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TAXICAB GEOMETRY 0
by Barbara E. Reynolds
St. Louds Univernsity and
Candinal Stritch College

Around the turn of the century, Hermann Mnkowski [4 published a
vwhol e famly of "netrics" -- that is, exanpl es of spaces in which a way
of neasuring di stance has been defined so as to fulfill the axions of a
netric space. Amng these netrics is one whichis referred to as the
"taxicab netric" because of the way it nmimcs the distances that a taxi-
cab would have to drive in an ideally laid-out city in which all streets
run due north/south or east/west. |n 1975, Eugene Krause[d nade the
comment that "apparently no one has yet set up a full geonetry based on
the taxicab netric. It would seemthat the tine has come to do so."

Definitions and Background:

Anetric space[1] is a mathematical structure which consists of a
set of points and a rule(or function) for neasuring di stance between any
two pointsinthe set. In general we require that this distance function

have three properti es:
7). The distance between any two points i s al ways non-negati ve;

d(4,B) 20. (Ad if d(A,B) = O, then A = B.)

2). The distance frompoint A to point Bis always the sane as the

distance frompoint B to point A; d(A,B) = d(B,4).

3. The distance frompoint Ato point Bplus the distance from¢

to Ais greater than or equal to the distance fromA to B; that is,

d(4,B) = d(4,c) * d(c,B).

The usual (2-dinensional) Euclidean space, Eys consi sts of points
from szvni ch can be represented graphically in the coordinate plane, or
anal ytically as ordered pairs of real nunbers. For exanple, the point
A = (2,3) can be represented graphically as in FHgure 1.

The Eucl i dean di st ance defined on any two points A B in R, is
defined consistent wth the Pythagorean Theorem

_ 2 2
dy4,8) = Ha, - b))° + (a, - b,)° -

Wth respect to the "real world" this distance neasure could be referred
to as the "as the crowflies" distance.
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A
°® (2,3)

FIGURE 1

The (2-dimensional) taxicab space, T,, consists of the same point

2,
set as (2-dimensional) Euclidean space. The taxicab distance function

is defined for each pair of points 4,8 in R2 by

dp(4,B) = |a; - by| + la, - b,|

As an example, let A = (1,1) and B = (3,4). Then A and B can

be represented graphically as in Figure 2.
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FIGURE 2
In this example, the Euclidean distance from 4 to B wou e /13, while
the taxicab distance would be 5. Notice that if we think of and B as

being street corners in a carefully laid-out cizy, there are a number of
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different paths we could take in driving (or walking) from A toB . Two

such paths are shown in Figure 3. As long as we must stay on the streets
and cannot cut diagonally across any block, the shortest paths from A to

B are each five blocks. c

N

FIGURE 3

Orne way to get a feel for the effect that a certain way of measur-
ing distance has on a space is to look at various familiar geometric

figures -- for instance,circles, ellipses, hyperbolas, and parabolas.

Cincles:

In analytic geometry, we define a circle as the set of pointsin
R, at a constant distance from a given fixed point. If we use the
Euclidean distance measure, circles are "round.” W might be initially
surprised as we plot points which are three units from the point A = (4,3)
using the taxicab distance measure. (See Figure 4).

Analytically, the taxi-circle with center ¢ = (k,k) and radius r
is the collection of points

{P = (py.py) € Ry lpy - Bl + |p, - k| = r}.

This describes a taxi-circle as the union of four straight line segments
with vertices at (k,ktr) and (hir,k). Each of these line segments has
a slope of 1, The complete taxi-circle is shown in Figure 5.

It is interesting to observe that i f the mathematical contant I
is defined in the usual way as the ratio of the circumference of a circle

to its diameter, then the value of NT is 4. It is also worth commenting
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. two distinct Euclidean circles nmey intersect in at most two
o distinct taxi-circles ney additionally intersect along one
light line segments (see Figures 6 and 7.)
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Ellipse:
An ellipse mey be defined as the set of all points_P in Ry, the
am of whose distances from two fixed points, A and B, isS constant. In

other words, if A and B are fixed points in 1?2, then an ellipse is.the
collection of points

{PER,: d(P,A) + d(P,B) =c},

where ¢ is constant. The fixed points A and B are called the foci of
the ellipse. Qur experience with taxi-circles mey lead us to suspect
that the shape of the ellipse depends on whether we use the Euclidean
distance measure or the taxicab distance measure.

There is an excellent discussion of ellipses of the Euclidean kind
in Jacobs [2] with an interesting experiment in drawing ellipses with
the aid of a loop of string and a couple of thumb tacks. Measuring dis-
tance by means of a tautly stretched string is essentially a Euclidean
method, since this measures distance along " straight” paths. Just as
we cannot use a compass to draw a taxi-circle, we cannot draw a taxi-
ellipse by stretching a loop of string around two thumb tacks. Krause
[3] suggests a method for drawing taxi-ellipses.

Suppose we are given fixed points A = (1,3) and B = (5,3), and are
asked to draw the taxi-ellipse

{PER,: dT(P,A) + dn(P,B) = el,

where ¢ = 6. Since 6 = 4+ 2, we could draw a circle of radius 4 with
A as center, and a circle of radius 2 with B as center. (See Figure 6.)
N

o D
(143)

N

FIGURE 6
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Each of the points where these two circles intersect will be at a dis-
tance of 4 from A and at a distance of 2 from B and therefore will be
on the desired taxi-ellipse.

We can continue this process using circles of different radii,
always choosing pairs of circles whose radii add up to 6. But a curious
thing happens when we choose circles of radii 1 and 5. (See Figure 7.)
These circles intersect not in one or two points but along two whole

sides of the smaller circle.

[

A4

FIGURE 7

By experimenting with various pairs of circles, we find that the com-
plete taxi-ellipse with foci A = {1,3), B = (5,3) and e = 6 is as shown
in Figure 8.

Lest we rush too hastily to the conclusion that all taxi-ellipses
are some kind of hexagons, a little further experimentation will show
that the ellipse with foci at A = (1,3), B = (3,1), and ¢ = 6 is octago-
nal in shape. (See Figure 8.)

A familiar result from analytic geometry is that as the foci of
an Euclidean ellipse move closer together, the ellipse becomes more
circular [2].

Observe that on the coordinate plane any two points either are
opposite vertices of a rectangle with sides parallel to the axes (Figure
10-a), or lie on a straight line segment parallel to the X- or y-axis
(Figure 10-b.) (And we could say that a line segment is a rectangle

whose width is zero).
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FIGURE 8

A\

FIGURE 9

Now as A and B move closer together, this rectangle becomes smaller, until
finally, when 4 and B are the same point, both the length and the width
of this rectangle are zero.

Look again at Figures 8 and 9 and observe the relationship between

the horizontal and vertical sides of the ellipse and the litte rectangle

determined by the foci. |If the foci move closer together, the rectangle
will become smaller, and the horizontal and vertical sides of the ellipse
will become shorter until finally the foci merge into a single point and

the ellipse becomes a perfect taxi-circle.
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Hypenbola:

A hyperbola may be defined in a manner similar to the ellipse by
replacing the word "sum™ with "difference.” Thus a hyperbola is the set
of all points Pin R2 the difference of whose distances from two fixed
points (foei), A and B , is constant. That is, if A and B are fixed
points in R2, a hyperbola is

{PER,: |[d(P,4) - d(P,B)| = e},

where ¢ is constant.
Since the constant, a, is the result after taking the absolute
value, the smallest possible value for e is zero. If e = 0, then

{PER,: |d(P,A) - d(P,B)| =c}= {PER,: d(P,A) = d(P,B)} .

If wearein E2, this is usually called the "perpendicular bisector" of

the line segment AB . However in T,, the "bisector” may not even be a

s
straight line. (See Figure 11.) (2I leave a question for ny reader:
Under what conditions on the fixed points A and B will this "bisector”
be a straight line in T2?)

To investigate taxi-hyperbolas we can use a method similar to the
one we used for drawing ellipses; that is, we can find the intersection
of pairs of circles centered at A and B whose radii are 7, and rps €=
spectively, where er - rB[= e. However, we quickly observe that when ¢

is greater than d(4,B), the circleswill fail to intersect (Figure 12),

’
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FIGURE 11

and hence the hyperbola for any value of e >d(4,B) will be the ruill set.
(This result holds whether we use dT or dE') So the constant, ¢, is
bounded between zero and d(4,B): O s ¢ < d(4,B).

A

FIGURE 12

While the shape of the ellipse depended only on the shape of the
little rectangle determined by its foci, A and B, the shape of the
hyperbola i s al so dependent on the magnitude of the constant, e, relative
to the difference in the lengths of the sides of the-rectangle. In other
words, if we define k = |la; - b;| -|a, - b,|| , the shape of the hyperbola
depends partly on whether e is less than, equal to, or greater than k.
(See Figure 13.)
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An interesting thing happens if ¢ is equal to k or to d,_,,(A,B).
Arny pair of circles centered at A, B, respectively, whose radii differ

by either k or dT(A,B) intersect, not in one or two points, butin aline

segment.

Furthermore, A and B can be chosen so that k = 0.

of A is not linear (Figure 14.)

N
A\

AN
[
N

Ard so in either case the hyperbola is not linear and the" --
shaded areas are part of the hyperbola.

(Look again at Figure 13-c, e.)

Then the " bisector™

FIGURE 14

Parabola:

So far we have considered circles, ellipses, and hyperbolas. Next

we might want to consider parabolas in this taxicab space.

A parabola

may be defined as the set of all points which are equidistant from a

given point, F, called the focus, and a given line, D, called the

directrix.

{PER,: d(P,F) = d(P,D) }.

That is, given a fixed point, F, and a fixed line, D, in R2,
a parabola is the collection of points

But this raises the question of just exactly how do we measure the dis-

tance from a point to aline. Ing&

we sometimes speak of "dropping a
perpendicular” from the point P to the line D .

But in 72 we have al-

ready discovered that the "perpendicular bisector™ of two pointsis ™

usually not straight, and may not even be a line.

suspicious of the "perpendicular” from a point toalinein T,e

S we might be a little
W would

like to define the distance from a point Pto a line D as the length of
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the shortest path from P to D, or as the distance from P to the point
of D which is closest to P. Is there a systematic way of finding the
point on D which is closest to 7?2 In Figure 15, which of A, B, Cis
closest toP? Is there any point of D which is closer to Pthan these?

*p

\2

FIGURE 15

Conclusion:

In this article | have defined the taxicab space, T, and have

s
given some examples of ideas which are familiar to us in '2'ordinary"
Euclidean space, E’z, but which are quite different in Ty | leave the
reader now with two big questions to explore:
1). Hw do we measure the distance from a point to a line in 7,?
2). Wha do parabolas look like inT,?

And, just perhaps, in looking for the answers to these questions, you

will discover a number of other interesting properties of taxicab geometry...

This paper was written while Dr. Reynolds was a graduate student at
St. Louis University. Currently she i s on the faculty at Cardinal Stritech
College, Milwaukee, \Wisconsin.

REFERENCES

1. Blumenthal, L., Theory and Applications of Distance Geometry, Chelsea
Publishing Co. (1953), Bronx, Nav York, 1970.

2. Jacobs, H., Mathematics. A Human Endeavor, W. H. Freeman and Company,
San Francisco, 1970.

3. Krause, E., Taxicab Geometry, Addison-Wesley Publishing Co., Menlo
Park, CA, 1975.

4. Minkowski, H., Gesammelte Abhandlungen, Chelsea Publishing Co., Nav
York, 1967.

—

89

5t

THEBASYMETOYEERBGLAN

by Stewart Venit
California State University

Once the asymptotes of a given hyperbola have been computed, it is
a simple matter to determine the extent of its graph and to quickly
sketch it. Nw if the hyperbola is positioned so that its transverse
axis is horizontal or vertical, one can relatively easily compute the
asymptotes from its equation - this requires littl e more than a trans-
lation of axes via a "completing thé square” process. However, if the
transverse axis is oblique (neither horizontal nor vertical), the stand-
ard procedure for finding the asymptotes takes considerably more work.
It necessitates a cumbersome rotation of axes in addition to the trans-
lation. In this note we will provide a simpler technique for determining
the asymptotes of an oblique hyperbola - one that requires only the so-

lution of a pair of linear equations and a single quadratic one.

>
I
I
I

\]

FIGURE 1
The general equation of a hyperbola may be written

(1) APrBy + oy? DX tE = F
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where A, B, C, D, Eand F are real numbers with 32 - 44C > 0. To de-
termine the asymptotes we employ the following theorem together with the
point-slope form of the equation of a straight line (as illustrated in
the example below). The proof of this theorem will be deferred until
the end of the note.

Theorem. Consider the hyperbola given by equation (1).
(i) Its asymptotes intersect in the point {p,q), where (p,q) is
the unique solution of the linear system

(2) (24)p + (B)g = -D

(B)p t (2¢)q = -E.
(ii) If ¢ # 0, the slopes of the asymptotes are the distinct real

roots of the quadratic equation
(3) cm® + Bn+ 4 = 0.

If ¢ = 0, the hyperbola has one vertical asymptote and one with slope

equal to -A/B.

Note. As we shall see in the proof of the Theorem, the hyperbola
(1) is degenerate if and only i f F:Ap2 t Bpg + qu + pp t Eg, where
(p,q) is the solution of (2). In this case, the graph of (1) is a pair
of lines whose point of intersection and slopes are given by the Theorem.

Example. Consider the hyperbola with equation
X% +ay -y?- 7w +55 =0 Here A=2 B=1,0=-1,D=-7 E=5
and F = 0. So, the linear system (2) becomes

p + q =17

p -2 =-5
which has the solution p = 1, g = 3. Thus, both asymptotes pass through
the point (1,3). Also, since C # 0, the slopes of the asymptotes are the
roots of (equation (3)) m? + m* 2= 0. That is, one asymptote has
slope -1 and the other has slope 2. Finally, employing the point-slope
form, ¥ - q = m(x - p), we obtain the equations of the asymptotes

y - 3= (-1){x - 1) (ory =-ztu)

and y -3 2(z - 1) (ory = 2x + 1).
Proof of the Theorem W& first translate the x- and y-axes by

means of the change of variables
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() z=%+p,y=j+aq
Substituting (4) into (1), we obtain
AF° + BEj + C§2 + (24p + Bq + D)E + (Bp + 20q + E)j = Ff,

where F = F - (Ap2 + Bpg * qu +Dp + Eq). Thus, if (p,q) satisfies the

system (2), equation (1) is transformed into
1
(5) AZ% + By + Cj° = F .

Moreover, this transformation is always possible - the linear system (2)
has a unique solution since the determinant of its coefficient matrix,
yAC - Bz, i s nonzero.

Now, equation (5) represents a hyperbola with center at £ = 0,
¥ = 0, so, by virtue of (4), in the xy-coordinate system its center is
located at x = p, y = q. But the center of a hyperbola is also the
point of intersection of its asymptotes. Thus, we have verified part
(i) of the Theorem.

Before proceeding to part (ii), notice that equation (5) can be
written as (a& * by)(c® t dy) = 0, where @, b, ¢ and dare real, if
and only i f F* = 0. Consequently, equation (5), and hence equation (1)
as well, represents a pair of lines (i.e., a "degenerate hyperbola™) if
and only if F - (,4p2 + Bpg + Cq2 + 0p t Bq) = 0, where (p,q) satisfies
(2).

It suffices to prove our assertions of part (ii) for equation (5)
(rather than (1)) since under the translation (%) both the slope of a
line and the constants A, B and ¢ remain unchanged.

If ¢ # 0, solving equation (5) for ¥ we obtain

7 = (-Bz.% /(Bz)? - uc(az® - F') /2

or 7= (-85 * /(B2 - 4aC)Z° + 4CF') /2C.

Now, as |Z| +=the term, 4CF' becomes negligible compared to (32 - QAC).E'Z,

SO

_ _ /—2_-—:_2

y ~ (-Bz T /(B® - uaC)z")/2C;
i 7> [(-B * /8% - wacy/2Tz .

But the coefficients of  in the last expression are the real distinct
(since B% - uac » 0) roots of equation (3). Thus, if ¢ # 0, the
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asymptotes have the slopes claimed,
If C = 0, equation (5) takes the form

(6) 472 + BEj =F',

in which B cannot be zero or else B2 - 4AC = 0, a contradiction. Now,
if A =0, equation (6) reduces to Zj = F'/B, which we know has one
vertical asymptote and one of slope 0 = -4/B, as desired. Hence, we Mgy

assume that A # 0 and solve equation (6) for z obtaining

%= (-By * AB5)? + var )/ .

Now, as |§|+=, the term 4AF' becomes negligible compared to (Bg)2 so
z~ (-By ¥ /(Bg)z)/zA = [(—B T B)/zA]y .

That is, as 9|+ =, & > 0 or >(-B/A)g. Thus, in this case equation
(5) has the asymptotes £ = 0 and z = (-B/4)y (i.e., y = (-A/B)x), and
the assertion is proved.

S~
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The papm {§or the 1978-79 Student Papal Contest have.
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Gold Clad key-pins are available at the National Office
(The University of Maryland, Department of Mathematics) at the
special price of $8.00. Be sure to indicate the Chapter into
which you were initiated and the approximate date of initiation.
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Thind Prize Paper
&

A MATRIX MODEL FOR
USE IN POPULATION ECOLOGY

by Michael J. Young
Portland State University

Ore of the most important applications of mathematics i n ecology has
been in models for population growth. The literature on the subject is
vast and dates back from the time of Malthus in the 18th century. Even
what has been termed the basic principle of population ecology is stated
in mathematical language: In an unlimited, constant, and favorable en-
vironment, the number of individuals of a species will increase ex-
ponentially [Poole, 19741.

The most common approach to modeling populuation growth has been
through the use of differential equations first formulated by A. J. Lotka
in 1925. However, a more versatile model using matrix algebra was devel -
oped by [Leslie; 1945, 1948, 1859]. This paper will give the development
of what is nowv called the Leslie matrix model and explain its particular
usefulness to population ecology.

Like al | models of natural phenomena, the Leslie matrix approach
idealized the object of study. The following assumptions are made:
population changes are based solely on age dependent birth and mortality
rates; there are no population changes due to immigration or emigration.
The sex ratio of males to females i s assumed to remain constant and only
the changes in the female portion of the population are considered.
Finally, both time and age are treated discretely, and the birth and
death rates within each age interval remain constant; they differ from
one interval to the next.

This model has been used to describe the dynamics of a wide variety
of ecological populations [see p. 42 of Pielou, 1969] with a great deal
of success.

Consider a population that is divided into m + 1 age classes where
the ( m* 1)st is the age class of the last surviving member of the popu-
lation. Then at a time ¢t = 0, each of them * 1 age classes can be

represented by an element i n the column vector
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n = 710

3. N

n

2
where the first subscript denotes the age class and the secondr time.
Thus, 7,4 represents the number of individuals in first age class at
time ¢t = 0, and .o the number in the (m+l)st age class at time £ = 0.
It is assumed that none of the females live past the age class m. The
age intervals are of the same length as the time intervals.

Associated with this age distribution vector are the following
age-specific statistics:

FX = the number of daughters born per female aged X at time ¢,
wo will be alive in the initial age class at time t + 1.

P:c = the probability that a female aged X at time ¢t will be alive
inthe age class x + 1 at time t + 4.

In matrix form, the age distribution vector at time t = 1 i s given

by
(7, £ e Eoy Fllgo]l Fotoo * oot Ftm] [Porl
P0 0 0 0 g POnOO nq
0 Pl oo 0 0 "0 - Plnlo B noq
L Pno1 O _Z;mo_ . Pri®-1,0 | i’ml_
or

Mug =1y

where M is the Leslie (or projection) matrix.

This matrix M consists of m t 1 rows and m t 1 columns, and holds
the fecundity (number of offspring) and survivorship data. Except for
the first row and the sub-diagonal immediately below the main diagonaly
all other entries are zero. The survivorship values and strictly between
0 and 1 and the fecundity values are non-negative.

It shguld be noted that since Mng = n and My = M2n0 = n, that

M ng = Mn

t-1 ="
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where ny denotes the age distribution vector after t time units have
elapsed.

Example =
Let the matrix M and the initial age distribution vector o be as.
follows:
o] 0 12 12
M= 1/3 0 0 5 ny = 0
0 1/2 0 0

Subsequent age distribution vectors are found in the same way, i.e.,

2 . ) 3, . .
ny = Mny =M% = (36 02)°, ng= M, = Mg = (2412 0)7, etc.

Properties of the Basic Matnix
In examining the properties of the matrix M, it is not necessary to
consider the whole matrix. Unless the females in the population are re-

productive until the end of their lifespan, some of the entries of the
first row of the matrix Mwill be zero. In other words, if X = k is the

last age class within which reproduction occurs, then Fk is the last F
figure that is not equal to zero. Nw the matrix M can partitioned
symmetrically at this point to give

A 0
(k+1) x (k +1) ‘ (k +1) x (m - k)

¥ = B C
(m-k) x (k +1) (m - k) x (m - k)
Then forming the series of matrices M2, M3, Mu, .
At 0 .
to_ .
¥ = t
f(ABC) c

Nw ¢ is triangular with its only nonzero elements Pk+1""’ Pm-—l on the
subdiagonal. Therefore, when t 2 m - k, 6't = 0 and M¥ has zeroes in
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last m - k columns. This expresses the biological fact that females
alive in the post-reproductive ages contribute nothing to the population
when they themselves are dead after a maximum of m - k time units.

In considering only the portion of the population of reproductive
age, we need only examine the matrix A.

First of all, we note that A is square of order k + 1. The matrix
i s nonsingular since the determinant lal = (—l)k+2(PoPl.. 'Pk-le)'
However, more importantly for our purposes, the matrix A is non-negative
(the entries are greater than or equal to zero) and irreducible (it is
impossible to get from A, however one permutes the rows with each other,
or the columns with each other, a matrix that can be partitioned into
square submatrices one of which is O of order n > 1). It is these con-

ditions that will be referenced in the next part of this paper.

The Stable Age Distrnibution
An important question now arises: does there ever come a time when

the age distribution vector becomes stable? In other words, at a time

t = s, does there exist a vector n and a scalar A such that

An = A .

This is the same as asking if a latent root and the latent vector
associated with it exist for the matrix A. Since A is non-negative and
irreducible, it satisfies the necessary conditions of the Perron-Frobenius
Theorem: any matrix that meets these conditions has at least one
positive real latent mot of multiplicity one, say )‘1’ whose value is
greater than or equal to the modulus of any complex root of the matrix
(i.e., A 2 I)._L‘ for all £ # 1 where the A's are the latent roots).

To %how that Al is the only positive root, we consider the

coefficients of the characteristic equation of 4 which is
A - A =0
Let P(r) = POPl"'Pr’ and expand the determinant to give

k+

A 1 Foxk k-1 k-r

B P(O) Fyd o T P(r~l)Fr)‘ o —P(k—l)Fk =0
The left-hand side has only one change of sign, and by Descartes' rule
of signs, the equation has at most one positive real root.

Thereforer except for Al, all the roots of A are negative or

complex [Bellman, 1960].

For the biologist, )‘l’ called the dominant latent root, is of great
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importance. Being real and positive, it is the only latent root that
will give rise to a stable age distribution consisting of real and
positive elements. The dominant latent root }‘l is also called the

finite rate of increase, and is related to the intrinsic rate of increase,

r, by

ln).l =y .
Thus, )‘l can be thought of as the multiplicative growth factor per
generation

Nppy = My
and r as the "compound interest" growth rate

- rt

Nt = IVOe 5

where N,[ represents the population total at any time t. It must be

remembered that terms ).l and r are only appropriate when the stable age

distribution of a population exists.

Finding the Stable Age Distribution and the Dominant Latent Rooi
While the dominant latent root of the matrix A may be found thmugh

the process of diagonal expansion, it is much more convenient to trans-
form it from its original coordinate system to a new set of coordinates.
Leslie (1948) has suggested the nonsingular transformation

B = HAH L
where H is a diagonal matrix with elements (POPl' . 'Pk—l)’ (P1P2"'Pk—1)’
R (Pk_sz_l), Pk-l)’ 1, which are derived from the matrix A. Thus
letting P(r) = PP P

r,
Fo Pofi PaFe oot Fa-o)fr-1 Pae-1)%x
1 0 0 TR 0
B=|0 1 0 .e. 0 0
0 0 0 v 1 0 i

The effect of this transformation is to replace the PX elements in the;
principal subdiagonal of A by a series of units, and reduce A to the
rational canonical form. In biological terms, it is equivalent to trans-
forming the original population into one in which all the individuals
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live until their span of reproductive life is completed at the age of
kt1

It can be noted that since the transformation i s collinear, the
matrices A and B have the same characteristic equation and thus the same
latent roots. Then the vector v, such that

B/S = Avs

i s the stable age distribution of the matrix B, and is related to »ns by

ns = H‘lvs
Example
Referring to the previous example, we let A = M , and find that
1/6 0 0 6 0 0
=0 1/2 oland& ™t = o 2 of .
0 0 1 0 0 1
Then
0 3 2
B=mEt=|1 o ol .
0 1 0

and the characteristic equation is found by examining the coefficients
of the first row of B,

3

AW -3Aa-2=(2a- 2)(A2 + 221 +1)

(2-2)0 + 1)?

=0

Then the dominant latent root )‘1 = 2, and the stable age distribution v,

is computed by letting

v = A0 =2

0s = M1 Y1 T MPV2s7 0t 2 Pk-1,8 © *1Y%s

and arbitrarily setting v, equal to one. Then we have v, = (v 2 1)

s
and by n, = H_jbs, we find that the stable age distribution of the

matrix A isns = (24 4 1)".

Remanrks
Through the use of computers and numerical methodsy matrices much
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larger than the ones shown in the examples can be handled with ease. It
is this "programmability" that makes this Leslie approach so popular with
ecologists. Hypothetical populations or natural populations based on
field data can be studied under a variety of conditions using this*model.

Pennycuick, et al., (1968) consider such factors as density effects
and time lag, and Darwin and Williams (1964) consider the effect of

hunting on a population.
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a8, 4 e va "+ B = A

by Kevin Theatll

We wish to find integral solutions (B,c) to equations of the
form
d d

A7 + A +~--+Ad+Bd=Cd
1 2 n

where Al’ tta, An is a sequence of integers. When d = 2 or 3 we
describe methods for obtaining all solutions. When d > 3, we show
that B must be a root of a certain algebraic equation.

First we consider the case d = 2.

Lemma. If M = f-¥ is an integer where f and N have the same
parity and f = N, then M can be expressed as the sum of f consecutive
odd integers.

Proof: |If M is odd, consider the am § = N - (f-1) + N - (F-3)
oo FNF - EN +(f-3) *+ N+(f-1). There are exactly fterms
inthis sum. Moreover, § = N+ (f~1) + N+ (f~3) + --- t g+ .- +
N-(f-3) +N-(f~1),s025=2N+2N+ -« + 2N+ --- + 2N+ 2N=2¥-7.
Thus § = N*f = M.

Similarly, if M is even, then M = N - (f-1) + -+ 1 (#-1) + (F+1)
+ ... +#+ (f-1).

Example 1.
Express 21 as a aum of one or more series of consecutive odd

integers.

Solution: Factoring yields the following pairs of factors whose.
products are 21 and which satisfy the conditions of the Leanma .
(1,21) , (3,7).

In the first case let f = 1; then N becomes 21 and the only odd term.
In the second case, let f =3 and N=7. W have by our Lemma,

21 =5+ 7+ 9,



102

Example 2.
Express 24 as a sumof one or nore series of consecutive odd
i ntegers.

Sofutiont The proper factor pairs whose products are 24 are:
(+,6) , (2,12).
By lettingf =4 and f = 2 respectively, we get
240 = 3+ 5+ 7+ 9 and
24 =11 *+ 13

Theorem 1. Let As UL A be a sequence of positive integers and
set M = A12 + .. +An2. If Band C are solutions to the equation

(1) A12 oo+ An2 + B2 = 02,
then there exists an integer f such that B = (¥ - f2)/2f and C = B +f.
Here M = N, where f and N have the sane parity and f =N Mreover,
all solutions B and C to equation (1) arise this way.

Proof. The key to the proof is to exploit the wvell-known formia
1+3+ oo +2k -1 = K2
First suppose M= f-N, where £ < N and f, N have the sane parity.
By the Lemrma
M=:=N- (1) +N-(f-3)+ - + N+ (Ff~3) + N+ (F-1).
Now
1+3+°“+N—(f+1)=<N—;£>2=BZ,

where
- = _f2 . .
B = LVa.f = fﬂzﬂ = ’%;-ls an integer because ¥ =f (mod2).
Hence M+ B2 =1 +3+ .- +N- (f+1) + ¥ - (F1) + - + 0+ (Ff-1)

=(N—;'i)2=02,wherec=lv2'ﬁ'=£?.i+f=3+f_
Suppose now B and C are a sol ution to equation (1). Then

B2:1+3++-+(2B-1)andc2=1+3+---t 2C-1. Hence

M=c2-B2:=(2B+1)+ " +(2C-1) = (2c-1)+ -+ +(2B11); 50

oM=2B+¢c)t -+ 2B+ C)=2B+C) - f, vherefis the nunber

of terms. Thus M =¢2 - 82 = (C + B)(C - B) = (C + B)f, naking

f =C-pB. SettingN=¢tB, vehave f =(mod2) and § = N

Moreover, B = (N = £)/2 = (M - f2)/2f and C = B +f.

I
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Exampfe. Find all solutions (B,C) to the equation

122 + 162 + B2 = (2,
Here M = 400. Factoring Minto factor pairs whose products are 408 and
vhi ch satisfy the conditions of the Theorem we get
(2,200), (4,100), (8,50), (10,40), and (20,20).
It isinportant to realize that throughout the proofs we set f =¥
so that calculations are facilitated when enploying the formula. Now
using the main result in the Theoremwe have

2 2
_oB00=2° | 4 4. _ 400-102 _ .. _
1. B = =Gy - 9% C =101 4. B = —rgy- < 153 ¢ =25
2. p = HOOHZ oo s 5.p=200-202 _ o o
: S TR > : —2(20) J
400-82

3. B= —2(8) =21; C = 29

Furthernorev by properly affixing minus signs, we obtain all of the
sol utions (B,c) as fol | ows:

(99,101), (-99,-101), (-99,101), (99,-101);
(48,52), (-48,-52), (-u8,52), (48,-52);
(21,29), (-21,-29), (-21,29), (21,-29);
(15,25), (-15,-25), (-15,25), (15,-25);
(0,20), (0,-20).

Theonem 2. Let M= 4,3+ --- ¢ An3. If a8+ - +An3 + B3 = (3
has an integral solution (B,C), then there exists a divisor f of Mwth

f = M(nod 2) such that vVi2Mf - 37% is integral. Mreover,
B = -f/2 % %—f VioMf - 3f* and C = B +f. cConversely, if

VioMf - 3f* is integral, then the val ues of B and C described in the
previ ous statenent forman integral solutionto M+ B3 = ¢3.

Proof. If Mt B3 =¢3%, thenM=¢3 - 8% = (¢ - B)c? t+cB tB2).
Letting f = (¢ - B), f divides Mand

M=c3-Bl=¢c-B=f (mod 2)
since a3 = a(nod 2) for any integer a.
Now
M=¢3-583:(B+ £)3 - B3 : 3B2F + 3Bf2 + f3.
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Thus 3782 + 328 + 3 - M = 0 and so
_ =3f2 & Joft - 1944 + 10mF
B = 5F

N S
7 * BF /1274 - aft.
Since B is integral, sois /m
Conversely, assume that /m is integral. Then
D = 12fM - 3f* is a square. Since f|¥, it follows that f2[D. Now
D/f2 = 12M/F - 3f2 is divisible by 3 and since D/f2 is a square it must

also be divisible by 9. Thus 9f2|D and 3f|/D. Also

D/Sf2 = D/f2? = 12M/f - 3f2 = flmod 2),
so that
VD/3f = D/9f2 = f(mod 2).

Hence -f + vD/3f = 0(mod 2) and

B = -f/2 + —= /D is an integer.

67
SinceM=¢3-B3: (8t )3 -B3if andonly if

M = 3B2f + 3Bf2 + £3,
we need only prove the |latter statement. This is done by the
following computation:

3B2f + 3pf2 + 3 -
3(~f/2 ¢ g;é VDI2F + 3(-F/2 ¢ éji, /yF2 + 13 =

Sf(F2/m + /D + 36f2.D)+3f2( -f/2 + f./“)+f3—
s .
—L f\/—+mp o+ L5+ 3=

1.3 1 .. 1.2 1.3
"If +-—12fD—-lIf +M—Ef = M.

Exampfe. Find all integral solutions (B,£) to the equation
33 + 43 + 53 = (3,
First we set M = 91 and then factor M to obtain the following factor
pairs (¥,f):
(1,91), (7,13).
Both must be tested in the formula we just proved. By substituting
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all four integers into the formula one finds that the only two which
satisfy the conditions of the Theorem are (1,7). Thus,

B = - 2% ey 12(91)(1) - (3)(1)* = 5 or -6 € = 6 or -5. -
1

9
B=-3%5mh

12(91)(7) - (3)(7)* = -3 or -4; C = 3 or 4.

Theorem 3. If (B,C) is a solution to Aid + et And + 54 - C‘d,

then B is a root of the equation

aifac:d-1 + azzj‘zaz:d_2 + ad_ifd-lcc + (fcZ - M.

d

HereM=A1 + A+ --~tAnd, f is adivisor of M with f 5 M (mod 2)

and a, =(g) is a binomial coefficient. Moreover ¢ = B + f and

)

Proot. Note y=¢d - 82 = (¢ - pycdt + 42 + o 1 5474,
Settingf =C-B, wehavec=8+fandMzcd -84 = ¢c-B=f (mod2)
since ad z a(mod 2) for any a. Nw

M=Cd—Bd:(B+f)d—Bd
d (d\ d-k d
= I -
k=o(7"—)B 7
- d-k
e kka
Thus,
1+a2f23d"2+ +ad_1fd—1B+fd-M=
as desired.
Dividing the equation
M= aij‘Bd"1 + an'QBd'2 + ot ot aa.,_lfd_lB + fd
by jd gives
Wi = a @/p?t v ay BT vay BIF L
Hence
M2 <1
or ‘s

M= .

It follows f = 51\7, and because f iTan integer, that
f s |VM].
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PROBABILITY OF BEING A LOSER

by EeLiot A. Tanis
Hope Cotlege

1. Tntroduction

The American public is fascinated with gambling as evidenced by
the fact that almost every state in the United States permits it in some
form - bingo, horse racing, jai alai, casinos, or state run lotteries.
Mog students are also fascinated with probability questions connected
with games of chance.

In this paper we determine the proportion of gamblers who are losers
when playing certain games of chance. In particular, suppose that a
bettor decides to continue to play until m $1 bets have been placed.
Let Ym equal the total number of dollars "won" after placing these m
bets. V¢ shall consider the following questions for chuck-a-luck, craps,
roulette, and the Michigan Daily Lottery (a numbers game):

(1) What is the value of P(Im < 0)? That is, what is the proba-
bility that the bettor is behind after placing m bets?
(2) What can be said about the distribution of ¥ ?

In the gare of chuck-a-luck, a cage containing three dice is turned
and the numbers on the dice are observed. O possible wager is for the
bettor to place a $1 bet on a particular number. The payoff is $1 for
each of the three dice that shows that number. The dollar is lost only
when that number does not appear on any of the three dice.

If we l et X denote the payoff for a single $1 bet, the probability
density function (p.d.f.) of X is defined by

(5/6)3, €= -1,

3(1/6)(5/6)2, z=1, A
flx) = )

3(1/6)%(5/6), z =2,

(1/6)3, x = 3. (2.1)
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The mean and variance of X are y = -17/216 = -0.07870 and
o2 = 57,815/2162 = 1.23918.
Suppose that m bets will be placed and | et the payoffs on these

bets be Xl, X2, vees Xm, a random sample from the distribution having
m

p.d.f. flx). If welet Ym = -_>- Xi’ then Ym is equal to the number
=1
of dollars "won" after placing m bets..
V% shall now determine the probability of being behind after

placing m = 300 bets. LetY = Y300. Using the Central Limit Theorem,

we obtain

BrF <0y =P(Z 0.5 - 300(—0.07870))
/(300)(1.23918)

P(Z <1.19859)

= 0.8846, (2.2)

where Z has a normal distribution with mean 0 and variance 1. That is,
the probability of being behind after placing 300 bets i s approximately
0.8846. It can easily be shown that the probability of being behind
after placing m = 1000 bets i s approximately 0.9868.

In Figure 1 we have depicted P(ym < 0) for m going from 100 to
3,000.

From the Central Limit Theorem we know that the distribution of Ym
i s approximately normal with mean ¢ = m(-0.07870) and variance
02 = m(l.23918). It isinterestingto illustrate this empirically. In
particular we simulated m = 300 $1 bets in chuck-a-luck for each of
n = 2000 gamblers. For each of the 2000 trials, we kept track of the
number of dollars "won". A histogram of these 2000 outcomes is depicted
in Figure 2. Superimposed over the histogram is a normal probability
density function with mean u = 300(-0,07870) = -23.610 and variance

0‘2 = 300(1.23918) = 371.754. In this simulation the sample mean,

X = -23.116, is close to p, and the sample variance, 82 = 362100 is
close to a2. Also the proportion of gamblers who are behind is

1757/2000 = 0.8785 which is close to P(Y300 < 0) = 0.8846.

3. Roufette and Craps

Consider games of chance in which a $1 bet is placed and the proba-
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bility of winning $1 is P while the probability of losing $1is 1 - p.
If we | et X denote the payoff for such a game, the probability density
function of X is given by

1-p, x

B

flx) =
P » x= 1. (3.1)

2
The mesn and variance of Xare p = 2p - 1 and ¢° = 4p(1 - p),
respectively.

Again | et Xl’ X2, ey Xm denote the outcomes of m bets and | et
m
Y, = 2 X;. Then Y, is equal to the amount "won" after placing m
1=1

bets. Using the Central Limit Theorem to determine the probability of
being behind after placing m bets, we have

-0.5 - m(2p -1)

P(Y <0) = P(Z < ), (3.2)
m
/ mip(X - p)
where Z has a standard normal distribution.
Two casino games will be used for illustration, namely, roulette
and craps.
A possible bet in roulette is to bet on red. In this case,

p = 18/38 = 0.47368 is the probability of winning on a particular bet.
After placing m = 300 bets, the probability of being behind is (using
equation 3.2)

P(Y,., < 0) = 0.8117. (3.3)

300

In Figure 3 is depicted P(Ym < 0) for m going from 100 to 3,000
for roulette in which the gambler places m $1 bets, for each of which
the probability of winning $1 is p = 18/38. Examples of such bets are
betting on red or betting on even.

In the game of craps, the probability of winning on a particular
bet is p = 0.49293. After placingm = 300 bets, the probability of
being behind is (using equation 3.2)

P(Y <0) = 0.5856. (3.4),

300
In Figure 4 is depicted P(Ym < 0) form going from 100 to 3,000
for craps in which the gambler has placed m $1 bets.

The distribution of Ym could easily be illustrated empirically for
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roulette and craps just as it was for chuck-a-luck.

4. Michigan Daily Lotfery
In the Michigan Daily Lottery, a bettor maey select a three digit

integer from 000 to 999, inclusive, and place a $1 bet on this number.

If the state also selects this number, the prize to the bettor is $500.
Actually, the net gain to the bettor i S only $499 because the state does
not return the $1 bet. If X denotes the gain per bet, then P(X = -1) =
0.999 and P(X = 499) = 0.001.

Suppose that on m different days, a $1 bet is placed. If we let

Xl, X2; . Xm denote the payoffs on these m bets, then .Ym = E X
1=

is the total number of dollars "won' after m bets. Before we consider
P(.Ym < 0) in general, we shall look at two special cases.
Suppose that m = 600 $1 bets have been placed. Then the possible

values for Y = Y are -600, -100, 400, 900, 1400, ... . Let Wm denote

600
the number of winning tickets out of m bets. Then P(W600 = k) =
13 600-k ;
(62" (0.001)%(0.999) ,fork =0, 1,2 ..., 600. Thatis, I = Wy

has a binomial distribution with parameters n = 600 and p = 0.001.
After placing 600 bets, the probability that a bettor is behind is given

by
P(¥g,q < 0) = P(Y = -600) + P(Y = -100)

=P(W =0) +PW =1)

= (0.999)%%0 + 500(0.001)(0.999)%%°

= 0.87816. (4+.1)

Suppose nowv that a bettor has purchased m = 3,200 tickets. Letting

W3200 equal the number of winning tickets, we see that this bettor isa
loser if W3200 < 6 and a winner if W3200 > 7. W can again use the
fact that W3200 has a binomial distribution with n = 3200 and p = 0.001.

A Poisson approximation of the binomial probabilities with A =(3200)(.001)=
3.2 makes the calculations very easy. W have

P(.Y3200 <0) = P(W3200 5 6) = 0.955 (4.2)
using a Poisson probability table. |f m = 3400 tickets are purchased,
P(Yg.00 < 0) = P(Wg 00 S 6) = 0.942, (4.3)
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using a Poisson approximation with A = 3.4. |f an additional 200

tickets is purchased, we have

P(Y < 0) = P(W < 7 ) = 0.969, (4.4)

3600 3600 N
using a Poisson approximation with A = 3.6 Thus, we see that P(Ym2 oy
does not increase monotonically as m increases, which was the case with
the casino games of chance.

In general, if 500k <m5 500(k + 1), a bettor isaloser if Wm ik
In Figure 5 we have depicted P(Ym < 0) for 1 5m5 3000. These bets
are called straight bets.

T™wo other types of bets are possible in the Michigan Daily Lottery.
These are called boxed bets. In a 3-way box, the bettor mey box a number
like 355 and win i f the state selects either 355, 535, or 553. The
payoff for winning is $166. The gain to the bettor would be $165 because
again the state does not return the $1 bet. |f X denotes the gain per
bet to the bettor, P(X = -1) = 0.997 and P(X = 165) = 0.003. If W,
denotes the number of winning tickets in m bets, Wm has a binomial dis-
tribution with parameters n = mand p = 0.003.

For the 3-way boxed bet, if 166k <m s 166( k * 1), a bettor is a
In Figure 6 we have depicted P(Ym <0) for 1 sm< 3000

where Ym is the number of dollars "won" after m bets have been placed.

loser if Wm s k.

The other type of boxed bet is a 6-way box. A bettor mey box a
number like 678 and win i f any of the 6 permutations of 678 is selected.
Of course, the payoff is reduced and is equal to $83. |f X denotes the
gain per bet to the bettor, P(X = -1) = 0.994 and P(X = 82) = 0.006.

For the 6-way boxed bet, if 83 <m a 83(k+ 1), a bettor is a loser
if Wm < k where Wm is the number of winning tickets inm bets. In
Figure 7 we have depicted P(Ym < 0) for 1. <m< 3000 where Ym is the
number of dollars "won" after m bets have been placed.

In comparing these three different types of bets in the Michigan
Daily Lottery, it is interesting to note that, although the 6-way boxed
bet gives the largest probability of winning a prize (0.006), the prob-
ability of being behind after placing m bets increases to one the most
rapidly with the 6-way boxed bet.

5. Summary

The examples i n this paper give illustrations of approximating

probabilities using the Central Limit Theorem and also of approximating
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binomial probabilities using the Poisson distribution. The long range
expectation of being a loser was demonstrated for several games of
chance.

The reader i s encouraged to use simulation techniques on the com-
puter to estimate p = P(Ym < 0) for any one of the games and for dif-
ferent values of m . He or she should decide how many times, say »n ,
that the simulation should be repeated to give the confidence level and

maximum error of the estimate desired.

1980 NATIONAL P1 MU EPSILON
MEETING

It is time to be making plans to send an undergraduate delegate or
speaker from your chapter to attend the Annual Meeting of Pi Mu Epsilon
on the University of Michigan Campus at Am Arbor in August of 1980.
Each speaker who presents a paper will receive travel fund of up to $400

and each delegate, up to $200.
M,
POSTERS AVAILABLE FOR LOCAL ANNOUNCEMENTS

We have a supply of 10 x 14-inch Fraternity Crests available. Ore
in each color will be sent free to each local chapter on request.
Additional posters may be ordered at the following rates:

(1) Purple on goldenrod stock--------- $1.50/dozen,

(2) Purple on lavendar on goldenrod---$2.00/dozen.
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SOME CONDITIONS FOR ONE-TO-ONE-NESS

by Richard K. Williams
Southesn Methodist University

If f(z) is analytic in a convex domain D, a well-known sufficient
condition for f(z) to be one-to-one in D is that there exists a complex
constant e such that Regcf"(z)}> 0in D. (See [2, p. 582).) The
following theorem is an easy generalization of this condition.

Theorem 1. If f(z) is analytic in a domain D, and i f ¢(z) isa
one-to-one analytic function which maps D onto a convex domain, and i f
]
¢ is a complex constant such that Re cf—(z—)- > 0in D, then f(z) is one-~

¢ (z)

to-one in D.

Proof. Let ¢(D) = Dl' Then ifg=f¢-l, g is analytic in Dl, and
if w= ¢(2), Re}ecg '(w)% = Re{c—ﬂiz-l}> 0 for each weDl, sothatgis
| ¢7(2)

one-to-one in Dl’ and therefore f is one-to-onein D.

Theorem 1 clearly generalizes the condition mentioned in the first
paragraph of «this paper, as is seen by taking D to be convex and ¢(z) =z.
Theorem L is a slight generalization of Theorem 1 of [3], where D was
taken to be the open unit disk.

The purpose of this paper is to derive three sufficient conditions

for one-to-one-ness by specializing the choice of $(2) in Theorem 1.

Theorem 2. If f(z) is analytic for lz| <1, if aisa real number
such that lalz 1, and if ¢ is a complex number such that Re{c(z—a)zf’(z) >0

for 2]l <1, then f(z) is one-to-one for lz[ <1.
'Proof. Take ¢(z) = - &=, Clearly ¢(z) is analytic and one-to-one
a-a
for |zl <1. 1f lai>l, $(2) maps lzl <1 onto the open disk with center

a : 1
—— , 0 and radius —— _
(az_l a2q Ifa=1

plane Re{ ¢(z):> 1/2, and if @ = -1, ¢(z) maps |zl<1 onto the half-plane

$(z) maps|z]|<l onto the half-
H]

Re} ¢(z)}< -1/2. Thus, in all cases, the range of ¢(2) is convex. Also,
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LA N A

$°(z)
to-one for |zl<1.

Re :c > 0 for |z|<l. By Theorem 1, f(z) is one-

}= Re{e(z-a)zf' (z)

Theorem 3. 1f f(z) isanalytic for |2|<1, if a is a real number
such that |al>1, and if e is a complex number such that Regc(z—a)f'(z);
> 0 for |a}<1, then f(z) is one-to-one for |z]<1.

Proof. Let ¢(2) = log (z-a), where the branch of the logarithm is
chosen so that ¢(z) will be analytic for 2 <1. (Mé&ke the cut along the
negative real axis if a<0 and along the positive real axis if a>0. For
each such branch, ¢(z) is one-to-one. A well-known condition that a
function ¢(2), analytic and one-to-one for Iz |<l, mep Iz |<l onto a convex
domain is that Re{l + ZT‘f'('%)—}z 0 for |z|<1. (See [1, p. 166].) Here

‘ 1" - e —
Re{l +2_¢_(z_) a (= a(ga)g. If a2l, x-a<l- a <0,
$°(z) }z Re{ z-a (z-a)” +y
so -a(z-a)>0. If a<-1, X-a>-1-a>0, so -a(x-a)>0. Hence, ¢(3)
maps |z |<1 onto a convex domain. Also Reje m = Re {c(z—a) fr(z)>0

forz| <1, so that f(z) i s one-to-one for |a] <1.

Theorem 4. Let D be the domain O <arg z<——:— » Where #n is a non-zero
integer. Let f(z) be analytic in D, and |l et ¢ be a complex number such
that Regczn+lf'(a)l‘> Oin D. Then f(2) is.one-to-one in D.

Proof. Let ¢(2) = - 5;,— . Clearly ¢(2) is analyticinD, and it
maps D in a one-to-one fashion onto 0<arg [¢(z)]<r , whether n be positive
]
or negative. Hence the range of ¢ is convex, and Re { e %% _
n+l

R e f'(2);> 0in O, so that f(z) is one-to-one in D.
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DEPENDENT EVENTS
by Genoveve C. Lopez and Joseph M. Mosen
San Diego State University

The following definition of mutually independent events can be

found in many texts; one of which is Feller, [1].

Deginition. The events Al’ dys -
if, for all combinations 1 < £ <J < k<...< n, the multiplication rules

. An are mutually independent

P[AiAJ.] = P[Ai]P[AJ.}
P[AiAjAk] = P[Ai]P[Aj]P[Ak]

P[Al/l2 An] = P[Al]P[AQ] P[An] apply.

Bernstein gives an example of pairwise independence but not mutual
independence. This example can be found, for instance, in Tucker, [2].
Wong, [3], gives an interesting example of »n events such that any #» - 1
of them are mutually independent but all » of them are not.

V¢ wish to give an example of 7 events where half of the events
are independent and the other half are not mutually independent. After
the example, we will indicate the natural extension of the ratio of in-

dependent events to 1/k, where k > 2.

Example. Consider the integers 1, 2, 3, 4, 5, 6. Pair these
integers as follows: (1,2) (3,4) (5,6). Next, we distribute these
pairs into three boxes, A, B, C. It is easy to see that this can be
done in 3 ways. However, box A is empty or contains one pair or two
pairs or three pairs the same number of times as boxes B and €, so that
we can restrict ourselves to the contents of box A without loss of
generality. Also, for our purpose, we can assume that the pairs are
ordered; that is, the integers increase as one reads the contents of
the box from left to right.

Nw let 4; be theeventthat the box contains the integer Z,
12126 Clearly,
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Let 4.4, be the event that the box contains two distinct integers ¢ and
k such that 1. < Z<k s 6 and k - © 2 2. Then,

pla4,] = % = % = Pla,1p(a, 1.

Let AiAkAZ be the event that the box contains three distinct integers

i1, k, | such that 1 £ ¢ <k<l1 <6, L -k22andk -1 2 2 Then,
1.d .
P[AiAkAZ] mgm B S P[Ai]P[Ak]P[AZ].
Define AiAkAZAm to be the event that the box contains the integers

i, k, I, mwith the restrictions that 1 <% < k<l <6, k-2 2,
Il-kz22andl1l<m< 6. Avexamplee 1, 3, 5 2. It isclear that

Pla.4,4,4 ] =3% # Pla,1P(a, JP[4,1P(4 1.

Simi .
imilarly define the events AiAkAZAmAr and AiAkAZA ArA 3 where

m
l<i<k<l<b, L-k22,k-122; 1 <m<r<v<6,v-r>2
_ 1
and » - m 2 2. Then P[4 44,44] = 37 Pla,1pl4,1PL4, P4, 1P14 1,
and the same can be said for A,LﬂkAZ/}nArAv‘

W have therefore exhibited events where three events are mutually

independent and three are not.

In order to construct events such that one-third of the events are

mutually independent and two-thirds are not, one considers »n = 3k and
uses the triplets (1,2,3), (4,5,6), ..., {(n - 2, n - 1, n) and demands
that the differences be three or greater.

Generalizing, one can construct events such that 1/k of them are

independent and 7%1 of them are not, where k 2 4.
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A COLLECTION OF MATHEMUSI CALS
Geohge E Lindamood
National Bureau of Standards

The following collection of musicals is now playing both on and off
Broadway. A |l mathematicians and. those interested in mathematics will
certainly find them enjoyable.

1. Ascoli, Get Your Theorem.

2. Bayes in Ams

3. Bye Bye Betti.

4. Discrete Scene.

5. The Eigenvalue Song.

6. Fiddler on the Riemann Surface.
7. Finian's Spectral Sequence.

8. Gentlemen Prefer Banach (Spaces).
9. Group Crazy (or perhaps it was Group, Quasi).
10. Guys and Duals.

11. Haar.

12. Hausdorff of Flowers.

[N
w

. Heaviside Story.

S,
=

. Hello Duality!

[y
w

. Hit the Descartes.

. Hw to Succeed in Bourbaki Without Really Trying.
. Kiss Mg Tate.

. The Matrix Man.

. The Most Heppy Fermat.

. My Fair Cauchy.

. Pal Thu¢.

. Paint Your (van der) Waerden.

NN NN B R R
W N P O v O NN,

. Porgy and Bessel.

N
i

. Oh a Regular Function You Can Differentiate Forever.
. The Ring and 1.
. The Sound of Monoids.
. South P-adic. ',
. Trigadoon.
29. The Student Principia.
Reprinted with permission from the Jowwnal of Tareproducible Results,1973.

N NNN
0w 3 o w
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THE AXIOM OF CHOICE

by John Vaughn
St. Louts Univernsity

The explicit use of the Axiom of Choice (AC) dates from 1904 and a
paper by Ernest Zermelo on the well-ordering of sets. The Axiom has
since become a standard fixture in may mathematics texts but not before
much controversy arose over its non-constructive nature. Ve will explore
the need for such an axiom and point out an unusual, even paradoxical,
result that obtains from its adoption.

"¢ begin by looking for the first instance where we encounter any
need for some version of a choice axiom. W assume some basic ZF (Zer-
melo-Fraenkel) settheory: sets are equal when they contain exactly the
same members, relations are sets of ordered pairs and functions are cer-
tain subsets of relations, power set axiom, etc. Suppose to a growing
list of facts we wish to add the following plausible theorem:

If 4, B are non-empty sets and F is a function from A onto B ,
then there is a function H, (aright inverse of F), such that # © ¥ = IB
(the identity mgp on B).

V¢ cannot simply take H = F'l since in general FLisnot a func-
tion. In fact, since Fis onto, we know that for any b€B there is some-
thing in A which is b's pre-image under F. This does not suffice to
define a function however. Ary such b€B may have several pre-images in
A and we need to select out of R "just enough™ ordered pairs to construct
H.  Here we must simply assert the existence of our set without explicitly
specifying its members. Our appeal is thus to the use of some axiom of
the form: For any relation R (F'l in our case) there is a function HCR
such that domain R = domain &, This "quirk™ about our axiom, its non-

explicit nature, is what sets it apart from the other axioms of set theory.

Until recently it has been typical for authors to point out those proofs
using any version of AC A more familiar version of AC is that the
Cartesian Product of non-empty sets is non-empty. AC occurs in a sur-
prising number of theorems, among them: Prime Ideal Theorem, Stone Rep-

resentation Theorem, and Vitali's construction of a non-Lebesgue measur-
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able set. (Not to mention those set theory exercises where the student
attempts cunningly to disguise his use of AC in order to prove Theorem
4.2 without it.)

Ore may wonder whether the other axioms of ZF imply AC, or indeed
perhaps even contradict AC without our being aware of it. The late Kurt
Godel showed in 1938 the consistency of AC when added to the other ZF
axioms. The former possibility was settled in 1963 when Paul J. Cohen
announced the independence of AC from the other axioms of ZF. Early re-
sults in this area are due to Fraenkel, Mostowski, Specker and others.
Such foundational questions aside, why should we hesitate to empioy this
axiom, especially in the light of its apparently crucial usage in several
standard theorems of mathematics? One reason mey be the following "para-
doxical™ result stemming from its adoption.

Banach-Tanski Paradox. Given a closed ball X, there exists a de-

composition of X into disjointsets Y, Z such that X is identical in size
and shape with both Y and Z. \é sketch the proof:

Consider the finitely presented group G on the letters 1, ¢, ¥
such that 4:2 = w?’ = 1. W put all words in these letters into reduced
form. W consider a ball X with unit radius and two axes of rotation
L1 and L, through the center {a}. W& choose the angle a between L, and
L2 such that cosine (a) is transcendental. W rnow consider the rotations
of 120° (¥) about L, and 180° (¢) about L2. Our choice of a means that
distinct rotations of X correspond to distinct (reduced) words in G.

¢ have the following facts:
A .o = BUC A-vy= B A-Y¥ = C
and ¢ = AUBUC where ANBNC = ¢

Let Q be the set of all fixed points on the unit spheres under all non-
trivial rotations a¢G. It is easy to see Q is countable. For each xt
S - Qlook at its orbit, OX under all at G. Clearly if x and y, where
X #y, arein& - Q either0 =0Y or oxr\OY =¢. These collections,
the O, form a partition of § - Q into disjoint sets. Let X be the set
which contains exactly one member from each of these sets. This is our
use of AC

Let:
A=K~ A B=K*B c=K-20C,
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From our construction ANBNC = ¢ and more importantly:

A= BUC A=x~B A=C

(where M =~ N means both ¥ and ¥ can be decomposed in the same (finite)

number of disjoint pieces which are pairwise identical in size and shape.)
By definition we have:

S=AUBUCURQ s0 X =4UuBuCTuqulel
(where for PC &, P is the set of points whose projection from ¢ onto S
isP).

From above:
A~BUC A=~B A=T hence 2= AUBUCT=~T
LetHl= AUC U {e} then H2=X-H1

Nw strangely enough:

B = AVuguielt»duBuTUQuUel =X so H=~X

Now to showv'fz’2 ~ X, we need a new center and a corresponding piece for ]
inBUC.

BUC, it can be shown that there is a set EC C such that
3. LetpeC - E then:

UielBUEFU {pICBUTC X=X

therefore we have: BU T = Hy=X.

This paper was written while John Vaughn was an undergraduate at
St. Louis University.
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PUZZLE SECTION
David Ballew

This department i s for the enjoyment of those readers who are addicted
to working crossword puzzles or who find an occasional mathematical puzzle
attractive. W consider mathematical puzzles to be problems whose solutions
consist of answers immediately recognizable as correct by simple observation
and requiring little formal proof. Material submitted and not used here
will be sent to the 'Problem Editor i f deemed appropriate for that department.

Address all proposed puzzles and puzzle solutions to David Ballet,
Editor of the Pi M1 Epsilon Journal, Department of Mathematical Sciences,
South Dakota School of Mines and Technology, Rapid City, South Dakota,
57701. Deadlines for puzzles appearing i n the Fall issue will be the next
February 15, and puzzles appearing i n the Spring issue will be due on the
next September 15.

Mathacrostic No. 10

submitted by Joseph V. E. Konhauser
Macatesten College, St. Paul, Minnesoia

Like the proceeding puzzles, this puzzle (on the next page) is a keyed
anagram. The 224 letters to be entered in the diagram in the numbered
spaces will be identical with those in the 28 keyed words at matching num-
bers, and the key letters have been entered in the diagram to assist in
constructing your solution. When completed, the initial letterswill give
a famous author and the title of his book; the diagram will be a quotation
from that book.

Cross-Number Puzzles

submitted by Mark Isaak
Student, Univernsity o4 Califonnia, Berkeley

In the cross-number puzzles (starting two pages forward), each of the
letters stands for a positive, nonzero integer. The algebraic expressiois
evaluate out to two to five digit numbers which fit in the squaresasin a
normal crossword puzzle. None of the numbers in the squares have any leading
zeros; i.e., if there is room for a four digit number, that number will be
at least 1000, never, for example, 0999.



KEY WIRCS AND PHRASES

1. [o] 2 F|3 M 4 R|5 uj6e J 7 D{8 b|9 Ij10 A
A. enpirical rule for the distances of
the planets fromthe sun (2 wds.) 35 71 126 99 88 160 200 10
11 Fl12 s[13 z|14 cC 15 R 16 G[17 Y[18 T 19 H[20 P[21 W] 3. short and pudgy (comp.)
195 187 63 106 139 26 204 76
C. mirror inmage of a non-reflexive —_
22 E|23 Q|24 a 25 Ul26 B 27 G|28 0|29 P 30 zZ|31 Kx|32 Q figure 189 81 185 103 14 124 133 105 145 171 148 180
D. offered 100000 marks in 1908 for a —
conpl ete proof of Fermat's Last 115 134 176 219 47 7 86 157 203
33 X|34 W 35 A|36 R|[37 a 38 J|39 R 40 P|41 UJ42 0|43 N Theorem
. popul ar board gane of ancient Egypt
85 49 122 22 151
44 R|45 T 46 R 47 D|48 L|49 E|50 N 51 s[52 L 53 a ) o
F. one of a practically indistinguish- -
abl e pair 135 11 150 158 2 74 222 207 84 56
54 b|55 R[56 F 57 b|ss c|59 J[e0 o 61 I/62 G|63 B|64 J G. mathematical best-seller e
108 159 144 16 58 62 27 209
H. squabble
65 V|66 I|67 2|68 N 69 L 70 Q)71 A}72 b 73 I{74 F}75 V 149 174 196 141 19 166 217
I. word puzzle [ —
143 61 182 9 104 146 66 73 89
76 B|77 Tj78 L|79 a 80 Qf8l c 82 L]B3 5|84 F 85 E|86 D J. neutral group el enent - —
Il 216 59 117 6 97 38 64
K. creation of Backus and Ziller
87 K|88 A|89 I{90 P}91 N|92 W 93 b|94 U|95 P 96 Y|97 J(98 M 193 3T 183 10T 794 87 ii3
L. earth measurer (ca. 230 B.C.) —_—
99 a|100 Q101 K|102 V|103 cf104 I 105 c|106 B|107 x{108 G|109 M[110 T 181 155 69 82 52 156 194 120 48 78 215 177
M. in the plane, a bounded cl osed
convex set 3 98 163 109
111 J|112 R 113 K|114 N|115 D 116 U117 J|118 a 119 T|120 {121 Q N. sonetinmes neasured in degrees -
123 91 43 68 167 114 50
0. as opposed to analytic U,
122 E 123 NJ124 Cj125 V{126 A|127 W{1l28 U}129 b 130 2 131 sj132 U© 42 201 60 152 28 218 179 1 210
P. solution of x#x = x —
208 95 29 40 20 90 197 137 169 161
133 C|134 D|135 F|136 W|137 P|138 b 139 B{140 X|141 H{142 V|143 I[144 G . . .
Q. pioneer in the use of indivisibles
(1602- 1675) 100 80 70 121 32 212 23 199
148 c|149 H|150 F|151 E[152 o|153 T|154 a|155 L R. transformation of period two e
R Wi e @ 16 4 55 192 44 36 178 46 39 112
S. an investing cover
156 L{157 D|158 F|159 G|160 A 161 P|l62 2]|163 M|{164 b 165 W|166 H{167 N 131" 83 224 147 51 12
T. projective collineation which
| eaves a given line fixed 170 45 110 77 191 153 119 18
168 U[169 P}170 T{171 C|[172 X 173 Y|174 H|175 b|176 D|177 L|178 R 179 0 U. a contradiction
116 94 25 168 128 5 132 41
8 7 187 B| 188 V]|189 Cl190 X|191 T| v. pen nane of Hubert Phillips, naster __
180 c|18l & 182 11183 K184 X1185 C)186 creator of inferential-type puzzles 188 202 65 102 142 75 125
. two-cusped epicycloid —
192 Rf193 K 194 L|195 B}|196 H|197 P|198 X 199 Q200 A[201 O . . . 206 92 21 136 221 165 127 34
%. slimnmargin of victory
T40 172 184 33 190 107 198
202 V}203 D|204 B 205 a|206 W|207 F|208 P|209 G{210 0|211 z|212 Q213 b|214 K Y. asmll mass 173 17 95
z. mechanical angle trisector
215 L|216 J 217 H|218 0]|219 D|220 aj221 wW|222 F 223 z|224° S 186 211 223 13 162 130 30 67
a. inventor of the straight logarith-
nmic slide rule (1574-1660) 220 205 79 53 37 24 154 118

b. system of nuneration based on _ —
powers of -2 164 213 129 54 57 175 8 93 138 72
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ACROSS

1.
3.
4. 33BD/70

5.

6. (3/2)C + 13

A
BC/37

27D

DOWN.

1. 26AB t (10D)/E + ¢

2. 13AB
3. (1504E2)/C + 60
4, E

W

ACROSS DOWN T 2 W
1. A 1. GJ 3 4 5
3. A2 + 8% + 1311 2. 26356 * 14A
6. 11C - 11 +D/(E + 2) 4. A + 581D + 24G ¢
7. (F3 + D)/9 5.62-99 -
8. 2A + 43G - 2HJ 7. €D
° )
ACROSS DOWN T N R
1. 2a* + 1100 1. (Bt 1)/u t14
5. 241BC t 10 2. 12CG + 13H
6. D+E 3. (D2 + 6)/3
7. 31F 4. 26%H + H
8. 126 t 14
ACROSS DOWN
1. A 1. E/23 + F
3. 4B + 2 2. @
4. AZ + 11C 3. 27HJ
5. 3AD 6. J
7. (367E)/B + 1/12
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ACROSS DOWN
1. /& 1. /A + 105 % W/ z
3. BC - 5 2. Y& + E /////%
3 4
5. 4/C - (D/28) 3. BF + 11
u, Y7
6. E 4, 17D 5 // my
9. C + 1234 7. VE ,///, 77
8. F/4 5 Tt
9
ACROSS DOWN T 5
1. Zong 1. 120252/1092A : ‘%
3. A 2. 2EF
5. 601B 3. D-9C 5
6. 18C - D 4. 41F -
7. E
7
ACROSS DOWN ' 2
1. A 1. 101(D - 3) R
3. 3B 2. 1000F + 252 +
10((B/16C) + E) *
5. (C/17)((B/3)+111) 3. D? - 25 -
6. (D2 - 25/A) + 130E 4, 5B + 21F
7.D -5 7
ACROSS DOWN ’ >
1. A2 1. ™
4
4. (u4BC/u5) *+ 4 2. ACDE + (DEH - 9AFG
5. pE + 59 3. 11BC - 20 7
6. ¢3 7. b8
8. 70F + G t 10 3
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SOLUTIONS

Mathacrostic No. 9 (See Fall 1979 issue) (proposed by J. D. E Konhauser)
Definitions and Key:

A. Homothecy H. Talent 0. Life V. Two sheets
B. Shannon | . Epimenides P. Ambsace Ww. Off by one
C. Mate J. Rate of Q. Rat-a-tat X. Pasch

D. Cyclotomy K. Result R Publish Y. Eleusis

E. Obovoid L. Engine S. Orthoscheme Z. Show that
F. Xylander M. Gewngawv T. Lemniscate

G. Echelon N. Uneven U. Yin and Yang

First Letters: HB1 Coxeter Regular Polytopes

Quotation: We...enlarge the scope of Euclidean geometry by denying one of

the. usual axioms ("Two pLanes which have. one common point have. another”),

and We. establish the consistency of the. nesulting absiract system by means
of the analytical model.

Solved by: Alan Wayne, Holiday, Flornida; Joseph Testen, Mobile, Ate;
Jeanette Bickley, Webster Groves High School, Missourni; Victor Feser, Mary
College, Bismarck; Robert C. Gebhardt, Hopatcong, NJ; Henry Lieberman,

John Hancock Mutual Life Ins. Co.; Patricia Tuchman, Allan Tuchman, Michael

Haney, University of I€Linodis; Louis Cairoli, Kansas State. University.

Smith-Jones-Robinson Problem (proposed by Vewiser Turner)

The distinguished mathematical physicist must be from Omaha because
the brakeman is from Omdha and both attend the same church.

Since Mr. Robinson lives in Los Angles, and Mr. Jones forgot all the
algebra he learned in high school, neither can be the distinguished mathe-
matical physicist.

By elimination, Mr. Smith must be the distinguished mathematical
physicist from Omaha

Since Mr. Robinson lives in Los Angeles and Mr. Smith in Omaha Mr.
Jones must live in Chicago, and the brakeman is Mr. Jones.

Because Mr. Smith beat the fireman at billiards, Mr. Smith must be
either the engineer or the brakeman.

But Mr. Jones is the brakeman, so Mr. Smith must be the Engineer.

{s0fution by Daniel Cousins, Miami Univensity, Oxfohd, Ohio)

Solved by: Michael J. Lenart, Rutgers Coflege; Janda Cook, Lamar
University; Alan Wayne, Pasco-Hernando Community College, Florida, (who
noted that a variant of this puzzle occured on page 71 of the July, 1979,
Reader's Digest and that Martin Gardner had solved the problem in the
Feb., 1959 issue of Scientific American); Randall J. Scheer, SUNY-Potsdam;
Henry Lieberman, John. Hancock Mutuaf Life Ins. Co.; Victor Feser, Mary
College, Bismaik; Ralph King, St. Boraventure University; Louis Cairoli,
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Kansas State. Univernsity; Patricia Tuchman, Allan Tuchman, Michael Haney,
University of 1€Linois; Roger Kuehl, Kansas City; George Rainey, UCLA;
Mak Evans, LaMarque, Texas.

Maximum Number of Knights (See Fall 1979 issue) (Proposed by P. Squatre)
Since knights can only attackknights of an opposite color, the max-
imum number is 32, either on all the black or all the red.

Sofved by: Janda Cook, Lamar Univernsity; Randall Scheer, SUNY-
Potsdam; Victor Feser, Mary Colfege, Bismarck; Michael Ecker, Seranfon,
PA; 1. J. Good, Virginia Polytechnic Insiitute and State Univers.ity, (who
proposed the same problem in the Mathematical Gazette as Problem 3000 in
Feb. 1962, p.54); Alan Levine, McNeese State. Univensity; Louis Cairoli,
Kansas State. University: Roger Kuehl, Kansas City.

Minimum Number of Knights (See Fall 1979 issue) (Proposed by P. Square)
Twelveknights are required so that every square is either occupied
or under attack.

Y/

.
N

>

v
SR
SR

Y
838

iy

Sofution by: Roger Kuehl, Kansas City; A€so Solved by: Louis Cairoli,
Kansas State. University; Randall J. Scheer, SUNY-Potsdam.
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PROBLEM DEPARTMENT

Edited by Leon Bankoff
Los Angeles, California

This department welcomes problems believed to be new and at a
level appropriate for the readers of this journal. Old problems dis-
playing novel and elegant methods of solution are also acceptable. The
choice of proposals for publication will be based on the editor's evalu-
ation of their anticipated reader response and also on their intrinsic
interest. Proposals should be accompanied by solutions i f available and
by any information that will assist the editor. Challenging conjectures
and problem proposals not accompanied by solutions will be designated by
an asterisk (*).

Problem proposals offered for publication should be sent to
Professor Clayton W. Dodge, Mathematics Department, University of Maine,
Orono, Maine 04473

To facilitate consideration of solutions for publication, solvers
should submit each solution on separate sheets (one side only) properly
identified with name and address and mailed before Novermber 1, 1980 to
Dr. Leon Bankoff, 6360 Wilshire Boulevard, Los Angeles, california
90048.

Contributors desiring acknowledgement of their proposals and so-
lutions are requested to enclose a stamped and self-addressed postcard
or, for those outside the U.5.4., an unstamped card or mailing Zabel.

Problems for Solution

462. Proposed by the. Late R Robinson Rowe.
A pilot dom at Aville asked a native how far it was to Btown and
was told, "It's south 1500 miles, then east 1000 miles, or east 500

miles and south 1500 miles." Hw far was it directly?

463. Proposed by C. S. Venkataraman, Sree Kerala Varma College,
Tnichurt, South India.
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Let f(n) be a function defined over positive integers and
Z f(d) = n. Then, prove that f(n) = ¢(n), the Euler's function
d/n
denoting the number of integers prime to and not greater than n.

464. Proposed by Solomon W. Gofomb, University oft Southern
California, Lob Angeles.

For all positive integers a and b with 1<a<b, show that (a!)b_l
< ()L

465. Proposed by Charles W. Trigg, San Diego, California.
What is the shortest strip of equilateral triangles of side k that,
while remaining intact, can be folded along the sides of the triangles

so as to completely cover the surface of an octahedron with edges k?

466. Proposed by Henbernt Taylor, South Pasadena, California.

Let the adversary put four distinct symbols in each box (node) of
this graph. Prove or disprove: No matter what pattern of symbols he
puts, we can choose two symbols from each box in such a way that ad-
jacent boxes have disjoint chosen 2-sets.



132

467. Proposed by Paul Endos, Spaceship Earth, and John L.
Selfridge, Univernsity of Michigan.
Determine the greatest power which divides n! Prove that for

n 26 it is a square.

468. Proposed by Michael W. Eckm, Pennsylvania State. University,

Wonthingfon Scranton Campus.
c

A priori, the expression ab is ambiguous in that it would mean
e
either (ab)a or a(b ) Assuming a, b, and e are positive integers, find

all triples (a, b, e¢) for which the two expressions are equal.

469. Proposed by Richard 1. Hess, Palos Verdes, California.

Start with a unit circle and circumscribe an equilateral triangle
about it. Then circumscribe a circle about the triangle and a square
about the circle. Continue indefinitely circumscribing circle, regular
pentagon, circle, regular hexagon, etc.

a) Prove that there is a circle which contains the entire structure-

% b) Find the radius of the smallest such circle.
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470. Proposed by Tom Aposzol, California Institute of Technology.
Given integersm >n >0. Let

o=avm b/
B=evm dvn
where a, b, a d are rational numbers.

"

(a) If ad+ be = 0or if nm is a square, prove that both a and g8 are
rational or both are irrational.
) Ifms= r? and n = a° for some pair of integers r>g>0 then a and

g8 are both rational. Prove that the converse is also true if ad # be.

471.  Proposed by Clayton W. Dodge, University of Maine at Onrono.

Let two circles meet at O and P, and | et the diameters OS and OT
of the two circles cut the other circle at A and B. Prove that chord
OP passes through the center of circle 0AB.

472. Proposed by R. S. Luthanr, University of Wisconsin Centenr,
Janesville.

Evaluate —-—-5-——5—{{35
16 + 9 cos™x N

473.  Proposed by Jack Garfunkel, Forest HilLs High School,

Flushing, New York.

In an acute triangle ABC with angle A = 60°, P is a point within
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the triangle. D and E are the feet of the Cevians through P from C and
B respectively.

a) |If BD = CE =EC, prove that AP = BP = CP.

b) Conversely, if 4P = BP = (P, prove that BD = [E = EC.

¢) |If angle BC = angle ROB = 30°, show that BD = [E = EC.

Solutions

423. [Spring 1978; Spring 1979] Proposed by Richard S. Field,
Santa Monica, California.
Find all solutions in positive integers of the equation

AD - B? = Cwhere D is a prime number.
Solution by the. Proposenr.
C1 c-1
C = aD - bD; A = cTa; B = cD b; where a, b are any integers
obeying the restrictiona =b + Dk+1(k = 0, 4, 2, ...).
c1 c1
Proof. By substitution, AP - g = (c b a)D - (C D 5P -

L@ -7y = Fle = F
This proves the identity, but the further requirement that A and

B be integers must be met by insuring that (- 1)/D be an integer, i.e.,

C=1 mod D. Ve accomplish this by the restriction a = b +Dk+ 1

D

(k=0,1, 2, ...). To demonstrate, expand C = a —bD= (b+Dk+l)D - bD
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into
c= & ooy + QP k) + L+ (PBRe)PT + k1)

(noting that terms bP drop out). Here all terms but the last contain.

/D
binomial coefficients o i<p/ @d, since D is prime, each term but the .
< D
last is divisible by D. (The reader may easily verify that 0<i<D)

is a multiple of D by necessity if and only if D is prime). Then since
obviously the last term (Dk + 1 ) = 1. mod D, then also ¢=1 maod D.

Footnote. V¢ conjecture that the above process generates a11
solutions to the problem posed. o

Dedicated to D. L. Silverman "who taught nme how'.

ALso sofved by MIKE CALL, Rose-Hulman Instititue Of, Technology,
Terne Haute, Indiana 47803. Clayton Dodge, University of Maine at
Onono, Spenser Hurd, University o4 Georgia and Mike May, S.

Lowis, Missours.

438. [Spring 19791 Proposed by Ennst Straus, University of
California OUt LAD Angeles.

Prove that the aum of the lengths of alternate sides of a hexagon
with concurrent major diagonals inscribed in the unit circle is less
than 4.

With the exception of the proposer's solution, only one response
has been received for this problem, one that considered only the trivial
case where the major diagonals are diameters of the circle. Readers are

invited to submit general solutions.

439. [Spring 1979] Proposed by Richard 1. Hess, Palos Verdes,
California.

A bug starts at Monday noon at the upper | eft corner (X) of ap by
g rectangle and crawls within the rectangle to the diagonally opposite
corner (Y), arriving at 6 PM. Exhausted, he sleeps till noon Tuesday.
At that time he embarks for X, crawling along another path in the rec-
tangle and arriving at X 6 PM. Tuesday. Prove that at some time Tues- .
day the bug was at a point no farther than p from where he was at the

same time Monday.
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Solution by Henny S. Liebeaman, John Hancock Mutual Life Insurance Co.,
Boston, Mass.

The problem is the same as i f two bugs start at the same time, one
fromX and the other fromY, each to the opposite corner and along dif-
ferent paths. Then, at some time between noon and 6 PM. they will both
be at the same horizontal distance between the left and right sides of
the rectangle. Since the paths of the bugs are both within the rectangle
then at the time described above, the vertical distance between the bugs
must be no greater than the side p of the rectangle.

Practically Lidentical solutions were necedived f§rom WALTER BLUMBERG,
QAYTON W. DODGE, MARK EVANS SWLH. GUT and the. Proposen. Their solu-
tions were characterized by the complete absence of mathematical symbols
and mathematical jargon. While there is certainly no objection to mathe-
matical solutions to mathematical problems, a simple word-solution in-
telligible to any layman is to be preferred. Some of the other submitted
solutions were profuse with subscripts, coordinates, inequalities, vin-
culi, functional relations, intermediate value theorems, Greek symbols,
graphs, continuous functions and derivatives -- all reminiscent of the
sledge hammer method of swatting a fly.

SoLutions were also received grom CHUCK ALLISON, MIKE CALL, CAROL
DIMINNIE, mMicHAH. ECKER, VICTOR G. FESER, ROBERT C. GEBHARDT, SPENCER
P. HURD, MIGHAEL MAY, AMES A. PARSLY, PETER SZABAGA, DANIEL WAGGONER
AND WILLIAN E. WARREN.

440. [Spring 1979] Proposed by Charles W. Trigg, San Diego,
California.
Are there any prime values of p <10° for which the equation

. . L . 5
2> - gs = p has a solution in positive integers? Hw about o+ y~ = p?
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Solution by Carol Diminnie and Charles Diminnie, St. Bonaventure.

A p= x> - ys = (:x:—-y)(:z:u t x3y t x2y2 + xya t y4) implies that either
x—y=lorx4+m3y + xy +xy3+yu=l. Since x and y are
positive integers, X -y = 1.

Therefore, p = (y+l)u + (y+l)3y + (y+l)%¢2 + (y+l)y3 + yq =

sy* + 104° + 1042 + 5y + 1.

=1l,x=2,p=31
=2,x=3,p-=211

=5,2=6,p = 4651
=10, X =11, p = 61,051

< @ @« «

Fory =3, 4, 6, 7, 8, 9, 11, sy + 1042 + 1042 + 5y + 1 is not
prime, while if y > 11, p > 105. Therefore, the only solutions to
this problem are the four given above.

B x>+ ys =p< 105 and x, y positive integers implies that 335 < 105

and y5 < 105. Therefore, X <10 andy < 10. If p =2, X=y =1,
otherwise p is odd. Dwe to the symmetry of x and y in this problem,
we may assume that x isodd and y is even. However, for all such
values of X and vy, x5 + ys is not prime. Therefore, the only solu-
tion to this problem isp = 2, x =y =1,

Also so0fved bg WALTER BLUMBERG, MIKE CALL, QAYTON W. DODGE,
MIcHAR. W. ECKER, RANDY L. EKL, WICTOR G. FESER, ROBERT C. GEBHARDT,
SENCER P. HURD, THECDCRE JUNGREIS DONALD KING, HENRY S. LIEBERMAN,
MICHARL MAY, BOB PIERLIPP, EDITH E. RISEN, RANDALL J. SCHEER DALE E.
WATTS KEENTH M. WILKE and the Proposer.

ECKERT called attention to TYCMJ, Sept. 1978, problem 121, where

it was shown that p cannot be a Fermat prime, 2 + 1.

441. [Spring 19791 Proposed by Richand A. Gibbs, Font Lewis Cof-
Lege, Durango, Colorado.

Prove that a self-complementary graph with an even number of
vertices has no more than 27 vertices of degree Z, and that the number
of them is even.

Solution by Wafter BEumberg, FLushing High School, FRushing, N.Y.

Let G be the self-complementary graph with n vertices. The com-

plement G of G is isomorphic to G. Let XK(4) be the number of vertices

in G of degree 2. Then obviously, X(Z) = K(n-1-%).
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If K(Z) = 0, then in this special case, K(£)<2Z, and K(7) is even.
Assume X(Z) >0. Let (At)’ t=1,...,K(2) be the vertices in G of degree
i. Let (Bs), g = 1,...,K(2) be the vertices in G of degree n-1-%.

Since n is even, ¢ and n-1-7 have opposite parity. Hence, the sets (4,)
and (BS) are disjoint.

Consider the [k(2)]° ordered pairs (.80, t = 1,....K(2), 8 =1,
weu k(). ING, Ay is of degree n-1-1 and B_ is of degree 1. If inG,
A and Bs are joined (not joined) by an edge, then in G, Ay and B, are
n%t joined (joined) by an edge. Because of the isomorphism, this means
that in G there are as mawy combinations (At’Bs) which are connected by
an edge as those combinations which are not. Therefore, there are
[K(i)]2/2 edges connecting members of (At) with members of (BS). As an
immediate consequence, XK(Z) is even. Finally, one of the X(£) members

K(ZL) 2/2 _ .. .
AR K(£)/2 edges. Since

each Ay has degree %, it follows that K(£)/2 ¢ i. Hence K(£)327. NOTE

of (At) must therefore have at | east

This inequality can be tightened up a bit. Since now XK(Z) = K(n-1-%)
5 2(n-1-1), we have X(2) < min, [2,2(n-1-7)].

ALso so0lved by MKE CALL and the Proposer.

442, [Spring 1979] Proposed by Jack Gargunkel, Forest HilLs High
School, FLushing, New York.
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Sow that the sum of the perpendiculars from the circumcenter of
a triangle to its sides is not less than the sum of the perpendiculars
drawn from the incenter to the sides of the triangle.
Sotution by Sister Stephanie SLoyan, Geongian Court College, Lakewood;
New Jersey.

Ve are required to show that 00 + OE + OF 2 3r, where 0 is the
circumcenter and D, E, F are the feet of the perpendiculars from 0 on
BC, AC and AB respectively, and r is the inradius.

D +0E+C =R+ r, where R is the circumradius.

(The sum of the distances of the circumcenter from the three sides of a
triangle is equal to the circumradius increased by the inradius.

N. Altshiller- Court, College Geometry, page 73 of the first edition,
page 83 of the second edition. This is known as Carnot's Theorem).

It is also known by Euler's Theorem that d® = 7

- 2Rr, where d
is the distance between the circumcenter and the incenter. This yields
the well-known relation R 2 2r,

It follows that 0p + OD + OF 2 3», with equality when 0 and 1
coincide, that is, when the triangle is equilateral.

Also so0fved by WALTER BLUMBERG, HENRY S. LIEBERMAN, and the.

Proposen.

443. [Spring 1979] Proposed by R. S. Luthar, University of
Wisconsdn, Janesville.
If X and y are ay real numbers, prove that

z? + 5y2 2 uxy.

Amalgam of solutions offened by WALTER BLUMBERG, Long Isfand, New
Yonk, THEODORE JUNGREIS Brookfyn, New Yonk, and EDITH E. RISEN, Oregon
City, Oregon.

By the Arithmetic- Geometric Memn Inequality,

@+ 552 2 2Vs52%y? = 2 /5 |ayl| .

This inequality is sharper than the one proposed and clearly shows that
equality holds only when X =y = 0.

Editor's Comment.
This extremely easy problem was withdrawn by the proposer too |l ate

to be deleted from copy already in press. His original purpose was to
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show its relationship to another simple problem, number 431, (Fall 1978;
Fall 1979). M objective in using this proposal was to encourage an in-
crease in reader response and to observe the variety of methods of solu-
tion, a subject dear to the heart of all problem editors. Furthermore,
as an inequality addict, | was interested in seeing how many solvers
would notice the stronger result shown above. All of these objectives
were attained. Only three of the 35 solvers noticed the stronger in-
equality; this is not to be interpreted as a reflection on the may
different methods of solution that yielded only the result requested.
Most surprising were the various attacks on the problem. In addition
to the typical algebraic methods, solutions were submitted that involved
calculus, critical points, relative minima, partial derivatives, general -
izations, analytic geometry using polar coordinates, indirect proofs,
discriminants of quadratic equations, geometric representations and
proofs by contradiction -- a vertitable salad of approaches to the soiu-
tion of a problem.

This problem was also soLved by CHUCK ALLISON, MIKE CALL, CAROL B.
DIMINNIE, CLAYTON W. DODGE, MICHAEL W. ECKER, KENNETH EIGER, RANDY L.
EKL, MARK EVANS WVICTOR G. FESER, HOWARD FORMAN, RCBERT A FULLER, ROBERT
G. GEBHARDT, SAMUEL GUT, EDWARD HACKETT, SPECER HURD, MARIN F. KAIL,
DONALD KING, HENRY S. LIEBERMAN, PETER A. LINDSTROM, (GHARES W. TRIGG,
BOB PRIELIPP, MICHAEL MAY, JAMES A. PARSLY, JOHN PUTZ, DONNA MARIE
SASSANO, PETER <zABAGA, DALE E. WATTS KENNETH M. WILKE WILLIAM E.
WARREN, and the. Proposer.

444, [SPRING 19791 Proposed by Peter A Lindsitrom, Genesee Commun-
ity Cottage., Batauvia, New York.
In terms of »n, which is the first non-zero digit of

n/2
I'I (Z)(n - £ +1) for even n 2 6?
i==

Solution by the Proposen
n/2
Expanding n (£)n - © T 1) term by term, we obtain

n/2 7z =1

n Z¥n -7 +1) = (1)R)2)n-1)...(n/2)(n ~ n/2 + 1),
£=1

41

n

(L)(2)uu.(n/2)(n/2 *+ 1)uuu(n-1)(n),
=n! , asn is even.

Since the first non-zero digit is determined by the number of terminal
zeros, we first have to determine the number of factorsof 5in#zn !, as:
10 = 5.2 and the number of factors of 5in »n is less than the number of
factors of 2. This can be determined by the following well-known
theorem:

If n is a positive integer and p i s a prime, then p appears in

the canonical representation of » ! with the exponent e, where

I
- Z [
= = ,
iz1 LP
where[ ] is the greatest integer function and » is determined by
the inequality p¥ £ n<p" * 1.

Thus, th3 number of factors of 5inn ! is given by

i [—nz],where s¥ Sa<Br+1
5

r
Hence the (
? 1§ 4 digit isthe first non-zero digit
n =2
i=1 3|t
n/2 5
of n (4)(n - 2 + 1) for even n 2 6.
i=1

Also solved by MKE CALL, MARK BEVANS and SFENCER P. HURD.

445, [Spring 1979] Proposed by the. fate Richand S. Field.
A "Tribonaceci-like" integer sequence{/ln} is defined in which

meli + mQAiﬂ +m, An+2 - Ai+3’ (Ao =A = A =1; m s m, ,M are
arbitrary integers).

A particular sequence of this kind is found (ml = -1, m, = 5,
my = 5) which appears to yield only perfect squares, viz.: 1, 1, 1, 9,
49, 289, 1681,...

a) Prove that for this particular sequence, the successive terms
continue to be perfect squares.

b) Can other values of m s m,
same property, namely, a sequence of perfect squares?
Solution by Claytor W. Dodge, University of Maine at Onono.

and m3 be found which result in the -
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Let us consider the sequence {Snl’ of square roots
+1, 1, #, *3, &7, 17, #41, ...
and assume we can find a recursion formula that will yield all plus
signs, at least after the first few terms. Assume constants u and v
so that

= + .
Spe2 T U8y Y841

Then we have
41 = Tu * 17v and 17 = 3u t 7v,
whose common solution isw =1 and v = 2. The resulting formula

(1) s =5 +2

determines the sequence
-1,1,1, 3, 7, 17, 41, ...,
clearly a sequence of integers. Fom (1) we get

= and s_ =8 - 2s
43 = Bpa1 T 2840 n n+2 n+l
and by squaring,
2 _ 2 2
Sue3 = Sy t #8182 T usn+2,
2 -, -us g + Us
Sy n+2 n+1°n+2 n+l”

Adding these two equations, we get

2 _ 2 2 2
843 = By ¥ SSp4a T Sy

the recursion formula for the given sequence, proving it to be a
sequence of squares.
By assuming the form

= a
a,

and substituting into the recursion formula (1), we get the roots
a = 1t V2,

so we take
a =1+ /2 and g =1- v2.

Next set

_on n
s, = pa + gB

for some constants p and q and substitute g; = -1 and s, = 1 and solve

1
for p and g, obtaining the result
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s, . (1 + "2 - 22,

2

¢ have established part (a).
The technique of part (a) serves to find sequences for part (b)
as well. Quite generally, let {tn} be the sequence of integers given by"

B2 tpo and £ = fty + Ity

for some given integers f, g, t,, and t2. The technique of part (a)

l,
yields the recursion formula

2 2,,2 2 2 3,2
b = (f2 Hilig )tn+l t(f +yg w2 - Tty
2

which yields only squares when t,2 tys

2 _ 2 :
and t3 = (ft; + gt,)" are its
first three terms.

For f = -1 and g = 2, the, tn form an arithmetic sequence; for
f="F-= tl = t2 = 1, the tn form the sequence 1, 1, 2, 3, 5, 8, ... of
Fibonacci numbers. Finally, f =g = 0 yields the t sequence ., .

. n 1° "2
0, 0, 0, ..., arather trivial example.

Also solved by WALTER BLUMBERG, MIKE CALL, RALPH GARFIELD, THEODORE
JUNGREIS, MICHAEL MAY, JOHN OMAN and BOB PRIELIPP (fointly), KENNETH M.
WILKE, and the. Proposen.

446. [Spring 1979] Proposed by Clayton W. Dodge, University of
Maine, Onono.

A teacher showing the factorization of x3 - y3 = (x - y)

(x2 tay + y2) emphasized that the second factor is not a square (not

[z + y] squared), and then chose x = 5 and y = 3 at random, obtaining
x2 + oy T y2 = 49,

which is a square.

a) Explain this apparent contradiction.

b) Sow that the equation x2 tay t y2 = 49 illustrates that a
3:5:7 triangle has a 120° angle.

Solution by Charles W. Trigg, San Diego, California.

a) The statement that z2 + axy t y2 is not a square means that the
expression is not decomposable into two equal algebraic polynomials with
real coefficients. The demonstration that, for fla,y) = x2 + xy + y2,
7(5,3) = 49, a square, could well have been followed by f(3,4) = 37, a
prime, and f(1,4) = 21, a composite non-square integer. Thus it could
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have been emphasized that the factorability of a polynomial cannot be
determined by substituting specific numerical values in it.

Again, x t+ y is a square for all x = p2 -k, y =k And
x2 + y2 = 32 has a two-parameter solution in integers, namely:
X = m2 - n2, y =2m , 3= m2 + nz. Indeed, any desired number of
integer solutions of :::2 t oy t y2 = z2 are given by

x=m2—n2,y=2mn +n2,z=m2+mn+n2.

In the present case, m = 2, n = 1

b) 32 = m2 + y2 - 2(-1/2)xy isthe law of cosines for a triangle
with sides x,y,2 and a 120° angle, which has a cosine of - 1/2, opposite
z. Sincey = 3, X =5 Z =7 satisfies the equation, a 3:5:7 triangle
has a 120° angle opposite the longest side.

Also solved by CHUCK ALLISON, MIKE CALL, MICHAEL W. ECKER, MARK
EVANS VICTOR G. FESER, ROBERTC. GEBHARDT, SAMUEL @UT, DONALD KING,
JM METZ, BOB PRIELIPP, HN PUTZ, FETER SZABAGA, WILLIAM E. WARREN,
DALE E. WATTS KENNETH M. WILKE, N A. WINTERINK, and the. Proposer.

447. [Spring 19791 Proposed by Zelda Katz, Beverly HiLLs,
California.

A variable circle touches the circumference of two internally tan-
gent circles, as shown in the figure.
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a) Show that the center of the variable circle lies on an eIIipsé-
whose foci are the centers of the fixed circle.

b) Sow that the center of the variable circle bears a constant
ratio to the distances from its center to the common tangent of the -~
fixed circles.

c) Sow that this constant ratio is equal to the eccentricity of
the ellipse.

Sokution by Zazou Katz, Beveryly Hills, California.

Let @ denote the projection of P upon AB and let AQ = d. Let
/10l = r, A0 = R, 01P =r tp, CP=R-p, where p is the radius of the
variable circle (P).

Then,

a) 0P tCoP=(rtp)+ (R-p)=R+r, aconstant. Hence P

describes an ellipse whose foci are Ol and 0.
b) and ¢) Since 01p2 - oP? = 01Q2 - OQQ, we mey write
(r+p)?2 - (R-pP= (4@ - r?- (4@ - BR)Z, or
(r + R} (r -R + 2p) = (24@ - r - R)(R - r}, whereupon

. P _-@®-7?) P . e , the eccentricity of the

(r +R) 2d - (r tR) d
ellipse, a constant, defined by the ratio of the distance between the
foci to the length of the major axis.

ALso so0lved by WALTER BLUMBERG, MIKE CALL, CLAYTON W. DODGE,
MICHABL W. ECKER, ROBERT C. GEBHARDT, HENRY S. LIEBERMAN, SISTER STEPH-
ANIE 9 OYAN, CHARES W. TRIGG, WILLIAM E. WARREN, KENNETH M. WILKE, J.
A. WINTERINK, ROGER E. KUEHL, and the. Proposen.

Editor's Comment.

Special commendation is due to ROGER E. KUEHL, the Kansas City,
Missouri traffic engineer, for his excellent solution, beautifully
calligraphed and precisely drafted, which however is too lengthy for
publication here. Mr. Kuehl was the proposer of problem 297 [Spring
1973; Fall 1974] which involved the construction of an S-curve with
circles of equal radius, connecting two non-parallel straight roads.

448. [Spring 1979] Proposed by the. Late R. Robinson Rowe.
Analogous to the median, call a line from a vertex of a triangle
to a third point of the opposite side a "tredian". Then if both tredians
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are drawn from each vertex, the 6 lines will intersect at 12 interior
points and divide the area into 19 subareas, each a rational part of the
area of the triangle. Find two triangles for which each subarea is an
integer, one being a Pythagorean right triangle and the other with con-
secutive integers for its three sides.

Solution by the Proposenr.

Consider the general triangle ABC with altitude h and m the ab-
scissal difference between Cand M at midpoint of AB. Transform this
triangle by the relation ' = X - my/hto the isosceles triangle ABC.
Each horizontal differential element will be invariant in length, and

so will an areal aggregate of such elements be invariant in area.

ki

B__ _J/

The ordinates of the third points on AC and BC, #/3 and 2k/3, be un-
changed, so all tredians will be transformed to a symmetrical array about
MC'. Hence the 19 subareas have become symmetrical, and it follows that
the subareas in ABC, though not symmetrical i n shape, are symmetrical
in area. Then similar transformations on AC and BC as bases would prove
triaxial symmetry of areas.

Thus this triaxial symmetry of areas simplifies our problem by
using an equilateral triangle, which shows that there are just 5 differ-

ent areas among the 19 subareas. Then for a unit-area triangle,

34 +6B+3C+6E+F =1 1)

A+3B+C+E =1/3 (2)

A+ C+UuUE+ F =1/3 (3)

B+ C = 1/5 (4)
See Addenda

A+ 2B+ C+E = 217 (5)

Whence: A = 1/14; B =1/21; C= 11/105; E = 1/70; F = 1/10 (6)

The | east common denominator for these 5 subarea fractions is
210 = 5 x 6 X 7. Hence any triangle with integral sides and an area
divisible by 210 will be fully integral for the subareas as well. The
pythagorean triangle 20, 21, 29 has an area of 210 and the subareas in

1u7

order are: 15, 10, 22, 3, 21.

For the other task, it will be helpful to review the generators
for triangles with consecutive integer sides. Let the sides be m-1,
m and m+l and the area A. Then in order n, beginning with the trivial

n = 0: m m A
0 2 0
1 4 6
2 14 84
3 52 1170
Generators are: mn+l = llmn - m-1 (7)
An+l = lll-An -luAn_l (8)

From (8) can be derived:

n+2

A -
+ = 7 10

A = lQSAn- 14 An—l (9)

From (9) it is clear that if 4, isdivisible by 7, so isAn+2, and since
Ay = 84 is divisible by 7, then A is always divisible by 7 forn = 2a
Likewise from (10), 4 is always divisible by 5 for n = 3bh.

Finally, since 4 is alwaysdivisible by 6, A will be divisible by



48

5x 6x 7=210whenn = 2 x 3= 6, or any multiple of 6.

The least solution, then, isn = 6, for which the sides are 2701,
2702, 2703 and the area is A = 3161 340 = 210 x 15054,
Addenda. Perhaps | should explain the fractions in (4) and (5). If the
altitude of a triangle is unity and AB its base, and if secants from A
and B meet the opposite sides at ordinates a and b, then the ordinate of

their intersection is

P

a+t+b-ab
For (4), @ = b = 1/3, the numerator is 1/9 and the denominator 5/9, so
c =1/5, For (5), a=1/3, b = 2/3, numerator 2/9, denominator 7/9 and
Cc = 2/7. | think this relation, in one form or another, is fairly well
known.
Also s0fved by MKE CALL [by computer), CLAYTON W. DODGE, and

KENNETH M. WILKE
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referees. These persons do yeoman work rewriting, correcting, advising,
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