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EDITORIAL -

The. P Mu Epsilon Journal .45 dedicated tO undergraduate
and beginning graduate students, and the. Journal soficits
articles of all hinds grom them. We. believe that many students
solve problems, discoven theorems, write papers, give. talks and
seminans, and complete profects that are suitable for submission
to this publication. We. encourage these siudents to prepare
and submit these as articles fon possible publication. Student
paperns will always be given §inst preference by this Editor,
May students have (Sound it very advantageous tO have had an
article published i N a refereed journal when considered for
ghaduate school on empLoyment.

Pi Mi Epsilon encourages student research and the. pres-
entation/publication of that reseanch through this Journal
and meny other means. The National Paper Competition awards
prizes of $200, $100 and $50; all student paper submitted
to the. Journal are eligible (Sohthese awards. In addition,
any one Chapter submitting give Oh more papers creates a
mini-contest avog just those papers with atop prize of
$20 gon the best. As most know, Pi MI Epsilon sponsorns mery
student paper conferences and student paper sessions in con-
funetion with other organizations such as the. MAA.

This is a Call to afl students who ate uniting thuse papers,
those profects, giving those talks, proving theorems, etc., ete.
Write up your results in the. forum of an article (Sohithis Journal
and submit it tO the. Editor. This is a Call to gaculty member
to encourage. yowr students and to help them with their paper.
THIS IS YOUR JOURNAL--USE IT!

The Editor



QUADRI C SURFACES ASSCCI ATED W TH
LI NEAR DI FFERENTI AL EQUATI ONS
Duane De Temple (Faculty)
RoLand Stann® (Student)
Washington State Univensity

1.  Introduction.
¢ shall be concerned here with the real, first order |inear
aut onormous systemof differential equations

EP i = AX (- =L

where x (‘_Rn and Ais alinear transformation of F*. For the case

n = 2 one of us has recently devised a purely geonetrical nethod to co=n-
struct the tangent vector x of the trajectory which passes through X,
once the 2 x 2 matri A representing Ahas been gi verl] The develop-
nment there al so reveal ed a remarkabl e geonetric property of the planar
phase portrait: there exists a famly of homothetic ellipses(if

det A>0) or hyperbolas(if det A<o0) whose nornmals, when rotated through
a constant angle, coincide with the direction of the tangents x. The
proof of this contained i M1 detours through conplex analysis and is,

as we show here, unnecessarily conplicated. The linear al gebra approach
inthe next section holds in any dinension. O course, it is the geo-
netrically visualizable cases » = 2 and 3 which are nost interesting, and
the concluding two sections illustrate these cases.

2. Tangent Vectons as Roiated Nonmal Vectons of Quadiic Surfaces.

To avoi d degenerate cases(which can be treated as linmting cases),
we assume the linear transformationAis non-singular. Belowwe will
show that A can al ways be deconposed into the form

(2) A = RS,

where R is proper rotation (i.e., an orthogonal transformationwth

det R=+ 1) and Sis a symetric non-singular transfornation. For any
such deconposition(it is not unique), the differential equation (1)
takes the form

*Ma, Starn is currently a graduate student in the Departnment of Mathe-
nmatics at the University of Mnnesota. This work represents a portion
of his Senior Honors Thesis.

(3) A = RSx.
Next consider the one-paraneter famly of quadric surfaces

(4) QI< = {x: % <x ,8r> = k}, K = constant,

where <, > denotes the standard inner produce on &
Fromadvanced cal cul us, we know

(5) n{x) = V(%q:, Sx > = Sx
isnormal to Q at Xx¢g Q. - Conparing (3) and (5), we see that
(6) x = Bn(x).

That is, there is a constant proper rotation R which takes any gradi ent
n(z) of the quadric surface Q onto the tangent vectors x of the tra-
jectory through z¢@q .

V¢ now exani ne what possibilities exist torepresent Ain the
formA = R5. Fromthe pol ar deconposition theorem (e.g., see Halmos [2],
p 170), we know A nay be uniquely factored as A =UP , where U is ortho-
gonal and P is the unique positive square root of 4*4. For sone ortho-
normal basis the matrix of P will be diagonal, sajfR = diag[pl,...,pn].
Then define the linear transformation E by[H = diag [el,..., el
where the e. € {-1, +1} are chosen in any of the ways for which
det E = det V. \¢ observe that E is symetric, orthogonal, E2 =1 =
identity, and P = FE Choosing § = EPand R = UE it is clear Sis
symetric and Ris a proper rotation. Mreover, A = UP = UEEP = RS,

Conversely, suppose A = RS.  Then 4*4 = SR*RS = .5‘2, and so 52 =
P2, where as before P is the unique positive square root of 4%4. As S
is symmetric, thereis sone orthonormal basis in whic{g = diag

@ jsuen, un]. It then fol l ows that [PZ] : [.5'2] : diag[olz,..., o, 1,
and so for sone sequence 03.5{—1, +1} we have L as before the
°; denot e t he eigenval ues of P. I n summary, the construction of the
precedi ng paragraph produces al | deconpositions of the formA = RS

The nunber of distinct famlies of quadric surfaces can al so be
found. |f the eigenval ues of Pare distinct, the corresponding » linear
ei genspaces are the principal axes of any of these famlies of quadric-
surfaces. In # if det A>0, the nunber of <, which are taken as -1
nust be even; this means there are (g) + (’;) oo = 2% L tanilies.
These will be distinct when » i s odd; however, when »n is even, both -S
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FI GURE 1
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and +5 give the same fanmly(and -8 is still a proper rotation), neaning
there are 2”2 distinct fanlies. An anal ogous ar gunent shows that the
nunber of fanilies of quadric surfaces remains the sane in the case
det A<O. -7

If P has any multiple eigenval ues, the axes of the quadrics within
the correspondi ng ei genspaces ean be rotated arbitrarily wi thin these

subspaces.

3 The Two-dimensional Case.

Here n = 2 is even, so the number of fanilies of conicsis 227223,
This will be a fanmly of honothetic central ellipses(when det A>0) or
conj ugat e hyperbol as(when det A<Q. As anillustrative case consider
the differential equation z = Ax, where

2 -57]
[4] =[
11 10

inthe standard basis of R°. Then

ulw
'
| F
=
(=
w

[4] = [#] [s] = : ,

&
5

lw
(82}
s
[S

where Ris arotation by y = 53° and Sis a symetric |inear transforma-
tion with ei genval ues 15 and 5 and correspondi ng ei genvectors (1,1) and
(1,-1). The phase plane is shown in Figure 1; two ellipses of the
famly

%<x,Sx> z 5.52 + s5en t Sn2 : constant

are al so shown, where x = (£,n). The RS deconposition of A can be ob-
tained by purely geonetric neans, includingthe rotation angle i) and
the ei genvectors and ei genval ues of S[1].

4. The Three-dimensional Case.
Consi der the differential equation z = Ain Ra, wher e

24 26 ~u45
[4] = %— -6 -4 -15

-9 =1 15
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in the standard basis. The polar decomposition of A is found to be

1 2 2
3 3 3 2 4 -5
. L 2
Lal=[vllrl = |-5 -3 3 4 6 5
2 2 1,
L 3 3 3] 2 42

The eigenvalues and corresponding eigenvectors of P are

1 1 1

=20,[e;] =] 1) 0, = 5.[e)] ={1]s 0y = 2,[e]= |1
=2 1 0
The directions of e, e

Py

9 @3 define the principal axes of the families
of quadric surfaces.

Since det 1 = +1,V is a rotation and UP is one of the four RS
qecompositions of A. A Unit eigenvector corresponding to the eigenvalue
1is vy T (1/V2, 0, -1#2 }. Completing this to an ordered orthonormal
basis T = (bl’ b, ba), we have the form

1 0 0
[v;R]=10 cosy -sinv|:
lo siny cos ¥
and so the cosine of the rotation angle is'
cosp 2 (tru-1=2¢(3 -1 -F:
Since U(0,1,0) = (g ,-3 2, weseev = arc cos (- Lye (90°, 180°).

That is, U is a right-hand rotation about (1,0,-1) by ¥ = 109.5°.

Figure 2 shows how a trajectory cuts through an ellipsoid from the
family

%<x,Px> = 352 + 6n2 + 15§2 + ugn - 5£; - 5ng = constant,

where x = (£,n,zC).

The remaining three families of quadric surfaces are hyperboloids
of the sort shown in Figure 3.
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REGIONAL MEETINGS

May regional meetings of the Mathematical Assoe-
tation of America regularly have sessions for wunder-
graduate papers. |f two or more colleges and at least
one Zoeal chapter help sponsor or participate in such
wndergraduate Sessions, finaneial help i S available up
to $50. Write to Dr. Richard Good, Department of Mathe—
matics, University of Maryland, College Park, Maryland,
20742.

365

RELATIVITY IN PERSPECTIVITY

by Witliam Terkeunst
Hope College, Holland, Michigan

"Those Wo Hear, Forget.
Those Wo See, Remember.
Those Wo Do, Understand.” - Anonymous

Under the influence of Dr. Elliot Tanis (Hope College) and my own
fascination with the art work of MC Escher, 1 was compelled to delve
into researching Escher's work myself, especially since Escher was an
artist, not a mathematician. He just created his works from his imagina-
tion and some outside ideas, yet there is the mathematics in his work.
With ny chief interests and background stemming from architectural draft-
ing and rendering, | became intrigued with the way i n which Escher creat-
ed some of his perspective drawings. | noticed, however, that his use of
perspective was different from ny own experience, which was mostly ortho-
gonal perspective. So | decided to find out why.

Starting with the question, "What is a perspective drawing and
where does it come from?", | discovered it comes from projective geometry.
There are five basic axioms for plane projective geometry[1]. They are:

d. Arny two distinct points are incident with exactly one line.

2. Any two lines are incident with at least one point.

3. There exist four points of which not three are collinear.

4. The three diagonal points of a completequadrangle are never

collinear.

5. If a projectivity leaves invariant each of three distinct

points on a line, it leaves invariant every point on the line.
The basic undefined terms are point, line, and incidence, the same as in
other geometries.

The first two axioms are very direct. Axiom 1 says that two pojnts
determine a line (same as Fuclidean), and Axiom 2 says that any two lines
meet somewhere, or in other words, no parallelism (not like Euclidean).

A drawing will help to clarify the others.
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Figure la Figure 1b i

Figure | a shows a complete quadrangle 4,8,C,D (Axiom 3), and Figure 1b
illustrates the three diagonal points E,F, and G (Axiom 4) formed by ex-
tending opposite pairs of sides of the quadrangle. Axiom 5 states that
when you project a line, project all of it.

In order to follow along, we must get the terminology straight.
Diagonal points, as referred to in Axiom 4, are commonly called vanishing
points. Vanishing points can be further classified as either distance,
zenith, or nadir points. A distance point is any vanishing point off to
either side, a zenith point is straight up or overhead, and a nadir point
is directly below or down.

How does all of this fit in with Escher's work? Let us take a look
at one of Escher's prints, which is a classic example of a projective
geometry, CUBIC SPACE DIVISION, July of 1952. If we follow the direc-
tion of the "girders"” (or the sides of the cubes) we can extend them off
the page and see that they would meet at a distance point in the upper
right, another distance point at left center, and a nadir point at the
bottom center. (Remember, none of those lines are parallel, Axiom 2).
There are three vanishing points just like our Axioms say (keep in mind
we are now considering 3-dimensional objects, the cube, and not restrict-
ing ourselves to a plane surface, a side of the cube). A very interest-
ing aspect of Escher's work is in the way in which he uses relativity.

It is amazing how often it lies hidden in a print. For example, CUBIC
SACE DIVISION looks rather uncomplicated. However, simply rotating the
page in multiples of 90 degrees changes the orientation of your viewpoint,
from upper right to lower right to lower left to upper |eft moving clock-
wise.

Ore of Escher's earliest perspective drawings is TOMR G- BABH,
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February of 1928. Here Escher has a definite interest in the nadir
point, with distance points off to both sides. This is also true in
SAINT PETERS G- ROVE done in March of 1935. His early obsession with
what is sometimes called a "birds eye view" is simple: he is an“arfist.
Artists try to convey a message or feeling in their work. In both of
these prints, Escher is trying-to express the feeling your stomach gets
when you look down from a high place.

A few years later, in the wake of another worldwar, Escher again
was influenced by the world around him. The advancing technology, inter-
est in space, and Einstein's idea about how things are measured with re-
spect to other things, helps Escher think along the same lines. In the
final month of 1946, he introduced a strange concept in OTHER WORD. In
this case, all of the lines vanish toward the center of the print. Con-
cerning the question of whether this vanishing point is a distance, nadir,
or zenith point, the answer is yes. It depends on which side of the
print you view, as to which role the vanishing point takes on. All of
the sides are of the same scene, looking along a tunnel with arched open-
ings in which is standing a "simurgh" (a note for the trivialist: the
simurgh is a Persian man-bird given to Escher by his father-in-law who
bought it in Baku, Russia, or so | an told) under a fish lamp. In other
words, if we look at the top of the print we are looking down the tunnel
(nadir point), if we look at the bottom of the print we are looking up
(zenith point), while looking to either side of the print we are looking
along the tunnel (distance point). As an artist, Escher was not overly
pleased with this print. It has a long dark shady tunnel and it took four
sides to convey three worlds.

A month later, January of 1947, Escher created OTHER WORLD again.
This time, however, we find ourselves in a strange five-sided room instead
of a tunnel. As far as the perspective goes, the emphasis is still the
center and it still can be a distance, nadir, or zenith point. Wha is
so different about the room? Well, depending on which "window™ you look
in or out of, concepts like right, left, above, below, in front, and be-.
hind are totally interchangable. There is another geometry called Affine
Geometry, which explains the parallel lines in both of the OTHER WORLP
prints. Affine geometry is a proper subgroup of projective geometry, and
is merely an extension of the Euclidean plane in which parallelism is
preserved. Affine Geometry al so explains orthogonal perspective for the
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architectural draftsman.

In July of 1957 Escher gave the world H GH AND LOW which is a
couple of towers with curved lines. This is a classic example of .artis-

tic license. Wha we really have here is two drawings in one, the -dpper
half and the lower half. In the upper half is a tower whose lines are
vanishing toward a point in the center of the print, a nadir point.

There is also a distance point off to each side near the top of the
print. Likewise, in the lower half is a tower whose lines are curving
toward a point in the center of the print, a zenith point, along with a
distance point off to each side near the bottom of the print. The nadir
of the upper half and the zenith of the lower half coincide in the center

of the print. So we still have six vanishing points for two drawings,

everything is legal except for those curved lines.
The concept of drawing " straight lines" in a curved manner is one
arrived at by both artists and draftsmen alike and has a simple deriva-

tion. The projection of straight parallel lines X,Y (Figure 2a) onto a

cylinder produces a couple of semi-elipses, X' and ¥Y'. Slicing the cyl-
inder in half, ABCD, and laying it out flat, produces a nice sinusoidal
curve, Figure 2b.

OMHER WORLD II

Y’

i

Figure 2a Figure 2b

Other analogous situations are the multi-photograph effect, or the tele-

graph-wire effect [2]. The amazing thing is that Escher said it was
simply the way he saw it, and careful measurements of some of his drawings
show them to be almost sine curves. Please note that the upper and lower
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halves are really the same scene (a boy sitting on some steps talking poses new ones (i.e., for example, like three more worlds in opposite

toagirl in the tower). Also notice that the doors, windows, stairs, directions of the present ones). Try it.

and even the pam trees are in the same positions in both halves. This

print allows the observation of the same scene from two vantage points REFERENCES -7
at the same time. Something to contemplate: Wha does the boy in the 1. Smart, J., Modem Geometries Second Edition, Brooks/Cole, California,
lower half see, if he tilts his head back a little further and looks up? 1978. ) _

Our journey leads us finally to a print most appropriately en- 2 Eg?:t’ B., The Magic Mirror of MC  Escher, Ballantine, Nav York,

titled RELATIVITY, completed in July of 1953. The three vanishing points
are now all off the page forming an equilateral triangle over two meters
a side (the print is 28 x 29 cm). Already in our brief exploration of

the bizarre world of MC  Escher, we have come to accept the possibility

of one vanishing point being three different vanishing points in order to
stay within the axioms of projective geometry. However our boundaries
are stretched even further as we notice that each vanishing point now

serves as a zenith point, a right distance point, and a left distance

point. With each point being three-fold in function, we have, relativi-
stically, about nine vanishing points. This unique situation is actually

three worlds combined into one. Those worlds can be identified as the I hIS RJbI Imtlon
uprighters - the figures whose bodies point upward (the figure at the Iml d
bottom center coming upstairs), the right-leaders, whose bodies point to ISa/a e I n Id. dl I I

the right (figure coming downstairs with a tray in hand), and the left-

leaners, whose bodies lean leftward (figure with basket). Ard though Universjty
these figures share the same environment, they each have different ideas MICTOfI'_mS
[ nternational

about what to call things. For example, one group calls a surface a

floor, another group calls it a wall or a ceiling. Likewise, a door to o ]
Please send additional information

one might be a trap-door to another. As a result of this strange cohabi- for

tname of publivation)

tation, we run across some rather baffling situations, such as stairways Name.
which allow figures to walk on opposite sides of the staircase, or stair- Ingtitution
. . . Street
ways that allow two figures to wak on the same side of the staircase, Citv.
walk in the same direction (left to right across the page), yet one is Sta;n Zin

B

going upstairs while the other is going downstairs. Also, each world has ‘ ; “‘ ‘ 300 North Zeeb Road
its om patio, but can every figure reach his/her respective patio? -‘ ﬂ i Dept PR

Ann Arbor, Mi. 48106

It is possible to spend hours studying this print, rotating it,

trying to look around corners, and so on. But if you really want to -

experience and understand it, you must build one. It is possible, and
I an sure you will find, as | have, that it will aid in answering many
questions. At the same time, however, while answering questions, it also
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This paper Won Second Prize in the
1980-81 National Student Paper
Competition.

SINGULAR FUNCTIONS

by Sandna L. Cousins
Hendrnix College, Comway, Arkansas

Introduction.
In calculus, a student is taught to think of integration and
differentiation as inverse operators. This notion is set forth in the

Fundamental Theorem of Calculus, which is stated here in two parts.

FTC |I. If f is continuous on [a,b] and ecla, b1, then
flx) = T f(t)dt for every xe(a,b.

If the condition of continuity of f isrelaxed to just integrabil -
ity, then f is bounded and continuous almost everywhere on [a,b]. There-
fore, flz) = %J‘x Ff(t)dt for every x at which f is continuous, that is,

almost everywhere on [a,b]. Thus, we have the following theorem:

Theorem. If f is integrable on[a,b] and ecela, b], then

Fflx) = %fﬁf(t)dﬁ almost everywhere on [a,b].

Next we look at the second part of the Fundamental Theorem.

If f' is continuous on [a,b] and ce[a, b], then
I%f1()dt = flx)-f () for all zela, bl.

Does an analogous theorem result when continuity is relaxed
here: The answer to this question is negative and the examples of so-
called "singlular'" functions which follow exhibit this pathology.

A singular function is a monotonic continuous function

f: [a,p}+IR such that f' (z) = 0 almost everywhere (i.e., on the com-
plement of a set of measure zero). A set of measure zero is a set which

can be covered by a countable collection of segments, the sum of whose
lengths is arbitrarily small.

Cantor-Lebesgue Function. The first example we will consider is
the Cantor-Lebesgue singular function 1, pp. 135-137 , which is based
upon the Cantor set S. Recall that this set is formed as follows:

s
(o]

51

{0,1]1 . Remove the open middle third (1/3, 2/3), thus leaving
[0, 1/3] u[2/3, 1]. Continue to remove the open middle third

375

from each of the remaining intervals at each step in the process. -Then
the Cantor set § = nQO Sn' Note that since the am of the lengths of
the intervals constitu'ringsn is (2/3)" which approaches zero as 1 +=,
then S has measure zero. Each point in S can be represented uniquely
by its ternary expansion of the form n‘gl anB_n, where a,ls{O,Zf,- B
n=1,2,.

Turning now to the construction of the Cantor-Lebesgue function
c, Iet ¢(x) = 0 for <0 and let C(x) = L for x>1. If xe§ Wr_igsﬂ)

X = nzl a 3™, ans{O,Q} ,m=1, 2, ... . Define ¢clz) = nzl an2

I f :ce[O,l] and x ¢ §, then there exists a "middle third" or complementary
interval (y,2) such that y<x<z{y, 2e5). Let C(x) = C(y) = €(2). (See
Figure 1). It follows that ¢ maps [0,1] onto [0,1]

The first step in proving that ¢ is a singular function is to
show that ¢ is continuous. Clearly, ¢ is continuous on (-=,0) and
(1,»). If x €(0,1) S, then x belongs to the interior of a closed inter-
val on which ¢ is constant. Therefore, C is contlnuous at x.

Nw suppose x€(0,1Y) Sand e>0. Thenx= Z a 3'7’ where

a.e{0,2}, 2=1,2,... and C(x) = 2_°zilaL -(2+41) = Choose n large
enough that 27%<e. Let §= min{3™”, |x-0|, |©-1|} and suppose y eR such
that |x-y|<6 < 3 . Then ys(O 1) and if y €5, then the ternary expan=

-1
sions x HL ey .37% and y = 7'Zlb_bs

least the first n digits (a, —b for Z=1,2,...,m). Therefore
g (41, b, PR T 2

(bia {0,2}) will agree through at

,.+1,%, Which implies that | C(x)-C(y)|
<2, If yéS, then there exists some zeS such that y<z <xor x<z<y
and C(y) C(z), which |mp||es that |z-z|<§. Thus the ternary expansions
x = tzla 3 and z = (li’li:; N cze(:f:ili}, agree through at least the first
n digits. Hence, a,LQ = ci2 for 7=1,2,...,n and IC(:x:)—C(z)I
<2<e. Since ¢(z) = C(y), then |C(x)-C(y)|<e . Similar arguments show
that ¢ is continuous at 0 and 1. Therefore, € is continuous for all
xe IR.

Next con5|der the monoton|C|ty of C. Suppose zsy, x,yel0,1].
Choose ' = zgl ;3 % and y' o= Z b 37%in S (where ai’biE{ 0,2}) Su”(‘iﬂ_)
that x'<xsy<y', C(x) = Clz"), and C(y) = C(y'). Then C(x) = § a 2
siglbz?_(i”‘) = ¢(y). Therefore, € is nondecreasing.

Finally, observe that €'(x) = 0 for every x in [0,1]eS. But gince
S is a set of measure zero, then C'(x) = 0 almost everywhere on [0,1].

Thus this nondecreasing function ¢ is a singular function.
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C(x)

Figure 1.

S—

- x

(ternary)

—000°'T
— 22270
—12Z°0
——022°0

—012°0
20270
—T0Z°0
~i~—ooz'o

T-00T°0

T¢20°0
+120°0
T020°0

—0T0"0
" ¢00°0
- 100°0

(binary)

1.000 —

0.111 —

0.110

0.101—]

0.100—

0.011—

0.010—

0.001 —r
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Other singular functions can be constructed which are strictly
increasing. For one based on the Cantor-Lebesgue function consider
flz) = n§12'n0(2n(m~an)), where {an}rzl i s any countable set that‘ <;s
dense inIF . This example can be thought of as adding smaller and
smaller copies of the Cantor-Lebesgue function at the poims{an}. For
a proof of the singularity of f, see [2].

Hellinger Funetion. Another singular function which is strictly

increasing on [0,1] is the Hellinger function [3, pp. 48-49], named for
the man in whose doctoral thesis it first appeared in 1907. To construct
this function, first let 0<t<l and | et Fo(x)= x, xe[0,1]. Suppose
Fn(.z:) is continuous and linear in the intervals bounded by the points

-n -n
an=k2_n and Bn=(k+l)fl 5 k=0,1,...,2n-:|_ Let Fnﬂ(x) =Fn(x) for
z= k27, k=0,1,...,2", and letf ,[(a +B )/2]= 1/2(1-8)F (a )t
1/2(1+¢) Fn(sn), k=0,1,...,2"—1. Then define le to be continuous and
+l’8n+1]’ The Hellinger function F is de-
fined by F(z) = ;.l_ig{Fn(x)} , xe[0,1]. For example, choose t= 1/3.
(See Figure 2). Then

linear in the intervals [an

Fo(x)=a:, xe[0,1],

F [(0+1)/2] F (1/2) = 1/2 [1-(1/3) ] F (0) + 1/2 [1+(1/3)]F (1)

(1/3)(0) + (2/3)(1) = 2/3,

F, (1/4) = (1/3 F (0) + (2/3) F(1/2) = (2/3)(2/3) = 4/9,

F, (3/4) = (1/3) Fl(l/2) + (2/3)Fl(l) = (1/3)(2/3) + (2/3)(1)

8/9,

and so forth.
Before considering the singularity of F, we first need to prove
several lemmas.

Lerma 7. Let xe[0,1] and | et {[an,sn]} nZo be a sequence of

nested intervals whereg, = kn2'n and B, =( kn+l)2'” with the integer
. n

k, chosen in [0, 27-1] so that zela,s8, 1+ Thenr

n+l )
= 1/2(1%¢) [Fn(Bn)—Fn(cnn)] s

)-F . (a

(8 1l %l

n+l

Thus F.

n+l( Bn+l)

Proof. If 8,.,=1/2(a, +8#n), then %410,

= 1/2(1-%) Fn(dn) + l/2(l+t)Fn(Sn) and Fn+l(an+l)= Fn(an)' So F, .4
(By1) Frpg1 (pg1) = /2(1-1F (@) t 1/2(1+8)F, (8, )-F,(0,) = 1/2(1+8)

[Fn(Bn)—Fn(an) 1. If B, =B, , thena ., = 1/2(a,+8 ) and it follows
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Figure 2

1/2

5/8

3/4

7/8
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by a similar argument that Fn+1(8n+l)'Fn+1(°n+l) = 1/2(1-t)[F, (8, )-F,
(a)], and the lemma i s proved

Since F,(a ) = F(a,) and Fn(Bn) = F(B,) for every n, we ha\_/e

- + - b . %
Cornollany 1. F(Bn+l)—F(an+l) = 1/2(1%2) F(8,) F(an) , ntlell
By inductively applying Corollary 1, we have
Coto 2. If e.=%1, jeIN, and n i s a non-negative integer,
n
then F(Bn)-F(an)= jI:(l l/2(l+sj t). (In case n=0, let jzlll/2(l+ e3t) =1.)
Furthermore, since in Corollary 2, 0<1/2(1+e3 #)<1 for every
JeIl, we have
- - < =
Canollary 3. O<F(Bn)—F(an) = Fn(ﬁn) Fn(an)_l, n=0,1,2,....
Let 0<\= 1/2(1+t)<1.

+1
Lemma 2. 0§Fn+l(x)—Fn(w)f A for every X eIE n+lelN.

Proof. Let xe[0,1] and choose { [an,Bn]} n=g @s in Lema 1. Let
n be a non-negative integer. Choose ye[0,1] such that x= Y“mf(l"Y)Sml'

Since le is linear between a

n+l and 8 Fn+l(x) =[4r’z~!~l(Y un+l+(l—Y)

n+l?

= _ i i Fn(x) =F +(1-
Bur1) = YFpyp (o )*(-VIF, (6,00 L'ke""'ses. n(x) =F, (v,  +(1-y
8n+l) =an(an+l)+(1-y)pn(sn+l). By the way the intervals are nested,

eithera =g  or B, =8, ... Supposea =d+l’ Theng, ., = l/2(an+8n) and

Fri1(@pgn) = Fpypley) = Fle)) =Ffa, )

Fnﬂ(x)—Fn(x) = <1—Y)[Fn+l(8n+l)"Fn(Bn+l)]

) which implies that

(l~Y)D./2(l—t‘)Fn(an)+l/2(1+t)Fn(Bn)—l/2 Fn(an)-l/QFn(Bn)]
(t/2)(1+ [Fn(Bn)—Fn(an)]
<AlE, (B,)-F, (o)) ]= A[F(Bn)-F(an)]

n n n+l
= § < = -
Ajgl 1/2(1+ eJt)-A(A ) X

to. . - _ ntl
If 8= Bpyp then it follows similarly that le(x) Fn(x)-k .

Moreover, by Corollary 3, Fn(Bn)—Fn(an) >0. Therefore, F, .,
(t/2)(1-v) [ F (B )-F, (a ) ] A£0and the lemma i s proved.
Nw we consider the singularity of F. For 2e[0,1] and % elI¥,
n-1 . -
Fn(z) = o+ " [F,  (2)-F;(z)]. Since |F;,q (2)-Fy(a) ]| =

220 141 i+l
F, . (@)-F (@) forevery < and Z, A = A/(1-3), then by the
” g

(x)-Fn(x) =

-]
Weierstrass M-test 12§0 [Fiﬂ(x)-Fi(x)] converges uniformly on {0,1],
which implies that {Fn(x) }::=0 converges uniformly to F(x) on [0,1].
Since Fn i s continuous for every n, then ¥ i s continuous.
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To check the monotonicity of F, supposex<y and e [0,1].
o chee y » SUPP Y £y {1, pp. 137-1391.

© } ®  for x and y, respective-
Choose {la, .. B, . 1}, and {[an,y’sn,y] n=0 s
ly, asin Lemma 1. Nw choose n large enough that REFERENCES
e e 1. Boas, Ralph P., Jr., A Primer of Real Functions, Carus Monograh #13,
cln,ac“m‘ Bn,xmn,y'y'f“’n,y' MAA, 1972.

2. Freilich, Gerald, Increasing continuous singlular functions, The

| f m2n, then from Corollary 3, it follows that
< et -

F (x)Z F(Bn,x)'F(Bn,m)<F(°‘n,y)”Fm(“n,y)iFm( .
Therefore, F(m)SF(Bn x)<F(an y)sF(y). Hence, F is strictly increasing
on [0,1].

Finally, we examine the differentiability of F. Let xe[0,1] with
{le,, Bn]}nzo chosen as in Lemma |;a,+ and B+« as n>=. Suppose
F'(x) exists. Then using [5, Exercise #19a, pp. 116-117 ], F'(x) can be
calculated by
F(B )-F(a )
" im {(B_-a )L

n n
B ~a N

lim n
jr=[1 [(1+ eJ.t)/Q]}

n
1im {[(k +1)27%- % 2717 270 (1t € .8)1)
i 7 n J=1 J

=lim ?I (1+ ¢ .t), which is zero, infinite, or
e 9L J
indeterminate. According to Lebesgue's Theorem, every monotonic function
possesses a finite derivative almost everywhere [3, p. 5]. Thus
F'(x) = 0 everywhere F has a finite derivative, that is, almost every-

where, and therefore F is singular.

Related Resufts. The reader may be interested to know that
J‘Zf‘(t)dt= f(x)-f(e) for every xzela,b} if, and only if, f is absolutely
continuous onla,b}. For a discussion of absolute continuity and this
theorem see [4, pp. 104-107].

It can also be shown that every monotonic continuous function can
be expressed as the sum of two monotonic continuous functions g(x) and
A{xz), of which g{z) is singular and %(x) is absolutely continuous [,
Exercise #12a, p. 107]}.

Lastly, recall that in calculus a student learns that if f'(x) =
g'(x) for all X in an interval J (where f'(x) and g'(x) are finite),
then f(z)-g(x) = c for some constant c. However, if we permit f'(z) =
g'(x) = = for some xeJ, then f(x) and g(x) do not necessarily differ by

a constant. For the construction of such a counterexample see

American Mathematical Monthly, 80, 1973, 918-919,

Riesz, F., and Sz.-Nagy, F., Functional 4nalysts, Frederick Ungar,

Nav York, 1955.
Royden, H.L., Real Analysis, The Macmillan Co., Nav York, 1968.

Rudin, Walter, Principles of Mathematical Analysis, Third ed.,
McGraw-Hill, Nav York, 1976.
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THE CUBIC EQUATION REVISITED

by F. Max Stein
Colorado State Univernsity

1. Introduction.

Wien we study the cubic equation we are generally interested in
finding its roots. However, there are other ways of |ooking at the
equation; the foll ow ng di scussi on shows how strai ght |ines in one plane
nap into strophoids in another by use of the cubic equation, and the
roots of the cubic equation enter into the di scussion only casual | y.

Ve first review sone el enentary aspects of the cubi c pol ynom al equation
to prepare for the discussion of the nappi ng we w sh to consi der.

It is assumed as known that the cubic equation in general formis
given as

2

atd + 8P +ct+ D=0

it has three roots, at least one of whichis real. By the substitution

=z- B
t =x 34

the equation can be transforned into the form

(1)

:c3+ax+b=0,

the reduced cubic equation. |f the roots of (1) can be found, the roots
of the original equation can be deternmined. Qe nethod for solving (1},
known as Cardan’s nethod, is givenin[] as well as nany other places.
There are other anal ytical, as well as nunerical, nethods for sol ving
(1) which the interested reader can find at various places in the
literature.

2. Geometrnic Aspects.

Qur interest in the reduced cubic equation (1) lies in another
direction; we shall exani ne sone geonetric aspects of this equation
and its roots. Throughout our discussion we shall assune that a and &
in(l arereal; furthernore the coefficient of x2in (1) can be con-
sidered to be 1 without | oss of generality.
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We first examine some special cases of (1); to do so, consider
the cubic parabola

(2) Yy = xS’ -

which has the graph given in Fig. la. Equation (1) witha=b = 0-
(Fig. la and Fig. 1b) thus has a triple root at x = 0. The equation

(3) y:x3+b

merely moves the graph of the curve up (or down) by |b| units, see
Fig. Ib. Equation (1) with a= 0and b # 0 has one real root plus two
complex roots - the complex roots are complex conjugates. These three
roots can al | be obtained from

= glbl(cc;s“—%"l + 1 sin—q-—tsz—kﬁ), k=0, 1, 2.

() .

Tk
Here 8 = wif b> 0, ande = 0if b<o. Fom (4) we find that there
is a positive real root of X3 +b=0, (9‘[17[’), if b <0 and a negative
real root,(-g’T), if b >0; the other two roots are complex conjugates
and can be'plotted in the complex plane as in Fig. 2a and Fig. 2b, re-
spectively, see [2].

Next we consider cases in which b = 0in (1) - first witha<®0.
From

(5 vy :x3+ax,y' =3x2+a, and y" = 6x

we see that the graph of the curve passes through the origin with
slope a (recall a < 0) and with a point ‘of inflection at the origin,

see Fig. 3a. Furthermore there are maimum and minimum points at

(Fig. 3a and Fig. 3b) X = -/=a/3 and = = /-a/3, respectively. Finally
note that there are three real roots for X3 tar=0fora<0-atx =0
and X = Y= &, Also note that the graph of (5) isS symmetric with re-
spect to the origin. Adding a constant term b to the right side of (5)
gives

(6) y=x3+ax+b,

which merely moves the graph up (or down) by |b| units, see Fig. 3b.
Note, however, that i f |b| is large enough there may be one real root
and a repeated real root or one real root and two complex conjugate:
roots of (1), see the dotted graphs in Fig. 3b. Note also that the
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graph of (6) is symmetric with respect to the point (0,b); i.e., re-
placing the point (x,y -b) by ¢-,~y +b) in (6) yields (6) again.

W will have only two distinct roots of (1) when the maximum (or
minimum) point of (6) is on the z-axis; this occurs at (-v/=a/3,6Y or at
(/-a/3,0), see (5) and ¢, oor ¢, in Fig. 3b, and recall that a<O0.

On the other hand i f a >0 the graph of (5) passes through the
origin with slope a and with a point of inflection at the origin as
before, only now the slope of the graph is always positive, see Fig. 4a.
Hence, there are no maxima or minima for the graph (Fig. 4a and Fig. 4b)
Thus z3 + ax = 0 has only one real root - at the origin. Adding a con-
stant term b, as in (6), merely moves the graph up (or down) Ibl units,
and (1) has only one real root; the other two roots are complex conju-

gates as before.

3. Reaf vs. Complex Roois.

What is the dividing line between cases for which (1) has all
real roots and cases in which there are complex roots? One way to
answer this is to find those points where a maximum or minimum point of
(6) lies on the x-axis. But these points have already been determined
as (t v=g73,0). (Recall thata <0.) Substituting these points in (1)

we get
+(-a/3)%/? ta(-as)*? + b = 0,

which reduces to

3
2 _ba
(7 b* = 77
a semi-cubical parabola in the a, b-plane, see Fig. 5. It isnot diffi-

cult to see that, for points to the left of the semi-cubical parabola
(the cross-hatched region), (1) will have three real roots (note that
a<0 in thisregion); points on the curve lead to three real roots with
two (or three for the origin) being the same; and points to the right
of the curve yield a pair of complex conjugate roots. O course, a<0

may yield some complex roots, depending on the relative sizes of a andb.

4. The Vector Approach.

Ve now write (1) as
(8) z3+az+b=0, aandbreal,

since we are interested i n the complex roots of (1). Here
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R e 1
z=x+1iy : p(cos g + g sing) =rel . Ty

W can consider the terms in (8) as vectors, and we write, after
rearranging terms, 30

(9) b+az+zd=b 04 are®® + p%%% = o, P(x,y)
We assume that p >0 for simplicity; cases in which p <0 can be treated 23=r33139

in asimilar manner as we shall see later, 19
Since the terms in (9) add to zero, the vectors in the complex az = are

plane, or x,y -plane, must form a closed polygon, a triangle, see Fig. 6. p 8

Furthermore, since a is real (a>0 as shown), r >0, and 6 is the argu- & >
ment of the vector az, then the argument of z3 must be 39. Fom elemen-

tary geometry we can determine that @ = i1 - 29, and hence 8 = 39 - v in
Fig. 6.

5. The Principal Result.
The major concern of this paper is to examine the locus of the FHg. 6

point Pin Fig. 6, V& want to warn the reader that P is not a complex

root of (8). Rather it is the point b * az in the complex plane. The y

coordinates of P(x,y) can be determined from the parametric equations

. x=3/2

(10) x=b +ar cosb, y = ar Sine;

note, however, that we must know r and @ (and hence a root of (8)) to

determine X and y completely. P
Since we shall be using tan g8 = tan(38 ~w), we use some trigono-

metric identities and write P 8
.3
(11) tan(38 -7) = tan 3@ = M . =1/2,0) X

1 - 3tan’e A

v

The locus of P in the x, y -plane as a varies with b fixed, say (1,0)
b = 1, is the same as the locus of the points of intersection of the B
lines

(12) y = (tan 8){x - 1) and y = (tang )z = (tan 36)x.

If we eliminate tan ¢ between these two equations we get I

> E
tane= —4—  x#1, andy = 3 tan 6 t2an9a or

x - 1 1- 3tan6

Fg 7
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3
3 —¢— 2 2
z-1 (z-1° ay[3(x - 1)° - y°]
2 2_ .2
P (x - 1) [(z- 1% - 3°]
(x- 1)

Dvidingout y(if y # 0) and sinplifying vwe get

1
2 5tz

(13) y2 _(x-1)"(2x +1) _ { 2= 1)2§
3 - 2x -2

This is the equation of a strophoid with x-intercepts (1,0) and (-ZQL,O)
and wth x = 3/2 as an asynptote, see Hg. 7. The lines intersect at
(1,0) when 6 = w/3 to renove the restrictionthat X # 1; alsoy = 0 for

6 = 0in both equations in(12). The fact that X = -1/2 wheny =0is
obt ai ned from(13). [By elimnating y between the two equations in (12),
one can obtain

tan 8 - 3tan26 -1

X =
tan 6 - tan 38 2(tan29 £ 1)

Then'

tan e(tanze - 3)

2(tan2e + 1)

y =(tan 38) x =

Here we see that when 6 = /3, x =1and y = 0. Asowen6 = 0,
X = -1/2 andy = 0.]

6 The. Strophodd.
V¢ break up the strophoidin Fg. 7 into four parts:
(a) ABC 0<0 <7/3, a«< o0,
(b)Y CD n/3<0 <nw/2, a> g,

(1%)
(e) EC, n/2<8<27/3, 2> 0,

(d) CF4  2n/3<8< m, @<0,
That is, as a in(9) increases fromthe point (0,1) in Fg. 8, 8
increases in Ag. 7 from=»/3to n/2, and P varies from¢ to D  Because

of the conpl ex roots appearing as conjugates, we al so have fora> 0 the
portion of the strophoidin FHg. 7 from& to ¢, only now 9 increases

3
-312,1) (0,1) b=1
2 a
Fig. 8
b=73

Fig. 9
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from w/2 to 2r/3. Snmlarly as a in(9) decreases fromthe point (0,1)
to(-3 %/2,1), inFAg 8, 6 decreases fromn/3 to 0, and ? traces out
the portion of the strophoid (BA in Fg. 7. The conplex conjugate root
leads to the portion of the strophoid CFA in FHg. 7, only now6 varies
froman/3 to . Note that when a <-3 v2/2 for b = 1, we have a point in
the cross-hatched region of the ab -plane in Fg. 5, and thus there are
no conpl ex roots of (9.

In the precedi ng di scussi on we have assuned that b = 1. For
b >0 in general we have that the equations of the intersecting lines
which deternmine P are

(15) y =(tan e8)(x-b)and y :(tan 38)x,
sinlar to the equations in (12). Uoon substituting for tan 39 from (11)
into the second equation in (15) and then for tan 6 fromthe first, we

get
3
33/b _ Yy
X -
) (z-b)°
Yy = 3 x
1 - Sy
(z-b)2

Woon sinpl i fying and sol ving for y2 as before, we get

- +x
(16) y? = (z-0)2 F— .
—§-—x

Fromthis equati on we observe that as b increases from0 we get a fanily
of strophoids which have x-intercepts at x = <b/2 and at * = Db Further-
nor e the correspondi ng asynptotes are X = 3b/2, see Hg. 9. That is, we
have a nmapping of the lines b = bO inthe a,b-plane into strophoids in
the x,y-plane.

Wen b = 0in(9 we have 22+ az z(z2 +a) : 0 which has roots
at z:0and 2 = t/-&, If a > 0(which is necessary for conplex roots)
then the point Pis at (0,}/[=a], and the strophoi d degenerates to the
y-axis as a varies.

Wen b < 0 we nerely obtain the reflection of Hg. 9 inthe y-axis.
This is readily seen by letting b be negative in (16).
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I $y ty
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z =1 z = =2
Fg 10
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7. Real Roots.

Thus far we have considered only those cases in which a root z of
(9) is complex. The discussion, starting with (9) could apply equally
well for real roots z; in this case the strophoids lie entirely on the
x-axis. That is, b + az + 33 = 0 can be considered as the sum of three
vectors starting and ending at the origin and all lying on the x-axis.
For example in 2 - 33 + Z3 = 0 we see that the roots are 1, 1, and -2
(and hence (7) is satisfied). The vector graphs for 1 and -2 appear as
in Fig. 10; the points P always lie on the x-axis. Recall that the
points {a,b) must lie in the cross-hatched region or on the semi-cubical
parabola in Fig. 5 for real roots, and a is always negative (or zero)

there.

8. The Case a is Constant.
For any point P on the strophoid (16) with coordinates (z,y) we
have that the distance from the origin to P in the x, y -plane IS

(17) r3= (22 + 3212,

the cube of the magnitude of a complex root of (9), see Fig. 11 A|sp,
for a>0 the distance from the point (b,0) to Pin the x,y -plane i s ar.
Hence, we have

2)1/6 2)1/6

r = (mz ty and ar = a(z2 +y
which leads to

(18) b=zt [a®(z? + y2)1/3 -2 |
Nw if we replace b in (16) by (18) we get

s - [22 + M3 - 22
2,1/3 2 :

(19) y2 = [az(-’c2 + 92)1/3 - y2'Jx - 3[a2(x2 +y

By assigning values toain (19) we get the image curves in the

x,y-plane of the straight linesa = a, in the a,b-plane with b entirely

0
arbitrary in (19). Since a simple interpretation of (19) is not readily

available, we do not proceed further in this direction.

9. Conclusions.
By looking at the cubic equation (1) in a different light, we en-
counter an interesting mapping. While the usual study of the cubic
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equation involves finding its roots or in graphing it, here we encounter
a family of strophoids. A study such as this gives rise to additional

problems which include a thorough examination of the mapping of lines
as= a, in (19), the mapping of regions in the a,b-plane into regions
in the z,y-plane, and the mapping of lines, curves, and regions lying
in the cross-hatched region of Fig. 5 similar to that done for the

quadratic equation in [3].
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Apeakg]r. oh defegate can be funded §rom a single Chapter, but others can
attend) .
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A DAY AT THE RACES
by William T. Tomesanyi

Horse racing is known as the sport of kings. Why? Because kings
are the only ones wo can really afford to participate in the sport.
Those who can't afford to participate are the ones you'll see jamming
the racecourses each day.

Ard everybody thinks he can make a fortune because he either
feels lucky or he has a "system".

"l have a system". That phrase has probably rolled off more
handicappers' tongues than any other. What's more, every gambler intui-
tively knows that the only sure thing is that i :re is no sure thing.
Or, is there?

The fact that the odds-on favorite doesn't always win the race
(if it did, we'd all be millionaires) indicates that the art of betting
on horses is as much concerned with people as with horses. Ary race-
goer who fails to appreciate this will lose. Any system-builder who
fails to recognize thiswill wind up with a worthless system. Ard any
sociologist who has never gone to the races i S missing a spectacular
display of human behavior.

The aim of any system is to make the odds more favorable to the
bettor. Some systems are incredibly complex, involving details such as
post position, weather, race distance, size of purse money and even the
integrity of the jockey or driver.

What's needed is a straightforward, logical and simple system
that neglects all the factors of a horse race except the odds.

The Re-Equine System

Given a field of eight horses in a race, can you pick two of them
such that you are positive one will win the race? 1t's easier to pick
two than just one. After all, by picking two horses you've just in-
creased your chances of winning from 1/8 to 1/4.

Now, assuming the above, is there a way to bet on both of them
such that no matter which horse wins you make a desired profit?

397

Let z, = the number of bets on horsey
z, = the number of bets on horse,
a = the odds on horseq (a to 1 odds)
b = the odds on horse, (b to 1 odds)
P = the desired profit

where one bet = $2 (minimum bet); the fiscal return is calculated by
(2) (odds) *+ 2, and the profit is (2) (odds).

If horseq wins: 2ax, - 2%, = P )
These equations represent

the two winning cases.

P

I'f horse, wins: -2z, + 2z,

V¢ nowv have two simultaneous equations with two unknowns. Whet
they mean is if hor-se1 wins, then the fiscal return on that horse minus
the investment on horse, equals the chosen profit. |f horsey wins,
then the return on that horse minus the investment on horse 4 equals
that same chosen profit.

A general form of these equations can be arrived at through oper-
ations of linear algebra by setting up a matrix equation of the form
Ax = b.

2ax, - 2x, = P

4 2
-2xl + 2b:c2 =P
2a -2 z 14
-2 2b/\=z, “\P
p
z\. 1 2b 2

z, u(ab-1) \2 2ap\P

1 (2b+ 2)P
4(ab-1) \ (2a+ 2)P

__2p (b+1)
4(ab-1) atl

Y. _ P (bn
%] 2(ab-1) \atl General Form
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Note: The product of a and b must not equal one or the system
will have no solution. In other words, i f both horses are even money
shots, do not bet the race. The same is true if their respective odds

are multiplicative inverses of each other.

Exanpl e
Let's say you have chosen to make $50 profit and have picked two

horses in a race that are going off at 5to 1 and 3 to A, respectively.

= 50
a=>5
b=3

xl - p (b+l)
2(ab-1) \a+l

1\ 50 (3+1)

*, 2((5)(3)-1) \5+1,

(50/28)(4)
(50/28)(6)

x = 7.14
Ty = 10.7 gy and X, must be rounded off to make
z; =7 whole dollar bets. This truncation
z, =10.5 will affect P slightly.

Amourt of money on horse4 = $14

Amount of money on horse2 = $21
Total Investment = $35

If horseq wins: 2(5)(7)-2(10.5) = $49 profit

If horse , wins: -2(7)+2(3)(10.5) = $49 profit

Racing Matrnix Theony

If it works for two horses, then why won't it work for three? |p

fact, will this system work if every horse in a race is taken into con-

sideration? This system could be the greatest breakthrough in the
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history of gambling i f it allows you to bet each horse in a race such
that no matter which horse wins a desired profit is attained.

Could this finally be the first "sure thing?"
The. Octal-Equine Matrix

There are usually eight or nine horses in a standardbred race and

that number varies a little more in the thoroughbred version. However,
let's take eight horses to constitute a typical field. The eight simul-

taneous equations would look like

2alac -2x2—2x3 Zmu 2z -2%,.-2x,-2%, =
-2z

-2z +2a2x2 2z -2.1:4—2x

-2x, -2 +2a Zq 2x‘+-2x -2z

-2z +2a x -2

7
7
2:1:7-21:

23:6 -2z ~2x, T

U|U1

6 8
6 8
2 6 8
2
-2z, - +2a

-2z -2x

R
w
=

7
-2z -2x 2:57-2:1:
7

.p
rommuu

2z -2% ,~2% 2%, -2L+ -2z

’_l
.:

8
2" 6 8
a -2x, =
2 676 8
-2z ~2x2—2ac -2x, -2x_-2x.+2a,% 2m8
-2 —2m2—2x

|
LT IR - B - B v IR - B - I -

7
+2a8x8 =

wwww
£
U’IU‘IU‘U!

6
-2x, -2x —2.1.‘6

£

where & = odds on horse; (ai to 1 odds)

number of bets on horse;

]
u

P = desired profit

In the form of A== F, the equations become the following system

'dl =1-1-1-1-1-1 -Zq :cﬂ
-1@2 -1-1-1-1-1-1j%
-3 =3 @ =} =3 =3 =3 =3|&,
-1-1-1a, -1-1-1-1
=3 =3 =3 =3 g =3 =3 =3||gg[-?
-1 =1 =3 =1 = 6 =3 -3||%
<1-1-1-1-1-1a; -1 %;;

-1 -1 -1 -1 -1 -1 -1 ey ||z,

F B H R PR P B H

Solving this system of equations by hand would be an absurd task
that could easily take days. A standard hand calculator will take about
ten minutes to invert an eight by eight matrix and spit out the solu-
tions to such a system.

Since horses rarely go off at integer odds, the next example

utilizes realistic odds taken from a typical race.
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Example
INnput Qut put
a = 37-1 z, = -$11.15701428
a =17.2-1 x, = -$23.29486498
a = 15.9-1 x, * ~$25.08677767
a = 11.2-1 X = ~$34.,75135596
a =891 X = -$42,82490330
a =441 zy = -$78.51232272
a, =341 X = -$96.35603243
ag = 1-1 Tg ¢ -$211.9832713

vhere the z; are converted directly into dollars by the programabl e

calculator, and Pis set at $100.

Probfem. The nachi ne cane up wth negative sol utions. UWfor-
tunately, there is no way to bet negative dollars on a horse, and this
neans that this particul ar conbi nation of horses cannot be bet simltan-
eously toyield a desired profit.

Miybe it was just a bad conbi nation of odds? Yes, that's true.
However, in several actual racetrack situations no odds were encountered
that woul d yield a positive solution vector. There probably does exi st
sone conbi nation of odds that woul d somehowyi el d positiveresultsto
the eight equations(Can you find one?).

But let's not give up yet. Just because the systems not guaran-
teed to work for eight horses doesn't nean it can't nake the bettor's
odds nore favorable with fewer horses. First, however, it's necessary
to exanine the basic problens of this system.

Si X Fundamental Problens.

1) Latest Qdds. No matter how many horses are consideredin a
given field, the accuracy of this systemrelies on the |atest avail abl e

odds. A horse nay be listed in a programat 5 to 1 odds but nay actual -
ly gooff at 3to2 A thetrack, for instance, it's best to bet as
late as possible sothat the betting cal cul ations can be nade with the
nost recent odds as read of f the tote board.

2) Stability & Qdds. This isreally a function of getting the
nost recent odds on a horse. The stability this systemis concerned
withis that of the odds at which you bet versus the odds the horses

Lol

really go off at. \at is alsoinportant torealizeis that if you bet
a large amount on any conbi nati on of horses, the odds on those horses
w || change.

3) The Malady of Truncation. Racetracks only accept integer
dollar amounts. In other words, you cannot bet $2.58 on a horse even

though one of the sol utions given by the equations night be x = 1.29.

You are forced to round off the answer to the nearest integer or to the
nearest half. For instance, 1.29 is closer to 1.5 than it is to 1.0.
Therefore, the bet would call for $3 as opposed to $2. A so, if you are
using a programabl e cal cul ator or conputer, the machine will truncate
nunbers as it cal cul ates the inverse of a matrix.

4) Efficiency. The efficiency of this systemcan be defined as
what is put in versus what one gets back. #s the nunber of horses taken
i nto account increases, so does the investnent that nust be nade in order
to achieve the sane profit. For exanple, to make $50 profit on two
horses nay only require an investnent of $24. But nmaking that sane pro-
fit on eight horses may require a multi-hundred dol lar investnent. This
kind of investnent, as noted before, will also affect the stability of
the odds.

5) Degree of Complexity. Calculating bets for two horses can be
done very quickly. UWfortunately, calculation tine increases quickly as
nore horses are taken into account. The eight-horse equations, for in-
stance, can easily take over ten ninutes for a cal culator to sol ve and
there are only a naxi numof sixteen ninutes between races. This neans

that you can't feed accurate odds into the calculator and it wll yield
radically different results than with the | atest odds before post tine.

Athough the eight-horse systemdoesn't seemto work, the sane
tine constraints still apply for nore than three horses. Additionally,
when consi dering nore than three horses, the stiffness of the equations
becones a factor and so do conditions on odds that insure positive sol u-
tions. Siffness can be defined as an adverse reaction of the equations
if one of the odds changes slightly. Inother words, if the sol utions
yiel ded by a set of odds change dramatical |y when just one of the odk.
changes slightly, you nay end up on wel fare.

6) Hb Interest. This isn't necessarily a drawback of this sys-
tembut rather a drawback of successful ganbling. Mb interest is two-
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fold: therewll be a nob of people at the track interested i n how you
arewnning all the tine, and then there will be the other nob interest-
ed in putting you out of business before you put one of their bookies
out of business. Say away frombookies with a systemthat works.

The 3 by 3 -- A System That Woxks

CGan you handi cap any race and cone up with the three best horses
inthat race? Part of the beauty of this systemis that you don't need
to know anything at all about horse racing to wn. Al you have to be
able todoisread the three best (lowest) odds off the tote board at
the track and substitute theminto a general fornul a.

Autonatical 'y, your worst chances of w nni ng becone 3/8. Al so,
it is safe to estinate that at the big-nanme racetracks |ike Roosevel t
and Agueduct, one of the three favorites i n each race w ns about seventy

percent of the tine.

What's nore, the 3 by 3 systemdoesn't encounter all those prob-
lens |ike stiffness, ineffiency, and conpl exity. The substitution of
nunbers into the general fornula |l eads to quick and easy sol uti ons and
nakes the nethod very practical .

Derivation
The three simul taneous equations for this nethod are

u

2azxq - 2z, - 23:3

—2.1:1 + 217272 - 2z 3

-2xy - 2xp + 2emg

where a, b and ¢ are the odds on horses one, 'two and three and X, are

1
the nunber of bets on each horse, and Pis the desired profit.

Inthe formof Ax = b, we have

a -1 -1 xl 1
-1 b Sl | EN

A general formulais arrived at by inverting the matrix A and
mul ti plying both sides of the equation by its inverse. By nethod of
the Qassical Adjoint, the inverse of Ais easily cal cul ated:
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a -1 -1
A =1-1 b -1 , det (A = abe -(a +&+a)-2

-1 -1 e
4

. T
d assi cal Adjoint ’“ij'( 1) "Ydet (Bij)

L= (1/aet (et

be-1 e+l btl
C = e+l ae-1 atl
b+l atl ab-1

The matrix ¢ is symmetric and so it's equal to its transpose, and the
inverse of Ais as foll ows

At = 1 (€]
abe-(atb +e )-2

After multiplying both sides of the equationin the formAz=b by A
inverse, the general formula of the 3 by 3 systemis

2, (be +b+c )+l

x| P (ac +atec )+l

T 2det (D) (ab +a+b )+l
L™l L .

vwhere det (A = abc-(a+ bta)-2

The renai nder of the process is choosing the three horses with the best
odds, the anmount of profit you want to make and sinple nultiplication
and additi on.

Example
Hrse 4:3-1, a = 3
Horse 5:3-2, b = 1.5
Hor se 3:4-1, e : 4
Profit (P) = $50

.50
T 7 2(7.5)

z, =(3.33 [(3)(W) +3+4+1] = $133
x3 =(3.33) [(3)(1.5) +3+ 15 + 1] =$67

n

det (A fromthe formla = 7.5

[(1.5)(4) + 15 +4+1] = $83

in
dol lars
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If horseq wns: (83)(3) + 83 - 83 -133 - 67 = $49
If horse2 wns: (133)(1.5) + 133 - 83 - 133 - 67 = $49.5

If horsez wins: (67)(u) +67 - 83 - 133 - 67 = $52

Now, the total investrment for this race would be $283 and the total
return woul d be about $333.

The. System's Advantages

The first advantage is that you don't need any know edge of horse
racing at all to work this system Secondly, even if the odds fluctuate
slightly fromthe tine you bet, you' Il probably still wnd up naking a
decent profit. Thirdly, having three or nore horses run for you in the
sane race is a confortable feeling. And, finally, the w nning percent-
age of the 3 by 3is high, al nost seventy percent.

There still nay be no such thing as a sure thing and i f there
were, then it wouldn't be ganbling, would it?

s MATCHING PRIZE FUND

If your Chapter presents awards for Qutstandi ng Mat henati cal
Papers or Student Achi evenent i n Mathenatics, you nmay apply
to the National ficeto nmatch the anount spent by your
Chapter. For exanpl e, $30 of awards can result in your
Chapt er recei ving $15 rei nbur senent fromthe National Gfice.
These funds may al so be used for the rental of Mithenatics
Fins. Witeto:

Dr. Rchard God
Secretary-Treasurer, Pi Mu Epsilon
Depart nent of Mt henatics

The Uhiversity of Mryl and
ol | ege Park, Maryland 20742

BE SURE AND SEND THE NAMES OF LOCAL AWARD WINNERS TO
THE JOURNAL FOR PUBLICATION IN THE NEXT POSSIBLE ISSUE.

£
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PARTIAL DIFFERENTIATION OF FUNCTIONS OF
A SINGLE VARIABLE

by Richard Katz and Stewart Venit
California State University

Inthis note we will give a technique(or "rule") for differenti-
ating certain conbi nations of functions. This rule includes a= special

cases the standard ones for differentiating suns, differences, products

and quotients of functions. Mreover, it also provides an alternative
nethod for determning the derivative of the function f(m)g(x).

The t echni que presented here was inspired by two types of errors
frequently encountered when students are asked to differentiate a func-
tion of the form f(x)g(‘z). They either viewthis function as an expon-

ential one and use the formil a

d (@) = ad*(ina) du

or as a power function and use

d @™ = aGl"™) du
& i

As aresult, one often sees (incorrect) answers to this problemof the
form

g(x) [ f(x)g(x)_lil @) or fla)d® [ an(x)]g'(x) )

It isat first surprising to notice that the correct answer (obtai ned
by, say, logarithnic differentiation) is the sum of these two incorrect
ones! However, as we shall see, this is not a coincidence but a

speci al case of the fol |l owing general principle.

Partial Dfferentiation Rule: Let h{(x) be a conbination of the
functions f(x) and g(z) which can be witten as h{z) = H(f(x),glz)).
Then &'(x) can be obtained by first differentiating H(x) treating
f(x) as a constant, then differentiating #(z) treating g(z) as a
constant, and finally adding the two results.
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Proof. In the function #(f(xz), g(z)), change the arguments of
fad gto s and t, respectively, obtaining the function F(s,t).
Then A(x) = F(x,z). Nw the partial derivatives of F(s,z) evaluated
at the point (x,z), namely Fs(x,m) ad Ft(:x:,x), are the derivatives
that one obtains by differentiating #(x) considering, respectively,
glx) ad f(x) to be constant. Finally by the chain rule
h'(z) = Fs(x,:c) + Ft(x,ac) as desired.

It is easy to see that the rules for differentiating-sums, dif-
_ferences, products and quotients of f(x) ad g(x) are special cases
of this partial differentiationrule. Fa example, to differentiate
h(z) = fx)g(x) we successively hold f(x) and g(x) constant differ-
entiating the other function and add the results to obtain

R'(z) = flx)g'(x) + f'(z)g(x)

which i s of course the "product rule.” The most interesting special
case of our rule is its application to the function f(x)g(x). This
gives, as indicated at the beginning of the note, a simple alternative
method (there are no complicated formulas or algorithms to memorize.)
for differentiating this function.
W should remark in closing that this technique does not apply
to the composition of functions. This is easily seen by choosing
flz) = g(z) = x. Then flg(x)) = f(z) = = , SO its derivative is 1.
However, applying the partial differentiationrule we would get
0+0=0.

bttt 5085558550505 %5%%%%%%%%%%%%5%%%%%%%%%%%%
CHAPTER REPORT

M SSCURI DELTA (WESTM NSTER COLLEGE) At the Annual Initiation of
new members, Carol Williams spoke on "Experimental Physics Projects”.
The advisor is Dr. Michael I. Williams.

Bt s%s%%%%%%%%%5%5%%%%2%2%%%%%%%%%%%%%%%%%%%%%%%%%%%%

407

PUZZLE SECTION

Edited, by
David Ballew

This Department i s for the enjoyment of those readers who are addicted
to working crossword puzzles or who find an occasional mathematical puzzle
attractive. V¢ consider mathematical puzzles to be problem whose solutions
consist of answers immediately recognizable as correct by simple obser-
vation and requiring 'little formal proof. Material submitted and not used
here Will be sent tO the Problems Editor i f desmed appropriate for that
Department.

Address al l &rjoposed pussies and puzzle solutions to David Ballew,
Editor of the Pi Epsilon Journal, Department of Mathematical Sciences,
South Dakota School of Mines and Technology, Rapid City, South Dakota,
57701. Deadlines for puzzles appearing i n the Fall issue will be the
next February 15, and puzzles appearing i n the Spring issue will be due
the next September 15.

Mathacrostic No. 14
submitted by Joseph V. E. Konhouser
Macatester College, St. Paul, Minnesota

Like thepreceding puzzles, this puzzle (on the following two pages)
i s a keyed anagram. The 239 letters to be entered in the diagram in the
numbered spaces will be identical with those in the 28 keyed words at
matching numbers, and the key numbers have been entered in the diagram
to assist in constructing your solution. \When completed, the initial
letterswill give a famous author and the title of his book; the diagram
will be a quotation fromthat book. (See an example solution in the

solutions section of this Department.)



1 T2 L 3 4 I{5 P [3 K7 8 Ji|9 a 10 s|11 o
12 D13 R|(14 15 L le T|17 a|18 19 U(20 Y|21 cC|22 A
23 H(24 G 25 26 527 o028 BJ[29 Q{30 31 X 32 G|33 Db|34 Y
35 L 36 V|37 38 S(39 W40 I 41 42 0 43 B|44 V|45 2
46 D 47 U |48 49 T|50 K 51 52 G|53 a{54 H|55 F|56 R
57 cC|58 B 59 60 K|61 Dj62 P 63 64 J 65 E|66 Y
67 V|68 1|69 E 70 J|711 T 72 2|73 74 R 75 X|76 E|77 J
78 T 79 Dj|80 8l H|8B2 R|83 K|84 85 M|86 G|87 uU[88 A
89 F|90 s(91 L|92 93 a 94 X|95 B|96 97 2|98 T 99 N|100 C
101 0|l02 v{l03 J 104 H[l05 Uf106 E[107 afl08 109 Df110 ¥[111 o|112 Gg|113 L
114 QJ115 K|116 N 117 pf118 T 119 z|120 121 M 122 Nf123 Y[124 V
125 ¢ 126 D|127 128 v[129 J{130 L|131 132 D{133 M[134 a|1l35 Y
136 s{137 R|138 0]139 140 I|141 Ujl42 P[143 144 Bf145 L|146 Q[ 147 b]148 R
149 z|150 x|151 152 b[153 T 154 G}155 156 K[I57 ¥[I58 R 159 M
160 U|161 A[162 N|163 164 B|165 Q 166 T|167 168 a|l69 F|170 V]171 ¢
172 K{173 X|174 A|175 176 J|177 2 178 179 F[180 C 181 Gj182 M
183 X 184 N1185 186 H 187 E|188 a|189 190 OJ191 H 192 Q193 W
194 E|195 A{196 D|197 198 I[{199 V{200 J|201 M]202 203 p 204 C| 205 G|206 L
207 D) 208 Q209 s|210 211 U 212 Mj 213 H)214 215 A 216 U} 217 0f 218 X
219 Y|220 a}221 222 H 223 Qf 224 B|225 226 A|227 L 228 vf229 T
230 Y231 af232 233 bj 234 U| 235 D|236 237 s|238 V[ 239 X

efinitions

. at

a | ooper
pure; irreproachable (comp.)

right angles to the centerline

. A mat hemati ci an nanmed

Thought the MBbius band was divine.
Said he, 'If you glue
The edges of two
You'll get a weird

(2 wds.)

hol onor phi c;

l'ike mne.'
regul ar

full of difficulties

5. overcl oud

. a cell nucleus formed by the fusion

. off the beaten track

of two pre-existing nuclei

exponent of the craft of discovery in
mat hematics, b. 1887

German Shepherd film star (1918-1932)
of the 1920's and early 1930's

in another state or condition

(comp.)

cable railway in which an ascending car

count er bal ances a descendi ng car

. acollection of sanples

. the proposition "The only decision

. in an integrated functional

procedure that satisfies certain ele-

nentary principles of social welfare
is adctatorship." (2 wds.)
. sometinme nodifier of element, set,

space, sequence

. one of the paradoxes of Zeno

. of this Indian nathematician (1887-

1920) G H. Hardy said 'The limita-
tions of his know edge were as start-
ling as its profundity.’

uni t

(2 wds.)

half pro and half con (conp.)

. an undergarment with top and bottom

inone piece (2 wds.)
a precursor of the die (2 wds.)

an 1871 Verdi opera by which Egypt
shoul d not have been judged

N of exact science are logic and
mat hematics.” De Morgan (3 wds.)

a generally nmentally defective person
with an unusual aptitude in some
special field (2 wds.)

. a long wandering

the deadly one is a weed with white
or bluish flowers and black berries

b. a winding- sheet

{comp.)

12 109 196 117 46 235 132 79 126 207 61

185 106 76 69 3 194 65 187

89 30 179 55 169 143

T8T 757 205 86 32 112 24 225 154 171
104 222 186 81 23 167 191 54 213

140 4 68 40 198

103 70 8 37 200 129 64 176 77

53 177 760 115 221 & 41 50 156

T30 51 727 91 7 113 178 145 15 206 35
85 121 182 212 201 108 159 51 133

116 127 162 99 184 25

7 11 136 7 5 175 42 217 732 1 190
_ 101 197
62 5 203 142

146 114 165 223 120 35 80 192 208

158 202 56 148 13 74 236 137 82

337 T36 200 38 60 10 26

~T T 178 75 98 166 49 220 16 153
234 19 105 141 87 211 160 47 216

159 24 T8 228 84 67 124 170 36 214 107
193 63 39 T 238 128
150 173 218 239 75 127 183 31 18 94

157 34 135 20 230 66 110 219 123 92 48
11 ~97 73 145 177 45 115

53 168 107 231 5 83 17 188 134 320

233 155 147 33 96 152
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SOLUTIONS
Mathacnostic NO. 13. (see Fall 1981 issue) (Proposed by J.D.E. Konhausexr)
Definitions and Key:

A. Enarthrosis I. Myjority Q. Rep-tile Y. Stevin

b. Rehash J. Aha insight R pen-and-shut z. Concepts
C Non-standard K dow 3, Rubik's cube a Hein

D Swneet pea L. Intuitions T posi te b. Ends with
E Thought s M cusp U, Fddle-faddl e i deas
F. Tschi rnhausen N Mddlethird V. Mnge c. Revehent
G. Heuristic 0. .Internist W. Chop

H Epsilontics P. Replication %. H ephant

Ecst Letters: ERNST THE MA@ C MRROR F M C BSOHR

Quotation: Drawing is decep-fcton. (n the one hand Escher haWed to
neveal this decep-fctonin various prints, and on the other hand he has
perfected it and tuwned it into superillusion, conjwiing wp with it
Aimpossible things, and this with such suppleness, logic, and clarnity
that the. .impossible makes perfect sense.

Solved by: Jeanette Bickl ey, Wbster Goves Hgh School, Mssouri; Louis
H. Cairoli, Kansas State Lhiversity; Mictor Feser, Mry (ol lege; Robert
Forsberg, Lexington, Mass. ; Robert Gebhardt, Hopatcong, ¥J.; Henry S

Li eber man, John Hancock Miutual ; Robert Prielipp, Wniv. of Wisc-Oshkosh;
Chris Thomas, Ann Arbor, Michj; The Proposer and The Hlitor.

Cnoss Wond Puzzle. (see Fall 1981 Issue) (Proposed by Alex Mehaffey Jh.
and Curt OLson.)

Solved by: Mictor Feser, Mry College(partially); FRoger Kuehl, Kansas
dty; The Proposers and The Hitor.

2 3
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PROBLEM DEPARTMVENT

Edited by Cfayton W. Dodge
University of Maine

This department welcomes problems believed to be new and at a
level appropriate for the readers of this journal. Old problems display-
ing novel and elegant methods of solution are also invited. Proposals
should be accompanied by solutions i f available and by any information
that wilt assist the editor. An asterisk (*) preceding a problem number
indicates that the proposer did not submit a solution.

All communieations should be addressed to ¢. W. Dodge, Math Dept.,
University of Maine, Orono, ME 04469. Contributors desiring acknowl-
edgment of their offerings are requested to enclose a self-addressed
postcard or envelope. Please submit each proposal and solution on a
separate sheet (one side only) properly identified with nare and address.
Solutions to problems in this issue should be nailed by December 15, 1982.

Probl ens for Sol ution

510. Phopobed by Charfes W. Triggz San Diego, California.

A hexagonal nunber has the form 2= -n. In base nine, show that
t he hexagonal nunber corresponding to an »n that ends in 7 terninates
inlL

511  Proposed by Emwin Just and Noaman Schaumberger, Bronx
Community Coftege, New Yohk.

If a>oand g Z 1, prove that

B
e, Ba
) &)

1A
®
<)
>
o

as-eB

B
1) (P <,

a

512. Proposed by Jack Garfunkel, Flushing, New Yohk.
Denot e t he nunber of ways a positive integer »n can be partitioned
into 3 positive integers by Py(n). Thus, for exanple, P4(7) = 4, since
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we have

1+1+5 1+2t4 1t3+3 and2* 2+ 3 each equal to 7.
L . 2
Prove the following: |If a, b, ¢ are positive integers and a” + b2 = c2,
then

Pa(a) + P3(b) = Ps(c).

513.  Proposed by Ronatd E Shifflern, Geongia State University,
Atlanta, Geongla.

Our old friend Prof. Euclide Pasquale Bombasto Umbugio, eminent
retired numerologist from Guayazuela, has been delving into statistics
of late in an effort to prove that his retirement salary is so laughably
low that he should be given food stamps in addition to his good conduct
pass to the 1986 baton twirlers semifinals. He has checked several dis-
tributions involving real numbers and in every case, the average devia-
tion (a.d.) isless than or equal to the standard deviation a, where

7 n
a.d. = = z |o; - #| and o2 =1 Z &, - )7
i=1 =1
O course, z is the data mean "
a=1 ¥ x.
[
He conjectures that a.d. £ ¢ is aways true. Help the professor to
prove his conjecture.

514.  Proposed by Raymond E Spaulding, Radford University,
Radfond, Vinginia.

Let A.4,4, ... A be a regular polygon-where 4 . = A. and
17273 n+g 3
A'Ai+1 = 1 Let _Bi be a point on' the segment AiAi+l where AiBi = .
Let Ci be the point where AiBi+1 intersects Ai+1Bi+2' Find the area of

a regular polygon €,CyCy «.. C in terms of n and x.

*515. Proposed by Jack Garfunkef, Flushing, New Yolk.

Given a sequence of concentric circles with a triangle ABC circum-
scribing the outermost circle. Tangent lines are drawn from each vertex
of ABC to the next inner circle, forming the sides of triangle A', B',
C'. Tangents are now drawn from vertices A', B', ¢' to the next inner
circle and they are the sides of triangle A", B", ¢", and so on. prgye

(n)B (n)c(n)

that the angles of triangle 4 approach n/3.
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516. Pnoposed by J. L. Bremner, Palo Alto, California.
Prove, for a, b, a positive, that %‘(a+ bte) i/%’ (ab + bec +ea)

with equality if and only if a = b = e. Does this generalize to

%(a +b+c+d)3/%-(ab+bc+cd+da)?

517. Proposed by Charles W. Tnigg, San Diego, California.
The nine non-zero digits are arranged to form three three-digit
primes with a am that is divisible by 11. Find the primes and their

um.

518. Proposed by Michael W. Ecker, Pennsyfvania State University,
Wonthington Scranton Campus.

A baseball player gets a hit and observes that his batting average
rises by exactly 10 points, i.e, by .010, and no rounding is necessary
at all, where batting average is ratio of number of hits to times at bat
(excluding walks, etc.). If thisis not the player's first hit, how

many hits does he nov have?

519. Proposed by Charles W. Tnigg, San Diego, California.
Solve the equation

3% - (3u)15 = 0.

520. Proposed by Chuck ALLison, Huntington Beach, California.
The following diagrams describe the first few polygonal or k-gonal
numbers:

-1 + 52-70

+ 1

Triangular; k = 3: P(n, 3) = ’—"(—”?—)
1 3 6 10 15 21
Square; k = 4 P(n, ) = n?

O HE) [ 1
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Pentagonal; k = 5 P(n, 5) = n(-anz-—l—)
a1 5 12 22 35 51 e n

where the numbers represent the number of dots shown, and each figure
is an extension of its predecessor. The nth number of each sequence is

given by the above formulas. Find a general formula for the nth k-gonal
number P(n, K ).

521. Proposed by Monnis Katz, Macwahoe, Maine.
| was told, when | first saw that alphamatic, that

WE
a particular value for K produced a unique solution, but I DO
have forgotten what the value is. So find the unique V&I]SERI(E
solution where DALY is prime. DAILY

Solutions

466 [Spring 1980, Spring ]981] Proposed by Herbent Taylor, South
Pasadena, California.

Let the adversary put four distinct symbols in each box (node) of
this graph. Prove or disprove: No matter what pattern of symbols he
puts, we can choose two symbols from each box in such a way that adjacent
boxes have disjoint chosen 2-sets.
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SoLution by the. Proposenr.
Disproof: The adversary could put symbols in boxes in the pattern

shown.

476. [Fall 1980, Spring 1981] Proposed by Jack Garfunkel, Queens
College, Flushing, New York.

If A, B, C, D are the internal angles of a convex quadrilateral,
that isif A *B+c+D = 360°, then v2 [cos(4/2) + cos(B/2) + cos(C/2)
+ cos(D/2)]1% [cot(4/2) + cot(B/2) + cot(C/2) + cot(D/2) ], with equality
when A = B = ¢ =D= 90°.

Solution by M. S. Klamkin, University of Alberta.
Since cos a is concave down for 0 2 z £ 90°,
I cos 4/2 £ 4 cos 45° = 2/2,
Since cot X is concave up for 0 £ x £ 90°,
Z cot 4/2 2 4 cot u5° = 4,
Thus,
Z cot A/2 2 ¥2 % cos 4/2.
The latter inequality is not valid if the quadrilateral iS non-convex.;
just let A = B = ¢ = 309, D = 270°,
Also we similarly have
I cot 4/2 2 V2 % sin A/2 ,
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I tan 4/2 2 Y2 £ cos 4/2 ,
TtanAll 2 vY2 ¢ sin 4/2 .
Also sofved by RALPH KING and the PROFOSER

486. [Spring 1981] Proposed by Chuck ALLison and Peter Chu, San
Pedno, Califonnia.

Snvimmers A and B start from opposite sides of a river and swim to
their corresponding opposite sides and then back again, each swimming at
his om constant rate. |f on the first pass they meet each other x feet
from A's starting side, and on the second pass they meet at a point y
feet from B's starting side, how wide is the river in terms of x and y?
Solution by Kev.in Theatf, Essex Falls, N Jernsey.

Consider the following three cases, shown in the diagrams below.

P v k——’”’-—»
i(_ B 1. B — Y =

e———fgﬁ (__ﬁ

W W Case wg
— w~
Case 17
Letting Va and Vh be the respective swimming rates for A and B,

we have case © when 2va < vy Then, considering the distances travelled
between meetings, we have

2
Db _-W-X_w-y+zx
Yy X we-x-y°?

whence

3x +y + /(x-z/)2 + 8x°.

w =
2

If v, 2 va, then case i< occurs and we have

v
= 2
;é=w__x=_L_,sow=x-y+/(x—u) + 8yx

a2 x Wty 2
Finally, caseiii occurs when 4va‘> Wy >Y,. Then
v
Db _w-z_2w-y _
Va e _w+y’ w = 3T - y.
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Case Lii was also sofved by LEONOR M. ABRAIDO-FANDINO, ARA BASMA-
KIAN, MIKE BEACH, DAVID DEL SESTO (cases ii and Hi), MARK EVANS (who
remarked that the quicker svimmer must not be more than twice as fast as
the slower swimmer), VICTOR G. FEER (who recognized a second possibility),
ROBERT C. GEBHARDT, JOHN M. HOWELL, RALPH KING, HENRY S. LIEBERVIAN, BOB
PRIELIPP, DOJUAAS RALL {cases A ad 4ii}, ANITA REED, KENNETH M. WILKE,
BRENT WRS/MN (cases 4i and £il}, and the. PROFOSR

487. [Spring 1981] Proposed by Solomon W. Goiomb, University of,
Southenn California.

W know that 1/7 = .142857... repeating with period 6. With A =
142 and B = 857, the first and Second halves of the period, respectively,
we observe that A + B = 999, and B = A + 5. Prove this generalization:

If pis prime, and the decimal expansion of 1/p has period

2t, where A and B are the first and second halves of the

period, then A + B consists of "all 9's", and when B is

divided by A, there is a quotient of p - 1 with a remainder

of p- 2

Can you also generalize from the relation 14 + 28 + 57 = 99?
Finally, what happens if the expansions are in base b and p is merely

relatively prime to b? (Note: In base b>1, b is always equal to 10,

but not necessarily equal to ten.)

|. Partial sofution by Bob Prielipp, University of, Wisconsin-Oshkosh.

It can be established that the sam of two halves of the period
will always turn out this way when the period belongs to the fraction
a/p whose denominator p is a prime, provided that the period has an even
number of digits. (For a proof of this fact, see Rademacher and Toeplitz,
The Enjoyment of Mathematics, Princeton University Press, 1957, pp. 158-
160. Another proof may be found in W. G. Leavitt, "A Theorem on Repeat-

ing Decimals,” Ihe American Mathematical Monthly, June-July 1967, pp.
669-673). This property i s sometimes called the nines-property.

Next we demonstrate that if p is a prime number and

1/p = Ay@oe e e @By 1By ooy
(so 1/p is an infinite repeating decimal with a period of even length)
then
Bp41%4p rre Ggp = (P-1)a@jag...a,) + (p-2).
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To conform to the notation of the statement of the problem, |et

A = alczz...at and let B = a Then

41042 Cot

(%) 0% =@ .10+ 8)p+ 1
Using the nines-property, we have that

10%/p =A+ BL=A- 5+ .35+ . B=A-1/p+ .3,
so 10° = 4p t (p-1). Substituting 4p t (p-1) for 10t in (*) and simpli-
fying yields B = 4(p-1) + (p-2).

IT. Partial solution by Kenneth M. Wilke, Topeka Kansas.

Let p be a prime > 5 such that the decimal expansion of 1/p has
period 3t. Divide the period of 1/p into three groups of t digits each
and denote the first group of ¢ digits on the left by Al, the next group

by 4, and the third group by 4;. Ve shall show that 4, +4, +4, = 10%-1.

2
Proof. Since the period of 1/p is 3¢, then 3t is the smallest

exponent » such thatp| 10¥ - 1. Thus p !t 10% - 1. so we must have

2
p |10 s 105 + 1 But 10° = r(mod p) where 0 £ r<p. Hence we have

p|r2+r+lsi~nce 10%¢ +10t+lsr'2 +r+ 1 (mod p).

Hence r2 t+pr t 1= pk for some integer k. Nw 10 = Ap t » so that

=4, - 107" +4 + 10 + A

Nw since

109 -1 10%F 102 4 102 _ 10% 4+ 10% - 1

P P
and since 4, = [lot/p], we have A = [» . 10 /p] where [a] isthe

greatest integer in X. Thus

t r(4,p +r) 2
2o A0 o L =4, + L= p4 +p______k-r-l.
p P 1 p 1 r

Then since [(pk - » = 1)/p] = k - 1, we have 4, = ra; +k -1 Also
[pk - »-21)p] =k=21becausep(k - 1)+ (p- » -1)=pk-r -1
and0 £p -r-1< psince0sr<p.

t
Finally the division process yields A = 107 'p” -1 - l. But this

is equivalent to

r+1)A,p t r)-1
A =100 -2 e 4

P =10 'Al(r+l)'k
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which is an integer. Then

+ %
= - A (r+1) -k) =10 -1
Al+A2+A3 Al+(rAl+k 1) + (10 l(

as required.
KENNETH M. WILKE afso solved the. §irat parts of the. problem.

488, [Spring 1981] Proposed by Herb Taylor, South Pasadena,
California.

Take the numbers from 1. to 24 and put them into 8 disjoint 3-sets
[a,b,e] such that in each 3- set, a + b = ¢.

Summary of, solutions submitted by SIZANNE CRISCIONE, Providence
College, Rhode. Tsfand, DAVID DEL SESTO, Noath Kingstown, Rhode Islfand,
MARK EVANS Lowisville, Kentucky, JAMIE GREGORY, Temre Haute, Indiana,
KATHLEEN HENRY, New Rocheffe, New York, IHN M. HOWELL, Littferock,
California, MARIORIE HSU, St. 0faf College, Nonthfield, Minnesota,

ROBERT KELLY, Providence, Rhode. Tsfand, RALPH E. KING Saint Bonaventure,
University, New York, JEAN LANE, Union Coflege, Cranfornd, New Jernsey,
PAUL A. MCKLUEEN, Rateigh, North Carolina, TAGHI REZAY-GARACANI, Okla-
homa State University, Stilfwater, OkLahoma, JDY A. SCHULTZ, Provdidence
Coflege, Rhode. I4fand, CHARESW. TRIGG, San Diego, California, and the.
FROFOR

Ve have (11, 13, 24), (7, 16, 23), (10, 12, 22), (6, 15, 21),

(2, 18, 20), (5, 14, 18), (8, 9, 17), (1, 3, 4) is a solution utilizing
the largest six elements in separate sets, whereas (1, 13, 1), (2, 22, 24),
(3, 20, 23), (4, 17, 21), (5, 10, 15), (6, 12, 18), (7, 9, 16), (8, 11,19)
places al | 8 smallest integers separately. According to Trigg, there are
some 2000 solutions. No general methods were given, and only those solu-
tions submitted by Howell and Hsu were duplicates, specifically (1, 2, 3),
(4, 17, 21), (5, 13, 18), (6, 14, 20),(7, 15, 22), (8, 16, 2u), (9,10,19).

489. [Spring 1981] Proposed by Michael U. Ecker, Pennsylvania
State. University, Wornthington Scranton Campus.

Let k and n be positive integers with k<n. Two players take turns
choosing, on each turn, a positive integer £ k. A running total is kept,
and the player to achieve n as the asm is the winner.

State and prove winning strategy results for the game. (The game
with n = 50 and k = 6 has been used as a teaching tool, with modest
popularity, at theelementary and secondary school levels).
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Sofution by Kenneth M. Wilke, Topeka, Kansas.

Given integers n and k with n>k; there are integers a and r such
that #n = a(k+1) +r with 0 s r<k t+ 1. Nw if a player is to play from
a total t, his winning strategy is to add the number y <k + 1 which
mekes t + y =r (mod k+1). This strategy always wins unless t =r (mod
k+l) already because if tzr (mod k+1) and you select the number y to
add, your opponent, who knows the best strategy will select k + 1 - y
so that you will be playing from a new total ¢t +k+ 1L Nwif t=r
(mod k+1), then t + k + 1. = » (mod k+1) also and you are playing from a
losing position because whatever number y you choose, the opponent coun-
ters with k + 1 - y leaving you again in a losing position. EG. for
n =050 k=6, 9=7.7+1sothat the first player to achieve one of
the totals 1, 8, 15, 22, 29, 36, 43 or 50 wins by following this
strategy.

e __ALS0 s0Lved by AN M. HOWELL and the. FROPOSRR

490. [Spring 19811 Proposed by Joyce W. Williams, North Univer-
A4ty of, Lowelk.

The function f{n) is to be constructed to give the number of days
in a year through the nth month forn = 0, 4,...,12. That is, Fl0) = 0,
f(1) = 381,...,f(12) = 365. Leap year is to be ignored. Wha is the
simplest solution?

I.  Sofutions by Victor G. Feser, Mary College, Bismarck, North Dakota..
Ore person's simple is another's complex. Here are three solu-
tions. The first one might be called "simple-minded.” Simply define
proper values for z = 0, 4,...,12; for all other z, let f{z) = anything.
The "simplest" kind of function is linear, so define a continuous,
piecewise linear function on the intervals (-=, 1}, [1, 2] ,...,[11, + 9.
A continuous, smooth function can also be defined. Just construct
a polynomial having the correct values at X = 0, 1,...,12.

IT. Sofution by David Sutherland, Nonth Texas State University, Denton.
Starting with the thirteen statements f£(0) = 0, f(1) = 31,

Ff(2) =59, ..., £(12) = 365, we simplify by reducing the number of state-

ments to three:

fn)

"
o

3in forn =0 4

3m -["g"'i' 2] formn =2 3, 4,5 6, 7, 9 1L
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= 8in <[+ 1] for n =8, 10, 12
where the brackets indicate the greatest integer function.

111. Sofution by the Proposenr.
Ore solution is the function
flz) = [(0.5)(61n-2) + (1.1)|n-2| - |n-1]],
where the brackets indicate the greatest integer function.

491. [Spring 1981] Proposed by Charles W. Trigg, San Diego,
California. .

From a square grid of side 2n * 1 alternate squares are removed
to form a sieve. (&) Wha is the smallest sieve that can be dissected

and the parts assembled into two squares with integer sides? (b) Wha
is the smallest number of pieces into which the sieve must be cut to
accomplish this assembly?

I. Sofution by Victorn G. Feser, Mary College, Bismarck, Nonth Dakota..

If » = 0, we have a trivial solution: either make a sieve by re-
moving no squares, make no cuts, and reassemble into a square of side 1
and a square of side 0; or make a sieve by removing one square, make no
cuts and reassemble into two squares of side O.

For » = 1, make two cuts to get four pieces which reassemble to
produce two squares of side 2, as shown in the figure below.

For N = 2 no solution exists since the sieve has 21 squares, which
does not yield 2 squares, although it does yield 3-
An interesting case arises for #n = 3. The sieve has 40 squares,

and this gives two unequal squares, with 8 pieces, as shown below.
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492. [Spring 1981] Proposed by Jack Garfunkel, Queens College,
Flushing, N.Y.

dven an acute triangle 43¢ with altitudes denoted by ha, h, h
and nedians by m_, my, m, to sides a, b, e respectively. The points

c

P, Q Rare deternmined by the intersections mamhb, mbnhc, and mcmhc‘l,
respectively. Prove:

(1 0O O

11. Sofution by the. Proposenr.

[In addition to conments simlar to those of Solution ] the
7 x 7 sieveis the snallest that can be dissected and reassenbl ed i nto
two unequal squares. |t can be done with 8 pieces as shown bel ow

vhere L, M ¥ are the feet of the nedi ans.

g N
D
A
E F
= c + [elF
&
B
V¢ further note that f(2) - 21 : 1 +4 +16, soa 5x 5sieveis Solution by the. Proposer.
the smal | est one that can be disected and assenbl ed into three squares. Denote angle BPL by 8, and let 2R = 1, where Ris the circumadi us
Aso, f(4) =65:1+64=16+49:4+25:+36:419+16+36, soa of triangle ABC V& have in triangl e ABB, since ¢ = 28 sin C,
9 X 9 sieveis the snallest one that can be dissected and assenbl ed into sin(90° - 4) _ AP _ _AP o 4P = sin ¢ cos A
.o . _r - = T 3 - i 2
four, three, and two squares; in the latter case, in two ways. Then, sin e sin C sin 6
F(s) = 96, f(6) = 133 f(7) =176, and f(3) = 225. Thus a 17 x 17 sieve Intriangl e BLP, we have, because BL = la = %‘ (28) sin A
is the snall est one that can be dissected and assenbl ed i nto one square. 1sin A cos C
Editorial comment. Feser's 7 x 7 sol ution can be reduced to 7 pi eces, sin(90° -¢) . PL , . pp -2
as shown bel ow sin 6 %si nA sin®
Hence,
AP 2 sin C cos 4
= e SN Acos © = 2 cot 4 tan C.
Snilarly,
B _ 2 cot Btan A and B — 25 cot Ctan B.
[T o ' RN

¢ have to showt hat
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2 Lcot AtanC 2 6 or zw >q.
Since the geometric mean of these three products, cot A tan C, etc., is

1, and since the geometric mean is | ess than or equal to the arithmetic

mean, this inequality follows.

494.  [Spring 1981] Pnroposed by Zekbda Katz, Bevewly Hills,
California.

In the annexed figure CD iS a half-chord perpendicular to the
diameter AB of the semicircle (0), and the inscribed circle (P) touches
AB in J and the arc DB in K. Swow by elementary plane geometry, without
using inversion, that AD = AJ.

A o]

Solution by Henry S. Lieberman, Boston, Massachusetts.

The key observation is that g, Pand X are collinear. This is so
because the circle P istangent tocircle O at K.

Let » be the radius of circle P and R that of circle O. Then
OP = R = » and from right triangle OPJ we get

(B-r)% = r? + (r+00)2.
Also, R =oc?+ pc? from the right triangle 0DC. Combining these two
equations we get:

pc? = »? + 2poc t 2rR.
But
Al =R+ x»+oc.
Therefore,
47% = v + ar(meoc) + (Re0C)? = DC? + ac.
Since 40% = pc? + ac?, then AJ = AD.

ALso s0fved bq JACK GARFUNKEL. RALPH KING and the. PROPOSER.

495.  [Spring 19811 Proposed by Richard Hess, Palos Verdes,
California.

A regular pentagon is drawn on ordinary graph paper. Prove that
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no more than two of its vertices lie on grid points.

Solution by the. Proposen.

Assume that 3 vertices do fall on grid points. Whichever 3 they
are they include a 36° angle in the triangle they form. There are only
two distinct cases.

Translate coordinates so that the origin (0, 0) is at the 36°
vertex and let the other two vertices have coordinates (a, ») and (e, d).
Then a, b, ¢, and d are rational.

By the law of cosines applied to this triangle we get that
14+ /5 ac + bd

b '/az b2 Je? 4 42

cos 36° =

Nw square both sides to get

3+ /5 _ fac M, |E~

8 (@a®+b")¥(c"+d")

The right side of this equation is rational, but the left side is
irrational, a clear contradiction.

496. [Spring 1981] Proposed by Donald Canard, Anaheim, California.

P is any point within a triangle 4BG whose sides are a, b, e,
whose semiperimeter is s and whose orthocenter is H. L€t X denote the
distance from P to BC and |l et R denote the circumradius of triangle ABC.
Sow that

P2 =pH? + 25 c2- 4R-Z % 4 7o ).
Solution bg Méckey Sowris, Ontando, FLorida.

The denominator in the stated equation should be 2rs, not 2s,
where » is the inradius of the triangle. Then the following equations
are known:

A = 2R cosA, ha = 2R sinBsinC,
where ha is the altitude to vertex A.
a = 2R sinA, b=2rR sinB, e =2R sinC
by the law of sines,
b2 + 02- a2 = 2be cos A, andabc= uRrs.
Nw let y be the length of the perpendicular PK from P to the altitude
AH. From right trianglesPAK and PEK, we get

(h, -2 +y? = Pa%and (h, - 4B -2)? + 47 - i,
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so
(hy -2~ (n, - -0 = m?-m?,
which we solve for P A to get

PA2=PH2—AH2+2ha “ AH - 2% - AH

2 2 2

= PF - Rcos“A t &R sinBsinC. 28 cos A-2r + 2R cosA
2 2 2
- Pi? - ur? + up? sin? + 2be coshA - 2z . 2RBTEL - a

PH2 - 4R2 + &t (b2+ e - a2) - M(Z:r2 +0 —a2)
2abe

p H2—4R2+b2+32 _ LazR (b2 $02 —a2)
8Rrs

s pE? - uR? F 0%t o? - BB 32 4 52 g2
2rs

Also solved by the PROPOSER, except for overlooking the r. He inadver-
tently said the area of the triangle was equal to s instead of rs, but

we shall duck the question of pronouncing an appropriate punishment.

497. [Spring 19811 Proposed by Scett Kim, Artificial Intelligence
Laboratony, Stanford University.

Three drummers are positioned at the corners of a large equilateral
triangle, say 1 mile on a side. Each drummer beats his drum at a constant
rate r, with the time between beats being equal to the time it takes for
the sound to travel the length of one side of the triangle. The drums
are synchronized so that a listener standing in the center of the tri-
angle would hear all three beats simultaneously. This means that it
seems to each drummer that the other two drums are in synch with his omn
drum (actually they are delayed by one beat).

Problem: Where else can a listener stand (besides the center and
corners) and hear all three drums in synchronization?

Unsolved (untried): Wha if the drummers beat at a rate of nr,
forn = 2,3,4,...?

Solution by Mark Evans, Lowisville, Kentucky.

For n = A there are no solutions other than those mentioned by the
proposer. For, if ABC is the equilateral triangle of side 1 mile, then
any listener L must be located so that, for example LA - LB = d is an
integer. Since LAB is a triangle, we can have d = 0 if L lies on the
perpendicular bisector of A or d = #1 if L lies on AB extended. By the
triangle inequality, no other possibilities exist.
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For n > 1, place triangle ABC in the Cartesian plane so A(-1/2, 0),
B(o, /3/2), and ¢(1/2, 0). Let L{z, y) be a solution point, where all
three drums are heard synchronously. Let r denote the number of beats

delay (or lead) of the signals from A to those from B, and 8 and t the

delays between the signals from A and ¢ and from B and C. Then

r=n(L4) - n(LB), etc.

Let
_r
f(x,y) e
For points on line AC (the x-axis) we h;’:\ve
flx, 0) =x +%- (z° +%)12 ,
so

af (wag0) _ 4 _ o2 - %)-1/2_

Then f(x, 0) has no minimum or madmum on the interval (0, =), Since
F(0, 0) = (-¥/3 + 1)/2 and

1
1im f(x, 0) = 5

T >
then A+l <rp<l
2 “nT 2

t/n. Then glxz, 0) = 2x for

Similarly, let g(x,y) = s/n and h(x,y)
0Sx%1/2 and g(x, 0) = 1 for x 2 1/2, and h(x, 0) = glx, 0) - flz, 0).

For x Z 1/2 we have

1 2, 3,1/2
flz, 0) =z +5 - (7 + )

3%

which we solve by isolating the radical and squaring to get

2 2
= 1
m:ﬂ__“"_@f__z_r_ for 0§£<__
2 n 2
on” - urn

Thus we have [n-1)/2]1 new solutions on the positive x-axis for each
nz 3.

For 0 £x % 1/2, by a similar argument we find that
_ n2 + 2nr - r'2

X = B
2712 - inr

provided 3nr/(n- 2r) is an integer and (1-V3)/V2 £ n/n £ 0.

For points on the y-axis (the altitude through B), we have
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YOUR BADGE — a triumph of skilled and highly trained Baltour
craftsmenis a steadfastand dynamic symbol in a changing world.

Official Badge
Official one piece key

2

1,1/2 vG
£, y) = G+ P - |y_T,._.£,

n

and a similar argument leads to

2 2 2 2 /3 er < Official one piece key-pin
y=r —n) ¥ n(g “ 2 )3 for 3 I 21 Official three-piece key
2n(3n2 - upt) Official three-piece key-pin
and WRITE FOR INSIGNIA PRICE LIST.
2 _ .2 2 _ .2 -3 r /3
- + - B o3
y = ur(r® - n%) t n(2r” - #7)V3 for 5<=5'5

2n('+1r'2 - 3n2) An Authorized Jeweler to Pi Mu Epsilon

Sofutions to the f§inst parnt wene also submitted by ROBERT KUEHL
and the PROPOSER.
Kuehl remarked that a listener could "stand" at any point on a

line perpendicular to the plane of the triangle through the point where
the medians intersect.

ATTLEBORO MASSACHUSETTS

(N CANADA L. G. BALFOUR COMPANY, LTD.
T J— A CARD OF THANKS

Starting with the Fall 1968 issue a Los Angeles dentist took the
reins of this problem department and ably lead it for more than a dozen
years, increasing the number of problems per issue from 8 to 12 while main-
taining a high standard of excellence. His primary interest i s geometry,
but the other branches of mathematics have also been fully represented
in the more than 300 problems he has included in these pages. Nw Dr.

Leon Bankoff i S retiring fromthis post, and the vacancy he leaves wl | PAID IN ADVANCE ORDERS:
be a difficult one to fill. V¢ extend ow deep appreciation and warm " Members: $ 8.00 for 2 years
thanks to Leon Bankoff for the great time and effort he has spent serving $20.00 for 5 years

this department and i ts readers. His strong leadership will continue to
influence the Problem Department for years to come

Pl MU EPSILON JOURNAL PRICES

Non-Members: ~ $12.00 for 2 years
$30.00 for 5 years

Libraries:  $30.00 for 5 years (same as non-members)

P POSTERS AVATLABLE FOR LOCAL ANNOUNCEMENTS
V¢ have a supply of 10 x 14-inch Fraternity Crests available.
Ore in each color will be sent free to each local Chapter on

request. Additional posters my be ordered at the following

rates: All Issues $150.00 5 complete back volumes plus current volume
: subscription (7 volumes — 30 years)

Back Issues $ 4.00 per issue (paid in advance)

Complete volume $30.00 (5 years, 10 issues)

(1) Purple on Goldenrod stock---—---=----—--- $1.50/dozen
(2) Purple on Lavendar on Goldenrod—-——--—-- $2.00/dozen.




