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TWO REMARKS ON THE QUATERNIONS .
by Z. Haddad
UCLA

V¢ will discuss two questions in this paper. In the first
section, we will consider a possible definition of differentiability of
quaternion - valued functions analogous to the definition of different-
iability of complex - valued functions. According to this definition,
the differentiable functions will have to satisfy partial differential
equations analogous to the Cauchy-Riemann equations of complex analysis
However, in contrast to complex analysis, the greater complexity of the
quaternions gives more partial differential equations which force the
functions to be linear. In the second section, we will establish a
formula for the rzm power of a quaternion, analogous to Moivre's formula
for complex numbers.

§1. Since quaternions don't commute, we start with the following
definition:

Let Q be the ring of real quaternions. A function
f : @+@Q is "left-differentiable" at wye Qif
lim (0 - w) (W) - )
w>wg
exists and is finite, the metric being the standard
norm on Q.
"Right-differentiability” is defined in the analogous way. Wmn they

exist, 1lim (» -wofl(f(w)-f(wo)) i s denoted by
W"wo

L(f)wy), and lim  f(w) - f(wo))(w~wo)_l by R(f)(wg).
W
0
Let flx t yz + a7 t20) = alx,y,z,t) T bla,y,2,t X T elz,y,2,t)7
+ d(z,y,2,t)kx be a function on g, so that a,b,c,d are real - valued
with continuous partial derivatives. VW will look for conditions which
meke fleft-differentiable on an open doman D in Q.
% proceed exactly as in the case of complex functions. Assume
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that for some WyE D, L(f)(wo) exists. L= 1im ((y'yo)i)_l((a(xo’y ,go,to)_a(x

y"yo

O,yo.zo,to))
Denote wy by x_ +y. i T 350 T tgks and w by X t yi t zj t k. . ) .
0 0 0 0 +(B e sy o2 5ot o )b (2 )5y 02 0t )L +(c(x0‘y,zo.t0) e(xo,yo,zo,to)),j%

Then we know that
- Hd (@ 2y 28 ot )= (X Y 28 q st ) K)
lim ((x -xg) +(y = y,)i+(z-2)d+(t-t)k) l(f(w)—f(wo))=L(f)(w0). 0 Vo 0>0°70°"0
wrw

0 exists also and is equal to L(f')(wo).
Hence Ard
- 3 _1 -
L, = lim (x—:co) ((a(x,yo,zo,to) a(xo,yo,zo,to)) o a(."o,y,zo,to)—a(wo,yo,zo,to) 1
x+.1:0 L, = lim =
2 ysy, ¥, z
+ (b(x,yo,zo,'bo)—b(mo,yo,zo,to))7:*‘(G(x,yoaZoato)‘c(mo:yo’zoato))J
_ By 22 nat 3D (X oY a2 st )
+(d(,y 5530, t) d(x,Y 535 to) k) v lin 0°Y2p°Yg 0*70*%0°"0" )1 .
y=i, Y, z

exists also and is equal to L(f)(mo).

But ) (c(aco,y,zo,to)—c(xo,yo,zo,to)

| =
L

¥ y:E’l.{/n Y-y
Lo im a(x,yo,zo,t0)~a(aco,yo,zo,to)) 0 0
L= _
T =% d t )-d .
Bb( £ G-t £) % xo,y,zo,lo)- (mo,yoazoa 0) 1 X
TsY:80 AT P . Yy Y-y 7
. 8 0°%0°"0 0°Y0°%02%0’ | . ¥y 5
RN x -z .
da . 9
= - = (z 2. .t )+ — (x ,y.,2,.,t
(@Y 32y )=C(E Y sEn ot ) 3y oY% 0°%0 sy Fo¥oF0r%o)
°70°70%70 07027070 y
t lim J " sd
x>z - 22 9a 7
0 X- 0 sy FoWoRotolk + gy @galge2g.to)d
A(X Y n 9B sty )=d(X, Y 58 ,T)
. °>20°70°"0 0’70’70
+ lim k | (asT=-¢,75 = -kFk =).
T XO X —.’L‘O
" Approaching w, similarly in the j and k directions, we get two
9a 3 3
S 3 3 ,t Y+ — (x s Y4 ,t )’L ) ' '
3z (Zgs¥g230s%p ax F0°Y0°%0° %0 more expressions for L(f‘)(wo), so that if L(f)(w) exists for all weD,
ac . ad then, on p, we must have
= (xo,yo,zo,to),j+ BE (xo,yo,zo,to)k
L(f) =a, +b i teJ+dk=-a +h,- ok + d,J
(we assumed that these partials exist). X X » e e +by - o dY

1

The existence of L(f)(wo) also implies that —azj + bzk’f e, = d,i= - atk- b,j+ cti + dt'

Hence we get the following Cauchy-Riemann equations:
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(1) ax=b =e_=d
(2 b, =-
(3) ¢y =dy=-a, = -b
(4) dx=—c =b, = -

Notice that if f were a function on C, these equations reduce to

a, = by, bm = —ay, the familiar Cauchy-Riemann equations for complex

functions. HoOwever, we have here twelve equations instead of two, and
we can attempt to solve them. Indeed, since the component functions

were assumed to have continuous partials, and since we restricted our-
selves to open domains, we can solve the system (1), (2), (3), (4) by

taking mixed second partials, e.g.

aa:y : %y i Ry EOL axyi dty ; gt
e (1) (4) (1) (3)
giving
am_y =a,, = Oonn
Also,
xz 4 byz 3 -9ty and q 3 i ey : Gyt
giving (1) (4) (1) (2)
axz:ayt = 0 on D

Continuing in this way, we get all mixed second partials of 2 equal to
0 on D. Therefore ax=al(:z:), a\(= a2(y), a, = as(z), a, = au(t), i.e.

a is a function of x alone, ay is a function of y alone... and there-
fore a(x,y,2,t) = a,(@) ta,(y) + ay(z) t a,(t) t a , where Ei isan

antiderivative of a,a e R.

Proceeding similarly for b,e, and d, we get

b(x,ys3,t) = Fl(m) t Fz(y) t 33(2) t I?u(t) + By

elx,y,3,t) El(x) + Eg(y) + 33(3) + Eq_(t) + Yo

d(x,y,2,t) Zl(x) + Ez(y) + 23(z) + Eu(t) + 8y -
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Nw we return to the Cauchy-Riemann equations and substitute

the above expressions for the component functions of f. Partial

derivatives become one variable real derivatives and we have

al(x) = byly) = cy(z) =

Fi(x) =
Ej'_(x) = ‘é(y) =-
Ej'_(x) =-"é(y) =

The variables being al | different in every

must have
(1) Ei(:c)
(2) i)
(3) ej(x)
(4) 33‘_(1:)

—E&(y) =-E§(z)

_g‘(t) (1)
= ey (%) (2)
=-b}(t) (3)

a} (¢) ()

. = Zh(t) =

. = Ea(t)

. =—E£( t)

=Py

1}

a, some real

B, some real

Y, some real

§, some real

for all z,y,z,t such that x t y¢ t 2 t tk e D .

V¢ finally get

alx,y,2,t)
b(x,y,2,t)
e(x,y,2,t)

d(x,y,2,t)

which yields

]

ox

Bx

YT

Sx

- By

+ ay

'6.7/

* vy

+

Y&

8z

[s %

Bz

+

6t+a0
Yt+BO
Bt*‘YO

at+60

set of equations, we

constant,

constant,

constant,

constant,

flot yi + 2 + tR=(x+yi + 25 +tk) (a+ BL + v +6K) + (a0+ BOL+ YO+ éok).
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Conversely, such a function is indeed left-differentiable on Q,
with L(Hw) =a+ 8L + v + 6k, forall w e Q
W have proved

f: Q+Q is left-differentiable i f and only if
for some A, u e Q,

fw) =wr +p forallwe@
(and L) =21).
Similarly, one can prove
f: @+q@ isright-differentiable if and only if

for some A, v e Q,

fw) =Aaw +qu forallwegq.

(and R(f)w) = A).

5 2. Let

A= o +Bigt (J +6k0, X =z +yy, +ag, +tlb,

1= ot ty [ 1
X'=x +y1,0+zgo+tk0

be three quaternions, and assume X' = AX.

Then

(' + y'io + z'go + t'ko) = (oax - By - Y28 - 8t)

+(Bx + ay + vz - Yt)i0+ (yx -8y +taz +st)j0+(6x +yy -Bz + at)ko.

Using matrix notation, this may be rewritten as

" o -8 -y -6 x
y' B a & -y Y
z' [ y -6 a B 2
t) § vy -B «o t
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With this suggestive notation in mind, we proceed with the formal dis-
cussion. Our goal is to get a formula for the nth power of a quaternion,
similar to that of Moivre ([r(cos 8 * £ sin 8)]" = r"[cos(n8) + i sin(n8)])

for complex numbers.

Ou first step is to show that the set of matrices

N

a -b -¢ -d
b a d -c
Q' = » a,b,e,d €R &
e -d a b
d e -b a

/

is isomorphic to Q, the division ring of quaternions over R.

S let f:@+Q" be the mgp defined by

a -b -a -d\

b a d -ec
fla + bio + cjo + dko) = -d a

e b

d a- b a/

f being clearly surjective and injective. Also, it is obvious that if

wls w2,E Q; then

f(wl + “’2) = f(wl) + f(wz).

Let's check that f‘(wlwz) = f(wl)f(wz); proceeding as follows:

Write

ca+tbi tej
mabzocgodko,w

= + L 1
S X T yig + uf, + vko.

2

Then
ww, = (ax - by - cu - dv) t(bxtay tdu- cv)i

+ (cx - dy +au+bv)jo t (de + oy - bu+av)k0,

so that
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a -b -e¢ d -y

a -b -¢ / -y ~u -v By a previous computation, det(w - zId) = ((ot-::::)2 + B2 + 72+'62)2,
b a d -c¢ y n and hence the eigenvalues of w are a ¥ ¢vA , where A = 32 +Y 2 45 2,
v 1
F)fw,) = e -d a b u -v = If both y and 6 are zero, then a +8¢, + v, + 8kq = @ + Big,
x -
d ¢ b o v u and the nth power of a + Bio can be obtained using Moivre's formuda.~
d e -b a vV u -y X
So we assume that one of y or 6 is non-zero. Writing A = y2 + 62,
ax-by-cu-dv -ay-br+cv-du -au-bv-ecx+dy -av tbhu-cy-dx this is equivalent to assuming that A # 0 (and hence A # 0 since
2
brt+ay+du-cv -by+axr-dv-cu -butav+dr+ey -bv-au+dy-ocx A=A+ B7).
= A being non-zero, has two distinct eigenvalues, a - ZvA
cx~dyt+au+bv -cy-dr-av+bu -cu-dv+ox-by -cv+idutay+bx 9 ) Y . ¢ 1'
and a+ i/A. The eigenspace of a - 7v& i S the subspace generated by
drtey-butav -dy+tex+bv+au -dutev-br-ay -dv-cu-by+ax C )
r % B
-i/a 7
= flww,). VA
172 B 4 >
P, vand { &
This proves that Q' is indeed a division ring, isomorphic to Q. Y
Let's also note, for future use, that § :Y )
p b -e -d\ and the eigenspace of a + z/é i s the subspace generated by
a d-c b d -e b a-e b ad r ( W
b a d -e =Y §
det =a-d a b+ble a bl-eje -d bJ+dle -d a
e -d a b § Y
e -b a d-b a d ¢ a dc-b 4 . _pandy b
e -b a ivVa -8
- /N
= at@® + a? + ? + d®)) + bba® + 2 + ) + b°) )
L -
- e-c® - e@® + B2 + d%)) + dd( @ + 1% + &) + %) | Let
= ta® %82 4 & +. 4. fi/B B -y 8
L . B VA § v
Our original aim was to get a formula for ! B =

, . n Y § ivh -B
(a+b1,0+cgo +d7%) .

-y -B -iVA
With the above identification, we may hope to achieve this by diagon- 8 LI

alizing the matrix f(a+ bio + cjo + dky) and using its expression as the Then det B = uA(yz + 52) = 4AA. Sincewe assumed A £ 0, A ¥ 0, we
. . . . . th have det B # 0, hence B is indeed invertible. W know that
conjugate of a diagonal matrix to get an expression for its n power. .
oy a-Z VA 0 0 0
e
e -B -y -8 :
0 ai/a 0 0 »
B o & -y w =B g1
w = : 0 0  oti/A 0
y -6 o B
0 0 0 ativh
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and, therefore, that

(a-2VB)"* 0 0 0
0 (a-iVB)" 0 0
O . B (%)
0 0 (a+iVR) 0
0 0 0 (at+i/B)"

The only remaining obstacle is BL, Lengthy computations |ead

to the following expression for s L
26 /B(v2+82) 0 2(yA-B8VE) 2(88+BviVE)
L1 0 —2i/B(y2+62)  2(sh +ByivR)  -2(yA-B8ivE)
B T e
dekd -2(yA+BSLVR) 2(8A-ByiVA) -2i¢K(y2 £ 6%) 0
2(8A-ByivE)  2(yA +B8ivE) 0 20/(y? + §2)
—

V¢ can now carry out the computations in equation (%), Using

the isomorphism f'_l, we obtain the following formula:
R : no_ . . :
(o + B'LO+YJ0+ ako) -an+ Bnto+yn‘70+6n7’o’

where

1 ((a-m" + @rivBM,

n
g = _é..l. ((a —i/X)n - (a +7 \/K)n)‘ia
n 2
Y, = JLK% (o - 2/B)" - (a + 2/A)N)2,
6, = _5_% ((a =2 /D) - (o +2/B) )i,
V&
a

W check that , Bn’ Yn’sn are real as follows:

Let

z = (a-i/D)" .

Then

z eC,

and

and
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we have
_1..n -ny n
an—z(z +27) = Re(3”) ¢ R,
B, = L3 " = Lumi + - LM er
/& /A /5
Ty = = X (™) eR,
7
Sn = - —G-Im(zn)eR.
/A

The formula itself can be easily verified by induction on =.

@ Y= @

1979-80 STUDENT PAPER COMPETITION

The papers for the 1979-80 Student Paper Competition have been judged

and the Winners are:

have.

First Prize ($200) 2ziad Haddad, UCLA, "Two Remarks Qn The
Quaternions”, This is the above article
inthis Journal starting on page 221.

Second Prize ($100) Robert Smith, University of Arkansas,
"Uniform Algebras and Scattered Spaces”,
See the next article in this Journa
starting on page 232.

Third Prize ($50) Al ma Posey, Hendrixz College, "Rolling
Cones', This article appeared in the
Fall 1980 Issue of this Journal, page
157.

This 48 an annual Student Paper Competition open to students WO
not received their Master's degree at the time of submission.

Papers meg be submitted to the Editor at any time. Each Chapter which
submits five orn mote. papers creates a mini-contest avong just those
papers. The best will recedve $20 and all such papers will be considered
for the National Content. Two copies Of,submitted papens should be sent
to the Editor al the address inside the gront covenr.

%Y
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Second Prize Paper
National Student Paper Competition

1979-80
UNIFORM ALGEBRAS AND SCATTERED SPACES
by Robent C. Smith
Univensity of Arkansas
Introduction.

In this paper, the relationship between scattered topological
spaces and the spaces of continuous functions they support is explored.
The first section contains the definition of a scattered space, and
three equivalent formulations are developed there. The second section
is devoted to the following result due to W. Rudin: |If X is a compact
scattered Hausdorff space, then X does not admit a proper uniform al -
gebra. In the third section, a partial converse due to M. Rajagopalan
i s sketched, and there is a brief discussion of the question which yet
remains to be resolved.

This article is based on a paper submitted to the University of
Arkansas in partial fulfillment of the requirements for the degree of
Bachelor of Science in Mathematics, with Honors, and the author would
like to take this opportunity to thank Professor WH. Summers for his

advice and encouragement during the course of these investigations.

1. Scattered topofogical spaces and equivalent formulations.
A topological space X is called scattered (or dispersed) if every
nonvoid subset contains an isolated point; i.e., for every AC Xso that

A 3 ¢, there exists some a ¢ Athat is an isolated point in the relative
topology on A.

Throughout this paper, we will assume that X is a compact Haus-
dorff space, and we further adopt the convention that the empty set i s
not perfect.

1.1,  Proposition. |If the space X is scattered, then X is totally

disconnected and the set of isolated points in X is a dense subset of X.

Proof. Let ¢ be a component of X. Then, because X is scattered,
there exists an isolated point ¢ in C. Since C is closed, C~{c} is
closed, while {¢} is closed since X is a Tl—space. But, (C~{ehnfe} = ¢
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and (¢ ~{e})u{e} = C whereby € = {e} since ¢ is connected. Now, put

A ={ae X :aisisolated in X} and suppose X~4 = ¢. Then, since X is

scattered, there exists an isolated point &, in X~A. But, X~ s open

and hence a is isolated in X, which is a contradiction. Thus, X = T4
As shown by the following counterexample, the converse to Proposi-

tion 1.1 does not hold.

Example. Let C be the classical Cantor ternary set, let
A= {xi}i c mbe an enumeration of the midpoints of the excluded inter-
vals, and put X =CuwA4. Clearly, Xis compact. For each 2 ¢ N, let
(ai, bi) be the excluded interval in which X'L sits. Then, ( a;, bi)
NnX = {mi}, < ¢ IN, so A consists of isolated points in X, and, since Cis
perfect, A={x ¢ X : x is isolated (in X)}. Let x e ¢ and 6 > 0. Since
¢ is perfect and totally disconnected, there exists some 7 ¢ IN such that
( a;, b;) Czx - §, 2% 8). Hence (x - 8§, x*T &) contains some element of
A; that isto say, A = X.

Suppose D i s a componentof X. If D contains an element of A,
say a, then {a} = D (otherwise we would get a disconnection as in the
proof of Proposition 1.1). O the other hand, if D is contained in C,
then D is a singleton since € is totally disconnected. Thus, X is to-
tally disconnected and the set of isolated pointsin X is dense in X.
But the classical Cantor ternary set is a nonvoid subset of X which

contains no isolated points, hence X is not scattered.

1.2.  Proposition. The compact space X is scattered if, and only

if, X contains no perfect subset.

Proof. Suppose P C X is perfect. Since P is perfect, P # ¢
and P has no isolated points, so X is not scattered. In other words, if
X is scattered, then X contains no perfect subset.

Suppose X does not contain any perfect subsets, and let A C X,
A ¢ Then A is not perfect, and so it follows that A must contain an
isolated point; i.e., X i s scattered.

Before stating our next result (1.4), we need the following defi-

nition and well known theorem (1.3).

Definition. A set Ein a space X is said to be nowhere dense in
X if XNE is dense in X.
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1.3, Baire Category Theorem (cf. [8]). A complete metric space

X is not the union of a countable collection of nowhere dense sets; 1i.e.

X is not of the first category.

1.4. Proposition. Assume that the compact space X is a subset

of R®. Then X is scattered if, and only if, X is countable.

Proof. Let P be a perfect subset of X. Then P is a closed sub-
set of the complete metric space R* whence P is a complete metric space.
Since P is perfect, {2} is nowhere dense in P for each x ¢ P. Thus, by
the Baire Category Theorem, P is uncountable. So, by Proposition 1.2,
if X is countable, then X is scattered. Suppose, on the other hand,
that X is scattered. Let a be an ordinal less than or equal to the
cardinality of the power set of R®. Define x* using transfinite
induction by setting

X, a =1

X = 8 ,et+t1=a(anotalimit
N xB ordinal)
B<a® ,ifa isalimitordinal.

Put 4% = x*~x* * 1. Then, 4% = {z ¢ ¥*: x is isolated in X*}. Fix an
ordinal a. Since each x ¢ 4% isisolated in x* , there exists a col-
lection of basic open sets {Um}x c A% with the property that anx":{:c},
x € A%. By the second countability of an, A% must be countable.
Another application of second countability shows that 4Y = ¢ for some
ordinal y less than the first uncountable ordinal. So x¥ = Xt s which
implies that either x7 - ¢ or X' is perfect. But X is scattered, and so,

by Proposition 1.2, ¥V = 9. ThusX = a Y - A% i's countable.

Definition. |f (A, B) is a pair of closed sets in a topological

space, then we put L - A = A and -1 -4 = B. A family {Ai’Bi} of

el
pairs of closed sets is said to be interlocking if, for each finite set
J C 1 and each collection {ej}j e J

that

where each s3 e { -1, 1} we have

s M
IQ e te

1.5. Proposition ([2]). The compact space X contains a perfect

subset if, and only if, there is an interlocking sequence of closed sets

{An’ Bn}n c I in X such that A N B, = ¢ e IN.

Proof.  Suppose {An’Bn} is an interlocking sequence in X

nelN

3
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oD
with A r‘\Bn = ¢, and put C = N (A u Bn)' Then ¢ is clearly
n=71

compact. Next, define

i+ 1,0 by
flx)(n)=

l,:x:sAn

-1, x ¢ Bn‘

Observe, furthermore, that Anr\ ¢ and Bn M ¢ are both open in C for each
neMN. Let by € {-1, ﬁ} N , and let U be a basic gompact-open neighbor-
hood of $ in {-1, 1} so that i f ¢ (k) =

lllo(k) for each k € = {n e N: n <m}, then ¥ € U . Put C3

; i.e., there exists m ¢

q‘)o(j), J e F_, and put V = « CjAj) N ). Then V is a nonvoid

N
J € Fm
open subset of ¢ and X e ¥ implies f(x)(k) =€k = wo(k), k e F,so
that f(v)C U; that isto say, f is continuous. Nw let ¢ ¢ {-1, 1} |N.
Since {An’ Bn}n eI is interlocking, B QJ w(j)AJ- $ ¢ for any finite

set JCMN. Thus {w(j)AJ. }J- e N has the finite intersection property,

-]
and the compactness of X implies N

WA, 9.
Jg=1

But

s

w(j)AJ- C C whence f is surjective. Put S = {4CC: 4 is

=1
closed and f(4) = {-1, 1} |N}. S is nonvoid since C ¢ §, and set

inclusion provides a partial ordering on S. Let {4.} be a totally

N §°6 € A
ordered subfamily of S, and let ¢ ¢ {-1, 1} . Put Ed = {x EAG:
flz) = v}, and let {Adl}'-lbe a finite subcollection of {AG}G e A with
i= n *
A D Ag D « v« D A, . Since N E =F {E.}
) 8, S, i=19% 8y ® > Pels e a

is a collection of closed sets with the finite intersection property.

E $ 4. This implies

Moreover, since ¢ is compact, Q A s

O n A)={—l,1}m, and so N A5isalowerboundin5for
sean SEA

Pt e By Zorn's Lemmg there exists a minimal element, say P,
0f65§ i.e.e there exists some subset P of C such that P € § and f maps “
no proper closed subset of P onto {-1,1}rN. For ¢ e {-1, l}IN, however,

there exists a sequence of distinct points {xn} C P such that f(acn)
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converges to §. But since P is compact, this implies there is some
X e P' for which f(z) = ¢. Since f(P') = f(P), P' = P whereby P is a
perfect subset of C and therefore of X.

For the converse, |l et P be a perfect subset of X, and let x,
ye P so that X iffy. Since P is a perfect subset of a compact Hausdorff
space, P is normal and P' = P. Thus there exists open sets, U, 7, in

PsothatxsUl,ye'/,andUlﬁrll:?. L_etnsN and suppose

{Lgééz = 1 have been chosen so that Ué)‘_)y = ¢ and

n
g Qlaj .nUé=¢ ,wheree3e {-1, 1} , 1 - Uj=Uj’ and -1 * %B:é
2
Let {C. } be the family of all intersections obtained from all
J=1
sequences {C:}n . This collection is pairwise disjoint since
dJ J=1
Uj N V3 = ¢ for all g. Since Cg isa finite, nonvoid intersection
of open sets, there exist nonvoid open sets Ojl’ sz C CJ., so that
- - on o
0, MO0, =4¢g. =
Jl J2 ¢ Put Un + 1 U 0. and V = e
. Jl n+1 s 0.
Jg=1 Jg=1 J2
- f/ n + lE n+l
N = A, .
Then U . NV, . =¢ and n €U, 4 ¢ for any{CJ} By
Jd=1 i=1

finite induction, {(_/., V.}. is defined and interlocking.

Jd° J'JeN

1.6. Conollany. The compact space X is scattered if, and only
i, thereis no interlocking sequence of closed sets {Aj’Bj}j el
in X, such that AjnBj = ¢, 7 elN.

Proof. This is immediate from Propositions 1.2 and 1.5.

2. Unifonm Algebras on Scattered Spaces.
Let X be a compact Hausdorff space. Then C€(X), the set of complex

valued continuous functions on X, is a complex algebra under the usual
pointwise operations. For f & C (X), putting ||£]| = sup{| f(z)]|:

X € X} defines a norm on ¢(X) under which ¢(X) is a Banach space. Given
frgect, |fgll < 11f1l gl , ana so cto), |I-[1) is also a
Banach algebra. Indeed, €(X) is a commutative semisimple Banach algebra
with identity (cf. [6]).

Definition. A subalgebra A of ¢(Xx) which satisfies the following
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conditions is called a uniform algebra on X:

1) A isclosed in €(X);

2) A separates the points of X;

3) d1eA 2T
If, in addition, A # ¢(X) we will say that A is a proper uniform algebra
on X; in this case X will be said.to support a proper uniform algebra.

2.1.  Proposition ([7]). |If there exists a continuous mapping

F of a compact scattered Hausdorff space X onto a compact Hausdorff

space Y, then Y is scattered.

Proof. Suppose Y contains a perfect subset P. Put D = {£ C X;
E is closed and f(Z) = P . Since #X®) e D, Disnonvoid, and D is
partially ordered by set inclusion. Let {EG}S e A be a totally ordered
subfamily of D, and let ¥y ¢ P. Put 06 ={ee E: f(e) = y}. Let

n L . .
{Eﬁi}i =1 be a ;lnlte subcollection of {E6}6 e A with E6 3 Es 5
... DFE, . So N ¢, =C, # ¢. Thus, {C.} isacoll%ction 8f
8 . 6. (] §°6e A
n =1 "% n

closed subsets of X with the finite intersection property whereby

. . A~
5 QA 6'61 ¢» This implies f’(‘s 2 A
there exists a minimal element & € D. M is compact, and, since X is

ES) = P whence, by Zorn's Lemmg

scattered, there is some isolated point m ¢ Mso that M ~{m} is compact.
Since M is minimal, f{M ~{m}) is a proper compact subset of P. But P
is perfect so that there existsy € P~AM ~ {m}), y § f(m.
Since f—l(y) N (M ~ {m}) 4 1, thisis a contradiction.

V¢ have need for the following two theorems. Since these results

are well known and readily accessible, however, proofs have been omitted.

2.2.  Mengelyan's Theorem (see [8]). If K is a compact set in the
complex plane whose complement i s connected, if f is a continuous complex

function which is analytic in the interior of ¥, and if € > 0, then there

exists a complex polynomial P such that |f(z) - P(z)| <€ for all zeKX.

2.3.  Stone-Weienstrnass Theorem (see [6] ). Let X be a compact
Hausdorff space, and |l et A be a closed subalgebra of ¢(X) which separeates

the points of X and contains the constant functions. |f A is self-adjoint,
then A = ¢(X).
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2.4. Theonem (Rudin [7]). If X is a compact scattered Hausdorff

space, then X supports no proper uniform algebra.

Proof. Let A be a uniform algebra on X, and take f €e4. Then
f(X) is scattered by Proposition 2.1. By Proposition 1.4, f(X) is
countable, and so the complement of f(X) is readily seen to be connected.
Moreover, since f(X) is compact and countable, it is nowhere dense in
€. Fixing n €N, Mergeylan's theorem implies that there exists a complex
polynomial P so that |z -p(z)| < ;—L for all z ef(X); put f,(z) =
B (ftx)). Then |7 - f,|I f%, and so it follows that fed4. Now, by
the Stone-Weierstrass theorem, we have A = ¢(x).

With Theorem 2.4 in hand, the problem of recognizing ¢(X) among
the other uniform algebras on X becomes an easy matter when X is a
compact scattered Hausdorff space. It is now natural to ask if the
scattered spaces are the only ones not admitting proper uniform algebras,

and we take up this question in what follows.

3.. A Partial Converse
The converse of Theorem 2.4 remains an open question, but M.

Rajagopalan ([5]) has shown that the converse is true for compact
ordered spaces. As corollary, it can be shown that the converse is true
for all metrizable compact spaces. First of all, however, we proceed to
establish a reduction theorem (3.5) via several lemmas (c¢f.[5]).

3.1. Lemma. Let X be a compact Hausdorff space, and let Y be a
closed subset of X which supports a proper uniform algebra A. Then X

supports a proper uniform algebra.

Proof. Define B = {f ¢ C(X): f|Y € A}; B is clearly a subalgebra
of C(X). Let {f‘n};: 1 be a sequence in B which converges to f e C(X).
Then {j‘n [ .Y}: - 1 converges to f Y, and, since A is a uniform algebra,
f [Yed. Thus, B isclosed. SinceA is a uniform algebra, A contains
the constants, and hence B also contains the constant functions. Let
X, y X with x $ y.

Case 1: Suppose x, yeXY. Then there is some ged so that g(a)
$ g(y), and the Tietze extension theorem yields f ¢ B with f(z) $ Fy).
Case 2: Suppose X e X~Y, Yy € X. By Urysohn's lemma, there is
some continuous f:X +{0,1] so that f(x) = 0 and f(z) = 1, for zeY U {y}.
But fly e A, and so f € B. Thus, B separates the points of X. Since
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A # ¢(Y), another application of Tietze's theorem shows that B # C€X),
and so B is a proper uniform algebra supported by X.

3.2. Lemma. Let X be a compact Hausdorff space, and suppose
that X is not scattered. Then, there is a separable closed subsgace Y
of X and a continuous function h from Y onto the classical Cantor ternary
set K. Moreover, Y and h can be chosen so that h maps no proper closed

subset of Y onto K.

Proof. Since X is not scattered, there is a continuous surjection
f:x »(0, 1] from X onto Lo, 1] (see [3] ). Put D = {E: E C X, E
closed in X, and f(E) = K}; f'l(K) e D, so D is nonvoid. By a Zorn's
lenma argument similar to that used in the proof of Lemma 2.1, thereis
some Y e D which is minimal under set inclusion. Put h=f|y. By
construction, h maps no proper closed subset of Y onto K, and it there-

fore follows that Y is separable.

3.3. Theorem. |f every compact, separable, and nonscattered
Hausdorff space supports a proper uniform algebra, then every compact non-

scattered Hausdorff space supports a proper uniform algebra.
Proof. This is immediate from Lemmes 3.1 and 3.2.

3.4. lemma. Let X be a compact, ordered, and nonscattered
(Hausdorff) space. Then there is a closed subset Y of X and a continuous

function h'Y -+ K from Y onto the Cantor ternary set K with the following

properties:
1) h (¥) =K and (@) % X for every proper closed subset G C Y;
2) Y is totally disconnected.
3) Y is separable;
4) Y is perfect;
5) Y is first countable.

Proof. There is a closed subset Y C X and a continuous function
h which satisfies1) and 3) by Lemma 3.2. To prove 4), let :coeY and
z, € ¥~{¥'} . Then Y~{z,} is closed whereby A(¥\xj} ) ¢ XK. Butk
is perfect, and this implies K~h{¥ \{xo} ) contains more than one point
which provides the desired contradiction; i.e., Y is perfect. Since Y
is a (compact) ordered separable space, Y is first countable. Final‘ly,
let F be a component in Y, and suppose that F contains more than one

point. Since X is an ordered space, there exist a, be F so that



(a,b) # ¢ and F contains (a,b). Then Y~ (a,b) is a proper closed subset
of Y that h meps onto X. Since this contradicts 1), we have that 2)
holds.

3.5.  Reduction Lemma. Suppose all compact, ordered, totally

disconnected, perfect, separable spaces support proper uniform algebras.
Then every compact, ordered nonscattered space supports a proper uniform
algebra.

Proof. Let X be a compact, ordered nonscattered space. Then,
by Lemma 3.4, there issome Y C X so that Y is compact, ordered,
totally disconnected, perfect, and separable. The result is now immedi-
ate from Lemma 3.1.

Definition. Let FC [0, 1] andlet F 3 D, where D, =

2
{—— ) <E— <1;mmeMNu{o} }. Let X be the subset of the complex
pPane gived by Xy = (C [0, 1] 2{0} ) U (F x {1} ) ~{(0, 0), (2, 1) }.
Put the Iexmographic order on 1. So, if (x,y), (u,v) eXF then
(z,y) ¢ (u,v) if, and only if,fou or x = u andy = v. Xp is a compact

ordered space in the lexicographic order. This compact ordered space
XF is said to be "obtained from [0, 1] by splitting the points of F."
The next result is due to S. Purisch.

3.6. Theonem (cf. [4] ). Let X be as in the above definition.
Then XF is a compact, ordered, separable, perfect, totally disconnected
space. Conversely, every compact, ordered, separable, perfect, totally
disconnected space i s homeomorphic to some XF where X isasin the
above definition.

37 Theorem (Rajagopalan [5] ). All compact, ordered, non-
scattered spaces support proper uniform algebras.

A detailed proof may be found in [5]; the main idea is to show
that compact ordered spaces of the form XF as above do support proper
uniform algebras, and then use Lemma 3.5 and Theorem 3.6.

3.8. Coroflary. Every uncountable compact metric space supports
a proper uniform algebra.

Proof. Any uncountable compact metric space contains a Cantor

set (see [1]). Since the Cantor set is ordered it admits a proper uniform
algebra by the preceding theorem, and hence every compact metric uncount-
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able space does support a proper uniform algebra.

Despite these contributions, the basic question still remains:
Does every nonscattered compact Hausdorff space support a proper uniform
algebra? .
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THE NUMBER OF BRIDGES
AND OUTPOINTS IN A CUBIC GRAPH

by Paut G. Eitner and Flank Harary
University of Michigan

Abstract. If G is a cubic connected graph with b bridges and
a 2 1 cutpoints, then b+ 1 2¢e$ 2b and these bounds are best possible.
Furthermore, for any positive integers b, ¢ with a even, satisfying
these inequalities, there is a cubic connected graph with b bridges
and ¢ cutpoints which we will show how to construct. As a byproduct,
we find that the number of cutpoints in any cubic graph is even.

1. Concepts about graphs.
The complete graph Kp has a set V of p 2 A points, and in KP

every pair of distinct points are joined by a line (are adjacent). The
first graph of Figure 1 is the complete graph X,. The set of lines of
Kp i s denoted by Ep' A graph G with p points has the same point set

as K and itsline set E is a subset of E . Following the terminology

o f , a bridge of a connected graph G is a line whose removal dis-
connects G, and a cutpoint is such a point of G. In a cubic graph,

each point has degree three. V¢ show in Figure A the three smallest
cubic graphs and also a cubic graph G with p = 10 points having a bridge

e and a cutpoint u.

FIGURE 1
Some. cubic graphs.
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In order that this note be self contained, we include here addi-
tional material from [1,p.32,42]. A tree is a connected graph with no
cycles; it can also be defined as a graph in which every two distinct
points are joined by a unique path. 1In a forest, each connected com-
ponent is a tree. Thus a graph is a forest if and only if every I_ine
is a bridge. -

For any graph H, we write p(H) and q(H) for the number of points
and lines of H. For a tree T, p(T) = q(T) * 1 is well known. Hence
for a forest F, p(F) 2 q(F) + 1, in fact, p(F) = g(F) t n where n is
the number of connected components.

1. Bounds On the numben of bridges and cutpoints in a cubic graph .

The first observation is a structural lemma for cubic graphs,

which is stated as an exercise in [1, p. 30].

Lemma 7. In a cubic graph, every cutpoint has a bridge incident
with it.

Proof. Let v be a cutpeint in a cubic graph G. Then the points
of G - » can be partitioned into two sets U and W such that every U-¥
path contains ». Since G is cubic, either v or W has exactly one line
joining it with »v. Say u is the only point of U adjacent to ». Then
thelinee= w is a bridge, since the removal of e disconnects U and W.

let band a be the number of bridges and outpoints of the graph
G, and let P, be the number of points of degree 1 (endpoints).

Lemma 2. If ¢ is a connected graph with at least one cutpoint,

then b + 1 £ ¢ + p;.

Proof. Let ¢'C G be the subgraph of G consisting of all the
bridges of G, as shown in Figure 2. Obviously G' is a forest, since it
is impossible for a cycle of G to contain a bridge (and here every line
of a cycle in G' would be a bridge of G), so g(G') + 1 < p(G').

Let » be a point of the forest G'. Then v is either an endpoint
or a cutpoint of G' and hence of G, thus p(¢') = ¢ * p;- By definition
of G', b = g(G'); therefore

b+1=gq()+21<p(6') =atpr
The following theorem gives best possible bounds on b and a for

a cubic graph @.
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AGURE 2
Subghaph consisting of the. bridges
Theorem 1. If G is a connected cubic graph with at least one
cutpoint, then b + 1.5 ¢ = 2b.

Proof. Since G is cubic, G has no endpoints. Thus by Lenmma 2,
b+ 1 2e. In acubic graph every cutpoint has a bridge incident with
it by Lema 1, and each bridge joins at most two cutp/oints, soel 2b.
Thusb+ 1505 2b.

3. Construction of cubic graphs with presciibed band e.
If b and ¢ are any positive integers withbt 1 £¢< 2b and ¢

even, there is a cubic graph with b bridges and ¢ cutpoints, which we
will show how to construct. V¢ will also show that the restriction
that ¢ be even is necessary:

As in the proof of Lemm 2, again let G' be the subgraph of the
cubic graph G consisting of its bridges. The next result shows that &'
is a cubic forest, i.e., that each point has degree 1 or 3.

Lemma 3. If G is cubic, then ¢ is a cubic forest, i.e., has no

points of degree 2.

Proof. Suppose G has a point » such that two of the lines ey:8q
incident with it are bridges and one, 23, is not. As 63 isnot a
bridge, it ison a cycle Cin G which must contain either e or ey, Say

e Then e, ison acyclein @&, contradicting the assumption that it

2
is a bridge.

Thus in order to construct a connected cubic graph with b bridges
and e cutpoints it is first necessary to find a cubic forest F with b

lines and ¢ points. Here we will see that it is necessary that e is
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even since the number of pointsin F of odd degree is even [1, p. 1u]
¢ nowv prove this statement.

Theorem 2. The number ¢ of cutpoints in a cubic graph is_gvgn.

Proof. In Lemma 3, we showed that the subgraph ¢' of a cubic”
graph G consisting of the bridges of ¢ and their points is a cubic
forest with b lines and e points. It isshown in [1d, p. 14] that in
any graph, the number of points of odd degree is even. Since every point
in the cubic forest ¢' has odd degree (1 or 3), the number ¢ of points in
G' must be even.

VW will see that the fact that e is even is the only constraint
besides b + 1. £e< 2b, and b > 0 for the existence of a cubic graph with
b bridges and ¢ cutpoints. For this purpose we require a preliminary
result.

Lemma 4. For e even and b > O with b + 1 < ¢ < 2b, thereisa
cubic forest having e points and b lines.

Proof. For any even integer 2n + 2 > 0 define T2n+2 to be the
tree obtained from the path Pn with n points by joining each of its

points to new points so that the degree of every point in Pn becomes 3.

§ R —
T2n+2'
n points
FIGURE 3
A cubic tree
Clearly T2n+2 is a cubic tree with ¢ = 2n + 2 pointsand b = ¢ - A lines,

for any even value of ¢ > 2 (when e = 2, Figure 3 reduces to the 2-point
tree K2). Let P = Fb,c,k be the union of T2k+2 2.
Then Fb ok is defined for 0 k< n and has (2k+2) + 2(n~-k) = 2n + 2

points and b = (2k+2-1) + (n-k) = »n + k + L lines. Thus there is a cubic

forest with & lines and ¢ points whenever n + 1. b £ 2n+l, that is, if

and n-k copies of K
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e=2nt2 and b+ L Sex 2b.

Nw |l et # and Ku - e be as shown in Figure 4; they are useful as
building blocks for cubic graphs with a prescribed number of cutpoints
and bridges. Of course Ku - e is the complete graph on four points

minus any edge e.

FIGURE 4
Two buifding blocks for cubic ghaphs.

Theonem 3. For any positive integers b,e with ¢ even such that
b+ 1 <e< 2b, there is a connected cubic graph with b bridges and e

cutpoints.
Proof. A cubic graph with b bridges and ¢ cutpoints will be con-

structed by joining copies of H and Ku - e to the endpoints of the
forest Fb & defined in Lema 4 in such a way that the resulting graph

is connected and cubic. Label the components of F o.k 88 trees Tl""’Tm
3 L]

wherem = c - b =#n -k +1. Since each of Tl""’Tm has at least two
points of degree 1, we can join endpoints of T; and T-L'+l with a copy of
K -eforallZ=1,2,..., m-1 so that the points of degree 1 in T;

4

and Ti+1

resulting graph is connected and each point in it has degree 1 or 3. |If

are identified with the points of degree 2 in Ku -e. The

we adjoin a copy of H to each point of degree 1 in this graph by identi-
fying the endpoint with the unique point of degree 2 in H, the resulting
graph G is cubic and connected with b lines and e outpoints, as illus-

trated in Figure 5 for b = 7, ¢ = 10.

FIGURE 5
A cubic ghraph with 10 cutpoints and 7 bridges.

247

This completes the construction of a cubic connected graph with b bridges
and e cutpoints for all even ¢ and b > 0 with b+ 1. 2e< 2b. |n fact it
can be seen that in a cubic graph ¢ = b + n, where n is the number of

connected components of the forest G'. U
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A SOME DI VI SIBILITY PROPERTIES OF
BI NOM AL COEFFI Cl ENTS

by Jean Ezell
Univernsity of Mississdippd

It is well-known that if p is prime, then for all k, 0 < k < pn,
the binomial coefficient (in) is divisible by p. In the present work
we investigate values of n for which the binomial coefficient (ﬁ) are
relatively prime to p for all k. In addition, for certain other values
of n3; we are able to say exactly how many of the coefficients (Z) are
divisible by p.

First we consider the values of n for which all (ﬁ) are prime to
p. A reasonable conjecture emerges, at least for the case p = 2, when
one examines the first few rows of Pascal's Triangle:

n=0 1

n=1 11

n =2 121

n =3 1331

n==u 14641

n=>=5 15101051

n==5 161520156 1
n=1717 17213532171
n =28 182856 70 56 28 81

Examination of the above data leads one almost immediately to guess that
the coefficients (ﬁ) are all odd if n is one less than a power of 2. It
i s encouraging to note that the coefficientsinrows 2 = 3 - 1 and

8 =3 - 1dareall relatively prime to 3. But this is also true of the
entries in row 5.

Theonem 1. If pisaprime, | isa positive in&eger, 12mc<p,
and 0 < k 5 mpg’ - 1, then the binomial coefficient ("F k _1) is
relatively prime to p.
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Proof.
(mpl N (m* - 1)t
kT =T

(mp™ - 1-k)k!

Lt - Dt -2 o mt —k)
= 1(2) ... (k)

2 2 2
- L =y . k),

V¢ now introduce the notation h_(n) for the largest integer I such that
pr divides n. W claim that for each 2, 1L i 5k, hp(mpz i) =hp(71).
To see this, let hp(i) =t sothat 2 = ptS with S relatively prime to p.
Then mpl -0 =m? - spt, and, since t is certainly less than or equal

gy Nw mpl_t - 8 is relatively prime to p.

-t

to I, this ispt (mp
This is obvious if t < &, since mp is divisible by p, but S is not.
If t =2, mpy’_t -8§=m-8 <m<p. Hence, sincem-s2> 1, mpz_t -8 is
not divisible by p. It follows that hp( mpg' -4y =1t-= hp(i). Ve now

know that the highest power of p in the numerator of each factor

L .
(—"%) is the same as the highest power of p in the corresponding
denominator. Hence p does not divide the binomial coefficient

2
("™ h

Now, in casep = 2, we will show that the values specified in
Theorem 1 are in fact the only ones. First some lemmas:
Lemma A. For a positive integer #,
1 - 1 = 1
hy((2n + 1)) = h,((20)}) = n + hy(nl) .

Proof. Clearly h,((2n t 1)) = h,((2n)!) since 2n + 1 is odd.

©

Recall that h_(k!) = [ b ], where square brackets denote the
P J=1r - @ ©
greatest integer function. Nw h2 ((2n)!) = z [2_’1] =
- - P
= in z n 1
n + —7]=n+ ) [—.]:n+h2(n.)
j=2 > j=1 27

Lenma B. If n is a positive integer, then h2(n!) <n -1, and

hz(n!) =n-1if and only if n is a power of 2.



250

Proof. suppose 2k fn< 2k+l. Then

hynt) =[31+[27+ ... +[Z—k]

< B r 5
St g ottt g
2
—’li i l
—;.(2+‘++...+ ;72')

n(l - }—E)<n.

2
Hence 2,(n!) 7 = 1. | fhyn!) =n - 1, then we haven - 1<n - lk ,
2
i 1y < -1 = - n n <«
since h,(n!) £ n(l =) =n % . Therefore, $1, or n s 2k,
2 27( 2k 2k ? =
K k

Butn 2 2 , son =2

Theorem 2. |fnisa positive integer with the property that (Z)
is od for each k¥, 0 £ k = n, thenn = 2% - 1 for some |.

Proof. We need only consider odd #n, sincei fn is even (") is
even. Suppose nisodd, sayn = 2% * 1. Nw consider (2kk+ l) =

(2k + 1)t . 2k + 1, . 2k + 1., _ ,
PPN I Since (7,7 ) isodd, A, (("7,7 7)) = hy((2k + 1)1)-

h2(k.') - Ry (Ck + 1)) =k + h2(k!) = h2(k!) e h2((k +1)4) =

k-hz((k +1)!) = 0. So h2((k + 1)!) = k, and by Lemma B this means
k +1isa power of 2, making k = 2 - 1 for some ¢.

In the introductory remarks, it was mentioned that the coefficients

(pkn) are all divisible by p, for 0<k<pn. This result i s a corollary of
the following theorem.

Theorem 3. |fn - mpz t 4, where 2 S m<p, and 0 2 § <p, thenp
i srelatively prime to exactly ( m * 1)(j + 1) of the coefficients (”:).
Proof.

s | ? L
(Z) = (( ”pk"'J) - (1T k+ J)(”P

k

+J'—l)...(|T+J'-k +1
=] 1 )-.

I f k = 0, certainly (z) isrelatively primetop. [|f 0< k < g, then
none of the numerators of these fractionsis divisible by p, and so, for
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ks g, (Z) is relatively prime to p. If j<k < ”'P’L + . then
o<k-j5mp£. Inthiscas: P I3 3 1
ny ot tdy . et tdympt td -1y cmyem Ly
()= (P D e @O L (T )

The last factor is relatively prime to p by Theorem 1. Hence
J
n 1 . . . . : .
= h +4-2)-n(k-12)). Sincei € j<p,
hp ((.k)) .20 (p(mp J -1 b J<p

2
mp!' +j - < isdivisible by p only in case ¢ = j, in which case

2y - "oy = o -4), and it foll that
hp (mp™ ) = 2. So hp((k)) 2 hp(k -7,) it followstha

ned W

=0 J

(Z) isrelatively prime to p i fand only i f = Ww(k-4) = 2.
=0

Since j < p, at most one hp(k - 2) mey be nonzero, for 0 < Z < j, ad

ifhp((Z)) isto be zero, then h (k- Z) must be £ for some 2, 0 < Z < 7,
That is, k - £ = pp’z' for some r, with » relatively prime to p. Hence

K = ppl + 4 fmpl + 4. For any of the j + 1 possible values of 7.
0<<¢ 2y, there arem values of », 1 < » < m, which yield values of k
for which h ((Z)) = 0. This yields m(j + 1) values of k. Recalling

the 7 + 1 values 0 € k £ 7 determined earlier, we have a total of

(m +1)G +1). A
AX
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@ THE KERNEL OF THE LAPLACE TRANSFORM

by David C. Sutherland
Hendrnix College

Introduction.

Is there any correlation between the use of the term kernel as
the kernel of an integral transform and the kernel of a homomorphism
between algebraic structures? The Laplace transform is given by
LAf()} = fpe _Stf(t)dt = F(g) for ¢>S , the abscissa of convergence
of F In this paper thekernel, X(s,t) = e'St, is exhibited as the kernel

of a homomorphism between two multiplicative semigroups of functions.

Setfting. Let S be the set of all functions f:[0, »)+ R such that
f is piecewise continuous on each interval [0,7],T>0, and is of ex-

ot

ponential order (i.e., ‘\f(t)\ S Me ", t>T, for some M, a, T ? 0). Wm

necessary assume f(t) = O for ¢+ < 0. Define convolution multiplication
on S by
Frog(t) = Fft-wgudu.

Theorem 1. (S,*) is a commutative semigroup.

Proof. we first note thatif f, g ¢ s, then f*g is continuous.
The Proof follows Churchill [1] , problem 9, p. us.

Suppose f, g € 8. Since f and g are of exponential order, we may
choose M, , a, T>0 such that [f(e)] < Me % and lg(t)]| = Mle“t for
t 2 7. Further require that M, is sufficiently large so that |f(£)]|< My
and lg(e)] < M, for 0Xt=T. Let e>0 and denote by M, the maximum of

( +#)0 o [o =). If ¢>27, then
|FfEgle)]| < |fl‘;l1f(t-u)g(u)du| }f f(t—u)g(u)dul

|ft pF(t-u) g (u)du|

A

T o(t-u) t- T at
Mifoe du+M2 f du+M2 f ‘e Te Y
2
l

eat[z(l -e"Tyip_27]< M2( +1)e®

Mi(% st)e "¢ (are)t <mlETEN?

L
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where M = Mi M,. Therefore, f¥*g is of exponential order.

W have shown that convolution is closed in S. To show associat-
ivity suppose f, g, h e Sand let t e [0,=).

(FE)*(E) = [3 1T " F(t-u-)g () (w)dvdu. 1)

Substituting W = u+v, K =u, A? = dv, and changing the order of inte-

gration in (2) we get

( f%g)*n(2)

11 Li(tw) g o-udh(uddudu

5E 107(t-0)g(w- u Yn(w)dud
JEr(t-w)ginw) dv = FE(gHh) (£).

Therefore, (5,%) is a semigroup. Commutativity involves a straightfor-
ward substitution and is left to the reader.

Let T be the set of all continuous functions
F: (sF,co) + R, ~w< sp < =. Define pointwise multiplication on T by
F-G(s) = F(8)G(s), & > max{sF, sG}-

Theorem |. (T,*) is a semigroup.
The proof to Theorem 2 is straightforward and left to the reader.

Theorem 3. The Laplace transform, X , acts as a mapping from S
into T.

The existence of &£ {f(¢)} = F(s) on an interval (sF,
f e S is shown in most standard differential equations texts (see [2],

=) for each

for example). The continuity of Fis shown in Churchill [1], pp. 41-43,
and Widder [6], pp. 373-375. A proof of the following theorem and other

properties of the Laplace transform also can be found in these references.
Theorem 4. (Convolution Theorem) If f, g €8, then
Lif * gle)t= LA RLg(B)} = F-Gls), s >max{sp,s6}.

As a consequence of the preceding theorem we have that & : 5-+T

i s a homomorphism.

Dinac delita function. At this point S does not have an identity.

For that purpose we introduce the Dirac delta function. Let H denote

the unit step function (or Heaviside function) defined by

‘o, t<0
H(t) =
|2 20
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Let # >0 and a > 0. Define dh : R >R by
dh(t) = (1/h){H(t) - H(t-h) }.

There are several ways to define the Dirac-delta function. One
way isS to consider it as a generalized derivative of H (for example, see
[3]7. Another conventional approach is to consider the Dirac-delta
function as the generalized limit of dh as h-+0+ (for example, see [sD.
In [4], this function is introduced through convolution quotient rings.
Thus, the Dirac-delta function is not actually a function in the usual
sense but rather belongs to the class of generalized functions or
distributions.

The following theorem summarizes properties of the Dirac-delta
function which will be used later.

Theorem 5. Leta,b 2 0and fes. Ifa20 é(t-a)is Ga(t).
1) f* 5 (8) =6 * f(£) = H(t-a-) f(t-a -).

(i1) 8, * §,(¢) = 8 44p(E)-

(ii1) L8 ()}= &7, 5> 0.

Proofs for this theorem can be found in [3], pp. 58-69.

Kernmel. Let Sl = SU{Ga - a2 o0}. The fact that Sl is a semi-
‘group under convolution follows from Theorem 5, (i) and (ii). Further-
more, the Laplace transform is defined on S;, and it is easily verified

that the Convolution Theorem still holds. For example, if fes and a 2 0.
Rifs 6,(0)) = L{H(t-a-) f(t-a-)} = P R{f(E-))
= L)} aﬁ{&a(t)}.

Therefore, & is a homomorphism from .S’l intoT. Let Tl = sC(Sl).
Before proceeding to our main result we need the following
Definition. A congruence on a semigroup S is an equivalence

relation p on S such that if s p t and u p v , then su p tv.

Nw define the relation p on Sl.s‘mh that fp gif, and only if,

Fls) = L{f(£)} = e PBLig(t)r =" ¢(s) for some a ¢ Rand al |

1.

8 > 58y 2 max{sF,sG

Theorem 6. The relation p is a congruence on Sl'

Proof. W first show that p is an equivalence relation. For the
reflexive property simply choose a = 0. Suppose f, g € Sl such that
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F(s) = e % (s) for smeac Rand all s > s,. Then G(s) = e®F(s)

which gives symmetry. In addition assume that h ¢ S and G(s) = eP2h(s)

for some b ¢ R and s > s,. Then F(s) = g P Ea) = e_ase_bsH(s) =

e-(a+b)3H(S), s > max {s,, 8,1}, demonstrating transitivity. .
Suppose f o g and h p k in 5. Choose a, b = R such that™ --

Fls) = ¢ g(s) and H(s) = e P5K(s), s »8y. By the Convolution Theorem

extended to Sl 5

L nle) )

Fls) 8(s) = e % G(s) e P8k (s)
= e (@IS ooy K (8)

- e-(a"'b)si{g""'k(t)}, 8> 8p .
Therefore f* h p g* k and the theorem is proved.

Let Sl/p be the quotient semigroup of all p-classes in §; with
multiplication defined by [f][g] = [f*gl- From Theorem 5,
Lif*sN= L&)} forall fes,. Therefore,[s]=[s.],a 20,
is the identity for Sl/p.

Finally, define the mapping a: Tl+.5‘:|/p so that a(F)Di_l (m)

for all Fe Tl’

Theorem 7. a is a homomorphism, and the kernel of a is
{Fer :Fe)=e az0 5>01%

Proof. Let F, Ge T;. Choose f, g € 5, such that L {f(t)} =
F(s) and &£{g(£)} = G(s). Then f e a(F) and g € «(6). Furthermore,
LA *g(£)} = F-G(g) from the Convolution Theorem. Therefore,
2Lraclr#g] = [f) [g] = atPala),
from which it follows that a(F)a(G) = a(F-G)}. Theorem 5, (iii) implies

that{F e T, : F(s) = e ® az0 s>0}is the kernel of a.

In conclusion, let us regard the kernel of the Laplace transform,
K(s,t) = e_St, as a one-parameter subsemigroup of Tl fore>0 and t > 0.
That is, for each t > 0 let X(:,t) ¢ TL such that K(s,t) = e_St, 8 >0.
Then the subsemigroup of .'l'l associated with X by the mapping t+X(*,t)
is precisely the kernel of the homomorphism a.

Referee's Note - Some of the results discussed in this paper are
also covered i n Louis Brand's Differential and Difference Equations;,
Wiley,1966, using the Mikusinski Operational Calculus.
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2

EMPLOYMENT OPPORTUNITIES IN INDUSTRY FOR NON-PH.D. MATHEMATICIANS

by V. Bushaw
Washington State Univers.ity

Introduction. Although much information about nonacademic employ-
ment opportunities for Ph.D. mathematicians can nov be found (see espe-
cially the Notices Of the American Mathematical Society), much I ess has
been written about such opportunities for mathematicians wo do not have
the doctorate. This is unfortunate, because it is probably for this
latter group that far more opportunities exist.

In the late seventies, ny university received a grant from the
National Science Foundation to consider ways of modifying the graduate

program in mathematics to provide better preparation for nonacademic

careers*. In connection with this project, dozens of present or poten
tial employers of mathematicians were interviewed to see what they had
to say about desirable qualifications for mathematicians. This inter-
viewing was accompanied by a review of the pertinent literature and by
participation in several conferences at Washington State University and
at Clemson University where representatives of government and industry
were able to express their views on the same subject. The following
remarks constitute mainly a summay of conclusions drawn from these
experiences:

Oppontunities for holdens of Bachelon's on Masten's Mathemaiios Dogrees

There is a considerable demand for suitably trained holders of a

bachelor's or master's degree in mathematics. Rightly or wrongly, may
employers regard Ph.D. mathematicians as an expensive luxury, while those
with master's degrees and no Ph.D. are considered to have almost as much
to offer, and to "fit in" better in the typical nonacademic working en-
vironment. (In fact, recent surveys indicate that the ratio of master's
degrees to Ph.D.'s in nonacademic employment for mathematicians is about
four to one.) Furthermore, the potential opportunities in industry for

*NSF Grant No. SED75-17322. A report on this project and on the parallel
project at Clemson University, New Opportunities i n Applied Mathematics
(October, 1979) is available from the author of this note.
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mathematicians have probably been hardly scratched. May possible described in the Introduction have led to a loose consensus about what

employers do not yet realize, but are often easy to convince, that they those features might be. While the claim in the heading of this section
should consider hiringmathematiciansin this category. Even so, there mey be a bit extravagant, there is ample evidence that the student who
are plenty of opportunities now, The two universities mentioned above, completes a program with most or all of the following characteristics

. - . R . 4 i i =
and others with similar programs, have experienced no difficulty in may confidently look forward to a rosy professional future.

1. Core Mathematics. Mathematics departments considering a

recent years in placing their master's degree graduates in a great variety

of appropriate jobs. Recent M.S. graduates from my university, for ex- ¢ move in the direction of preparation for nonacademic careers are
ample, have found positions with the Navy, in the lumber industry, in sometimes tempted to throw overboard all of the traditional pure
the aerospace industry, with manufacturers of calculators, in diverse mathematics. This is almost surely a mistake, as mawy industrial
consulting firms, and so on. CF course, some of them have chosen to go mathematicians would be among the first to say. Besides legitimiz-
into teaching or to continue graduate work. ing the use of the word "mathematics" in the name of the degree, a
These placements, however, are not always automatic. Opportunities significant graduate-level experience with some of the most im-

are not always obvious, and finding them sometimes requires a certain portant ideas of traditional mainstream mathematics is invaluable

amount of imagination and aggressiveness on the part of the graduate and background for further learning and for doing most kinds of

his or her faculty advisors. For instance, it is a mistake to look only applied mathematics. There is naturally some disagreement about

at advertisements announcing positions specifically for mathematicians. how much is "significant™, which ideas are "most important”, and

Engineers, physical scientists, computer scientists, business administra- how firmly core requirements should be prescribed.

tion graduates, and others have often been hired to do what should be a 2. Computing and nunerical analysis. There is wide agreement

mathematician's work. This is sometimes a result of an often misguided that nowadays anyone who receives a degree in mathematics should

but not always unshakable belief that such people are more "practical™. understand computing to a reasonable extent. This is certainly

but probably more often of an inadequate appreciation of what well- true of those contemplating careers as mathematicians in industry

trained mathematicians can contribute. Mathematics students in search of or government. Again, opinions about what "a reasonable extent"
employment are well advised to invadethisterritory, which should rightly i'S vary. greatly. Some qualified people would claim that a broad
be theirs. Recruiters from government agencies and private firms seldom ; background in computing is sufficient, and that detailed knowledge
resent this tactic. and often count it in favor of the student as a sign . of languages, systems, and software should be developed on the
_of initiative. job; others would expect the equivalent of an undergraduate major
I't may happen that energetic students. with the help of their in- in computer science. A tolerable middle position would seem to
structors and often of a college placement office, can create positions ' be that a nonacademic mathematician should know enough about
for themselves by persuading employers representatives that they Would computing to avoid being responsible for uiduly expensive computer
he valuable additions to their staffs. The sound advice in the litera- IS
ture of job-seeking applies fortissimo in this situation. 3. Applied statistics.
A nocipe fon_an absofutefy employable degnee in mathematics. The 4. Operations research or mathematical programming. Wnile
M.A. - or MS -holding mathematicianwho has been the subject of the pre- exrensive sequence- of course? in these areas ars hardly necessary
ceding paragraphs has been assumed to he suitably trained. While the in all casas, scme acquaintance with the basic concepts and tech-

traditional degree in pure mathematics hardly disqualifies a person for niques is invaluable.

nonacademic employment, it has become clear that certain features. some 5. Madeling. Th= student should be given some experience in
novel. can greatly enhance the graduate's opportunities. The inquiries modeling real world problems, preferably authentic nroblems with
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real data. The experience may be obtained in separate courses or
semnars, or along the way i n otherw se ordinary courses.
6. Field experience. Sonething by way of an of f-canpus in-

ternshi p, besides addi ng several dinensions to the student's
education, offers the student and at |east one possibl e enpl oyer
an opportunity to | ook each other over. Making such arrangenents
and supervising themis usually a nmatter of personal dipl onacy,
and therefore requires a good deal of faculty time; but, by all
indications, it is worth it. P ans such as that of the Mathe-
matics Ainic at the Aarenont Col | eges provide interesting alter-

natives. 1In general, when of f-canpus arrangerments are not practical,

on-canpus i nternshi ps in other departnents or in nonacadenic re-
search units nay serve nany of the sane purposes.

7. Broad interests. Enployers tend to expect their scien-
tific personnel to have a good "world view', including an appreci-
ation of both the technical and nontechnical (political, economc,
etc.) mlieus by which their work mght be affected and on whi ch
it mght inpinge. To sone extent this attribute nay be strength-
ened by encouraging or even requiring students to take appropriate
courses in other fields.

M| | - devel oped avocational interests al so cone under this
heading. A healthy interest in games, civic causes, and so on
is much nore likely to count for than against an enpl oyee.

8. Communication sKkills. The inportance of being able to

communi cate effectively, orally and in witing, with col | eagues
of many ki nds can hardly be exagger at ed.

9. Attitudes. The mathematician in governnent or industry
shoul d be not only conpetent, but eager to help others with their
problens and willing to work with themon their own terns. In
particular, he or she should not be obsessed w th nathemati cal
rigor. ne of the nmost frequent conplaints against traditionally
trained mathenmaticians is that they often do not know when enough
ti me has been spent on a probl emand soret hi ng el se shoul d be
t aken up.

10. Leadership ability. Even enployees recruited for their

scientific know edge are often expected, after sone years, to be
able to nove into the ranks of nanagenent. Failure to do sois
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frequently seen as failure indeed.
It may seema hopel essly tall order to conpress all of these el enents
into the two years or |ess of the usual nmaster's degree program But by
i ngeni ous managenent of the curriculum and a sincere effort to impart
the | ess technical el enments throughout the program sonething very |ike
it can be done, and i s being done at a nunber of universities. Students
at universities where no such programhas been fornalized can usually,
withalittle help fromthe faculty, custombuild something of the kind
for thensel ves.

The bachelon's degree. The standard bachelor's degree with a
nat hematics najor is not generally regarded i n industry as a terninal
prof essi onal degree. Neverthel ess, alnost al | hol ders of the bachelor's
degree, especially if they know sone conputing, are now findi ng suitabl e
positions. For exanple, it has recently been reported (e.g., in The Wall
Stree Journal of Septenber 12, 1980) that nany firns are now hiring
people with B.A.'s and B.S.'s in mathematics for positions that woul d
fornmerly have been filled by hol ders of the Master of Business Adm nis-
tration degree.

Wth the rapid mathematization of so nmany aspects of nodern life,
this trend will surely continue. |nfact, it can be expected to accel -
erate i f nore nathematics departnents nodify their undergraduate pro-
grans al ong the |lines suggested above for the naster's degree. This has
al ready happened i n nany col | eges, and the nove i s under study at nany
others. Specific recomendationsin this area, based on extensive con-
sultations and di scussions, will appear in the forthcomngreport of the
QM Panel on a General Mathematical Sciences Program

Conclusion. Students who | ove mathematics, but have been discour-
aged fromconsi dering a career in nathemati cs because of persi stent
runors about the unemployability of mathemati cians, shoul d stop worrying!
Wth a bit of thoughtful planning and gui dance, they nay be assured of
gratifying professional lives with mathematics itself -- especially if
they obtain suitabl e mat hemati cs degr ees.

N\ s
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@ PROBLEM DEPARTMENT
Edited by Leon Bankoff
Los Angeles, California
and
Clayton w. Dodge

University of Maine

This department welcomes problems believed to be new and at a
level appropriate for the readers of this jowrnal. Old problems dis-
playing novel and elegant methods of solution are also acceptable. The
choice of proposals for publication will be based on the editor's evalu-
ation of their anticipated reader response and also on their intrinsic
interest. Proposals should be accompanied by solutions i f available and
by any information that will assist the editor. Challenging conjectures
and problem proposals not accompanied by solutions will be designated
by an asterisk (#*).

Problem proposals offered for pubiication should be sent to Dr.
Leon Bankoff, 6360 Wilshire Boulevard, Los Angeles, California 90048.

To facilitate consideration of solutions for publication, solvers
should submit each solution on separate sheets (one side only) properly
identified with name and address and mailed before December 1, 1981 to
Clayton W. Dodge, Mathematics Department, University of Maine, Crono,
Maine 04469.

Contributors desiring acknowledgment of their proposals and
solutions are requested to enclose a stamped and self-addressed post-
card or, for those outside the U.S.4., an unstamped card or mailing label.

Problems for Solution

*456, [Fall 1979, Fall 1980] {Restated) Proposed by Paul Endos,
Spacer hip Earth.

Let ne restate problem 456. | want a path on visible lattice
points (withrelatively prime coordinates) which does not pass through a
point (p,q) where both coordinates are primes and where both coordinates
tend to infinity. Explanation: (u,v) has four neighbors, (ut+l,v) (u-1,v),
(u, v +1), (u,v-1), ad a point can be joined only to one of its neighbors.
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I offer 50 dollars for a path which goes through visible lattice
points and aveids(p,g) and moves monotonically aney fromthe origin, i.e.,
(u,v) can be joined only to (u+l,») or (u,v+l). The start of the path
can be any (u,v) = 1. | pay also for a non-existence proof. | do pet -
know the solution and | apologize for the unclearly and incorrectly i
stated problem 456. M old age ad stupidity is, | believe, adequate
explanation and excuse.

476. [Fall 1980] (Conrected) Proposed by Jack Garfunkel, Queens
College, Flushing, NV Yonk,

If A, B, ¢ , D are the internal angles of a convex quadrilateral,
that is, ifA+8 + ¢t D= 360° then /2 [cos(4/2) + cos(B/2) + cos(C/2)
+ cos(D/2)] 5 [cot(4/2) * cot(B/2) + cot(C/2) t cot(D/2) ], with equality
when A = B=¢ =D = 90°.

486. Proposed by Chuck AlLison and Peter Chu, San Peduo,
California.

Svimmears A ad B start fromopposite sides of a river and sMm to
their corresponding opposite sides and then back again, each snimming at
his oan constant rate. | f on the first pass they meet each other x feet
from A's starting side, ad on the second pass they meet at a point y
feet fromB's starting side, how wide i s the river in terms of x and y?

487. Proposed by Solomon . Golomb, University of Southern
California.

W know that 1/7 = .142857... repeating with period 6. With
A = 142 and B = 857, the first and second halves of the period, respect-
ively, we observe that A+ B = 999, axd B = 6A + 5. Prove this general-
ization:

If pis prime, ad the decimal expansion of 1/p has

period 2t, where A and B are the first ad second halves

of the period, then A + B consists of "all 9's", and when

B is divided by A, there is a quotient of p - 1 with a

remainder of p - 2.

Can you also generalize fromthe relation 14 + 28 + 57 = 992
Finally, what happens i f the expansions are in base b ad p i s merely
relatively prime to b? (Note: In baseb>1, b is always equal to 10,
but not necessarily equal to ten.)
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488. Proposed by Henb Tayfon, South Pasadena, Califonnia.
Take the numbers from 1. to 24 and put them into 8 disjoint 3-sets
[a,b,e] such that in each 3-set, ¢ + b = a.

489. Proposed by Michael W. Ecken, Pennsylvania State University,
Worthington Schanton Campus.

Let k and »n be positive integers with k<n. Two players take turns
choosing, on each turn, a positive integer 5k. A running total is kept,
and the player to achieve n as the sum is the winner.

State and prove winning strategy results for this game. (The
game with n = 50 and k = 6 has been used as a teaching tool, with modest

popularity, at the elementary and secondary school levels.)

490. Proposed by Joyce W. W.illiams, Noath Univernsity of Lowell.
The function f(»n) is to be constructed to give the number of days
in a year through the nth month for » = 0, 1,...,12. That is, f(0) = 0,

f(1) = 31,...,f(12) = 365. Leap year is to be ignored. What is the
simplest solution?

491. Proposed by Charnles W. Trigg, San Diego, California.

From a square grid of side 2n + 1 alternate squares are removed
to form a sieve. (a) Wha is the smallest sieve that can be dissected
and the parts assembled into two squares with integer sides? (b) Wha
is the smallest number of pieces into which the sieve must be cut to
accomplish this assembly?

492.  Proposed by Jack Garfunket, Queens College, FLushing, N.Y.
Given an acute triangle ABC with altitudes denoted by ha’ hb’ hc
and medians by M, My 5 m, to sides a, b, ¢ respectively. The points
P, Q, R are determined by the intersections maﬁhb , mphc, and mcﬁha ,

respectively. Prove:

265
AP |, BQ , CR >
it TR -5
where L, M, N are the feet of the medians.
493. Proposed by Kenneth M. Wilke, Topeka., Kansas.
Determine the greatest power which divides nl. Prove that for

n>21 it is a square. (This is a restatement of problem 467. [Spring
1980]).

494. Proposed by Zefda Katz, Beverly Hills, California.

In the annexed figure CD is a half-chord perpendicular to the
diameter AB of the semicircle (0), and the inscribed circle (P) touches
AB in J and the arcDB in K. Sow by elementarv plane geometry, without

D
K
.P %
G J B

using inversion, that 4D = A..

A 0
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495. Proposed by Richard Hess, Palos Vendes, California.
A regular pentagon is drawn on ordinary graph paper. Prove that
no more than two of its vertices |ie on grid points.

496. Proposed by Donald Canard, Anaheim, California.

P is any point within a triangle AB¢, whose sides are a, b, e,
whose semiperimeter is S and whose orthocenter isH. Let x denote the
distance from P to BC and | et R denote the circumradius of triangle ABC
Sow that

2 2 2

2= + e’ - w? - ZEp?ho? - g

- a’).

497. Proposed by Scott Kim, Artificial Intelligence Laboratony,
Stanfond Univensity.

Three drummers are positioned at the corners of a large equilateral
triangle, say 1 mile on a side. Each drummer beats his drum at a constant
rate r, with the time between beats being equal to the time it takes for
the sound to travel the length of one side of the triangle. The drums are
synchronized so that a listener standing in the center of the triangle
would hear all three beats simultaneously. This means that it seems to
each drummer that the other two drums are in synch with his om drum
(actually they are delayed by one beat).

Problem: Where else can a listener stand (besides the center and
corners) and hear all three drums in synchronization?

Unsolved (untried): Wha if the drummers beat at a rate of nr,
forn = 2,3,4,...?

Solutions

423 [Spring 1978; Spring 1979; Spring 1980] Proposed by Richand
S. Fietd, Santa. Monica, California.
Find al | solutions in positive integers of the equation

A - BD = CC where D is a prime number.

Comment by the proposer.
The published solution does not generate all solutions. Counter-
examples include (4,B,C,D) equal to (14, 13, 3, 2), (65, 63, 4, 2), and a

general form
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((2n+1)2n+l +1 (2n+1)2n+l -1

2 ] 2 b

2n + 1, 2).

Editorial Comment. Since we do not have a complete solution,

this problem remains open and solutions are solicited. e

438. [Spring 1979; Spring 1980; Fall 1980] Proposed by Ernst
Sthaus, University of California at Los Angeles.

Prove that the aam of the lengths of alternate sides of a hexagon
with concurrent major diagonals inscribed in the unit circle is less
than 4.

11. Sotution by Pan! Kelly, Univernsity of California at Santa. Barbara.
Let the hexagon be ABCDEF with major diagonals meeting at P. If
we keep A, B, C, D fixed and | et P move on AD then we maximize EF by maxi-
mizing A BPC; that is, by choosing P so that the circle X(BPC) is tangent
to AD.
V¢ now want to prove that the only nondegenerate critical case is
obtained for the regular hexagon (which does not give a maximum).

So, assume the hexagon is critical with

K(BCP) tangent to AD
K(DEP) tangent to FC
K(AFP) tangent to BE

and invert on a circle centered at p. The original circle goes to some
new circle containing the image hexagen 4B 'C 'D'E'F' whose major diagonals
still meet at P. The circles X(BCP), K(DEP), and X(AFP)map to B'C'||
A'D' , D'E'||F'¢' , and A'F'|| B'E" repectively. Such a configuration
leads to B'C' =A'F' =DIE and i7" = T'D' = ETF' , Creating several isos-
celes trapezoids. But this is possible only i f P is the center of the
nev circle, and hence was the center of the old circle.

So maximum i s attained only for P on the boundary i n which

case clearly the sm is £ 4.

462. [Spring 1980] Proposed by the. Late R. Robinson Rowe.

A pilot down at Aville asked a native how far it was to Btown and
was told, "It's south 1500 miles, then east 1000 miles, or east 500 miles
and south 1500 miles." Hw far was it directly? ’
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Sofution by Moriis Katz, Mocwahoc, Maine.

Let N denote the north pole, A = Aville, B = Btown, C be 1500
miles south of A, D be 1500 miles north of B, and O the center of the
earth, assumed to be a sphere of radius 3950 miles. Let planes perpen-
dicular to ON through A and D and through B and ¢ cut ON at Q and R re-
spectively. Let a denote the angle between peat circles NDB and NAC,
so a = 3DQA = 3BRC. Let g and y be the angles of inclination from the
plane of the equator of OB and 04 respectively. V& measure all angles in
radians. W have

a- gp = 500 and « -+ RB = 1000, so QD = %‘?B.

Also
1500 = 3950(y-B), Wwhencey- B= 0.3797468.
Since
%‘cos B =cosy =cos{ B+ (y-B)) = cos B cos(y-B) - sin B sin(y-8),
cos(y-8) - %‘
tan B = —mG 1.1566643,
S0
B = 0.8579127 and y = 1.2376596,
QD = 3950 cos y = 1291.6853 mi,
and RB = 3950 cos B = 2583.3706 mi.
Finally
_ 500 _ 1000 _
a = TQ—E—‘ - W = 0.3870912.
Let 6 = 3BOC and € = 340D . Then
cosg =1 - cosis(l - cosa) = 0.9683520,
cose =1 - cos?y(l - cosa) = 0.9920880,
ile)

§ = 0.2522552 and ¢ = 0.1258766.

If E is the midpoint of BC, then NEC is a right angle, whence in
triangle NEC, cos NC = cot 3¥ cot 3¥C ; that is,

cos(% -g)tan & = 0.1482692

cot3C = cos NC tan 3N 5

n

and
3C = JACB

1.4235995.

269

Nw apply the law of cosines to triangle ABC to get

cosa=cosacosbtsinasinbcos 3¢
= cos & cos(y-8) t sin 6 sin(y-g) cos 3¢
= 0.9129345
so ¢ = JA0B = 0.4203785. The length of side AB is therefore given by
AB = 39500 = 1660.4952 mi.

Also s0fved by MARK EVANS, IRWIN JUNGREIS, and ithe Proposes.

EVANS and the. Proposer independently pointed out that a very
accurate approximate solution i s obtained by assuming ABCD to be a plane
trapezoid. Then

AB = ((15002 - 250%) + 750%)1/2 = 1658.3 mi,
an error of only 2 miles.

463. [Spring 19801 Proposed by C.S Venkataraman, Snee Kerala
Varma College, Trichur, South India.

Let f(n) be a function defined over positive integers and

| f(d)= n. Then, prove that f{n) = ¢(n), the Euler's function
din

denoting the number of integers prime to and not greater than #.
|. Solution by Michael . Ecker, Pennsyluania State University, Seranton.

The problem really has two parts, an implicit existence portion
with an explicit uniqueness assertion.
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Exi stence -- First, ¢ is such a function; i.e. Z ¢(d) = n.

din
Thisis fairly well-known (e.g. found on page 97 of the 2nd edition of
N ven & Zuckerman's An Intrgduction to the Theory of Numbers).
Uni queness -- This is trivial frominduction or well-ordering.

Let » = smallest integer for which f{n) # ¢(n). Qearly, n>1 From
f(d) = ¢(d) for all d<=n we have now

n= fn) + Z ) = on) + Z #(d)
dln d|n

d<n d<n

inplying f{n) = ¢(n).
I1. Sofution by Ferrell Wheelern, Texas A & M University.

It is well known that Z ¢(d) = n, and we are given Zf(d)
dln d|n
= n for some nunber-theoretic function f. Using the Mobius inversion
formula for both of these equations gives us

= u(d)

¢(Yl) = n Z d_
d|n

and fn) = n Z “((1—)
dln

therefore fin) = ¢(n).

ALso sotved by MKE CALL, (2 solutions), MARCO A ETTR QK |RWN
JUNGRE! S, MARK F. KRUELLE, HENRY S LI EBERVAN, PETER A LI NDSTROM
PR ELI PP, GALI SALVATOR, DWGHT SAWER |. PH LIP scaLI s, KENNETH M
WILKE, and the Proposen.

SALVATCR and W LKE of fered references for the Mobius i nversion
formil a:

1. Adans and ol dstein, Introduction to Number Theory, Prentice-Hall,
1976, Ex. 14, p. 152.

Carmichael, Theory of Numbers, Dover, p. 32

3. Nven and Zuckernan, Introduction to the Theory of Numbers, 3rd ed.,
John wiley and Sons, pp. 86, 88
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464. [ring 1980] Proposed by Solomon W. Golomb, University
of, Southenn Califonnia, Lob Angeles.
For all positive integersa and b with 1<a<b, showthat (a!)p-1
-1
<) -

Solution by Robert A Stump, Hopewelf, Virnginia.

Qearly d £ @t letbhsa+k (ka positive integer), then
(a!)b'.l - (a!)a+7<—l

= (@) Y

a—l( a-1.k
a

2 (alt)

)

(@)® Y [(ar1)® a2 o @) 1]

A

[(a+k)t 1ot

H

= @n*l
Also sotved by MKE CALL, MARK EVANS, MARTIE FIELDS, SAMUEL QUT,

[RWN JUNGREI S, MCRR'S KATZ, ZELDA KATZ, JAVES A PARSLY, BB PRIELIPP.
DW GHT SAWER, JEFF SHALLIT, FERRELL WHEELER and the. Proposex.

465. [Spring 1980] Proposed by Chartes (. Trigg, San Diego,
California.

Wat is the shortest strip of equilateral triangles of side k
that, while remaining intact. can be fol ded al ong the sides of the
triangl es so as to conpletely cover the surface of an octahedron wth
edges k?

Solution by Was. Catll, Rose-Hulman Institute of Technology, Teare Haute,
Indiana.

In analysis of this problem a strip of twelve triangles, num
bered 1 through 12, nmay be useful. A so |abel an octahedron as shown

inFgurel
If the stripis not folded back upon itself. at nost 6 sides of
the octahedron nay be covered; e.g.. sides 1,2,3,5.6,7.1,2,3,... . The

anal ysi s nay be broken down casewise according to when in the 6-cycle
the strip is folded upon itself. Folding back after the 1st triangle
is useless. Fol dingbackafter the 3rd triangleresults in 1,2,3,3,4,.u:
with the possibl e choi ces of repeating side 1, or fol ding back on side .
4. Hence, at least 10 triangles are necessary. Fol di ng back after the

4thresultsin 1,2,3,5,5,8,,,. with the choi ces of repeating side 2 or
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folding back upon side 8. Again, at least 10 choices are necessary.
Folding back after the 5th triangle results in 1,2,3,5,6,6,4,... with
the choices of repeating 3 or folding back on side 4. Again, at least
10 are necessary. Folding back after the 6th triangle results in
1,2,3,5,6,7,7,8,... with the choices of repeating 5, or folding back
upon 8. Folding back after the second triangle, however, results in
1,2,2,3,4,7,8,5,5,6 which uses exactly 10 triangles. Having covered al |
possible cases, it mey be said that the minimal strip length is 10.

BN AN AN
NN N

Top View Front Right
View Side
FIGURE 1

Comment by the Proposer.

The 8-triangle strip of Figure 2will cover the surface of a con-
cave octahedrony which pélyhedron can be formed from three regular tetra-
hedrons with a common edge. Fold over the strip so that side a coincides
with b and f with g, then bring ¢ into contact with 4. This will cause
¢ and j and e and h to coincide, thus completing the surface of a concave
octahedron with an 8-triangle strip.

ALso solved by the Proposen. Solution of Length 11 by RALPH KING,

FIGURE 2
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466. [Spring 19801 Proposed by Hernbert Taylorn, South Pasadend,
California.

Let the adversary put four distinct symbols in each box (node) of
this graph. Prove or disprove: No matter what pattern of symbols he
puts, we can choose two symbols from each box in such a way that adj a(-:-ent
boxes have disjoint chosen 2-sets.

Only one (incorrect)solution has been received from our readers,
so we extend the deadline and encourage you to submit solutions to this

problem.

467. [Spring 19801 Paopobed by Paul Erdos, Spaceship Earth,
and John L. Selfridge, University of Michigan.

Determine the greatest power which divides n! Prove that for
n 26 it is a square.
1. Solution by Jean E. Ezell, University, Mississippi, and Iawin
Jungnedis, No. Woodmene, New York, independently.

As stated, the problem is incorrect. Consider

18 9 4 3

21! =27 « 3.5 . 7% .11 .13 .17 - 19.
The greatest power which divides 21! is h = (26 3% s, 7)3 and the
greatest square which divides 21! is (29 . 3Ll e 52 . 7)2 = %

1T. Sofution bq Kenneth M. Wilke, Topeka, Kansas.

Counterexample: For n = 21, 21! = 51090942171709440000 =
18 g n 3
27° .37 o5t . 7% . 11,1317 - 19 = (7257600)° - 21 . 46189 =

(60‘1‘80)3 . 5 - 46189, where 46189 = 11 . 13 - 17 . 19 and (E\C)'J¢80)3 =
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221225582592000 > 52672757760000 = (7257600)%. Here 60480 = 28 3%.5.7
which is the root of the | argest cube which divides 21!. Likew se
7257600 = 2%. a*. 52. 7 which is the root of the | argest square whi ch
di vi des 21!.

Editor's Comment. See problem 493, proposed in this issue of the

Pi Mu Epsilon Journal.

468. [Spring 1980] Proposed by Michael W. Ecker, Pennsyl-
vania State Univernsity, Wornthington Scranton Campus.
e
A priori, the expression ab is ambiguous in that it would nean

b)c or a(bc).

either (a Assuning a, b, and ¢ are positive integersy
find all triples (a, b, ¢) for which the two expressions are equal .
Solution by Ferretl Wheeten, Texas A é M University, Beaumont.

The first obvious set of solutionsis (1, b, ¢). Nwfor a > 1
#° - ab%) ipplies be = b whichinplies e = 571
e = 1 this is always true, therefore another set of solutions is
(a, b, 1). If ¢ = 2,thenb = 2, therefore the third set of sol utions

is(a, 2, 2. For b,e>2, pot >e, therefore all of the solutions are

since b>0. Wen

gi ven by

(1, b, @), (a, b, 1), and (a, 2, 2).
Also solved by MKE CALL, MARK EVANS, ROBERT C GEBHARDT, SAMUEL
QJT, |RWN JUNGREIS, BB PRIELIPP, JEFF SHALLIT, GRS THOMAS, CHARLES
W TR G5 KENNETH M. WILKE, an uns.igned sofver, and the Proposen.

469 ring 19801 Proposed by Richard 1. Hub, Pafos Verdes,
Califonnia.

Sart with a unit circle and circunscribe an equilateral triangle
about it. Then circunscribe a circle about the triangl e and a square
about the circle. ntinue indefinitely circunscribingcircle, regul ar
pent agon, circl e regul ar hexagon, etc.

a) Prove that there is a circle which contains the entire

structure.
*b) HFndthe radius of the snallest such circle.

1. Sokution to pant (a)by Michaef W. Eckm, Scranton, Pennsylvania.
Let r, = radi us of incircle of the n-gon(for = = 3,4,5,...).

t hen Pt radi us of ecircumcircle of the n-gon. Ve al so have
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Thus r = sec — * P = sec — °* sec =
H n+l n n n u-1 "n-1

=[] sec 7)1, It sufficestoshowthat 1im [] sec 7 exists.
k=4 n+ o k=y

For this, we need only show t hat E (sec % -1) converges. Thisis

k=t
2

so by conparison: 0 < sec%' 1<% This last inequality nay be
k

verified as fol | ows:
2

1 1
T 55 ® ;2 <l+"—2wheret~:>0
S T /k " /k k
k 1-—=— e S .
2! 2!
2,.2 e 2
because 1< (1 - T/K 31 %1y,
2 2 v
n+
n-gon
Tn P
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17. Solution to part (b) by Hawwy L. Nelson, Journal of Recreational
Mathematics, Livermore, California.

By conputer, we find that »_is 8.70005 * .00005.

Atso solved by MKE CALL: (r_=8.69999 ...), | RW N JUNGREIS, part
[a]onty , HARRY L NELSON, JOYCE W WLLIAMB(8.70001 <z, < 8.70004),
and the Proposer (r,=8.700036 ...).

470. [Soring 1980] Proposed by Tom Apostol, California ImLiAf.de
0§ Technology.
dven integers m>n>0. Let

a = awnt b/n
B = e/m+ dfn

where a, b, e, d are rational nunbers.
(a) If ad + be = 0 or if /m is a square, prove that both a and B are
rational or both are irrational.
() If m:= r2and n : 82 for sone pair of integers r>s>0 then a and
g are both rational. Prove that the converseis alsotrue if ad # be.
I. Disproof by Mike Call, Rose-Hulman 1ndLiAf.deof Technofogy, Terre
tfaf.de, Indiana, and Bob Prielipp, University of Wisconsin-O0shkosh,
Andependently.

let m=8,n:2 a=e¢:=1,Db:-2,d=2 Then

0:=0=:1/8-2/2 and w/2:38 : 1/8+ 272,
even though »m = 16 and ad t be = 1(2) *+ 1(-2) = 0. This shows that

nei ther of the aforenentioned conditionsis sufficient for the concl usion.

11. Solution by Ferrnell Wheelen*, Texas A & M Univernsity, College
Station.
(a) Mil tiplying the two equati ons toget her we have

aB = aemt bdn +(ad t be) /. (1)

If either(ad t Be) = 0 or »m is a square then the right side of this
equationis rational. This imediately inpliesthat if aB # O then a
and 8 are both rational or both are irrational.

(b) W shal |l assume « and B are nonzero rational nunbers. S nce
ad # be, either ad or be is nonzero. Wthout | oss of generality,
assume ad i s nonzero which inplies a and d are both nonzero. Now
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(@ - am? = (b/m)?

or & L vge. Fiw a'@ = HR
whichinplies  vm: (a®m - b2 t a®)/2aa. -

is arational nunber. Therefore m nust be a square number, say r2.
Now fromequation (1) »mm is a square which inplies that » is a square,
saysz. Since m>n>0, then ve nay take r>s>0.

The following additional solverns who also discovered the dis-
proof are indicated by an asterisk: MKE caLL*, DAVID DEL SESTO, MARCO
A. ETTRICK, ROBERT A FULLER {pant (a)), HENRY S. LIEBERMAN, BOB
PRIELIPP*, and the Proposen.

471 [Spring 19801 Proposed by Clayton W. Dodge, University
of Maine at Onono.

Let two circles neet at O and P, and |l et the dianeters 0s and OT
of the two circles cut the other circle at A and B. Prove that chord
OP passes through the center of circle OAB.

Solution by Sisten Stephanie SLoyan, Georgian Court College, Lakewcod,
NV Jersey.

This problemis sol ved conpletely in the text (p. 88) of Shively,
Modern Geonetry (Wiley, 1939) by neans of inversion. Wth appropriate
changes of letters the solution follows: Invert the figure with O as
center of inversion, and let P, A", and B*' be the inverses of P, A and
B respectively. Each of the lines PO, TO, and SO inverts into itself
while the circles through ApT, BPS , and AOB invert into the |ines
P'A', P'B', and A'B' respectively. Moreover, since a dianmeter inter-
sects its circle orthogonally, 4'0 and B'0O are, by the conformal



property of inversion, altitudes of triangles P'4'B'; hence P'0 is
perpendicular to A'B*. Therefore PO i s orthogonal to the circle 04B,

from which it follows that it passes through the center of this circle.

P!

Also sofved by MIKE CALL, MANGHO AHUJA, and the Proposen.
CALL's solution was by analytic geometryy placing 0 at the origin and
OAS along the x-axis. He showed the point of intersection of the per-

pendicular bisectors of OA and 0B satisfied the equation of line OP.

472. [Spring 1980] Proposed by R. S. Luthar, University of
Wisconsin Center, Janesville.

Evaluate f 5—2 dx

16 t 9 cos™x

Solution by Yuan-Whay Chu, Janesville, Wisconsin

f 5 dx _5f dx
2. 2 . 2
16 t 9 cos™x 25 cos“x + 16 sin“x
J,' seczx dx
= 5 A AT
25 + 16 tanx
/ d(%tana:)
1+ (%tanac)2

arctan(%tan x) + C.

& have

£l

£l

ALso solved by MANGHO AHUJA, MIKE CALL’ MARCO A. ETTRICK,
VICTOR G. FESER, ROBERT C. GEBHARDT, IRWIN JUNGREIS, RALPH KING® GUS
MAVRIGIAN, BOB PRIELIPP, 1. PHILIP SCALASI, FERRELL WHEELER’ BARTON L.
WILLIS, and the Proposen.
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In addition to CHU, GEBHARDT used the substitution u = étan.r,
CALL and PRIELIPP used u = tan x, SCALISI used u = % cot x, FESSER,
WILLIS, and the Propeoser used u = tan(x/2), JUNGREIS used the substitu-
tion % tan x = tan u, and the other solvers used tables or undisclosed

procedures.

473. [Spring 19801 Proposed by Jack Ganfunkef, Forest HiLLs
High School, Flushing, Nv Yonk.

In an acute triangle ABC with angle A = 500, P is a point within
the triangle. D and E are the feet of the Cevians through P from ¢
and B respectively.

a) |If BD = DE = EC, prove that AP = BP = CP.

b) Conversely, if AP = BP = CP, prove that BD = DE = EC.

c) |If angle PBC = angle PCB = 30°, show that BD = DE = EC.

I. Solution to part (a] by Zefda Katz, Beverly Hills, California.
If BD = OE = EC, then

3PCE + 3PBD = PDE + 3PED = IPBC t 3PCB
since triangles DBE and EDC are isosceles and triangles PDE and PBC
share vertical angles at P. Therefore

IPBC + IPCB = S(3ABC + 3ACB ) = 60°
and 3BPC = 120°. Thus A, D, P, and E are concyeclic, whence

3PAE = 3PDE = 3ECD .

Nw triangle PAC is isosceles,; so AP = CP. Similarly AP = BP and the
theorem follows.
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11. Solution to parts (6] and {c) 6y Tnwin Jungreis, Noath Woodmere,
NV Vonrk.,
(b) Since, by part (a), if D and £ exist with BD = DE = EC, then they
are the feet of the cevians through the circumcenter and part (b) is
proved, all we need show is that in every acute ABCwith 34 = 60°, there
exist D and E on AB and AC respectively, with BD = [E = EC.

First, since 3¢ < 90° and 38 > 30° (because 4 = 60°), we know
AB <24C and similarly AC <2AB. Say ABs< AC. Let DX be the point be-
tween A and B a distance x from B and Ex be the point between A and ¢
a distance x from ¢. Let f(x) = BDx - DE.. Then £(0) = BC < 0 and
f(AB) = AB - (AC - AB) = 24B - AC >0, so by continuity there is a point
D between A and B with f(BD) = 0. That is the desired point.

(c) If ¥PBC = 3pcB = 30° then 3BDC = 120° and OB = OC. Draw the
circle centered at 0 and through B and ¢. Since are BC = 120° and 3BAC
= 60°, then A is on the circle, and & = BP = CP. Nw apply part (b).

Complete solutions were submitted by both solvers above and
solutions to parts (a) and (b) by the Proposen.

FROBLEMVIATICAL POSTSCRIPT

The following note was received from ROBERT C. BROWN and PAUL M.
RIGGS of the Southeastern Louisiana University::

Please refer to the comment on page 206 of Volume 7, Fall 1980,
by Miss Amanda B. Reckundwith.

h page 298 of .the Historical and Biographical Notes of N.
Altshiller Court's College Geometry, Second Edition 1952, is the follow-
ing quote concerning the proposition 175.

The orthocenter -"The three altitudes of a triangle are con-

current.' 175. The proposition is not included in the Elements of Euclid.

It is found in the writings of Archimedes (287-212 B.C.) in an indirect
form, and explicitly in Proclus (410-485), a commentator of Euclid.

\\/2
I\
\\
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PUZZLE SECTION
David Ballew -

This department i s for the enjoyment of those readers who are addicted
to working crossword puzzles or who find an ceceasional mathematical puzzle
attractive. V¢ consider mathematical puzzles to be problems whose solutions
consist of answers immediately recognizable as correct by simple observation
and requiring little formal proof. Material submitted and not used here
wtll be sent to the Problem Editor i f deemed appropriate for that department.

Address all proposed puzzles and puzzle solutions to David Ballew,
Editor of the P Mi Epsilon Journal, Department of Mathematical Sciences,
South Dakota School of Mines and Technology, Rapid City, South Dakota,

57701. Deadlines for puzzles appearing in the Fall issue will be the next
February 15, and puzzles appearing in the Spring issue will be due on the
next September 15.

Mathacrostic No. 12
submitted by Joseph D. E. Konhauser
Macalester College, St. Paul, Minnesota

Like the preceeding puzzles, this puzzle (on the next page) is a keyed
anagram. The 215 letters to be entered in the diagram in the numbered
spaces wWill be identical with those in the 26 keyed words at matching num-
bers, and the key letters have been entered in the diagram to assist in
constructing your solution. When completed, the initial letterswill give
a famous author and the title of his book; the diagram will be a quotation
from that book.

Cross-Number Puzzles

submitted by Mark Tsaak
Student, University of California, Berkeley

In the cross-number puzzles (starting two pages hence), each of the
letters stands for a positive, nonzero integer. The algebraic expressions
evaluate out to two to five digit numbers which fit in the squares as ir.l‘ a
normal crossword puzzle. None of the numbers in the squares have any lead-
zeros; i. e., if there isroom for a four digit number, that number will be

at least 1000, never, for example, 0999.



1 2 3 4 5 Ji6 7 8 9 10 11 nfl2 13
14 15 16 17 18 N 19 20 21 22 X{23 24
25 26 27 28 29 5|30 31 32 33 34 C|35 36
37 38 39 40 41 v|42 43 44 45 46 47
48 49 50 51 52 K|53 54 55 56 57 58 59
60 61 62 63 64 V 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80 o 8l
82 83 84 85 86 B|87 88 89 90 91 J]92 93
94 95 96 97 B|98 99 100 101 102 103 104
105 106 107 108 lo9 P 110 111 112 113 114 c|115
116 117 118 119 120 121 v|122 123 124 125 126 Vv|127 128
129 130 131 132 133 K 134 135 136 137 138 139
140 141 142 143 144 0f145 146 147 148 149 Y 150
151 152 153 154 155 156 157 158 159 160 E|1l61 162
163 164 165 166 167 168 169 170 171 172 173 174
175 176 177 178 179 c| 180 181 182 183 184 Qf185 186
187 188 189 190 ujl191 192 193 194 195 196 ¥ 197
198 199 200 201 202 U 203 204 205 206 x| 207 208
209 210 211 F| 212 213 214 P 215

]

in Euchre, the other jack of the sane
color as the trunp suit jack (2 wds.}

ordered fornmal cal cul ation

. "The truth of a theory is in your

m nd, . A. Enstein (4 wds.)

fold, cusp, swallowail, butterfly,
w gnam

first to prove the well-ordering
t heorem (1871-1953)

dual of a cube
a pi ece i n backgammon

pseudonym of Qui ness brewery chem st,
W 5. Cossett (1876-1937), known for
his distributions of t, not beer

a filling of the plane without gaps or
overl aps

wher e Archi nedes formul ated his | aw of
hydrostatics (3 wds. )

British geoneter (1845-1879), who, in
1876, suggested there is a relation-
ship between matter and curvature

medi um postul ated to carry el ectro-
magneti ¢ waves

what a sphere needs to becone honeo-
norphic to a doubl e torus (2 wds.)

. star cluster in the face of the Bull

a statistician's bread and butter
(2 wds.)

. Infinity"; title of Gamow's
popular exploration of science (3 wds.)

how i ng; wailing

. anci ent shadow cl ock; carpenter's

squar e

, easily unfastened knot (2 wds.)

Julian's Bower; labyrinth (comp.)

. "Mathenmatics is the glory of the

G Leibniz (2 wds.)
tw st toget her

curve known as the shoenaker's knife
a communi cati on channel of sorts
tabl e of assigned pl aces of a cel es-

tial body for regular intervals

G stercian nonk (c. 1345) who was
called "the cal cul ator"

166 211 19 150 30 57 134 87 128 177



ACROSS DOWN PR PR R £
1 s 1. AE .
2 3
5. A 2. B
6. C 3. E9 + 1000 o
7. A - 18 4. BC/89
2 2 i ?
8. (1/9)A° - D 7. E 7
[]
#2 .
ACROSS DOWN ‘ =
= .
1. 5AB/91 1. 5B 4
4. 66C + 82 2. 619(B + C + E) - 30
5. (V/11B + 22)2 3. C+ 7E i
6. D 4. 6C + 3 %
7. (7D + 208)/20
7
#3 T
ACROSS DOWN o ° P
1. A2 1. 10(B + F) - 2 3
4. BC 2. E
S
6. 3DYSE 4. F e 7 G
9. B 7. vE- G+ H
3 8. D X
4
ACROSS DOWN (I
I.A4+BC+C 1. J-DK @
3 4
3.D 2. 23+ 20
5. (E+ 1) 4. GHK 3
6. ((c/B) + a)C 5.8 +¢C
7. HA t e)c - 2An) ©

#5
ACROSS DOWN
1. A 1.
5. A+B 2. E
6. CD +(E/D) 3. DFG
7. F/2 - 1 4. B
9. (A + 7)}/D 7. Dt (D/10)
8. G
{6
ACROSS DOWN
1. A 1. ¢F
3. B 2. H+ 4
4. P+ D - 43 3. J
5. DE/2 4, E 15
6. F
o
#
ACROSS DOWN
1. 21A 1. 59E
4. (2B - 1)2 2. 5c - B2 +178% - 66B + 5
5. (c-17453)2/20 3. 14F 3
6. (2B-1)4-100D+'4 5. (E + 5)/6 b
7. A
#8 -
ACROSS DOWN
1. (A - 32)? 1. 10EF + 3 ry
4. (158/131)B 2. 1331G + 1
5. ¢C 3. 4BCH
6. A 6. F* + 10F%J + 13F &
8. 67(3D - 66) 7. G




286

ERRORS AND MISTAKES

In the. Cross-Number Puzzles pubfished in the Falf 1980 Issue, there
were several minon DUt crucial mistakes. These puzzles are nrepubfished
as #1 through #4 on the preceding page, and the ernors are marked with
the. awnows. Because of, the mistakes, solutions 1O these puzzles will be.
accepted gon the Falf 1981 Tssue of,2his Journal. Sowry!

SOLUTIONS

Mathacrostic No. 11 (See Fall 1980 issue) {Proposed by J. D. E. Konhausenr)
Definitions and Key:

4. Dissonant H. Asterism 0. Dichotomy V. Events

B. Risgue I. Dipole P. Erlanger W. Rhenish

C. Hebetate J. Twisted cubic Q. Litotes X. Berkeley

D. Occultation K. Elation R. Empirical Y. Atom smasher
8. Fixed point L. Ramiform S. Shift Z. Catenate

F. Systole M. Granny T. Chladni a. Halfway

G. The QuizKids N. Ocarina U. Hints

First Letters: Dr Hofstadter Godel Escher Bach

Quotation: Besides, the drive to eliminate paradoxes at any cost,
especially when £t requires the. ereation of, highly arntificial formalisms,
puts too much strness on bland consistency, and too Little on the. quirky
and. bizawre, which make. £ife and mathematics interesiting.

Solved by: Jeanette Bickley, Webster Groves High School, Missouri;
Louis H. Cairoli, Kansas State University; Victor Feser, May College;
Robert Gebhardt, Hopatcong, ¥.J.; Roger E. Kuehl, Kansas City; Hery S.
Lieberman, John Hancock Mutual Life Insurance Co.; D. €. Pfaff, Univ. of
Nevada-Reno; Robert Priel ipp, Univ. of Wisconsin-Oshkosh; John Oman, univ.
of Wisconsin-Oshkosh; Chris Thomas, Rose-Hulman |nstitute of Technology;
The Editor and The Proposer. Victor Feser also included a solution to
Mathacrostic No. 10.

Who Stofe the Candy? (See Fall 1980 issue), Proposed by Wayne. M. Delia
and Bernadette D. Barnes.

Solution: 1 f lvan was the thief, he would have had to tell two lies (#1

ad #3). Similarly, Ernie, Dennis, and Linda could not have been the

thief. Hence, Sylvia is the thief, ad the lies are #3, #4, #9, #11 and

#15. This sclution was presented by John Wesley Emert of Knoxville, Tenn.
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Also Solved, by: Kathy Ames; Jeanette Bickley, Webster Groves High
School, Missouri; Victor Feser, Mary College, Bismark, N.D. ; Robert C.
Gebhardt, Hopatcong, N.J.; Samud Gut, Brooklyn, N.Y. ; John Kahila, Univ.
of Washington; Roger E. Kuehl, Kansas City (Who noted that Sylvia's_three
statements and Dennis' three statements are superfluous); Sarah Lieberman,

8th grade, Meadonbrook Jr. High, Newton, Mass.; D. C. Pfaff, University
of Nevada-Reno; The Editor and The Proposers.
R TR R R R R R R A R TR R T R R R

Pl MU EPSILON CONFERENCE

MIAMI UNIVERSITY
OXFORD, OHIO

Sept. 25, 26, 1981

# #
# #
# #
# #
# #
# #
# #
# The. Ninth Annual R M Epsilon Conference of Miami Univ. #
#  wifl be September 25 and 26 at the Miam{ Campus .in Oxford, #
# Ohio. Papers axne welcome on .items hanging from expository #
# t 0 neseanch, interesting applications, problems, efc. Present- #
# ation time should be from 15 to 30 minutes. Send abstracts #
# (by Sept. 12) to: #
# Professor Milton Cox #
# Department of Mathematics and Statistics #
# Miam University #
# Oxford, OH 45056 #
# #
# #

HH R R R A R R

HIGH SCHOOL MATHEMATICS CONTESTS

May H M Epsilon Chapters either sponsor or contribute services to
contests, competitions and "Math Days' arong high school students. The
Editor's office can act as an information source and a clearing house to
swap examinations and ideas. If your Chapter i s involved, please send the
Editor an outline of how your examinations are conducted and send copies
of your materials, about 25 copies of advertisements, broshures, and i f

ossible, your examinations for swapping purposes. The Editor wizZ send
5ou copiesyof the materials on hand. P I? F))/oupare starting such aﬁd event
or thinking about it, let the Editor 'know and materials can be sent to
you. This could be a great help to us all !!

$4444
POSTERS AVAILABLE FOR LOCAL ANNOUNCEMENTS

V¢ ‘have a supply of 10 x 14-inch Fraternity Crests available. Oe
i n each color will be sent free to each local chapter on request. Addit-
ional posters may be ordered at the following rates:

(1) Purple on goldenrod stock $1.50/dozen,

(2) Purple on Lavendar on goldenrod-—----——--——- $2.00/dozen.
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CHAPTER REPCRTS

FLORIDA EPSILON (UNIVERSITY OF SOUTH FLORIDA) The Chapter had an
active programwhi ch included the foll owing speakers and their talks:
Chnistina Patterson, "Frames, A Krowledge Representation and Organization
System for a Computer”; Dr. ALlan Wayne (Pasco-Hernandez Conmunity Qol | ege),
"A Census of Natural Triangles? Prof. Athanasois Kartsatos, "Monotonicity

in 7' Dn. Joseph Canr, "Parade of PlanetsV; Craig Hubbard, "Just What is
the Gross National Product?'; Dr. James Bell; "Mathematics As A Empirical
Science"; Da. Richand Stark, "Exotic Constructions Using Baire 's Theorem';
Dn. Kenneth Pothoven, "A Little Bit About pi"; Paul Artofa, "Musical Harmory
and Mathematics'; Vh. James Felfer, "Mathematical Applications i n Finance";
Dr. Nichofas Passell, "An Arc Length Problem; John R. Kenyon, "Dynamic
Programming'*, Afan Craig, "Logical Puzzles and Paradoxes i n Mathematics';
Dr. Witkam Clark, "Using Nuvba Theory to Construct Secret Codes. In
addi tion the Chapter sponsored a FlmFestival and hosted the Mi Al pha

Theta Mith Bow , a conpetition anoung | ocal hi gh school s.

MISSOURI GAMMA (ST. LOUIS UNIVERSITY) The Chapter hosted
(in conjunction with MARYVILLE COLLEGE OF ST. LOUIS) a Pi Mu Epsilon
Conference with invited speaker Professor Robert V. Hogg of the University
of lowa. Professor Hogg's talk was " Statistics, Actuarial Science and
the Future'. Information on Student papers will be in the Fall Issue.

MONTANA ALPHA (UNIVERSITY OF MONTANA) The Chapter heard the
following tal ks: Stephen Eberhant, "Seeing the Imaginary"; Peggy Kaufe-
Bordewick, "Computers Applied to Satellite Photography', Roman Cakon,
"Mathematics Graduate Training i N Germany. A Personal View"; and Robert
Hollister, " African Mathematics-Countingand Measurements”. In addi ti on
there was a fil mprogramand a special talk by Professon Kenneth Yale on
"Unorthodox Programming Features of the TI-58". The John Peterson Book
Award for the outstandi ng graduating senior in nmathenatics education was
presented to Baad Simshaw.

NEW YORK ALPHA ALPHA (QUEENS COLLEGE OF CUNY) The Chapter
sponsored several filmprograns, parties and other activities. Robbin
Bura was given the first annual Pi Mu Epsilon Prize for excellencein
nat hemati cs and service to the Chapter.
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OHIO DELTA (MIAMI UNIVERSETY) chapter activities included paper
presentations at the Pi Mu Epsilon Conference of Sept. 28. Eght of the
thirteen papers vere given by Mam students. Papers contributed included:
Patty Brueneman, "The Penrcse Tiling i n Bachelor Courtyard"; Steve Ruberg,
"The Tree Planting Problem"; Kathy Reynolds, "Testing the Associativity of
a Binary Operation: Reducing the Tedium'; Tom Pastuszak, "Finite Projective
Planes'; Neif Gandaf, "The Use of Statistics i n Welfare Reform™, Van Fremion,
"Pentominoes"; Chrhis Hawkins and Lee Josvanger, "So You Wart to be a Systems
Analyst?”; and Jeff King, "A First Step Tonard a Mathematical Theory of
Ecology". In addition two Chapter Menbers gave papers at the MAA Section
Meeting. They were:.Neil Gandaf, "The Use of Statistics in Welfare Reform':
Bud Kostic, "Frucht's Theorem--An Example of the Interplay of Graph Theory
and Algebra". Regular Chapter presentations included: Steve Ruberg, "Magic
Squares”, (See this Issue of the Journal); Dr. Schaefer, "Biostatistics';
Dr, Clyde Handin, "RandomWalk and Gambler's Ruin"; ELizabeth Roberts,
(Systens Engineer from Arnto Seel), "Mathematics, Statistics, and Systems
Analysis at Armeo”; Mr. Mike Miller, Actuary fromState Farm Mitual,
"Aetuarial Science and Job Opportunities”: and ?x. Dunn, " Statistical
Diserimination”. The winners of the Pi Mu Epsilon Examination were Scott
Buckman and Donna Ford. There were ongoi ng di scussions at the ol I ege Inn.

Tal ks at the Seventh Annual Pi Mi Epsilon Student Conference hel d at
Mam Uhiversity on Sept. 26, 27, 1980 were:

Karen Zietke (Mam Lhiv.) Data Collection Techniques at the
Federal Reserve Board

Gheg Taylor(Mam Uhiv.) Focus Forecasting
Julie Griswold(Mam Lhiv.) Geometrical | deas i n Kaleidoscopes

Cathnyn Hallett(Cakland Lhiv.) Linear Generative Grammars or How
to Mde a Qe Stringed Harp

Bruce Bullis(Mam Univ.) 5 Points

Cecil ELLard(Mam LUhiv.) Sequences of Integers With a Limited
Nunbe of Prime Divisors

Van Fremion(Mam Uiv.) Designs With Hexagons

Brenda Rood (Mani Lhiv.) Curve Stitching for Junior High

Beverly Skeans (Marshal | hiv. ) Correctness Proofs for Flowchart
Prograns

Fractional Arithmetic-—-How to Make
T™wo and Two Equal 4.520360

Individual Game Probabilities
Concerning the World Series

Daren Wilson (Qakland Lhiv.)

Mark Bates (Rose-Hulman)
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Michael Call (Rose-Hulman)

Barbara Vano (Cakl and Univ.)
Heny Dedist (Mani Univ.)

Pun Poflak (M am Univ.)

What Zs the Caleulus of Finite
Differences?

The Growth of Mathematics in Russia

Artificial Intelligence: Can
Computers Think?

Applications of the Programmable
Calculator i n Mathematies' and
Statistics

OKLAHOMA GAMMA (CAMERON UNIVERSITY) The Chapter field trips,
socials and the following three presentations: pa, Mowiis Marx (University
of Cklahoma), "Shift Registers”; Di. Dwight 0Lson; "The Buffon Needle
Problem; Dr, Tommy Waight (Statistician at Union Carbide in Cak R dge),
"Indercount Problems Encountered During the United States Census'.

€
€
€
€
€
€
>4
E
E
e prograns.
€

I

AT PRESS TovE-—- R

I's your Chapter Report
If not, send it detailing speakers, awards,
and prograns to the Editor. This is the
best possible way to let other Chapters know
what you are doing and to share ideas for
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The Programfor the Sixth Annual Conference on Undergraduate
Mat hematics arrived. This Conference was hosted by Arkansas
Beta at Hendrix College. The Speakers and their topics were:

Professon John W. Neuberger
Nonth Texas State University

Connad Plaut
Guilford College

John Steeley
Guilford College

Julie Brintworth
Oklahoma. State Univensity

Shend Thompbon
Okfahoma State Univensity

Kathy Alexanden
Guil fond College

Differential Equations i n Science
and Mathematics

Mae on Derived Sets of Well-ordered
Sets

Topologies on Collections of Subsets
Generated by Families of Selection
Maps

Bleed Air Contamination Analysis

Differential Equations and Flight
Paths

Leximorphic Sets

Scotty Hofer
Pan American University

Egton Park
University of Oklahoma.

Rebecca Thomas
University of Arkansas

Professon M. 7. Nashed
University of Delaware
Ben Schumacheh
Hendnix College

David Sutherland
Hendrix College

Elias Cosmas
Oklahoma State. University

Lisa Townsley
University of Santa Clara
Ruth Moore and Laura Restess
Salem College

Hassan Azima
Texas Tech University

Je4§ Bowles
University of Oklahoma.

Paul Kraght
Harvey Mudd Coflege

Carol Smith
Hendnix College

Sandra Cousina
Hendnix College

Miniam Ann Reilman
University of New Orleans
Mark Heusen
Univernsity of Central Florida
Professon R. H. Bing
University of Texas
Professon Paul R. Halmos
Indiana
Kevin Keating
Washington University
John Campion
St. 0Laf College

Tim Cornelson
University of Oklahoma.

Lawirie Chism and Susan Lucas
Oklahoma.State University
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A Modd For the Numbersin 2N

Solutions of Directional Differentional
Equations

A Numerical Technique for the Solution
of Integro-Differential Equations™
Glimpses Into Optimization Theory
Exponential Calculus

Nonlinear Derived Functions
Mathematieal Analysis of Inflation
Applications of Set Theory and Topology
To Economics

Right-Hand Derivatives Suffice

A Pseudonorm and Hyperbolic Functions
Sire Considerations a Computer
Frequently Forgets

Computer Arithmetic Algorithms
Infinite Sims of Derivatives

Infinite Composition

Cluster Analysis For Univariate

Data
Least Squares Fitting of Distributions

Using Non-Linear Regression
Examples and Counterexamples
Se Problems | Couldn't Solve
The Conjuetion of Cayley Diagrams
What Kind of Basis Might a Module
Hawe?

Pythagoras In a Bax

Trigonometry and Sound Wawves
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William Butterwonth
University of Santa Clara

Hike Meyer
University of Oklahoma.

Dale DelaPorte
Univers.ity of Atkansas

Steven Lazonchak
Southern 18Linois University

Progesson Buwiton Jowes

University of Colonado
Edward Shpiz

Washington University
Ravi Safgia

Layola University (Chicago)
Stephen Semmes

Washington Univernsity
Professon ALL Amin-Moez

Texas Tech Univers.ity

Margaret R Devlin
Candinal Stritch College

Kevin Fox
Univernsity of the. South

Jean Ezell

University of Mississippd
Monteza Samiepour

Texas Tech Univers.ity

Annette T. Henz
Keanney State College

Daren Wilson
Oakfand University

This publication
isavallablein microform

University Microfilms International
300 North Zeeb Road ~ 30-32 Mortimer Street
PR Dept PR

P
Ann Arbor.Mi 48106  London VWN 7RA
USA. England

Applications of Topology to Logic
Automata Theory For Mathematicians
The Dynamies of Traffic Flaw

Sinusoidal Steady-State Analysis Of
Electric Circuits Using the Phasor
Transform

Multiplieative Functions in Nurbe
Theory

Lone Bounds For van der Waerden Nurbers

Dirichlet Integrals and Their Applic-
ations

Symmetric Groups on Ordinals
Haw Oe Makes a Smple ldea Impressive

Mp Coloring: 'Planar and Nat so Planar
Results

Significant Figures Via Interval
Arithmetic

Sne Divisibility Properties of
Bionomial Coefficients

Analytic and Synthetic Treatment
O Envelopes

The Fibonacci, Numbers

Fractional Arithmetic
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YOUR BADGE — a triumph of skilled and highly trained Balfour
craftsmen is a steadfast and dynamic symbol in a changing world.

£
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