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CAUSES OF MATH
ANXIETY AT THE UNIVERSITY

by Kathteen Walken
Southenn 18Linois University at Edwardsville

As students and teachers of mathematics, |I'm sure all of you havé
been in the uncomfortable situation of being introduced to someone at
your university; and after a short conversation, they ask you what your
major or occupation is. Whe you respond by telling of your close re-
lationship with mathematics, they stop, and then say, "I've always hated
math" and your conversation practically ends.

Wy do these negative attitudes against an area of such importance
exist at a school of higher education? Wha causes these feeling of
distress and uneasiness from the slightest contact with anything math
oriented?

Jerrold Zacharias, a noted physicist and educator, calls the problem
the fear of mathematics.

mathophobia: Through its high level of social

acceptability, mathophobia causes more mathophcbia. Persons who are
usually very proud of their education will tend to speak freely of their
mathematical ignorance. They can say, "I|'m terrible at math,” almost
with a sense of pride, as if being poor in mathematics shows good taste
in failure.

This attitude is transferred in meny ways. First, it is transferred
to children in schools. Parents many times are not concerned when their
child starts to do poorly in mathematics, as if to say, "l was never any
The child
has now lost all motivation from the home for success in mathematics.

Most children in this situation will choose a game of baseball after

good in math, so why should Bill or Sally be any better."

school instead of staying home and finishing their math homework. The
parents have paved the road to math failure. The lack of mathematical
skills will certainly cause anxious and fearful moments for this child
when he is faced with using the math he or she should have learned in
school.

Secondly, teachers, especially in the elementary schools, are



afflicted with mathophobia. May have not taken a mathematics course
since high school and carry into the classroom vague notions of what
mathematics is or what it can do. They see math as merely a way of com-
puting and are tense and ill at ease with it. It cannot be hard for
children in these classes to be infected with the idea that math is
hard and unpleasant.

Moreover, people who have some mathematical intelligence are may
times viewed by society as being strange and difficult to communicate
with. (This, of course, is not necessarily truel!)

Our schools cause math anxiety, also. Sheila Tobias of Wesleyan
University in Middletwon, Connecticut, explains part of the problem the
following way.

"How confusing it i s to learn arithmetic in elementary
school when as a child i n kindergarten one i s told unequivo-
cally zero i s 'nothing’; in first grade that it i s a 'place-
holder' and in fifth grade that you ecan’t divide by zero."

May students are bothered by what seem t o be inconsistancies.

In a study done by Dr. Mitchell Lazarus of the Education Development
Center in Newton, Massachusetts, may adults said that they enjoyed math
‘until they did so-and-so in school™ or, in other words, until they were
exposed to some topic that seemed particularly difficult. Did the enjoy-
ment of mathematics return after the hard topic passes? Almost never.
The dislike is usually irreversible.

This is not surprising i f one looks at the curricula in use at most
schools. The mathematics taught at each level depends strongly on most
of the work done in proceeding years. Therefore, trouble in any year,
for any reason, is nearly certain to spell trouble in the future. This
concept causes mawy problems for the classroom teacher who must make
sure that all of the class has a sound understanding of all previously
taught mathematics before moving on to new material. This is usually
not the case in other subjects. A week out of school with the flu will
not produce a case of history anxiety as easily as it will a case of
math anxiety.

Ore of the most important problems in the school curriculum is the
lack of connection between mathematics and everyday life. May educators
feel that "new math's"” context is that of the professional mathematician;
it is abstract, definitional, axiomatic, and supposedly rigorous. The
result is to pull mathematics even farther from it's actual uses.
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Also, symbols and abstractions for their owmn sakes, now very common
in mathematics curricula, often strike students as pointless and confusing.

Dr. Lazarus has also done studies on the "memorize what to do approach"

method.

This calls for much time and effort and eventually leads to the-:--_
student having no understanding of what he is doing. Whn the student
finally is approached with a demanding mathematics class in his late high
school or early college years, he is totally lost as to what is happening
because it has been some time since he | ast understood what he was doing.
He lacks the necessary background and knowledge and will usually decide
to totally give up in mathematics instead of returning to remedial classes
for a thorough re-education.

The causes that have been discussed this far can affect anyone. But
women have their om set of causes, in addition to those already mentioned.
Ms. Tobias describes it as "a far more serious phenominon growing out of
a culture that makes math ability a masculine attribute, that punishes
women for doing well in math, and that soothes the slower learner by
telling her that she does not have a 'mathematical mind'."

The problem of math anxiety in women of far above average intelli-
gence can begin as early as the sixth grade. Professor Jerome Kagan of
Harvard University found that children are inhibited in learning subjects
they feel are inappropriate for their sex. Girls are indoctrinated by
junior high school with messages such as math is masculine, women do not
need math, and boys are better in math. The notion that mathematics is
for boys and is not a feminine subject plays an important part in a young
girl's conception of herself as not interested or competent i n math.

When asked why they do poorly on a math exam, high school girls tend
to attribute their failure to lack of ability, while high school boys
usually say they did not work hard enough. Boys in junior and senior
nigh do not like math any better than girls do. However, Dr. John Ernst
of the University of California at Santa Barbara conjectures that boys
are made aware that it will be necessary to the kinds of careers that
envision for themselves.

There are other reasons for the "female strain% of math anxiety.
Lenore Weitman in a 1975 study of school text books found that males were
represented in more than two-thirds of the pictures showing science and/or

math activities. Also, texts often used women and girls in math problems
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in ways that emphasixed their " stupidity.”

The person who "hates"™ math could have many of these causes affecting
their perception of what we do. Perhaps it would be interesting and
helpful to stop and ask the next person who tells you that they " hate"

math what causes these feelings and pick up your conversation from there.
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TWO APPLICATIONS OF CONTROLLABILITY AND OBSERVABILITY

by c. Gordon Huggman
Southern 18Linois Umivernsity, Carbondale

1

In many physical problems, we are interested in controlling some
system, such as the motion of a spacecraft or missile, the neutron density
in a nuclear reactor, or the current in a complicated circuit. That pro-
cess which we try to control is called the state, and the means by which
iie try to control the state is called the control. sjnce the state may
be very hard to directly measure, i.e. to observe, we may also want to
find some indirect means of observing the state. |p practice, the state,
control, and observing quantities have several components, and the state 1
governed by a differential equation.

Let x:R ~ Rn be the state variable, let u:R ~ Rm be the control vari-
able, and let y:R = RP be the output variable (which is used to observe
the state variablex). In this paper, we consider the case where the dif-

ferential equation governing the state i s the linear, time-invariant systemu

(1) 2(t) = Ax(t) t Bu(t),
and the method of observing x is given by
(2) y(t) = Cx(t),

where A, B, and C are real constant matrices of appropriate dimensions.

We shall give the definitions of controllability and observability, present

some useful theory, and then give two applications of these concepts. 2

Definition 1. The system (1) iS controllable provided that for all
LY x€ Rn, to > 0 there is a t >ty and a bounded measurable function
u: [tg.td> &" such that the solution x(¢) satisfying (almost every-
where) the initial value problem (1) with the initial condition m(to) =

x,, also satisfies z(t)) = ;.

Deginition 2. Let i, > £, 20, let u: [to,tl] > ®" be bounded and

measurable, and let x,, 5co ¢ &". Let x(£), (¢) be the solutions of the

initial value problems (1) together with z(¢,) = x,, :E(to) = .%0, respectively.

The system (1) - (2) is observable provided that for all u, t,, ¢, if



y(t) = Cx(t) = CE(t) = §(¢) on [£y,t], then xy = &;.

Theonem 1. [1, pp. 81-84] The system (1) is controllable if and
2 -1
only if the n x mi controllability matrix T' = [B,AB’A B, ...,An B)
has full rank n.

Example: Consider the nth order linear differential equation with

constant coefficients

@ EM@ e g™+ L v age) = uw .

. . . . (2-1)
This can be represented as a linear system as in (1), with & = g

B= (0,0, ...,0,1]T, and

El

o 1 0 . ) . 0 o |
0 0 1 ) . . 0 0
A=
0 0 0 0
0 0 0 0 1
™% %1 "2 & =%

The controllability matrix ' i s a square matrix, and has the same rank

E] , which is a lower triangular matrix

as the square matrix [An_lB,. .. JB>
with 1's on the diagonal, and hence has determinant 1. [ thus has full
rank n, and the system is controllable. Hence there is a function u

,E(nzl)

that will farce any given state (£(¢;).E'(%g),... (£9)) to any

given terminal state (53(751),2_.'(t1),...,E(n-1 (1)), far some ty > t,.
Definition 3. Thedual of the system (1) - (2) is the system

@y B = -aT3) + e

(5) ) = BEe),

where 3 € BL % ¢ RP,y 6 if". (Note that the dual of (4) -(5) is (1) - (2).

Theorem 2. {1, p.111] The system (1) - (2) is observable if and

only if itsdual is controllable.

Conoflany. The system (1) -(2) is observable if and only if the
i ix [cF %k Ty*"1¢7) has full rank =
n x np observability matrix [, 4°C 4u..5(47) ] has full rank =.
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Degénition 4. The system (1) - (2) with matricesA, B, and ¢ is
linearly equivalent to a system (1) - (2) with matrices D, E, and F
provided there is a real n x n invertible matrix T with D = TAT", E = TB,

and F = ¢77} (Linear equivalence is an equivalence relation.)

If we set & = Tx, where x isas in (1) - (2), «nd T isareal, in-
vertible n x n matrix, then 3 = (74T 1)z + (TB)u, and y = (CT"1)Z.
the other hand, if we have two linearly equivalent systems as in Defin-
ition 4, it isclear that ¥ = Tx satisfies the D-E-F system (1) - (2).
Thus two systems are linearly equivalent if and only if the state 'variables
are related by & = Tx, for some nonsingular real matrix T.

Furthermore, the controllability matrix T = [TB,(TAT_I)B,...,(TAT_I)n_lB]
has the same rank as the controllability matrix T = [B,AB,...,An_lB'], so
that any system linearly equivalent to a controllable (observable) system
is controllable (observable).

V¢ now give two applications of controllability and observability.

Application 1. |ldentity Observers 2, 4 . 1f (1) - (2)is
observable, then Definition 2 tells us that the output which results from

any input uniquely determines the initial state. However, this does not
tell us the initial state and subsequent behavior of the system. To get
this information, we use another system called an gpgerver Which simulates
the original system.

For example, let z: R —>En, and consider the system
(6) 2 =Fz + Gy + Hu,
where F, G, and H are respectively n x n, n x p, and n x m real matrices.
Notice that the state z of this system has as controls both the output
and the control of the original system (1) - (2). W wish to choose F,
G, and H so that z behaves like x. Setting 2 = X in (8) and using (2),

we get
(7) z=x=Ac+Bu=Fx +Glx + Hu ,
leading us to choose

(8) F

"

A-GC, “

(9) H

1]
oy ]

Hence (6) becomes



[

(16) oy} = clsr- @ +BDY'B - £iw}

The matrix function of 8, G(s) = C[sI - (A * BD_)]-1 B, is called the
transfer function matrix of the system (13) - (2), and gives a relation-
ship between the Laplace transforms of the control and of the output of
the system. This representation is well known and widely used in engineer-
ing applications.

The matrix F(s) = [sT - (At Bpjl’l in the transfer function matrix
is a matrix of rational functions with entries H'L’j(S) = R,LJ(S)/det[SI -
(4 + BpY, where R'zlj(s) are polynomials in s of degree less than n. One

question that is asked of the transformed system (16) concerns the

location of the poles of the system, i.e., the zeros of det[sI - (4 + BD)].

Hw much control do we have over the placement or assignment of these
poles? Since the poles are just the eigenvalues of A + BD, the following

theorem shows that we have the most control when (1) is controllable.

Theorem 4. [3] Given the system (1), and given an arbitrary set

S of n or fewer complex numbers closed under complex conjugation, there
exists a real m x » matrix D such that A + BD has the spectrum S, if and

only if (1) is controllable.

Note that Theorems 3 and 4 clearly illustrate the duality of the
concepts of controllability and observability.
T . .
Example: Let X = [E,Tﬂ and consider the real matrices

b
L8 3] ee (B e feed

in (1) and (2). With u{¢t) = 0 the state variables £(t), (%) execute
simple harmonic motion.
Here the controllability matrix is

b, b
r =[B,4B] =| 71 2!,
[ ] {bz '51]

and the observability matrix is

[c7,47cT)= [g; z] .

1

V¢ easily see that the system (1) - (2} is controllable if and only if
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(10) z2=(4A-GC)z +Gy + Bu .
The system (10) is called an identity Observer, because if z(0) = x(0),
then z(¢) = x(¢), for all t = 0.

Nw even if z(0) # x(0), we would like the z-system (10) to behaxe
like the z-system (1) as t increases. With this in mind, we use (e,)', (2),
(8), and (9) to obtain:

(11) 2(t) - x(t) = [Fa(e) + cox(t) + Bu(t)] - [Az(t) + Bu(t)]
Fa(t) t (GC - Ax(t) = Fla(t) - =(¥)] .

"

Solving this system of differential equations for z(z) - x(¢) gives

(12) z(¢) - x(¢)

e z0) - x(0)]

Hencetohavelimt_w [2(¢) - z(¢)] = 0 for 2(0) # 2(0), we need all the
eigenvalues of F to have negative real parts. Also, to have z(£) ~ x(¢)
as fast as possible as t + =, we would like the real parts of the eigen-
values of ¥ to be as large in modulus as possible. Thus we ask the
following question: can we choose G so that F = A - GC has any set of
eigenvalues we wish? The following theorem answers the question favorably

under the hypotheses of the observability of (1) -(2).

Theorem 3. fu4] Given the system (1) - (2), and given an arbitrary
set S of n or fewer complex numbers closed under complex conjugation,
there exists a real n x p matrix G such that A - GC has the spectrum 5,

if and only if (1) - (2) is observable.

Application 77. Pole Assignment. [31, [4] Suppose we wish to

modify the behavior of the state X in the system (1) by "linearly feeding
back” the state into the system. W& do this by replacing u with u * Dx,
where D is some m x n real matrix. Then (1) becomes

(13) z=(4AtBD)x t Bu.

Taking the Laplace transform of both sides of (13), assuming that x(0) = 0

and rearranging terms yields

(14) [sI - (4+BD)] * pglx} =B g {u}
Taking the Laplace transform of (2) yields
(15) £yl = ¢ - glx} .

The "transformed" system derived from (14) and (15) is



B# 0Oand it is observable if and only if ¢ # 0.
If welet G =[gl, 92]T , then
914 1-4g0
F=4-0G6C-=
LG, 9%

The characteristic polynomial of Fis

2
A4t (glc1 +g,6,0% + 1 - gie, 9,0,
So, if & denotes the sum of the eigenvalues of F and p denotes the pro-

duct, then we have
(A7) e1g) +c,9, = -5
-c,g, teg,=p-1.
The eigenvalues of F (zeros of the characteristic polynomial) are
uniquely detemined by their sum and product. W see that if C # 0
(the system (1) - (2) is observable) then for any s and p the system (17)

has a solution for g, ye This illustrates Theorem 3. Similar computa-

tions for this example illustrate Theorem 4.

IThis is part of a paper written at the end of a research project
sponsored by a grant from the National Science Foundation under its
Undergraduate Research Program at Southern Illinois University, Carbon-
dale. The research was directed by Professor Carl E. Langenhop.

2The theory and applications presented in this paper are a result
of a literature survey of these topics.
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ANOTHER APPLICATION
OF THE MEAN VALUE THEOREMS

by Nomman Schaumbergenr
Bronx Community Colfege of CUNY

The problem of determining whether e" or 7€ has the greater value
never fails to stimulate the interests of students in a course in calculus.
This problem, which was apparently first posed by the Swiss geometer,
Jacob Steiner, in the last contury, can be solved in a variety of ways,
most of which involve some clever trick. In this note we offer two
related approaches that use the mean value theorems of calculus: Thus,
they fit nicely into a first course.

Using f(x) = log x, it follows from the mean value theorem of
differential calculus that

log® - log e _

—}- e <e¢<m
m -8 c

2

Hence

Iogn—loge(i
e

T ~ €

orlogm -1<mw/e -1. Thuselogm< w <7 log e and, we have log 7 <
log e". Therefore, < el.
Nw letting f(z) = 1/x and using the mean value theorem of integral

calculus, we get

‘"é'z_— - i < <
fe x-(w e)c , esc¢csm.

A

Thus log ™ - loge = (T - e) and as above this produces the desired

oI

result.
It is interesting to note that these are not the only functions that

will accomplish our purpose. Thus, using fl(z) = x log x - x in the mean

value theorem of differential calculus or fix) = log x in the mean value
. . . U e .

theorem of integral calculus will in each case give e > w . The details

are similar to those above.

R~ >
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ON DETERM NI'NG FUNCTI ONS OF MATRI CES

by Chartes V. ALLison
Brigham Young University

S nce the tine of Cayley and Syl vester, there has been great interest
inthe conputation of matrix functions. For exanple, to conpute the
natri x exponenti al eAt, which satisfies the matrix differential equation
with constant coefficients
X(t) = AX(2),
net hods have been devel oped which rely upon properties of differential
equations, the Jordan canonical form or results fromlinear al gebra

such as nornality, diagonalizability, etc. ([Coddington 6 Levinson, 1955],

[Fulmer, 19753,[Marcus 6 Ming, 19641). Mst techni ques for cal cul ating
afunction f of a matrix A express f(4) as a polynomal in A

d all such nethods, the sinplest in concept are those based on an
interpol ation formul a introduced by[ Syl vester, 18831,

o n (A4 -x.I)
FA) = L g ey P y F3g) 1)

vhi ch hol ds when A has distinct eigenval ues (A 52,, ..,A ), lying within
the circle of convergence of f(z).

The notion of a matrix functionis usually seen for the first tine
ina mtrix anal ysis course or in a course on the theory of ordinary
differential equations, which are graduate courses at nost schools. The
purpose of this note is to give a devel opment of Sylvester's formla
accessi bl e to the sophonore or junior in nathematics.

A proof of (1) follows fromthe fol |l owing generalization of the
division algorithm which is a nodification of a theoremof[Friednan,
19561.

Theorem 1. Let p(z) be a polynomal wth distinct roots, and | et
f(z) be a function analytic in a donmain D, which contains the roots of

p(z). Then there exists a unique pol ynomal r(z), where deg(r) = deg(p) - 1,

and a function k(z), analytic in D, such that

f(z) = p(2)h(z) + r(2). (2)

Proof. Denote the roots of p(z) by Ags =1, ..., n, With Ai :A;7
=2 = 4, Let r(z) be the unique polynomal of degree n - 1 that agrees )
with f(z) at each Ai(this is the LaGrange interpol ating pol ynom al,
which is given by the formul a

1

E” 5 (z - A.)

=
=)= Loy Ties T - Aj)mj’ )

and defines

_ f(z) - r(3)
hz) = ==y . (3)

Since each zero of the denomnator in (3) is also a zero of the
nurerator, the singularities of h(z) are renovable. i.e.

limz—»)\i (z —)\7:) h(z) = 0,
hence, #(z) is analytic and the result foll ows.

In order to conpute f(4), we shall let p(z) in the above theorem
be the characteristic polynonial of A and consider equation (2). By the
Cayley - Hanmilton theorem f(4) = r(4) and

FO =20, 5L, L (1)

The equations (4) represent a |inear systemwhich can be sol ved for
the n-coefficients of »(z), and the calculation of f(4) = r(4) is
strai ght f or war d.

Notice that the LaGrange interpolating formulafor »(z) satisfying
(4) shows that r(4) coincides with (1), by which f£(4) may be conputed

directly. Ve illustrate the two processes.

Exanpl e 1

i) Conpute f(4) = e‘ﬂ where A = ( ég ). A has characteristic poly-
nomal p(~) = (1 -2)(2-2z), hence M=l 2 S nce r(z) is of the
form a,z + a, we obtain the system

1

e = a +ta
1
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with solutions a; = e? - e, a, = 2e - €2, Thus,
A =
e =r(4) = aA + aoI
= (e2 - e)( (l)g ) + (2¢ -e2)( %)
- (° 3(e? - e)).
Py
ii) By (1)
_v2 2 (4 -2.D)
fay = 21_1 Tig . e 4 f)
()‘i - Aj)
-13
( 00) e (01) e?
= +

1

e 3(e? - e) .
0o e?

Note that ii) is more efficient for machine computation.

The procedure for the general case follows from Theorem 2, which is
based on an extension of (1), first given by [Bucheim, 18861 (cf. [Marcus
& Ming, 1964], [Rinehart, 1955]).

Theorem 2, Let p(z) be a polynomial of degree n with k distinct
roots, k = n, and let f(z) be a function analytic in a domain D contain-
ing the roots of p(z). Then r(z) and k(2) exist as in Theorem 1 and (2)
holds.

Proof. Let m, denote the multiplicity of each root A; of p(z), so
that 2';_1 m, = n. Let r(z) be the polynomial of degree n - 1 that agrees
with f(z) at each )i’ and whose derivatives of all orders up to my -4

agree with those of f(z) at each }‘i’ i.e.,

f(j)(Ai) - r(j)(li)’ j =0, 1, ...y mi l; 7= I, ...

—~
(3]

The polynomial r»{(z) exists and is unique, being merely a form of the
general Hermite osculating polynomial [Coddington & Levinson, 19551,
[Rinehart, 1955].

We again form the quotient (3) and notice that if ?\1: has multiplicity
M then Az is a zero of order at least m. -1 of the numerator of h(z),

and we apple L'Hospital's rulemi - 1 times to obtain a finite limit,

-
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limz—»‘i h(z) = 1imz_% M- Vg < w, 2=1, ..., k,

hence k(z) is analytic in D and (2) follows.

Again we notice that (5) is a system of equations yielding the

coefficients of r(z), and we compute f(4) = r(4) as before.

Example 2
Compute sin{4), where A = ( é:i‘ ). A has characteristic polynomial
p(z) = (1 - 2)2, hence A =1, m = 2. Since r(z) and »'(z) have respectively

the forms a,z + a, and a,, we obtain the system

sin(l) = a + a,

cos(l) = a,

with solutions = cos(l), a; = sin(1) - cos(1).
Then,

1

sin(4) = cos(1)( 33 ) + [ sin(1) - cos(1)IC 10 )

(sin(l) 3cos(l))
0 sin(1) /)"
For large matrices, it would be computationally more efficient to evaluate
f(4) directly from the Hermite formula.

Remarks

Notice that the foregoing development is valid i f the minimum poly-
nomial of 4 is used in place of the characteristic polynomial. The results
likewise hold for any scalar function f(z) provided that the right side
of (2) is well defined for each characteristic root. The purpose for the
requirement of analyticity here was to maintain an elementary exposition
by avoiding the subtleties involved in shifting from a scalar to a matrix
argument in f(z) (see [Rinehart, 19551 ). It is clear that any analytic
function can support a matrix argument by virtue of its power series.
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REGIONAL MEETING OF MAA

Many regional meeting of the Mathematical Association
regularly have sessions for undergraduate papers. |f two or
more colleges and at least one local chapter help sponsor or
participate in such undergraduate sessions, financial help is
available up to $50 for one local chapter to defray postage
and other expenses. Send request to:

Dr. Richard A. Good
Secretary-Treasurer, Pi Mi Epsilon
Department of Mathematics

The University of Maryland
College Park, Maryland 20742
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MATCHING PRIZE FUND

If your chapter presents awards for outstanding mathematical
papers or student acheivement i n mathematics, you may apply
to the National Office to match the amount spent by your
chapter. For example, $30 of awards can result in the chapter
receiving $15 reimbursement from the National Office. These
funds may also be used for the rental of mathematical films.
To apply, or for more information, write to:

Dr. Richard A. Good
Secretary-Treasurer, Pi Mu Epsilon
Department of Mathematics

The University of Maryland
College Park, Maryland 20742
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HCW NOT TO SOLVE THE QUADRATIC FORMULA

by Professon V. C. Harrnis
San Diego State Univensity

(Dedicated to William L. Robinson)

The quadratic equation can be written in the foomax tbxte =0
where a, b, ¢ are assumed to be real and a # 0. \a can divide by a, or

instead, without loss of generality, assume a = 1, so that we have
22 +br+e=o0

to solve for X. The solution consists of the values of X so that (x,b,¢)
lies on the surface given by

x2+xy+z=04
A rotation of m/8 in the xy-plane:
_1 = 1 L F
x—§/2+/2_ac'—-2-/2-/2—y'
1 = 1 :
y-§/2-|/2_x'+§f2+\/5y'
transforms x2+ xy * z = 0 into

x'2 | 12

b4

2(/2 - 1) 2(v2Z + 1) i

(acl_,b_,c)

(0,b,c)

(xz,b,c)

22 +xy +2=0
FIGURE 1
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The graph of this is a hyperbolic paraboloid, as shown in Figure 1; a
vertical line through (b,e) in the horizontal yz-plane intersects the
surface in the (two or one) real solutions. SO the surface represents
all solutions of all quadratics with real solutions, that is, for

y%2 - 422 0. For a constant, as b varies, the roots move along a hyper-
bola; for & constant, as a varies, the roots move along a parabola.

When y2 - 4z < 0 the roots are imaginary, the real part of the root
isSR(z) = - % b and the imaginary part is I(x) = + % Y4¢ - b%.  Nw two
surfaces are given, the part of the plane = = - % y for which 2 > y2/u
and the elliptic paraboloid X = + % Wfor the real and the imag-

inary parts separately;

\

1 3&2 x:tl\/vfz-yz

FI GURE 2

Lines parallel to the X axis through points (b,e) in the y3-plane
give the real and imaginary parts of the solution, respectively. The
manner in which the roots vary as b or ¢ varies is evident from the
figures.

Thus in these surfaces you see all solutions of all quadratics with
real coefficients; any such quadratic can be solved graphically using the
figures in Figure 2. But since as every schoolboy knows, in the general
case (not necessarily a= 1)

:-bifl;?-—uac

X °a

it is clear that the method of this paper shows how not to solve the

quadratic equation.
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A GENERALI ZATI ON OF APPOLONIUS' THEOREM

by Hamid Ghannadian
Texas Tech University

In a paper of P. Jordan and J. Van Neumann (3), a theorem of
Appollonius was studied very carefully. |n fact this theorem is a
necessary and sufficient condition for a normed vector space to be an

nner product space. In this paper we study a generalization of
Appolonius Theorem to Euclidean space of dimension n, for #n = 3.

1. Notation and Definition

A Euclidean space of dimension » will be denoted by E'n. Vectors

are indicated by Capital Letters. The inner product of two vector AB
will be denoted by (4,B). Ve shall also use the standard notation of
the elementary linear algebra.

2. Theorem {Apollonius)
Let {4,B} be linearly independent; then ||4+B||2 + ||4-B||2 = 2]||4]|2 +
2||B12.

Proof. The Theorem means that: For the parallelogram OA BC where
¢ =A *+ B, the sum of squares of the diagonals is equal to the sum of
squares of the four sides (this is a generalization of the Pythagorem

Theorem due to Apollonicus). Ve observe that
|A+B||2= (A+B,A+B)
= (4,4) + 2(4,B) + (B,B).
l4-B||?= (A-B,A-B)
= (4,A) + -2(4,B) + (B,B).
Therefore: la+B)|2 + [4-BlI? = 2]412 + 2||B|2.

3. A Generalization 1O E,

Let {A, Ay, A3} be linearly independent. The parallelepiped gen- -
erated by this set of vectors has four diagonals which can be denoted by

vectors



522

Dy =4, +4, +4, D, =A +4, -4,

D3—A +A3—Az, L}=A2+A3—A1,
and “ 3

Lioy W05 02 =4 T 14 02

Proof. We note that
Dy 12 = 1" 4ap + 4, + 44 |2

= DAy 12+ A, 12+ 14, 12+ 2041,4,) + 2(4),44) + 2(4,,4,),
Dy 112 = 1l 4y 112 + 11 43 112 + 0l 45 112 - 2(4),45) - 2(4,,45) + 2(43,4,),
g 12 = 1Ay 12+ 0l 45 112 + 11 4, 12 + 204,,45) - 2(41,4,) - 2(45,4,),
Iy 12 =004, 02 + 1 A5 12 + 1 Ay 112 + 2(4,,4,) - 2(4,,4)) - 2(4;,4,).
Thus:
D, 12+ 11D, 12+ Dy 2+ 1l D, 12 = wll 4y 112+ ull 4 1 + 4]l 44 12
or

Tooall 0 02 = % T 0 4 12

4, The Number, of Diagonals of a Hyperparallelepiped.

Let { Al""’An } be a set of linearly independent vectors in En'

Then the number of diagonals of the hyperparallelepiped generated by this
n-1

set is 2

Proof. Ore observes that the diagonals can be expressed by vectors.
_tn
D, = ijl A;

- n = = P
Dk—zj#k/lj Ak,k 1, veuy 7

g=1
n
3 @ 4 1 n
(n-1)k, R R R g e
n-1 k=1
p.=-Y" A
3 F=1 g
But we have considered each vector and its negative. !N reality the

number of Dg's expressed above is twice as may as the number of diagon-
als. Nw it is clear that the number of elements of the form Dpk, ... kp
s (;) Therefore the number of all D's is 2;:0 p) = 2°. Consequently
the number of the diagonals is

L (") = 21
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5. lema

Let {Al, . A } be a set of linearly independent vectors in E
Then the number of terms of the form (4, Aé) i # 4 of | Z ”2
isn? - n.

Proof. It is clear that

7} n n
. AL 12 =% re : ;
[y = P+ (454
o k=1
Since the number of all the terms is #n2 and the number of elements of the
form HAJH2 isn, it follows that the number of terms of the form (A AL,
3

'L#J,lsnz—n

6. lama

Let {4,, ...,An} be a set of linearly independent vectors in E,-
Then the number of negative terms, in

x
I Ty A = Do 4517 is 2k(n-k).

The proof is quite clear and will be omitted.
7. lema

Let us consider the vector D ,'s of 54, which are the diagonals of
the hyperparallelpiped generated by {A ""An}' In considering
27}111 IIp ” , the number of all the terms of the form (Ai'Ag)’ i#gis

-1 (n%-n). W& shall prove that half of them are negative. |n order to
prove this we observe that for D, we have (1) (m-1) (’11) negative terms

and in general we have h(n-h) (Z) in D, which have h negative vectors.
Thus the number of negative terms is

N = Iz, kn-k) (3)-

Ore can obtain
n—l _ Ny Ny
k(k) = n(2")() - n,

and
n
ZZ=: kz(Z) = %z' (n+n?) - n2,

Therefore




§. Theonem (Generalization of 2)

Let Dys «vvs D(Qn__w) be the diagonals of the parallelepiped generated
by {A, ..., A}, aset of linearly independent vectors in En’ Then
2n-1 2 n-1 ¢n s
p e =2 . ALl
1o, ol Yh.y a2,
n-1
Proof. In order to obtain 23':1 Ipl?2 by Lemma 7, we observe the terms

of the form (Ai’Ag)’ 1 # J cancel each other which proves the theorem.
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A RESEARCH PROBLEM
FOR COMPUTER ASSI STED | NVESTI GATI ON

by Dn. Riechard Andree
University of OkLahoma

The following problem is suggested for your investigation. A com-
puter may be helpful in the investigation, but the use of (un)common
sense (i.e., mathematical skill) is also desirable. ©f course the problem

can be investigated without computer assistance if desired.

4 by 4 Prime Squares

There are many arrangements of digits into the 16 cells of a 4 by 4
array such that each row and each column contains a four-digit prime.

Two such arrangements might be:

3 13|59 3] 4 4|9
5 o 2|1 3/01(2]3
2 |2 (7] 3 52 |73
9 | 3| 31}7 L9, 1,3 |7

Your problem is to investigate the possibility of finding one or
more such squares which not only contain four-digit primes in each row
and each column, but the diagonals (upper left to lower right and lower
left to upper right) are also four-digit primes. |n the cases here, the
diagonals are divisible by 17 and 11 respectively.

You may also wish to investigate similar possibilities for 5-digit

and 6-digit primes in appropriate size arrays.

<> ._
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WHAT HE REALLY MEANT WAS .

Ary student who has ever sat or slept through a mathematics course

knows that certain words and phrases occur very frequently. This glossary

might eliminate some confusion.

When

D

(2)

(3)

(w)
(5)

(8)

(7

(8)

(9)

(10)

the instructor says:

trivial

simple

easy

clear

obvious

certainly

left as an exercise
for the student

is well known

can be shown

the diligent student
can show

He really means:

The student might be able to do it
in three hours or so.

An "A" student can do it in a week

or so.

This topic would make a good Master's
Thesis.

The instructor can do it (he thinks).

The instructor is sure it isin his
notes somewhere.

The instructor saw one of his instructors

do it but has completely forgotten how
it was done.

The instructor lost his notes.

The instructor heard that someone once
did it.
The instructor thinks it might be true,

but has no idea how to prove it.

It's an unsolved problem--probably
harder than Fermat's Last Theorem.

the Editor

= ==

PUZZLE SECTION

This department i s for the enjoyment of those readers who are _~ _
addicted to working crossword puzzles or who find an occasional mathe-
matical puzzle attractive. W consider mathematical puzzles to be
problems involving numbers, geometric figures, patterns, or logic whose
solution consists of an answer immediately recognizable as correct by
simple observation, and not necessitating a formal mathematical proof.
Although logical reasoning of a sort must be used to solve a puzzle in
this section, little or no use of algebra, geometry, or calculus will be
necessary. Admittedly, this statement does not serve to precisely dis-
tinguish material which might well be the domain of the Problem Depart-
ment, but the Editor reserves the right to meke an occasional arbitrary
decision and will publish puzzles submitted by readers when deemed
suitable for this department and. believed to be new or not accessible
i n books. Material not used here wilt be sent to the Problem Editor for
consideration i n the Problem Department, i f appropriate, or returned to
the author.

Address all proposed puzzles, puzzle solutions or other correspond-
ence to David Ballew, Editor of the PZ Mu Epsilon Journal, Department of
Mathematical Sciences, South Dakota School of Mines and Technology,
Rapid City, South Dakota, 57701. Please do not send such material to
the Problem Editor as this will delay your recognition as a contributor
to this department. Deadlines for solutions of puzzles appearing in
each Fall issue i s the following March 1, and that for each Spring issue,
the following September 75.

THE JOURNAL WISHES TO NOTE THE PASSING OF R. ROBINSON ROWE
THIS PAST SPRING. HE WAS A FREQUENT CONTRIBUTOR TO THE
JOURNAL AND A GREAT MATHACROSTIC PUZZLE MAKER.
T

G
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N 1|0 2 zZ 3|R 4D 5 ([A 6 7|Uu 8 9 [H10 |L 11 12 (C 13
T 14 |I 15 |P 16 R 17 |L 18 19 |T 20 21 22 |J 23 24 [E 25

F 26 T 27 | X 28 0 29 |N 30 31 |E 32 33 34 35 | I 36

E 37 W 38 |J 39 Z 40 (C 41 42 | s 43 44 45 |0 46 47 |F 48

I 49 H 50 |V 51 M 52 |F 53 54 |L 55 56 57 |A 58 59

R 60 (U 61 |Z 62 |[K 63 |W64 |V 65 66 |Z 67 68 U 69 70

G 7118 72 R73 |W74 075 |F 76 77 |H 78 79 80 81 [U 82

D83 |S 84 (WB5|L 86 (B 87 |G 88 [N 89 90 |J 91 92 |W 93 94 (5 95

E 96 (M 97 |Q 98 |Y 99 T 100|E 101 102|p 103 104 105(K 106 107| & 108

G 109 I 110 S 111|10 112|z 113 114|L 115 116|V 117 D 118

B 119|Q 120|V 121|C 122(P 123(K 124{A 125 126 127 128|H 129 130|N 131

Q 132 Q 133|Y 134; 1 135 E 136 137|J 138 139 140({M 141 142

K 143|M 144 lY 145;X 146{ Z 147 148/ A 149 150 151}H 152 153

G 154|S 155 "F 156/ W 157|Y 158 1591H 160 161 162}V 163 P 164

I
R 165 N 166, Q 167 L 168|I 169 170}{H 171 172 173|c 174 175|F 176
|
0 177 0 178 s 179|L 180|B 181{A 182 183!

)

0
N

socket in head of golf club for shaft
bent at the tip like a hook

perpl exes; puzzles

join forces (2 wds.)

garden in which Aristotle taught
envel ope of the normals to a curve
doubl e- di sked toy with string to
connecting shaft (comp.)

act to suit the tinme or occasion

in 1896 he and de |a Vallée Poussin
i ndePendent I'y published the first
proofs of the Prime Nunber Theorem

. exposed to capture

to whom the internediate val ue
theorem for derivatives is due

unproved assertion; dognatic state-
nent (2 wds.)

in quaternion algebra, an operator
which alters the direction of a
vector but not its length

I ocal and terrPorary anem a due to
obstruction of circulation

de-alcoholized Prohibition drink
{comp.)

characteristic of the null set
clues to conjectures

Boheni an dance in two forns

must' pitch for effective hurler

systemwith el enents related by a
reflexive, transitive and anti-
symetric relation

conj oi ning of contradictory ternms
E. W Hornung's roguish cracksman
upsi de down or sideways relative to
one another (comp.)

abounding in contingencies

article froma broken set

devel oper of atnospheric steam
engi ne

86

6 149 58 125 182
181 119 12 175 24 87 130 140
150 ~41 162 19 104 122 174 114
5 172 31 159 118 83
96 37 25 101 32 136
26 176 116 76 53 156 48
109 71 34 154
~T0 68 152 129 50 171 57 78
15 ~36 49 66 169 110 102 135
23 91 170 54 77 138 39
763 161 92 124 143 45 106
107 55 180 115 127 11 18 168
97 7 144 52 44 141
"89 173 T48 13T 30 42 1 166
26 105 75 70 29 177 11z 178
~Is 123 103 164 147
120 133 88 I08 "98 56 167 132
T73 717 126 165 60 4
95 72 155 111 43 179 84 80
100 27 “94 ~20 14
61 82 137 8 151 21 69 2
765 9 117 51 121 "8I 163
33 64 139 74 38 59 85 157 093
22 ~28 146 153
T45 ~47 799 ~35 158 134 183
62 T47 "67 40 90 3 128 113
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Mathacrostic No. 6

submitted by Joseph P. E Konhauser
Macalesten Cotlege, St. Paul, Minnesota

Like the preceeding five, this acrostic is a keyed anagram. The
183 letters to be entered in the diagram in the numbered spaces will be
identical with those in the 26 key words at matching numbers and the key
letters have been entered in the diagram to assist in correlation during
your solution. Whm completed, the initial letterswill give a famous
author and the title of his equally famous book. The diagram will be a

quotation from that book. (See preceeding two pages.)

A single Cut

submitted by Pier Square
University of Intern Polation

Is it possible to make a single cut in a 9 x 16 rectangle, rearrange
the two parts and get a 12 x 12 rectangle?

The Bridge Gare

submitted by Pien Square
Univernsity of Inten Polation

Four men named Banker, Waiter, Baker and Farmer are playing bridge.
Each man's name is another man's job. |f the baker is Mr. Baker's
partner, if Mk Banker's partner is the farmer and if at Mr. Farmer's
right is the waiter, who is sitting on the banker's left?

Solutions

Mathacrostic No. 4 [Fall, 1977]
ALso so0fved by JOFFH KONHAUER Macalesten College; VICTOR FESER,
Mary College; RCHARD STRATTON, Coforado Springs; CHARLIES W, TRIGG, San

Diego. (See Spring issue for solution.)

531
Mathacrostic No. 5 [Spring, 1978]
Definitions and key:
A. Heave E. Youngs * modulus 1. Era M. Theta
B. Equipotential F. Differentiate J. Newton N. Hezekiah
C. Northwest G. Unconditional K.  Elbow 0. Epact
D. Referee H. Diophantine L. VYpsilanti P. Cowwheat
Q. Adder V. Brachistochrone Z. c. Zoroastrianism
R. Newest W. Utmost a. Utica d. Leafed
S.  Tamil X. Riffraff b. Zenos * e. Eratosthenes
T. [Eggbeater Y. Yarrow paradox f. Sieve

First letters: HENRY DUDENEY THE CANTERBURY RUZAES

Quotation: |t is extraordinary what fascination a good puzzle has for
a great many people. We know the thing to be of trivial importance yet
we are impelled to master it and when we have succeeded there is a
pleasure and a sense of satisfaction that are a quite sufficient reward
for our trouble even when there i s no prize to be won.

Solved by RICHARD D. SIRATTON, Ceforado Springs, Colforado; VICTOR
FESER, Mary Coflege; ROBERT PRIELIPP, University of Wisconsin-Oshkosh;
JOFH KONHAUSR Macalester College; SDNEY PENNER, B-tonx Community
Coflege; ELENA SABA, Logoia University, New Orfeans; LOUIS CAIROLI, Kansas
State Univensity; SISTER STEFHANIE SOYAN, Georgian Couwrt Coflege;
FANETTE BICKLEY, Webster Groves High School, Missowri; DEBRA MULLER,
ADelphi; ROLAN CHRSTOFFERSON; the Proposer, R. ROBNSON ROWE and the
Editon.

Greek Crosses and Squares [Fall, 1977]
(a) Use 4 of these: to get: or to get:

(b) Use 4 of these: to get:
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(c) Use 1 of this: to get: or to get: Countdown (Spring, 1978]
All possible solutions to the following long division problem

and 4 of these:

/o
he |, ?
2
(d) Use 1 each of to get: or to get:
these:
Z)-20
- 'k are:
+ +
o5 A 25 1001 1012 1023 1035 1046 1067
2 2 917654321 917544321 917443321 916443221 916342211 935332211
2 3 ; 927654321 927544321 936543321 926443211 926342211
2 937654321 937544321 946543321 9u5443221 935433211 1068
2 . 947654321 947544321 956543321 955443211 94543321
(e) Use 1 of this: to get: No one has yet 957654321 056544321 5138211 925332211
I%”;‘ﬁetg?aﬁ‘t"g:'oosg 967654321 966544321 1034 1045 1056 935332211
' 977654321
We leave it open. 27601921 936443221 926342211 926332211 1079
987654321 986544321 e
997654321 965443221 936342211 945332211
955433211 955433211 916141211
1013 925232211
ue544321 1057 1090
d 4 of these: 956544321
and < ot these: ‘ 916332211 916151211
2 935332211
a2l
/2 a The top number is the divisor and the list represents the dividends.
2/2 Solved by ROLAN CHRISTOFFERSON.

Pantial solutions by: VICTOR FESER, Mary Coflege; RANDALL SCHEER,
SUNY at Potsdam; RANDY ISTRANEK, Univensity of Wisconsin-Parkside;
KATHLEEN HENRY, Tona Coffege; LOUIS CAIROLI, Kansas State University; and !

Mathematical Wond Chains [Spring, 1978]
Solutions -- One Letter Changes

(a) MATH (b) LINE (¢) ZERO (d) SEVEN

ROLAN CHRISTOFFERSON. MATE SINE HERO SEVER

‘ MOTE SIRE HERD SAVER

NOTE SURE HELD SAYER

Cross-number Puzzle [Fall 1977] (Bob Prielipp) SURD :8ég Eéigg

Late sofutions wene neceived from PHILIP A. LIPPERT, Carleton (Louis Cairoli) HOOT PRIER
College and VICTOR FESER, Mary College. (See Spring, 1978 issue for ROOT EFF;:,\E/E -

solution.) (Kathleen Henry) PRIME

(Louis Cairoli)
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Solutions -- Two L etter Changes
(a) LINES (b) CIRCLE (c) GROUP (d) SLOPE (e) LINEAR
LURES CHICLE GROWS STORE LINERS
CURDS CHICKS FROGS STOAT CIDERS
CURVE SHACKS FANGS STEAD ORDERS
SHARDS RINGS SQUAD
BEARDS FINES EQUAL
BEASTS FILLS
BEAUTY FIELD

(all by Victor Feser)

Solved by VICTOR FESER, Mary Coflege; LOUIS CAIROLI, Kansas State
Univensity; KATHLEEN HENRY, Tona Coflege; ROBERT PRIELIPP, University of
Wisconsin-0shkosh; RANDY ISTVANEK, University of Wisconsin-Parkside;
VIRGINIA DWYER, CEZemson University.

WILL YOUR CHAPTER BE REPRESENTED IN DULUTH?

It is time to be making plans t o send an undergraduate delegate
or speaker from your chapter to attend the annual meeting of Pi
M1 Epsilon in Duluth, Minnesota during August, 1979. Each
speaker who presents a paper will receive travel funds of up to
$400, and each delegate, up to $200.

S

POSTERS AVAILABLE FOR LOCAL ANNOUNCEMENTS

At the suggestion of the Pi Mu Epsilon Council we have had a
supply of 10 x 1u4-inch Fraternity crests printed. One in
each color will be sent free to each local chapter on request.
Additional posters may be ordered at the following rates:

(1) Purple on goldenrod stock - = = = = $1.50/dozen,
(2) Purple and lavendar on goldenrod - $2.,00/dozen.

‘ LOCAL AWARDS $

I f your chapter has presented or will present awards this
year to either undergraduates or graduates (whether members
of Pi Mu Epsilon or not), please send the names of the
recipients to the Editor for publication in the Journal.

R
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GLEANINGS FROM CHAPTER REPORTS

ARKANSAS BETA at Hendrix College heard a variety of papers during
the year. Beth Posey reported on her trip to the national Pi Mu Epsilon
meeting. Mark Button, Beth Posey, Jon VanDen Heuvel, Janet Dillahunty,
Lowis Beck, Julie Anderson, John Mewriifl, and Sandy Scrimshire presented
papers to the chapter, at the Oklahoma-Arkansas MAA meeting, and in coll-
oquia at the University of Arkansas, the University of the South, and
Southwestern at Memphis. Students from the University of Arkansas at
Pine Bluff and the University of Mississippi presented colloquia at
Hendrix. As a result of this activity, a joint colloquium has been
scheduled in the spring of 1979 hosted by Southwestern at Memphis.

Guest speakers and their titles were: ELizabeth Taylo , "Least
Squares Orthogonal Gram Polynomial Approximations of Commodity Market
Prices'; Da. Stephen Puckette(University of the South), "Continuous
Square Roots of Functions"; Da. Gordon Johnson(University of Houston),
"Convex Sets"; Dr. Satya Deo (University of Arkansas), "Some Aspects of
Cantor Sets+; Dr. Steve Smith (Harding College), "The Lighter Side of

Mathematics".

FLORIDA GAMMA at Eckerd College heard twelve papers: Robert Meacham,
"Some Problems in Plasticity'; Bayan Wallface, "Search for a Viable First
Principle of Physics?; Robeat Meacham, "What Does an Applied Mathemati-
cian Do?"; Iaving Foster, "Variations on a Theme--Living with a 17th
Century Mind"; Dougfas Boynton and Lans 0Lson, "Limits to Growth";

Geonge Lofquist,"How Long Should an Amber Light Stay Yellow?"; Jael
Browley, "Gambler's Ruin-; Sid Smith, "Time and Thought Patterns'; Pro{.
J. Sutherland Frame, "Matrix Functions and Applications"; Rick Paarish,
"Harmonic Series"; BifLy Maddox, "Transition Matrices”; and Janet Cowrsey,

"Linear Programming Approach to the School Bussing Problem".
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FLORIDA EPSLON at the University of South Florida heard a variety
of papers and talks including: D, 0scar Garcia, "Mini Computers, Micro-
processors and Their Simulation'; Jon{ Hensch, "Infinitesimal Calculus';
Dn. Don HilL, "Teaching Mathematics in Africa: A Peace Corps Experience';
Dr. Robert Shannon, "Some Observations on the Relationship of Mathematics
to Economics; Da. Charfes Zaiontz, "Computability Or Uncomputability";
Dn. Syfvan BLock, '"The USF Comstar Satellite Experiment"; Dr. Kent Nagle,
"Problems of Pursuit: The Submarine-Destroyer Experiment'; Dh. James
Higg.ins, "Subjective Probability: An Introduction to Bayesian Statistics";
Mario Pita, "Analytic Functions and Elementary Particles"; Professor A. W,
Goodman, "Chromatic Graphs'; Professon Seymour Schuster, "Topics in Graph
Theory"; Da. John Twiner, "An Introduction to Robust Estimators of Location";
Dr. Sonia Forseth, man Artist Looks at Mathematics"; Progesson Hans
Zassenhaus, "The Wak of Gauss in Number Theory and Applied Mathematics";
Dn. Heinrnick Eichonn, “Least Squares Adjustments of Probabilistic Constraints
and Other 0ddities"; Da. Joseph Liang, "The Four Color Problem and Its

Recent Computer Solution'; David Williams, "Fractional Differentiation".
In addition. three students presented twenty-five minute talks at the
Florida Section of the MAA meeting.

IOWA ALPHA at lowa State University heard Professon Richard Sprague's
lecture on "Mathematical Words" at the Annual |nitiation banquet.

KENTUCKY GAMMA at Murray State College heard two talks during the
year: "Bwornian Movement" by Dr. Hagood and "The Relationship Between
Mathematics and Computer Science™ by Ross Suyder. The chapter helped with
the Annual Western Kentucky Regional High School Mathematics and Science
Fair.

MASSACHUSETTS GAMMA at Bridgewater State College held monthly problem
solving sessions and worked as high school and college tutors for the
PROGRESS/QUTREACH Program. The chapter heard a lecture by Dr. Muvray
Abramson and Susan Marshall on "Mathematics and Education in England."

MISSOURI GAMMA at St. Louis University heard talks by Batnard Smith,
"Magic Squares, Cubes and Hypercubes"; Thomas Sweeney, "0,1 is Not Compact:
A Discussion of Hyperreals"; and Becky Kirkpatrick, "variations on Closure
of a Set". The chapter participated in the Fourth Annual Pi M1 Epsilon
Bi-State Student Conference sponsored by Illinois Delta at SIU-Carbondale.
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Missouri Garma speakers were: Kathleen Cain, "Atonal Music - Organized

Chaos"; Al§redo Garcia, "The Digital Curve - Techniques in Printer Plot-
ting"; William Kottmeyer, "A Method for the Solution of Stiff Ordinary
Differential Equations"; Barbara Reynold, "The Rise and Fall of Roman--
Numerals''; and Marie Moranarco, '"Map Projections",

MISSOURI DELTA at Westminster College heard Professon M. Z. WilLiams
speak on "Mathematical Games and Puzzles"; Di. Kent Palmesr speak on "The
Clouds of Venus"; and at the initiation, Professorn Charles Stuth spoke on

"Perfect Numbers - Two Thousand Years of Mathematics".

NEW JERSEY DELTA at Seton Hall held four meetings during the year.
The chapter heard Ronald Infante speak on '"Continued Harmonies and Con-

tinued Fractions" and saw two films on mathematics.

NORTH CAROLINA GAMMA at North Carolina State University heard papers
by Professon Aumstrong Maltbie, "Mathematical Potpourri'; James Bergdn,
"The Actuarial Profession - Performance, Training and Opportunities";

Dn. J. M. Ontega, "Mathematics and the Real World". The chapter also

viewed two mathematical films.

OHIO NJ at the University of Akron presented an orientation for
newly enrolled mathematics majors and heard D1. Jefgrey Mclean speak on
"The Artist as a Geometer."

PENNSYLVANIA NU at Edinboro State College heard programs given by:
Dr. Richard Reese, "Solution to the Four Color Problem"; Di. John Lane,
"Mathematical Nonsense'; Dx, Adyappan Nair, "Functions of Regular Varia-
tion"; WilLiam EfLing, "Generalized Inverses"; Dannal PLatt, "Maxwell
Distribution". Six chapter members attended the Alleghany Mountain

meeting of the MAA.

PENNSYLVANIA THETA at Drexel heard John Staib speak on "Solved:
The Four Color Problem" and heard Bruce Wetzel speak on "Queuing Theory."

SOUTH CAROLINA GAMMA at the College of Charleston heard Nancy Rallis
speak on topology, William Caldwell speak on computers, and Katen Belf
speak on stochastic processes. In addition, the chapter saw the film,

"Let Us Teach Guessing" by Polya.



SUJH DAOIA BETA at the South Dakota School of Mines and Technology
heard a talk by Progesson David Ballew on "Finding the Volume of a Hyper-

cube.” The chapter helped sponsor the Western South Dakota Mathematics
Contest.

TEXAS BPSLON at San Houston State (1976-77) heard Dn. Hunsucker
speak on " Recreational Mathematics" and D, Loefffer on the topic,

"Future Jobs."  The chapter also viewed demonstrations by the Chemistry
and Physics Departments.

TEXAS BEPILON at San Houston State (1977-78) heard D, Rich speak on
four-dimensional geometry and Da. Luning speak on Galileo's and Newton's
studies of gravity- The chapter also viewed films and had a job seminar
where six people from different fields discussed how education related to
their work.

VIRGINIA GAMMA at James Madison University heard WiZZiam Sanders

speak at the annual banquet. |n addition, the chapter sponsored a book
sale as a fund raising activity.

AN\ \R R

ANECDOTES WANTED

W wish to publish a collection of anecdotes about well-
known mathematicians. If you are interested in contributing,
please write to:

Peter Borwein

Department of Mathematics
University of British Columbia
Vancouver, B.C., Canada

V6T 1W5

or
Maria Klawe
Department of Computer Science
University of Toronto
Toronto, Ontario, Canada
M5S 1A7

For each anecdote please include your source and your assess-
ment of its truth (as a probability between 0 and 1).
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PROBLEM DEPARTMENT

Edited by Leon Bankof4
Los Angeles, California

-~

This departrient welcomes problems believed to be new and at a Zevef
appropriate for the readers of this journal. Old problems displaying
novel and elegant methods of solution are also acceptable. e choice
of proposals for publication will be based on the editor's evaluation
of their anticipated reader response and also on their intrinsic interest.
Proposals should be accompanied by solutions i f available and by any
information that will assist the editor. Challenging conjectures and
problem proposals not accompanied by solutions will be designated by an
asterisk (#*).

To facilitate consideration Of solutions for publication, solvers
should submit each solution on a separate sheet properly identified with
name and address and mailed before the end of June 7279.

Address all communications concerning this department to Dr. Leon

Bankoff, 6360 Wilshire Boulevard, Los Angeles, California 90048.

Problems for Solution

425. Proposed by Charles W, Trigg, San Diego, California.
Without using its altitude, compute the volume of a regular tetra-

hedron by the prismoidal formula.

426. Proposed by the Late R. Robinson Rowe, Sacramento, California.

With some oversimplification of an actual event, after a cold dry
snow had been falling steadily for 72 hours, a niphometer showed a depth
of 340 cm., compared to a reading of 175 em. after the first 24 hours.
Assuming that underlying snow had been compacted only by the weight of its
its snow overburden, so that the depth varied as a power of time, what

would have been the depths after 12 and 48 hours?

427. Proposed by Jackie E. Fritts, Texas AsM University, College
Station, Texas.

If a, b, c, dare integers and u = va? + b2, v = v/(a -2t (b -d?

andw=\/02+d2,then/(;+v+w)(u+v-w)(u-v+w)(—u+v+w)is

an even integer.
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428. Proposed by Solomon w. Golomb, University of Southern California. 434, Proposed by Sidney Pennen, Bronx Community Coflege of Xke City
Ore circle of radius a mey be "exactly surrounded™ by 6 circles of Univensity of NV York.

radius a. It may also be exactly surrounded by N circles of radius t, Consider (2n* 1)? hexagons arranged in a "diamond" pattern, the

for any n = 3, where kth column from the left and also from the right consisting of k hexagons,

t = alesc L 1)_1 1<ks=<o2nt1. Showthat if exactly one of the six hexagons adjacent -to
" the center hexagon is deleted then-it is impossible to tile the remaining

Suppose instead we surround it with # + 1 cirlces, one of radius a and »n (Figure 1 illustrated the 52 case

_ _ hexagons by trominoes as in Figure 2.
of radius b (againn = 3). Find an expression for b/a as a function of in which each of the hexagons adjacent to the center one is labeled 4.)
n. (Note: For n = 3, b/a = (3 +/17)/2, and of course for n = 5, b/a = 1.

What about n = 4 and n = 6 as individual special cases?)

429. Proposed by Richard S. Field, Santa Monica, California. ..

Let P denote the product of » random numbers selected from the

interval 0 to 1. Question: Is the expected value of P greater or less .

than the expected value of the n-th power of a single number randomly

selected from the interval 0 to 1?
430.  Proposed by John M. Howell, Littlenock, California. .
Given any rectangle, form a new rectangle by adding a square to the .

long side. Repeat. Wha is the limit of the long side to the short
side?
431.  Proposed by Jack Ganfunkel, Forest HifLs High School, Flushing,
Nv Yohk.
In a right triangle 4BC, with sides a, b, and hypotenuse &, show
that u4(ae + b2) = 5e2, Figure 1
432.  Proposed by Emwin Just, Bronx Community College of CUNY, Bronx,
New Yonk.
Does there exist an integer m for which the equation
o g g
2=0
has solutions in positive integers?
433.  Proposed by Clayton W, Dodge, University of Maine at Onono.
: . Fi 2
Pay this bill for four. That is, solve for BILL, which is divisible ot
by 4. 435, Proposed by David R. Simonds, Rensselaer Polytechnic Institute.
PAY Two non-congruent triangles are "almost congruent" if two sides afd
Ll three angles of one triangle are congruent to two sides and three angles

of the other triangle. Clearly two such triangles are similar. Show



that the ratio of similarity k is such that dfl < k < o, where ¢ =
(1 + ¥5)/2, the familiar golden ratio.
Editor's Note: This old problem is being reopened with the hope of

eliciting fresh insights.

436. Proposed by Carl Spangler and Richard A. Gibbs, Font Lewds
College, Durango, Colorado.

1—"1 and P2 are distinct points on lines L; and L, respectively. Let
L1 and L, rotate about P and P2 respectively with equal angular velocities

Describe the locus of their intersection.

437. Proposed by Zelda Katz, Beverly Hills, Caldifornia.

In times gone by, it was fairly well-known that ¥, the Nagel point
of a triangle, is the intersection of the lines from the vertices to the
points of contact of the opposite escribed circles. |n the triangle
whose sides are AB = 5, BC = 3, and CA = 4, show that the areas of tri-
angles ABN, CAN and BCN are 1, 2 and 3 respectively.

405. [Fall 1976, Corrected] Proposed by Noaman Schaumberger, Bronx
Community College, Bronx, New Yonrk.
Locate a point P in the interior of a triangle such that the product

of the three distances from P to the sides of the triangle i s a maximum.

Solutions

399. [Fall 19771 Proposed by Jack Garfunkel, Forest HiLLs High
School, FRushing, New York.
Sow that arc sin (£ ; 3) + 2 arc cos vx/6 = n/2, (3 2 x £86).

1. Sofution by Leo Sauvé, Algonquin College, Qttawa, Canada.

Let a = arc sin (°C ; “Q) and B = arc cos Yx/6; then
0sas5m/2, sinas (X239,
and 058 2 w/u, cos B = Yx/6, cos 23 = 2 cos?B - 1 = (¥ = >3

3 )
Since 0 £ a27/2, 028 = n/2, and sin a = cos 2B, we must have

at2g = n/2, which is the required identity.

11. Solution by Peter A Lindstrom, Genesee Community Coflege, Batavia,
New Yolk.

Consider the function f defined on [3,6], where

f(x) = arc sin (X; 3) + 2 arc cos vz/6.
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Differentiating and simplifying,
f'(.’L‘) = 0,
so that f(x) = ¢, a constant. If x = 3, then ¢ = 7/2.  Hence

arc sin (x—a_—‘% + 2 arc cos vx/6 = n/2, when 32 a5 6.

111, Solution by Solomon W. Golomb, University of Southern California,
Lo. Angefes, California.

e prove that for all a € [0,1],

. a+l o,
arc sinat 2 arc cos\/7=? 9]

X - /
As a corollary, if a = 3 1:"5-3—3, then a_;i = %, where mov a 6 [0,1]

is equivalent tox 6 [3,6]. Hence

arc sin )% t 2 arc cos ‘/E =V/TT (2)

2,

for all 6 [3,6].
The proof is quite simple. From the definition of the cosine function,

if 059 =<n/2thensin 9 = a = cos(n/2 - 8) with 0 2a21. Thus arc

sina =9, arc cos a = n/2 - 6, and:
arc sin a + arc cos a = » , (3)
for all a 6 [0,1].
To obtain (1), we simply solve for B in the relation
arc cos a = 2 arc cos B. ()
W have: arc cos B = 1/2 arc cos a, and taking the cosine of both sides,

B = cos (ﬁ—g—g—s—g). For a € [0,1], we note that arc cos a € [o,m/2],

cosp T 1
and in this quadrant the "half angle formula” cos % - / 2

pertains. Thus
cos{arc cos @) + 1 _ a+l
B = cos (2229 = \/ > = /7 )

as asserted. Using this in (3) and (4), we obtain (1).

Next, we observe that we need not restrict a to [0,1] in (1), nor
x to [3,6] in (2). The same identities hold for -ISa = 1. and for -
02x < 6. Wha happens is that for -1<a =<0, arc sina isin(-1/2,0)
and arc cos aisin [n/2,7], but still in such a way that the sum is

n/2., To take the extreme case,



arc sin (-1) + arc cos (-1) = - "7+ ¥ =

N2

Thus with a = -1 in (1), we have

s

arc sin (-1) + 2 arc cos (0) = - >

My o
+2(§)'2’

and the same occurs with = 0in (2).

Also sofved by JEFFREY BERGEN, Chicago, I£f&inois; LOUIS H. CAIROLI,
Kansas State University, Manhattan, Kansas; CLAYTON W. DODGE, Univensity
of Maine at Onono; MICHAEL W ECKER, City Univensity of New Yonk; MARK
EVANS, La Marque, Texas; VICTOR G. FESER, Mary Cottage, Bismanck, Nonth
Dakota; SAMUEL GUT, Brookfyn, New Yotk; BRUCE KING, Schenectady County
Community College, Schenectady, N Yotk; CHARLES H. LINCOLN, GolZdsbono,
Nonth Carolina; LANNIE LIPKE, Miltown,Wisconsin; C.B.0. PECK, State
College, Pennsylvania; BOB PRIELIPP, The Univernsity of Wisconsin-0shkosh;
KENNETH M. WILKE, Topeka, Kansas; CHARLES ZIEGENFUS, James Madison Univen-
sity, Harwiisbung, Virginia; and the Proposer, JACK GARFUCKEL.

Garfunkel explained how this problem came about.

In a recent exam-
ination he asked his students to integrate doc

vex - x2 °

Mosgt of the students completed the square and obtained the correct result:

dee . X -
= arc sin (

IVGm - x2 3

Ore student, however, let x = 6 cos? 8 and, proceeding correctly, obtained

jo+c

-2 arc cos Y(z/6) +C as his answer. Hence, within the permissible values
for x, these two expressions could differ only by a constant, and the
result follows as in Solution II above.

400. [Fall 19771 Pkopobed by Richard A. Gibbs, Font Lewis College,
Durango, Colorado.

Evaluate Y]Z:] (Ckn/m] + {kn/m}), where m and »n are positive integers,
[x] is the greatest integer not exceeding X and {x} = -[-z] i s the smallest
integer not less than x.
. Sofution by Bob Prielipp, The. University of Wisconsin-Oshkosh.
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Z:l ([kn/m] + {kn/m}) = 272:1 ([kn/m] - [-kn/m1) = n - (-n) +

= -1
zm:l [kn/m] - ZZ: [-kn/m] = 2n + Zrz:i [kn/m] - 2’,2:1 [-(m-k)n/m] = 2n +
- -1 -1
I} U] - Yoy Comtn/md = 2n o+ 2y Con/md = oy Crelkn/md)

[since [j+x] = § t [a] where J is an integer and X is a real number] =

2n + Z;ll [kn/m] t (m-1) n - 'Z;i [kn/m] = mmn t n.

11. Solution by Richard A Gibbs, the Pioposer, with a practically identical
solution by Kenneth M. W.ilke, Topeka, Kansas.

Consider the mxn rectangle in the first quadrant with diagonal join-
ing (0,0) to (m,n). This rectangle contains (m+l) by (ntl) lattice points.
For j =14, ..., m [jn/m] enumerates the lattice points in column j above
the X-axis which are on or below the diagonal. Als0, {jn/m} enumerates
the lattice points in column § on or above the X-axis which are below the
diagonal. By symmetry then, {jn/m} enumerates the lattice points in column
m-7 on or below the line y = n which are above the diagonal. Hence the
desired aum enumerates al | of the lattice points contained in the rectangle
with the exception of the mtl on the X-axis. [herefore

22:1 [kn/m] + {kn/m} = n(m+l).

Also solved by JEFFREY BERGEN, Chicago, T€Linois; LOUIS H. CAIROLI,
Kansas State University, Mannattan, Kansas; MARK EVANS, LaMarque, Texas;
C.B.A. PECK, State Coflege, Pennsylfvania; and TERRY J. WOODFIELD, Beaumont,
Texas.

401. [Fall 19771 Reoposed by Zelda Katz, Beverly Hills, California.

From a point 250 yards due north of Tom, a pig runs due east. Start-

ing at the same time, Tan pursues the pig at a speed 4/3 that of the pig
and changes his direction so as to run toward the pig at each instant.
With each running at uniform speed, how far does the pig run before being
caught?

This is Problem 28 of The Mathematical Puzzles of Sam Loyd, Volume

Two, Dover Publications, 1960. (Selected and edited by Martin Gardner).

; : : traveled by the”
Loyd's solution is based on the average of the distance v

pig if both ran forward on a straight line and the distance traveled if
both ran directly toward each other. Hw did Loyd arrive at what he calls

this "simple rule for problems of this kind"” and hov can we justify it?
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FI GURE 1
Solution by Tom Aposte?, California Institute of, Technology, Pasadena,

California.
A point @ starts at the origin and moves along the positive y-axis

with constant speed gq. Another point P starts at (1,0) and pursues &
with constant speed p. The problem is to find the curve of pursuit
traversed by P.

Denote the coordinates of P at time t by (x,y), where x = X(t) and
Yy = Y(¢) are unknown functions of ¢ to be determined. These can be con-
sidered as parametric equations of the curve of pursuit. \a will obtain
a cartesian equation expressing y as a function of x.

At time %, Q is located at the point (0,9). The tangent line of
the pursuit curve at P is always directed towards
Q so its slope, dy/dz, is the same as the slope
of the line segment PQ  (See the accompanying Q= (oat) N
figure.) Hence

dy _y -qt \

P=
W (x,¥)

& I (1,0

from which we get xzy' =y - qt, where y' = dy/dx. Differentiating with
respect to x we find

- - g dt
ay" +y' =y - q%E and hence 2]2‘%“53?

Nw g and & are positive and de/dt is negative so y" is positive and we

have

(GD) | g% [ = ng %

On the other hand, P moves at constant speed p, which means that
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/ dx 2 dy 2 _y dx / dy |2

Using (1) in (2) we obtain

(3) p:x—g—,; 1+ @'y

This is a second-order differential equation satisfied by y. Ve can

solve this by putting
v =y', %: y" .

Then (3) can by written as
dv
i\/:_;=xdv . or'lf‘gz-m;=————
p & = \/1 + 2

where r = q/pis the ratio of the two speeds.

and we can integrate it to obtain
r logx = log(» +V1 +v?2) +C.

log('l) + V1 +172) SO

r
Butv = OwhenX = 1soC = 0. Hencelogx =

2 = v + V1 + 02,

1
2l s = - p + V1 + V2,
v +V1 + 02

Subtracting the last two equations we find 2v = & - x ~, so
-r
v:yi:é(xr-m ).

Integrating again we get
r+l 1-7
y:i[x————————lm P]'l'CifY‘#l

2
1fx l : =
O | + ¢ ifr=1.
> log x E

. - - 2 .
Nwy = 0 when x = 1 and this determines c. V¢ find C = »/(1 - »%) if
r#1and C= % if » = 1. Hence the curve of pursuit is given by the

formula:
r+1 1-r
(1) y:.%_[zi+1-f_r]+1friifz’¢1(thatis,ifp#q)

The equation is now seperable
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and
(5) J1a? L.
Y =72 3 -1z -% ifr =1 (ifp = q).

Note. |f r < 1, both 2t and z! 7 tend to 0 as x ~ 0 and

y > r/(1 - r?), In this case, P overtakes Q.
If 2 1, theny~> *+= as x> 0 and P never overtakes §. Therefore

the pursuit curves look like this:

r<1(q<p) r=1(gzp)

(1,0) (',0)

In the foregoing discussion, the point P was initially at (1,0). | f

it was initially at (a,0), the problem can be reduced to the previous
case by changing the scale on both the x and y axes by a factor 1/a. In
other words, if P starts at (a,0), simply replace x by x/a andy by y/a
in formulas (4) and (5) to obtain the curve of pursuit.

Nsv we obtain the arc-length L of the pursuit curve. ¢ ,. s q this
length is infinite, so we consider the case r < 1. Again, it suffices
to consider the case where P is initially at (1,0). The arc-length L is

given by the integral
L= f i+ n?an.

Instead of using Equation (4) to calculate the integrand we use the

differential equation (3) which gives us
V1t (y')2 = ay"/r .

Hence

kS
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This integral, in turn, is easily calculated by using integration by
parts. We find

_1 i 1.
L—;(xy')‘o z oy d=

Nw both y and y' are O when X = 1 so
y(0) 1

r 1-r

SR S 4 S -1 - =
L--;joy dr = - 2 {y(1) y(0)}

This can also be written as

4. 1 1 o 1 1
5(1-r+1+r)"2(1—q/p+l+q/P)

Nw p/{p * q) is the distance P would travel if Q moved along the x-axis
directly toward the intial point (1,0) and p/(p - q) is the distance P
would travel if Q moved directly away from the initial point (1,0). Thus,
we see that the distance traveled by P is the average of these two

distances, as asserted by San Loyd.
Also sofved by LOUIS H. CAIROLI, Kansas State University, Manhattan,
Kansas; MRRAY S. KLAMKIN, Unriversity of, Alberta, Edmonton; CONRAD
MEMBRINO, Waterbury, Comnecticut; LEON MACDUFF, Edinburgh, Scotland;
and the. Proposenr.
Comment bg the. Problem Editor

The charm of this problem lies in the insidious way the stated
result defies our intuitive notions. At first we suspect that the

result, if true, might accidentally apply only to the special case

involving the given distances and the relative speeds but then the
denouement affirms the generality of Loyd's method of solution.
Klamkin called attention to his article, co-authored with D.J.
Newman, entitled Flying in a Wind Field, published in two parts in
the American Mathematical Monthly, January 1969, 16-23 and November
1969, 1013-1019. This paper treats related problems and contains a

short list of useful references.



Mémbrino used the triple-barreled weapons of differential equations,
a Texas Instuments SR-56 calculator program and a graphical solution to
verify the validity of Loyd's method of solution.

The interested pusuit-problem buff may enjoy looking up the follow-
ing problems published in the American Mathematical Monthly: 3573 [1932,
549; 1933,4361; E 387 [1939,513; 1940,3201; 3942 [1940,11u4; 1941,4841.
See also a short paper entitled A Pursuit Problem by Gerald Crough,
Mathematics Magazine, March-April 1971, pp. 94-97.

402. [Fall 19771 Proposed by Charntes W. Trnigg, San Diego, California.

The first eight non-zero digits are distributed on the vertices of
a cube. Addition of the digits at the extremities of each edge forms
twelve edge-sums. Find distributions such that every edge-sum is the
same as the sum on the opposite {non-cofacial) edge. [The solution to
the related problem 304 appears on pages 36-37 of the Fall 1974 Pl MU
EPILON JOURNAL. ]
Solution by Clayton W. Dodge, University of Maine at Orono.
Label the vertices as shown in the accompanying figure. Then we must
have
at+b=g+h, ate=c+tg,
c+d=¢e+ f, b+e=e+h, b+ f=d+ h.
If we solve the first three equations for h, f, and ¢ respectively and

a+d=Ff+g,

substitute these values into the | ast three equations, we obtain identities,

showing that the | ast three equations are redundant. Thus we solve each of

the first three equations for a - g, obtainingé§ =a-g=h-b=f-d=¢-

To have four equal differences using the digits 1 to 8, we can take only
|8] =1, 2, or 4. To show, for example, that we cannot have 6 = 3, note
that 8 must be paired with 5 and 7 with 4. But also 1 must be paired
with 4, so 6 = 3 cannot be permitted. Now, once 6 has been chosen and a
permissible value assigned to a, then there are just three values from
which to choose b, d, and €. Then the other four values are determined.
These solutions are all equivalent since Euclidean transformations of

the cube mgp the solutions one to the other. |t js seen, then, that there

are just three distinct solutions:

a b e d e f g h
8 5§ 2 3 1 4 7 6
8 5§ 3 2 1 4 6 7
8 1 7 2 3 6 4 5
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Also sofved by LOUIS H. CAIROLI, Kansas State University, Manhattan,
Kansas; MARK EVANS, LaMarque, Texas; VICTOR G. FESER, Mary College,
Bismarck, Nonth Dakota; CLAUDIA WILCOX, LaMarque, Texas; CHARLES H.
LINCOLN, Gofdsboro, Noath Carclina; KENNETH M. WILKE, Topeka, Kansas;
and the Proposer, CHARLES W. TRIGG.

404. [Fall 19777 Proposed by Bob Prielipp, The Univernsity of
Wisconsin-0shkosh.

Let X be a positive integer of the form 24n - 1. Prove that if a
and b are positive integers such that X = ab, then a tbisa multiple
of 24.

Sofution by Claytfon W. Dodge, University of Maine at Ohono.

If ab = 24n - 4, then ab = -1 (mod 24). Permissible solutions {g,b},
modulo 24, are {1,-1}, {5,19}, {7,17}, and {11,13}. I!n each case we
seethatat b =0 (mod 24). The theorem follows.

Also solved by RONNY ABOUDI, student at Florida Atlantic University,
Coral Sprnings, Florida; JEFFREY BERGEN, Chicago, T€&inods; M.J. OELEON,
Flonida Atlantic University, Boca Raton, Flonida; LOUIS H. CAIROLI, Kansas
State Univernsdity, Manhattan, Kansas; VICTOR G. FESER, Mary Collfege,
Bismanck, Nonth Dakota., F. DAVID HAVMER, Univernsity of California, Davis;
CHARLES H. LINCOLN, Gofdsboro, Notvth Carolina; BLACKWELL SAWYER, student
a Fonida Attantic University; DALE WATTS, Denver University, Colorado
Springs, Colorado; CHARLES ZUEGENFUS, James Madison University, Hannisburg,
Vinginia; KENNETH M. WILKE, Topeka, Kansas; and the Proposer, BOB PRIELIPP.

405. [Fall 19771 Comnrected version appearns 'in the. Proposal Section
04 this issue. SoLution will appear'in the Spaing 1979 Lssue.
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406. [Fall 19771 Phopobed by Pauf Endts, Spaceship Earth.

Let there be given 5 distinct points in the plane. Suppose they

determine only two distances. |s jt true that they are the vertices of
a regular pentagon?

Sofution by Kenneth M. Wifke, Topeka, Kansas.

The answer is "ves".

Proof: Let the smaller distance be taken as a unit distance and | et
1 denote the longer distance. Then if one point is removed from the con-
figuration, the remaining four points also determine only two distances.
For otherwise if the four points determine only one distance, then three
of these points likewise determine only one distance; hence these three
points are the vertices of an equilateral triangle. Then if the fourth
point lies inside or outside this triangle, a second distance (at |least)
is determined. If the fourth point lies on the perimeter of the triangle,
either a second distance is determined or the fourth point coincides with
one of the other three, which is impossible since the points are distinct.
Hence the four points determine exactly two distances.

Next I et A and B be two of the four points which are separated by
the unit distance on the coordinate axis. | e C and D be the other two
points which lie on the unit radii AD and BC. | ot paBC begin as a straight
line with radius DA rotating clockwise at the same rate CB rotates counter-

to determine the positions in which BD = AC = (D or CD = AB.

clockwise as shown in the figure. Fom the figure, BD = AC. |t remains

D
.C

(o b

A B

This analysis produces three cases: 1) Points ¢ and D coincide, in
which case point D can be taken as the reflection of ¢ in line AB, which
produces a figure formed by two equilateral triangles having common
edge AB; II) D = AB, in which case we have ABCD as a square with diagonals
AC and BD; and III) an isosceles trapezoid ABCD, in which AC = BD = BC.

In these three cases, we have 7 = V3, ¥2 and (1 +/5)/2 respectively.
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Case |I. (L = V/3)., Since ABC and ABD are equilateral triangles with

common edge AB and BD = 1 = V3, symmetry requires consideration of possible
placement of the fifth point in only three cases. First consider possible
placements equidistant from B and D. Then the fifth point lies on the
perpendicular bisector of BD. Regardless of whether the distance from

the fifth point to Bor Dis 1 or Z, a third distance is introduced.
Similar analysis reveals similar results when A and B or A and D replace

B and D.

Case 11 (L = v2). Here ABCD forms a square. |f Eisafifth point
on the perimeter or inside the square, only if E is the intersection of
the diagonals BD and AC does it deserve consideration. But then AE =
BE = CE = DE = /2“/2’ a third distance. |f E lies outside the square,
analysis similar to that used in Case | establishes that a third distance
is introduced regardless of the location of E.

Case 111. (1 (1 + v5)/2). Here ABCD forms an isosceles trapezoid

in which AB = BC = AD and the longer parallel side (parallel to 4B) (D =
AC = BD, the diagonals. Third distances arise for all possible locations
Points

of the fifth point E, equidistant from A and D or from B and C.
equidistant from A and B or from € and D lie on the perpendicular bisctors
of AB and CD respectively. (These perpendicular bisectors coincide.) In
either case the unique location for E which does not introduce a third
distance places E one unit from C and D and Z units from A and B. This
is procisely the location of the fifth vertex of the regular pentagon.
Case |V. The only other configuration of four points involving

exactly two distances occurs when A, B and € are the vertices of an
equilateral triangle and D is its centroid. Here L = /3 and the smaller
distance is a unit distance. Analysis similar to that used in the other
cases shows that each possible location of the fifth point E requires the
introduction of a third distance.

Hence i f five distinct points in the plane ditermine exactly two
distances, these points |ie at the vertices of a regular pentagon.

Comment by Lowis H. Cairoli, Kansas State University.

Chapter 12 of Mathematical Gems IT by Ross Honsberger is entitled
"The Set of Distances Determined by n Points in the Plane”. This chapter
contains an excellent summary of the early work (1946) of Erdos on this
interesting subject.
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The results include: For »n points in the plane, # = 3, 4, 5,
(I) There are at least v»n - 3/4 - 1/2 different distances.

(II) The mimimum distance can occur not more than 3n - 6 times.
(III) The maximum distance can occur only n times.
(IV) Nb distance can occur as often as na/z//f t n/4 times.
Comment Dy Joe Konhauser, Macalester College, Saint Paul, Minnesota.
The answer is "Yes". The result is Theorem 4 in the paper "On
Euclidean Sets Having Only Two Distances Between Points' by S.J. Einhorn
and |.J. Schoenberg, which appeared in the Proceedings, Series A, 69, No.
4 and Indagationes Mith., 28, No 4, 1966.

There are exactly 2% 2-valued 5-point sets in E3, none of which are .
inkg,. FIGURE 2
utd .
407. [Fall 19771 Proposed by Ben Gold, John TTHowete and vance Selution by the Propose
, , Place triangle ABC, oriented counterclockwise, in the Gauss plane
Stine, Los Angeles City College. R .
g y rortes sothat |a] = [b] = le| = 1. Let = (U//2) exp (Gn/w) = 1/2 +i/2. Let

Two sets of dice are rolled. (n =1, 2, 3, 4, 5, 6). Wha is the
probability of k matches? (k = 0, 4, ..., n)
Solution by Mitchell Entrican, University of Mississippi.

D, E, F be the centers of the externally-erected squares on sides BC, C4,
and /B respectively. Then

The probability of two thrown dice matching is 1/6; then the d=ab *t oe, e = ac + aa, and f = oa + ob.
probability of two thrown dice matching is 5/6. Therefore, for two sets V¢ must find a point P on the Euler line so that, for some k, the power
of n dice thrown, the probability of k matches is (1/5)k (5/6)”‘k times of P with respect to each circle is the same; that is,
the number of possible ways to arrange the matches, which is the combina- PD2 - (k-BC)2 = PE2 - (k-CA)2 = PF? - (k-AB)2.

tion of n dice taken k at a time. This combination of » dice taken k at It is sufficient to find k and P so that a cyclic permutation of a, b, and

. n : k n-k .
a time can be denoted ( k ). Since (1/6)" (5/6) I's equal to e in the expression for, say, Pp2 - (k+BC)? leaves the expression unaltered.
1 sn—k 5n-k Since P is to be taken on the Euler line and the circumcenter of
Sk ) 6n—k - " triangle ABC is at the origin in the complex plane, then

p=mlatb+e)
for some real m, (If m =0, 1/3, 1/2, or 1, then P is the circumcenter,

the solution will then be

( Z Y Sz_k centroidy ninepoint centers or orthocenter.) Now, recalling that @ -
b Bb = ec = 1 and that |z|? = zz, we have

408. [Fall 19771 Proposed by Clayton W. Dodge, University of Maine p2 - (k<BC)?
at Orono. = |m(a + b + e) - (ab + ac)|? - [k® - )i?

Squares are erected on the sides of a triangley wither all externally = |ma + (m - a)b + (m - a)e|? - k2|p - el?
or all internally. A circle is centered at the center of each square with = (ma + (m - )b + (m - a)e)(ma + (m - @b + (m - a)e) - -
each radius a fixed multiple k > 0 of the side of that square. Find k so k2(b - e)(B - e)
that the radical center of the three circles falls on the Euler line of the = m2 + 2(m - a)m - a) + m(m - @)(ab + ae) + m(im - a)(ae + ab) 4

triangle and find where on the Euler line it falls. (See Fig.) (m - )2 be + (m - )2 be - k2(2 - be - be).



w
w
(o3}

The cyclic permutations of @b are bz and ea. Equating the coefficients
of these terms, we get

mim - @) = (m - a)? t k2=n’(m'&).
Similarly, for the permutations ab, be, ca, Wwe must have

mm - a) = (m - @)% t k2 = m(m - a),

just the conjugate of Equations (1). Subtracting these two |eft hand
equations, we find that

mim - @) - mlm - a) = (m - a)2 - (m - @)2,
ma - a) = @2m - a - a)a - a),
m=a +a- 2m,
3m=oao+a
m=1/3.

:_']_’

S P = G, the controid of triangle ABC  Substituting m = 1/3 into
Equations (1), we get

(1/3)(1/3 - a) = (1/3 - a)2 t K2,
K? = (1/3)(-1/6 t £/2) - (-2/9 t ©/6)
= -1/18 t /6 + 2/9 - i/6 = 1/86,
so k = 1//6.
V¢ find then that the power of G with respect to each of the three
circles is given by

1/18 + (-1/18 + 7/6)(ab + be + ca) + (-1/18 - i/6)(ab + be + za).

If the squares are to be erected internally, then orient triangle
ABC clockwise, and the above proof holds unaltered.

409. [Fall 1977] Proposed by Zelda Katz, Beverly Hills, Califonnia.
A point Eis chosen on side @ of a trapezoid 4BCD, (AD || BC), and is
joined to A and B 4 line through D parallel to BE intersects A in F.

Sow that FC is parallel to AE  (See Fig. 3)
A D

Figure 3
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Sotution bq Kenneth M. Wilke, Topeka, Kansas.

Let AE intersect BF at G and let BE cut FC at H. Let EF and G
intersect at 1.

It is easily seen that triangles FGI and EHI are similar so that-

GI/HI = IF/IE with the result that triangles FIH and GIE are also similar.
It follows that FGEH is a parallelogram and that FC and AE are parallel.

Atso sofved by CLAYTON W. DODGE, Universdity of Maine at Orono;
ROBERT C. ERTLE, Racine, Wisconsin; DONALD CANARD, Anaheim, California;
and ZELDA KATZ, the Proposer.

410. ([Fall 1977] Proposed by Mwuay S. Klamkin, University of
Afbenta, Edmonton, Afberta, Canada.

If X, y, 2 are the distances of an interior point of a triangle
ABC to the sides BC, CA, AB, show that

1/x t 1/y + 1/3 2 2/»r
where r is the inradius of the triangle.
SotLution bq the Proposenr.

Since ax t by t ¢z = 24, where a, b, ¢ are the sides opposite the

vertices A, B, C, it follows from Cauchy's inequality that
/z t 1/y + 1/2 =2 (Va t Vb t /e)?/ A
with equality iff
ava = y/b = ave

28/(a t b T e).

Consequently

min {1/x + 1/y t 1/z} » = (Va £ VB t Ye)?/(a t b t 2).

V¢ now show that the minimum of the r.h.s. over all triangles is two.
Let d = Ya; e = vb; f = /e; thend, e, f are the sides of a non-obtuse
triangle and

a2z (e - )2, 2=z (f-d?, f2=(d- e)?.

Adding and rearranging gives
(d+e+ f)? 9
d2 + e2 t 2

with equality iff def = 0.
Remark: In a similar fashion, it is easy to obtain the known inequality
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hy/x + hy/y + hy/z 2 9
where hi, is the altitude from Ai

411.  [Fall 19771 Proposed by R.S. Luthar, University of Winsconsin,
Janesv.ille.

Find all polynomials P(x) such that
P(x? t 1) - [P(z)T? - 2x[P(x)] = 0 and P(0) = 1.

1. Sofution by M.S. Klamkin, University of Alberta.
Letting P(x) + X = G(x), we obtain

(1) Gx? +1) =G t1, Go) = 1.

Ore obvious solution is G{x) = 2 + 1.
Nw let G(z) = X2 t 1 t H(x), giving

H(x? t 1) = 2(x2 t 1)H(x) + H(x)?, H(0) = 0.
It now follows that H(mn) = 0 where

T xfl td1, X =0. Whence, H(x) = 0 and thus

P(x) = X2 - X t 1 uniquely.

As an extension of (1), consider finding all polynomials P(x)
satisfying

PLQ(x)] = Q[P(z)]

where @(x) is a given polynomial and P(0) = @(0) = 1. Then if the sequence
defined by g - Q(an), a, = 0, consists of an infinite number of differ-
ent values, P(z) = @(x).

Proof: Let P(x) = @(x) t F(x); thus F(0) = 0. Then

Fl(x)] = Qle(x) + F(x)] - Q[e(x)],

and F(an): O0Oforn =0, 1, 2, +.... Whence, F(x) is identically zero.
Comment: The problem (1) where G(0) = 0, leading to G{z) = X, was set
as a problem in the 1971 Putnam Intercollegiate Mathematics Competition
by D.J. Newman. | had given this problem as practice to the 1975 UR
International Mathematical Olympiad team. Ore of the members of the
team, Bernard B. Beard, had extended the problem and it appeared as
Problem 965 in the Mathematics Magazine 50(1977), 166: "Find all poly-

nomials P(x) such that P[F(x)] = F[P(x)], P(0) = 0, where F(x) is a
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given function satisfying F(x) 7z X for all X = 0.

Also, in the extension of (1) given above we can relax the condition
that @(x) be a polynomial if we let P(ao) = a, instead of a; = 0 and
P(0) = @(0) = 1.

11. Sofution by the Proposer.
P(0) =1=(0-212+¢t0

(1 -1 +1

P(1) =1

3=(2-172+2

n

P(2)
P(5) = 21=(5-1)2+5

P(26) = 651 = (26 - 1)% t 26
Thus the polynomial in question agrees with (z - 1)2 t X for more values
of X than the degree of P(z). Therefore P(x) = (x - 1)2 t X = @2 - x + 1.
Alsc solved by JEFFREY BERGEN, Chicago, 1&&inois; L. CARLITZ, Duke
University, Dutham, North Carolina; LOUIS CAIROLI, Kansas State University,
Manhattan, Kansas; MARK EVANS, La Marque, Texas; CHARLES H. LINCOLN, Gofds-
boro, Noath Cornolina; KENNETH M. WILKE, Topeka, Kansas.

BRRATA (Discovered by Charles W. Trigg)
Vol. 6:7 - Fall 1977 - p. 428, 6th line from bottom, "215 |C 465"
should read "215 ICE 465".

Vol. 6:8 - Spring 1978 - p. 487 -line 9- should start with PQ/2 =
XN instead of ZN. O page 488, problem numbered 388 should read 389.

In the Spning 1978 issue, MICHAEL W. ECKER should have received
onedit fon solutions to probLems 395 and 396. In the same .issue, CLAYTON W.
DODGE  was inadvertently omitted grom the List of s0Lvers of problems
392, 394, and 395.

o o e = - —
FRATERNITY KEY-PINS

Gold clad key-pins are available at the National Office (the
University of Maryland) at the special price of $5.00 each,
post paid to anywhere in the United States. The price will

raise to $8.00 effective July 1, 1979. Order soon!

Be swre to indicate the chapten into which you were initiated
and the approximate date of Anitiation.



LOCAL CHAPTER AWARDS WINNERS

ARKANSAS BETA (Hendrix College). The McHenwy- Lane Freshman Math
Awards were given to

Michael Pinten,

and Sandra Cousins.

The Hogan Senion Math Awards were presented to
Maxk Burton,

and Beth Posey.

GEORGIA BETA (Georgia Institute of Technology).
given to cutstanding graduates in mathematics:

Book awards were

James Herndon 111,
James Novotnak,
and Maria Santana.

FLORIDA EPSLON (University of South Florida).
Schofar Awand was given to

David lan Wittiams.

The Qutstanding

ILLINOIS DELTA (SIU/Carbondale) (1977-78). The Outstanding Senior
Awand was given to

Steven Winker.
The SIU Putnam Competition winner was

Y.ing-Chen Kwong.
The outstanding talk at the Regional Pi Mi Epsilon meeting was given by

Susan Long.

ILLINOIS DELTA (SIU/Carbondale) (1976-77).

_ The Qutstanding Senior
Awad winners were

Joe Gibson
and Gordon Huffman.
The SIU Putnam Competition winner was
James Bellingenr.

IOWA ALPHA (lowa State University). pj ju Eps.ilon Schofanship

Awands of $50 each were presented to
Timothy Tjanks
and Robert Cmelik,

who scored highest on a competitive examination.

MISSOURI GAVMA (St. Louis University). The James Garneau Awand
(based on grade point average) was given to
John Staden.
The Francis Regan Scholarships were presented to
Gervianne Vogt
and Gany Szathowshki.
The Senior Pi Mi Epsilon Contest ($25 in cash, $25 in mathematics books}
was won by
Michele Pomash (Maryville College).
The Junior Pi Mi Epsilon Contest ($25 in cash, $25 in mathmatics books)
was collected by
John Roth (Maryville College?.
The Missournd Gamma Awards were presented to
Karnin Angeli (Frontbonne College),
Michele Pomash (Maryville College),
and Delores FLones (Maryville College).
The Missouwri Gamma Graduate Award for Scholarship and Service to the
Fraternity was given to
Fh Joseph Raj.
The John H. Andrews Graduate Service Award for active participation was
given to
Tan Sweeney.
The AL and Sheely Beradino Fraternityship Award for helpfulness, friend-
liness and concern was won by
Jeanette Medewitz.

NEN YORK PHI (State College of Nav York, Potsdam). The Outstanding
Senion Award (Vols. 2 and 3 of Knuth: The Art of Computer Programming)
was presented to

Ron 0£ss0n.
OHIO EPSILON (Kent State University). The P Mu Epsilon Awands

($25 in books plus a plaque) were presented to



Robert Ulrnich
and Kenneth Weber.

OHIO NJ (University of Akron) (1376-77). Awards were given to Akron
Regional Science Fair winners and mathematics majors who excelled in

their course of study.

OHIO ¥U (University of Akron) (1977-78). The Akron Regional Science
Fair winners were

Ben Chang
and Brenda Smith.

The Outstanding Undergraduate Students who were awarded student member-
ships to MAA were

Donald Asher,

Gary Giongio,

Chris Kolaczewskd,

Ruth Nielsen,

Mary Ruckeh,
and Jerty Young.
The Samuel Selby Mathematics Scholarship Award was given to
Donald Asher.

SOUTH DAKOTA ALPHA (University of South Dakota). The William Ekman
Awards were presented to

Thomas Bylanden

and Wolliam Even.

The Mascott Awards for deserving students majoring in mathematics went to
Melamie Mongan

and Kunt Loviden.

The Merton Hasse Award for a minority student majoring i n mathematics
went to
Ip wang Chan.
The Thomas Emeny McKinney Awards, to senior mathematics majors who have
shown the most power and originality in mathematics went to
Denis Guenthner
and Dennis Freidel.
The Pell Scholanships given to promising students were awarded to
Dav.id Barnes
and Rick Wiese.
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The P4 Mu Epaifon Award which is presented to a senior mathematics majo:r

for outstanding scholarship and service to the department was given to
Colleen Locken

and Thomas Sevenrson.
The Robert L. Walter Awand presented to students interested in math-

ematics education went to
Jean Groeber Johnson

and Cindy Rohde.

TEXAS EPSILON (Sam Houston State University). 1he outstanding

freshman mathematics major was
Julie Montgomeny,

The outstanding junior mathematics major was
Sandy Meeak,

The outstanding senior mathematics major was
Ronnie Webb.
VIRGINIA GAMMA (James Madison University). 1he outstanding senior

mathematics student was
W.illaim Grubbs.

Pl MU EPSILON AWARD CERTI FI CATES

1s your chapter making use of the excellent awarnd certifi-
cates to help you recognize mathematical achievements?

For further information write:

Dr. Richard A. Good
Secretary-Treasurer, Pi M1 Epsilon
Department of Mathematics

The University of Maryland
College Park, Maryland 20742

= s



PAPERS PRESENTED AT THE 1978
PROVIDENCE MEETING OF THE PU MU EPSILON FRATERNITY

1.Why | Like Graph Theory

Calulation of the Period of the
Lotka-Volterra Predator Prey Modd

3. The Unique Nurber 15

4.4 Paradox i n QuantumTheory

5.7Ts It Possible to Lose the
OL' Magic?

6. The Double Ferris Whed Problem

7. The Use of Fractional Calculus
in Solving Certain Difference
Equations

8. Causes of Math Anxiety at the
University

9. Non-linear Additive Functions

10. The Converse of Lagrange’'s
Theorem and Finite Nilpotent
Groups

11. Matrix Models i n Biology

NANCY L. BURGER
NY Phi
State University of Colorado at Postdam

KATHY STUEWE
TN Delta
University of Tennessee

J. B. ZIPPERER, JR.
GA Ganmma
Armstrong St. College

LINDA WHILEYMAN

X Epsilon

Sm Houston State University
DOUGLAS W. BOONE

OH Delta

Miami University

ALBERT E. PARISH

£ Gamma

College of Charleston

DAVID CHALLENER

IA Alpha . .
lowa State University

KATHLEEN V. WALKER
IL Zeta

Southern Illinois University at
Edwardsville

JULIE D. ANDERSON
AR Beta
Hendrix College

MARCIA JAMES

NC Delta ) .
East Carolina University

MICHAEL YOUNG
OR Gamma
Portland State University

1978 J. SUTHERLAND FRAME LECTURE

The Statistics of Incidents and
Accidents

PROFESSOR HERBERT E. ROBBINS

12.

13.

14.

15,

16.

17.

18.

19.

20.

21

22.

Multivariate Discriminant Analysis
and the Prediction of Loan Defaults

Scaling i n Mammals

Concerning Irreducible Compact
Continua

Ban Scheduling: An Example
of Math Modeling

Generalized Lipschitz Criteria
for First Order Differential
Egquations

A Method of Finding the
Complement of a Sequence

A Pulse-time Modd for
Mathematics Class Enrollments

Division Algorithms for Prime
Factorization

problems: Stimulation to
Research and Application

Numerical Treatment of
Meteorological Data

Magic Card Squares, Cubes, and
Hypercubes
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NICK BELLOIT

EJLniI\E/tearsity of Northern Florida

TIMOTHY O'SHEA
NJ Epsilon
St. Peter's College

W. DWAYNE COLLINS
gr(xi;l;ehr?st?ty of Houston
CAROLE H. COOK
R)I-lla%felltﬁniversity
MARK L. BURTON

AR Beta
Hendrix College

SUSAN MCCLINTOCK
NC Delta
East Carolina University

JULIE MONTGOMERY

ngﬁgiulggn State University

JOHN ANDERSON

{lgse—ﬂuﬁman Institute of Technology
STEVEN FROM

E':rellgdeﬁ?on University
GREGORY BATTLE

Was%'ﬂ]%ton University

BERNARD P. SMITH
MO Garmma
St. Louis University
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1978-79 CONTEST

Papers fon the 1977-7& contest have now been Judged, and we
are receiving papers for this year's contest, so be sure to
send us your paper, or your chapter's papers (at least 5

entries must be received from the same chapter in order to

qualify, with a $20 prize for the best paper in each chapter).

For all manuscript contests, in order for authors to be
eligible, they must not have received a Master's degree at
the time they submit their paper.

The judging for the best expository papers submitted for the

1977-1978 MANUSCRIPT CONTEST

1977-78 school vear has heen completed. The winners are:

First prize ($200), ROBERT ANTOL, lowa State
University, The Perfect Numbers and Pascal's

Triangle.

(this Journal, Vol. 6, No. 8, pp. 459-462).

Second prize ($100), DEBRA GUTRIDGE, Muskingum College,
Mathematieal Curiosities. (this Journnl. Vol. 6, No. 8,
PpP. Lu45-u58).

Third prize ($50), JACKIE LAWRENCE, Western Kentucky
University, Numerical Integration by Polynomial Inter-

polation.

(this Journa?, Vol. 6, No. 6, pp. 336-3uL}.

j'ium/o/t 0/ L%e Jewe/ém ./4%‘

YOUR BADGE — a triumphk of skilled and highly trainad Balfour
craftsmen is a steadfast and dynamic symbol in a changing werld.

Officid Badge
Officid One piece key

Officid one piece key-pin

Officid three-piece key

Officid three-piece key-pin -

WRITE FOR INSIGNIA PRICE LIST.

An Authorized Jeweler to Pi Mu Epsilon
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S ATTLEBORO MASSACHUSCTTS
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IN CANADA L. G. BALFOUR COMPANY, LTD. MONTREAL AND TORONTO

Pl MU EPSILON JOURNAL PRICES

PAID IN ADVANCE ORDERS:
Members: $ 4.00 for 2 years
$10.00 for 5 years

Non-Members: $ 6.00 for 2 years
$15.00 for 5 years

Libraries: $15.00 for 5 years (same as non-members)

If billed or through agency add $2.00 to above prices.
Back Issues $ 2.00 per issue (paid in advance)
Complete volume $15.00 (5 years, 10 issues)

All issues $90.00 5 complete back volumes plus current volume
subscription (6 volumes — 30 years)

-+ If billed or ordered through agency, add 10% to above prices.



