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QUADRIC SURFACES ASSOCIATED WITH 
LINEAR DIFFERENTIAL EQUATIONS 

W~~hA.ng ton  S t a t e  Univ iU^y  

1 .  IntA.oduc^U.on. 

We shall be concerned here with the real, first order linear 

autonomous system of differential equations 

(1) 2 = A x  
d ( .  = - )  

d t  

where x f # and A is a linear transformation of 9. For the case 

n = 2 one of us has recently devised a purely geometrical method to coz- 

struct the tangent vector 2 of the trajectory which passes through x, 
once the 2 x 2 matrix [A] representing A has been given [l]. The develo?- 

ment there also revealed a remarkable geometric property of the planar 

phase portrait: there exists a family of homothetic ellipses (if 

det A > 0) or hyperbolas (if det A < 0) whose normals, when rotated through 

a constant angle, coincide with the direction of the tangents x. The 

proof of this contained in [1] detours through complex analysis and is, 

as we show here, unnecessarily complicated. The linear algebra approach 

in the next section holds in any dimension. Of course, it is the geo- 

metrically visualizable cases n = 2 and 3 which are most interesting, and 

the concluding two sections illustrate these cases. 

To avoid degenerate cases (which can be treated as limiting cases), 

we assume the linear transformation A is non-singular. Below we will 

show that A can always be decomposed into the form 

(2) A = RS, 

where R is proper rotation (i.e., an orthogonal transformation with 

det R = + 1) and S is a symmetric non-singular transformation. For any 

such decomposition (it is not unique), the differential equation (1) 

takes the form 

*&. StaVL is currently a graduate student in the Department of Mathe- 
matics at the University of Minnesota. This work represents a portion 
of his Senior Honors Thesis. 

(3) A = RSx. 

Next consider the one-parameter family of quadric surfaces 

where < , > denotes the standard inner produce on 8. 
From advanced calculus, we know 

is normal to Q at x C Q . Comparing (3) and (51,we see that 

That is, there is a constant proper rotation R which takes any gradient 

n(x) of the quadric surface Q onto the tangent vectors x of the tra- 

jectory through x c Q  . 
We now examine what possibilities exist to represent A in the 

form A = US. From the polar decomposition theorem (e.g., see Halmos [2], 

p 1701, we know A may be uniquely factored as A =UP , where U is ortho- 
gonal and P is the unique positive square root of A*A. For some ortho- 

normal basis the matrix of P will be diagonal, say [P] = diag[pl,. . . ,pn]. 
Then define the linear transformation E by [E] = diag [E,. . . , en], 

where the ej {-1, +l) are chosen in any of the ways for which 
2 

det E = det V. We observe that E is symmetric, orthogonal, E = I = 

identity, and EP = PE. Choosing S = EP and R = UE, it is clear S is 

symmetric and R is a proper rotation. Moreover, A = UP =VEEP= RS. 

Conversely, suppose A = RS. Then A*A = SR*RS = s2, and so s2 = 

P ,  where as before P is the unique positive square root of A'^Ai As S 

is symmetric, there is some orthonormal basis in which [s] = diag 
2 2 2 2 

[a ., . . . , a]. It then follows that [P ] = [S ] = diag[ol , . . . , a 1, 
and so for some sequence a,â‚¬{- +1} we have u = E p . as before the 

3 3 3i' 
p j  denote the eigenvalues of P. In summary, the construction of the 

preceding paragraph produces all decompositions of the form A = RS. 

The number of distinct families of quadric surfaces can also be 

found. If the eigenvalues of P are distinct, the corresponding n linear 

eigenspaces are the principal axes of any of these families of quadric- 

surfaces. In # if det A >0, the number of e which are taken as -1 
n n 3  must be even; this means there are ( o )  + (-) + ... = 2n-1 families. 

These will be distinct when n is odd; however, when n is even, both -S 



FIGURE 1 

and +S give the same family (and -R is still a proper rotation), meaning 

there are 2n-2 distinct families. An analogous argument shows that the 

number of families of quadric surfaces remains the same in the case ". 
det A < 0. - -  - 

If P has any multiple eigenvalues, the axes of the quadrics within 

the corresponding eigenspaces can be rotated arbitrarily within these 

subspaces. 

3. The. Two-d-i.me?4-(.onal Coie. 
Here n = 2 is even, so the numbe~ of families of conics is Z2-' =l. 

This will be a family of homothetic central ellipses (when det A > 0) or 

conjugate hyperbolas (when det A < 0). As an illustrative case consider 

the differential equation & = Ax, where 

2 in the standard basis of R . Then 

where R is a rotation by 1(1 A 53O and S is a symmetric linear transforma- 

tion with eigenvalues 15 and 5 and corresponding eigenvectors (1,l) and 

(1,-1). The phase plane is shown in Figure 1; two ellipses of the 

family 

1 2 
- <x,Sx > = 56 + 5Ei7 + 5 i-~ = cotistant 2 

are also shown, where x = ( S i n ) .  The RS decomposition of A can be ob- 

tained by purely geometric means, including the rotation angle i() and 

the eigenvectors and eigenvalues of s [ 11. 

4. The Thee.-di.menli.ional CoAe. 

Consider the differential equation = Ax in R3, where 



FIGURE 2 

i n  t h e  s t anda rd  b a s i s .  The p o l a r  decomposition o f  A is found t o  be  

The e igenva lues  and corresponding e igenvec to r s  o f  P a r e  

- - 

The d i r e c t i o n s  o f  e , e 2 ,  e 3  d e f i n e  t h e  p r i n c i p a l  axes  o f  t h e  f a m i l i e s  

o f  quadr i c  s u r f a c e s .  

qince d e t  11 = +1, rJ is a r o t a t i o n  and UP i s  one of  t h e  f o u r  PS 

lecompos i t  ions  of A .  A u n i t  e igenvec to r  corresponding t o  t h e  pigenvalue 

1 i- - (I//?, 0, -1.//2 ). Completing t h i b  t o  an  o rde red  orthonormal 

b a s i s  Ti = (b,, b ,  b ) ,  we have t h e  form 

0 0 

cos $I - s i n  $I 

10 s i n  $I cos  Ã 

and s o  t h e  cos ine  o f  t h e  r o t a t i o n  ang le  is' 

1 1 1  1 
c o s $ I = - ( t r U - 1 ) = - ( -  2 2 3 - 1 )  = - -  3 '  

2 1 1 
Since U(O,l,O) = ( ? ,  - - 3 '  2- 3 ), we s e e  $I = a r c  cos  ( -  -)E 3 (go0, 1 8 0 ~ ) .  

That is ,  U is  a r ight- hand r o t a t i o n  about  (1 ,0 , -1)  by $I = 1 0 9 . 5 ~ .  

Figure  2 shows how a t r a j e c t o r y  c u t s  through an  e l l i p s o i d  from t h e  

family  

1 -<x,Px 2 > = 3c2 + 6q2 + 15c2 + 4 h  - 5EC - 5nC = c o n s t a n t ,  

where x = (c,q,~). 

The remaining t h r e e  f a m i l i e s  of quadr i c  s u r f a c e s  a r e  hyperboloids  

o f  t h e  s o r t  shown i n  Figure  3. 
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REGIONAL MEETINGS 

Many regional meetings of the Mathematical Assoc- 

k t i o n  ofAmePi.ca regularly have sessions for wider- 
graduate papers. I f  two or  more colleges and a t  leas t  
one local chapter help sponsor or participate i n  such 

undergraduate sessions, fimmcyi,aZ help i s  available up 

t o  $50. Write t o  D r .  Richard Good, Department of Mathe- 

matics, University of Maryland, College Park, Maryland, 

20742. 

R E L A T I V I T Y  I N  P E R S P E C T I V I T Y  

by WUULiam T a k e u u t  
ope CoUege, HoUand, VJus.hLgan 

'"Those Who Hear, Forget. 
Those Who See, Remember. 
Those Who Do, Underst 

Under t h e  inf luence of Dr. E l l i o t  Tani 

fasc ina t ion  with t h e  art work of  M.C. Escher, I was compelled t o  delve 

i n t o  researching Escherls  work myself, e s p e c i a l l y  s i n c e  Escher was an 

a r t i s t ,  not a mathematician. He j u s t  c rea ted  h i s  works from h i s  imagina- 

t i o n  and some ou ts ide  ideas,  y e t  t h e r e  is t h e  mathematics i n  h i s  work. 

With my ch ie f  i n t e r e s t s  and background stemming from a r c h i t e c t u r a l  d r a f t -  

ing  and rendering, I became in t r igued  with t h e  way i n  which Escher c r e a t-  

ed some of h i s  perspect ive drawings. I not iced,  however, t h a t  h i s  use of 

perspect ive was d i f f e r e n t  from my own experience, which was mostly ortho-  

gonal perspect ive.  So I decided t o  f i n d  out why. 

S t a r t i n g  with t h e  quest ion,  "What is  a perspect ive drawing and 

where does it come from?", I discovered it conies from pro jec t ive  geometry. 

There a r e  f i v e  b a s i c  axioms f o r  plane pro jec t ive  geometry[l].  They a re :  

1. Any two d i s t i n c t  po in t s  a r e  inc iden t  with exac t ly  one l i n e .  

2. Any two l i n e s  a r e  inc iden t  with a t  l e a s t  one point .  

3 .  There e x i s t  f o u r  po in t s  of which not  t h r e e  a r e  c o l l i n e a r .  

4. The t h r e e  diagonal po in t s  of a completequadrangle a r e  never - 

c o l l i n e a r .  

5. I f  a p r o j e c t i v i t  

The b a s i c  undefine 

o ther  geometries. 

says t h a t  two po in t s  
* 

A drawing w i l l  he lp  t o  c l a r i f y  t h e  others .  



Figure l a  shows a complete quadrangle A , B , C , D  (Axiom 31,  and Figure l b  

i l l u s t r a t e s  t h e  t h r e e  diagonal  po in t s  E,F, andG(Axiom 4 )  formed by ex- 

tending opposi rs of s i d e s  of  t h e  quadrangle. Axiom 5 s t a t e s  t h a t  

when you pro jec t  a l i n e ,  p r o j e c t  a l l  of it. 

In  order  t o  follow along, we must ge t  t h e  terminology s t r a i g h t .  

Diagonal po in t s ,  a s  r e f e r r e d  t o  i n  Axiom 4, a r e  commonly ca l led  vanishing 

points .  Vanishing po in t s  can be f u r t h e r  c l a s s i f i e d  a s  e i t h e r  dis tance,  

zen i th ,  or nad i r  points .  A d i s tance  point  is any vanishing point  o f f  t o  

e i t h e r  s i d e ,  a zen i th  point  o r  overhead, and a nad i r  point  

is  d i r e c t l y  below o r  down. 

HOW does a l l  of t h i s  h e r ' s  work? Let us  t ake  a look 

a t  one of Escher's p , which is a c l a s s i c  example of a p ro jec t ive  

geometry, CUBIC SPA VISION, July of 1952. If we follow t h e  d i rec -  

t i o n  of  t h e  "girders" ( o r  t h e  s i d e s  of t h e  cubes) we can extend them o f f  

t h e  page and see t h a t  they would meet a t  a d i s t a  dlt in the Upper 

r i g h t ,  another d i s tance  point  a t  l e f t  c e n t e r ,  a 

bottom cen te r .  (Remember, none of those l i n e s  a r e  p a r a l l e l ,  Axiom 2 ) .  

There a r e  t h r e e  vanishing po in t s  j u s t  l i k e  our  Axioms say (keep i n  mind 

we a r e  now considering 3-dimensional ob jec t s ,  t h e  cube, and not r e s t r i c t -  

ing  ourselves t o  a plane surface,  a s i d e  of t h e  cube). A very h t e r e s t -  

ing aspect  of  Escher fs  work is i n  t h e  way i n  which he uses r e l a t i v i t y .  

It is  amazing how of ten  it l i e s  hidden i n  a p r i n t .  For example, CUBIC 

SPACE DIVISION looks r a t h e r  uncomplicated. However, simply r o t a t i n g  t h e  

page i n  mult iples  of 90 degrees changes t h e  o r i e n t a t i o n  of your viewpoint, 

from upper r i g h t  t o  lower r i g h t  t o  lower l e f t  t o  upper l e f t  moving clock- 

wise. 

One of Escher fs  e a r l i e s t  perspect ive drawings i s  TOWER OF BABEL, 

CUBIC SPACE DIVISION 

TOWER OF BABEL 



SAINT PETER'S OF ROME 

OTHER WORLD I 

February of  1928. Here Escher has a d e f i n i t e  i n t e r e s t  i n  t h e  nad i r  

point ,  with d i s tance  po in t s  o f f  t o  both s i d e s .  This is a l s o  t r u e  i n  

SAINT PETER'S OF ROME done i n  March of 1935. H i s  e a r l y  obsession w i t h  

what is sometimes c a l l e d  a "birds eye view" i s  simple: he i s  a n ' a r - ~ i s t .  

Artists t r y  t o  convey a message or  f e e l i n g  i n  t h e i r  work. In both of  

these  p r i n t s ,  Escher is  t r y i n g 3 0  express t h e  f e e l i n g  your stomach g e t s  

when you look down from a high place. 

A few years  l a t e r ,  i n  t h e  wake of another world-war, Escher again 

was influenced by t h e  world around him. The advancing technology, i n t e r -  

e s t  i n  space, and E i n s t e i n ' s  idea about how th ings  a r e  measured with r e -  

spect  t o  o ther  th ings ,  helps  Escher th ink  along t h e  same l i n e s .  In t h e  

f i n a l  month of 1946, he introduced a s t range  concept i n  OTHER WORLD. I n  

t h i s  case ,  a l l  of t h e  l i n e s  vanish toward t h e  center  of t h e  p r i n t .  Con- 

cerning t h e  quest ion of  whether t h i s  vanishing point  is a d i s tance ,  nad i r ,  

o r  zeni th point ,  t h e  answer is yes. I t  depends on which s i d e  of t h e  

p r i n t  you view, a s  t o  which r o l e  t h e  vanishing point  takes on. A l l  of  

t h e  s i d e s  a r e  o f  t h e  same scene, looking along a tunne l  with arched open- 

ings i n  which is standing a "simurgh" (a note  f o r  t h e  t r i v i a l i s t :  t h e  

simurgh is  a Persian man-bird given t o  Escher by h i s  father- in- law who 

bought it i n  Baku, Russia, o r  so  I am t o l d )  under a f i s h  lamp. I n  o ther  

words, i f  we look a t  t h e t o p o f  t h e  p r i n t  we a r e  looking down t h e  tunnel  

(nad i r  po in t ) ,  i f  we look a t  t h e  bottom of t h e  p r i n t  we a r e  looking up 

(zen i th  po in t ) ,  while looking t o  e i t h e r  s i d e  of  t h e  p r i n t  we a r e  looking 

along t h e  tunne l  (d i s tance  po in t ) .  A s  an a r t i s t ,  Escher was not overly 

pleased with t h i s  p r i n t .  I t  has a long dark shady tunne l  and it took four  

s i d e s  t o  convey t h r e e  worlds. 

A month l a t e r ,  January of 1947, Escher created OTHER WORLD again. 

This time, however, we f i n d  ourselves i n  a s t range f ive- sided room ins tead  

of a tunnel .  A s  f a r  a s  t h e  perspect ive goes, t h e  emphasis is  s t i l l  t h e  

cen te r  and it s t i l l  can be a d i s tance ,  nad i r ,  o r  zen i th  point .  What is 

so  d i f f e r e n t  about t h e  room? Well, depending on which "window" you look 

i n  o r  out  o f ,  concepts l i k e  r i g h t ,  l e f t ,  above, below, i n  f r o n t ,  and be-. 

hind a r e  t o t a l l y  interchangable. There is  another  geometry c a l l e d  Affine 

Geometry, which explains  t h e  p a r a l l e l  l i n e s  i n  both of t h e  OTHER WORLD 

p r i n t s .  Affine geometry is  a proper subgroup of  p ro jec t ive  geometry, and 

is  merely an extension of t h e  Euclidean plane i n  which para l le l i sm is 

preserved. Affine Geometry a l s o  explains  orthogonal perspect ive f o r  t h e  



OTHER WORLD I1 RELATIVITY 

HIGH AND LOW 

a r c h i t e c t u r a l  draftsman. 

In  Ju ly  of  1957 Escher gave t h e  world HIGH AND LOW which is a 

couple of  towers with curved l i n e s .  This i s  a  c l a s s i c  example of - artis- 

t i c  l i cense .  What we r e a l l y  have here is  two drawings i n  one, the'-upper 

ha l f  and t h e  lower h a l f .  In t h e  upper h a l f  is  a tower whose l i n e s  a r e  

vanishing toward a  po in t  i n  t h e  cen te r  of t h e  p r i n t ,  a  nad i r  point .  

There i s  a l s o  a  d i s tance  point  o f f  t o  each s i d e  near t h e  t o p  of t h e  

p r i n t .  Likewise, i n  t h e  lower ha l f  is a tower whose l i n e s  a r e  curving 

toward a  point  i n  t h e  cen te r  of t h e  p r i n t ,  a  zen i th  po in t ,  along with a  

d i s tance  point  o f f  t o  each s i d e  near t h e  bottom of t h e  p r i n t .  The nad i r  

of t h e  upper h a l f  and t h e  zen i th  of t h e  lower ha l f  coincide i n  t h e  cen te r  

of t h e  p r i n t .  So we s t i l l  have s i x  vanishing po in t s  f o r  two drawings, 

everything i s  l e g a l  except f o r  those curved l i n e s .  

The concept of drawing " s t ra igh t  l i n e s"  i n  a  curved manner is one 

a r r ived  a t  by both a r t i s t s  and draftsmen a l i k e  and has a  simple deriva-  

t i o n .  The pro jec t ion  of s t r a i g h t  p a r a l l e l  linesX,Y (Figure 2a) onto a  

cy l inder  produces a  couple of semi-elipses, X' and Y'. Sl ic ing  t h e  cyl-  

inder  i n  h a l f ,  ABCD, and lay ing  it out  f l a t ,  produces a  n ice  s inuso ida l  

curve, Figure 2b. 

Figure 2a Figure 2b 

Other analogous s i t u a t i o n s  a r e  t h e  multi-photograph e f f e c t ,  o r  t h e  t'ele- 

graph-wire e f fec t  [ 2 ] .  The amazing th ing  is  t h a t  Escher s a i d  it was 

simply t h e  way he saw it, and c a r e f u l  measurements of some of  h i s  drawings 

show them t o  be almost s i n e  curves. Please note  t h a t  t h e  upper and lower 



halves a r e  r e a l l y  t h e  same scene ( a  boy s i t t i n g  on some s t e p s  t a l k i n g  

t o  a g i r l  i n  t h e  tower).  Also no t ice  t h a t  t h e  doors, windows, s t a i r s ,  

and even t h e  palm t r e e s  a r e  i n  t h e  same pos i t ions  i n  both halves. This 

p r i n t  allows t h e  observation of t h e  same scene from two vantage po in t s  

a t  t h e  same time. Something t o  contemplate: What does t h e  boy i n  t h e  

lower h a l f  see,  i f  he t i lts h i s  head back a l i t t l e  f u r t h e r  and looks up? 

Our journey leads  us f i n a l l y  t o  a p r i n t  most appropr ia te ly  en- 

t i t l e d  RELATIVITY, completed i n  July of  1953. The t h r e e  vanishing po in t s  

a r e  now a l l  o f f  t h e  page forming an e q u i l a t e r a l  t r i a n g l e  over two meters 

a s i d e  ( t h e  p r i n t  i s  28 x 29 cm). Already i n  our b r i e f  explorat ion of 

t h e  b i z a r r e  world o f  M.C. Escher, we have come t o  accept  t h e  p o s s i b i l i t y  

of  one vanishing po in t  being t h r e e  d i f f e r e n t  vanishing po in t s  i n  order t o  

s t a y  within t h e  axioms of p ro jec t ive  geometry. However our boundaries 

a r e  s t re tched  even f u r t h e r  a s  we no t ice  t h a t  vanishing point now 

serves a s  a zen i th  point ,  a r i g h t  d i s tance  po in t ,  and a l e f t  d i s tance  

point .  With each point  being three- fold i n  funct ion,  we have, r e l a t i v i -  

s t i c a l l y ,  about nine vanishing po in t s .  This unique s i t u a t i o n  is a c t u a l l y  

t h r e e  worlds combined i n t o  one. Those worlds can be i d e n t i f i e d  a s  t h e  

upr igh te rs  - t h e  f i g u r e s  whose bodies point  upward ( t h e  f i g u r e  a t  t h e  

bottom cen te r  coming u p s t a i r s ) ,  t h e  r igh t- leaders ,  whose bodies point  t o  

t h e  r i g h t  ( f igure  coming downstairs with a t r a y  i n  hand), and t h e  l e f t -  

l eaners ,  whose bodies l ean  lef tward ( f igure  with basket) .  And though 

these  f i g u r e s  share t h e  same environment, they each have d i f f e r e n t  ideas  

about what t o  c a l l  th ings .  For example, one group c a l l s  a surface a 

f l o o r ,  another group c a l l s  it a wall  o r  a c e i l i n g .  Likewise, a door t o  

one might be a trap-door t o  another. A s  a r e s u l t  of t h i s  s t range cohabi- 

t a t i o n ,  we run across  some r a t h e r  b a f f l i n g  s i t u a t i o n s ,  such a s  s tairways 

which allow f i g u r e s  t o  walk on opposi te  s i d e s  of t h e  s t a i r c a s e ,  o r  s t a i r -  

ways t h a t  allow two f i g u r e s  t o  walk on t h e  same s i d e  of t h e  s t a i r c a s e ,  

walk i n  t h e  same d i r e c t i o n  ( l e f t  t o  r i g h t  ac ross  t h e  page), ye t  one is  

going u p s t a i r s  while t h e  o ther  is going downstairs.  Also, each world has 

i ts own p a t i o ,  but  can every f i g u r e  reach h i s /her  respec t ive  pa t io?  

It i s  possible  t o  spend hours studying t h i s  p r i n t ,  r o t a t i n g  it, 

t r y i n g  t o  look around corners ,  and s o  on. But i f  you r e a l l y  want t o  

experience and understand it, you must bu i ld  one. It is possible ,  and 

I am sure  you w i l l  f i n d ,  a s  I have, t h a t  it w i l l  a i d  i n  answering many 

questions. A t  t h e  same time, however, while answering quest ions,  it a l s o  

poses new ones (i:e. ,  f o r  example, l i k e  t h r e e  more worlds i n  opposite 

d i rec t ions  of t h e  present  ones).  Try it. 
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SINGULAR FUNCTIONS 

IwifioduiLtion. 
I n  ca lcu lus ,  a s tudent  is  taught  t o  think of in tegra t ion  and 

d i f f e r e n t i a t i o n  a s  inverse operators .  This notion is s e t  f o r t h  i n  t h e  

Fundamental Theorem of  Calculus, which is s t a t e d  here i n  two p a r t s .  

FTC I. If f i s  continuous on [a,b] and c e [ a , b  1,  then 
7-x 

f ( x )  = -a.- 1 f ( t l d t  fo r  every XE( a , b). 

I f  t h e  condit ion of con t inu i ty  of  f is relaxed t o  j u s t  i n t e g r a b i l-  

i t y ,  then f is  bounded and continuous almost everywhere on [a ,&].  There- 
d x 

fo re ,  f ( x )  = ~f f ( t ) d t  f o r  every x a t  which f is continuous, t h a t  is,  

almost everywhere on [a ,b] .  Thus, we have t h e  following theorem: 

T k o k e ~ t i .  If f i s  in tegrab le  on[a,b] and c ~ [ a , b ]  , then 
d x 

f i x )  = - ~ ~ 5 f ( t ) d t  almost everywhere on [a ,b] .  

Next we look a t  t h e  second p a r t  of t h e  Fundamental Theorem. 

I f  f t  i s  continuous on [a,b] and ce [a ,  b], then 

12 ( t ) d t  = f(x)-f ( c )  f o r  a l l  xe[a,  b 1. 
Does an analogous theorem r e s u l t  when cont inu i ty  is  relaxed 

here: The answer t o  t h i s  question is negat ive and t h e  examples of so- 

ca l led  t t s ing lu la r t '  funct ions which follow e x h i b i t  t h i s  pathology. 

A s ingula r  funct ion is a monotonic continuous funct ion 

f: [a,b]+.ZR such t h a t  f1 (a;) = 0 almost everywhere ( i . e . ,  on t h e  com- 

plement o f  a s e t  of measure zero) .  A s e t  of  measure zero is  a s e t  which 

can be covered by a countable c o l l e c t i o n  of segments, t h e  sum of  whose 

lengths is a r b i t r a r i l y  s m a l l .  

Cantoh-Le.bu90.e. F u n d o n .  The first example we w i l l  consider i s  

t h e  Cantor-Lebesgue s ingula r  funct ion 1, pp. 135-137 , which is based 

upon t h e  Cantor s e t  S. Recal l  t h a t  t h i s  s e t  is  formed a s  follows: 

So = [0,1] . Remove t h e  open middle t h i r d  (1/3, 2/3), thus  leaving 

S =  [O, 1 / 3  1 u [2/3, 1 1  . Continue t o  remove t h e  open middle t h i r d  

from each of t h e  remaining m i n t e r v a l s  a t  each s t e p  i n  the  process. -Then 

the  Cantor s e t  S = n20 S .  Note t h a t  s ince  t h e  sum of t h e  lengths of 
n 

t h e  i n t e r v a l s  c o n s t i t u t i n g s  is  (2/3) which approaches zero a s  n + - ,  

then S has measure zero. Each po in t  i n  S can be represented uniquely 
m . .- 

by i t s  te rnary  expansion of the  form Z 1  a 3 ,  where ane{0,2}, . 
n = 1 ,2 , .  .. . 

Turning now t o  t h e  construct ion of t h e  Cantor-Lebesgue funct ion 

C, l e t  C(x) = 0 f o r  x < 0  and l e t  C(a-) = 1 f o r  x > 1 .  I f  X E ~  wri te  
m m E a 2 - ( n t l )  

x = E a 3 " ,  ane{0,2} , n = 1, 2, . . . . Define C(x)  - n=l 
n = 1  n 

I f  x ~ [ 0 , 1 ]  and x iS, then t h e r e  e x i s t s  a "middle th i rd"  o r  complementary 

i n t e r v a l  (y ,z )  such t h a t  y< x <z{y, z ES). Let C(x) = C(y) = C(z). (See 

Figure 1 ) .  I t  follows t h a t  C maps [0,1] onto [0,1]  . 
The f i r s t  s t e p  i n  proving t h a t  C i s  a s ingula r  funct ion is t o  

show t h a t  C is  continuous. Clearly,  C i s  continuous on (--,0) and 

(1,"). I f  x e ( 0 , l )  S, then x belongs t o  t h e  i n t e r i o r  of a closed i n t e r-  

v a l  on which C is constant .  Therefore, C i s  continuous a t  x .  
00 

Now suppose x6(0,1) S a n d  E > O .  Thenx= Â a .  3 ;  where 
- ( i t 1 1  i=12 a . ~ ( o , 2 } ,  i = l , 2  ,... and C(x) = .E  0 . 2  Choose n l a r g e  

2=1  2. 

enough t h a t  2'"ce. Let 6 = min [3-", 13-0 1 , Ix-11) and suppose y EE such 

t h a t  I X - ~  1 c5 < 3 n .  Then ye(0 , l )  and i f  y E S ,  then the  te rnary  expar.- 
m m 

s ions  x = .E a.3"' and y = ig1bi32 (bit {O,2}) w i l l  agree through a t  
2=1 2 

l e a s t  t h e  f i r s t  n d i g i t s  (ai=bi f o r  i = l , 2 ,  ..., n ) .  Therefore 

ai 2 -(itl)= bi2 -(i+l) f o r  i=1 ,2 , .  . . ,n,  which implies t h a t  \C{X)-C(~)\ 

c 2 - C E .  I f  y t S ,  then t h e r e  e x i s t s  some zeS such t h a t  y<z 5 x o r  X<. z <  i/ 

and C(y ) = C(s) ,  which implies t h a t  lz-XI < 6 .  Thus the  te rnary  expansions 

c~-"cE.  Since C(z) = C(y ) , then \C(Z)-C(Y) 1 C E  . Similar  arguments show 

t h a t  C i s  continuous a t  0 and 1. Therefore, C is  continuous f o r  a l l  

Next consider t h e  monotonicity of C. Suppose xSy, x , y ~ [ 0 , 1 ] .  
m m 

Choose x '  = E a 3" and y '  = i.lbi3'2in S (where ai ,bi E (  0,2}) such 
i=1 i - ( i t 1 1  

t h a t  xtSx&y^yt , C(x) = C(xl ), and C(y) = C ( y V ) .  Then C(X) = .g,a.2 
m "-A ', 

5 z=1 .!: b z .z-(~+')  = C(y). Therefore, C is nondecreasing. 

F ina l ly ,  observe t h a t  C t ( x )  = 0 f o r  every x i n  [O,l]eS. But Since 

S i s  a s e t  of  measure zero, then C t ( x )  = 0 almost everywhere on [0,1].  

Thus t h i s  nondecreasing funct ion C is  a s ingula r  funct ion.  



Figure 1. 
Other s ingula r  funct ions can be constructed which a r e  s t r i c t l y  

increasing.  For one based on t h e  Cantor-Lebesgue funct ion consider  
m 

f ( x )  = ng12-n~(2n(x-a)), where {an}" i s  any countable s e t  t h a t  i s  

dense i n  177 . This example can be thought of  a s  adding smaller  and 
, 

smaller copies  of  t h e  Cantor-Lebesgue funct ion a t  t h e  p o i n t s { a } .  For 

a proof of  t h e  s i n g u l a r i t y  o f  f, see [2].  

l-/&%ngv~ Function. Another s ingula r  funct ion which is  s t r i c t l y  

increasing on [0,1] i s  the  Hellinger funct ion [3, pp. 48-49], named f o r  

t h e  man i n  whose doc tora l  t h e s i s  it first appeared i n  1907. !fo cons t ruc t  

t h i s  funct ion,  f i r s t  l e t  O < t < l  and l e t  F0(x)= X, xe[O,l] .  Suppose 

F (x)  is continuous and l i n e a r  i n  t h e  i n t e r v a l s  bounded by t h e  po in t s  n 
n a =k2-" and B = ( k + l ) 2 " ,  k=O,l, ..., 2 -1. Let Fn+l(z) =Fn(x) f o r  n n 

x= k2-n, k=O,l,. . . ,2", and l e t $ + [ ( a  t B  )/2]= l / 2 ( l - t )  Fn(an)  + 
1/2(1+t )  F (  g ) ,  k=0 ,l,. . . ,2"-1. Then define Fn+l t o  be continuous and 

l i n e a r  i n  t h e  i n t e r v a l s  [a  nt1,6n+1]. The Hellinger funct ion F i s  de- 

f ined  by F(x) = @ { F ( x ) } ,  xe[O,l].  For example, c h o o s e t =  1 /3 .  

(See Figure 2). Then 

and s o  f o r t h .  

Before considering t h e  s i n g u l a r i t y  of  F ,  we first need t o  prove 

severa l  lemmas. 

00 

Lemma 1. Let xe[O,l] and l e t  {[an,Bn]} n o  be a sequence of 
n 

nested i n t e r v a l s  where = k n 2  and f 3  =( kn+1)2-" with t h e  in teger  

k chosen i n  [O, 2"-11 s o  t h a t  a:e [an,Bn I . Then ~(6n+1)-Fn+l(an+l)  

Proof. If 6n+1=1/2(an +B n ) , then a^=an. Thus Fntl( 6n+1) * 

= l / 2 ( l - t )  Fn(an)  + l /2(l+t)Fn(Bn) and Fn(an). So Fn+l 

( O n + l ) - F n + l ( G  = l /2( l - t )Fn(an)  t 1/2(1+t)Fn(Bn)-Fa((^) = l / 2 ( l + t )  

IFn(^-Fn(an) 1 . If =Bn , then anti = 1/2(an+Bn) and it follows 



Figure 2 

by a similar  argument tha t  F (  1 3  )-Fn+l(an+l) = l / 2 ( l -  t )  [ F (  s )-Fn 

( a ) ] ,  and the lemma i s  proved 

Since Fn(an) = F(an) and Fn(Bn) = F(Bn) f o r  every n, we have - 
C o m & ~ ~ y  7 .  F( !3n+1)-F(an+1) = 1/2(1?t)  F( Fin)-F(an) , n>ldlV. 

By inductively applying Corollary 1, we have 

C o f t . 0 ~  2.  I f  E .= 21, j e  I N ,  and n i s  a non-negative integer,  
n 3 

then F(B n )-F(an)= .U1 1 /2( l+ej  t ). ( In  case n=0, l e t  j311/2(1+ e 3 . t )  =1.) 

Furthermore, since i n  Corollary 2, 0 < 1 / 2 ( l + ~  3 . t ) < l  f o r  every 

Lmma 2. O ~ n + l ( x ) - F n ( ~ ) ~  A f o r  every x el& n+leJS. 
m 

Proof. Let xe [0 , l ]  and choose { [ a , B ]  } n=o a s  i n  Lemma 1. Let 

n be a non-negative integer.  Choose ye [O, 1 ]  such t h a t  x = yan+^+(l-~)6n+l. 

Since Fn+l i s  l i nea r  between anti and Bn+l, Fnt1(x) = L l ( y  ~ ~ + ~ + ( l - y )  

f3n+l) = yF,z+l(an+l)+(l-y)Fn+l( 6 n+l). Likewise , F n (XI =Fn(~an+ l+( l -~  

6n+1) = ~ F ~ ( a ~ + ~ ) + ( l - y  )Fn(Bn+l)- By the way the in terva ls  a r e  nested, 

e i t h e r a  = % o r  f3n=13n+1. Supposean=a n+l '  Then f3n+l = l/2(an+Bn) and 
n 

Fn+l(an+l) = Fn+l(an) = Fn(an) = Fian+l) which implies t h a t  

Fn+ l (~ ) -Fn(~ )  = ( ~ - Y ) [ F ~ + ~ ( B ~ + ~ ) - F ~ ( & ) I  

= (l-y)[L/2(l-<:-)~~(a~)+l/2(l+t)F~(B~)-l/2 ~ ~ ( a ~ ) - l / 2 F ~ ( B ~ ) l  

= (t/2)(1~)[Fn(6n)-Fn(an)l 

1 f B -  B 1 ,  then it follows s imi lar ly  t h a t  F n + l ( ~ ) - ~ n ( ~ ) ~ ~ n + l .  

Moreover, by Corollary 3, F ( Q ) - F ~ ( ~ ~ )  > 0 .  Therefore, F ~ + ~ ( X ) - F ( X )  = 

( t / 2 ) ( l -y )  [ F n ( & ) - F ( a )  ] Â£0 and the  lemma i s  proved. 

Now we consider the  s ingular i ty  of F. For xe [O,l] and n eIN, 
n-1 F n (XI = x+ [Fi1(x)-Fi(x)l. Since IF~+(x)-F . (x)  z 1 = 
i = o  

i + 1  - 
Fi+l(x)-Fi(x)- f o r  every i and E 3iit1 = V(l-A), then by the  i = o  

m 

Weierstrass M-test J0 [Fi+l(x)-Fi(x)] converges uniformly on [O,l]; 

which implies t h a t  { F ( x )  }z_o converges uniformly t o  F(x) on [0,1]. 

Since F is continuous f o r  every n ,  then F i s  continuous. n 



To check 1 :he monotonicity of  F, suppose xcy and X,  y E [0 , I ] .  
00 

00 

Choose 1 [anax, B n Y x  I1 n=o and { [an, y ,  1 n=o f o r  x and y respect ive-  

l y ,  a s  i n  Lemma 1. Now choose n l a r g e  enough t h a t  

I f  mzn, then from Corollary 3,  it follows t h a t  

FJx)S F( Bn,x)=F( Bn,x)<F(an,,l=Fm (an, y)<-Fm( Y) . 
Therefore, F ( X ) ~ F ( B ~ , ~ ) C F ( ~ ~  )5F(y). Hence, F is s t r i c t l y  increasing 

Â¥. 
on [O , I ] .  

F ina l ly ,  we examine t h e  d i f f e r e n t i a b i l i t y  of F. L e t x e [ O , l ]  with - 
{ [ a ,  Bn]}n=o chosen a s  i n  Lemma l ; a  -*x and Bn* a s  n+- . Suppose 

n 
F ' W  e x i s t s .  Then using [5,  Exercise #19a, pp. 116-117 1 ,  F f ( x )  can be 

ca lcu la ted  by 

n 
= l i m  II ( l +  E . t ) ,  which is zero, i n f i n i t e ,  o r  

n* j=l 3 

indeterminate. According t o  Lebesgue's Theorem, every monotonic funct ion 

possesses a f i n i t e  der iva t ive  almost everywhere 13, p. 51. Thus 

F 1 ( x )  = 0 everywhere F has a f i n i t e  der iva t ive ,  t h a t  is,  almost every- 

where, and there fore  F is s ingula r .  

R&e.d RU&. The reader  may be i n t e r e s t e d  t o  know t h a t  

S^f'(t) d t  = f(x)-f(c)  f o r  every xe[a,b] i f ,  and only i f ,  f is  abso lu te ly  

continuous on[a,b]. For a discussion of  absolute  con t inu i ty  and t h i s  

theorem see [4, pp. 104-1071. 

It can a l s o  be shown t h a t  every monotonic continuous funct ion can 

be expressed a s  t h e  sum of two monotonic continuous funct ions g (x)  and 

h(x) ,  o f  which g ( x )  i s  s ingula r  and h(x)  is abso lu te ly  continuous 14, 

Exercise #12a, p. 1071. 

Last ly ,  r e c a l l  t h a t  i n  ca lcu lus  a s tudent  l e a r n s  t h a t  if f t ( x )  = 

g l ( x )  f o r  a l l  x i n  an i n t e r v a l  J (where f f ( x )  and g ' (x )  a r e  f i n i t e ) ,  

then f! .~)-~(x)  = c f o r  some constant  c .  However, i f  we permit f t (a:)  = 

g l ( x )  = f o r  some XEJ, then f ( x )  and g(x)  do not  necessar i ly  d i f f e r  by 

a constant .  For t h e  construct ion of  such a counterexample see 

. . 

[l, pp. 137-1391. 

REFERENCES 

1. Boas, Ralph P . , Jr . , A Primer of Real Functions, Carus ~ o n o ~ r a l ?  #13, 
MAA, 1972. 

2. F r e i l i c h ,  Gerald, Increasing continuous s i n g l u l a r  functions, The 
American Mathematical Monthly, 80, 1973, 918-919. 

3. Riesz, F.,  and Sz.-Nagy, F., Functional Analysis, Frederick Ungar, 
New York, 1955. 

4. Royden, H.L., Real Analysis, The Macmillan Co., New York, 1968. 

5. Rudin, Walter, P r inc ip les  of Mathematical Analysis, Third ed., 
McGraw-Hill, New York, 1976. 

- AWARD CERTIFICATES 

Your Chapter can make use of t h e  P i  MU Epsilon Award Cer t i f-  
i c a t e s  ava i lab le  t o  help you recongize s tudent ' s  mathematical 
Achivements. To obtain these,  w r i t e  t o :  

DJL. R i c h d  Good 
VepivUmUlt of, M a - t h e m i t i . ~  
Un>wvu,-i>tg 04  MahgAxnd 
CoMege. Pahk, MahgAxnd 20742  

ARE YOU MOVING? 

We recognize that students move, and 

we need your new address! Our Journals 

are sent by third class mail which is 

not automatically forwarded. Don't miss 

your issues of the Journal. Send your 
address changes or better yet, a permanent 

address to: 
Vx.  David B&w, E(Lut-oh 
Pi Mu Ephtion Jonnnai 
De.pa^tme.nt of, Mdtkemcuticat & C A . w  
So& Dakota. Schoot of, M ^ n e ~  and Te.chnoJiogg 
Rafwl Octg, S o d  Dakota. 57701  



THE CUBIC EQUATION REVISITED 

by F .  Max St&n 
Co!Loftado Stcvte Uniuwi-i-tg 

When we study the cubic equation we are generally interested in 

finding its roots. However, there are other ways of looking at the 

equation; the following discussion shows how straight lines in one plane 

map into strophoids in another by use of the cubic equation, and the 

roots of the cubic equation enter into the discussion only casually. 

We first review some elementary aspects of the cubic polynomial equation 

to prepare for the discussion of the mapping we wish to consider. 

It is assumed as known that the cubic equation in general form is 

given as 
2 ~t~ + Bt + C t  t D = 0; 

it has three roots, at least one of which is real. By the substitution 

the equation can be transformed into the form 

the reduced cubic equation. If the roots of (1) can be found, the roots 

of the original equation can be determined. One method for solving (11, 

known as Cardan's method, is given in [1] as well as many other places. 

There are other analytical, as well as numerical, methods for solving 

(1) which the interested reader can find at various places in the 

literature. 

I .  GeomvtAA.c AhpecA . 
Our interest in the reduced cubic equation (1) lies in another 

direction; we shall examine some geometric aspects of this equation 

and its roots. Throughout our discussion we shall assume that a and b 
3  

in (1) are real; furthermore the coefficient of x in (1) can be con- 

sidered to be 1 without loss of generality. 

Fig. la Fig. lb 

Fig. 2a Fig. 2b 



Fig. 3a 

We f i r s t  examine some spec ia l  cases of (1) ;  t o  do so,  consider 

the  cubic parabola 

(2)  
3 

y = x ,  - 
= - -  

which has the  graph given i n  Fig. l a .  Equation (1)  with a = b = 0 - 

(Fig. l a  and Fig. l b )  thus has a t r i p l e  root  a t  x = 0. The equation 

(3)  
3 y = x  + b  

merely moves the  graph of the  curve up (or  down) by \ b \  un i t s ,  see 

Fig. lb. Equation (1)  with a = 0 and b # 0 has one r e a l  root  plus two 

complex roots  - the  complex roots  a r e  complex conjugates. These three  

roo t s  can a l l  be obtained from 

Here 

is  a 

r e a l  

pos i t ive  r e a l  

root ,(-7), 

0, and 6 = 0 i f  b < 0. From (4)  we f ind  t h a t  there  

root  of x3 + b = 0, ( m) , i f  b < 0 and a negative 

i f  b > 0 ;  the  other  two roo t s  a r e  complex conjugates 

and can be 'p lo t ted  i n  the  complex plane a s  i n  Fig. 2a and Fig. 2b, re-  

spectively,  see [21. 

Next we consider cases i n  which b = 0 i n  (1)  - f i r s t  with a < 0 .  

From 

2 (5)  y = x 3 + a x , y '  = 3x + a ,  a n d y f 1 = 6 x  

we see t h a t  t he  graph of the  curve passes through the  or ig in  with 

slope a ( r e c a l l  a < 0)  and with a point 'of i n f l ec t i on  a t  the  or ig in ,  

see Fig. 3a. Furthermore t he re  a r e  maximum and minimum points  a t  

(Fig. 3a and Fig. 3b) x = -/-a/3 and a; = f-a.13, respect ively.  Final ly 

note t h a t  there  a r e  three  r e a l  r oo t s  f o r  x3 + ax = 0 f o r  a < 0 - a t  x = 0 

and x = ?/. Also note t h a t  the  graph of (5)  i s  symmetric with re-  

spect  t o  t he  origin.  Adding a constant term b t o  the  r i g h t  s i de  of  ( 5 )  

gives 

( 6 )  
3 y = x  + a x + b ,  

which merely moves the  graph up (or  down) by \b\ uni t s ,  see Fig. 3b.. 

Note, however, t h a t  i f  \ b  \ is  l a rge  enough there  may be one r e a l  root  

and a repeated r e a l  root  o r  one r e a l  root  and two complex conjugate- 

r oo t s  of (11, see the  dotted graphs i n  Fig. 3b. Note a l s o  t h a t  t he  



Fig. 4a Fig. 4b 

graph of  (6 )  i s  symmetric with respec t  t o  t h e  point  (0,b) ;  i . e . ,  re-  

placing t h e  point  (x,y -b) by (-z,-y +b) i n  (6) y i e l d s  (6) again. 

We w i l l  have only two d i s t i n c t  r o o t s  of (1)  when t h e  maximum ( o r  

minimum) po in t  o f  (6)  is on t h e  z-axis; t h i s  occurs a t  (-/-a/3,6$ or a t  

( / -a /3 ,0 ) ,  see (5 )  and C o r  C2 i n  Fig. 3b, and r e c a l l  t h a t  a < 0. 

On t h e  o ther  hand i f a  > 0  t h e  graph of ( 5 )  passes through t h e  

o r i g i n  with s lope a  and with a  po in t  of  i n f l e c t i o n  a t  t h e  o r i g i n  a s  

before, only now t h e  s lope of t h e  graph is  always pos i t ive ,  s e e  Fig. 4a. 

Hence, t h e r e  a r e  no maxima o r  minima f o r  t h e  graph (Fig. 4a and Fig. 4b) 
3 

Thus a; + ax = 0 has only one r e a l  r o o t  - a t  t h e  o r i g i n .  Adding a  con- 

s t a n t  term b,  a s  i n  (6), merely moves t h e  graph up ( o r  down) \b\ u n i t s ,  

and (1)  has only one r e a l  roo t ;  t h e  o ther  two r o o t s  a r e  complex conju- 

ga tes  a s  before. 

3 .  Real vb . CompLnx Root&. 

What is  t h e  d iv id ing  l i n e  between cases  f o r  which (1)  has a l l  

r e a l  r o o t s  and cases  i n  which t h e r e  a r e  complex roo ts?  One way t o  

answer t h i s  is t o  f i n d  those p o i n t s  where a  maximum o r  minimum point  of 

(6 )  l i e s  on t h e  x-axis. But these  points  have already been determined 

a s  (T /-a/3,0). (Recal l  t h a t  a < 0. ) Subs t i tu t ing  these points  i n  (1 )  

we get  

?(-a/3)372 t a ( - a / ~ ) l ' ~  + b = 0, 

which reduces t o  

( 7 )  

a  semi-cubical parabola i n  t h e  a ,  b-plane, s e e  Fig. 5. I t  is  not  d i f f i -  

c u l t  t o  s e e  t h a t ,  f o r  po in t s  t o  t h e  l e f t  of t h e  semi-cubical parabola 

( the  cross-hatched reg ion) ,  ( 1 )  w i l l  have t h r e e  r e a l  r o o t s  (note t h a t  

a c 0  i n  t h i s  region);  po in t s  on t h e  curve lead  t o  th ree  r e a l  r o o t s  with 

two ( o r  t h r e e  f o r  t h e  o r i g i n )  being t h e  same; and po in t s  t o  t h e  r i g h t  

o f  t h e  curve y i e l d  a  p a i r  of complex conjugate roo ts .  Of course, a < 0  

may y i e l d  some complex r o o t s ,  depending on t h e  r e l a t i v e  s i z e s  of  a  and b . 
4. The Veatoft App~oach. 

We now w r i t e  (1 )  a s  

( 8 )  s 3 + a s + b = 0 ,  a a n d b r e a l ,  

s ince  we a r e  i n t e r e s t e d  i n  t h e  complex r o o t s  of  (1 ) .  Here 



z = x + i y  = d c o s  e + i s i n  e 1 = re i e
.  

We can consider  t h e  terms i n  (8 )  a s  vec tors ,  and we wr i te ,  a f t e r  

rearranging terms, 

(9)  b + a z  + ~ ~ = b e ~ ~ + a r e ~ ~ + r ~ e ~ ~ ~ = ~ .  

We assume t h a t  b > 0 f o r  s impl ic i ty ;  cases  i n  which b C O  can be t r e a t e d  

i n  a s i m i l a r  manner a s  we s h a l l  see  l a t e r ,  

Since t h e  terms i n  ( 9 )  add t o  zero, t h e  vectors  i n  t h e  complex 

plane, o r  x , y - p l a n e ,  must form a closed polygon, a t r i a n g l e ,  see Fig. 6. 

Furthermore, s ince  a is r e a l  ( a  > 0 a s  shown), r > 0, and 6 is t h e  argu- 

ment of  t h e  vector  a z ,  then t h e  argument of 3 must be 39. From elemen- 

t a r y  geometry we can determine t h a t  a = IT - 29, and hence B = 39 - -IT i n  

Fig. 6. 

5.  The P/uMU.paÂ£ Ruutt. 
The major concern of t h i s  paper is  t o  examine t h e  locus of  the  

po in t  P i n  Fig. 6 .  We want t o  warn t h e  reader  t h a t  P is  not  a complex 

r o o t  of  (8 ) .  Rather it is  t h e  point  b + a s  i n  t h e  complex plane. The 

coordinates  o f  P(x,y) can be determined from t h e  parametric equations 

(10) x = b  t a r c o s 9 ,  y = or s i n e ;  

note ,  however, t h a t  we must know P and 9 (and hence a r o o t  of  (8)) t o  

determine x and y completely. 

Since we s h a l l  be using t a n  8 = tan(36 -IT), we use some trigono- 

metr ic  i d e n t i t i e s  and w r i t e  
3 

(11) tan(38 -n) = t a n  36 = 3 tan9 - t a n  9 
2 

1 - 3 t a n  9 

The locus of P i n  t h e  x , y - p l a n e  a s  a v a r i e s  with b f ixed ,  say 

b = 1, is  t h e  same a s  t h e  locus o f  t h e  po in t s  of  i n t e r s e c t i o n  o f  t h e  

l i n e s  

(12) y = ( t a n  9) (x  - 1 )  and y = ( t a n  B )x = ( t a n  3 9 ) ~ .  

If we e l imina te  t a n  6 between these  two equat ions we g e t  

3 
t a n  9 = Jf-- , x # 1, and y = 3 t a n  6 - t a n  9 

2 a, o r  
x - 1  1 - 3 t a n  6 

Fig. 6 

D 

x = 3/2 

(-1/2.0) x 
Ã 

A 

I I 

Fig. 7 



Dividing out y (if y # 0) and simplifying we get 

1 
This is the equation of a strophoid with x-intercepts (1,O) and 

and with x = 3/2 as an asymptote, see Fig. 7. The lines intersect at 

(1,O) when 6 = n/3 to remove the restriction that x # 1; also y = 0 for 
6 = 0 in both equations in (12). The fact that x = -1/2 when y = 0 is 

obtained from (13). [ B ~  eliminating y between the two equations in (121, 

one can obtain 

tan 8 3 tan8 - 1 x =- = tan 6 - tan 36 2(tan2e t 1) 

2 
y = (tan 39)x= tan 6(tan 6 - 3) 

2(tan2e t 1) 

Here we see that when 6 = n/3, x = 1 and y = 0. Also when 6 = 0, 

x = -1/2 and y = 0.1 

6. The. S-tiophod. 

We break up the strophoid in Fig. 7 into four parts: 

(a) ABC, o < e  <n/3, a c 0, 

(b) CD 1t/3<e<ir/2, a > o ,  
(14) 

(c) EC, ~ ~ 1 2  < e <2 n/3, a > 0, 

(dl CFA 2d3 < 6 < IT , a < 0. 

That is, as a in (9) increases from the point (0,l) in Fig. 8, 6 

increases in Fig. 7 from n/3 to n/2, and P varies from C to D. Because 

of the complex roots appearing as conjugates, we also have fora> 0 the 

portion of the strophoid in Fig. 7 from B to C, only now 8 increases 



392 

from 7r/2 to 2n/3. Similarly as a in (9) decreases from the point (0,l) 
3 

to (-3 /2/2,1), in Fig. 8, 6 decreases from n/3 to 0, and P traces out 

the portion of the strophoid CBA in Fig. 7. The complex conjugate root 

leads to the portion of the strophoid CFA in Fig. 7, only now 6 varies 
3 

from 2m/3 to n. Note that when a c-3 î ?/2 for b = 1, we have a point in 

the cross-hatched region of the a,b -plane in Fig. 5, and thus there are 

no complex roots of (9). 

In the preceding discussion we have assumed that b = 1. For 

b > 0 in general we have that the equations of the intersecting lines 

which determine P are 

(15) y = (tan 6)(x-b) and y = (tan 39)x, 
similar to the equations in (12). Upon substituting for tan 39 from (11) 

into the second equation in (15) and then for tan 6 from the first, we 

get 

2-2- 
x - b  3 

(x-b) 
Y =  

3y2 
1 - 

(x-b l2 

Upon simplifying and solving for y2 as before, we get 

From this equation we observe that as b increases from 0 we get a family A 
of strophoids which have x-intercepts at x = -b/2 and at X = b. Further- 

more the corresponding asymptotes are x = 3b/2, see Fig. 9. That is, we 4 
have a mapping of the lines b = b in the a,b-plane into strophoids in 

0 
the x,y-plane. 

When b = 0 in (9) we have z3 + az = z(z2 +a) = 0 which has roots 

at z = 0 and z = ?/-a. If a > 0 (which is necessary for complex roots) 

then the point P is at (O,?/l-al, and the strophoid degenerates to the 

y-axis as a varies. 

When b < 0 we merely obtain the reflection of Fig. 9 in the y-axis. 

This is readily seen by letting b be negative in (16). 

Fig. 10 

Fig. 11 



7 .  RuJLRoo-ti. 
Thus f a r  we have considered only those cases  i n  which a r o o t  z of 

(9 )  is  complex. The discussion,  s t a r t i n g  with (9 )  could apply equal ly 

well  f o r  r e a l  r o o t s  z; i n  t h i s  case t h e  s t rophoids l i e  e n t i r e l y  on t h e  

x-axis. That is, b + 0s + s3 = 0 can be considered a s  t h e  sum o f  t h r e e  

vectors  s t a r t i n g  and ending a t  t h e  o r i g i n  and a l l  l y i n g  on t h e  x-axis. 

For example i n  2 - 32 + z3 = 0 we s e e  t h a t  t h e  r o o t s  a r e  1, 1, and -2 

(and hence (7)  is s a t i s f i e d ) .  The vector  graphs f o r  1 and -2 appear a s  

i n  Fig. 10; t h e  po in t s  P always l i e  on t h e  x-axis. Recal l  t h a t  t h e  

po in t s  (a ,&) must l i e  i n  t h e  cross-hatched region o r  on the  semi-cubical 

parabola i n  Fig. 5 f o r  r e a l  r o o t s ,  and a is always negat ive ( o r  zero)  

there .  

8 .  The CAAC a Lb, Co~~t0 .n . t .  
For any po in t  P on t h e  s t rophoid (16)  with coordinates  (x,y) we 

have t h a t  t h e  d i s tance  from t h e  o r i g i n  t o  P i n  t h e  x ,  y -p lane  is 

(17) r3 = (x2 + y2)1'2, 

t h e  cube o f  t h e  magnitude of a complex r o o t  of  (91, see  Fig. 11. Also, 
f o r  a >  0 t h e  d i s tance  from t h e  point  (b.0) t o  P i n  t h e  x , y  -plane is  m. 

Hence, we have 

2 r =  ( x  + y 2 ) l l 6  and w = a ( x 2  +y2)'l6 

Now if we rep lace  b i n  (16) by (18) we e e t  

By ass ign ing  values t o  a i n  (19) we g e t  t h e  image curves i n  t h e  

x,y-plane of  t h e  s t r a i g h t  l i n e s  a = a. i n  t h e  a,&-plane with b e n t i r e l y  

a r b i t r a r y  i n  (19). Since a simple i n t e r p r e t a t i o n  o f  (19) i s  not  r e a d i l y  

ava i lab le ,  we do no t  proceed f u r t h e r  i n  t h i s  d i rec t ion .  

9. ConduAtona. 

By looking a t  t h e  cubic equation ( 1 )  i n  a d i f f e r e n t  l i g h t ,  we en- 

counter  an i n t e r e s t i n g  mapping. While t h e  usual  s tudy of  t h e  cubic 

equation involves f ind ing  i t s  r o o t s  o r  i n  graphing i t, here we encounter 

a family of  s t rophoids.  A study such a s  t h i s  gives r i s e  t o  add i t iona l  

problems which include a thorough examination of t h e  mapping o f  l i n e s  

a = a. i n  (19), t h e  mapping of  regions i n  t h e  a,b-plane i n t o  regions 

i n  t h e  x,y-plane, and t h e  mapping of  l i n e s ,  curves, and regions ly ing  

i n  t h e  cross-hatched region of Fig. 5 s i m i l a r  t o  t h a t  done f o r  t h e  

quadrat ic  equation i n  [3]. 
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A DAY AT THE RACES 

Horse racing is known a s  t h e  s p o r t  of kings. Why? Because kings 

a r e  t h e  only ones who can r e a l l y  a f ford  t o  p a r t i c i p a t e  i n  t h e  spor t .  

Those who can ' t  a f ford  t o  p a r t i c i p a t e  a r e  t h e  ones y o u ' l l  see jamming 

t h e  racecourses each day. 

And everybody th inks  he can make a for tune because he e i t h e r  

f e e l s  lucky o r  he has a "system". 

"I have a system". That phrase has probably r o l l e d  o f f  more 

handicappers' tongues than any other .  What's more, every gambler i n t u i -  

t i v e l y  knows t h a t  t h e  only sure  th ing  i s  t h a t  ~ ; . : r e  is  no sure  thing.  

O r ,  is there?  

The f a c t  t h a t  t h e  odds-on f a v o r i t e  doesn ' t  always win t h e  race  

( i f  it d id ,  we'd a l l  be mi l l iona i res )  ind ica tes  t h a t  t h e  art of  b e t t i n g  

on horses is a s  much concerned with people a s  with horses .  Any race-  

goer who f a i l s  t o  appreciate  t h i s  w i l l  l ose .  Any system-builder who 

f a i l s  t o  recognize t h i s  w i l l  wind up with a worthless system. And any 

soc io log is t  who has never gone t o  the  races  is  missing a spectacular  

display o f  human behavior. 

The aim of  any system i s  t o  make t h e  odds more favorable  t o  the  

be t to r .  Some systems a r e  incred ib ly  complex, involving d e t a i l s  such a s  

pos t  pos i t ion ,  weather, race  d i s tance ,  s i z e  of purse money and even t h e  

i n t e g r i t y  of  t h e  jockey o r  d r iver .  

What's needed is  a s t raightforward,  l o g i c a l  and simple system 

t h a t  neg lec t s  a l l  t h e  f a c t o r s  o f  a horse r a c e  except t h e  odds. 

The Re-Equine Su&tem 
Given a f i e l d  of  e i g h t  horses  i n  a race ,  can youpick two of  them 

such t h a t  you a r e  p o s i t i v e  one w i l l  win t h e  race? It 's e a s i e r  t o  pick 

two than j u s t  one. After  a l l ,  by picking two horses  you've j u s t  in-  

creased your chances of  winning from 1/8 t o  1/4. 

Now, assuming t h e  above, i s  t h e r e  a way t o  b e t  on both o f  them 

such t h a t  no matter  which horse wins you make a desired p r o f i t ?  

Let xl = t h e  number of  b e t s  on horsey 

x2 = t h e  number of  b e t s  on horse2 

a = t h e  odds on horsei  ( a  t o  1 odds) 

b = t h e  odds on horse, (b  t o  1 odds) 

P = t h e  des i red  p r o f i t  

where one be t  = $2 (minimum b e t ) ;  t h e  f i s c a l  r e t u r n  is  ca lcu la ted  by 

(2)  (odds) + 2, and t h e  p r o f i t  i s  ( 2 )  (odds). 

If horse wins: 2ax1 - 2x2 = P 
These equations represent  
t h e  two winning cases .  

I f  horse wins: -2x1 + 2 b ~ y  = P 

We now have two simultaneous equations with two unknowns. What 

they mean is i f  horse l  wins, then t h e  f i s c a l  r e t u r n  on t h a t  horse minus 

t h e  investment on horse2  equals t h e  chosen p r o f i t .  I f  horse2  wins, 

then t h e  r e t u r n  on t h a t  horse minus t h e  investment on h o r s e i  equals 

t h a t  same chosen p r o f i t .  

A general  form of  these  equations can be a r r ived  a t  through oper- 

a t i o n s  of  l i n e a r  algebra by s e t t i n g  up a matrix equation of t h e  form 

General Form 



Note: The product of a and b must not  equal  one o r  t h e  system 

w i l l  have no solut ion.  In  o ther  words, i f  both horses a r e  even money 

sho ts ,  do not be t  t h e  race.  The same i s  t r u e  i f  t h e i r  respec t ive  odds 

a r e  mul t ip l ica t ive  inverses  of each o ther .  

Example 

Let 's  say you have chosen t o  make $50 p r o f i t  and have picked two 

horses  i n  a race  t h a t  a r e  going o f f  a t  5 t o  1 and 3 t o  1, respec t ive ly .  

x = 10.7 
a; and x must be rounded o f f  t o  make 
1 2 

x -7 whole d o l l a r  be t s .  This t runca t ion  

x =10.5 w i l l  a f f e c t  P s l i g h t l y .  

Amount o f  money on horse 1 = $14 

Amount o f  money on h o r s e 2  = $21 

Tota l  Investment = $35 

If horse 1 wins: 2(5)(7)-2(10.5) = $49 p r o f i t  

If h o r s e 2  wins: -2(7)+2(3)(10.5) = $49 p r o f i t  

Rac-uig MO-&HJC Theow 

If it works f o r  two horses ,  then why won't it work f o r  th ree?  I n  
f a c t ,  w i l l  t h i s  system work i f  every horse i n  a r a c e  i s  taken i n t o  con- 

s idera t ion?  This system could be t h e  g r e a t e s t  breakthrough i n  t h e  

h i s t o r y  of  gambling i f  it allows you t o  be t  each horse i n  a r a c e  such 

t h a t  no matter  which horse wins a desired p r o f i t  i s  a t ta ined .  

Could t h i s  f i n a l l y  be t h e  f i r s t  "sure thing?" - - 
The. 0c-ta-E-Equine Mo-fi-cx 

There a r e  usual ly e i g h t  o r  nine horses i n  a standardbred r a c e  and 

t h a t  number v a r i e s  a l i t t l e  more i n  t h e  thoroughbred version. However, 

l e t ' s  t ake  e i g h t  horses  t o  c o n s t i t u t e  a t y p i c a l  f i e l d .  The e i g h t  simul- 

taneous equations would look l i k e  

where a -i = odds on horse; (a; t o  1 odds) 

xi = number of b e t s  on horse; 

P = des i red  p r o f i t  

In  t h e  form o f ~ z =  7?. t h e  equations become t h e  following system 

Solving t h i s  system of  equations by hand would be an absurd t a s k  

t h a t  could e a s i l y  t a k e  days. A s tandard hand c a l c u l a t o r  w i l l  t ake  about 

t e n  minutes t o  i n v e r t  an e i g h t  by e i g h t  matrix and s p i t  ou t  t h e  solu-  

t i o n s  t o  such a system. 

Since horses  r a r e l y  go o f f  a t  i n t e g e r  odds, t h e  next  example 

u t i l i z e s  r e a l i s t i c  odds taken from a t y p i c a l  race .  

a -1 -1 -1 -1 -1 -1 -1 x 

-1 a -1 -1 -1 -1 -1 -1 x 

-1 -1 a -1 -1 -1 -1 -1 x3 
-1 -1 -1 a -1 -1 -1 -1 x4 
-1 -1 -1 -1 a5 -1 -1 -1 x5 

-1 -1 -1 -1 -1 a -1 -1 X6 

-1 -1 -1 -1 -1 -1 a -1 x7 
-1 -1 -1 -1 -1 -1 -1 a I l l ,  - - 

-2 



Input Output 

a = 37-1 xl = -$11.15701428 
a = 17.2-1 x = -$23.29486498 

a = 15.9-1 x = -$25.08677767 
a = 11.2-1 x = -$34.75135596 
a = 8.9-1 x = -$42.82490330 
a = 4.4-1 x6 = -$78.51232272 
a7 = 3.4-1 x = -$96.35603243 
a8 = 1-1 a = -$211.9832713 

where the a;, are converted directly into dollars by the programmable 

calculator, and P is set at $100. 

P / w b t & m .  The machine came up with negative solutions. Unfor- 

tunately, there is no way to bet negative dollars on a horse, and this 

means that this particular combination of horses cannot be bet simultan- 

eously to yield a desired profit. 

Maybe it was just a bad combination of odds? Yes, that's true. 

However, in several actual racetrack situations no odds were encountered 

that would yield a positive solution vector. There probably does exist 

some combination of odds that would somehow yield positive results to 

the eight equations (Can you find one?). 

But let's not give up yet. Just because the system's not guaran- 

teed to work for eight horses doesn't mean it can't make the bettor's 

odds more favorable with fewer horses. First, however, it's necessary 

to examine the basic problems of this system: 

Six Fumlzmenta I Problems. 

1) Latest Odds. No matter how many horses are considered in a 

given field, the accuracy of this system relies on the latest available 

odds. A horse may be listed in a program at 5 to 1 odds but may actual- 

ly go off at 3 to 2. At the track, for instance, it's best to bet as 

late as possible so that the betting calculations can be made with the 

most recent odds as read off the tote board. 

2) Stab-LZity of Odds. This is really a function of getting the 

most recent odds on a horse. The stability this system is concerned 

with is that of the odds at which you bet versus the odds the horses 

really go off at. What is also important to realize is that if you bet 

a large amount on any combination of horses, the odds on those horses 

will change. 

3) The Mazady of Truncation. Racetracks only accept integer - 
dollar amounts. In other words, you cannot bet $2.58 on a horse even 

though one of the solutions given by the equations might be x = 1.29. 
You are forced to round off the answer to the nearest integer or to the 

nearest half. For instance, 1.29 is closer to 1.5 than it is to 1.0. 

Therefore, the bet would call for $3 as opposed to $2. Also, if you are 

using a programmable calculator or computer, the machine will truncate 

numbers as it calculates the inverse of a matrix. 

4) Efficiency.  The efficiency of this system can be defined as 

what is put in versus what one gets back. As the number of horses taken 

into account increases, so does the investment that must be made in order 

to achieve the same profit. For example, to make $50 profit on two 

horses may only require an investment of $24. But making that same pro- 

fit on eight horses may require a multi-hundred dollar investment. This 

kind of investment, as noted before, will also affect the stability of 

the odds. 

5 )  Degree o f  Complexity. Calculating bets for two horses can be 

done very quickly. Unfortunately, calculation time increases quickly as 

more horses are taken into account. The eight-horse equations, for in- 

stance, can easily take over ten minutes for a calculator to solve and 

there are only a maximum of sixteen minutes between races. This means 

that you can't feed accurate odds into the calculator and it will yield 

radically different results than with the latest odds before post time. 

Although the eight-horse system doesn't seem to work, the same 

time constraints still apply for more than three horses. Additionally, 

when considering more than three horses, the stiffness of the equations 

becomes a factor and so do conditions on odds that insure positive solu- 

tions. Stiffness can be defined as an adverse reaction of the equations 

if one of the odds changes slightly. In other words, if the solutions 

yielded by a set of odds change dramatically when just one of the odds. 

changes slightly, you may end up on welfare. 

6) Hob Interest. This isn't necessarily a drawback of this sys- 

tem but rather a drawback of successful gambling. Mob interest is two- 



fold: there will be a mob of people at the track interested in how you 

are winning all the time, and then there will be the other mob interest- 

ed in putting you out of business before you put one of their bookies 

out of business. Stay away from bookies with a system that works. 

The 3 by 3 -- A System That WoAfeA 

Can you handicap any race and come up with the three best horses 

in that race? Part of the beauty of this system is that you don't need 

to know anything at all about horse racing to win. All you have to be 

able to do is read the three best (lowest) odds off the tote board at 

the track and substitute them into a general formula. 

Automatically, your worst chances of winning become 3/8. Also, 

it is safe to estimate that at the big-name racetracks like Roosevelt 

and Aqueduct, one of the three favorites in each race wins about seventy 

percent of the time. 

What's more, the 3 by 3 system doesn't encounter all those prob- 

lems like stiffness, ineffiency, and complexity. The substitution of 

numbers into the general formula leads to quick and easy solutions and 

makes the method very practical. 

Derivation 

The three simultaneous equations for this method are 

where a, b and c are the odds on horses one, "two and three and x. are 
1, 

the number of bets on each horse, and P is the desired profit. 
In the form of Ax = b, we have 

A general formula is arrived at by inverting the matrix A and 

multiplying both sides of the equation by its inverse. By method of 

the Classical Adjoint, the inverse of A is easily calculated: 

-1 b det (A) = abc -(a +&+a)-2 - 
d - 

-1 -1 0 
L -1 . . 

Classical Adjoint C .=(-l)-det ( B ,;) 1-3 

The matrix C is symmetric and so it's equal to its transpose, and the 

inverse of A is as follows 

After multiplying both sides of the equation in the form AX= b by A 

inverse, the general formula of the 3 by 3 system is 

where det (A) = abc-(a+ b + a 1-2 

The remainder of the process is choosing the three horses with the best 

odds, the amount of profit you want to make and simple multiplication 

and addition. 

E z m p  ze 

Horse 1: 3-1, a = 3 

Horse2:3-2, b = 1.5 
det (A) from the formula = 7.5 

Horse 3: 4-1, c = 4 
Profit (PI = $50 

x1 = - [(1.5)(4) + 1.5 + 4 + 11 = $83 
2(7.5) 

in 
dollars 

x2 = (3.33) [(3)(4) + 3 + 4 + 11 = $133 

x 3 = (3.33) [(3)(1.5) + 3 + 1.5 + 11 = $67 



horse 1 wins: (3) t 83 - 83 - 133 - 67 = $49 
If horse2 wins: (133)(1.5) t 133 - 83 - 133 - 67 = $49.5 

If horse3 wins: (67)(4) + 67 - 83 - 133 - 67 = $52 

Now, the total investment for this race would be $283 and the total 

return would be about $333. 

The. Sy-i-tem'b Aduantugu 

The first advantage is that you don't need any knowledge of horse 

racing at all to work this system. Secondly, even if the odds fluctuate 

slightly from the time you bet, you'll probably still wind up making a 

decent profit. Thirdly, having three or more horses run for you in the 

same race is a comfortable feeling. And, finally, the winning percent- 

age of the 3 by 3 is high, almost seventy percent. 

There still may be no such thing as a sure thing and if there 

were, then it wouldn't be gambling, would it? 

- MATCHING P R I Z E  FUND 

If your Chapter presents awards for Outstanding Mathematical 

Papers or Student Achievement in Mathematics, you may apply 

to the National Office to match the amount spent by your 

Chapter. For example, $30 of awards can result in your 

Chapter receiving $15 reimbursement from the National Office. 

These funds may also be used for the rental of Mathematics 

Films. Write to: 

Dr. Richard Good 
Secretary-Treasurer, P i  MU E p S i  1 On 
Department of Mathematics 
The University of Maryland 
College Park, Maryland 20742 

BE SURE AND SEND THE NAMES OF LOCAL AWARD WINNERS TO 

THE JOURNAL FOR PUBLICAT ION I N  THE NEXT POSSIBLE ISSUE.  

- 
PARTIAL D I F F E R E N T I A T I O N  OF FUNCTIONS OF 

A SINGLE VARIABLE 

In this note we will give a technique (or "rule") for differenti- 

ating certain combinations of functions. This rule includes a= special 

ca-ses the standard ones for differentiating sums, differences, products 

and quotients of functions. Moreover, it also provides an alternative 

method for determining the derivative of the function f(x)g(x). 

The technique presented here was inspired by two types of errors 

frequently encountered when students are asked to differentiate a func- 

tion of the form f(~)~(~). They either view this function as an expon- 

ential one and use the formula 

or as a power function and use 

As a result, one often sees (incorrect) answers to this problem of the 

form 

It is at first surprising to notice that the correct answer (obtained 

by, say, logarithmic differentiation) is the sum of these two incorrect 
ones! However, as we shall see, this is not a coincidence but a 

special case of the following general principle. 

Partial Differentiation Rule: Let h(x) be a combination of the 

functions f (x) and g(x) which can be written as h(x) = ~(f(x) ,fl'b)). 
Then ht(x) can be obtained by first differentiating H(x) treating 

f(x) as a constant, then differentiating B(x) treating g(x) as a 

constant, and finally adding the two results. 



Proof. In the function H ( f ( x ) ,  g ( x ) ) ,  change the arguments o f  

f and g t o  s and t ,  respectively,  obtaining the function F ( s , t ) .  

Then h ( x )  = F(x,x).  Now the partial derivatives o f  F ( s , t f  evaluated 

at the point ( x , x ) ,  namely Fs(x,x) and Ft(x ,x) ,  are the derivatives 

that one obtains by di f ferent ia t ing H ( x )  considering, respectively,  

gde) and f ( x )  t o  be constant. Finally by the  chain rule 

h ' ( x )  = F ( x , x )  + F ( x , x )  as desired. s t 
I t  i s  easy t o  see that the rules for dif ferentiating -sums, d i f -  

7 .  
ferences, products and quotients o f  f ( x )  and g ( x )  are special cases 

o f  t h i s  partial d i f ferent ia t ion rule.  For example, t o  d i f f e ren t ia te  
h ( x )  = f ( x ) g ( x )  we successively hold f ( x )  and g ( x )  constant d i f f e r -  

entiating the other function and add the results  t o  obtain 

which i s  o f  course the "product rule." The most interesting special 
case o f  our rule i s  i t s  application t o  the function f ( ~ ) ~ ( ~ ) .  This 
gives, as indicated at the beginning o f  the note, a simple alternative 

method (there are no complicated formulas or algorithms t o  memorize.) 

for d i f ferent ia t ing t h i s  function. 

We should remark i n  closing that t h i s  technique does not apply 

t o  the composition o f  functions. This i s  easily seen by choosing 
'f(x) =p(s) = x .  Then f ( g ( x ) )  = f ( x )  = x ,  so i t s  derivative i s  1. 

However, applying the  partial d i f ferent ia t ion rule we would get 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

CHAPTER REPORT 

MISSOURI DELTA (WESTMINSTER COLLEGE) A t  the Annual Init iation o f  

new members, cuiwt w m  spoke on "Experimental Physics Projects". 

The advisor i s  V/ t .  &cha.& 2 .  WWUuam&. 

PUZZLE SECTION 

E d i t e d ,  by 
Vav-cd B&w 

This Department i s  for the enjoyment of those readers who are addicted 
t o  working crossword puzzles or who find an occasional matheno.tical p d e  
attractive.  We consider mathematical puzzles to be problem whose solutions 
consist of answers immediately vecognissdble as correct by simple 0't-ser- 
vation and requiring ' l i t t l e  formal proof. Material admit ted  and not wed  
have w i l l  be sent to the prwblems Editor i f  deemed appropriate for that 
Department. 

Address a l l  proposed pussies and puzzle solutions t o  David Ballw, 
Editor of the P i  Mu Epsilon Journal, Department of Mathematical Sciences, 
South Dakota School of Mines and Technology, Rapid City, South Dakota, 
57701. Deadlines for puzzles appearing i n  the Fall issue w i l l  be the 
next February 25, and puzzles a p p e h n g  i n  the Spring issue w i l l  be due 
the next September 15. 

Mathacrostic No. 14 

submit ted  by Joheph V .  E .  K o n h o w  
M a c A C e ~ t a  CoUege, S t .  Vault,  Alcnne~o-ta 

Like the-preceding puzzles, t h i s  puzzle (on the following two pages) 

i s  a keyed anagram. The 239 l e t t e r s  t o b e  entered i n  the  diagram i n  the 

numbered spaces w i l l  be identical with those i n  the  28 keyed words at  

matching numbers, and the key numbers have been entered i n  the diagram 

t o  ass is t  i n  constructing your solution. When completed, the  i n i t i a l  

l e t t e r s  w i l l  give a famous author and the  t i t l e  o f  h i s  book; the  diagram 

w i l l  be a quotation from that  book. (See an example solution i n  the 

solutions section o f  t h i s  Department.) 



Einitions Words 

a looper - - - - - - - - 
174 161 88 195 131 215 226 22 

pure; irreproachable (comp. - - - - - - - - - 
58 210 28 139 43 144 164 95 224 - 

at right angles to the centerline - - - - - - - 
204 125 100 180 57 21 163 

A mathematician named - ----------- 
Thought the M6bius band was divine. 12 109 196 117 46 235 132 79 126 207 61 
Said he, 'If you glue 
The edges of two 
You'll get a weird - like mine.' 
(2 wds.) 

. holomorphic; regular -------- 
I85 106 76 69 3 194 65 187 

. full of difficulties 
89 30 179 55 169 143 

. overcloud ---------- 
181 52 205 86 32 112 24 225 154 171 

. a cell nucleus formed by the fusion 
of two pre-existing nuclei 104 222 186 81 23 167 191 54 213 

I I I I I. exponent of the craft of discovery in 
mathematics, b. 1887 140 4 68 40 198 

German Shepherd film star (1918-1932) 
of the 1920's and early 1930's (comp.1 103 70 8 37 200 129 64 176 77 

in another state or condition - - - - - - - - - 
83 172 60 115 221 6 41 50 156 

. off the beaten track (comp.) ----------- 
130 151 227 91 2 113 178 145 15 206 35 

cable railway in which an ascending car 
counterbalances a descending car 85 121 182 212 201 108 159 51 133 

. a collection of samples ------ 
116 122 162 99 184 25 

. the proposition "The only decision ----------- 
procedure that satisfies certain ele- 27 111 138 73 59 175 42 217 232 11 190 
mentary principles of social welfare 
is a dictatorship." (2 wds.) -- 

. sometime modifier of element, set, 101 197 ---- 
space, sequence 62 5 203 142 

Q. one of the paradoxes of Zeno - - - - - - - - 
146 114 165 223 120 29 80 192 208 

R. of this Indian mathematician (1887- 
1920) G. H. Hardy said 'The limita- 158 202 56 148 13 74 236 137 82 
tions of his knowledge were as start- 
ling as its profundity.' 

S .  in an integrated functional unit - - - - - - 
(2 wds.) 237 136 209 38 90 10 26 

T. half pro and half con (comp.) ---------- 
71 1 118 78 98 166 49 229 16 153 

U. an undergarment with top and bottom 
in one piece (2 wds.) 234 19 105 141 87 211 160 47 216 

V. a precursor of the die (2 wds.) ----------- 
199 44 189 228 84 67 124 170 36 214 102 

W. an 1871 Verdi opera by which Egypt ---- -- 
should not have been judged 193 63 39 7 238 128 

of exact science are logic and 
mathematics." De Morgan (3 w's. 1 150 173 218 239 75 127 183 31 18 94 

. a generally mentally defective person 
with an unusual aptitude in some 157 34 135 20 230 66 110 219 123 9-2 48 
soecial field (2 wds.) 

a long wandering 

the deadly one is 
or bluish flowers 

a weed with white 
and black berries 

b. a winding-sheet ------ 
231 155 147 33 96 152 



SOLUTIONS 

Mo-tfiaOwb-ttC. No. 13 .  [see Fall 1981 issue) (Ptopobed by J.D.E. Konhau-4m) 

Definitions and Key: 

A. Enarthrosis I. Majority Q. Rep-tile Y. Stevin 
b. Rehash J. Aha insight R. Open-and-shut 2 .  Concepts 
C. Non-standard K. Glow S. Rubik's cube a. Hein 
D. Sweet pea L. Intuitions T. Opposite b. Ends with 
E. Thoughts M. cusp U. Fiddle-faddle ideas 
F. Tschirnhausen N. Middle third V. Monge c. Revehent 
G. Heuristic 0. .Internist W. Chop 
H. Epsilontics P. Replication X. Elephant 

First Letters: ERNST THE MAGIC MIRROR OF M C ESCHER -- 
Quotation: VnauiLng & decep-fcton. On t h e  one hand EbcheA h a ~  W e d  t o  
heveat  ihih decep-fcton i n  vaJviou^ p ~ & & ,  and on t h e  0 t h ~ ~  hand he h a  
pm.devt.ed it and t m e d  it i n t o  ~upViilUl.ti&ion, conju/Ung up with it 
impobbible M n g b ,  and ihih with buck b u p p l e n u i ,  l o g i c ,  and cJia.luULy 
that the. impobb-ible maku p@e& b e a t .  

Solved by: Jeanette Bickl ey , Webster Groves High School, Missouri;  LOU^ s 
H. Cairo1 i , Kansas State University; Victor Feser, Mary College; Robert 
Forsberg, Lexington, Mass. ; Robert Gebhardt, Hopatcong, NJ. ; Henry S. 

Lieberman, John Hancock Mutual; Robert Priel i pp, Univ. of Wisc-Oshkosh; 
Chris Thomas, Ann Arbor, Mich; The Proposer and The Editor. 

OLOAA Wohd Puzzle.  (See Fa1 1 1981 Issue) (Pmpo&ed by Mex MehaUeg Jh.  
and CW& O b o n .  1 
Solved by: Victor Feser, Mary College (partially); Roger Kuehl, Kansas 

City; The Proposers and The Editor. 

PROBLEM DEPARTMENT 

Edited by C h y t o n  W. Dodge 
Un- t .umi ty  06 MO-UIe 

This department welcomes problems believed t o  be new and a t  a 

level appropriate for the readers of t h i s  journal. Old problems display- 

ing novel and elegant methods of s o h t i o n  are also invited. Proposals 

should be accompanied by solutions i f  available and by any Â¥informatio 

that w i l t  a s s i s t  the editor. An asterisk (*) preceding a @em number 

indicates that the proposer did not submit a solution. 

A l l  coi~~iuyii.oati.ons should be addressed t o  C. W. Do&e, Math Dept., 

University of Maine, Orono, ME 04469. Contributors desiring acknowl- 

edgment of their  o f f e w s  are requested t o  enclose a self-addressed 

postcard or envelope. Please submit each proposal and solution on a 

separate sheet (one side only) properly Â¥identifi.e with name and address. 

Solutions t o  problems -in t h i s  issue should be nailed by December 15, 1982. 

Problems for Solution 

510. Phopobed by ChaAJLu W. T a g ,  2 San Diego, C&iohyu.a. 
A hexagonal number has the form In - n .  In base nine, show that 

the hexagonal number corresponding to an n that ends in 7 terminates 

in 11. 

51 1. P~opobed by EfWWtl Ju^t and Noman Schaumbe-tgm, &onx 

Community CoLLege, New Yohk. 
If a > 0  and 0 2 1, prove that 

0 0 
(A) ee -a and 

512. Phopobed by Jack Ga^f.unk&JL, F t w h w ,  New Yohk. 
A 

Denote the number of ways a positive integer n can be partitioned 

into 3 positive integers by P3(n). Thus, for example, P3(7) = 4, since 



we have 

1 + 1 + 5, 1 t  2 t 4, 1 t 3 + 3, and 2 + 2 + 3 each equal t o  7. 
2 Prove t h e  following: I f  a ,  b y  c a r e  p o s i t i v e  in tegers  and a

2  + b
2 

= c , 
then 

P3(a) + P ( b )  = P3(c). 

513. Pkopobed by Ron& E. Sh idd lw t ,  G e o q h  S t a t e  U G u w U . y ,  

Atlanta., Ge0q.i.a. 

Our o ld  f r i end  Prof. Euclide Pasquale Bombasto Umbugio, eminent 

r e t i r e d  numerologist from Guayazuela, has been delving i n t o  s t a t i s t i c s  

of l a t e  i n  an e f f o r t  t o  prove t h a t  h i s  ret i rement  s a l a r y  i s  so  laughably 

low t h a t  he should be given food stamps i n  add i t ion  t o  h i s  good conduct 

pass t o  t h e  1986 baton t w i r l e r s  semifinals .  He has checked severa l  d i s-  

t r i b u t i o n s  involving r e a l  numbers and i n  every case,  t h e  average devia- 

t i o n  (a.d.1 is  l e s s  than o r  equal  t o  t h e  s tandard deviat ion a,  where 

a.d. = - 2 1xi - 21 and u2 =i n 
i=1 i= 1 

Of course, is  t h e  d a t a  mean 
n 

a ; =-  - z x.. n i=l 2 

He conjectures  t h a t  a.d. <. u is  always t rue .  Help t h e  professor  t o  

prove h i s  conjecture.  

514. Phopobed by Raymond E. SpauMing,  Rad,jond U n L v e ~ ~ L t y ,  
Raddo/id, Vh&ni .a .  

Let A1A2A3 ... A be a regu la r  polygon-where An+. = A .  and 
3 

A1Â¥Ai+ = 1. Let Bi be a point  on t h e  segment AiAi1 where A B 
i i Z x m  

Let Ci be t h e  po in t  where AiBi+l i n t e r s e c t s  Ai1Bity. Find t h e  a r e a  of 

a regu la r  polygon ClC2C3 ... C i n  terms of n and x.  n 

*5l5. Paopobed by Jack Gm&nke^, FttUihing, N e w  Yolk. 

Given a sequence of concentr ic  c i r c l e s  with a t r i a n g l e  ABC circum- 

scr ib ing  t h e  outermost c i r c l e .  Tangent l i n e s  a r e  drawn from each vertex 

of ABC t o  t h e  next  inner  c i r c l e ,  forming t h e  s i d e s  of  t r i a n g l e  A ' ,  B', 

C'. Tangents a r e  now drawn from v e r t i c e s  A ' ,  B1,  C1 t o  t h e  next  inner  

c i r c l e  and they a r e  t h e  s i d e s  of  t r i a n g l e  A", B", C1', and s o  on. Prove 
t h a t  t h e  angles  of  t r i a n g l e  A^B ^)c("^ approach ir/3. 

516. P/i.opobed by J. L. B>iwncit, Pato AÂ£to CaU(SokHiL0.. 
1 1 

Prove, f o r  a ,  b, a pos i t ive ,  t h a t  -̂  ( a + b t c ) 2 /-  ̂ (ab + bc + c d  

with equa l i ty  i f  and only i f  a = b = c .  Does t h i s  genera l ize  t o  * - 

517. Pkopobed by Ch& W .  T/u.gg, San V-Le-go, CdLLdon.nLa. 

The nine non-zero d i g i t s  a r e  arranged t o  form t h r e e  th ree- dig i t  

primes with a sum t h a t  i s  d i v i s i b l e  by 11. Find t h e  primes and t h e i r  

sum. 

518. P~opobed by Michael. W .  E c k e ~ ,  Pemq luanLU S t a t e  U ~ L u m L t y ,  

WoKJt f ig ton ScA.anton Campub. 

A baseba l l  player  g e t s  a h i t  and observes t h a t  h i s  b a t t i n g  average 

r i s e s  by exac t ly  10 po in t s ,  i . e ,  by .010, and no rounding is necessary 

a t  a l l ,  where b a t t i n g  average is  r a t i o  o f  number of  h i t s  t o  times a t  b a t  

(excluding walks, e t c . ) .  If t h i s  i s  not the  p l a y e r ' s  f i r s t  h i t ,  how 

many h i t s  does he now have? 

51 9. Paopobed by ChafULus W.  T/Uaa, San VLego, CaUfion.nLU. 

Solve t h e  equation 

32x - ( 3 4 ) 1 ~ ~ - ~  + 52x = 0. 

520. P t o p o b d  by C h c k  A U o n ,  Huxtu ig ton Beach, Cati<softGa. 

The following diagrams describe t h e  f irst  few polygonal o r  k-gonal 

numbers : 

Triangular; k = 3: 

A 
1 3 

Square; k = 4: 



Pentagonal; k = 5: P(n, 5 )  = n(3n - 1 )  
2 

1 5 12 22 35 51 ... 
where t h e  numbers represen t  t h e  number of do ts  shown, and each f i g u r e  

is  an extension of  i t s  predecessor. The n t h  number o f  each sequence is 

given by t h e  above formulas. Find a general  formula f o r  t h e  n t h  k-gonal 

number P(n, k 1. 

521. Pkopobd by M o d  Ko-tz, Mawia.hoc, Maine.. 

I was t o l d ,  when I f i r s t  saw t h a t  alphamatic, t h a t  
W E  

a p a r t i c u l a r  value f o r  K produced a unique so lu t ion ,  but I DO 

have forgo t ten  what t h e  value is. So f i n d  t h e  unique WEE 
WORK 

so lu t ion  where DAILY is prime. DAILY 

Solut ions 

466 [Spring 1980, Spring 19811 Pkopobml by H a b w t  Taqloh, SotLth 

P o ~ o d ~ ,  c d i 6 0 h n i ~ .  

Let t h e  adversary put four  d i s t i n c t  symbols i n  each box (node) of  

t h i s  graph. Prove o r  disprove: No matter  what p a t t e r n  of symbols he 

puts, we can choose two symbols from each box i n  such a way t h a t  adjacent  

boxes have d i s j o i n t  chosen 2-sets. 

- -- 
S o t u t i o n  by the. Phopoba. 

Disproof: The adversary could put symbols i n  boxes i n  t h e  p a t t e r n  

shown. 

476. [Fall 1980, Spring 19811 Pmpobcd by Jack G ~ ~ f ~ 6 u n k e l ,  Queen& 

CoUege., F-fuAh^n.g, New Yohk. 

I f  A ,  B, C, D a r e  t h e  i n t e r n a l  angles  of a convex q u a d r i l a t e r a l ,  

t h a t  i s  i f  A + B t C t D = 360Â° then /2 [cos(4/2) + cos(B/2) + cos(C/2) 

+ c o s ( ~ / 2 ) ]  2 [ c o t ( ~ / 2 )  + cot(B/2) + cot(C/2) + cot(D/2) 1 , with equa l i ty  

when A = B = C = D =  90Â° 

S o l u t i o n  by M. S. Kiamkin, Un^vm-Uy  06 ALbwta.  

Since cos a; i s  concave down f o r  0 5 x 2 go0, 

E cos A/2 S 4 cos 45O = 2/2. 

Since co t  x is  concave up f o r  0 5 x 5 go0, 

S c o t  A/2 2 4 c o t  45' = 4. 

Thus, 

E c o t  A/2 2 fi S cos A/2. 

The l a t t e r  inequa l i ty  i s  not  v a l i d  i f  t h e  q u a d r i l a t e r a l  i s  non-convex.; 

j u s t  l e t  A = B = C = 30Â° D = 270Â° 

Also we s i m i l a r l y  have 

S c o t  A/2 2 fi E s i n  A/2 , 



S t a n  A/2 ? /2" E cos A/2 , 
E t a n  A l l  >. /2 E s i n  A/2 . 

AUo bo ivu i  by RALPH KING and the  PROPOSER. 

486. [Spring 19811 Ptopobed by C h c k  A m o n  and PeLw. C h ,  San 
Pedfto, CW0n.w.a .  

Swimmers A and B start from opposi te  s i d e s  of a r i v e r  and s w i m  t o  

t h e i r  corresponding opposite s i d e s  and then back again, each swimming a t  

h i s  own constant  r a t e .  I f  on t h e  f i r s t  pass  they meet each o ther  x f e e t  

from A ' s  s t a r t i n g  s i d e ,  and on the  second pass  they meet a t  a point  y 

f e e t  from B's s t a r t i n g  s ide ,  how wide i s  the  r i v e r  i n  terms of x and y? 

Solut ion by Kevin Th&, 6sbe.x FaJUU, New 1 r n e . y .  

Consider t h e  following th ree  cases, shown i n  t h e  diagrams below. 

' 
Case ii 

EjB Case iii 

Lett ing v and v be t h e  respec t ive  swimming r a t e s  f o r  A and B, a b 
we have case i when 2v 5 vb. Then, considering t h e  d i s tances  t r a v e l l e d  a 
between meetings, we have 

'b w - x  w - y + x  - - - - =  
Va x w - x - y '  

whence 

If V 2 2vb, then case ii occurs and we have 

F ina l ly ,  case iii o c c ~ s  when 4v '> 2vb > va. Then a 

C U A ~  ~ u i  WOA ai&o &otve.d by LEONOR M. ABRAIDO-FANDIR~. ARA BASMA- 

KIAN, MIKE BEACH, DAVID DEL SESTO (CJUU AX and Hi), MARK EVANS (who 

remarked t h a t  t h e  quicker swimmer must not  be more than twice a s  f a s t  a s  

t h e  slower swimmer), VICTOR G. FESER (who recognized a second p o s s i b i l i t y ) ,  

ROBERT C. GEBHARDT, JOHN fi. HOWELL, RALPH KING, HENRY S. LIEBERMAN, BOB 
PRIELIPP, DOUGLAS RALL (CUAU A. and LuiJ, ANITA REED, KENNETH M. WILKE, 

BRENT WRASMAN (ma U. and UA.), and the. PROPOSER. 

487. [Spring 19811 Ptopoaed by Solomon W. Goiomb, ~M-t.ve~&-c<y o f ,  

SouJLhe~n CaLif,otiuM.. 
We know t h a t  1/7 = .142857... r epea t ing  with period 6. With A = 

142 and B = 857, t h e  f i r s t  and Second halves of  t h e  period, respec t ive ly ,  

we observe t h a t  A + B = 999, and B = 6A + 5. Prove t h i s  general izat ion:  

I f  p is prime, and t h e  decimal expansion of 1 /p  has period 

2 t ,  where A and B a r e  t h e  f i r s t  and second halves of  the  

period,  then A + B c o n s i s t s  of " a l l  9 's t t ,  and when B is  

divided by A, t h e r e  is a quot ien t  of p - 1 with a remainder 

of p - 2. 

Can you a l s o  genera l ize  from t h e  r e l a t i o n  14 t 28 + 57 = 99? 

F ina l ly ,  what happens i f  t h e  expansions a r e  i n  base b and p is  merely 

r e l a t i v e l y  prime t o  b? (Note: I n  base b >1, b is always equal  t o  10, 

but not  necessar i ly  equal  t o  t e n . )  

I. PoA-fcia^ .io&iitcon by Bob PtA-iiipp, U n L v e ~ ~ ^ t y  of, W-LAconb^.n-Obhkobh. 

It can be es tab l i shed  t h a t  t h e  sum o f  two halves of t h e  period 

w i l l  always t u r n  out t h i s  way when t h e  period belongs t o  t h e  f r a c t i o n  

a/p whose denominator p is a prime, provided t h a t  t h e  period has an even 

number of d i g i t s .  (For a proof of t h i s  f a c t ,  see  Rademacher and Toepli tz ,  

The Enjoyment of Mathematics, Princeton University Press ,  1957, pp. 158- 

160. Another proof may be found i n  W. G. Leav i t t ,  "A Theorem on Repeat- 

ing Decimals," The American Mathematical Monthly, June-July 1967, pp. 

669-673). This property i s  sometimes c a l l e d  t h e  nines-property. 

Next we demonstrate t h a t  i f  p is  a prime number and 

( so  1/p is  an i n f i n i t e  repea t ing  decimal with a period of  even length)  

then 

a t+labt2 . . . a2t = (p-l)(ala2. . .at 1 + (p-2 1. 



To conform t o  t h e  no ta t ion  of t h e  statement of t h e  problem, l e t  

A = ala2.. .a and l e t  B = a t t+lat+2.. . a2+. Then 

(*I t 
1 0 2 t  = (A . 10 + B ) p +  1. 

Using t h e  nines-property, we have t h a t  

* 
10 /p = A + .= = A - .B + .B + .= = A - 1/p + .9, 

t so  1 0  = Ap + (p-1). Subs t i tu t ing  Ap + (p-1) f o r  10 i n  (*) and simpli-  

fying y i e l d s  B = A(p-1) + (p-2). 

IT. ~ o ~ i v t i a ~ ~  A V ~ V ~ ~  by Kenna-th M. ~ ~ k . e . ,  ~ o p e k  ~ a n ~ o ~ .  

Let p be a p r i m e > 5  such t h a t  t h e  decimal expansion of  1/p has 

period 3t .  Divide t h e  period of 1/p i n t o  t h r e e  groups of t d i g i t s  each 

and denote t h e  first group of t d i g i t s  on t h e  l e f t  by A,, t h e  next  group 

t by A2 and t h e  t h i r d  group by A3. We s h a l l  show t h a t  Al  + A 2  + A8 = 10 -1. 

Proof. Since t h e  period of  1/p is 3 t ,  then  3 t  is t h e  smallest  

exponent r such t h a t  p 1 l o r  - 1. Thus p [ 1 0  - 1 s o  we must have 

p 1 1 0 +  1 0  + 1. But 1 0  E r(mod p )  where 0 2 r < p .  Hence we have 

Hence 2 + r + 1 = pk f o r  some i n t e g e r  k. Now 1 0  = Alp + r s o  t h a t  

Now s ince  

t and s ince  Al = [10^/~], we have A = [r 10 /p] where [a;] is  t h e  

g r e a t e s t  i n t e g e r  i n  x. Thus 

Then s ince  [(pk - r - l ) / p ]  = k - 1, we have A2 = r A l  + k - 1. Also 

[(pk - r - l ) / p ]  = k = 1 because p(k - 1 )  + (p - r - 1 )  = p k  - r - 1 

a n d 0  $ p  - r -  1 c p s ince  0 S r < p .  

F ina l ly  t h e  d iv i s ion  process y i e l d s  A = 
n 

is  equivalent  t o  
r 

, ( r  + l)(Alp + 3-1-1 
A = 10 - .= 1 0  - A ( r  + 1 )  - k 

P 

which is  an in teger .  Then 

a s  required.  

KENNETH M .  WILKE al&o botved the. f , h t  pOA-tA 06 the. pkoblem. 

488, [Spring 19811 Pkopobed by Hmb Tag lo t ,  South Ptuadina, 

Ccl,tx6oJLHAJCL. 

Take t h e  numbers from 1 t o  24 and put them i n t o  8 d i s j o i n t  3- sets  

[a,b,c] such t h a t  i n  each 3- s e t ,  a + b = c .  

Summakg of,  ~ o & t f c t . o i ~  ~ubirnAte.d bg SUZANNE CRISCIONE, Pkouide.nce 

CoUege., Rhode. Thhnd ,  DAVID DEL SESTO, No&h Khghtomn, Rhode Ibtand, 
MARK EVANS, LouL^vLtYe., Ke.ntu.cky, JAMIE GREGORY, T e m e  HCLLLte., Ind iana,  

KATHLEEN HENRY,  New RochtU.e., New Yokk, JOHN M .  HOWELL, U t t i L f ~ o c k .  

CaU&o1.HAJCL, MARJORIE HSU, St. Oia.6 CoUe.ge., No&h.<JieJiti, M-uwe^o-ta, 

ROBERT KELLY, Ptovidence., Rhode. l b iand ,  RALPH E.  KING, S& Bonave.ntuA.e, 

UvuMm-Cty, New Yokk, JEAN LANE, Union CoUege, Cicw.&oad, New Jw>e.y, 

PAUL A. MCKLUEEN, Ra^U.gh, No&h Cuk~LLno., TAGHI REZAY-GARACANI , O k t a -  

homa S t a t e  UfU.vuus-ctg, S t m u x u . e ~ ,  Oktahoma, JUDY A. SCHULTZ, Pkovidence. 

CoUege., Rhode. l h h n d ,  CHARLES W .  TRIGG, San Viego, C&f,on.VU.O., and the. 
PROPOSER. 

We have (11, 13, 24), (7, 16, 23), (10, 12, 22), (6, 15,  211, 

(2, 18, 20), (5, 14, 19) ,  (8, 9, 17) ,  (1, 3, 4) i s  a so lu t ion  u t i l i z i n g  

t h e  l a r g e s t  s i x  elements i n  separa te  s e t s ,  whereas (1, 13, 141, (2, 22,241, 

(3, 20, 23). (4. 17, 21). (5 ,  10, 15). (6, 12, 18). (7, 9 ,  16) .  (8, 11.19) 

places a l l  8 smallest  i n t e g e r s  separa te ly .  According t o  Trigg, t h e r e  a r e  

some 2000 so lu t ions .  No general  methods were given, and only those solu-  

t i o n s  submitted by Howell and Hsu were dupl ica tes ,  s p e c i f i c a l l y  (1, 2 , 3 ) ,  

(4,  17, 21), ( 5 ,  13, 181, (6,  14,  20),(7, 15, 22), (8, 16, 24), (9 ,10,19) .  

489. [Spring 19811 Phopobed bg Hicha.e^. U. Eckw Pe.niMgLvavuJa. 

State. UfU.vw>-Cty, Uohthhgton.  S w n t o n  Campus. 

Let k and n be p o s i t i v e  i n t e g e r s  with k < n .  Two p layers  take t u r n s  

choosing, on each t u r n ,  a p o s i t i v e  i n t e g e r  5 k. A running t o t a l  is  kept ,  

and t h e  player  t o  achieve n a s  t h e  sum is  t h e  winner. 

S t a t e  and prove winning s t r a t e g y  r e s u l t s  f o r  t h e  game. (The game 

with n = 50 and k = 6 has been used a s  a teaching t o o l ,  with modest 

popular i ty ,  a t  theelementary and secondary school l e v e l s ) .  



Sotu-Uon by K&h M .  W e ,  T o p e f a ,  Kama.4. 

Given i n t e g e r s  n and k with n > k ,  t h e r e  a r e  i n t e g e r s  a and r such 

t h a t  n = a ( k + l )  + r  with 0 <. r < k  + 1. Now i f  a player is t o  play from 

a t o t a l  t ,  h i s  winning s t r a t e g y  is t o  add t h e  number y < k  + 1 which 

makes t + y 2 (mod k+1). This s t r a t e g y  always wins unless  t E r  (mod 

k+1) already because i f  t:r (mod k+1) and you s e l e c t  t h e  number y t o  

add, your opponent, who knows t h e  bes t  s t r a t e g y  w i l l  s e l e c t  k + 1 - y 
so  t h a t  you w i l l  be playing from a new t o t a l  t + k + 1. Now i f  t = r  
(mod k+1), then t + k + 1 5 r (mod k+1)  a l s o  and you a r e  playing from a 

los ing  pos i t ion  because whatever number y you choose, t h e  opponent coun- 

t e r s  with k + 1 - y leaving you again i n  a los ing  posi t ion.  E.G. f o r  

n = 50, k = 6,  50 = 7 7+ 1 s o  t h a t  t h e  f i r s t  player  t o  achieve one of 

t h e  t o t a l s  1, 8 ,  15, 22, 29, 36, 43 o r  50 wins by following t h i s  

s t ra tegy .  

-+o b o i v e d  by JOHN M .  HOWELL and the.  PROPOSER. 

490. [Spring 19811 Phopobaf by J o y c e  W. WJJULJuamb, No& UIM.VCA- 
b a y  of ,  Low<iU, 

The funct ion f ( n )  is t o  be constructed t o  give t h e  number of  days 

i n  a year through t h e  n t h  month f o r  n = 0, 1 ,..., 12. That is, f ( 0 )  = 0,  

f ( l )  = 31, ...,f (12) = 365. Leap year i s  t o  be ignored. What is  t h e  

s implest  so lu t ion?  

I. Sotu-Uom by V i c t o ~  G.  F u ~ ,  M m u j  C o U e g e ,  RLAma~ck,  No& Dakota.. 

One person's simple is  another 's  complex. Here a r e  t h r e e  solu-  

t i o n s .  The first one might be c a l l e d  "simple-minded." Simply define 

proper values f o r  a: = 0, 1, ..., 12; f o r  a l l  o ther  x, l e t  f ( x )  = anything. 

The "simplest" kind of  funct ion is  l i n e a r ,  s o  define a continuous, 

piecewise l i n e a r  func t ion  on t h e  i n t e r v a l s  (--, l]., [1, 21 , . . . ,[ll, + -1. 
A continuous, smooth funct ion can a l s o  be defined. J u s t  cons t ruc t  

a polynomial having t h e  c o r r e c t  values a t  x = 0, 1, ..., 12. 

11. Sotu-Uon by Dav-td SlitheAta.nd, Novth. Te.x.a.4 Sfa-te U h m - u t y ,  Dunton.  

S t a r t i n g  with t h e  t h i r t e e n  s tatements  f ( 0 )  = 0, f ( 1 )  = 31, 

f ( 2 )  = 59, ..., f(12)  = 365, we s implify by reducing t h e  number o f  s t a t e-  

ments t o  th ree :  

f ( n )  = 31n f o r  n = 0, 1 

= 3 l n - [ % + 2 ]  f o r n =  2, 3, 4, 5, 6, 7, 9, 11 

= 31" -[f + 11 f o r  n = 8 

where t h e  brackets  i n d i c a t e  t h e  g r e a t e s t  i n  

111. S o r t i t i o n  by t h e  PhopobM.. 

One so lu t ion  i s  t h e  funct ion 

f ( x )  = [(0.5)(61n-l) + (1.111 

where t h e  brackets  ind ica te  t h e  g r e a t e s t  

491. [Spring 19811 Phopobed. by C M u ,  W. T a g ,  Sun  Die.go, 

caLi,joftma., . 
From a square g r i d  of  s i d e  2n + 1 a l t e r n a t e  squares a r e  removed 

t o  form a s ieve.  ( a )  What is  t h e  smallest  s ieve  t h a t  can be d i ssec ted  

and t h e  p a r t s  assembled i n t o  two squares with i n t e g e r  s ides? (b )  What 

is  t h e  smallest  number of pieces i n t o  which t h e  s ieve  must be c u t  t o  

accomplish t h i s  assembly? 

I. S o l u t i o n  by Vitctoiii. G. FUUL, MOAy Co-Kege, & t & m a h c k ,  N o h  Dakota.. 

If n = 0, we have a t r i v i a l  solut ion:  e i t h e r  make a s ieve  by r e-  

moving no squares, make no cu ts ,  and reassemble i n t o  a square of  s i d e  1 

and a square of s i d e  0; o r  make a s ieve  by removing one square, make no 

c u t s  and reassemble i n t o  two squares of  s i d e  0. 

For n = 1, make two c u t s  t o  g e t  four  pieces which reassemble t o  

produce two squares of s i d e  2, a s  shown i n  t h e  f i g u r e  below. 

For n = 2 no s o l u t i o n  e x i s t s  s ince  t 

does no t  y i e l d  2 squares, although it does y i e l d  

An i n t e r e s t i n g  case a r i s e s  f o r  n = 3 e has 40 squares, 

and t h i s  g ives  two unequal squares, with 8 



11. Sotu>bion by the. P h o p o ~ ~ ~ ,  
[in addition to comments similar to those of Solution I] the 

7 x 7 sieve is the smallest that can be dissected and reassembled into 

two unequal squares. It can be done with 8 pieces as shown below. 

We further note that f(2) = 21 = 1 + 4 + 16, so a 5 x 5 sieve is 

the smallest one that can be disected and assembled into three squares. 

Also, f(4) = 65 = 1 + 64 = 16 + 49 = 4 + 25 t 36 = 4 + 9 + 16 + 36, so a 
9 x 9 sieve is the smallest one that can be dissected and assembled into 

four, three, and two squares; in the latter case, in two ways. Then, 

f(5) = 96, f(6) = 133. f(7) = 176, and f ( 8 )  = 225. Thus a 17 x 17 sieve 
is the smallest one that can be dissected and assembled into one square. 

Editorial comment. Feser's 7 x 7 solution can be reduced to 7 pieces, 

as shown below. 

492. [Spr ing  19811 Phopo~ed by Jack Gcmdunke .̂, Qaee~ i i  c o i t q e ;  

FÂ£u&Iwig N.Y. 
Given an acute triangle ABC with altitudes denoted by ha, h,,, hc 

and medians by ma, mb, m to sides a, b, c respectively. The points 

P, Q, R are determined by the intersections manhb, mbnhc, and m n h ,  

respectively. Prove: 

where L, M, N are the feet of the medians. 

S o W o n  by the. P h o p o ~ ~ t .  
Denote angle BPL by 6, and let 2R = 1, where R is the circumradius 

of triangle ABC. We have in triangle AB?,since a = 2R sin C, 

sin(90Â - A) = _ sin C cos A 
sin 6 c sin C ' 

1 1  
In triangle BLP, we have, because EL = -a = - (2R) sin A, 2 2 

1 - sin A cos C 
sin(90Â - C) - PL , so pL = 2 
sin 6 1 sin 6 - sin A 2 

Hence, 

E = 2 Sin c 'OS A = 2 cot A tan c. 
PL sin A cos C 

Similarly, 

3 = 2 cot B tan A, and = 2 cot C tan B. 
QM 

We have to show that 



2 E co t  A t a n  C > 6 or  co t  A t a n  C 
3 ? 1. 

Since t h e  geometric mean of these  t h r e e  products, c o t  A t a n  C,  e t c . ,  i s  

1, and s ince  t h e  geometric mean is  l e s s  than o r  equal  t o  t h e  a r i thmet ic  

mean, t h i s  inequa l i ty  follows. 

494. [Spring 19811 Phopobed by Znida Katz, Be.vSAJLq H U ,  
Cati&o~tvUJo.. 

In t h e  annexed f i g u r e  CD is a hGf-chord perpendicular t o  t h e  

diameter AB of t h e  semicircle  ( O ) ,  and t h e  inscr ibed c i r c l e  ( P )  touches 

AB i n  J and t h e  a r c  DB i n  X. Show by elementary plane geometry, without 

using inversion,  t h a t  AD = AJ .  

A O C  J B 

S o l u t i o n  bg H m q  S .  U.e.bwma.n, Bobton, Ma~baduLi&tte,. 

The key observation is  t h a t  0, Pand K a r e  co l l inear .  This is  s o  

because t h e  c i r c l e  P is  tangent  t o  c i r c l e  0 a t  K. 

Let r be t h e  r a d i u s  of c i r c l e  P and R t h a t  of c i r c l e  0. Then 

OP = R - P and from r i g h t  t r i a n g l e  OPJ we g e t  

2 2 2 ( R - r )  = r + (r+OC) . 
2 2 Also, R~ = OC + DC from t h e  r i g h t  t r i a n g l e  ODC. Combining these  two 

* 

equations we ge t :  

D C ~  = r2 + 2rOC + 2rR. 

But 

AJ  = R + r + 00. 

Therefore, 

A J ~  = r2 + ~ ~ ( R + o c )  + (R+oc)~ = D C ~  + AC'. 

Since  AD^ = D C ~  + AC', then A J  = AD. 

&o hoived bq JACK GARFUNKEL. RALPH KING, and the. PROPOSER. 

495. [Spring 19811 Pkopobed by  U L c M  Hub, P&b Udu, 
CU&(0h&. 

A r e g u l a r  pentagon is drawn on ordinary graph paper. Prove t h a t  

no more than two of  i t s  v e r t i c e s  l i e  on g r i d  po in t s .  

S o l u t i o n  by t he .  PhopobVt. 
Assume t h a t  3 v e r t i c e s  do f a l l  on g r i d  po in t s .  Whichever 3 t h e y  

a r e  they include a 36O angle i n  t h e  t r i a n g l e  they form. There a r e  only 

two d i s t i n c t  cases. 

Translate  coordinates  so  t h a t  t h e  o r i g i n  ( 0 ,  0 )  i s  a t  t h e  36' 

ve r tex  and l e t  t h e  o ther  two v e r t i c e s  have coordinates  ( a .  b )  and ( c ,  d l .  

Then a ,  b,  c ,  and d a r e  r a t i o n a l .  

By t h e  law of cosines appl ied t o  t h i s  t r i a n g l e  we ge t  t h a t  

Now square both s i d e s  t o  g e t  

3+1/5" - - -  ( a c  + M I ~  
8 ( a 2 + b 2 ) ( c 2 + d 2 )  

The r i g h t  s i d e  of t h i s  equation is  r a t i o n a l ,  but t h e  l e f t  s i d e  i s  

i r r a t i o n a l ,  a c l e a r  contradict ion.  

496. [Spr ing 19811 Phopobed by Donald Canahd, Anaheim, C a . L i 6 0 ~ n . i ~ .  

P i s  any point  within a t r iangle ABC, whose s i d e s  a r e  a ,  b ,  C ,  

whose semiperimeter i s  s and whose or thocenter  is  H. Let x denote t h e  

d i s tance  from P t o  BC and l e t  R denote the  circumradius of t r i a n g l e  ABC. 

Show t h a t  
2 2 2  2 ax 2 2 

PA = P H  + b  + c 2 - 4 R  - z ( b  + c
2

- a  ). 

S o l u t i o n  bq k4hke.q S o d ,  Otiando, Ftohida.. 
The denominator i n  t h e  s t a t e d  equation should be a s ,  not 2 s ,  

where r i s  t h e  in rad ius  of t h e  t r i a n g l e .  Then t h e  following equat ions 

a r e  known: 

AH = 2R cos A ,  ha = 2R s i n  B s i n  C ,  

where h i s  t h e  a l t i t u d e  t o  ver tex  A. a 
a = 2R s i n  A ,  b = 2R s i n  B ,  c = 2R s i n  C 

by t h e  l a w  of sines, 
2 2 b + c - a2 = 2 b c  cos A ,  and abc = 4Rrs. 

Now l e t  y be t h e  leng th  of t h e  perpendicular PK from P t o  t h e  a l t i t u d e  

AH. From r i g h t  t r i a n g l e s  PAKandPHK, we g e t  

(ha  - x I 2  + y 2  =  and ( h a  - A H - z ) ~  + y 2  = P H ~ ,  



so  
2 2 2 

(ha - x )  - (ha - AH - x ) ~  = PA - PH , 
which we solve f o r  P A  t o  g e t  

2  2 2 = pH - 4R cos A + 4R s i n  B s i n  C 2R cos A - 2x - 2R cos A 

2  2 2 2 2 2  
= pff2 - 4R + 4R s i n  A + 2bc cos A - 2x 2 ~ ( ~  + 2 ~ e  - a  1 

2 2 2  2 2 4dxR 2 = PH - 4ff + a  + ( b  + e 2  - a ) - -(b + 0 -a
2

) 
2abe 

2 2 2 2 ~ x R  (b2 + e2 - a 2 )  P H  - 4 R  + b  + a  - -  
SBvs 

= PH' - 4~~ + b
2 + c2 - (b2 + e 2  - a

2
) .  

M l i o  - f iohed by the PROPOSER, except f o r  overlooking t h e  r. He inadver- 

t e n t l y  s a i d  t h e  a r e a  of t h e  t r i a n g l e  was equal  t o  s ins tead  of rs, but  

we s h a l l  duck t h e  question o-f pronouncing an appropriate  punishment. 

497. [Spring 19811 Pn.opo&e.d by S c o i t  VJw, fwbi<?A.CA.aJL IntsJUULgence 

Labo'uLtoty, Sto.nf.old U n i v a ^ ~ ^ t q .  

Three drummers a r e  positioned a t  t h e  corners  of a  l a r g e  e q u i l a t e r a l  

t r i a n g l e ,  say 1 mile  on a  s ide.  Each drummer bea t s  h i s  drum a t  a  constant  

r a t e  r, with t h e  time between bea t s  being equal  t o  t h e  time it takes  f o r  

t h e  sound t o  t r a v e l  t h e  length of one s i d e  of t h e  t r i a n g l e .  The drums 

a r e  synchronized so  t h a t  a  l i s t e n e r  standing i n  t h e  c e n t e r  of t h e  tri- 

angle would hear a l l  t h r e e  bea t s  simultaneously. This means t h a t  it 

seems t o  each drummer t h a t  t h e  o ther  two drums a r e  i n  synch with h i s  own 

drum ( a c t u a l l y  they a r e  delayed by one bea t ) .  

Problem: Where e l s e  can a  l i s t e n e r  s tand (besides t h e  cen te r  and 

corners)  and hear a l l  t h r e e  drums i n  synchronization? 

Unsolved (un t r ied) :  What if t h e  drummers beat  a t  a  r a t e  of  n r ,  

f o r  n  = 2,3,4, ... ? 

S o ^ U o n  by Mmfz Euarea, LoU-CAvJUULe, Ke.wtucky. 

For n = 1 t h e r e  a r e  no so lu t ions  o ther  than those mentioned by t h e  

proposer. For, i f  ABC is  t h e  e q u i l a t e r a l  t r i a n g l e  of s i d e  1 mile ,  then 

any l i s t e n e r  L must be located s o  t h a t ,  f o r  example LA - LB = d is  an 

integer .  Since LAB is  a t r i a n g l e ,  we can have d = 0 i f  L l i e s  on t h e  

perpendicular b i s e c t o r  of AB o r  d = t1 if L l i e s  on AB extended. By t h e  

t r i a n g l e  inequa l i ty ,  no o ther  p o s s i b i l i t i e s  e x i s t .  

For n > 1, place t r i a n g l e  ABC i n  t h e  Cartesian plane so  A(-l/2, 0 )  , 
B(0, Â¥"3/2) and C(1/2, 0).  Let L ( x ,  y )  be a  so lu t ion  po in t ,  where a l l  

t h r e e  drums a r e  heard synchronously. Let 2" denote t h e  number of ?ea t s  

delay (or  l ead)  of  t h e  s i g n a l s  from A t o  those  from B, and s and t t h e  

delays between t h e  s i g n a l s  from A and C and from B and C. Then 

Let 

For po in t s  on l i n e  AC ( t h e  x-axis) we have 
1 3 1/2 

f(x,  0) = x + - 2 - (x2 + , 

8- ax = - x(x2 - 3 - 1 / 2  
4 .  

Then f(x,  0 )  has no minimum o r  maximum on t h e  i n t e r v a l  ( 0 , -  ). Since 

f(0,  0  ) = ( - 6  + 1 ) / 2  and 

then 

S i m i l a r l y ,  l e t  g (x ,y)  = s / n  and h ( x , ~ )  = t i n .  Then g(x, 0 )  = 2~ f o r  

0 5 x 5 1/2 and g(x,  0 )  = 1 f o r  x 2 1/2,  and h(x, 0) = g ' ( ~ ,  0 )  - f i x ,  0 ) -  

For x 2 1/2 we have 

which we solve by i s o l a t i n g  t h e  r a d i c a l  and squaring t o  g e t  

Thus we have [(n-1)/2] new so lu t ions  on t h e  p o s i t i v e  x-axis f o r  each 

n 2 3. 

For 0 ix  ̂

provided 3nr/(n- 

For po in t s  

1/2, by a  s i m i l a r  argument we f i n d  t h a t  

2 r )  is  an in teger  and ( l - A ) / f i  5 r / n  2 0. 

on t h e  y-axis ( t h e  a l t i t u d e  through B ) ,  we have 



2 1 1 / 2  "6 f ( 0 ,  y )  = ( y  +-^)  - \y - - I =  
2 n '  

and a s i m i l a r  argument l e a d s  t o  

2 2 2 " 6 < r <  
4r(r2 - n 1 + n(n  - 2 r  16 f o r  - - - - 1 

Y =  2 2 - n -  
2n(3n2 - 4r ) 

and 
2 2 -43 r < / 3 "  4r(r2  - n 1 + n(2r2 - n )/r f o r  - < - = 

y =  2 2 n  2 
2ra(4r2 - 3n ) 

SobjJtJL0n.A 20 t h e  &&4t p m  WULe t.~bm-L-fcted by ROBERT KUEHL 
and t h e  PROPOSER. 

Kuehl remarked t h a t  a l i s t e n e r  could "stand" a t  any po in t  on a 

l i n e  perpendicular  t o  t h e  plane of  t h e  t r i a n g l e  through t h e  po in t  where 

t h e  medians i n t e r s e c t .  - A CARD OF THANKS 

Starting with the Fall 1968 issue a Los Angeles dent is t  took the 

reins o f  t h i s  problem department and ably lead it for more than a dozen 

years, increasing the number of problems per issue from 8 t o  12 while min-  

taining a high standard o f  excellence. His primary in teres t  i s  geometry, 

but the other branches of mathematics have also been fu l ly  represented 

i n  the more than 300 problems he has included i n  these pages. Now D r .  

Leon Bankoff i s  re t ir ing from t h i s  post, and the vacancy he leaves will 

be a d i f f i c u l t  one t o  f i l l .  We extend o w  deep appreciation and warm 
thanks t o  Leon Bankoff for the great time and e f f o r t  he has spent serving 

t h i s  department and i t s  readers. His strong leadership w i l l  continue t o  
influence the Problem Department for years t o  come. - POSTERS AVATLABLE FOR LOCAL ANNOUNCEA1ENT.S 

We have a s@y o f  10 x 14-inch Fraternity Crests available. 

One i n  each color w i l l  be sent free t o  each local Chapter on 

request. Additional posters m y  be ordered a t  the fo l lming 

rates: 

(1 )  Purple on Goldenrod stock--------------$I. SO/dozen 

( 2 )  Purple on Lavendar on Goldenrod--------$2.00/dozen. 
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