BC = AD and t h e  longer p a r a l l e l  s i d e  ( p a r a l l e l  t o  AB)  CD = 

AC = BD, t h e  diagonals. Third dis tances a r i s e  f o r  a l l  possible  loca t ions  

of t h e  f i f t h  point  E, equ id i s tan t  from A and D o r  from B and C. Points  

equ id i s tan t  from A and B o r  from C and D l i e  on t h e  perpendicular b i s c t o r s  

of AB and CD respec t ive ly .  (These perpendicular b i s e c t o r s  coincide.)  In  

e i t h e r  case t h e  unique loca t ion  f o r  E which does no t  introduce a  t h i r d  

d i s tance  places E one u n i t  from C and D and Z u n i t s  from A and B .  This 

is proc i se ly  t h e  loca t ion  of t h e  f i f t h  ver tex  of t h e  regu la r  pentagon. 

Case I V .  The only o ther  configurat ion of four  po in t s  involving 

exact ly two dis tances occurs when A ,  B and C a r e  t h e  v e r t i c e s  of an 

e q u i l a t e r a l  t r i a n g l e  and D is i t s  cen t ro id .  Here 2 = 6 and t h e  smaller 

d i s tance  is a u n i t  dis tance.  Analysis s imi la r  t o  t h a t  used i n  t h e  o ther  

cases  shows t h a t  each poss ib le  loca t ion  of  t h e  f i f t h  point  E requ i res  t h e  

int?oduction of a  t h i r d  d i s tance .  

Hence i f  f i v e  d i s t i n c t  po in t s  i n  t h e  plane ditermine exact ly two 

d i s tancesÂ these  po in t s  l i e  a t  t h e  v e r t i c e s  of a  regu la r  pentagon. 

Cornen2 by Lo& H .  Cuho f i ,  K a a a  W e  U L V W - @ ~ .  

Chapter 12 of Mathemat<caZ Gems I1 by Ross Honsberger is  e n t i t l e d  

I'The Se t  of  Distances Determined by n Points  i n  t h e  Plane". This chap*er 

contains  an exce l len t  summary of t h e  e a r l y  work (1946) of ~ r d G s  on t h i s  

i n t e r e s t i n g  subject .  



The r e s u l t s  include: For n points  i n  t h e  plane, n = 3 ,  4 ,  Sy .,. 
(1 )  There a r e  a t  l e a s t  Jn - 314 - 112 d i f f e r e n t  d i s tances .  

(11) The mimimum distance can occur not more than 3n - 6 times. 

(111) The maximum dis tance  can occur only n times. 

(IV) No d is tance  can occur a s  o f ten  a s  n 3 " / 6  t n/4 times. 

Comment by Joe Konkaum, M a d e ~ t m  CvUege, Sain t  Pad ,  MinnuoXa. 

The answer i s  "YesTt. The r e s u l t  is  Theorem 4 i n  the  paper f'On 

Euclidean Sets  Having Only Two Distances Between Pointsf t  by S.J .  Einhorn 

and I.J. Schoenberg, which appeared i n  t h e  P~oeeed<ngs, Ser ies  A y  69, No. 

4 and Indagat iones Math., 28, No. 4, 1966. 

There a r e  exac t ly  '26 2-valued 5-point s e t s  i n  E3, none of which a r e  

i n  E2. 

407. [Fa1 1 19771 P ~ ~ o p v ~ e d  by Bw Gold, John ff. Howdl and Vance 
Sf ine,  Lo6 A n g e h  CLiq Coflege. 

Two s e t s  of dice a r e  r o l l e d .  ( n  = 1, 2% 3, 4, 5, 6 ) .  What is  t h e  

probabi l i ty  of k matches? (k = 0, 1, . . . Â  n)  

S v ~ o n  by Mi2~he.U Erv&ican, U n i w m i t y  06  M.iA~.iAbippi. 

The probabi l i ty  of two thrown dice matching is 116; then t h e  

probabi l i ty  of two thrown d i c e  matching is 5/6. Therefore, f o r  two s e t s  
k of n d ice  throwny t h e  probabi l i ty  of  k matches i s  (116) times 

t h e  number of possible  ways t o  arrange t h e  matches, which is t h e  combina- 

t i o n  of  n d ice  taken k a t  a time. This combination of n d i c e  taken k a t  
k a time can be denoted ( 1. Since (116) ( 5 1 6 ) ~ - ~  i s  equal t o  

the  so lu t ion  w i l l  then be 

408. [Fall 19771 Pavpv~ed by Chy&n W. Dodge, Udweh~Liy  06 Maine 
aA Ofivno. 

Squares a r e  erected on t h e  s i d e s  of a t r i a n g l e y  wi ther  a l l  ex te rna l ly  

o r  a l l  i n t e r n a l l y .  A c i r c l e  i s  centered a t  t h e  cen te r  of  each square with 

each rad ius  a f ixed  mult iple  k > 0 of t h e  s i d e  of t h a t  square. Find k s o  

t h a t  t h e  r a d i c a l  cen te r  of t h e  t h r e e  c i r c l e s  f a l l s  on t h e  Euler l i n e  of t h e  

t r i a n g l e  and f i n d  where on t h e  Euler l i n e  it f a l l s .  (See Fig.) 

'.A 
FIGURE 2 

SoLuLLvn by ,the Pfiopvhe&. 

Place t r i a n g l e  ABC, or iented counterclockwise, i n  the  Gauss plane 

so  t h a t  la1 = lbl = lcl = 1. Let = ( l / f i )  exp ( in /4)  = 112 ti/'2. Let 

D, Ey  F be t h e  cen te rs  of t h e  external ly- erected squares on s i d e s  BC, CA, 

and respec t ive ly .  Then 

d = ab + Ge, e = ae +;a, and f =  aa +;b. 

We must f i n d  a point  P on t h e  Euler l i n e  so  t h a t ,  f o r  some k, t h e  power 

of P with respect  t o  each c i r c l e  is  t h e  same; t h a t  is, 

P D ~  - ( k . ~ c ) 2  = P E ~  - ( k . c ~ ) 2  = P F ~  - ( ~ - A B ) ~ .  

It is s u f f i c i e n t  t o  f ind  k and P so  t h a t  a cyc l ic  permutation of a ,  b,  and 

c i n  t h e  expression f o r ,  say,  PD2 - (k - B C ) ~  leaves t h e  expression unal tered.  

Since P i s  t o  be taken on t h e  Euler l i n e  and t h e  circumcenter of 

t r i a n g l e  ABC is a t  t h e  o r ig in  i n  t h e  complex plane, then 

p = m(a + b + c )  

f o r  some r e a l  m. ( I f  m = 0, 113, 1 / Z Y  o r  1, then P is t h e  circumcenter,  

cen t ro id y ninepoint cen te r  o r  or thocenter .  ) Now, r e c a l l i n g  t h a t  = 

b5 = c i  = 1 and t h a t  1 . ~ 1 ~  = zi, we have 



:he c y c l i c  permutations of a5 a r e  bz and c z .  Equating t h e  c o e f f i c i e n t s  

of these  terms, we ge t  

tn(m - i )  = (m - t k2 = m(m - E).  

Similar ly,  f o r  t h e  permutations zb,  Ee, ;a, we must have 

m(m - a )  = (m - El2 t k2 = m(m - a ) ,  

j u s t  t h e  conjugate of Equations ( 1 ) .  Subtracting these  two l e f t  hand 

equations, we f i n d  t h a t  

m(m - E) - m(m - a )  = (m - a ) 2  - (m - i 1 2 ,  

m(a - = (2m - a  - E)(E - a ) ,  

m = a t E - 2 m ,  

3 m = a t G = l ,  

m = 113. 

So P = G,  t h e  controid of t r i a n g l e  ABC. Subs t i tu t ing  m = 113 i n t o  

Equations ( I ) ,  we ge t  

(1/3)(1/3 - = (113 - a) '  t k2, 

k2 = (1/3)(-116 t i / 2 )  - (-219 t i / 6 )  

= -1118 t i / 6  + 219 - i / 6  = 1/6,  

s o  k = 116. 

We f i n d  then t h a t  t h e  power of G with respec t  t o  each of t h e  t h r e e  

c i r c l e s  is  given by 

I f  t h e  squares a r e  t o  be erected i n t e r n a l l y ,  then o r i e n t  t r i a n g l e  

ABC clockwise, and t h e  above proof holds unal tered.  

409. [ F a l l  19771 Pkopohed by Z&da K d z ,  8 e v u d y  H d Y 6 ,  CaLL6okn.i~. 

A point  E  i s  chosen on s i d e  CD of a  t rapezoid ABCD7 (AD 11 BC), and i s  

joined t o  A and B. A l i n e  through D p a r a l l e l  t o  BE i n t e r s e c t s  AB i n  F. 

Show t h a t  FC is  p a r a l l e l  t o  AE. (See Fig. 3  ) 

Figure 3  

SoluXion bq KenneXh M .  W i l ke ,  Topeka, Kan-5~~5. 

Let AE i n t e r s e c t  BF a t  G and l e t  BE cu t  FC a t  H. Let EF and GH 

i n t e r s e c t  a t  I. 

It  i s  e a s i l y  seen t h a t  t r i a n g l e s  FGI and EHI a r e  s i m i l a r  s o  that-  A - 
G I / H I  = IF/IE with t h e  r e s u l t  t h a t  t r i a n g l e s  FIH and GIE a r e  a l s o  s imi la r .  

It follows t h a t  FGEH is a  parallelogram and t h a t  FC and AE a r e  p a r a l l e l .  

A b o  holved by CLAYTON W .  DODGE, U n L v m a y  06 Maine a i  O ~ V ~ O ;  

ROBERT C .  ERTLE, Radnc ,  WhconbLn; DONALD CANARD, A m h h ,  C d L 6 o m ;  

and ZELDA KATZ, t h e  Pkopoha. 

410. [Fa1 1 19771 Phopohed by MuMu~q S. UmLn, U ~ v e ~ a q  0 6  
ALbehZa, Edmonton, MbehZa, Canada. 

I f  x, g ,  z  a r e  t h e  dis tances of an i n t e r i o r  point  of a  t r i a n g l e  

ABC t o  t h e  s ides  BC, CA, AB, show t h a t  

l / x  t l / y  + l / z  3 2/r  

where r is  t h e  in rad ius  of t h e  t r i a n g l e .  

SoluXion bq $he Paopoha. 

Since ax + by t ez = 2A, where a,  b ,  c a r e  t h e  s i d e s  opposite t h e  

v e r t i c e s  A ,  B, C, it follows from Cauchy's inequa l i ty  t h a t  

l / x  t l / y  + l / z  ? ( 6  t 6 t 6 1 2 /  2A 

with equa l i ty  i f f  

xh? = y f i  = z& = 2A/(a t b  + c ) .  

Consequently 

min { l / x  + l / y  t l / z )  P = (6 t 6 t 6 ) ' / ( a  t b  t 2). 

We now show t h a t  t h e  minimum of t h e  r . h . s .  over a l l  t r i a n g l e s  is  two. 

Let d = 6; e = 6; f = &; then d 7  e 7  f a r e  t h e  s i d e s  of a  non-obtuse 

t r i a n g l e  and 

d2 2 ( e  - f I 2 ,  e 2  2 (f - d l 2 ,  f2  ? ( d  - e ) 2 .  

Adding and rearranging gives 

( d t e + f I 2  ? 2  

d2 + e2 t f 2  

with equa l i ty  def = 0. 

Remark: In  a  s imi la r  fashion,  it is easy t o  ob ta in  t h e  known inequa l i ty  



where h .  is t h e  a l t i t u d e  from A 
-L i 

411. [Fa1 1 19771 Pkopohed by R.S. L d h m ,  U n i v ~ i t y  06 W i ~ c o a i n ,  
JanehvifYe. 

Find a l l  polynomials P ( x )  such t h a t  

p(x2 t 1 )  - [p(x)12 - ~ T C P ( X ) I  = 0 and P ( 0 )  = 1. 

1 .  SoltuXon by M.S. Ktatnkn, U ! u v m i t y  0 6  A lbmta .  

Let t ing  P(x)  + x = G(x), we ob ta in  

( 1 )  G ( X ~  + 1 )  = ~ ( x ) ~  t 1, G(0) = 1. 

One obvious s o l u t i o n  is  G(x) = x 2  + 1. 

Now l e t  G(x) = x2 t 1 t H(x),  g iving 

H ( X ~  t 1 )  = 2(x2 t l )H(x)  + H ( X ) ~ ,  H(0) = 0 .  

It now fol lows t h a t  H(xn) = 0 where 

Xn+l t 1, x = 0. Whence, H(x) 0 and thus  

P(x)  = x2 - x t 1 uniquely.  

A s  an  extension of  (11, consider  f i n d i n g  a l l  polynomials P (x)  

s a t i s f y i n g  

where Q(x) is a given polynomial and P(0)  = Q(0)  = 1. Then i f  t h e  sequence 

def ined by anti = Q(an), a. = 0,  c o n s i s t s  of  an i n f i n i t e  number of  d i f f e r -  

e n t  va lues ,  P (x )  = Q ( x ) .  

Proof: Let P (x)  = Q ( x )  t F ( x ) ;  thus  F(0)  = 0 .  Then - 

and F(a )=  0 f o r  n = 0,  1, 2Â .... Whencey F(x) is  i d e n t i c a l l y  zero. 
n 

Comment: The problem ( 1 )  where G(0) = 0,  leading t o  G(x) = x, was s e t  

a s  a problem i n  t h e  1971 Putnam I n t e r c o l l e g i a t e  Mathematics Competition 

by D . J .  Newman. I had given t h i s  problem as p r a c t i c e  t o  t h e  1975 USA 

I n t e r n a t i o n a l  Mathematical Olympiad team. One o f  t h e  members of t h e  

teamy Bernard B. Beard, had extended t h e  problem and it appeared a s  

Problem 965 i n  t h e  Mathematics Magazine 50(1977), 166: IfFind a l l  poly- 

nomials P(x)  such t h a t  P[F(x)] = F I P ( x ) l y  P(0)  = O y  where F(x)  is  a 

given func t ion  s a t i s f y i n g  F(x)  7 x f o r  a l l  x 3 0.  

Alsoy i n  t h e  extension of  ( 1 )  given above we can r e l a x  t h e  condi t ion 

t h a t  Q(x) b e  a polynomial i f  we l e t  P ( a o )  = a. ins tead  of  a. = 0 and 

P(0)  = Q(0) = 1. - - 4- 

11. SoLmXon by Zhe Ptopoheh. 

P(0)  = 1 = ( 0  - 1 ) 2  t 0 

P(26) = 651 = (26 - 1 ) 2  t 26. 

Thus t h e  polynomial i n  quest ion agrees  with  ( x  - l l 2  t x f o r  more values  

of  x than  t h e  degree of P (x) .  Therefore P(x)  : ( x  - 1) '  t x = x 2  - x + 1. 

A&c hotved by JEFFREY BERGEN, Chcago, 1 f i n o - h ;  L .  CARLITZ, Duke 

U n i v e u i t y ,  D u ~ h m ,  No& Cmofim; LOUIS CAIROLI, Kanba S Z d e  U ~ v ~ i t y ,  

M a n m n ,  Kanba; MARK EVANS, La Mmque, T e x a ;  CHARLES H .  LINCOLN, Got&- 

boko, NoMh Cmofim; KENNETH M. WILKE, Topeka, KanAah. 

ERRATA (Discovered by Charles W .  Tr igg)  

Vol. 6:7 - F a l l  1977 - p .  428, 6 th  l i n e  from bottom, "215 I C  465" 

should read  It215 ICE 465". 

Vol. 6:8 - Spring 1978 - p .  487 - l i n e  9- should s t a r t  wi th  PQ/2 = 

XN i n s t e a d  of ZN. On page 48EY problem numbered 388 should read  389. 

I n  .the Sp&Lng 197g d h u e ,  MICHAEL W. ECKER hhodd  have Received 

~ ~ e c l L i  do& ~ o U o m  Xo p t o b L m  395 and 396. 1n Xhe b m e  d h u e ,  CLAYTON W .  

DODGE w i n a d v e m k d y  omikted dtom t h e  l5b.t od h o L u m  0 6  p ~ o b L m  

392, 394, a ~ d  395. 

& A & M a A &  
FRATERNITY KEY-PINS 

Gold c l a d  key-pins a r e  a v a i l a b l e  a t  t h e  National Off ice  ( t h e  
Univers i ty  of  Maryland) a t  t h e  s p e c i a l  p r i c e  of  $5.00 each, 
pos t  pa id  t o  anywhere i n  t h e  United S t a t e s .  The p r i c e  w i l l  
r a i s e  t o  $8.00 e f f e c t i v e  J u l y  1, 1979. Order soon! 



LOCAL CHAPTER AWARDS WINNERS 

ARXANSAS BETA ( Hendrix College 1. The Mcff O v ~ g -  Lane FheA hman M&h 
W o h  were given t o  

,vichad Pint f?JL,  
and S a n k  co~~i t1 .4 .  

The Hogan s tnhi  b4&h h&dh were presented t o  

Mmk BuhXon, 
and B h  POA~ZY.  

GEORGIA BETA (Georgia I n s t i t u t e  of Technology). Book awards were 

given t o  cuts tanding graduates i n  mathematics: 

J m e ~  Handon 111, 

Jame~ Novotnak, 
and Muhia Sa&na. 

J'LORZDA EPSILON (University of South F lor ida) .  The O ~ & n & n g  
Scholah AUJLVLC~ was given t o  

David Ian l U W .  

ILLINOIS DELTA (SIU/Carbondale 1 (1977-78). The ihtAkn&ng S & O ~  
AUJUJL~ was given t o  

SXeven W&ka. 
The SIU Puhmm CompeLikion winner was 

Ybg-Chen W n g .  
The outstanding t a l k  a t  t h e  Regional P i  Mu Epsilon meeting was given by 

S ~ u n  Long. 

ILLINOIS DELTA ( SIU/Carbondale ( 19 76- 77 1. The O ~ & n & n g  S e ~ o h  
A w d  winners were 

Joe GibAon 
and Gohdon ttu66man. 

The SlU P u h m  Compe$Ltion winner was 

Jame~ BeBXnga. 

IOWA ALPHA ( Iowa S t a t e  Universi ty) .  P i  MU EphZon S c h ~ h h L p  

khU~dA of $50 each were presented t o  

ThoXhg T j m b  

and Rob& CmeLik, 

who scored highest  on a competitive examination. 

MISSOURI GAMMA ( S t .  Louis Universi ty) .  The JUftleA Gahneau h t U d  - 

(based on grade point  average) was given t o  

John Sbden,  

The Fhanch Regan SchokVLA~pA were presented t o  

G d n n e  Vogt 

and Gahq Sz&komL. 

The Senior P i  Mu Epsilon Contest ($25 i n  cash,  $25 i n  mathematics books) 

was won by 

K c h d e  Pomah (Maryville College). 

The Junior  P i  Mu Epsilon Contest ($25 i n  cash,  $25 i n  mathmatics books) 

was co l lec ted  by 

John RoZh (Maryville College ) . 
The M d ~ o d  Gamma hob were presented t o  

K d n  A l t g a  (Frontbonne College ) , 
Michde P o m ~ h  (Maryville College) ,  

and UdohE.4 F l ~ h e A  (Maryville College). 

The M d h o d  G m a  G m d d e  &Wd doh S c h o l m k p  and Smvice Xo f ie  

F h & f ? J L ~ g  was given t o  

Fh. Joheph Raj. 

The John H .  A n d t m  Gh.ad~,&e Sf?JLvice W d  f o r  a c t i v e  p a r t i c i p a t i o n  was 

given t o  

Tom Sweeneg. 

The and Shedg Beha&m Fh&&g~hip  b d  f o r  helpfulness ,  f r iend-  

l i n e s s  and concern was won by 

JeaneCte M e d u z .  

NEW YORK PHI ( S t a t e  College of New Y o ~ k ,  Potsdam). The Ommw 
SeLoh W d  (Vols. 2 and 3 of h u t h :  The A r t  of Computer B o g r d n g )  

was presented t o  

Ron Ohh0n. . 
OHIO EPSILON (Kent S t a t e  Universi ty) .  The Pi MU EpAZon &ah& 

($25 i n  books p lus  a plaque) were presented t o  



Rob& U U h  
and Kenneth U i b e ~ . .  

OHIO NU (Univers i ty  of  Akron) (1976-77). Awards were given t o  Akron 

Regional Science F a i r  winners and mathematics majors who exce l l ed  i n  

t h e i r  course  of  s tudy.  

OHIO NU (Univers i ty  of Akron) (1977-78). The Akron Regional Science 

F a i r  winners were 

Ben Chang 
and &enda SrnJUih. 

The h!A&t~&ng Undehg~adilOJte Stu.dewte who were awarded s tuden t  member- 

sh ips  t o  MAA were 

Vonaid M h e ~ ,  

Guhy Giokgio,  

C M  K o t a c z w i  \!A., 
Ruth Ni&fcien, 

Mmy Ruckeh, 

and J w i y  Young. 

The S U J I U ~ ~  Se-CAy Ma.themcLti.u Schotivuihip AuaAd was given t o  

Vonoiid. Mhm. 

SOUTH DAKOTA ALPHA (Univers i ty  of  South Dakota). The hii,&hn E h a n  
hMhd.h were p resen ted  t o  

Thoma Byta-ndeh 
and kXUhm Even. 

The M ~ ~ C O A ~  AlOdAdA f o r  deserving s tuden t s  majoring i n  mathematics went t o  

h4e-Conw.e Motgan 
and Kufit L0v'u.e.n. 

The MeAton H a . 4 ~  &Ofid f o r  a minori ty  s tuden t  majoring i n  mathematics 

went t o  

Ip wang Chan. 

The  tho^ Emmy MclCLnney AlOdAda, t o  s e n i o r  mathematics majors who have 

shown t h e  most power and o r i g i n a l i t y  i n  mathematics went t o  

VeIM-4 Guenthneh 
and OenVUJti Fte..Ld&. 

The P& S c h o i a t i h i p i  given t o  promising s tuden t s  were awarded t o  

David B m n a  

and Rick wie-4e. 

The Pi MU EpA-t^on hOf id  which is presented t o  a s e n i o r  mathematics majoi 

f o r  outs tanding scho la r sh ip  and s e r v i c e  t o  t h e  department was given t o  

Coi ieen Locken 

Thotnc~li S e u m o n .  and 

The Rob& L. W&eA h V ~ d  presented t o  s tuden t s  i n t e r e s t e d  i n  math- 

ematics educat ion went t o  

Jean G t o e b a  Johnbon 

and Cindy Rohde. 

TEXAS EPSILON (Sam Houston S t a t e  Univers i ty ) .  The outs tanding 

freshman mathematics major was 

Ju-fc-Le MontgomeAy . 
The outs tanding jun io r  mathematics major was 

Sandy hiicak . 
The outs tanding s e n i o r  mathematics major was 

Ronnie Webb. 

VIRGINIA  GAMMA (James Madison Univers i ty ) .  The outs tanding s e n i o r  

mathematics s tuden t  was 

WWLCmn Gkub b i  . 

PI MU EPSILON AWARD CERTIFICATES 

14 youh chapteA. making uAe Oj< t h e  excvVLent OMWid ceAAi.Ji- 
c o t a  to h e  you tecogn^.ze mathemaiticat. ackie.vwe.ntii? 

For f u r t h e r  information w r i t e :  

D r .  Richard A.  Good 
Secretary-Treasurer ,  P i  Mu Epsilon 
Department of Mathematics 
The Univers i ty  of Maryland 
College Park, Maryland 20742 



PAPERS PRESENTED AT THE 1 9 7 8  
PROVIDENCE MEETING OF THE PU MU EPSILON FRATERNITY 

1. l d ~  I Like Graph Theory NANCY L . BURGER 
NY Phi 
S t a t e  University of Colorado a t  Postdam 

Calulation of  the Period of the KATHY STUEWE 
Lotka-Volterra Predator Prey Model TN Delta 

University of Tennessee 

3.The Unique Number 15 J. B. ZIPPERER, JR. 
GA Gamma 
Armstrong S t .  College 

4.A Paradox i n  Quantum Theory LINDA WHILEYMAN 
TX Epsilon 
Sam Houston S t a t e  University 

5.1s I t  Possible t o  Lose the DOUGLAS W .  BOONE 
02 ' Magic? OH Delta 

Miami University 

6.The Double Ferris Wheel Problem ALBERT E. PARISH 
SC Gamma 
College of Charleston 

7. The Use of Fractional Calculus DAVID CHALLENER 
i n  Solving Certain Difference I A  Alpha 
Equations Iowa S t a t e  University 

8 .  Causes of  Math Anxiety a t  the KATHLEEN V.  WALKER 
University I L  Zeta 

Southern I l l i n o i s  University a t  
Edwardsville 

9 .  Non- l inear Additive Functions J U L I E  D. ANDERSON 
AR Beta 
Hendrix College 

10. The Converse of Lagrange's MARCIA JAMES 
Theorem and Finite Nilpotent NC Delta 
Groups East  Carolina University 

11. Matrix Models i n  Biology MICHAEL YOUNG 
OR Gamma 
Portland S t a t e  University 

1 9 7 8  J. SUTHERLAND FRAME LECTURE 

The S t a t i s t i c s  o f  Incidents and PROFESSOR HERBERT E. ROBBINS 
Accidents 

12.Multivariate Discriminant Andys i s  NICK BELLOIT 
and the Prediction of Loan Defaults FL Eta 

University of  Northern Florida 

13. Scaling i n  Mammals TIMOTHY 0 '  SHEA 
N J  Epsilon 
S t .  P e t e r ' s  College 

14. Concerning Irreducible Conpact W . DWAYNE COLLINS 

Continua TX Theta 
University of  Houston 

15 .  Exam Scheduling: An Exec CAROLE H. COOK 
of Math Modeling OH Delta 

Miami University I 

1 6 .  Generalized Lipschitz Criteria MARK L. BURTON 
for Firs t  Order Dif ferential  AR Beta 

Eauations Hendrix College 

17. A Method of Findim the  SUSAN MCCLINTOCK 
Complement of  a Sequence NC Delta 

East Carolina University 

1 8 .  A Pulse-time Model for J U L I E  MONTGOMERY 

Mathematics Class Emollments TX Epsilon 
Sam Houston S t a t e  University 

19.  Division Algorit'hms for Prime JOHN ANDERSON 

Factorization I N  Gamma 
Rose-Hulman I n s t i t u t e  of Technolow 

20. problems': Stimulation t o  STEVEN FROM 

Reseca'ch and A p f l c a t i o n  HE Beta 
Creighton University 

21. Swnerical Treatment o f  GREGORY BATTLE 

Meteoipological Data MO Beta 
Washington University 

2 2 .  Magic Card Squares, Cubes, and BERNARD P. SMITH 

Hypercubes MO Gamma 
S t .  Louis University 



1978-79 CONTEST 

P u p m  t h e  1977 -78  c o n t u t  have now been Judged, and we 
a r e  r e c e i v i n g  papers  f o r  t h i s  y e a r ' s  c o n t e s t ,  s o  be  s u r e  t o  
send us  your paper ,  o r  your  c h a p t e r ' s  papers  ( a t  l e a s t  5 
e n t r i e s  must be  r ece ived  from t h e  same c h a p t e r  i n  o r d e r  t o  
q u a l i f y ,  wi th  a $20 p r i z e  f o r  t h e  b e s t  paper  i n  each c h a p t e r ) .  

For a l l  manuscript  c o n t e s t s ,  i n  o r d e r  f o r  a u t h o r s  t o  be 
e l i g i b l e ,  they must @have received a Master's degree a t  
the time they submit t h e i r  paper. , 

1977-1978 MANUSCRIPT CONTEST 

The judging f o r  t h e  b e s t  expos i to ry  papers  submit ted  f o r  t h e  
1977-78 school  vea r  has  been cornpleterl. The winners ar - :  

F i r s t  p r i z e  ($200) ,  ROBERT ANTOL, Iowa S t a t e  
Un ive r s i ty ,  The Perfect Numbers and Pascal's 
Triangle. ( t h i s  Journal, Vol. 6 ,  No. 8 ,  pp. 459-4621. 

Second p r i z e  ($100 ), DEBRA GUTRIDGE, Muskingum Col lege ,  
Mathematical Cur ios i t i es .  ( t h i s  Jm1~vi,-7I. Vol. 6,  No. 8, 
pp. 445-458). 

Third  p r i z e  ($SO), JACKIE LAWRENCE, Western Kentucky 
Unive r s i ty  , Swnerieal Integrat ion bg Polynomial Intev- 
polation. ( t h i s  Jou1wa7, Vol. 6 ,  No. 6 ,  pp. 336-3441 

1 YOUR BADGE - a  triumph of skilled and h@Iy traimd Palfour 
c r a f t m  is a steadfast and dynamic symbol in a chaneine wdd.  

Official Badge 
Official one piece key 
Official one piece key-pin 
Official three-piece key 
Official three-piece key-pin .F'd 

WRITE FOR INSIGNIA PRICE LIST. 

PI M U  EPSILON JOURNAL PRICES 
PAID I N  ADVANCE ORDERS: 

Members: $ 4.00 for 2 years 
$1 0.00 for 5 years 

Non-Members: $ 6.00 for 2 years 
$1 5.00 for 5 years 

Libraries: $1 5.00 for 5 years (same as non-members) 

I f  billed or through agency add $2.00 to above prices. 

Back Issues $ 2.00 per issue (paid in advance) 

Compiote volume $15.00 (5 years, 10 issues) 

:All issues $90.00 5 complete back volumes plus current volume 
subscription (6 volumes - 30 years) 

- If billed or ordered through agency, add 10% to above prices. 


