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EDITORIAL

The Pi Mu Epsilon Journal 44 dedicated to undergraduate
and beginning graduate students, and the. Journal solicits
articles of all kinds grom them. We believe that many students ~ -
s0fve problems, discover theorems, wiite papers, give takks and
seminans, and complete projects that are suitable for submission
to this publication. We encourage these sifudents to prepare
and submit these as articles §or possible pubLication. Student
papers will always be given finst preference by this Editor.
Many students have found it very advantageous to have. had an
anticle pubLished in a nefereed journal when considered for
ghraduate school on emptoyment.

Pi Mu Epsilon encourages student research and. the. pres-
entation/publication of, that #esearch though this Journal
and many other means. The. National Papa Competition awards
prizes of, $200, $100 and $50; atl student papers submitted
to the Journal are eligible forn these awards. |n addition,
any one. Chapter submitting five on mote. papers creates a
mini-contest amoung just those papers with a top prize of,
$20 for the best. As mosi know, Pi Mu Epsilon sponsors many
student papa conferences and student papa sessions in con-
junction with other onganizations such as the. MAA,

This {4 a Call 4o all students who are wiiting those papens,
those projects, giving those talks, proving theorems, efc., ete.
Write up your nesults in the. foum of, an (Vitiate. fon this Journal
and submit it to the. Editon. This is a Call to gaculty members
o encourage your students and t o help them with their papens.
THIS IS YOR JOURNAL-USE IT!

The Editor
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THE AREA OF A TRIANGLE FORMED BY THREE LINES

by Michael L. Onrnick, Jn.
Macalesten College

Ore way to determine a triangle is to L X
specify three noncollinear points X(xl, ‘”2)’ =
¥(y,5 ¥,) and Z(z, z,) to be used as Ly
vertices (Figure 1). It is well known [Noble, L,
Daniel, 1977, p. 209] that the area, A, of the Y

triangle is given by the formula:

xl x2 N
(1) A=f% ¥y ¥p 1
zl 22 1

where the sign is chosen to make A positive.
Another way to determine a triangle is to specify three non-
current lines, no two parallel

Ll: ax +ay + as = 0
(2) L2: blx + b2y + b3 =0
L3 e Tty teg = 0

which enclose the triangle (Figure 1). Though it is an old result
[salmon, 1879, p. 32 ], it is not so well known that the area, A, of the
triangle is also given by the formula

2
a; a, a,

a4 =1 l by b, by
(3a) (blc2 b2cl)(alc2 azcl)(alb2 a2fl

l 2 3
The purpose of this note is to prove the formula (3a) using
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notation and methods familiar to students taking a first course in
linear algebra.

V¢ begin by forming the coefficient matrix p of the system (2)
and the matrix Q. e

a a a M M M
1 2 3 al a2 a3
_tb, b, b M. M. M.
p=|"1 "2 "3 Q@ =", b, by
e, ¢, ¢ M M M
1 2 3 cl c2 e,

where M , M, and M_ in Q are cofactors of elementsa., b, and e, in
a; bi e; 1 "1 A

P.  For example,

(4)

Ma3= e Mb=- H “1p b

/¢ note that the condition that no two lines are parallel to each other
implies that the cofactors Ma 5 \, and Mc are all non-zero. Further-
3 3

more, with this notation, formula (3a) becomes

2
4 4 93
i ;
(3b) A=1= 1
< [(Ma- AR )] by b, by
3 3 3
€y % %3

Is it possible for the determinant of matrix P, detP, to equal
zero? If it is, therewill exist a non-trivialsolution (sl, 85, 33) to
the system

alsl+a2s2 +a333:0
(5a)

bflt b252+b333-0

e,8,. +e s, +e 8. =0

11 272 373

If s # 0, then (51/33’ 32/33’1) is also a solution to the system of

equations in (5a). Thus all three lines of system (2) pass through the
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point (sl/ss’ 32/33), violating the condition that these lines be non-

concurrent. But if 84 = 0, then (51,52) would be a non-trivial solution

to the system

alsl + a232 =0
(5b) blsl + b282 =0
e)8; + 2,8, = 0.

This is impossible, since all the determinants in (4) are non-zero.
Using Cramer's rule, we find that the coordinates of the vertices,

X{z,,25)5 ¥(y;,54,) and 7(z,,2,) are expressed as follows:

a3 @y,
M M
CPbsl ey L
T aa Mo T2 % la.a
1%2| e, 1% -«
blb2 blb2
2y a3
M M
1 ala2 Mb ala2 Mb
3 3
3102 0102
b.b
273 bybg
M
5 - %1 % 2 = |clag|_ a2
17 |bp, Ma3 2 (50,
0102 0102

Using formula (1), we can obtain the area of the triangle
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Ma Ma
1 2
Ma Ma '
1 2 -
M M M
M. M a a a
(7)}1”‘l by b2 st 1 1 2 3
T T2 M M, ) M M M,
b b M - M - M) b b b
3 3 5 b3 EN 1 2 3
M M M M M
C‘l 6'2 N C'l C‘2 03
Mc MC‘
3 3
1
= + 1 1
I3 (Ma'Mb _Mc)detQ.
3 3 3

Evaluating det Q however, is a bit tedious. W therefore wish
to simplify det Q to something more easily calculated. Consider the
product det Q det P. Since a matrix and its transpose have the same
determinant, det Q = det Qt . Then:

~ _
a a, a M M. M
1 "2 73 a, bl N
(8a) b, b, b M M M
det P det Q=detPd =det| * 2 3 a, by o
e e =] M M M
1 % %8 |Tay "By ey

Each entry on the main diagonal of the product, being the aum of the
products of elements in a row of P multiplied by their respective co-
factors, must equal det P. All other entries, being the sum of the
elements in one row and the cofactors of a different row, must equal
zero [Ficken, 1967, p. 263]. The product then simplifies to

det P 0 0
(8b) 3
det Pdet @ = 0 det P 0 = (det P) .
0 0 det P

Since det P # 0, this implies that det @ = (det P)2
W have then, for the area of the triangle,
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(det P)2

1
= =
9) A__Q (M 'Mb-M)

which is the same result developed by Salmon in 1879.
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AN INFINITE NUMBER
OF 4 x 4 MAGIC SQUARES

by Stephen Ruberg .
Miami Univernsity, Oxgond, Ohio

For many years magic squares have fascinated and intrigued mathe-
maticians. The study of symmetry and unusual characteristics has 'been a
favorite pasttime for those who like to dabble with numbers. A Normal
magic square of order »n is defined to be an arrangement of the first
N2 natural numbers in the cells of the square so that each row, column
and diagonal sums to a magic constant. For this article, however, some
variations -- using non-consecutive numbers, negative numbers and
fractions -- will be employed. With this criterion, nonnormal magic
squares for all integer sums and eventually any real number can be found
for a square of order four.

The most familiar fourth order magic square is found by numbering
the sixteen cells from right to left, top to bottom. Leaving the entries
of the diagonals as they are, and exchanging the entries of the comple-
mentary cells (cells which are symmetric with respect to the center point
of the square), a normal magic square is obtained (Fig. 1). The rows,
columns, and diagonals al | have the same magic constant, 34. Upon closer
examination, however, the square has even more magic qualities. The four
cells in the center, the four corners, the opposite pairs (the cells with
numbers 5, 8, 9, 12 and 2, 3, 14, 15) and each quadrant also have the
magic constant 34! These properties of doubly even magic squares have
been known for quite some time. The question is what will happen if num-
bers other than the first sixteen integers are used.

With a few minor manipulations, magic squares with magic constants
35, 36, and 37 can be found. For the magic sum 35, the 34-square can be
transformed by subtracting one from the cells containing 1 and 2 and add-
ing one to the cells containing 11 through 16 (Fig. 2). For the am of
36, add one to each cell containing the numbers 9 through 16 in the 34~
square (Fig. 3). Once again, by increasing the cells containing 7 through
14 by one and the cells containing 15 and 16 by two, the 37-square is
obtained (Fig. 4).



With these four squares as a basis, any 4 X 4 magic square can be
obtained by adding an appropriate integer n to each of the sixteen cells
of the square. In particular, subtracting eight from each cell of the
34-square and 35-square produces the 2-square and 3-square, respectively.
Similarly, subtracting nine from each cell of the 36-square and 37-square
produces the O-square and the 1-square, respectively. Nw adding an
integer n to every cell of the O, 1, 2, and 3-square, the general forms
for any 4 x 4 magic square can be constructed (Fig. 5).

Because there have been fewer restrictions placed on the numbers
which may fill a square, an infinite number of magic squares have been
found. A magic square for a particular sum, however, need not be unique.
If sixteen consecutive terms of any arithmetic sequence are placed in the
cells in the same order as with the original 34-square, another magic
square is created. Also, adding two magic squares or multiplying a magic
square by a constant result in a magic square [3].

For a magic constant which is not an integer, several approaches can
be used. To increase any integer sm by a decimal fraction (less than 1),
add this fraction to any set of four cells which have one cell in each row,
column, diagonal, the center, the corners and the opposite pair, forming a
"complete set.” An example is the cells containing the numbers 1, 3, 5
and 7 or 16, 14, 12 and 10 (the "complementary” numbers) in the 34-square.
Also, adding one-half of the fraction to two complete sets or one-fourth
of the fraction to all 16 squares will give the desired result. Another
interesting technique is to consider the decimal part as an integer and
find the magic square for it. Dividing by the appropriate negative power
of 10 will reduce this magic square to its decimal form. Nw add this
decimal form to the integer magic square to obtain the desired magic
square. For irrational sums, such as uw or 17v/2, merely multiply the
integer magic square by the appropriate irrational part. Thus, a magic
square may be found for any real number magic constant.

The procedures here do not exhaust the possibilities. May other
combinations of numbers will produce magic squares possessing all of the
magic properties mentioned here, perhaps even more. The symmetries and
the order which are inherent in this size square and our number system
are remarkable. There is a certain balance here, and the limitations
seem to be only the limitations, if any, which are in the number system
itself.
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1 15 14 4 0 16 15 4
12 6 7 9 13 6 7 9
8 10 11 5 8 10 12 5
13 3 2 |16 14 3 1 17
FIG. 1 FIG. 2
34-square 35-square
1 16 15 4 1 17 15 4
13 6 7 10 13 6 8 10
8 11 12 5 9 11 12 5
14 3 2 17 14 3 2 18
FIG. 3 FIG. 4
36-square 37-square
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n-8 | n+7 | n+b6 | n-5 n-8 [n+8 |n+6 |n-5

ntd | n-3 | n-2 | n+l ntd [n-3 [n-1 |ntl

n-1 | n+2 | n+3 | n-4 n n+2 | nt3 |n-4

nt5 | n-6 [ n-7 | n+8 nt5 | n-6 [n-7 |nt9
(R) (B)

n-7 [ nt7 |n+t6 [n-4 n-8 [n+8 |n+7 |n-4
ntd [n-2 |n-1 [n+l nt5 |n-2 |n-1 [n+l
n n¥2 | n+3 |n-3 n n+t2 | n+d4 | n-3
nt5 | n-5 [n-6 [n+8 nt6 [n-5 |n-7 |n+9
(c) (D)

FIG. 5
The general forms for magic squares having magic constants

(A) 4n (B) 4n+1 (C) 4nt2 (D) 4n+3
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GENERAL SOLUTION OF A GENERAL SECOND-ORDER
LINEAR DIFFERENTIAL EQUATION

by R. S. Luthar
University of Wisconsin, Janesville

The following theorem was discovered while attempting to find a
single method for solving a general second-order linear differential
equation of the form

2
dy d -
= + P(x) a‘% + Qz)y = R(z). (1)

The motivation for attack on such a method stemmed from the thought that
when equation (1) is associated with a first-order linear differential
equation of the form

% 4 p(x)z = Rlx), (2)

then 2 must necessarily be of the form

= é&, 3
z == + Alxd)y . (3)
Working backwards nov with (3) and (2), we obtain

3(.15 [% + A(m)y] + B(x) [% + A(x)y] = R(x),

which after taking derivative and rearranging terms takes the form

2
4y +l:A(:c) + B(x)] % + [A(x)B(x) + A'(x)-]y = R(x). (4)
dx2 J

Comparing (1) and (4) we obtain

P(xz) = A(z) + B(x)
and

Q(x) = A(x)B(x) + A" (2).

The above considerations lead us to state the following.
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Theonem. A sufficient condition that the differential equation

& d
=4+ P(z) L+ @)y = Rlx) (1)
dx

has a solution is that there exist two functions A(x) and B(x) such that

P(x) = A(x) + B(x)

and
Qx) = A(x)B(z) + A'(x)

and in that case the solution is given by

= o~ A (x)dx r
y=e [ " J A(2)-B(x) %mc IB(x)dz Cl]dm CJ

Proof. Under the given condition, (1) takes the form

2
g—% + [A(z) + B(x) ]%% +[4(x)B(x) + 4'(2)]y = R(x)
dx

2
Z—x% + Atx) % + A'(::c)y:l + B(x) % + A(x)B(x)y = F(x)

%[% + A(x)y:l + B(2) [% ; A(x)y:\ = R(@).

Letting
%+A(x)y =z, (5)

we have from the above equation

dz + B(x)z = R(x)

which is a linear differential equation of the first order whose solu-

tion by the usual methods is given by
- fB‘x)dx[ﬁ?(x) JB(@)dzy, cl].

Thus from (5) we have

% v Ay = o B [ﬁ(x)e IB(x)dx Cl]’

which again is a linear differential equation of the first order whose

solution by usual methods is given by
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. e-fA(m)dx[L—fB(x)dm[f?(x)efa(m)drdx A CJ IIE 02]

:e—f/l(m)dm[-/;J’(A(ac)-b’(x))dx{/:?(m)efB(x)dr vo)a s c‘?} o

The function in (6) is the general solution of (1).

Bxanpl e. 1

Solve the differential equation

Sol uti on.
Here P(x) = -3 and g(x) = -4. V¢ can thus take A(x) = 1 and B(x) =

-4 and satisfy ourselves that

-3 =1+ (-4)
and

-4 (1)(-4) + 0.

n

Using (6) we have the solution

L Sl [ﬁf(l—(-u))dx[/'ex_ef-udxdx . Cl]dx . 02}
- 5x 1 -3x
e Ue [- 3¢ +Cl}dx+02:|

e"Jc Ly -
=-g tCpe T+ C2e
Bxanpl e. 2
Solve the differential equation
Py 2 dy 2,
d? x dr 2
Solution.
Here P(x) = - ;2 and @(x) = ;22 . W& can thus take A(x) :—:)I?‘ and
B(x) = - J;‘and satisfy ourselves that
2 2 _ d |
-2 bt andx—z-(-%) S

Hence by (6) we have the solution
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1 1 13 1
Y =e_f—5da[ﬂf("§- - E)d"v;xe xdx+01:|dx+02]
m[ﬁ[ﬁx-%dx+cl]dx+02J

= 22° + C‘lm2 + C

]

2.1‘.

(@
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120° and 60° PYTHAGOREAN TRIPLES

by Benedict Pollina and Stephen Snoven
University of Hartgond

Section 1. Introduction.

Finding al | Pythagorean triples, that is, all integer solutions

of the equation z? 4 y2 : 22 is a familiar problem. [1] In this article

we consider the following generalization.

I f triangle ABC has an angle of 8° and integer sides k,l,m, we
call the triple (k,Z,m) a 8° Pythagorean triple. Finding all 90°
Pythagorean triples is just the familiar problem mentioned above. The
problems of finding all 120° and 60° Pythagorean triples are not quite
as well known, even though solutions were given by L. E. Dickson[2] in
1908. It is these latter two problems that we address in this article.

All such triples satisfy either k2+ kl +Z2 = m2 or k2' ki +12= m

2
V¢ derive a set of parametric equations which generate all integer solu-
tions to these equations. Furthermore, we give conditions on the
parameters so that each essentially different solution is generated
exactly once. This latter consideration does not appear to have been
addressed in the literature. V¢ conclude by observing that the solutions
to the 60°, 90°, and 120° problems provide a complete list of 8° Pytha-

gorean triples with 8 rational in degrees.

Seetion 2. Reduction of the. Problems.

. . N (o]
From the law of cosines it follows that i f (k,Z,m) is a 120

PgthagoPean triple with2side @ opposite the 120° angle, then
m =k +1 -2klcos(120°)=k +ki+1 . Similarly, if (k,Z,m) is a 60° Pytha-
gorean triple, then m2=k2-kl+12. V¢ turn our attention, therefore, to
the problem of finding all integer solutions to these two equations.
Our Pythagorean triples are then just the solutions in which k,Z, and m
are all positive.

The following lemmas indicate that it is sufficient to solve
the k2+kZ+22=m2 problem. Both are easily established by straight-

forward computation.
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Lemma /. If the triple (k,7,m) satisfies k2+kZ+12=m2, then the

triples (x,y,2) = (k,k+l,m) and (x,y,z) = (l,k+l,m) satisfy xz—xy+y2=zz.

Remark. | f we assume that k,Z,m are all positive so that (k,1,m)
isa 120° Pythagorean triple, then ageometricproof of Lemma 1 is indi-

cated by Figure 1. B

©0° 120° C

D
ABC has a 60° angle at A and integer sides k, k+Z, m.

DBC has a 60° angle at D and integer sides I, k+Z, m.

Lema 1 states that each solution to k2+ki+12=m? generates two
solutions to k2—kl+22=m2. The next lemma shows that any solution to

k2-k1+22=m2 arises in this way.
lema 2. If (k,1,m) satisfies k>kI+1%=m?, then (z,y,z) =
(k, L-k,m) satisfies k2+kz+7,2=m2_

Section 3. The Equations k2+kz+12=m2kand K241+ 12
Precisely stated, we wish to find all integers k,Z,m which
satisfy k2+kZ+7,2=m2. While this problem has been studied in the literature

[2, 3, 5] we present a complete, self-contained solution because other
solutions seem to be incomplete or too general to be readily understood.

First we define a solution triple to be a triple of integers
(k,1,m) satisfying k2+kZ+12=m2. Next define a primitive triple to be a
solution triple in which the integers are pairwise relatively prime, that
is (k,1) = (Lym) = (k,m) = 1.

In order to establish the fact that any solution triple is a scalar
multiple of some primitive triple, we first show
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Lema 3. If (k,l,m) is a solution triple, then (k,2) = (Z,m) =
(k,m).

Proof. Let d=(k,1), e=(1,m), and f=(k,m). Since k2+kZ+12=r32,
we have d2|m2. Hence d|m, and therefored|eand d|f. Lete=de', f;‘af'.,
k=dk', 1=dl', and m=dm'. Then 1=(k',1'), e'=(1',m'), f'=(k',m') and
k2140 2= 2L 0t p is any prime divisor of e's p|2' and PIm'. Thus
plm'?-112=(R+1' )k and so either p|k'+Z' or p|k’. But p|l', so in either
case p|k'. Hencep(k',1') =1 and p=1. Thus e'=1l. Similarly f'=1,
proving Lemma 3.

The next lemma reduces our problem to one of finding all primitive

solution triples. |Its proof is straightforward and so details are omitted
Lemma 4. |f (k,l,m) is a solution triple and d=(k,2)=(L,m)=(k,m),
then (k',2',m') is a primitive triple where k=k'd,1=1'd, and m=m'd.
lema 5. If (k,Z,m) is a primitive solution triple, then either
1-k=m (mod 3) or k-2=m (mod 3 ), but not both.

Proof. k2+kl+l2 = m2
(k-1)2 = mP-3kl
(m+(k-1))(m-(k-1)) = 3ki

Thus 3|m+(k-1) or 3|m-(k-2). However, if 3 divides both, then 3|k or 3|Z.
If 3|k, then 3|m- and 3|m+l, which implies 3|27 which in turn implies
3|Z. This contradicts primitivity. A similar contradiction arises if
3]L.

Nw we proceed towards finding a parametric representation of
all primitive solution triples. To begin we assume that the primitive
triple (k,1,m) is always written so that k-1=m(mod 3). This can be
achieved by interchanging k and Z if necessary.

Theorem 1. Let p and q be integers with (p,q)=1 and pZq (mod 3).
Then k=p2—q2, Z=2pq+q2, and m=p2tpqtq2 form a primitive solution triple
for which k-1z.m (mod 3).

Proof. Straightforward algebra shows k2-l-kl+12=m2 and k-lzm
(mod 3). V¢ must show that k,Z, and m are pairwise relatively prime.

To do this we use Lamm 6 below, which will also be useful later.

Lema 6. Let p and q be integers with (p,g)=1 . Then (P2'q2,
opq+q2)=1if and only i f p#q (mod 3)-
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Proof. Suppose p=q (mod 3); then 3|p-¢g and 3[p2-q2. But
p-q=p+2q (mod 3), so 3|p+2q. V& also have 3|(p-q)+(p+29)=2p+q, and hence
3|2pq+q2, Therefore (p2—q2, 2pq+q2)#l.

Nw suppose (p2-q2, 2pq+q2) = d #1. Let x be any prime divisor
of 4. Nw x divides neither p nor q; this follows since x|p2—q2 and
hence if x divides one it also divides the other, contradicting (p,gq)=1.
Sincez:|2pq+q2 we must have z|2p+q. Also z|p2-q2 implies x|p-q or x|ptq.
If x|2p+q and x|p+q, then z|p, a contradiction. Hence x|2p+q and z|p-g
and these in turn imply X[3p. Thus =3 and 3| p -¢ making p=q (mod 3).

To complete the proof of Theorem 1 note that by Lemma 3 it is
enough to show that any two of k,Z,m are relatively prime. Lanma 6 now
gives us (k,7)=1.

Next we prove the converse to Theorem 1. Define (k,Z,m) to be
a trivial solution tripleif it is of the form (-k,k,k) or (k,0,k).

Theonem 2. 1f (k,l,m) is a non-trivial primitive solution triple,
then there exist unique integers p and q with p>0, (p,q)=1 and pZg (mod 3)

such that k=p?~q2, L=2pqtq?, and mPapqiq2.

Proof. Since k%ki+1%=m® we have 1(k+1)=m>~k=(mk)(m-k), and
since (k,Z,m) isS non-trivial we can write

7 _ mk _
an iy oy el
where ¢ is a non-zero rational number. This gives us a system of

equations:
L-kt=mt , Lt+(t+1LDk=m .

Solving this system for k and 7 we get
k = A-t*)m 1= (EQiZt)m
= k]
t2+t41 ttt+I

Nw since t isrational, we let t = g/p where p and g are integers with
p>0 and (p,q)=1. Clearly the p and q satisfying these conditions are
unique. Substituting for t we get

k = sz-gz)m , 1 = (2 2)m
p +PQ‘*42 P +tpqtq

Recall that Z/(m+k} = t = g/p, and by assumption k-Z=m(mod 3).
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Lema 5 implies that I-k¢m (mod 3) and thus Izm+k (mod 3). These
facts together with (p,g)=1 imply p#g (mod 3). Lemmes 3 and 6 now tell
us that (p2—q2, p2+pq+q2)=l and (2pq+q2,2p2+pq£q2)=l. Thus p2+pq+¢;2|m,
and since (k,1)=1 we must in fact have p +pg+q =M. Thus we can writé

2 2 2 2 2
k=p~-q~ 1=2pq+q ] m=p~+pq+q
This concludes the proof of Theorem 2.

Summarizing the previous results we have

Theonem 3. All integer triples (k,Z,m) for which k2+kl+k2=m2

and k~Z =m (mod 3) are either:

(1) trivial, that is of the form (-k,k,k) or (k,0,k)

(2) non-trivial, that is, there exist unique integers p,g,”
withp>Q, q#0, r#0, (p,g)=1, and p #q¢ (mod 3) such that k=(p2-q2)r ,
Z=(2pq+q2), and m=(p2+pq+q2)r.

To find all solutions to k -kZ+12=m2 we can use Theorem 3 and
Lemmass 1 and 2. First note that primitivity is defined as before and
that any solution triple is a multiple of a primitive one. The next
lemma indicates that there are essentially two distinct families of

primitive solutions.

Lemma 7. If the triple of integers is a primitive solution to
k2—kZ+Z2=m2, then k+Z=m (mod 3) or kt2=-m (mod 3), but not both.

The proof is similar to the proof of Lema 5 and is omitted.

Observe that unlike the k2+kZ+Zz=m2 problem we cannot choose

which congruence we want to hold, since interchanging k and 7 leaves
both unaffected. Combining Lermma 2 with Theorem 3 we have:

Theonem 4. All integer triples (k,7,m) for which k2—kl+22=m2
are either

(1) trivial, that is of the form (-k,0,k), (k,0,k), (k,k,k),
(O,k,k), (‘k, "k,k)3 or (og'ksk);

(2) non-trivial, that is, there exist unique integers p,q,r
with p>0, g#0, r#0, (p,q)=1, and p£q (mod 3) such that

k=(p2-q2)r » Z=(2pq+p2)r 8 m=(p2+pq+q2)r s
or k=(2pq+q2)r s Z=(2pq+p2)r . m=(p2+pq+q2)r 3

It is an easy matter to see that the first non-trivial family

corresponds to k+Zz-m(mod 3) while the second corresponds to k+lzm (mod 3).
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Section 4. Uniqueness of Solutions.

The solutions to the equations k2tkl+12=m2 given in the previous
section contain certain redundancies which arise because of the symmetry
of the equations. For example, the integers p=3, g=-1, r=1 generate the
solution triple (k,Z,m)=(8,-5,7) while p=3, ¢g=-2, r=1 generate the triple
(k,Z,m)=(5,-8,7). Both of these satisfy k2+kl+22=m2; however, it makes
sense to regard these as essentially the same solution. |In fact it is
easy to see that for each equation, whenever (k,7,m) is a solution,
several other triples are also solutions. Obvious examples of triples
that are also solutions are (k,%,-m) (Z,k,m), (-k,-1,m), and (-Z,-k,m).
In total there are 24 related solutions for each of the equations. These
are indicated in Table 1

Remark.

transformed triples of the form (ak+bl, ck+dl ,
e are integers, then Table 1 contains precisely the transformed triples

I f we take a solution triple (k,7,m) and consider all possible

KRl 2= K2-k1+1%=m®
(k,1,m) (ky2,m)
(k,1,-m) (ky1,-m)
(L, k,+m) (Lykytm)
(-k,-1,%m) (-k,-1,tm)
(-1,-k,*m) (-7,-k,tm)
(-k,k+1,+tm) (~k,1-k,+m)
(k+1,-k,+m) (1-k,-k,xm)
(ky-k-1,+tm) (k,k-1,+m)
(-k-1,k,2m) (k=1,k,+m)
(-1,k+1,+m) (-1,k-1,%m)
(k+1,~1,%m) (k-1,-1,+m)
(1,-k-1,xm) (2,1-k,+m)
(-k-1,1,+m) (L-k,1,%m)

en) where a,b,e,d, and

which are again solutions of the corresponding equation.

an equivalence class.
solutions involving one and only one member of each equivalence class, we
can eliminate redundant solutions. To do this we need to handle the two

equations separately.

Clearly, for each of the two equations the related solutions form

the proof.

By restricting the solutions given in Section 3 to

The following lemma i s easily established; we omit
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Lemma & Amog the equivalent primitive solutions to
k2+kl+22=m2 given in Table 1, there is precisely one with %, 2 and m
positive and k-2=m (mod 3).

V¢ nowv restrict the values of p,g, and r in Theorem 3 so that we

obtain only the representative given in Lemma 8. This gives us the
following:

Theorem 5. The following is a complete non-redundant set of non-

trivial solutions to k2+kl+12=m2:

k=(p2-42>r , ‘Z=(2pq+qz>r , m=<p2+pQ*92>r >

where p,q,r run through all integers satisfying p>q>0, r>0, (p,q)=1,
and p¢q (mod 3).

Proof. @ Fom Theorem 3 and Leama 8 we have the following. The
condition m>0 implies »>0, since m=(p2+pq+q2)r and p2+pq+q2 is always
positive for p>0. The condition k-Zzm (rood 3) implies gviq (mod 3) as
shown in the proof of Theorem 2. Next k>0 implies p>q, since
k=(p-q)(p+q)r and p-q <0 would require g>p>0 and p+q>0, contradicting

k>0. Finally Z>0 implies ¢>0 since

(i) %>0 and I>0 imply k+Z=(2pq+p2)r>O, which together with
p>0 implies g>-(p/2);

(ii) 10 implies (2pq+q2)=q(2p+q) >0, which in turn implies
either g>0 or g<0 and 2p+g<0. This latter choice implies g<-2p<-(p/2),
which contradicts (i).

2 are obtained with the

Conollary 1. Once solutions to k2+k2+2%=m
restrictions given above, then all solutions are obtained by expanding
the solution set 24-fold according to Table 1.

Eliminating redundancies in the solutions to k2-kZ+12=m2 is
achieved in a similar fashion. V¢ begin with the following easily checked
lemma.

Lamm 9. Amoyg the equivalent primitive solutions to kz-kZ+Z2=m2,

there is precisely one with k,Z, and m positive, k<1, and k+iz-m (rood 3).

Theorem 6. The following is a complete non-redundant set of nop-
trivial solutions to k2—kl+12=m2.

k=(p>-q)r n Z=<2pq+p2>r . m=(p2+pq+q2)r >
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where p,q,r run through all integers satisfying p >¢>0, r>0, (p,q)=1,
and p#q (mod 3).

Proof. Use Lemma 1 and Theorem 5 to observe that we no longer
obtain two families of solutions as we did in Theorem 4, since Lamma 9

eliminates the second family.

Conollany. As in the previous case, all solutions to
7/.2—7<Z+12=m2 mey nov be obtained by a 24-fold expansion of the above
solution set.

Seetion 5. The 120° and 60° Pythagorean Triples.

As mentioned earlier, the 120° and s0° Pythagorean triples are

simply the positive solutions to the equations k21k1+22=m2. V& now show

honv to give a complete list of these.

Theorem 5 gives us.solutions to k2+k7,+12=m2 in which k,7Z, and m
are positive, and so these form 120° Pythagorean triples. To get any
others we take a triple generated by Theorem 5 and look among its 24
related solutions of Table 1 for other triplesin which all three entries
are positive. A quick glance at Table 1 shows that if k,Z,m are all
positive, then only one other entry has this property, namely (7,k,m).
Clearly we should regard this Pythagorean triple as being the same as
(k,Z,m). Hence we may conclude that Theorem 5 also gives a complete non-
redundant set of 120° Pythagorean triples. Table 2 below lists the first
few 120° triples.

Table 2

Primitive 120° Pythagorean Triples (p< 5)

P g ~r k I m
2 1 1 3 5 7
3 1 1 8 7 13
3 2 1 5 16 19
4 3 1 7 33 37
5 1 1 24 11 31
5 3 1 16 39 49
5 4 1 9 56 61

For the 60° Pythagorean triples we proceed similarly. W begin
with the solutions generated by Theorem 6 in which k,Z,m are positive

and k<I. For each such solution we check among the 24 related solutions
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for other triples having all entries positive. This time we find
several. If k,l,m are all positive, then so are the entries of (Z,k,m),
(l-k,l,m), and (Z,l-k,m). The latter two triples are not obviously the
same as (k,l,m) but should be regarded as equivalent to each other.’
Hence we should include one of them, say (¢-% ,Lm), in our list of 60° -
triples. This gives us the following:

Theorem 7. The following is a complete non-redundant set of 60°

Pythagorean triples:
(1) k=(p*-¢>r . 1=(2pqtpDdr »  m=(p2pqtq®lr
or (2) k=(2pq+q2)r' . Z=(2pq+p2)r- . m=(p2+pq+q2)r s
where p,g,» run through all integers satisfying p>¢q>0, r>0, (psq)=1,
and p#q (mod 3).
Table 3

Primitive 60° Pythagorean Triples (ps5)

P q r k l m k A m
2 1 1 3 8 7 5 8 7
3 1 1 8 15 13 7 15 13
3 2 1 5 21 19 16 21 19
4 3 1 7 40 37 33 40 37
5 1 1 24 35 31 11 35 31
5 3 1 16 55 49 39 55 49
5 4 1 9 65 61 56 65 61

Section 6. Conclusion.
Nov that we have found all 120° and 60° Pythagorean triples, we

can group them with the well-known 90° triples and observe that this
collection is a list of all ¢° Pythagorean triples with 9 rational in
degrees. First, note that if (k,Z,m) isa 6° Pythagorean triple, then
cos® is rational. According to Niven [u], i f O is rational in degrees
and cos6 is rational, then cosé =0, 1/2, or *1. Hence, if (k,Z,m) isa
6° Pythagorean triple with 8 rational in degrees, then 0 must be 1200,-,
90°, or 60°.
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THE EQUI LI C QUADRI LATERAL :

by J. Ganfunket
Queens College, N.Y.

Bvery student of geometry knows that of all plane figures the
triangle is one of the nost prolific in producing theorens. Inthis
article we showthat the quadrilateral is also arich source for investi-
gation. Quite a nunber of special quadrilaterals have al ready been in-
vestigated. Exanples are the cyclic quadrilateral whose vertices |ie on
the sanme circle, the circumseriptible or pericyclic quadrilateral whose
sides are tangent to the sane circle and the orthodi agonal quadrilateral:~
whose di agonal s are perpendicular. Furthernore, there are quadrilaterals
that are both cyclic and pericyclic, cyclic and orthodi agonal and so on.
To the quadrilaterals with interesting properties, we add a new quadri -
lateral which we will call equilic.

Definition. Quadrilateral ABCDis said to be equilic if AD= BC
and if angle A + angle 8 = 120°.

Note that the quadrilateral need not be convex. See Figures 1A
and 1B.

FG 1A FIG 1B

* \ are"deeply grateful to the referees for the meticul ous care they
took in greatly enchancing this article. Thanks.
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¢ begin by stating a fairly obvious fact.

Theonem 1. A quadrilateral which is both cyclic and equilicis
an isoscel es trapezoid with A : B = 60°.
The proof of Theoreml is |eft to the reader.

Deginition. |f one angle of an equilic quadrilateral is equal to
90°, the quadrilateral is called right equilic.

Theonem 2. Inaright equilic quadrilateral, a diagonal is equal
to an unequal side.

FIGURE 2

Poof. Quadrilateral ABCDis right equilic wth the right angle
at Aand wth AD =BC. FomCdrop perpendiculars ¢? and €& t o sides
AB and ADrespectively. Then ¢? = 1/2€B = 1/2AD, since angl e B neasures
30°. Hence, Clies on the perpendicul ar bisector of AD, which nakes
triangl e ACD i soscel es and di agonal AC equal to side DC

The proof is simlar for the right angle at any other vertex.

Theorem 2A. In an equilic quadrilateral, if a diagonal is equal
to an unequal side then the quadrilateral is right equilic.

Poof. Inequilic quadrilateral ABODwth angle A + angle B =
120°, AD = B¢, and AC = CD, erect a perpendicular to ADat Ato cut |ine
Bc at K Drop perpendiculars CF and G5to ADand 4X respectively. Let
AD and B¢ extended neet at #, so angle H = 609, Because (DA is an isos-
celes triangle, Fis the midpoint of AD Then GG = FA = 1/24D = 1/2 BC
Snce QGis parallel to DA then angle KOG = 60°, so GG = 1/2 K Now
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FIGURE 2A 8

CK = ¢B, so B and K coi nci de, nmaking angl e DAB: angl e DAK = 90°.
In the next two theorens we investigate sone interestingrelations
between the equilic quadrilateral and equilateral triangles.

Theorem 3. |If equilateral triangle ABPis constructed interiorly
on side 4B of equilic quadrilateral ABCD, then triangle PCDis al so
equil ateral .

FIGURE 3

Poof. Refer to Figure 3 Let ABCD be an equilic quadrilateral.
Assune, without |oss of generality, that angleABC> angle BAD  Qonstruct
equilateral triangle ABP interiorly and drawPC and PD. Because AD and
BC neet at 60° and 47 and BP al so neet at 60°, then angl e PAD= angl e PBC.



Thus, triangles AD7 and BCP are congruent by SAS. Hence a 60° rotation
about P carries triangle ADP into BCP, so angle DPC = 60° and triangle
PCD is equilateral.

Theonem 4. The midpoints of the diagonals and the midpoint of an
unequal side of an equilic quadrilateral are vertices of an equilateral
triangle.

FIGURE 4
Proof. In Figure 4 P, Q and R are the midpoints of AC, BD and
CD , respectively. Clearly, PR is parallel to AD and equal to 1/2 4D,
and RQ is parallel to BC and equal to 1/2 BC. Since AD = BC, triangle
PQR is isosceles with PR = QR. Since the angle between AD and BC is 60°,

then so also is angle PRQ = 60° and triangle PQR is equilateral. Simi-
larly, triangle PQS is equilateral where S is the midpoint of side AB.
Moreover, RQSP is a rhombus.

The reader is encouraged to carry out the proof of Theorem 4 in
the case of a non- convex equilic quadrilateral.

Deginition. An equilic quadrilateral ABCD is called isosceles
equilic if AD = DC = CB.

Theorem 5. The point P of the intersection of the diagonals of
an isosceles equilic quadrilateral is the circumcenter of triangle ABQ,
where Q is the point of intersection of sides BC and AD.

'Proof. In Figure 5, ABCD is an isosceles equilic quadrilateral.
Through A and ¢ draw lines parallel to DC and DA, respectively, to
intersect in E. Then, AECD is a rhombus. Denote the equal angles DAPR,
PAE, DeP, and PCE by a, angle EAB by B and angle DQP by y. Angle ECB =

60°, since CEZ is parallel to AD. Hence, triangle BCE is equilateral
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FIGURE 5

and triangle ARE is isosceles with AE = BE. Since angle BAQ + angle 4BQ
= 1209, (2a+B) + B + 60° = 120° and a + B = 30°. In isosceles triangle
Brp, 2at 60° + 2(angle ¢DB) = 180°, so angle ¢DPB = 60° - a. Thus,
angle DBE = a and triangle ABP is isosceles with AP = BP and angle APB
= 120°, It remains to prove that AP = PQ. Since angle APB = 120° -
angle DPC, quadrilateral DPCQ is cyclic and angle a = angle DCP = angle
pRP = angle y. Hence, triangle APQ is isosceles and AP = PQ. This
proves that P is the circumcenter of triangle ABQ.

It should be noted that Theorem 5 holds if point E falls outside the
equilic quadrilateral. The reader is encouraged to carry out the proof
in the case of a non-convex isosceles equilic quadrilateral.
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The proof of the followng corollary is left as an exercise for the
reader .

Conoflany. The opposite angl es of an isoscel es equilic quadri-
lateral are intheratioof 1:2.
The next fewtheorens are of a nore sophisticated nature.

Theonem 6. |If equilateral triangles PAD, @C, and RBC are
erected on consecutive sides AD, DC, and ¢B of equilic quadrilateral
ABD , exteriorly on side €D and on AD and interiorly on side 3¢, then
triangle PQR is equilateral. (By symmetry, the result holds if the
rol es of AD and B¢ are interchanged).

FIGURE 6
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Foof. Angle gcr = angl e peB since both are equal 60° + angl e DR
Angle PDQ = 360° - 120° - angl e ADC
= 2480° - (360° - angle A - angle B - angl e DCB)
= 240° - (2u0° - angle DCB) = angle DCB = angle QR -

Aso, @ = (Dand DP = CR, so that triangles PQD and RQC are congruent .
Snce a 60°rotation about point- Qcarries triangle PQDinto triangle
RQC, it follows that angle PQR = 60° and that triangle P97 is equilateral.

*Theonem éa. |f equilateral triangles are erected exteriorly on
sides DA 43, and BC of equilic quadrilateral ABCD,, then their third
vertices are vertices of an equilateral triangle.

Proof. The proof is sinilar tothat of Theorem6. Let the
appended equil ateral triangl es be RAD, PBA, and QOB, then RA = @B,
AP = PB and angle R¥P° = angle (BP = 120° + B. Therefore, triangles
AR and KRB are congruent and a 60° rotation about P carries one into
the other. Snce PR = PQand angle RPQ = 60°, triangle PQRis equilateral.

Theorem 6b. |f equilateral triangles ge¢, PCD, and RDA are erected
interiorly on sides BC, CD, and DA , respectively, then triangle PQRis
equil ateral .

Froof. Ve have PD : PC, DR = QQ and angl ePOQ: angl e PDR=|120°
- angl e 4pgl, so triangles PDR and PCQare congruent. Again, a 60°
rotation about P carries one into the other and we argue as before.

Theorem 7. |If ABCD is an equilic quadrilateral and if equilateral
triangles are erected as foll ows: PCA on the sanme side of CA as B, @BD
on the same side of BDas A, and RBA exteriorly, thentriangle PR is
equil ateral .

Proof. A60°rotation about B carries ADinto @ and a 60°
rotation about 4 carries g7 into B¢. It follows that QR = PRand the
angl e between themis 60°.

Theorem 7a. |f Pc4, @CD, and RBD are equil ateral triangl es erected
anway fromside BA of equilic quadrilateral ABOD, then P, @, and R are
collinear.

Proof. By Theorem3, a 60° rotation about A carries PQ into CB
and a 60° rotation about B carries ADinto R S nce AD and B¢ i ntersect

* Again | nust thank the referees for Theorens 6, 6a, and 6b.
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Deginition. The side AB of the equilic quadrilateral ABCD is

D called the base.
C . A most interesting hexagon results when an equilic quadrilateral
@ isreflected in the line containing its base.
l Theonem & An equilic quadrilateral reflected in the line of .

its base forms a hexagon with the property that if equilateral triangles
are erected exteriorly on any three alternate sides, then their third

vertices form an equilateral triangle.

FI GURE 7

at 60°, the result follows.
We offer a second proof of Theorem 7 since this method of proof

is useful in proving a later theorem and is interesting in itself. W FIGURE 8 \
will employ vectors in the complex plane and make use of the following ﬁ P

Proof. Let C' and D' be the reflections of C and D, respectively,
inline AB. A 60° rotation about P takes PC'Bg into PD'AR and, there-

facts:

]

1. If v is a vector, thenw» represents the same vector rotated
120° in the counterclockwise direction, where w represents a fore, Q into R since angle PC'B = angle ¢ *+ 60° = angle PD'A and angle
cuberoot of unity. C'BQ = 120° t angle A = angle D'AR.

2. u3=1,1+w+u 2_ 0. The reader is encouraged to investigate whether Theorem 8 holds

> 2 if the word interiorly replaces exteriorly.
Proof. LetA_E=pandB-E'=q, thenD-Z:mq,BR:mp andR?l=wp. y rep y

Since &£ =p +q, then A = wp T wy and CP = sz + . NOTE: |t has been pointed out by one of the referees that

Since DB = p +wg, then ¢b =mp+m2q and BQ = Luzp +q. "Problem 3524 [ 1932, page 559 ] of the American Mathematical Monthly

I't follows that P = FA - P4 =-wg, and that Pg = PA + AB + BQ states: To the vertices of an equilateral triangle ABC |l et there be
=wpr+wq +ptq+ m2p hinged three equilateral triangles 4k¥, BNR, and CPQ of any sizes and;‘
= (m2p +twp +p) + (wg +q) = -wzq. positions, all four sensed counterclockwise. Then the midpoints of the

Thus, P'Eg = m(R?), which proves the theorem. segments in the trio (RP,KQ,MN) form a counterclockwise equilateral

triangle. Counterclockwise equilateral triangles are also formed by the
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m dpoi nts of segnents in each of the trios (BQ, CV, RP), (X8, M\, RA)
and (4P, KQ, cM).

In Figure 8, triangle PQR has three equilateral triangl es RAD,
pc'pt and QCB hinged to its vertices. Problem 3524 appliestothis
figure, so the mdpoints of CO, ® and ¢'B forman equilateral tri-
angle. By symetry, so also do the mdpoints of ¢'p', AD, and CB."

Theonem 9. The equilateral triangl e formed by joining the mid-
poi nts of the diagonal s and the mdpoi nt of side AB of equilic quad-
rilateral ABCD and the equilateral triangle PQR of Theorem7 are per-
spect i ve.

FIGURE 9

Proof. In the second proof of Theorem7, we have shown t hat
RP = - wg, BQ = -w2q, and 98 = - g. NowLMis parallel to and equal to
one-hal f of BC therefore Ii = - 1/2¢ and LMis thus parallel to R
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Snilarly, KMis parallel to and equal to one-half of DA  Therefore,
& = -1/2wqg and KMis thus parallel to RP. It follows that QPis paral -
lel to LK conpletingthe proof of the perspectivity of triangl es PQR
and KLM

Surely, the reader can find additional properties of this prolific
equilic quadrilateral. But we turnto a matter of perhaps greater sig-
nificance. A nost interesting procedure that |eads to the discovery of
newresults and to sinple proofs of knownresults is to allowa figure
to degenerate to a fanmiliar figure and to observe the properties as they
transformafter the degeneration. This wll beconme clear, and the reader
will bein a better positionto appreciate the advantages of this nethod
of discovery, after a fewillustrations.

Example 1. Let equilic quadrilateral ABCD degenerate into a
300, 60°, 90° right triangl e where angl e BCD = 180° with C the nidpoint
of the hypotenuse, then the equilateral triangle erected interiorly on
AB and that erected exteriorly on DC have the same vertex.

Proof.  The proof follows i mediately from Theorem3. See Figure
10.

FIGURE 10

Exampfe 2. sing the sanme degeneration and appl yi ng Theorem 2,
we get diagonal AC = CD = 1/2BD.
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Example 3 Using the same degeneration and applying Theorem 7,
we get an interesting theorem about a 30°, 60°, 90° right triangle. f
equilateral triangles are erected on AC, BD, and AB in the directions as
in Theorem 7, then their vertices are the vertices of an equilateral tri-

angle.

Example 4. Again with the same degeneration, we obtain another
interesting result about a 30°, 60°, 90° right triangle by applying
Theorem 4. The midpoint of the hypotenuse, the midpoint of the median
to the hypotenuse and the midpoint of the side opposite the 60° angle
are the vertices of an equilateral triangle.

Other degenerations can be made with interesting consequences.
Thus, if we allow equilic quadrilateral ABCD to degenerate so that angle

ABC = 0°, as in Figure 11, some novel theorems emerge.

120°

FIGURE 11

Exampfe 5 The lines joining the midpoints of AC and pB with the
midpoint of either AB or €D form an equilateral triangle. The proof fol-

lows from Theorem 4. See Figure 11A.

FIGURE 11A
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Furthermore, as in Tigure 12, we can degenerate our figure into
a negative equilic juadrilateral and consider the properties of this

figure.

D

FIGURE 12
I't should be noted that the angle at B is negative in this case
Finally, we can consider the equilateral triangle itself as a degenerate
equilic quadrilateral, with DC = 0. Again, applying the properties of
the equilic quadrilateral, some well-known facts about the equilateral
triangle pop out without effort.
We hope that we have convinced the reader that the equilic quad-

rilateral deserves a place alongside the well-known quadrilaterals.

REFERENCES
1. N. A. Court, College Geometry, Barnes and Noble, N.Y., 1960.
1. M. Yaglom, Geometric Transformations, Random House, N.Y., 1962.
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ADVENTURES IN (COMPUTERIZED) TOPOLOGY
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il A




332

SUMMARIES OF CHAPTER REPORTS

ARKANSAS BETA (HENDRI X COLLEGE) The Chapter had its usual very active
year with the following presentations:

Sandra Cousins, Hendrnix College; "A Report on the Suimmer Meetings
in An Arbor"

Gene Weber, Southern Methodist; "Operations Research: Graduate
Study, Applications, and Employment Opportunities”

Ben Schumacher, Hendnix College; "Polarimetry and the Clouds of
Venus”

Dn. Richand RollLeigh, Hendrnix CoflLege; "The Calculus of Variations
and the Brachistrochrone ProblemV

Jerry Coker, Hendrnix College; "Mathematical Games'

Sandna Cousins, David Sutherland, Carof Smith, Hendrix Coflege;
"The Development of the Mathematical Method"

Dn. Boris Schein, Univ. of!Arkansas; "Mathematics Education in
the Soviet Union"

David Sutherland, Hendrnix College; '"Non-Linear Derived Functions!

Sandra Cousins, Hendnix Coflege; " Infinite Compositions”

Ben Schumacher, Hendrnix Coflege; "Exponential Calculus"

Canof Smith, Hendrix College; "Infinite Surs of Derivatives"

Dr. Jag McDaniel, Hendrix College; "Religion and Mathematics"
The Chapter hosted the Sixth Annual Conference on Undergraduate Mathe-
matics on April 10-11, 1981 in which there were thirty-six student speakers
and talks by six prominent mathematicians. Awards were won in the follow-
ing categories:

McKenry-Lane Freshman Math Award: Karen Cosnefl, David MeCalfum

Hogan Senior Math Award: Sandta Cous.ins, Mike Pinter

Phillip Parker Undergraduate Research Award: Pavid Sutherland

GEORGIA BETA (GEORGIA INSTITUTE OF TECHNOLOGY) The Chapter
presented book awards to The Outstanding Graduates in Mathematics:

John J. Caittenden Holly Beth Shulman
Brenda Jean Knowles Hon Wah Tom
Lynn Marie Ramsey
GEORGIA GAMMA (ARMSTRONG STATE COLLEGE) The heard the following
papers at regular meetings:

Dn. Netherton, Anmstrnong State.; "An Algorithm for Computer Science
Problem Solving"

Stephan Suchower, Aumsirong State.; "In Pursuit of a Prime Number
Generator”

Dr. Charnles Shipley, Aumstrong State.; "Paradoxes In and Around
Mathematics"

Andrew Zeigler, Anmsirong State; "Contract Programming”

Stephan Suchower, Anmstrong State; "Theory of Superconducting
Magnets*

Dr. Richard Summerville, Chiistopher Newpont College; "The Mathe-
matical Context"

The award for The Outstanding Senior in Mathematics was given to Stephan
Suchowen.

ILLINOIS ZETA (SOUTHERN ILLINOIS UNIVERSITY-EDWARDSVILLE) The
Chapter sponsored the Regional Illinois Council of Teachers of Mathematics
High School Competition. They also organized a used mathematics textbook

sale for the university with many of the books donated to area high schools.

IOWA ALPHA (IOWA STATE UNIVERSITY) Activities included the following
talks:

Prof. Jernold Mathews, ITowa State.; "Ancient Mathematical Models"

Prog, James Connette, lowa State; "Polymomial Approximation"

Prof. Richarnd Sprague, Towa State.; "Construction of Regular Polygons”

Joyce Schneider, Honeywell; "The Uses of Mathematics i n Industry”

Prof. James Carnlson, Univ. of Utah; '"Prime Numbeas and Codes”
Departmental awards were presented as follows:

Outstanding Achievement on the Putnam Exam: WilEiam Somiky

Pi Mu Epsilon Scholarships: John Klem, Sudirman Maulim

Dio Lewis Holl Award: Lee Roberts

Gertrude Herr Adamson Awards for demonstrated ingenuity in Mathe-

matics:
Potten Barbara Rus
William Somsky Phillip McKinley
Steven Seda McGraw
Gregony Anderson Johnson

LOUISANNA DELTA (SOUTHEASTERN LOUISANNA UNIVERSITY) During the
past year the Chapter heard the following presentations:
Dn. Billy Joe. Hofmes, Nichofls State; "PERT

Dale Nasser, Southeastern Louisanna; "The Effects of Projecting
Two Mutually Perpendicular Simple Periodic Mations on a Sereen”
In addition, the following awards were presented:

Thomas K. Maddox Pi Mu Epsilon Award: Nancy Gautier, Frederick Day
Margo David Award: Jari A. MeGee



MINNESOTA DELTA (ST. JOHN'S COLLEGE) The Chapter sponsored the
Mathematics and Humanities Conference on April 30 and My 1. The Confer-
ence had guest lecturers: Donis Schattschneiden, Leonard Gillman and
Donald Koehter plus papers by undergraduate students.

MISSOURI GAMMA (ST. LOUIS UNIVERSITY, FONTBONNE COLLEGE, AND
MARYVILLE COLLEGE) The Chapter had an active year with papers and
presentations as foll ows:

Sisten Harrniet AM Padbeng, Maryville College; "A Mathematical Modd:
A Historic Note; The James E. Case S.J. Memorial Lecture

Prof. Robent Hogg, Univ. of Iowa; "Size of Loss Distribution” and
"Statistics, Acturial Science and the Future”

Susan Burns, Culver-Stockton Coflege; "A Mathematical Look at Tonality"

Robert Gregory, SIU-Carbondale; "A Look at Solving Differential
Equations Using a Seperation Of Variables Technique"

Michaet Mgy S.J., St. Louis Univ; "Sme Sars of Sars and the Calculus
of Finite Differences"

Steven Lazorchak, SIU-Carbondale; "Sinusodial Steady-State Analysis
of Electrical Circuits Using the Phasor Concept"

Freny Desai, SIU-Canbondafe; "ProgramVerification"
Barney Smith., St. Louis University; "Magic Cards, Squares and Cubes'
Prasanna Balakantala, SIU-Carbondale; "Microprogramming"
Michael May, S.J., St. Lowis University; "Notions of Infinity"
Jagdish Singh, SIU-Carbondale; " Bit Slices i n Microprogramming”

The Chapter's award presentation list is quite extensive and incl udes:
James W. Garneau Mathematics Award: Thomes Blackwetl
Francis Regan Scholarship: Méchael May, S.J.
Missouri Gamma Undergraduate Award:  Jeqnne Dulle
Missouri Gamma Graduate Award: Mark Hopf§inger

The Pi Mi Epsilon Contests: Senior Winner: Daniel Kirner
Junior Winner: James Shamess

John J. Andrews Graduate Service Award: Kara Ryan
Beradino Family Fraternityship Award: Michael May, S.J.

NEW JERSEY DELTA (SETON HALL UNIVERSITY) The Chapter held two
meeti ngs whi ch were probl emsol vi ng sessi ons conduct ed by John Saccoman.

NEW YORK EPSILON (ST. LAWRENCE UNIVERSITY) The Chapter sponsored
the 37th annual Pi Mu Epsilon Interschol astic Mathematics Qontest. The
Chapt er nade t he fol | owi ng awar d:

The 0. Kenneth Bates Award: Denise Martinez

335

NEW YORK ALPHA ALPHA (QUEENS COLLEGE OF CUNY) The followi ng
tal ks were presented:
Vh. Joel Stemple, Queens Colfege; "The Four Color Problem"

Steven Kahan, Queens College; "Alphametics: Letters Wheare the- Numbers
Ought to Be'.

The Pi Mu Epsilon Prize for Excellence in Mathematics and Service was
won by Joel Kreitzer and Wendy Carnel.

OHIO NU (UNIVERSITY OF AKRON) The Chapter awarded a prize to
Kendatf Cmey for Excellence in Mathematics.

OKLAHOMA GAMMA (CAMERON UNIVERSITY) Anmoung their many activities
the Chapter heard the fol | owi ng paper:
Dn, William Ray, University of, OkLahoma; "Discrete Predator-Prey
Problems”.
PENNSYLVANIA NU. Amoung the various tal ks presented were the foll ow ng:
James Watson; "Iteration Techniques"”
Dr. John Lane "Number Density"

SOUTH CAROLINA GAMMA (COLLEGE OF CHARLESTON) Chapter nmenbers

are very invol ved on the col | ege canpus and i n the surroundi ng comunities.
Sone of the nenbers are currently involved in a Junior high school project
where they teach sixth, seventh and ei ghth graders howto use conputers.
(ne of the menbers is hel ping to prepare packedts for Conputer Assisted
Instruction in Mathenatics. Several nmenbers do vol unteer tutoring for

the Charleston County PATHE program The Chapter sponsored the 4th

Annual Math Meet with over 600 hi gh school students parti cipating.

SOUTH DAKOTA BETA (SOUTH DAKOTA SCHOOL OF MINES AND TECHNOLOGY)
The Chapter constructed a What Math @ 1 Take brouchure for distribution
to state high schools. The fol | owi ng papers were present ed:

Prof. Reger Opp, S/AVIST; "A Classification of Projectile Paths”

Prof. David BallLew, SDSMET; “Employment Opportunities!

Prof. AL Grimm, S/AVIST; "The Cubic Equation”

Dn. Francis Flonrey, Univ. of Wisconsin-Superiof; "Generalized Inner
Products With Applications ot Fourier Series"

Janet Potts, S/SMSI. "Roboties"

Dean Mogck, S/OVIST; "An Application of Gave Theory in Taking Tests”
Leon Nelson, S/IVIST; "On Trisecting the Angle”

Gary Ricard, S/SMIST, "Parametric Methods i n Computer Graphics'




Brian Bunsness, SDSMET; "Analyticity and Taylor's Series”
Collean Quatier, SDSMST, "The Evolution of Computer Languages'

The Chapter sponsored the Annual West River Mathematics Contest for High
School Students, and initiated the South Dakota Collegiate Mathematics
Contest won by Northern State College.

THE SMMVER MEETING OF Pl MU EPSLON, 1981

The following papers were presented at the Summer Meeting i n Pittsburgh:

Beth Snyder, Miami University; "Introduction to Box-Jenkins Time
Series”

Dean Mogck, S. D. School of Mines and Technofogy; "Stokes’ Theorem
For Quaternion Integral Operators"

Dean Shea, St. John's University; "A Look at Formal Theory"

Edward D. Lowry, Western Washingiton University; "An Approximation
to the Normel Distribution™

Bro. Llonginus Anyamwu, Monrgan State. University; "The Gamma Function
and Extensions"

Ravi Salgia, Loyola University; '"Dirichlet Integrals and Their
Applications”

Brian Sumner, University of Denver; "Transformation Of Computer
Programs into Functions'

Robert Kear, East Carolina University; "A Complex Parabola in Four
Dimensions”

Margaret R. Wallace, Miami University; "Using the Mehod of Maximum
Likelihood Estimation i n Genetics"

Kevin Say.eb/w, Pomona Coffege; "Rubie's Magic Cube’

James F. Goeke, S.J., St. Louis University; "Descartes: Philosopher
or Mathematician?"

Dean Follmann, Noathern TELinois University; "A Non-Parametric
Multiple Comparison Test for Differences i n Variances"

Brian Bunsness, S. D. School of Mines and Technology; "The Relations
of Differentiable Functions and the Power Seriesh

Donna 1. Ford, Miami University; "Mazes and Their Passage"
ELias Kosmas, Oklahoma State University; "Mathematical Analysis of
Inflation"
The J. Sutherland Frame Lecture

Progesson E. P. Miles, Jn., Florida State University; "The Beauties
of Mathematics Revealed i n Color Block Graphs'
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PUZZLE SECTION I
tdited by
David Ballew

This Department i s for the enjoyment of those readers who are addicted
to working crossword puzzles or who find an occasional mathematical puzzle
attractive. V¢ consider mathematical puzzles to be problems whos solutions
consist of answers immediately recognizable as correct by simple observation
and requiring Zittle formal proof. Material submitted ahd not used here

will be sent to the Problems Editor i f deamed appropriate for that Depart-
ment.

Address all proposed puzzles and puzzle solutions to David Ballew,
Editor of the Pi Mu Epsilon Journal, Department of Mathematical Sciences,
South Dakota School of Mines and Technology, Rapid City, South Dakota,
57701. Deadlines for puzzles appearing in the Fall issue will be the
next February 15, and pussies appearing i n the Spring issue will be due
the next September IS.

Mathacrostic No. 13
submitted bq Joseph D. E. Konhouser
Macalesten Coflege, St. Paul, Minnesota

Like the preceeding puzzles, this puzzle (on the next page) is a
keyed anagram. The 248 letters to be entered in the diagram in the number-
ed spaces will be identical with those in the 29 keyed words at matching
numbers, and the key letters have been entered in the diagram to assist
in constructing your solution. Whe completed, the initial letterswill
give a famous author and the title of his book; the diagram will be a
quotation from that book. (See an example solution in the solutions

section of this Department.)

Cross Wod Puzzle
submitted by ALexander Mehaffey Jh. and Cunt OLson
The University of South Dakota.

This crossword puzzle (three pages forward) is a standard crossword
puzzle with a mathematical flavor.



1 R|2 G|3 Jl4 b}s Il6 Y|7 v 8 9 B 10 uj11 12
13 0|14 P|15 F|lé L|17 H|18 A 19 E|20 21 1|22 cf23
24 W|25 V|26 Q 27 R|28 X|29 P|30 N 31 U|32 J|33 z|34 35
36 A 37 E|38 D|39 T 40 Y|41 B{42 43 D|44 N 45 46
47 P|48 F|49 c|50 b{51 A|52 U 53 54 F|55 L|56 R 57
58 X|59 H{|{60 a|6l T|62 J|63 P|64 V|65 L 66 Ni67 O© 68 69
70 N}71 Fl72 Al73 L|74 G 75 X{76 1|77 78 b}79 H|80 O 81
82 R|83 N 84 T|85 H 86 C|87 A|88 89 2]90 D}9l 92
93 ¢ 94 JJ95 C|96 R|97 U 98 G99 100 B|101 b|102
103 M}104 AJ105 C|106 U|107 Q]108 F|109 z[110 H|11ll 112 Y|113 O 114
115 c|ll6 C 117 L|118 F|119 0120 a|l2l s|122 123 Ljl24 T 125
126 X|127 G|128 R 129 Aj130 E|131 W}132 X133 134 J]135 N|136 U|137 138
139 H|140 L|141 2z 142 P|143 K|144 J|145 I|146 147 F|148 a|149 C|150
151 G|152 2z 153 D|154 b}155 A|1l56 F 157 158 E 159 Ujle0 161
162 T|163 L|164 F|165 P|166 S|167 H|168 c 169 170 a|171 bj1l72 L|173 174
175 P|176 O}177 C 178 N|179 B|180 Q181 182 K|183 G|1l84 185
186 D}187 s|188 W{l89 J 190 A|191 M|192 193 H{194 K|195 c|196 197
198 Y199 z 200 Q201 P|202 K|203 J|204 2 205 B|206 C{207 U 208
209 X{210 J|211 A {212 H{213 b|214 I 215 p|2le6 217 C|218 L 219 220
221 D 222 A 223 N|224 T|225 1)226 H|227 C|228 229 s|230 P|231 G 232
233 F|234 5235 T|236 M 237 D238 2]239 Q|240 241 Y|242 S|243 R 244
245 v |246 F |247 b|248 N

pefinitions Wor ds
A a ball-and- socket joint S
104 18 51 211 155 87 36 72 129 222 190
B. a redundant account — s e
41 23 179 205 9 100
c. anal ysis which admts infinitely .
smal | quantities (comp.) 206 46 20 227 86 95 149 177 217 105 116
D. §. European clinbing plant bearing
fragrant flowers (2 wds.) 186 153 43 99 90 237 221 38
E. "The laws of nature are but the
mat hemat i cal of Cod. " 184 220 19 130 150 37 158 102
Kepl er
F. spiral with polar coordinate _——_———— — — — — — — — —
equation a = rcos3(9/3) 15 174 108 156 71 147 196 54 233 118 164 48 246
G providing aid or direction in the
sol ution of a problem 98 231 151 2 42 74 127 183 208
H. Cauchy's single-limt analysis
110 193 226 139 167 17 85 79 212 59 244
I. a nunber greater than half of a
total 160 114 145 225 76 5 21 214
J. creative power (2 wds.) e o —— e e e e e
210 94 3 134 144 32 203 173 189 62
K. heating elenment (plug) in a _—— —
Di esel engine 202 194 143 182
L "Al'l human know edge thus begins
W th . Kant, critique of 55 172 117 73 16 218 123 140 65 163
Pure Reason (followed by 2 and b)
M. one of Thorn's seven el enentary
cat astrophes 12 191 236 103
N. Cantor discard (2 wds.) e e e
223 125 44 83 135 248 178 91 66 70 30
0. specialist in diagnosis and treat-
nent of non-surgical diseases 228 67 45 13 119 176 157 80 113
P. systematic or random repetition
47 92 14 230 165 142 175 215 63 201 29
Q polygon divisible into congruent
ones simlar to it (comp.) 239 26 161 53 180 200 107
R. perfectly sinple (comp.) e e e
128 192 88 96 69 82 1 56 27 137 243
s. mani pul ative puzzle rage of the
1980's (2 wds.) 133 187 229 77 234 181 242 146 166 121
T. contrary; antithetical [
84 224 61 162 39 8 124 235
u. nonsense; sonething trivial -
(coB-~.) 106 159 122 97 52 31 240 81 10 207 136 197
V. "father" of descriptive geonetry
(1746-1818) 232 64 25 7 245
W. truncate o
188 216 24 131
X its ears are its radiators [,
132 209 ss 75 34 28 126 169
Y. in De Thiende (1585), he intro-
duced decinmal fractions for gen- 198 40 241 68 112 6
eral purposes (1548-1620)
2. "proceeds thence to " I
(follows L, followed by b) 204 89 141 33 238 152 109 199
a. Dani sh poet, designer, inventor
of Hex and Soma Cube, b. 1905 170 60 148 120
b. "and __ ." (follows 2, 3 wds.)
50 78 111 138 4 154 213 185 171 57 35 101 247
c. carrying back e o
93 195 49 11 22 168 115 219



Across

1 e/d ) 29. Initials of 12 down i n phone book.
2. Symbol for the population mean 30, Norwegian mathematician

4. Usd in ealeulus proofs 32. Sometimes cast out

9. Killed in a duel (initials) 33. Eleven across goes over this

10. XXIV hours (without vowel)

11, ?ﬁ]'- y 34. Professional Organization (ab)
14. it 0}‘ length 36. Cantor's concept
16. Ore element of a set 38. Hes minimal area amoung the 50. (ab)
17. Possible nickname for a popular 39. Gauss first name
Caleulus book. _ 40. Three i n cards
18. Above X indicates a simple mean 41, Moebius strip has but one
19. xz + yz + 22 _ a2 42. Connective
22. Greek Letter 44, x dy = y dx (ab)
24. Doughnut 45. Perfect score
27. Vertex . 47. Student's distribution
28. Irrational number (archaic) 48. The "Sasher"

341

Down

1. Conic Section 25. Multiplicative ldentity

2. Operation in Lattice Theory 26. First perfect number

3. Calculus i s taken by the (ab) 27. Bo's number -
4. Every journal needs one (ab) 31. A critical edge of a graph'
5. The 1981 Meeting wes in this 34. Ph.D. -1

state (ab) 35. Projective geometry received
This puzzle has little of this impetus from this area
A mathematician wrote this to 36. Fourth year of college (ab)

communicate results to others 37, Type of engineer (ab)

before journals 38. A step then a (ab)
8. Product of a complex number and 39. Elliptical orbits (possible

i ts conjugate nickname for proponent)

12. Isaac Newton was called this 40. Connected graph with NO cycles
13. Mathematician's Organization 42. Not even

No

15. Transposition of breakfast 43. Nube to Pythagorean
cook's order (ab) 45. First "female" number
20. Mm of triangle fare 46. Oe to a cireuit

21. Unit of length

22. Published first non-Euclidean
geometry (initials)

23. Positive direction of y-axis

SOLUTIONS
Mathacnostic No. 12. (See Spring 1981 issue) (Proposed by J.D.E. Konhausen)

Definitions and Key:

A. Left bower H. Student 0. Raw data V. Entwine
B. Algorithm 1. Paving P, Ore two three W. Arbelos

C. Not in your eyes J. At the bath Q. Ululant X. Grapevine
D. Catastrophes K. Clifford R. Gnomon Y. Ephemeris
E. Zermelo L. Ether S. Half hitch Z. Swineshead
F. Octahedron M. Two handles T. Troytown

G. Stone N. Hyades U. Humen mind

First Letters: Lanczos Space Through The Ages

Quotation: The observations are the paimany thing. Then comes the.
theory. Little would he have guessed that a few years Later he himself
would be Plato's astronomer who gazed down xather than up and by con-
temptation gfound the .inner meaning of Newton's Law and its correction.

Solved by: Jeanette Bickley, Webster Groves High School, Missouri; Louis
H. Cairoli, Kansas State University; Victor G. Feser, May College, Bismark;
Robert Forsberg, Lexington, Mass.; Robert C. Gebhardt, Hapatcong, NJ;

Roger E. Kuehl, Kansas City, MO; Henry S. Leibennan, John Hancock Mutual
Life Ins. Co.; Robert Prielipp, Univ. of Wisc. at Oshkosh; Sister
Stephanie Sloyan, Georgian Court College; the Proposer and the Editor.
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Cross Number Puzzfes: (See Spring 1981 Issue) (Proposed by Mark Tsaak)

Sogved by: Dm Essig, Houstion, Texas, Victor G. Feser, May College,

Bismark; Martha Hasting, St. Louis University; Murray Katz, Penn State

University; Roger Kuehl, Kansas City, Mo; The Proposer and the Editor. PROBLEM DEPARTMENT
Edited by Cayton W. Dodge

University of Maine
* and
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S This department welcomes problems believed to be new and at a
s |§ eErerre g feme g level appropriate for the readers of this journal. Old problems dis-
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= . Problems For Solution
M 498. Phopobed by R. S. Luthar, University of Wisconsin, Janesville.
S © * 7] L G C =) = W : i
LS e & |m ofaTa’ [ o | Find the general solution of
Dl el Bl Lol w [or |~ 0" o o [ro fw ~ |w o o] 3 3
F e = . x° ty” t3xy =1
[l - &I I e | o ls o |lv kn b o Iv |e o vo“
. ~ oo e [N @« [=le prees P B 499. Proposed by Vision. G. Feser, Mary Cortege, Bismarck, Nonth
Dakota..




The array below is defined by the following properties:
i) The entries are distinct positive integers.
ii) In ecach column, the entries are consecutive integers, top to
bottom.
iii) In each row, each integer (except the first one, of course)

is a multiple Of the integer at its left.

1 7 511
2 8 512
3 9 513
a) Find a fourth column for this array
b) Find the minimal fourth column for this array, and show
it is minimal.
c) Construct an array of 4 rows and 4 columns with the same
properties. Is it minimal?

500. Proposed by Chuck Afeison and Peter Chu, San Pednro,
Califonnia.

A condemned prisoner is given a chance to escape execution. g ijs
given two boxes capable of holding sixteen bottles each, and is required
to place eight bottles of water and eight bottles of clear poison in

those boxes leaving no box empty. He will then sammon the guard who
will then pick one box at random and then select a bottle from that box

which the prisoner must drink. Hw should the prisoner arrange the
bottles in the two boxes to maximize his probability of survival, and

what is that probability?

501. Proposed by Robent C. Gebhardt, Pansippany, NV Jersey.
A rectangle is inscribed inside a circle. The area of the circle
i s twice the area of the rectangle. \Wha are the proportions of the

rectangle?

502. Proposed by Robent C. Gebhardt, Parsdippany, New Jmey.
k k k k

Consider 2"+ 2 =17+ 3 for k = 1,
and 2k+2k+2k=1k+lk+lk+3k for k = 1,2.
Complete the equations
2k+2k+2k+2k:? for k = 1,2,3,
and 2= 9 for k = 1,2,3,u4,

3us

where the left side is a function of Qk only, and the right side is a

function of 1k and 3k only.

503. Proposed by Gregony Wulezyn, Bucknell University, Lewisbung,

Pennsylvania. 2 2 2
Find the equation of the ellipsoid %— + % + — =1 with minimum
a b e

volume which shall pass through the point p(r,s,t), 0<r<a, 0 < s<b,
0<t<e.
504. Proposed by Charles W. Tnigg, San Diego, California.

In the square array of the nine non-zero digits

9 2 6
4 1 7
8 3 5

the am of the digits in each 2-by-2 corner array is 16. Find another

arrangement of the nine digits in which the sam of the digits in each

corner array is fivetimes the central digit.

505. Proposed by John M. Howele, Littlerock, California.

A baseball team has all .300 hitters. They never steal a base,
get picked off base or hit into a double play. A men on base advance
only one base when there is a hit.

a) Wha is the probability of this team getting one or more runs

in an inning?

b) Wha is the expected number of runs scored by this team per

inning?

506. Proposed by Mowris Katz, Macwahoc, Maine.

"The addition cryptarithm I N + THE = MOOD is not difficult, but
the solution cannot be unique because N and E can be interchanged, and
socan |l and 4."

"Even taking account of those interchanges,” his friend replied,
"there are still many different solutions."

"That is so,"” agreed the first, "but let netell you the value of
one of those four letters."

I could not hear the letter and the value he whispered to his
colleague, but the reply was quite clear. "Ah now the solution is
unique except, of course, for the interchange of the two letters of the

other pair, and it uses every digit that is an odd prime, too."
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507. Proposed by Herbert R Bailey, Robe Polytechnic Institute,
Tewie Haute, Indiana.

A unit square is to be covered by three circles of equal radius.
Find the minimum necessary radius.

508. Proposed by Bruce W. King, Bunnt HiLls, New York.

Whn Professor Umbugio asked his calculus class to find the deriv-
ative of y2 with respect to x2 for the functiony = a:2 = X, his nephew
Socrates Umbugio found % . -)% and obtained the correct answer. Help
the professor to enlighten his nephew about taking derivatives.

509. Proposed by Jack Garfunkel, Queens College, New Yo'ik.

Given a triangle ABC with its incircle I, touching the sides of
the triangle at points L,¥,N. Let P, Q, R be the midpoints of arcs ¥L,
LM, and MN respectively. Form triangle DB by drawing tangents to the
circle at P, Q, and R Prove that the perimeter of triangle DEF < peri-
meter of triangle 4BC.

Solutions

462. [Spring 1980; Spring 19811 Proposed by the. 2ate R Robinson
Rome.

A pilot down at Aville asked a native how far it was to Btown and
was told, "It's south 1500 miles, then east 1000 miles, or east 500 miles
and south 1500 miles.” Hw far was it directly?

Comment by Jimmy Griffith, Charlotte, North Carolina.

Once we know a, B, and y, we may find a at once by

cos ¢ = cos(% - B)cos(% -y) 4+ sin(% - B)sin(% -y)cosa

sin B sin ¥ + cos B cos y cos a,
so the rest of the featured solution on pages 268-269 seems unnecessary.
Late solutions were received from M KE CALL and GEORGE W. RAINEY,

JR.

474, [Fall 19801 Proposed by Scott Kim, Artificial Intelligence
Laboratony, Stanford Universdity.

Knotted path: Consider a 2 by 3 by 7 block of unit cubical cells.
Your task isto find a path moving from cell to adjacent cell, returning
tothe original cell so that the path traced is a 3-dimensional knot.
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Each cell must be visited exactly once; two cells are adjacent only if
they share a face.
Sofution by the. PROPOSER.

Number the elements on the lower level first row 1 to 7, second
row 8 to 14, and third row 15 to 21. To each of these element numbers

add 21 to get the corresponding element in the upper level. A path

then is
1- 8-28-36-15-16-17-10-31~32-33-40~
19-20-21-14- 7- 6- 5- 4- 3- 2- 9-37-38-
39-18-11-12-13-34-41-42-35-28-27-26-
25-24-23-22- 1.

See Figure 1.

Figure 1.

475. [Fall 1980] Proposed by Zebda Katz, Beverly Hifls,
California.

In the accompanying diagram OC is the radius perpendicular to the
diameter AB of the semicircle ADB ; FG is a half-chord parallel to 0C;
AF cuts ICin E Show that the sides of the triangle FOG are integers
if and only if DE/EC or its reciprocal is an integer.

D

A c G B

Comment by Morris Kata, Macwahoc, Maine.
It is easy to show that, if DE/EC isrational, then triangle F&G has

sides proportional to a Pythagorean triangle, and conversely, if triangle



orean; then DE/EC is rational.
Let ¢G = a,GF=b,CF=CA=CD=r,CE=x,ED=Yy,AE=u, andEF= V.
Then we have
r
r t+a
from similar triangles AEC and AFG  Then

br
r+a

X -
z, SO xr =

DE _y _r -z _r-br/(rta) _r ta-b

EC = x br/(r+a) b ?

so DE/EC is rational when a, b, and r are integral, establishing the

converse. |f DE/EC = p/q is rational, with p even, takem = q + p/2 and

n=p/2 and let a' = 2zm, b' = m? - n2, and r' = m° + n2. Then we have

2
r‘+a'-b'_m2tn2+21'n-rfrl+n_ m _ p
b - m- - n° m-n q°

but this Pythagorean triangle with sides a', b', and r' is similar to
triangle CFG.

It is easy to find counterexamples showing that the stated theorem
is quite false.

Counterexamples were submitted by RICHARD A. GIBBS, BOB PRIELIPP,
and ROBERT A. STUMP.

Editor's comment. Whm confronted with her mistake, the proposer
purred that "after all, rational and integral are almost the same thing."
Such pussy-footing evades the problem, but Zelda is a regular contributor
of high quality, so this is no catastrophe.

477.  [Fall 1980] Proposed by Solomon . Gofomb, University of
Southern Califonnia.

In the eleventh row of Pascal's Triangle, the first five terms
(1, 11, 55, 165, 330) have the property that each is an integral multi-
ple of its predecessor. |s there a row of Pascal's triangle where there
are eleven consecutive terms with this property?
Essentially similarn solutions were hecedlved grom JEANETTE BICKLEY, St
Louis, Missowri, MARK EVANS, Louisvilfe, Kentucky, ROBERT C. GEBHARDT,
Hopatcong, New Jeasey, W C. IGIPS, Danbury, Connecticut, KRISHNAMOORTHY,
Tnoy, New Yonk, ROGER E. KUEHL, Kansas City, Missouwni, HENRY S. LIEBER-
MAN, Boston, Massachusetts, BOB PRIELIPP, Univensity of Wisconsin-Oshkosh,
SAHIB SINGH, Clarion State College, Pennsyfvania, ROBERT A. STUMP, Hope-
well, Vinginia, KENNETH M. WILKE, Topeka, Kanrsas, and the PROPOSER.
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Since 2520 is the smallest number divisible by each of 2 through
10, the 2519th row is the first such row. Ary row numbered 2520k - 1,
k a positive integer. has this property. For k = 1, these elementsare

1, 2519, 2519 - 2588 , o519 . 2018 . 2317, ...

478. [Fall 1980] Proposed by Charlfes W. Trigg, Sun Diego,

Caligonnia.

PIGS = ROOT + ROOT + ROOTT,
but can only dig up a single solution when each different letter repre-
sents a distinct digit, and PIGS contains three consective odd digits.
Wha is the unique representation of the addition?
Solution by Kenneth M. Wilke, Topeka, Kansas.

Clearly neither T nor Scan be 50r 0, and R = 1, 2, or 3. 1aking
the statement that PIGS contains three consecutive odd integers true in
both senses, they must be (1, 3, 5),(3, 5, 7), (5, 7, 9) or their re-
versals, and the remaining digit of PIGS must be 6 or 9. O the 16
possibilities, only PIGS = 6357 yields a solution: ROOTS = 2119. If all
120 permutations of the 5 possible sets of numbers are tested, again only
the stated solution survives.

Atso solved by JEANETTE BICKLEY. DANIEL ESSIG, MARK EVANS, JACKIE
E. FRITTS, ROBERT C. GEBHARDT, W.C. IGIPS, ROGER E. KUEHL, KRISHNAMOORTHY.
BOB PRIELIPP, TAGHI REZAY-GARACANI, SAHIB SINGH, DALE E. WATTS, and the
PROPOSER.

479. [Fall 1980] Proposed by Herbert Taylor, South Pasadena,
California.

Prove that the following statement is true whenever 0 <r <n, or
else find a counterexample:

Given a 2n x n matrix of 0's and 1's, with each column sm equal
to 2r and each row aum equal to », it is always possible to mark 2n of
the 1l's in such a way that one 1 is marked in each row and two 1's are
marked in each column.

Solution by Robert Henderson, South Pasadena, California.

Let B = [4]4]. Then B is 2n x 2n with all row and column sums
= 2r. The theorem of Philip Hall shows that we can select 27 ones no*
two of which lie in the same row or column of B(e*8., H. J, KYSER,
Combinatorial Mathematics, p. 57). These 2n ones, as ones of A, satisfy
the conditions of the claim.
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480. [Fall 1980] Proposed by Richard |. Hess, Palos Verdes,

Califonnia. 11. Solution by Peten Szabaga, New York City.

a) Qi the large piece 8 1 a) Qi the figure along the dashed lines, turn the piecein the
at right into two pieces which | over right countercl ockw se 90°, and insert it with pi ece a as shown
can be reassenbl ed with pi ece D 3 :l 8- bel ow
ainto an 8 x 8 square. 8

b) [ the sane, using ij b ' ----------- D.- : 1.
pi ece b. M — - - ,

3 3 a s -
i Y
""" | gy I 1 i

1. Sofution by Rogen E. Kuehl, Kansas City, Missouri.

b) Qi the figure along the dashed lines, turn the piece in the

JL 13 lover right clockw se 30°, and insert it with piece b as shown bel ow
T[T —
i =y gL
ot 1 o T
L §
cur --- 1 L

PART A
ALso solved by DANIEL ESSIG, STEPHEN HODGE, STEPHEN L. SNOVER, and the

PROPOSER.

481. [Fall 1980] Pnroposed by Clayton W. Dodge., University of
Maine at Orono.

H_ Find all roots of the pol ynom al equation

- fep=r- 5_,4.:3 2

Ll «® - x° - uz" +5x> - ylw + 36z - 36 = 0,

LIL_...,_“ ~ given that it has two roots whose sumis zero.

‘-%- g —j Solution by Leo Sauve, Afgonquin Coflege, Ottawa, Canada.

L"L [ Let the two roots in question(which nust be nonzero) be ta. If

the given equation is denoted by f(x) = 0, then *a are al so zeros of

curT  --- PART B

F@) - f-m) = -2a(+3) (2-3)(a+4).
Synt hetic division soon yields f(+3) = f(x2¢) = 0 and
flz) = (m+3)(x-2)(x2+u)(x2-x+l).
The roots are #3, *2%, and l%ig .



Also solved by J. ANNULIS, FEANETTE BICKLEY, DAVID DE.SESTO,
DANIEL ESSIG, MARK EVANS, JACK GARFUNKEL, ROBERT C. GEBHARDT, W. C.
IGIPS, RALPH KING, JEAN LANE, HENRY S. LIEBERMAN, JAMES A. PARSLY, BOB
PRIELIPP, TAGHI REZAY-GARACANI, SAHIB SINGH, ROBERT A. STUMP PETER
SZABAGA, KENNETH M. WILKE and the FROPOSER

482. [Fall 19801 Proposed by Ronald E. Shiffler, Geongia Sate.
Univernsity.

Let X be a continuous random variable having a uniform distribution
with domain [a,b] and mean and standard deviation represented by p and
o, respectively. Verify that P(u- 20 Sx<pt 20) = 1
Solution by Bob Prielipp, University of Wisconsin-Oshkosh, Wisconsin,

It is known that u = (a+b)/2 and o2 = (b-a)2/l2 [see Table 4.1
on p. 83 of LINDGREN AND MCELRATH, Introduction to Probability and
Statistics, The Macmillan Co.,, Nav York, 19591. |t follows that 2g =
(b-a)/¥/3. Because u is the midpoint of [a,b], |X -u| < (b-a)/2. But
¥3<2 so 1/2 < 1/v3 and hence (b-a)/2 < (b-a)/¥3. Therefore |¥ -u| <
(b-a)/¥3 = 20 soP(u- 20sX¥<pu t 20) = 1.

ALso sofved Dy DANE. ESSIG, MARK BVANS ROBERT C. GEBHARDT, JOHN M.
HOWELL, W. C. IGIPS, HENRY S. LIEBERMAN, SAHIB SNGH, and the PROFOER

483. [Fall 19801 Proposed DY Paul Erndos, Spaceship Earth.
Let n, be the smallest integer for which un(un+ 1) = 0(mod n).

Prove 2——— < w
W, W, + 1)

Sofution hy Trwin Jungreis, No. Woodmere, NV York,

VW have o
; u(u+l) Zz(mi-l)

where A'L i s the number of values of »n for which © = M.+ From the defi-

nition of Wy Wy = i = n|i(i+1) so Ai S t(2(Z+41)). W know, however,

that t(x) = o(z®) for any e >o0. Taking ¢ = & , there is N such that

m
n>N implies t(n) <nl/u.

© oo N &

Then

Yo s D M) < Y G ) 1
(2 +1) ~ Z(Z+1) W+ i ]

=1 =1 =1 =N+l (1)

Also solved by the PROPOSER
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484. [Fall 1980] Pkopobed by the £ate R Robinson Rowe.

In a triangle with base AB and vertex €, secants from A and B to
points D and E on BC and AC divide the area into four subareas S, T, U
and V. In some order of 5, T, U, V, the points 2 and E can be located

so that the subareas are in increasing arithmetical progression, O SO

that they are in decreasing arithmetical progression. Find that order
and evaluate the subareas.

Solution by the. Proposer and Mornis Katz, Macwahoc, Maine.
Let triangle 4Bc have base AB of length 2 and altitude to vertex

¢ equal to 1, without loss of generality. L€t AD and BE meet at ¥, and

let D, E, and F have altitudes x, y, and h from base AB. Designate by
S, T, U, and V the areas of triangles FAB, AEF, BDF, and quadrilateral
CDFE . See Figure 1. From similar triangles obtain

(1) h=x_+_xyL-a'y'
V¢ also have
S=h,T=y-h,U=x-h,andV=1-x-y+h.
Nw §<y implies T<5, soS lies between T and U. Hence, by symmetry,

we need consider just two orders: VISU and TSWU.

Figure 1

For the order VTSU, either increasing or decreasing, we must have
v-5=8-7=T7-1V,
(2) z-2h=2rh-y= 2~ 2h+tx-1,



whence y = 1/2. Nw substituting into (1) and (2), obtain

222 - 5z +1 =0,

sox= 5% 717
P
Only the negative sign permits x < 1, so
_5 - 17 1 7 - A7
=T ¥ zsawh= /g
Ve find that
_3/17 -5 _1+ /17 _7 - Y17 _ 13 - 3/17
Vem—g s I2 =g 85— »adl=—7

For TVSJ we use

UV-§=8§-Vv=V-1,
(3) X-2h =z +y-1=1-2y -2+ 2h.
The solution is not as simple here, but using (1) and (3) we eliminate
X and h to get
(u) uy3 - l7y2 + luy - 3 = 0,
which has no rational roots. |Its decimal roots are
y, = -353116, y, = -655199, and y, = 3.2416 .

Ve cannot use y, because y <1. V¢ have two solutions

) =3 2 = .793678, y, = .353116, hy Lo¥ = 323un2,

T, = .029674, V) = .176558, 5, = .353u42, U = .470326
and

z, = .189803, y, = .655199, h, = .17245L,

T, = .H82648, V, = .327549, S, = .172451, U, = .017352,

485. [Fall 1980] Proposed by R. S. Luthar, University of,
Wisconsin, Janesville.

A line 1 cuts two parallel rays emanating from L and Min A and B
respectively. A point C is taken anywhere on Z. Lines through A and B
respectively parallel to MC and LC intersect in P. Find the locus of P.
Solution by the. Proposex.

Let AP intersect line LMat T. Then, according to Problem 409
(this JOURNAL, Fall 1978, page 556) by ZELDA KATZ, BT must be parallel
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to (L. Thus BP and BT coincide because they are both parallel to (L.
Hence T and P coincide; that is, Plieson line L¥M.

Also solved by ROBERT C. GEBHARDT (by analytic geometry), RALPH
KING (graphical sofution), ROGER E. KUEHL, HENRY S. LIEBERMAN (4wo
sofutions, one by a theorem of, Pappus, the. other by Grassmann's geo-
metrnic algebra), and SISTER STEPHANIE SLOYAN [bythe convene to Pascal's
Ztheonem).
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1980- 81 STUDENT PAPER COVPETI TI ON

The papens fonthe. 1980-81 Student Papa Competition have been
judged and the winners are:

First Prize ($200) Gaty Ricard, South Dakota School
of, Mines and Technology; "A Conp-
arison of Conputer Algorithns To
Sol ve the Knight's Tour Problem’

SEOOND PRIZE ($100) Sandra Cousins, Hendrnix College;
" Singul ar Functions", To Appear
inthe Spring 1982 Issue.

THIRD PRIZE ($50) Michael Oniick, Macalester College;
'The Area of a Triangle Formed by
Three Lines", Appearing in this

@ | ssue.

AMFD CERTIFICATES

Your Chapter can meke use of the Pi Mu Epsilon Award Certif-
icates available to hel p you recongize student's mathematical
Achivenents. To obtain these, wite to:

Dn. Richard Good

Department of Mathematics
University of, Maryland
Cottage. Park, Maryland 20742

ARE YOU MOVING?

¥ recognize that students move, and

we need your new address! Our Journals
are sent by third class mail which is
not automatically forwarded. Don't miss
your issues of the Journal. Send your

address changes or better yet, a permanent

address to:
Dn. David Ballew, Editor
PL Mu Epsilon Journal
Department of, Mathematical Sciences
South Dakota School of, Mines and Technology
Rapid Aty, South Dakota 57701

jium/oA 0/ l%e Jewe/ém ./4}05

YOUR BADGE — a triumph of skilled and highly trained Balfour
craftsmen is a steadfast and dynamic symbol tn a changing world.

Official Badge
Official one piece key
Official one piece key-pin
Official three-piece key
Official three-piece key-pin

WRITE FOR INSIGNIA PRICE LIST.

An Authorized Jeweler to Pi Mu Epsilon

ATTLEBORO MASSACHUSETTS

IN CANADA L. G. BALFOUR COMPANY, LTD. ‘eoprsiil At TGRONTO

Pl MU EPSILON JOURNAL PRICES
PAID IN ADVANCE ORDERS:

Members: $ 8.00 for 2 years
$20.00 for 5 years

Non-Members:  $12.00 for 2 years
$30.00 for 5 years

Libraries:  $30.00 for 5 years (same as non-members)

Back lssues $ 4.00 per issue (paid in advance)
Complete volume $30.00 (5 years, 10 issues)

All issues $150.00 5 complete back volumes plus current volume
subscription (7 volumes — 30 years)



