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TWO REMARKS ON THE QUATERNIONS 

We w i l l  d i scuss  two quest ions i n  t h i s  paper. In  t h e  first 

sec t ion ,  we w i l l  consider  a  possible  d e f i n i t i o n  o f  d i f f e r e n t i a b i l i t y  of 

quaternion - valued funct ions analogous t o  t h e  d e f i n i t i o n  of  d i f f e r e n t-  

i a b i l i t y  of  complex - valued funct ions.  According t o  t h i s  d e f i n i t i o n ,  

the  d i f f e r e n t i a b l e  funct ions w i l l  have t o  s a t i s f y  p a r t i a l  d i f f e r e n t i a l  

equations analogous t o  t h e  Cauchy-Riemann equat ions of complex ana lys i s  

However, i n  c o n t r a s t  t o  complex ana lys i s ,  t h e  g rea te r  complexity of t h e  

quaternions gives more p a r t i a l  d i f f e r e n t i a l  equat ions which force  the  

funct ions t o  be l i n e a r .  In  t h e  second sec t ion ,  we w i l l  e s t a b l i s h  a  
t h  formula f o r  t h e  n~ power of a  quaternion, analogous t o  Moivre's formula 

f o r  complex numbers. 

5 1 .  Since quaternions don' t  commute, we s t a r t  with t h e  following 

d e f i n i t i o n :  

Let Q  be t h e  r i n g  of r e a l  quaternions. A funct ion 

f : Q + Q  is  " le f t -d i f fe ren t iab le"  a t  woe Q  i f  

e x i s t s  and is  f i n i t e ,  t h e  metr ic  being t h e  s tandard 

norm on Q. 

" Right- d i f fe ren t iab i l i ty"  is defined i n  t h e  analogous way. When they 
1 e x i s t ,  Urn (w -wo)- ( f ( w ) - f ( w o ) )  is denoted by 

w  +Yo 

L ( f ) ( w o ) ,  and l i m  f ( w )  - ~ ( W ~ ) ) ( W - W ~ ) ~  by R ( f ) ( w o ) .  
M ->-w 0  

Let f ( x  + y i  + z j  + t% = a ( x , y , z , t )  + b(x , y , z , t ) t .  + c ( x , y , z , t ) j  

t d ( x , y , z , t ) k  be a  funct ion on Q, so  t h a t  a , b , e , d  a r e  r e a l  - valued 

with continuous p a r t i a l  der iva t ives .  We w i l l  look f o r  condit ions which 

make f l e f t- d i f f e r e n t i a b l e  on an open domain D i n  Q. 

We proceed exac t ly  a s  i n  the  case of complex funct ions.  Assume 



t h a t  f o r  some W E  D, L ( f ) ( w )  e x i s t s .  

Denote w  by x + 9 - i  + z  j t t o k y  and w  by x  t y i  t z j  t t k .  
0  0  

Then we know t h a t  

l i m  ( ( x  -x ) t ( y  - y~it(z-~o)s+(t-to)k)l(~(w)-f(wo))=~(f)(~o~. 
w +wo 0  

Hence 
-1 

Ll = l i m  ( x -  x 0 )  ( ( a ( x 3 y 0 , z o y t o ) -  a ( ~ ~ , y ~ , z ~ , t ~ ) )  
X - f - X  

0  

e x i s t s  a l s o  and i s  equal t o  L ( f ) ( w o ) .  

But 

a x , y o , z O , t O ) - ~ ~ ~ o y ~ o " s o ~ ~ o ~  
L  = l i m  
1 X + X  

0  ( x - x  0  

c ~ x , y o , ~ , t o ~ - ~ ( x o , ~ o , ~ , t o ~  
t l i m  

x - r x  
0  ( x - x  0  

d ( ~ , ~ ~ ~ z ~ t ~  ) - d ( ~ ~ , ~ ~ , + t )  
+ l i m  

x-r X 
0  

X - X  
0  

(we assumed t h a t  these p a r t i a l s  e x i s t ) .  

The exis tence of L ( f ) ( w o )  a l s o  implies t h a t  

t ( d ( x o , y , z , t o ) - r 3 ( x o , y o , z o , t o ) ) k )  

e x i s t s  a l s o  and is equal t o  L ( f ) ( w ) .  

And 

1 1 1 
( a s  Ã = - i , ~  j  = -k,Ã z k  = j ) .  

Approaching w  s imi la r ly  i n  t h e  j  and k d i rec t ions ,  we get  two 

more expressions f o r  L ( f ) ( w 0 ) ,  s o  t h a t  i f  L ( ~ ) ( w )  e x i s t s  f o r  a l l  w E D ,  

then,  on D, we must have 

L ( f ) = a  + b i t c j + d k = - a i t b  - c k + d j  
X X  x x Y  Y Y  Y 

Hence we ge t  t h e  following Cauchy-Riemann equations: 



(1 )  ax = b = az  = dt 
Y 

(2 )  b = - a  = - d  = a  
x y z t  

( 3 )  a  = d  = - a  = - 
X Y  b t  

(4 )  d = -c = b = -a 
Y Z t  

Notice t h a t  i f  f were a  funct ion on C, these equations reduce t o  

ax = by, \ = -ay, t h e  fami l ia r  Cauchy-Riemann equat ions f o r  complex 

functions. However, we have here twelve equations instead of two, and 

we can attempt t o  solve them. Indeed, s ince  t h e  component funct ions 

were assumed t o  have continuous p a r t i a l s ,  and s ince  we r e s t r i c t e d  our- 

se lves  t o  open domains, we can solve t h e  system ( I ) ,  (21, (31, (4 )  by 

tak ing  mixed second p a r t i a l s ,  e.g. 

giving 

a  = = 0 on D. xyat 

Also, 

a '  = &  = - a  and a - 
xz .f YZ 4 t Y  

giving (1)  $ 4 )  (1)  (2)  

a x z = a  = O o n D .  
Y* 

Continuing i n  t h i s  way, we ge t  a l l  mixed second p a r t i a l s  of a equal  t o  

0 on D. Therefope aX=al (x) ,  a  = a 2 ( y ) ,  az  = a3(z) ,  at = a 4 ( t ) ,  i . e .  
Y 

a i s  a  funct ion of  x alone, a  is a funct ion of y alone. . .  and there -  
x  Y 

f o r e  a ( x , y , z , t )  = a l (x)  t %(y) t a 3 ( z )  t a ( t )  t a ,  where i s  an 

an t ider iva t ive  o f  ai,  a  E R .  

Proceeding s i m i l a r l y  f o r  b y e ,  and d ,  we ge t  

b (x ,y ,z , t )  = c ( x )  t b 2 ( ~ )  t fc3(z) t f c ( t )  + Bo 

Now we r e t u r n  t o  t h e  Cauchy-Riemann equations and s u b s t i t u t e  

t h e  above expressions f o r  t h e  component funct ions of  f. P a r t i a l  

der iva t ives  become one var iab le  r e a l  der iva t ives  and we have - - - -- 
- 
a i ( x )  = &'(y) = %(z)  = (1)  2 

- 
b i ( x )  = - a ' ( y )  =-dr (z )  = a'W (2)  2  3 4 

The var iab les  being a l l  d i f f e r e n t  i n  every s e t  of  equations, we 

must have 

- 
(1 )  %(x) = ... = d'(t) = a,  some r e a l  constant ,  

- 
(2) q(zl = ... = a p  = 6, some r e a l  constant ,  

- 
(3 )  o i ( x )  = . . . =--I b4( t) = y, some r e a l  constant ,  

- 
(4)  q ( x )  = . . . =-ar ( t )  = 6 ,  some r e a l  constant ,  

4 

f o r  a l l  x , y y z 9 t  such t h a t  x  t y i  t z j  t t k  e D . 
We f i n a l l y  g e t  

which y i e l d s  
. 

f ( x t y i  t z j t  t k l = ( x t y i  + z j + t k ) ( a +  L3i tYj  +Sk) + ( a  0 + B 0' "+  Y 0 .7+ SOk). 



Conversely, such a function i s  indeed l e f t- d i f f e r e n t i a b l e  on Q, 

with L(f)(w) = a + fli + y j  + 6k, f o r  a l l  w e Q. 

We have proved 

f: Q+Q is l e f t- d i f f e r e n t i a b l e  i f  and only i f  

f o r  some A ,  y e Q, 

f(w) = w A  + y f o r  a l l  W E Q  

(and L(f)(w) = A  1. 

Simi la r ly ,  one can prove 

f: Q+Q is  r igh t- d i f fe ren t iab le  i f  and only i f  

f o r  some \, u e Q, 

f(u) = A w  + p f o r  a l l  W E ( .  

(and R(f)(w) = A). 

5 2. Let 

be t h r e e  quaternions, and assume Xt = AX. 

Then 

Using matrix no ta t ion ,  t h i s  may be rewr i t t en  a s  

With t h i s  suggestive no ta t ion  i n  mind, we proceed with t h e  formal d i s-  

cussion. Our goal is t o  g e t  a formula f o r  the  n
th 

power of a quaternion, 
n 

s imi la r  t o  t h a t  of Moivre ([.r(cos 8 + i s i n  8 )] = 2"[cos(n8) + i s i n ( n 8 ) I )  

f o r  complex numbers. - - "- 
Our f i r s t  s t e p  is  t o  show t h a t  t h e  s e t  of matrices 

i s  isomorphic t o  Q ,  t h e  d iv i s ion  r i n g  of  quaternions over R. 

So l e t  f : Q + Q t  be t h e  map defined by 

a -b -a -d 

f ( a +  b i o  + a j o  + a o )  =( -d a d  a -:) 
d a - b  a 

f being c l e a r l y  s u r j e c t i v e  and i n j e c t i v e .  Also, it i s  obvious t h a t  i f  

w ,  w2.e Q,  then 

f ( w  + w^) = f(wl) + f(w2). 

L e t t s  check t h a t  f(wlw2) = f(wl)f(w);  proceeding a s  follows: 

Write 

w = a + b i  + a j  + e f t ,  w = x + y i  + ~o + u k .  

Then 

wlw2 = (me - by - cu - dv) + (bx + ay + du - a v ) i o  

+ (ox - dy + au  + b v l j  + (dc + oy - bu + av)ko, 
A 

so  t h a t  



a  - b  -a -y -u  - v  

f ( w ) f ( w 2 )  = ('T -:) 
d  c - b  a v  u -y x 

a x - b y - c u - d v  - a y - b x t c v - d u  - a u - b v - c x t d y  -cm t b u - e y - d x  ^ 
b x t a y t d u - c v  - b y t a x - d v - c u  - b u t c m t d x t c y  - b v - a u t d y - e x  

c x - d y t a u t b v  - c y - d x - a v + b u  - ~ u - d v t ~ x - b y  - c v t d u t a y t b x  

- d y t c x t b v t a u  - d u t c v - b x - a y  - d v - c u - b y t a x  

This proves t h a t  Q' i s  indeed a d iv i s ion  r ing ,  isomorphic t o  Q .  

Let ' s  a l s o  note ,  f o r  fu ture  use, t h a t  

a  d - c  b  d - c  b  a - c  b a d  

det  = a - d  a b + b  c  a b  - c c  -d b t d c - d  a  

c - b a  d - b  a  d c a  d c - b  
-b a  

Our o r i g i n a l  aim was t o  ge t  a formula f o r  

(a  + b i  t c j  0 +dfcIn . 
With t h e  above i d e n t i f i c a t i o n ,  we may hope t o  achieve t h i s  by diagon- 

a l i z i n g  t h e  matrix f ( a t  b i  + c j  + (3k ) and using i ts expression a s  the  0 

conjugate of a diagonal matrix t o  ge t  an expression f o r  its n
th 

power. 

2 2 - 2 2  By a previous computation, de t (u  - xld) = ( (  a -  d t 6 + y +6 , 
2 2 and hence the  eigenvalues of  u a r e  a  1 i& , where A = 8 +y t 6  . 

If both y and 6 a r e  zero, then a  + p i  t y j  + 6 k  = a  t fii, 

and t h e  nth power of a  + B i o  can be obtained using Moivre's formu&.- 

2 So we assume t h a t  one o f  y o r  6 is  non-zero. Writing A = y2  + 6 , 
t h i s  is  equivalent  t o  assuming t h a t  A # 0 (and hence A # 0 since 

2 
A = A + B ) .  

A being non-zero, w has two d i s t i n c t  eigenvalues, a  - î h. 
and a  t id. The eigenspace o f  a - i/A i s  t h e  subspace generated by 

and t h e  

Let 

eigenspace 

. and l'i 
is t h e  subspace generated 

2 2 Then de t  B = 4A(y t 6 ) = 4 A A .  Since we assumed A # 0, A # 0, we 

have d e t  B # 0, hence B is  indeed i n v e r t i b l e .  We know t h a t  



and, there fore ,  t h a t  

The only remaining obs tac le  i s  B1. Lengthy computations l ead  
1 t o  t h e  following expression f o r  B- : 

0 2(yA-B6i/^) 

We can now car ry  out the  computations i n  equation ( s t ) .  Using 

t h e  isomorphism f ,  we ob ta in  t h e  following formula: 

where 

1 a = - ( ( a -  im + ( a + i / ~ ) ~ ) ,  
n 2 

We check t h a t  a ,  0 ,  y , S  a r e  r e a l  a s  follows: 

Let 

3 = (a-iÃˆ/S-) . 
Then 

3 e C ,  

and we have 

a = ( s n  + 2"") = Re(zn) e R, n 

and 

The formula i t s e l f  can be e a s i l y  v e r i f i e d  by induct ion on n .  

1 9 7 9- 8 0  STUDENT PAPER COMPETITION 

The papula ken. t he  1979-80 Student Papa CompeAt-fcton have been judged 
and t h e  W-uineAi m e :  

First Prize ($200) Ziad Haddad, UCLA, "Tmo Remarks On The 
Quaternions", This i s  t h e  above a r t i c l e  
i n  t h i s  Journal s t a r t i n g  on page 221. 

Second Prize ($100) Robert Smith, University o f  Arkunsas, 
"Uniform Algebras and Scattered Spaces", 
See t h e  next a r t i c l e  i n  t h i s  Journal 
s t a r t i n g  on page 232. 

Third Prize ($50) Alma Posey, Hendrix College, "Rolling 
Cones", This a r t i c l e  appeared i n  t h e  
F a l l  1980 Issue of t h i s  Journal, page 
157. 

T h h  LA an annuat S-tudent Papa CvmpeAt-fcton open -to ~tuden-t4 who 
have. not i.eccived tSn.<un. Moita'b deghee at t h e  h e  06  ~ u b i n t & ~ h .  

Papm mag be ~ubmitted -to t h e  EcLLtoh at any h e .  Each Chapte~. wkich 
AubffH-tA dive. 04 mote. papula CAeo-t&A a a - c o n t a t  among ju&t t h o ~ e  

w p m .  The b a t  Mm. i.ecVA.ve. $20 and oJUL ~ u c h  papem Mm. be c o n ~ k l a e d  
<;OA ^he National Content. Two cop-iu o f ,  AubmUted p a p m  bhoutd. be A& 

to t h e  Editoh at t h e  addheh~ h i d e  t h e  f,i.ont cova .  
Â¥ 



Second P/i-tze. P a p a  
NCLtuonaJt. S tuden t  P a p a  Cornp&tLti-on 
1979-80 

UNIFORM ALGEBRAS AND SCATTERED SPACES 

Intiwduc-fct.on. 
I n  t h i s  paper, t h e  re la t ionsh ip  between s c a t t e r e d  topological  

spaces and t h e  spaces of  continuous funct ions they support is  explored. 

The f i r s t  sec t ion  contains  t h e  d e f i n i t i o n  of a s c a t t e r e d  space, and 

th ree  equivalent  formulations a r e  developed there .  The second sec t ion  

is devoted t o  t h e  following r e s u l t  due t o  W. Rudin: I f  X is a compact 

s c a t t e r e d  Hausdorff space, then X does not admit a proper uniform a l -  

gebra. I n  t h e  t h i r d  sec t ion ,  a p a r t i a l  converse due t o  M. Rajagopalan 

i s  sketched, and t h e r e  is a b r i e f  discussion of  t h e  question which ye t  

remains t o  be resolved. 

This a r t i c l e  is  based on a paper submitted t o  t h e  University of  

Arkansas i n  p a r t i a l  f u l f i l l m e n t  of  t h e  requirements f o r  t h e  degree of  

Bachelor o f  Science i n  Mathematics, with Honors, and t h e  author  would 

l i k e  t o  take t h i s  opportuni ty t o  thank Professor W.H. Summers f o r  h i s  

advice and encouragement during the  course of  these inves t iga t ions .  

1. Sca-fcteked -topological b p a c u  and e.qiU.u&nt {,o~muJiation&. 

A topological  space X is  c a l l e d  s c a t t e r e d  ( o r  dispersed)  i f  every 

nonvoid subset  contains  an i s o l a t e d  point ;  i . e . ,  f o r  every AC Xso t h a t  

A 4 i j ) ,  t h e r e  e x i s t s  some a e A t h a t  is an i s o l a t e d  point  i n  t h e  r e l a t i v e  

topology on A.  

Throughout t h i s  paper, we w i l l  assume t h a t  X i s  a compact Haus- 

dor f f  space, and we f u r t h e r  adopt t h e  convention t h a t  t h e  empty s e t  i s  

not  per fec t .  

1 .1 .  Pmpob-t-tmn. If t h e  space X is  s c a t t e r e d ,  then X is  t o t a l l y  

disconnected and t h e  s e t  of  i s o l a t e d  po in t s  i n  X i s  a dense subset of  X. 

Proof. Let C be a component of  X. Then, because X i s  s c a t t e r e d ,  

t h e r e  e x i s t s  an i s o l a t e d  point  c i n  

closed,  while {c} is closed s ince  X 

Since C is  

a T -space. 
1 

and ( C \ { c } ) u { e }  = C whereby C = {c} s ince  C i s  connected. Now, put  - 
A = {a e X : a is  i s o l a t e d  i n  X} and suppose XLA = d > .  Then, s ince  X is  - - 
s c a t t e r e d ,  t h e r e  e x i s t s  an i s o l a t e d  point  a, i n  X'A. But, X'A is open 

* -  - 

and hence a i s  i s o l a t e d  i n  X, which is a contradict ion.  Thus, X ^'-A:. 

A s  shown by t h e  following counterexample, t h e  converse t o  Proposi- 

t i o n  1.1 does not  hold. 

Example. Let C be the  c l a s s i c a l  Cantor t e rnary  s e t ,  l e t  

A = m b e  an enumeration o f  t h e  midpoints of  t h e  excluded i n t e r -  

v a l s ,  and put X = C U A .  Clearly,  X i s  compact. For each i e IN, l e t  

(ai,  bi) be t h e  excluded i n t e r v a l  i n  which x. sits. Then, ( ai, bi) 
1, 

n X = {x. 1 ,  i E IN, s o  A cons i s t s  o f  i s o l a t e d  po in t s  i n  1, and, s ince  C i s  
2 

p e r f e c t , A = { x  e X : x is  i s o l a t e d  ( i n  XI}. Let x E C and 6 > 0. Since 

C is p e r f e c t  and t o t a l l y  disconnected, t h e r e  e x i s t s  some i- E IN such t h a t  

( ai , bi) ( x  - 6 ,  x +  8 1. Hence ( x  - 6, x + 6 ) contains  some element of  
- 

A ;  t h a t  is  t o  say, A = X. 

Suppose D i s  a componentof X. I f  D contains  an element of  A ,  

say a ,  then {a} = D (otherwise we would ge t  a disconnection as i n  t h e  

proof o f  Proposition 1.1) .  On t h e  o ther  hand, i f  D i s  contained i n  C, 

then D is  a s ing le ton  s ince C is t o t a l l y  disconnected. Thus, X is  to-  

t a l l y  disconnected and t h e  s e t  of  i s o l a t e d  po in t s  i n  X is dense i n  X. 

But t h e  c l a s s i c a l  Cantor t e rnary  s e t  is a nonvoid subset  of  X which 

contains no i s o l a t e d  po in t s ,  hence X is no t  sca t te red .  

1.2. P-lopo~-t-fccon. The compact space X i s  s c a t t e r e d  i f ,  and only 

i f ,  X contains  no p e r f e c t  subset .  

Proof. Suppose P C X is  per fec t .  Since P is  per fec t ,  P + d> 
and P has no i s o l a t e d  po in t s ,  s o  X i s  not  sca t te red .  In  o ther  words, i f  

X is s c a t t e r e d ,  then X contains no p e r f e c t  subset .  

Suppose X does not  contain any p e r f e c t  subse t s ,  and l e t  A C X, - 
A i j ) .  Then A is no t  p e r f e c t ,  and s o  it follows t h a t  A must contain an 

i s o l a t e d  po in t ;  i . e . ,  X i s  sca t te red .  

Before s t a t i n g  our  next  r e s u l t  (1.41, we need t h e  following defi-  

n i t i o n  and well known theorem (1.3). 

Definition. A s e t  E i n  a space X i s  s a i d  t o  be nowhere dense i n  - 
X i f  X x E  is dense i n  X. 



1 .3 .  &.he C&goq ThtO/iem (c f .  LEI). A complete metr ic  space 

X is  no t  t h e  union o f  a countable c o l l e c t i o n  o f  nowhere dense s e t s ;  i . e . ,  

X is not  o f  t h e  first category. 

1 . 4 .  phopo&iLti.on. Assume t h a t  t h e  compact space X is a subset  

of  I R .  Then X is  s c a t t e r e d  i f ,  and only i f ,  X is countable. 

Proof. Let P be a p e r f e c t  subset  of  X. Then P i s  a closed sub- 

s e t  o f  t h e  complete metr ic  space IR" whence P is a complete metr ic  space. 

Since P is p e r f e c t ,  {XI is nowhere dense i n  P f o r  each x E P. Thus, by 

the  Baire Category Theorem, P is uncountable. So, by Proposition 1 . 2 ,  

i f  X is countable, then X is  sca t te red .  Suppose, on t h e  o ther  hand, 

t h a t  X is  sca t te red .  Let a be an o r d i n a l  l e s s  than o r  equal  t o  t h e  

c a r d i n a l i t y  o f  t h e  power s e t  o f  IR". Define XÂ using t r a n s f i n i t e  

induction by s e t t i n g  

X , a = 1  

(x')' , 6 + 1 = a ( a  not a l i m i t  

n ord ina l  ) 
6 < a i f  a is  a l i m i t  ordinal .  

Put = fi /' + '. Then, = {x E /': x i s  i s o l a t e d  i n  ^a}. Fix an 

o r d i n a l  a .  Since each x E A~ i s  i s o l a t e d  i n  .yÂ , the re  e x i s t s  a col-  

l e c t i o n  o f  b a s i c  open s e t s  {U } 
X X E A ~  

with t h e  property t h a t  U x n ~ = { x } ,  

x E AÂ¡ By the  second countab i l i ty  o f  R ,  A" must be countable. 

Another app l ica t ion  o f  second countab i l i ty  shows t h a t  A^ = il) f o r  some 

o ~ d i n a l  y l e s s  than the  f i r s t  uncountable ordinal .  So xY = x^+ which 

implies  t h a t  e i t h e r  X  ̂ = il) o r  xY is per fec t .  But X is s c a t t e r e d ,  and so,  

by Proposi t ion 1.2,  X^ = i l ) .  Thus X = U is  countable. 
a C Y  

Definitton. I f  (A, B )  is a p a i r  of  c losed s e t s  i n  a topological  

space, then we put  1 A = A and -1 - A  = B. A family {Ai,B; } o f  

p a i r s  o f  c losed s e t s  is s a i d  t o  be in te r lock ing  i f ,  f o r  each f i n i t e  s e t  

J C I and each co l lec t ion  {?I3 where each E E 1 -1, 11 we have 3 
t h a t  'e' ^A + * . 

1 . 5 .  Phop~&-t.fct.on ([2] ). The compact space X contains  a per fec t  

subset  i f ,  and only i f ,  t h e r e  i s  an in te r lock ing  sequence o f  closed s e t s  

I A n ~  Bnln E IN i n  X such t h a t  A n B = (1) ,n E IN. 

Proof. Suppose {An,BnIn is  an in te r lock ing  sequence i n  X 

00 . . 
with A n B = <1> , and put C = Fl ( A  IJ B ). Then C is c l e a r l y  

n = 1 

compact. Next, def ine 

Observe, furthermore, t h a t  A 0 C and B 17 C a r e  both open i n  C f o r  each 
n n 

n E H. Let illo e 1-1, 11 ' , and l e t  U be a bas ic  compact-open neighbor- 

hood o f  $ i n  (-1, l } '  ; i . e . ,  t h e r e  e x i s t s  m E ' so t h a t  i f  i);t(k) = 

$ o ( k ) f o r e a c h k ~ F m = { n ~ l N : n < m } ,  t h e n $ â  U .  P u t â  = 3 

open subset  o f  C and x E V implies  f ( x ) ( k )  =ck = i);o(k), k e F,,,, s o  
IN 

t h a t  f (V)C U; t h a t  is t o  say, f is  continuous. Now l e t  1)1 e 1-1, 11 . 
Since { A ,  BnIn a, is  in te r lock ing ,  ^ (3)Aj  f + f o r  any f i n i t e  

s e t  J C IN. Thus {i);(j)Aj 1 has t h e  f i n i t e  i n t e r s e c t i o n  property,  
m 

and t h e  compactness o f  X implies  n $($)Aj # $. 
3 = 1 

00 

But f i  i ) ; ( j ) A j C C w h e n c e f i s s u r j e c t i v e .  P u t S = { A c C : A i s  
. f = l  

IN 
c losed and f(A) = 1-1, 11 }. S is  nonvoid s ince C E S, and s e t  

inclusion provides a p a r t i a l  ordering on S. Let {A,}.. A be a t o t a l l y  
IN 

ordered subfamily of  S, and l e t  i); E {-I ,  l }  . Put E, = {xEA,: 

f (x )  = $1, and l e t  {A, } be a f i n i t e  subcol lect ion o f  {A,}S A with 
1 i=1  

n 
A 3 A 3 . . .  3 A  . Since 17 E6 - 
s! ^ - 4 5 {E6}, E * 

%I 1 = 1  1 

is  a co l lec t ion  of  closed s e t s  with t h e  f i n i t e  i n t e r s e c t i o n  property. 

, A E, + i l ) .  This implies  Moreover, s ince  C is  compact, 

f (  f l  A = 1-1, 1 1 ', and so  A is a lower bound i n  S f o r  
E A  6 S E A  

5 

{A,}S A. By Zarn's Lemma, t h e r e  e x i s t s  a minimal element, say P, 

of  S; i . e . ,  t h e r e  e x i s t s  some subset  P o f  C such t h a t  P e S and f maps 

no proper closed subset  o f  P onto {-1,1?. For E {-1, 1 1 ,  however, 

the re  e x i s t s  a sequence of  d i s t i n c t  po in t s  {x,} C P such t h a t  f (xn)  



converges t o  1(1. But s ince  P i s  compact, t h i s  implies 

x E P' f o r  which f (x)  = I). Since f(P'  ) = f ( P ) ,  P' = 

per fec t  subset o f  C and there fore  of  X. 

For t h e  converse, l e t  P be a per fec t  subset  of  

y e  P so  t h a t  x iffy. Since P is  a per fec t  subset  of  

there  is  some 

P whereby P is a 

X ,  and l e t  x ,  

a compact Hausdorff 

space, P is normal and P' = P. Thus t h e r e  e x i s t s  open s e t s ,  Ul, V, i n  - - 
P so  t h a t  x E U ,  y E V ,  and V,n V = 1(1. Let n E N and suppose - - 
{U V .  1% 1 have been chosen so  t h a t  U . n V .  = and 333 33 

n 
2 1 c j .  U . = +  , w h e r e â  E { - l , l ) ,  l . U . = U  a n d - 1  - U . = V  

3 
"̂ 

3 33' 33 
z 

Let {C. be t h e  family of  a l l  i n t e r s e c t i o n s  obtained 
3 j=1 

sequences {â‚¬. . This co l lec t ion  i s  pairwise d i s j o i n t  
J j=1 

U .  n V = 4 f o r  a l l  j. Since C. i s  a f i n i t e ,  nonvoid 
J 3 3 

from a l l  

s ince  

in te rsec t ion  

o f  open s e t s ,  t h e r e  e x i s t  nonvoid open s e t s  Oil, Oj2 C Cj, so  t h a t  

Then Un + nVn + = 4, and r> ?: .,Â¥U 4 f o r  any {C^} . By 

j = 1  ,j = 1 - - 
f i n i t e  induct ion,  {Uj, V j l j e N  is defined and inter locking.  

7.6. C O J L O & & U ~ .  The compact space X i s  s c a t t e r e d  i f ,  and only 

if, t h e r e  i s  no in te r lock ing  sequence of  closed s e t s  {A B } jy 3 j e N  
i n  X, such t h a t  A .  n B = 4, -j EIN. 33 

Proof. This is immediate from Propositions 1.2 and 1.5. 

2. Un-Hohm & e b m  on Scai tmed Spacu . 
Let X be a compact Hausdorff space. Then C(X), t h e  s e t  o f  complex 

valued continuous funct ions on X, is a complex a lgebra  under t h e  usual 

pointwise operat ions.  For f E C (XI, p u t t i n g  1 \f\ \ = sup{ 1 /(a:) ] : 
x e X} def ines  a norm on C(X) under which C(.X) is a Banach space. Given 

f ,  g e C i X ) ,  \\fg\\ 5 llfll J l g l l  , and so  ( C O ) ,  1 1 - 1 1  1 i s  a l s o  a 

Banach algebra. Indeed, C(X) is a commutative semisimple Banach algebra 

with i d e n t i t y  ( c f .  [6]). 

condit ions is c a l l e d  a uniform algebra on X: 

1 )  A is closed i n  C(X); 

2) A separa tes  t h e  p o i n t s  of X; 

3 )  1 e A. * - -- - 
I f ,  i n  add i t ion ,  A # C(X) we w i l l  say t h a t  A is  a proper uniform algebra 

on X; i n  t h i s  case X w i l l  be sa id . -to  support a proper uniform algebra.  

2.1. P m p o 4 X o n  ([7 ] ). If there  e x i s t s  a continuous mapping 

f o f  a compact s c a t t e r e d  Hausdorff space X onto a compact Hausdorff 

space Y, then Y is sca t te red .  

Proof. Suppose Y contains  a p e r f e c t  subset  P. Put D = {E C X: 

E is closed and f(E) = P . Since f-"""(~) e D, D is  nonvoid, and D is  

p a r t i a l l y  ordered by s e t  inclusion.  Let {E5I6 A be a t o t a l l y  ordered 

subfamily o f  D, and l e t  y e P. Put C ={e e E : f ( e )  = y}. Let 

n 
{E6i1i = 1 be a f i n i t e  subcol lect ion of  {E5l6 A with E 

n 61 ' E62 ' . . . 3 E6 . So fl C = C # 1(1. Thus, { C l 5  A is  a co l lec t ion  o f  
n i.=1 i. n 

closed subsets  of X with t h e  f i n i t e  i n t e r s e c t i o n  property whereby 

n A C, 0. This implies  fts A E ) = P whence, by Zorn's Lemma, 
5 

t h e r e  e x i s t s  a minimal element M E D. M i s  compact, and, s ince  X is 

s c a t t e r e d ,  t h e r e  is  some i s o l a t e d  point  m e Mso t h a t  M-{m} i s  compact. 

Since M i s  minimal, f { M  >{rn}) is a proper compact subset  of  P. But P 

is  per fec t  so  t h a t  t h e r e  e x i s t s  y e P \f(. M {m)), y f (m). 

Since f l ( y )  0 (M -. {m}) =\ 1(1 , t h i s  is  a contradict ion.  

We have need f o r  t h e  following two theorems. Since these r e s u l t s  

a r e  well known and r e a d i l y  access ib le ,  however, proofs have been omitted. 

2 . 2 .  Metg&yun1b Tfteo~em ( see  [8]). I f  K is  a compact s e t  i n  t h e  

complex plane whose complement is  connected, i f  f is  a continuous complex 

function which is  a n a l y t i c  i n  t h e  i n t e r i o r  of  K, and i f  C >  0, then t h e r e  

e x i s t s  a complex polynomial P such t h a t  ] f ( z )  - P(z) l  < C  f o r  a l l  Z E . K .  

2 . 3 .  S . tone-kkie~~tuuib Theole~m ( see  [6] ) . Let X be a compact 

Hausdorff space, and l e t  A be a closed subalgebra o f  C(X) which separa tes  - 
t h e  po in t s  of  X and contains  t h e  constant  funct ions.  I f  A i s  se l f- ad jo in t ,  

then A = C(X). 

Definition. A subalgebra A of C(X) which s a t i s f i e s  the  following 



2 . 4 .  T h e o w m  (Rudin [7]). If X is a compact s c a t t e r e d  Hausdorff 

space, then X supports no proper uniform algebra. 

Proof. Let A be a uniform algebra on X, and take f E A .  Then 

f(X) is  s c a t t e r e d  by Proposi t ion 2.1. By Proposi t ion 1.4, f(X) is  

countable, and s o  t h e  complement o f  f(X) is  r e a d i l y  seen t o  be connected. 

Moreover, s ince  f(X) is compact and countable, it is nowhere dense i n  

C. Fixing n E N ,  Mergeylanls theorem implies t h a t  t h e r e  e x i s t s  a complex 
- 1 polynomial P s o  t h a t  1 - P(ss \ 5 -, f o r  a l l  z E f(X) ; put  f ( x )  = n 

Pn (/(XI). Then 1 17 - f n l  1 +, and s o  it follows t h a t  f E A .  Now, by 

t h e  Stone-Weierstrass theorem, we have A = C(X). 

With Theorem 2.4 i n  hand, t h e  problem of  recognizing C(X) among 

t h e  o t h e r  uniform algebras  on X becomes an easy matter  when X is  a 

compact s c a t t e r e d  Hausdorff space. It is now n a t u r a l  t o  ask i f  t h e  

s c a t t e r e d  spaces a r e  t h e  only ones not  admit t ing proper uniform algebras ,  

and we take up t h i s  quest ion i n  what follows. 

3 . .  A Pa/ i tLaf .  C o n v m e  

The converse of  Theorem 2.4 remains an open quest ion,  but  M. 

Rajagopalan ([5]) has shown t h a t  the  converse i s  t r u e  f o r  compact 

ordered spaces. A s  coro l la ry ,  it can be shown t h a t  t h e  converse is t r u e  

f o r  a l l  metr izable  compact spaces. F i r s t  of  a l l ,  however, we proceed t o  

e s t a b l i s h  a reduction theorem (3.5) v i a  severa l  lemmas (cf.[5]). 

3 . 1 .  Lemma. Let X be a compact Hausdorff space, and l e t  Y be a 

closed subset  of X which supports a proper uniform algebra A .  Then X 

supports a proper uniform algebra.  

Proof. Define B = {f E C(X): f l y  e A ] ;  B is  c l e a r l y  a subalgebra 
1'. 

of C(X). Let {fn};= be a sequence i n  B which converges t o  f e  C(X). 
. 

Then { f  1 Y] converges t o  f \ Y,  and, s ince  A is a uniform algebra,  n = 1 
f I Y  E A .  Thus, B is closed. Since A is a uniform algebra,  A contains 

t h e  constants ,  and hence 5 a l s o  contains  the  constant  funct ions.  Let 

x, y e X  with x \ y .  

Case 1: Suppose x ,  y e  X. Then t h e r e  is some g eA s o  t h a t  g (x)  

+ g(y), and t h e  Tietze extension theorem y i e l d s  f e B with f ( x )  f (y ) .  

Case 2: Suppose x EX-Y,  y  e  X. By Urysohn's lemma, there  is 

some continuous f : X  +[0,l] s o  t h a t  f (x )  = 0 and f ( a )  = 1, f o r  a E Y  U {y}. 

But f l y  E A ,  and s o  f E B. Thus, B separa tes  t h e  p o i n t s  of  X. Since 

A + C(Y), another app l ica t ion  of  T i e t z e l s  theorem shows t h a t  B # C(.X) ,  

and s o  B is a proper uniform algebra supported by X. 

3 . 2 .  Lemma. Let X be a compact Hausdorff space, and suppose 

t h a t  X is not sca t te red .  Then, t h e r e  i s  a separable  closed subsi&ce-Y 

of  X and a continuous funct ion h from Y onto t h e  c l a s s i c a l  Cantor t e rnary  

s e t  K. Moreover, Y and h c a n b e  chosen s o  t h a t  h maps no proper closed 

subset  o f  Y onto K. 

Proof. Since X i s  not  s c a t t e r e d ,  t h e r e  is a continuous s u r j e c t i o n  

f : X  +[o, 11 from X onto 1.0, l] (see [3J 1. Put D = {E: E c X ,  E 

closed i n  X, and f(E)  = K}; f - ' ( ~ )  e D, s o  D is  nonvoid. By a Zorn's 

lemma argument s i m i l a r  t o  t h a t  used i n  t h e  proof o f  Lemma 2.1, t h e r e  is  

some Y e D which is  minimal under s e t  inclusion.  Put h = f \Y. By 

construct ion,  h maps no proper closed subset  of  Y onto K, and it there-  

fore  follows t h a t  Y is separable .  

3 . 3 .  Theoie im.  I f  every compact, separable ,  and nonscattered 

Hausdorff space supports a proper uniform algebra,  then every compact non- 

s c a t t e r e d  Hausdorff space supports  a proper uniform algebra.  

Proof. This is immediate from Lemmas 3.1 and 3.2. 

3 . 4 .  Lemma. Let X be a compact, ordered, and nonscattered 

(Hausdorff) space. Then t h e r e  i s  a closed subset  Y o f  X and a continuous 

funct ion h:Y -*Â K from Y onto t h e  Cantor t e rnary  s e t  K with t h e  following 

propert ies:  

1 )  h (Y) = K and h(G) + K f o r  every proper closed subset  G C Y; 

2)  Y is t o t a l l y  disconnected. 

3) Y is  separable;  

4 )  Y is  p e r f e c t ;  

5 )  Y i s  f i r s t  countable. 

Proof. There i s  a closed subset  Y C X and a continuous funct ion 

h which s a t i s f i e s  1 )  and 3)  by Lemma 3.2. To prove 41, l e t  x 0 e Y  and 

x E Y-{Y'} . Then Y <{x0} is closed whereby h(Y\{x} ) $ K. But K 

is p e r f e c t ,  and t h i s  implies K '- h(.Y '-{x ) contains  more than one po in t  0 
which provides t h e  des i red  contradict ion;  i . e . ,  Y is per fec t .  Since Y 

is a (compact) ordered separable  space, Y is  first countable.  ina all^, 
l e t  F be a component i n  Y, and suppose t h a t  F conta ins  more than one 

point .  Since X is an ordered space, t h e r e  e x i s t  a,  b e F  s o  t h a t  



( a , b )  4 <(> and F contains  (a ,b) .  Then Y- ' (a ,b )  i s  a proper closed subset  

of  Y t h a t  h maps onto K. Since t h i s  con t rad ic t s  l ) ,  we have t h a t  2)  

holds. 

3.5. Reduction Lemma. Suppose a l l  compact, ordered, t o t a l l y  

disconnected, p e r f e c t ,  separable  spaces support proper uniform algebras .  

Then every compact, ordered nonscattered space supports a proper uniform 

algebra. 

Proof. Let X be a compact, ordered nonscattered space. Then, 

by Lemma 3.4, t h e r e  is some Y C X so  t h a t  Y is compact, ordered, 

t o t a l l y  disconnected, p e r f e c t ,  and separable .  The r e s u l t  i s  now immedi- 

a t e  from Lemma 3.1. 

Definition. Let F C [o,  1] and l e t  F 3 On where On = 

0 <E-  5 l; m,n E LJ {O} 1 .  Let XF be the  subset  of  t h e  complex 
- 2n 

given by XF = ( (  [o, l] x{01 u ( F  x {11 1) \ { ( 0 ,  01, (1 ,  1 )  I .  
Put t h e  lexicographic order  on XF. So, i f  (x,y),  ( u , v  ) e X n t h e n  

(x,i/) 5 (u,u) i f ,  and only i f , x 5  u o r  x = u andy 5 v. XF is a compact 

ordered space i n  the  lexicographic order .  This compact ordered space 

X is s a i d  t o  be "obtained from [o, 1] by s p l i t t i n g  the  po in t s  of  F." F 
The next  r e s u l t  i s  due t o  S .  Purisch. 

3.6. Thiofi~n ( c f .  [4] ). Let X be a s  i n  t h e  above d e f i n i t i o n .  F 
Then X is a compact, ordered, separable ,  per fec t ,  t o t a l l y  disconnected 

F 
space. Conversely, every compact, ordered, separable ,  p e r f e c t ,  t o t a l l y  

disconnected space i s  homeolnorphic t o  some XF where XF is  a s  i n  t h e  

above d e f i n i t i o n .  

3.7. Thio~im (Raj agopalan [5] ) . A l l  compact, ordered, non- 

s c a t t e r e d  spaces support proper uniform algebras .  

A de ta i led  proof may be found i n  [5]; t h e  main idea is  t o  show 

t h a t  compact ordered spaces o f  the  form XF a s  above do support proper 

uniform algebras ,  and then use Lemma 3.5 and Theorem 3.6. 

3.S. CO&O&%LY. Every uncountable compact met r ic  space supports 

a proper uniform algebra.  

Proof. Any uncountable compact metr ic  space contains  a Cantor 

s e t  ( see  [l]).  Since t h e  Cantor s e t  is  ordered it admits a proper uniform 

algebra by t h e  preceding theorem, and hence every compact metr ic  uncount- 

a b l e  space does support a proper uniform algebra. 

Despite these  con t r ibu t ions ,  the  b a s i c  question s t i l l  remains: 

Does every nonscattered compact Hausdorff space support a proper uniform 

algebra? - - - 
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THE NUMBER OF BRIDGES 
AND OUTPOINTS I N  A CUBIC GRAPH 

b y  Pad! G. Eitnw~ and Flank ti- 
U n L v m - U y  0 6  f ichigan 

A ~ A - ~ A A C - ~ .  If G is a cubic connected graph with b bridges and 

a ? 1 cutpoin t s ,  then b + 1 < a2  2b and these  bounds a r e  b e s t  possible .  

Furthermore, f o r  any p o s i t i v e  in tegers  b,  c with a even, s a t i s f y i n g  

t h e s e  i n e q u a l i t i e s ,  t h e r e  is  a cubic connected graph with b br idges 

and a cu tpo in t s  which we w i l l  show how t o  construct .  A s  a byproduct, 

we f i n d  t h a t  t h e  number of  cu tpo in t s  i n  any cubic graph is  even. 

1 .  Conce.p.ti about  glapfcA. 

The complete graph $ has a s e t  V o f  p ? 1 poin ts ,  and i n  K 
P 

every p a i r  of d i s t i n c t  po in t s  a r e  joined by a l i n e  ( a r e  ad jacen t ) .  The 

f i r s t  graph of  Figure 1 is t h e  complete graph K4. The s e t  of l i n e s  o f  

K is  denoted by E A graph G with p p o i n t s  has t h e  same point  s e t  
P P' 

a s  K and i t s  l i n e  s e t  E is a subset  of  E Following t h e  terminology 
P' 

o f ,  a br idge of  a connected graph G is  a l i n e  whose removal d i s-  

connects G, and a cutpoint  i s  such a point  o f  G. In  a cubic graph, 

each point  has degree th ree .  We show i n  Figure 1 t h e  t h r e e  smallest  

cubic graphs and a l s o  a cubic graph G with p = 10 po in t s  having a br idge 

e and a cutpoint  u. 

FIGURE 1 
Some. c u b i c  g l a p h .  

In  order  t h a t  t h i s  note  be s e l f  contained, we include here addi-  

t i o n a l  mate r ia l  from [l,p.32,42]. A t r e e  is  a connected graph with no 

cycles;  it can a l s o  be defined a s  a graph i n  which every two d i s t i n c t  

po in t s  a r e  joined by a unique path. In a f o r e s t ,  each connected com- 

ponent is a t r e e .  Thus a graph is a f o r e s t  i f  and only i f  every l i n e  - - -  - 
is a bridge. 

For any graph H, we wr i te  p(H) and q(H) f o r  t h e  number of  po in t s  

and l i n e s  of H. For a t r e e  T , - p ( ~ )  = q(T)  + 1 is well  known. Hence 

f o r  a f o r e s t  F, p(F)  q (F)  + 1, i n  f a c t ,  p(F)  = q ( F )  + n where n is 

t h e  number of  connected components. 

1.  BoundA on $he. numbm 0 6  b/i-t.dge~ and cutpoints,  i n  a cub i c  g m p h  . 
The f i r s t  observation is a s t r u c t u r a l  lemma f o r  cubic graphs, 

which i s  s t a t e d  a s  an exerc i se  i n  [l, p. 301. 

Lemma 1 .  I n  a cubic graph, every cutpoint  has a br idge incident  

with it. 

Proof. Let v  be a cutpoint  i n  a cubic graph G.  Then t h e  po in t s  

of  G - v  can be par t i t ioned  i n t o  two s e t s  U and W such t h a t  every U-W 

path contains  v .  Since G is cubic,  e i t h e r  U o r  W has exac t ly  one l i n e  

joining it with v .  Say u  is  t h e  only point  of  U adjacent  t o  v .  Then 

t h e  l i n e e  = uv i s  a br idge,  s ince  t h e  removal of  e disconnects  U and W. 

let band a be t h e  number of  br idges and outpoints  of  t h e  graph 

G ,  and l e t  p be t h e  number o f  po in t s  of  degree 1 (endpoints) .  

Lemma 2 .  I f  G is a connected graph with a t  l e a s t  one cu tpo in t ,  

then b + 1 5  c + p i .  

Proof. Let G r C  G be t h e  subgraph of  G cons i s t ing  of  a l l  t h e  

br idges of  G,  a s  shown i n  Figure 2. Obviously G I  is a f o r e s t ,  s ince  it 

is impossible f o r  a cycle  of G t o  contain a br idge (and here every l i n e  

of a cyc le  i n  G' would be a br idge of  G I ,  so  q(G1 ) + 1 < p(G1). 

Let v be a po in t  of  t h e  f o r e s t  G I .  Then v  is e i t h e r  an endpoint 

o r  a cutpoint  of  G I  and hence of  G, thus  p(G1) = o + p,. By d e f i n i t i o n  

o f  G I ,  b = g(G1); there fore  

b + 1 = q(G1) + 1 1 p(G1) = a + p 1. 

The following theorem g ives  b e s t  poss ib le  bounds on b and a f o r  

a cubic graph G. 



FIGURE 2 
Subgmph conb'L&.ti.ng 0 6  the. bfu.dge.6 

The.o/ie.m 1 .  If G is  a connected cubic graph with a t  l e a s t  one 

cutpoint ,  then b t 1 5 (* 5 2b. 

Proof. Since G is cubic, G has no endpoints. Thus by Lemma 2, 

b t 1 5  0, In a cubic graph every cutpoint  has a bridge inc iden t  with 

it by Lemma 1, and each bridge jo ins  a t  most two cu tpo in t s ,  s o c ?  2b. 

Thus b +  1 5 0 5  2b. 

3. CUWA~MJLL~JL~O~ 0 6  c u b i c  g m p h  iaLth pfis^c'u.be.d band c .  

I f  b and e a r e  any pos i t ive  in tegers  w i t h b t  1 5 c 5  2b and c 

even, t h e r e  is  a cubic graph with b br idges and c cu tpo in t s ,  which we 

w i l l  show how t o  construct .  We w i l l  a l s o  show t h a t  t h e  r e s t r i c t i o n  

t h a t  c be even i s  necessary: 

A s  i n  the  proof o f  Lemma 2 ,  again l e t  G' be the  subgraph o f  t h e  

cubic graph G cons i s t ing  of  i t s  bridges. The next  r e s u l t  shows t h a t  G' 

is  a cubic f o r e s t ,  i . e . ,  t h a t  each po in t  has degree 1 o r  3. 

Lma 3. I f  G is cubic, then G' i s  a cubic f o r e s t ,  i . e . ,  has no 

po in t s  o f  degree 2. 

Proof. Suppose G has a point  0 such t h a t  two o f  t h e  l i n e s  else2 

incident  with it a r e  br idges and one, e n ,  is not .  A s  e i s  not a 3 
br idge,  it is on a cycle  C i n  G which must contain e i t h e r  e o r  e ,  say 

e2.  Then e is on a cycle  i n  f f ,  cont rad ic t ing  t h e  assumption t h a t  it 2 
i s  a bridge. 

Thus i n  o rder  t o  construct  a connected cubic graph with b br idges 

and c cu tpo in t s  it is  first necessary t o  f i n d  a cubic f o r e s t  F with b 

l i n e s  and c poin t s .  Here we w i l l  see t h a t  it is necessary t h a t  c is  

. . 
even s ince  t h e  number of  p o i n t s  i n  F o f  odd degree i s  even [1, p. 143. 

We now prove t h i s  statement. 

T h c o ~ n  2 .  The number o o f  cu tpo in t s  i n  a cubic graph is y e n .  - -- - 
Proof. In  Lemma 3,  we showed t h a t  t h e  subgraph G' o f  a cub ic "  

graph G cons i s t ing  o f  t h e  br idges o f G  and t h e i r  po in t s  is a cubic 

f o r e s t  with b l i n e s  and c points .  I t  i s  shown i n  [1, p. 141 t h a t  i n  

any graph, t h e  number o f  p o i n t s  o f  odd degree i s  even. Since every po in t  

i n  t h e  cubic f o r e s t  G I  has odd degree ( 1  o r  31, t h e  number c o f  po in t s  i n  

G' must be even. 

We w i l l  see t h a t  t h e  f a c t  t h a t  c i s  even is  t h e  only cons t ra in t  

besides b + 1 5 c 5  2b, and b > 0 f o r  t h e  exis tence o f  a cubic graph with 

b bridges and e cu tpo in t s .  For t h i s  purpose we requi re  a preliminary 

result. 

Lemma 4. For 0 even and b > 0 with b + 1 s c Â 2b, t h e r e  is  a 

cubic f o r e s t  having c p o i n t s  and b l i n e s .  

Proof. For any even i n t e g e r  2n t 2 > 0 define Tat2 t o  be t h e  

t r e e  obtained from t h e  pa th  P with n p o i n t s  by joining each o f  its 
n 

po in t s  t o  new poin t s  s o  t h a t  t h e  degree of  every po in t  i n  P becomes 3. n 

n p o i n t s  

FIGURE 3 
A c u b i c  ~ 3 ~ e . e .  

Clearly T2nt2 i s  a cubic t r e e  with a = 2n t 2 po in t s  and b = c - 1 l i n e s ,  

f o r  any even value o f  c >. 2 (when 0 = 2,  Figure 3 reduces t o  t h e  2-point 

t r e e  K ). Let F = F 
2 b,o,k be t h e  union of  T2k+Ã and n-k copies  o f  K 

2'-, 
Then F 

b.0.k 
is defined f o r  0 5 k ~  n and has (2kt2)  t 2(n-k) = In  t 2 

po in t s  and b = (2kt2-1) t (n-k) = n t k t 1 l i n e s .  Thus t h e r e  is  a cubic 

f o r e s t  with b l i n e s  and c po in t s  whenever n t 1 < b <  2nt1, t h a t  is, i f  



c = 2n+2 and b + 1 SaÂ 2b. . 
Now l e t  H and K4 - e be a s  shown i n  Figure 4; they a r e  usefu l  a s  

bui lding blocks f o r  cubic graphs with a prescr ibed number of  cutpoints  

and bridges.  O f  course K - e i s  t h e  complete graph on f o u r  po in t s  

minus any edge e .  

FIGURE 4 
TWO building bLo& doh cubic gflaphb. 

The.0~e.m 3 .  For any p o s i t i v e  i n t e g e r s  b y e  with c even such t h a t  

b + 1 S o <  2b, the re  is  a connected cubic graph with b bridges and c 

cutpoints .  

Proo f .  A cubic graph with b bridges and c cutpoints  w i l l  be con- 

s t ruc ted  by joining copies o f  H and K - e t o  t h e  endpoints of  t h e  

f o r e s t  F defined i n  Lemma 4 i n  such a way t h a t  t h e  r e s u l t i n g  graph 
b,c,k 

is  connected and cubic. Label t h e  components o f  F a s  t r e e s  Tl, ..., T 
b,o,k m 

where rn = c - b = n - k + 1. Since each o f  T ,  ..., T has a t  l e a s t  two 

po in t s  of  degree 1, we can join endpoints of  T iand  Ti+l with a copy o f  

K - e f o r  a l l  i = 1,2, .  .., m- 1,  so  t h a t  t h e  po in t s  of  degree 1 i n  Ti 
4 

and Ti ,  a r e  i d e n t i f i e d  with t h e  po in t s  of  degree 2 i n  K - e .  The 

r e s u l t i n g  graph i s  connected and each po in t  i n  it has degree 1 o r  3. I f  

we ad jo in  a copy o f  H t o  each po in t  o f  degree 1 i n  t h i s  graph by i d e n t i-  

fying t h e  endpoint with t h e  unique po in t  o f  degree 2 i n  H ,  the  r e s u l t i n g  

graph G is cubic and connected with b l i n e s  and c outpoints ,  a s  i l l u s -  

t r a t e d  i n  Figure 5 f o r  b = 7, c = 10. 

This completes t h e  construct ion of a cubic connected graph with b bridges 

and c cu tpo in t s  f o r  a l l  even c and b > 0 with b + 1 5 o S  2b. I n  f a c t  it 

can be seen t h a t  i n  a cubic graph c = b t n ,  where n i s  the  number o f  

connected components o f  t h e  f o r e s t  G I .  -- , - - . 
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Proof. 

I 
( V  k - l, = 

(nip" - 11): 

m p  - 1 - k ) ! k !  
SOME DIVISIBILITY PROPERTIES OF 

BINOMIAL COEFFICIENTS 

n 
I t  is  well-known t h a t  i f  p  i s  prime, then f o r  a l l  k, 0 4 k 4 p , 

t h e  binomial c o e f f i c i e n t  (pn) is d i v i s i b l e  by p.  I n  t h e  present  work 
k n 

we inves t iga te  values of  n  f o r  which the  binomial c o e f f i c i e n t  ( ) a r e  
k 

r e l a t i v e l y  prime t o  p f o r  a l l  k. I n  add i t ion ,  f o r  c e r t a i n  o ther  values 
n 

of n, we a r e  ab le  t o  say exac t ly  how many of the  c o e f f i c i e n t s  (,) a r e  

d i v i s i b l e  by p. 
n  

F i r s t  we consider t h e  values of  n  f o r  which a l l  ( ) a r e  prime t o  
k 

p .  A reasonable conjecture emerges, a t  l e a s t  f o r  the  case p = 2, when 

one examines t h e  f i r s t  few rows of Pasca l ' s  Triangle: 

We now introduce t h e  no ta t ion  h (n)  f o r  t h e  l a r g e s t  in teger  r such t h a t  
P 

divides n. We claim t h a t  f o r  each i, 1 5 i 5 k, hP(mp1 - i ) = h  (<). 
t P 

To see  t h i s ,  l e t  h  ( i )  = t so  t h a t  i = p s with s r e l a t i v e l y  prime t o  p. 
P 

Then m p  - i = mpl - spt, and, s ince  t i s  c e r t a i n l y  l e s s  than o r  equal  
t 

t o  I, t h i s  is  p s ) .  Now - s is  r e l a t i v e l j  prime t o  p .  

This is obvious i f  t < I, s ince  i s  d i v i s i b l e  by p ,  but s is  not .  

I f t = I , m p ' - t - s = m - s < m < p .  H e n ~ e , s i n c e m - s ~ l , ~ ' - ~ - s i s  

not d i v i s i b l e  by p . It follows t h a t  h ( m p  - i )  = t = h ( i )  . We now 
P P 

know t h a t  t h e  highest  power of  p i n  t h e  numerator of each f a c t o r  

- i )  
( Ti is  t h e  same a s  t h e  highest  power of p i n  t h e  corresponding 

denominator. Hence p does not  divide t h e  binomial c o e f f i c i e n t  

Now, i n  case p = 2, we w i l l  show t h a t  t h e  values spec i f ied  i n  

Theorem 1 a r e  i n  f a c t  t h e  only ones. F i r s t  some lemmas: 

Lemma A. For a  p o s i t i v e  i n t e g e r  n,  

Proof. Clearly h ( ( 2 n  + I ) ! )  = h2((2n)!) s ince  In  + 1 i s  odd. 
00 

Examination of  t h e  above data  l eads  one almost immediately t o  guess t h a t  
n  t h e  c o e f f i c i e n t s  ( ) a r e  a l l  odd i f  n  i s  one l e s s  than a  power of 2. It  
k 

is  encouraging t o  note  t h a t  t h e  c o e f f i c i e n t s  i n  rows 2 = 3 - 1 and 

8 = 3 - 1 a r e  a l l  r e l a t i v e l y  prime t o  3. But t h i s  is  a l s o  t r u e  of t h e  

e n t r i e s  i n  row 5. 

Recall t h a t  h (k!) = [ 5 1, where square brackets  denote t h e  
P j=1 p m 

g r e a t e s t  in teger  function. Now h2 ((2n)!)  = 2 [2'?] = 
oo 00 j=1 217 

Theoll~m 1 .  If p i s  a  prime, I is a p o s i t i v e  in teger ,  1 5  m < p ,  
I -1 

and 0 < k 5 m p  - 1, then t h e  binomial c o e f f i c i e n t  ('Â i, ) i s  

r e l a t i v e l y  prime t o  p. 

n +  In  n [ _ I =  n + [ Ã ‘  = n + h ( n ! )  . 
j = 2  2c7 j=l 

Lemma B. I f  n  is a p o s i t i v e  i n t e g e r ,  then h (n!) 5 n - 1, and 
2 

h (n!) = n - 1 i f  and only i f  n  is  a  power of 2. 
2  



proof. suppose 2k 5 n < 2k+1. Then 

n Hence h 2 ( n ! )  5 n - 1. I f h  ( n ! )  = n - 1, thenwe h a v e n  - 1 5 n  - -  , 2 
2k 

1 n n < since h ( n ! )  5 n ( l  - - ) = n - - . Therefore, - k 
2 1 , o r  n 5 2 .  

pk 2k 2k 

n Th~otem 2. I f  n i s  a posi t ive integer with the  property t ha t  ( ) 
k 

i s  odd for  each k ,  0 5 k 5 n ,  then n = 2' - 1 for some I .  

n Proof. We need only consider odd n ,  since i f  n i s  even ( ) i s  1 
even. Suppose n i s  odd, say n = 2 2  + 1. Now consider ( 2k + 1 )  = 

k 

( 2 k  t 1 ) '  
! ( + 

. Since ( 2 k k t  l )  i s  odd, h2 (12"^  ' 1 )  = h 2 ( ( 2 k  + 1 ) ;  1- 

k - h ( ( k  +I)!) = 0 .  S o h ( . ( k  + 1 ) ! )  = k ,  andby  LemmaBthis means 

k + 1 i s  a power o f  2, making k = 2 - 1 for some i .  

In t he  introductory remarks, it was mentioned t ha t  t h e  c o e f f i c i e n t s  

( p k n )  are a l l  d i v i s i b l e  by p ,  for  0  ~ k < ~ .  This r e su l t  i s  a corollary o f  

the following theorem. 

T h i ~ / i ~  ?I. I f  n = & + j ,  where 1 5  m < p ,  and 0 5 j < p ,  then p 

i s  r e la t i ve l y  prime t o  exactly  ( m + 1 ) (  j  t 1 )  o f  the c o e f f i c i e n t s  ( ) .  
k 

n I I 
C k )  = ( T ti) = (IT ; 3 ) ( T E k  y) ... ( I T  t 1 - k  f 1 

k 1 ). . 

-- . - -- - 
The l a s t  factor i s  r e la t i ve l y  prime t o  p by Theorem 1 .  Hence 

m p  t j - i i s  d i v i s i b l e  by p only in-case i = j ,  i n  which case 
3 

2 h ( k - i ), and it follows t ha t  

i = o  3 

$1 i s  r e la t i ve l y  prime t o  p i f  and only i f  h P ( k - i )  = I .  

i = o  

Since j< p ,  a t  most one h ( k  - i )  may be nonzero, for 0  5 i 5 j ,  and 
P 

i f  h ( ( n ) )  i s  t o  be zero,  then h ( k  - i.) must be I for some i ,  0  5 i 5 j .  
P fe P 

That i s ,  k - i = r p  for  some r ,  with r re la t i ve l y  prime t o  p .  Hence 

I I 
k = r p  + i 5 mp + j .  For any o f  t he  j + 1 possible values o f  i. 

0 5 i 5 j ,  there are m values o f  p, 1 5 P 5 m, which yield values o f  k 

for which h ( ( " ) )  = 0.  This y ie lds  m( j  t 1 )  values o f  k .  Recalling 
P k 

t he  j t 1 values 0  5 k 5 j determined ear l i e r ,  we have a t o t a l  o f  

( m  t 1 ) ( j  + 1) .  
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n I f  k = 0 ,  cer ta in ly  ( ) i s  r e la t i ve l y  prime t o  p .  I f  0 <  k 5 j ,  then k 
none o f  t he  numerators o f  these fract ions i s  d i v i s i b l e  by p, and so ,  for 



THE KERNEL O F  THE LAPLACE TRANSFORM 

Intn.oducZion. 

Is there  any c o r r e l a t i o n  between t h e  use of the  term kernel  a s  

the kernel  of an i n t e g r a l  transform and the  kerne l  of  a  homomorphism 

between a lgebra ic  s t r u c t u r e s ?  The Laplace transform i s  given by 

tf-{f( t ) }  = /:estf(t)dt = F ( s )  f o r  s > s ,  the  absc i ssa  of convergence 
-st of F. In t h i s  paper thekerne l ,  K ( s , t )  = e , is exhibi ted a s  the  kernel  

of  a  homomorphism between two mul t ip l ica t ive  semigroups o f  funct ions.  

e n .  Let S be the  s e t  of  a l l  funct ions f:[0, - )-+ R such t h a t  

f is piecewise continuous on each i n t e r v a l  [o, TI, T > 0 ,  and is  of  ex- 

ponential  order  ( i . e . ,  \ f ( t )  \ 5 ~ e " * ,  t>T, f o r  some M, a ,  T ? 0).  When 

necessary assume f l t )  = 0 f o r  t < 0. Define convolution mul t ip l ica t ion  

on S by 

P g ( t )  = /Of(t-u)g(u)du. 

T k e o h e ~  1 .  (AS,*) is a commutative semigroup. 

Proof. We first note t h a t  i f  f ,  g E s ,  then f * g i s  continuous. 

The Proof follows Churchi l l  [l] , problem 9 ,  p. 49. 

Suppose f, g E s. Since f and g a r e  of exponential order ,  we may - * 
choose M ,  a ,  T > 0 such t h a t  1 f (  t )  1 5 Mle at and l g ( t )  1 5 ~~e~~ f o r  

t >. T. Further requ i re  t h a t  M is s u f f i c i e n t l y  l a rge  so  t h a t  [ f ( t ) l 5  M, a 
and l g ( t ) l  5 M f o r  0 5 t 5  T. Let e > 0  and denote by M the  maximum of 

2 2 
(- +t)e"*on [0,-1. If t > 2T, then 

where M = < M2. Therefore, f*g is o f  exponential order. 

We have shown t h a t  convolution is  closed i n  S. To show assoc ia t-  

i v i t y  suppose f, g,  h E S and l e t  t E [o,-1. 

Subs t i tu t ing  w = u+u, K = u ,  A? = du, and changing t h e  order  of  i n t e-  

gra t ion  i n  (2) we ge t  

Therefore, (S,*) is  a semigroup. Commutativity involves a  s t r a i g h t f o r-  

ward s u b s t i t u t i o n  and is  l e f t  t o  t h e  reader. 

Let T be t h e  s e t  o f  a l l  continuous funct ions 

F: (sF,-) -+ R ,  - - 5  sF c -. Define pointwise mul t ip l ica t ion  on T by 

F-G(s)  = F(s )G(s 1, s > max{s,  a } .  

Theohm I .  (T, ) is a semigroup. 

The proof t o  Theorem 2 i s  s traightforward and l e f t  t o  t h e  reader .  

Theohm 3. The Laplace transform, & , a c t s  a s  a  mapping from S 

i n t o  T. 

The exis tence o f  X.{f ( t )}  = F ( s )  on an i n t e r v a l  (sF,-) f o r  each 

f E S is  shown i n  most s tandard d i f f e r e n t i a l  equations t e x t s  ( see  [2], 

f o r  example). The cont inu i ty  o f  F is  shown i n  Churchill  [l], pp. 41-43, 

and Widder [6], pp. 373-375. A proof of  t h e  following theorem and o ther  

p roper t i es  o f  t h e  Laplace transform a l s o  can be found i n  these  references.  

T h i o / l m  4. (Convolution Theorem) If f ,  g E S ,  then 

A s  a  consequence of  t h e  preceding theorem we have t h a t  X :  S+T 

is  a homomorphism. 

'D'Uw.c deJita. 6unGtion. A t  t h i s  point  S does not have an i d e n t i t y .  

For t h a t  purpose we introduce the  Dirac d e l t a  function. Let H denote 

the  u n i t  s t e p  funct ion ( o r  Heaviside funct ion)  defined by 

( 0 ,  t c o  
H( t )  = 1 1, t i 0. 



Let h > 0  a n d a ?  0. Define dh : R + R  by 

d h W  = ( l /h){H(t)  - H(t-h) 1 .  

There a r e  severa l  ways t o  define t h e  D i r a c - d e l t a  function. One 

way is t o  consider  it a s  a general ized der iva t ive  o f  H ( f o r  example, see  

[3 ] ) . Another conventional approach is  t o  consider t h e  Dirac-delta 

funct ion a s  t h e  general ized l i m i t  of  dh a s  h +0+ ( f o r  example, see [5]). 

In  [4], t h i s  funct ion is introduced through convolution quotient  r ings .  

Thus, t h e  Dirac-delta funct ion i s  not  a c t u a l l y  a funct ion i n  t h e  usual  

sense but  r a t h e r  belongs t o  t h e  c l a s s  o f  general ized functions o r  

d i s t r ibu t ions .  

The following theorem summarizes p roper t i es  o f  t h e  Dirac-delta 

funct ion which w i l l  be used l a t e r .  

The.o/im 5 .  Let a , b  2 0 and f e s. I f  a 2 0 6( t -a )  i s  & ( t ) .  

Proofs f o r  t h i s  theorem can be found i n  [3], pp. 58-69. 

Kernel. Let Sl = S U { 6  : a 2 01. The f a c t  t h a t  S i s  a semi- 

group under convolution follows from Theorem 5, ( i )  and ( i i ) .  Further- 

more, t h e  Laplace transform is defined on Sly and it is  e a s i l y  v e r i f i e d  

t h a t  t h e  Convolution Theorem s t i l l  holds. For example, i f  f ~ s  and a ? 0. 

Therefore, dL is a homomorphism f r o m  S i n t o  T. Let T = &(s.,). 

Before proceeding t o  our main r e s u l t  we need the  following 

Definition. A congruence on a semigroup S is  an equivalence 

r e l a t i o n  p on S such t h a t  i f  s p t and u p v , then s u  p tv. 

Now define t h e  r e l a t i o n  p on Slcsuch t h a t  f p g i f ,  and only i f ,  

F ( s )  = cf.{f(t)} = e - ^ g { g ( t ) >  =e-a8 G(s)  f o r  some a E Rand a l l  

s > sg > max{sF,sG 1. 

Th~vham 6 .  The r e l a t i o n  p is  a congruence on S 
1. 

Proof. We f i r s t  show t h a t  p is an equivalence r e l a t i o n .  For t h e  

re f lex ive  property simply choose a = 0.  Suppose f ,  g E S, such t h a t  

F ( s )  = e a S G ( s )  f o r  some a E R and a l l  s > s,. Then G(s) = e a s ~ ( s )  

which gives symmetry. In add i t ion  assume t h a t  h E S and G(s) = e b s ~ ( s )  
'-as -bs 

f o r s o m e b e R a n d s  > s 2 .  T h e n F ( s )  = e - a s ~ ( s )  = e  e H ( s ) =  

e - ( a t b ) s ~ ( s ) ,  s > man {s,, e2  ) , demonstrating t r a n s i t i v i t y .  

Suppose f p g and h p k i n  S,. Choose a, b E R such t h a t -  -- 

F(s  ) = e a s  G ( s  and H(s ) = e-bS K (8 1, s > sn . By the  Convolution   he or em 

= e -(a+b)s^* k (^)I ,  s > so . 
Therefore f *  h p gst k and t h e  theorem is proved. 

Let S /p  be t h e  quot ient  semigroup o f  a l l  p-classes i n  S with 1 
mul t ip l ica t ion  defined by [f]  = [ f $: g 1. From Theorem 5,  

&.{ f*S(.t))= $ { f ( t )  } f o r  a l l  f E Sl. Therefore,[fi]= [ia], a 2 0, 

is  t h e  i d e n t i t y  f o r  S / p .  

Final ly,  def ine t h e  mapping a : T + S  1 /P so  t h a t  a (F)=> 8-I ( f )  

f o r  a l l  F E Tl. 

Theoi~lm 7 .  a is a homomorphism, and t h e  kerne l  of  a is 

{ F  E Tl : F ( s )  = emsa , a  S 0, s > 0 1. 

Pmof. Let F,  G e T .  Choose f, g E S such t h a t & { f ( t ) }  = 

F ( s )  and G f { ^ ( t ) }  = !(s). Then f E a ( F )  and 9 E a ( G ) .  Furthermore, 

5& {f * g ( t ) )  = F G(s) from t h e  Convolution Theorem. Therefore, 

"̂-(F-oc [f * gl  = [fl cgl = a(?) a ( ~ ) ,  

from which it follows t h a t  a(F)a(G) = a(F-G). Theorem 5,  ( i i i )  implies 

tha t{F  E T : F ( s )  = e-'\ a >. 0, s > 0 1 i s  t h e  kerne l  of  a .  

In  conclusion, l e t  us regard t h e  kernel  o f  t h e  Laplace transform, 

K ( s , t )  = e-st, a s  a one-parameter subsemigmup o f  Tl f o r  s > 0 and t 2 0- 
-st 

That i s ,  f o r  each t > 0 l e t  K(- , t )  E T 1 such t h a t  K ( s , t )  = e , S > 0. 

Then t h e  subsemigroup of T assoc ia ted  with K by t h e  mapping t +K( , t )  

i s  prec i se ly  t h e  kerne l  of  t h e  homomorphism a .  

Referee's Note - Some of t h e  r e s u l t s  discussed i n  t h i s  paper a r e  

a l s o  covered i n  Louis Brand's Different ial  and Difference Equationsi 

fWley,1966, using the  Mikusinski Operational Calculus. 
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EMPLOYMENT OPPORTUNITIES I N  INDUSTRY FOR NON-PH.D. MATHEMATICIANS - 
a -  - 

by V .  Bvi~ihaul 
Washington State  UniuemLLy 

Int)LoduCLtion. Although much information about nonacademic employ- 

ment oppor tun i t i es  f o r  Ph-D. mathematicians can now be found ( see  espe- 

c i a l l y  t h e  Uotices o f  the  American Mathematical Soc i e t y ) ,  much l e s s  has 

been wr i t t en  about such oppor tun i t i es  f o r  mathematicians who do not have 

t h e  doctorate .  This is  unfortunate, because it is probably f o r  t h i s  

l a t t e r  group t h a t  f a r  more oppor tun i t i es  e x i s t .  

In  t h e  l a t e  sevent ies ,  my un ivers i ty  received a g ran t  from t h e  

National Science Foundation t o  consider  ways of modifying t h e  graduate 

program i n  mathematicstoprovide b e t t e r  preparat ion f o r  nonacademic 

careers*. In connection with t h i s  p r o j e c t ,  dozens of  present  o r  poten- 

t i a l  employers of mathematicians were interviewed t o  see  what they had 

t o  say about des i rab le  q u a l i f i c a t i o n s  f o r  mathematicians. This i n t e r -  

viewing was accompanied by a review of t h e  per t inen t  l i t e r a t u r e  and by 

p a r t i c i p a t i o n  i n  severa l  conferences a t  Washington S t a t e  University and 

a t  Clemson University where represen ta t ives  of government and industry 

were a b l e  t o  express t h e i r  views on t h e  same sub jec t .  The following 

remarks c o n s t i t u t e  mainly a summary of conclusions drawn from these  

experiences ; 

k Oj~poMu&~ dot hotdea oh Kachelotl~ ok ! A C I A ~ Q . J L ~ ~  Mdhetn- 
There is a considerable  demand f o r  s u i t a b l y  t ra ined  holders  of  a 

bachelor 's  o r  master 's  degree i n  mathematics. Rightly o r  wrongly, many 

employers regard Ph.D. mathematicians a s  an expensive luxury, while those 

with mas te r ' s  degrees and no Ph.D. a r e  considered t o  have almost a s  much 

t o  o f f e r ,  and t o  " f i t  in" b e t t e r  i n  t h e  t y p i c a l  nonacademic working en- 

vironment. ( I n  f a c t ,  r ecen t  surveys ind ica te  t h a t  t h e  r a t i o  of  master 's  

degrees t o  Ph.D.'s i n  nonacademic employment f o r  mathematicians is  about 

four  t o  one.) Furthermore, t h e  p o t e n t i a l  oppor tun i t i es  i n  industry f o r  

-- 
f:NSF Grant No. SED75-17322. A r e p o r t  on t h i s  p r o j e c t  and on t h e  p a r a l l e l  
p ro jec t  a t  Clpmson Universi ty ,  Heu Opportunities i n  Applied Mathematics 
(October, 1979) is ava i lab le  from t h e  author  of t h i s  note .  



mathematicians have probably been hardly scratched.  Many possible  

employers do not  ye t  r e a l i z e ,  but a r e  o f ten  easy t o  convince, t h a t  they 

should consider hir ingmathematiciansin t h i s  category. Even so,  t h e r e  

a r e  plenty of  oppor tun i t i es  now, The two u n i v e r s i t i e s  mentioned above, 

and o t h e r s  with s imi la r  programs, have experienced no d i f f i c u l t y  i n  

recen t  years  i n  placing t h e i r  mas te r ' s  degree graduates  i n  a g r e a t  v a r i e t y  

of  appropriate  jobs. Recent M.S. graduates from my univers i ty ,  f o r  ex- 

ample, have found pos i t ions  with t h e  Navy, i n  t h e  lumber industry,  i n  

t h e  aerospace industry,  with manufacturers of  ca lcu la tors ,  i n  d iverse  

consul t ing f i r m s ,  and so on. Of course, some of  them have chosen t o  go 

i n t o  teaching o r  t o  continue graduate work. 

These placements, however, a r e  not  always automatic. Opportunities 

a r e  not  always obvious, and f ind ing  them sometimes requ i res  a c e r t a i n  

amount of imagination and aggressiveness on t h e  p a r t  of t h e  graduate and 

h i s  o r  her f a c u l t y  advisors .  For instance,  it is a mistake t o  look only 

a t  advertisements announcing pos i t ions  s p e c i f i c a l l y  f o r  mathematicians. 

Engineers, physical  s c i e n t i s t s ,  computer s c i e n t i s t s ,  business  administra-  

t i o n  graduates, and o t h e r s  have of ten  been h i red  t o  do what should be a 

mathematician*s work. This is sometimps a r e s u l t  of an of ten  misguided 

but not always unshakable b e l i e f  t h a t  such people a r e  more "pract ical" .  

but probably more of ten  of  an inadequate appreciat ion of  what well- 

t ra ined  mathematicians can contr ibute .  Mathematics s tudents  i n  search o f  

employment a r e  well advised t o  i n v a d e t h i s t e r r i t o r y ,  which should r i g h t l y  

be t h e i r s .  Recrui ters  from government agencies and p r i v a t e  f i rms seldom 

r e s e n t  t h i s  t a c t i c .  and of ten  count it i n  favor  of  t h e  s tudent  a s  a s ign 

. o f  i n i t i a t i v e .  

I t  may happen t h a t  energe t ic  s tudents .  with t h e  help of t h e i r  in-  

s t r u c t o r s  and often of a col lege placement o f f i c e ,  can c r e a t e  -- pos i t ions  

f o r  themselves by persuading employers' r epresen ta t ives  t h a t  they Would 

he valuable add i t ions  t o  t h e i r  s t a f f s .  The sound advice in t h e  l i t e r a -  

t u r e  of  job-seeking appl ies  fortissimo in  t h i s  s i t u a t i o n .  

A t e c - i p e  {^ox a n  a b b o t u t e t q  e m p t o t f a b t e  d e g i e e  i n  mcuthematJLct.. The -- 
M . A .  - o r  M.S. -holdingmathematicianwho has 'wen t h e  subject  of t h e  pre- 

ceding paragraphs has been assumed t o  he su i tab ly  t ra ined .  While t h e  

t r a d i t i o n a l  degree in  pure mathematics hardly d i s q u a l i f i e s  a person f o r  

nonacademic employment, it has become c l e a r  t h a t  c e r t a i n  fea tures .  some 

novel. can g r e a t l y  enhance t h e  graduate 's  oppor tun i t i es .  The inqui r ies  

described i n  t h e  Introduction have l e d  t o  a loose consensus about what 

those f e a t u r e s  might be. While the  claim i n  t h e  heading of  t h i s  s ~ c t i o n  

may be a b i t  extravagant, t h e r e  is ample evidence t h a t  the  s tudent  who 

completes a program with most o r  a l l  of the  following c h a r a c t e r i s t i c s  - - 

may confident ly look forward t o  a rosy professional  fu ture .  --'- _- 

1. C'ore Mathematics. Mathematics departments considering a 

move i n  t h e  d i r e c t i o n  of preparation f o r  nonacademic careers  a r e  

sometimes tempted t o  throw overboard a l l  of t h e  t r a d i t i o n a l  pure 

mathematics. This is  almost sure ly  a mistake, a s  many i n d u s t r i a l  

mathematicians would be among t h e  f i r s t  t o  say. Besides l eg i t imiz-  

ing t h e  use of the  word "mathematics" i n  the  name of  t h e  degree, a 

s i g n i f i c a n t  graduate- level experience with some of  t h e  most i m -  

portant  ideas of t r a d i t i o n a l  mainstream mathematics is invaluable 

background f o r  f u r t h e r  l ea rn ing  and f o r  doing most kinds of 

appl ied mathematics. There is n a t u r a l l y  some disagreement about 

how much is " s ign i f ican t" ,  which ideas a r e  "most important", and- 

how f irmly core requirements should be prescr ibed.  

2. Computing and nwierical a d g s i s .  There is  wide agreement 

t h a t  nowadays anyone who rece ives  a degree i n  mathematics should 

understand computing t o  a reasonable extent .  This i s  c e r t a i n l y  

t r u e  of  those contemplating careers  a s  mathematicians i n  industry 

o r  government. Again, opinions about what "a reasonable extent"  

is vary .grea t ly .  Some qua l i f i ed  people would claim t h a t  a broad 

background i n  computing is s u f f i c i e n t ,  and t h a t  de ta i led  knowledge 

of languages, systems, and software should be developed on t h e  

job; o t h e r s  would expect t h e  equivalent of an undergraduate major 

i n  computer science. A t o l e r a b l e  middle pos i t ion  would seem t o  

be tha  

comput 

runs. 

3. 

4. 

ex tens 

a nonacademic mathematixian should know enough about 

ng t o  avoid being responsible  f o r  uiduly expensive computer 

Applied szat is t ics .  

Opera.!;ions research 01- mathen~iztical prgpwnming. While - 
v e  sequence- of course? i n  these  a r e a s  a r s  hardly necessary 

i n  a l l  casqs,  some acquaintance !.rith the bas ic  concepts and tech-  

n'iques is invaluable. 

5 .  Modeling. Th? s tudent  should be given some exoerience i n  -- 
modeling r e a l  world problems, p re fe rab ly  au then t ic  nroblemu with 



real data. The experience niay be obtained in separate courses or 

seminars, or along the way in otherwise ordinary courpp<. 

6. Field experience. Something by way of an off-campus in- 

ternship, besides adding several dimensions to the student's 

education, offers the student and at least one possible employer 

an opportunity to look each other over. Making such arrangements 

and supervising them is usually a matter of personal diplomacy, 

and therefore requires a good deal of faculty time; but, by all 

indications, it is worth it. Plans such as that of the Mathe- 

matics Clinic at the Claremont Colleges provide interesting alter- 

natives. In general, when off-campus arrangements are not practical, 

on-campus internships in other departments or in nonacademic re- 

search units may serve many of the same purposes. 

7 .  Broad in teres ts .  Employers tend to expect their scien- 

tific personnel to have a good "world view", including an appreci- 

ation of both the technical and nontechnical (political, economic, 

etc.) milieus by which their work might be affected and on which 

it might impinge. To some extent this attribute may be strength- 

ened by encouraging or even requiring students to take appropriate 

courses in other fields. 

Well-developed avocational interests also come under this 

heading. A healthy interest in games, civic causes, and so on 

is much more likely tocount for than against an employee. 

8. Communication s k i l l s .  The importance of being able to 

communicate effectively, orally and in writing, with colleagues 

of many kinds can hardly be exaggerated. 

9 .  Attitudes. The mathematician in government or industry 

should be not only competent, but eager to help others with their 

problems and willing to work with them on their own terms. In 

particular, he or she should not be obsessed with mathematical 

rigor. One of the most frequent complaints against traditionally 

trained mathematicians is that they often do not know when enough 

time has been spent on a problem and something else should be 

taken up. 

10. Leadership abi l i ty .  Even employees recruited for their 

scientific knowledge are often expected, after some years, to be 

able to move into the ranks of management. Failure to do so is 

frequently seen as failure indeed. 

It may seem a hopelessly tall order to compress all of these elements 

into the two years or less of the usual master's degree program. But by 

* ingenious management of the curriculum, and a sincere effort to impart 

the less technical elements throughout the program, something very like 

it can be done, and is being done at a number of universities. Students 

at universities where"no such program has been formalized can usually, 

with a little help from the faculty, custom-build something of the kind 

for themselves. 

The bachê .oh'b degree. The standard bachelor's degree with a 

mathematics major is not generally regarded in industry as a terminal 

professional degree. Nevertheless, almost all holders of the bachelor's 

degree, especially if they know some computing, are now finding suitable 

positions. For example, it has recently been reported (e.g., in The Wall 

Stpee Journal of September 12, 1980) that many firms are now hiring 

people with B.A.'s and B.S.'s in mathematics for positions that would 

formerly have been filled by holders of the Master of Business Adminis- 

tration degree. 

With the rapid mathematization of so many aspects of modern life, 

this trend will surely continue. In fact, it can be expected to accel- 

erate if more mathematics departments modify their undergraduate pro- 

grams along the lines suggested above for the master's degree. This has 

already happened in many colleges, and the move is under study at many 

others. Specific recommendations in this area, based on extensive con- 

sultations and discussions, will appear in the forthcoming report of the 

CUPM Panel on a General Mathematical Sciences Program. 

ConcX.uion. Students who love mathematics,but have been discour- . 
aged from considering a career in mathematics because of persistent 

rumors about the unemployability of mathematicians, should stop worrying! 

With a bit of thoughtful planning and guidance, they may be assured of 

gratifying professional lives with mathematics itself -- especially if 
they obtain suitable mathematics degrees. 
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playing novel and elegant methods of solution are also acceptable. The 

choice of proposals for publication w i l l  be based on the editor's  evalu- 

ation of their  anticipated vender response and also on their  in t r ins ic  

in teres t .  Proposals should be accompanied by solutions i f  available and 
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and problem proposals not accompanied by solutions w i l l  be designated 
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To faci l i ta te  consideration of solutions for publication, solvers 

should submit each solution on separate sheets (one side only) properly 
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Clayton W. Dodge, Mathematics Department, University of Maine, Orono, 

Maine 04469. 

Contributors desiring ackndedgment of their  proposals and 

solutions are requested t o  enclose a stamped and self-addressed post- 
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Problems for Solution 

*456. [Fall 1979, Fall 19801 ( R e ~ t a t e d ]  Pfiopohid by P a d  Efidih, 

Spacer hLp Ea/ith. 

Let me restate problem 456. I want a path on v is ib le  la t t i ce  

points (with re lat ive ly  prime coordinates) which does not pass through a 

point (p ,q )  where both coordinates are primes and where both coordinates 

tend t o  i n f i n i t y .  Explanation: ( .u,v) has four neighbors, ( u t l , ~ )  ( u - l , v ) ,  

( u , v + l ) ,  (u,v-l), and a point can be joined only t o  one o f  i t s  neighbors. 

points and avoids(p,q) and moves monotonically away from the origin,  i .e . ,  

( u , v )  can be joined only t o  (ut1.v) or (u ,v+l) .  The s tar t  o f  the path 

can be any ( u , ~ )  = 1. I pay also for a non-existence proof. I do gat - - -  - 
know the solution and I apologize for the unclearly and incorrectly . 
stated problem 456 .  My old age and stupidity i s ,  I believe,  adequate 

explanation and excuse. 

476. [Fall 19801 ( C o ~ e c t e d l  Pfiopohed by Jack GaAf.unkvJL, Qu . ie~ i  

CoUige ,  Ftulihng, Nw Yoak. 

I f  A, B ,  C , D are the internal angles o f  a convex quadrilateral, 

that i s ,  i f  A t L3 t C + 0 = 360Â° then fi [ c o s ( ~ / 2 )  t cos(B/2) + cos(C/2) 

+ c o s ( ~ / 2 ) ]  S [ c o t ( ~ / 2 )  + cot(B/2)  t cot(C/2) + c o t ( ~ / 2 )  ] , with equality 

when A = B = C = D = g o 0 .  

486. Pfiopohed by  Chuck W o n  and P̂ tm Chu, San Pedxo, 

CaJLHotWHO.. 

Swimmers A and B s tar t  from opposite sides o f  a river and swim t o  

their  corresponding opposite sides and then back again, each swimming a t  

h is  own constant rate.  I f  on the f i r s t  pass they meet each other x fee t  

from A's starting side,  and on the second pass they meet at  a point y 

fee t  from BTs  starting side,  how wide i s  the river i n  terms o f  x and y? 

487. Ptopohed by Solomon U .  Golomb, UnLuuui'uty 06 Sou.thmn 
CaJU60fiWHO.. 

We know that 1/7 = .142857... repeating with period 6 .  With 

A = 142 and B = 857, the f i r s t  and second halves o f  the  period, respect- 

i ve ly ,  we observe that A + B = 9 9 9 ,  and B = 6 A  + 5 .  Prove t h i s  general- 

ization: 

I f  p i s  prime, and the decimal expansion o f  1 /p  has 

period 2 t ,  where A and B are the f i r s t  and second halves 

o f  the period, then A + B consists o f  " a l l  9 ' s" ,  and when 

B i s  divided by A ,  there i s  a quotient o f  p - 1 with a 

remainder o f  p - 2 .  

Can you also generalize from the relation 14 + 28 + 57 = 99? 

Finally, what happens i f  the expansions are i n  base b and p i s  merely . 
relat ive ly  prime t o  b? (Note: In baseb>l ,  b i s  always equal t o  1 0 ,  

but not necessarily equal t o  t e n . )  



488. Pn.opobed by Hmb Tayton., South Paadena, C w o m i a . .  

Take t h e  numbers from 1 t o  24 and put them i n t o  8 d i s j o i n t  3- sets  

[a,b,e] such t h a t  i n  each 3-set,  a + b = a .  

489. P~opobed by W.cha&l W .  Eckm, PenvUiytvakx State  Unbw>-Uy, 

Uoithing-ton S w n t o n  Campa. 

Let k and n be p o s i t i v e  in tegers  with k<n. Two players  take t u r n s  

choosing, on each t u r n ,  a p o s i t i v e  i n t e g e r  5 k .  A running t o t a l  i s  kep t ,  

and t h e  player  t o  achieve n a s  the  sum i s  t h e  winner. 

S t a t e  and prove winning s t r a t e g y  r e s u l t s  f o r  t h i s  game. (The 

game with n = 50 and k = 6 has been used a s  a teaching t o o l ,  with modest 

popular i ty ,  a t  t h e  elementary and secondary school l e v e l s . )  

490. Ptopobed by Joyce W. W m i a m i > ,  No& U ~ ~ L t q  06  Low&JU.. 

The funct ion f (n)  i s  t o  be constructed t o  give t h e  number of days 

i n  a year  through t h e  n t h  month f o r  n = 0, 1,...,12. That is, f(0) = 0, 

f l l )  = 31,. .. ,f(12) = 365. Leap year i s  t o  be ignored. What i s  the  

s implest  so lu t ion?  

491. Paopoud by C h U  W. Tiu-gg, Sun Viego, CaLL6ohnia. 

From a square g r i d  of  s i d e  2n + 1 a l t e r n a t e  squares a r e  removed 

t o  form a s ieve.  ( a )  What is  t h e  smallest  s ieve  t h a t  can be d i ssec ted  

and t h e  p a r t s  assembled i n t o  two squares with i n t e g e r  s ides?  (b)  What 

is  t h e  smal les t  number of pieces i n t o  which t h e  s ieve  must be cu t  t o  

accomplish t h i s  assembly? 

492. Pn.opo~ed by Jack Gmf.unfzd, Q.ueeu College, F h h i n g ,  N .  Y .  

Given an acu te  t r i a n g l e  ABC with a l t i t u d e s  denoted by ha, h,, ha 

and medians by ma, mb , ma t o  s i d e s  a ,  b y  c respec t ive ly .  The po in t s  

P, Q, R a r e  determined by t h e  i n t e r s e c t i o n s  m n h b  , m p h ,  and mpha , 
respec t ive ly .  Prove: 

where L ,  M, N a r e  t h e  f e e t  of t h e  medians. 

493. P~opobed by Kennu3 M. W W i e . ,  Topeka., Kanba. 

Determine t h e  g r e a t e s t  power which d iv ides  n!. Prove t h a t  f o r  

n>21 it is  a square. (This i s  a restatement of  problem 467. [Spring 

19801). 

494. Pn.opobe.d by Zdda Kciti, ZevSALy id.&, CaJLL(SoaVUJO.. 

In  t h e  annexed f i g u r e  CD is a half-chord perpendicular t o  t h e  

diameter AB of t h e  semicircle  (O), and t h e  inscr ibed c i r c l e  (P) touches 

AB i n  J and t h e  a r c  DB i n  K. Show by elementary plane geometry, without 



495. Ph.0pobe.d b y  RicJhaAd Hub,  P&b V a d u ,  C&<ohfua.. 
A r e g u l a r  pentagon i s  drawn on ordinary graph paper. Prove t h a t  

no more than two of i ts  v e r t i c e s  l i e  on g r i d  po in t s .  

496. Ph.opobed b y  VonaÂ£ Cawvid, Anaheim, CsJLi60hwLa. 

P is any po in t  within a t r i a n g l e  ABC, whose s i d e s  a r e  a, b,  c, 
whose semiperimeter i s  s and whose or thocenter  is  H. Let x denote t h e  

d i s tance  from P t o  BC and l e t  R denote t h e  circumradius of  t r i a n g l e  ABC. 

Show t h a t  

2 PA = P H ~  + b
2

+ c
2  - 4ff2 - E ( b 2 + c 2  - a 2 ) .  

497. Paopobed b y  S c o t t  Kim, A^fct.&.iut 1n.it~ULge.nc.e. Labo/iato/ut, 
S t a n  6ohd U n i v m ' i t y .  

Three drummers a r e  posi t ioned a t  t h e  corners  o f a  l a r g e e q u i l a t e r a l  

t r i a n g l e ,  say 1 mile on a s ide .  Each drummer bea t s  h i s  drum a t  a constant  

r a t e  r, with t h e  time between bea t s  being equal  t o  t h e  time it takes  f o r  

t h e  sound t o  t r a v e l  t h e  length of  one s i d e  of  t h e  t r i a n g l e .  The drums a r e  

synchronized so  t h a t  a l i s t e n e r  s tanding i n  t h e  c e n t e r  of  t h e  t r i a n g l e  

would hear  a l l  t h r e e  bea t s  simultaneously. This means t h a t  it seems t o  

each drummer t h a t  t h e  o ther  two drums a r e  i n  synch with h i s  own drum 

( a c t u a l l y  they a r e  delayed by one bea t ) .  

Problem: Where e l s e  can a l i s t e n e r  s tand (besides t h e  cen te r  and 

corners)  and hear  a l l  t h r e e  drums i n  synchronization? 

Unsolved (un t r ied) :  What i f  t h e  drummers bea t  a t  a r a t e  of  m, 

f o r  n = 2,3,4,.. .? 

Solutions 

423 [Spring 1978; Spring 1979; Spring 19801 Ph.opobe.d b y  ItccWid 

S .  F i e ld ,  Santa. Monica, C a o - ' u u a .  

Find a l l  so lu t ions  i n  p o s i t i v e  in tegers  of  t h e  equation 

A - $ = c where D is a prime number. 

Coment by the  proposer. 

The published so lu t ion  does not generate a l l  so lu t ions .  Counter- 

examples include (A,B,C,D) equal  t o  (14, 13, 3, 2) ,  (65, 63, 4, 21, and a 

general  form 

E d i t o r i a l  Coment. Since we do not  have a complete solut ion,  

t h i s  problem remains open and so lu t ions  a r e  s o l i c i t e d .  l? .: - 

438. [Spring 1979; Spring 1980; Fall 19801 Ph.opo.6e.d b y  E d  

St/m-ub, UiM.ue~~-c-ty 06 CaU6on.MJO.'at LO* AngeÂ£&~ 
Prove t h a t  t h e  sum of t h e  lengths of  a l t e r n a t e  s ides  of a hexagon 

with concurrent major diagonals inscr ibed i n  t h e  u n i t  c i r c l e  is l e s s  

than 4. 

11. S o i u t i o n  b y  Pan-! K iL i y ,  Univ&u'ity 06 CaLLtolm-a at Santa. Bahbaka. 

Let the  hexagon be ABCDEF with major diagonals meeting a t  P. I f  

we keep A ,  B, C, D f ixed  and l e t  P move on AD then we maximize EF by maxi- 

mizing Â¥ BPC; t h a t  is,  by choosing P s o  t h a t  t h e  c i r c l e  K(BPC) is  tangent 

t o  AD. 

We now want t o  prove t h a t  the  only nondegenerate c r i t i c a l  case i s  

obtained f o r  t h e  regu la r  hexagon (which does not  give a maximum). 

So, assume t h e  hexagon i s  c r i t i c a l  with 

K(BCP) tangent t o  AD 

K(DEP) tangent  t o  FC 

K(AFP) tangent  t o  BE 

and i n v e r t  on a c i r c l e  centered a t  P. The o r i g i n a l  c i r c l e  goes t o  some 

new c i r c l e  containing t h e  image hexagonA'B'C'D'EtF' whose major diagonals 

s t i l l  meet a t  P. The c i r c l e s  K(BCP), K(DEP), and K(AFP)map t o  B'C'I 1 
A I D '  , D ' E '  \\F'c' , and A'FI 1 1 B'E' repect ively.  Such a configurat ion 

- - -  
l eads  t o  B'Cf = A'F' = DIE' and A'Bt = C'D' = R'V , crea t ing  severa l  isos-  

c e l e s  t rapezoids.  But t h i s  i s  poss ib le  only i f  P is t h e  center  of t h e  

new c i r c l e ,  and hence was t h e  cen te r  of  t h e  old c i r c l e .  

So maximum is  a t t a i n e d  only f o r  P on t h e  boundary i n  which 

case c l e a r l y  t h e  sum i s  2 4. 

462. [Spring 19801 Pfiopobed b y  the. Me. R. Rob-t-MAO~ Rowe.. 

A p i l o t  down a t  Avil le  asked a n a t i v e  how f a r  it was t o  Btown and 

was t o l d ,  "It 's south 1500 miles, then e a s t  1000 miles, o r  e a s t  500 miles 

and south 1500 miles." How f a r  was it d i r e c t l y ?  



S o l d o n  by M o d  Kiz t z ,  Mocwadoc, Maine.. 
Let N denote t h e  nor th  pole ,  A = Avi l l e ,  B = Blown, C be 1500 

mi les  south of  A ,  D be 1500 miles  nor th  of  B, and 0 t h e  cen te r  of t h e  

e a r t h ,  assumed t o  be a sphere o f  r a d i u s  3950 miles .  Let planes  perpen- 

d i c u l a r  t o  ON through A and D and through B and C c u t  ON a t  Q and R r e-  

spec t ive ly .  Let a denote  t h e  ang le  between p e a t  c i r c l e s  NDB and SAC,  

s o  a = 3DQA = W R C .  Let 6 and y be t h e  angles  of  i n c l i n a t i o n  from t h e  

plane of  t h e  equator  of OB and OA respec t ive ly .  We measure a l l  angles  i n  

rad ians .  We have 

1 
a -  QD = 500 and a .  RB = 1000, s o  QD = -RB .  2 

Also 

1500 = 3950(y-6), whencey-  3 =  0.3797468. 

Since 

1 - cos  6 = cos y = cos(  B+ (y-3)) = cos B cos(y-6) - s i n  0 s in(y-El ,  
2 

1 
cos(y-B) - - 

tan ' = s in(y-6)  
- 1.1566643, 

6 = 0.8579127 and y = 1.2376596, 

QD = 3950 cos  y = 1291.6853 m i ,  

and RB = 3950 cos  6 = 2583.3706 m i .  

F i n a l l y  

Let 6 = 3BOC and E = W D  . Then 

cos  6 = 1 - c o s L 6 ( l  - cos a ) = 0.9683520, 
2 cos  E = 1 - cos y ( l  - c o s a )  = 0.9920880, 

6 = 0.2522552 and E = 0.1258766. 

I f  E is  t h e  midpoint o f  BC, then NEC i s  a r i g h t  angle ,  whence i n  

t r i a n g l e  NEC, cos  NC = c o t  3N c o t  3C ; t h a t  is,  

cot3C = cos NC t a n  W = cos("- -6 ) t an  2- = 0.1482692 
2 

and 

Now apply t h e  law of cos ines  t o  t r i a n g l e  ABC t o  g e t  

cos  a = cos a cos b + s i n  a s i n  b cos  )C 

= cos  6 c ~ s ( ~ - B )  + s i n  6 ~ i n ( ~ - g )  cos  )C 

= 0.9129345 

s o  0 = W B  = 0.4203785. The l eng th  o f  s i d e  AB is  t h e r e f o r e  given by 

AB = 39500 = 1660.4952 m i .  

AUo &olve.d by  MARK EVANS, IRWIN  JUNGREIS, and the P t o p o & ~ t .  

EVANS and the. PhopobVt independently pointed o u t  t h a t  a very 

accura te  approximate s o l u t i o n  i s  obtained by assuming ABCD t o  be  a plane 

t r apezo id .  Then 

AB = ( ( 1 5 0 0 ~  - 2 5 0 ~ )  + 7 5 0 ' ) ~ ' ~  = 1658.3 m i ,  

a n  e r r o r  o f  only 2 miles .  

463. [Spring 19801 P~.opo.ied by C.S. Venka.toAaman, &tee K w s Â £  

V#una CoLLige., T'nchuA, South India. 

Let f ( n )  be a func t ion  def ined over p o s i t i v e  i n t e g e r s  and 

f ( d ) =  n. Then, prove t h a t  f ( n )  = $ ( n ) ,  t h e  E u l e r ' s  func t ion  
din 

denot ing t h e  number of i n t e g e r s  prime t o  and n o t  g r e a t e r  than  n. 

I .  SolLution by  Hichael U. Eckm,  Pennbylvan^a S-tote Un^ve~i^.ty,  ScAan-tpn. 

The problem r e a l l y  has  two p a r t s ,  an i m p l i c i t  ex i s t ence  p o r t i o n  

with an e x p l i c i t  uniqueness a s s e r t i o n .  



Existence -- First, 1(1 is such a function; i.e. + ( d )  = n. 

din 
This is fairly well-known (e.g. found on page 97 of the 2nd edition of 

Niven 6 Zuckerman's An Introduction t o  the Theory of Numbers). 

Uniqueness -- This is trivial from induction or well-ordering. 
Let n = smallest integer for which f ( n )  # +(?a).  Clearly, n > 1. From 

f ( d )  = N d )  for all d < n  we have now 

implying f ( n )  = (f i (n) .  

11. SoluAton by FwleJUL WhiitVL, T e x u  A fi M UÃˆit.ue~i^ty 

It is well known that = n ,  and we are given x f ( d )  

= n for some number-theoretic function f .  

formula for both of these equations gives 

and 

dl n 
Using the Mobius inversion 

therefore f ( n )  = 1(1(n). 

AUo ~0SLve.d by MIKE CALL, (2 solutions), MARC0 A. ETTRICK, IRWIN - 
JUNGREIS, MARK F. KRUELLE, HENRY S. LIEBERMAN, PETER A LINDSTROM, BOB 
PRIELIPP, GAL1 SALVATORI, DWIGHT SAWYER, I. PHILIP SCALISI, KENNETH M. 
WILKE, and t h e  Ph0p~bUL. 

SALVATORI and WILKE offered references for the ~gbius inversion 
formula : 

1. Adams and Goldstein, Introduction t o  Numbe.r Theory, Prentice-Hall, 
1976, Ex. 14, p. 152. 

2. Carmichael, Theory of Numbers, Dover, p. 32. 

3. Niven and Zuckerman, Introduction t o  the Theory of Numbers, 3rd ed., 
John Wiley and Sons, pp. 86, 88. 

464. [Spring 19801 Pmpobnd by Solomon W .  Golomb, ~ n i u e ~ ~ i t ~  - 

of, S o u t h e ~ n  CaLL&hnia, Lob AngeLe~.  

For all positive integers a and b with l<a<b, show that ( a ! )  b-1 

<(b!  la-? - -  m - - 
Soin t ion  by Robed  A. Stump, HopeweVL, VAJlgA.YU.a. 

Clearly a! 5 a a .  Let b .= a + k (k a positive integer), then 
(a! )b-1 = (a )̂-1 

Atlio boSLved by MIKE CALL, MARK EVANS, MARTIE FIELDS, SAMUEL GUT, 
IRWIN JUNGREIS, MORRIS KATZ, ZELDA KATZ, JAMES A. PARSLY, BOB PRIELIPP. 
DWIGHT SAWYER, JEFF SHALLIT, FERRELL WHEELER, and the. pkOpObe5. 

465. [Spring 19801 Pkopobed by ChOAiai U .  T u g g ,  San Viego,  

c ~ & ~ h % k l .  

What is the shortest strip of equilateral triangles of side k 

that, while remaining intact. can be folded along the sides of the 

triangles so as to completely cover the surface of an octahedron with 

edges k? 

Soiu^ion b y  Was. CatS., Robe-Hhan  InhÂ¥fcLttLt 0 6  Technology, T e m e  Haute, 

1 nd-Lnna. 

In analysis of this problem, a strip of twelve triangles, num- 

bered 1 through 12, may be useful. Also label an octahedron as shown 

in Figure 1 

If the strip is not folded back upon itself. at most 6 sides of 

the octahedron may be covered; e.g.. sides l,2,3,5.6,7.1,2,3,. .. . The 

analysis may be broken down casewise according to when in the 6-cycle 

the strip is folded upon itself. Folding back after the 1st triangle 

is useless. Foldingbackafter the 3rd triangle results in 1,2,3,3,4, ... 
* 

with the possible choices of repeating side 1, or folding back on side 

4. Hence, at least 10 triangles are necessary. Folding back after the 

4th results in 1,2,3,5,5,8,,,, with the choices of repeating side 2 or 



folding back upon s i d e  8. Again, a t  l e a s t  10 choices a r e  necessary. 

Folding back a f t e r  t h e  5th t r i a n g l e  r e s u l t s  i n  l ,2 ,3,5,6,6,4,  ... with 

t h e  choices of repeat ing 3 o r  fo ld ing  back on s i d e  4. Again, a t  l e a s t  

10 a r e  necessary. Folding back a f t e r  t h e  6 t h  t r i a n g l e  r e s u l t s  i n  1 
7 

1 y 2 , 3 , 5 3 6 y 7 , 7 y 8 , . . .  with t h e  choices of repeat ing 5, o r  fo ld ing  back 

upon 8. Folding back a f t e r  t h e  second t r i a n g l e ,  however, r e s u l t s  i n  

lY2,2,3,4,7,8,5,5,6 which uses exac t ly  10 t r i a n g l e s .  Having covered a l l  b 

possible  cases ,  it may be s a i d  t h a t  t h e  minimal s t r i p  length & 10. 

Top View Front 
View 

FIGURE 1 

Right 
Side 

Coment by the P ~ o p o s e r .  

The 8- t r iang le  s t r i p  of  Figure 2 w i l l  cover t h e  sur face  of  a con- 

cave octahedrony which p6lyhedron can be formed from t h r e e  regu la r  t e t r a -  

hedrons with a common edge. Fold over t h e  s t r i p  so  t h a t  s i d e  a coincides 

with b and f with g ,  then br ing  i i n t o  contact  with d.  This w i l l  cause 

e and j and e and h t o  coincide,  thus  completing t h e  sur face  of  a concave 

octahedron with an 8- tr iangle s t r i p .  

Af%o boLved by  f i e  P h o p o b ~ ~ .  Soh.Cion 06 Leng-th I 1  by  RALPH KING. 

FIGURE 2 

466. [Spring 19801 Paopo~cd  by  Hub& TayLokl South Pa.4adekil 
Ca,P,i60&n..La. 

Let t h e  adversary put four  d i s t i n c t  symbols i n  each box (node) of 

t h i s  graph. Prove o r  disprove: No matter  what p a t t e r n  of  symbolsi@-- - 

puts ,  we can choose two symbols from each box i n  such a way t h a t  adjacent  

boxes have d i s j o i n t  chosen 2- sets.  

Only one ( incorrect  )solut ion has been received from our readers  

so  we extend t h e  deadl ine and encourage you t o  submit so lu t ions  t o  t h i s  

problem. 

467. [Spring 19801 Paopobed b y  Paul E ~ ; ; A ~  S p a c u h i p  EM, 
and John L .  Su5&idgel U n L v m L t q  0 6  Michigan. 

Determine t h e  g r e a t e s t  power which d iv ides  n! Prove t h a t  f o r  

n ? 6 it is a square. 

1. Soh.Cion bq Jean E .  â‚¬z U n L v w L t q 1  M . & ~ h ~ i p p . i ,  and l m i n  
J u n g ~ ~ & ~  No. Woodmae, NW Yoak. independen t lq .  

A s  s t a t e d ,  t h e  problem is incor rec t .  Consider 

211 = 2". 3' . s 4 .  7 3 .  11. 1 3  - 1 7  19. 

3 The g r e a t e s t  power which divides 21: is h = (z6 . s3 - 5 . 7 )  and t h e  
5 g rea tes t  square which divides 21: i s  (2' - 34 - s2 - 712 = h .  

11. SoLuLbn bq Kenneth M .  W i l k e ,  Topekal Kama6. 
Counterexample: For n = 21, 211 = 51090942171709440000 = 

2'' 3' * s4 - 73 11 . 1 3  - 17 19 = (7257600)~  - 21 - 46189 = 

( 6 0 4 8 0 ) ~  . 5 - 46189, where 46189 = 11 . 1 3  - 17 . 19 and ( 6 0 4 8 0 ) ~  = 



221225582592000 > 52672757760000 = (7257600)~. Here 60480 = 26* s3-5 7 

which is the root of the largest cube which divides 21!. Likewise 

7257600 = 2'- a4- s2- 7 which is the root of the largest square which 
divides 21!. 

Editor's Connnent. See problem 493Â proposed in this issue of the 

Pi EpsiZon JournaZ. 

468. [Sprir~g 19801 Phopo~d by K&el U .  Eckm, PenmyL- 
v a k  5i.ia.t~ UniuwAXy, UoJdh.ington Smanton Cmpu.6. 

A prioriy the expression abc is adiguous in that it would mean 
b either (a )e or a(bc). Assuming a7 b, and e are positive integersy 

find all triples (ay b, c) for which the two expressions are equal. 

Solution by F W &  Whedm,  Texa  A 6 M UnivmAXy, Beaumont. 
The first obvious set of solutions is (1, by c). Now for a > 1 

abe = a(be) implies be = be which implies e = be-' since b > 0. When 

e = lthis is always true, therefore another set of solutions is 

(ay b, 1). If e = then b = 2y therefore the third set of solutions 

is (a, 2). For b,e > 2y be-' >c7 therefore all of the solutions are 

given by 

(Iy by e ) ,  (a, b, 11% and (a, 2, 2). 

A&o boLved by MIKE CALL, W R K  EVANSy ROBERT C. GEBHARDT, SAMUEL 
GUT, IRWIN JUNGREISy BOB PRIELIPPy JEFF SHALLITS CHRIS THOMS, CHARLES 
W. TRIGG, KENNETH M. WILE, an w i g n e d  boLva, and t f ~ e  Pkopobm. 

469 [Spring 19801 Phopohed by + c h d  I. Hub ,  Pdob V e A d u ,  
c&6ohvLia. 

Start with a unit circle and circumscribe an equilateral triangle 

about it. Then circumscribe a circle about the triangle and a square 

about the circle. Continue indefinitely circumscribing circle, regular 

pentagon, circley regular hexagon, etc. 

a) Prove that there is a ctrcle which contains the entire 

structure. 

;: b) Find the radius of the smallest such circle- 

1. SoLution .to p& ( a )  by Michael W .  Eckm, Scmnton, Penm yluania. 
Let rn = radius of incircle of the n-gon (for n = 3y475,...). 

then P ~ + ~  = radius of circumcircle of the n-gon. We also have 

n n 

= ( sec :)- P~. It suffices to show that lim n sec exists. 

k=4 
m 

n+ k=4 

For this, we need only show that (sec t-1) converges. This is 

2 
so by comparison: 0 < sec $ - 1 <c. This last inequality may be 

k
2 

verified as follows: 

because 1 < (1 - - 



17. S v ~ v n  Xv p a t  [ b ]  by f f m g  L .  Nebon, J v w ~ n d  06 Rec.kecu%m-J? 

Muthemda,  L iwmvte ,  CaLi6v&nia. 

By computer, we find that rm is 8.70005 ? .00005. 

Afhv ~v twcd  by MIKE CALLa (rm= 8.69999 . . .Ia IRWIN JUNGREISa PM 

[ a ]  only , HARRY L. NELSONa JOYCE W. WILLIAMS (8.70001 < rm < 8.70004), 

and Xhc P K V ~ V A U L  (rm= 8.700036 ... ). 
470. [Spring 19801 Pkvpv~ed by Tom A p v ~ t v t ,  CuLL6vtr~ia lmLiAf.de 

06 Technvtvgy. 
Given integers mm>O. Let 

a =a&+ b& 

6 = c&t d 6  

where a, b, e, d are rational numbers. 

(a) If ad + bc = 0 or if mn is a squarea prove that both a and t3 are 

~ational or both are irrational. 
2 

(b) If m = r and n = s2 for some pair of integers P> s> 0 then a and 

B are both rational. Prove that the converse is also true if ad # bc. 

I. Vhphvo6 by bLikc C&, Rv~e-Huhan 1n4LiAf.de 0 6  TechnvLvgq, T m e  

tfaf.de, lnd.iana, and Bob P ~ ~ L e l i p p ,  U ~ ~ J L V L A L ~ ~  06 ~ ~ c v n 4 i n - U ~ h k v ~ h ,  

independently. 

Let m = 8,  n = 2, a = c = la b = -2Â d = 2. Then 

0 = a = l a  - ?fi and 4 f i  = 6 = l& + 2fia 
even though mn = 16 and ad t be = l(2) + l(-2) = 0. This shows that 

neither of the aforementioned conditions is sufficient for the conclusion. 

11. S o t d o n  by F m &  Uheetm*, T e r n  A 6 M UniwchbLty, CvUege 

S t d i v n .  

(a) Multiplying the two equations together we have 

a6 = acm t bdn + (ad t be) &. 
If either ( a d  t be) = 0 or mn is a square then the right side of this 

equation is rational. This immediately implies that if a6 # 0 then a 

and t3 are both rational or both are irrational. 

(b) We shall assume a and 0 are nonzero rational numbers. Since 

ad # bea either ad or be is nonzero. Without loss of generality, 

assume ad is nonzero which implies a and d are both nonzero. Now 

2 2 2 which implies = (a m - b n t a )/2aa, -* - - -  
2 .  is a rational number. Therefore m must be a square numbera say r . 

Now from equation (1) mn is a square which implies that n is a squarea 
2 says . Since m>n>O, then we may take p>s>O. 

T ~ E  6 v U o h g  adddLonal A O L W ~  who &o d&cowu~ed the  d&- 
pvvd WLE L n U d  by an a ~ t u r i ~ k :  MIKE CALL*, DAVID DEL SESTOa MARC0 
A. ETTRICKa ROBERT A. FULLER, ( p m t  [ a ]  l a  HENRY S .  LIEBERMANÂ BO6 
PRIELIPP*a and t h e  Paopvhu~. 

471. [Spring 19801 P m p v ~ d  by C k y b n  U .  Vvdge, U L w m L t y  

06 Maine at Omno. 

Let two circles meet at 0 and P, and let the diameters 0s and OT 

of the two circles cut the other circle at A  and B. Prove that chord 

OP passes through the center of circle OAB. 

SvtuXLon by ~ X U L  SXephanLe Stvqan, Gevkgian C o d  CvUege, Lakwvvd, 
Nw J m e y .  

This problem is solved completely in the text (p. 88) of Shivelya 

Modem Geometry (Wiley, 1939) by means of inversion. With appropriate 

changes of letters the solution follows: Invert the figure with 0 as 

center of inversion, and let P I ,  A T ,  and B T  be the inverses of Pa A  and 

B  respectively. Each of the lines PO, TO,  and SO inverts into itself 

while the circles through Am, BPS a and AOB invert into the lines 

P T A T ,  P 8 B v ,  and A T B 8  respectively. Moreover, since a diameter inter- 

sects its circle orthogonally, A 8 0  and B v O  are, by the conformal 



property of invers ion a a l t i t u d e s  of  t r i a n g l e s  P v A v B v ;  hence P I O  is 

perpendicular t o  A ' B ' .  Therefore PO i s  orthogonal t o  t h e  c i r c l e  OABy 

from which it follows t h a t  it passes through t h e  c e n t e r  of  t h i s  c i r c l e .  

A h o  AoLved by MIKE CALL, MNGHO AHUJAa and fie Phopo~U~. 
CALL'S so lu t ion  was by a n a l y t i c  geometryy p lacing O a t  t h e  o r i g i n  and 

OAS along t h e  x-axis. He showed t h e  point of i n t e r s e c t i o n  of  t h e  per- 

pendicular b i s e c t o r s  of  OA and OB s a t i s f i e d  t h e  equation of  l i n e  OP. 

4 7 2 .  [ S p r i n g  1 9 8 0 1  PhopoAed by I?. s. Lf.dZt, u ~ v ~ ~ y  od 

WL.4 c o u i n  Cents, JanehvLUe. 

Evaluate 
5 

2 dx 
16 t 9 cos x 

S o U o n  by Yuan-Whay Chu, SanehviLLe, Wi.6comin 

We have 

dx 
2 16 t 9 cos x 

2 
s e c  x dx 

2 25 + 16 t a n  x 

1 A h o  boLved by MANGHO AHUJAy MIKE CALLy MARC0 A. ETTRICKy ~ VICTOR G. FESERa ROBERT C. GEBHARDTy IRWIN  JUNGREIS, RALPH KING y GUS 

MAVRIGIAN, BOB PRIEL IPP ,  I. P H I L I P  SCALASIy FERRELL WHEELERy BARTON L .  

4 I n  add i t ion  t o  CHU, GEBHARDT used t h e  s u b s t i t u t i o n  u = - t a n %  
5 

5 CALL and P R I E L I P P  used u = t a n  x, S O I L I S 1  used u = c o t  x a  FESSER, 

W I L L I S y  and t h e  Pkopoheh used u = t an(x /2) ,  JUNGREIS used t h e  sub st&^^ 
4 

t i o n  - t a n  x = t a n  u, and the  o ther  so lvers  used t a b l e s  o r  undisclosed 5 

! procedures. - 
4 7 3 .  [ S p r i n g  1 9 8 0 1  Phopo~ed by Jack Gatdunkel, F0keh.t U i L &  

High School, F l u K n g ,  Nw Yohk. 

In  an acu te  t r i a n g l e  ABC with angle A = 60Â° P i s  a point  within 

the  t r i a n g l e .  D and E a r e  t h e  f e e t  of  t h e  Cevians through P from C 

and B respec t ive ly .  

a )  I f  BD = DE = EC, prove t h a t  AP = BP = CP. 

b) Conversely7 i f  AP = BP = CP, prove t h a t  BD = DE = EC. 

c )  I f  angle PBC = angle PCB = 30Â° shoe t h a t  BD = DE = EC. 

I .  S o l d o n  $0 p d  [ a ]  by Z U  K d z ,  i3evm~'y HA%, C&~ohnLa. 

I f  BD = DE = EC7 then 

3PCE + 3PBD = V D E  + 3PED = 3PBC t +PCB 

since t r i a n g l e s  DBE and EDC a r e  i sosce les  and t r i a n g l e s  PDE and PBC 

share v e r t i c a l  angles a t  P. Therefore 

+PBC + +PCB = ;(+ABC + +ACB ) = boo 

and 3BPC = 120'. Thus A ,  D, P7 and E a r e  concycl ica whence 

.3PAE = 3PDE = 3ECD . 
Now t r i a n g l e  PAC i s  i s o s c e l e s a  so  AP = CP. Similar ly AP = BP and t h e  

theorem follows. 



f 1 ,  S o L d o n  20 pumh (6 ]  and ( c ]  6  y T w i n  Jugf ie .&,  No&h Woodmefie, 
Nw Yofib. 

(b )  Since, by p a r t  ( a ) Â  i f  D and E e x i s t  with BD = DE = ECy then they 

a r e  t h e  f e e t  of  t h e  cevians through t h e  circumcenter and p a r t  (b)  is 

provedy a l l  we need show is  t h a t  i n  every acute  AABCwith +A = 6ooY t h e r e  

e x i s t  D and E on AB and AC respec t ive ly ,  with ED = DE = EC. 

F i r s t y  s ince  +C < go0 and 3B > 30' (because *A = 60Â°) we know 

A B < 2 A C  and s i m i l a r l y  AC < 2AB. Say ABS A C .  Let D be t h e  point  be- 
x  

tween A and B a d i s tance  x from B and E be the  point  between A and C 
x 

a d i s tance  X from C .  Let f ( x )  = BDx - DxEx. Then f ( 0 )  = BC < 0 and 

f(AB) = AB - ( A C  - AB) = 2AB - AC > O y  so  by cont inu i ty  t h e r e  is a point  

D between A and B with f ( B D )  = 0.  That is t h e  des i red  point .  

( c )  I f  4PBC = *PCB = 30Â then 3BDC = 120Â and OB = OC. Draw t h e  

c i r c l e  centered a t  0  and through B and C .  Since a r c  BC = 120' and +BAG 

= 60Â° then A i s  on t h e  c i r c l e ,  and AP = BP = CP. Now apply p a r t  (b ) .  

Complete so lu t ions  were submitted by both so lvers  above and 

so lu t ions  t o  p a r t s  ( a )  and (b)  by t h e  PJLo~oAUL. 

PROBLEMATICAL POSTSCRIPT 

The foZlowing note m s  received from ROBERT C. BROWN and PAUL M. 

RIGGS of the Southeastern Louisiana Uniuersity:: 

Please r e f e r  t o  the  comment on page 206 of Volume 7Â Fall 1980, 

by Miss Amanda B. Reckundwith. 

On page 298 of .the H i s t o r i c a l  and Biographical Notes of N. 

A l t s h i l l e r  Court 's College Geomtry, Second Edit ion 1952, is  t h e  follow- 

i n g  quote concerning t h e  proposi t ion 175. 

The orthocenter  -!'The three aZbitudes of a triangle are con- 

c ~ r e n t . ~ '  175. The proposi t ion i s  not included i n  t h e  Elements of  Euclid. 

It i s  found i n  t h e  wr i t ings  of Archimedes (287-212 B.C.) i n  an i n d i r e c t  

form, and e x p l i c i t l y  i n  Proclus (410-4851, a  commentator of  Euclid. 

PUZZLE SECTION - -- "- 
0avi.d W w  

This department i s  for the enjoyment of those readers who are addicted 
t o  working crossword puzzles or uho find an occasional mathematical puzzle 
attractive.  We consider mathematical puzzles t o  be problems whose solutions 
consist of answers imed ia te lyxecog i zab le  as correct by simple observation 
and requiring l i t t t e  formal proof. Material submitted and not used here 
w i l l  be sent t o  the Problem Editor i f  deemed appropriate for that  department. 

Adcbess a l l  proposed puzzles and puzzle solutions t o  Dmid BaZLm, 
Editor of the Pi Mu Epsilon Journal, Department of Mathematical Sciences, 
South Dakota School of Mines and Technology, Rapid City, South Dakota, 
57702. Deadtines for puzzles appearing i n  the Fall issue d l 2  be the next 
February 15, and puzzles appearing i n  the Spr-ing issue w i l l  be due on the 
next September 15. 

Mathacrostic No. 1 2  

b u 6 n i t t e d  by J o ~ e p h  V. E .  K o n h a u ~ u ~  
M a d u Z a  Col l ege?  S f .  P a d ?  ! f innaoXa  

Like t h e  preceeding puzzles, t h i s  puzzle (on t h e  next page) is a keyed 

anagram. The 215 l e t t e r s  t o  be entered i n  t h e  diagram i n  t h e  numbered 

spaces w i l l  be i d e n t i c a l  with those i n  t h e  26 keyed words a t  matching num- 

b e r s Â  and t h e  key l e t t e r s  have been entered i n  t h e  d i a p a m  t o  a s s i s t  i n  

construct ing your so lu t ion .  m e n  completed, t h e  i n i t i a l  l e t t e r s  w i l l  g ive 

a  famous author  and t h e  t i t l e  of h i s  book; t h e  diagram w i l l  be a  quotation 

from t h a t  book. 

Cross-Number Puzzles 

In  t h e  cross-number puzzles ( s t a r t i n g  two pages hence), each of  t h e  

l e t t e r s  s tands f o r  a  p o s i t i v e y  nonzero in teger .  The a lgebra ic  expressions 

evaluate  ou t  t o  two t o  f i v e  d i g i t  numbers which f i t  i n  t h e  squares a s  iv a 
a 

normal crossword puzzle. None of  t h e  numbers i n  t h e  squares have any lead- 

zeros; i. e . Â  if t h e r e  is room f o r  a  four  d i g i t  number, t h a t  number w i l l  be 

a t  l e a s t  1000, nevery f o r  example, 0999. 



A. in Euchre, the other jack of the same 
color as the trump suit jack (2 wds.) 

B. ordered formal calculation 

C. "The truth of a theory is in your 
mind, - . A. Einstein (4 wds.) 

D. fold, cusp, swallowtail, butterfly, 
wigwam 

E. first to prove the well-ordering 
theorem (1871-1953) 

F. dual of a cube 

G. a piece in backgammon 

H. pseudonym of Guiness brewery chemist, 
W. S. Gossett (1876-19371, known for 
his distributions of t, not beer 

I. a filling of the plane without gaps or 
overlaps 

J. where Archimedes formulated his law of 
hydrostatics (3 wds. 

K. British geometer (1845-18791, who, in 
1876, suggested there is a relation- 
ship between matter and curvature 

L. medium postulated to carry electro- 
magnetic waves 

M. what a sphere needs to become homeo- 
morphic to a double torus (2 wds.) 

N. star cluster in the face of the Bull 

0. a statistician's bread and butter 
(2 wds.) 

P. " . Infinity"; title of Gamow's 
popular exploration of science (3 wds.) 

Q. howling; wailing 

R. ancient shadow clock; carpenter's 
square 

S. easily unfastened knot (2 wds.) 

T. Julian's Bower; labyrinth (camp.) 

U. "Mathematics is the glory of the . G. Leibniz (2 wds.) - 
V. twist together 

W. curve known as the shoemaker's knife 

X.  a communication channel of sorts 

Y. table of assigned places of a celes- 
tial body for regular intervals 

2 .  Cistercian monk (c. 1345) who was 
called "the calculator" 



#1 
ACROSS 

1. AB 

5. A 
2 

6 .  C 

7. 3A - 18  

8 .  ( 1 / 9 ) ~ ~  

DOWN 

1. A/E 

2 .  B 
3 

6 
3 .  E + 1000 

4-. BC/89 

#2 
ACROSS 

1. 5AB/91 

DOWN 

1. 5AB 

#3 
ACROSS DOWN 

1. 10(B + F)  - 2 

2.  E 

3 .  G 

4.  F 

f f t  
ACROSS DOWN 

4 
l . A  + B C + C  1. J- D K  

+ 3 .  D 2. 2 J  + 20 

5 .  (E  + I ~ F  4. GHK 

6 .  ((C/B) + A ) ~  5 . B + C  

7. H(A + G)(C - 2A) 

DOWN 

1. 3C 

2.  E 

3 .  DFG 

4. B 

7 .  D + (DLlO) 

8. G 

#6 
ACROSS DOWN 

1. A 1. G ~ - ^  

3 .  B 2 . H + 4  
2 

4. C + BD - 43  3.  J 

#7 
ACROSS DOWN 

1. 59E 
3 

2. 5C - B + 1 7 ~ ~  - 66B + 5 

3 .  11F 

#8 
ACROSS 



ERRORS AND MISTAKES 

In  the. C J L O A A - N U ~ ~ ~ ~  Puzzte6 pubLLlihed i n  Zhe F a U  1980 ~ A A W ,  t h e ~ e .  
wuie. ~ e . u e M t  I M . ~ o J L  b u t  CAWUJOJL W U k t 0 . k ~ .  Thue.  puztÂ£. me fte.pubuMhe.d 
OA # I  through #4 on  the p/iecedolg page., and .the W~OU me mmked uH^i 
the. m o w .  Because of, the. tdhtdfeu, ~ o t u t L o n b  to h e .  puzzJi.u w-UUL be. 
acce.pted doh the. F a U  19S1 l ~ ~ u a  o f ,  titil, Journal. So-! 

SOLUTIONS 

M a f h t ~ i o ~ a X c  N O .  1 1  (See Fall 1980 issue)  ( P m p o ~ e d  by  J. V. E. Kon/lOUAat) 
Definitions and Key: 

A. Dissonant H .  Asterism 0.  Dichotomy V. Events 
B .  Risque I .  Dipole P .  Erianger W .  Rhenish 
C .  Hebetate J .  Twisted cubic Q .  Litotes X .  Berkeley 
D .  Occultation K. Elation R. Empirical Y. Atom smasher 
E. Fixed point L .  Ramiform S .  S h i f t  2. Catenate 
F .  Systole M .  Granny T .  Chladni a. Halfway 
G .  The Quiz Kids N .  Ocarina U .  Hints 

First Letters: Dr Hofstadter Godel Escher Bach 

Quotation: B a ~ i d e ~ ,  the. d/fctue. -to zSLisM.nOte. paAadoxu at any C O A ~ ,  

u p e . w  when -it he.q(UAu the. a d o n  of, L g M y  OAti(sic^Lat 6ofvmaLuitn4, 
put& t o o  much A&U& on bland conb&e.ncy, and t o o  LLttÂ£.e on the. q d k y  
and. bizavi.e., whiich make. SULf,e. and mathwatLc4 i n t a t u t i n g .  

S o h d  by:  Jeanette Bickley, Webster Groves High School, Missouri; 

Louis H .  Cairo1 i , Kansas State University; Victor Feser, Mary College; 

Robert Gebhardt, Hopatcong, N.J.  ; Roger E .  Kuehl, Kansas City; Henry S .  

Liebeman, John Hancock Mutual Life Insurance Co.; D. C .  P f a f f ,  Univ. o f  

Nevada-Reno; Robert Pri el i p p ,  Univ. o f  Wisconsin-Oshkosh; John Oman, Ltaiv. 

o f  Wisconsin-Oshkosh; Chris Thomas, Rose-Hulman Ins t i tu te  o f  Technology; 

The Editor and The Proposer. Victor Feser also included a solution t o  

Mathacrostic No. 10. 

Who Sto& the. Candy? (See Fall 1980 i s sue ) ,  Pmpohed by  Wayne. M. Delia 

and BemadeAte D. B m u .  
Solution: I f  Ivan was the t h i e f ,  he would have had t o  t e l l  two l i e s  ( # I  

and # 3 ) .  Similarly, Ernie, Dennis, and Linda could not have been the 

t h i e f .  Hence, Sylvia i s  the t h i e f ,  and the l i e s  

#15. T h h  b 0 ~ d 0 f l  KJUA p h m n t e d  by  John Wesley 

A&6o Solved, by:  Kathy Ames; Jeanette Bickley, Webster Groves High 

School, Missouri; Victor Feser, Mary College, Bismark, N .D .  ; Robert C .  

Gebhardt, Hopatcong, N.J .  ; Samuel G u t ,  Brooklyn, N.Y. ; John Kahil a ,  Univ. 

o f  Washington; Roger E .  Kuehl, Kansas City (Who noted that Sylv ia 's three  

statements and Dennis three statements are superfluous) ; Sarah Lieberman , 
8th grade, Meadowbrook J r .  High, Newton, Mass.; D. C .  P f a f f ,  University 

o f  Nevada-Reno; The Editor and The Proposers. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
# # 
# P I  MU EPSILON CONFERENCE # 

M I A M I  UN IVERSITY  
OXFORD, OHIO  

Sept. 2 5 ,  26 ,  1981 # 
# 

The. Niuvth A n n d  Pi Mu Epsilon Con6ehe.nce. 0 6  WiasuL U m k .  # 
vuJUL be Se f l enbeh  25 and 26 aA the M i a d  Campu~ in Ox6ohd, # 
OhiLo.  pap^ a ~ t .  welcome on i t w m t i  hanging i/iom e.xpo&^ohy # 
t o  h u w i c h ,  intehe^-toig appLLca,kionb, phobLem6, &. Ph&Ae.nt- # 
a t i o n  -tune bhouU. be. &om IS .to 30 ffn.nu.tu. Send abb.&iac-t4 # 
( b y  S e p t .  1 2 )  t o :  # 

Professor Milton Cox # 
Department o f  Mathematics and Stat is t ics  # 
Miami University # 
Oxford. OH 45056 # 

H I G H  SCHOOL MATHEMATICS CONTESTS 

Many Pi Mu Epsilon Chapters either sponsor or contribute services t o  
contests, competitions and "Math Days" among high school students. The 
Editor's o f f i ce  can act as an information source and a clearing house t o  
swap examinations and ideas. I f  your Chapter i s  involved, please send the 
Editor an outline of how your examinations are conducted and send copies 
of your materials, about 25 copies o f  advertisements, brmhures, and i f  
possible, your examinations for swapping purposes. The Editor w i l l  send 
you copies of the m t e r i a l s  on hand. I f  you are sturting such and event 
or thinking about it, l e t  the Editor 'know and materials can be sent t o  
you. T h i s  could be a great help t o  us all ! ! 

POSTERS AVAILABLE FOR LOCAL ANNOUNCEMENTS 

We 'have a supply of 10 x 14-inch Fraternity Crests available. One 

i n  each color w i l l  be sent free t o  each local chapter on request. Addit- 

ional posters may be ordered a t  the following rates: 

are #3, # 4 ,  #9,  #I1  and (1 )  Pwple on goldenrod stock------------------- $1.50/dozen, 

Emert 0 6  Knoxu-c^e, Tenn. (2) Purple on Lavendai" on goldenpod------------- $2.00/&zen. 



CHAPTER REPORTS 

FLORIDA EPSILON (UNIVERSITY OF SOUTH FLORIDA) The Chapter had an 

active program which included the following speakers and their talks: 

C f c t t A t i n a  PiSLtteAi on, rrFrames, A Know ledge Representation and Organization 

System for a Computer"; Vh. kUa.n Wayne (Pasco-Hernandez Community College), 
"A Census of Natural Triangles? Ph06. A-tfiano^oh ~VLI%&~, "Monotonicity 

i n  flu; Vh. Joheph C a h t ,  "Parade of Planetsv; Ch.c~Lg. HubbaAd, "Just What i s  

the Gross National P r o d u ~ t ? ~ ~ ;  Vit-. Jomiu BeÂ£Â "Mathematics As An Empirical 

Science"; Vit-. HichaA.d StaAk, "Exotic Constructions Using Baire ' s  Theorem"; 

Vh. Kewi&th Pofiovun., "A Li t t l e  B i t  About W; Paul? &tola, "Musical Harmony 

and Mathematics"; Vh. Junta F e Â £ Â £ e  "Mathematical Applications i n  Finance"; 

Vh. NichotoS PahbeÂ£Â "An Arc Length Problem"; John R. Kenyon, rrDy71COTTLc 

Programming", A h n  CUbig, "Logical Puzzles and Paradoxes i n  Mathematics"; 

PA. WWLam C h k ,  "Using Number Theory t o  Construct Secret Codesu. In 

addition the Chapter sponsored a Film Festival and hosted the Mu Alpha 

Theta Math Bowl, a competition amoung local high schools. 

MISSOURI  GAMMA (ST.  LOUIS  UNIVERSITY)  The Chapter hosted 

(in conjunction with MARYVILLE  COLLEGE OF ST.  LOUIS) a Pi MU Epsi lon 

Conference with invited speaker Phô U&Oh Rob& V .  ff0gg of the University 
of Iowa. Professor Hogg's talk was "Statistics,  Actua,rial Science and 

the Futureu. Information on Student papers will be in the Fall Issue. 

MONTANA ALPHA (UNIVERSITY  OF MONTANA) The Chapter heard the 

following talks: Stephen EbeAhowt, "Seeing the Imaginary"; Peggy KiwJLt- 
Bohdedck ,  "Computers Applied t o  Satel l i te  Photography", Roman Cakon, 
"Mathematics Graduate  raining i n  Germany: A Persona2 View"; and Rob& 
f f o u t e ~ ,  "African Mathematics-Counting and Measurements ". In addition 

there was a film program and a special talk by Pho)(e440h Kenn&th Y& on 

"Unorthodox Programming Features of the TI-58". The John Peterson Book 

Award for the outstanding graduating senior in mathematics education was 

presented to Bhad S h h .  

NEW YORK ALPHA ALPHA (QUEENS COLLEGE OF CUNY) The Chapter 

sponsored several film programs, parties and other activities. Robbin 
BuAfl was given the first annual Pi  Mu Epsi lon Pr i ze  for excellence in 

mathematics and service to the Chapter. 

OHIO DELTA ( M I A M I  UNIVERS I TY) chapter activities included paper 

presentations at the Pi  MU Epsi lon Conference of Sept. 28. Eight of the 

thirteen papers were given by Miami students. Papers contributed included: 

Pa-tty BAUenvnan, "The Penrose Tiling i n  Bachelor Courtyard"; S t e v e  K u b w ,  
"The Tree Planting  problem^ Ko-tfey Reyno.Â£d6 " T e s t h  the ~ssooia&i'& o f  

a Binary Operation: Reducing the Tedium"; Tom PaA.faiazak, "Finite Projective 

Planes"; N d  GandcJL, "The Use of Stat is t ics  i n  Welfare Reform", Van Fit-&on, 
"Pentonrimes"; Ch/uM H ~ l k i L n k  and Lee Jo~vang&l,  "So You Want t o  be a Systems 

Andyst?rr; and le.̂  &g, "A First Step Toward a Mathematical Theory o f  

Ecohgyv. In addition two Chapter Members gave papers at the MAA Section 

Meeting. They were:.NeÃ̂ L Go.&, "The Use of Stat is t ics  i n  Welfare Reform": 

Bud Koht ic ,  r ' P ~ h t ' s  Theorem--An ExampZe of the Interplay of Graph Theory 

and Algebra". Regular Chapter presentations included: S t e v e  R u b e ~ g ,  "Magic 

Squares", (See this Issue of the Journal); Vit-. S c h a e < a ,  wBiostatistics"; 

Vh. C lyde  H d n ,  "Random Walk and Gambler's Ruin"; U i z a b v t h  Robwt l i ,  
(Systems Engineer from Armco Steel), "Mathematics, S tat is t ics ,  and Systems 

Analysis a t  Amcorr; U/t. Hike. ~ Q J L ,  Actuary from State Farm Mutual, 

"Actzudal Science and Job Opportunities": and Vh.  Vwin. "Statistical 

Di.scriTin,nationrr. The winners of the Pi  Mu Epsi lon Examination were S C O ~ X  

Bucfemm and Donna Foit-d. There were ongoing discussions at the College Inn. 

Talks at the Seventh Annual P i  Mu Epsi lon Student Conference held at 

Miami University on Sept. 26, 27, 1980 were: 

Kmen X d k e  (Miami Univ.) 

Gheg Tayhit- (Miami Univ.) 
J u t i e  G&oid. (Miami Univ.) 

C h y n  HaUitt (Oakland Univ.) 

BAuce Bu&tLA (Miami Univ. ) 

C e d  EUoAd (Miami Univ. ) 

Van Faention (Miami Univ. ) 
Bit-enda Rood (Miami Univ.) 
BevV{JLy Sk.vw& (Marshall Univ. ) 

V ~ W  W i h o n  (Oakland Univ.) 

Mmk Sate4 ( Rose-Hulman ) 

Data Collection Techniques a t  the 
Federal Reserve Board 

Focus Forecasting 

Geometrical Ideas i n  Kaleidoscopes 

Linear Generative Gvammavs or H o w  
t o  Make a One Stringed Harp 

25 Points 

Sequences of Integers With a Limited 
Number of Prime Divisors 

Designs With Hexagons 

Cvxwe Stitching for Junior High 

Correctness Proofs for Plowchart 
Programs 

Fractional Arithmetic--How t o  ~ a k e  
Two and Two Equal 4.520360 

Individual Game Probabilities 
Concerning the World Series 



h4.khcie.! Cc7.U (Rose-Hulman) What is the Cahulus o f  Finite 
Differences? 

BoAfaoAa Van0 (Oakland Univ.) The Growth o f  Mathematics i n  Russia 

H ~ M A Y  V&tAÂ¥ (Miami Univ.) Art i f ic ial  Intelligence: Can 
Computers Think? 

Pun Po&k (Miami Univ. ) Applications of the Progrcmmable 
Calculator i n  Mathematics' and 
Stat is t ics  

OKLAHOMA GAMMA (CAMERON UN I VERS I TY) The Chapter field trips, 

socials and the following three presentations: PA. MoVU^ M a h ~  (University 

of Oklahoma), "Shift Registers"; V t .  Vwigh.t Obon; "The Buffon Needle 

Problem"; V t .  Tommy W/u.gh.t (Statistician at Union Carbide in Oak Ridge), 

"Undercount Problems Encountered During the ~ n i t e d  States Censusu. 

Is your Chapter Report appearing here? 

If not, send it detailing speakers, awards, 

and programs to the Editor. This is the 

best possible way to let other Chapters know 

E what you are doing and to share ideas for 6 
E 

programs. 6 
E 6 
E 6 
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AT PRESS TIME-- w 
The Program for the Sixth Annual Conference on Undergraduate 
Mathematics arrived. This Conference was hosted by Arkansas 
Beta at Hendrix College. The Speakers and their topics were: 

P h o 6 ~ 4 ~ 0 h  John W.  Neubvigvi Differential Equations i n  Science 
NO&% Tc~xaA Sta te  UdveAA.tA/ and Mathematics 

COW& P & L L ~  More on Derived Sets of Well-ordered 
Gtuldohd CoUege Sets 

John SteeJLey Topologies on Collections o f  Subsets 
G W o n A  Cortege Generated by Families of Selection 

Maps 
JuLie BhinkwoWth Bleed A i r  Contanrimtion Analysis 

Oklahoma. S ta te  UnivmJLty 

Shehi Thompbon Differential Equations and Flight 
Okiahoma S ta te  U n i v m - i t y  Paths 

Kathy Aiexandvi 
GuJUL6ohd CoUege 

Leximovplvic Sets 

Scot.ty Ho(ie/i. 
Pan Ame'u.can UvmiwtsAJty 

Euon Pa& 
U n i v m - i t y  o(! Oklahoma. 

Rebecca Thomas 
Ufu.vm'Lty 06  hkavuiai 

Pto^&ot M. Z .  Maihed 
U n i v m i t y  06 VeL2wah.e 

Ben Schumacheh 
Hendfu.x CoUege 

David Sutherland 
Hendm,x CoUege 

?tia& CobmaA 
Oklahoma State. Un ivm-L ty  

LcAa Townliiey 
Un i vm- tA /  0 6  S a d  C-tetA 

Ruth Moohe and L a m  Re~-teib 
Sdem CoUege 

Habban Az^ma 
T e r n  Tech UnivmJLty 

J e U  Bouliu 
U n i v m i A j  0 6  Oklahoma. 

P d  KJmgfct 
H m e y  Mudd CoUege 

cahoi SmLth 
H d x  CoUege 

sandm CoUA-UM 
Hendfu.~ CoUege 

WJWJW Ann R&an 
Ufuvm-i ty  06 New Ohiennfs 

Mahk Heu&vi 
Un ivm-L ty  06  CentowJi FLofu.da. 

PAo6e-4~0t R. H. RUM 
U n i v m i ^ y  0 6  T e r n  

P~o , j ~hboh  P a d  R. Hahob 
Indiana 

Kevin Kedting 
Waih^uigton U d v m - i - t y  

John Campion 
S t .  O h 6  CoUege 

Tim CohneJLSion 
Univm-t- ty  06 Oklahoma. 

LaUJU.e Chltim and Suban LUCOA 
Oklahoma. S ta te  UvuMWiLky 

A Model For the Numbers i n  2 
N 

Solutions of Directional Differentiom2 
Equations 

A Numerical Technique for the Solution 
of Integro-Di fferential ~ ~ u a . t Â ¥ r o %  

Glimpses Into Optimization Theory 

Exponential C a k u h  

Wonlinear Derived Functions 

Mathematical Analysis of Inflation 

Applications of Set Theory and Topology 
To Economics 

Right-Hand Derivatives Suffice 

A Pseudonorm and Hyperbolic Functions 

Some Considerations a Computer 
Frequently Forgets 

Computer Arithmetic Algorithms 

Inf ini te  Sums of Derivatives 

Inf ini te  Composition 

Cluster Analysis For Univariate 
Data 

Least Squares Fitting of Distributions 
Using Non-Linear Regression 

Exumples and Counterexamples 

Some Problems I Couldn't Solve 

The C&tion of Cayley Diagrams 

What Kind of Basis Might a Module 
Have ? 

Pythagoras In a Box 

Trigonometry and Sound Waves 



W-UULiam BOttuwoiUfi  
U n - i v m L t q  of Santa. C l a m  

H ike  Mequt 
Un-ivm-tA/ 06  Oklahoma. 

VoJLi VeLaPofite 
Univm-t - tq  06 M-kamim 

S-teven Lazofichak 
S o u t h m  1 U n o h  Un-ive~-t- tq 

P ~ o f u ~ o f i  Bu/tton Jorau 
U ~ L ~ v u s - U t q  of CoSLomdo 

Ec&ooAd Shpiz 
Waiihiington Univm-t - tq  

Ravi S d g h  
Laqota. Univ&ViUq ( Chiicago 1 

Stephen S m u  
Wal t i ng ton  Un-ive~i-tA/ 

Pkof.i&iioh ALL Am&-Moez 
T e x a  Tech UnAMmJiky 

Ma~gahnt  R. VevLLn 
CaAdinaJi. S-t^Uch CoUege 

Kevin Fox 
U v u . v m ~ q  of the. Sowth 

Jean Ez& 
Un-ium-ctq of M-tA~h.i-C.ppi 

MohXeza SamLepou~. 
Texaii Tech Un ivm-Utq  

AnneAte T .  H e ~ z  
K m e q  S t a t e  CoUe.ge 

Vahen W&on 
Uakf-and Un-ivm-CA/ 

Applications of Topology t o  Logic 

Automata Theory For Mathematicians 

The Dynunrics o f  Traf f ic  Flaw 

Swusoidal Steady-State Analysis of 
Electric Circuits Using the Phasor 
Trans form 

Multiplicative Functions i n  Number 
Theory 

Lower Bounds For van der Waerden Numbers 

Dirichlet Integrals and Their Applic- 
ations 

Symmetric Groups on Ordinals 

H a w  One Makes a Simple Idea Impressive 

Map Coloring: 'Planar and Not so Planar 
Results 

Significant Figures Via Interval 
Arithmetic 

Some Divisibility Properties of 
Bionomial Coefficients 

Analytic and Synthetic Treatment 
Of Envelopes 

The Fibonacci, Numbers 

Fractional Ari.thmetic 
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