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TAXICAB GEOMETRY 

by B m b w  E, Reyno&fa 
S-t. Lo& UnLve~~-Lty and 
CmcLinai S u c h  Coile-ge 

I n t m d u d o n :  

Around the turn of the century, Hermann Minkowski [4] published a 

whole family of "metrics" -- that is, examples of spaces in which a way 
of measuring distance has been defined so as to fulfill the axioms of a 

metric space. Among these metrics is one which is referred to as the 

"taxicab metric" because of the way it mimics the distances that a taxi- 

cab would have to drive in an ideally laid-out city in which all streets 

run due north/south or east/west. In 1975, Eugene Krause [3] made the 

comment that "apparently no one has yet set up a full geometry based on 

the taxicab metric. It would seem that the time has come to do so." 

V e 6 i n i t i o ~ i  and Backgiound: 

A metric space [1] is a mathematical structure which consists of a 

set of points and a rule (or function) for measuring distance between any 

two points in the set. In general we require that this distance function 

have three properties: 

1). The distance between any two points is always non-negative; 

d(A,B) 2 0. (And if d(A,B) = 0, then A = B.) 

2 ) .  The distance from point A to point B is always the same as the 

distance from point B to point A; d(A,B) = d(B,A). 

3). The distance from point Ato point Bplus the distance from C 

to Ais greater than or equal to the distance from A to B; that is, 

d(A,B) 5 d(A,C) + d(C,B). 
The usual (2-dimensional) Euclidean space, E ,  consists of points 

fromR which can be represented graphically in the coordinate plane, or 
2 

analytically as ordered pairs of real numbers. For example, the point 

A = (2,3) can be represented graphically as in Figure 1. 

The Euclidean distance defined on any two points A, B in R is 

defined consistent with the Pythagorean Theorem: 

With respect to the "real world" this distance measure could be referred 

to as the "as the crow flies" distance. 



FIGURE 1 

The (2-dimensional) taxicab space, T2, c o n s i s t s  o f  t h e  same po in t  

s e t  a s  (2-dimensional) Euclidean space. The tax icab  d i s tance  funct ion 

is  defined f o r  each p a i r  of  po in t s  A,B i n  R2 by 

A s  an example, l e t  A = ( 1 , l )  and B = (3,4).  Then A and B can 

be represented graphical ly a s  i n  Figure 2. 

I F I G U R E  2 

I n  t h i s  example, t h e  Euclidean d i s tance  

t h e  tax icab  d i s tance  would be 5. Notice t 

being s t r e e t  corners  i n  a ca re fu l ly  l a  a number of 

d i f f e r e n t  paths  we could take i n  d r iv ing  ( o r  walking) from A t o  B . Two 

such pa ths  a r e  shown i n  Figure 3. A s  long a s  we must s t a y  on t h e  s t r e e t s  

and cannot cu t  diagonal ly ac ross  any block, t h e  s h o r t e s t  pa ths  from A t o  
- .- 

B a r e  each f i v e  blocks. 

FIGURE 3 

One way t o  g e t  a f e e l  f o r  t h e  e f f e c t  t h a t  a c e r t a i n  way of  measur- 

ing  d i s tance  has on a space is t o  look a t  var ious fami l ia r  geometric 

f igures  -- f o r  i n s t a n c e c i r c l e s ,  e l l i p s e s ,  hyperbolas, and parabolas. 

C-tAc^e^ : 

In  a n a l y t i c  geometry, we define a c i r c l e  a s  t h e  s e t  o f  po in t s  i n  

R2 a t  a constant  d i s tance  from a given f ixed  point .  I f  we use t h e  

Euclidean d i s tance  measure, c i r c l e s  a r e  "round." We might be i n i t i a l l y  

surpr i sed  a s  we p l o t  po in t s  which a r e  t h r e e  u n i t s  from t h e  po in t  A = (4,3) 

using t h e  tax icab  d i s tance  measure. (See Figure 4 ) .  

Analyt ical ly ,  t h e  t a x i- c i r c l e  with cen te r  C = (h,k) and rad ius  P 

i s  t h e  c o l l e c t i o n  of  po in t s  

This describes a t a x i- c i r c l e  a s  the  union of  four  s t r a i g h t  l i n e  segments 

with v e r t i c e s  a t  ( h , k b )  and ( h 5 . k ) .  Each of  these  l i n e  segments has 

a s lope of  21. The complete t a x i- c i r c l e  is  shown i n  Figure 5. 

I t  is  i n t e r e s t i n g  t o  observe t h a t  i f  t h e  mathematical contant UT 

i s  defined i n  t h e  usual  way a s  t h e  r a t i o  of  t h e  circumference of  a c i r c l e  

t o  i ts diameter, then t h e  value of I1 T i s  4. It is  a l s o  worth commenting 



FIGURE 4 

FIGURE 5 

two d i s t i n c t  Euclidean c i r c l e s  may in t e r sec t  i n  a t  most two 

3 d i s t i nc t  tax i- c i rc les  may addit ionally i n t e r sec t  along one 

light l i ne  segments (see Figures 6 and 7 - )  

E u p h  e : 
An e l l i p s e  may be defined a s  the  s e t  of a l l  points  P i n  R2, the  

sum of whose distances from two fixed points. A and By is  constant. I n  

other words, i f  A and B a r e  f ixed points i n  R2. then an e l l i p se  is-the 

col lec t ion  of points  

{PER2: d(P,A) + d(P,B) =c}, 

where c is  constant. The f ixed points A and B a re  cal led the  of 

the e l l i p se .  Our experience with tax i- c i rc les  may lead us t o  suspect 

t ha t  t he  shape of the  e l l i p se  depends on whether we use the Euclidean 

distance measure o r  t he  taxicab distance measure. 

There is  an excellent  discussion of e l l i p se s  of the Euclidean kind 

i n  Jacobs [2] with an in teres t ing  experiment i n  drawing e l l i p se s  with 

t he  a id  of a loop of s t r i n g  and a couple of thumb tacks. Measuring dis-  

tance by means of a t au t ly  stretched s t r i n g  is  essent ia l ly  a Euclidean 

method, since t h i s  measures distance along "straight"  paths. Jus t  a s  

we cannot use a compass t o  draw a tax i- c i rc le ,  we cannot draw a tax i -  

e l l i p s e  by stretching a loop of s t r i n g  around two thumb tacks. Krause 

[3] suggests a method f o r  drawing taxi- ell ipses.  

Suppose we a r e  given fixed points  A = (1,3) and B = (5,3), and a re  

asked t o  draw the tax i- e l l ipse  

{PER2: dT(P,A) + dT(P,B) = el, 

where c = 6. Since 6 = 4 + 2, we could draw a c i r c l e  of radius 4 with 

A a s  center ,  and a c i r c l e  of radius 2 with B a s  center. (See Figure 6.) 

I 
FIGURE 6 



Each of  t h e  po in t s  where these  two c i r c l e s  i n t e r s e c t  w i l l  be a t  a dis-  

tance of  4 from A and a t  a d i s tance  of  2 from B and there fore  w i l l  be 

on t h e  desired tax i- e l l ipse .  

We can continue t h i s  process using c i r c l e s  o f  d i f f e r e n t  r a d i i ,  

always choosing p a i r s  o f  c i r c l e s  whose r a d i i  add up t o  6. But a curious 

t h i n g  happens when we choose c i r c l e s  o f  r a d i i  1 and 5. (See Figure 7 . )  

These c i r c l e s  i n t e r s e c t  not i n  one o r  two points  bu t  along two whole 

s i d e s  of t h e  smaller  c i r c l e .  

FIGURE 7 

By experimenting with various p a i r s  of c i r c l e s ,  we f i n d  t h a t  t h e  com- 

p l e t e  t a x i- e l l i p s e  with f o c i  A = (1,3) ,  B = (5,3)  and c = 6 i s  a s  shown 

i n  Figure 8. 

Lest we rush too  h a s t i l y  t o  t h e  conclusion t h a t  a l l  t a x i- e l l i p s e s  

a r e  some kind of hexagons, a l i t t l e  f u r t h e r  experimentation w i l l  show 

t h a t  t h e  e l l i p s e  with f o c i  a t  A = (1 ,3 ) ,  B = ( 3 , l ) .  and c = 6 i s  octago- 

n a l  i n  shape. (See Figure 9 . )  

A f a m i l i a r  r e s u l t  from a n a l y t i c  geometry i s  t h a t  a s  t h e  f o c i  of  

an Euclidean e l l i p s e  move c l o s e r  toge ther ,  t h e  e l l i p s e  becomes more 

c i r c u l a r  [2] .  

Observe t h a t  on t h e  coordinate plane any two po in t s  e i t h e r  a r e  

opposite v e r t i c e s  of  a rec tangle  with s i d e s  p a r a l l e l  t o  the  axes (Figure 

10-a), o r  l i e  on a s t r a i g h t  l i n e  segment p a r a l l e l  t o  t h e  x- o r  y-axis 

(Figure 10-b.) (And we could say t h a t  a l i n e  segment i s  a rec tangle  

whose width i s  zero) .  

FIGURE 8 

FIGURE 9 

Mow asA and B move c l o s e r  toge ther ,  t h i s  rec tangle  becomes smaller ,  u n t i l  

f i n a l l y ,  whenA a n d B  a r e  the  same point ,  both t h e  length and the  width 

of t h i s  rectangle a r e  zero. 

Look again a t  Figures 8 and 9 and observe t h e  r e l a t i o n s h i p  between 

t h e  hor izon ta l  and v e r t i c a l  s i d e s  of  t h e  e l l i p s e  and t h e  l i t t e  rec tangle  

determined by t h e  f o c i .  I f  t h e  f o c i  move c l o s e r  toge ther ,  t h e  rec tangle  

w i l l  become smaller ,  and the  hor izon ta l  and v e r t i c a l  s i d e s  o f  t h e  e l l i ~ s e  

w i l l  become s h o r t e r  u n t i l  f i n a l l y  t h e  f o c i  merge i n t o  a s i n g l e  po in t  and 

t h e  e l l i p s e  becomes a p e r f e c t  t a x i- c i r c l e .  



FIGURE 1 0 

tfypitbota.: 

A hyperbola may be defined i n  a manner s i m i l a r  t o  t h e  e l l i p s e  by 

rep lac ing  t h e  word "sum" with "difference." Thus a hyperbola is  t h e  s e t  

of  a l l  po in t s  P i n  R t h e  d i f fe rence  of  whose d i s tances  from two f i x e d  2 
po in t s  (s), A and B , is constant .  That is , i f  A and B a r e  f i x e d  

po in t s  i n  R ,  a hyperbola is 

where c i s  constant .  

Since t h e  constant ,  a ,  is t h e  r e s u l t  a f t e r  t ak ing  t h e  absolute  

value, t h e  smal les t  possible  value f o r  a is zero. If a = 0, then 

I f  we a r e  i n  E2, t h i s  is usua l ly  c a l l e d  t h e  "perpendicular b i sec tor"  of  

t h e  l i n e  segment AB . However i n  T2, t h e  "bisector" may not  even be a 

s t r a i g h t  l i n e .  (See Figure 1 1 . )  ( I  l eave  a quest ion f o r  my reader:  

Under what condit ions on t h e  f ixed  po in t s  A and B w i l l  t h i s  "bisector" 

be a s t r a i g h t  l i n e  i n  T2?) 

To i n v e s t i g a t e  taxi-hyperbolas we can use a method s i m i l a r  t o  t h e  

one we used f o r  drawing e l l i p s e s ;  t h a t  is, we can f i n d  t h e  i n t e r s e c t i o n  

of  p a i r s  o f  c i r c l e s  centered a t  A and B whose r a d i i  a r e  rA and rB, re- 

spect ively,  where - r 1 = c. However, we quickly observe t h a t  when c 
A B 

is  g r e a t e r  than d(A,B), t h e  c i r c l e s  w i l l  f a i l  t o  i n t e r s e c t  (Figure 121, 

FIGURE 11 

and hence the  hyperbola f o r  any value o f  c>d(A,B)  w i  11 be t h e  nu 

(This r e s u l t  holds whether we use dT o r  So t h e  constant ,  e, 

bounded between zero and d(A,B): 0 S c S d(A,B). 

A 

ill s e t .  

is 

While t h e  shape of  the  e l l i p s e  depended only on t h e  shape o f  t h e  

l i t t l e  rec tangle  determined by its f o c i ,  A and B, t h e  shape of  t h e  

hyperbola is  a l s o  dependent on t h e  magnitude o f  t h e  constant ,  c, r e l a t i v e  

t o  t h e  d i f fe rence  i n  t h e  lengths of  t h e  s i d e s  of  t h e  -rectangle. I n  o ther  

words, i f  we define k = \\a, - bll - \a2 - b 2 \  1 , t h e  shape o f  t h e  hyperbola 

depends p a r t l y  on whether c is  l e s s  than,  equal  t o ,  o r  g r e a t e r  than k. 

( see  Figure 1 3  . ) 



- 
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An i n t e r e s t i n g  th ing  happens i f  c i s  equal t o  k o r  t o  dT(A,B). 

Any p a i r  of  c i r c l e s  centered a t  A ,  B ,  respec t ive ly ,  whose r a d i i  d i f f e r  

by e i t h e r  k o r  dm(A,B) i n t e r s e c t ,  not i n  one o r  two po in t s ,  but  i n  a - l i n e  

segment. And so  i n  e i t h e r  case t h e  hyperbola is  no t  l i n e a r  and t h e "  -- 

shaded a reas  a r e  p a r t  of  t h e  hyperbola. (Look again a t  Figure 13-c, e . )  

Furthermore, A and B can be chosen so  t h a t  k = 0. Then t h e  "bisector"  

of AB is not  l i n e a r  (Figure 1 4 . )  

F I G U R E  14 

So f a r  we have cons idered  c i r c l e s ,  e l l i p s e s ,  an d hyperbolas. Next 

we might want t o  consider parabolas i n  t h i s  taxicab space. A parabola 

may be defined a s  the  s e t  of  a l l  p o i n t s  which a r e  equ id i s tan t  from a 

given po in t ,  F, c a l l e d  the  focus, and a given l i n e ,  D, c a l l e d  t h e  

d i r e c t r i x .  That is ,  given a f ixed  po in t ,  F, and a f ixed  l i n e ,  D, i n  R 2 ,  

a parabola is t h e  c o l l e c t i o n  of  po in t s  

{ P E R :  d(P,F) = d(P,D) I .  

But t h i s  r a i s e s  t h e  question of j u s t  exac t ly  how do we measure t h e  dis-  

tance from a point  t o  a l i n e .  I n  EÃ£ we sometimes speak o f  "dropping a 

perpendicular" f r o m  t h e  point  P  t o  t h e  l i n e  D . But i n  2" 2 we have a l -  

ready discovered t h a t  t h e  "perpendicular bisector"  of two p o i n t s  is  

usual ly not  s t r a i g h t ,  and may not  even be a l i n e .  So we might be a l i t t l e  

suspicious of t h e  "perpendicular" from a po in t  t o  a l i n e  i n  T2. We would 

l i k e  t o  def ine  t h e  d i s tance  from a po in t  P t o  a l i n e  D a s  t h e  l eng th  o f  



t h e  s h o r t e s t  p lath from P t o  D, a s  t h e  dis tance from P t o  t h e  po in t  

of D which is c l o s e s t  t o  P. Is there  a systematic way of  f ind ing  the  

po in t  on D which is  c l o s e s t  t o  p? In  Figure 15,  which of A, B, C i s  

c l o s e s t  t o  P? Is t h e r e  any po in t  o f  D which is  c l o s e r  t o  P t h a n  these? 

\ 
FIGURE 15  

Conc^ubion: 
In t h i s  a r t i c l e  I have defined t h e  tax icab  space, T2, and have 

given some examples o f  ideas which a r e  fami l ia r  t o  us  i n  "ordinary" 

Euclidean space, E ,  but which a r e  q u i t e  d i f f e r e n t  i n  T2. I leave t h e  

reader  now with two b i g  quest ions t o  explore: 

1 ) .  How do we measure t h e  d i s tance  from a po in t  t o  a l i n e  i n  T2? 

2). What do parabolas look l i k e  i n  T ?  

And, j u s t  perhaps, i n  looking f o r  t h e  answers t o  these  quest ions,  you 

w i l l  discover a number of  o ther  i n t e r e s t i n g  proper t i es  of taxicab geomet ry... 

This paper ii)as written while Dr.  Reynolds was a graduate student at  

St. Louis University. Currently she i s  on the faculty a t  Cardinal Stritoh 

College, Milwaukee, Wisconsin. 
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THE OBLIQUE ASYMPTOTES HYPERBOLA OF AN 

Once t h e  asymptotes of  a given hyperbola have been computed, it is  

a simple matter  t o  determine t h e  extent  of i ts  graph and t o  quickly 

sketch it. Now i f  t h e  hyperbola is  posi t ioned s o  t h a t  i t s  t ransverse  

a x i s  is  hor izon ta l  o r  v e r t i c a l ,  one can r e l a t i v e l y  e a s i l y  compute t h e  

asymptotes from i ts  equation - t h i s  requ i res  l i t t l e  more than a t rans -  
I 

l a t i o n  o f  axes v i a  a "completing t h e  square" process. However, i f  t h e  

t ransverse  a x i s  is  oblique (ne i ther  hor izon ta l  nor v e r t i c a l ) ,  t h e  stand- 

ard  procedure f o r  f ind ing  t h e  asymptotes t akes  considerably more work. 

It n e c e s s i t a t e s  a cumbersome r o t a t i o n  o f  axes i n  add i t ion  t o  t h e  t rans-  

l a t i o n .  In  t h i s  note  we w i l l  provide a simpler technique f o r  determining 

t h e  asymptotes of  an oblique hyperbola - one t h a t  requ i res  only t h e  so- 

l u t i o n  of a p a i r  of  l i n e a r  equat ions and a s ing le  quadrat ic  one. 

FIGURE 1 

The general  equation of  a hyperbola may be w r i t t e n  

2 2 Ax +Bxy + Cy + Dx + Ey = F 



where A ,  B, C, D, E and F a r e  r e a l  numbers with B - 4AC > 0. To de- 

termine t h e  asymptotes we employ t h e  following theorem toge ther  with t h e  

point- slope form of  t h e  equation of  a s t r a i g h t  l i n e  (as  i l l u s t r a t e d  i n  

t h e  example below). The proof of  t h i s  theorem w i l l  be deferred u n t i l  

t h e  end of  t h e  note. 

Thzotern. Consider t h e  hyperbola given by equation (1) .  

( i )  Its asymptotes i n t e r s e c t  i n  t h e  point  (p,q) ,  where (p,q)  i s  

t h e  unique so lu t ion  of  t h e  l i n e a r  system 

( 2 )  (Z4)p + (B)q = -D 

(B)p + (2C)q = -E. 

( i i )  If C # 0, t h e  s lopes of  t h e  asymptotes a r e  t h e  d i s t i n c t  r e a l  

r o o t s  of  the  quadrat ic  equation 

(3)  c ~ ~ + B ~ + A  = 0. 

If C = 0, t h e  hyperbola has one v e r t i c a l  asymptote and one with s lope 

equal t o  -A/B. 

m. A s  we s h a l l  see  i n  t h e  proof of  t h e  Theorem, t h e  hyperbola 
2 (1 )  is  degenerate i f  and only i f  F = A p  + Bpq + Cq + Dp + Eq, where 

(p,q) i s  t h e  so lu t ion  of ( 2 ) .  I n  t h i s  case,  t h e  graph of (1 )  i s  a p a i r  

of  l i n e s  whose point  of  i n t e r s e c t i o n  and s lopes a r e  given by the  Theorem. 

E x .  Consider t h e  hyperbola with equation 
2 

2X + xy - y 2  - 7x + 5y = 0. Here, A = 2, B = 1, C = -1, D = - 7,  E = 5 

and F = 0. So, t h e  l i n e a r  system (2)  becomes 

p - q = - 5 ,  

which has t h e  so lu t ion  p = 1, q = 3. Thus, both asymptotes pass  through 

t h e  point  (1,3) .  Also, s ince  C # 0, t h e  s lopes of t h e  asymptotes a r e  t h e  
2 r o o t s  of  (equation ( 3 ) )  -m + m + 2 = 0. That i s ,  one asymptote has 

slope -1 and t h e  o ther  has slope 2. F ina l ly ,  employing t h e  point- slope 

form, y - q = m(x - p ) ,  we ob ta in  t h e  equations of t h e  asymptotes 

- 3 = ( - l ) ( x  - 1 )  ( o r  y = -x + 4) 

and y - 3 =  2 ( x - 1 )  ( o r y  = 2 x + 1 ) .  

Proof of the Theorem. We f i r s t  t r a n s l a t e  t h e  a- and y-axes by 

means of  t h e  change o f  var iab les  

Subs t i tu t ing  (4)  i n t o  ( l ) ,  we ob ta in  

2 
where F = F - (Ap + Bpq + Cq2 + Dp + Eq). Thus, i f  (p,q)  s a t i s f i e s  t h e  

system (2) ,  equation (1)  is  transformed i n t o  

Moreover, t h i s  transformation is always poss ib le  - t h e  l i n e a r  system ( 2 )  

has  a unique s o l u t i o n  s ince  t h e  determinant of  i ts c o e f f i c i e n t  matrix, 
2 

4AC - B , is nonzero. 

Now, equation (5)  represen ts  a hyperbola with c e n t e r  a t  3 = 0, 

y = 0, so ,  by v i r t u e  o f  ( 4 ) ,  i n  t h e  xy-coordinate system i ts  cen te r  is 

loca ted  a t  x = p ,  y = q .  But t h e  c e n t e r  of  a hyperbola i s  a l s o  t h e  

po in t  of i n t e r s e c t i o n  of  i t s  asymptotes. Thus, we have v e r i f i e d  p a r t  

( i )  of  t h e  Theorem. 

Before proceeding t o  p a r t  ( i i ) ,  no t ice  t h a t  equation ( 5 )  can be 

w r i t t e n  a s  (aS + b y ) ( &  + dy) = 0, where a ,  b,  e and d a r e  r e a l ,  i f  

and only i f  F' = 0. Consequently, equation (51, and hence equation (1)  

a s  well ,  r epresen ts  a p a i r  of  l i n e s  ( i . e . ,  a "degenerate hyperbola") if 
2 

and only i f  F - (Ap + Bpq + Cq2 + Dp + Eq) = 0, where (p,q) s a t i s f i e s  

(2) .  

It  s u f f i c e s  t o  prove our a s s e r t i o n s  of p a r t  ( i i )  f o r  equation (5)  

( r a t h e r  than ( 1 ) )  s ince  under t h e  t r a n s l a t i o n  (4)  both t h e  s lope of a 

l i n e  and t h e  constants  A ,  B and C remain unchanged. 

I f  C # 0, solving equation (5)  f o r  we ob ta in  

Now, a s  151 + - t h e  t e ~ m ,  4CF1 becomes neg l ig ib le  compared t o  (B2 - 4Ac)z2, 

But t h e  c o e f f i c i e n t s  of  X i n  t h e  l a s t  expression a r e  t h e  r e a l  d i s t i n c t  

( s ince  B~ - 4AC > 0)  r o o t s  o f  equation ( 3 ) .  Thus, i f  C # 0, t h e  



asymptotes have t h e  s lopes claimed, 

If C = 0, equation (5)  t akes  the  form 

(6)  
2 A x  + Bxy = F 1 ,  

i n  which B cannot be zero o r  e l s e  B2 - 4AC = 0, a contradict ion.  Now, 

i f  A = 0, equation (6)  reduces t o  Zj = F'/B, which we know has one 

v e r t i c a l  asymptote and one of  slope 0 = -A/B, a s  desired.  Hence, we may 
assume t h a t  A # 0 and solve equation (6)  f o r  3 obtaining 

5 = (.-By 2 &j)* + 4AFt)/2A . 
Now, a s  lij I+ m , t h e  term 4AFt becomes neg l ig ib le  compared t o  ( B y )  s o  

5 -r ( - B y  *. m / 2 ~  = [(-B ? B ) / ~ A ] ~  . 
That is, a s  \A+ -, S + 0 o r  S+(-B/A)y. Thus, i n  t h i s  case equation 

(5)  has t h e  asymptotes 5 = 0 and 5 = (-B/A)ij ( i . e . ,  ij = (-A/B)z), and 

t h e  a s s e r t i o n  i s  proved. 
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A MATRIX MODEL FOR 
USE I N  POPULATION ECOLOGY 

by Michael 3. Young 
Portland State University 

One o f  t h e  most important app l ica t ions  o f  mathematics i n  ecology has 

been i n  models f o r  population growth. The l i t e r a t u r e  on t h e  sub jec t  i s  

v a s t  and dates  back from t h e  time of Malthus i n  t h e  18 th  century. Even 

what has been termed t h e  b a s i c  p r i n c i p l e  o f  population ecology is s t a t e d  

i n  mathematical language: I n  an unlimited, constant ,  and favorable  en- 

vironment, t h e  number of  ind iv idua ls  o f  a species  w i l l  increase ex- 

ponential ly  [poole , 19741. 

The most common approach t o  modeling populuation growth has been 

through t h e  use of d i f f e r e n t i a l  equations f i r s t  formulated by A. J. Lotka 

i n  1925. However, a more v e r s a t i l e  model using matr ix algebra was devel- 

oped by [ ~ e s l i e ;  1945, 1948, 19591. This paper w i l l  give t h e  development 

of  what i s  now c a l l e d  the  Les l ie  matrix model and explain i ts p a r t i c u l a r  

usefulness  t o  population ecology. 

Like a l l  models o f  n a t u r a l  phenomena, t h e  Les l ie  matr ix approach 

idea l ized  t h e  ob jec t  of  study. The following assumptions a r e  made: 

population changes a r e  based s o l e l y  on age dependent b i r t h  and mor ta l i ty  

r a t e s ;  t h e r e  a r e  no population changes due t o  immigration o r  emigration. 

The sex r a t i o  of  males t o  females i s  assumed t o  remain constant and only 

the  changes i n  t h e  female port ion of  t h e  population a r e  considered. 

F ina l ly ,  both time and age a r e  t r e a t e d  d i s c r e t e l y ,  and t h e  b i r t h  and 

death r a t e s  within each age i n t e r v a l  remain constant ;  they d i f f e r  from 

one i n t e r v a l  t o  t h e  next.  

This model has been used t o  describe t h e  dynamics of  a wide v a r i e t y  

of ecological  populations [see p. 42 of  Pielou,  19691 with a g rea t  dea l  

of  success. 

Consider a population t h a t  i s  divided i n t o  m + 1 age c l a s s e s  where 

t h e  ( m + 1 ) s t  i s  t h e  age c l a s s  of t h e  l a s t  surviving member of  t h e  popu- 

l a t i o n .  Then a t  a time t = 0 ,  each of t h e  m + 1 age c l a s s e s  can be 

represented by an element i n  t h e  column vector  



where the  f i r s t  subscript  denotes the  age c l a s s  and t he  secondy time. 

Thusy noo represents  the  number of individuals  i n  f i r s t  age c l a s s  a t  

time t = O y  and nmo the  number i n  the  (m+l)st age c l a s s  a t  time t = 0. 

It i s  assumed t h a t  none of  the  females l i v e  past  the  age c l a s s  m. The 

age i n t e rva l s  a r e  of the  same length a s  the  time in te rva ls .  

Associated with t h i s  age d i s t r i bu t i on  vector a re  the  following 

age-specific s t a t i s t i c s :  

F = t he  number o f  daughters born per female aged x a t  time t y  x 
who w i l l  be a l i ve  i n  the  i n i t i a l  age c l a s s  a t  time t + 1. 

Px = the  probabil i ty t h a t  a female aged x a t  time t w i l l  be a l i ve  

i n  the  age c l a s s  x + 1 a t  time t + 1. 

In  matrix formy the  age d i s t r i bu t i on  vector a t  t i m e  t = 1 i s  given 

where M is the  Lesl ie  (or  project ion) matrix. 

This matrix M cons is t s  of m t 1 rows and m t 1 columns, and holds 

the  fecundity (number of  offspring) and survivorship data. Except f o r  

the  f i r s t  row and the  sub-diagonal immediately below the  main diagonaly 

a l l  other  entr5es a r e  zero. The survivorship values and s t r i c t l y  between 

0 and 1 and the  fecundity values a r e  non-negative. 

It should be noted t h a t  s ince Mno = nl a n d q  = $no = n2 t h a t  
t Mno=Mtz  t-1 = nt 

where nt denotes the  age d i s t r i bu t i on  vector a f t e r  t time un i t s  have 

elapsed. 

E m p L e  - - - -- 
Let the  matrix M and the  i n i t i a l  age d i s t r i bu t i on  vector no be as.  

follows : 

Then the  age d i s t r i bu t i on  a t  time t = 1 is 

Subsequent age d i s t r i bu t i on  vectors a r e  found i n  the  same way, i . e .>  

2 3 n = & = M no  = (36 0 2 ) * Â  n = Mn = M n = (24 12  O)ey e t c .  
2 1 3 2 0 

PJLopemxa 06 fie Bmic w x  

In  examining t he  proper t ies  of  t he  matrix My it is not necessary t o  

consider the  whole matrix. Unless t he  females i n  the  population a r e  re-  

pmductive u n t i l  t he  end of  t h e i r  l i fespan* some of the  e n t r i e s  of the  

f i r s t  row of t he  matrix M w i l l  be zero. In  other  wordsy i f  x = k is  the  

l a s t  age c l a s s  within which reproduction occursy then Fk is  the  l a s t  Fz 

f igure  t h a t  i s  not equal t o  zero. Now the  matrix M can par t i t ioned  

symmetrically a t  t h i s  point t o  give 

Then forming the  s e r i e s  of matrices gY M3Â MkY . . . 

Now C i s  t r iangular  with its only nonzero elements Pk+ly,..y Pm-l on t he  

subdiagonal. Therefore* when t 2 m - k y  ct = 0 and Mt has zeroes i n  



l a s t  m - k columns. This expresses t h e  b io log ica l  f a c t  t h a t  females 

a l i v e  i n  t h e  post- reproductive ages con t r ibu te  nothing t o  t h e  population 

when they themselves a r e  dead a f t e r  a maximum of  m - k time un i t s .  

I n  considering only t h e  port ion o f  t h e  population o f  reproductive 

age, we need only examine t h e  matrix A .  

F i r s t  of  a l l ,  we note t h a t  A i s  square o f  o rder  k + 1. The matrix 

is  nonsingular s ince  t h e  determinant 1 A! = (-1 ) k + 2 ( ~ o ~ l .  . .Pk-lFk). 

Howevery more importantly f o r  our  purposesy t h e  matr ix A is non-negative 

( t h e  e n t r i e s  a r e  g r e a t e r  than o r  equal t o  zero)  and i r reduc ib le  ( i t  i s  

impossible t o  g e t  from A ,  however one permutes t h e  rows with each o t h e r y  

o r  t h e  columns with each o ther ,  a matrix t h a t  can be p a r t i t i o n e d  i n t o  

square submatrices one of  which is  0 o f  order  n > 1 ) .  It is  these  con- 

d i t i o n s  t h a t  w i l l  be referenced i n  t h e  next  p a r t  of  t h i s  paper. 

The StabLc Age V A . & i b d o n  
An important quest ion now a r i s e s :  does t h e r e  ever  come a time when 

t h e  age d i s t r i b u t i o n  vector  becomes s t a b l e ?  In  o ther  wordsy a t  a time 

t = s ,  does t h e r e  e x i s t  a vector  n and a s c a l a r  A such t h a t  

An = An . 
This is  t h e  same a s  asking i f  a l a t e n t  roo t  and t h e  l a t e n t  vector  

assoc ia ted  with it e x i s t  f o r  t h e  matrix A.  Since A is non-negative and 

i r reduc ib le ,  it s a t i s f i e s  t h e  necessary condit ions o f  t h e  Perron-Frobenius 

Theorem: any matrix that meets these  condit ions has a t  l e a s t  one 

p o s i t i v e  r e a l  l a t e n t  m o t  of  m u l t i p l i c i t y  oney say A l ,  whose value is  

g r e a t e r  than o r  equal  t o  t h e  modulus o f  any complex r o o t  o f  t h e  matr ix 

( i . e .  Al 2 1 A . l  f o r  a l l  i # 1 where t h e  A f s  a r e  t h e  l a t e n t  r o o t s ) .  
2 

To show t h a t  A i s  t h e  only p o s i t i v e  r o o t ,  we consider  t h e  
1 

c o e f f i c i e n t s  of  t h e  c h a r a c t e r i s t i c  equation o f A  which is  

Let P(p) = POP l...Pry and expand t h e  determinant t o  give 

The lef t- hand s i d e  has only one change of  s i g n y  and by Descartesv r u l e  

o f  s i g n s y  t h e  equation has a t  most one p o s i t i v e  r e a l  roo t .  

Thereforey except f o r  Aly  a l l  t h e  r o o t s  of  A a r e  negat ive o r  

complex  ellma man^ 19601. 

For the  b i o l o g i s t ,  Al, c a l l e d  t h e  dominant l a t e n t  roo t ,  i s  o f  g r e a t  

importance. Being r e a l  and pos i t ive ,  it is  t h e  only l a t e n t  r o o t  t h a t  

w i l l  g ive r i s e  t o  a s t a b l e  age d i s t r i b u t i o n  cons i s t ing  of  r e a l  and 

p o s i t i v e  elements. The dominant l a t e n t  r o o t  Al i s  a l s o  c a l l e d  t h e  

f i n i t e  r a t e  of  increase ,  and is  r e l a t e d  t o  t h e  i n t r i n s i c  r a t e  of  i&peaseY 

PY by 

1nA = r . 
1 

Thus, Al can be thought of  a s  t h e  mul t ip l ica t ive  growth f a c t o r  p e r  

generation 

and P a s  t h e  f'compound i n t e r e s t "  growth r a t e  

where N represen ts  t h e  population t o t a l  a t  any time t. It must be t 
remembered t h a t  terms Al and P a r e  only appropriate  when t h e  s t a b l e  age 

d i s t r i b u t i o n  of  a population e x i s t s .  

Finding ,the S&b& Age V h . & i b d o n  and the  Voninant l d e n t  Roo$ 
While t h e  dominant l a t e n t  r o o t  of  t h e  matr ix A may be found thmugh 

t h e  process of  diagonal expansiony it i s  much more convenient t o  t rans-  

form it from i ts  o r i g i n a l  coordinate system t o  a new s e t  of  coordinates. 

Les l ie  (1948) has suggested t h e  nonsingular transformation 

B = HAH-l 

where H is  a diagonal matr ix with elements (PoPl...Pk-l), (PlP2...Pk-l)y 

. . . , (Pk-2Pk-l)y Pk-l)y ly which a r e  derived from t h e  matrix A.  Thus 

l e t t i n g  q p )  = POP 

0 ... 1 O J  
The e f f e c t  o f  t h i s  transformation i s  t o  replace t h e  P elements i n  the; x 
p r i n c i p a l  subdiagonal o f  A by a s e r i e s  of  u n i t s ,  and reduce A t o  t h e  

r a t i o n a l  canonical form. In  b io log ica l  termsy it i s  equivalent t o  t rans-  

forming t h e  o r i g i n a l  population i n t o  one i n  which a l l  t h e  ind iv idua ls  



l i v e  u n t i l  t h e i r  span of reproductive l i f e  i s  completed a t  t h e  age of 

k t 1. 

It can be noted t h a t  s ince the  transformation is  c o l l i n e a r ~  t he  

matrices A and B have t he  same cha rac t e r i s t i c  equation and thus t he  same 

l a t e n t  roots .  Then the  vector  vS such t h a t  

Bv = AVS s 

i s  the  s t ab l e  age d i s t r i bu t i on  of t he  matrix B y  and is r e l a t ed  t o  n S by 

n s = H-'V~ 

E m p L t  

Referring t o  t he  previous example* we l e t  A = M , and f i nd  t h a t  

116 0 0 0 0 

?l = [: 1; ;] and = [i 1 . 

Then 

0 3 2  

B = = [; ; ] . 

and t he  cha r ac t e r i s t i c  equation is  found by examining t he  coef f ic ien ts  

of the  f i r s t  row of By 

2 
x 3 - 3 1 - 2 = ( A - 2 ) ( 1  + 2 A t l )  

Then t he  dominant l a t e n t  roo t  Al = 2, and t h e  s t a b l e  age d i s t r i bu t i on  V s  

is  computed by l e t t i n g  

and a r b i t r a r i l y  s e t t i n g  vks equal t o  one. Then we have us = (4 2 1).  
-1 

and by ns = 17 us, we f i nd  t h a t  the  s t a b l e  age d i s t r i bu t i on  of t h e  

matrix A is  n = (24 4 l). .  s 

Rm& 

Through t he  use of computers and numerical methodsy matrices much 

l a rge r  than t h e  ones shown i n  the  examples can be handled with ease. It  

i s  t h i s  ' tprogramabil i ty ' t  t h a t  makes t h i s  Lesl ie  approach so popular with 

eco logis t s .  Hypothetical populations o r  na tu r a l  populations based on 

f i e l d  data can be s tudied under a va r i e t y  of conditions using thi-symgdel. 

Pennycuicky e t  a l . *  (1968) consider such f ac to r s  a s  densi ty e f f e c t s  

and time lag ,  and Darwin and Williams (1964) consider the  e f f e c t  of 

hunting on a population. 
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papers o r  student ache<vement in mathematics, you may apply 
t o  t h e  National Office t o  match t h e  amount spent  by your 
chapter .  For examplea $30 of awards can r e s u l t  i n  t h e  chapter  
receiving $15 reimbursement from t h e  National Office. These 
funds may a l s o  be used f o r  t h e  r e n t a l  of mathematical films. 
To applyy o r  f o r  more i n f o m a t i o n ,  w r i t e  t o :  

â‚¬mpL 7 .  

Express 21 a s  a sum of one o r  more s e r i e s  of  consecutive odd 

in tegers .  

D r .  Richard A .  Good 
Secretary-Treasurer,  P i  Mu Epsilon 
Department of Mathematics 
The Universi ty  of Maryland 
College Park, Maryland 20742 

Soh%n: Factoring y i e l d s  t h e  following p a i r s  of f a c t o r s  whose. 

products a r e  21 and which s a t i s f y  t h e  condit ions of t h e  Lemma: 

(1,211 , (3,7). 
In  t h e  f i r s t  case l e t  f = 1; then N becomes 21 and t h e  only odd term. 

I n  t h e  second casea  l e t  f = 3 and N = 7. We have by our Lemmaa 

2 1 = 5 + 7 + 9 .  



E m p L e  2 .  

Express 24 as a sum of one or more series of consecutive odd 

integers. 

Sol&on! The proper factor pairs whose products are 24 are: 

(4Â¶6 , (2a12). 
By letting f = 4 and f = 2 respectively, we get 

2 4 = 3 + 5 + 7 + 9 a n d  

24 = 11 + 13. 

Theoaem 7 .  Let Aly a A be a sequence of positive integers and n 
set M = A12 + - - -  + A

n
2. If B and C are solutions to the equation 

then there exists an integer f such that B = (M - f2)/2f and C = B + f. 
Here M = f*Ny where f and N have the same parity and f 5 N. Moreovera 

all solutions B and C to equation (1) arise this way. 

Proof. The key to the proof is to exploit the well-known formula - 
1 + 3 + --â + 2k - 1 = k2. 

First suppose M = f-Na where f 5  N and fa N have the same parity. 

By the Lemma 

M = N - (f-1) + N - (f-3) + *-â + N + (f-3) + N + (f-1). 
Now 

B = = Mm = M* is an integer because lv = f (mod2). 
2 2f 

Hence M + B2 

Suppose 

= 1 + 3 + - - a  + N - (f+l) + iv - (f-I) + - - -  + lv + (f-1) 
= ( ~ 7  = c2, where C =!%=!Ez+f= 2 

2 + f. 

now B and C are a solution to equation (1). Then 

B2 = 1 + 3 + * - -  + (2B - 1) and c2 = 1 + 3 + -.- t 2C - I. Hence 

M = c2 - B2 = (2B + 1) + * - *  + (2C - I) = (2C - I) + + (2B + 1); so 
2M = 2(B + C) + - a -  + 2(B t C) = 2(B + C) f, where fis the number 

of terms. Thus M = c2 - B2 = (C + B)(C - B) = (C + B)f, making 
f = C - B. Setting N = C + By we have f ~ ( m o d 2 )  and f s  N. 

Moreover, B = (N - f)/2 = (M - f2)/2f and C = B + f. 

Exarnp.&. Find all solutions (ByC) to the equation 

1 2 ~  + 16' + B2 = c2. 
Here M = 400. Factoring M into factor pairs whose products are 4G@*?d 
which satisfy the conditions of the Theoremy we get 

(2,200)a ( 4 a l ~ ~ ) ,  (8a50)y (lOa40), and (20,201. 

It is important to realize that throughout the proofs we set f 5 lv 

so that calculations are facilitated when employing the formula. Now 

using the main result in the Theorem we have 

Furthermorey by properly affixing minus signsa we obtain all of the 

solutions (BaC) as follows: 

Theokekn 2 .  Let M = A13 + - - -  t A
n
3. If A13 + +Aa3 + B3 = c3 

has an integral solution (ByC)y then there exists a divisor f of M with 

f E M (mod 2) such that dl2Mf - 3p is integral. Moreovera 

B = -f/2 k n a n d  C = B + f. Converselya if 
6f 

is integral, then the values of B and C described in the 

previous statement form an integral solution to M + B3 = c3. 

Proof. If M + B~ = C3, then M = c3 - B3 = (C - B)(c2 + CB + B2). 
Letting f = (C - B), f divides M and 

M:c3 - B ~  z C - B E  f (mod21 

since a3 E a (mod 2) for any integer a. 

Now 

M = c3 - B3 = (B + f)3 - B3 = 3B2f + 3BP + f3. 



Thus 3 p 2  + 3 f 2 B  + f 3  - M = 0 and so  

B  = - 3 f 2  Â J 9 f 4  - 1 2 p  + 12Mf 
6 f  

Â £ +  
2 - 6 f  A l f M - 3 f 4 .  

Since B  is i n t e g r a l ,  s o  is AlfM - 3;f4. 

Conversely, assume t h a t  /12fM - 3 f 4  is i n t e g r a l .  Then 

D  = 12fM - 3 f 4  is a square. Since f  \ M ,  it fol lows t h a t  f ^ \D.  NOW 

D / f 2  = 12M/f - 3 f 2  is  d i v i s i b l e  by 3  and s ince  D / f 2  is  a square it must 

a l s o  be d i v i s i b l e  by 9.  Thus 9f21  D and 3 f  \ 6 Also 

so  t h a t  

Hence - f  Â 6 / 3 f  = O(mod 2 )  and 

B  = - f / 2  Â -!- 6 i s  an in teger .  
6 f  

Since M = C3 - B3 = ( B  + f I 3  - g 3  i f  and only i f  

M = 3 g 2 f  + 3Bf2  + f 3 ,  

we need only prove t h e  l a t t e r  statement. This is  done by t h e  

following computation: 

3B2f + 3Bf2  + f 3  = 

3 ( - f / 2  2 -1- i^"l2f t 3 ( - f / 2  Â -^- f i ) f 2  + f 3  = 
6 f  6 f  

m e .  Find a l l  i n t e g r a l  so lu t ions  (B ,C)  t o  t h e  equation 

3 3  + 4 3  + B3 = c3. 
F i r s t  we s e t  M = 91 and then f a c t o r  M t o  ob ta in  t h e  following f a c t o r  

p a i r s  ( N , f ) :  

( 1 , 9 1 1 ,  ( 7 , 1 3 1 .  

Both must be t e s t e d  i n  t h e  formula we j u s t  proved. By s u b s t i t u t i n g  

a l l  four  in tegers  i n t o  t h e  formula one f i n d s  t h a t  t h e  only two which 

s a t i s f y  t h e  condit ions of t h e  Theorem a r e  ( 1 , 7 ) .  Thus, 

Theo~em 3. I f  ( B , C )  i s  a  so lu t ion  t o  A: + . - *  t A: t Bd = 8, 
then B  is a r o o t  of t h e  equation 

Here M = Al + A + - - t A d a  f  i s  a  d i v i s o r  of M with f  5 M (mod 2 )  

and ak =(f) is a binomial c o e f f i c i e n t .  Moreover C  = B  t f  and 

P r o o f .  Note M = & - = ( c  - B)(&'l + gw2 + - - -  + a^"') 
S e t t i n g  f = C  - B ,  we have C  = B  + f  and M E 8 - Bd =C - 'Bs f (mod 2 )  

s ince  ad = a(mod 2 )  f o r  any a .  Now 

d  
M = 8 - B  = ( B + f ) d - ~ d  

Thus, 

a d - '  + + + a d 1 / - ' ~  + /Ã - M = o 

a s  des i red .  

Dividing t h e  equation 

by f gives 

M / /  = a l ( ~ / f ) d - l  + a 2 ( ~ / f ) d - 2  t + a  B / f  + 1 .  
d- 1  

Hence 

M / /  S 1 

It follows f  5 VM", and because f  is  an i n t e g e r ,  t h a t  

f  5 [%I. 



CHAPTER REPORTS 

Cal i fo rn ia  Lambda (University of California,  Davis). The repor t  is  

l a t e  because of romantic d is t rac t ions  involving the  Chapter Secretary. 

A var ie ty  of programs were held, and several  guest speakers part icipated:  

Phod. O o d d  u. C/wuJe., "Patterns of Primitive A r t " ;  Ph0d. O U V ~  BfflAn&&?, 

"How They solved the  Four Color Problem"; PhoI(. Atan Ede^&on, "Solving 

Dif ferent ia l  Equations With Topology"; PA. Ronald Graham, (Bell  Labs), 

"Problems on Progressions"; Mh. O0WLtd.l W ~ I ,  (Dramatic Arts Department, 

UC Davis), "Additive Mixing of Colored Light--White Light is a Myth". 

Minnesota De l ta  (St. John's University). A regional  P i  Mu Epsilon 

Conference was held on April 10 and 11. Phodc%boh Mahy E&kn R& 
(University of Wisconsin) gave three  lectures--"What Does a Topologist 

Do?", "What Does Set Theory Have t o  Do With Mathematics?" and "Crazy 

Spaces". There were sessions f o r  contributed papers and these w i l l  be 

l i s t e d  i n  t h e  F a l l  1980 issue.  

Montana A1 pha (University of Montana). There was a f i lm program 

which was very successful. 

South Dakota Beta (South Dakota School of Mines and Techology). 

The Chapter part icipated i n  a var ie ty  of a c t i v i t i e s  including a f i lm 

program, The Western South Dakota Career Fair ,  The Western South Dakota 

Mathematics Contest ( a s  proctors and graders) and guest speakers. The 

Chapter heard: Phod. Pat/U.ck &OHM (College of Wooster), "The Four Color 

Problem". 

Texas Epsi 1 on (Sam Houston Sta te  University). The Chapter heard 

t a l k s  by vh. fiaMu/ E o h n  on teaching i n  secondary schools and Vh. BUMliUi 

on the  new telephone connected computer. Oh. Robe& Goad gave a l ec tu re  

on "Cartesian Products and the  01' Baloney Slicing Technique". 

Ã‘ 

Is your Chapter submitting material  for t h i s  Section of the  Journal? 

Reports and L i s t s  of Chapter Awards should be s en t  t o  the  Editor. 

PROBABILITY OF BEING A LOSER 

by  EÂ£tlo A. Ton^A 
Hope. CoUege 

1 .  Iret loduction 
The American public is fascinated with gambling a s  evidenced by 

the  f a c t  t h a t  almost every s t a t e  i n  t he  United States permits it i n  some 

form - bingo, horse racing, j a i  a l a i ,  casinos, o r  s t a t e  run l o t t e r i e s .  

Most students a r e  a l so  fascinated with probabil i ty questions connected 

with games of chance. 

In  t h i s  paper we determine the  proportion of gamblers who a re  l o se r s  

when playing cer ta in  games of chance. I n  par t icu lar ,  suppose t h a t  a 

be t tor  decides t o  continue t o  play u n t i l  rn $1 be ts  have been placed. 

Let Y equal the  t o t a l  number of dol la rs  "won" a f t e r  placing these rn 

bets .  We s h a l l  consider the following questions f o r  chuck-a-luck, craps, 

roule t te ,  and the Michigan Daily Lottery (a numbers game): 

(1)  What is  the  value of P ( Y  < O)? That is, what is  the proba- 

b i l i t y  t h a t  the be t to r  is behind a f t e r  placing m bets? 

(2)  What can be sa id  about the d is t r ibut ion  of Y ?  

2. Chcfe-A-Lu& 

In  the  game of  chuck-a-luck, a cage containing three  dice is  turned 

and the  numbers on the  dice a r e  observed. One possible wager is f o r  the 

be t tor  t o  place a $1 be t  on a par t icu lar  number. The payoff is  $1 f o r  

each of  the three  dice t h a t  shows t h a t  number. The do l l a r  is  l o s t  only 

when t h a t  number does not appear on any of the three dice. 

I f  we l e t  X denote the  payoff f o r  a s ingle $1 bet ,  the  probabil i ty 

density function (p.d.f.) of X is  defined by 



The mean and variance o f  X a r e  l.~ = -17/216 = -0.07870 and 
2 a2  = 57,815/216 = 1.23918. 

Suppose t h a t  m b e t s  w i l l  be placed and l e t  t h e  payoffs  on these  

b e t s  be Xl, X2, ..., X ,  a  random sample from t h e  d i s t r i b u t i o n  having 
m 

p.d.f. f ( x ) .  I f  we l e t  Ym = Xi, then Y i s  equal  t o  t h e  number 
m 

i=l 

o f  d o l l a r s  "won" a f t e r  placing m be t s . .  

We s h a l l  now determine t h e  probabi l i ty  of  being behind a f t e r  

placing m = 300 be t s .  Let Y = Y300. Using t h e  Central  Limit Theorem, 

we ob ta in  

where Z has a  normal d i s t r i b u t i o n  with mean 0 and variance 1. That is, 

t h e  probabi l i ty  o f  being behind a f t e r  placing 300 b e t s  is  approximately 

0.8846. It can e a s i l y  be shown t h a t  t h e  p robabi l i ty  o f  being behind 

a f t e r  placing m = 1000 b e t s  is  approximately 0.9868. 

In  Figure 1 we have depicted P(Y < 0)  f o r  m going from 100 t o  m 
3,000. 

From t h e  Central  Limit Theorem we know t h a t  t h e  d i s t r i b u t i o n  of  Y m 
is  approximately normal with mean p = m(-0.07870) and variance 

a  = m(l.23918). It is  i n t e r e s t i n g  t o  i l l u s t r a t e  t h i s  empir ical ly .  In  

p a r t i c u l a r  we simulated m = 300 $1 b e t s  i n  chuck-a-luck f o r  each of  

n = 2000 gamblers. For each of  t h e  2000 t r i a l s ,  we kept  t r a c k  of  t h e  

number of  d o l l a r s  "won". A histogram o f  t h e s e  2000 outcomes is depicted 

i n  Figure 2. Superimposed over t h e  histogram is a normal p r o b a b i l i t y  

dens i ty  funct ion with mean \i = 300(-0.07870) = -23.610 and variance 

o2 = 300(1.23918) = 371.754. I n  t h i s  s imulat ion t h e  sample mean, 

5 = -23.116, is  c lose  t o  p,  and t h e  sample variance, e2 = 362.109 is  
2 c lose  t o  a  . Also t h e  proportion o f  gamblers who a r e  behind is  

1757/2000 = 0.8785 which i s  c lose  t o  P(Y300 < 0 )  -: 0.8846. 

3. Rodfc-fcte and Cmp6 

Consider games of  chance i n  which a  $1 be t  is  placed and t h e  proba- 

b i l i t y  o f  winning $1 is  p while t h e  p robabi l i ty  of los ing  $1 i s  1 - p. 

If we l e t  X denote t h e  payoff fo r  such a  game, the  p robabi l i ty  dens i ty  

funct ion of  X is given by - 

I 
- - -- 

1 - p, x = -1, 
f ( x )  = 

p , x = 1 .  (3.1) .. 
The mean and variance of  X a r e  p = 2p - 1 and a = 4 p ( l  - p ) ,  

respec t ive ly .  

Again l e t  X ,  X2, ..., X denote the  outcomes o f  m b e t s  and l e t  

Ym = Xi. Then ym is equal t o  t h e  amount ltwonll a f t e r  placing m 

i=1 

bets .  Using t h e  Central  Limit Theorem t o  determine t h e  probabi l i ty  o f  

being behind a f t e r  placing m b e t s ,  we have 

where Z has a  s tandard normal d i s t r i b u t i o n .  

Two casino games w i l l  be used f o r  i l l u s t r a t i o n ,  namely, r o u l e t t e  

and craps.  

A possible  bet  i n  r o u l e t t e  i s  t o  be t  on red.  I n  t h i s  case,  

p  = 18/38 = 0.47368 is  t h e  probabi l i ty  of  winning on a  p a r t i c u l a r  be t .  

After  placing m = 300 b e t s ,  t h e  p robabi l i ty  of  being behind is (using 

equation 3.2) 

P(Y300 < 0)  0.8117. (3.3) 

In  Figure 3 is depicted P(Ym < 0 )  f o r  m going from 100 t o  3,000 

f o r  r o u l e t t e  i n  which t h e  gambler places m $1 be t s ,  f o r  each o f  which 

t h e  probabi l i ty  o f  winning $1 is  p = 18/38. Examples of  such b e t s  a r e  

b e t t i n g  on r e d  o r  b e t t i n g  on even. 

In  t h e  game o f  craps,  t h e  p robabi l i ty  o f  winning on a  p a r t i c u l a r  

be t  is  p = 0.49293. After  placing m = 300 be t s ,  t h e  p robabi l i ty  of 

being behind is (using equation 3.2) 

In  Figure 4 is  depicted P ( Y  < 0)  f o r m  going from 100 t o  3,000 

f o r  craps i n  which the  gambler has placed m $1 be t s .  

The d i s t r i b u t i o n  o f  Y could e a s i l y  be i l l u s t r a t e d  empir ical ly  f o r  
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rou l e t t e  and craps j u s t  as it was f o r  chuck-a-luck. 

4.  WLchigm uPcuJS.y Lo-tteAy 

In the  Michigan Daily Lottery, a be t t o r  may s e l e c t  a th ree  d i g i t  

in teger  from 000 t o  999, inclusive,  and place a $1 be t  on t h i s  number. 

I f  the  s t a t e  a l s o  s e l e c t s  t h i s  number, the  pr ize  t o  the  be t t o r  is $500. 

Actually, the  ne t  gain t o  t he  be t t o r  i s  only $499 because the  s t a t e  does 

not re turn  the  $1 bet .  I f  X denotes the  gain per  be t ,  then P(X = -1) = 

0.999 and P(X = 499) = 0.001. 

Suppose t h a t  on m d i f f e r en t  days, a $1 be t  i s  placed. I f  we l e t  

Xl, X2; . . ., X denote t he  payoffs on these m be ts ,  then Ym = 2 X; 
2=1 

is the  t o t a l  number of  dol la rs  "wonw a f t e r  m bets .  Before we consider 

P ( Y  < 0) i n  general, we s h a l l  look a t  two spec ia l  cases. 

Suppose t h a t  m = 600 $1 be ts  have been placed. Then the  possible 

values f o r  Y = YGo0 a r e  -600, -100, 400, 900, 1400, ... . Let W denote 

the  number of winning t i c k e t s  out o f  m bets .  Then P(Weo0 = k ) = 

(60)(0.001)k(0.999)600~k, f o r k  = 0, 1, 2, ..., 600. That is, W = W600 

has a binomial d i s t r i bu t i on  with parameters n = 600 and p = 0.001. 

After placing 600 be ts ,  the  probabil i ty t h a t  a be t t o r  is  behind is given 

by 

Suppose now t h a t  a be t t o r  has purchased m = 3,200 t i cke t s .  Lett ing 

W3200 equal the  number of winning t i cke t s ,  we see t h a t  t h i s  be t t o r  is a 

loser  i f  W3200 5 6 and a winner i f  W3200 7. We can again use the  

f a c t  t h a t  W3200 has a binomial d i s t r i bu t i on  with n = 3200 and p = 0.001. 

A Poisson approximation of the  binomial probabi l i t i es  with X =(3200)(.001)= 

3.2 makes the  calculat ions very easy. We have 

P(Y3200 < 0) = P(W3200 5 6 )  = 0.955 (4.2) 

using a Poisson probabi l i ty  tab le .  I f  m = 3400 t i c k e t s  a r e  purchased, 

using a Poisson approximation with X = 3.4. I f  an addi t iona l  200 

t i c k e t s  is purchased, we have 

P(Y3600 < 0) = P(W3600 S 7 ) " 0.969, (4.4) - 
using a Poisson approximation with X = 3.6 Thus, we see t h a t  P ( Y < O ~  

does not increase monotonically a s  m increases,  which was the  case with 

the  casino games of  chance. 

In general, i f  500k < m 5 500( k t l ) ,  a be t t o r  is a lo se r  i f  W 5 k. 

In Figure 5 we have depicted P ( Y  < 0) f o r  1 5 m 5 3000. These be t s  

a r e  ca l led  s t r a i g h t  bets .  

Two other  types of  be t s  a r e  possible i n  the  Michigan Daily Lottery. 

These a r e  ca l led  boxed be ts .  In  a 3-way box, the  be t t o r  may box a number 

l i k e  355 and win i f  the  s t a t e  s e l ec t s  e i t h e r  355, 535, or  553. The 

payoff f o r  winning is $166. The gain t o  the  be t t o r  would be $165 because 

again the  s t a t e  does not re turn  the  $1 bet. I f  X denotes the  gain per 

be t  t o  the  be t t o r ,  P(X = -1) = 0.997 and P(X = 165) = 0.003. I f  Wm 

denotes the  number of  winning t i c k e t s  i n  m be ts ,  W has a binomial dis-  

t r i bu t i on  with parameters n = m and p = 0.003. 

For t he  3-way boxed be t ,  i f  166k <m S 166( k + l ) ,  a be t t o r  is  a 

l o se r  i f  W <: k. In  Figure 6 we have depicted P ( Y  < 0) f o r  1 5 mS 3000 

where Ym i s  the  number of  do l l a r s  'qwonqf a f t e r  m be ts  have been placed. 

The o ther  type of boxed be t  is  a 6-way box. A be t to r  may box a 

number l i k e  678 and win i f  any of  the  6 permutations of 678 is selected.  

O f  course, the  payoff is reduced and is  equal t o  $83. I f  X denotes the  

gain per  be t  t o  the  be t tor ,  P(X = -1) = 0.994 and P(X = 82) = 0.006. 

For the  6-way boxed be t ,  i f  m k < m  a 8 3 ( k +  l ) ,  a be t t o r  is  a l o se r  

i f  W Â¥& k where W i s  the  number of  winning t i c k e t s  i n  m be ts .  I n  

Figure 7 we have depicted ? ( Y  < 0)  f o r  1 Sm: 3000 where Y is  the  

number of  dol la rs  "won" a f t e r  m be t s  have been placed. 

In comparing these t h r ee  d i f f e r en t  types of be ts  i n  t he  Michigan 

Daily Lottery, it is in t e r e s t i ng  t o  note t ha t ,  although the  6-way boxed 

be t  gives the  l a rges t  probabi l i ty  of  winning a prize (0.006), the  prob- 

a b i l i t y  of being behind a f t e r  placing m be t s  increases t o  one the  most 

rapidly with the  6-way boxed be t .  

5 .  SwmiiUty 

The examples i n  t h i s  paper give i l l u s t r a t i o n s  of  approximating 

probabi l i t i es  using the  Central Limit Theorem and a l so  of  approximating 



binomial p r o b a b i l i t i e s  using t h e  Poisson d i s t r i b u t i o n .  The long range 

expectat ion of  being a l o s e r  was demonstrated f o r  severa l  games o f  

chance. 

The reader  i s  encouraged t o  use s imulat ion techniques on t h e  com- 

pute r  t o  est imate p = P(Y < 0 )  f o r  any one of  t h e  games and f o r  d i f -  m 
fe ren t  values of  m . He o r  she should decide how many times, say n , 
t h a t  t h e  simulation should be repeated t o  give t h e  confidence l e v e l  and 

maximum e r r o r  of  t h e  est imate desired.  

1 9 8 0  NATIONAL P I  MU EPSILON 

MEETING 

It is time t o  be making plans t o  send an undergraduate delegate  o r  

speaker from your chapter  t o  a t t end  t h e  Annual Meeting of  P i  MU E p s i l o n  

on t h e  University of Michigan Campus a t  Ann Arbor i n  August of 1980. 

Each speaker who presen ts  a paper w i l l  r ece ive  t r a v e l  fund of up t o  $400 

and each delegate ,  up t o  $200. 

POSTERS AVAILABLE FOR LOCAL ANNOUNCEMENTS 

We have a supply of  10 x 14-inch F r a t e r n i t y  Crests  ava i lab le .  One 

i n  each c o l o r  w i l l  be s e n t  f r e e  t o  each l o c a l  chapter  on reques t .  

Additional p o s t e r s  may be ordered a t  t h e  following r a t e s :  

(1) Purple on goldenrod stock---------$l.SO/dozen, 

( 2 )  Purple on lavendar on goldenrod---$2.00/dozen. 

SOME CONDITIONS FOR ONE-TO-ONE-NESS 

If f ( z )  is a n a l y t i c  i n  a convex domain D, a well-known s u f f i c i e n t  

condit ion f o r  f ( z )  t o  be one-to-one i n  D is t h a t  t h e r e  e x i s t s  a complex 

constant  c such t h a t   el cf' (z ) (  > 0 i n  D. (See [2, p. 5821. ) The 

following theorem is  a n  easy genera l iza t ion  o f  t h i s  condition. 

Theokiw 1 .  If f ( z )  is  a n a l y t i c  i n  a domain D, and i f  ^(.a) is  a 

one-to-one a n a l y t i c  funct ion which maps D onto a convex domain, and i f  

c is a complex constant  such t h a t  Re > 0 i n  D, then f ( z )  is  one- 

to-one i n  D. 

Proof. Let +(D) = Dl. +-l, g i s  a n a l y t i c  i n  Dl, and 

i f  w =  $ (a ) ,  Re 1 cg  ' ( w ) [  = 0 f o r  each ueDl, s o  t h a t  g i s  
. . 

one-to-one i n  Dl, and there fore  f is one-to-one i n  D. 

Theorem 1 c l e a r l y  genera l izes  t h e  condit ion mentioned i n  t h e  f irst  

paragraph o f  < h i s  paper, a s  is  seen by tak ing  D t o  be convex and + ( a )  zz. 

Theorem 1 is a s l i g h t  genera l iza t ion  o f  Theorem 1 o f  [3], where D w a s  

taken t o  be t h e  open u n i t  disk.  

The purpose o f  t h i s  paper is  t o  derive t h r e e  s u f f i c i e n t  condit ions 

f o r  one-to-one-ness by s p e c i a l i z i n g  t h e  choice o f  (Kz) i n  Theorem 1. 

T ~ ~ o U ~ I I  2. If f ( z )  is a n a l y t i c  f o r  1 zl < 1, i f  a i s  a r e a l  number 
2 

such t h a t  \ a h  1, and i f  c is a complex number such t h a t  ~ e [ c ( z - a )  f (s)I>O 

f o r  121 < 1, then f ( a )  is  one-to-one f o r  121 4. 

1 'Proof. Take + ( z )  = - - . Clearly + ( a )  is a n a l y t i c  and one-to-one 
a-a 

f o r  121 <1. If b l>l ,  ̂ (.z) maps 121 <1 onto t h e  open disk with c e n t e r  

2 . I f a = l ,  
, 0) and r a d i u s  - 

a -1 

plane Re } $ ( z ) l >  112, and i f  a = -1, + ( z )  

Re \ $ ( z ) l <  -1/2. Thus, i n  a l l  cases ,  t h e  

<)>(a) m a p s [ z l ~ l  onto t h e  ha l f -  

maps 1 a\ <1 onto t h e  half-plane 

range of $ (z )  i s  convex. Also, 



2 
c(z-a)  f r  ( z )  > 0 f o r  lz 1 <l. By Theorem 1, f ( z )  is  one- I 

to-one f o r  1 z l<l. 

Tfteo-lm 3 .  I f  f ( z )  is a n a l y t i c  f o r  1 zl <1, i f  a is  a r e a l  number 

such t h a t  1 a 121, and i f  c i s  a complex number such t h a t  Re'c(z-a)f (z ) :  I 
> 0 f o r  \z 1 <1, then f (2)  is  one-to-one f o r  la 1 <l. 

Proof. Let $ ( a )  = l o g  (2-a), where t h e  branch of  t h e  logarithm is 

chosen so  t h a t  H z )  w i l l  be a n a l y t i c  f o r  2 <1. (Make t h e  cu t  along t h e  

negat ive r e a l  a x i s  i f  a<0 and along t h e  p o s i t i v e  r e a l  a x i s  i f  a>0. For 

each such branch, $ (a )  is one-to-one. A well-known condit ion t h a t  a 

function <I)(z), a n a l y t i c  and one-to-one f o r  \z Id, map 1 z 1<1 onto a convex 

domain is  t h a t   ell + -12 0 f o r  1 z Id. (See [l, p. 1661.1 Here 
$ (2 )  

) = Re { If a 2 1, x-a<l- a 50, 
2 2 -  

(x-a) + y 

s o  -a (x-a )>0 .  If a $ - 1 ,  x-a>-1 -a >,0, s o  -a(x-a)>O. Hence, $03) 

maps 12 l<l onto a convex domain. Also Re c(z-a)  f r ( z )  > 0 

f o r  Z 1 <1, s o  t h a t  f ( z )  is  one-to-one 
I 

T h i a ~  4 .  Let D be t h e  domain 0 < a r g  z < L  , where n is  a non-zero n 
in teger .  Let f ( z )  be a n a l y t i c  i n  D, and l e t  c be a complex number such 

t h a t  ~w+'f' (a )\ > 0 i n  D. Then /(a) i s .  one-to-one i n  D. 
-72 

z 
Proof. Let $ ( z )  = - 7 . Clearly $ ( z )  is a n a l y t i c  i n  D, and it 

maps 0 i n  a one-to-one fashion onto 0<mg [$(z)]<n , whether n be p o s i t i v e  

o r  negative. Hence t h e  range o f  $ i s  convex, and Re ( c 1 = 7J-i 
R e  n+lf'(z)l> 0 i n  0, so  t h a t  f i e )  is  one-to-one i n  D. I 
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DEPENDENT EVENTS 

by Genovevo C .  Lopez and Jobeph M. M o ~ M .  
San Viego S t a t e  UiM.ve~i.c.Cy 

The following d e f i n i t i o n  o f  mutually independent events can be 

found i n  many tex t s ;  one of which is F e l l e r ,  [l]. 

Ve&h&ion. The events A ,, A 2 ,  ..., A a r e  mutually independent 
n 

i f ,  f o r  a l l  combinations 1 5  i < j <  k<. . . 5  n ,  t h e  mul t ip l ica t ion  r u l e s  

P[A1A2 .. . An] = P[A1]P[A2] ... P [ A ]  apply. 

Bernstein gives an example of  pairwise independence but  not  mutual 

independence. This example can be found, f o r  instance,  i n  Tucker, [21. 

Wong, [a], g ives an i n t e r e s t i n g  example of n events  such t h a t  any n - 1 

of them a r e  mutually independent but  a l l  n of  them a r e  not.  

We wish t o  give an example of  events where h a l f  of t h e  events  

a r e  independent and t h e  o ther  h a l f  a r e  no t  mutually independent. After  

t h e  example, we w i l l  i n d i c a t e  t h e  n a t u r a l  extension o f  t h e  r a t i o  of  in-  

dependent events t o  1/k,  where k > 2. 

Example. Consider t h e  i n t e g e r s  1, 2,  3, 4 ,  5 ,  6. Pa i r  these  

in tegers  a s  follows: (1,2) (3,4) (5,6) .  Next, we d i s t r i b u t e  these  

p a i r s  i n t o  th ree  boxes, A ,  B ,  C. It  is  easy t o  see  t h a t  t h i s  can be 

done i n  3 ways. However, box A i s  empty o r  contains  one p a i r  o r  two 

p a i r s  o r  th ree  p a i r s  t h e  same number of  times a s  boxes B and C, so  t h a t  

we can r e s t r i c t  ourselves t o  t h e  contents  of box A without l o s s  o f  

genera l i ty .  Also, f o r  our purpose, we can assume t h a t  t h e  p a i r s  a r e  

ordered; t h a t  is, t h e  in tegers  increase  a s  one reads t h e  contents  of  
, 

the  box from l e f t  t o  r i g h t .  

Now l e t  Ai be the  event t h a t  the  box contains  t h e  i n t e g e r  i, 

1 5 i 5 6. Clearly,  



Let A . A  be t h e  event t h a t  t h e  box contains  two d i s t i n c t  in tegers  i and 
z k  

k such t h a t  1 < i < k  s 6 and k - i 2 2. Then, 

Let AiAkAz be t h e  event t h a t  t h e  box contains  t h r e e  d i s t i n c t  i n t e g e r s  

i, k, I s u c h t h a t  l S i  < k < Z < 6 ,  I - k ' s .  2 a n d k -  i 2 2. Then, 

Define AiAkAIAm t o  be t h e  event t h a t  t h e  box contains  t h e  in tegers  

i, k, I,  m with t h e  r e s t r i c t i o n s  t h a t  1 5  i < k < Z  ̂ 6, k - i>. 2, 

I - k S 2 and 1 < m 5 6. An example: 1, 3, 5, 2. It is c l e a r  t h a t  

and t h e  same can be s a i d  f o r  A - 4 ,  +nAr̂ - 
We have there fore  exhibi ted events  where t h r e e  events  a r e  mutually 

independent and t h r e e  a r e  not .  

In  order  t o  cons t ruc t  events such t h a t  one- third of  t h e  events a r e  

mutually independent and two- thirds a r e  no t ,  one considers  n = 3k and 

uses t h e  t r i p l e t s  (1,2,3) ,  (4,5,6),  ..., (n - 2, n - 1, n )  and demands 

t h a t  t h e  d i f fe rences  be t h r e e  o r  g rea te r .  

Generalizing, one can construct  events such t h a t  1/k of  them a r e  

independent and - - o f  them a r e  n o t ,  where k 2 4. k 
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A COLLECTION OF MATHEMUSICALS 
Geohge E. Undamood 

N a t i o n a t  BWL~LUL 06 Stan.dm.d.4 

The following co l lec t ion  of  musicals is now playing both on and o f f  
Broadway. A l l  mathematicians and. those i n t e r e s t e d  i n  mathematics w i l l  
c e r t a i n l y  f i n d  them enjoyable. 

Ascoli,  Get Your Theorem. 

Bayes i n  Arms. 

Bye Bye B e t t i .  

Discrete  Scene. 

The Eigenvalue Song. 

Fiddler  on t h e  Riemann Surface. 

F i n i a n f s  Spectral  Sequence. 

Gentlemen Prefe r  Banach (Spaces). 

Group Crazy ( o r  perhaps it was Group, Quas i ) .  

Guys and Duals. 

Haar . 
Hausdorff of  Flowers. 

Heaviside Story. 

Hello Duality! 

H i t  t h e  Descartes. 

How t o  Succeed i n  Bourbaki Without Really Trying. 

K i s s  Me, Tate. 

The Matrix Man. 

The Most Happy Fermat. 

My F a i r  Cauchy. 

Pa l    hue'. 
Paint  Your (van d e r )  Waerden. 

Porgy and Bessel.  

On a Regular Function You Can D i f f e r e n t i a t e  Forever. 

The Ring and I. 

The Sound of  Monoids. 

South P-adic. 

Trigadoon. 

The Student Pr inc ip ia .  

Reprinted with permission from t h e  Jouhnd of, Thtc~p~dim.b& R~uAt4,1973. 



THE A X I O M  O F  CHOICE 

by John Vaughn 
S t .  Lou^Si Un ivm-Uy  

The e x p l i c i t  use of t h e  Axiom of  Choice (AC) d a t e s  from 1904 and 

paper by Ernest Zermelo on t h e  well-ordering of  s e t s .  The Axiom has 

s ince  become a s tandard f i x t u r e  i n  many mathematics t e x t s  but not  before 

much controversy a rose  over i ts  non-constructive nature.  We w i l l  explore 

t h e  need f o r  such an axiom and po in t  ou t  an unusual, even paradoxical ,  

r e s u l t  t h a t  obtains  from i t s  adoption. 

We begin by looking f o r  t h e  f i r s t  ins tance  where we encounter any 

need f o r  some version of  a choice axiom. We assume some b a s i c  ZF (Zer- 

melo-Fraenkel) s e t t h e o r y :  s e t s  a r e  equal  when they contain exac t ly  t h e  

same members, r e l a t i o n s  a r e  s e t s  of  ordered p a i r s  and funct ions a r e  cer-  

t a i n  subsets  of  r e l a t i o n s ,  power s e t  axiom, e t c .  Suppose t o  a growing 

l is t  of  f a c t s  we wish t o  add t h e  following p laus ib le  theorem: 

I f  A,B a r e  non-empty s e t s  and F is a funct ion from A onto B , 
then t h e r e  i s  a funct ion H, ( a  r i g h t  inverse  of F), such t h a t  F 0 S = IB 

(the  i d e n t i t y  map on B). 
-1 

We cannot simply take H = F since i n  general  f is not  a func- 

t i o n .  I n  f a c t ,  s ince F is onto, we know t h a t  f o r  any bCB t h e r e  is  some- 

t h i n g  i n  A which is b's pre-image under F. This does not  s u f f i c e  t o  

define a funct ion however. Any such bCB may have severa l  pre-images i n  

A and we need t o  s e l e c t  out  of  R " j u s t  enough" ordered p a i r s  t o  construct  

H. Here we must simply a s s e r t  t h e  exis tence o f  our s e t  without e x p l i c i t l y  

specifying i ts  members. Our appeal  is thus  t o  t h e  use of  some axiom of 

t h e  form: For any r e l a t i o n  R ( F -  i n  our case)  there  i s  a funct ion HCR 

such t h a t  domain R = domain B. This "quirk" about our axiom, i ts non- 

e x p l i c i t  nature,  i s  what s e t s  it a p a r t  from t h e  o ther  axioms of  s e t  theory. 

Unt i l  r ecen t ly  it has been t y p i c a l  f o r  authors  t o  point  out those proofs  

using any version of AC. A more f a m i l i a r  version of  AC is  t h a t  t h e  

Cartesian Product o f  non-empty s e t s  is  non-empty. AC occurs i n  a sur-  

p r i s i n g  number of  theorems, among them: Prime I d e a l  Theorem, Stone Rep- 

resen ta t ion  Theorem, and V i t a l i t s  construct ion of  a non-Lebesgue measur- 

ab le  s e t .  (Not t o  mention those s e t  theory exerc i ses  where t h e  s tudent  

a t tempts  cunningly t o  d i sgu ise  h i s  use of  AC i n  order  t o  prove Theorem 

4.2 without i t . )  

One may wonder whether t h e  o ther  axioms of  ZF imply AC, o r  indeed 

perhaps even cont rad ic t  AC without our being aware of  it. The l a t e  Kurt 

Godel showed i n  1938 t h e  consis tency of AC when added t o  t h e  o ther  ZF 

axioms. The former p o s s i b i l i t y  was s e t t l e d  i n  1963 when Paul J. Cohen 

announced t h e  independence of  AC from t h e  o ther  axioms of  ZF. Early re-  

s u l t s  i n  t h i s  a r e a  a r e  due t o  Fraenkel,  Mostowski, Speaker and o thers .  

Such foundat ional  quest ions as ide ,  why should we h e s i t a t e  t o  employ t h i s  

axiom, espec ia l ly  i n  t h e  l i g h t  of  i ts  apparent ly c r u c i a l  usage i n  s e v e r a l  

standard theorems of  mathematics? One reason may be t h e  following "para- 

doxical" r e s u l t  stemming from i t s  adoption. 

BUt~ach-TUJcbki P a ~ f l d o x .  Given a closed b a l l  X, t h e r e  e x i s t s  a de- 

composition of X i n t o  d i s j o i n t  se t s  Y, Z such t h a t  X i s  i d e n t i c a l  i n  s i z e  

and shape with both Y and Z.  We sketch t h e  proof: 

Consider t h e  f i n i t e l y  presented group G on t h e  l e t t e r s  1, $, Y 

such t h a t  $2 = y3 = 1. We put  a l l  words i n  these  l e t t e r s  i n t o  reduced 

form. We consider  a b a l l  X with u n i t  r a d i u s  and two axes o f  r o t a t i o n  

L and L through t h e  c e n t e r  {a}. We choose t h e  angle a  between Ll and 1 
L  such t h a t  cosine ( a )  i s  transcendental .  We now consider t h e  r o t a t i o n s  2 
of 120Â (Y) about Ll and 180Â ($1  about L .  Our choice of a means t h a t  

d i s t i n c t  r o t a t i o n s  of  X correspond t o  d i s t i n c t  (reduced) words i n  G. 

We have t h e  following f a c t s :  

A . $ = BUC A - Y =  B 2 
A - Y  = C 

and G = AUBuC where A n B n C  = * 
Let Q be t h e  s e t  of  a l l  fixed po in t s  on t h e  u n i t  spheres under a l l  non- 

t r i v i a l  r o t a t i o n s  a c G .  I t  is  easy t o  see Q is  countable. For each x t  

S - Q look a t  i t s  o r b i t ,  0 under a l l  a t  G. Clearly i f  x and y, where 
x 

x # y ,  a r e  i n  S - Q e i t h e r  0 = 0 o r  OX00 = <)>. These c o l l e c t i o n s ,  
Y Y 

t h e  0 ,  form a p a r t i t i o n  of  S - Q i n t o  d i s j o i n t  s e t s .  Let K be t h e  s e t  

which contains  exac t ly  one member from each o f  these  s e t s .  This i s  our. 

use of AC. 

Let: 

A = K S A  B = K S B  



From our construct ion A ft B l"> C = <t> and more importantly: 

A = B U C  A Ã ˆ  A a s C  

(where M w  N means both M and N can be decomposed i n  t h e  same ( f i n i t e )  

number of  d i s j o i n t  pieces which a r e  pairwise i d e n t i c a l  i n  s i z e  and shape.) 

By d e f i n i t i o n  we have: 

S = A U B U C U Q  SO x = A u B u C u C u { c I  

(where f o r  P C S ,  i s  t h e  s e t  of  po in t s  whose pro jec t ion  from c onto S 

is P). 

From above: 

- - - - - - 
A =  B U C  A a s B  A = C  hence ~ w ~ U ~ ~ ~ w ? ?  

~ e t  H = A u i? u { e l  then H = X - H 1 

Now s t r a n g e l y  enough: 

H = A u $ u { ~ } ~ u B u C U ~ U { C }  = X s o  H1=X 

Now t o   show^ sw X, we need a new cen te r  and a corresponding piece f o r  

i n  B U C. 
Since C as 4 U 3 U C, it can be shown t h a t  t h e r e  i s  a s e t  E 5 C such t h a t  

E Ã Q so  E 4. Let p E C  - E then:  
- 

X ~ B ,  = A U ~ U { ~ ~ ~ B U E U ~ ~ ? ~ ~ U C ~ X ~ X  
L 

- 
the re fore  we have : B U = H2 wX. 

This paper was writ ten while John Vaughn was an undergraduate a t  

St .  Louis University. 

?. 

PUZZLE SECTION - d 

Vau.id VaUw 

This department i s  for the enjoyment of those readers who are addicted 
t o  working crossword puzzles or who find an occasional mathematical puzzle 
attractive.  We consider mathematical puzzles t o  be problems whose solutions 
consist of answers immediately recognisdble as correct by simple observation 
and requiring l i t t l e  formal proof. Material submitted and not used here 
will be sent t o  the 'Problem Editor i f  deemed appropriate for that  department. 

Address a l l  proposed puzzles and puzzle solutions t o  David Ballet, 
Editor o f  the Pi Mu Epsilon Journal, Department of Mathematid Sciences, 
South Dakota Softool o f  Mines and Technology, Rapid C i t y ,  South Dakota, 
57701. Deadlines for puzzles appearing i n  the Fall issue will be the next 
February 15, and puzzles appearing i n  the Spring issue d l 2  be due on. the 
next September 15. 

Mathacrost ic  No. 10 

~ u b n w t t c d  by J o ~ e p h  V .  E .  Konhaubm 
MacoJLateh CoUege, St. W ,  M-t:nn&~ota. 
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Like t h e  proceeding puzzles, t h i s  puzzle (on t h e  next  page) is a keyed 

anagram. The 224 l e t t e r s  t o  be entered i n  t h e  diagram i n  t h e  numbered 

spaces w i l l  be i d e n t i c a l  with those  i n  t h e  28 keyed words a t  matching num- 

bers ,  and t h e  key l e t t e r s  have been entered i n  t h e  diagram t o  a s s i s t  i n  

construct ing your so lu t ion .  When completed, t h e  i n i t i a l  l e t t e r s  w i l l  g ive 

a famous author  and t h e  t i t l e  o f  h i s  book; t h e  diagram w i l l  be a quotat ion 

from t h a t  book. 

Cross-Number Puzzles 

bubmitted by Mcuik. l b m k  
Student,  UrU.ueu-Uy 0 4  CaLL({ofwJw., Bmkvtey 

In t h e  cross-number puzzles ( s t a r t i n g  two pages forward), each of  t h e  

l e t t e r s  s tands f o r  a p o s i t i v e ,  nonzero in teger .  The a lgebra ic  expressiohs 

evaluate  ou t  t o  two t o  f i v e  d i g i t  numbers which f i t  i n  t h e  squares  a s  i n  a 

normal crossword puzzle. None of  t h e  numbers i n  t h e  squares have any leading 

zeros; i - e . ,  if t h e r e  i s  room f o r  a four  d i g i t  number, t h a t  number w i l l  be 

a t  l e a s t  1000, never, f o r  example, 0999. 



KEY WORDS AND PHRASES 

empirical rule for the distances of 
the planets from the sun (2 wds.) 

short and pudgy (comp.) 

mirror image of a non-reflexive 
figure 

offered 100000 marks in 1908 for a 
complete proof of Fennat's Last 
Theorem 

popular board game of ancient Egypt 

one of a practically indistinguish- 
able pair 

mathematical best-seller 

squabble 

word puzzle 

neutral group element 

creation of Backus and Ziller 

earth measurer (ca. 230 B.C.1 

in the plane, a bounded closed 
convex set 

sometimes measured in degrees 

as opposed to analytic 

solution of x*x = x 

pioneer in the use of indivisibles 
(1602-1675) 

transformation of period two 

an investing cover 

projective collineation which 
leaves a given line fixed 

a contradiction 

pen name of Hubert Phillips, master 
creator of inferential-type puzzles 

two-cusped epicycloid 

slim margin of victory 

a small mass 

mechanical angle trisectoz 

inventor of the straight logarith- 
mic slide rule (1574-1660) 

system of numeration based on 
powers of -2 

- - - - - - - - 
35 71 126 99 88 160 200 10 

------- - 
195 187 63 106 139 26 204 76 

------------ 
189 81 185 103 14 124 133 105 145 171 148 180 

- - - - - - - - - 
115 134 176 219 47 7 86 157 203 

----- 
85 49 122 22 151 

---------- 
135 11 150 158 2 74 222 207 84 56 

-------- 
108 159 144 16 58 62 27 209 

- - - - - - - 
149 174 196 141 19 166 217 

------- -- 
143 61 182 9 104 146 66 73 89 

------- - 
Ill 216 59 117 6 97 38 64 

- - - - - - - 
193 31 183 101 214 87 113 

------------ 
181 155 69 82 52 156 194 120 48 78 215 177 

---- 
3 98 163 109 

------- 
123 91 43 68 167 114 50 

- - - - - - - - - 
42 201 60 152 28 218 179 1 210 

---------- 
208 95 29 40 20 90 197 137 169 161 

-------- 
100 80 70 121 32 212 23 199 

---------- 
15 4 55 192 44 36 178 46 39 112 

------ 
131' 83 224 147 51 12 

- - - - - - - - 
170 45 110 77 191 153 119 18 

- - - - - - - - 
116 94 25 168 128 5 132 41 

------- 
188 202 65 102 142 75 125 

-------- 
206 92 21 136 221 165 127 34 

------- 
140 172 184 33 190 107 198 

--- 
173 17 96 

- - - - - - - - 
186 211 223 13 162 130 30 67 

- - - - - - - - 
220 205 79 53 37 24 154 118 

------- 
164 213 129 54 57 175 8 93 138 72 



ACROSS - DOWN 

ACROSS - DOWN 

1. A 1. 26AB + (10D)/E + E 

3. BC/37 2. 13AB 

4. 33BD/70 3 .  ( 1 5 0 4 ~ ~ ) / ~  + 60 

ACROSS - DOWN 

1. A 1. G J  

3. + B~ + 1311 2. 2635G + 14A 

6.  11C - I1 +D/(E + 2 )  4.  A + 5811) + 24G 

7. ( F ~  + D)/9 
2 

5 . G  - 9 9  

ACROSS - DOWN 

1. 2~~ + 1100 1. (B + 1 ) / 4  + 1 4  

5. 241BC + 1 0  2 .  12CG + 13H 

6. 2D + E 3. ( D ~  + G)/3 

7. 31F 4 .  ~ G ~ H  + H 

8 .  12G + 1 4  

ACROSS DOWN - 

p- - ~ 

ACROSS 

1. log2A 

3. A 

5.  601B 

6. 18C - D 

7. E 

DOWN 

1. 120252/lognA 

2. 2EF 

3. D - 9C 

4 .  41F 

ACROSS 

1. A 

DOWN - 
1. 101(D - 3 )  

ACROSS 

1. A-- 

4.  (4BC/45) + 4 

5. D E +  59 

6. C3 

8. 70F + 7G + 1 0  

DOWN - 
1. BH 

2. ACDE + CDEH - 9AFG 

3. 11BC - 20 

7. DO 



SOLUTIONS 

Mo-tfeo.c~o~-fct.c NO. 9 (See F a l l  1979 i s s u e )  (p-topobed by J. 

Defini t ions and Key: 

A. Homothecy H. Talent  0. L i fe  V. 
B. Shannon I. Epimenides P. Ambsace W. 
C. Mate J. Rate of  Q. Rat-a-tat X. 
D. Cyclotomy K. Result R. Publish Y. 
E. obovoid L.  Engine S. Orthoscheme 2. 
F. Xylander M. Gewgaw T. Lemniscate 
G. Echelon N.  Uneven U. Yin and Yang 

D.  E. Konhauser) 

Two shee t s  
Off by one 
Pasch 
Eleusis  
Show t h a t  

F i r s t  Le t te r s :  HSM Coxeter Regular Polytopes 

Quotation: We.. . .me. -the.  cope 06 Eue-Â£-c.d&a geome,<yiy by denying one 06 

the. uud a x i o m  ("Two @ n u  w h m h  have. one common po-uz-t have. a n o t h a " ) ,  

and we. uto.bLi&h ,the. con~.(-A-tency 06 the. huuJUULng ab~tM0.c-t byAÂ¥te by mean4 

S o u  by: Alan Wayne, HoLiday, Fioitida.; Joseph Testen, M o U e . ,  Ate; 

Jeane t te  Bickley, WehCitui Ghovu  High School, M-L4boU/U.; Victor Feser, Mmq 

CoUege, BAmmck; Robert C. Gebhardt, HopuXcong, NJ; Henry Lieberman, 

John Hancock Mutuaf. me. lm .  Co.; P a t r i c i a  Tuchman, Allan Tuchman, Michael 

Haney, Uniuem-Cty of IWwo.(-A; Louis C a i r o l i ,  KOMAOA State. Un-tvem-c.ty. 

Smi th-Jonu-Robimon Phobtm (p~~0pobe.d by Vewi ser Turner ) 
The dis t inguished mathematical p h y s i c i s t  must be from Omaha, because 

t h e  brakeman i s  from Omaha and both a t t e n d  t h e  same church. 
Since M r .  Robinson l i v e s  i n  Los Angles, and M r .  Jones forgot  a l l  t h e  

algebra he learned i n  high school, n e i t h e r  can be t h e  dis t inguished mathe- 
matical  phys ic i s t .  

By el iminat ion,  M r .  Smith must be t h e  dis t inguished mathematical 
phys ic i s t  from Omaha. 

Since M r .  Robinson l i v e s  i n  Los Angeles and Mr. Smith i n  Omaha, M r .  
Jones must l i v e  i n  Chicago, and t h e  brakeman is M r .  Jones. 

Because M r .  Smith beat  t h e  fireman a t  b i l l i a r d s ,  Mr. Smith must be 
e i t h e r  t h e  engineer o r  t h e  brakeman. 

But M r .  Jones i s  t h e  brakeman, s o  Mr. Smith must be t h e  Engineer. 
( ~ o ^ i t t o n  by Daniel Cousins, HUMM. Un-Lum-t-ty, Oxfohd, Oh io )  

Solvcd by: Michael J. Lenart,  Rutgem CoUege.; Janda Cook, L m  

Un-tvmJutq; Alan Wayne, POACO-Huinando Community CoUegi ,  Floitida., (who 

noted t h a t  a v a r i a n t  of t h i s  puzzle occured on page 71 of t h e  Ju ly ,  1979, 

Reader's Digest and t h a t  Martin Gardner had solved t h e  problem i n  t h e  

Feb., 1959 i s s u e  of  S c i e n t i f i c  American); Randall J. Scheer, SUNY-Potiidam; 

Henry Lieberman, John. Hancock M u t u d  Li& In4.  Co.; Victor Feser, Mmg 

CoUege, RcAmmk; Ralph King, St. Bona.vwtuA.e. Uvwi im- i ty ;  Louis Cairo1 i , 

KWUA State. U n i v e m U y ;  P a t r i c i a  Tuchman, Allan Tuchman, Michael Haney, 

U U & u ^ t y  06 IÂ£Â£-t.no.(- Roger Kuehl, K a w  C a y ;  George Rainey, UCLA; 

Mark Evans, LaMahque., T e w .  
. - 

Mox-inium Numbui of K@ht& ( see  F a l l  1979 i s s u e )  (Ph0pobe.d by P. Sqoate) 

Since knights  can only a t t a c k k n i g h t s  of  an opposi te  co lor ,  t h e  max- 

imum number is  32, e i t h e r  on a l l  t h e  black o r  a l l  t h e  red .  

Sotved by: Janda Cook, i amm UrL.Lwem-Cty; Randall Scheer, SUNY- 

Pot&dam; Victor Feser, Mmy CoUe-ge., R c A m k ;  Michael Ecker, S m n t o n ,  

PA; I .  J . Good, V-tAfliwUa. Po-fcy-techn-tc I n ~ t U w t e  and S t a t e  Univehb-ity, (who 

proposed t h e  same problem i n  t h e  Mathematical Gazette a s  Problem 3000 i n  

Feb. 1962, p.54); Alan Levine, McNeue State.  UvUvemitq; Louis Cairo1 i ,  

Ka.n.60~ State.  Unhem-Lty ;  Roger Kuehl, Kanbtu, C d y .  

Mcn-unum Numbs 06 KLgfct6 ( see  F a l l  1979 i s s u e )  (Phop0he.d by P. S q u o ~ e )  

Twelveknights a r e  required so  t h a t  every square is e i t h e r  occupied 

o r  under a t t a c k .  

SoJiu-kion by: Roger Kuehl, Kan~cuk C a y ;  Akho Soiund by: Louis Cairol i ,  

Kan4o4 State. Univem-Cty; Randall J .  Scheer, SUNY-Pot&dam. 



PROBLEM DEPARTMENT 

This department welcomes problems believed t o  be new and a t  a 

level appropriate for the readers of t h i s  journal. Old problems dis- 

playing novel and elegant methods of solution are also acceptable. The 

choice of proposals for publication will be based on the editor's  evalu- 

ation of the i r  anticipated reader response and also on the i r  in t r ins ic  

in teres t .  Proposals should be accompanied by solutions i f  available and 

by any information that will ass i s t  the editor. Challenging em-ectures  

and problem proposals not accompanied by solutions will be designated by 

an asterisk ( * I .  
Problem proposals offered for publication should be sent t o  

Professor Clayton W. Dodge, Mathematics Department, University of Maine, 

Orono, Maine 04473 

To faci l i ta te  consideration of solutions for publication, solvers 

should submit each solution on separate sheets (one side only) properly 

ident i f ied  with name and address and mailed before November 1, 1980 t o  

Dr. Leon Bankoff, 6360 Wilshire Boulevard, Los Angeles, Califozwia 

90048. 

Contributors desiring acknowledgement of the i r  proposals and so- 

lutions are requested t o  enclose a stamped and self-addressed postcard 

or, for those outside the U. S.A., an unstamped card or mailing labe 2. 

Problems f o r  So lu t ion  

462. Phopohtd by the. to te  R. R o b h o n  Uowe.. 
A p i l o t  down a t  Avil le  asked a  n a t i v e  how f a r  it was t o  Btown and 

was t o l d ,  "It 's south 1500 miles ,  then e a s t  1000 miles ,  o r  e a s t  500 

miles and south 1500 miles." How f a r  was it d i r e c t l y ?  

463. Phopobed by C. S. Venkaticuianan, S ~ e e  KvutJLa V m a  Coaege,  

T d c h h ,  S o d  I n d i a .  

Let f ( n )  be a  funct ion defined over p o s i t i v e  in tegers  and 

f ( d )  = n. Then, prove t h a t  f ( n )  = $ ( n ) ,  t h e  E u l e r T s  funct ion 
din 

denoting t h e  number o f  i n t e g e r s  prime t o  and not  g r e a t e r  than n .  

464. Pmpobed by Solomon W .  Goiomb, U d v ~ U y  oft Sou.ihcJr.n 

Cat%jofuuA, Lob A n g n t u .  
b-1 

For a l l  p o s i t i v e  i n t e g e r s  a and b with l<a<b, show t h a t  ( a ! )  

< (b !  la-? 

465. Pmpobed by ChcVtiu W .  T/u-gg, San VLego, CaLL6ohni.u. 

What is  t h e  s h o r t e s t  s t r i p  o f  e q u i l a t e r a l  t r i a n g l e s  of  s i d e  k t h a t ,  

while remaining i n t a c t ,  can be folded along t h e  s i d e s  o f  t h e  t r i a n g l e s  

so  a s  t o  completely cover t h e  sur face  o f  an octahedron with edges k?  

466. Pmp0be.d by He.hbeJvt Taqloh, South Paadena, C m o h n i . u .  

Let t h e  adversary pu t  four  d i s t i n c t  symbols i n  each box (node) of 

t h i s  graph. Prove o r  disprove: No matter  what p a t t e r n  of  symbols he 

pu ts ,  we can choose two symbols from each box i n  such a  way t h a t  ad- 

jacent  boxes have d i s j o i n t  chosen 2- sets.  



467. P~~opo-ied b y  P a d  E i d O - i ,  Spac.uki.p EOAth, and John 

Sm-tt-dge, U n i v e u L t y  0 6  Michigan. 
Determine t h e  g r e a t e s t  power which divides n! Prove t h a t  f o r  

n 2 6 it is  a square. 

468. Pmpo-ied b y  Hichae^. W .  E c k m ,  PennhyLvaLa S t a t e .  U L v W i ^ t y ,  

Wofithington Schanton Cmpuh.  

A p r i o r i ,  t h e  expression a  is  ambiguous i n  t h a t  it would mean 
b a  

e i t h e ~  ( a  ) o r  a(bc). Assuming a ,  b ,  and a  a r e  p o s i t i v e  i n t e g e r s ,  f i n d  

a l l  t r i p l e s  ( a ,  b ,  e )  f o r  which t h e  two expressions a r e  equal.  

469. Ptopo-ied b y  VJLchmd 1. flu&, Pato-i Wtdu, C d & $ V u h .  

S t a r t  with a  u n i t  c i r c l e  and circumscribe an e q u i l a t e r a l  t r i a n g l e  

about it. Then circumscribe a  c i r c l e  about t h e  t r i a n g l e  and a  square 

about t h e  c i r c l e .  Continue i n d e f i n i t e l y  circumscribing c i r c l e ,  r e g u l a r  

pentagon, c i r c l e ,  regu la r  hexagon, e t c .  

a )  Prove t h a t  t h e r e  is a c i r c l e  which contains  t h e  e n t i r e  s t r u c t u r e  

* b )  Find t h e  rad ius  of  t h e  smallest  such c i r c l e .  

470. Pnapobe.d b y  Tom Apo-itoL, CaLi&oiw.oi JntiAlA^e.  0 6  Technology.- 
Given i n t e g e r s  m > n  >0. Let 

a = a &  b i^S  

6 = a &  d &  

where a ,  b ,  a  d a r e  r a t i o n a l  numbers. 

( a )  I f  ad t be = 0 o r  i f  nm i s  a  square, prove t h a t  both a and B a r e  

r a t i o n a l  o r  both a r e  i r r a t i o n a l .  
2 2 

(b) I f  m = r and n = a f o r  some p a i r  of  in tegers  r > s > 0  then a and 

6 a r e  both r a t i o n a l .  Prove t h a t  t h e  converse is  a l s o  t r u e  i f  a d  # be. 

471. P u p o ~ d  by  C tay ton  W. Dodge., U L v Â £ ~ ~ - t - t  o{, Maine. at Owno .  
Let two c i r c l e s  meet a t  0 and P ,  and l e t  t h e  diameters O S  and OT 

of t h e  two c i r c l e s  cu t  t h e  o ther  c i r c l e  a t  A and B .  Prove t h a t  chord 

OP passes through t h e  cen te r  of  c i r c l e  0-45. 

Evaluate 

473. P/iopo-ie.d b y  Jack Gan{,unkel, FohsMt KJULStJf, High S c h o o l ,  

F^uAfcuig, New Y o l k .  

In  an acute  t r i a n g l e  ABC with angle A = 60Â° P is a  point  within 



t h e  t r i a n g l e .  D and E a r e  the  f e e t  o f  t h e  Cevians through P from C and 

B respec t ive ly .  

a )  If BD = DE =EC, prove t h a t  AP = BP = CP. 

b )  Conversely, i f  AP = BP = CP, prove t h a t  BD = DE = EC. 

c )  I f  angle PBC = angle PCB = 30Â° show t h a t  BD = DE = EC. 

Solut ions 

423. [Spring 1978; Spring 19791 Pmpobed by K i . c h d  S .  Field, 

Santa Monica, C ~ L L @ W L L U .  
Find a l l  so lu t ions  i n  pos i t ive  i n t e g e r s  o f  t h e  equation 

D C A - B = C where D is a prime number. 

Solu t ion  by the. P h o p o ~ .  
c- 1 - c-1 - 

C = a - bD; A = C a; B = C b;  where a ,  b a r e  any i n t e g e r s  

obeying t h e  r e s t r i c t i o n  a = b + D k + l ( k  = 0, 1, 2, ... ). 
c- 1 - c- 1 - 

D D  
Proof. By s u b s t i t u t i o n ,  A" - BÂ¡ (C D a ) D -  (C b )  = 

(f-\aD - bD) = (f-lC = cC. 

This proves t h e  i d e n t i t y ,  but  t h e  f u r t h e r  requirement t h a t  A and 

B be i n t e g e r s  must be met by insur ing  t h a t  ( C -  1)/D be an i n t e g e r ,  i . e . ,  

C = l  .mod D .  We accomplish t h i s  by t h e  r e s t r i c t i o n  a  = b t D k +  1 

( k =  0, 1, 2, ... ). To demonstrate, expand C = a
D
- b

D
=  (b+Dk+1ID - b

D 

i n t o  

c = (3 bD-'(Dk+l) + (;)bD-2(~k+l)2 + . . . + (D-l ) b ( ~ k + l ) ~ ~  + ( ~ k + l ) ~  y 

D (not ing t h a t  terms b drop o u t ) .  Here a l l  terms but  t h e  l a s t  contain. 
/ D \  

binomial c o e f f i c i e n t s  \ < 
and, s ince  D i s  prime, each term but  t h e  . 

l a s t  is d i v i s i b l e  by D. (The reader  may e a s i l y  v e r i f y  t h a t  

i s  a  mult iple  of  D by necess i ty  i f  and only i f  D i s  prime). Then s ince  

obviously t h e  l a s t  term (Dk t 1 )  = 1 mod D,  then a l s o  C = l  mod D. 

Footnote. We conjecture t h a t  the  above process generates  

so lu t ions  t o  the  problem posed. 

Dedicated t o  D. L. Silverman "who taught  me hmff. 

AÂ£i bo iv id  by M I K E  CALL, Robe.-HuJLman I n i - t ^ A i e .  of, Technology, 

TCAAC. H o o t e ,  Ind<.ana 47803.  Clayton Dodge, U.&i>u^y 06 M h e .  at 
O-tono, Spenser Hurd, UnLuwitLLq 0 5  Geohg-to. and Mike May, St. 

LoiXiCA, AtlAb0ufu.. 

438. [Spring 19791 Phopobe.d by EJWX StULu4, U h m - t A /  06 

CaLL&ohnAJO. out Lob A n g d u  . 
Prove t h a t  t h e  sum o f  t h e  lengths o f  a l t e r n a t e  s i d e s  o f  a  hexagon 

with concurrent major diagonals inscr ibed  i n  the  u n i t  c i r c l e  i s  l e s s  

than 4. 

With t h e  exception of t h e  proposer 's  so lu t ion ,  only one response 

has been received f o r  t h i s  problem, one t h a t  considered only t h e  t r i v i a l  

case where the  major diagonals a r e  diameters of  the  c i r c l e .  Readers a r e  

i n v i t e d  t o  submit general  so lu t ions .  

439. [Spring 19791 Pmpoad by HichtVid 1.  Hub,  Pdob Wtdu, 

Cati60ftCM,a. 

A bug s t a r t s  a t  Monday noon a t  t h e  upper l e f t  corner ( X )  o f  a  p by 

q rectangle and crawls within t h e  rec tangle  t o  t h e  diagonal ly opposi te  

c o m e r  (Y), a r r i v i n g  a t  6 P.M. Exhausted, he s leeps  till noon Tuesday. 

A t  t h a t  time he embarks f o r  X, crawling along another  path i n  t h e  rec-  

tangle  and a r r i v i n g  a t  X 6 P.M. Tuesday. Prove t h a t  a t  some time Tues- ., 
day t h e  bug was a t  a  po in t  no f a r t h e r  than p from where he was a t  t h e  

same time Monday. 



S o l u t i o n  by  \\wm S .  L i e b m a n ,  John Hancock MirfucLf. U.6e 'lnbtifia.nce. Co., 

Boston, Mab. 

The problem is t h e  same a s  i f  two bugs s t a r t  a t  t h e  same time, one 

fromX and t h e  o ther  f r o m y ,  each t o  t h e  opposi te  corner and along d i f-  

f e r e n t  paths .  Then, a t  some time between noon and 6 P.M. they w i l l  both 

be a t  t h e  same hor izon ta l  d i s tance  between the  l e f t  and r i g h t  s i d e s  of  

t h e  rectangle.  Since t h e  paths of  the  bugs a r e  both within t h e  rec tangle  

then a t  t h e  time described above, the  v e r t i c a l  d i s tance  between the  bugs 

must be no grea te r  than t h e  s i d e  p of  t h e  rectangle.  

PmC-fct.CJaJULy i d e w b i c d  boLationb vsm i.e.c&ve.d &om WALTER BLUMBERG,  

CLAYTON W .  DODGE,  MARK EVANS, SAMUEL GUT and the.  Pn.opobe.~. Their solu- 

t i o n s  were character ized by t h e  complete absence of  mathematical symbols 

and mathematical jargon. While t h e r e  is c e r t a i n l y  no object ion t o  mathe- 

matical  so lu t ions  t o  mathematical problems, a simple word-solution in-  

t e l l i g i b l e  t o  any layman is t o  be preferred.  Some of  t h e  o ther  submitted 

so lu t ions  were profuse with subscr ip t s ,  coordinates ,  i n e q u a l i t i e s ,  vin- 

c u l i ,  func t iona l  r e l a t i o n s ,  intermediate  value theorems, Greek symbols, 

graphs, continuous funct ions and der iva t ives  -- a l l  reminiscent of t h e  

sledge hammer method o f  swatt ing a f l y .  

Soiwtiovui wme &o &c&ve.d i/icm C H U C K  ALLISON, MIKE CALL, CAROL 

DIMINNIE, MICHAEL ECKER, VICTOR G. FESER, ROBERT C.  GEBHARDT, SPEMCER 

P.  H U R D ,  MICHAEL MAY, JAMES A. PARSLY, PETER SZABAGA, DANIEL WAGGONER 

A N D  WILLIAN E .  WARREN.  

440. [Spring 19791 Phopobed. by Ch& U. T>u.gg, Sun Vie.go, 

C ~ o f w i a . .  
Are t h e r e  any prime values of  p < l o 5  f o r  which t h e  equation 

5 
x5 - y5  = p has a so lu t ion  i n  p o s i t i v e  in tegers?  How about x + y5 = p? 

e.. 
3 2 2  4 A. p = x

5 
- y5 = (x-y)(x4 + x y + x ZJ + xy3  + ) implies  t h a t  e i t h e r  

4 3 2 2 3 x - y = l o r x  + x y  + x y  +xy + y 4 = 1 .  S i n c e x a n d z j a r e  

p o s i t i v e  i n t e g e r s ,  x - y = 1. 
2 2 3 Therefore, p = (y+lI4 + (y+l)3y + (y+l )  ;/ + (i/+l.)y + y4 = 

sY4 + 1oY3 + 1oY2 + 5~ + 1. 

y = l , x = Z , p = 3 1  

y = 2 , x = 3 , p = 2 1 1  

y = 5  , x = 6 , p = 4 6 5 1  

y = 10,  x = 11, p = 61,051 

4 3 2 For y = 3, 4, 6, 7, 8, 9 ,  11, 5y + 10y + 10y + 5y + 1 is not  
5 prime, while i f  y > 11, p > 1 0  . Therefore, t h e  only so lu t ions  t o  

t h i s  problem a r e  t h e  four  given above. 

5 B. x
5 + y5 = p < 10 and x ,  ZJ p o s i t i v e  i n t e g e r s  implies  t h a t  x5 < 10 5 

5 
and y5 < 10 . Therefore, x < 10 and y < 10. If p = 2,  x = y = 1, 

otherwise p is  odd. Due t o  t h e  symmetry o f  x and y i n  t h i s  problem, 

we may assume t h a t  x is  odd and y is even. However, f o r  a l l  such 

values of  x and y ,  x
5 + y5 is  not  prime. Therefore, t h e  only solu-  

t i o n  t o  t h i s  problem is p=2, x = y = 1. 

At20 botve.d bq WALTER BLUMBERG, MIKE CALL, CLAYTON W .  DODGE, 

MICHAEL W .  ECKER, RANDY L. EKL, VICTOR G. FESER, ROBERT C. GEBHARDT, 

SPENCER P. H U R D ,  THEODORE JUNGREIS, DONALD KING,  HENRY S .  LIEBERMAN, 

MICHAEL MAY, BOB PIERLIPP, EDITH E .  RISEN, RANDALL J .  SCHEER, DALE E .  

WATTS, KEENTH M. WILKE, and the. P m p o b a .  

ECKERT c a l l e d  a t t e n t i o n  t o  TYCMJ, Sept. 1978, problem 121 , where 

it was shown t h a t  p cannot be a Fermat prime, 2 + 1. 

441 . [Spring 19791 Pkopobed by Rtefea^d A. Gibbb, Tofit LeML& Coi- 

leg&?, VuMuigo, coioiado. 

Prove t h a t  a self-complementary graph with an even number o f  

v e r t i c e s  has no more than 2 i  v e r t i c e s  o f  degree i, and t h a t  t h e  number 

o f  them is even. 

S o l u t i o n  by  W a i t e ~  H u m b u g ,  FLubhA.n.9 High School,  Fishing, N. Y. 
Let G be t h e  self-complementary graph with YZ v e r t i c e s .  The com- 

plement 5 o f  G is isomorphic t o  G. Let K ( i )  be t h e  number o f  v e r t i c e s  

i n  G of  degree i. Then obviously, K ( i )  = K(n-1-5). 



I f  K( i )  = 0, then i n  t h i s  s p e c i a l  case,  K ( i ) s 2 i ,  and K ( i )  is even. 

Assume K ( i ) > O .  Let  (At), t = 1, ... ,K(i)  be t h e  v e r t i c e s  i n  G of degree 

i. Let ( B ) ,  s = 1, ..., K(i )  be t h e  v e r t i c e s  i n  G of  degree n-1-i. 

Since n is even, i and n-1-i have opposi te  p a r i t y .  Hence, t h e  s e t s  (At) 

and (Bs) a r e  d i s j o i n t .  

Consider t h e  [Hi)] '  ordered p a i r s  (A ,B ), t = 1,. . . ,K(i) ,  s = 1, t8 
. . . ,K(i).  In  z, A is  of degree n-1-i and Bs is  o f  degree i. I f  i n  G, t - 
At 

and B a r e  joined (not  joined)  by an edge, then i n  G, At and B a r e  

n o t  joined ( jo ined)  by an edge. Because o f  t h e  isomorphism, t h i s  means 

t h a t  i n  G t h e r e  a r e  a s  many combinations (At ,B)  which a r e  connected by 

an edge a s  those  combinations which a r e  no t .  Therefore, t h e r e  a r e  
2 [ ~ ( i  )] 12 edges connecting members o f  (At) with members of  (Bs 1. A s  an 

immediate consequence, K ( i )  is even. F ina l ly ,  one o f  t h e  K( i )  members 

o f  (A ) must there fore  have a t  l e a s t  t = K(l.112 edges. Since 
K(i  

each A has degree i, it follows t h a t  K( i ) /2  <: i. Hence K(i)%'i. NOTE: t 
This inequa l i ty  can be t ightened up a b i t .  Since now K ( i )  = K(n-1-i) 

5 2(n-1-i), we have K( i )  5 min. [2i,2(n-1-i)]. 

At&o ~ o t u e d  by MIKE CALL and the. PAOPOAM.. 

442,  [Spring 19791 P m p o ~ e d  by Jack Gcuidunkit, F0hu-t H-Ute, Kcgh 

Schoot,  F&v^ ihwg ,  New Yo&. 

Show t h a t  t h  .e sum o f  t h e  perpendiculars  from t h e  circumcen 

a t r i a n g l e  t o  i ts  s i d e s  is not  l e s s  than the  sum o f  the  perpendiculars  

drawn f r o m  t h e  incen te r  t o  t h e  s i d e s  o f  t h e  t r i a n g l e .  

So.tuti.on by S-cA-te~ S-tephan-Ce Stoqan, Ge-onghn CouAt CoUege., ~akeuwod; 

N e w  J m e y .  

We a r e  required t o  show t h a t  OD + OE + OF 2 3~ where 0 is  t h e  

circumcenter and D, E, F a r e  t h e  f e e t  o f  t h e  perpendiculars from 0 on 

BC, AC and AB respec t ive ly ,  and r is t h e  in rad ius .  

OD + OE + OF = R + r, where R is  t h e  circumradius. 

(The sum o f  t h e  d i s tances  o f  t h e  circumcenter from t h e  t h r e e  s i d e s  of  a 

t r i a n g l e  is equal t o  t h e  circumradius increased by t h e  in rad ius .  

N. Al tshi l ler-Court ,  College Geometry, page 73 o f  t h e  first e d i t i o n ,  

page 83 of  t h e  second ed i t ion .  This is known a s  Carnot 's Theorem). 

It i s  a l s o  known by Eule r ' s  Theorem t h a t  d2 = R - ~RP, where d 

is  t h e  d i s tance  between t h e  circumcenter and t h e  incen te r .  This y i e l d s  

t h e  well-known r e l a t i o n  R 2 2r.  

It follows t h a t  OD + OD + OF 2 3r,  with equa l i ty  when 0 and I 

coincide,  t h a t  i s ,  when t h e  t r i a n g l e  is  e q u i l a t e r a l .  

AZio ~ o t v e - d  by WALTER BLUMBERG, H E N R Y  S. LIEBERMAN, and the. 

PmpobVL, 

443. [Spring 19791 Phopo~ed by R .  S .  Lu t̂hcui, U n i v W i ^ y  06 
U^ con~Â¥Ul J a n u  vWLe. 

I f  x and y a r e  ay r e a l  numbers, prove t h a t  

Amdgam 0 6  ~ o t u A c o n ~  o-d by WALTER BLUMBERG, Long I ~ h d ,  Nw 
Yonk, THEODORE JUNGREIS, VwofzKyn, N w i  Yonk, and EDITH E .  RISEN, Omgon 

Cuty, O-tegon. 

By t h e  Arithmetic-Geometric Mean Inequal i ty ,  

This inequa l i ty  is  sharper  than t h e  one proposed and c l e a r l y  shows t h a t  

e q u a l i t y  holds only when x = y = 0. 

Edi to r ' s  Comment. 

This extremely easy problem was withdrawn by t h e  proposer t o o  l a t e  

t o  be de le ted  f r o m  copy already i n  p ress .  H i s  o r i g i n a l  purpose was t o  



show its r e l a t i onsh ip  t o  another simple problem, number 431, (Fa1 1 1978; 

Fall 1979). My object ive i n  using t h i s  proposal was t o  encourage an in-  

crease i n  reader  response and t o  observe t h e  va r i e t y  o f  methods of solu-  

t i on ,  a sub jec t  dear  t o  t he  hea r t  of all  problem ed i t o r s .  Furthermore, 

a s  an inequa l i ty  addic t ,  I was i n t e r e s t ed  i n  seeing how many so lvers  

would no t ice  t he  s tronger  r e s u l t  shown above. A l l  o f  these  ob jec t ives  

were a t ta ined .  Only t h r ee  of t h e  35 so lvers  not iced t he  s tronger  in-  

equal i ty ;  t h i s  is not  t o  be in te rpre ted  a s  a r e f l e c t i on  on t he  many 

d i f f e r en t  methods of so lu t ion  t h a t  yielded only t h e  r e s u l t  requested. 

Most surpr i s ing  were the  various a t t a cks  on the  problem. In addi t ion  

t o  the  t yp i ca l  a lgebra ic  methods, so lu t ions  were submitted t h a t  involved 

calculus,  c r i t i c a l  po in ts ,  r e l a t i v e  minima, p a r t i a l  der iva t ives ,  general-  

i za t i ons ,  ana ly t i c  geometry using pola r  coordinates ,  i nd i r ec t  proofs, 

discr iminants  o f  quadrat ic  equations, geometric representat ions and 

proofs by contradict ion -- a v e r t i t a b l e  sa lad  o f  approaches t o  the  solu- 

t i o n  of a problem. 

TfctA p m b h  WOA o&so ~o1ve.d by CHUCK ALLISON, MIKE CALL, CAROL B .  

DIMINNIE, CLAYTON W .  DODGE, MICHAEL W .  ECKER, KENNETH EIGER, RANDY L.  

EKL,  MARK EVANS, VICTOR G. FESER, HOWARD FORMAN, ROBERT A FULLER, ROBERT 

G. GEBHARDT, SAMUEL GUT, EDWARD HACKETT, SPECER HURD,  MARTIN F. KAIL, 

DONALD KING, H E N R Y  S. LIEBERMAN, PETER A. LINDSTROM, CHARLES W. TRIGG, 

BOB PRI ELIPP,  MICHAEL MAY, JAMES A. PARSLY, JOHN PUTZ, DONNA MARIE 

SASSANO, PETER SZABAGA, DALE E. WATTS, KENNETH M. WILKE, WILLIAM E. 

WARREN, and the. PmpoAM.. 

444. [SPRING 19791 Pmpo&e.d 

L t y  Cottage., Ea-to.v-La., New Yonk. 

In terms of  n ,  which is  t he  

n/2 

by Pe-tm A. Lt.nd&t)wm, Gm~e-e. Convmn- 

f i r s t  non-zero d i g i t  o f  

I"[ ( i ) ( n  - i + 1 )  f o r  e v e n n ?  6? 

i=l 

Expanding n'2 ( i ) ( n  - i + 1 )  t e r n  by term, we obtain n 

= ( l I ( 2 )  ... (n/2)(n/2 + 1 )  ... (n- l ) (n) ,  

= M! , a s  n is even. 

Since t he  f i r s t  non-zero d i g i t  i s  determined by t he  number of  terminal  

zeros, we f i r s t  have t o  determine the  number o f  f a c to r s  o f  5 i n  n !, 5s- 

10  = 5.2 and t he  number of  f a c to r s  of  5 i n  n is l e s s  than t he  number o f  

f a c to r s  of  2. This can be determined by t he  following well-known 

theorem: 

I f  n is a pos i t i ve  in teger  and p  i s  a prime, then p appears i n  

the  canonical representat ion of n ! with t he  exponent e ,  where 

where [ 1 is the  g r ea t e s t  in teger  function and P is determined by 

t he  inequa l i ty  p p  6 n < p p  + . 
Thus, t h3  number of  f a c to r s  of  5 i n  n ! is  given by 

2 [%I , where sP 5 n < 5 p + 1  

i=l 
P 

the ( [A t & d i g i t  i s  the  f i r s t  non-zero d i g i t  

n/* i=l 

of fl ( < ) ( n - i + l ) f o r e v e n n ? 6 .  

i = 1 

AÂ£A ~ o i v e d  by MIKE CALL, MARK EVANS, and SPENCER P. HURD.  

445. [Spring 19791 P m p o ~ e d  by the. Kichcuid S. Fie^d. 

A "Tribonacci-like" in teger  s e q u e n c e { ~ I  is  defined i n  which 

m A i  + m2Ai1 t m A - 
1 n+2 - Ait3, (A0 = A = A = 1; m ,  m , m a r e  

a r b i t r a r y  i n t ege r s  ). 

A pa r t i cu l a r  sequence of  t h i s  kind is found ( m  = -1, m = 5, 2 
m3 = 5 )  which appears t o  y i e ld  only per fec t  squares, viz . :  1, 1, 1, 9, 

49, 289, 1681, ... 
a )  Prove t h a t  f o r  t h i s  pa r t i cu l a r  sequence, the  successive terms 

continue t o  be per fec t  squares. 

b )  Can o ther  values of m ,  m and m be found which r e s u l t  i n  the  ' 3 
same property, namely, a sequence of  per fec t  squares? 

Solu t ion  by Clayton W .  Dodge, UVU.vu~s,Â¥Lt 0 6  Maine. at Omno. 



Let us consider  t h e  sequence i s }  o f  square r o o t s  

Â¥I  *1, 5, k3, 27, k17, k41, ... 
and assume we can f i n d  a recursion formula t h a t  w i l l  y i e l d  a l l  p lus  

s igns ,  a t  l e a s t  a f t e r  t h e  first few terms. Assume constants  u and v 

so t h a t  

'n+2 = ^n + vsn+l- 

Then we have 

41  = 7u + 17v and 17  = 3u + 7v, 

whose common so lu t ion  is  u = 1 and v = 2. The r e s u l t i n g  formula 

determines t h e  sequence 

-1, 1, 1, 3, 7, 17 ,  41, * - - a  

c l e a r l y  a sequence o f  in tegers .  From (1)  we g e t  

'n+3 = 'n+1 + ^n+2 
and sn = sn+2 - 2 ~ ~ + ~  

and by squaring,  

s2 = 2 
n 'n+2 - 4sn+lsn+2 + 4sn+l- 

Adding these  two equat ions,  we g e t  

t h e  recursion formula f o r  t h e  given sequence, proving it t o  be a 

sequence o f  squares. 

By assuming t h e  form 

"n 
= an 

and s u b s t i t u t i n g  i n t o  t h e  recursion formula (11, we g e t  t h e  r o o t s  

so we take 

a = 1 + / 2  and 6 = 1 - 4 2 .  

Next s e t  

n 
an = pa  + q ~ n  

f o r  some constants  p and q and s u b s t i t u t e  sl = -1 and s2 = 1 and solve 

f o r  p and q ,  obtaining t h e  r e s u l t  

We have es tab l i shed  p a r t  ( a ) .  

The technique o f  p a r t  ( a )  serves t o  f i n d  sequences f o r  p a r t  (b5 

a s  well .  Quite general ly ,  l e t  -f t }  be t h e  sequence o f  i n t e g e r s  given by" 

t l  t 2  and tn+2 = f t  + 

f o r  some given in tegers  f ,  g,  t,, and t2. The technique o f  p a r t  ( a )  

y i e l d s  t h e  recursion formula 

2 2 

which y i e l d s  only squares when t 2 2 2 2 , t2, and t3 = ( f t l  + g t 2 )  a r e  i ts 

f i r s t  t h r e e  terms. 

For f = -1 and g = 2, the, t form an a r i thmet ic  sequence; f o r  
n 

f = f = t = t = 1, t h e  t form t h e  sequence 1, 1, 2, 3, 5 ,  8, ... of 

Fibonacci numbers. F ina l ly ,  f = g  = 0 y i e l d s  t h e  t sequence 
n tla t2, 

0, 0, 0, ..., a r a t h e r  t r i v i a l  example. 

AÂ£A b o h e d  by WALTER BLUMBERG, M I K E  CALL, RALPH GARFIELD, THEODORE 

JUNGREIS , MICHAEL MAY, JOHN OMAN a n d  BOB P R I E L I P P  ( j o w t i y ] ,  KENNETH M. 

WILKE, and the. P m p o ~ ~ . .  

446. [ S p r i n g  19791 P/topo&e.d by Ciayton W. Dodge., U W L v m L t y  06 

Maine., O m o .  
3 3 

A t eacher  showing t h e  f a c t o r i z a t i o n  o f  x - y = (x  - y )  
2 

(z2 + xy + y ) emphasized t h a t  t h e  second f a c t o r  is  not  a square (not  

[x + y] squared) ,  and then chose x = 5 and y = 3 a t  random, obtaining 

x2 + xg + y2  = 49, 

which i s  a square. 

a )  Explain t h i s  apparent contradict ion.  
2 

b )  Show t h a t  t h e  equation x + xy t y
2 = 49 i l l u s t r a t e s  t h a t  a 

3:5:7 t r i a n g l e  has a 120Â angle. 

SoJbition by  Chiu^.u W. TM-gg, Sun QJLrgo, CaXJUoiwLa. 
2 

a )  The statement t h a t  x + xy + y
2 

is  not  a square means t h a t  t h e  

expression is not  decomposable i n t o  two equal  a lgebra ic  polynomials wi th  
2 2 

r e a l  c o e f f i c i e n t s .  The demonstration t h a t ,  f o r  f(.x,y) = x + xy + y , 
f(5,3) = 49, a square, could well  have been followed by f(3,4)  = 37, a 

prime, and f ( l , 4 )  = 21, a composite non-square in teger .  Thus it could 



have been emphasized t h a t  t h e  f a c t o r a b i l i t y  o f  a pc lynomial  cannot be 

determined by s u b s t i t u t i n g  s p e c i f i c  numerical values i n  it. 

Again, x + y is a square f o r  all  x = p2 - k ,  y = k. And, 

x2 + y2 = z2 has a two-parameter so lu t ion  i n  i n t e g e r s ,  namely: 
2 2 x = m2 - n2, y = 2m , z = m + n . Indeed, any des i red  number o f  

2 
i n t e g e r  s o l u t i o n s  o f  z + xy + y2 = z2 a r e  given by 

2 2 x = m 2 - z  , y = m  + n 2 , . z = m 2 + m + n .  

I n  t h e  p resen t  case,  m = 2, n = 1. 

b )  z2 = z2 + - 2(-1/2)xy is t h e  law o f  cosines f o r  a t r i a n g l e  

with s i d e s  x,y,z and a 120Â angle, which has a cosine o f  - 1/2, opposi te  

a .  Since y = 3, x = 5, z = 7 s a t i s f i e s  t h e  equation, a 3:5:7 t r i a n g l e  

has a 120Â angle opposi te  t h e  longes t  s ide .  

A&Ao boived by CHUCK ALLISON, MIKE CALL, MICHAEL W .  ECKER, MARK 

EVANS, VICTOR G. FESER, ROBERT C .  GEBHARDT, SAMUEL GUT, DONALD KING, 

JIM METZ, BOB PRIELIPP, JOHN PUTZ, PETER SZABAGA, WILLIAM E. WARREN, 

DALE E. WATTS, KENNETH M. WILKE, JOHN A.  WINTERINK, and the. PmpobeA.. 

447. [Spring 19791 Pmpohed by Zdda Katz, Bev- HWLh,  

CaLi{,oWiia.. 
A var iab le  c i r c l e  touches t h e  circumference o f  two i n t e r n a l l y  tan-  

gent c i r c l e s ,  as shown i n  t h e  f igure .  

. . 
a )  Show t h a t  t h e  cen te r  o f  t h e  var iab le  c i r c l e  l i e s  on an e l l i p s e  

whose f o c i  a r e  t h e  cen te rs  o f  t h e  f ixed  c i r c l e .  

b )  Show t h a t  t h e  cen te r  o f  t h e  var iab le  c i r c l e  bears  a constant  

r a t i o  t o  t h e  d i s tances  from i ts  cen te r  t o  t h e  common tangent  o f  t h e  - 
f i x e d  c i r c l e s .  

c )  Show t h a t  t h i s  constant  r a t i o  is  equal  t o  t h e  e c c e n t r i c i t y  of  

t h e  e l l i p s e .  

SoÂ£uAtO by Zazou Katz,  Bevuujiy H U t & ,  C w o / u w i .  
Let Q denote t h e  p ro jec t ion  o f  P upon AB and l e t  AQ = d. Let 

A 0  = r, A0 = R, 0 P = r t p ,  OP = R - p ,  where p is t h e  rad ius  o f  t h e  
1 

var iab le  c i r c l e  (PI. 

Then, 

a )  0 P  + OP = ( r  + p )  + (R - p )  = R + r, a constant .  Hence P 

describes an e l l i p s e  whose f o c i  a r e  0 and 0.  

b )  and c )  Since 0 p 2  - 0p2 = 0Q2 - O Q ~ ,  we may wr i te  
1 

( r  t p ) 2  - (R - p)2= (AQ - PI* - (AQ - R ) ~ ,  o r  

( r  t R ) ( r  -R t 2p) = (2AQ - r - R)(R - r), whereupon 

= 2p - ( - = = e , the  e c c e n t r i c i t y  o f  t h e  
( r  +R) 2d - ( r  + 8 )  d 

e l l i p s e ,  a constant ,  defined by t h e  r a t i o  o f  t h e  d i s tance  between t h e  

f o c i  t o  t h e  l eng th  o f  t h e  major ax i s .  

A h 0  40ive.d by WALTER BLUMBERG, MIKE CALL, CLAYTON W .  DODGE, 

MICHAEL W .  ECKER, ROBERT C. GEBHARDT, HENRY S. LIEBERMAN, SISTER STEPH- 

ANIE SLOYAN, CHARLES W .  TRIGG, WILLIAM E. WARREN, KENNETH M. WILKE, J. 

A. WINTERINK, ROGER E.  K U E H L ,  cmd the. Pkopoba. 

Edi tor ' s  Comment. 

Special  commendation is  due t o  ROGER E .  K U E H L ,  t h e  Kansas Ci ty ,  

Missouri t r a f f i c  engineer ,  f o r  h i s  exce l len t  so lu t ion ,  b e a u t i f u l l y  

cal l igraphed and p r e c i s e l y  d r a f t e d ,  which however is  t o o  lengthy f o r  

publ icat ion here. M r .  Kuehl was t h e  proposer of  problem 297 [Spring 

1973; Fall 19741 which involved t h e  construct ion of  an S-curve with 

c i r c l e s  o f  equal  r a d i u s ,  connecting two non- paral le l  s t r a i g h t  roads. , 
4 

448. [Spring 19791 Pmpobed by the. la te  R .  Robira~on Uowe.. 
Analogous t o  t h e  median, c a l l  a l i n e  from a ver tex  of  a t r i a n g l e  

t o  a t h i r d  point  o f  t h e  opposite s i d e  a "tredian". Then i f  both t r e d i a n s  



a r e  drawn f r o m  each vertex,  t h e  6 l i n e s  w i l l  i n t e r s e c t  a t  12 i n t e r i o r  

po in t s  and divide t h e  a r e a  i n t o  19 subareas, each a  r a t i o n a l  p a r t  o f  t h e  

a r e a  o f  t h e  t r i a n g l e .  Find two t r i a n g l e s  f o r  which each subarea is an 

i n t e g e r ,  one being a  Pythagorean r i g h t  t r i a n g l e  and t h e  o t h e r  with con- 

secu t ive  i n t e g e r s  f o r  i t s  t h r e e  s ides .  

S o U o n  by the. Pmpobut. 

Consider t h e  general  t r i a n g l e  ABC with a l t i t u d e  h and m t h e  ab- 

s c i s s a l  d i f fe rence  between C and M a t  midpoint of  AB. Transform t h i s  

t r i a n g l e  by t h e  r e l a t i o n  a;' = x -my/hto t h e  i s o s c e l e s  t r i a n g l e  ABC'. 

Each hor izon ta l  d i f f e r e n t i a l  element w i l l  be i n v a r i a n t  i n  length,  and 

so  w i l l  an a r e a l  aggregate o f  such elements be i n v a r i a n t  i n  area.  

The ord ina tes  o f  t h e  t h i r d  po in t s  on AC and BC, h/3 and 2h/3, be un- 

changed, so  a l l  t r e d i a n s  w i l l  be transformed t o  a  symmetrical a r ray  about 

MC'. Hence t h e  19 subareas have become symmetrical, and it follows t h a t  

t h e  subareas i n  ABC, though not  symmetrical i n  shape, a r e  symmetrical 

i n  a rea .  Then s i m i l a r  transformations on AC and BC a s  bases would prove 

t r i a x i a l  symmetry o f  a reas .  

Thus t h i s  t r i a x i a l  symmetry o f  a reas  s i m p l i f i e s  our  problem by 

using an e q u i l a t e r a l  t r i a n g l e ,  which shows t h a t  thepe a r e  j u s t  5  d i f f e r -  

e n t  areas  among t h e  19 subareas. Then f o r  a  uni t- area t r i a n g l e ,  

34 + 6 B + 3 C + 6 E + F = 1  (1)  

A + 3 B + C + E  = 1 / 3  (2)  

A + C t 4 E + F  = 1 / 3  (3)  

2B + C 
= l 5  1 See Addenda 

(4)  

A + 2 B + C + E  = 2/7 ( 5  

Whence: A = 1/14; B = 1/21; C = 11/105; E = 1/70; F = 1/10 (6)  

The l e a s t  common denominator f o r  these  5 subarea f r a c t i o n s  is 

210 = 5 x 6 x 7. Hence any t r i a n g l e  with i n t e g r a l  s i d e s  and an a rea  

d i v i s i b l e  by 210 w i l l  be f u l l y  i n t e g r a l  f o r  t h e  subareas a s  well .  The 

pythagorean t r i a n g l e  20, 21, 29 has an a r e a  o f  210 and t h e  subareas i n  

o rder  a r e :  15,  10,  22, 3, 21. 

For t h e  o t h e r  t a s k ,  it w i l l  be he lpfu l  t o  review t h e  generators  

f o r  t r i a n g l e s  with consecutive i n t e g e r  s ides .  Let t h e  s i d e s  be m-1 ,  

m and m + 1  and t h e  a r e a  A .  Then i n  o rder  n ,  beginning with t h e  t r i v i a l  

n = 0:  n m A  

0 2 0  

1 4  6 

2 1 4  84 

3 52 1170 

Generators a r e :  mn+l = - m n- 1 (7)  

An+l = 14 A -14Ap1 (8)  

From (8)  can be derived:  

An+2 = 195An - 1 4  An-l (9) 

'n+3 = 2 7 1 6 A  - 195A, (10) 

From (9)  it is  c l e a r  t h a t  i f A  is  d i v i s i b l e  by 7,  so  i s  A n ,  and s ince  
n 

= 84 is  d i v i s i b l e  by 7, then A i s  always d i v i s i b l e  by 7 f o r  n  = 2a. 

Likewise from ( l o ) ,  A is  always d i v i s i b l e  by 5 f o r  n  = 3b. 

F ina l ly ,  s ince  A i s  a lwaysd iv i s ib le  by 6, A w i l l  be d i v i s i b l e  by 



5 x 6 x 7 = 210 when n = 2 x 3 = 6, o r  any mul t ip le  o f  6. 

The l e a s t  so lu t ion ,  then,  is  n = 6, f o r  which t h e  s i d e s  a r e  2701, 

2702, 2703 and t h e  a r e a  is  A = 3 161  340 = 210 x 15054.. 

Addenda. Perhaps I should explain t h e  f r a c t i o n s  i n  ( 4 )  and (5) .  If t h e  

a l t i t u d e  o f  a t r i a n g l e  is u n i t y  and AB i t s  base, and i f  secants  from A 

and B meet t h e  opposi te  s i d e s  a t  o rd ina tes  a and b,  then t h e  ord ina te  o f  

t h e i r  i n t e r s e c t i o n  is  

ab 
c = a + b - a b  

For ( 4 ) ,  a = b = 1/3,  t h e  numerator is 1/9 and t h e  denominator 5/9, so  

c = 1/5. For ( 5 ) ,  a = 1/3 ,  b = 2/3, numerator 2/9, denominator 7/9 and 

c = 2/7. I think t h i s  r e l a t i o n ,  i n  one form o r  another ,  i s  f a i r l y  well  

known. 

At20 hotued by MIKE CALL [by compu^e~.], CLAYTON W .  DODGE, and 

KENNETH M. WILKE. 
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