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THE AREA OF A TRIANGLE FORMED BY THREE LINES 

One way t o  determine a  t r i a n g l e  is t o  

spec i fy  t h r e e  noncoll inear  po in t s  X ( x ,  x2) ,  

y ( ~ l ,  Y ? )  and Z ( z ,  z )  t o  be used a s  

v e r t i c e s  (Figure 1 ) .  It  is well  known [ ~ o b l e ,  

Daniel, 1977, p. 2091 t h a t  t h e  area,  A ,  of t h e  

t r i a n g l e  is given by t h e  formula: 

where t h e  s ign  is chosen t o  make A pos i t ive .  

Another way t o  determine a  t r i a n g l e  is t o  spec i fy  t h r e e  non- 

current  l i n e s ,  no two p a r a l l e l  

which enclose t h e  t r i a n g l e  (Figure 1 ) .  Though it is an o ld  r e s u l t  

[salmon, 1879, p. 32 1,  it is not s o  well  known t h a t  t h e  a rea ,  A ,  of t h e  

t r i a n g l e  is a l s o  given by t h e  formula 

The purpose of  t h i s  note  is  t o  prove t h e  formula (3a)  using 

no ta t ion  and methods f a m i l i a r  t o  s tudents  taking a  f i r s t  course i n  

l i n e a r  algebra. 

We begin by forming t h e  c o e f f i c i e n t  matrix p of t h e  system ( 2 )  

and t h e  matrix Q . - - - 

where M i ,  M b  and Mc i n  Q a r e  cofac tors  of elements a bi and ci i n  
i 

P. For example, 

We note t h a t  t h e  condit ion t h a t  no two l i n e s  a r e  p a r a l l e l  t o  each o ther  

implies  t h a t  t h e  cofac tors  Ma , , and Me a r e  a l l  non-zero. Further- 
3 \ 3 

more, with t h i s  no ta t ion ,  formula (3a)  becomes 
2 

la! a2 " 3 1  

Is it possible  f o r  t h e  determinant of  matrix P, detP, t o  equal  

zero? If it is ,  t h e r e  w i l l  e x i s t  a  non- t r iv ia l so lu t ion  (s,, s2, 8,) t o  

the  system 

a1s t a 2 s  t ass3 = 0 

(5a)  
b s  t b s  t b 3 s 3 = 0  11 2 2  

I f  s3 # 0, then s2 / s3 ,1)  is a l s o  a  so lu t ion  t o  t h e  system of  

equations i n  (5a) .  Thus a l l  t h r e e  l i n e s  o f  system (2)  pass through t h e  



point  (sl/s3, s /s ), v i o l a t i n g  the  condition t h a t  these l i n e s  be non- 2 3 

concurrent.  But i f  s3 = 0,  then (sl,s2) would be a  non- t r iv ia l  so lu t ion  

t o  the  system 

alsl t a2s2  = 0 

(5b) 
blsl + b2s2 = 0 

CISl + C2S2 = 0 . 

This is  impossible, s ince  a l l  t h e  determinants i n  ( 4 )  a r e  non-zero. 

Using Cramer's r u l e ,  we f i n d  t h a t  t h e  coordinates  of  the  v e r t i c e s ,  

xh l ,x2) ,  Y(yl,y2) and Z(zl,z2) a r e  expressed a s  follows: 

"1'3 Ib lb3  I- = - --  
"la2 "I,, 

-Iv2 I 

c c 1 Mal 
- - 2 = 111:31 1 3 -  "a 2 

'lb2 "a, 

e c 
1 2  b1b2 I- -lc1c2 I 

Using formula (11, we can ob ta in  t h e  a r e a  of  t h e  t r i a n g l e  

= + 1  1 
- 2 Ma . Mb3 I de t  2. - Mc 

3 3 

Evaluating d e t  Q, however, is a b i t  tedious.  We there fore  wish 

t o  s implify d e t  Q t o  something more e a s i l y  ca lcu la ted .  Consider the  

product de t  Q de t  P. Since a  matrix and its transpose have the  same 
t determinant, d e t  Q = det  Q . Then: 

(8a)  t d e t  P det  Q = d e t  PQ = de t  I "l b2 b3 

Each e n t r y  on the  main diagonal of  t h e  product,  being t h e  sum of  the  

products o f  elements i n  a  row o f  P mult ipl ied by t h e i r  respect ive co- 

f a c t o r s ,  must equal  de t  P. A l l  o ther  e n t r i e s ,  being t h e  sum of  the  

elements i n  one row and t h e  cofac tors  of a  d i f f e r e n t  row, must equal  

zero [ ~ i c k e n ,  1967, p. 2631. The product then s i m p l i f i e s  t o  

Since d e t  P # 0, t h i s  implies  t h a t  de t  Q = (de t  P)  
2 

We have then, f o r  t h e  a r e a  of the  t r i a n g l e ,  

de t  P 0 0 

0 d e t P  0 

0 0 d e t  P 

3 = (de t  P) . 
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which is  the  same r e s u l t  developed by Salmon i n  1879. 
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AN I N F I N I T E  NUMBER 
OF 4 x 4 MAGIC SQUARES 

by Stephen Rubag 
Hicmu. uvu.vm-Ltq, Ux6ohCl, Ohio 

For many years  magic squares have fasc ina ted  and in t r igued  mathe- 

maticians. The study of symmetry and unusual c h a r a c t e r i s t i c s  has 'been a 

f a v o r i t e  pasttime f o r  those who l i k e  t o  dabble with n u d e r s .  A Normal 

magic square of order  n i s  defined t o  be an arrangement of t h e  first 

n2 n a t u r a l  numbers i n  t h e  c e l l s  of  t h e  square so  t h a t  each r o w ,  column 

and diagonal sums t o  a magic constant .  For t h i s  a r t i c l e ,  however, some 

v a r i a t i o n s  -- using non-consecutive numbers, negat ive numbers and 

f r a c t i o n s  -- w i l l  be employed. With t h i s  c r i t e r i o n ,  nonnormal magic 

squares f o r  a l l  in teger  sums and eventual ly any r e a l  number can be found 

f o r  a square of order  four .  

The most f a m i l i a r  f o u r t h  order  magic square is found by numbering 

t h e  s ix teen  c e l l s  from r i g h t  t o  l e f t ,  top  t o  bottom. Leaving t h e  e n t r i e s  

of t h e  diagonals a s  they a r e ,  and exchanging t h e  e n t r i e s  of t h e  comple- 

mentary c e l l s  ( c e l l s  which a r e  symmetric with respec t  t o  t h e  cen te r  po in t  

of t h e  square) ,  a normal magic square is obtained (Fig. 1 ) .  The rows, 

columns, and diagonals a l l  have t h e  same magic constant ,  34. Upon c l o s e r  

examination, however, t h e  square has even more magic q u a l i t i e s .  The four  

c e l l s  i n  t h e  cen te r ,  t h e  four  corners ,  t h e  opposi te  p a i r s  ( t h e  c e l l s  with 

numbers 5, 8, 9 ,  12 and 2, 3, 14, 15)  and each quadrant a l s o  have t h e  

magic constant  34! These proper t i es  of  doubly even magic squares have 

been known f o r  q u i t e  some time. The question is what w i l l  happen i f  num- 

bers  o ther  than t h e  first s i x t e e n  i n t e g e r s  a r e  used.  

With a few minor manipulations, magic squares  with magic constants  

35, 36, and 37 can be found. For t h e  magic sum 35, t h e  34-square can be 

transformed by sub t rac t ing  one from t h e  c e l l s  containing 1 and 2 and add- 

ing one t o  t h e  c e l l s  containing 11 through 16 (Fig. 2). For t h e  sum o f  

36, add one t o  each c e l l  containing t h e  numbers 9 through 16 i n  t h e  34- 

square (Fig. 3). Once again, by increasing t h e  c e l l s  containing 7 through 

14 by one and t h e  c e l l s  containing 1 5  and 16 by two, t h e  37-square is 

obtained (Fig. 4) .  



With these  four  squares a s  a b a s i s ,  any 4 x 4 magic square can be 

obtained by adding an appropriate  in teger  n t o  each of t h e  s ix teen  c e l l s  

of  t h e  square. In p a r t i c u l a r ,  sub t rac t ing  e igh t  from each c e l l  of t h e  

34-square and 35-square produces t h e  2-square and 3-square, respec t ive ly .  

Similar ly,  sub t rac t ing  nine from each c e l l  of  t h e  36-square and 37-square 

produces t h e  0-square and t h e  1- square, respec t ive ly .  Now adding an 

in teger  n t o  every c e l l  of t h e  0, 1, 2,  and 3-square, t h e  general  forms 

f o r  any 4 x 4 magic square can be constructed (Fig. 5) .  

Because t h e r e  have been fewer r e s t r i c t i o n s  placed on t h e  numbers 

which may f i l l  a square, an i n f i n i t e  number of magic squares have been 

found. A magic square f o r  a p a r t i c u l a r  sum, however, need not  be unique. 

I f  s ix teen  consecutive terms of  any a r i thmet ic  sequence a r e  placed i n  t h e  

c e l l s  i n  t h e  same order  a s  with t h e  o r i g i n a l  34-square, another magic 

square is created.  Also, adding two magic squares o r  multiplying a magic 

square by a constant  r e s u l t  i n  a magic square [3] .  

For a magic constant  which i s  not  an in teger ,  severa l  approaches can 

be used. To increase  any in teger  sum by a decimal f r a c t i o n  ( l e s s  than l ) ,  

add t h i s  f r a c t i o n  t o  any s e t  of  four  c e l l s  which have one c e l l  i n  each row, 

column, diagonal,  t h e  cen te r ,  t h e  corners  and t h e  opposi te  p a i r ,  forming a 

"complete s e t . "  An example is  t h e  c e l l s  containing t h e  numbers 1, 3, 5 

and 7 o r  16, 14,  12 and 10 ( t h e  "complementary" numbers) i n  t h e  34-square. 

Also, adding one-half of t h e  f r a c t i o n  t o  two complete s e t s  o r  one-fourth 

of t h e  f r a c t i o n  t o  a l l  16 squares w i l l  g ive t h e  des i red  r e s u l t .  Another 

i n t e r e s t i n g  technique is t o  consider t h e  decimal p a r t  a s  an in teger  and 

f i n d  t h e  magic square f o r  it. Dividing by t h e  appropriate  negat ive power 

of  10 w i l l  reduce t h i s  magic square t o  i ts  decimal form. Now add t h i s  

decimal form t o  t h e  in teger  magic square t o  ob ta in  t h e  desired magic 

square. For i r r a t i o n a l  sums, such a s  471 o r  17& merely mult iply t h e  

i n t e g e r  magic square by t h e  appropriate  i r r a t i o n a l  p a r t .  Thus, a magic 

square may be found f o r  any r e a l  number magic constant .  

The procedures here  do not exhaust t h e  p o s s i b i l i t i e s .  Many o ther  

combinations of numbers w i l l  produce magic squares possessing a l l  of t h e  

magic p roper t i es  mentioned here,  perhaps even more. The symmetries and 

t h e  order  which a r e  inherent  i n  t h i s  s i z e  square and our number system 

a r e  remarkable. There is a c e r t a i n  balance here,  and t h e  l i m i t a t i o n s  

seem t o  be  only t h e  l i m i t a t i o n s ,  i f  any, which a r e  i n  t h e  number system 

i t s e l f .  
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FIG.  5 
The general forms for magic squares having magic constants 
(A) 4n (B) 4n+l (C) 4n+2 (D) 4n+3 

GENERAL SOLUTION OF A GENERAL SECOND-ORDER 
LINEAR DIFFERENTIAL EQUATION 

The following theorem was discovered while attempting t o  f i n d  a 

s i n g l e  method f o r  so lv ing  a general  second-order l i n e a r  d i f f e r e n t i a l  

equation of  t h e  form 

The motivation f o r  a t t a c k  on such a method stemmed from t h e  thought t h a t  

when equation (1)  i s  assoc ia ted  with a f i r s t- o r d e r  l i n e a r  d i f f e r e n t i a l  

equation of t h e  form 

ds - + B(x)z = R(x), da 

then z  must necessar i ly  be of  t h e  form 

-̂ + A(x)y . d a  
( 3  

Working backwards now with ( 3 )  and (21, we ob ta in  

which a f t e r  t ak ing  der iva t ive  and rearranging terms takes  t h e  form 

Comparing (1)  and (4) we obta in  

P ( x )  = A(x) t B(x) 

and 

Q(x)  = A(x) B (x)  + A '  (x ) .  

The above considerat ions l ead  us t o  s t a t e  t h e  following. 



Theotem. A s u f f i c i e n t  condit ion t h a t  the  d i f f e r e n t i a l  equation 

has a  so lu t ion  i s  t h a t  t h e r e  e x i s t  two funct ions A ( x )  and B ( x )  such t h a t  

and 

and i n  t h a t  case t h e  so lu t ion  i s  given by 

Proof. Under the  given condit ion,  (1 )  takes the  form 

Let t ing  % t A ( x ) y  

we have from t h e  above equation 

dz t B(x1.z = R ( x )  

which is  a  l i n e a r  d i f f e r e n t i a l  equation of  t h e  first order  whose solu-  

t i o n  by the  usual methods is given by 

Thus from ( 5 )  we have 

which again i s  a  l i n e a r  d i f f e r e n t i a l  equation of the  f i r s t  order  whose 

so lu t ion  by usual  methods is given by 

The funct ion i n  ( 6 )  i s  t h e  general  so lu t ion  of ( 1 ) .  

Example. 1. 

Solve the  d i f f e r e n t i a l  equation 

Solution. 

Here P ( x )  = -3 and Q ( x )  = -4. We can thus  take A ( x )  = 1 and B ( x ) =  

-4 and s a t i s f y  ourselves t h a t  

and 

Using ( 6 )  we have the  so lu t ion  

Example. 2. 

Solve the  d i f f e r e n t i a l  equation 

Solution. 
2  2  1 

Here P ( x )  = - - a n d  Q ( x )  = - . We can thus t ake  A ( x )  =- -  and 
x  x2 x 

1 B ( x )  = - and s a t i s f y  ourselves t h a t  

- - - 1 1 2  1 1  d l  - ( -  -) + ( -  -) and - = (- -) (- -) + - (--). 
x  x  x  x  

2  x  x d x a  

Hence by ( 6 )  we have t h e  so lu t ion  
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120Â and 60Â PYTHAGOREAN TRIPLES 

Se.cAton 1 .  1ntn.oduC.kLon. 
Finding a l l  Pythagorean t r i p l e s ,  t h a t  is,  a l l  i n t e g e r  so lu t ions  

of  t h e  equation x2 + y2 = a i s  a fami l ia r  problem. [1] In t h i s  a r t i c l e  

we consider t h e  following general izat ion.  

I f  t r i a n g l e  ABC has an angle of  0' and in teger  s i d e s  k,Z,m, we 

c a l l  t h e  t r i p l e  ( k J , m )  a 6' Pythagorean t r i p l e .  Finding a l l  90Â 

Pythagorean t r i p l e s  i s  j u s t  t h e  fami l ia r  problem mentioned above. The 

problems of f inding a l l  120Â and 60' Pythagorean t r i p l e s  a r e  not q u i t e  

a s  well known, even though so lu t ions  were given by L. E. Dickson [2] i n  

1908. I t  is  these  l a t t e r  two problems t h a t  we address i n  t h i s  a r t i c l e .  
2 2 2 2 

A l l  such t r i p l e s  s a t i s f y  e i t h e r  k + k l  +Z2 = m2 o r  k - kZ + l  = m . 
We derive a s e t  of parametric equations which generate a l l  i n t e g e r  s o h -  

t i o n s  t o  these  equations. Furthermore, we give condit ions on t h e  

parameters s o  t h a t  each e s s e n t i a l l y  d i f f e r e n t  so lu t ion  is generated 

exact ly once. This l a t t e r  considerat ion does not appear t o  have been 

addressed i n  t h e  l i t e r a t u r e .  We conclude by observing t h a t  t h e  so lu t ions  

t o  t h e  6 0 ,  9 0 ,  and 120' problems provide a complete l i s t  of 0" Pytha- 

gorean t r i p l e s  with 0 r a t i o n a l  i n  degrees. 

Se&tion 2 .  Reduction of the. PhobLemd. 

From t h e  law of cosines it follows t h a t  i f  (k,l,m) is  a 120Â 

Pythagorean 2 2 2 t r i p l e  with 2 s i d e  m 2 opposi te  t h e  120' angle, then 

m =k +l -2klcos(120~)=k  +kl+ l  . Similar ly,  i f  (k,l,m) i s  a 60" Pytha- 
2 

gorean t r i p l e ,  then m2=k2-kl+l . We t u r n  our a t t e n t i o n ,  there fore ,  t o  

t h e  problem of  f ind ing  a l l  i n t e g e r  so lu t ions  t o  these  two equations. 

Our Pythagorean t r i p l e s  a r e  then j u s t  t h e  so lu t ions  i n  which kJ ,  and m 

a r e  a l l  pos i t ive .  

The following lemmas ind ica te  t h a t  it is s u f f i c i e n t  t o  solve 
2 2 2  

t h e  k +kl+Z =m problem. Both a r e  e a s i l y  es tab l i shed  by s t r a i g h t-  

forward computation. 



2 2 2  Lemma 1 .  I f  the  t r i p l e  (k,Z,m) s a t i s f i e s  k +kZtl =m , then the  
2 t r i p l e s  (x ,g ,z )  = (k,ktZ,m) and (x ,g ,z )  = (Z,ktZ,m) s a t i s f y  x -xgtzj2=z2. 

Remark. I f  we assume t h a t  k,1,m a r e  a l l  p o s i t i v e  so  t h a t  (k,Z,m) 

is a 120' Pythagorean t r i p l e ,  then a  geometric proof of Lemma 1 is ind i-  

cated by Figure 1. 
B 

ABC has a  60' angle a t  A and i n t e g e r  s i  des k, k t l ,  m. 

DBC has a  6 0  angle a t  D and i n t e g e r  s i d e s  I, k+Z, m. 

2  2 2  Lemma 1 s t a t e s  t h a t  each so lu t ion  t o  k +kl+Z =m generates two 
2 2 2 

so lu t ions  t o  k -kZtz =m . The next lemma shows t h a t  any so lu t ion  t o  
2 2 2 

k -kZtZ =m a r i s e s  i n  t h i s  way. 

2  Lemma 2. If (k,Z,m) s a t i s f i e s  k -kZtZ2=m2, then (x,y,z) = 
2 2 2 (k,  2-k,m) s a t i s f i e s  k +kZtZ =m . 

S e d o n  3 .  The Equations k 2 t k ~ t ~ 2 = m 2 k a n d  k2+k2t l2 

Prec i se ly  s t a t e d ,  we wish t o  f i n d  a l l  in tegers  k,Z,m which 
2 2 2 

s a t i s f y  k t k l t Z  =m . While t h i s  problem has been s tudied i n  t h e  l i t e r a t u r e  

[2, 3, 5 1  we presen t  a  complete, self- contained so lu t ion  because o ther  

so lu t ions  seem t o  be incomplete o r  too  general  t o  be r e a d i l y  understood. 

F i r s t  we define a  so lu t ion  t r i p l e  t o  be a  t r i p l e  of in tegers  
2 2 2 

(k,Z,m) s a t i s f y i n g  k t k t + l  =m . Next define a  p r imi t ive  t r i p l e  t o  be a 

so lu t ion  t r i p l e  i n  which t h e  in tegers  a r e  pairwise r e l a t i v e l y  prime, t h a t  

is  ( k J )  = (2,m) = (k,m) = 1. 

In  order  t o  e s t a b l i s h  t h e  f a c t  t h a t  any so lu t ion  t r i p l e  is a s c a l a r  

mult iple  o f  some pr imi t ive  t r i p l e ,  we f i r s t  show 

Lemma 3. I f  (k,l ,m) i s  a  so lu t ion  t r i p l e ,  then ( k , l )  = (Z,m) = 

2 2 2 
Proof. Let d=(k,Z) ,  e=(Z,m), and f=(k,m). Since k tkZtZ =? , 

2 2 
we have d \ m  . Hence d\rn, and there fore  d \ e  and d \  f. Let e =At ,  fidf , 
k=dk' ,  z=dl', and m = d m t .  Then l = ( k ' , l ' ) ,  e t = ( l ' , m '  ), f ' = ( k t  ,ml) and 

k t 2 t k 1  l ' t ~ ' ~ = m ' ~ .  I f  p is  any prime d i v i s o r  of e1 p1Zt and plmt . Thus 

p \ m t 2 - ~ ' 2 = ( ~ t ~ 1 ) k 1 a n d  s o  e i t h e r  p \ k ' t l l  o r  p l k ' .  But p \ Z t ,  so  i n  e i t h e r  

case p \k' . Hence p)(kt  , Z t  ) =1 and p = l .  Thus e l = l .  Similar ly ft=l, 

proving Lemma 3. 

The next lemma reduces our problem t o  one of  f ind ing  a l l  pr imit ive 

so lu t ion  t r i p l e s .  Its proof i s  s traightforward and so  d e t a i l s  a r e  omitted 

Lemma 4.  I f  (k,l,m) is a so lu t ion  t r i p l e  and d=(k,l)=(Z,m)=(k,m), 

then (k' , l ' ,mt) is  a  p r imi t ive  t r i p l e  where k=k'd,Z=Ztd, and m=m'3. 

Lemma 5. If (k,Z,m) is a p r imi t ive  so lu t ion  t r i p l e ,  then e i t h e r  

2-k~m (mod 3) o r  k - l ~ m  (mod 3 ), but not both. 

Proof. 

Thus 3\mt(k-2) o r  3\m-(k-2). However, i f  3 divides both, then 3 \ k  o r  3 \ l .  

I f  3  \k, then 3 \ m - l  and 3 \ m t z ,  which implies 3 122 which i n  t u r n  implies  

3\ l .  This con t rad ic t s  p r i m i t i v i t y .  A s i m i l a r  con t rad ic t ion  a r i s e s  i f  

3  p. 
Now we proceed towards f ind ing  a  parametric represen ta t ion  of  

a l l  pr imit ive so lu t ion  t r i p l e s .  To begin we assume t h a t  t h e  pr imit ive 

t r i p l e  (k,Z,m) is always wr i t t en  so  t h a t  k-Zsm(mod 3). This can be 

achieved by interchanging k and Z i f  necessary. 

T h e o m  1 .  Let p and q be in tegers  with ( p , q ) = l  and pfq (mod 3). 
2  2 2 

Then k=p -q , ~ = 2 ~ ~ t ~ ~ ,  and m=p tpqtq
2 form a pr imit ive so lu t ion  t r i p l e  

f o r  which k-Z~m(mod 3) .  
2  

P r o o f .  Straightforward algebra shows k t k ~ t z ~ = m ~  and k-km 

(mod 3). We must show t h a t  k ,z ,  and m a r e  pairwise r e l a t i v e l y  prime. 

To do t h i s  we use Lemma 6 below, which w i l l  a l s o  be usefu l  l a t e r .  

2  2 
Lemma 6. Let p  and q be i n t e g e r s  with (p ,q )= l  . Then (p  -q , 

2 
2pqtq )=1 i f  and only i f  pfq (mod 3) .  



2 2 Proof. Suppose p~ q (mod 3) ;  then 3lp-q and 3lp -q . But 

p-qSpt2q (mod 31, so  3 \p+2q. We a l s o  have 3 l(p-q)+(p+2q)=2p+q, and hence 
2 2 2 

3 1 2 ~ ~ t ~ .  Therefore (p -q , 2pq+q ) # l .  
2 2 2 

Now suppose ( p  -q , 2pqtq ) = a' $1. Let x be any prime d i v i s o r  
2 2 of  d. Now x d iv ides  n e i t h e r  p nor q ;  t h i s  follows s ince  x i p  -q and 

hence i f  x divides one it a l s o  divides t h e  o ther ,  con t rad ic t ing  (p ,q )= l .  
2 2 2 Since xbpq+q we must have x \  2p+q. Also x \ p  -q implies  x \p-q  o r  x lp tq .  

If xl2ptq and xlp+q, then x l p ,  a contradict ion.  Hence x12ptq and xlp-q 

and these  i n  t u r n  imply x 13p. Thus x=3 and 3 1 p -q making p E q (mod 3) .  

To complete t h e  proof of Theorem 1 note t h a t  by Lemma 3 it i s  

enough t o  show t h a t  any two of  k,l,m a r e  r e l a t i v e l y  prime. Lemma 6 now 

gives us ( k , l ) = l .  

Next we prove t h e  converse t o  Theorem 1. Define (k,Z,m) t o  be 

a t r i v i a l  so lu t ion  t r i p l e  i f  it i s  o f  t h e  form (-k,k,k) o r  (k,O,k). 

7hn.oit.e.m 2 .  If (k,l,m) is a non- t r iv ia l  p r imi t ive  so lu t ion  t r i p l e ,  

then t h e r e  e x i s t  unique i n t e g e r s  p and q with p>0, ( p , q ) = l  and pfq (mod 3 )  
2 2 2 2 such t h a t  k=p -q , ~ . = 2 ~ ~ t q ,  and m=p tpq+q . 

2 2 2  2 2 P r o o f .  Since k + k M  =m we have Z(ktZ)=m -k =(m+k)(m-k), and 

s ince  (k.2.m) is non- t r iv ia l  we can wr i te  

2 m-k = = = t  m t  

where t i s  a non-zero r a t i o n a l  number. This gives us  a system of  

equations: 

2-kt=& , Ztt( t+l)k=m . 
Solving t h i s  system f o r  k and 2 we g e t  

(1-t2)m k=--, 2 = ( t2+2t  )m 
t2tttl t2tt+l 

Now s ince  t is  r a t i o n a l ,  we l e t  t = q/p where p and q a r e  in tegers  with 

p>0 and (p ,q)= l .  Clearly t h e  p and q s a t i s f y i n g  these  condit ions a r e  

unique. Subs t i tu t ing  f o r  t we g e t  

k = (p2-q2)m 2 = ( 2pqtq2 )m 

p2+ Pa +q2 p2+ to2 ' 

Recal l  t h a t  Z/(m+k) = t = q/p, and by assumption k-2s m (mod 3) .  

Lemma 5 implies t h a t  2-kf.m (mod 3) and thus  Zfmtk (mod 3). These 

f a c t s  toge ther  with (p ,q )= l  imply p&7 (mod 3). Lemmas 3 and 6 now t e l l  
2 2 2 

us t h a t  (p2-q2, p2+pqtq2)=l and (2pq+q2, 2 p2tpqtq 2 ) = I .  Thus p +pqtq .? lm, 

and s ince (k ,Z)=l  we must i n  f a c t  have p +pq+q =m. Thus we can w r ' i t ?  

This concludes t h e  proof of Theorem 2. 

Summarizing the  previous r e s u l t s  we have 

2 2 2  The.ote.rn 3.  A l l  i n t e g e r  t r i p l e s  (k,Z,m) f o r  which k tkZ+k =m 

and k-Zzm (mod 3) a r e  e i t h e r :  

( 1 )  t r i v i a l ,  t h a t  i s  of  t h e  form (-k,k,k) o r  (k,O,k) 

( 2 )  non- t r iv ia l ,  t h a t  is, there  e x i s t  unique i n t e g e r s  p,q,v 
2 2 

withp>0, q#O, v#O, (p ,q )= l ,  and p f q  (mod 3) such t h a t  k=(p -q ) r  , 
2 2 2 

2=(2pq+q 1, and m=(p +pq+q ) r .  
2 2 2 

To f i n d  a l l  so lu t ions  t o  k - k Z t l  =m we can use Theorem 3 and 

Lemmas 1 and 2. F i r s t  note t h a t  p r i m i t i v i t y  i s  defined a s  before and 

t h a t  any so lu t ion  t r i p l e  is  a mult iple  of  a pr imit ive one. The next  

lemma ind ica tes  t h a t  t h e r e  a r e  e s s e n t i a l l y  two d i s t i n c t  fami l ies  of 

p r imi t ive  so lu t ions .  

Lennna 7. If t h e  t r i p l e  o f  i n t e g e r s  is a pr imit ive s o l u t i o n  t o  

k2-k2+12=m2, then k+Z%m (mod 3) o r  k t 2  -m (mod 31, but  not  both. 

The proof is  s i m i l a r  t o  the  proof of  Lemma 5 and is omitted. 
2 2 2 

Observe t h a t  unl ike the  k +k2+2 =m problem we cannot choose 

which congruence we want t o  hold, s ince  interchanging k and 2 l eaves  

both unaffected. Combining Lemma 2 with Theorem 3 we have: 

2 2 2  Theolem 4 .  A l l  i n t e g e r  t r i p l e s  (k,l,m) f o r  which k -k l+ l  =m 

a r e  e i t h e r  

(1 )  t r i v i a l ,  t h a t  is o f  t h e  form (-k.0.k). (k,O.k), (k,k,k),  

(O,k,k), ( 4 ,  -k,k), o r  (0,-k,^; 

(2 )  non- t r iv ia l ,  t h a t  i s ,  t h e r e  e x i s t  unique i n t e g e r s  p,q,Y 

with p>0, q#O, & O ,  (p ,q )= l ,  and p t q  (mod 3)  such t h a t  

It  is  an easy matter  t o  see t h a t  t h e  first non- t r iv ia l  family 

corresponds t o  ktZs-m(mod 3) while t h e  second corresponds t o  k + 2 3  (mod 3) .  



Sec.fct.on 4. h i . ~ u e n e ~ h  06 SoluAtora~. 
2 2 The so lu t ions  t o  the  equations k2!k2+2 =rn given i n  t h e  previous 

sec t ion  contain c e r t a i n  redundancies which a r i s e  because of t h e  symmetry 

of t h e  equations. For example, the  in tegers  p = 3 , q = - l , r = l  generate the 

so lu t ion  t r i p l e  (ky2,rn)=(8,-5,7) while p=3, q=-2, r=l generate t h e  t r i p l e  
2 2 2  (k,l ,rn)=(5,-8,7).  Both of these  s a t i s f y  k +kZ+Z =rn ; however, it makes 

sense t o  regard these a s  e s s e n t i a l l y  the  same so lu t ion .  In  f a c t  it is  

easy t o  see  t h a t  f o r  each equation, whenever (k,l,rn) is a s o l u t i o n ,  

severa l  o ther  t r i p l e s  a r e  a l s o  so lu t ions .  Obvious examples of  t r i p l e s  

t h a t  a r e  a l s o  so lu t ions  a r e  (k,Z,-m), (Z,k,rn), (-k,-l,rn), and (-2,-k,m). 

In  t o t a l  the re  a r e  24 r e l a t e d  so lu t ions  f o r  each of  t h e  equat ions.  These 

a r e  indicated i n  Table 1 

Remark. I f  we take a  so lu t ion  t r i p l e  (k,Z,m) and consider a l l  possible  

transformed t r i p l e s  of  t h e  form (ak+bl, ck+dZ, ern) where a ,b,c ,d,  and 

e  a r e  i n t e g e r s ,  then Table 1 contains  p rec i se ly  t h e  transformed t r i p l e s  

which a r e  again s o l u t i o n s  of t h e  corresponding equation. 

Clearly,  f o r  each of  t h e  two equations t h e  r e l a t e d  so lu t ions  form 

an equivalence c l a s s .  By r e s t r i c t i n g  t h e  so lu t ions  given i n  Section 3 t o  

so lu t ions  involving one and only one member of  each equivalence c l a s s ,  we 

can el iminate  redundant so lu t ions .  To do t h i s  we need t o  handle t h e  two 

equations separa te ly .  The following lemma i s  e a s i l y  es tab l i shed ;  we omit 

the proof. 

Letnma 8. Among the  equivalent pr imit ive so lu t ions  t o  
2 2 2 k + k W  =m given i n  Table 1, there  i s  prec i se ly  one with k ,  2 and rn 

pos i t ive  and k-2 ~m (mod 3 ) .  - 
We now r e s t r i c t  the  values of p,q, and r i n  Theorem 3 so  t h ' a t k e  

obtain only the  represen ta t ive  given i n  Lemma 8. This gives us t h e  

following: 

Th.~o&e~n 5. The following is a complete non-redundant s e t  of  non- 
2 2 2 

t r i v i a l  so lu t ions  t o  k +k2+2 = m  : 

where p , q , r  run through a l l  in tegers  s a t i s f y i n g  p> q > 0, r>  0, ( p , q ) = l ,  

and p i q  (mod 3) .  

Proof. From Theorem 3 and Lemma 8 we have the  following. The 
2 2 2  

condition rn>O implies r > O ,  s ince m=(p +pq+q )r and +pq+q2 i s  always 

p o s i t i v e  f o r  p>0. The condit ion k-2zrn (rood 3) implies  piq (mod 3 )  a s  

shown i n  the  proof of Theorem 2. Next k>0 implies p>q, s ince  

k=(p-q)(p+q)r  and p-q < 0 would requ i re  q > p > O  and p+q>O, cont rad ic t ing  

k>0. Final ly l>0 implies  q>0 s ince  

2 
( i )  k>0 and l>0 imply k+2=(2pq+p ) r >  0, which together  with 

p>0 implies  q>-(p/2);  
2  

( i i )  l>0 implies (2pq+q )=q(2p+q) > 0, which i n  t u r n  implies 

e i t h e r  q>0 o r  q<0 and 2p+q<0. This l a t t e r  choice implies  q<-2p<-(p/2), 

which cont rad ic t s  ( i ) .  

2  2 2 Cofi~iio~y 7. Once so lu t ions  t o  k +kl+Z =rn a r e  obtained with t h e  

r e s t r i c t i o n s  given above, then a l l  so lu t ions  a r e  obtained by expanding 

t h e  s o l u t i o n  s e t  24-fold according t o  Table 1. 
2 

Eliminating redundancies i n  the  so lu t ions  t o  k -k2+12=rn2 i s  

achieved i n  a  s i m i l a r  fashion.  We begin with t h e  following e a s i l y  checked 

lemma. 

2 
Lemma 9 .  Among the  equivalent  pr imit ive so lu t ions  t o  k -k2+12=m2, 

t h e r e  is  prec i se ly  one with k,Z, and rn pos i t ive ,  k<1, and kt>-m (rood 3). 

The0h.m 6 .  The following is  a complete non-redundant s e t  of nop- 
2 

t r i v i a l  so lu t ions  t o  k -k2+12=rn2. 



where p , q , r  run through a l l  i n t e g e r s  s a t i s f y i n g  p >q> 0, r > 0 ,  ( p , q ) = l ,  

and pfq (mod 3 ) .  

Proof. Use Lemma 1 and Theorem 5 t o  observe t h a t  we no longer  

ob ta in  two f a m i l i e s  of  s o l u t i o n s  a s  we d i d  i n  Theorem 4, s i n c e  Lemma 9 

e l imina tes  t h e  second family. 

C O ~ O ~ ~ C U L ~ .  A s  i n  t h e  previous case ,  a l l  s o l u t i o n s  t o  
2 2 2  \ -kZ+Z =m may now be obtained by a 24-fold expansion of the  above 

s o l u t i o n  s e t .  

Se.ction 5 .  The 120' and 60' Pythagote.aii T M p i u .  

A s  mentioned e a r l i e r ,  t h e  120' and 60' Pythagorean t r i p l e s  a r e  
2 2 simply t h e  p o s i t i v e  s o l u t i o n s  t o  t h e  equat ions  k2?kz+z =m . We now show 

how t o  give a complete l ist  o f  these .  
2 Theorem 5 g ives  us .solut ions  t o  k +kz+z2=m2 i n  which k,Z, and m 

a r e  p o s i t i v e ,  and so  these  form 1 2 0  Pythagorean t r i p l e s .  To g e t  any 

o t h e r s  we t ake  a t r i p l e  generated by Theorem 5 and look among i ts 24 

r e l a t e d  s o l u t i o n s  of  Table 1 f o r  o t h e r  t r i p l e s  i n  which a l l  t h r e e  e n t r i e s  

a r e  p o s i t i v e .  A quick glance a t  Table 1 shows t h a t  i f  k,Z,m a r e  a l l  

p o s i t i v e ,  then only one o t h e r  e n t r y  has  t h i s  proper ty ,  namely (Z,k,m). 

Clear ly  we should regard t h i s  Pythagorean t r i p l e  a s  being t h e  same a s  

(k,Z,m). Hence we may conclude t h a t  Theorem 5 a l s o  gives  a c o m p l ~ t e  non- 

redundant s e t  of  120' Pythagorean t r i p l e s .  Table 2 below l ists  t h e  f i r s t  

few 120Â t r i p l e s .  

Tab& 2 

Pr imi t ive  120' Pythagorean T r i p l e s  (p.< 5 )  

P q p k Z m  

2 1 1  3 5 7  

3 1 1  8 7 1 3  

3 2 1  5 16 19 

4 3 1  7 33 37 

5 1 1  24 11 31 

5 3 1  16 39 49 

5 4 1  9 56 6 1  

For t h e  6 0  Pythagorean t r i p l e s  we proceed s i m i l a r l y .  We begin 

with  t h e  s o l u t i o n s  generated by Theorem 6 i n  which k,l,m a r e  p o s i t i v e  

and k < i .  For each such s o l u t i o n  we check among t h e  24 r e l a t e d  s o l u t i o n s  

f o r  o t h e r  t r i p l e s  having a l l  e n t r i e s  p o s i t i v e .  This t ime we f i n d  

severa l .  If k,Z,m a r e  a l l  p o s i t i v e ,  then s o  a r e  t h e  e n t r i e s  of  (Z,k,m), 

(2-k,Z,m), and (2.Z-k,m). The l a t t e r  two t r i p l e s  a r e  not  obviously t h e  

same a s  (k,Z,m) but  should be regarded a s  equ iva len t  t o  each other. '  

Hence we should include one of their, say  (7--': ,&m), i n  our  l i s t  of  60' ' 

t r i p l e s .  This g ives  us t h e  fol lowing:  

The-otem 7 .  The fol lowing i s  a complete non-redundant s e t  of 60' 

Pythagorean t r i p l e s :  

where p,q,r run through a l l  i n t e g e r s  s a t i s f y i n g  p>q>O, r > 0 ,  ( p , q ) = l ,  

and p i q  (mod 3) .  

P r imi t ive  60Â Pythagorean T r i p l e s  (pi51 

S d o n  6 .  Conc&iA.Lon. 

Now t h a t  we have found a l l  120' and 60' Pythagorean t r i p l e s ,  we 

can group them with  t h e  well-known 90' t r i p l e s  and observe t h a t  t h i s  

c o l l e c t i o n  is a l ist  of a l l  6' Pythagorean t r i p l e s  with 9 r a t i o n a l  i n  

degrees .  F i r s t ,  no te  t h a t  i f  (k,Z,m) is  a 0' Pythagorean t r i p l e ,  then  

cos0 is r a t i o n a l .  According t o  Niven [4], i f  0 is  r a t i o n a l  i n  degrees  

and cos9 is  r a t i o n a l ,  then  cos6 =0, 1/2 ,  o r  t1. Hence, i f  (k,Z,m) i s  a 

0' Pythagorean t r i p l e  with  0 r a t i o n a l  i n  degrees ,  then 0 must be 1 2 0 , -  

go0, o r  60'. 
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THE EQUILIC QUADRILATERAL 

b y  J .  Gm6unke.t 
2uee.n~ CoLtege., N.Y. 

Every student of geometry knows that of all plane figures the 

triangle is one of the most prolific in producing theorems. In this 

article we show that the quadrilateral is also a rich source for investi- 

gation. Quite a number of special quadrilaterals have already been in- 

vestigated. Examples are the cyclic quadrilateral whose vertices lie on 

the same circle, the circumscriptible or pericyclic quadrilateral whose 

sides are tangent to the same circle and the orthodiagonal quadrilateral:- 

whose diagonals are perpendicular. Furthermore, there are quadrilaterals 

that are both cyclic and pericyclic, cyclic and orthodiagonal and so on. 

To the quadrilaterals with interesting properties, we add a new quadri- 
lateral which we will call equilic. 

Va6iniLion.  Quadrilateral ABCD is said to be equilic if AD = BC 

and if angle A + angle B = 120Â° 

Note that the quadrilateral need not be convex. See Figures 1A 

and IB. 

FIG. 1A FIG. 1B 

* We are "deeply grateful to the referees for the meticulous care they 
took in greatly enchancing this article. Thanks. 



We begin by stating a fairly obvious fact. 

Theoklim 1.  A quadrilateral which is both cyclic and equilic is 

an isosceles trapezoid with A = B = 60Â° 

The proof of Theorem 1 is left to the reader. 

Ve&kni^ion. If one angle of an equilic quadrilateral is equal to 

90Â° the quadrilateral is called right equilic. 

Th~oklim 2 .  In a right equilic quadrilateral, a diagonal is equal 

to an unequal side. 

FIGURE 2 

Proof. Quadrilateral ABCD is right equilic with the right angle 

at A and with AD = BC . From C drop perpendiculars CP and CQ to sides 
f 

AB and AD respectively. Then CP = 1/2CB = 1/2AD, since angle B measures 

30Â° Hence, C lies on the perpendicular bisector of AD, which makes Ã 

triangle ACD isosceles and diagonal AC equal to side DC. 

The proof is similar for the right angle at any other vertex. 

Thokern 2A. In an equilic quadrilateral, if a diagonal is equal 

to an unequal side then the quadrilateral is right equilic. 

Proof. In equilic quadrilateral ABCD with angle A + angle B = 
120Â° AD = BC, and AC = CD, erect a perpendicular to AD at A to cut line 

BC at K. Drop perpendiculars CF and CG to ADand AK respectively. Let 

AD and BC extended meet at H, so angle H = 600. Because CDA is an isos- 

celes triangle, F is the midpoint of AD. Then CG = FA = 1/2AD = 1/2 BC. 
Since CG is parallel to DA, then angle KCG = 60Â° so CG = 1/2 CK. Now 

8 
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CK = CB, so B and K coincide, making angle DAB = angle DAK = 90'. 

In the next two theorems we investigate some interesting relations 

between the equilic quadrilateral and equilateral triangles. 

Tfteo~em 3 .  If equilateral triangle ABP is constructed interiorly 

on side A5 of equilic quadrilateral ABCD, then triangle PCD is also 

equilateral. 

FIGURE 3 

Proof. Refer to Figure 3. Let ABCD be an equilic quadrilateral. 

Assume, without loss of generality, that angleABC> angle BAD. Construct 

equilateral triangle ABP interiorly and draw PC and PD. Because AD and 

BC meet at 60Â and AP and BP also meet at 60Â° then angle PAD= angle PBC. 



Thus, t r i a n g l e s  AD7 and BCP a r e  congruent b y  S A S .  Hence a 60Â r o t a t i o n  

about P c a r r i e s  t r i a n g l e  ADP i n t o  BCP, s o  angle DPC = 60' and t r i a n g l e  

PCD is e q u i l a t e r a l .  

The-oMm 4. The midpoints of  t h e  diagonals and t h e  midpoint of  an 

unequal s i d e  of an e q u i l i c  q u a d r i l a t e r a l  a r e  v e r t i c e s  of an e q u i l a t e r a l  

t r i a n g l e .  

FIGURE 4 

P r o o f .  In  Figure 4 P ,  Q and R a r e  t h e  midpoints of A C ,  BE and 

CD , respect ively.  Clearly,  PR is p a r a l l e l  t o  AD and equal t o  1 /2  W ,  

and RQ is  p a r a l l e l  t o  BC and equal  t o  1/2 BC. Since AD = BC,  t r i a n g l e  

PQR is i sosce les  with PR = QR. Since t h e  angle between AD and BC is 60Â° 

then s o  a l s o  i s  angle PRQ = 60Â and t r i a n g l e  PQR is  e q u i l a t e r a l .  Simi- 

l a r l y ,  t r i a n g l e  PQS is  e q u i l a t e r a l  where S is  t h e  midpoint of  s i d e  AB. 

Moreover, RQSP is a rhombus. 

The reader  is encouraged t o  ca r ry  out  t h e  proof of Theorem 4 i n  

t h e  case of a non- convex e q u i l i c  q u a d r i l a t e r a l .  

Ve.fA.llLtion. An e q u i l i c  q u a d r i l a t e r a l  ABCD is  c a l l e d  i sosce les  

e q u i l i c  i f  AD = DC = CB. 

T h e o m  5.  The po in t  P o f  the  i n t e r s e c t i o n  o f  t h e  diagonals of 

an i sosce les  e q u i l i c  q u a d r i l a t e r a l  i s  t h e  circumcenter of  t r i a n g l e  ABQ, 

where Q is t h e  point  of i n t e r s e c t i o n  of  s i d e s  BC and AD. 

'Proof. I n  Figure 5,  ABCD is  an i s o s c e l e s  e q u i l i c  q u a d r i l a t e r a l .  

Through A and C draw l i n e s  p a r a l l e l  t o  DC and DA, respec t ive ly ,  t o  

i n t e r s e c t  i n  E.  Then, AECD is a rhombus. Denote t h e  equal angles  DAP, 

PAE, DCP, and PCE by  a ,  angle EAB by 0 and angle DQP by y .  Angle ECB = 

60Â° s ince  CE is p a r a l l e l  t o  AD. Hence, t r i a n g l e  BCE is e q u i l a t e r a l  

FIGURE 5 

and t r i a n g l e  ARE is  i sosce les  with AE = BE.  Since angle BAQ t  angle ABQ 

= 120Â° (2 a  + B )  t  0 + 60O = 120Â and a + f3 = 30'. In i sosce les  t r i a n g l e  

BCD, 2 a t  60' t  2Cangle CDB) = 180Â° so  angle CUB = 60' - a. Thus, 

anple DBE = a  and t r i a n g l e  ABP is i sosce les  with AP = BP and angle APB 

= 120Â° I t  remains t o  prove t h a t  AP = PQ. Since angle APB = 120Â - 

angle DPC, q u a d r i l a t e r a l  DPCQ is c y c l i c  and angle a = angleDCP= angle 

DQP = angle y. Hence, t r i a n g l e  APQ is  i sosce les  and AP = PQ. This 

proves t h a t  P is the  circumcenter of t r i a n g l e  ABQ. 

I t  should be noted t h a t  Theorem 5 holds i f  point  E f a l l s  ou ts ide  t h e  

e q u i l i c  q u a d r i l a t e r a l .  The reader  is  encouraged t o  ca r ry  out  the proof 

i n  t h e  case of a non-convex i sosce les  e q u i l i c  q u a d r i l a t e r a l .  



The proof of the following corollary is left as an exercise for the 

reader. 

CVlo&q. The opposite angles of an isosceles equilic quadri- 

lateral are in the ratio of 1:2. 

The next few theorems are of a more sophisticated nature. 

Theokem 6. If equilateral triangles PAD, QDC , and RBC are 
erected on consecutive sides AD, DC, and CB of equilic quadrilateral 

ABCD , exteriorly on side CD and on AD and interiorly on side BC, then 
triangle PQR is equilateral. (By symmetry, the result holds if the 

roles of AD and BC are interchanged). 

FIGURE 6 

Proof. Angle QCR = angle DCB since both are equal 60Â + angle DCR. 
Angle PDQ = 360Â - 120Â - angle ADC 
= 240Â - (360~ - angle A - angle B - angle DCB) 
= 240' - (240Â - angle DCB) = angle DCB = angle QCR. - 

Also, QC = QD and DP = 07, so that triangles PQD and RQC are congruent. 

Since a 60Â rotation about point- Q carries triangle PQD into triangle 

RQC, it follows that angle PQR = 600 and that triangle PQR is equilateral. 

*The~hem 6a. If equilateral triangles are erected exteriorly on 

sides DA, AB, and BC of equilic quadrilateral ABCD,, then their third 

vertices are vertices of an equilateral triangle. 

Proof. The proof is similar to that of Theorem 6. Let the 

appended equilateral triangles be RAD, PBA, and QCB, then RA = QB, 

AP = PB and angle RAP = angle QBP = 120Â + B. Therefore, triangles 

PRA and PQB are congruent and a 60Â rotation about P carries one into 

the other. Since PR = PQ and angle RPQ = 60Â° triangle PQR is equilateral. 

The.ahem 66. If equilateral triangles QBC, PCD, and RDA are erected 

interiorly on sides BC, CD, and DA , respectively, then triangle PQR is 
equilateral. 

Proof. We have PD = PC, DR = CQ and angle PCQ = angle PDR=~ 120Â 

- angle  AD^, so triangles PDR and PCQ are congruent. Again, a 60Â 

rotation about P carries one into the other and we argue as before. 

The~hem 7. If ABCD is an equilic quadrilateral and if equilateral 

triangles are erected as follows: PCA on the same side of CA as B, QBD 

on the same side of BD as A, and ISA exteriorly, then triangle PQR is 

'equilateral. 

Proof. A 60Â rotation about I3 carries AD into QR and a 60Â 

rotation about A carries RP into BC. It follows that QR = PR and the 

angle between them is 60Â° 

Theatem 7a. If PCA, QCO, and RBD are equilateral triangles erected 

away from side BA of equilic quadrilateral ABCD, then P, Q ,  and R are 

collinear. 

Proof. By Theorem 3, a 60Â rotation about A carries PQ into CB 

and a 60Â rotation about B carries AD into QR. Since AD and fit intersect 

* Again I must thank the referees for Theorems 6, 6a, and 6b. 



R 
FIGURE 7 

a t  60Â° t h e  r e s u l t  follows. 

We o f f e r  a  second proof of  Theorem 7 s ince  t h i s  method of  proof 

is usefu l  i n  proving a  l a t e r  theorem and is i n t e r e s t i n g  i n  i t s e l f .  We 

w i l l  employ vectors  i n  t h e  complex plane and make use of t h e  following 

f a c t s :  

1. If v is a vec tor ,  thena'v represen ts  t h e  same vector  r o t a t e d  

1200 i n  t h e  counterclockwise d i r e c t i o n ,  where to r epresen ts  a  

cube r o o t  of uni ty.  

2. u 3 = 1 , 1 + w + u
2

= 0 .  

-Ã  ̂ -Ã  ̂ -+ ->Â 2 -+ 
Proof. LetAB = p a n d B C = q ,  t h e n D A = q ,  B R =  u p  a n d R A = u p .  

-+ -+ 2 2 
Since AC = p + q ,  then FA = up + wq and &' = w p + u q .  

2 2  Since L% = p + w q ,  then & = q + u  q and 8% = ui p + q .  

It follows t h a t  B̂  = flS - =-(DO,  and t h a t  P& = ~3 + A% + B& 

Thus, PQ = in(&), which proves t h e  theorem. 

Ve&iviLbion.  The s ide  AB of the  e q u i l i c  q u a d r i l a t e r a l  ABCD is 

c a l l e d  t h e  base. 
A most i n t e r e s t i n g  hexagon r e s u l t s  when an e q u i l i c  q u a d r i l a t e r a l  

is r e f l e c t e d  i n  the l i n e  containing i ts base. 
A - 

Theo-im S. An e q u i l i c  q u a d r i l a t e r a l  r e f l e c t e d  i n  the  l i n e  of  . 

its base forms a  hexagon with t h e  property t h a t  i f  e q u i l a t e r a l  t r i a n g l e s  

a r e  erected e x t e r i o r l y  on any th ree  a l t e r n a t e  s ides ,  then t h e i r  t h i r d  

v e r t i c e s  form an e q u i l a t e r a l  t r i a n g l e .  

P r o o f .  Let C 1  and D' be t h e  r e f l e c t i o n s  of C and D, respec t ive ly ,  

i n  l i n e  AB.  A 60Â r o t a t i o n  about P takes  PCIBQ i n t o  PDIAR and, there-  

f o r e ,  Q i n t o  R s ince  angle PC'B  = angle C + 60' = angle PD'A and angle 

C I B Q  = 120Â t angle A = angle D'AR. 

The reader  is  encouraged t o  inves t iga te  whether Theorem 8 holds 

i f  t h e  word i n t e r i o r l y  rep laces  e x t e r i o r l y .  

NOTE: It has been pointed out  by one of t h e  r e f e r e e s  t h a t  - 
"Problem 3524 [ 1932, page 559 ] of the  A m e r i c a n  M a t h e m a t i c a l  M o n t h l y  

s t a t e s :  To t h e  v e r t i c e s  of an e q u i l a t e r a l  t r i a n g l e  ABC l e t  t h e r e  be 

hinged t h r e e  e q u i l a t e r a l  t r i a n g l e s  AKM, BNR, and CPQ of any s i z e s  and' 

pos i t ions ,  a l l  four  sensed counterclockwise. Then t h e  midpoints o f  the  

segments i n  t h e  t r i o  (RP,KQ,MN) form a counterclockwise e q u i l a t e r a l  

t r i a n g l e .  Counterclockwise e q u i l a t e r a l  t r i a n g l e s  a r e  a l s o  formed by t h e  



midpoints of segments in each of the trios (BQ, CN, RP), (KB, MN, RA) 
and (AP, K Q ,  CM). 

In Figure 8, triangle PQR has three equilateral triangles RAD, 

PCID' and QCB hinged to its vertices. Problem 3524 applies to this 

figure, so the midpoints of CD, AD', and CIB form an equilateral tri- 

angle. By symmetry, so also do the midpoints of C'D', AD, and CB.I1 

The-otem 9. The equilateral triangle formed by joining the rnid- 

points of the diagonals and the midpoint of side AB of equilic quad- 

rilateral ABCD and the equilateral triangle PQR of Theorem 7 are per- 

spect ive . 

FIGURE 9 

Proof. In the second proof of Theorem 7, we have shown that 

R̂P = - q, P& = -o) q,  and $& = - q. Now LM is parallel to and equal to 

one-half of BC; therefore & = - l /2q and LM is thus parallel to QR. 

Similarly, KM is parallel to and equal to one-half of DA. Therefore, 

iSf = -1/2 n>q and KM is thus parallel to RP. It follows that QP is paral- 

lel to LK, completing the proof of the perspectivity of triangles PQR 

and KLM. 
Surely, the reader can find additional properties of this prolific 

equilic quadrilateral. But we turn to a matter of perhaps greater sig- 

nificance. A most interesting procedure that leads to the discovery of 

new results and to simple proofs of known results is to allow a figure 

to degenerate to a familiar figure and to observe the properties as they 

transform after the degeneration. This will become clear, and the reader 

will be in a better position to appreciate the advantages of this method 

of discovery, after a few illustrations. 

EXamph 1 .  Let equilic quadrilateral ABCD degenerate into a 

30Â° 60Â° 900 right triangle where angle BCD = 180' with C the midpoint 

of the hypotenuse, then the equilateral triangle erected interiorly on 

AB and that erected exteriorly on DC have the same vertex. 

Proof. The proof follows immediately from Theorem 3. See Figure 

10. 

FIGURE 10 

EXamp& 2.  Using the same degeneration and applying Theorem 2, 

we get diagonal AC = CD = 1/2BD. 



Exampie. 3. Using t h e  same degene ra t ion  and applying Theorem 7, 

we g e t  an  i n t e r e s t i n g  theorem about  a  30Â° 60Â° 90Â r i g h t  t r i a n g l e .  If 

e q u i l a t e r a l  t r i a n g l e s  a r e  e r e c t e d  on AC, B D ,  and AB i n  t h e  d i r e c t i o n s  a s  

i n  Theorem 7 ,  t hen  t h e i r  v e r t i c e s  a r e  t h e  v e r t i c e s  o f  an  e q u i l a t e r a l  tri- 

ang le .  

Exampie 4. Again wi th  t h e  same degenerat ion,  we o b t a i n  ano the r  

i n t e r e s t i n g  r e s u l t  about a  30Â° 600, 90Â r i g h t  t r i a n g l e  by applying 

Theorem 4.  The midpoint o f  t h e  hypotenuse,  t h e  midpoint o f  t h e  median 

t o  t h e  hypotenuse and t h e  midpoint of  t h e  s i d e  oppos i t e  t h e  60Â ang le  

a r e  t h e  v e r t i c e s  o f  an e q u i l a t e r a l  t r i a n g l e .  

Other degene ra t ions  can be made wi th  i n t e r e s t i n g  consequences.  

Thus, i f  we a l low e q u i l i c  q u a d r i l a t e r a l  ABCD t o  degene ra t e  s o  t h a t  ang le  

ABC = 0Â° a s  i n  Figure  11, some novel  theorems emerge. 

FIGURE 11 

Exampie 5. The l i n e s  j o i n i n g  t h e  midpoints  o f  ACand DB wi th  t h e  

midpoint o f  e i t h e r  AS o r  CD form an  e q u i l a t e r a l  t r i a n g l e .  The proof f o l -  

lows from Theorem 4. See Figure  1 1 A .  

FIGURE 11A 

Furthermore,  a s  in  "igure 12 ,  we can degenerate  ou r  f i g u r e  i n t o  

a  nega t ive  e q u i l i c  i u a d r i l a t e r a l  and cons ide r  t h e  p r o p e r t i e s  o f  t h i s  

f i g u r e .  

L 

FIGURE 12 

I t  should  be noted t h a t  t h e  ang le  a t  5 is nega t ive  i n  t h i s  c a s e  

F i n a l l y ,  we can cons ide r  t h e  e q u i l a t e r a l  t r i a n g l e  i t s e l f  a s  a  degenerate  

e q u i l i c  q u a d r i l a t e r a l ,  w i th  DC = 0. Again, app ly ing  t h e  p r o p e r t i e s  o f  

t h e  e q u i l i c  q u a d r i l a t e r a l ,  some well-known f a c t s  about  t h e  e q u i l a t e r a l  

t r i a n g l e  pop ou t  wi thout  e f f o r t .  

We hope t h a t  we have convinced t h e  r e a d e r  t h a t  t h e  e q u i l i c  quad- 

r i l a t e r a l  dese rves  a  p l a c e  a longs ide  t h e  well-known q u a d r i l a t e r a l s .  
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8he-nda Jean Knowtu ffon Wah Tom 

Lynn hide Ramiiey 

G E O R G I A  GAMMA (ARMSTRONG S T A T E  COLLEGE)  The heard t h e  following 

papers a t  regu la r  meetings: 

D l .  N&the^ton, Mm&tn.ong State.; "An Algorithm for Computer Science 
Problem Solving" 

Stephan such owe^, Alms&ong State.; "In Pursuit of a Prime Number 
Generator" 

V h .  CWu ShipLeg, W t o w n g  State.; "Paradoxes In and Around 
Mathematics " 

- - 
Andrew Zeigim, h f y i o n g  Sta-te; "Contract Programming" 

S t ~ h  S u c h o w ,  AlmstAong State; "Theory of Superconducting 
Magnets" 

PA. R ^ c M  Smerv- t^e ,  C W o p h e r  Newport CoVLege.; "The Mathe- 
matical Contextn 

The award f o r  The Outstanding Senior i n  Mathematics was given t o  S-tephan 

I L L I N O I S  Z E T A  (SOUTHERN I L L I N O I S  UNIVERSITY- EDWARDSVILLE) The 

Chapter sponsored t h e  Regional I l l i n o i s  Council of  Teachers of  Mathematics 

High School Competition. They a l s o  organized a used mathematics textbook 

s a l e  f o r  t h e  un ivers i ty  with many of  t h e  books donated t o  area high schools. 

IOWA A L P H A  ( IOWA S T A T E  U N I V E R S I T Y )  A c t i v i t i e s  included t h e  following 

t a l k s  : 

PA.0 f! . 
Pho 6. 
Phof!. 

Joyce 

Pmf!. 

JVioLd Mathub, Ioukz State.; "Ancient Mathematical Models" 

Jmu CohneAte., Ioukz State; "PoZyÂ¥nomi,a Approximation" 

R^chmd SpULgue., Iowa. State.; "Construction of Regular Polygons" 

Schneider, Hone.ywe^Â£ "The Uses of Mathematics i n  Industry" 

JcImCA C d o n ,  hh. 04 kk7.h; IrPrime Numbers and C0de8" 

Departmental awards were presented a s  follows: 

Outstanding Achievement on the Putnam Exam: W-iJULuvm Somiky 
Pi  Mu Epsilon Scholarships: John Kim, S u h n  UauLun 

Dio Lewis Hol l  Award: Lee. RobeA-tA 

Gertrude Herr Adamson Awards f o r  demonstrated ingenuity i n  Mathe- 
matics: 

Rebecca. Po-fcta BoAbo~a. Ru& 
Wwucw somikg P W p  McJCcn̂ eg 
Steven Seda GOJW McGAoiti 
Gkego>m Andmon Wade. Johnbon 

L O U I S A N N A  D E L T A  (SOUTHEASTERN L O U I S A N N A  U N I V E R S I T Y )  During t h e  

p a s t  year  t h e  Chapter heard t h e  following presentat ions:  

Vh. %t&j Joe. HoJbnu, ^itchoth State; "PERTn 

V d e  Nabber, Sowthea.6teh.n Louhanna; "The Effects o f  Projecting 
Two Mutually Perpendicular Simple Periodic Motions on a ~ c p e i n ~ ~  

In  addi t ion,  t h e  following awards were presented: 

Thomas K. Maddox Pi  Mu Epsilon Award: k n c y  G a u t i e r ,  Fhe.deA .̂ck Vag 
Margo David Award: Jafu. A. McGee 



MINNESOTA DELTA ( S T .  JOHN'S COLLEGE) The Chapter sponsored the 

Mathematics and Humanities Conference on April 30 and May 1. The Confer- 

ence had guest lecturers: SctottAchneMlia, Leo& GWt'ma.n and 

V 0 d d  K0ehf.e~ plus papers by undergraduate students. 

MISSOURI  GAMMA CST. LOUIS UNIVERSITY ,  FONTBONNE COLLEGE, AND 

MARYVI LLE COLLEGE) The Chapter had an active year with papers and 

presentations as follows: 

S - i & t ~ i  H W i t  Ann Padbag, M m N e  CoUege; "A Mathematical Model: 
An Historic Note2 The James E. Case S.J. Memorial Lecture 

P l a f , .  Rob& Hogg, Univ. 0 6  10~x1; "Size of Loss Distribution" and 
rfStatistics,  Acturial Science and the Futuren 

SuAan BUAHA, Cdveh-Stockton CoUege; "A Mathematical Look a t  Tonality" 

Robert Ghegohy, SlU-Ca~.bondaX.e; "A Look a t  Solving Differential 
Equations Using a Seperation of Variables Techniquerf 

kha.eJt. May S.  J . ,  S t .  LOLLLA Un-iv; "Some Sums of Sums and the Calculus 
o f  Finite Differences" 

Steven Lazo~cchak, SlU-CrnbondaJLe; frSinusodial Steady-State Analysis 
o f  Electrical Circuits Using the Phasor Concept" 

Fkeny V u  M, SlU-Ccuibondde; "Program Verification" 

Ba>w.ey Smith., S t .  Lo& U n i v ~ ~ ~ L t y ;  "Magic Cards, Squares and Cubes" 

Picuanna B&kawta&ct, S1U-CombondaJLe; "MicroprogrconntLng " 
WLchait May, S. J . ,  S t .  Lo& Univw>ity; "Sotions o f  Infinity" 

Jagchh Singh, SlU-Ci~ibondaJLe; " B i t  Slices i n  M i c r o p r o g d n g u  

The Chapter's award presentation list is quite extensive and includes: 

NEW 

James W. Garneau Mathematics Award: Thomas BhckweUC. 

Francis Regan Scholarship: M-cchaeif. May, S.J. 
Missouri  Gamma Undergraduate Award: Jeanne V U e  
Missouri  Gamma Graduate Award: Mrnk Hopf,iLnga 
The P i  Mu Epsilon Contests: Senior Winner: Van-ieJL ICL/w.a 

Junior Winner: J ~ & A  Shamu,~ 
John J. Andrews Graduate Serv ice Award: K a m  Ryan 

Beradino Family F ra te rn i  tyship Award: WLchasJS. May, S. J. 

JERSEY DELTA (SETON HALL U N I V E R S I T Y )  The Chapter held two 

meetings which were problem solving sessions conducted by John Saccontan. 

NEW YORK EPSILON (ST .  LAWRENCE UNIVERSITY)  The Chapter sponsored 

the 37th annual Pi  MU Epsi 1 On Interscholastic Mathematics Contest. The 
Chapter made the following award: 

The 0. Kenneth Bates Award: VeÃˆnA MaA-fcuiez 

NEW YORK ALPHA ALPHA (QUEENS COLLEGE OF CUNY) The following 

talks were presented: 

Vh. Joel StmpLe,  queen^ CoUege; "The Four Color Problem" 

Steven Kahan, 2 u e . e ~ ~  CoUe-ge; f'Alphcans t i c s  : Letters Where the- Sumbers 
Ought t o  Be". 

The P i  Mu Epsilon P r i z e  fo r  Excellence i n  Mathematics and Service was 

won by JoeÂ Kn-e^tzui and Wendy C m e J L .  

OHIO NU (UNIVERSITY  OF AKRON) The Chapter awarded a prize to 

KendaU. Cmey for Excel 1 ence i n  Mathematics. 

OKLAHOMA GAMMA (CAMERON UN IVERS I TY) Amoung their many activities 

the Chapter heard the following paper: 

Vh. U ^ t i a s n  Ray, UvuMULA-Lty of, Oklahoma; "Discrete Predator-Prey 
Problems". 

PENNSYLVANIA NU. Amoung the various talks presented were the following: 

JW t ddon;  "Iteration Techniques " 
V/i. John Lane; "Number Density" 

SOUTH CAROLINA GAMMA (COLLEGE OF CHARLESTON) Chapter members 

are very involved on the college campus and in the surrounding communities. 

Some of the members are currently involved in a Junior high school project 

where they teach sixth, seventh and eighth graders how to use computers. 

One of the members is helping to prepare packedts for Computer Assisted 

Instruction in Mathematics. Several members do volunteer tutoring for 

the Charleston County PATHE program. The Chapter sponsored the 4th 

Annual Math Meet with over 600 high school students participating. 

SOUTH DAKOTA BETA (SOUTH DAKOTA SCHOOL OF MINES AND TECHNOLOGY) 

The Chapter constructed a What Math Do I Take brouchure for distribution 

to state high schools. The following papers were presented: 

P J L O ~ .  Raga Opp, SVSMST; "A Classification of Projectile Paths " 
Pwf.  Vavd  B&w, SVSMST; "Employment Opportunitiesu 

Ph06. AÂ G h ,  SVSMST; "The Cubic Equation" 

Vh. F m n d  Flohey, Univ. o (S Whcona-ui-SupeA-co~c; "Generalized Inner 
Products With Applications ot  Fourier Series" 

Jan& Pofcts,, SVSMST; "~obot ics  " 
Peon Mogck, SVSMST; "An Application of Game Theow i n  Taking ~ e s t s "  

Leon Ne^on, SVSMST; "On Trisecting the Angle" 

G a y  Hictvtd, SVSMST; ffParcanetric Methods i n  Computer Graphics" 



W i a n  B w n u ~ ,  SUSM6T: "Analyticity and Taylor's Series" 

CoUc0.n QiwUvi, SDSMST; "The Evolution o f  Computer Languages" 

The Chapter sponsored t h e  Annual West River Mathematics Contest f o r  High 

School Students, and i n i t i a t e d  t h e  South Dakota Collegiate  Mathematics 

Contest won by Northern S t a t e  College. 

THE SUMMER MEETING OF PI MU EPSILON, 1981 

The following papers were presented a t  the S m r  Meeting i n  Pittsburgh: 

BeXh S n y d e ~ ,  Hianu. Uni .vo~&q;  Wztroduction t o  Box-Jenkins Time 
Series 

Dean Mogck, S .  D. School 06 Aitnu and Te.chnologq; "Stokes Theorem 
For Quaternion Integral Operators" 

Dean Shea., S t .  John'b U n i u ~ i - i t q ;  "A ~ o o k  a t  Formal Theory" 

EduWid 0 .  LOWnq, W u t v i n  Wtuh^ngton UnivWi- i ty ;  "An Approximation 
t o  the Normal Distribution" 

Bho. Long^nuA Anqawu, Mokgan State .  Univr~~&L2y;  "The Gamma Function 
and Extensions" 

Ravi  SaJta-LO., LOYO& UnivWi- i tq;  "Dirichlet Integrals and Their 
App lications " 

B d a n  Swnnm, UnivUL&^q 06  Denua ;  "ironsformation o f  Computer 
Programs into  Functions" 

Rob& kah, E04.t CaAofina U f u . v i ~ d q ;  "A Complex Parabola i n  Four 
Dimensions 

MoAguhe-t R. WaUcLc&, Mihn i  UnivWi-Lty;  "Using the Method o f  M & m  
Likelihood Estimation i n  Genetics" 

Kevin Sag&, Pomona CoUige ;  "Rublets Magic Cube" 

Jamu F. GO&&, S . J . ,  Sk. LO(& Un^ueAA^Cy; "Descartes: Philosopher 
or Mathematician?" 

Dean FoUuia.nn, N o v t h w i  I U n o - t A  U n i v ~ ~ - L t q ;  "A Non-Pamtric  
Multiple Comparison Test for Differences i n  Variances" 

S/iMin BiuiAnub, S .  D. School 06 M i n u  and Technobgq; "The Relations 
of Differentiable Functions and the Fewer Seriesn 

Donna 1 .  Fofid, U n i v e u L t q ;  "Mazes and Their Passage" 

Emu Kobmab, Oklahoma S t a t e  U n i v ~ i i A g ;  "Mathematical Analysis of 
Inflation" 

The J. Sutherland Frame Lecture 

Pho6u&oh &. P. M^Â£&a Jh., FLoiuda. State. Un.iveM^q; "The Beauties 
o fk themat ics  Revealed i n  Color Block Graphs" 

P U Z Z L E  S E C T I O N  

EcLcted by 

David Batteui 

This Department i s  for the enjoyment of those readers who are addicted 
t o  working crossword puzzles or who find an occasional mathematical puzzle 
attractive. We consider mathematical puzzles to  be problems whos solutions 
consist of answers imediately recognizable as correct by simple observation 
and requiring l i t f i l e  formal proof. Material submitted and not used here 
will be sent to the Problems Editor i f  deemed appropriate for that Depart- 
merit. 

Address a l l  proposed puzzles and puzzle solutions t o  David Ballew, 
Editor of the Pi Mu Epsilon Journal, Department of Mathematical Sciences, 
South Dakota School of Mines and Technology, Rapid C i t y ,  South Dakota, 
57701. Deadlines for puzzles appearing i n  the Fall issue w i l l  be the 
next February 15, and pussies appearing i n  the Spring issue w i l l  be due 
the next September IS .  

Mathacrostic No. 13 

bubnuAted bq Jo~e-ph D. E .  Konhouvi  

M a d e b t e ~  Co&ge., S t .  Paul, M h u o t a .  

Like t h e  preceeding puzzles, t h i s  puzzle (on t h e  next page) is  a 

keyed anagram. The 248 l e t t e r s  t o  be entered i n  the  diagram i n  the  nurnber- 

ed spaces w i l l  be i d e n t i c a l  with those i n  t h e  29 keyed words a t  matching 

numbers, and t h e  key l e t t e r s  have been entered i n  the  diagram t o  a s s i s t  

i n  construct ing your so lu t ion .  When completed, t h e  i n i t i a l  l e t t e r s  w i l l  

give a famous author  and t h e  t i t l e  of h i s  book; t h e  diagram w i l l  be a 

quotation from t h a t  book. (See an example so lu t ion  i n  t h e  so lu t ions  

sec t ion  of t h i s  Department.) 

Cross Word Puzzle 

~ubn6.tte.d by M.e.w.ndm MeJiA<<e~j Jh. and CuAA O h o n  

The U n i v e ~ ~ ^ C y  06 South Dakota. 

This crossword puzzle ( t h r e e  pages forward) is a s tandard crossword 

puzzle with a mathematical f l a v o r .  



oefinitions Words 

A. a ball-and-socket joint ----------- 
104 18 51 211 155 87 36 72 129 222 190 

B. a redundant account ------ 
41 23 179 205 9 100 

C. analysis which admits infinitely 
small quantities (comp.) 206 46 20 227 86 95 149 177 217 105 116 

D. S. European climbing plant bearing 
fragrant flowers (2 wds.) 186 153 43 99 90 237 221 38 

E. "The laws of nature are but the 
mathematical - of God. " 184 220 19 130 150 37 158 102 
Kepler 

F. spiral with polar coordinate ------------- 
equation a = rcos3 (8/3) 15 174 108 156 71 147 196 54 233 118 164 48 246 

G. providing aid or direction in the 
solution of a problem 98 231 151 2 42 74 127 183 208 

H. Cauchy's single-limit analysis 
110 193 226 139 167 17 85 79 212 59 244 

I. a number greater than half of a 
total 160 114 145 225 76 5 21 214 

J. creative power (2 wds.) ---------- 
210 94 3 134 144 32 203 173 189 62 

K. heating element (plug) in a ---- 
Diesel engine 202 194 143 182 

L. "All human knowledge thus begins 
with ," Kant, critique of 55 172 117 73 16 218 123 140 65 163 
Pure Reason (followed by Z and b) 

M. one of Thorn's seven elementary 
catastrophes 12 191 236 103 

N. Cantor discard (2 wds.1 ----------- 
223 125 44 83 135 248 178 91 66 70 30 

0. specialist in diagnosis and treat- 
ment of non-surgical diseases 228 67 45 13 119 176 157 80 113 

P. systematic or random repetition 
47 92 14 230 165 142 175 215 63 201 29 

Q. polygon divisible into congruent 
ones similar to it (comp.) 239 26 161 53 180 200 107 

R. perfectly simple (cap.) ----------- 
128 192 88 96 69 82 1 56 27 137 243 

S. manipulative puzzle rage of the 
1980's (2 wds.) 133 187 229 77 234 181 242 146 166 121 

T. contrary; antithetical ------- - 
84 224 61 162 39 8 124 235 

U. nonsense; something trivial ------------ 
(COB~.) 106 159 122 97 52 31 240 81 10 207 136 197 

V. "father" of descriptive geometry 
(1746-1818) 232 64 25 7 245 

W .  truncate ---- 
188 216 24 131 

X. its ears are its radiators - - - - - - - - 
132 209 58 75 34 28 126 169 

Y. in De Thiende (15851, he intro- 
duced decimal fractions for gen- 198 40 241 68 112 6 
era1 purposes (1548-1620) 

2 .  "proceeds thence to ," - - - - - - - - 
(follows L, followed by b) 204 89 141 33 238 152 109 199 

a. Danish poet, designer, inventor 
of Hex and Soma Cube, b. 1905 170 60 148 120 

b. "and ' (follows Z, 3 wds.1 
50 78 111 138 4 154 213 185 171 57 35 101 247 

c. carrying back ------- - 
93 195 49 11 22 168 115 219 



Across 

1. c/d 
2. Symbol for the population mean 
4. Used i n  calcuZus proofs 
9. Killed i n  a duel ( i n i t i a l s )  

10. XXIV hours 
11. $2 - Y 
14. Unit o f  length 
16. One element of a se t  
17. Possible nickname for a popular 

CalcuZus book. 
18. Above x indicates a simple mean 

19. x2 + y2 + z2 = a2 
22. Greek Letter 
24. Doughnut 
27. Vertex 
28. Irrational number (archaic) 

In i t ia l s  o f  12 down i n  phone book. 
flomegian mathematician 
Sometimes cast out 
Eleven across goes over t h i s  

(without vowe 2 )  
Professional Organization (ab) 
Cantor Is concept 
Has minima2 area amoung the 50. (ab) 
Gauss' f i r s t  name 
Three i n  cards 
Moebius s t r ip  has but one 
Connective 

44. x d y = y d x  (ab) 
45. Perfect score 
47. Student's distÂ¥pi.butio 
48. The "Slasherrr 

Down - 
1. Conic Section 25. Multiplicative Identity 
2. Operation i n  Lattice Theory 26. First  perfect number 
3. Calculus i s  taken by the (ab) 27. Bops number * 

4 .  Every journal needs one (ah) 31. A c r i t i ca l  edge of a graph' - 
5. The 1981 Meeting was i n  t h i s  34. Ph. D. -1 

state fab) 35. m j e c t i v e  geometry received 
6. This puzzle has l i t t l e  of t h i s  impetus from t h i s  area 
7. A mathematician wrote t h i s  t o  36. Fourth year o f  college (ab) 

communicate results  t o  others 37. Type of engineer (ab) 
before j o m a l s  38. A step then a Cab) 

8. Product of a complex number and 39. Ell iptical orbits  (possible 
i t s  conjugate nickname for proponent) 

12. Isaac Newton was called t h i s  40. Connected graph with no cycles 
13. Mathematician's Organization 42. Not even 
15. Transposition of breakfast 43. Number to  Pythagorean 

cook's order (ab) 45. First "female" number 
20. Man of triangle fame 46. One t o  a c ircui t  
21. U n i t  of length 
22. Published f i r s t  non-Euclidean 

geometry ( i n i t i a l s )  
23. Positive direction of y-axis 

SOLUTIONS 

Mcuthac~ohtic No. 1 2 .  (See Spring 1981 i ssue)  [Phopohed by  J . U . E .  Konda.iz~e~.l 

Defini t ions and Key: 

A. Left bower H. Student 0. Raw da ta  V .  Entwine 
B. Algorithm I. Paving P. One two th ree  W .  Arbelos 
C. Not i n  your eyes J. A t  t h e  bath Q. Ululant X. Grapevine 
D. Catastrophes K. C l i f fo rd  R. Gnomon Y .  Ephemeris 
E. Zermelo L. Ether S. Half h i t c h  Z. Swineshead 
F. Octahedron M .  Two handles T. Troytown 
G. Stone N. Hyades U.  Human mind 

F i r s t  Le t te r s :  Lanczos Space Through The Ages 

Quotation: The obhe~.va-fct.oii~ aAe t h e  pIUMVLy t h i n g .  Then eome-6 the. 

theohg.  W e  w o d d  he have g u u e d  that a {,w q e o ~ ~   tote^ he lum&e^.{i 

would be  P-toto'h abt/wnomeA who gazed down AO-theh than  up and b y  con- 
t empta t ion  {,ound t h e  h a  m e a n i n g  06 Nemton'h Law and -ctA c o m e c t i o n .  

Solved by:  Jeane t te  B i  ckl ey , Webster Groves High School, Missouri ; Louis 

H. Cairo1 7 ,  Kansas S t a t e  University; Victor G. Feser, Mary College, Bismark; 

Robert Forsberg, Lexington, Mass.; Robert C. Gebhardt, Hapatcong, N J ;  
* 

Roger E. Kuehl, Kansas City,  no; Henry S. Leibennan, John Hancock Mutual 

Life  Ins .  CO.; Robert Pr ie l ipp ,  Univ. of Wisc. a t  oshkosh; S i s t e r  

Stephanie Sl oyan, Georgian Court College; t h e  Proposer and t h e  Editor.  



&obb Number Puzz leb:  (See Spring 1981 Issue) (Phopobed b y  Mahk U a a k l  

Soived  by:  Dan Essig, Houstion, Texas; Victor G. Feser, Mary College, 
Bismark; Martha Hasting, St .  Louis University; Murray Katz, Penn State 
University; Roger Kuehl, Kansas City, MO; The Proposer and the Editor. PROBLEM DEPARTMENT 

Edited b y  Clayton W. Dodge 
uwiMuuiLty 06 Maine 

and 
Leon 8anko6d 

LOA A n g e h ,  CaLi.60~vuLo. 

This department welcomes problems believed t o  be new and a t  a 

level appropriate for the readers of t h i s  journal. O l d  problems dis- 

playing novel and elegant methods of solution are also acceptable. The 

choice of proposals for publication w i l l  be based on the editor's  evalu- 

ation of their  anticipated reader response and also on their  in tr ins ic  

interests.  Proposals should be accompanied by solutions i f  available 

and by any information that will ass i s t  the editor. Challenging con- 

jectures and problem proposals not accompanied by solutions will be 

designated by an asterisk f*). 

Problem proposals offered for publication should be sent t o  D r .  

Lean Bankoff, 6360 Wilshire Boulevard, Los AngeZes, California 90048. 

To faci l i ta te  consideration of solutions for publication, solvers 

should submit each solution on separate sheets (one side only) properly 

identi f ied with name and address and mailed before July 1, 1982 t o  

Ckyton W. Dodge, Mathematics Department, University of Maine, Orvno, 

Maine 04469. 

Contributors desiring acknowledgment of their  proposals and solu- 

tions are requested t o  enclose a stamped and self-addressed postcard or, 

for those outside the U.S.A., an unstamped card or mailing label. 

Problems For Solution 

498. Phopobed by  R .  S .  Luthan., Utu.uuui.cty 06 WtAconbin, Janebu-tZte. 

Find the general solution of 
4 

2 + y3 + 3xy = 1. 

499. Pkopobed b y  Vision. G .  F e b e ~ ,  Maty Cor t ege ,  Rcimahck, No-ith 
Dakota.. 



The a r ray  below is defined by t h e  following propert ies:  

i )  The e n t r i e s  a r e  d i s t i n c t  pos i t ive  in tegers .  

i i) In each column, t h e  e n t r i e s  a r e  consecutive in tegers ,  top  t o  

bottom. 

ill) In each row, each in teger  (except the  f i r s t  one, of course)  

is  a  mult iplc  of the  in teger  a t  i t s  l e f t .  

1 7 511 

2 8 512 

3 9 513 

a )  Find a  four th  column f o r  t h i s  a r r a y  

b)  Find t h e  minimal four th  column f o r  t h i s  a r ray ,  and show 

i t  is  minimal. 

c )  Construct an a r ray  of 4 rows and 4 columns with the same 

proper t ies .  I s  it minimal? 

500. Pnopobed by Chuck Aiti&on and P d e n  Chu, Sun P d w ,  
CcLti60nfUa. 

A condemned prisoner  i s  given a  chance t o  escape execution. He i s  
given two boxes capable of holding s ix teen  b o t t l e s  each, and is  required 

t o  place e i g h t  b o t t l e s  of water and e i g h t  b o t t l e s  of c l e a r  poison i n  

those boxes leaving no box empty. He w i l l  then summon the  guard who 

w i l l  then pick one box a t  random and then s e l e c t  a  b o t t l e  from t h a t  box 

which t h e  pr isoner  must dr ink.  How should t h e  pr isoner  arrange the  

b o t t l e s  i n  the  two boxes t o  maximize h i s  p robabi l i ty  of surv iva l ,  and 

what i s  t h a t  p robabi l i ty?  

501. Phopobe.d by Rob& C .  Gebhmd-t, Pauippany, Nw J m e y .  
A rectangle is inscr ibed ins ide  a  c i r c l e .  The a rea  of the  c i r c l e  

i s  twice t h e  a rea  of t h e  rectangle.  What a r e  t h e  proportions of the  

rectangle? 

502. Pkopobed by Rob& C. GebhaAxU, Pamippany, M e n )  J m e y .  

Consider 

and 

f o r  k  = I, 

Complete t h e  equations 

k k k k  2 + 2  + 2  + 2  = ?  f o r  k  = 1,2,3, 

and ? = r> f o r  k = 1,2,3,4, 

where t h e  l e f t  s ide  is  a funct ion of 2k only, and t h e  r i g h t  s i d e  i s  a  
k k 

funct ion of 1 and 3 only. 

503. Pnopobed by Gmgoq Wutkzyn, VucknnU. Uvu.u&~U.y, Lw^&bu&~, 

Pumu ytvaruxi. 2 2 22 

Find t h e  equation of the  e l l i p s o i d  5 + 2 + 3 = 1 with minimum 
a c 

volume which s h a l l  pass through t h e  point  p ( r , s , t } ,  0 < r  <a, 0 < s < b ,  

o < t < c .  

504. Pxopobed by Ch0Jd.e.~ W. T G g ,  San Viego,  Cati(iofin.&. 

In  t h e  square a r r a y  of t h e  nine non-zero d i g i t s  

the  sum of t h e  d i g i t s  i n  each 2-by-2 corner a r r a y  is  16. Find another 

arrangement of t h e  nine d i g i t s  i n  which t h e  sum of t h e  d i g i t s  i n  each 

corner  a r r a y  is five times t h e  c e n t r a l  d i g i t .  

505. Pnopmd by John M .  Howeti, IMXtvi.ock, CaLL&oimM.. 

A baseba l l  team has a l l  . 3 0 0 h i t t e r s .  They never s t e a l  a  base, 

ge t  picked of f  base or  h i t  i n t o  a  double play. And men on base advance 

only one base when t h e r e  i s  a  h i t .  

a )  What i s  t h e  probabi l i ty  of t h i s  team g e t t i n g  one or  more runs 

i n  an inning? 

b )  What i s  t h e  expected number of runs scored by t h i s  team per  

inning ? 

506. Ptopo^ed by M o d  K o t z ,  Mawahoc, Maine. 

"The addi t ion  cryptarithm I N  + THE = MOOD is not  d i f f i c u l t ,  but  

t h e  so lu t ion  cannot be unique because N and E can be interchanged, and 

s o  can I and H . "  

"Even tak ing  account of those interchanges," h i s  f r i e n d  r e p l i e d ,  

" there a r e  s t i l l  many d i f f e r e n t  so lu t ions . "  

"That is so," agreed t h e  first, "but l e t  me t e l l  you t h e  value of 

one of those four  l e t t e r s .  " 
I could not hear t h e  l e t t e r  and t h e  value he whispered t o  h i s  

colleague, but the  rep ly  was q u i t e  c l e a r .  "Ah, now t h e  so lu t ion  is 

unique except,  of course, f o r  t h e  interchange of t h e  two l e t t e r s  of t h e  

o ther  p a i r ,  and it uses every d i g i t  t h a t  is  an odd prime, too." 



507. P'iopobed by  H e h b w t  R. ZaJULey, Robe. Poiyte.c(un.c 1n4AtAite., 
Twie .  Haute., Indiana. 

A u n i t  square i s  t o  be covered by t h r e e  c i r c l e s  of equal  radius.  

Find t h e  minimum necessary radius.  

508. P'iopobed by &uce ttf. King,  BwLK* H U ,  N e u )  Y o ~ k .  

When Professor Umbugio asked h i s  ca lcu lus  c l a s s  t o  f i n d  t h e  deriv-  

a t i v e  of g2 with respec t  t o  x2 f o r  t h e  funct ion y = z2 - x, h i s  nephew 

Socrates Umbugio found -f^ and obtained t h e  cor rec t  answer. Help x 
t h e  professor  t o  enl ighten h i s  nephew about taking der iva t ives .  

509. P'iopobed by Jack Gc~.&nkeJL, 2 u e . e ~  CoUege., N e w  Yo'ik. 
Given a t r i a n g l e  ABC with i ts i n c i r c l e  I, touching t h e  s i d e s  of 

t h e  t r i a n g l e  a t  points  L,M,A7. Let P, Q, R be t h e  midpoints of a r c s  NL, 

LM, and AfiV respec t ive ly .  Form t r i a n g l e  DEF by drawing tangents  t o  t h e  

c i r c l e  a t  P, Q, and R. Prove t h a t  t h e  perimeter of t r i a n g l e  DEFSperi- 

meter of  t r i a n g l e  A N .  

Solutions 

462. [Spring 1980; Spring 19811 Phopobed by the. -tote R. Robin4on 
Rome.. 

A p i l o t  down a t  Avil le  asked a na t ive  how far it was t o  Btown and 

was t o l d ,  "It's south 1500 miles, then e a s t  1000 miles, o r  e a s t  500 miles  

and south 1500 miles." How f a r  w a s  it d i r e c t l y ?  

Comment by Jimny Griffith, CharZotte, North CaroZi.na. 

Once we know a,  0, and y, we may f i n d  a at once by 

cos c = cos(-S. - B IcosC-2- - y ) t sin($ - 6 )sin($ - y 1 cos a 2 2 

= s i n  B s i n  y t cos B cos  y cos a ,  

s o  t h e  r e s t  of  t h e  fea tured  s o l u t i o n  on pages 268-269 seems unnecessary. 

Late so lu t ions  were received from MIKE CALL and GEORGE W. RAINEY, 

JR, 

474. [Fa l l  19801 Phopabed by  S c o t t  ICun, fwti.&iCAJOl InteJtUQence 

Labowto/w, Stan<ohd 

Knotted path: 

Your t a s k  is t o  f i n d  

t o  t h e  o r i g i n a l  c e l l  

uyu-uwi^ty. 
Consider a 2 by 3 by 7 block o f  u n i t  cub ica l  c e l l s .  

a path moving from c e l l  t o  adjacent  c e l l ,  r e tu rn ing  

s o  t h a t  t h e  path t raced is  a 3-dimensional knot. 

Each c e l l  must be v i s i t e d  exac t ly  once; two c e l l s  a r e  adjacent  only i f  

they share a face.  

So&xAcon by the. PROPOSER. 
Number t h e  elements on t h e  lower l e v e l  f i r s t  row 1 t o  7, second 

row 8 t o  14, and t h i r d  row 15 t o  21. To each of these  element numbers 

add 21 t o  get  t h e  corresponding element i n  t h e  upper l eve l .  A path 

then is  

1- 8-29-36-15-16-17-10-31-32-33-40- 

19-20-21-14- 7- 6- 5- 4- 3- 2- 9-37-38- 

39-18-11-12-13-34-41-42-35-28-27-26- 

25-24-23-22- 1. 

See Figure 1. 

Figure 1. 

475. [Fa l l  19801 P'iopobed by ZeMi K o t z ,  8e.vUiJLy H i t U ,  

Cafcc60/uuA. 
In  t h e  accompanying diagram DC i s  t h e  rad ius  perpendicular t o  t h e  

diameter AB of  t h e  semicircle  ADB ; FG is  a half-chord p a r a l l e l  t o  DC; 

AF c u t s  DC i n  E. Show t h a t  t h e  s i d e s  of t h e  t r i a n g l e  FCG a r e  in tegers  

i f  and only i f  DE/EC o r  its rec iproca l  i s  an in teger .  

It is 

s i d e s  

Comment by Morrk Kats, Mawdhoo, Maine. 

easy t o  show t h a t ,  i f  DE/EC is r a t i o n a l ,  then t r i a n g l e  FCG has 

proport ional  t o  a Pythagorean t r i a n g l e ,  and conversely, i f  t r i a n g l e  



I 
Let CG 

Then we have 

orean, then DE/EC is  r a t i o n a l .  

= a , G F =  b,CF=CA=CD= r , C E = x , E D =  y , A E = u ,  andEF= v .  

from s i m i l a r  t r i a n g l e s  AEC and AFG. Then 

so  DE/EC is r a t i o n a l  when a ,  b ,  and r a r e  i n t e g r a l ,  e s tab l i sh ing  the  

converse. I f  DE/EC = p/q i s  r a t i o n a l ,  with p even, take m = q + p/2 and 
2 2 2 n = p/2 and l e t  a '  = 2tm, b '  = m - n , and P' = m2 + n . Then we have 

+ a t  - b t -  m2 t n2 + 2mn - m
2 

+ n - 2 n - p  
b t  m2  - n2 m - n  q y  

but t h i s  Pythagorean t r i a n g l e  with s i d e s  a', b ' ,  and r' i s  s i m i l a r  t o  

t r i a n g l e  CFG. 

It i s  easy t o  f i n d  counterexamples showing t h a t  the  s t a t e d  theorem 

is q u i t e  f a l s e .  

Counterexamples were submitted by RICHARD A. GIBBS, BOB PRIEL IPP ,  

and ROBERT A. STUMP. 

E d i t o r ' s  comient. When confronted with her  mistake, the  proposer 

pwred  t h a t  "after a l l ,  r a t i o n a l  and i n t e g r a l  a r e  almost the same thing." 

Such pussy-footing evades t h e  problem, but  Zelda is a regula r  con t r ibu tor  

of high qual i ty ,  s o  t h i s  is no catastrophe.  

477. [ F a l l  1 9 8 0 1  Pftopo.~ed by Solomon W .  Gotomb, Univ&u^ty 06 

Southem Cati<!oftnia. 

In  t h e  eleventh row of  Pasca l ' s  Triangle,  t h e  first f i v e  terms 

(1, 11, 55, 165, 330) have t h e  property t h a t  each is an i n t e g r a l  i iu l t i -  

p ie  of i ts predecessor. Is t h e r e  a row of Pascal 's  t r i a n g l e  where there  

a r e  eleven consecutive terms with t h i s  property? 

Ebie.wUmJULy U m i i c m  hoÂ£i^ tcon W V L ~  &ecSA.vtLd 6hom JEANETTE B ICKLEY, St. 

LoUAJtt, W o u i u . ,  MARK EVANS, LoUAJttvWLe, Kewtu.cky, ROBERT C.  GEBHARDT, 

Hopatcong, New S m e y ,  W. C .  IG IPS ,  Vanbmy, ConneuXcut.  KRISHNAMOORTHY, 

Tftoy, New Yoftk, ROGER E .  KUEHL, K a r e ~ o ~  C i t y ,  AUhouA-t, HENRY S. LIEBER- 
MAN, Boh-ton, M u ~ h a c h u ~ e t t A ,  BOB PRIEL IPP ,  Unive~~JuLy  06 Whcon.4-t.n-Ohhko~h, 

SAHIB S INGH, Ctcuuxin S t a t e  CoUege, Penne, y i v a k ,  ROBERT A. STUMP, Hope- 

w e l l ,  V-(Ag-LvU,a, KENNETH M .  WILKE, Topeka, K a r e ~ o ~ ,  and t h e  PROPOSER. 

Since 2520 is the  smallest  number d i v i s i b l e  by each of 2 through 

10 ,  the  2519th r o w  is t h e  f i r s t  such row. Any row numbered 2520k - 1, 

k a p o s i t i v e  in teger .  has t h i s  property. For k = 1, these e l e m e n t s a r e  .. .- 
" .- - 

2518 2517 2518 , 2519 . - - 1, 2519, 2519 - - 2 2 3 ' * * .  

478 .  [ F a l l  1 9 8 0 1  Phopoheri by C h d u  W .  T-Ugg, Sun V-<,ego, 

CaJbHoftnLa. 

PIGS = ROOT + ROOT + ROOT, 

but  can only d ig  up a s i n g l e  so lu t ion  when each d i f f e r e n t  l e t t e r  repre-  

s e n t s  a d i s t i n c t  d i g i t ,  and PIGS contains  th ree  consective odd d i g i t s .  

What is  the  unique represen ta t ion  of t h e  addi t ion? 

S o i a t i o n  by Kennnth hi. W-Like, Topeka, Kanhu.5. 

Clearly n e i t h e r  T nor S can be 5 o r  0 ,  and R = 1, 2, o r  3 .  Taking 

t h e  statement t h a t  PIGS contains  t h r e e  consecutive odd i n t e g e r s  t r u e  i n  

both senses,  they must be (1 ,  3 ,  5) , (3 ,  5, 7 ) ,  (5 ,  7, 9 )  o r  t h e i r  r e -  

v e r s a l s ,  and t h e  remaining d i g i t  of PIGS must be 6 o r  9. Of the  1 6  

p o s s i b i l i t i e s ,  only PIGS = 6357 y ie lds  a so lu t ion :  ROOTS=2119. I f  a l l  

120 permutations of t h e  5 poss ib le  s e t s  of  numbers a r e  t e s t e d ,  again only 

t h e  s t a t e d  so lu t ion  survives.  

AÂ£A reived, by JEANETTE BICKLEY. DANIEL ESSIG, MARK EVANS, JACKIE  

E. FRITTS, ROBERT C. GEBHARDT, W.C. IG IPS ,  ROGER E. KUEHL, KRISHNAMOORTHY. 

BOB PRIELIPP,  TAGHI REZAY-GARACANI, SAHIB SINGH, DALE E. WATTS, and .the 

PROPOSER. 

4 7 9 .  [ F a l l  1 9 8 0 1  Pftopohed by He/i.be^-t T a y h h ,  South PoAadm,  

caLq0x.vu.a.. 

Prove t h a t  t h e  following statement is t r u e  whenever O < P  5 n ,  o r  

e l s e  f i n d  a counterexample: 

Given a 2n x n matrix of  0 ' s  and l ' s ,  with each column sum equal 

to 2r and each row sum equal t o  r, it is always possible  t o  mark 2n of 

t h e  1's i n  such a way t h a t  one 1 is marked i n  each row and two 1's a r e  

marked i n  each column. 

S o l u t i o n  by R o b w t  Hend~l&on, So& Pa.baduno., CaJLi<oftWiO.. 

Let B = [ A ~ A ] .  Then B is 2n x 2n with a l l  r o w  and column sums 

= 2r .  The theorem of P h i l i p  Hall  shows t h a t  we can s e l e c t  2n ones no* 

two of  which l i e  i n  t h e  same row o r  column of B ( e  .g . , H. J . KYSER, 

Combinatorial Mathematics, p. 57). These 2n ones, a s  ones of  A, s a t i s f y  

t h e  condit ions of  t h e  claim. 



4 8 0 .  [Fall  1 9 8 0 1  Ptopohed b y  R-i.cha~.d I .  H u h ,  P d o b  Ve/ide^, 
caLifj0tm.a.. 

a) Cut the large piece 

at right into two pieces which 

can be reassembled with piece 
u a into an 8 x 8 square. 

b) Do the same, using 

piece b . 
3 3 

cur --- 
PART A 

11. S o b i t i o n  by Pntm Szabaga, Nwi Yotk  C a y .  

a) Cut the figure along the dashed lines, turn the piece in the 

lower right counterclockwise go0, and insert it with piece a as shown - - >- 

below. 

b) Cut the figure along 

lower right clockwise 9 0 ,  and 

the dashed lines, turn the piece in the 

insert it with piece b as shown below. 

A t i o  boLve.d by DANIEL ESSIG,  STEPHEN HODGE, STEPHEN L .  SNOVER, and the 

PROPOSER. 

481. [Fa l l  1 9 8 0 1  Phopobed by C h y k o n  tt. Dodge., UdveA&^y o<$ 

M h e  at Otono. 

Find all roots of the polynomial equation 

4 2 x6 - x5 - 4x + 5x3 - Ux + 36x - 36 = 0, 

given that it has two roots whose sum is zero. 

S o l u t i o n  by L& SUV& Algonquin Co-e., Ottawa,  Canada.. 
Let the two roots in question (which must be nonzero) be Â±a If 

the given equation is denoted by f(x) = 0, then Â± are also zeros of 

2 
f(x) - f(-x) = -2a;(x+3)(~-3)(x +4). 

Synthetic division soon yields f(Â±3 = f(Â±2i = 0 and 
2 2 

f(x) = (x+3)(x-2)(x +4)(x -x+1). 

1 Â ±  
The roots are Â±3 Â±2i and - 2 



At&o boiMO.d b y  J .  ANNULIS, JEANETTE BICKLEY, DAVID DELSESTO, 

- ESSIG, MARK EVANS, JACK GARFUNKEL, ROBERT C.  GEBHARDT, W.  C .  

IGIPS, RALPH KING, JEAN LANE, H E N R Y  S. LIEBERMAN, JAMES A .  PARSLY, BOB 

PRIELIPP, TAGHI REZAY-GARACANI, SAHIB SINGH, ROBERT A.  STUMP. PETER 

SZABAGA, KENNETH M. WILKE, and t h e  PROPOSER. 

482. [Fa1 1 19801 Pkopode.d by Ronaid. E .  S k & g e ~ ,  Geo/wiA State. 
U m M m i i t y .  

Let X be a continuous random var iab le  having a uniform d i s t r i b u t i o n  

with domain [a,b] and mean and standard deviat ion represented by p and 

o, respect ively.  Verify t h a t  P( u - 20 5 x 2  p + 20) = 1 

Solu t ion  by Bob P>u.eUpp, U n L u n u L t y  of, WLficon^^-O&hkodh, WLficonb-ui. 

It  is known t h a t  p = (a+b)/2 and 0
2 = (b-aI2/12 [see Table 4 .1  

on p. 83 of LINDGREN AND MCELRATH, Introduct ion t o  Probabi l i ty  and 

S t a t i s t i c s ,  The Macmillan Co., New York, 19591. It follows t h a t  2o = 
(b-a)/&. Because u is  t h e  midpoint of [a,b], \X -p 1 5 (b-a)/2. But 
6< 2 so  1 /2  < 1/6 and hence (b-a)/2 < (b-a)//3. Therefore [ X  -p 1 < 

(b-a)/fi  = 20 s o  P( u -  2 o s X s  \i + 20) = 1. 

At20 4oLue.d b y  DANIEL ESSIG, MARK EVANS, ROBERT C. GEBHARDT, JOHN M. 
HOWELL, W. C. IGIPS, HENRY S. LIEBERMAN, SAHIB SINGH, and t h e  PROPOSER. 

483. [Fall 19801 Pkopobed b y  PauJi Etdob, Spuce-~kip E M h .  

Let u be t h e  smallest  in teger  f o r  which p ( p +  1 )  = O(mod n) .  
n 

m v e  1 < - .  
^ " + + I  

So&iAt.on by IIUO-Ln Jungke-cA, No. Woodme~e., Nw Yokk. 

We have 

where A .  is  t h e  number of values of  n f o r  which i = pn. From t h e  d e f i -  2 

n i t i o n  of u n, pn = i - n l i ( i + l )  s o  Ai 5 ~ ( i ( i + l ) ) .  We know, however, 

1 t h a t  x = O X )  for  any e >0.  Taking E = , t h e r e  i s  N such t h a t  

AfcAo boLued by t h e  PROPOSER. 

484. [Fall 19801 Pkopobed by t h e  t o t e  R. Robiaon  Rowe. 

In  a t r i a n g l e  with base AB and ver tex  C, secants  from A and B t o  

points  D and E on BC and AC d iv ide  t h e  a rea  i n t o  four  subareas S ,  T , U  

and V. In  some order  of S, T, U, V, t h e  points  D and E can be l o c i t e d  

s o  t h a t  t h e  subareas a r e  i n  increasing a r i thmet ica l  progression, o r  s o  

t h a t  they a r e  i n  decreasing a r i thmet ica l  progression. Find t h a t  order  

and evaluate  t h e  subareas. 

Sotutt^on by the. P k o p o - ~ e ~  and M o m  Ko-tz, Macwa.hoc, Maine.. 

Let t r i a n g l e  ABC have base AB of length 2 and a l t i t u d e  t o  vertex 

C equal  t o  1, without l o s s  of genera l i ty .  Let AD and BE meet a t  F, and 

l e t  D, E ,  and F have a l t i t u d e s  x ,  y, and h from base AB. Designate by 

S, T, U, and V t h e  a reas  of t r i a n g l e s  FAB, AEF, EDF, and q u a d r i l a t e r a l  

CDFE . See Figure 1. From s i m i l a r  t r i a n g l e s  ob ta in  

We a l s o  have 

S = h , T = y - h , U = x - h , w d V = l - x - y + h .  

Now S < U  implies T < S ,  s o  S l i e s  between T and U. Hence, by symmetry, 

Figure 1 

For t h e  order  VTSU, e i t h e r  increasing o r  decreasing, we must have 

U - S = S - T = T - V ,  

(2) x - 2 h = 2 h - y =  2 y -  2 h + x - 1 ,  



whence y = 1/2. Now s u b s t i t u t i n g  i n t o  (1)  and (21, ob ta in  

5 Â ± f  s o x =-  
4 

Only t h e  negative s ign  permits x < 1, so  

We f i n d  t h a t  

For TVSU w e  use 

U - S = S - V = V - T ,  

(3)  x - 2 h  = x + y - l = l - 2 y  - x + 2 h .  

The so lu t ion  is no t  a s  simple here, but using (1)  and (3)  we el iminate  

x and h t o  ge t  

(4 )  
2 4y3 - 17y + 1 4 y  - 3 = 0, 

which has no r a t i o n a l  roo ts .  Its decimal r o o t s  a r e  

yl = .353116, y = .655199, and y3 = 3.2416 . 
We cannot use y3 because y <1. We have two so lu t ions  

x = 5 - 2y = .793678, yl = .353116, hl = 9 = .3234112, 1 2  

and 
x = .189803, y = .655199, h = .172451, 

485.  all 1 9 8 0 1  Ptopohed by R. S .  Lu-tfoyi., U d v e n V t y  of, 
Whconb&, Januv&. 

A l i n e  1 c u t s  two p a r a l l e l  r a y s  emanating from L and M i n  A and B 

respect ively.  A point  C is taken anywhere on 1. Lines through A and B 

respec t ive ly  p a r a l l e l  t o  MC and LC i n t e r s e c t  i n  P .  Find t h e  locus of  P. 

Solut ion by the. P topoba .  
Let AP i n t e r s e c t  l i n e  LM at  T. Then, according t o  Problem 409 

( t h i s  JOURNAL, F a l l  1978, page 556) by ZELDA KATZ, BT must be p a r a l l e l  

t o  CL. Thus BP and BT coincide because they a r e  both p a r a l l e l  t o  CL. 

Hence T and P coincide;  t h a t  is, P l i e s  on l i n e  LM. 

AÂ£A 6oiued by ROBERT C .  GEBHARDT ( b y  aMo^yfic geom&y), RALPH 

KING [gmptu.cat 60tu.hion], ROGER E. KUEHL, HENRY S .  LIEBERMAN (two 
boiuHonb, one by a theohem of, Pappus, the. o t h a  by &UIA6man.n16 geo- 
m W c  atgabha), and SISTER STEPHANIE SLOYAN [ b y  t h e  c o n v e n e  t o  P t t i i d ' b  
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1980-81 STUDENT PAPER COMPETITION 

The p a p a 4  doh the. 1980-81 Student  P a p a  Compet i t ion  have been 

judged and t h e  W A . n n ~ s  am: 
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o f ,  M-LH~A and Technology; "A Comp- 
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"Singular Functions", To Appear 
in the Spring 1982 Issue. 

THIRD PRIZE ($50) Michael  OWU.ck, M a c o ^ e ~ - t a  C o U w ,  
'The Area of a Triangle Formed by 
Three Lines", Appearing in this 
Issue. 
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